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ABSTRACT

LIMIT CYCLES IN LINEAR SYSTEMS

WITH A RELAY IN THE

FEEDBACK LOOP

by

MAHMOOD ANVAR, BSEE

SUPERVISING PROFESSOR: ARISTOTLE ARAPOS ÂTHIS

A survey of different methods to investigate the existence of limit cycles in

linear systems with nonlinear gain elements in the feedback loop is presented.

The complete analytical solution of the problem in the case of asymptotically

stable second order linear time invariant systems with an ideal relay in the feed

back loop is also derived.
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Chapter 1

Classical Methods

1.1 Describing Function Method

Some of the methods used in dealing with nonlinear systems are based

on the construction of a linear “approximate” model of the original system. The

basic assumption required for the describing function method is that the closed

loop system acts like a low-pass or band-pass filter. Consider the system shown

1.1, where L is a stable linear time invariant causal system and N isin Figure

a nonlinear gain element whose output q(t), in terms of its input p(t) is given

as

qW = N ( p( t ) ,m)

xey LN

Figure 1.1: Block diagram of the system

Now if a sinusoidal input is applied at the input, y( t ) = A sin u, where

u = ut , then e( t ) is also periodic and can be expanded in Fourier series as
OO

e( t ) = a0 + 52(°n sin nu + bn cos nu) ’
n=l

1
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1 f 2n
— / N ( A sin u, Au> cos u )du ,
27r Jo

1 /*27r— / sin u, Au> cos u) sinmx du ,
7T Jo
1 f 2 ir— / 7V( v4 sin u, J4U;COS u) cos nu du .
7T JO

a0 =
an =

(i.i )&„ =

Now if the linear system is such that it passes the fundamental fre-

quency and also blocks all of the harmonics, then the output x is a sinusoid of

the same frequency as the input. In this case, if the loop is closed, the condi-

tions for sustained oscillation are essentially the same as those for the system

when N is replaced with a gain element as given by (1.1).

In general the describing function for a nonlinearity is defined as the

ratio of the complex amplitude (amplitude and phase) of the fundamental fre-

quency in the output of the nonlinear element, when subjected to a sinusoidal

input, to the amplitude of input.

Example: If N is an ideal relay then

^ output

Input-Output
characteristics
of an ideal relay

input
-k

Ic f* /2 TT

-(/o
du - l du ) = 0 ,-L f 2r

2TZ JO Ndu =ao = r
k .

k r**
7T JO

sin u du ) =sin u du —N sin u du =ai =
4k

= -(- cos u|o + cos ul” ) = ,
7r 7r
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hr7r Jo — / cos ii du) = 0 ,

CM) = Sub’*1 4*
/1

I /2"
7T 7o

COS U duTV cos u du =bi =
7rA

1.1.1 Finding Limit Cycles Using DF

As already mentioned, in DF method it is assumed that the output

of the linear system in self-sustained oscillation is sinusoidal and based on

this assumption the nonlinearity is replaced with a linear gain element in the

feedback loop.

G(s)

K

Figure 1.2: Block diagram of the equivalent linearized system.

Consider the system shown in Figure 1.2. From linear system theory

it is known that if — KG( ju ) = 1 then u is the frequency of oscillation of the

system. So it is sufficient to find the solution of the equation — D( A) =
to find the amplitude and the frequency of the limit cycle. One way is to plot

the locus of -gl—j and -D( A ) on the same polar plot and read A and u directly

from the intersection of the two loci.

Example: Let the nonlinearity be an ideal relay and let

-s + 1
s2 + 4s + 4G( s ) =
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We have

-ju: + 1
( ju + 2)2 ’for k = 1 , D( A ) = —- , and G( jc j ) =

7T A

( —5u>2 + 4) + J (̂8 — u;2)1
u>2 + 1GO")

= 2^2 ,w? - 8 = 0 a>i

/1 = -4 ,
G(;2V/2)

'

1
= d, •

Thus, the equation of the limit cycle is

A1 = 7r

y( t ) = -sin (2v/2<) .
7r

1.2 Krylov-Bogoliubov Harmonic Linearization

This method, devised by Krylov and Bogoliubov is also called the

method of harmonic linearization or the method of harmonic balance. It is

necessary to bear in mind that this method, like the DF method, gives approx-

imate solutions to nonlinear systems.

Let the nonlinearity be described by y = N ( x ,x ) , with y the output,

x the input and x the time derivative of the input. Also let

u = cut .x = a sin Lot ,

Then

y = N ( a sin u, aucos u) .
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Expanding the right-hand side in Fourier series we get

1 r 2*»«> = 27/. a sin u, au cos u )du +

J N ( a sin u, au;cos u) sin u duj sin u>< +

J 7V(a sin u, aucos u) cos u duj cosu;i +

+Higher Harmonics .

+

+
(1.2)

The first integral is the DC level in the output of the nonlinear element

and for Symmetric” nonlinearities it is zero. Here it is generally assumed to

be zero. If higher harmonics are neglected and we note that

xx
COS ut = —smut = — au

we get

y( t ) ss g(a, u>)x +
q ^ J x ,

where
1 [ 2*— / N ( a sin uyau cos u ) sin u du ,
7r Jo
1 r2*— / jV(a sin u, au> cos u) cos u du ,
7T

9(a, w) =

g'(a , u>) =

Thus the nonlinearity, for sinusoidal input, is replaced with an amplitude and

frequency dependent linear element. This method can be extended to find

linear models which take second, third and any finite number of harmonics

into account, but there is no guarantee that these complicated models would

yield a better approximation.

Now consider the system in Figure 1.3. For u = 0 we have

q1

y = qx + x ,Le = x , e = -y , u
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L

y N(x,x)

Figure 1.3: Block diagram of the closed loop system X

— L( qx + —UJ
x ) = x .-Ly = x ,

If G(s) is the transfer function form of the linear operator L, we get

-qG{ s ) X - q'G{ s )C { -) = X ,
U )

where C denotes the Laplace transform;

^G( s )sX = X ,
U )— qG{ s )X -

[(9 + C)G(s) + l ] X = 0 .
U )

As usual the condition for having oscillation is that

( q + —s )G( s ) + 1 = 0
UJ

must have pure imaginary roots at s = juj. The solution can directly be read

from the intersection of the polar plots of and — ( q + j q f ).
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1.3 Tsypkin’s Method

Again consider the closed loop system shown below and the corre-
sponding open loop system. If x = N ( e,e), then we can write

F(s) = G(s)r(7V(e, e)) ,

where G(s) is the transfer function of the linear system and £(JV(e, e)) is the

Laplace transform of the output of the relay when subjected to a periodic

input. It should be noted that for a general e(t), X(s) is not necessarily defined,

however if e(t) is periodic, the output of the relay is also periodic and its Laplace

transform is well-defined.

Figure 1.4: Block diagram of the system

In this case, the output of the relay is a sequence of rectangular pulses

and can be expanded in Fourier series as

*(o =\ £ c*e
^ n= — oo

jnuft

where cn for piecewise constant periodic functions are defined as

m+l1 -jnwii
:— ]£ Ax(ti)cn — J .=i

Here, Ax(f,) denotes the jumps of x( t ) at its points of discontinuity <, for

i = 1, 2, ... , m + 1, i.e.

lim [Ax(t.) = x( t i + e ) — x( t ; — c)] .
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If x(t) is symmetric; which is the case for relays with sinusoidal input, we have

c„ = 0 for all even n, and x(t) can be written as

OO

x( t ) = lc« l cos( mot ~ 0„) ,
71=1

where 9n is the phase of cn. For an ideal relay this reduces to

m 4k XT' 1
*(o = — ±.* n=l

sin[(2n — l)u><] .
2n — 1

To find the output of the linear system y(£), due to input x( t ).t we use the

superposition principle and the fact that the input is a sum of sinusoids. Thus,

y( t )
_ « V |g[j(2m - IHI

T is sin [(2m — 1 )u>t + 0( ( 2m — l)w)] , (1.3)
2m — 1

where 0( .) = LG( j.), if the sum converges.

Conditions for the Existence of Limit Cycles1.3.1

For the closed loop system we have

*(0 = -y(0 •

Clearly for the system to have oscillations of half-period refer to

Figure 1.5; we need the following conditions to hold:

• Condition of proper switching times

nn Vn {0,1, 2, . . .} , (Cl )y(<) = o » for

• Condition of proper switching direction

717T»( —) (-!)•< 0 . v » £ {0, 1,2, . . .} , (C2)
(JJQ
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Figure 1.5: Typical signals at nodes

• Condition of no additional switching

y( t ) < 0 , V 0 < < < — - ( C3)
UJQ

1- 3.2 The Hodograph of a Relay System

If we can find an co > 0 such that y(t ), as obtained from (1.3), satisfies

conditions Cl, C2 and C3, then the closed loop system will exhibit a limit cycle.
Clearly this is not trivial, since y( t ) is given as an infinite series.

In this respect an important role is played by the concept of hodograph,

which gives a graphical interpretation to the conditions of the proper switching

time and direction. Tsypkin defines the hodograph for an ideal relay system as

j(u;) = - ]- y(z ) - jy(z ) > (1.4)

where y(.) is the output of the linear part of the system due to a sinusoidal

input of frequency UJ at the relay input; refer to the open loop system in Figure

1.1; and y(.) is the derivative from left of this output.

It should be noted, that J ( U J ) is properly defined if both j/ (.) and y(.)
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properly defined. y(.) is well defined as long as the seriesare

y( t ) = ii£ Efelisin { t + 0( ))
n=1

rational transfer function. The index of Gconverges. Suppose that G (s) is a

m where k and m are the degrees of the denominator andis defined as / = k —
the numerator polynomials respectively. If £(5) is stable and l > 1 then

m<$£^< ££ w»)i •

n=1 n— 1

Regarding -y(0 we have

— f l |G{ jnu )\ cos[nu;t + 0( nu ) ] < — £ •

^ "-1

1 =
if / > 1 and G(s) is stable. Note that the

a delay term in it. So the hodograph is a

the linear part of the system is stable and

We have \G( jnu) )\ converges

convergece is preserved if G( s ) has

well defined function of LJ as long as

has positive index.
conditions for self oscillations areFor an ideal relay the first two

the intersection(s) of the plot of J ( u> ) with the negative real axi

be used to check for the third condition.
satisfied at

and the value of CJQ obtained can

Determination of J(̂ )

The output of the linear system, y(<)» can

the step response of the linear system. Considering that y( t ) is symmetric and

periodic, it suffices to find it in the interval [0, *], where u is the fundamental

frequency of the input. Suppose the input i

in the interval [o, j] is the sum of the outputs due to all pulses

1.4

be found in terms of h( t ) ,

shown in Figure 1.5. Then theis as

output y( t )
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in the interval ( —oo, 0] plus the input between 0 to t. Denote the unit step

starting at t = t0 by u{ t — t0 ) and the output of the system due to u( t ) applied

at the input, by h( t ). By time invariance, we can write y( t ) in the interval

0 < < < - as
U>

y( t ) = k{ h( t ) + f](-l )"Afc(< + (n - 1)^))} ,
n=l ^

where Ah( t — t0) = h( t ) - h( t - <0)- Recalling that for systems with positive

indexed rational transfer functions ft (0) = 0, and that y( ^) = — y(0) we get

y(-) = -k £(-l)nA*((» - 1) Z ) = k g;(-l)"A*(n£) .
U n=l U n=0 u

Im J ( LO ) — k ^( — l)nA/i(n —) .
n=0 U

Hence,

To find Re J (u) we have to find y( t ) in the same interval. This simply implies

using the impulse response in place of the step response to get the desired

result.

m= HsW + EC-1)"AS(< + (n - 1)^))} , o < t < I .
n=l

We should notice that if we evaluate y( ^) this will yield the derivative from

left of y( t ) at t = ^ which is the desired value in calculating J (u> ).

I/(-0 = k i9(- ) + £(“1)nA5(^“)} *

u> u> n=1 v

Now noting that g( ^ ) = A <7(0) + g{ 0) we obtain

- ^(o) + £(-i )"A5(n5) •

^ n=l
/2eJ(u?) = -
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Thus,

« = + -E(-l )"Aj(n-) + j f )(-l)"AM»^)] .
^ ^ n=1 U n=l W

To obtain J(u>) in closed form it is easiest to assume that G(s) = is with

positive index and has only simple nonzero poles. In this case G( s ) = 1

where N is the degree of P(s) , p, are the poles of G(s) and rf- are the residues

at corresponding poles. Here we have

r.

g(t ) = J2 r»cWt >

rt rt N

h( t ) = f 9{ T )(LT = /

Ah( n—) = h((n + 1) —) - h( n— ) = ]T —(ep*" - 1) ,
U? UJ UJ t

_
1 p%

Ag( n- ) =w .=i

1=1

= £“(cP,t -!) •

1=1
Then

and

*(e»* - 1) .P» nrte

Using these results in the formula for J(u> ) we obtain

-*£:r(eW* - 1) £(-1)nc*n“ =
n=0

N r— A:^—tanh(

k N
—[̂ (0) + r* <anM
^ i=i

Im J ( u> ) =
P«t=i

^ r# 1 - e*n* ?rpf
= -*£ 2u;

) ‘
p« 1 + ep*n**=1

And
irpi

J- ” -fie 7(w) =

Finally noting that g( 0) = JZili ri we get
N i

— A:^r,{ — [ tanh{
1=1 w .jJ + l] + >-«.»/>(gf )} .7rpt-

J ( u> ) =



Chapter 2

With a Relay in
Limit Cycles in Second Order Systems

The Feedback Loop

/

2.1 Introduction
In this chapter we co

stable, strictly proper
feedback loop. We break the pro

nature of the poles of the transfer functi

asymptoticallydescribed by an

with an ideal relay in thensider a system

d order transfer function

blem into three
according to thesecon

distinct cases

General Properties2.2 Some with alinear systems
investigating the

facts about

will later be used in
establish some

In this section we

relay in the feedback loop. These fa

ecific systems
linear single-input,Consider a

existence of limit cycles in sp

single-output system:
x = Ax -f bu ,

y = cx

1.6* )with a relay in the feedback loop

-sgn{ y) •u =
. It should be under-2.1

is shown in Figure

med to be minimal.The block diagram of the system

is assustood that the linear system

13
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yu x=Ax+bu
input=0

RELAY

Figure 2.1: Block diagram of the system

Proposition 1 I f b u = f ( x ) satisfying

f ( -x ) = -/(*) ,

and x(t ) is a trajectory of the systemf then — x ( t ) is also a trajectory.

Proof: Introduce a set of new states r = — x . Then the state equation

in terms of the new states becomes

-r = - Ar + f ( x ) = - A r - f { - x ) = -A r - f ( x ) .

Hence,

r = A r + /(r) .

Proposition 2 Consider a second order linear system, described by an as-

symptotically stablef strictly proper, rational transfer function) with an ideal

relay in the feedback loop. If the system has a limit cycle, then:

i ) The limit cycle is symmetric with respect to the origin of the phase plane .

ii ) The limit cycle has exactly two switchings of the relay per period.
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The proof is given in the Appendix.

Corollary 1 The necessary and sufficient conditions for the existence of a

limit cycle in an asymptotically stable, linear, second order system with a relay

in the feedback loop are:

(Cl ) Existence of a point (0, z ) G 9?2 and a T > 0, such that the trajectory <j)t

satisfies (/>T ( 0, z) = (0, — z ), and

(C2) y( <f>t ( 0 , zf ) < 0, V t e (0, T ). Where y( .) is the output of the linear

system.

The period of the limit cycle is 2T .

2.3 Second Order Systems

The analysis is based on Corollary 1. We distinguish the following

cases:

6i 3+frpi ) GOO = ( «-p) 2

b\ 3-\-bg2) GO) = («-pi ) ( a-p2 )

6i g -f fen3) G(a ) =

6l 5~f ~
(a-PpCase 1 GO) =

The appropriate state space realization of the transfer function is

bi2p 1
-p2 0

c = [ 1 0 , p < 0 ., b =A = bo ’



16

Consider the trajectories

x(() = eA' x(0 ) + j
'

eA<‘ ’>bu( r )dr , (2.1)

0~
where x(0) = . Here, we have

x 2

At _ (1+ P* )ept iept— p*tept (1- pt )ept

First we analyze condition (Cl ). Setting x( T ) = — x(0) in (2.1), we obtain

(2.2)

( eAT + /)x(0) — v4-,(/ — eAT )b = 0 . (2.3)

where I is the identity matrix with appropriate dimension. Replacing the value

of eAT from (2.2) in (2.3) we get

x2TepT ] _ [ -%(1- epT ) ~ h£±ha.TepT

x2 + (1- PT )x2epT ] " [ (&, + &)(!- epT ) + ( blP + b0 )TepT (2- 4)

Eliminating x2 in (2.4) yields:

epT ) — blP+b° TCVTT
e-pT + 1- pT (6j + ^L)(1- epT ) + ( blP + b0 )TepT ’

or
sinh ( pT ) bi

nr == TP + 1 'pT b0

Noting that > 1 and monotonically increasing for t; > 0, we come to the

conclusion that for the existence of a ( unique) limit cycle it is necessary that

|j-p > 0. Since p is assumed to be negative, we must have jJ- < 0. Also solving

for x2 in (2.4), we get

(2.5)

- l) - (*. + £)T —£<.-"-!) - £<£,+ 1)T
_

£»(e-'TT x2 = — P2
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= —^-(cosh pT — 1) .b0 sinh pT
P P

bo ,= --r(e-pT

P2P2

Hence,
x2 = ~ ^j(cosh pT -1) . (2.6)

o-
The output of the system y( <), subject to the initial condition x(0) =
can be found from (2.1) as

x2

y( t ) = *i(<) = x2tept + ĵ (l - ept ) + ° tept , (2.7)

provided that y( t ) < 0, Vt (0, T ). Utilizing (2.5) and (2.6), we can write the

output as
e' pT - 1

y{ t ) = f -̂1
p ~P1

Let f ( v ) = t; > 0. Then f' { v ) = Let g( v ) = vev- ev +1. Since

^(O) = 0 and g' ( v ) = vev, we deduce that <7(u) > 0, Vv > 0. Thus, f' ( v) >

(2.8)-pT •

0, Vv > 0 and f ( v ) is monotonically increasing. Therefore f ( — pT ) > f ( — pt ) ,
for 0 < t < T . Now from this observation and (2.8), we conclude that 60 > 0 is

both necessary and sufficient for condition (C2) of Corollary 1 to hold. Thus,

the necessary and sufficient condition for the existence of a (unique) limit cycle

in this case is: bx < 0 and b0 > 0.

6i s-j-bnCase 2 G( s ) =

The diagonal state space realization of the transfer function in this case greatly

simplifies the analysis. Thus:

Pi 0
0 pi

, e = [ l l ] ,A =
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Figure 2.2:
*2 +4*+4

where r* and r2 are the residues of the transfer function at the corresponding

poles, given by

b\P2 + bobiPi + bo (2.9)rI = r2 =
P“2 PiP l - P2

with both pi and p̂ negative. Note that in this particular realization of the

system the output is the sum of the two states, y — x1 + #2* and, thus, the

switching surface for the relay is X\ + ar 2 = 0. Consider

x ( t ) = eAtx ( 0 ) + J * eA( t~r ) bu{ T )dT , (2.10)
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X 0 . Suppose the relay has just switched from positive to

u = 1. Thus, from (2.10), with x ( T ) = — x(0) ,
where x(0) =
negative. So x\ + #2 < 0

XQ

we get

1(0 ) = ( I + t*T )-' A-' ( I - eiT )b . (2.11)

Solving for the right hand side of in (2.11), we obtain

—^tanh^_ £. tanh *f •
L p2 2 J

X Q /(2.12)— X Q

Eliminating XQ in (2.12),

n tanh
Pt 2

2. tanh
Pi 2

( bi + — ) tanh = ( bi + —) tanh ,
Pi 2 P2 2

P2T/>0

or
bi + tanh^&i + £*- tanh^Pi 2

(2.13)

Let
tanh^ sinh aT + sinh /?T
tanh sinh aT — sinh0T

where a = Ei±£i and f t — ?I ~PI . Differentiating,

f (T ) =

2( 0 sinh aT cosh 0T — a cosh aT sinh /3T )m= (sinhaT - sinh0Ty

which can be simplified to

— P2 sinhpiT + pi sinhp2T
f\T ) = (sinh aT — sinh (3T )2

Note that the denominator of f ( T ) is positive; therefore its sign depends on

the sign of the numerator. Let

h(T ) = — p2 sinhpiT + pi sinhj^T1 .
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Then
h'(T ) = — pipi ( coshpiT — cosh foT ) .

Suppose |pi| > |p21 • We have cosh pi 71 > coshp *̂ and hence h'( T ) < 0, V T >
0. Since /i (0) = 0, we deduce that h(T ) < 0, V T > 0. Thus, f' (T ) < 0, V T >

0 and f ( T ) is monotonically decreasing. This establishes the uniqueness of the

solution of (2.13), if there exists any. The existence of a solution depends on

£*- lies in the range of f ( T ) or not. We have6i +^whether

f (T ) : (0 , oo) i-* (1 , — ) for |pj| > \pt \ .
P2

Then the condition for existence of a unique solution to (2.13) is

P2 ^1 "I-

which simplifies to

r < ° -OQ
(2.14)

We now check for condition (C2) of Corollary 1. From the state

transition equation, utilizing ( 2.13), the output of the system starting from

x(0) is
2r2 ewt — eP2T2ri ePlt — ePlT (2.15)y( t ) =

Pi 1 + ePiT ' P2 1 + eP2r

Hence,
2r1ePlt 2r2ePJ <

1 + e^ T 1 + er*T '

Setting y( t ) = 0, we find that the output has a unique extremum at

(2.16)y(*) =

r2( l + e*r)'

. rx ( l + e^T )
1 (2.17)t' = In

P1 - P2
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Note that for bib0 < 0, the term inside the brackets in (2.17) is positive. From (

2.15), utilizing (2.13) we obtain y(0) = y( T ) = 0. Observe that t' = 0 only if one

of the following holds pi = p^ , T = 0 or T = oo. Thus, y( t) < 0, V t (0, T )

if y(0) < 0. Consider

2r22rx
2/(0) = 1 + eP> T 1 + e^T ’

/
We obtain

(2.18)syn(y(0)) = -sgn

where, under the assumption |pi| > |p21
1 + ePlT

> 0 .1 > a = 1 + e*>*T

From (2.14) and (2.18) we conclude that the necessary and sufficient condition

for the existence of a ( unique) limit cycle in this case is: 61 < 0 and b0 > 0.

Case 3 G( s ) - [ s
_

{ (T+ -^ab2( (r.juj ) ]

The state space realization of the transfer function is

6i2<T 1
> c = [ 1 o ] ,A = , 6 =-( <72 + U>2) 0 bo

with <7 < 0. Following the same procedure as in cases 1 and 2 consider

O'
i(0) = ( I + eiT )-' A-' ( I -e")6 ,x(0) = (2.19)

x2

Here

JeaTsinu;T + eoT cosuT
z V̂rsinuT

jeaTsino>T
— -eaT sin wT + ecT cos uT

W

eAT = (2.20)
u»
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-0.5 -x- 1 -2 -y- 6

— 5+4 with a relay in the feedback loopFigure 2.3: A trajectory for G( s ) = *2+5«+4

From (2.20) and (2.19), we obtain

f c(»a + + » tanh ^tan ^ _
1 + tan2 ^ 1 — tanh2 ^u;

which simplifies to
j^( <72 + a;2) + <r sinu>T _ sinh aT (2.21)

(7<7 a?

Let
|^(<72 + a;2 ) + a sin u>Tf (T ) = a u

and
sinh aT , T 6 [0 , oo) .„(T ) = —
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cosujT ,Then,
/'(T) = c

g'(T ) = cosh oT ,
b.(a2_ + ufm SINUJT ,

(J

a sinh ^T .
5»(o) =

f"(T ) = *-u>

9
»(D =

1, and AT ) > °’

Note that /(0) = s(<*) = °’ °̂’
VT > 0. If ^ < 0, then

M <T2 +^) + * > 1 ,bo

is unbounded. We

the other hand
G

and /'(0) > s'(0). Note also, that /(•) 15 b°u^* '
= T )

conclude, that in this case
^tprsect since„ fc. > 0 < 1, and, , and / do not .nter.ec

b0 ^ U’ °
VT > 0.

. On
g' ( T ) > /W*

d only if Mo < °*

than oneis satisfied if an
1 is

of the two

We now
•which sa

So condition (Cl) of Corollary

Note that in this case, due to the form

solution T > 0 can exist, satisfying (Cl)

satisfying 0 < OJT < W IS

Consider

functions, more
that the solution

show
f the Corollary.

tisfies (C2) o

is the only one

(2.22)
A'V- cM )i I

x ( t ) = "

Solving (2.22), yields (2.23)
at cosUf ) ’ai sinujt - /?(e—e*71 sinujt + «e

y(t) = *i(0 - 1

(2.24)bowhere

u;(cr2 +a =
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obtain, utilizing (2.24), we
From (2.19) and (2.21)

(2.25)
u>T-1)] •

sin wT + cos[-aeCJ
22 = e*7 sinu/T

From (2.23) and (2.25),

_
eaT sin CJT

We show that the expression

t G (0, T), u>T (0, *-)• Let

(2.26)_
<Ttsinu;T] •

e"aT sinu;i + e
jsin (u;(t T ) )

y(0 = for all
in (2-26) is negative

:on inside the brackets in

/
~ot sin wT •

e-aT sinwt + e
m(t) = sin T ) )

somewhere
o. So if m(.) » Positive

obtain m(0) — m(T)
that interval. Hence

f (0, T ). We have
Utilizing (2.21)

in the interval (0, T), it must hav

ust be nonpositive

we
a local maximum

at some point o

its second derivative m
-^ sinu^T ,

cos u;t — at
UJ cos (u;t — &T ) ue

m#(t) = sinu?T •

e-<rT 8ina;t +^e_a;2 sin (a;t - wT) + ^2

u,T (0, *)• So tS’m"(t) =
Clearly m"(t) > 0, and hence, m(t) < 0, vt e (o, r)

*- if and only if
i < UJT <

negative for all 0 < ^and remains (2.27)
bo > ®

or equivalently
/3 > 0,

On the other hand if (2.21) h» more

. Evaluating (2-26) at ut -
<r(T+*)

sin u>T

/3e<r(T+t) _— ecT sint^T

this solution
solution, then

than one
7r , yields

satisfies u>T > 27r
e~° l sinu ) f \[sin (*- uT ) +yO =

sinu;T] > ®
[sin uT + e

1
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Thus, any solution of (2.21) satisfying uT > ir , violates condition (C2) of

Corollary 1.

We conclude, that the necessary and sufficient condition for the exis-

tence of a (unique) limit cycle in this case is: b\ < 0 and bo > 0.

with a relay in the feedback loop
« T"* S -j-4Figure 2.4: A trajectory for G( s ) J

We summarize our analysis in the two following Propositions:

r°position 3 Consider a second order system described by a strictly proper}

ideal relay in the feedback
asyrnptotically stable, transfer function G( s ) , w an i
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loop. The system has a limit cycle if and only if the transfer function has a zero

in the open right-half complex plane and G(0) > 0. The limit cycle is unique

and asymptotically stable (in the sense of Lyapunov).

Proposition 4 Consider a second order system described by a strictly proper,
anti-stable (both poles in the open right-half complex plane ), transfer function

G( s ) , with an ideal relay in the feedback loop. The system has a limit cycle if

and only if the transfer function has a zero in the open left-half complex plane

and G( 0 ) > 0. The limit cycle is unique and asymptotically unstable (in the

sense of Lyapunov).

The proof of Proposition 4 is a direct consequence of time symmetricity of

stable and anti-stable systems and Proposition 3.

Finally it would be interesting to compare the results of our exact

analysis with those obtained by embarking on approximate methods discussed

in the previous chapter. Even though the methods based on linearization, in

the case of asymptotically stable, second order systems, with an ideal relay in

the feedback loop, can accurately predict the existence of limit cycles, their

quantitative results can be off by orders of magnitude. As an example, let

-10000s + 1
G( s ) = s2 -I- 2005 + 10001

The Describing Function method predicts a limit cycle with a period of T &

~ 63 milliseconds, while the actual value of the period, as obtained from

our analysis is approximately 347 milliseconds.

2 IT

100



Appendix A

Before we embark on the proof of Proposition 2, we need to introduce

some helpful notation and definitions. Consider the following realization.

(A. l )x = f ( x ) = Ax — b sgn( cx ) ,

where:
61~a i 1

~a0 0

The system in ( A.l ), ( A.2) is described by a differential equation with discon-

tinuous right hand side. By a trajectory of the system we mean a solution of

the differential equation in the sense of Filippov [FI].

c = [ 1 0 ] . (A .2)A = 6 = bo

Let S denote the hyperplane {(xi , X 2 )| Xi = 0} in 9?2, and H+ , l i-

the open halfspaces {(xi , x2 )| Xi > 0} and {(xi , x2)| Xi < 0} respectively.

Note that the vector field /( . ) of ( A. l ) is continuous on H+ and H- . For a

point (0, 2) 5 we define:

(A.3)/+ (0, z ) = lim /(x) ,
x -*• (0, z )
x H+

and analogously for /_ (0, z ) . We also let

(A.4).F(0, z ) = conv{ f+ (0, z), /_ (0, z)} ,

where u conv ” denotes the convex hull.

27
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We say that a connected set U C S is a local section in S if for every

x U the trajectory <f>t { x ) of ( A.l) is uniquely defined for t (—e , e ) , ( e > 0

- e < t < 0 } edepending on x ) , and {<^t(x )| 0 < t < e} H+ , { <^< (x)|

H- , Vx U , or vice-versa.

Note that U is a local section in S if F ( 0, x) D *5 = {0}, for all

(0, z ) e U (here S is identified with its tangent space).

The following Theorem can be established using the same argument

as in ([HI], pp. 244-247).

Theorem: 1 Let 7 be a limit cycle in ( A . l ). Suppose that 7 is a simple, closed

curve in 3?2 . Then 7 intersects any local section in S at not more than one

point .

The hypothesis that 7 is simple, i .e. , the homeomorphic image of a circle, is

necessary here, since the solutions of ( A. l ) are not necessarily unique. Note

though, that if the points of intersection of 7 with S lie in local sections in 5,

then the hypothesis is clearly satisfied. We now proceed to prove Proposition

2.

Proof of Proposition 2

Let 7 be a limit cycle of ( A.l ). Observe that sgn( cx ) can not be

constant over 7 since, otherwise, 7 is a trajectory of an asymptotically stable,

linear system driven by a step input, and hence can not be a limit cycle. Let

x0 7 (1 H- be an arbitrary point and let (0, ZQ ) be the first crossing of S by

the trajectory <£<(x0) of ( A.l ).
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zo + b\ , it must be the case that ZQ > — b\.Since /_ (0, z0 ) =
We distinguish the following cases:

Suppose bi < 0. Observe that in this case, the sets S' = {(0, z )\ z >

—6i } and S" = {(0, z )\ z < — 61} are local sections in S . Clearly then

Zo S' and using the symmetry argument of Proposition 1 we deduce that

7 fl ‘S' C S' \JS". In view of Theorem Al , assertion i t ) of the proposition

bo

a)

follows.

b) Now let b\ > 0. In this case the sets S' = {(0, z )\ z > bi ) and S" =
{(0, z )| z < — &i } are local sections in S . Consider W = {(0, z )\ \z\ < &i}.

Following Filippov ([FI], p 206) we deduce that if (0, z ) W then <f>t ( 0, z ) =
(0, z( t ) ) , where z( t ) satisfies z( t ) (as long as (0, z( t )) W ). If

bo 0, this implies that W is positively invariant and, hence, 7 (1 W = {0}.

Therefore, z0 & IV , which implies that zo S' . The conclusion follows as in

a) .case

On the other hand if b0 < 0, then z ( t' ) = bi (or — &i ) at some finite t' .

Observe that the system has two equilibrium points: x' = (^- , ^6o — 6i ) H-
and x" = ( — ~^b0 + bx ) H+ . These equilibrium points are locally

asymptotically stable. We claim that (0, — bx ) S and (0, fci ) S lie in

the domain of attraction of x' and x" respectively. To establish this fact, let

v( x ) = xTVx be a positive definite quadratic form such that ATV -f VA is

negative definite. Let Ci > 0 be the supremum of the set of constant c > 0 such

that
( x - x' )TV ( x - x' ) < c

Clearly the level set { x \ ( x — x' )TV ( x — x' ) = C\ } is tangent to 5 at exactly

=> x G H- .
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z' < -bi .
one point, (0, z' ). The direction of the vector field /_ implies that

Therefore there exists a constant c2 > cx such that the boundary of the set

c2} contains the point (0, —b\). Clearly Ef ) H-
ion of attraction of x'. The£ = {x| ( x - x' )TV ( x - x' ) <

which lies in the regionis a positively invariant set

claim follows. W . Thereforethat zo
which contradicts the hypothesisThus, (0, —bi ) & 7

*o S', and the conclusion follows as in case a) .

2. Let (0, z' ) S' and
established ii) of Proposition

of intersection of 7 and the local sections.

by contradiction.

Thus far, we

(0, z" ) e S" be the unique points

If ^
We argue

z". Consider the trajectory-z" assertion i ) follows by symmetry.

Suppose that, without loss of generality
, z" ) and <^t(0, z' ) H+,

uch that (f>t»(0, — z") =
z" > z" > -z\

0 MO, *' ) = (0
<^t(0, z' ). Evidently for some t' >

for all 0 < t < t' . By Proposition 1, there is a f > 0 s

". Since z' > -
intersect at some point

for all 0 < t < ^(0, -z' ) and <f>t(0, -z" ) H+ ,
the trajectories z' ) and — z" ) should in

of solution of ( A.l) in H+.
in H+,

Q.E.D.

contradicting the uniqueness
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