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Abstract 

 

The Secondary Permeability of “Impervious” Cover in Austin, Texas 

 

 

 

 

Thomas Jefferson Wiles, M.S. Geo. Sci. 

The University of Texas at Austin, 2007 

 

Supervisor:  John M. Sharp Jr. 

 

The term "impervious" is commonly used in urban settings to describe the 

permeability of buildings, roads, and parking lots. When estimating recharge to an 

aquifer underlying an urbanized area, impervious cover becomes a prime consideration. It 

is commonly assumed that an increase in impervious cover leads to a decrease in 

precipitation recharge. However, even a cursory glance at most roads, sidewalks, or 

parking lots reveals that, far from being impervious, there are abundant fractures that may 

provide avenues of infiltration. For this study, method was developed to determine the 

secondary permeability of pavements using a double ring infiltrometer to measure the 

infiltration rate of water into fractured pavements. Linear extrapolation is employed to 

determine the infiltration rate as the water depth approaches zero, which is used as a 

proxy for hydraulic conductivity by assuming that the gradient is unity. 
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Data were collected on concrete and asphalt pavements located in Austin, Texas, 

at each point a fracture or expansion joint intersected along 30-meter scanlines. By 

dividing the sum of the discharges for each fracture by the area represented by the 

scanline we are able to determine the equivalent-porous-media hydraulic conductivity. 

The equivalent hydraulic conductivities for discrete fractures were found to range at least 

three orders of magnitude, from >10-2 to 10-5 cm/sec; scanline hydraulic conductivities 

range two orders of magnitude from >10-4 to 10-6 cm/sec; permeability along the 

scanlines tends to be dominated by one or two highly conductive fractures; and the 

hydraulic conductivity of the entire paved surface is 5.9·10-5 cm/s. Both apertures and 

point hydraulic conductivities were found to have logarithmic distributions but cross 

plots demonstrated no correlation, which indicated that a combination of the fill material 

and sub grade, not the fractures and expansion joints themselves, limit infiltration. By 

multiplying the paved surface hydraulic conductivity by the time the surface can be 

expected to be saturated, we find that 170 mm or 21 percent of mean annual rainfall is 

available as potential recharge. When coupled with an enhanced subsurface permeability 

structure resulting from the installation of utilities and the reduction of evapotranspiration 

from the reduction of vegetation, the net effect of roads and parking lots could be an 

increase in precipitation recharge. 
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CHAPTER 1: INTRODUCTION 

Because of the brevity of the period, man’s work will sink into insignificance 
when viewed as part of geologic history. Nevertheless, during the present short 
chapter of that history, man’s work is very important and as worthy of a place in 
geologic textbooks as are the actions of the sea or the rivers (Sherlock, 1922). 

Humankind’s effects on the surface of the Earth are profound. If the combined 

effects of construction, agriculture, and mining are taken into account, the amount of 

material moved by humans is an estimated 40 – 45 Gt/yr (Hooke, 1994). The world’s 

rivers, in comparison, transport approximately 24 Gt/yr. In fact, if the total amount of 

material moved by humans in the past 5000 years were dumped onto a pile, it would form 

a mountain range 4 km high, 40 km wide, and 100 km long. If current rates are 

maintained, the mountain range will double in length in the next 100 years (Hooke, 

2000). Clearly, geoscientists will have to account for materials that have been made or 

moved by humans. 

The most rapidly expanding of humans' effects—urbanization and the associated 

construction of roads, parking lots, and structures—is altering both rates of groundwater 

recharge and permeability distributions (Sharp et al., 2003). In the United States an area 

roughly the size of two New York cities is urbanized every year (Sharp, 1997). Austin, 

Texas, the site chosen for this study, has undergone a 640-percent increase in area since 

1964 (Garcia-Fresca, 2004), which does not include the explosion in growth of the 

surrounding communities. Of note is that these changes are occurring over a few decades, 

in what amounts to a geologic instant (Sharp et al., 2001). A thorough understanding of 

the effects of urbanization is necessary to address the problems which will be faced by 

urban areas in the future. 
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EFFECTS OF URBANIZATION 

As it affects the water balance, an accounting of the effects of urbanization is 

commonly undertaken in terms of the amount of impervious cover found in the study 

area. This is a term that describes buildings and pavements, including roads, driveways, 

parking lots, and sidewalks. 

Urbanization has long been understood to produce a dramatic increase in 

impervious surface area, increasing runoff and decreasing infiltration to underlying 

water-bearing zones (Lerner, 1990). The corollary effects of this increase are thought to 

be increased flooding, introduction of non-point source contaminants to surface water and 

groundwater, and a decrease in precipitation-based recharge. Because of this 

understanding, many cities have laws that limit impervious cover. 

URBAN RECHARGE 

The recharge process is defined by the relationships between climate, geology, 

morphology, soil condition, and vegetation (DeVries and Simmers, 2002). According to 

Lerner, 1990, recharge—the  process whereby water enters the saturated groundwater 

reservoir–consists of three basic types: direct recharge, a diffuse process which occurs 

directly beneath the point of impact of precipitation; indirect recharge, denoting 

precipitation that flows on the surface or within the shallow subsurface to a mappable 

recharge feature, usually a river; and localized recharge, precipitation flowing 

horizontally a short distance from its point of impact prior to intersecting fractures or 

fissures which are too numerous to be mapped. The total recharge in a city is the sum of 

direct, indirect, localized, and a fourth type, artificial recharge, which is derived from 

irrigation of parks and lawns as well as leakage of water mains and storm sewers (Garcia-

Fresca and Sharp, 2005). Figure 1 displays the rainfall runoff relationship. 
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Recharge Misconceptions 

The primary basis for the claim that urbanization and the requisite increase in 

impervious cover leads to a decrease in recharge is based in surface water balances. 

Researchers have concluded that because runoff volumes, measured as stream flow, have 

increased as areas urbanize, recharge values must, therefore, decrease. However, there is 

no direct evidence linking the increase in stream flow to a decrease in recharge (Lerner, 

1997b). In fact, except for one documented case, recharge in urban areas has been 

observed to be on the rise (Garcia-Fresca, 2004). It is likely that decreases in depression 

storage-low areas where rain water accumulates and is not available as runoff, wettable 

surface area, and evapotranspiration account for much of the increase in stream 

discharge. Schueler (1994) found no statistical differences in base flow between 

urbanized and rural watersheds. Base flow is the component of stream flow derived from 

groundwater that sustains flow between precipitation events. If base flows are not 

affected by urbanization, then it is probable that recharge is not significantly affected. 

Both Lerner’s and Schueler’s observations are reinforced by the results of the 

initial abstraction-constant loss model that is being developed by William Asquith at the 

U.S. Geological Survey (USGS), Texas Water Center. Initial abstraction is the amount of 

precipitation that is stored by the watershed prior to the onset of runoff, and constant loss 

is the difference between rainfall and runoff after the initial abstraction has been satisfied. 

The model is a time-distributed watershed loss model that was developed through 

statistical analysis of 92 USGS streamflow gaging stations in Texas. The analysis 

resulted in optimal values for given storms that produced modeled hydrographs that 

reproduced observed hydrographs. The plots of the distribution of these parameters 

(Figures 2 and 3) indicate that urbanization has a significant effect on initial abstraction 

but slight effect on constant loss. Because runoff is equivalent to rainfall less depression 
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storage, evapotranspiration, and infiltration, and depression storage has been satisfied by 

the initial abstraction, the constant loss must be due to a combination of infiltration and 

evapotranspiration. There is no reason to expect evapotransporation to be significantly 

increased by the construction of pavements. In fact, the opposite is true. Thus, it may be 

extrapolated that for the studied watersheds there is no measurable decrease in the 

infiltration rate due to an increase in urbanization and no corresponding decrease in 

recharge potential (Asquith and Roussel, 2007). 

Rising Water Tables 

Common wisdom suggests that in cities direct recharge takes place only by the 

percolation of precipitation in unpaved areas. If impervious cover is expanded, then 

presumably recharge should decrease and the water table lower proportionally. However, 

in almost all cases studied to date, where shallow ground water is not used as a resource, 

groundwater levels are rising, indicating an increase in recharge (Lerner, 2002). 

Rising water tables, in the late stage of city development, are causing a variety of 

problems, including localized flooding of basements, decreasing load capacity and 

destabilization of foundations, and mobilization of contaminants (Hooker et al., 1999 and 

Lerner, 1997b). Previous attempts to account for this increase include a decrease in 

evapotranspiration due to the elimination of vegetative cover—this reduction in 

vegetative cover led to a doubling of recharge in Perth, Australia (Appleyard et al., 

1999)–and leakage from utility pipes and urban irrigation return flows (Lerner, 1990; 

Garcia-Fresca et al., 2005). 

URBAN INFILTRATION 

Infiltration is the measure of the amount of precipitation that percolates beneath 

the land surface. It should be noted that in areas not significantly altered by humans, a 

large portion of precipitation that infiltrates does not continue to flow vertically 
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downward to the water table. It is either held in the soil or is evapotranspirated by 

vegetation. Only when the subsurface has been saturated to the point that the soil 

moisture exceeds the field capacity, the ability of the soil to retain moisture by capillary 

forces (Bear, 1972), will the water continue vertically downward under the influence of 

gravity. 

A review of hydrogeologic literature reveals that, as it pertains to recharge, the 

issue of infiltration through urban pavements has largely been ignored. Among the few 

hydrogeologists to broach the subject, Lerner, 2002, refers to soil moisture studies and 

suggests that “a proportion of the impermeable area should be treated as permeable 

(perhaps 50%), particularly in residential areas,.” but no quantitative studies were found 

in the literature. Expanding the search to include civil engineering transportation 

research, including a review of literature at the Center for Transportation Research 

Library at the University of Texas at Austin, failed to turn up relevant research. 

Studies were finally uncovered by reviewing civil engineering literature 

pertaining to the design of sewer systems. The efficient design of sewer systems requires 

a priori knowledge of the relation of urban runoff to rainfall. The amount of precipitation 

lost to infiltration can be calculated directly from this relationship because, along with 

evapotranspiration and depression storage, it can be directly measured, and accounts for 

the difference between rainfall and runoff. 

Rainfall-Runoff Relationships 

Lloyd-Davies, 1906, and Kuichling, 1909, were among the first to propose 

methods to formulate the altered rainfall-runoff relationship due to the construction of 

impervious surfaces. The Lloyd-Davies method determined a runoff coefficient by taking 

the ratio of the paved area to the total area, and Kuichling advocated the calculation of an 

impermeability factor by taking the ratio between the peak rate of runoff and the mean 
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rate of rainfall. Subsequent experiments included direct measurement of rainfall and 

runoff from urban pavements and urbanized catchments; measurement of runoff from 

artificially irrigated pavements; direct measurement of infiltration using a drum 

infiltrometer on a brick and concrete pavement; and a series of soil moisture 

measurements underneath urban pavements. The rainfall-runoff water balance is: 

 

runoff = rainfall – depression storage – evapotranspiration– infiltration (1) 

 

Tables 1 and 2 summarize the results of the previous infiltration studies, with the 

results of this study included for comparison. Table 1 lists the observed infiltration rates, 

which range from 1.8 mm/h to as high as 27 mm/h; Table 2 summarizes the observed 

percentage of precipitation that infiltrates urban pavements and urbanized areas, 

indicating that from 6 to 41.6 percent infiltrates. These data indicate that infiltration is 

among the most important aspects in the rainfall-runoff relation for urban pavements. 

When sewer systems were designed under the assumption that pavements were 

impervious, “Authorities noted that sewers rarely seemed to operate at anything 

approaching their full capacities” (Watkins, 1962); and Hollis and Ovenden, 1988b, were 

amazed when water applied to a curb in their study area at a rate of 18.67 l/min failed to 

reach the drain. 

In addition to estimates of infiltration, many of these studies provide estimates of 

the other parameters of the rainfall-runoff water balance. Depression storage as depth of 

rainfall ranges from 0.4 mm to 1.23 mm (Hollis and Ovenden, 1988a), and as a 

percentage of rainfall ranges from 26 to 31 percent. Evapotranspiration as a percentage of 

rainfall ranged from 18 to 21 percent by Davies and Hollis, 1981 and Colyer, 1983, but 
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was found to be an order of magnitude less significant than infiltration in a subsequent 

study (Hollis and Ovenden, 1988b). 

It may be concluded that these reductions in runoff are a true reflection of the 

hydrologic characteristics of the pavement (Hollis and Ovenden, 1988a, and Lerner, 

2002) and that extremely low runoff is attributable to infiltration (Colyer, 1983). The 

mechanism for this infiltration has only been studied indirectly and is presumed to consist 

of seepage through fractures and through joints between pavement blocks (Davies and 

Hollis, 1981; Hollis and Ovenden, 1988a; Kidd, 1978; Pratt and Henderson, 1981), which 

form preferential flow paths and an avenue for localized recharge. 

PREFERENTIAL FLOW PATHS 

It has been observed that changes in the flow paths for precipitation and an 

increase in preferential flow paths in urban areas can result in an increase in recharge 

when compared to rural areas (Lerner, 1997b). Preferential flow paths “short circuit” the 

path to the water table (Stephens, 1994). In the urban environment it is critical to identify 

these conduits because they significantly reduce both transport time through the 

unsaturated zone (Scanlon et al, 2002) and subsequent estimation of recharge (Lerner, 

1990 and Simmers, 1998). 

Fracture Flow 

In parallel plate models, fractures have been shown to have discharges and 

hydraulic conductivities in proportion to the cubes and the squares of their apertures, 

respectively. Due to these enormous effects on permeability, fractures have been studied 

intensely. They are recognized as the most important source of hydraulic conductivity in 

plutonic rocks, volcanic rocks, some carbonate rocks, and mud rocks (Marrett, 1996). 

This is also the case for urban pavements, where they provide the obvious and, in most 

cases, only preferential pathways for infiltration. Most urban pavements can be viewed as 
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purely fractured media–rock in which fractures provide all of the hydraulic conductivity 

and account for all of the storativity (Sharp, 1993). 

Generally speaking, the more open fractures that are present, the more permeable 

a rock formation. The critical components of fractured media characterization include 

fracture orientation, frequency, aperture, length, and interconnectivity, as well as an 

understanding of the distribution of these attributes. These aggregate properties of 

individual fracture characteristics can ultimately be generalized with scaling relations. 

Although fracture characteristics are three dimensional, most data sets are collected along 

one-dimensional scanlines, and in localities with sub-vertical fractures this method has 

proven to be sufficient to sample fracture populations (Marrett, 1996). 

PURPOSE AND SCOPE OF WORK 

Research in the area of urban recharge has been largely neglected, and few case 

studies addressing pavement permeability have been reported in the literature (Lerner, 

2002). Accurate hydrogeological data and valid interpretations for urban areas are critical 

to preserve water quality, manage aquifers, and to allow for the development of 

conjunctive use strategies for additional urban recharge (Sharp, 1997). 

This study proposes to refute the assumption that urban pavements are 

impervious, to show that fractures and joints have sufficient permeability to have an 

impact on localized recharge, and to provide data that help define the aggregate 

characteristics of these pavements. Data about location, infiltration rate, aperture, trend, 

pavement type, and fracture type are reported and analyzed to determine the flow 

properties of urban pavements. These properties are then qualitatively analyzed to 

determine their overall effect on urban recharge. 
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Figure 1: The urban rainfall recharge relationship. Evapotranspiration is indicated by 
E. (Modified from Lerner, 1997a) 
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Figure 2: Plot of intial abstraction from urbanized and unurbanized watersheds in 
Texas (Source: Asquith and Roussel, 2007). 
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Figure 3: Plot of constant loss for urbanized and unurbanized watersheds in Texas 
(Source: Asquith and Roussel, 2007). 
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Table 1: Measured infiltration rates of previous studies. This study is included for 
comparison. 

Author Year Infiltration Rate Pavement Type Method 
Appleby 1937 1.8              mm/h urban pavement Unkown 

Zondervan 1978 7 - 27          mm/h concrete road pavement irrigation 
van Dam and van de 
Ven 1984 7.4              mm/h brick and concrete drum infiltrometer 

Pratt and Henderson 1981 0.75            ml/sec/meter concrete curb pavement irrigation 

Hollis and Ovenden 1988 14.25 - 46.28 l/min asphalt road pavement irrigation 

This Study 2007 2.1              mm/h urban pavement ring infiltrometer 
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Table 2: Measured infiltration from previous studies as a percentage of rainfall. This 
study is included for comparison. The Hollis and Ovenden infiltration is 
modified by Colyer’s estimates of initial abstraction and evaporation. 

Author Year Infiltration % Pavement Type Method 

Watkins 1962 21 asphalt road 
direct 
measurement 

Falk and Niemczynowicz 1978 7.4-17 asphalt catchments
direct 
measurement 

Davies and Hollis 1981 34 asphalt road 
direct 
measurement 

Colyer 1983 36 asphalt road 
direct 
measurement 

Hollis and Ovenden 1988 24.7 - 41.6 asphalt road 
direct 
measurement 

Stephenson 1994 22 
urbanized 
catchment 

direct 
measurement 

Lee and Heaney 2003 30 
urbanized 
catchment 

direct 
measurement 

Ragab et al. 2003 6 - 9 asphalt roads 
soil moisture 
balance 

This Study 2007 21 urban pavement ring infiltrometer 
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CHAPTER 2: METHODS 

This study necessitated the development of new methods to quantify pavement 

permeability. Data collection, analysis, and method refinement were conducted in four 

phases, the first three of which produced half of the data set; the final phase produced the 

second half. Though the initial methods employed to collect the data were time 

consuming and subsequently modified, data gathered from them remain valid. 

LOCATION AND HYDROGEOLOGIC SETTING 

All of the data for this experiment were collected on pavements roughly contained 

within the Waller Creek Watershed in Austin, Texas. The scanline locations within the 

watershed are indicated on Figure 4. This small watershed possessed these desirable 

characteristics: convenience, since it both crosses the campus of The University of Texas 

at Austin (UT) and, farther north, contains the home of the author; hydrogeological 

importance, consisting primarily of Quaternary alluvial deposits, which have been 

determined to produce the bulk of recharge within the city (Garcia-Fresca, 2004); 

complete urbanization, which is by definition the basic qualification needed for this 

study; and significance, in that it is a subject of interest to other hydrogeologists at UT. It 

is anticipated that the data developed in this thesis will contribute to a greater 

understanding of the urban effects on this and other watersheds. 

Geology 

The surface geology in the watershed is dominated by a thin layer of Colorado 

River alluvial deposits, predominantly fine-grained over-bank deposits that were 

deposited unconformably on the Cretaceous Austin Chalk Formation. These types of 

deposits typically have significant hydraulic conductivity but are known to normally have 
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two orders of magnitude lower vertical hydraulic conductivity than horizontal hydraulic 

conductivity. 

Land Use 

Land use in the northern half of the watershed is composed primarily of single-

family and multifamily dwellings, with some mixed commercial space. The southern half 

of the watershed is dominated by mixed commercial and office space (Garcia-Fresca, 

2004). This study was completed in the northern half of the watershed, from the middle 

of the UT campus to State Highway 183. 

Individual Site Selection 

The goal of this study is to quantify the permeability of typical pavements within 

the Waller Creek Watershed. In order to get a representative sample of different ages of 

pavement, the locations were selected at relatively even intervals from Highway 183 

south to the UT campus with the idea that the farther north one travels from campus, the 

younger the pavements are likely to be. Information on the age and repair history of the 

pavements was sought from the City of Austin, but could not be obtained. 

The individual scanline locations were selected on the basis of pavement type, 

safety, and whether or not they were representative of area pavements. The first half of 

the study focused on collecting data from a variety of parking lots, roads, and concrete 

curb gutters. The second half of the study focused on the concrete curb gutters only, 

because they receive the largest portion of storm flow. As a safety precaution and 

practical consideration, sites with low traffic flow were preferred. Additionally, visual 

criteria were used to confirm that each selected site was representative of the pavements 

in the vicinity. Specific data on location and characteristics of the different sites is 

presented in Appendix C. 
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Simplifying Assumption 

A Darcy’s Law solution was employed to calculate the equivalent hydraulic 

conductivity for each sample location which is a measure of fracture and expansion joint 

permeability, the ease with which water flows through an area. The equivalent hydraulic 

conductivity relates the infiltration rate due to the fracture or joint to the effective area of 

the inner-ring of the double-ring infiltrometer in terms of the hydraulic conductivity of a 

porous media. Darcy’s Law relates discharge Q [L3/t] to hydraulic conductivity K [L/t], 

area A [L2], and the hydraulic gradient i [L/L], which is the change in head pressure over 

a length or distance. 

KiAQ =       (2) 

For vertical flow this change in head is proportional to the change in distance, and 

in saturated media if there is negligible pressure head from surface ponding, then it is 

reasonable to assume that the hydraulic gradient is one. 

The infiltration rate I [L/t] is equal to the discharge divided by the cross-sectional 

area. It follows that for vertical flow the infiltration rate is equal to the hydraulic 

conductivity. All phases of analysis are based on this assumption. 

KAQI == /       (3) 

PHASE I – PROOF OF CONCEPT AND METHODS DEVELOPMENT 

The first phase of the method development was conducted on the asphalt and 

concrete parking lot located immediately east of the geology building on the UT main 

campus. This study, titled “Fracture Permeability in Urban Pavements,” is included as 

Appendix A. 

Initial Experiment Location 

Three criteria were used to select the location for this experiment. The first was 

the necessity of a location with a sufficient amount and variety of fractures and expansion 
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joints to sample. The second was the need to sample at least two pavement types, in this 

case asphalt and concrete. The last was proximity. The parking lot located just outside the 

east basement door of the Jackson School of Geosciences building at the University of 

Texas at Austin met these criteria. 

Initial Experiment Design 

The goal of the experiment was to determine the hydraulic conductivity of 

pavements due to fractures and expansion joints. In order to sample the pavement with 

minimal bias, a 100-foot scanline was set up oriented approximately north-south, 

intersecting various types of expansion joints and fractures on both asphalt and concrete 

portions of the parking lot. Infiltration tests were conducted at each point that a fracture 

or joint intersected the scanline, as well as in adjacent unfractured areas of the different 

pavements. The cumulative infiltration rate or discharge could then be compared to the 

area of pavement represented by the scanline to determine the equivalent fracture 

permeability. 

Initial Experiment Apparatus 

A double-ring infiltrometer (Figure 5) was sealed to the pavement with Oatey 

Plumber’s Putty. The double-ring configuration was necessary to prevent lateral flow in 

the fractures. Once the infiltrometer was sealed to the ground, the outer ring was filled 

with water to ensure that there was no leakage into the inner ring. This ensured that water 

would not leak through the seal into the outer ring, skewing the infiltration rate 

calculation. Once it was determined that there was no communication between the rings, 

both rings were filled to a depth of approximately six centimeters (an arbitrary water 

depth representing a level that was convenient to work with). After each infiltration test 

was conducted, measurements of the fracture length and average aperture of the fracture 

or joint were measured using a scale or the fracture comparator designed by Dr. Orlando 
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Ortega and Dr. Randall Marrett of the Fracture Research and Application Consortium at 

UT. 

A Guelph Permeameter was used as a constant-head device to maintain 6 cm of 

water in the inner ring of the infiltrometer. The level in the outer ring was kept at the 

same level as the inner ring by adding water manually. Measurements from the Guelph 

were recorded at even intervals during the experiments to determine the flux through the 

double ring. This configuration worked well at high flow rates. It was observed, however, 

that at very low flow rates the Guelph was unreliable. For each of the remaining sample 

locations a falling-head test was conducted first. If the flow rate was determined to be 

sufficient, then the Guelph was employed to conduct a constant-head test; if not, then 

only the initial falling-head data were recorded. After the constant head test, a final 

falling-head test was conducted for comparison to the first. 

Initial Experiment Data Collection 

The data were collected at each sample location by measuring the height of the 

water column at the beginning of the test-with a clear plastic scale with millimeter 

divisions, and at succeeding increments of time-measured with a digital stop watch, until 

the rate of change had stabilized. Water height was measured using a millimeter-ruled 

scale in the infiltrometer for the falling head tests, and using the internal millimeter 

graduations in the large ring of the Guelph Permeameter for the constant head tests. 

These changes in height of the water column were then converted to volumes based on 

the change in volume per unit height of the different devices. 

Initial Method Problems and Refinement 

The data collected during the first phase are considered reliable, but three 

problems with the method were determined. First, the use of the Guelph Permeameter as 

a constant head device was applicable only on fractures with the largest hydraulic 
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conductivities. Consistency required either reliance on falling head data alone or a more 

precise method of maintaining constant head. Second, the method failed to account for 

the change in infiltration rate due to a drop in pressure head as the ponding depth in the 

double-ring infiltrometer dropped. Finally, the method took too much time to allow 

collection of large amounts of data. 

PHASE II – BENCH TESTING 

During a storm, the ponding depth of water on a pavement will vary primarily as a 

function of rainfall intensity and pavement slope. Because these effects are so variable, 

and because of a desire to adopt a conservative approach, a simplifying assumption was 

made that ponding depths are zero. Therefore, a method to account for the effects of 

ponding depth was needed. 

The driving forces behind infiltration rate are pressure head and gravity. 

Theoretically, the pressure head due to ponding depth should decrease proportional to a 

decrease in the height of the water column in the double-ring infiltrometer. When the 

depth over the pavement reaches zero, gravity should be the only force driving 

infiltration. A model of a simple pavement joint over a well-drained porous media was 

constructed to test this relationship and to demonstrate the general validity of a simple 

falling-head method that could be applied to all locations regardless of infiltration rate. 

The data for the bench tests are included as Appendix B. 

Bench-Testing Apparatus 

The experimental apparatus, shown in Figure 6, consisted of a plywood box 

partially filled with porous media (pea gravel or very coarse sand), with two concrete 

pave stones placed directly on top of the porous media. The gap between the concrete 

pave stones was meant to simulate a joint in concrete pavement and a double-ring 

infiltrometer was sealed to the simulated pavement surface using Oatey Plumber’s Putty. 
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Three constant-head and three falling-head experiments measured the volume of 

water that infiltrated the joint over a given time for a given height of water in the inner-

ring. The aperture of the joint, the sub-grade, and the water depth in the infiltrometer 

were varied to determine their effects on infiltration rates. 

Bench Test Results and Method Refinement 

Figures 7 and 8 display the results of the bench test. They clearly demonstrate the 

linear relationship between ponding depth and discharge. In addition, the results from the 

constant head analysis are sufficiently similar to the results from the falling head analysis 

to justify a simplified falling-head methodology. 

PHASE III – 4/8 METHOD 

The 4/8 method was developed to take advantage of the linear relationships 

observed during bench testing and was used to collect and analyze data from scanlines 6 

through 11. In this method, the double-ring infiltrometer was sealed to the pavement at 

each point where a 30-meter scanline intersected a fracture or joint, in the same way as in 

the initial method. Additionally, the fracture and joint trends were measured with a 

Bunton Pocket Transit for further analysis. 

4/8 Method Data Collection 

In this method the inner-ring of the infiltrometer was filled to a depth of 8 cm and 

observed to determine that there was no significant connectivity between the inner and 

outer rings. The outer-ring was then filled to the same depth and the apparatus was 

allowed to equilibrate for 5 minutes. It was recognized during the initial experiments, and 

confirmed by subsequent data, that infiltration rates generally decrease within the first 

five minutes of infiltration. Zondervan (1978) noted this leveling out of infiltration rate 

after 7 minutes in his road irrigation experiments. It is presumed that this effect is the 
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result of the filling of void space and the transition from unsaturated to saturated 

conditions in the road subgrade. 

After 5 minutes, the change in depth of water in the inner-ring was recorded over 

a time period appropriate for the observed flow rate, these time periods ranged from 20 

seconds to 5 minutes, and generally limited so that the drop in the water level did not 

exceed 2 cm. This process was repeated twice, first for an initial depth of 8 cm, then for 

an initial depth of 4 cm, removing the water from both inner and outer rings between the 

two processes. 

4/8 Method Data Analysis 

An average ponding depth was calculated for each initial depth by taking the 

average of the beginning depth and the final depth after the prescribed time period. The 

infiltrated volume IV [L3] of water was determined by multiplying the difference in depth 

[L] by the area of the inner ring Air [L2]. 

irAdIV ×Δ=       (4) 

tIVQ Δ= /       (5) 

The infiltrated volume was then divided by the time period ∆t [t] to determine the 

discharge rate Q [L3/t]. These values were converted to equivalent hydraulic conductivity 

K [L/t] by dividing by the area of pavement Apv [L2] sampled; this area is less than the 

area of the inner ring due to the presence of the Plumber’s Putty sealing ring. 

pvAQK /=       (6) 

The point equivalent hydraulic conductivity K0 [L/t] was then calculated by linear 

extrapolation through the plots of hydraulic conductivity versus average depth to a 

ponding depth of 0 cm. 

Finally, the scanline equivalent hydraulic conductivity was calculated by 

multiplying the point hydraulic conductivity by the area of the inner ring to get back to 
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discharge [L3/t] for each point, taking the sum of all the points on the scanline, and 

dividing by the effective width of the inner ring We [L] times the scanline length Lt [L], 

which is the area represented by the scanline. 

tepv LWAKKeq /)( 0Σ=      (7) 

4/8 Method Problems and Refinement 

The 4/8 Method allowed for more efficient collection, of data, but after attempting 

to use it to calculate equivalent hydraulic conductivity for 6 scanlines, two observations 

necessitated the development of an alternative method. The first was that for each 

sampling interval relatively minor measurement errors had too much influence on the 

slope of the line fitted to the average ponding depth versus hydraulic conductivity. The 

result was that for approximately 30 percent of the points with infiltration rates in excess 

of 0.1 cm/min, the hydraulic conductivity was observed to be near zero or negative. Not 

only was this counter intuitive, but because there was never an instance in which 

infiltration was observed to reverse itself with water flowing back out of the fracture, 

these analyses were clearly erroneous. 

The second observation was that, in most cases, the infiltration at a starting depth 

of 8 cm for a given time step was approximately twice that of the subsequently measured 

4-cm infiltration. These data, plotted as infiltration in centimeters versus ponding depth in 

Figure 9, were the basis for the final and most basic sampling and analysis method. 

PHASE IV – THE WILES RATIONAL METHOD 

The Wiles Rational Method was used to re-analyze data from scanlines 6 through 

11 and to collect and analyze data from scanlines 12 through 20. The method is simple; 

the results are reasonable; and it allows for the efficient collection of large amounts of 

data. Data from scanline 1 were not collected in a manner that allowed for their reanalysis 

using this method. 
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Method Rationale 

Using the data for the points with the 30 highest infiltration rates from scanlines 6 

through 11, the average ratio of infiltration at 4 cm initial depth to 8 cm initial depth was 

determined be 0.59 or approximately 60 percent with a standard deviation of 11 percent. 

A similar average ratio was calculated from the bench test data to be 0.75. The ratios of 

the field data points were deemed to be both the most conservative and most appropriate 

for use in extrapolating data. By linear extrapolation to a ponding depth of 0 cm, the ratio 

was calculated to be 0.174 or 17.4 percent of the value at 8 cm initial ponding depth ± 22 

percent. 

Rational Method Data Collection 

Data were collected in the same manner as the 4/8 Method. However, there was 

no need to collect data for an initial ponding depth of 4 cm. In addition, starting with 

scanline 12 and continuing through scanline 20, time-distributed infiltration data were 

collected from the first fracture or joint that had a minimum infiltration rate of 0.20 

cm/min. These data record the change in infiltration rate with time and were collected by 

observing the infiltration for an initial ponding depth of 8 cm for a given time period; 

then refilling the double-ring infiltrometer and repeating the process until the infiltration 

rate was observed to stabilize. 

Rational Method Data Analysis 

All of the data from scanline 6 through scanline 20 were reanalyzed using the 

rational method. The 8-cm point equivalent hydraulic conductivities and the total scanline 

equivalent hydraulic conductivities were calculated in the same way as the 4/8 method. 

The only difference was that the 0-cm point hydraulic conductivity was simply calculated 

to be 17.4 percent of the 8-cm point hydraulic conductivity. 
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Figure 4: The study area with scanline locations. 
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Figure 5: Using double-ring infiltrometers to measure infiltration for fractures and 
joints crossed by scanline 1. 
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Figure 6: Experimental apparatus used to simulate joint flow over well drained porous 
media. 
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Figure 7: Plot of constant head bench test data for sample points 04-004 (0.25 mm 
aperture and pea gravel subgrade), 04-006 (0.1mm aperture and pea gravel 
subgrade), and 04-008 (0.1 mm aperture and coarse sand subgrade). 
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Figure 8: Plot of falling-head bench test data for sample points 04-003 (0.25 mm 
aperture and pea gravel subgrade), 04-005 (0.1mm aperture and pea gravel 
subgrade), and 04-007 (0.1 mm aperture and coarse sand subgrade). The 
data points at ponding depth 0.5 are most likely in error due to the difficulty 
in collecting data at such a shallow depth. 
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Figure 9: Plot of high flow 4/8 Method points with trend lines illustrating y-intercepts. 
Note that some of the highest flows have some of the lowest intercepts. 
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CHAPTER 3: RESULTS 

HYDROGEOLOGIC SUMMARY OF SCANLINES 

A total of 16 scanlines were completed on 5 pavement types: 7 concrete curb 

gutter sections, 3 asphalt roads, 2.5 asphalt parking lots, 2.5 concrete parking lots, and 1 

concrete road. The pavement types and the condition of the pavements were observed to 

be typical of those found throughout the northern half of the Waller Creek Watershed. 

The individual scanline attributes are summarized in Table 3, and all scanline data tables 

are included as Appendix C. 

Present at each scanline location was at least one permeable fracture or joint that 

provided an avenue for infiltration. The equivalent hydraulic conductivities were found to 

range from 4.1·10-4 cm/s to 2.6·10-6 cm/s for all of the pavement types; from 4.1·10-4 cm/s 

to 3.2·10-6 cm/s for the concrete curb gutters; from 2.9·10-5 cm/s to 1.2·10-5 cm/s for the 

asphalt roads; from 7.1·10-5 cm/s to 3.7·10-5 cm/s for the asphalt parking lots; and from 

1.1·10-4 cm/s to 8.5·10-5 cm/s for concrete parking lots. The lone concrete road sampled 

had the lowest, 2.6·10-6 cm/s, equivalent hydraulic conductivity of all of the points. It 

should be noted that purely concrete roads are extremely rare within the watershed and 

that the value determined for the single road sampled is likely to be anomalously low 

based on flow rates observed in concrete curb gutters and concrete parking lots. 

HYDOGEOLOGIC SUMMARY OF POINT DATA 

A total of 200 point locations were sampled; 197 were either a joint or a fracture, 

and 3 were intact pavement sections. Apertures were measured to range from 0.05 mm to 

25 mm; for those points with measurable infiltration, the point equivalent hydraulic 

conductivities ranged from 3.98·10-5cm/s to 6.68·10-2  cm/s respectively. Approximately 

33 percent of the locations had no measurable infiltration. 
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A data summary is presented in Table 4. The point data are presented by 

pavement type—either asphalt or concrete—and further subdivided as fractures, 

expansion joints, multi-fractures, or intact. Multi-fractures are locations at which more 

than one fracture was contained within the footprint of the inner ring of the infiltrometer; 

intact sample points are locations where the surface within the inner ring of the 

infiltrometer appeared to lack fractures or joints. Three intact locations were sampled to 

confirm that matrix infiltration was effectively zero, and subsequent zero-infiltration 

readings at fracture or joint locations indicated that the sampling of intact locations would 

be redundant. 

Asphalt Pavements 

Of the 200 points sampled, 59 were located on asphalt pavements. Of these, 36 

percent had no measurable infiltration using the double ring technique. Fractures were the 

dominant pathway for infiltration, with equivalent hydraulic conductivities ranging from 

2.12·10-3 cm/s to 7.95·10-5 cm/s. The asphalt fracture apertures ranged from 0.1 mm to 10 

mm. Joints between two sections of asphalt pavement are rare in the study area, and only 

two were sampled. 

Concrete Pavements 

Due to the emphasis on concrete curb gutters, the majority of the points were 

collected on concrete pavements. A total of 121 points were collected on concrete 

pavements. Of these, 36 percent had no measurable infiltration; this was identical to the 

measurements taken on asphalt pavements. Fractures were the most common avenue of 

infiltration and were observed to have the highest infiltration rates. Expansion joints were 

about 50-percent less common, but had a significant effect on infiltration as well. The 

equivalent hydraulic conductivities for concrete pavements ranged from 6.68·10-2 cm/s to 

3.98·10-5 cm/s for fractures and from 6.56·10-3 cm/s to 7.95·10-5 cm/s for joints. 



 32
 

Apertures ranged from 0.25 mm to 9.0 mm for fractures and from 0.05 mm to 

20.0 mm for joints. Though the apertures for expansion joints are much larger than 

fractures, their effect on infiltration is diminished due to the fact that they are commonly 

filled with either form lumber or asphalt sealant. 

Combination Pavements 

Combination pavements are those at the transition from asphalt to concrete 

pavement. This is the typical case on roads and parking lots in Austin, where asphalt 

pavements transition to concrete curb gutters. The point of this transition is necessarily 

classified as a joint. While combination pavements represent only 5 percent of the data 

points, only one of the points failed to demonstrate measurable infiltration, leading to the 

judgment that these types of pavements contribute significantly to scanline equivalent 

hydraulic conductivity. Of the six asphalt pavements sampled only one, scanline 07000, 

failed to have at least one combination pavement contributing to infiltration. The 

equivalent hydraulic conductivity calculated for these points ranged from 6.76·10-3 cm/s 

to 3.98·10-5 cm/s for apertures that ranged from 0.10 mm to 25.0 mm. 

HYDROGEOLOGIC SUMMARY OF CUMULATIVE SCANLINE DATA 

The average equivalent hydraulic conductivity of the pavements studied is 5.9·10-

5 cm/s ± 1.3·10-5 cm/s. This value was determined by summing the discharge of all of the 

data points and dividing by the area represented by the sum of the individual scanline 

areas. The equivalent hydraulic conductivity can be directly converted to an infiltration 

rate of 2.1 mm/h by unit conversion and can lead to a large flux of potential recharge 

through these supposedly impervious pavements. This figure is significant in light of the 

fact that the mean rainfall intensity for Austin is approximately 2.0 mm/h. 

Further analysis indicated that the total pavement hydraulic conductivity is 

dominated by the highest-point hydraulic conductivities. The point with the single 
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highest-point hydraulic conductivity accounts for 33 percent; the ten highest points 

account for 58 percent; and the top 20 points account for 72 percent of the total 

equivalent hydraulic conductivity. This distribution of hydraulic conductivity necessitates 

the cumulative method described above to determine the pavement hydraulic 

conductivity, as individual scanlines are likely to over sample or under sample these 

highly conductive fractures and joints. 

POINT HYDRAULIC CONDUCTIVITY DISTRIBUTION 

Figures 10 and 11 are plots of the histogram and the frequency distribution of the 

point hydraulic conductivities respectively. A logarithmic distribution of data is evident 

in both figures. The frequency distribution begins at 33 percent because that percentage 

of the points had no measurable infiltration. 

ATTRIBUTES OF FRACTURE AND JOINT POPULATION 

Histograms 

Figures 12 through 14 are histograms of all fracture and joint apertures. Figure 12 

is a histogram of all fracture and joint apertures combined and appears to show a 

logarithmic distribution except for a slight bulge in the tail. Figure 13 is the histogram of 

fracture apertures only and has a similar distribution. Figure 14 is the histogram of joint 

apertures only and is bimodal, which accounts for the bulge observed in Figure 12. 

The bimodal distribution in Figure 14 is due to a fundamental difference in the 

types of expansion joints sampled. The joints were observed to either be open and filled 

with some type of form lumber accounting for the large aperture joints, or closed, with 

generally only a slight gap between the adjoining sections of pavements. The logarithmic 

distribution of the fractures defies a simple explanation, but fracture sets in rock 

formations are observed to organize into both power law and log normal distributions, 

presumably from having formed as a result of the same stress field (Marrett, 1996). It 
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might be the case that fractures in urban pavements organize by virtue of a similar 

process, forming largely in response to “urban tectonic” down-warping of the pavements 

due to uneven traffic distribution. 

Frequency Distributions 

Figures 15 through 17 display the frequency distribution for all fractures and 

joints, fractures only, and joints only. These data show clear logarithmic frequency 

distributions which might allow for attribute prediction in similar pavements. 

Fracture and Joint Trends 

Figures 18 through 20 display trend data collected for all of the fractures and 

joints sampled. The trends show prominent NNE/SSW and WNW/ESE alignment and 

should be considered bi-directional. The explanation of these trends can be found in 

Figure 4, which shows that the streets in Austin are aligned in the same way. The map 

views on figures 28, 30, and 35 in Appendix C demonstrate that scanlines were oriented 

to intersect the dominant fracture directions and not to the pavement orientation. It may 

be concluded then, that fractures in these pavements form in an either sub-parallel or sub-

perpendicular manner to the orientation of the trend of the road and may provide a 

significant anisotropy to shallow horizontal interflow. 

EFFECT OF APERTURE ON EQUIVALENT HYDRAULIC CONDUCTIVITY 

The realization that the equivalent hydraulic conductivity and apertures are 

similarly distributed leads to the hypothesis that they are related. However, as 

demonstrated in Figure 21, there seemed to be no correlation between hydraulic 

conductivity and aperture for either fractures or joints in either asphalt or concrete 

pavements. This fact, while discouraging, at least demonstrates that the sizes of fractures 

and joints in pavements is not the fluid-flow rate-limiting step and must have an 
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equivalent hydraulic conductivity at least as high as 5.9·10-5 cm/s, and likely much 

higher. 

TIME DISCHARGE RELATION 

For the last 9 scanlines, the first point with an initial infiltration rate in excess of 

0.2 cm/min was further sampled to determine the change in infiltration rate with time. 

These data are presented in Figure 22 as point discharge in (cm3/s) versus elapsed time. 

These data show that discharge generally levels out and becomes constant after 400 to 

600 seconds, but this effect should not be considered conclusive. 
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Figure 10: Histogram of point hydraulic conductivities for all points. 
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Figure 11: Frequency distribution of all point hydraulic conductivities. 
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Figure 12: Histogram of all fracture and joint apertures. Apertures less than 0.5 mm are 
included in the first column. 
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Figure 13: Histogram of fracture apertures only. 
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Figure 14: Histogram of expansion joint apertures only. Note bimodal distribution 
resulting from open (> 2.0 mm) versus closed joints (< 2.0 mm). 
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Figure 15: Frequency distribution of combined fracture and joint apertures. 
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Figure 16: Frequency distribution of fracture apertures. 
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Figure 17: Frequency distribution of joint apertures. 
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Figure 18: Rose diagram of all fracture and joint trends. The plotted trends are bi-
directional (radius is 32). 
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Figure 19: Rose diagram of fracture trends. The plotted trends are bi-directional (radius 
is 19). 
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Figure 20: Rose diagram of joint trends. The plotted trends are bi-directional (radius is 
15). 
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Figure 21: Equivalent hydraulic conductivities are plotted against apertures for joints 
and fractures in all pavement types and demonstrate that there is no 
correlation. 
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Figure 22: Time/discharge relation for select point on scanlines 12 through 20. 
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Table 3: Summary of scanline characteristics. 

Hydrogeological Summary of Scanlines  
     
16 scanlines - 30 meters per scanline  
480 meters - cumulative scanline length  
     
7 concrete curb gutters   
     
 Scanline  Keq (cm/s)  
 19000  4.1·10-4  
 6000  2.9·10-5  
 17000  2.5·10-5  
 18000  2.2·10-5  
 16000  1.6·10-5  
 10000  1.5·10-5  
 20000  3.2·10-6  
     
3 asphalt roads   
     
 Scanline  Keq (cm/s)  
 8000  2.9·10-5  
 15000  2.5·10-5  
 12000  1.2·10-5  
     
2.5 asphalt parking lots   
     
 Scanline  Keq (cm/s  
 7000  7.1·10-5  
 14000  3.7·10-5  
     
2.5 concrete parking lots   
     
 Scanline  Keq (cm/s)  
 13000  1.1·10-4  
 9000  8.5·10-5  
 1000  4.9·10-5 *  
     
1 concrete road   
     
 Scanline  Keq (cm/s)  
 11000  2.6·10-6  
     
* This value is the total equivalent hydraulic conductivity (Keq) for scanline 1 which was half 
concrete and half asphalt 
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Table 4: Summary of sample point characteristics. 

Fracture and Joint Hydraulic Summary 
       
200 sample points - fractures and joints 
134 with measurable Keq ranging from 6.68·10-2 cm/s to 3.98·10-5 cm/s 
66 had no measurable infiltration 
all apertures ranged from 0.05 mm to 25.0 mm 
       
Asphalt pavements    
       
59 sample points      
21 had no measurable infiltration    
       
   Keq Range (cm/s) Aperture Range (mm) 
   High Low Low High 
 49 fractures - 2.12·10-3 7.95·10-5 0.10 10.00 
 2 joints -  2.39·10-4 7.95·10-5 0.05 1.40 
 7 multi-fractures - 4.53·10-4 5.66·10-5   
 1 intact -  0    
       
Concrete Pavements     
       
121 sample points      
44 had no measurable infiltration    
       
   Keq Range (cm/s) Aperture Range (mm) 
   High Low Low High 
 74 fractures - 6.68·10-2 3.98·10-5 0.25 9.00 
 41 joints -  6.56·10-3 7.95·10-5 0.25 20.00 
 4 multi-fractures - 1.47·10-3 3.98·10-5   
 2 intact -  0    
       
Combination Pavements     
       
20 sample points      
1 had no measurable infiltration    
       
   Keq Range (cm/s) Aperture Range (mm) 
   High Low Low High 
 20 joints -  6.76·10-3 3.98·10-5 0.10 25.00 
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CHAPTER 4: INTERPRETATION AND DISCUSSION 

DIRECT RECHARGE TRANSITIONS TO LOCALIZED RECHARGE 

It can be reasonably stated that due to their low-permeability (effectively 

“impermeable”) matrix, pavements decrease direct recharge. However, the decrease in 

direct recharge does not necessarily lead to an overall decrease in total recharge. 

Fractures and joints in the pavement were observed in this study to provide potential 

preferential flow paths for precipitation. Table 5 demonstrates that the equivalent 

hydraulic conductivity due to fractures and joints calculated for the overall paved surface 

in this study area, 5.9·10-5 cm/s, should not be considered impervious; rather it is 

equivalent to very fine-grained sands, silts, or loams. These soil types are common in the 

alluvial deposits that dominate the surface geology in the Waller Creek Watershed. 

While direct recharge decreases with urbanization, localized recharge increases 

dramatically. Fractures and expansion joints concentrate infiltration decreasing the time 

and volume of water necessary for saturation which leads to increased recharge potential. 

Previous studies indicate that localized recharge, particularly in arid or semi-arid regions, 

is the dominant and sometimes only source of recharge (Lerner, 1997a; DeVries and 

Simmers, 2002). Thus, it is likely that the increase in localized recharge can lead to an 

overall increase in total recharge. 

 

CALCULATION OF POTENTIAL RECHARGE 

Potential recharge is the portion of precipitation that infiltrates the surface and is 

available to recharge groundwater, provided it isn’t held in the soil as soil moisture, 

captured by a shallow subsurface flow path as interflow, or intercepted in the root zone 

by vegetation. This study assumes saturated flow conditions through preferential flow 
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paths dominate flow, that interflow losses are negligible, and that the elimination of 

vegetation by paving the surface reduces or eliminates evapotranspiration. Once 

precipitation has infiltrated through the paved surface, it is potential recharge. 

Precipitation Data 

One way to calculate potential recharge is to multiply the infiltration flux by the 

amount of time that the surface can reasonably be expected to be saturated to the point of 

generating infiltration. The flux is determined in this study to be 5.9·10-5 cm/s, which is 

equivalent to 2.1 mm/h. The wetted surface time depends on the number of precipitation 

events, the duration of those events, and their intensity. These parameters are available in 

the USGS Professional Paper 1725, Statistical Characteristics of Storm Interevent Time, 

Depth, and Duration for Eastern New Mexico, Oklahoma, and Texas (Asquith et al., 

2006). 

A rainstorm is a period of non-zero rainfall followed by a period of zero rainfall. 

The interoccurence interval is the time period between two successive rainfall events 

(Asquith and Roussel, 2003). In any given storm there are likely to be brief periods of 

zero rainfall that do not constitute the end of one storm and the beginning of another. To 

distinguish between storm events, a minimum interoccurence interval should be 

stipulated. Because urban pavements are designed to have low depression storage, they 

quickly become saturated and begin to generate surface flow in response to even the 

smallest storms. In order to capture the effects of these small storms, the minimum 

interoccurence interval of 6 hours was used to select average storm characteristics for 

Travis County, Texas. These characteristics include a mean interevent time of 5.2 days, a 

mean storm duration of 5.77 hours, and a mean storm depth of 11.65 mm. 

The general validity of these values can be determined by comparing them to the 

mean annual precipitation in Austin of 809 mm/year (Bomar, 1995). By dividing 365 
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days per year by the interevent time of 5.2 days, it is calculated that there are 70 storms 

per year in Travis County; multiplying by the mean storm depth of 11.65 mm, the 

resulting yearly rainfall is 815 mm which approximates closely the yearly rainfall 

observed by Bomar. 

Before using these average data to calculate a potential recharge for pavements, it 

is necessary to address periods of zero rainfall within storms. Direct observation of 

storms during 6 years of residence in Austin allows one to conclude that it seldom, if 

ever, rains for 5.77 hours straight. Plots of the Natural Resources Conservation Service 

Type II and Type III hyetographs, which are appropriate for use in Texas, are shown on 

Figure 23. These hyetographs plot the percentage of storm depth versus the percentage of 

storm duration and indicate that the majority of the storm depth is produced in the middle 

20 percent of the storm. Thus for the calculation of potential recharge the storm duration 

is adjusted to 20 percent of the total storm duration. 

Potential Recharge 

Using the adjusted rainfall data, the potential recharge through pavements from 

precipitation in Austin,Texas was determined by the calculation below to be 170 mm/y, 

which is 21 percent of annual precipitation. This estimate agrees with the infiltration 

estimates previously reported in Table 2. 

)/(170)(20.0)/(1.2)(77.5)/(70 yearmmadjustmenthmmhoursyearevents =⋅⋅⋅  

%21809/170 =mmmm  of annual precipitation 

EVAPOTRANSPIRATION 

Evapotranspiration consists of the combined effect of direct evaporation and 

transpiration, the uptake of water by plants. This study assumes that evapotranspiration is 

limited by these factors: high humidity, typically 100 percent during rain storms; the fact 

that once the water has infiltrated through the pavement it is effectively shielded from 
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evaporation; and that transpiration is all but eliminated by the removal of vegetation 

(DeVries and Simmers, 2002; van de Ven, 1990). The latter is certainly not the case for 

non-paved areas. It is commonly observed that recharge is much greater in non-vegetated 

areas than in vegetated ones. Gee et al. (1994) found that water storage increased over 

time from zero to as much as 50 percent of precipitation when plants were removed from 

the surface of their arid study sites and noted that vegetation appeared to control the 

water balance. It is reasonable to assume that the water balance is similarly affected by 

urbanization. 

URBAN KARST 

The term urban karst refers to the urban underground, which contains an intricate 

and rapidly changing system of trenches, tunnels, and other buried structures that alter the 

pre-urban porosity and permeability structure in a manner similar to the shaping of  

natural karst systems (Sharp et al., 2001). The permeability of natural karst aquifers is 

controlled by fractures and conduits which modify the host rock and provide for 

enhanced hydraulic conductivities (Halihan et al., 1999) on the order of hundreds of 

meters per day. 

Sharp et al. (2001) compare natural karst systems to urban systems by concluding 

that karstic systems have surface streams analogous to urban paved drainage ways; that 

internal drainage systems (dolines) are similar to storm drainage systems; and that 

permeability dominated by caves, fractures and conduits is very similar to permeability 

dominated by utility trenches, tunnels, and other conduits. In light of the permeability of 

pavements due to fractures and joints, it is logical to extend the idea of urban karst all the 

way to the surface. These preferential pathways provide infiltration of localized potential 

recharge into the urban karst network, which in turn provides preferential pathways by 

which to recharge groundwater. 
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Utility Trench Permeability 

Practically every street in Austin is underlain by utility trenches of some sort—

water lines, sanitary sewer lines, storm water sewer lines, and gas lines are ubiquitous. 

Many streets are under lain by all four major types of utilities. The trenches in which 

these utility lines rest were the subject of a study by Krothe (2001). Krothe collected 

permeability data from trench fill inside of utility trenches and from relatively 

undisturbed soil adjacent to the trench. All of these data were collected in areas overlain 

by Colorado River Alluvium. The mean hydraulic conductivity for undisturbed areas 

outside of the utility trenches was calculated to be 1.07·10-5 (cm/s), and the mean for the 

fill material inside of the trenches was calculated to be 4.46·10-4 (cm/s). These data, 

plotted in Figure 24, typically show more than a 2-orders-of-magnitude difference in 

hydraulic conductivity for conjugate pairs of data at each sample location, and 

demonstrate the profound effect utility trenches can have on near-surface permeability. 

The Urban Septic Field 

Utility systems create a network of interconnected conduits that have 

permeabilities as much as 6 orders of magnitude higher than the surrounding material 

(Sharp et al., 2001). The overall effect of urbanization on recharge can be viewed in 

terms of a septic system leach field. In a septic leach field, a system of trenches are 

excavated in low permeability surface strata; septic lines are installed; and the trenches 

are backfilled with highly permeable gravel or coarse sand. Waste water is delivered to 

the trenches and stored until it slowly leaches into the low permeability matrix. In the 

urban environment, preferential flow paths along fractures and joints act as the septic 

line, delivering rain water into the subsurface. The infiltrated water then drains into utility 

trenches, which approximate septic infiltration trenches. 
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Once rain water has entered the urban subsurface, it remains largely protected 

from evapotranspiration until it either passes directly into a higher permeability 

horizontal layer intersected by the trench; or travels laterally along the trench until 

intersecting a natural fracture or some other type of preferential pathway; or, after 

ponding, remains there under positive pressure, slowly infiltrating into the low 

permeability matrix material (Stephens, 1994). 

PERMEABILITY SCALE EFFECTS 

In karst aquifers, it has been observed that that permeability increases with scale 

and becomes dominated by conduit flow for large scales (Kiraly, 1975). Halihan et al. 

(1999) document a 4-orders-of-magnitude increase in permeability in carbonate rocks, 

from approximately 10-6 m/s at a laboratory scale to 10-2 m/s at a basin scale. Scale 

effects are not addressed in this study, but the pavements sampled were in relatively good 

repair and are not expected to have the highest concentration of permeable fractures and 

joints. Infiltration was found to be dominated by the most conductive fractures and joints, 

and permeability is likely to increase with scale as the most highly degraded pavements 

with the highest permeability preferential pathways are encountered. 

EFFECTS OF LOCAL GEOLOGY 

In the end the question of whether pavements are likely to enhance or retard 

recharge from precipitation is dominantly influenced by the surface geology of a given 

locale. In the unsaturated zone in the Waller Creek Watershed, material rarely is 

homogeneous. Alluvial deposits usually consist of layered sands, silts, and clays with 

wide variations in hydraulic conductivity. Areas with low surface permeability, whether 

due to low initial matrix permeability or to significant alteration during soil formation, 

are likely to have their permeability enhanced by the construction of paved surfaces and 
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utility networks. Areas with high surface permeabilities will likely experience a decrease 

in overall permeability. 

In arid climates, where vegetation is efficient at removing moisture from the soil, 

development of low permeability caliche horizons is prevalent, and no provision for the 

runoff of storm water is made, the increased runoff either infiltrates surfaces through 

preferential flow paths or is lost to evapotranspiration (Lerner, 1997b). Scanlon (1990), 

as reported in Stephens (1994), found that a single fissure provided significant downward 

transport of fluids through calcareous paleosols which would otherwise be nearly 

impermeable. Under these circumstances urbanization is likely to increase recharge by 

increasing preferential flow paths. This is also the case in areas with surface geology that 

has a very low hydraulic conductivity, such as is exhibited by clay, unfractured rock, or 

some types of alluvium. Gee et al. (1994) found that when surface soils are silty loams, 

like alluvial overbank deposits, deep drainage is eliminated whether plants were present 

or not. But in areas where the surface geology has extremely high hydraulic conductivity, 

such as that found in unconsolidated, well-sorted sand or granite gruss, urbanization is 

likely to retard recharge. 

URBAN PERMEABILITY RATIO METHOD 

The question of how to account for pavements in the water balance still remains. 

The results of this study lead the author to propose a ratio method. The effect of 

pavements can be approximated by taking the ratio of the urban surface hydraulic 

conductivity to that of the dominant geologic surface cover. If the resulting ratio is much 

larger than 1, then pavements are likely to increase recharge; if the ratio is approximately 

1, then pavements likely have little or no effect on recharge; if the ratio is significantly 

less than 1, then recharge is likely to decrease. 
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Effect of Pavements in the Waller Creek Watershed 

The Waller Creek Watershed is dominantly covered by Colorado River Alluvium, 

where soil development on fine-grained flood materials creates low permeability zones 

(Sharp et al., 2001). The average of the saturated hydraulic conductivities measured in 

undisturbed areas outside of utility trenches in Colorado River Alluvium by Krothe 

(2001) was determined to be 1.07·10-5 cm/s, and hydraulic conductivity for pavements in 

the study area was determined to be 5.9·10-5 cm/s. The ratio of pavement hydraulic 

conductivities (5.9/1.07) is much greater than 1, indicating that urbanization in the study 

area has increased precipitation recharge. When this effect is combined with the decrease 

in evapotranspiration due to pavement construction and with the increase in subsurface 

permeability engendered by utility trenches, it is a virtual certainty that no decrease in 

precipitation recharge occurs. 
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Figure 23: Hyetographs of storm depth versus storm duration applicable to storms in 
Texas (Reproduced from Asquith et al., 2005). 

Figure 24: Guelph Permeameter hydraulic conductivity measurements for locations 
inside and outside of utility trenches excavated in Colorado River Alluvium 
(Modified from Krothe, 2001). 
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Table 5: Table of saturated hydraulic conductivities (Modified from Bear, 1972). 

K (cm/s) 
 

102 

 
101 

 
100 

 
10-1 

 
10-2 

 
10-3 

 
10-4 

 
10-5 

 
10-6 

 
10-7 

 
10-8 

 
10-9 

 
10-10 

 

Relative 
Permeability 

Pervious 
 

Semi-Pervious 
 

Impervious 
 

Aquifer 
 

Good 
 

Poor 
 

None 
 

Soils 
 

Clean Gravel 
 

Clean sand or sand 
and gravel 

Very fine sand, silt, or 
loam 

Unweathered Clay 
 

Rocks 
 

Fractured rock formations 
 

Resevoir rocks 
 

Sandstone 
 

Limestone and 
dolomite 

Granite 
 

Urban 
Cover   

Roads and 
Parking lots 

Roofs 
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK 

There is little doubt that urbanization alters groundwater recharge. The common 

wisdom has been that as an area urbanizes, impervious pavements—primarily roads and 

parking lots constructed of either concrete or asphalt—are responsible for a decrease in 

recharge. The results of this study indicate that this perception is flawed and that 

pavements are more likely to increase than decrease precipitation recharge. 

There is no direct evidence of a decrease in precipitation recharge as a result of 

urbanization. In fact, except for one documented case, recharge in urban areas has been 

observed to be on the rise. The principal premise of the "precipitation recharge is 

decreasing" argument is that as an area urbanizes, storm runoff increases, and that as a 

result recharge necessarily must decrease. However, though storm peak discharges are 

higher in urbanized watersheds, runoff time is shorter, such that any increases in runoff 

volume are rather smaller than imagined. These differences in runoff volume are not 

directly attributable to decreases in recharge and are more reasonably explained by 

decreases in depression storage and evapotranspiration. 

The reason that urbanization can’t be proven to decrease recharge is simply that 

urban pavements, which comprise the majority of “impervious cover,” are not 

impervious. As a result, except in areas with very high natural permeability, they don’t 

significantly inhibit infiltration. Even new pavements contain fractures and joints that are 

available as preferential pathways for infiltration of rain water. Thus, the decrease in 

direct recharge due to the effectively impermeable matrix of asphalt and concrete 

pavements is offset by an increase in localized recharge through fractures and joints. 

Overall recharge is likely to be unaffected or even to increase. Rainfall runoff studies 

conducted by sewer design engineers confirm the capacity of pavement to transmit 
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precipitation at rates as high as 27 mm/h, conserving as much as 40 percent of total 

rainfall. 

The focus of this study was to determine the permeability of urban pavements. A 

double-ring infiltrometer was used to measure infiltration rates of 200 fractures and joints 

that were encountered along 16 scanlines on representative pavement types in the Waller 

Creek Watershed in Austin, Texas. Point-equivalent hydraulic conductivities were 

calculated directly from infiltration rates by assuming a unit gradient and were found to 

range from 6.68·10-2 cm/s to 7.95·10-5 cm/s for points with measurable infiltration (33 

percent of the points exhibited no measurable infiltration). Scanline-equivalent hydraulic 

conductivities were determined by summing the point conductivities for each scanline 

and dividing by the area of the scanline, and were found to range from 4.1·10-4 cm/s to 

2.6·10-6 cm/s. The total pavement hydraulic conductivity was determined by summing all 

of the point infiltration and dividing by the area represented by all of the scanlines, and 

was determined to be 5.9·10-5 cm/s, which is the hydraulic conductivity of a fine-grained 

sand, silt, or loam. This value is 5 times higher than the average hydraulic conductivity 

found for relatively undisturbed areas with a surface geology dominated by alluvial 

deposits similar to those found in the study area. 

Histogram and frequency plots of point fracture and joint characteristics show that 

point-hydraulic conductivities and point apertures are logarithmically distributed. 

However, a plot of apertures against hydraulic conductivity shows no correlation, leading 

to the conclusion that the fractures and joints are not rate limiting. The effects of both the 

fracture fills and the sub-grade provide the probable limits of infiltration and need to be 

further investigated. Additionally, rose diagrams of fracture and joint trends show them to 

form either sub-parallel or sub-perpendicular to pavement orientations, but because they 
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form sub-vertically to the surface, their orientations are not expected to have an effect on 

infiltration. 

The hydraulic conductivity determined for pavements in this study, 5.9·10-5 cm/s, 

is deemed to be appropriate for use in relatively well-maintained pavements overlying 

fine-grained alluvial deposits and may be used in conjunction with an estimate of the 

surface geology to determine how recharge is likely to be affected in similar locales. 

Further research is needed on more significantly distressed pavements and on pavements 

located over significantly different geologic conditions. 

Urban pavements are permeable. The term “impervious cover” with respect to 

urban pavements is misleading both in definition and in the negative emotions it evokes, 

and its use ought to be discontinued. It would be far better to speak of pavements in terms 

of their significant permeability or hydraulic conductivity. 

Other considerations in any assessment of the effects of urbanization on 

precipitation recharge are the extent of subsurface permeability modification—usually an 

increase—due to the installation of utilities, and the amount of decrease of 

evapotranspiration due to the removal of vegetation from construction sites. The 

combination of these factors with the demonstrated permeability of pavements can indeed 

lead to increases in precipitation recharge. 
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Introduction 
 

Man is a geologic agent. Estimates show that the total amount of earth moved by 

humans in a given year is greater than all the sediment moved by all the rivers on 

the planet combined. Urban areas already comprise a significant portion—

approximately 7%—of the land surface of the earth, and they continue to grow. 

With these facts in mind, it would seem reasonable that the effects of 

urbanization on the environment would be the subject of intense study and thus 

be well understood. Interestingly, though, our understanding of the effects of 

urbanization barely scratches the surface, and many long-held assumptions are 

turning out to be wrong. 

 

Recent attempts to determine the effects of urbanization on groundwater levels 

have led to the observation that, contrary to what one would expect, groundwater 

levels tend to rise in urban areas (Sharp, 2006). Until recently it was assumed 

that urbanization increases impervious cover (buildings, roads, and parking lots), 

leading to decreased natural recharge and thus falling groundwater levels. A 

portion of this rise in groundwater levels may be attributed to anthropogenic 

recharge: leakage from sewer mains and water mains, watering lawns, and the 

like. However, the evidence also points to a problem with one of the basic 

assumptions about urbanization, namely, that roads and parking lots are 

impervious. A cursory glance at just about any urban pavement reveals that, far 

from being impervious, it contains both engineered expansion joints and 

fractures. Lerner, 2002, in light of these facts, estimated that roads and parking 

lots may be as much as 50% pervious. 

 

A review of literature on the subject reveals that, while the permeability of 

unfractured concrete and asphalt pavemenst have been studied extensively, 

primarily by pavement engineers interested in ways both to increase recharge 

through the pavements and to protect paved surfaces, the study of permeability 
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in fractured pavements has been neglected. This paper is the first known attempt 

to quantify the flow through fractures and expansion joints and thus to truly 

quantify the permeability of urban pavements. 

 

Methods 
 

Three criteria were used to select the location for this experiment. The first was 

the necessity of a location with a sufficient amount and variety of fractures and 

expansion joints to sample. For the limited scope of this study, approximately 

twenty data points were determined to be sufficient. The second was the need to 

sample at least two pavement types, in this case asphalt and concrete. The last 

was proximity. Driving halfway across Austin was not feasible logistically. The 

parking lot located just outside the east basement door of the Jackson School of 

Geosciences building at the University of Texas at Austin was found to meet all 

of my criteria. 

 

Experiment Design 
The goal of the experiment was to determine the permeability of pavements due 

to fractures and expansion joints. In order to sample the pavement with minimal 

bias, I set up a 100-foot scan line, oriented approximately north-south, 

intersecting various types of expansion joints and fractures that began on 

concrete and terminated on asphalt. Infiltration tests were conducted at each 

point that a fracture or joint intersected the scan-line, as well as in adjacent 

unfractured areas of the different pavements. If, due to severely uneven 

surfaces, the fracture couldn’t be sampled at the intersection then the fracture 

was sampled as close as possible to the scan-line. The cumulative infiltration 

rate or discharge could then be compared to the area of pavement represented 

by the scan-line to determine the equivalent fracture permeability. Also sampled 

were two additional areas which were not contained within the scan line, but 
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which represented the types of features that are often encountered on asphalt 

pavements. 

 

Experimental Apparatus 
In order to determine the infiltration rate of the various types of fractures and 

joints, I used a double-ring infiltrometer sealed to the pavement with plumber’s 

putty. The double-ring configuration was necessary to prevent lateral flow in the 

fractures. Once the infiltrometer was sealed to the ground, the outer ring was 

filled to ensure that there was no leakage into the inner ring. This ensured that 

water would not leak through the seal into the outer ring, skewing the infiltration 

rate calculation. Once it was determined that there was no communication 

between the rings, both rings were filled to a depth of approximately six 

centimeters (an arbitrary water depth representing a level that was convenient to 

work with). After each infiltration test was conducted, measurements of the 

fracture length and average aperture through which flow was measured in the 

inner ring were recorded. 

 

During the initial experiments, a Guelph Permeameter was used as a constant 

head device to maintain six centimeters of water in the inner ring of the 

infiltrometer. The level in the outer ring was kept at the same level as the inner 

ring by adding water manually. Measurements from the Guelph were recorded at 

even intervals during the experiments to determine the flux through the double 

ring. This configuration worked well at high flow rates. It was observed, however, 

that at very low flow rates the Guelph was unreliable. There were instances when 

the flow rate appeared to be negative when using the small diameter tube 

configurations. Thus, for each of the remaining sample locations a falling head 

test was conducted first. If the flow rate was determined to be sufficient, then the 

Guelph was employed to conduct a constant head test; if not, then only the initial 

falling head data were recorded. After the constant head test, a final falling head 

test was conducted for comparison to the first. 
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Data 
 

In general, six types of fractures were sampled: 

 

1. Open expansion joints with the original form lumber 

2. Open expansion joints with sediment fill 

3. Closed expansion joints 

4. Simple fractures 

5. Multi-fractures 

6. Fracture swarms 
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Figure 1 -  A map view of fracture characteristics in the inner ring of the infiltrometer. 

 

The data were collected at each sample location by measuring the height of the 

water column at the beginning of the test, and at succeeding increments of time, 

until the rate of change had clearly stabilized. Water height was measured using 

a millimeter-ruled ruler in the infiltrometer for the falling head tests, and using the 

internal millimeter graduations in the large ring of the Guelph Permeameter for 

the constant head tests. These changes in height of the water column were then 
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converted to volumes based on the change in volume per unit height of the 

different devices.  

 

The data are presented on the following graphs as cumulative discharge in cubic 

centimeters per second versus elapsed time and have been separated on the 

basis of the type of pavement, concrete or asphalt, in which the fracture or joint 

was sampled. Sample 01-008 is an exception; it is included in the concrete 

analysis because it is a transition from concrete to asphalt and is typical of 

expansion joints in concrete. 

  

Information about each location is provided on Table 1. Figure 2 presents the 

data from the constant head analysis which generally applied to concrete 

pavements with the exception of location 02-002. Figure 3 presents the data for 

the falling head analysis of fractures in concrete. These data are from the second 

falling head test only, because the method was not refined prior to the tests on 

the majority of these fractures. However, initial and final falling head tests were 

conducted for locations 01-006 and 01-008 and are presented on Figure 5. 

Figure 4 presents the falling head data for fractures in asphalt. Figure 5 presents 

the comparison of initial falling head test data and final falling head test data. 
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Constant Head Data
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Figure 2 – This chart presents data from constant head analysis as total volume discharged per 
unit time. The slope of the best fit line gives the discharge in cm3/sec.  
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Concrete Pavement Falling Head Data
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Figure 3 – This chart presents data from the final falling head tests on concrete pavements. Note 
that the discharge, as determined by the slope of the best fit line, are more conservative than 
constant head data. 
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Asphalt Falling Head Data
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Figure 4 – This chart presents data collected from locations on the asphalt pavement. Again, 
fracture discharge can be determined by the slope of the best fit line. 
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Comparison of Falling Head I and Falling Head II tests
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Figure 5 – This chart presents data from locations where both initial and final falling head data 
were collected. Note that initial discharge rates are approximately three times final discharge. 
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Table 1 - Location Data 

Sample 

Scan Line 
Location 
(ft from 

beginning) Pavement Type Category Filler 
Aperture 
(mm) 

Leng
th 
(cm) 

Aperture 
(mm) 

Length 
(cm) 

Aperture 
(mm) 

Length 
(cm) 

Average 
Aperture 
(mm) 

Discharge 
(cm^3/sec) 

Fracture 
Trans. 
(cm^2/sec) 

01-001 0.0 LG-CC/FG-CC EJ W 2.00 13.7 0.8 13.7     2.75 0.49 0.0358 
01-002 NA FG-CC NF NA 0.00           0.00 0.00   
01-003 NA LG-CC NF NA 0.00           0.00 0.00   
01-004 1.4 LG-CC EJ NO 0.25 14.0         0.25 0.02 0.0014 
01-005 7.6 LG-CC F S-FG 1.00 19.0         1.00 0.23 0.0121 
01-006 9.4 LG-CC MF NO 0.50 13.0 0.5 13.0     0.50 0.26 0.0100 
01-007 22.6 LG-CC EJ NO 0.25 13.5         0.25 0.00 0.0000 
01-008 46.4 LG-CC/Asphalt EJ S FG/MG 25.00 13.5         25.00 0.66 0.0489 
01-009 52.0 Asphalt NF NA 0.00           0.00 0.00   
01-010 55.4 Asphalt F NO 3.00 13.0         3.00 0.02 0.0015 
01-011 62.0 Asphalt F NO 2.00 13.5         2.00 0.00 0.0000 
01-012 66.0 Asphalt MF NO 2.00 13.5 1.0 6.0     1.69 0.01 0.0005 
01-013 68.0 Asphalt MF NO 1.00 7.0 2.0 5.0 0.5 16.0 0.89 0.08 0.0029 
01-014 70.6 Asphalt FS NO 1.00 20.0         1.00 0.03 0.0015 
01-015 72.9 FG-CC/Asphalt EJ/F NO 0.50 14.0 0.5 7.0     0.50 0.01 0.0005 
01-016 74.4 FG-CC/Asphalt EJ NO 1.50 14.0         1.50 0.01 0.0007 
01-017 75.4 Asphalt F NO 2.00 14.0         2.00 0.03 0.0021 
02-001 NA Asphalt FS NO 0.50 30.0         0.50 0.03 0.0010 
02-002 NA Asphalt F S-FG 10.00 10.5         10.00 0.08 0.0076 

              

Symbols       Total Scan Line Discharge:   1.96  

EJ  expansion joint             
LG  large grained              
MG  medium grained             
FG  fine grained              
CC concrete             
NF  No visible fractures were present            
W  wood form lumber still intact             
NA not applicable             
NO  not observed             
S  sediment             
F fracture             
MF  multiple fractures             
FS fracture swarm  Weighted average aperture was used to calculate fracture transmissiviy      
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Data Analysis 
 

Figures 2, 3, and 4 demonstrate that closed expansion joints in concrete and 

fractures in asphalt have a much lower discharge than either open expansion 

joints or fractures in concrete. The problem, however, is that due to differences in 

aperture and fracture length in the tested locations, a direct comparison of 

discharge is not valid. In order to provide a means of direct comparison, I define 

the term: “fracture transmissivity”. Fracture transmissivity is simply the discharge 

divided by the fracture length. By comparing the weighted average aperture in 

each location to the fracture transmissivity (Figure 6), it becomes clear that 

asphalt fractures and closed expansion joints are approximately two orders of 

magnitude less transmissive than open expansion joints, and at least an order of 

magnitude less transmissive than fractures in concrete. 

 

Fracture Transmissivity: 

Fracture Discharge (cm3/sec) 
      Fracture Length (cm) 
 

Weighted Average Aperture: 

Fracture length a x aperture a  +  fracture length b x aperture b 
       ∑ fracture lengths                          ∑ fracture lengths 

 

Another interesting comparison is presented in Figure 5. The three locations in 

which data were collected for both initial falling head and final falling head are 

plotted to determine which discharge is more suitable for the ultimate calculation 

of equivalent fracture hydraulic conductivity (Kf). It becomes immediately clear 

that there is a two-to-three time decrease in discharge from the initial rate to the 

final rate. While it is not clear which rate would tend to dominate in a precipitation 

event, the more conservative rate was used to calculate the equivalent Kf. 
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Fracture Transmissiviy Comparison
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Figure 6 – This chart presents average aperture plotted versus fracture transmissivity data and is 
segregated by fracture class and pavement type. Because the expansion joints were found to 
have similar attributes regardless of pavement type they are classified as either open or closed. 
 

In order to calculate an equivalent fracture hydraulic conductivity, I sum the areas 

of 15 cm circles that would fit edge to edge to determine the area represented by 

the scan line, and divide the sum of all the discharge rates by that area. 

 

Equivalent Fracture Hydraulic Conductivity: 

Total Fracture Discharge (cm3/sec) 

         Scan Line Area (cm2) 
 
Excluding locations 02-001 and 02-002, which were not on the scan line, the total 

fracture discharge was determined to be 1.88 cm3/sec. The total area 

represented by the 100-foot scan line was 3.58x104 cm2. The resulting equivalent 

fracture hydraulic conductivity was calculated to be 5.25x10-5 cm/sec. 
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Discussion and Conclusions 
 

It is clear that the scope of this study was extremely limited and that 19 sample 

points is inadequate to draw substantive conclusions. As they apply to the thin 

strip of pavement in the Jackson School of Geosciences at the University of 

Texas at Austin, I conclude the following: 

 

1. Fractures in asphalt are less fracture transmissive than those in concrete. 

2. Open expansion joints have the highest fracture transmissivities.  

3. Closed expansion joints have the lowest transmissivities. 

4. Initial infiltration rates for falling head tests are approximately three times 

higher than those observed after approximately an hour of infiltration. 

5. The equivalent fracture hydraulic conductivity for the area of the scan line 

was 10-5 cm/s, which is roughly equivalent to very fine sand. 

 

My purpose in this study was not to make specific predictions of urban 

pavements in general, but to investigate a hypothesis and develop methods for 

future analysis. In that, I believe I have succeeded. The data show that the 

parking lot is not impervious at all. In areas with low surface hydraulic 

conductivity, it may turn out that building roads and parking lots actually 

increases recharge. This study highlights the need for future research in this 

area.  
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Bench Test Data - Falling Head Analysis 04-003    
        

Sample Date 

Depth 
Range 
(cm) 

Outer 
Ring 

Depth 
(cm) 

Average 
Depth 
(cm) 

Δ Time 
(s) 

Aperture 
(mm) Sub Grade 

        
04-003 10/4/2006 8-7 7.5 7.5 4.53 0.25 pea gravel 
04-003 10/4/2006 8-7 7.5 7.5 4.44 0.25 pea gravel 
04-003 10/4/2006 8-7 7.5 7.5 4.47 0.25 pea gravel 
04-003 10/4/2006 7-6 6.5 6.5 4.56 0.25 pea gravel 
04-003 10/4/2006 7-6 6.5 6.5 4.91 0.25 pea gravel 
04-003 10/4/2006 7-6 6.5 6.5 4.68 0.25 pea gravel 
04-003 10/4/2006 6-5 5.5 5.5 4.91 0.25 pea gravel 
04-003 10/4/2006 6-5 5.5 5.5 5.06 0.25 pea gravel 
04-003 10/4/2006 6-5 5.5 5.5 5.16 0.25 pea gravel 
04-003 10/4/2006 5-4 4.5 4.5 5.25 0.25 pea gravel 
04-003 10/4/2006 5-4 4.5 4.5 5.38 0.25 pea gravel 
04-003 10/4/2006 5-4 4.5 4.5 5.22 0.25 pea gravel 
04-003 10/4/2006 4-3 3.5 3.5 5.97 0.25 pea gravel 
04-003 10/4/2006 4-3 3.5 3.5 5.81 0.25 pea gravel 
04-003 10/4/2006 4-3 3.5 3.5 5.72 0.25 pea gravel 
04-003 10/4/2006 3-2 2.5 2.5 6.41 0.25 pea gravel 
04-003 10/4/2006 3-2 2.5 2.5 6.56 0.25 pea gravel 
04-003 10/4/2006 3-2 2.5 2.5 6.66 0.25 pea gravel 
04-003 10/4/2006 2-1 1.5 1.5 6.87 0.25 pea gravel 
04-003 10/4/2006 2-1 1.5 1.5 6.81 0.25 pea gravel 
04-003 10/4/2006 2-1 1.5 1.5 6.72 0.25 pea gravel 
04-003 10/4/2006 1-0 0.5 0.5 7.13 0.25 pea gravel 
04-003 10/4/2006 1-0 0.5 0.5 6.97 0.25 pea gravel 
04-003 10/4/2006 1-0 0.5 0.5 6.50 0.25 pea gravel 
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Bench Test Data - Falling Head Analysis 04-005    
        

Sample Date 

Depth 
Range 
(cm) 

Outer 
Ring 

Depth 
(cm) 

Average 
Depth 
(cm) 

Δ Time 
(s) 

Aperture 
(mm) 

Sub 
Grade 

        
04-005 10/4/2006 8-7 8.0 7.5 16.31 0.1 pea gravel 
04-005 10/4/2006 8-7 8.0 7.5 16.56 0.1 pea gravel 
04-005 10/4/2006 8-7 8.0 7.5 16.94 0.1 pea gravel 
04-005 10/4/2006 7-6 7.0 6.5 17.66 0.1 pea gravel 
04-005 10/4/2006 7-6 7.0 6.5 18.40 0.1 pea gravel 
04-005 10/4/2006 7-6 7.0 6.5 18.06 0.1 pea gravel 
04-005 10/4/2006 6-5 6.0 5.5 19.25 0.1 pea gravel 
04-005 10/4/2006 6-5 6.0 5.5 19.43 0.1 pea gravel 
04-005 10/4/2006 6-5 6.0 5.5 19.29 0.1 pea gravel 
04-005 10/4/2006 5-4 5.0 4.5 20.88 0.1 pea gravel 
04-005 10/4/2006 5-4 5.0 4.5 20.59 0.1 pea gravel 
04-005 10/4/2006 5-4 5.0 4.5 20.62 0.1 pea gravel 
04-005 10/4/2006 4-3 4.0 3.5 22.66 0.1 pea gravel 
04-005 10/4/2006 4-3 4.0 3.5 22.69 0.1 pea gravel 
04-005 10/4/2006 4-3 4.0 3.5 22.75 0.1 pea gravel 
04-005 10/4/2006 3-2 3.0 2.5 25.50 0.1 pea gravel 
04-005 10/4/2006 3-2 3.0 2.5 25.03 0.1 pea gravel 
04-005 10/4/2006 3-2 3.0 2.5 25.06 0.1 pea gravel 
04-005 10/4/2006 2-1 2.0 1.5 29.50 0.1 pea gravel 
04-005 10/4/2006 2-1 2.0 1.5 29.44 0.1 pea gravel 
04-005 10/4/2006 2-1 2.0 1.5 29.59 0.1 pea gravel 
04-005 10/4/2006 1-0 1.0 0.5 25.85 0.1 pea gravel 
04-005 10/4/2006 1-0 1.0 0.5 25.75 0.1 pea gravel 
04-005 10/4/2006 1-0 1.0 0.5 26.69 0.1 pea gravel 

 



 84
 

 
Bench Test Data - Falling Head Analysis 04-007    
        

Sample Date 

Depth 
Range 
(cm) 

Outer 
Ring 

Depth 
(cm) 

Average 
Depth 
(cm) 

Δ Time 
(s) 

Aperture 
(mm) Sub Grade 

        
04-007 10/13/2006 8-7 8.0 7.5 8.37 0.075 coarse sand 
04-007 10/13/2006 8-7 8.0 7.5 8.34 0.075 coarse sand 
04-007 10/13/2006 8-7 8.0 7.5 8.18 0.075 coarse sand 
04-007 10/13/2006 7-6 7.0 6.5 8.63 0.075 coarse sand 
04-007 10/13/2006 7-6 7.0 6.5 8.72 0.075 coarse sand 
04-007 10/13/2006 7-6 7.0 6.5 8.63 0.075 coarse sand 
04-007 10/13/2006 6-5 6.0 5.5 9.56 0.075 coarse sand 
04-007 10/13/2006 6-5 6.0 5.5 9.25 0.075 coarse sand 
04-007 10/13/2006 6-5 6.0 5.5 9.31 0.075 coarse sand 
04-007 10/13/2006 5-4 5.0 4.5 9.82 0.075 coarse sand 
04-007 10/13/2006 5-4 5.0 4.5 9.78 0.075 coarse sand 
04-007 10/13/2006 5-4 5.0 4.5 9.78 0.075 coarse sand 
04-007 10/13/2006 4-3 4.0 3.5 10.72 0.075 coarse sand 
04-007 10/13/2006 4-3 4.0 3.5 10.40 0.075 coarse sand 
04-007 10/13/2006 4-3 4.0 3.5 10.53 0.075 coarse sand 
04-007 10/13/2006 3-2 3.0 2.5 11.84 0.075 coarse sand 
04-007 10/13/2006 3-2 3.0 2.5 11.50 0.075 coarse sand 
04-007 10/13/2006 3-2 3.0 2.5 11.87 0.075 coarse sand 
04-007 10/13/2006 2-1 2.0 1.5 13.59 0.075 coarse sand 
04-007 10/13/2006 2-1 2.0 1.5 13.28 0.075 coarse sand 
04-007 10/13/2006 2-1 2.0 1.5 13.62 0.075 coarse sand 
04-007 10/13/2006 1-0 1.0 0.5 11.16 0.075 coarse sand 
04-007 10/13/2006 1-0 1.0 0.5 11.41 0.075 coarse sand 
04-007 10/13/2006 1-0 1.0 0.5 11.69 0.075 coarse sand 
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Bench Test Data - Constant Head 04-004, 04-006, 04-008   
        

Sample Date 

Outer 
Ring 
Depth 
(cm) 

Inner 
Ring  
Depth 
(cm) 

Δ Time 
(s) 

Volume 
Discharged 
(ml) 

Aperture 
(mm) Sub Grade 

        
04-004 10/4/2006 1 1 30 720 0.25 pea gravel 
04-004 10/4/2006 1 1 30 728 0.25 pea gravel 
04-004 10/4/2006 1 1 30 725 0.25 pea gravel 
04-004 10/4/2006 2 2 30 815 0.25 pea gravel 
04-004 10/4/2006 2 2 30 815 0.25 pea gravel 
04-004 10/4/2006 2 2 30 815 0.25 pea gravel 
04-004 10/4/2006 4 4 30 972 0.25 pea gravel 
04-004 10/4/2006 4 4 30 975 0.25 pea gravel 
04-004 10/4/2006 8 8 30 1255 0.25 pea gravel 
04-004 10/4/2006 8 8 30 1238 0.25 pea gravel 
        
04-006 10/4/2006 1 1 60 262 0.1 pea gravel 
04-006 10/4/2006 1 1 60 262 0.1 pea gravel 
04-006 10/4/2006 2 2 60 368 0.1 pea gravel 
04-006 10/4/2006 2 2 60 368 0.1 pea gravel 
04-006 10/4/2006 4 4 60 468 0.1 pea gravel 
04-006 10/4/2006 4 4 60 468 0.1 pea gravel 
04-006 10/4/2006 8 8 30 325 0.1 pea gravel 
04-006 10/4/2006 8 8 30 325 0.1 pea gravel 
        
04-008 10/13/2006 1 1 60 710 0.075 coarse sand 
04-008 10/13/2006 1 1 60 715 0.075 coarse sand 
04-008 10/13/2006 2 2 30 385 0.075 coarse sand 
04-008 10/13/2006 2 2 30 385 0.075 coarse sand 
04-008 10/13/2006 4 4 30 508 0.075 coarse sand 
04-008 10/13/2006 4 4 30 510 0.075 coarse sand 
04-008 10/13/2006 8 8 30 710 0.075 coarse sand 
04-008 10/13/2006 8 8 30 710 0.075 coarse sand 
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Figure 25: Site map (from Google Maps) and site photo looking south, of scanline 1000 
located on a concrete and asphalt portion of the east parking lot of the 
geology building on the campus of The University of Texas at Austin, 
Texas. 

Sample K0 (cm/s) 
  

1001 2.8E-03 
1002 0.0E+00 
1003 0.0E+00 
1004 1.1E-04 
1005 1.3E-03 
1006 1.5E-03 
1007 0.0E+00 
1008 3.7E-03 
1009 0.0E+00 
1010 1.1E-04 
1011 0.0E+00 
1012 5.7E-05 
1013 4.5E-04 
1014 1.7E-04 
1015 5.7E-05 
1016 5.7E-05 
1017 1.7E-04 

  
Scan Line K (cm/s) 4.9E-05 
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Figure 26: Site map (from Google Maps) and site photo looking north, of scanline 6000 
located on a concrete gutter section of pavement at 56th Street and Link 
Avenue, Austin, Texas. 

Sample K0 (cm/s) 
  

6001 4.0E-05 
6002 5.2E-04 
6003 4.0E-04 
6004 2.9E-03 
6005 1.1E-03 
6006 1.2E-04 
6007 4.4E-04 
6008 6.0E-04 
6009 2.0E-04 
6010 0.0E+00 

  
Scan Line K (cm/s) 2.9E-05 
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Figure 27: Site map (from Google Maps) and site photo looking west, of scanline 7000 
located on an asphalt portion of the east parking lot of The University of 
Texas Intramural Fields, Austin, Texas. 

Sample K0 (cm/s) 
  

7001 7.2E-04 
7002 5.6E-04 
7003 2.1E-03 
7004 6.0E-04 
7005 1.8E-03 
7006 4.0E-04 
7007 1.5E-03 
7008 5.6E-04 
7009 9.9E-04 
7010 9.5E-04 
7011 1.7E-03 
7012 1.7E-03 
7013 1.7E-03 
7014 0.0E+00 

  
Scan Line K (cm/s) 7.1E-05 
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Figure 28: Site map (from Google Maps) and site photo looking north, of scanline 8000 
located on an asphalt road at 56th Street and Link Avenue, Austin, Texas. 

Sample K0 (cm/s) 
  

8001 6.8E-04 
8002 1.7E-03 
8003 1.2E-03 
8004 0.0E+00 
8005 1.3E-03 
8006 2.8E-04 
8007 8.4E-04 
8008 1.2E-04 
8009 0.0E+00 

  
Scan Line K (cm/s) 2.9E-05 
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Figure 29: Site map (from Google Maps) and site photo looking west, of scanline 9000 
located on a concrete section of the west parking lot of Hyde Park Grocery 
at Avenue H and 43rd Street, Austin, Texas. 

Sample K0 (cm/s) 
  

9001 0.0E+00 
9002 1.2E-04 
9003 2.8E-04 
9004 4.0E-04 
9005 2.8E-04 
9006 8.0E-05 
9007 0.0E+00 
9008 8.0E-05 
9009 0.0E+00 
9010 0.0E+00 
9011 1.2E-04 
9012 8.0E-05 
9013 4.8E-04 
9014 1.2E-04 
9015 8.0E-05 
9016 1.6E-04 
9017 8.0E-05 
9018 1.2E-04 
9019 3.0E-03 
9020 2.4E-03 
9021 1.0E-02 

  
Scan Line K (cm/s) 8.5E-05 
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Figure 30: Site map (from Google Maps) and site photo looking west, of scanline 
10000 located on a concrete curb gutter at 56th Street and Duval Street, 
Austin, Texas. 

Sample K0 (cm/s) 
  

10001 4.8E-04 
10002 3.6E-04 
10003 0.0E+00 
10004 3.2E-04 
10005 3.6E-04 
10006 4.0E-05 
10007 0.0E+00 
10008 1.2E-04 
10009 8.6E-04 
10010 4.0E-05 
10011 0.0E+00 
10012 4.0E-05 
10013 4.0E-05 
10014 5.6E-04 
10015 4.0E-05 

  
Scan Line K (cm/s) 1.5E-05 
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Figure 31: Site map (from Google Maps) and site photo looking east, of scanline 11000 
located on a section of concrete road at 34th Street and Tom Green Street, 
Austin, Texas. 

Sample K0 (cm/s) 
  

11001 0.0E+00 
11002 4.0E-05 
11003 4.4E-04 
11004 0.0E+00 
11005 4.0E-05 
11006 0.0E+00 
11007 0.0E+00 
11008 0.0E+00 
11009 4.0E-05 
11010 0.0E+00 
11011 0.0E+00 

  
Scan Line K (cm/s) 2.6E-06 
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Figure 32: Site map (from Google Maps) and site photo looking east, of scanline 12000 
located on a section of asphalt road at 400 Swanee Drive, Austin, Texas.. 

Sample K0 (cm/s) 
  

12001 7.2E-04 
12002 9.1E-04 
12003 5.2E-04 
12004 0.0E+00 
12005 0.0E+00 
12006 0.0E+00 
12007 0.0E+00 
12008 0.0E+00 
12009 0.0E+00 
12010 0.0E+00 
12011 0.0E+00 
12012 3.2E-04 
12013 0.0E+00 

  
Scan Line K (cm/s) 1.2E-05 
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Figure 33: Site map (from Google Maps) and site photo looking north, of scanline 
13000 located on a concrete parking lot at Denson Drive 200 feet east of 
Chesterfield Avenue, Austin, Texas. 

Sample K0 (cm/s) 
  

13001 1.0E-03 
13002 1.3E-03 
13003 5.6E-04 
13004 6.6E-03 
13005 5.2E-03 
13006 0.0E+00 
13007 0.0E+00 
13008 2.4E-04 
13009 4.8E-04 
13010 2.2E-03 
13011 3.4E-03 
13012 2.8E-03 

  
Scan Line K (cm/s) 1.1E-04 
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Figure 34: Site map (from Google Maps) and site photo north, of scanline 14000 
located on an asphalt parking lot at the corner of Guadalupe Street and 
Northway Drive, Austin, Texas. 

Sample K0 (cm/s) 
  

14001 5.6E-03 
14002 2.4E-04 
14003 8.0E-05 
14004 7.2E-04 
14005 1.2E-04 
14006 4.8E-04 
14007 4.0E-04 
14008 3.2E-04 

  
Scan Line K (cm/s) 3.7E-05 
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Figure 35: Site map (from Google Maps) and site photo looking south, of scanline 
15000 located on a section of asphalt road at Meadowview Lane and 
Crestland Drive, Austin, Texas. 

Sample K0 (cm/s) 
  

15001 3.0E-03 
15002 0.0E+00 
15003 0.0E+00 
15004 8.0E-05 
15005 0.0E+00 
15006 0.0E+00 
15007 3.2E-04 
15008 0.0E+00 
15009 0.0E+00 
15010 8.0E-04 
15011 0.0E+00 
15012 6.4E-04 
15013 4.4E-04 
15014 0.0E+00 

  
Scan Line K (cm/s) 2.5E-05 
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Figure 36: Site map (from Google Maps) and site photo looking south, of scanline 
16000 located on a concrete curb gutter at Rowena Street and 51st Street, 
Austin, Texas. 

Sample K0 (cm/s) 
  

16001 1.4E-03 
16002 4.4E-04 
16003 2.0E-04 
16004 1.6E-04 
16005 8.0E-05 
16006 0.0E+00 
16007 7.2E-04 
16008 4.0E-04 
16009 0.0E+00 

  
Scan Line K (cm/s) 1.6E-05 
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Figure 37: Site map (from Google Maps) and site photo looking south, of scanline 
17000 located on a concrete curb gutter at 40th Street and Avenue F, Austin, 
Texas. 

Sample K0 (cm/s) 
  

17001 2.2E-03 
17002 0.0E+00 
17003 1.2E-04 
17004 0.0E+00 
17005 0.0E+00 
17006 8.0E-05 
17007 0.0E+00 
17008 2.4E-04 
17009 3.2E-04 
17010 0.0E+00 
17011 2.8E-04 
17012 2.2E-03 
17013 0.0E+00 
17014 0.0E+00 

  
Scan Line K (cm/s) 2.5E-05 
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Figure 38: Site map (from Google Maps) and site photo looking west of scanline 18000 
located on a concrete curb gutter at Duval Street and 31st Street, Austin, 
Texas. 

Sample K0 (cm/s) 
  

18001 0.0E+00 
18002 0.0E+00 
18003 7.2E-04 
18004 0.0E+00 
18005 8.0E-05 
18006 0.0E+00 
18007 4.0E-04 
18008 2.0E-03 
18009 1.6E-04 
18010 0.0E+00 
18011 1.5E-03 

  
Scan Line K (cm/s) 2.2E-05 
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Figure 39: Site map (from Google Maps) and site photo looking north, of scanline 
19000 located on a concrete curb gutter at Avenue G and 40th Street, Austin, 
Texas. 

Sample K0 (cm/s) 
  

19001 4.4E-03 
19002 6.7E-02 
19003 6.8E-03 
19004 8.0E-05 
19005 8.0E-04 
19006 0.0E+00 
19007 1.5E-03 
19008 4.4E-03 
19009 0.0E+00 
19010 2.8E-03 

  
Scan Line K (cm/s) 4.1E-04 
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Figure 40: Site map (from Google Maps) and site photo looking east, of scanline 20000 
located on a concrete curb gutter at 44th Street and Avenue G, Austin, Texas.

Sample K0 (cm/s) 
  

20001 0.0E+00 
20002 1.6E-04 
20003 0.0E+00 
20004 0.0E+00 
20005 0.0E+00 
20006 0.0E+00 
20007 0.0E+00 
20008 0.0E+00 
20009 0.0E+00 
20010 5.3E-04 

  
Scan Line K (cm/s) 3.2E-06 
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