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(57) ABSTRACT 

Techniques and structures are disclosed in which one or 
more distortion categories are identified for an image or 
Video, and a quality of the image or video is determined 
based on the one or more distortion categories. The image or 
Video may be of a natural Scene, and may be of unknown 
provenance. Identifying a distortion category and/or deter 
mining a quality may be performed without any correspond 
ing reference (e.g., undistorted) image or video. Identifying 
a distortion category may be performed using a distortion 
classifier. Quality may be determined with respect to a 
plurality of human opinion scores that correspond to a 
particular distortion category to which an image or video of 
unknown provenance is identified as belonging. Various 
statistical methods may be used in performing said identi 
fying and said determining, including use of generalized 
Gaussian distribution density models and natural scene 
statistics. 
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DETERMINING QUALITY OF AN IMAGE 
OR VIDEO USING A DISTORTION 

CLASSIFIER 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application is a divisional of and claims the benefit 
of pending U.S. application Ser. No. 13/104,801, filed May 
10, 2011, which claims the benefit of U.S. Provisional 
Application No. 61/332,856, filed on May 10, 2010. 

STATEMENT OF FEDERALLY FUNDED 
RESEARCH 

The subject matter of this disclosure was developed with 
U.S. Government support under Contract No. CCF-0728748 
awarded by the National Science Foundation. The govern 
ment has certain rights in this technology. 

BACKGROUND OF THE INVENTION 

Field of the Invention 
This disclosure relates in general to the fields of process 

ing images and videos, and more particularly, to determining 
a quality and/or correcting an image or video using a 
distortion classifier. 

Description of the Related Art 
Human perception of images and videos may differ 

greatly with regard to quality. For example, an uncom 
pressed digital image frame may be perceived as having 
extremely high quality, while a highly compressed (lossy) 
digital image frame of the same scene may be considered as 
having low quality. The perceived low quality may be a 
direct result of distortion caused by the compression, and 
different distortions may affect images or videos in different 
ways. 
Humans may be particularly adept at rating the quality of 

images or videos in which natural Scenes (e.g., landscapes, 
animals, buildings, people, etc.) are depicted. Rating the 
quality of an image or video can be extremely expensive 
(both in terms of time and money), however, when human 
subjects are used. For example, if fifty subjects each rate the 
quality of a twenty minute video and are paid S5 apiece to 
do so, the cost of rating the video would be at least one 
thousand man-minutes and S250. Such a cost may be far too 
high to allow for quality ratings to be performed on a large 
number of images or videos. 

SUMMARY 

Various embodiments of methods, mechanisms, and 
structures relating to determining quality of an image or 
Video are disclosed. In one embodiment, a method is dis 
closed, comprising a computer system identifying one or 
more distortion categories for one or more image frames, 
wherein the identifying is based on distorted image statistics 
for the one or more image frames, and the computer system 
determining a quality of the one or more image frames based 
on the identified one or more distortion categories, wherein 
reference image frames for the one or more image frames are 
not available to the computer system in performing the 
identifying and the determining. 

In another embodiment, an apparatus comprising a pro 
cessor and a storage device is disclosed, where the storage 
device has instructions stored thereon that are executable by 
the processor to cause the apparatus to perform operations 
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2 
including identifying one or more distortion categories for a 
first one or more image frames, wherein the identifying is 
based on distorted image statistics for the first one or more 
image frames, and wherein the distorted image statistics are 
derived from a natural scene Statistics model, and wherein 
the operations include determining a quality of the first one 
or more image frames based on the identified one or more 
distortion categories, wherein the determining is based on a 
plurality of human-measured quality scores for a plurality of 
second one or more image frames, wherein each of the 
plurality of second one or more image frames are classified 
as being in at least one of the identified one or more 
distortion categories. 

In another embodiment, a computer-readable storage 
medium is disclosed, wherein the storage medium has 
instructions stored thereon that are executable by a computer 
system to cause the computing device to perform operations 
comprising identifying one or more distortion categories for 
a first one or more image frames, wherein the identifying is 
based on distorted image statistics for the first one or more 
image frames, and determining a quality of the first one or 
more image frames based on the identified one or more 
distortion categories, wherein said determining is based on 
a plurality of human-measured quality scores for a plurality 
of second one or more image frames, wherein each of the 
plurality of second one or more image frames are classified 
as being in at least one of the identified one or more 
distortion categories. 

These and other features and advantages will become 
apparent to those of ordinary skill in the art in view of the 
following detailed descriptions of the approaches presented 
herein. Additionally, the teachings of this disclosure, as well 
as the appended claims, are expressly not limited by the 
features and embodiments discussed above in this Summary. 

BRIEF DESCRIPTION OF THE DRAWINGS 

Various embodiments are discussed herein with respect to 
FIGS. 1-8, as well as FIGS. 9-11. 

FIG. 1 is a graph showing histograms of coefficients from 
one Subband for an original image and its distorted versions 
(normalized). 

FIG. 2 is a graph showing the three dimensional vectors 
of distorted image statistics in PCA space. 

FIG. 3 is a graph showing the classification accuracy of 
SVM on the test set as a function of quality/distortion 
severity. 

FIG. 4 shows a Confusion Matrix for high quality 
case—which (row) is confused as which (column) distor 
tion. 

FIG. 5 is a graph show the classification accuracy of SVM 
on the test set as a function of quality/distortion severity for 
pa0.75 with an unclassified category. 

FIG. 6 shows a method for assessing a quality of an image 
or video or correcting the image or video based a distorted 
image statistics of the image or video in accordance with one 
embodiment. 

FIG. 7 shows a method 700 for training the distortion 
classifier in accordance with one embodiment. 

FIG. 8 shows a method 800 for testing the distortion 
classifier in accordance with one embodiment. 

FIG. 9A shows a block diagram of one embodiment of an 
exemplary computer system. 

FIG. 9B shows a block diagram of an embodiment 
configured to operate over a network. 
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FIG. 10 shows a flowchart of an embodiment of a method 
for determining quality of an image or video based on one 
or more identified distortion categories. 

FIG. 11 shows an embodiment of a computer readable 
medium storing various program modules. 

DETAILED DESCRIPTION 

In the following description, numerous specific details are 
set forth to provide a thorough understanding of the methods 
and mechanisms presented herein. However, one having 
ordinary skill in the art should recognize that the various 
embodiments may be practiced without these specific 
details. In some instances, well-known structures, compo 
nents, signals, computer program instructions, and tech 
niques have not been shown in detail to avoid obscuring the 
approaches described herein. It will be appreciated that for 
simplicity and clarity of illustration, elements shown in the 
figures have not necessarily been drawn to scale. For 
example, the dimensions of Some of the elements may be 
exaggerated relative to other elements. 

This specification includes references to “one embodi 
ment” or “an embodiment.” The appearances of the phrases 
“in one embodiment” or “in an embodiment” do not neces 
sarily refer to the same embodiment. Particular features, 
structures, or characteristics may be combined in any Suit 
able manner consistent with this disclosure. 

Terminology. The following paragraphs provide defini 
tions and/or context for terms found in this disclosure 
(including the appended claims): 

"Comprising.” This term is open-ended. As used in the 
appended claims, this term does not foreclose additional 
structure or steps. Consider a claim that recites: “An appa 
ratus comprising a processor and a storage device....” Such 
a claim does not foreclose the apparatus from including 
additional components (e.g., a network interface unit, addi 
tional processors, graphics circuitry, etc.). 

“Configured To. Various units, circuits, or other compo 
nents may be described or claimed as “configured to 
perform a task or tasks. In Such contexts, “configured to' is 
used to connote structure by indicating that the units/ 
circuits/components include structure (e.g., circuitry) that 
performs those task or tasks during operation. As such, the 
unit/circuit/component can be said to be configured to 
perform the task even when the specified unit/circuit/com 
ponent is not currently operational (e.g., is not on). The 
units/circuits/components used with the “configured to 
language include hardware—for example, circuits, memory 
storing program instructions executable to implement the 
operation, etc. Reciting that a unit/circuit/component is 
“configured to perform one or more tasks is expressly 
intended not to invoke 35 U.S.C. S112, sixth paragraph, for 
that unit/circuit/component. Additionally, “configured to 
can include generic structure (e.g., generic circuitry) that is 
manipulated by software and/or firmware (e.g., an FPGA or 
a general-purpose processor executing software) to operate 
in manner that is capable of performing the task(s) at issue. 

"First,” “Second,' etc. As used herein, these terms are 
used as labels for nouns that they precede, and do not imply 
any type of ordering (e.g., spatial, temporal, logical, etc.). 
For example, a “first (group of) one or more image frames 
and a 'second (group of) one or more image frames can be 
used to refer to any two groups of one or more image frames, 
and does not necessarily imply that one group of image 
frames was created, received, processed, etc., before the 
other. In other words, “first and “second are descriptors. 
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4 
“Based On.” As used herein, this term is used to describe 

one or more factors that affect a determination. This term 
does not foreclose additional factors that may affect a 
determination. That is, a determination may be solely based 
on those factors or based, at least in part, on those factors. 
Consider the phrase “determine Abased on B. While B may 
be a factor that affects the determination of A, such a phrase 
does not foreclose the determination of A from also being 
based on C. In other instances, however. A may be deter 
mined based solely on B. 

“Processor.” This term has its ordinary and accepted 
meaning in the art, and includes a device that is capable of 
executing instructions. A processor may refer, without limi 
tation, to a central processing unit (CPU), a co-processor, an 
arithmetic processing unit, a graphics processing unit, a 
digital signal processor (DSP), etc. A processor may be a 
SuperScalar processor with a single or multiple pipelines. A 
processor may include a single or multiple cores that are 
each configured to execute instructions. 
“One or more image frames. As used herein, this term 

refers to a still image and/or a video. Thus, one or more 
image frames may refer to a single still image, a single 
Video, or a combination including one or more still images 
and one or more videos. 

“Automatically.” This term has its ordinary and accepted 
meaning in the art, and includes performing actions without 
Substantial user intervention. 

Various embodiments are described herein with regard to 
FIGS. 1-8, as well as FIGS. 9-11. As further discussed 
below, the embodiments described and the various features 
thereof can be combined in any manner as would occur to 
those of skill in the art. Accordingly, any or all of the features 
described with respect to the embodiments of FIGS. 1-8 may 
be combined with any or all of the features described with 
respect to the embodiments of FIGS. 9-11. 

Specific numbers, number ranges, percentages, types of 
statistical models, etc., may be referred to herein. Such 
specific references should be understood to be illustrative, 
and not limiting. For example, while human-assessed quality 
scores may be referred to in some examples as being on a 
scale of 0 to 100, other scales (including discrete or non 
linear scales) are possible. Similar remarks apply with 
respect to other specific examples listed herein. 
FIGS 1-8 

Characterization of distorted image statistics (DIS) is 
discussed herein in which there may not only be a charac 
teristic signature for each of a plurality of distortions (or 
distortion types), but it is also possible to classify an image 
into a particular distortion category solely based on its 
Subband statistics with high levels of accuracy. Thus, images 
and videos can be blindly assessed for quality without any 
knowledge of the distorting medium by (i) identifying the 
kind of distortion and (ii) using an appropriate quality 
assessment algorithm to quantify quality based on the dis 
tortion. Applications of Such categorization are of consid 
erable scope and include DIS-based quality assessment and 
blind image distortion correction. Moreover, a pristine or 
undistorted “reference' image is not required for compari 
son. For example, while Some blind image quality assess 
ment algorithms may assume that a distortion form is known 
(e.g., JPEG) and then proceed to build models to quantify 
this distortion, in embodiments disclosed herein, it is pos 
sible to identify the quality of an image completely blind, 
i.e., without any knowledge of the distorting Source. This 
identification is possible in some embodiments by predicting 
(or determining) one or more distortion categories with a 
high degree of accuracy. 
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In one embodiment, one or more algorithms for blind 
Image Quality Assessment (IOA) that are designed for 
different distortions (e.g. JPEG, JPEG2000, Blur, etc.) are 
available. In this embodiment, a computer system receives 
an image or video as an input, classifies it into one of these 
distortion categories, and then proceeds to determine the 
quality of the image or video using the methods and algo 
rithms described herein. For image distortion correction, a 
similar approach is used, since distortion specific 
approaches exist for this purpose. In some embodiments, 
DIS techniques may be applied to a wide-range of areas, 
Such as multiply-distorted images and videos (e.g., through 
repeated iteration or other techniques). 
As described herein, Scene statistics for distorted images 

can be used to build a model for classifying a given distorted 
image by its distortion type. Given a set of distorted images, 
each of a plurality of distortion types may possess an 
identifiable statistical signature. Given that such a signature 
exists, it is possible to build a classifier which is capable of 
classifying a given image into one of a plurality of distortion 
classes. This approach can be performed with high accuracy. 
In one embodiment, a large set of images and four distortion 
categories with a wide range of distortion severities are 
provided. 

Images used for evaluating statistics may be stored in an 
image database. In one embodiment, this database consists 
of eight categories of natural scenes: coast, mountain, for 
ests, open country, Streets, city, tall buildings and highways. 
From each category a plurality of images may be randomly 
selected for training and a plurality of (different) images may 
be randomly selected for testing. In this embodiment, each 
image in the training and test sets is distorted using distor 
tions from a plurality of distortion categories. Distortion 
categories include white wise (WN), Gaussian blur (GB 
blur), JPEG compression (JPEG), JPEG2000 (JP2k) com 
pression, as well as any other type of distortion that can be 
applied to an image or video. In Table 1 below, the four 
categories shown each included 30 different distortion levels 
with parameter ranges as shown. 

TABLE 1. 

Table demonstrating minimum and maximum parameter values 
used for inducing distortions in One embodiment. 

Distortion type & Parameter Min. Value Max. Value 

WN (o’ of filter) O.OO1 1 
Gblur (o of filter) O.S 8 
JPEG (quality parameter) 10 75 
JP2k (bit-rate) O.OS 1.75 

The WN, Gblur and JPEG distortions can be created using 
any suitable technique (e.g., using the computer program 
MATLABTM). In one embodiment, JP2k distortion can be 
created using the Kakadu encoder. The different levels for 
each distortion type may be based on equally spaced param 
eter values between minimum and maximum values (such as 
those shown in TABLE 1) on a logarithmic scale. Many 
other spacings or distributions of parameter values can be 
used in various embodiments, however. Accordingly, param 
eter values may be selected such that the resulting (distorted) 
images span a large range of quality so as to cover the space 
of distortions well. Thus, a total number of images generated 
for training, in one embodiment, is equal to the number of 
scene categories (Nscene) times the number of distortion 
types (Ntypes) times the number of different parameter 
levels (Nparams), or (Nscene:Ntypes Nparams). A corre 
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6 
sponding plurality of images may be generated similarly for 
testing. Thus in one embodiment, each distortion category 
has a total of (Nscene’Nparams) images. 

Each created image may be subjected to a wavelet trans 
form over a plurality of scales and orientations (e.g., 3 scales 
and 3 orientations including horizontal, Vertical and diago 
nal). The wavelet transform may include using the 
Daubechies 9/7 wavelet basis, or any other wavelet basis 
usable for image compression, texture analysis, and/or for 
other purposes. A steerable pyramid can also be used as a 
transform. In one embodiment, applying a wavelet transform 
results in a plurality of oriented sub-bands being created. For 
natural image scenes, the coefficients of each Subband may 
be modeled according to a Laplacian distribution, and one or 
more particular distributions for subband coefficients of 
natural images from a space-scale orientation decomposition 
may exist. As discussed herein, a particular (parameteriz 
able) distribution model for natural images can be used to 
model the statistics of images distorted with a particular 
distortion. 

Turning to FIG. 1, a diagram of histogrammed coefficients 
of an image for a particular Subband is shown. The shape in 
FIG. 1 appears to agree with a Laplacian distribution. The 
figure also shows the distributions of coefficients from the 
same natural image distorted using the above mentioned 
distortions for the same subband. It is evident that in FIG. 1, 
each distortion affects the distribution in a characteristically 
different way. This may be true across subbands and across 
images. For example in FIG. 1, WN (104) seems to yield a 
Gaussian-like distribution while the JP2K (106) histogram is 
highly peaked. (Note: Gaussian Blur (110), JPEG (108), and 
the original image (102) are also shown.) As a characteristic 
signature may exist for each distortion, parameterizing these 
distributions in some fashion so as to retain these signature 
while reducing dimensionality. 

In natural scene statistics (NSS), there exist various 
models for the marginal distributions of Subband coeffi 
cients. One simple model for these coefficients is the gen 
eralized Gaussian distribution (GGD). GGD was used to 
model coefficients from each of the wavelet Subbands for 
each distorted image. The GGD is: 

where, u, of and Y are the mean, variance and shape 
parameter of the distribution and: 

a -- P - 1 (77) 2 (1/y) O V (1/y) 

where T() is the gamma function: 

In the generalized Gaussian distribution, the shape param 
eter Y controls the “shape of a given distribution. For 
example, Y=2 yields a Gaussian type distribution and Y=1 
yields a Laplacian type distribution. The parameters of the 
distribution (u, of and Y) may be estimated using various 
methods. Since wavelet bases may act as band-pass filters, 
the responses are Zero-mean, f hence 2 parameters (of and 
Y) are left for each subband. An 18-dimensional vector (3 
scalesX3 orientationsX2 parameters) may be formed from 
these estimated parameters, and is a representative feature 
vector for an image in one embodiment. 

In order to get a feel for the statistics of these parameters 
and to visualize the way they vary with each distortion, 
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parameters may be computed across all image database 
contents (e.g., 80 images in one embodiment) for each 
distortion type and distortion level. Parameters of the fit may 
be estimated as described. These parameter-vectors may 
then be subjected to a principal component analysis (PCA), 
in order to reduce the dimensionality of the space (e.g., to 
three dimensions). PCA projects the data onto a space Such 
that the newly formed space accounts for maximum variance 
in the data. The first dimension may account for the most 
variance, the second dimension for the next-most variance 
and so on. A projection onto a 3-dimensional space is made 
for visualization purposes, and a plot of the 3-dimensional 
vectors in PCA space is seen in diagram 200 of FIG. 2. In 
the embodiment of FIG. 2, each point in that figure is an 
average of statistics of 80 images projected onto a 3-dimen 
sional PCA space. Only a part of the space is shown. As can 
be easily seen, each distortion follows a particular trend and 
the parameter-vectors seem to capture this trend well. 

Thus, in one embodiment, a large dataset with varied 
content is created and each image is Subjected to various 
distortions at various severities. Each image thus created is 
subjected to a wavelet transform in this embodiment, whose 
coefficient distributions were parametrized using a statistical 
distribution. The generalized Gaussian distribution (GGD) is 
one such statistical distribution usable for this purpose, but 
other statistical distributions may also be used. The param 
eters of the GGD were estimated and stacked (e.g., concat 
enated) to form a multi-dimensional feature vector (e.g., 18 
dimensions) for each distorted image in the dataset (testing 
and training)-f, where i={1, 2, ... Ntot}, where Ntot 
(Nscene:Ntypes Nparams). 

In various embodiments, the training vectors are usable to 
train a classifier such that when the classifier is fed with 
vectors from a test set, a suitable classification into distortion 
categories is obtainable, for example. For this purpose a 
support vector machine (SVM) may be used. SVMs may be 
used as classifiers since they often perform well in high 
dimensional spaces, tend to avoid over-fitting and have good 
generalization capabilities. Other classifiers are also usable. 
In one embodiment, a multi-class SVM is trained on a 
training set consisting of Nitot different feature vectors using 
the popular LIBSVM software package. A radial basis 
function (RBF) kernel (K(x,x)=exp(-Y|X, |), Y>0) may be 
utilized and its parameters selected using a grid-based 5-fold 
cross-validation approach on the training set. This trained 
SVM was then applied as a classifier on a test set consisting 
of Ntot feature vectors, in one embodiment. 

In one embodiment, parameter selection of the SVM 
during the training phase lead to a cross-validation accuracy 
of 94.60% with (c., y)=(128, 0.056); where c is a penalty 
parameter for the error term in the minimization function of 
the SVM. With this kernel in this embodiment, the classi 
fication accuracy of test images was 88.5%. TABLE 2 shows 
the classification accuracy per-category of distortion in this 
embodiment, wherein WN and Gblur are the easiest to 
classify while JPEG is seemingly the hardest. 

TABLE 2 

Classification accuracy on test-set for distortion identification. 
Distortion type Classification Accuracy 

WN 99.17% 
Gblur 95.42% 
JPEG 74.75% 
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8 
TABLE 2-continued 

Classification accuracy on test-set for distortion identification. 
Distortion type Classification Accuracy 

JP2k 
Overall 

84.67% 
88.5% 

Turning to FIG. 3, a diagram 300 of performance of a 
classifier as described above on a test set is plotted for five 
distortion severity levels for a plurality of distortion types: 
WN (302), Gaussian Blur (304), JPEG (306), and JPEG 
2000 (308). In the embodiment of FIG. 3, each set of 6 
distortion levels from the plurality of distortion types was 
clumped into a severity level (to form 5 such quantized 
quality ranges) and the performance of the classifier was 
examined for this set of images. As shown in the embodi 
ment of FIG. 3, even though the figure groups all distortions 
on the same X-axis—low quality (high distortion severity) to 
high quality (low distortion severity)—this does not imply 
that these images have the same perceptual quality or that 
the degradation is the same in any manner. All distortion 
categories are plotted on the same graph in FIG. 3 due to 
space constraints. As shown in FIG. 3, performance accu 
racy falls monotonically for increasing quality. 

In FIG. 4, a confusion matrix 400 is plotted that indi 
cates two sets of classes that are confused the most for the 
high quality (most misclassified) images in one or more 
embodiments. Darker value indicates greater number of 
confused images. Each row is normalized. For example, as 
shown, Blur is most often misclassified as JPEG, which may 
be because JPEG compression can induce blur as well as 
blocking distortions in an image. 

Given that overall accuracy of classification may be good 
and that for high-quality images distortions may not be 
significant enough to form a characteristic signature in some 
embodiments, it may be desirable to label Some images as 
“unclassified’ in some embodiment. Based on the confusion 
matrix in FIG. 4, an arbitrary label “unclassified can be 
created, and based on Some criteria place images in this 
category can be used to improve classification accuracy, 
especially for the high-quality case. In order to do this, the 
probability estimates of an image belonging to a particular 
class may be extracted from the SVM output. A threshold (t) 
on the probability p of an image belonging to the output 
class may be set. In case p is less than the set threshold, the 
image is re-labeled as unclassified. The results of two such 
probability thresholds of 0.5 and 0.75 are shown in TABLE 
3 along with the total number of images classified after 
thresholding. 

TABLE 3 

Classification accuracy on a test set for distortion 
identification with artificial un-classified 
class and different probability thresholds. 

Distortion Accuracy (pe 0.5) Accuracy (pe 0.75) 

WN 99.29% 99.54% 
Gblur 95.70% 97.91% 
JPEG 76.24% 84.23% 
JP2k 85.41% 91.20% 
Overall 89.23% 93.49% 
Total images 9522 9088 

Turning to FIG. 5, a diagram 500 shows classification 
accuracy for each of a plurality of distortions as a function 
of quality for the p-0.75 case. Comparing FIG. 3 and FIG. 
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5, it can be seen that classification performance for high 
quality images may improve when the criterion for classi 
fication is made stricter, since a class of images may not 
have perceptually significant distortions. FIG. 5 depicts WN 
(502), Gaussian Blur (504), JPEG (506), and JPEG 2000 
(508). 

Alternate classifiers are possible in Some embodiments. 
For example, AdaBoost is usable in one or more embodi 
ments. AdaBoost is a boosting technique used in conjunction 
with weak classifiers to improve classification performance. 
AdaBoost is adaptive in the sense that Subsequent classifiers 
built are tweaked in favor of those instances misclassified by 
previous classifiers. AdaBoost is sensitive to noisy data and 
outliers. In some simulations, a decision tree was used as the 
weak classifier and one-vs.-the-rest training since AdaBoost 
is essentially a 2-class classifier, leading to 4 classifiers— 
one for each category. In these simulations it was found that 
with forced categorization into four distortions (based on 
confidence of returned-class) an overall classification accu 
racy of 90.41% was achieved for a whole dataset. With the 
introduction of an artificial unclassified category (where 
images which each of the four classifiers did not accept as 
belonging to their true class were placed) accuracy of 92% 
was achieved over 9142 classified images in this embodi 
ment. 

From the foregoing description it can be seen that in 
various embodiments, different distortions exhibit different 
characteristics which systematically modify natural scene 
statistics (NSS). Distorted image statistics (DIS) for natural 
images in the wavelet-domain may be evaluated, and the 
generalized Gaussian distribution may be utilized to param 
eterize these statistics. Further, a model may be provided for 
classifying images into specific distortion categories based 
on their DIS signature in various embodiments, in which the 
model shows that such a classification may be achieved with 
high accuracy (s.93.5% in one embodiment). The number of 
distortions may be increased to make DIS even more com 
prehensive, and many different types of distortions may be 
used in various embodiments. Algorithms for blind image 
quality assessment that use the frame-work of DIS can also 
be implemented, as for example will be described below. 

FIG. 6 shows a method 600 for assessing a quality of an 
image or video or correcting the image or video based a 
distorted image statistics of the image or video in accor 
dance with one embodiment. Any or all of the steps of 
method 600 and the features described with respect thereto 
may be applied in various embodiments of the method 1000 
of FIG. 10 (discussed further below). 

In the embodiment of FIG. 6, the image or video is 
received in block 602. A distortion classifier containing a 
distorted image statistics signature for two or more distor 
tion categories is provided in block 604. The distortion 
categories may include white noise, filtering distortions 
(e.g., Gaussian blurring), compression distortions (e.g., 
wavelet-transform based compression, MPEG (e.g., MPEG 
1, 2 or 4), H.26X (e.g., H.263, H.264), Discrete Cosine 
Transform compressions such as JPEG compression or 
JPEG2000 compression), and other distortions including 
unknown or unclassified distortions. The distorted image 
statistics are generated for the image or video in block 606. 
One or more distortion categories are identified for the 
image or video using the distortion classifier based on the 
generated distorted image statistics for the image or video in 
block 608. The quality of the image or video is assessed or 
the image or video is corrected based on the one or more 
identified distortion categories for the image or video in 
block 610. The assessed quality of the image or video or the 
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10 
corrected image or video is provided to a user or a device in 
block 612. The forgoing method can be implemented as a 
computer program embodied on a computer readable 
medium that is executable by a processor wherein each step 
is executed by one or more code segments. 
The distorted image statistics for an image or video can be 

generated by Subjecting the image or video to a Wavelet 
Transformation, such as a Cohen-Daubechies-Feauveau 9/7 
wavelet or steerable pyramid. For example, the Wavelet 
Transformation can be applied over three scales and three 
orientations (horizontal, Vertical, and diagonal) to decom 
pose the image into nine oriented Subbands. A marginal 
distribution of the coefficients from each of the wavelet 
Subbands resulting for Subjecting each image to the Wavelet 
Transformation can be parametrized by fitting the distribu 
tion to a Generalized Gaussian Density model. The unclas 
sified distortion category can occur whenever the probability 
(p) of an image belonging to a particular distortion category 
is less than a probability threshold (t) on the probability of 
the image belonging to the known distortion categories. 
Distorted image statistics for an image for video can also be 
generated using a discrete cosine transform in various 
embodiments. 

Distortion classifiers can be constructed using one or 
more Supervised, unsupervised, or partially-supervised 
(combined) machine learning methods, or a combination 
thereof. Moreover, the distortion classifier can be a Support 
Vector Machine (SVM), a multi-class SVM, a Neural Net 
work, a k-Nearest Neighbor classifier, a Gaussian Mixture 
Model (GMM) classifier, a Gaussian classifier, a Naive 
Bayesian classifier, a Decision Tree or a Radial Basis 
Function (RBF) classifier. The multi-class SVM can use a 
Radial Basis Function (RBF) kernel (K(x,x)=exp 
(-Y|XII), Y>0) and its parameters are selected using a 
grid-based five-fold cross-validation approach on the train 
ing set. A machine learning meta-algorithm can also be used. 

FIG. 7 shows a method 700 for training a distortion 
classifier in accordance with one embodiment. A training 
image dataset comprising two or more images is pre 
processed by generating distorted image statistics for each 
image in the training image dataset in block 702. Two or 
more parameters are generated by parametrizing the distor 
tion image statistics for each image in the training image 
dataset in block 704. The parameters for each image in the 
training dataset are stacked (i.e., concatenated) such that at 
least one feature vectorf, is produced for each image in the 
training dataset in block 706. The distortion classifier is 
trained using the feature vectors for the images in the 
processed training dataset in block 708. The feature vector 
If, for each image in the image dataset can be generated by 
estimating the parameters of a Generalized Gaussian Den 
sity model and Stacking the parameters to form a multi 
dimensional feature vector. For example, the multi-dimen 
sional feature vector may include eighteen parameters. Such 
that the eighteen parameters correspond to two parameters 
(variance (O2), and shape parameter (Y)) applied to each of 
nine Subbands (3 scalesX3 orientations). The forgoing 
method can be implemented as a computer program embod 
ied on a computer readable medium that is executable by a 
processor wherein each step is executed by one or more code 
Segments. 

FIG. 8 shows a method 800 for testing a distortion 
classifier in accordance with one embodiment. A test image 
dataset comprising at least one image is pre-processed by 
generating a distorted image statistics for each image in the 
test image dataset in block 802. Two or more parameters are 
generated by parametrizing the distortion image statistics for 
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each image in the test image dataset in block 804. The 
parameters for each image in a test image dataset are stacked 
such that at least one feature vector If, is produced for each 
image in the test image dataset in block 806. The distortion 
classifier is tested with the feature vector from the image(s) 5 
in the test image dataset to generate a test output in block 
808. The test output is post-processed so a suitable classi 
fication of the test image(s) into a distortion category is 
obtained in block 810. The forgoing method can be imple 
mented as a computer program embodied on a computer 10 
readable medium that is executable by a processor wherein 
each step is executed by one or more code segments. 

It should be noted that in various embodiments of the 
methods described above with respect to FIGS. 6-8, one or 
more of the elements described may be performed concur- 15 
rently, in a different order than shown, or may be omitted 
entirely. Other additional method elements may also be 
performed as desired. All or a portion of the elements these 
methods may be performed by a server system 991, client 
system 995, and/or any other suitable system. In some 20 
embodiments, all elements are performed by server 991, 
while in other embodiments, all elements are performed by 
client system 995. 
FIGS. 9-11 

Turning now to FIG. 9A, one embodiment of an exem- 25 
plary computer system 900 is depicted. Computer system 
900 includes all or a portion of computer-readable storage 
medium 1100 (see FIG. 11) in various embodiments. Com 
puter system 900 includes a processor subsystem 980 that is 
coupled to a system memory 920 and I/O interfaces(s) 940 30 
via an interconnect 960 (e.g., a system bus). I/O interface(s) 
940 is coupled to one or more I/O devices 950. Computer 
system 900 may be any of various types of devices, includ 
ing, but not limited to, a server system, personal computer 
system, desktop computer, laptop or notebook computer, 35 
mainframe computer system, handheld computer, worksta 
tion, network computer, a consumer device Such as a mobile 
phone, Smart phone, digital camera, or personal data assis 
tant (PDA). Although a single computer system 900 is 
shown for convenience, system 900 may also be imple- 40 
mented as two or more computer systems operating together. 

Processor subsystem 980 may include one or more pro 
cessors or processing units. For example, processor Subsys 
tem 980 may include one or more processing units (each of 
which may have multiple processing elements or cores), and 45 
in various embodiments of computer system 900, multiple 
instances of processor subsystem 980 may be coupled to 
interconnect 960. In some embodiments, processor subsys 
tem 980 (or each processor unit or processing element 
within 980) may contain a cache or other form of on-board 50 
memory. In one embodiment, processor subsystem 980 is 
configured to execute instructions stored on a computer 
readable storage medium such as medium 1100. 

System memory 920 is usable by processor subsystem 
980, and comprises one or more memory elements such as 55 
element 180 in various embodiments. System memory 920 
may be implemented using different physical memory 
media, Such as hard disk storage, floppy disk storage, 
removable disk storage, flash memory, random access 
memory (RAM—static RAM (SRAM), extended data out 60 
(EDO) RAM, synchronous dynamic RAM (SDRAM), 
double data rate (DDR) SDRAM, RAMBUS RAM, etc.), 
read only memory (ROM programmable ROM (PROM), 
electrically erasable programmable ROM (EEPROM), etc.), 
and so on. Memory in computer system 900 is not limited to 65 
primary storage Such as memory 920. Rather, computer 
system 900 may also include other forms of storage such as 
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cache memory in processor subsystem 980 and secondary 
storage on I/O Devices 950 (e.g., a hard drive, storage array, 
etc.). In some embodiments, these other forms of Storage 
may also store program instructions executable by processor 
subsystem 980. 

I/O interfaces 94.0 may be any of various types of inter 
faces configured to couple to and communicate with other 
devices, according to various embodiments. In one embodi 
ment, I/O interface 940 is a bridge chip (e.g., Southbridge) 
from a front-side to one or more back-side buses. I/O 
interfaces 94.0 may be coupled to one or more I/O devices 
950 via one or more corresponding buses or other interfaces. 
Examples of I/O devices include storage devices (hard drive, 
optical drive, removable flash drive, storage array, SAN, or 
their associated controller), network interface devices (e.g., 
to a local or wide-area network), image or video acquisition 
devices (scanners, cameras, etc) or other devices (e.g., 
graphics, user interface devices, etc.). In one embodiment, 
computer system 900 is coupled to a network via a network 
interface device. I/O interfaces 94.0 may include interfaces to 
a video or image capture device (e.g., webcam, Smartphone, 
etc.) in some embodiments. 

Turning now to FIG. 9B, a block diagram 990 of an 
embodiment configured to operate over a network is shown. 
As shown, systems 991 and 995 may be any embodiment of 
a system such as 900. Network 993 can include wireless 
networks, LANs, WANs, cellular networks, backbones, or 
any other type of network. Network 993 may include all or 
a portion of the Internet in some embodiments. Servers 991B 
and 991C can operate some or all aspects of the software 
described herein in parallel or in a distributed fashion (e.g., 
servers may be configured to intercommunicate, and some 
may perform certain tasks while others perform other tasks). 
In one embodiment, servers 991 are a server farm for one or 
more websites (e.g., a website configured to accept uploads 
of images and/or videos.) In one embodiment, one or more 
computer servers are configured to perform one or more 
actions in response to the upload of one or more image 
frames from a user (as discussed further below with respect 
to step 1050 in FIG. 10). 

In the embodiment of FIG. 9B, user image(s) 997 and 
video(s) 999 can be any image or video possessed by a user 
and/or stored on a computer-readable storage medium. Such 
an image or video may be acquired from an image capture 
device, and may be encoded and/or distorted according to 
various formats (JPEG, MPEG, H.26X, etc.). Image(s) 997 
and video(s) 999 can be downloaded from an external 
source, or created or edited by a user of system 995. In some 
embodiments, image(s) 997 and video(s) 999 represent 
natural Scenes, and may have distorted image statistics 
generated that are derived from one or more natural scene 
statistical models. Server systems 991 are also configured to 
store image(s) 997 and video(s) 999 in various embodi 
mentS. 

Turning now to FIG. 10, a flowchart of an embodiment of 
a method 1000 for determining quality of an image or video 
based on one or more identified distortion categories is 
shown. It should be noted that in various embodiments of the 
method described below, one or more of the elements 
described may be performed concurrently, in a different 
order than shown, or may be omitted entirely. Other addi 
tional method elements may also be performed as desired. 
All or a portion of the elements of method 1000 may be 
performed by a server system 991, client system 995, and/or 
any other Suitable system. Thus in some embodiments, all 
elements are performed by a server 991, while in other 
embodiments, all elements are performed by a client system 
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995. In one embodiment, only elements 1030 and 1040 are 
performed, while in other embodiments, a greater or fewer 
number of elements may be performed. 

In step 1010, one or more images and/or videos (i.e., one 
or more image frames) are received. The images and/or 
Videos may be received from a network, peripheral storage 
device, internal storage device (e.g., hard drive) flash 
memory card, image capture device (camera), or any other 
Source. In one embodiment, an image or video is received 
from a user via a network, and may be received via a web 
interface (e.g., one or more web pages configured to accept 
or facilitate an upload of an image or video). Accordingly, in 
some embodiments, any portion (or all) of steps 1030 and 
1040 may be performed in response to receiving an upload 
of one or more image frames from a user. 

In step 1020, distorted image statistics are generated for 
one or more image frames. Generation of distorted image 
statistics can be accomplished in a variety of manners. In 
one embodiment, a wavelet transformation is applied to the 
one or more image frames. The wavelet transformation may 
be a Cohen-Daubechies-Feauveau 9/7 wavelet, a steerable 
pyramid, or other wavelet transformation. In one embodi 
ment, the distorted image statistics are generated in the space 
domain only (e.g., the luminance domain). Distorted image 
statistics may be generated by applying a transformation 
over a plurality of Scales and/or a plurality of orientations to 
produce a plurality of oriented image Sub-bands. For 
example, in one embodiment, a wavelet transformation is 
applied over three scales and three orientations (vertical, 
horizontal, diagonal) to produce a plurality of Sub-bands. In 
Some embodiments, distorted image statistics may be gen 
erated by a different system, and received for use by a 
system configured to execute steps 1030 and/or 1040. Gen 
eration of distortion statistics may also include generating a 
histogram. In some embodiments, the histogram is com 
prised of the count of a plurality of image features from one 
or more particular image frames. The histogram may adhere 
to a probability density function model (e.g., Such as the 
Generalized Gaussian Density model). 

In step 1030, based on distorted image statistics, one or 
more distortion categories are identified for the one or more 
image frames. The identification may be based at least in 
part on feature scores for a first image or video, as compared 
to a database of other images or videos for which distortion 
types are known. For example, the feature scores of an 
image or video may map to a multidimensional space (e.g., 
if twelve different feature scores are being used, then a given 
image or video may have a feature vector of fl, f2., . . . . 
f12, where f1 to f12 are different feature scores). Feature 
scores may tend to be clustered (or have another meaningful 
mathematical relationship) in one or more dimensions for 
any given type of distortion, and feature scores may corre 
spond to any image feature as known to those of skill in the 
art. For example, image features may include parameters of 
a generalized Gaussian or other distribution fit to histogram 
data and/or parameterizing the distribution of wavelet coef 
ficients, DCT-domain statistics such as kurtosis of DCT 
coefficients, Spatial statistics such as distribution of normal 
ized luminance coefficients, etc.). Thus, as further explained 
below, by analyzing the feature scores of a given image or 
Video, it can be determined whether that given image or 
video is likely to have been distorted in a particular manner 
(JPEG image encoding, MPEG or H.26X video encoding, 
etc.). 

In various embodiments, identifying one or more distor 
tion categories for a particular image or video is performed 
using a distortion classifier, which may be trained. For 
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14 
example, in a given population sample of image frames in 
which distortion type is known, various feature scores will 
be differently distributed. Accordingly, for example, with 
respect to a number of videos in which H.265 compression 
is used, and for which at least features fl to fin are scored, 
it may be the case that each feature score may have its own 
probability distribution. For example, an f1 feature score 
between 0.55 and 0.65 may exist for 75% of H.265 videos, 
while an f2 score between 0.1 and 0.4 exists for 55% of 
H.265 videos, etc. By harnessing these distributions and 
using statistical techniques, one or more classifiers (profiles) 
can thus be developed to fit known distortion types. A 
distortion classifier may make use of some or all of any 
number of feature scores (e.g., it is not necessary that a 
distortion classifier have every single feature score used). 
However, as will be appreciated by one of skill in the art, any 
type of distortion classifier may be used, and in various 
embodiments it need not be a feature-based classifier. 

In some embodiments, training a distortion classifier may 
include taking a plurality of non-distorted or reference 
images, applying a given distortion to the images, and then 
attempting to fit functions to the characteristics (e.g., feature 
vectors) of the distorted images. By increasing the number 
of reference images and/or getting a better fit, distortion 
classifiers can be improved in these embodiments. Further, 
distortion classifier training can be performed iteratively in 
Some embodiments; for example, as additional reference 
images are made available, they can be distorted according 
to one or more distortion types and added to a training 
database, after which the functions and/or algorithms that 
make up a distortion classifier can be updated. Accordingly, 
in one embodiment, a distortion classifier that is configured 
to identify distortion categories based on distorted image 
statistics can be trained, wherein the training includes apply 
ing a given distortion type (e.g. JPEG, MPEG, etc.) to a 
plurality of reference (undistorted) images to produce a 
plurality of distorted images, and fitting one or more func 
tions to the plurality of distorted images, wherein the one or 
more functions are usable to determine a probability that the 
given distortion type applies to a given distorted image. 
Function fitting may be done according to various tech 
niques and may depend on feature values for one or more 
image features (i.e., feature vectors) of the plurality of 
distorted images. 

Further, by analyzing a given image or video with respect 
to one or more distortion classifiers, it can be determined 
whether one or more corresponding distortions are deemed 
to apply to that image or video. A threshold probability (e.g., 
90%) for a given classifier may be used in order to reach a 
determination that the distortion type corresponding to that 
classifier is believed to be applicable. In some embodiments, 
multiple distortion types may be assessed and determined. 

Turning now to step 1040, a quality is determined based 
on one or more identified distortion categories for a given 
image or video. In some embodiments, determining quality 
is performed by mapping from a multidimensional space 
(e.g., a feature vector space) to a quality Score. Thus, in one 
embodiment, the multidimensional space is defined by 
ranges for each of feature scores fl to fin. Quality mapping 
functions (e.g., functions that map from feature vector space 
to a quality score) are also trainable in various embodiments, 
as described below. 

In some embodiments in which quality mapping is used, 
human quality opinion scores are harnessed. Human quality 
opinion scores may be generated in a variety of manners and 
entered into a quality Score database in various embodi 
ments. For example, human Subjects may be asked to rate 
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images or videos as being between a highest quality and a 
lowest quality over a 0 to 100 scale. Of course, any number 
of different rating scales are possible using any number of 
criteria. A scale could be as simple as “good (e.g., integer 
0) and “not good (e.g., integer 1). The population of a 
quality score database can be built up as one or more humans 
rate images or videos with known distortion types. In some 
embodiments, multiple human assessments may be made for 
a same video or image (for example, a single image or video 
might get a quality score that is a result of any number of 
different assessments performed by one or more persons). 

For example, one portion of a quality score database 
might comprise 1,000 JPEG images that have been quality 
scored twenty-five times apiece. In this quality database, 
each of the 1,000 JPEG images thus has a particular (aver 
age) quality score. In this example, each of the 1,000 JPEG 
images may also have a corresponding feature vector fl to 
fin. Thus, the database would include 1,000 different map 
pings from an "n-dimension' feature vector space to a single 
dimension (quality score). 

Continuing the above example, Suppose that a still image 
of unknown provenance is analyzed, and it is determined 
(e.g., via a distortion classifier) that a JPEG distortion has 
likely been applied to the unknown image at Some point. The 
quality database of human opinion scores for JPEG images 
may then be consulted with respect to a feature vector fl to 
fn for the unknown (no-reference) image. Based on all or a 
portion of the feature vector fl to fin, a quality score can be 
determined by examining the quality database population 
and/or applying a model derived therefrom. For example, 
various statistical distributions may be present in a database, 
such as 65% of JPEG images that have an “fl” feature score 
range between 0.63 and 0.72 also have human quality scores 
between 0 and 25, and 43% of JPEG images having an “f” 
feature score range between 0.1 and 0.15 have human 
quality scores between 5 and 30, etc. Based on the statistical 
distributions of feature scores for JPEG images in the 
database, and the corresponding mapped human quality 
scores for those images, an unknown (JPEG) image can be 
automatically mapped to a quality Score based on all or a 
portion of its feature vector scores. (Thus, a mapping 
function may use one or more feature vector scores in order 
to determine a quality Score). Accordingly, in one embodi 
ment, determining a quality of one or more image frames 
includes assessing feature scores for one or more feature 
vectors (or portions thereof) for the one or more image 
frames. 

In various embodiments, reference image frames for the 
one or more image frames are not available to a computer 
system for performing identifying a distortion category and 
determining a quality. A reference image frame as used 
herein refers to an image or video of a same scene without 
one or more distortions being applied. Thus, for example, an 
uncompressed TIFF image file of a view of the Grand 
Canyon might be a reference image for a compressed JPEG 
image file of that Grand Canyon view. As another example, 
a compressed digital video file that has not been color 
balanced may serve as a reference video to a color-balanced 
version of the compressed digital video file. 
A reference image frame may be considered to be unavail 

able (or “not available') to a computer system for purposes 
of a calculation, identification, or determination when it is 
not substantially used to perform the calculation, identifi 
cation, or determination. For example, when a reference 
image frame is not accessible via a computer-readable 
storage medium coupled to the computer system, it can be 
said to be unavailable to the computer system. A reference 
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image frame may also be said to be unavailable in some 
embodiments if it is not used except in a trivial, tangential, 
or peripheral fashion (e.g., results of a calculation, identifi 
cation, or determination do not substantially depend on the 
reference image frame). 

In step 1050, one or more actions are performed in 
response to a determination of quality for one or more image 
frames. A variety of actions may be taken depending on the 
particular embodiment and/or the goals of the quality assess 
ment. For example, in a website in which users are allowed 
to upload images or video content, the one or more image 
frames might be automatically rejected from the system if 
the image frames fail to meet a certain quality threshold 
requirement. The one or more image frames might be 
automatically accepted if they are above a quality threshold, 
or they might be placed into different portions of a website 
based on the assessed quality (e.g., highest quality content 
might be handled in one way, mid-grade quality content 
handled in another, and low-grade quality content handled in 
yet another manner). For example, content judged to be high 
grade might be promoted on the website, while low-grade 
content might be locatable only through search Additionally, 
corrections may be performed on one or more image frames 
in response to the determination of quality, either automati 
cally or via user prompts, according to various known 
correction techniques (for example, by optimizing the wave 
let histograms of a corrected image to match those of an 
undistorted image; examples of distortion correction for 
image or video also include denoising, de-blocking, de 
blurring or any Such image/video enhancement technique). 
Information or warnings (e.g., of low-grade content quality) 
may also be provided to users, or otherwise logged or 
recorded by a computer system (e.g., in a database). 

Turning now to FIG. 11, a computer-readable storage 
medium 1100 is shown. Computer-readable storage medium 
is configured to store various software modules 1110-1150 in 
various embodiments. Other modules not depicted may be 
present, and in various embodiments, only a portion (or 
none) of any given module may be present on computer 
readable storage medium 1100. If executed, the instructions 
stored in the various modules may cause a computer system 
(such as 900, 991, and/or 995) to perform one or more 
actions or operations, as further described below. 

In the embodiment of FIG. 11, receiving module 1110 is 
configured to perform any or all of the steps and/or features 
described with respect to method step 1010, including 
receiving one or more image frames (i.e., one or more 
images or videos). Statistics generating module 1120 may be 
configured to perform any or all of the steps and/or features 
described with respect to method step 1020, including 
generating distorted image statistics for one or more image 
frames. Distortion category identification module 1130 is 
configured, in various embodiments, to performany or all of 
the steps and/or features described with respect to method 
step 1030, including identifying one or more distortion 
categories for a first one or more image frames, wherein the 
identifying is based on distorted image statistics for the first 
one or more image frames. Quality determining module 
1140 is configured, in various embodiments, to perform any 
or all of the steps and/or features described with respect to 
method step 1040, including determining a quality of a first 
one or more image frames based on an identified one or 
more distortion categories, wherein said determining is 
based on a plurality of human-measured quality scores for a 
plurality of second one or more image frames, wherein each 
of the plurality of second one or more image frames are 
classified as being in at least one of the identified one or 
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more distortion categories. Action performing module 1150 
is configured, in various embodiments, to perform any or all 
of the steps and/or features described with respect to method 
step 1050, including in response to automatically determin 
ing quality for each of the plurality of uploaded one or more 
image frames, automatically perform one or more actions on 
those one or more image frames. 

It is noted that the above-described embodiments may 
comprise Software. In Such an embodiment, program 
instructions and/or a database (both of which may be 
referred to as “instructions”) that represent the described 
systems and/or methods may be stored on a computer 
readable storage medium. Generally speaking, a computer 
readable storage medium may include any storage media 
accessible by a computer during use to provide instructions 
and/or data to the computer. For example, a computer 
readable storage medium may include storage media Such as 
magnetic or optical media, e.g., disk (fixed or removable), 
tape, CD-ROM, DVD-ROM, CD-R, CD-RW, DVD-R, 
DVD-RW, or Blu-Ray. Storage media may further include 
Volatile or non-volatile memory media Such as RAM (e.g., 
synchronous dynamic RAM (SDRAM), double data rate 
(DDR, DDR2, DDR3, etc.) SDRAM, low-power DDR 
(LPDDR2, etc.) SDRAM, Rambus DRAM (RDRAM), 
static RAM (SRAM)), ROM, non-volatile memory (e.g. 
Flash memory) accessible via a peripheral interface Such as 
the USB interface, etc. Storage media may include micro 
electro-mechanical systems (MEMS), as well as storage 
media accessible via a communication medium Such as a 
network and/or a wireless link. Holographic storage may be 
used AS used herein, the term computer readable storage 
medium refers to a non-transitory (tangible) medium, and 
does not include transitory (intangible) media (e.g., a carrier 
wave). 

In various embodiments, one or more portions of the 
methods and mechanisms described herein may form part of 
a cloud computing environment. In Such embodiments, 
resources may be provided over the Internet as services 
according to one or more various models. Such models may 
include computer infrastructure delivered as a service, and a 
service provider may host the software, or may deploy the 
Software to a customer for a given period of time. Numerous 
combinations of the above models are possible and are 
contemplated. 

Although specific embodiments have been described 
above, these embodiments are not intended to limit the scope 
of the present disclosure, even where only a single embodi 
ment is described with respect to a particular feature. 
Examples of features provided in the disclosure are intended 
to be illustrative rather than restrictive unless stated other 
wise. The above description is intended to cover such 
alternatives, modifications, and equivalents as would be 
apparent to a person skilled in the art having the benefit of 
this disclosure. 

The scope of the present disclosure includes any feature 
or combination of features disclosed herein (either explicitly 
or implicitly), or any generalization thereof, whether or not 
it mitigates any or all of the problems addressed herein. 
Accordingly, new claims may be formulated during pros 
ecution of this application (or an application claiming pri 
ority thereto) to any Such combination of features. In par 
ticular, with reference to the appended claims, features from 
dependent claims may be combined with those of the 
independent claims and features from respective indepen 
dent claims may be combined in any appropriate manner and 
not merely in the specific combinations enumerated in the 
appended claims. 
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What is claimed is: 

1. A method, comprising: 
a computer system identifying one or more distortion 

categories for one or more image frames, wherein the 
identifying is based on distorted image statistics for the 
one or more image frames; and 

the computer system determining a quality of the one or 
more image frames based on the identified one or more 
distortion categories by assessing one or more feature 
scores corresponding to one or more feature vectors of 
the one or more image frames, and mapping from a 
multidimensional space to a quality score, wherein the 
multidimensional space is defined by ranges for the one 
or more feature scores; 

wherein reference image frames for the one or more 
image frames are not available to the computer system 
in performing the identifying and the determining. 

2. The method of claim 1, wherein the one or more image 
frames are a video. 

3. The method of claim 1, further comprising generating 
the distorted image statistics for the one or more image 
frames, wherein generating the distorted image statistics 
includes applying a wavelet transformation to the one or 
more image frames. 

4. The method of claim3, wherein the generating includes 
applying the wavelet transformation over a plurality of 
scales and/or a plurality of orientations to produce a plurality 
of oriented sub-bands. 

5. The method of claim 1, wherein the distorted image 
statistics for the one or more image frames are generated by 
using a discrete cosine transformation on the one or more 
image frames. 

6. The method of claim 1, further comprising rejecting the 
one or more image frames based on the determined quality 
of the one or more image frames being below a threshold 
quality level wherein determining a quality of the one or 
more image frames includes. 

7. The method of claim 1, wherein the determining 
includes determining a quality score based on a quality 
database that includes a plurality of groups of one or more 
human-generated quality opinion scores, wherein each of 
the groups of one or more human-generated quality opinion 
scores corresponds to a respective group of one or more 
image frames. 

8. The method of claim 1, further comprising training a 
distortion classifier that is configured to identify distortion 
categories based on distorted image statistics, wherein the 
training includes: 

applying a given distortion type to a plurality of reference 
images to produce a plurality of distorted images; and 

fitting one or more functions to the plurality of distorted 
images, wherein the one or more functions are usable 
to determine a probability that the given distortion type 
applies to a given distorted image. 

9. The method of claim 1, wherein the identifying and the 
determining are performed in response to receiving an 
upload of the one or more image frames from a user. 

10. The method of claim 1, further comprising the com 
puter system performing one or more corrections on the one 
or more image frames, wherein performing the one or more 
corrections is in response to determining the quality of the 
one or more image frames and is based on the identified one 
or more distortion categories. 
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11. A computer system, comprising: 
a processor; and 
a memory having stored thereon instructions that are 

executable to cause the computer system to perform 
operations comprising: 

identifying one or more distortion categories for one or 
more image frames, wherein the identifying is based on 
distorted image statistics for the one or more image 
frames; and 

determining a quality of the one or more image frames 
based on the identified one or more distortion catego 
ries by assessing one or more feature scores corre 
sponding to one or more feature vectors of the one or 
more image frames, and mapping from a multidimen 
Sional space to a quality score, wherein the multidi 
mensional space is defined by ranges for the one or 
more feature scores; 

wherein the identifying and the determining do not use 
reference image frames for the one or more image 
frames. 

12. The computer system of claim 11, wherein the opera 
tions further comprise: 

operating as a web server; and 
receiving the one or more image frames from a user 

device via a submission page transmitted by the web 
server to the user device. 

13. The computer system of claim 11, wherein the opera 
tions further comprise performing one or more corrections 
on the one or more image frames, wherein performing the 
one or more corrections is in response to determining the 
quality of the one or more image frames, and is based on the 
identified one or more distortion categories. 

14. The computer system of claim 11, wherein determin 
ing the quality of the one or more image frames includes 
determining a quality score based on a quality database that 
includes a plurality of groups of one or more human 
generated quality opinion scores, wherein each of the groups 
of one or more human-generated quality opinion scores 
corresponds to a respective group of one or more image 
frames. 

15. The computer system of claim 11, wherein the opera 
tions further comprise generating the distorted image statis 
tics for the one or more image frames, wherein generating 
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the distorted image statistics includes applying a wavelet 
transformation to the one or more image frames. 

16. A non-transitory computer readable storage medium 
having instructions stored thereon that are executable to 
cause a computer system to perform operations comprising: 

training a distortion classifier that is configured to identify 
distortion categories based on distorted image statistics, 
wherein the training includes: 
applying a given distortion type to a plurality of refer 

ence images to produce a plurality of distorted 
images; and 

fitting one or more functions to the plurality of distorted 
images, wherein the one or more functions are usable 
to determine a probability that the given distortion 
type applies to a given distorted image: 

receiving one or more image frames, but not reference 
image frames for the one or more image frames; 

identifying, via the trained distortion classifier, one or 
more distortion categories for the one or more image 
frames; and 

determining a quality of the one or more image frames 
based on the identified one or more distortion catego 
ries. 

17. The non-transitory computer readable storage medium 
of claim 16, wherein the operations further comprise apply 
ing one or more corrections to the one or more image frames 
based on the identified one or more distortion categories. 

18. The non-transitory computer readable storage medium 
of claim 16, wherein the operations further comprise receiv 
ing the one or more image frames from a user device via the 
internet. 

19. The non-transitory computer readable storage medium 
of claim 16, wherein the one or more image frames are taken 
from a video. 

20. The non-transitory computer readable storage medium 
of claim 16, wherein determining a quality of the one or 
more image frames includes: 

assessing one or more feature scores corresponding to one 
or more feature vectors of the one or more image 
frames; and 

mapping from a multidimensional space to a quality 
score, wherein the multidimensional space is defined 
by ranges for the one or more feature scores. 


