

Copyright

by

Matthew Graves

2016

The Report Committee for Matthew Graves

Certifies that this is the approved version of the following report:

Procedural Content Generation of Angry Birds Levels

Using Monte Carlo Tree Search

APPROVED BY

SUPERVISING COMMITTEE:

Constantine Caramanis

Sarvesh Nagarajan

Supervisor:

Procedural Content Generation of Angry Birds Levels

Using Monte Carlo Tree Search

by

Matthew Graves, B.S.Computer Sci.

Report

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

December 2016

 Dedication

This work is dedicated to my wife, Christy, without whose patience, love, and support

none of this would be possible. I also dedicate this work to God the Father and my Lord

and Savior, Jesus Christ, who guide me daily in knowledge and truth by the Holy Spirit.

Proverbs 2:6-8 (ESV):

For the LORD gives wisdom;

 from his mouth come knowledge and understanding;

he stores up sound wisdom for the upright;

 he is a shield to those who walk in integrity,

guarding the paths of justice

 and watching over the way of his saints.

 v

Acknowledgements

I would like to express sincere gratitude to Dr. Constantine Caramanis, for giving

technical guidance, advice, and support for this report and project. Dr. Caramanis’s class

on Data Mining and Optimization inspired me to look into concepts related to data

mining, such as artificial intelligence, the multi-armed bandit problem, and decision

processes, which drove the ideas behind this report.

I would also like to extend my appreciation to Sarvesh Nagarajan, who has been a

constant mentor of mine at National Instruments and throughout my degree program, as

well as a strong technical lead whose insights have helped me form this report. He has

served as the reader for this report, ensuring the technical quality and content within meet

high standards.

 vi

Abstract

Procedural Content Generation of Angry Birds Levels

Using Monte Carlo Tree Search

Matthew Graves, M.S.E.

The University of Texas at Austin, 2016

Supervisor: Constantine Caramanis

Monte Carlo Tree Search is a method for searching a decision-making process,

usually employed in domains such as general game playing, where an artificial

intelligence agent must decide the next move to make in a game simulation. There have

been other domains that have been explored for MCTS, one of them being procedural

level generation, which involves the automatic generation of game levels which are

interesting to play, of an acceptable difficulty level, and not discernible from levels

created by humans. In this report, I present a method for using MCTS to procedurally

generate new Angry Birds levels, trained on a set of Angry Birds levels from existing

games. This approach will scale for a requested level of difficulty by using multiple

heuristics. I will examine the viability of the approach using playouts of AI agents on the

generated levels, each with their own approach to winning the levels, used to simulate the

experience level of human players (from naïve to advanced).

 vii

Table of Contents

List of Tables ... ix

List of Figures ..x

INTRODUCTION ..1

Chapter 1: Background ..3

Procedural Content Generation ...3

AIBirds ..3

Monte Carlo Tree Search (MCTS) ...4

Chapter 2: Relevant Work ...7

Monte Carlo Tree Search to Guide Platformer Level Generation7

A Search-based Approach for Generating Angry Birds Levels8

APPROACH AND IMPLEMENTATION ..9

Chapter 3: Level Formatting ..10

Basic Blocks..10

Level Parsing ..11

Existing Structures ..12

Unique Substructures ..12

XML Level Format ...13

Chapter 4: Monte Carlo Tree Search ...15

Heuristics ..15

Level Generation Loop ...19

RESULTS ..21

Chapter 5: AI Agents ...22

Naïve Agent ..22

DataLab Agent ..24

 viii

Chapter 6: Level Generation Results ...26

Example Generated Levels ...26

Chapter 7: Results Analysis ...28

Project Challenges / Limitations ...28

Consequences of More Computation ..29

Consequences of More Input Data ..30

CONCLUSION ...31

REFERENCES ..32

 ix

List of Tables

Table 1: Heuristics that are supported by the MCTS procedural generator. ...18

Table 2: Results for level generation by varying difficulty level....................26

 x

List of Figures

Figure 1: Level 1-1 of Angry Birds. ...1

Figure 2: A graphical representation of Monte Carlo Tree Search [6].5

Figure 3: Architecture diagram of MCTS-based procedural level generation. ..9

Figure 4: Supported blocks in the AIBirds Angry Birds research clone [11]. .10

Figure 5: Example output of the AIBirds vision library...................................11

Figure 6: Possible substructures of outer structure by breadth-first search.13

Figure 7: Example level using AIBirds XML level format.14

Figure 8: Example of a pig inside a structure. ..16

Figure 9: Bell curve shape heuristic (maximum score).16

Figure 10: Square root shape heuristic (maximum score).17

Figure 11: “Zig-zag” approach the MCTS algorithm uses for level layout.19

Figure 12: Alternative high approach option for naïve agent.23

Figure 13: Direct approach option for naïve agent. ..23

Figure 14: Example path that intersects 4 pigs in a row [13].24

Figure 15: Buildings supported by the DataLab agent [13].25

Figure 16: Example generated level with easy difficulty (29 blocks, 2 pigs, 3 birds).

...26

Figure 17: Example generated level with hard difficulty (70 blocks, 6 pigs, 4 birds).

...27

Figure 18: Example generated level with medium difficulty (50 blocks, 5 pigs, 4

birds). ..27

 1

INTRODUCTION

Angry Birds is a popular puzzle-based mobile game series created by the

company Rovio Entertainment. All of the games in the series have been downloaded

more than 3 billion times as of July 2015 [1]. In the original game, players are asked to

take the role of the Angry Birds, controlling a slingshot to fling birds into structures

which house pigs (see Figure 1 for an example level). Points are awarded for destroying

structures, defeating pigs, and having leftover unused birds from the ones provided at the

start of a level. As the player progresses through the levels, they unlock different types of

birds with special abilities, and the levels get more difficult, with more blocks arranged in

structures that are more difficult to destroy.

Figure 1: Level 1-1 of Angry Birds.

 2

Due to the popularity of the game, many different areas of research in game AI

have surfaced in the past few years around Angry Birds. General game playing has been a

major research area, involving the creation of artificial intelligence agents that are used to

play the game. In this paper, I will be covering another research area, procedural content

generation, as it applies to Angry Birds level creation.

 3

Chapter 1: Background

PROCEDURAL CONTENT GENERATION

Procedural content generation is a mechanism to create data using algorithms,

typically employed in the domain of video games to generate graphics, models, music, or

some other aspect of gameplay. Usually, this approach is taken in order to provide variety

and challenge, and has the side benefit that a developer does not need to manually design

the content ahead of time. Some games, such as Minecraft [2] and the recently released

No Man’s Sky [3], rely on procedural content generation for game depth and variety.

Minecraft uses procedural content generation to create topological maps of a game level’s

surface, making use of varying biomes (forest, desert, snow, etc.) and different wildlife

for the user to explore and develop to their will, creating a “sandbox” nature to the game.

No Man’s Sky is a sci-fi exploration game, reportedly including a procedurally generated

18 quintillion planets [4]. Currently, procedural content generation is not being applied to

the game Angry Birds, but that provides an interesting opportunity to develop algorithms

that can make interesting and exciting levels, where normally a game designer or

programmer would have to form these levels by hand.

AIBIRDS

AIBirds is a research community centered around game AI. Since 2012, they have

put together competitions, created game AI simulation frameworks, and had a presence at

multiple conferences, including CIG (Computational Intelligence and Games

Conference), IJCAI (International Joint Conference on Artificial Intelligence), and ECAI

(European Conference on Artificial Intelligence). This year, the community held a

competition for procedural content generation of Angry Birds levels, taking place during

CIG 2016 in Santorini, Greece on September 20-23, 2016 [5]. This competition included

 4

both a “fun track,” where the enjoyment of levels was judged by a panel of judges, and a

“hard track”, where the goal was to create difficult but solvable levels. Due to the timing

of the writing of this report, I was unable to enter the competition, but the some of the

concepts and frameworks used in this project were gathered from the AIBirds

community.

MONTE CARLO TREE SEARCH (MCTS)

Monte Carlo Tree Search is an algorithm used to explore decision spaces, making

use of different heuristics to weight the potential value of a given state in a decision tree.

MCTS has made a large splash in the realm of AI and games. Even without knowing the

game rules, an MCTS-based AI agent can learn the most promising moves during

gameplay and still win, given lower-level heuristic information to quantify the value of a

state (is the game over, what is the current score, did the player win or lose, etc.). This

search problem is called general game playing.

The challenge behind search-based algorithms is managing the principles of

exploration and exploitation. A greedy algorithm will always choose the most promising

moves that are directly in the states following the current game state, which would

heavily favor exploitation rather than exploration. To properly balance the two principles,

a random element of exploration is introduced in MCTS, which is guided by various

heuristics to determine the value of game states.

MCTS, in general, works using four steps [6]:

 Selection: Begin at the root node, and choose the child with the most

potential in succession until a leaf node is reached.

 5

 Expansion: If the leaf node that was reached has any moves that have not

been attempted, a random action from the remaining possible actions is

chosen at random, and the action is taken.

 Rollout: Additional actions are applied at random from the current state

until a condition occurs that terminates this step (for example, a timeout).

 Backpropagation: Calculation of a “score” which weights the value of a

rollout is calculated, then gets propagated up to all parent nodes until the

root is reached.

There are certain tunable parameters in MCTS. The most important parameter is

the Selection strategy, which is used to pick which node has the most potential. A

common approach for this and the approach used in this project is Upper Confidence

bound 1 applied to Trees (UCT) [7]. In UCT, the following formula is used to weight the

potential of a node:

𝑈𝐶𝑇𝑖 =
𝑤𝑖

𝑛𝑖
+ 𝑐√ln 𝑡 /𝑛𝑖

Figure 2: A graphical representation of Monte Carlo Tree Search [6].

 6

where:

 wi represents the number of “wins” after the ith move

 ni represents the number of simulations after the ith move

 c represents the exploration parameter (theoretically, √2 , but usually

depends on the application)

 t represents the total number of simulations for the node (eg. the sum of all

ni values)

In this project, I used the UCT approach to assign potential value to Angry Birds

level generation nodes. The method used to calculate scores, the condition used to

terminate a rollout, and other parameters provided to MCTS will be discussed in the

Approach and Implementation section.

 7

Chapter 2: Relevant Work

As was stated earlier, there are research communities dedicated to the

advancement of AI research related to procedural content generation and search-based

algorithms in video games. I drew inspiration and ideas from two prior research papers

[8] [9]. The first paper applies MCTS for procedural content generation of platformer

game levels, and was helpful to understand the concepts of level difficulty and proper

level layout, as well as the application of MCTS to procedural level generation. The

second paper uses a genetic search-based algorithm to generate Angry Birds levels, and

provides an Angry Birds clone which the AIBirds competition uses to simulate games.

MONTE CARLO TREE SEARCH TO GUIDE PLATFORMER LEVEL GENERATION

There has been prior work using MCTS to procedurally generate game level

content. One of the main approaches has been MCMCTS [8], which uses Markov chains

to create platformer levels. This paper’s main focus was platformer levels, namely, Super

Mario Brothers levels. It’s important to realize that platformer games, such as Super

Mario Brothers, have different requirements than the puzzle genre of Angry Birds.

Platformer levels make use of a large amount of static geometry (eg. elements of the level

which are not affected by gravity), whereas in Angry Birds the platforms are the

exception, with the rule being blocks that are affected by gravity and physics. There are

similarities, however. For example, the difficulty of both Angry Birds and Super Mario

Brothers has a common factor which depends on the amount and size of gaps between

blocks. This difficulty aspect allows more maneuverability for Mario and more strategic

potential for the firing path of Angry Birds, benefiting the player’s progress by giving the

player more options for movement.

 8

A SEARCH-BASED APPROACH FOR GENERATING ANGRY BIRDS LEVELS

There have been some past attempts at procedural generation of Angry Birds

levels, and these approaches vary quite a bit. This paper [9] was one of the first to apply

procedural generation to Angry Birds levels, using a genetic algorithm as the level

generation algorithm. The paper goes into detail about an evolutionary approach that

initializes a population of randomly-chosen level elements, then performs crossovers of

the elements to mutate the populations and try new ones that better fit their proposed

fitness function. This paper is also the source of the AIBirds clone that is being used in

this paper to simulate runs of Angry Birds via the Unity game engine [10]. It employs

many similar visual and audio assets, as well as the mechanics of the original game, so

researchers can “plug in” their algorithms and experiment with different aspects of

gameplay and level formats.

 9

APPROACH AND IMPLEMENTATION

To implement a procedural Angry Birds level generator using MCTS, I employed

use of the aforementioned framework provided by the AIBirds community to represent

the levels, using the content of existing levels as input to the MCTS algorithm. This

framework allowed use of a given set of basic blocks to form levels, providing an XML-

based level format to plug in to a playable Angry Birds clone written in the Unity

environment [11]. Instead of using the basic blocks, I developed a program to parse

existing levels for their block-based structures, and then developed derivative unique

structures for my levels based on those existing structures.

The following figure denotes the architecture of the MCTS-based procedural level

generation system. Each piece will be explained in detail in the following sections.

Figure 3: Architecture diagram of MCTS-based procedural level generation.

 10

Chapter 3: Level Formatting

Before discussing the algorithm behind putting a level together using MCTS, we

must first decide what blocks and structures we want to work with and support in the

generated Angry Birds levels. My approach uses existing Angry Birds levels as

inspiration to drive the structures used in level generation.

BASIC BLOCKS

At the core of procedural content generation is the arrangement of basic level

elements to produce fully-featured levels for the user to play. There are quite a few

methods of doing this, and the methods vary based on the genre of game. In Angry Birds,

the most basic elements are squares, rectangles, circles, and triangles, made of the

materials wood, ice, or stone (these elements have physics applied to them). The figure

below denotes the images that represent the various blocks supported by the AIBirds

research clone. The blocks in green are the ones this procedural level generator supports

Figure 4: Supported blocks in the AIBirds Angry Birds research clone [11].

 11

and uses. There are also platforms (which have no physics applied to them, so structures

can stand above the ground), pigs, and birds.

LEVEL PARSING

The AIBirds organization provides a computer vision library [12] to analyze

images, video, and gameplay of existing Angry Birds levels. Usually, this would be used

to write an AI agent in order to play the game, but for level generation purposes, I simply

use this library to determine the layout and organization of the blocks in existing levels.

The library denotes a bounding rectangle around each basic block, which is used to

establish the location of each block, its rotation, and what type of block it is. This

information from existing levels is fed in to the unique substructures algorithm, described

in the sections below.

Figure 5: Example output of the AIBirds vision library.

 12

EXISTING STRUCTURES

As mentioned in the prior section, all blocks in Angry Birds (except platforms and

the ground of the level) have physics applied to them. This makes levels that are created

from the basic level blocks (eg. from the ground-up) more difficult to create. The

elements have to be stacked correctly in order for the structure to not fall over before the

user has even had the chance to fire a bird. To solve this problem, the MCTS generator

uses portions of the structures from existing levels in the Angry Birds – Poached Eggs

collection. The structures contained in these levels are already proven to stand on their

own in terms of the physics engine. However, it wouldn’t be very interesting or fun for

the player if the same full structures from the existing levels were used, just in different

combinations. Therefore, a way to uniquify these structures is needed.

UNIQUE SUBSTRUCTURES

In an effort to remove the repetition involved with reusing the existing structures

from Angry Birds, I parse the existing levels, and then apply an algorithm to create data

structures that are subsets of the original structures. Starting at a block which has no

block above it within a given structure (the “root node”), and then traversing down the

structure until I hit either the ground or a platform (which acts as ground in midair), I

form a tree which represents an Angry Birds level structure. This way, an individual

structure is made up of many substructures, each of which could stand on its own. I can

then apply a breadth-first traversal of this tree to derive many unique substructures of the

original structure, which can then be arranged using Monte Carlo Tree Search. These

structures have a high probability of also standing when physics is applied, since every

block underneath a given block is included in the substructure.

 13

The following figure shows an example of an existing Angry Birds structure with

the computer vision library enabled, Each frame enumerates all of the possible

substructures that can be created from that structure. The structure inside this structure

(with the four blocks arranged in a rectangle) would be considered its own standalone

structure, and would be part of a different iteration of the parsing process.

XML LEVEL FORMAT

The AIBirds competition level format uses XML to describe level elements. Top-

level elements under the <Level> tag include a <BirdsAmount> tag that indicates the

total amount of birds in the level, as well as a <GameObjects> tag, which contains three

Figure 6: Possible substructures of outer structure by breadth-first search.

 14

different types of tags: <Block>, <Pig>, and <Platform>. A block is a piece of physics-

based geometry, with various shapes and sizes. A pig is a special type of block that

denotes a foe to be destroyed in the level. A platform denotes a piece of non-physics

geometry that holds structures up in midair. The following figure shows an example file

for an AIBirds level.

Figure 7: Example level using AIBirds XML level format.

 15

Chapter 4: Monte Carlo Tree Search

To lay out the Angry Birds levels, I used the Monte Carlo Tree Search algorithm.

As explained before, the MCTS algorithm uses a combination of exploration and

exploitation to decide what choices to make at each game state. The way it decides this is

through use of heuristics, which weight the perceived value of each state. In this section, I

will cover the heuristics that were developed in this project and what their impact is on

the generation of levels, as well as the overall process the algorithm goes through (eg. the

level generation loop).

HEURISTICS

There are a few heuristics that must be provided to the MCTS algorithm to tell the

algorithm what a “good” level state includes. One of the main heuristics for Angry Birds

is a difficulty level (easy, medium, or hard), which is taken in as input. Difficulty settings

are denoted by the number of ideal blocks that the levels would have: easy levels have an

ideal number of blocks that is less than medium levels, which have an ideal number of

blocks that is less than hard levels. A similar approach follows for the ideal number of

pigs and birds in the level.

Another heuristic is whether the level is solvable or not. This is determined by

playouts of AI agents, described in a later section. If the level is solvable, it is awarded a

large amount of points, and if it is not solvable, the same points are deducted from the

overall state score.

 16

Other optional heuristics that were added included rewarding points for levels

with pigs which are inside structures (not just on top of them, as in Figure 8), and some

heuristics that can be enabled based on the desired shape of the level. The possible shapes

that I implemented were a bell curve, following the normal distribution as in Figure 9,

and a square root curve, as in Figure 10. All blocks that follow this heuristic get extra

points if they lie under the curve.

Figure 8: Example of a pig inside a structure.

Figure 9: Bell curve shape heuristic (maximum score).

 17

Finally, I implemented a heuristic that takes points away if structures have no pigs

on them. This will help suppress uninteresting parts of levels that serve no purpose except

to get in the way of the player’s progress, especially with unnecessary platforms that

can’t be toppled by fired birds.

Figure 10: Square root shape heuristic (maximum score).

 18

The following table describes the heuristics that were implemented, their ideal

values, and how many points are possible to be awarded for each heuristic. The relative

weighting of each heuristic is represented by the ratios of their corresponding awarded

points.

Heuristic Ideal Value Points Awarded

Level play result by AI

agents

Level won by Naïve agent

(Easy), Level won by both

agents (Medium and Hard)

Win: 10000000

Loss: -10000000

Number of blocks
30 (Easy), 50 (Medium),

70 (Hard)
7000

Number of pigs
4 (Easy), 5 (Medium), 6

(Hard)
5000

Number of structures

without pigs
0 3000

Pigs within structures (not

on top of structures or on

ground)

Number of structures 2000

Level shape (Gaussian or

square root)
All structures under shape 2000

Table 1: Heuristics that are supported by the MCTS procedural generator.

 19

LEVEL GENERATION LOOP

The creation of the level takes place using a loop. MCTS has the following

options for an action to take at each iteration of the loop: place a structure, place a pig, or

nil (the “do nothing” action). Level layout begins at the lowest-left part of the level, and

proceeds to lay out structures programmatically in a column until the top of the level is

reached. Once the top of the level is reached, the y location of the next structure is reset

to the ground level, and the x location is incremented by the width of the current column

(see Figure 11). A pig can be placed on or in an existing structure, or on the ground. A nil

action increments the y-pointer by a constant height, but does nothing else.

The program begins with 1000 training iterations, in which the MCTS algorithm

explores as much of the state space as possible, while exploiting good designs that match

Figure 11: “Zig-zag” approach the MCTS algorithm uses for level layout.

 20

the heuristics stated earlier. At the end of these training iterations, the program descends

the tree, starting at the root (bottom-left of level), and takes every action that MCTS has

found to be of the highest value (the “best” action) until reaching the top-right.

 21

RESULTS

As a test of the generated Angry Birds levels, I generated levels with differing

levels of difficulty, using two different AI agents (the AIBirds default provided naïve

agent and one former AIBirds gameplay contest entry) to play the levels and determine if

they actually met the difficulty level specified and were beatable. 100 different levels

were generated for each difficulty level, each using 1000 MCTS testing iterations with

100ms allocated to each iteration.

 22

Chapter 5: AI Agents

The agents that were chosen for this test have been provided by the AIBirds

community as example agents. The agents chosen are the naïve agent and the DataLab

agent [13]. The naïve agent is included with the AIBirds competition framework as a

very basic agent that is meant to get the user familiar with how the framework works.

The DataLab agent, on the other hand, was developed by a team that competed in the

AIBirds AI agent competitions for the past few years (even winning in 2014 [14] and

2015 [15]), and is more sophisticated than the naïve agent, in an effort to scale with what

could be considered increasing levels of human capability to solve the levels.

NAÏVE AGENT

The naïve agent’s algorithm is simple: aim directly at a random pig. Obviously,

this approach is limited, and should only succeed on easier levels. This agent

occasionally chooses a high trajectory to hit the pig, in order to avoid hitting platforms

that may be in the way of the direct firing trajectory. Two possible trajectory options for a

pig are shown in the following figures.

 23

Figure 13: Direct approach option for naïve agent.

Figure 12: Alternative high approach option for naïve agent.

 24

DATALAB AGENT

The DataLab agent [13] was created by team DataLab Birds from the Czech

Technical University in Prague. It was the AIBirds 2014 champion, scoring 406340

points and solving 6 out of the 8 levels in the final round. The idea behind the agent is

that each move is decided based on following one of four strategies:

 Destroy as many pigs as possible strategy: discovers the trajectory that has as

many pigs in it as possible. This is the default strategy in the DataLab

algorithm.

 Round blocks strategy: attempts to either coerce a round-shaped object to roll

down a hill or other structure and hit pigs, or release a slew of round objects

from a shelter that is holding them back. This strategy exploits the kinetic

energy of round objects as they roll down a slope or incline. This strategy will

Figure 14: Example path that intersects 4 pigs in a row [13].

 25

not be used with these procedurally-generated levels (round objects are not

supported in my level generator).

 Dynamite strategy: tries to aim at a TNT, but only if there is a pig nearby. The

utility of this strategy also goes up if there are many stone objects and other

TNT’s within the TNT’s shockwave range. This strategy will not be used with

these procedurally generated levels (TNT’s are not supported by the AIBirds

research clone).

 Building strategy: finds a connected block structure that houses pigs. This

strategy only targets the blocks on the structure that will make it more

favorable to target the pigs, since sometimes a misplaced bird can change a

structure into a format that is harder to access the pigs inside it. A distinction

is also made in this strategy between different types of buildings (eg. a

pyramid, rectangle, skyscraper, etc.).

Figure 15: Buildings supported by the DataLab agent [13].

 26

Chapter 6: Level Generation Results

The following table contains the results of the above experiment. The maximum

heuristic score in all cases is 10019000, as described in Table 1.

Difficulty Level
Average Heuristic

Score

Naïve Agent Wins /

Losses

Datalab Agent Wins

/ Losses

Easy 10016021 100 / 0 100 / 0

Medium 10016251 63 / 37 100 / 0

Hard 10015056 32 / 68 100 / 0

Table 2: Results for level generation by varying difficulty level.

EXAMPLE GENERATED LEVELS

Below are some levels generated by the algorithm for each difficulty level.

Figure 16: Example generated level with easy difficulty (29 blocks, 2 pigs, 3 birds).

 27

Figure 18: Example generated level with medium difficulty (50 blocks, 5 pigs, 4 birds).

Figure 17: Example generated level with hard difficulty (70 blocks, 6 pigs, 4 birds).

 28

Chapter 7: Results Analysis

PROJECT CHALLENGES / LIMITATIONS

There are some challenges that I ran into while working on the project. Lots of

computational power and time is required for this system, and better level generation

could be accomplished with more computation. I constrained each round of MCTS to

100ms and total rounds to 1000, but conceivably, the MCTS algorithm could go on for

quite some time, as it tries out every action at each node of the tree (3 actions possible).

Within the level’s space constraints of 96 Unity units in area, you could conceivably fit

about 2000 of the smallest blocks inside, and depending on how many input structures

you have and how large they are, the number of structures to explore before reaching the

top-right of the level is very large. Pigs can be placed in any location on top of ground or

in/on a structure where they fit, as well, so they can be assumed to contribute to the

search space size at every level of the state space tree. My use case was much more

forgiving than having many small structures for each option in the tree. For example, my

application derived 122 unique substructures off of existing levels. As an approximation,

and based on the size of those 122 structures, the placement algorithm could fit 15 of

those structures in the level on average. Thus, the total exploration space could be

approximated by the size of a perfect k-ary tree:

𝑡𝑜𝑡𝑎𝑙 𝑠𝑡𝑎𝑡𝑒𝑠 =
𝑘ℎ+1 − 1

𝑘 − 1

where:

 k is the number of unique structures

 h is the average height of the tree (changes based on the average size of

the structures used)

 29

In this case, the average number of states to explore would be =
12415−1

123
≈ 2.04 ∗

1029. It is clear that a brute force search would take a long time to search all of those

states for a level that best fits the heuristics (and this is just an average case).

That being said, it is possible to create levels using a more naïve approach (eg.

with the possibility of winning being the only heuristic, and a greedy search or a brute-

force search approach to lay out the levels), but the MCTS algorithm has a very high

probability of resulting in a level that will actually be possible to win, found in a

reasonable amount of time with a reasonable heuristic score. Players expect to be able to

beat levels, and arrive at a greater challenge with each passing level. A naïve approach

could try to add more blocks and pigs, but it would most likely be brittle and not be able

to scale in creation time with the difficulty level like MCTS can. Theoretically, a server

running the MCTS placement algorithm could be chunking away at these levels and

handing them out to users online and on-the-fly, which is what players of procedurally-

generated levels also expect.

CONSEQUENCES OF MORE COMPUTATION

With more computing time/power, I could increase the limit on the MCTS round

to a higher number (say one second), or keep it the same, and have more of the tree be

searched in the same amount of time. This would increase the probability of a winnable

level, as well as one that fits the secondary heuristics even more, perhaps even one that

has the maximum possible score. Throughout my exploration of MCTS, I was not able to

achieve the maximum possible score on my computer while under the defined time

constraints.

 30

CONSEQUENCES OF MORE INPUT DATA

With more input data, MCTS could form better levels. The distribution of level

elements is dependent on samples retrieved from existing levels, so the more varied the

input structures, the more choices the MCTS algorithm has when it does its layout.

Especially useful are structures that are different shapes (small, tall and skinny, long and

skinny, long and fat, etc.). This is the main reason why the MCTS application derives

other structures off of existing structures. For example, when emphasizing the shape of a

level, it's important to have lots of small (yet interesting and varied) structures that fit

under the curve. However, if more input data was available, characterizing the data may

be necessary so the MCTS algorithm has an informed decision within the input space (for

example, "binning" the structures into their various shapes). Currently, the decision of

which structure to explore next is random.

 31

CONCLUSION

In conclusion, procedural content generation using MCTS is a good candidate to

produce challenging and fun Angry Birds levels. The MCTS approach uses a

combination of exploration and exploitation to meet the design constraints of a level,

based on defined heuristics that determine the difficulty of the level. Various AI agents

are able to successfully win these generated levels, due to the win/lose heuristic included

in the algorithm. You can download my code on GitHub [16], as well as try it out with

the AIBirds level generation framework which is also on GitHub [11].

 32

REFERENCES

[1] "'Angry Birds 2' Arrives 6 Years And 3 Billion Downloads After First Game," 16

July 2015. [Online]. Available:

http://www.forbes.com/sites/andyrobertson/2015/07/16/angry-birds-2. [Accessed

18 August 2016].

[2] "minecraft.net - Home," Mojang, [Online]. Available: https://minecraft.net.

[Accessed 21 September 2016].

[3] "No Man’s Sky," Hello Games, [Online]. Available: http://www.no-mans-

sky.com. [Accessed 21 September 2016].

[4] O. Good, "It's impossible to visit every planet in No Man's Sky," 19 August 2014.

[Online]. Available: http://www.polygon.com/2014/8/19/6045933/its-impossible-

to-visit-every-planet-in-no-mans-sky. [Accessed 21 August 2016].

[5] J. Renz, J. Togelius, M. Stephenson, X. Ge and L. Ferreira, "AI Birds.org - Level

Generation Competition," [Online]. Available: http://aibirds.org/other-

events/level-generation-competition.html. [Accessed 24 August 2016].

[6] G. Chaslot, S. Bakkes, I. Szita and P. Spronck, "Monte-Carlo Tree Search: A New

Framework for Game AI," in Proceedings of the Fourth Artificial Intelligence

and Interactive Digital Entertainment Conference, AIIDE’08, 216–217, Stanford

University, California, 2008.

[7] L. Kocsis and C. Szepesvári, "Bandit based monte-carlo planning," in

Proceedings of the 17th European Conference on Machine Learning, ECML’06,

282-293, Berlin, Heidelberg: Springer-Verlag, 2006.

[8] A. Summerville, S. Philip and M. Mateas, "MCMCTS PCG 4 SMB: Monte Carlo

Tree Search to Guide Platformer Level Generation," University of California,

Santa Cruz, 2015.

[9] L. Ferreira and C. Toledo, "A Search-based Approach for Generating Angry Birds

Levels," in Proceedings of the 9th IEEE International Conference on

Computational Intelligence in Games, 2014.

[10] "Unity - Game Engine," [Online]. Available: https://unity3d.com. [Accessed 9

September 2016].

[11] L. Ferreira, "GitHub - lucasnfe/ScienceBirds at NewArt," [Online]. Available:

https://github.com/lucasnfe/ScienceBirds/tree/NewArt. [Accessed 24 August

2016].

[12] X. Ge, S. Gould, J. Renz, S. Abeyasinghe, J. Keys, A. Wang and P. Zhang,

"Angry Birds Game Playing Software Version 1.32," aibirds.org, 2014.

[13] T. Borovička, R. Špetlík and K. Rymeš, "DataLab Birds Angry Birds AI," 2014.

[14] "AI Birds.org - Results," [Online]. Available: https://aibirds.org/past-

competitions/2014-competition/results.html. [Accessed 23 September 2016].

 33

[15] "AI Birds.org - Results," [Online]. Available: https://aibirds.org/past-

competitions/2015-competition/results.html. [Accessed 23 September 2016].

[16] M. Graves, "GitHub - LinkOfHyrule/AngryBirdsMCTSLevelGenerator,"

[Online]. Available:

https://github.com/LinkOfHyrule/AngryBirdsMCTSLevelGenerator. [Accessed 3

October 2016].

