W. ELL

**HANDBOOK 5** 

LOGGED BY



## **HANDBOOK 5**

# HANDBOOK FOR LOGGING CARBONATE ROCKS

by Don G. Bebout<sup>1</sup> and Robert G. Loucks<sup>2</sup>

<sup>1</sup>Bureau of Economic Geology, The University of Texas at Austin <sup>2</sup>ARCO Oil and Gas Company, Dallas, Texas

## 1984

Second printing, November 1984



Bureau of Economic Geology W. L. Fisher, Director The University of Texas at Austin Austin, Texas 78712



## CONTENTS

| Introduction                                   | 1  |
|------------------------------------------------|----|
| Core Logging Form                              | 1  |
| Core Preparation                               | 2  |
| Carbonate Logging Guide                        | 3  |
| Porosity                                       | 3  |
| Mineral Composition and Nature of Contact      | 4  |
| Structure                                      | 5  |
| Texture                                        | 7  |
| Carbonate Fabrics                              | 8  |
| Grain Size, Crystal Shape, and Color           | 9  |
| Fossils                                        | 10 |
| Cement                                         | 11 |
| Fossils and Structures in the Lower Cretaceous |    |
| Pearsall Formation                             | 14 |
| Acknowledgments                                | 15 |
| References                                     | 15 |

## Illustrations

## Figures

| 1. | Logging form                                                       | 1  |
|----|--------------------------------------------------------------------|----|
| 2. | Completed logging form                                             | 2  |
| 3. | Basic porosity types                                               | 3  |
| 4. | Approximate lower size limits at which various skeletal components |    |
|    | can be recognized in both reflected and refracted light            | 10 |
| 5. | Original shell skeletal composition                                | 11 |
| 6. | Charts for estimating percentages of angular shaped grains         | 12 |
|    |                                                                    |    |

## **Plates**

| 1A. | Modern beach gravel showing whole mollusk shells                    | 16 |
|-----|---------------------------------------------------------------------|----|
| 1B. | Large oyster in coralgal-stromatoporoid-rudist packstone            | 16 |
| 2A. | Broken oyster and Chondrodonta shells in echinoid-mollusk           |    |
|     | wackestone                                                          | 18 |
| 2B. | Whole and broken oyster and echinoid fragments                      |    |
|     | in a coated-grain packstone                                         | 18 |
| 3A. | Modern echinoid (sea urchin) from Florida Bay                       | 20 |
| 3B. | Echinoid-mollusk wackestone with whole echinoids                    | 20 |
| 3C. | Closeup of individual plates of echinoids in an echinoid grainstone | 20 |

## Plates (cont.)

| Modern serpulid worm tubes from Baffin Bay, Texas                     | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Serpulid worm tubes in an echinoid-oyster packstone                   | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Serpulid worm tubes in an argillaceous echinoid-mollusk wackestone.   | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Modern ooid sand from Bermuda                                         | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Crossbedded, ooid-skeletal grainstone                                 | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ooid rims with nuclei of red-algae, echinoid, and                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| mollusk grains                                                        | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Modern oncolites from a moderate-energy area in Florida Bay           | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Oncolite packstone                                                    | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Closeup of oncolites in oncolite packstone                            | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Closeup of oncolites                                                  | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Branching stick coral from the Florida reef tract                     | .30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Coral framestone                                                      | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Branching and massive corals from the reef tract on the east side     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| of the Great Bahama Bank                                              | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Part of a massive coral from a coralgal-stromatoporoid-rudist         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| framestone                                                            | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Massive coral on a core surface                                       | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Closeup of a small stick coral in core slab of coral-echinoid-mollusk |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| grainstone                                                            | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Radiolites occurring in a coralgal-stromatoporoid-rudist framestone   | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Closeup of the <i>Radiolites</i> showing irregular tabulate structure | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Toucasiid wackestone                                                  | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Burrowed argillaceous echinoid-mollusk wackestone                     | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Mixed terrigenous mudstone/lime wackestone                            | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Mixed terrigenous mudstone/lime wackestone showing                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (1) burrowed argillaceous echinoid-mollusk wackestone,                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (2) fossiliferous terrigenous mudstone, (3) argillaceous              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| echinoid-mollusk wackestone, and (4) mudstone                         | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Fissile clay-shale with thin siltstone layer                          | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Stylolites                                                            | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Stylolites                                                            | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                       | Modern serpulid worm tubes from Baffin Bay, Texas     Serpulid worm tubes in an argillaceous echinoid-mollusk wackestone     Modern ooid sand from Bermuda     Crossbedded, ooid-skeletal grainstone     Ooid rims with nuclei of red-algae, echinoid, and     mollusk grains     Modern oncolites from a moderate-energy area in Florida Bay     Oncolite packstone     Closeup of oncolites in oncolite packstone     Closeup of oncolites     Branching stick coral from the Florida reef tract     Coral framestone     Branching and massive corals from the reef tract on the east side     of the Great Bahama Bank     Part of a massive coral from a coralgal-stromatoporoid-rudist     framestone     Massive coral on a core surface     Closeup of a small stick coral in core slab of coral-echinoid-mollusk     grainstone     Radiolites occurring in a coralgal-stromatoporoid-rudist framestone     Closeup of the Radiolites showing irregular tabulate structure     Toucasiid wackestone     Burrowed argillaceous echinoid-mollusk wackestone,     (2) fossiliferous mudstone/lime wackestone showing     (1) burrowed argillaceous echinoid-mollusk wackestone,     (2) fossiliferous terrigenous mudstone, (3) argillaceous     echinoid-mollusk wackestone, |

## In Pocket

Full-scale logging form

#### INTRODUCTION

#### **Core Logging Form**

The procedure described here has been used successfully for logging carbonate cores for oil and gas exploration and production, geologic research, graduate-level courses, and industry short-courses. By design, the logging form discussed here is simple and flexible and can be readily altered to fit a specific project. However, this is only one of many logging styles used in industry and universities, and it should not be considered the only format applicable; personal preferences greatly influence the selection of a particular form.

We strongly recommend that some sort of graphic logging form be used when studying carbonate cores and samples. A logging form allows fast, accurate, and easy recording of data. Most important, the data presented on a logging form can be compared directly to associated geophysical logs and to core descriptions from other wells.

The logging form we devised is shown below (fig. 1), followed by a sample filledout version (fig. 2). The rest of this Handbook contains charts and illustrations designed to facilitate logging carbonate cores using this logging form. We have also included photographs of slab surfaces and thin sections to illustrate some of the typical fossils and structures that may be encountered when logging core. Part of the filled-out logging form accompanies each example to serve as a guide in using the logging procedure described in this Handbook.

|      | RATIGRAPHIC INTERVAL |                                   |        |                                   |     |                                   |                                                                                        |                                           | LOGGED BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |         |      |  |  |  |
|------|----------------------|-----------------------------------|--------|-----------------------------------|-----|-----------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|------|--|--|--|
| PONE | NIN A                | MINERAL                           | P.C.P. | STRUCTL                           | RES | TEXTURE                           | BRIC                                                                                   | GRAIN SIZE<br>(DOLOMITE-<br>CRYSTAL SIZE) | SP4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NON     | FOSSILS | MENT |  |  |  |
|      | (INCL<br>POROSITY)   | NAT N                             | TYPE   | SIZE                              |     | FA                                | 0.<br>9.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0. | CRV                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1111111 | CE      |      |  |  |  |
|      |                      |                                   |        |                                   |     |                                   |                                                                                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |      |  |  |  |
|      |                      |                                   |        |                                   |     | -                                 |                                                                                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |      |  |  |  |
|      |                      |                                   |        |                                   |     |                                   |                                                                                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |      |  |  |  |
|      |                      |                                   |        |                                   |     |                                   |                                                                                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |      |  |  |  |
|      |                      |                                   |        |                                   |     |                                   |                                                                                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |      |  |  |  |
|      |                      |                                   |        |                                   |     |                                   |                                                                                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |      |  |  |  |
|      | 4                    |                                   |        |                                   |     |                                   |                                                                                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |      |  |  |  |
|      |                      | COMPOSITION<br>(INCL<br>POROSITY) |        | COMPOSITION<br>(INCL<br>POROSITY) |     | COMPOSITION<br>(INCL<br>POROSITY) |                                                                                        |                                           | EACOMPOSITION<br>(INCL<br>POROSITY) Image: Composition<br>STYPE Image: Com |         |         |      |  |  |  |

Figure 1. Logging form reduced 30 percent. See form in pocket at back for full-scale version.

#### **Core Preparation**

Proper core preparation before examination is essential for obtaining the maximum detail. Minimum preparation should include slabbing the core lengthwise, and limestone core should be etched with dilute (10 percent) hydrochloric acid to remove rock dust and some of the saw marks. Dolomite core is more easily examined after being dry sanded on a belt sander to remove the saw marks. The surface of the core should be kept wet at all times during study, except when estimating the amount and type of porosity, which are better observed on a dry surface.

All the features described in this Handbook can be observed by using a low-power (10X) binocular microscope.

#### Keywords: carbonate rocks, core and sample logging.

|      | 1 1           | 10 3 5 5 75 CONT OF                           | h. I     |                                        | T                                                | T        |                                                              | _       |       |                    |       |          |            |         |        |       | -      |                             |
|------|---------------|-----------------------------------------------|----------|----------------------------------------|--------------------------------------------------|----------|--------------------------------------------------------------|---------|-------|--------------------|-------|----------|------------|---------|--------|-------|--------|-----------------------------|
| 760  | PORE          | MINERAL<br>COMPOSITION<br>(INCL.<br>POROSITY) | NATUBE O | TYPE                                   | S TEXTURE                                        | FABRIC   | GRAIN SIZE<br>(DOLOMITE-<br>CRYSTAL SIZE)<br>전 만 만 이 이 이 약 이 | CRYSTAL | COLOR | Oysters<br>Mallusk | WORMS | Echioids | Millo Mill | Rudists | Corals | Misc. | CEMENT | Notes                       |
| , 20 |               |                                               |          | *<br>v                                 | 666                                              | w<br>w   |                                                              |         | MG    |                    |       |          |            |         |        |       |        | dolomite along<br>clayseams |
| -70  |               |                                               |          | 2 -                                    | 616                                              |          |                                                              |         | 04    |                    |       |          |            |         |        |       | 00.0   | Fissle                      |
|      | BP<br>¢<br>MO |                                               |          | 111                                    | 00000000000000000000000000000000000000           | 54444    |                                                              |         | 16    |                    |       |          |            |         |        |       |        | Tubular and<br>transverse   |
| 80-  |               |                                               | ST       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 666666<br>6666<br>66<br>66                       | 2388 000 |                                                              |         | MG    |                    |       |          |            |         |        |       |        | X - beds<br>mud shrimp      |
| 90 - | BP            |                                               |          | 000 H                                  | 666666666<br>666666666<br>666666666<br>666666    | 566666   |                                                              |         | LG    |                    |       |          |            |         |        |       |        | hard ground<br>rip-up dast  |
|      |               |                                               |          | vv                                     | 666                                              | 1/2      | 1111111111                                                   |         | MĄ    | []                 |       |          |            |         |        |       |        |                             |
| 800- | mo            |                                               | 4        | mm<br>₩₩                               | 666666666<br>666666666<br>6666666666<br>66666666 | MANA BB  |                                                              |         | MĢ    |                    |       |          |            |         |        |       |        | Branching Cora              |
|      |               |                                               | 5        | MM<br>###<br>MM                        | 666666 · · · · · · · · · · · · · · · ·           | BPB BBB  |                                                              |         | MĢ    |                    |       |          |            |         |        |       |        | pholad boiing               |
|      | BP            |                                               |          | TIT                                    | 6 68666<br>6 66666<br>6 6 666<br>6 6 666         | 00000    |                                                              |         | 14    |                    |       |          |            |         |        |       |        | Dolomite in                 |

Figure 2. Completed logging form reduced 30 percent.

## **CARBONATE LOGGING GUIDE**

#### Porosity

The percent porosity should be estimated as part of mineral composition. The type of porosity is recorded in the pore-type column according to the classification of Choquette and Pray (1970).



Figure 3. Basic porosity types, from Choquette and Pray (1970).

#### **Mineral Composition**

Log in percent. Column width on logging form represents 100 percent and is subdivided into 10-percent intervals. The items listed here should be entered on the mineral composition column in the order shown here, with porosity on the left and pyrite on the right. For example, on Figure 4C (p. 22) calcite is shown on the left and silicic sand, on the right.



#### **Nature of Contact**

- S Sharp
- SI Sharp irregular
- SC Sharp conformable
- SD Sharp disconformable
- ST Stylolite

- G Gradational
- B Gradational-interbedded
- VS Visibly scoured
- BU Burrowed

## Structure

#### **Carbonate Structures**

| N        | Streaky                       | 700 | Solution cavity with breccia |  |  |  |  |
|----------|-------------------------------|-----|------------------------------|--|--|--|--|
| ~        | Streaky laminated             |     | Highly disturbed             |  |  |  |  |
| M        | Microstreaky                  | ~   | Hardground                   |  |  |  |  |
| mu       | Stylolites                    | 4   | Daudinago                    |  |  |  |  |
| xxx +++  | Fractures                     |     | Bouumage                     |  |  |  |  |
| 5        | Cloudy                        |     |                              |  |  |  |  |
| <u> </u> | Shale and bituminous partings |     | Horizontal                   |  |  |  |  |
|          | Interbedded                   |     | Suggested                    |  |  |  |  |
| ~        | Truncated surface             | 1   | Clasts                       |  |  |  |  |
| VS       | Scoured surface               | ~   | Borings                      |  |  |  |  |
| m        | Convolute                     | Q   | Keystone structures          |  |  |  |  |
| 0000     | Graded beds                   | y   | Mudcracks                    |  |  |  |  |
|          | Fining up                     | В   | Birdseye                     |  |  |  |  |
|          | Coarsening up                 | F   | Fenestral                    |  |  |  |  |
|          | Lamina types -                | Ħ   | Organic framework            |  |  |  |  |
|          | diagrammatically              | 0   | Geopetal                     |  |  |  |  |
| Æ        | irregular laminations         | K   | Roots                        |  |  |  |  |
| m        | Ripple marks                  | _   | Sheet cracks                 |  |  |  |  |
| 77777    | Cross bedding                 |     |                              |  |  |  |  |
|          | Brecciation types             |     |                              |  |  |  |  |
|          | Fracture                      |     |                              |  |  |  |  |

🛛 Mosaic

~

🖉 Chaotic

#### **Anhydrite Structures\***

Crystallotopic
Gypsum pseudomorphs
Nodular
Nodular mosaic
Mosaic
Massive = Bedded massive
Modifiers using mosaic as an example
Distorted mosaic
Eedded mosaic

 $\neq$  Distorted bedded mosaic

**W** Highly distorted

Brecciated

Size of Anhydrite Structures

For nodular and mosaic and breccia Small (< 1/4 inch) - S Medium (1/4 to 1 inch) - M Large (>1 inch) - L

Beds or laminae

Very thick (> 4.0 inches; 100 mm) - VTK Thick (1 to 4 inches; 30 to 100 mm) - TK Medium (0.4 to 1 inch; 10 to 30 mm) - ME Thin (0.1 to 0.4 inch; 3 to 10 mm) - TN Very thin (< 0.1 inch; 3 mm) - VTN

\*From Maiklem, Bebout, and Glaister (1969).

#### Texture

Log in percent. Column width on logging form represents 100 percent and is subdivided into 10-percent intervals. The items listed here should be entered on the texture column in the order shown here, with ooids on the left and micrite on the right. For example, on Figure 1B skeletal grains are shown on the left and micrite on the right.

**Carbonate Textures** 

#### 00 Left Ooids 666 Oncolites 000 Coated grains 8 8 8 8 Lumps 0 Lithoclasts 1 $\phi \phi \phi$ Intraclasts 6 **Skeletal** grains 6 Pellets Ð 000 Pelloids 000 Grains indeterminant Right Micrite

Highly altered. Superimpose over interpreted texture.



#### **Anhydrite Textures\***

| // Lathlike         |
|---------------------|
| $\varkappa$ Needles |
| MX Microcrystalline |
| Anhedral            |
|                     |

\*From Maiklem, Bebout, and Glaister (1969).

## **Carbonate Fabrics**

| M - Mudstone | В | - | Boundstone |
|--------------|---|---|------------|
|--------------|---|---|------------|

- W Wackestone Ba Bafflestone
- P Packstone Bi Bindstone
- G Grainstone F Framestone

|                                                   |                                   | Depositional<br>texture not           |                                         |                                                                                                    |                                                                                                             |                                                                                                                       |                                                      |  |  |
|---------------------------------------------------|-----------------------------------|---------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--|--|
| Origin                                            | nal components<br>during de       | s not bound t<br>positions            | ogether                                 | Origina<br>bound                                                                                   | d component<br>d together du                                                                                | ts were<br>iring                                                                                                      | recognizable                                         |  |  |
| Contains mud<br>(particles of clay and fine silt) |                                   |                                       |                                         | depositi<br>intergro<br>lamin<br>grav                                                              | on as sho<br>wn skeletal<br>ation contra<br>ity, or sedim                                                   | own by<br>matter,<br>ry to<br>ent-                                                                                    | Crystalline<br>carbonate                             |  |  |
| Grain-<br>Mud-supported supported                 |                                   |                                       | Lacks mud<br>and is grain-<br>supported | floored<br>roofed<br>question<br>and a                                                             | l cavities tha<br>over by orga<br>ably organic<br>are too large                                             | at are<br>inic or<br>matter<br>to be                                                                                  | (Subdivide according to classifications for physical |  |  |
| Less than<br>10 percent<br>grains                 | More than<br>10 percent<br>grains |                                       |                                         |                                                                                                    | interstices.                                                                                                |                                                                                                                       | texture or diagenesis.)                              |  |  |
| Mudstone                                          | Wackestone                        | Packstone                             | Grainstone                              |                                                                                                    | Boundstone                                                                                                  |                                                                                                                       |                                                      |  |  |
|                                                   |                                   | · · · · · · · · · · · · · · · · · · · |                                         | Autoch<br>original ce<br>bound<br>By<br>organisms<br>that<br>act as<br>baffles<br>Baffle-<br>stone | thonous lime<br>omponents o<br>during depo<br>organisms<br>that<br>encrust<br>and<br>bind<br>Bind-<br>stone | estones;<br>rganically<br>osition<br>By<br>organisms<br>that<br>build<br>a rigid<br>frame-<br>work<br>Frame-<br>stone | Carbonate classification<br>by Dunham (1962).        |  |  |

Modification of Dunham "boundstone" by Embry and Klovan (1971).

## **Grain Size**

Range of size of allochems, in millimeters.

In some dolomite, where allochems are unrecognizable, give size of dolomite crystals.

#### **Crystal Shape (Dolomite)**

- A Anhedral (no crystal faces)
- S Subhedral (some crystal faces)
- E Euhedral (most crystal faces)

## Color

| L - Light   | G - Gray   | C - Cream        |
|-------------|------------|------------------|
| M - Medium  | B - Brown  | W - White        |
| D - Dark    | R - Red    | Bk - Black       |
| m - Mottled | O - Orange | Cl - Clear       |
|             | Y - Yellow | Tr - Transparent |
|             | Gn - Green | T - Translucent  |
|             | Bl - Blue  |                  |

#### Example: LBG = light brownish gray

#### Fossils

Label fossil columns on logging form using name of appropriate organisms, and record relative fossil abundance as shown below.



Common

Abundant

| Fossil       | Reflected | Transmitted |
|--------------|-----------|-------------|
| Mollusks     | $250\mu$  | $125\mu$    |
| Corals       | 250       | 250         |
| Foraminifer  | rs 62     | 62          |
| Bryozoans    | 250       | 125-250     |
| Barnacles    | 500       | 125-250     |
| Echinoids    | 125       | 62          |
| Halimeda     | 125       | 62-125      |
| Coralline al | gae 500   | 125         |
| Spicules     | <62       | <62         |

Figure 4. Approximate lower size limits (microns) at which various skeletal components can be recognized in both reflected and transmitted light. Data from Milliman (1974).

|                            |       |                                      | Both        |
|----------------------------|-------|--------------------------------------|-------------|
|                            |       | Calcite                              | Aragonite   |
| Taxon                      | Arag. | % <b>Mg</b><br>0 5 10 15 20 25 30 35 | and Calcite |
| Calcareous Algae:          |       |                                      |             |
| Red                        |       | ××                                   |             |
| Green                      | ×     |                                      |             |
| Coccoliths                 |       | ×                                    |             |
| Foraminifers:              |       |                                      |             |
| Benthonic                  | 0     | ×                                    |             |
| Planktonic                 |       | **                                   |             |
| Sponges:                   | 0     | ××                                   |             |
| Coelenterates:             |       |                                      |             |
| Stromatoporoids (A)        | X     | ×?                                   |             |
| Milleporoids               | ×     |                                      |             |
| Rugose (A)                 |       | ×····                                |             |
| Tabulate (A)               |       | ×?                                   |             |
| Scleractinian              | X     |                                      |             |
| Alcyonarian                | 0     | <del>××</del>                        |             |
| Bryozoans:                 | 0     | × ×                                  | 0           |
| Brachiopods:               |       | ××                                   |             |
| Mollusks:                  |       |                                      |             |
| Chitons                    | . X   |                                      |             |
| Pelecypods                 | X     | ××                                   | ×           |
| Gastropods                 | ×     | **                                   | X           |
| Pteropods                  | X     |                                      |             |
| Cephalopods (most)         | X     |                                      |             |
| Belemnoids and Aptychi (A) |       | X                                    |             |
| Annelids (Serpulids):      | X     | <del>× ×</del>                       | X           |
| Arthropods:                | -     |                                      |             |
| Decapods                   |       | X-X                                  |             |
| Ostracodes                 |       | ××                                   |             |
| Barnacles                  |       | ××                                   |             |
| Trilobites (A)             |       | ×                                    |             |
| Echinoderms:               |       | ×——×                                 |             |
|                            |       |                                      |             |

#### SKELETAL COMPOSITIONS

 $\times$  Common  $\bigcirc$  Rare

.

(A) Not based on modern forms

**Figure 5.** Original shell skeletal composition (from Scholle, 1978). Aragonite shells generally lose their microstructure during diagenesis, whereas calcite and Mg-calcite shells retain their microstructure.

#### Cement

- C Calcite A Anhydrite
- S Silica H Halite
- B Bitumen D Dolomite
  - G Gypsum



**Figure 6.** Charts for estimating percentages of angular grains in samples. From Terry and Chilingar (1955).

12



Figure 7. Charts for estimating percentages of irregularly shaped grains of various shapes.

#### FOSSILS AND STRUCTURES: LOWER CRETACEOUS PEARSALL FORMATION

The photographs of slab surfaces and thin sections shown at low magnification on the following pages illustrate a few of the major fossils and structures encountered when logging core. Accompanying the photographs is part of the filled-out logging form for that particular sample. With the exception of the modern examples (figs. 1A, 3A, 4A, 5A, 6A), all illustrations are of core from the Lower Cretaceous Pearsall Formation of South Texas. Publications that illustrate the fossils and grains in carbonate rocks of other areas and geologic ages include those listed below; a more complete list appears in Scholle (1978).

- Azienda Generale Italiana Petroli, Mineraria, 1959, Microfacies Italiane (dal Carbonifero al Mioceno medio): Milan, Italy, S. Donato, 35 p.
- Carozzi, A.-V., Bouroullec, J., Deloffre, R., and Rumeau, J.-L., 1972, Microfacies du Jurassique d'Aquitaine: Bulletin du Centre de Recherche Pau, Spec. Vol. No. 1, 594 p.
- Carozzi, A.-V., and Textoris, D. A., 1967, Paleozoic carbonate microfacies of the eastern stable interior (U.S.A.): Leiden, E. J. Brill, 146 p.
- Cita, M. B., 1965, Jurassic, Cretaceous, and Tertiary microfacies from the southern Alps: Leiden, E. J. Brill, 99 p.
- Cuvillier, Jean, 1961, Stratigraphic correlation by microfacies in western Aquitaine: Leiden, E. J. Brill, 34 p.
- Ford, A. B., and Houbolt, J. J. H. C., 1963, The microfacies of the Cretaceous of Western Venezuela: Leiden, E. J. Brill, 55 p.
- Hagn, Herbert, 1955, Fazies und Mikrofauna der Gesteine der bayerischen Alpen: Leiden, E. J. Brill, 174 p.
- Hanzawa, Shoshiro, 1961, Facies and micro-organisms of the Paleozoic, Mesozoic, and Cenozoic sediments of Japan: Leiden, E. J. Brill, 420 p.
- Horowitz, A. S., and Potter, P. E., 1971, Introductory petrography of fossils: New York, Springer-Verlag, 302 p.
- Majewske, O. P., 1969, Recognition of invertebrate fossil fragments in rocks and thin sections: Leiden, E. J. Brill, 101 p. (plus 106 plates).
- Milliman, J. D., 1974, Marine carbonates: New York, Springer-Verlag, 375 p.
- Rey, M., and Nouet, G., 1958, Microfacies de la région prérifaine et de la moyenne Moulouya (Western Morocco): Leiden, E. J. Brill, 41 p.
- Scholle, P. A., 1978, A color illustrated guide to carbonate rock constituents, textures, cements, and porosities: American Association of Petroleum Geologists Memoir 27, 241 p.
- Wilson, J. L., 1975, Carbonate facies in geologic history: New York, Springer-Verlag, 471 p.

#### ACKNOWLEDGMENTS

We wish to thank L. F. Brown, Jr., and S. C. Ruppel for reviewing this Handbook. Editing was by Amanda R. Masterson. Word processing was by Jana McFarland and typesetting was by Phyllis J. Hopkins, under the supervision of Lucille C. Harrell. Drafting of text figures was by John T. Ames under the supervision of Richard L. Dillon. Text illustration photography was by James A. Morgan; R. G. Loucks provided the photographs of slab surfaces and modern sediments. The Handbook was designed and assembled by Margaret Evans.

#### REFERENCES

- Choquette, P. W., and Pray, L. C., 1970, Geologic nomenclature and classification of porosity in sedimentary carbonates: American Association of Petroleum Geologists Bulletin, v. 54, p. 207-250.
- Dunham, R. J., 1962, Classification of carbonate rocks according to depositional texture, in Ham, W. E., ed., Classification of carbonate rocks: American Association of Petroleum Geologists Memoir 1, p. 108-121.
- Embry, A. R., and Klovan, J. E., 1971, A Late Devonian reef tract on northeastern Banks Island, Northwest Territories: Canadian Petroleum Geologists Bulletin, v. 19, p. 730-781.
- Maiklem, W. R., Bebout, D. G., and Glaister, R. P., 1969, Classification of anhydrite—a practical approach: Canadian Petroleum Geologists Bulletin, v. 17, p. 194-233.
- Milliman, J. D., 1974, Marine carbonates: New York, Springer-Verlag, 375 p.
- Scholle, P. A., 1978, A color illustrated guide to carbonate rock constituents, textures, cements, and porosities: American Association of Petroleum Geologists Memoir 27, 241 p.
- Terry, R. D., and Chilingar, G. V., 1955, Summary of "Concerning some additional aids in studying sedimentary formations," by M. S. Shvetsov: Journal of Sedimentary Petrology, v. 25, p. 229-234.

**Figure 1A.** Modern beach gravel showing whole mollusk shells. When these shells are studied in cores, they must be thought of in two dimensions or in a cross-section configuration. Photographed area is approximately three feet in width.

**Figure 1B.** Large oyster in coralgal-stromatoporoid-rudist packstone. Oyster shells were originally calcite and generally retain their fibrous structure after lithification and diagenesis. Note stromatoporoid (S) and boring (B) in oyster. Tenneco #1 Sirianni (6,127 ft), Frio County, Texas.

| ORE<br>YPE | MINERAL<br>COMPOSITION | VPE OF     | STRUCTU | RES       | TEXTURE | BRIC | GRAIN SIZE<br>(DOLOMITE-<br>CRYSTAL SIZE)                                          | YSTAL | DLOR | sters | Spio LFOSSIO | Prists | SIMIC     | MENT | Martie   |
|------------|------------------------|------------|---------|-----------|---------|------|------------------------------------------------------------------------------------|-------|------|-------|--------------|--------|-----------|------|----------|
| ۵.H        | POROSITY)              | NAT<br>COI | TYPE    | SIZE      |         | FI   | 12<br>12<br>10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>- | SIS   | ö    | Mar.  | MUN CO       | Ru     | Ste<br>Mi | CE   | o land   |
|            |                        |            | $\sim$  |           | 66666.  |      |                                                                                    |       |      |       |              |        |           |      | and the  |
|            |                        |            | - 29    |           | 66666   | P    | eneral (55                                                                         |       | MB   |       |              |        |           |      | T ngga I |
|            |                        |            | $\neg$  |           | 66666   |      | - TOVARTO                                                                          |       |      |       |              |        |           |      |          |
| $\square$  |                        |            |         | $\square$ | 66666:  |      |                                                                                    |       |      |       |              |        |           |      | -        |
|            |                        |            |         |           |         |      |                                                                                    |       |      |       |              |        |           |      |          |
|            |                        |            |         |           |         |      |                                                                                    |       |      |       |              |        |           |      |          |
|            |                        |            |         |           |         |      |                                                                                    |       |      |       |              |        |           |      |          |
|            |                        |            |         |           |         |      |                                                                                    |       |      |       |              |        |           |      |          |
|            |                        |            |         |           |         |      |                                                                                    |       |      |       |              |        |           |      |          |



**1A** 



|           | 2 12 12 12 12 12 12 12 12 |  |
|-----------|---------------------------|--|
|           | A AN AN                   |  |
| 666,      |                           |  |
|           |                           |  |
| T 666W 10 |                           |  |
|           |                           |  |
| 66 6      |                           |  |
|           |                           |  |
|           |                           |  |
|           |                           |  |
|           |                           |  |
|           |                           |  |
|           |                           |  |

**Figure 2A.** Broken oyster and *Chondrodonta* shells in echinoid-mollusk wackestone. Note the fibrous structure of the mollusk shells. Some of the shells are bored (BO) and some have serpulid worm tubes attached (arrow). Tenneco #1 Ney (3,291 ft), Medina County, Texas.

**Figure 2B.** Whole and broken oyster and echinoid fragments in a coated-grain packstone. Note the different sizes and rounding of fragments. Slab surface, x10. Tenneco-Pennzoil #1 Edgar (5,964 ft), Frio County, Texas.

| ww. | MINERAL             | Acro | STRUCTU | RES      |                    | RIC | GRAIN SIZE | TAL  | OR  | rs<br>sks | nus<br>nids<br>hots | sat to | Sun   | ENT |     |
|-----|---------------------|------|---------|----------|--------------------|-----|------------|------|-----|-----------|---------------------|--------|-------|-----|-----|
| POF | (INCL.<br>POROSITY) | CONT | TYPE    | SIZE     | TEXTURE            | FAB |            | CRVS | COL | Mollu     | Multon              | Chick  | Stro. | CEM | 1 5 |
|     |                     |      |         |          | 00006:::           |     |            |      |     |           |                     | T      | TT    |     |     |
|     |                     |      |         |          | 00006''.<br>0006'' | P   |            |      | LB  |           |                     |        |       |     |     |
|     |                     |      |         |          | 0006               |     |            |      |     |           |                     |        |       |     |     |
| H   |                     | Н    |         | $\vdash$ | 000::              |     |            |      | -   |           |                     |        | ++    | +   | -   |
|     |                     |      |         |          |                    |     |            |      |     |           |                     |        |       |     |     |
|     |                     |      |         |          |                    |     |            |      |     |           |                     |        |       |     |     |
|     |                     |      |         |          |                    |     |            |      |     |           |                     |        |       |     |     |
|     |                     |      |         |          |                    |     |            |      |     |           |                     |        |       |     |     |





B

| ALI | GRA | APHIC IN I          | ERI       | AL_     | _    |         |      |                                           | .00            | GE  | D BI. |     | _       | _        | -         |      | - | -    | DATE | _ |
|-----|-----|---------------------|-----------|---------|------|---------|------|-------------------------------------------|----------------|-----|-------|-----|---------|----------|-----------|------|---|------|------|---|
|     | PE  | MINERAL             | RE OF     | STRUCTU | IRES | TEXTURE | BRIC | GRAIN SIZE<br>(DOLOMITE-<br>CRYSTAL SIZE) | STAL           | LOR | usks  | em. | oss oss | the the  | sials     | Sun  | ġ | MENT | ÷.   |   |
|     | a.  | (INCL.<br>POROSITY) | NATU      | TYPE    | SIZE |         | FA   |                                           | S <sup>t</sup> | 0   | Noi V | ECh | milita  | Pro Pros | Ś         | Stre |   | CE   |      |   |
|     |     |                     |           | ~       |      | 66      |      |                                           |                |     |       |     |         |          |           |      |   |      |      |   |
|     |     | I The Party         |           | ъ       |      | 66      |      |                                           |                |     |       |     |         |          |           |      |   | -    |      |   |
|     |     | Inchart in the      |           | -       |      | 66      | W    |                                           |                | DB  |       |     |         |          |           |      |   |      |      |   |
|     |     |                     |           | -0-     |      | 66      |      |                                           |                |     |       |     |         |          |           |      |   |      | 0    |   |
|     |     |                     | $\square$ |         | -    | 66      |      |                                           |                | -   |       |     |         | +        | $\square$ | +    | + |      |      |   |
|     |     |                     |           |         |      |         |      |                                           |                |     |       |     |         |          |           |      |   |      |      |   |
|     |     |                     |           |         |      |         |      |                                           |                |     |       |     |         |          |           |      |   |      |      |   |
|     |     |                     |           |         |      |         |      |                                           |                |     |       |     |         |          |           |      |   |      |      |   |
|     |     |                     |           |         |      |         |      |                                           |                |     |       |     |         |          |           |      |   |      | 1    |   |
|     |     |                     |           |         |      |         |      |                                           |                |     |       |     |         |          |           |      |   |      |      |   |

**Figure 3A.** Modern echinoid (sea urchin) from Florida Bay. After death, echinoids break up into individual plates and spines. Shells are originally Mg-calcite and retain their microstructure.

Figure 3B. Echinoid-mollusk wackestone with whole echinoids (E). Humble #1 Pruitt (9,648 ft), Atascosa County, Texas.

**Figure 3C.** Closeup of individual plates of echinoids in an echinoid grainstone. Slab surface, x10. Tenneco #1 Mack (7,457 ft), Frio County, Texas.

| PE  | MINERAL<br>COMPOSITION | PAC PF | STRUCTU | RES  | TEXTURE  | BRIC | GRAIN SIZE<br>(DOLOMITE- | APE | theres there are the services and the services are the se | S C. |   |
|-----|------------------------|--------|---------|------|----------|------|--------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|
| di- | (INCL.<br>POROSITY)    | NATU   | TYPE    | SIZE |          | FA   |                          | 5 5 | Cyss<br>Prove Prove<br>Prove<br>Prove<br>Prove<br>Cor<br>Cor<br>Cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CE   |   |
|     |                        |        |         |      | 16666666 |      |                          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |   |
|     |                        |        |         |      | 16666666 |      |                          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    |   |
|     |                        |        |         |      | 6666666  |      |                          | 4   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C    |   |
|     |                        |        |         |      | 16666666 |      |                          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -    |   |
|     |                        |        |         |      | 16666666 |      |                          | +   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | - |
|     |                        |        |         |      |          |      |                          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |   |
|     |                        |        |         |      |          |      |                          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |   |
|     |                        |        |         |      | 1.0      |      |                          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |   |
|     |                        |        |         |      |          |      |                          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |   |





**3**A



**3B** 

**3C** 

| YPE | MINERAL   | PACP | STRUCTU | RES  | TEXTURE   | BRIC | GRAIN SIZE<br>(DOLOMITE-<br>CRYSTAL SIZE) | APE | ILOR | cters<br>Wusks | spick | Sin s | els | oms<br>Sc. | MENT |  |
|-----|-----------|------|---------|------|-----------|------|-------------------------------------------|-----|------|----------------|-------|-------------------------------------------|-----|------------|------|--|
| ₫ ⊢ | POROSITY) | NATI | TYPE    | SIZE |           | FA   |                                           | Ś   | 8    | mo.            | ach.  | one                                       | Cor | str        | GE   |  |
|     |           | -    |         |      | 66666     |      |                                           |     |      |                |       |                                           |     |            |      |  |
|     |           |      |         |      | 666666    |      |                                           |     | 1    |                |       |                                           |     |            |      |  |
|     |           |      |         |      | 666666    | P    |                                           | 4   | LB   |                |       |                                           |     |            |      |  |
|     |           |      |         |      | 666666    |      |                                           |     |      |                |       |                                           |     |            |      |  |
|     |           | Π    |         |      |           |      |                                           |     |      |                |       |                                           |     |            |      |  |
|     |           |      |         |      | and a set | .,   |                                           |     |      |                |       |                                           |     |            |      |  |
|     |           |      |         |      |           |      |                                           |     |      |                |       | П                                         |     |            |      |  |
|     |           |      |         |      | 1111 A.   |      |                                           |     |      |                |       |                                           |     |            |      |  |

Figure 4A. Modern serpulid worm tubes from Baffin Bay, Texas. The original composition of the tubes was Mg-calcite, and the original microstructure is preserved.

Figure 4B. Serpulid worm tubes (arrows) in an echinoid-oyster packstone. Note broken oyster shells (dark areas). Tenneco #1 Ney (3,491 ft), Medina County, Texas.

Figure 4C. Serpulid worm tubes in an argillaceous echinoid-mollusk wackestone. Slab surface, x5. Tenneco #2 Kiefer, Zavala County, Texas.

11

| MIN          | ERAL          | AC. PF                                        | STRUCTU                                      | RES                                          |                                              | RIC                                          | GRAIN SIZE                                                       | STAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ser.                                                                                                                                                                     | Poks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S.                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------|---------------|-----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ( II<br>PORC | ICL.<br>SITY) | NATU                                          | TYPE                                         | SIZE                                         | TEXTURE                                      | FAB                                          | 0. 1. 0. 0. 0. 4. 0<br>0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | CRYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | show of the                                                                                                                                                              | Echin Kills                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Onco                                                                                                                                                                 | con con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | STra<br>Mis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              | 43            |                                               |                                              |                                              | 666                                          |                                              |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      | Π                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              | <u> </u>      |                                               |                                              |                                              | 666                                          |                                              |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              | 1.            |                                               |                                              |                                              | 666                                          | W                                            |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| H            |               |                                               |                                              |                                              | 666                                          |                                              |                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |               |                                               |                                              |                                              |                                              |                                              |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |               |                                               |                                              |                                              |                                              |                                              |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |               |                                               |                                              |                                              |                                              |                                              |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |               | MINERAL<br>COMPOSITION<br>(INCL.<br>POROSITY) | MINERAL<br>COMPOSITION<br>(INCL<br>POROSITY) | MINERAL<br>COMPOSITION<br>(INCL<br>POROSITY) | MINERAL<br>COMPOSITION<br>(INCL<br>POROSITY) | MINERAL<br>COMPOSITION<br>(INCL<br>POROSITY) | MINERAL<br>COMPOSITION<br>(INCL.<br>POROSITY)                    | MINERAL<br>COMPOSITION<br>(INCL.<br>POROSITY) STRUCTURES<br>TYPE TEXTURE U GRAIN SIZE<br>(DOLOMITE-<br>CRYSTAL SIZE)   G M n Q N Q G   G M n Q N Q G   G M n Q N Q G   G M n Q N Q G   G M n Q N Q G   G M n Q N Q G   G M n Q N Q G   G M n Q N Q G   G M n Q N Q G   G M n Q N Q G   G M n Q N Q G   G M n Q N Q G   G M n Q N Q G   G M n Q N Q G   G M n Q N Q G   G M n Q N Q G   G M n Q N Q G   G M n Q N Q G   G M n Q N Q G   G M n Q N Q G   G M n Q N Q G   G M n Q N Q G   G M n Q N Q G   G M n Q N Q G   G M n Q N Q G   G M n Q N Q G   G M n Q N Q N Q G   G M n Q N Q N Q G   G M n Q N Q N Q G   G M n Q N Q N Q N Q N Q N Q N Q N Q N Q N Q | MINERAL<br>COMPOSITION<br>(INCL.<br>POROSITY) STRUCTURES<br>TYPE TEXTURE U GRAIN SIZE<br>(DOLOMITE-<br>CRYSTAL SIZE)   GRAIN SIZE<br>(DOLOMITE-<br>CRYSTAL SIZE) GRAIN SIZE<br>(DOLOMITE-<br>CRYSTAL SIZE) GRAIN SIZE<br>(DOLOMITE-<br>CRYSTAL SIZE)   GRAIN SIZE<br>(DOLOMITE-<br>CRYSTAL SIZE) GRAIN SIZE<br>(DOLOMITE-<br>CRYSTAL SIZE)   GRAIN SIZE<br>(DOLOMITE-<br>CRYSTAL SIZE)   GRAIN SIZE<br>(DOLOMITE-<br>CRYSTAL SIZE)   GRAIN SIZE<br>(DOLOMITE-<br>CRYSTAL SIZE)   GRAIN SIZE<br>(DOLOMITE-<br>CRYSTAL SIZE)   GRAIN SIZE<br>(DOLOMITE-<br>CRYSTAL SIZE)   GRAIN SIZE<br>(DOLOMITE-<br>CRYSTAL SIZE)   GRAIN SIZE<br>(DOLOMITE-<br>CRYSTAL SIZE)   GRAIN SIZE<br>(SIZE)   GRAIN SIZE<br>(SIZE) | MINERAL<br>COMPOSITION<br>(INCL<br>POROSITY) STRUCTURES<br>TYPE TEXTURE U<br>B<br>B<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | MINERAL<br>COMPOSITION<br>(INCL.<br>POROSITY) STRUCTURES<br>TYPE TEXTURE D<br>TEXTURE < | MINERAL<br>COMPOSITION<br>(INCL.<br>POROSITY) STRUCTURES<br>TYPE TEXTURE U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U | MINERAL<br>COMPOSITION<br>(INCL.<br>POROSITY) STRUCTURES<br>TYPE TEXTURE Umage<br>U GRAIN SIZE<br>(DOLOMITE-<br>CRYSTAL SIZE) M<br>E<br>S < | MINERAL<br>COMPOSITION<br>(INCL.<br>POROSITY) STRUCTURES<br>TYPE TEXTURE Understand<br>Understand GRAIN SIZE<br>(DOLOMITE-<br>CRYSTAL SIZE) Me<br>Soft<br>Soft<br>Soft<br>Soft Me<br>Soft<br>Soft<br>Soft   Image: Structures<br>(IMCL.<br>POROSITY) TYPE Image: Structures<br>Soft<br>Soft Image: Structures<br>Soft<br>Soft Image: Structures<br>Soft<br>Soft Image: Structures<br>Soft<br>Soft Image: Structures<br>Soft Image: Structures<br>Sof | MINERAL<br>COMPOSITION<br>(INCL.<br>POROSITY) STRUCTURES<br>TYPE TEXTURE Organization<br>(Incl.<br>POROSITY) GRAIN SIZE<br>(DOLOMITE-<br>CRYSTAL SIZE) Image: Crystal Size<br>(DOLOMITE-<br>CRYSTAL | MINERAL<br>COMPOSITION<br>(INCL.<br>POROSITY) STRUCTURES<br>TYPE TEXTURE Organization<br>(INCL.<br>POROSITY) GRAIN SIZE<br>(DOLOMITE-<br>CRYSTAL SIZE) Image: Crystal Size<br>(DOLOMITE-<br>CRYSTAL |





**4B** 

**C** 

Figure 5A. Modern ooid sand from Bermuda.

Figure 5B. Crossbedded, ooid-skeletal grainstone. Ooid grainstones are commonly crossbedded, reflecting high-energy environment of deposition. Tenneco #1 Mack (7,457 ft), Frio County, Texas.

Figure 5C. Ooid rims with nuclei of red-algae, echinoid, and mollusk grains. Thin section, x15.

| WELL _ | Figure     | 5B    | and | C |
|--------|------------|-------|-----|---|
| STRATI | GRAPHIC IN | TERVA |     |   |

| ATIGRA     | APHIC INT | ER     | VAL _    | _    |         |      | L0                                                                       | G   | GE   | D BY                                                       |                              | _    | DATE |
|------------|-----------|--------|----------|------|---------|------|--------------------------------------------------------------------------|-----|------|------------------------------------------------------------|------------------------------|------|------|
| ORE<br>YPE | MINERAL   | PAC PF | STRUCTU  | RES  | TEXTURE | BRIC | GRAIN SIZE<br>(DOLOMITE-<br>CRYSTAL SIZE)                                | APE | ILOR | ters<br>thers<br>instants<br>instants<br>instants<br>inter | clists<br>rals<br>ams<br>sc. | MENT |      |
| ά⊢         | POROSITY) | NAT    | TYPE     | SIZE | WALD P  | FA   | -01<br>-12<br>-12<br>-12<br>-12<br>-12<br>-12<br>-12<br>-12<br>-12<br>-1 | S   | 8    | Oyo<br>Mo.<br>Ecs<br>Mill<br>Onc                           | \$ 20 F                      | CE   |      |
| 1.1        |           | 1      | 777      |      | 000/66  |      | 1                                                                        |     |      |                                                            |                              |      |      |
|            |           |        |          |      | 000666  |      |                                                                          |     |      |                                                            |                              |      |      |
|            |           |        | $\nabla$ |      | 000 666 | 9    |                                                                          |     | LB   |                                                            |                              | С    |      |
|            |           |        | au       |      | 000 666 |      |                                                                          |     |      |                                                            |                              |      |      |
|            |           |        |          |      | 0000000 |      |                                                                          | 1   |      |                                                            |                              |      |      |
|            |           |        |          |      |         |      |                                                                          |     |      |                                                            |                              |      |      |
|            |           |        | -        |      |         |      |                                                                          |     |      |                                                            |                              | 00   |      |
|            |           |        |          |      |         |      |                                                                          |     |      |                                                            | -                            |      |      |
|            |           |        |          |      |         |      | 100                                                                      |     |      |                                                            |                              |      |      |



A





**5B** 

C

**Figure 6A.** Modern oncolites from a moderate-energy area in Florida Bay. The blue-green algae coat mollusk shells and trap carbonate mud, which is preserved as irregular laminae.

Figure 6B. Oncolite packstone. Most of the coated grains are mollusk fragments. Tenneco #1 Powell (4,771 ft), Medina County, Texas.

| ww. | MINERAL             | Acor         | STRUCTU | RES  |              | RIC | GRAIN SIZE | W   | N | and the second                                                    | ENT |
|-----|---------------------|--------------|---------|------|--------------|-----|------------|-----|---|-------------------------------------------------------------------|-----|
| POI | (INCL.<br>POROSITY) | NAUT<br>CONT | TYPE    | SIZE | TEXTURE      | FAB |            | SHI | č | Cyss<br>malle<br>worn<br>techin<br>fredis<br>Cora<br>Stra<br>Stra | CEM |
|     |                     |              |         | Π    | 0000         |     |            | Τ   |   |                                                                   |     |
|     |                     |              |         |      | 0000         |     | 1/1        |     | 2 |                                                                   |     |
|     |                     |              |         |      | 6966<br>6866 | P   |            | (   | С |                                                                   |     |
|     |                     |              |         |      | 0006<br>0006 | 3   |            |     |   |                                                                   |     |
|     |                     | $\square$    |         | Π    |              |     |            | T   |   |                                                                   |     |
|     |                     |              |         |      |              |     |            |     |   |                                                                   |     |
|     |                     |              |         |      |              |     |            |     | 4 |                                                                   |     |
|     |                     |              |         |      |              |     | * - z - 1  |     |   |                                                                   | 3   |



**6A** 



Figure 7A. Closeup of oncolites in oncolite packstone. Note the irregular laminae around grains. Thin section, x10. Tenneco #1 Powell (4,771 ft), Medina County, Texas.

Figure 7B. Closeup of oncolites. The light spots (arrows) are encrusting foraminifers. Slab surface, x15. Tenneco #1 Powell (4,771 ft), Medina County, Texas.

| IGR/ | APHIC INT                                     | ERI      | /AL _   | -    |                | _      | LOG                                       | GE    | D BY                                                                                         | DATE   |
|------|-----------------------------------------------|----------|---------|------|----------------|--------|-------------------------------------------|-------|----------------------------------------------------------------------------------------------|--------|
| PORE | MINERAL<br>COMPOSITION<br>(INCL.<br>POROSITY) | CON PACT | STRUCTU | IRES | TEXTURE        | FABRIC | GRAIN SIZE<br>(DOLOMITE-<br>CRYSTAL SIZE) | COLOR | Pysters<br>Pullods<br>Vorans<br>Chinoù<br>Millod's<br>Rudists<br>Corols<br>Strains<br>Misco. | CEMENT |
|      |                                               | 2        |         | S    | 66666          |        |                                           |       |                                                                                              | -      |
|      |                                               |          |         |      | 06666 ···      |        |                                           |       |                                                                                              |        |
|      |                                               |          |         |      | 66666<br>66666 | P      |                                           | C     |                                                                                              |        |
|      | <br>                                          |          |         |      | 06666          |        |                                           |       |                                                                                              |        |
|      |                                               |          |         | -    | 066665.        | -      | 1/1/4                                     | -     |                                                                                              |        |
|      |                                               |          |         |      |                |        |                                           |       |                                                                                              |        |
|      |                                               |          |         |      |                |        |                                           |       |                                                                                              | _      |
|      |                                               |          |         |      |                |        | 1                                         |       |                                                                                              |        |



A



**7B** 

Figure 8A. Branching stick coral (Acropora cervicornus) from the Florida reef tract.

**Figure 8B.** Coral framestone. The corals shown on the slab are from a single branching colony. A wackestone matrix fills in between the branching coral. Tenneco #1 Sirianni (6,180 ft), Frio County, Texas.

| PE | MINERAL<br>COMPOSITION | PAC PF | STRUCTU | IRES | TEXTIRE | BRIC | GRAIN SIZE<br>(DOLOMITE-<br>CRYSTAL SIZE) | STAL | LOR | 2 the CFOSSILS                             | sc   | MENT |                 |
|----|------------------------|--------|---------|------|---------|------|-------------------------------------------|------|-----|--------------------------------------------|------|------|-----------------|
| 8t | (INCL.<br>POROSITY)    | NAVU   | TYPE    | SIZE | TEATONE | FAE  |                                           | CRY  | CO  | Oys<br>Mall<br>Wol<br>Mall<br>Mall<br>Mall | Stra | CEN  |                 |
|    |                        |        | ##      |      | 6666    |      |                                           |      |     |                                            |      |      |                 |
|    |                        |        | -##     |      | 6666    |      | 1.0                                       |      |     |                                            |      |      |                 |
|    |                        |        | -##     |      | 6666    | F    |                                           |      | LB  |                                            |      |      | 1.1             |
|    |                        |        | #       |      | 6666    |      |                                           |      |     |                                            |      |      | 1.1             |
| 1  |                        |        |         |      | 6666    |      |                                           |      |     |                                            |      |      |                 |
|    |                        |        |         |      |         |      |                                           |      |     |                                            |      |      | 1.1.1.1.1.1.1.1 |
|    |                        |        |         |      |         |      |                                           |      |     |                                            |      |      | 1.11            |
|    |                        |        |         |      | 2.      |      |                                           |      |     |                                            |      |      |                 |

30



A



**Figure 9A.** Branching and massive corals from the reef tract on the east side of the Great Bahama Bank. The photographed area is approximately 10 ft in width.

**Figure 9B.** Part of a massive coral from a coralgal-stromatoporoid-rudist framestone. Coral contains vuggy porosity (V), and packstone matrix has minor moldic porosity (M). Tenneco #1 Wilson (4,323 ft), Medina County, Texas.

| PORE      | MINERAL<br>COMPOSITION<br>(INCL. | JUBE OF | STRUCTU | RES | TEXTURE                                             | FABRIC | GRAIN SIZE<br>(DOLOMITE-<br>CRYSTAL SIZE) | SHAPE | COLOR | ysters<br>bullists<br>orms<br>hinoits<br>hinoits<br>bullists<br>orals<br>treans<br>treans<br>treans<br>treans<br>treans |
|-----------|----------------------------------|---------|---------|-----|-----------------------------------------------------|--------|-------------------------------------------|-------|-------|-------------------------------------------------------------------------------------------------------------------------|
| Vuq<br>MO |                                  |         |         | 8   | 6666666<br>6666666<br>6666666<br>6666666<br>6666666 | F      |                                           |       | LB    |                                                                                                                         |
|           |                                  |         |         |     |                                                     |        |                                           |       |       |                                                                                                                         |



A



**Figure 10A.** Massive coral on a core surface. This scleractinian coral, which covers the entire illustrated surface, was originally made up of aragonite and during diagenesis lost most of its internal structure upon neomorphism to calcite. Tenneco #1 Sirianni (6,287 ft), Frio County, Texas. Slabbed surface, X2.

**Figure 10B.** Closeup of a small stick coral (SC) in core slab of coral-echinoid-mollusk grainstone. Tenneco #1 Ney (3,422 ft), Medina County, Texas. Slabbed surface, X5.

| WELL | Figure<br>APHIC INT              | <u>/C</u> | VAL_    |      |         |        | L                                         | .00   | GE    | D BY |                                                |                          |        | DATE |
|------|----------------------------------|-----------|---------|------|---------|--------|-------------------------------------------|-------|-------|------|------------------------------------------------|--------------------------|--------|------|
| PORE | MINERAL<br>COMPOSITION<br>(INCL. | SN PAC    | STRUCTU | JRES | TEXTURE | FABRIC | GRAIN SIZE<br>(DOLOMITE-<br>CRYSTAL SIZE) | SHAPE | COLOR | ster | sorras<br>sorras<br>sorras<br>sorras<br>sorras | Scals<br>troms<br>Phisc. | CEMENT | -    |
|      |                                  |           | TYPE    | 212  |         | G      |                                           | 0     | С     | 020  | 10 10 10 10 10 10 10 10 10 10 10 10 10 1       | 20<br>25<br>0            | C      |      |



## **10A**



## **10B**

| 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | MINERAL             | Acpr | STRUCTU | RES  |                                                          | RIC | GRAIN SIZE    | PEL  | N   | 15    | 775    | inor<br>inor<br>inter<br>iter | ists | ems<br>c. | ENT |  |
|---------------------------------------------------------------------------------------------|---------------------|------|---------|------|----------------------------------------------------------|-----|---------------|------|-----|-------|--------|-------------------------------|------|-----------|-----|--|
| POL                                                                                         | (INCL.<br>POROSITY) | CON  | TYPE    | SIZE | TEXTURE                                                  | FAB | O N I O O O O | CRVS | COL | ayste | Work , | Reh<br>Mile                   | Rud  | Sto.      | CEM |  |
|                                                                                             |                     |      | # #     |      | 664444<br>666666<br>666666<br>666666<br>666666<br>666666 | F   |               |      | LB  |       |        | Radiolites                    |      |           |     |  |
|                                                                                             |                     |      |         |      |                                                          |     |               |      |     |       |        |                               |      |           |     |  |
|                                                                                             |                     |      |         |      |                                                          |     |               |      |     |       |        |                               |      |           |     |  |

**Figure 11A.** *Radiolites* (a massive rudist characteristic of a high-energy environment) occurring in a coralgal-stromatoporoid-rudist framestone. The rudist is bored by pholad pelecypods (P). Tenneco #1 Sirianni (6,187 ft), Frio County, Texas.

Figure 11B. Closeup of the *Radiolites* in figure 11A showing irregular tabulate structure. Slabbed surface, X10.



**11A** 

**B** 

|              | APHIC INT                                     | 2A<br>ERV | AL_             | 2         |         |        | L                                                                                    | .00     | GE    | D BY                                                    |                   |                 |        | DATE |
|--------------|-----------------------------------------------|-----------|-----------------|-----------|---------|--------|--------------------------------------------------------------------------------------|---------|-------|---------------------------------------------------------|-------------------|-----------------|--------|------|
| PORE<br>TYPE | MINERAL<br>COMPOSITION<br>(INCL.<br>POROSITY) | NATUBE OF | STRUCTU<br>TYPE | IRES JZIS | TEXTURE | FABRIC | GRAIN SIZE<br>(DOLOMITE-<br>CRYSTAL SIZE)<br>더 더 다 다 더 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 | CRYSTAL | COLOR | Oysters<br>Mallusks<br>Warms<br>Eclingaids<br>Multipeds | Kudists<br>Corals | Strams<br>Misc. | CEMENT |      |
|              |                                               |           | Mn<br>m/n       |           |         | W      |                                                                                      |         | С     | Townscide                                               |                   |                 |        |      |
|              |                                               |           |                 |           |         |        |                                                                                      |         |       |                                                         |                   |                 |        |      |

Figure 12A. Toucasiid wackestone. Whole and broken toucasiid shells occur in mud matrix cut by microstylolites (arrow). Tenneco #1 Ney (3,414 ft), Medina County, Texas.

Figure 12B. Burrowed (BU) argillaceous echinoid-mollusk wackestone.

| YPE | MINERAL   | VBE OF     | STRUCTU | RES  | TEXTURE | BRIC | GRAIN SIZE<br>(DOLOMITE-<br>CRYSTAL SIZE) | YSTAL | DLOR | tees | ems | \$01 FOU | sit's | ists<br>irals | sens<br>se. | MENT |   |
|-----|-----------|------------|---------|------|---------|------|-------------------------------------------|-------|------|------|-----|----------|-------|---------------|-------------|------|---|
| 41- | POROSITY) | NAT<br>CON | TYPE    | SIZE |         | FA   |                                           | SIS   | 8    | 000  | 5.6 | Will     | onc   | Por Co        | St          | 8    |   |
|     |           |            | -5-     |      | 666     |      |                                           |       |      |      |     |          |       |               |             |      |   |
|     |           |            | ~       |      | 666     | 14   |                                           |       | DR   |      |     |          |       |               |             |      |   |
|     |           | 3          |         |      | 466     | ~    |                                           |       | PB   |      |     |          |       |               |             |      |   |
|     |           |            | ν×      |      | 6266    |      |                                           |       |      |      |     |          |       |               |             |      | 1 |
|     |           |            |         |      |         |      |                                           |       |      |      |     |          |       |               |             |      |   |
|     |           |            |         |      |         |      |                                           |       |      |      |     |          |       |               |             |      |   |
| 1   |           |            |         |      |         |      |                                           |       |      |      |     |          |       |               |             |      |   |
|     |           |            |         |      |         |      |                                           |       |      |      |     | 1        |       |               |             |      |   |
|     |           |            |         |      | -       |      |                                           |       |      |      |     |          |       |               |             |      |   |



12A



| WELL . | IGRA         | Eigure .<br>APHIC INT            | 13<br>ER | VAL _     |     |         |        | L0                                        | OG    | GE    |                                                                   | DATE                                          |        |  |  |  |
|--------|--------------|----------------------------------|----------|-----------|-----|---------|--------|-------------------------------------------|-------|-------|-------------------------------------------------------------------|-----------------------------------------------|--------|--|--|--|
|        | PORE<br>TYPE | MINERAL<br>COMPOSITION<br>(INCL. | NUBE OF  | STRUCTU   | RES | TEXTURE | FABRIC | GRAIN SIZE<br>(DOLOMITE-<br>CRYSTAL SIZE) | SHAPE | COLOR | ysters<br>Jallusks<br>Vorms<br>Chineids<br>Chineids<br>Villolitis | udists<br>understs<br>orals<br>troms<br>mise. | CEMENT |  |  |  |
|        |              |                                  | N        | 2 A A A S | 15  |         | W      |                                           |       | MB    | 0000000                                                           | 4 3 S V                                       |        |  |  |  |

**Figure 13A.** Mixed terrigenous mudstone (M)/lime wackestone (W). Nodular bedding is mainly from differential compaction and burrowing. Tenneco #1 Kiefer (7,727 ft), Zavala County, Texas.

**Figure 13B.** Mixed terrigenous mudstone/lime wackestone. Sequence in slab shows (1) burrowed argillaceous echinoid-mollusk wackestone, (2) fossiliferous terrigenous mudstone, (3) argillaceous echinoid-mollusk wackestone, and (4) mudstone. Tenneco #1 Kiefer (7,727 ft), Zavala County, Texas.

40



**13A** 



**13B** 

| ww  | MINERAL             | Acro | STRUCTU | JRES |         | RIC | GRAIN SIZE | TAL  | N   | FOREUR | ENT |   |
|-----|---------------------|------|---------|------|---------|-----|------------|------|-----|--------|-----|---|
| POL | (INCL.<br>POROSITY) | NATU | TYPE    | SIZE | TEXTURE | FAB |            | CRYS | COL |        | CEM | - |
|     |                     |      | =       |      |         |     |            | ×    |     |        |     |   |
|     |                     |      | =       |      |         |     |            | 105  |     |        |     |   |
|     |                     |      |         | tt   |         |     |            |      |     |        |     |   |
|     |                     |      |         |      |         |     |            |      |     |        |     |   |

Figure 14A. Fissile clay-shale with thin siltstone layer. Tenneco-Pennzoil #1 Edgar (5,892 ft), Frio County, Texas.

**Figure 14B and C.** Stylolites (arrows). Stylolites are the result of pressure solution, which takes place after burial and lithification. B. Tenneco #1 Stoker (7,238 ft). C. Tenneco #1 Ney (3,422 ft), Medina County, Texas.



14A



14**B** 

**14C** 

| WELL   |              |                                  |          |         |      |         |       | COUNTY                                    |       |       |     | <br> |       | -   | - ' | STA | TE    |     |  |
|--------|--------------|----------------------------------|----------|---------|------|---------|-------|-------------------------------------------|-------|-------|-----|------|-------|-----|-----|-----|-------|-----|--|
| STRATI | GRA          | PHIC INTERV                      | AL       |         |      |         |       |                                           | LOO   | GGE   | DB  | <br> |       |     |     |     | _ D   | ATE |  |
|        | PORE<br>TYPE | MINERAL<br>COMPOSITION<br>(INCL. | UTURE OF | STRUCTU | RES  | TEXTURE | ABRIC | GRAIN SIZE<br>(DOLOMITE-<br>CRYSTAL SIZE) | SHAPE | COLOR |     | FC   | SSILS |     |     | _   | EMENT |     |  |
|        |              | POROSITY)                        | NA C     | TYPE    | SIZE |         | -     |                                           | 0     |       |     |      |       |     |     |     | 0     |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     | <br> |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         | -    |         |       |                                           |       |       | -   |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  | -        |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       | -   |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       | -   |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           | -     |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  | -        |         | -    |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  | -        |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           | -     |       | +   |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           | -     |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        |              |                                  |          |         |      |         |       |                                           |       |       |     |      |       |     |     |     |       |     |  |
|        | 1.1.1        |                                  |          |         | 1.1  |         |       |                                           |       | 1.1   | 1.1 |      | 111   | 1.1 |     |     |       |     |  |