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Abstract 
 

Renting a perfect apartment can be a hassle. There are plenty of features people 

care about when it comes to finding the apartment, such as price, hardwood floor, dog 

park, laundry room, etc. Being able to predict people’s interest level on an apartment 

will help the rental agency better handle fraud control, identify potential listing quality 

issues, and allow owners and agents to understand renters’ needs and preferences. 

RentHop, an apartment search engine, along with 2 Sigma, introduced this 

multiple classification problem in the Kaggle community. It provides the opportunity to 

use owners’ data to predict the interest level of their apartments on its website. 

This report attempts to find a pattern of people’s interest level towards rental 

listing on the website using the dataset from the Kaggle competition. Multiple features 

are derived from the original dataset. Several common data mining and machine 

learning techniques are used to improve the accuracy of the predicting model. The final 

result is evaluated using Log loss function.  
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Introduction 

Data driven solutions have become important to many businesses. For instance, 

companies use costumers’ data to recommend new products, cast specific advertisement 

and detect fraud. This paper will focus on using statistical models and data mining 

methods to predict the level of interest of customers towards a rental listing online. Being 

able to predict people’s interest level on an apartment will help the rental agency better 

handle fraud control, identify potential listing quality issues, and allow owners and agents 

to understand renters’ needs and preferences. 

Kaggle is a community to solve the most interesting and sensitive business 

problems using machine learning and data mining for large business corporations. 

RentHop, an apartment search engine, introduced this multiple classification problem in 

the Kaggle community. It provides the opportunity to use owners’ data to predict the 

interest level of their apartments on its website.  

       This project aims to predict rental listings’ interest levels using the data provided 

in the competition.  There are 3 possible outcomes for the interest levels, namely 'high', 

'medium' and 'low'. Therefore, it is a multiclass classification problem. Several features 

are provided to develop machine learning models including price, number of bedroom, 

number of bathroom, time the listing created, manager ID, description of the apartment, 

photos, longitude, latitude, displayed address on the website, the actual detailed address, 

key features about the apartment, etc. The feature names and corresponding types are 

provided in Table 1.  
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Table 1.  Features in the dataset 

Feature name Feature type 

bathrooms Numerical 

Bedrooms Numerical 

Building ID 

Created 

Categorical 

Numerical 

Description Text 

Display Address Text 

Features Text 

Latitude Numerical 

Longitude Numerical 

Manager ID 

Photos 

Categorical 

Image 

Price Numerical 

Street Address Text 

Interested Level Categorical 
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CHAPTER 1: Data Exploration  

1. Interest Level 

The variable interest level is the variable we are going to predict. Examining this 

feature closely will help us determine the prediction baseline. From Figure 1. Distribution 

of Interest LevelFigure 1, it is noted that the interest level ‘low’ takes 69% of all the 

interest levels, while the interest level ‘high’ only takes 7.8%. This indicates that most of 

the apartments in the website are of low interest for users.Only a few apartments that 

really draw high attention from the customers.   

 

 

Figure 1. Distribution of Interest Level 

 

 

 



4 

2. Price  

The price of an apartment in the website represents the rental price the tenants 

need to pay per month.  This is an important indicator of the interest level for potential 

customers. Analyzing the price distribution of the dataset will give us an overview of the 

price in the data set.  

The distribution of price with outliers removed is shown in Figure 2.Distribution of 

Listing Price with outliers removed The outliers in the distribution have prices larger than 

20000 USD per month. From the distribution, the average price for renting an apartment 

is around 2700 per month. It has a long right tail, which indicates that there are several 

cases the prices for renting is very large. Most data points fall in the range 2000 to 8000 

USD per month.  

 

 

Figure 2.Distribution of Listing Price with outliers removed 
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By plotting the prices across different interest levels, we can see if prices and 

interest levels are correlated. To validate their correlation, an ANOVA test is conducted 

to see if there is a significant effect between prices and interest level. 

From Figure 3. Listing Prices across Interest Level, we can see the price distributions 

are different for different interest levels. For ‘low’ Interest level, the mean and median 

price are apparently higher than that of ‘high’ Interest level. The distribution indicates 

people have high interest towards listings that have lower prices. To find out whether the 

prices are truly different across different interest levels, ANOVA test is conducted.  

 

Figure 3. Listing Prices across Interest Level 

A one-way ANOVA was conducted to compare the effect of Interest Level on prices 

in ‘low’, ’medium’, ’high’ interest level. The result of ANOVA test is shown in Table 2. 

There is a significant effect of Interest Level on prices at the 𝑝 < .05 level for the three 

conditions [𝐹(2, 49349)  =  14.46, 𝑝 = 5.26 ∗ 𝑒 − 07]. 
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Table 2.  One-way ANOVA result 

 Sum of 

squares 

DF Mean 

Square 

F Sig. 

Between 

Groups 

1.4e+10 2 7.039e+09 14.46 5.26e-07 

Within 

Groups 

2.4e+13 49349 4.867e+08   

Total 2.4e+13 49351    

 

This result confirms the assumption that apartment with lower prices will be of higher 

interest to the customers browsing the website. 

 

3. Longitude & Latitude  

The dataset contains the longitude and latitude for every apartment on the 

website. Specifically, the apartments are all from New York city. By plotting longitude and 

latitude of apartments, we can get the location information of the apartments in the 

dataset. From Figure 4. Interest levels on locations, we can see that most apartments of 

low interest are gathered around the center of the figure, while some apartments of high 

interest are spread with some of them located on the outside of the center.  
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Figure 4. Interest levels on locations 

 

4. Number of Bedroom 

In this dataset, the number of bedroom indicates how many bedrooms an 

apartment has. The distribution of number of bedroom is plotted in Figure 5. It shows the 

patterns of number of bedroom is generally consistent across different interest levels. 

There are more apartments with 1 or 2 bedrooms for low interest listings. For listing of 

high interest, the largest group are the apartments with 2 bedrooms.  
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Figure 5.Number of bedrooms across Interest Level 

 

 

5. Number of Bathroom 

By plotting number of bathroom across different interest levels, we can see that 

most apartments of high interest contain 1 bathroom. The bathroom numbers of 

apartment of low and medium interest contains a larger range of numbers of bathroom. 

This correspond to the finding that apartments with high interest are generally in lower 

price, which excluded fancy apartment with multiple bathrooms.  

 

Figure 6.Number of bathrooms across Interest Level 

 



9 

CHAPTER 2: Feature Engineering 

1. High-cardinality Features  

High cardinality refers to the features that contain a large amount of categorical 

values. Typical examples of high cardinality features include email address, zip code, ID, 

etc. There are 2 features that are of high cardinality, manger ID and building ID.  The 

following table states the number of unique values for each variable. 

 

Table 3.  The number of unique values in Manager ID and Building ID 

 Manager ID Building ID 

Number of unique values 3481 7585 

Proportion of unique 

values 

7.05% 15.37% 

 

From Table 3, we can see that the cardinality of each feature is not that high. These 

features are informative, since probably some managers are good at management that 

the rental listing he/she manages intrigue more interest from customers. Or some 

buildings are at good locations that appealing to customers.  

There are several common methods to deal with high cardinality features, 

including one-hot encoding, semantic grouping and supervised ratio. 
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a. One hot encoding/Dummy coding 

One hot encoding or dummy coding is a common method to deal with nominal 

data. The method transforms the original feature with N categories into N binary columns. 

These new columns contain either 0 or 1, with 0 means there is no such category in the 

original feature, and vice versa. This method preserves the information of original feature, 

but it adds more dimensions to the original dataset.  

 

b. Semantic Grouping 

The aim of semantic grouping is to identify logical groups from high cardinality 

data. One benefit is that it reduces the number of unique values from the feature. In this 

dataset, semantic grouping can be applied to the longitude and latitude features. This will 

be included in the Geospatial analysis in the later section.  

 

c. Supervised ratio 

This technique will use the target outcome, the variable we are trying to predict, 

along with the high cardinality feature to calculate new continuous features. Since the 

new variables contain the information from outcome variable, it is considerably easy to 

overfit the data.   

𝑂𝑃𝑖 =
𝐴𝑖

𝐴𝑖 + 𝐵𝑖 + 𝐶𝑖

   

One assumption made when using this technique is that rental listing with the 

same manager will have similar percentage of outcome. 
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Table 4. Example of Supervised Ratio 

Manager ID Manager 

Level Low 

Manager 

Level Medium 

Manager 

Level High 

565 0.361 0.397 0.241 

2817 0.44 0.52 0.04 

3959 0.679 0.251 0.069 

4237 0.88 0.11 0 

2054 0.98 0.019 0 

 

 

Figure 7. Interest Level ratio of 5 managers  

 

2. Geospatial features  

There are two features in our dataset, longitude and latitude, that cannot be 

directly used in our model since its actual meaning is beyond these numerical variables. 

Since the dataset contains rental listings only in New York, one way to deal with it is to 
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use neighborhood information extracted from longitude and longitude. 7 categories are 

derived from the original longitude and latitude features: Uptown, Queens, Midtown, 

Kings, Downtown, Between midtown and uptown, others. Dummy encoding is used to 

indicate which neighborhood each apartment listing belongs to. We are going to use the 

new derived features about district instead of latitude and longitude in the model.  

 

Figure 8. New features district on the map 

 

 

Table 5. New Neighborhood features derived from latitude and longitude 

Listing 

ID 

Uptown Queens Midtown Kings Downtown Between 
midtown 
and uptown 

7170325 0 0 0 1 0 0 

7092344 0 0 1 0 0 0 

7158677 0 0 1 0 0 0 

7140668 0 0 0 0 1 0 

7126989 0 0 0 0 0 0 
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3. Difference Between Address 

One interesting thing in the dataset is that there are 2 features represent address 

of the listing apartments. One is displayed address, the address shown on the website. 

The other one is street address, which contains the actual detailed address of the listing 

apartments. Since both addresses are provided, a variable describing their difference is 

created and used as a new feature in the model. The technique used to describe their 

difference between is Levenshtein distance. Mathematically, the Levenshtein distance 

between two strings 𝑎, 𝑏 is given by 𝐿𝑒𝑣(𝑎, 𝑏),where 

 

The new feature ‘similarity’ captures the difference between street address and 

display address, which is shown in Table 6. 

Table 6. Similarity Features Derived from Street Address and Display 

Address 

Street address Display address Similarity 

1661 york avenue york avenue 0.6875000 

410 east 13th street east 13th street 0.8000000 

170 east 18th street 18th street 0.550000 

145 borinquen place 145 borinquen place 1.000000 

 

 



14 

4. Sentimental Analysis  

Sentiment analysis is a method using natural language processing to identify 

whether a piece of information is positive, negative or neutral. Since the feature 

“Description” in the data set contains very rich information about the apartment, 

sentiment analysis is used to evaluate whether description about the apartment on listing 

is positive or negative. 

The sentiment analysis showed that in the dataset, anticipation, joy, and trust take 

the majority portion of the whole sentiment result. This aligns with the fact that the 

description for the apartment is generally positive and aims to be appealing to customers.  

 

Table 7. Sentimental Features Derived from Description 

Llisting 

ID 

anticipatio

n 

disgust fear joy sadness surprise trust anger 

7170325 0 0 0 1 0 0 0 1 

7092344 2 1 1 4 0 1 6 0 

7158677 2 0 0 2 0 0 1 0 

7211212 3 0 0 1 0 2 4 0 

7225292 2 0 1 2 2 0 1 0 
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Figure 9. Pie chart of sentiment features 

5. Basic numerical feature  

In addition to the methods used above, some basic features are derived from the 

original dataset. Features Photos, Features, Descriptions contain numbers of items, so 

new features derived from calculating how many items are there in each feature. 3 

features, namely number of photos, number of features, number of description words, 

are calculated from the original ones to describe the number of things in one listing.  

Another feature derived is the price per room. It is calculated using the equation: 

𝑃𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝑟𝑜𝑜𝑚 =
Price

Number of bathrooms + Number of bedrooms
 

This feature captures the price for a listing per room. It is probably a better way to 

describe the value customers are going to get by paying certain price. The newly derived 

features are shown in Table 8. Basic numerical features 
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Table 8. Basic numerical features 

Listing ID Price per room Number of 

photos 

Number 

of features 

Number of  

Description words 

7170325 2400 12 7 77 

7092344 1900 6 6 131 

7158677 1747.5 6 6 119 

7211212 1000 5 0 95 

7225292 Inf 4 4 41 
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CHAPTER 3: Modeling 

1. Random forest  

Random forest is a popular ensemble methods of bootstrap aggregating(bagging). 

It grows many classification trees and chooses the classification having the most votes to 

be the final prediction, which eliminates the overfitting issue of decision trees. The 

algorithm contains 2 major part, tree bagging and feature bagging. 

Random forest builds each tree by taking a subsample with replacement from the 

original dataset. Suppose there are N samples from the original dataset, random forest 

will take M samples from N original data with replacement. It will them use these M 

samples to build one decision tree. And it will continue to do it until it has a forest.  

This bootstrapping method will decrease the variance of the model without 

increasing bias. One single decision is very likely to be overfitting due to the noise from 

the dataset, while having multiple trees will eliminate this issue.  

To reduce the noise, it is optimal to have trees that are not correlated. If there are 

several features that are strong predictors of the outcome, many trees will choose them 

as the input variable. This will cause trees to be highly correlated and will not reduce the 

noise from the original data. To solve this problem, random forest will select a subset of 

features when building each tree, this method is known as feature bagging.  

2. Gradient boosting 
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a. Introduction 

There are 3 common ensemble methods in machine learning: Bagging, Boosting, 

Stacking. Bagging, stands for ‘Bootstrap Aggregating’, is an algorithm creating multiple 

models using sub-samples from the original dataset. Boosting is a method that combine 

weak models into a strong one. Stacking is a way that use the predicted values from 

several models as the training set to train a new better performing model using new 

machine learning methods.  

Gradient boosting is an algorithm in combination of gradient descent and 

boosting.  Gradient descent is an algorithm to find a local minimum of a function by 

taking steps proportional to the negative of the gradient of the function at the current 

point. Boosting is a family of machine learning algorithms that combine weak learners to 

a strong one. This family of algorithm can reduce bias and variance at the same time in 

supervised learning.  

Gradient boosting optimizes a cost function over function space by iteratively 

choosing a function that points in the negative gradient direction. This functional gradient 

view of boosting has led to the development of boosting algorithms in many areas of 

machine learning and statistics beyond regression and classification. 

That means, within each iteration, gradient boosting introduces a weak learner to 

compensate the shortcomings of existing weak learners, hence, dramatically improved 

the model performance.  It is an efficient algorithm to solve regression, classification, 

and ranking problems. For this classification problem, the gradient boosting tree(GBT) 

model is used for prediction. 
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b. Implementation 

The algorithm trains weak learners sequentially. It initiates constant values as 

prediction of 𝑦𝑖 , which is apparently a weak learner. After initiation, within each 

iteration, instead of prediction the outcome 𝑦𝑖, each weak learner is trained to predict 

𝑟𝑖 , which is called pseudo-residual, meaning the residual from last iteration. Each weak 

learner will be added to the original model to reduce the bias. The weight of the weak 

learners is calculated by solving a one-dimensional optimization problem.  

 

Figure 10. Gradient boosting algorithm 

 

c. XGBoost  

Among the machine learning methods used in practice, XGBoosting is the one that 

shines in many data science challenges. This famous open source implementation of GBT 

is introduced by Tianqi Chen from Washington University. The success of the XGBoost is 
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due to its scalability in all scenarios. The scalability of XGBoost is the result from several 

systems and algorithm optimizations. It enables data scientists to process millions of 

records on a desktop. In this report, XGBoost is used to predict the interest level of 

customers towards rental listing online. 
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CHAPTER 4: Evaluation 
 

To evaluation the final predications, this Kaggle competition will use log loss to 

measure the final predictions. This measurement metric the same of negative the log 

likelihood of each prediction.  

𝐿𝑜𝑔𝑙𝑜𝑠𝑠 = −
1

𝑁
∑ ∑ ∑𝑦𝑖,𝑗log (𝑝𝑖,𝑗)

𝑚

𝑖=0

𝑁

𝑖=0

 

In the equation, N is the total observations of the dataset. M is the number of 

class labels. 𝑦𝑖,𝑗 is 1 when the observation i is in class j, is 0 otherwise. 𝑝𝑖,𝑗 is the 

probability of prediction that this observation i is in class j.  

Another measurement used to test models’ performance is accuracy. Accuracy is 

calculated by the number of correctly predicted observations over the total number of 

observations in the dataset.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP + TN

TP + FP + TN + FN
 

As for the baseline of accuracy, the percentage of class ‘low’ will be used since it 

is the most frequent class in the dataset. The baseline of Logloss will be calculated by 

predicting every class using the same probability. In this case, the number of classes we 

are predicting is 3. Thus the baseline is calculated using the Log loss equation: 

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑜𝑓 𝑙𝑜𝑔𝑙𝑜𝑠𝑠 = − ln (
1

3
) = ln3 = 1.098 

After getting the baseline of the prediction, random forest and XGBoost are applied to 

training set and validation set. In this case, cross validation with 5 folds is used to reduce 

any noise in measurement. From the result, XGBoost outperforms Random forest, 

achieving better accuracy and lower logloss. This result may be due to the difference 

between the way of generating trees in random forest and XGBoost. Random forest 

generates trees by select subset of features and samples from the original data, while 
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XGBoost focus on training weak trees to predict error. The final prediction is generated 

using XGBoost, resulting top 20% in the leader board of the competition.  

 

 

Table 9. Model Evaluation 

 Baseline Random Forest XGBoost 

Log-loss (training) 1.098 0.560 0.335 

Log-loss 
(validation) 

1.098 0.614 0.524 

Accuracy (training) 0.694 0.794 0.887 

Accuracy 
(validation) 

0.697 0.736 0.765 
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Appendix 

1. R code: Data warehouse 

options(continue = "  ") 

#loading packages 

  packages = c("jsonlite", "dplyr", "purrr") 

  library(syuzhet) 

  library(DT) 

  purrr::walk(packages, library, character.only = TRUE, warn.conflicts = FALSE) 

   

  suppressMessages(library("jsonlite")) 

  suppressMessages(library("dplyr")) 

  suppressMessages(library("plotly")) 

  suppressMessages(library("purrr")) 

  suppressMessages(library("RecordLinkage")) 

 

  #Loading packages for further analysis of the data. 

  libs <- c("lubridate", "nnet") 

  lapply(libs, require,  character.only = T) 

  library(mice) 

   

#load the data 

 

dataware=function(t){ 
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  setwd("C:/Users/ellie/Dropbox/2 sigma/input") 

  if(t=='train'){ mydata = fromJSON("train.json")} 

  if(t=='test'){mydata = fromJSON("test.json")} 

  vars <- setdiff(names(mydata), c("photos", "features")) 

  mydata = map_at(mydata, vars, unlist) %>% tibble::as_tibble(.) 

  mydata$id=seq(1:length(mydata$building_id)) #numerical ids! 

  return(mydata) 

} 

 

mytrain=dataware('train') 

mytest=dataware('test') 

 

 

#********************************** 

  #Feature------extract 

#************************************** 

 

features_extract=function(data){ 

  #calculate the similarity  

  vec.addressSimilarity <- 

levenshteinSim(tolower(data$street_address),tolower(data$display_address)) 

 

  data$sim=vec.addressSimilarity 

  #sentimental analysis  
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  sentiment <- get_nrc_sentiment(data$description) 

  datatable(head(sentiment)) 

  sentiment$id<-seq(1:nrow(sentiment)) 

  data<-merge(data,sentiment, by.x="id", by.y="id", all.x=T, all.y=T) 

   

  #add other basic features 

  data$num_room=data$bathrooms+data$bedrooms 

  data$price_per_bedroom=data$price/data$bedrooms 

  data$price_per_bathroom=data$price/data$bathroom 

  data$price_per_room=data$price/data$num_room 

   

  data$num_features=lapply(data$features, function(x)length(unlist(x)) ) 

  data$num_photos=lapply(data$photos, function(x)length(unlist(x)) ) 

  data$num_word_desciption=lapply(data$description, function(x) 

length(strsplit(gsub(' {2,}','',x),' ')[[1]]) ) 

   

  data$date_time = strptime(data$created, format = "%Y-%m-%d %H:%M:%S") 

   

  data$data_month = month(data$date_time) 

  data$data_hour = hour(data$date_time) 

   

  return(data) 

} 
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mytrain=features_extract(mytrain) 

mytest=features_extract(mytest) 

 

 

#********************************** 

#central park 

#************************************** 

 

library(geosphere) 

for(i in 1:nrow(mytrain)){ 

  mytrain$central[i]=distm(c(mytrain$longitude[i], mytrain$latitude[i]), 

                         c(-73.9654, 40.7829), fun = distHaversine) 

} 

 

for(i in 1:nrow(mytest)){ 

  mytest$central[i]=distm(c(mytest$longitude[i], mytest$latitude[i]), 

                        c(-73.9654, 40.7829), fun = distHaversine) 

} 

 

#********************************** 

#write the data  

#************************************** 
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#colnames(mytrain) 

#mytrain> mytrain[order(mytrain$id),] 

#mytest> mytest[order(mytest$id),] 

 

mytrain$date_time=as.character(mytrain$date_time) 

mytest$date_time=as.character(mytest$date_time) 

 

 

mytrain<- apply(mytrain,2,as.character) 

mytest<- apply(mytest,2,as.character) 

 

 

 

setwd("C:/Users/ellie/Dropbox/2 sigma/feature_basic") 

write.csv(mytrain, file = "train_ready_feature1_basic.csv",row.names=FALSE) 

write.csv(mytest, file = "test_ready_feature1_basic.csv",row.names=FALSE) 
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2. R code: Data visualization 
 

#Loading packages for further analysis of the data. 

libs <- c("lubridate", "nnet") 

lapply(libs, require,  character.only = T) 

library(mice) 

library(ggplot2) 

library(plyr) 

library(e1071) 

library(reshape2) 

 

#load the data 

 

dataware=function(t){ 

  setwd("C:/Users/ellie/Dropbox/master report/data exploration") 

  if(t=='train'){ mydata = fromJSON("train.json")} 

  if(t=='test'){mydata = fromJSON("test.json")} 

  vars <- setdiff(names(mydata), c("photos", "features")) 

  mydata = map_at(mydata, vars, unlist) %>% tibble::as_tibble(.) 

  mydata$id=seq(1:length(mydata$building_id)) #numerical ids! 

  return(mydata) 

} 

 

mytrain=dataware('train') 
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mytest=dataware('test') 

 

mytrain=as.data.frame(mytrain) 

mytest=as.data.frame(mytest) 

 

   

#Then turn it back into an ordered factor 

mytrain$interest_level<- as.character(mytrain$interest_level) 

mytrain$interest_level<- factor(mytrain$interest_level, levels=c("low", "medium", 

"high")) 

#********************************** 

#Plotting  

#************************************** 

 

ggplot(data=mytrain, 

       aes(interest_level))+ 

  geom_bar( stat="count" , width = 0.3,fill = "palevioletred3") 

 

#table(mytrain$interest_level) 

 

 

ggplot(data=mytrain, 

       aes(mytrain$price))+ 

  geom_histogram( breaks=seq(0,20000, by=50),fill = "steelblue3") 
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ggplot(data=mytrain, aes(x=price, y=..density..)) + 

  geom_histogram(binwidth=70,  fill='cornflowerblue')+ 

  geom_density(size=1, colour='gray56')+ 

  xlim(0,20000) 

                      

 

 

#********************************** 

#3 pricing distribution 

#************************************** 

  df_vline$stat <- rep(c("mean", "median"), each = nrow(df_vline) / 2) 

colnames(df_vline)=c('interest_level','x','stat') 

 

mm=  ggplot(data=mytrain, aes(x=price, y=..density..)) + 

  geom_histogram(binwidth=70, fill='tan2')+ 

  geom_density(size=1, colour='lavenderblush3')+ 

  geom_vline(data=df_vline, mapping=aes(xintercept=x, colour = stat),  

             linetype = 1, size=1.5, show.legend = T)+ 

  xlim(0,8000)+  facet_wrap(~ as.factor(interest_level),nrow = 3) 

 

print(mm) 
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an=lm(price~interest_level,data=mytrain) 

summary(an) 

#********************************** 

# Bedroom and bathroom 

#************************************** 

 

 

ggplot(mytrain, aes(x = interest_level, y = bedrooms)) + 

  geom_violin(aes(fill = interest_level)) + 

  scale_fill_manual(values=c("lightcoral", "slategray2",'slateblue')) 

   

 #scale_fill_brewer(palette="RdYlGn") 

 

ggplot(mytrain, aes(x = interest_level, y = bathrooms)) + 

  geom_violin(aes(fill = interest_level)) + 

  scale_fill_manual(values=c("lightcoral", "slategray2",'slateblue'))+ 

ylim(0,5) 

 

#********************************** 

# latitude and longitude 

#************************************** 

 

ggplot(data=mytrain) + 

  geom_point(size = 1, 
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             aes(x = longitude, 

                 y = latitude, 

                 color = interest_level)) + 

xlim(-74.05, -73.8) +ylim(40.6, 40.9) 

 

 

   

ggplot(data = mytrain) + 

  geom_point(aes(x = longitude, y = latitude, 

                 color = interest_level), alpha = 0.2) 

 

 

 

#********************************** 

# onehot encoding graphs  

#************************************** 

 

 

setwd("C:/Users/ellie/Dropbox/master report/data exploration") 

 

mydata=read.csv('READY_TO_USE_train.csv') 

mydata1=mydata[order(-mydata$manager_count),] 

 

myd=subset(mydata,select=c(manager_level_low,manager_level_medium, 
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  manager_level_high, manager_count,manager_id)) 

 

 

 

 

ll=rbind(mydata1[6222,],mydata1[29540,],mydata1[123,],mydata1[40000,],mydata1[10

000,]) 

 

 

library(reshape2) 

 

dfm <- 

melt(ll[,c('manager_id','manager_level_low','manager_level_medium','manager_

level_high')], 

            id.vars = 1) 

 

ggplot(dfm , aes(as.factor(manager_id),  value)) +    

  geom_bar(aes(fill=variable), position = "dodge", stat="identity")+ 

  labs(x="Manager ID", y="Percent")+   

  scale_fill_discrete("Interest Level",  

                      labels=c("low", "medium",'high')) 
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3. R code: Modeling 

 

library(xgboost) 

library(stringr) 

library(caret) 

library(car) 

library(mice) 

library(data.table) 

library(readr) 

library(data.table) 

library(xgboost) 

library(caret) 

library(stringr) 

library(lubridate) 

library(stringr) 

library(Hmisc) 

library(dplyr) 

library(Matrix) 

 

#*************** 

#read data  

#*************** 

 

setwd("C:/Users/ellie/Dropbox/2 sigma/TRY24 EVERYTHING") 
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train_id=read.csv("train_id.csv") 

test_id=read.csv("test_id.csv") 

 

train_ready=read.csv("train_ready.csv") 

test_ready=read.csv("test_ready.csv") 

md.pattern(train_ready) 

 

train_ready$manager_level_high[is.na(train_ready$manager_level_high)]= 

  mean(train_ready$manager_level_high,na.rm=TRUE) 

mean(train_ready$manager_level_medium,na.rm=TRUE) 

mean(train_ready$manager_level_low,na.rm=TRUE) 

 

 

mana_fun=function(d){ 

  d$manager_level_high[is.na(d$manager_level_high)]= 

    mean(d$manager_level_high,na.rm=TRUE) 

  d$manager_level_medium[is.na(d$manager_level_medium)]= 

    mean(d$manager_level_medium,na.rm=TRUE) 

  d$manager_level_low[is.na(d$manager_level_low)]= 

    mean(d$manager_level_low,na.rm=TRUE) 

  return(d) 

} 
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train_ready=mana_fun(train_ready) 

test_ready=mana_fun(test_ready) 

 

#*************** 

#merge data  

#*************** 

 

time_stamp=read.csv('listing_image_time.csv') 

colnames(time_stamp)=c("listing_id",'time_stamp') 

 

train_ready=merge(train_ready,time_stamp,by="listing_id",all.x = TRUE) 

test_ready=merge(test_ready,time_stamp,by="listing_id",all.x = TRUE) 

 

datatrain=merge(train_ready,train_id,by="listing_id",all.x = TRUE) 

datatest=merge(test_ready,test_id,by="listing_id",all.x = TRUE) 

#-------- 

datatest=datatest[order(datatest$id),] 

datatrain=datatrain[order(datatrain$id),] 

 

 

trainlabel=read.csv('train_label.csv') 

trainlabel$id=NULL 

datatrain=merge(datatrain,trainlabel,by="listing_id",all.x = TRUE) 
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datatest=datatest[order(datatest$id),] 

datatrain=datatrain[order(datatrain$id),] 

 

 

 

#*************** 

#Preparing data functions  

#*************** 

mytrain=datatrain 

mytest=datatest 

 

#make the outcome be numeric  

numoutcome=function(data){ 

  data$outcome[data$interest_level=='low']=0 

  data$outcome[data$interest_level=='medium']=1 

  data$outcome[data$interest_level=='high']=2 

  return(data) 

} 

 

#select numerica features and impute missing value 

 

selectnum_imputemiss=function(d){ 

  nums <- sapply(d, is.numeric) 
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  d=d[,nums] 

  #d$sim[is.na(d$sim)==TRUE]=0 

  return(d) 

} 

 

#*************** 

#Prepare DATA  

#*************** 

mytrain=numoutcome(mytrain) 

mytrain=selectnum_imputemiss(mytrain) 

 

#split outcome 

mytrain_outcome=mytrain$outcome 

mytrain$outcome=NULL 

 

mytest=selectnum_imputemiss(mytest) 

 

#****************************** 

#xbg_1 

#****************************** 

#xgb boost 

 

dtrain1 <- xgb.DMatrix(data=as.matrix(mytrain), label=mytrain_outcome) 

dtest1 <- xgb.DMatrix(data=as.matrix(mytest)) 
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numberOfClasses <- length(unique(mytrain_outcome)) 

 

xgb_params <- list(booster="gbtree", 

                   objective="multi:softprob", 

                   eval_metric="mlogloss", 

                   nthread=13, 

                   num_class=numberOfClasses, 

                   eta = .03, 

                   gamma = 1, 

                   max_depth = 6, 

                   min_child_weight = 1, 

                   subsample = .7, 

                   colsample_bytree = .7 

) 

 

nround    <- 1000 # number of XGBoost rounds 

cv.nfold  <- 5 

# Fit cv.nfold * cv.nround XGB models and save OOF predictions 

cv_model1 <- xgb.cv(params = xgb_params, 

                    data = dtrain1,  

                    nrounds = nround, 

                    nfold = cv.nfold, 

                    verbose = TRUE, 

                    prediction = TRUE) 
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mean(cv_model1$dt$train.mlogloss.mean) 

mean(cv_model1$dt$test.mlogloss.mean) 

 

 

 

#*************** 

#training 

xgb1<- xgb.train(data = dtrain1, 

                 params = xgb_params, 

                 # watchlist=watch, 

                 # nrounds = cv_model1$best_ntreelimit 

                 nrounds = nround 

) 

 

# compute feature importance matrix 

 

imp <- xgb.importance(names(mytrain),model = xgb1) 

print(imp) 

 

 

#*************** 

#Saving result 

#*************** 
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#***select features 

 

 

 

 

sPreds <- as.data.table(t(matrix(predict(xgb1, dtest1), nrow=3, ncol=nrow(dtest1 )))) 

 

class <- data.table(interest_level=c("low", "medium", "high"), class=c(0,1,2)) 

colnames(sPreds) <- class$interest_level 

 

 

 

setwd("C:/Users/ellie/Dropbox/2 sigma/TRY24 EVERYTHING") 

 

write.csv(data.table(listing_id=mytest$listing_id, sPreds[,list(high,medium,low)]), 

          "submission_apr24-1.csv",row.names=FALSE) 
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