

Copyright

by

Shiyao Cai

2017

The Report Committee for Shiyao Cai Certifies that this is the

approved version of the following report:

Predicting rental listing popularity-2 Sigma connect
Renthop

APPROVED BY

SUPERVISING COMMITTEE:

Tim Keitt

Paul Robbins

Supervisor:

Predicting rental listing popularity-2 Sigma connect
Renthop

By

Shiyao Cai, B.S.

REPORT

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of science in Statistics

THE UNIVERSITY OF TEXAS AT AUSTIN

MAY 2017

iv

Abstract

Renting a perfect apartment can be a hassle. There are plenty of features people

care about when it comes to finding the apartment, such as price, hardwood floor, dog

park, laundry room, etc. Being able to predict people’s interest level on an apartment

will help the rental agency better handle fraud control, identify potential listing quality

issues, and allow owners and agents to understand renters’ needs and preferences.

RentHop, an apartment search engine, along with 2 Sigma, introduced this

multiple classification problem in the Kaggle community. It provides the opportunity to

use owners’ data to predict the interest level of their apartments on its website.

This report attempts to find a pattern of people’s interest level towards rental

listing on the website using the dataset from the Kaggle competition. Multiple features

are derived from the original dataset. Several common data mining and machine

learning techniques are used to improve the accuracy of the predicting model. The final

result is evaluated using Log loss function.

v

Table of Contents

ABSTRACT IV

INTRODUCTION 1

CHAPTER 1: DATA EXPLORATION 3

1. Interest Level .. 3

2. Price ... 4

3. Longitude & Latitude .. 6

4. Number of Bedroom ... 7

5. Number of Bathroom.. 8

CHAPTER 2: FEATURE ENGINEERING 9

1. High-cardinality Features .. 9

a. One hot encoding/Dummy coding ... 10

b. Semantic Grouping... 10

c. Supervised ratio ... 10

vi

2. Geospatial features... 11

3. Difference Between Address... 13

4. Sentimental Analysis ... 14

5. Basic numerical feature .. 15

CHAPTER 3: MODELING 17

1. Random forest .. 17

2. Gradient boosting ... 17

a. Introduction ... 18

b. Implementation ... 19

c. XGBoost ... 19

CHAPTER 4: EVALUATION 21

APPENDIX 23

1. R code: Data warehouse ... 23

2. R code: Data visualization ... 28

3. R code: Modeling .. 34

REFERENCE 42

vii

List of Tables

Table 1. Features in the dataset .. 2

Table 2. One-way ANOVA result .. 6

Table 3. The number of unique values in Manager ID and Building ID 9

Table 4. Example of Supervised Ratio .. 11

Table 5. New Neighborhood features derived from latitude and longitude 12

Table 6. Similarity Features Derived from Street Address and Display Address .. 13

Table 7. Sentimental Features Derived from Description 14

Table 8. Model Evaluation ... 22

viii

List of Figures

Figure 1. Distribution of Interest Level ... 3

Figure 2. Distribution of Listing Price with outliers removed 4

Figure 3. Listing Prices across Interest Level .. 5

Figure 4. Interest levels on locations ... 7

Figure 5.Number of bedrooms across Interest Level .. 8

Figure 6.Number of bathrooms across Interest Level .. 8

Figure 7. Interest Level ratio of 5 managers ... 11

Figure 8. New features district on the map .. 12

Figure 9. Pie chart of sentiment features ... 15

Figure 10. Gradient boosting algorithm ... 19

1

Introduction

Data driven solutions have become important to many businesses. For instance,

companies use costumers’ data to recommend new products, cast specific advertisement

and detect fraud. This paper will focus on using statistical models and data mining

methods to predict the level of interest of customers towards a rental listing online. Being

able to predict people’s interest level on an apartment will help the rental agency better

handle fraud control, identify potential listing quality issues, and allow owners and agents

to understand renters’ needs and preferences.

Kaggle is a community to solve the most interesting and sensitive business

problems using machine learning and data mining for large business corporations.

RentHop, an apartment search engine, introduced this multiple classification problem in

the Kaggle community. It provides the opportunity to use owners’ data to predict the

interest level of their apartments on its website.

 This project aims to predict rental listings’ interest levels using the data provided

in the competition. There are 3 possible outcomes for the interest levels, namely 'high',

'medium' and 'low'. Therefore, it is a multiclass classification problem. Several features

are provided to develop machine learning models including price, number of bedroom,

number of bathroom, time the listing created, manager ID, description of the apartment,

photos, longitude, latitude, displayed address on the website, the actual detailed address,

key features about the apartment, etc. The feature names and corresponding types are

provided in Table 1.

2

Table 1. Features in the dataset

Feature name Feature type

bathrooms Numerical

Bedrooms Numerical

Building ID

Created

Categorical

Numerical

Description Text

Display Address Text

Features Text

Latitude Numerical

Longitude Numerical

Manager ID

Photos

Categorical

Image

Price Numerical

Street Address Text

Interested Level Categorical

3

CHAPTER 1: Data Exploration

1. Interest Level

The variable interest level is the variable we are going to predict. Examining this

feature closely will help us determine the prediction baseline. From Figure 1. Distribution

of Interest LevelFigure 1, it is noted that the interest level ‘low’ takes 69% of all the

interest levels, while the interest level ‘high’ only takes 7.8%. This indicates that most of

the apartments in the website are of low interest for users.Only a few apartments that

really draw high attention from the customers.

Figure 1. Distribution of Interest Level

4

2. Price

The price of an apartment in the website represents the rental price the tenants

need to pay per month. This is an important indicator of the interest level for potential

customers. Analyzing the price distribution of the dataset will give us an overview of the

price in the data set.

The distribution of price with outliers removed is shown in Figure 2.Distribution of

Listing Price with outliers removed The outliers in the distribution have prices larger than

20000 USD per month. From the distribution, the average price for renting an apartment

is around 2700 per month. It has a long right tail, which indicates that there are several

cases the prices for renting is very large. Most data points fall in the range 2000 to 8000

USD per month.

Figure 2.Distribution of Listing Price with outliers removed

5

By plotting the prices across different interest levels, we can see if prices and

interest levels are correlated. To validate their correlation, an ANOVA test is conducted

to see if there is a significant effect between prices and interest level.

From Figure 3. Listing Prices across Interest Level, we can see the price distributions

are different for different interest levels. For ‘low’ Interest level, the mean and median

price are apparently higher than that of ‘high’ Interest level. The distribution indicates

people have high interest towards listings that have lower prices. To find out whether the

prices are truly different across different interest levels, ANOVA test is conducted.

Figure 3. Listing Prices across Interest Level

A one-way ANOVA was conducted to compare the effect of Interest Level on prices

in ‘low’, ’medium’, ’high’ interest level. The result of ANOVA test is shown in Table 2.

There is a significant effect of Interest Level on prices at the 𝑝 < .05 level for the three

conditions [𝐹(2, 49349) = 14.46, 𝑝 = 5.26 ∗ 𝑒 − 07].

6

Table 2. One-way ANOVA result

 Sum of

squares

DF Mean

Square

F Sig.

Between

Groups

1.4e+10 2 7.039e+09 14.46 5.26e-07

Within

Groups

2.4e+13 49349 4.867e+08

Total 2.4e+13 49351

This result confirms the assumption that apartment with lower prices will be of higher

interest to the customers browsing the website.

3. Longitude & Latitude

The dataset contains the longitude and latitude for every apartment on the

website. Specifically, the apartments are all from New York city. By plotting longitude and

latitude of apartments, we can get the location information of the apartments in the

dataset. From Figure 4. Interest levels on locations, we can see that most apartments of

low interest are gathered around the center of the figure, while some apartments of high

interest are spread with some of them located on the outside of the center.

7

Figure 4. Interest levels on locations

4. Number of Bedroom

In this dataset, the number of bedroom indicates how many bedrooms an

apartment has. The distribution of number of bedroom is plotted in Figure 5. It shows the

patterns of number of bedroom is generally consistent across different interest levels.

There are more apartments with 1 or 2 bedrooms for low interest listings. For listing of

high interest, the largest group are the apartments with 2 bedrooms.

8

Figure 5.Number of bedrooms across Interest Level

5. Number of Bathroom

By plotting number of bathroom across different interest levels, we can see that

most apartments of high interest contain 1 bathroom. The bathroom numbers of

apartment of low and medium interest contains a larger range of numbers of bathroom.

This correspond to the finding that apartments with high interest are generally in lower

price, which excluded fancy apartment with multiple bathrooms.

Figure 6.Number of bathrooms across Interest Level

9

CHAPTER 2: Feature Engineering

1. High-cardinality Features

High cardinality refers to the features that contain a large amount of categorical

values. Typical examples of high cardinality features include email address, zip code, ID,

etc. There are 2 features that are of high cardinality, manger ID and building ID. The

following table states the number of unique values for each variable.

Table 3. The number of unique values in Manager ID and Building ID

 Manager ID Building ID

Number of unique values 3481 7585

Proportion of unique

values

7.05% 15.37%

From Table 3, we can see that the cardinality of each feature is not that high. These

features are informative, since probably some managers are good at management that

the rental listing he/she manages intrigue more interest from customers. Or some

buildings are at good locations that appealing to customers.

There are several common methods to deal with high cardinality features,

including one-hot encoding, semantic grouping and supervised ratio.

10

a. One hot encoding/Dummy coding

One hot encoding or dummy coding is a common method to deal with nominal

data. The method transforms the original feature with N categories into N binary columns.

These new columns contain either 0 or 1, with 0 means there is no such category in the

original feature, and vice versa. This method preserves the information of original feature,

but it adds more dimensions to the original dataset.

b. Semantic Grouping

The aim of semantic grouping is to identify logical groups from high cardinality

data. One benefit is that it reduces the number of unique values from the feature. In this

dataset, semantic grouping can be applied to the longitude and latitude features. This will

be included in the Geospatial analysis in the later section.

c. Supervised ratio

This technique will use the target outcome, the variable we are trying to predict,

along with the high cardinality feature to calculate new continuous features. Since the

new variables contain the information from outcome variable, it is considerably easy to

overfit the data.

𝑂𝑃𝑖 =
𝐴𝑖

𝐴𝑖 + 𝐵𝑖 + 𝐶𝑖

One assumption made when using this technique is that rental listing with the

same manager will have similar percentage of outcome.

11

Table 4. Example of Supervised Ratio

Manager ID Manager

Level Low

Manager

Level Medium

Manager

Level High

565 0.361 0.397 0.241

2817 0.44 0.52 0.04

3959 0.679 0.251 0.069

4237 0.88 0.11 0

2054 0.98 0.019 0

Figure 7. Interest Level ratio of 5 managers

2. Geospatial features

There are two features in our dataset, longitude and latitude, that cannot be

directly used in our model since its actual meaning is beyond these numerical variables.

Since the dataset contains rental listings only in New York, one way to deal with it is to

12

use neighborhood information extracted from longitude and longitude. 7 categories are

derived from the original longitude and latitude features: Uptown, Queens, Midtown,

Kings, Downtown, Between midtown and uptown, others. Dummy encoding is used to

indicate which neighborhood each apartment listing belongs to. We are going to use the

new derived features about district instead of latitude and longitude in the model.

Figure 8. New features district on the map

Table 5. New Neighborhood features derived from latitude and longitude

Listing

ID

Uptown Queens Midtown Kings Downtown Between
midtown
and uptown

7170325 0 0 0 1 0 0

7092344 0 0 1 0 0 0

7158677 0 0 1 0 0 0

7140668 0 0 0 0 1 0

7126989 0 0 0 0 0 0

13

3. Difference Between Address

One interesting thing in the dataset is that there are 2 features represent address

of the listing apartments. One is displayed address, the address shown on the website.

The other one is street address, which contains the actual detailed address of the listing

apartments. Since both addresses are provided, a variable describing their difference is

created and used as a new feature in the model. The technique used to describe their

difference between is Levenshtein distance. Mathematically, the Levenshtein distance

between two strings 𝑎, 𝑏 is given by 𝐿𝑒𝑣(𝑎, 𝑏),where

The new feature ‘similarity’ captures the difference between street address and

display address, which is shown in Table 6.

Table 6. Similarity Features Derived from Street Address and Display

Address

Street address Display address Similarity

1661 york avenue york avenue 0.6875000

410 east 13th street east 13th street 0.8000000

170 east 18th street 18th street 0.550000

145 borinquen place 145 borinquen place 1.000000

14

4. Sentimental Analysis

Sentiment analysis is a method using natural language processing to identify

whether a piece of information is positive, negative or neutral. Since the feature

“Description” in the data set contains very rich information about the apartment,

sentiment analysis is used to evaluate whether description about the apartment on listing

is positive or negative.

The sentiment analysis showed that in the dataset, anticipation, joy, and trust take

the majority portion of the whole sentiment result. This aligns with the fact that the

description for the apartment is generally positive and aims to be appealing to customers.

Table 7. Sentimental Features Derived from Description

Llisting

ID

anticipatio

n

disgust fear joy sadness surprise trust anger

7170325 0 0 0 1 0 0 0 1

7092344 2 1 1 4 0 1 6 0

7158677 2 0 0 2 0 0 1 0

7211212 3 0 0 1 0 2 4 0

7225292 2 0 1 2 2 0 1 0

15

Figure 9. Pie chart of sentiment features

5. Basic numerical feature

In addition to the methods used above, some basic features are derived from the

original dataset. Features Photos, Features, Descriptions contain numbers of items, so

new features derived from calculating how many items are there in each feature. 3

features, namely number of photos, number of features, number of description words,

are calculated from the original ones to describe the number of things in one listing.

Another feature derived is the price per room. It is calculated using the equation:

𝑃𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝑟𝑜𝑜𝑚 =
Price

Number of bathrooms + Number of bedrooms

This feature captures the price for a listing per room. It is probably a better way to

describe the value customers are going to get by paying certain price. The newly derived

features are shown in Table 8. Basic numerical features

16

Table 8. Basic numerical features

Listing ID Price per room Number of

photos

Number

of features

Number of

Description words

7170325 2400 12 7 77

7092344 1900 6 6 131

7158677 1747.5 6 6 119

7211212 1000 5 0 95

7225292 Inf 4 4 41

17

CHAPTER 3: Modeling

1. Random forest

Random forest is a popular ensemble methods of bootstrap aggregating(bagging).

It grows many classification trees and chooses the classification having the most votes to

be the final prediction, which eliminates the overfitting issue of decision trees. The

algorithm contains 2 major part, tree bagging and feature bagging.

Random forest builds each tree by taking a subsample with replacement from the

original dataset. Suppose there are N samples from the original dataset, random forest

will take M samples from N original data with replacement. It will them use these M

samples to build one decision tree. And it will continue to do it until it has a forest.

This bootstrapping method will decrease the variance of the model without

increasing bias. One single decision is very likely to be overfitting due to the noise from

the dataset, while having multiple trees will eliminate this issue.

To reduce the noise, it is optimal to have trees that are not correlated. If there are

several features that are strong predictors of the outcome, many trees will choose them

as the input variable. This will cause trees to be highly correlated and will not reduce the

noise from the original data. To solve this problem, random forest will select a subset of

features when building each tree, this method is known as feature bagging.

2. Gradient boosting

18

a. Introduction

There are 3 common ensemble methods in machine learning: Bagging, Boosting,

Stacking. Bagging, stands for ‘Bootstrap Aggregating’, is an algorithm creating multiple

models using sub-samples from the original dataset. Boosting is a method that combine

weak models into a strong one. Stacking is a way that use the predicted values from

several models as the training set to train a new better performing model using new

machine learning methods.

Gradient boosting is an algorithm in combination of gradient descent and

boosting. Gradient descent is an algorithm to find a local minimum of a function by

taking steps proportional to the negative of the gradient of the function at the current

point. Boosting is a family of machine learning algorithms that combine weak learners to

a strong one. This family of algorithm can reduce bias and variance at the same time in

supervised learning.

Gradient boosting optimizes a cost function over function space by iteratively

choosing a function that points in the negative gradient direction. This functional gradient

view of boosting has led to the development of boosting algorithms in many areas of

machine learning and statistics beyond regression and classification.

That means, within each iteration, gradient boosting introduces a weak learner to

compensate the shortcomings of existing weak learners, hence, dramatically improved

the model performance. It is an efficient algorithm to solve regression, classification,

and ranking problems. For this classification problem, the gradient boosting tree(GBT)

model is used for prediction.

19

b. Implementation

The algorithm trains weak learners sequentially. It initiates constant values as

prediction of 𝑦𝑖 , which is apparently a weak learner. After initiation, within each

iteration, instead of prediction the outcome 𝑦𝑖, each weak learner is trained to predict

𝑟𝑖 , which is called pseudo-residual, meaning the residual from last iteration. Each weak

learner will be added to the original model to reduce the bias. The weight of the weak

learners is calculated by solving a one-dimensional optimization problem.

Figure 10. Gradient boosting algorithm

c. XGBoost

Among the machine learning methods used in practice, XGBoosting is the one that

shines in many data science challenges. This famous open source implementation of GBT

is introduced by Tianqi Chen from Washington University. The success of the XGBoost is

20

due to its scalability in all scenarios. The scalability of XGBoost is the result from several

systems and algorithm optimizations. It enables data scientists to process millions of

records on a desktop. In this report, XGBoost is used to predict the interest level of

customers towards rental listing online.

21

CHAPTER 4: Evaluation

To evaluation the final predications, this Kaggle competition will use log loss to

measure the final predictions. This measurement metric the same of negative the log

likelihood of each prediction.

𝐿𝑜𝑔𝑙𝑜𝑠𝑠 = −
1

𝑁
∑ ∑ ∑𝑦𝑖,𝑗log (𝑝𝑖,𝑗)

𝑚

𝑖=0

𝑁

𝑖=0

In the equation, N is the total observations of the dataset. M is the number of

class labels. 𝑦𝑖,𝑗 is 1 when the observation i is in class j, is 0 otherwise. 𝑝𝑖,𝑗 is the

probability of prediction that this observation i is in class j.

Another measurement used to test models’ performance is accuracy. Accuracy is

calculated by the number of correctly predicted observations over the total number of

observations in the dataset.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP + TN

TP + FP + TN + FN

As for the baseline of accuracy, the percentage of class ‘low’ will be used since it

is the most frequent class in the dataset. The baseline of Logloss will be calculated by

predicting every class using the same probability. In this case, the number of classes we

are predicting is 3. Thus the baseline is calculated using the Log loss equation:

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑜𝑓 𝑙𝑜𝑔𝑙𝑜𝑠𝑠 = − ln (
1

3
) = ln3 = 1.098

After getting the baseline of the prediction, random forest and XGBoost are applied to

training set and validation set. In this case, cross validation with 5 folds is used to reduce

any noise in measurement. From the result, XGBoost outperforms Random forest,

achieving better accuracy and lower logloss. This result may be due to the difference

between the way of generating trees in random forest and XGBoost. Random forest

generates trees by select subset of features and samples from the original data, while

22

XGBoost focus on training weak trees to predict error. The final prediction is generated

using XGBoost, resulting top 20% in the leader board of the competition.

Table 9. Model Evaluation

 Baseline Random Forest XGBoost

Log-loss (training) 1.098 0.560 0.335

Log-loss
(validation)

1.098 0.614 0.524

Accuracy (training) 0.694 0.794 0.887

Accuracy
(validation)

0.697 0.736 0.765

23

Appendix

1. R code: Data warehouse

options(continue = " ")

#loading packages

 packages = c("jsonlite", "dplyr", "purrr")

 library(syuzhet)

 library(DT)

 purrr::walk(packages, library, character.only = TRUE, warn.conflicts = FALSE)

 suppressMessages(library("jsonlite"))

 suppressMessages(library("dplyr"))

 suppressMessages(library("plotly"))

 suppressMessages(library("purrr"))

 suppressMessages(library("RecordLinkage"))

 #Loading packages for further analysis of the data.

 libs <- c("lubridate", "nnet")

 lapply(libs, require, character.only = T)

 library(mice)

#load the data

dataware=function(t){

24

 setwd("C:/Users/ellie/Dropbox/2 sigma/input")

 if(t=='train'){ mydata = fromJSON("train.json")}

 if(t=='test'){mydata = fromJSON("test.json")}

 vars <- setdiff(names(mydata), c("photos", "features"))

 mydata = map_at(mydata, vars, unlist) %>% tibble::as_tibble(.)

 mydata$id=seq(1:length(mydata$building_id)) #numerical ids!

 return(mydata)

}

mytrain=dataware('train')

mytest=dataware('test')

#**********************************

 #Feature------extract

#**************************************

features_extract=function(data){

 #calculate the similarity

 vec.addressSimilarity <-

levenshteinSim(tolower(data$street_address),tolower(data$display_address))

 data$sim=vec.addressSimilarity

 #sentimental analysis

25

 sentiment <- get_nrc_sentiment(data$description)

 datatable(head(sentiment))

 sentiment$id<-seq(1:nrow(sentiment))

 data<-merge(data,sentiment, by.x="id", by.y="id", all.x=T, all.y=T)

 #add other basic features

 data$num_room=data$bathrooms+data$bedrooms

 data$price_per_bedroom=data$price/data$bedrooms

 data$price_per_bathroom=data$price/data$bathroom

 data$price_per_room=data$price/data$num_room

 data$num_features=lapply(data$features, function(x)length(unlist(x)))

 data$num_photos=lapply(data$photos, function(x)length(unlist(x)))

 data$num_word_desciption=lapply(data$description, function(x)

length(strsplit(gsub(' {2,}','',x),' ')[[1]]))

 data$date_time = strptime(data$created, format = "%Y-%m-%d %H:%M:%S")

 data$data_month = month(data$date_time)

 data$data_hour = hour(data$date_time)

 return(data)

}

26

mytrain=features_extract(mytrain)

mytest=features_extract(mytest)

#**********************************

#central park

#**************************************

library(geosphere)

for(i in 1:nrow(mytrain)){

 mytrain$central[i]=distm(c(mytrain$longitude[i], mytrain$latitude[i]),

 c(-73.9654, 40.7829), fun = distHaversine)

}

for(i in 1:nrow(mytest)){

 mytest$central[i]=distm(c(mytest$longitude[i], mytest$latitude[i]),

 c(-73.9654, 40.7829), fun = distHaversine)

}

#**********************************

#write the data

#**************************************

27

#colnames(mytrain)

#mytrain> mytrain[order(mytrain$id),]

#mytest> mytest[order(mytest$id),]

mytrain$date_time=as.character(mytrain$date_time)

mytest$date_time=as.character(mytest$date_time)

mytrain<- apply(mytrain,2,as.character)

mytest<- apply(mytest,2,as.character)

setwd("C:/Users/ellie/Dropbox/2 sigma/feature_basic")

write.csv(mytrain, file = "train_ready_feature1_basic.csv",row.names=FALSE)

write.csv(mytest, file = "test_ready_feature1_basic.csv",row.names=FALSE)

28

2. R code: Data visualization

#Loading packages for further analysis of the data.

libs <- c("lubridate", "nnet")

lapply(libs, require, character.only = T)

library(mice)

library(ggplot2)

library(plyr)

library(e1071)

library(reshape2)

#load the data

dataware=function(t){

 setwd("C:/Users/ellie/Dropbox/master report/data exploration")

 if(t=='train'){ mydata = fromJSON("train.json")}

 if(t=='test'){mydata = fromJSON("test.json")}

 vars <- setdiff(names(mydata), c("photos", "features"))

 mydata = map_at(mydata, vars, unlist) %>% tibble::as_tibble(.)

 mydata$id=seq(1:length(mydata$building_id)) #numerical ids!

 return(mydata)

}

mytrain=dataware('train')

29

mytest=dataware('test')

mytrain=as.data.frame(mytrain)

mytest=as.data.frame(mytest)

#Then turn it back into an ordered factor

mytrain$interest_level<- as.character(mytrain$interest_level)

mytrain$interest_level<- factor(mytrain$interest_level, levels=c("low", "medium",

"high"))

#**********************************

#Plotting

#**************************************

ggplot(data=mytrain,

 aes(interest_level))+

 geom_bar(stat="count" , width = 0.3,fill = "palevioletred3")

#table(mytrain$interest_level)

ggplot(data=mytrain,

 aes(mytrain$price))+

 geom_histogram(breaks=seq(0,20000, by=50),fill = "steelblue3")

30

ggplot(data=mytrain, aes(x=price, y=..density..)) +

 geom_histogram(binwidth=70, fill='cornflowerblue')+

 geom_density(size=1, colour='gray56')+

 xlim(0,20000)

#**********************************

#3 pricing distribution

#**************************************

 df_vline$stat <- rep(c("mean", "median"), each = nrow(df_vline) / 2)

colnames(df_vline)=c('interest_level','x','stat')

mm= ggplot(data=mytrain, aes(x=price, y=..density..)) +

 geom_histogram(binwidth=70, fill='tan2')+

 geom_density(size=1, colour='lavenderblush3')+

 geom_vline(data=df_vline, mapping=aes(xintercept=x, colour = stat),

 linetype = 1, size=1.5, show.legend = T)+

 xlim(0,8000)+ facet_wrap(~ as.factor(interest_level),nrow = 3)

print(mm)

31

an=lm(price~interest_level,data=mytrain)

summary(an)

#**********************************

Bedroom and bathroom

#**************************************

ggplot(mytrain, aes(x = interest_level, y = bedrooms)) +

 geom_violin(aes(fill = interest_level)) +

 scale_fill_manual(values=c("lightcoral", "slategray2",'slateblue'))

 #scale_fill_brewer(palette="RdYlGn")

ggplot(mytrain, aes(x = interest_level, y = bathrooms)) +

 geom_violin(aes(fill = interest_level)) +

 scale_fill_manual(values=c("lightcoral", "slategray2",'slateblue'))+

ylim(0,5)

#**********************************

latitude and longitude

#**************************************

ggplot(data=mytrain) +

 geom_point(size = 1,

32

 aes(x = longitude,

 y = latitude,

 color = interest_level)) +

xlim(-74.05, -73.8) +ylim(40.6, 40.9)

ggplot(data = mytrain) +

 geom_point(aes(x = longitude, y = latitude,

 color = interest_level), alpha = 0.2)

#**********************************

onehot encoding graphs

#**************************************

setwd("C:/Users/ellie/Dropbox/master report/data exploration")

mydata=read.csv('READY_TO_USE_train.csv')

mydata1=mydata[order(-mydata$manager_count),]

myd=subset(mydata,select=c(manager_level_low,manager_level_medium,

33

 manager_level_high, manager_count,manager_id))

ll=rbind(mydata1[6222,],mydata1[29540,],mydata1[123,],mydata1[40000,],mydata1[10

000,])

library(reshape2)

dfm <-

melt(ll[,c('manager_id','manager_level_low','manager_level_medium','manager_

level_high')],

 id.vars = 1)

ggplot(dfm , aes(as.factor(manager_id), value)) +

 geom_bar(aes(fill=variable), position = "dodge", stat="identity")+

 labs(x="Manager ID", y="Percent")+

 scale_fill_discrete("Interest Level",

 labels=c("low", "medium",'high'))

34

3. R code: Modeling

library(xgboost)

library(stringr)

library(caret)

library(car)

library(mice)

library(data.table)

library(readr)

library(data.table)

library(xgboost)

library(caret)

library(stringr)

library(lubridate)

library(stringr)

library(Hmisc)

library(dplyr)

library(Matrix)

#***************

#read data

#***************

setwd("C:/Users/ellie/Dropbox/2 sigma/TRY24 EVERYTHING")

35

train_id=read.csv("train_id.csv")

test_id=read.csv("test_id.csv")

train_ready=read.csv("train_ready.csv")

test_ready=read.csv("test_ready.csv")

md.pattern(train_ready)

train_ready$manager_level_high[is.na(train_ready$manager_level_high)]=

 mean(train_ready$manager_level_high,na.rm=TRUE)

mean(train_ready$manager_level_medium,na.rm=TRUE)

mean(train_ready$manager_level_low,na.rm=TRUE)

mana_fun=function(d){

 d$manager_level_high[is.na(d$manager_level_high)]=

 mean(d$manager_level_high,na.rm=TRUE)

 d$manager_level_medium[is.na(d$manager_level_medium)]=

 mean(d$manager_level_medium,na.rm=TRUE)

 d$manager_level_low[is.na(d$manager_level_low)]=

 mean(d$manager_level_low,na.rm=TRUE)

 return(d)

}

36

train_ready=mana_fun(train_ready)

test_ready=mana_fun(test_ready)

#***************

#merge data

#***************

time_stamp=read.csv('listing_image_time.csv')

colnames(time_stamp)=c("listing_id",'time_stamp')

train_ready=merge(train_ready,time_stamp,by="listing_id",all.x = TRUE)

test_ready=merge(test_ready,time_stamp,by="listing_id",all.x = TRUE)

datatrain=merge(train_ready,train_id,by="listing_id",all.x = TRUE)

datatest=merge(test_ready,test_id,by="listing_id",all.x = TRUE)

#--------

datatest=datatest[order(datatest$id),]

datatrain=datatrain[order(datatrain$id),]

trainlabel=read.csv('train_label.csv')

trainlabel$id=NULL

datatrain=merge(datatrain,trainlabel,by="listing_id",all.x = TRUE)

37

datatest=datatest[order(datatest$id),]

datatrain=datatrain[order(datatrain$id),]

#***************

#Preparing data functions

#***************

mytrain=datatrain

mytest=datatest

#make the outcome be numeric

numoutcome=function(data){

 data$outcome[data$interest_level=='low']=0

 data$outcome[data$interest_level=='medium']=1

 data$outcome[data$interest_level=='high']=2

 return(data)

}

#select numerica features and impute missing value

selectnum_imputemiss=function(d){

 nums <- sapply(d, is.numeric)

38

 d=d[,nums]

 #d$sim[is.na(d$sim)==TRUE]=0

 return(d)

}

#***************

#Prepare DATA

#***************

mytrain=numoutcome(mytrain)

mytrain=selectnum_imputemiss(mytrain)

#split outcome

mytrain_outcome=mytrain$outcome

mytrain$outcome=NULL

mytest=selectnum_imputemiss(mytest)

#******************************

#xbg_1

#******************************

#xgb boost

dtrain1 <- xgb.DMatrix(data=as.matrix(mytrain), label=mytrain_outcome)

dtest1 <- xgb.DMatrix(data=as.matrix(mytest))

39

numberOfClasses <- length(unique(mytrain_outcome))

xgb_params <- list(booster="gbtree",

 objective="multi:softprob",

 eval_metric="mlogloss",

 nthread=13,

 num_class=numberOfClasses,

 eta = .03,

 gamma = 1,

 max_depth = 6,

 min_child_weight = 1,

 subsample = .7,

 colsample_bytree = .7

)

nround <- 1000 # number of XGBoost rounds

cv.nfold <- 5

Fit cv.nfold * cv.nround XGB models and save OOF predictions

cv_model1 <- xgb.cv(params = xgb_params,

 data = dtrain1,

 nrounds = nround,

 nfold = cv.nfold,

 verbose = TRUE,

 prediction = TRUE)

40

mean(cv_model1dttrain.mlogloss.mean)

mean(cv_model1dttest.mlogloss.mean)

#***************

#training

xgb1<- xgb.train(data = dtrain1,

 params = xgb_params,

 # watchlist=watch,

 # nrounds = cv_model1$best_ntreelimit

 nrounds = nround

)

compute feature importance matrix

imp <- xgb.importance(names(mytrain),model = xgb1)

print(imp)

#***************

#Saving result

#***************

41

#***select features

sPreds <- as.data.table(t(matrix(predict(xgb1, dtest1), nrow=3, ncol=nrow(dtest1))))

class <- data.table(interest_level=c("low", "medium", "high"), class=c(0,1,2))

colnames(sPreds) <- class$interest_level

setwd("C:/Users/ellie/Dropbox/2 sigma/TRY24 EVERYTHING")

write.csv(data.table(listing_id=mytest$listing_id, sPreds[,list(high,medium,low)]),

 "submission_apr24-1.csv",row.names=FALSE)

42

Reference

Han, J., Kamber, M., & Pei, J. (2012). Data mining: Concepts and techniques. Waltham,

MA: Morgan Kaufmann.

Chen, T., & Guestrin, C. (2016). XGBoost. Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining - KDD '16.

Kulkarni, S., Harman, G., & Wiley InterScience (Online service). (2011). An elementary

introduction to statistical learning theory. Hoboken, NJ: Wiley.

In Perner, P. (2015). Machine Learning and Data Mining in Pattern Recognition: 11th

International Conference, MLDM 2015, Hamburg, Germany, July 20-21, 2015,

Proceedings.

Two Sigma Connect: Rental Listing Inquiries | Kaggle. (n.d.). Retrieved from

https://www.kaggle.com/c/two-sigma-connect-rental-listing-inquiries

Tune Machine Learning Algorithms in R (random forest case study) - Machine Learning

Mastery. (n.d.). Retrieved from http://machinelearningmastery.com/tune-

machine-learning-algorithms-in-r/

Gradient descent - Wikipedia. (n.d.). Retrieved May 3, 2017, from

https://en.wikipedia.org/wiki/Gradient_descent

Boosting (machine learning) - Wikipedia. (n.d.). Retrieved May 3, 2017, from

https://en.wikipedia.org/wiki/Boosting_(machine_learning)

Gradient descent - Wikipedia. (n.d.). Retrieved May 3, 2017, from

https://en.wikipedia.org/wiki/Gradient_descent

Log Loss | Kaggle. (n.d.). Retrieved from https://www.kaggle.com/wiki/LogLoss

