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Supervisor: Michael Sacks

Despite playing a large role in many cardiovascular diseases (such as

pulmonary hypertension), the heart’s right ventricle (RV) is still poorly un-

derstood in regards to its complex shape and motion over the cardiac cycle.

In this report, we examine the kinematics of the right ventricle and our ongo-

ing progress towards developing a computational pipeline to extract functional

measurements of deformation from cardiac computed tomography (CT) im-

ages. While other techniques in [2], [9], and [31] have been used to model

the RV shape and motion, they lack a clear physical interpretation of their

results. By using a central axis governed by blood flow direction, left ventricle

based coordinate system, and deformable NURBS shape representation, we

aim to identify kinematic modes that have a more direct physiological mean-

ing. In doing so, the proposed methods could be eventually developed into an

image-based tool for both diagnostic and prognostic purposes.

vi



Table of Contents

Acknowledgments v

Abstract vi

List of Tables ix

List of Figures x

Chapter 1. Introduction 1

Chapter 2. Overview of the Right Ventricle 3

2.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Comparison to Left Ventricle . . . . . . . . . . . . . . . . . . . 4

2.3 Pathology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 3. Previous Methods 8

3.1 Spherical Harmonic Mapping [32] . . . . . . . . . . . . . . . . 8

3.2 Tagged MRI [10] . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Shape Representation using NURBS [3] . . . . . . . . . . . . . 10

Chapter 4. Data Processing Pipeline 12

4.1 Clinical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Determining End Planes . . . . . . . . . . . . . . . . . . . . . 13

4.3 Determining the Central Axis . . . . . . . . . . . . . . . . . . 14

4.3.1 Sectional Centroids . . . . . . . . . . . . . . . . . . . . 15

4.3.2 Second Bezier Curve . . . . . . . . . . . . . . . . . . . . 17

4.4 Remapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

vii



Chapter 5. Preliminary Deformation Analysis 21

5.1 NURBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1.2 Deformation . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Chapter 6. Conclusion and Future Work 27

Bibliography 29

Vita 34

viii



List of Tables

5.1 Relative axes length over the five phase points for one normal
RV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

ix



List of Figures

2.1 Anatomy and blood flow of the heart. . . . . . . . . . . . . . . 4

2.2 Relative thickness and shape of the left and right ventricles. . 5

2.3 Normal left ventricle (LV) and right ventricle (RV) pressure-
volume relationships. Image from [30]. . . . . . . . . . . . . . 7

4.1 Data processing pipeline for analyzing cardiac CT images . . . 12

4.2 The two best-fit end planes and their respective normal vectors. 14

4.3 Bezier curve and its control points alongside the point cloud
P (x, y, z). Parameter values of a=65 and b=59 were used. . . 16

4.4 The right ventricle point cloud with the initial bezier curve (pur-
ple), the sectional centroids (green), and two end normals (yellow) 17

4.5 Central axis and sectional centroids (and corresponding sec-
tional planes). . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.6 The re-mapped point clouds with the central axis shown in green. 20

5.1 The two main methods of modifying a NURBS curve. (a) The
effect of displacing control point pk to p∗k along direction v by a
distance d. This produces a new curve p∗(u) which is partially
shifted towards v. (b) The result of assigning a new weight w∗k
to the k-th control point. The origin O of the coordinate system
is set to control point pk. Images from [27]. . . . . . . . . . . . 24

5.2 The re-mapped point clouds over time from three perspectives. 25

5.3 Four main types of motion expected to make up RV kinematics.
(1) Elongation and contraction. (2) Twisting and rinsing. (3)
Peristaltic movement. (4) Bending. . . . . . . . . . . . . . . . 26

x



Chapter 1

Introduction

Among doctors and philosophers alike, the heart is considered to be one

of the most complex and important organs in the human body and has been

studied by the likes of Aristotle, Galen, and Leonardo Da Vinci. In modern

times, understanding cardiology has become even more crucial as cardiovascu-

lar disease has become the number one cause of death by far [1]. With a clear

need for advancements in both early diagnosis and treatment, cardiac modeling

has emerged as a vital tool for analyzing medical imaging data and simulating

cardiac function. Despite these decades of research, the right ventricle specif-

ically is still poorly understood in comparison to its left counterpart. As we

now know, it plays a large role in cardiac disease and dysfunction which cre-

ates a clear need for further study of the right ventricle. As shown throughout

this paper, this presents unique challenges and requires creative computational

techniques.

In this report, we will give an overview of the structure and kinematics

of the right ventricle as a motivation for using deformable geometric models to

characterize its shape and movement across the cardiac cycle. Chapter 2 will

point out some of the important biological and mechanical features of the right
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ventricle and the role of disease. In Chapter 3, some related geometric and

kinematic models will be reviewed to preface the our choice of computational

techniques. Finally, Chapters 4 and 5 detail the novel methods and analysis of

our ongoing project by the Center for Cardiovascular Simulation at UT Austin

to create a thorough computational framework for kinematic analysis of right

ventricle images.

Further, we will discuss how these techniques have the potential to be

extended for comparison between subjects with and without diseases such as

pulmonary hypertension. With this information in hand, we hope to better

describe the contractile dynamics in the RV and predict how cardiovascular

disease affects its behavior. This could provide crucial information that could

be applied towards the ultimate goal of more clinical tools for prognosis and

diagnosis of diseases affecting the right ventricle.
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Chapter 2

Overview of the Right Ventricle

While many strides have been made in the field of cardiac modeling,

the majority of the efforts have been applied to the left ventricle (LV) of the

heart. In this section, we briefly explore some of the main functional and

structural characteristics that are unique to the right ventricle (and which can

also make it difficult to study).

2.1 Structure

To maintain the complex cardiac cycle, the heart must manage a precisely-

timed chain of mechanical and electrical events with little to no room for error.

In order to do so, the heart’s anatomy is divided into four main chambers with

a ventricle and atrium on each respective side as shown in Figure 2.1. Within

this system, the right ventricle’s function is to receive de-oxygenated blood

from the right atrium above and then push it out to the pulmonary artery

where it can be transported to the lungs for oxygenation [10]. The right ven-

tricle itself is situated below the right atrium and directly opposite to the left

ventricle. The septum divides the two ventricles and is their shared struc-

tural wall while the opposing wall is referred to as the right ventricle free wall
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(RVFW). The RV anatomy can be subdivided into three main components:

the inlet, apical trabecular and the outlet as described by Goor and Lillehei

[8]. This can be more simply put as the sinus (for inflow) and conus (for out-

flow) but does not allow for as much distinction between the morphology of

the two ventricles [12].

Figure 2.1: Anatomy and blood flow of the heart.

2.2 Comparison to Left Ventricle

The left ventricle had long been attributed to being more responsible

for (and affected by) cardiovascular diseases and other sources of hypertrophy.
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Early experiments observed that cardiac output was mainly unaffected when

the right ventricle free wall (RVFW) was ablated or replaced and was therefore

considered to be non essential in comparison [30]. However, it has been since

shown that the failure of the right ventricle is in fact a key determinant of

morbidity and mortality in pulmonary hypertension [15].

As shown below in Figure 2.2, we can also clearly see that the two

ventricles are quite structurally asymmetric. The right ventricle wraps around

the ellipsoidal left ventricle to form a irregular crescent-like shape in a cross-

section [11] which is not as ideal for many geometric representations. The left

ventricle’s free wall is also two to three times thicker than that of the right

ventricle [13]. Further, while the right ventricle is larger than the LV in terms

of volume, it is only about one-sixth of the LV mass [17]. Due to this, the

RV has a higher surface-to-volume ratio and requires a smaller contraction to

achieve the same stroke volume [11].

Figure 2.2: Relative thickness and shape of the left and right ventricles.
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2.3 Pathology

The cardiovascular system is interconnected to almost every aspect

of human health so it is no surprise that even acute or minor conditions of

a single ventricle of the heart can have lasting effects on a patient. When

there is ventricular dysfunction, it can often lead to adaptive remodeling of

the muscle and movement in the heart [24]. While this initially seems like

a positive mechanism, this also means that RV dysfunction (and failure) can

often lack clinical symptoms or manifest itself by instead affecting the LV or

lungs.

A particular example of this is pulmonary hypertension (PH), which is

a progressive condition characterized by elevated pressure in the pulmonary

artery which can lead to to hypertrophy and increased resistance in the lungs

[24][21]. Not only does it lead to over 300,000 hospitalizations annually, but

it’s frequency and mortality rates have shown period of significant increases in

the last couple decades in the U.S. [7]. In terms of right ventricle analysis, PH

is of particular significance because the RV function is the important indicator

of both prognosis and diagnosis of PH [21]. In one particular study, more

than half of the deaths of patients with PH were ultimately attributed to right

heart failure [5]. In terms of research, however, the strong attachment to RV

function, frequent occurrence, and overwhelmingly negative outlook makes it

an ideal disease to study as improvement can have a tangible impact.
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Figure 2.3: Normal left ventricle (LV) and right ventricle (RV) pressure-volume
relationships. Image from [30].

2.4 Kinematics

As an organ that is in continuous motion, the heart has a dynamic

geometry with the RV having especially complex motion. During ventricular

systole, the right ventricle contracts to push blood through the pulmonary

artery to be oxygenated as its primary function. The contraction mechanism

causes the free wall to move inward towards the center and shortens the long

axis due to contraction of its longitudinal fibers [31]. Once the ventricles relax

in diastole, the tricuspid valve (between the right atrium and right ventricle)

opens and the ventricular fibers relax as it expands and once again fills with

blood in order to repeat the next cycle [29]. As displayed in Fig. 2.3, it is also

clear that the pressure-volume profiles of each is vastly different with the RV

having poorly defined isovolumic periods and sustained ejection even during

pressure decline [29].
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Chapter 3

Previous Methods

There are many methods to model and characterize biological systems

in terms of their geometric and mechanical qualities. In this section, we briefly

examine some previous techniques applied to cardiac modeling including rel-

evant results or drawbacks. Additionally, we introduce using NURBS as a

representation for geometric data and why it is well suited for this problem.

3.1 Spherical Harmonic Mapping [32]

One particularly relevant project in recent years was done by Wu et al

in 2012 which introduced a new approach to fit the RV endocardial surface us-

ing spherical harmonics [32]. With a similar motivation, their study examined

cardiac CT images of the right ventricle throughout the cardiac cycle in order

to improve understanding of changes due to pulmonary hypertension. After

manually segmenting the CT images, analytical 3-D meshes were generated

and then smoothed using a discrete Gaussian filter. For the surface parame-

terization, each endocardial surface at time point t is mapped to a reference

state using a variation of two-step harmonic topological mapping. By first ap-

plying a harmonic mapping (in which each new parameter satisfies LaPlace’s
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equation), and then a secondary mapping (to improve surface distribution)

images of the heart across time can be analyzed in anatomically consistent

manner [32]. This deterministic approach creates a unique,one-to-one mapping

between the original mesh and unit sphere. In order to analyze the surface,

they created ”pseudo-displacement” function based on the normalized shape

change over time for an individual and then used proper orthogonal decompo-

sition (POD) to rank a set of kinematic features/modes amongst a group of

individuals[32]. While the pipeline is mathematically robust with promising

results, the main issue with their approach is the lack of clear physiological

meaning of the psuedo-displacement functions and computed kinematic modes.

Further, this means the results are highly dependent on the initial reference

points used in the mapping.

3.2 Tagged MRI [10]

In another paper from Haber et al in 2000, tagged multi-view magnetic

resonance imaging (MRI) data was used to reconstruct and visualize right ven-

tricular motion in three dimensions [10]. In order to accurately include the

function of the intra-ventricular septum, they decided to use a bi-ventricular

model and implemented it as a finite element mesh built from segmented con-

tours. These contours were automatically generated via SPAMMVU which

uses spatial modulation of magnetization to track the tags across the images.

To reconstruct the motion, a deformable model was used by energy mini-

mization in terms of a reduced form of Lagrange’s equation which relates the
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deformation and finite element stiffness. One potential difficulty of the tagging

method is the relatively large distance between tags (6mm apart) limits the

amount that can be positioned on the RV free wall to capture information.

In this project, the work was primarily focused on the methodology of their

approach rather than a particular disease, but applied it to hearts with right

ventricular hypertrophy (RVH) and found significantly different motion met-

rics from those of normal hearts. In particular, a lessened strain angle and

minimum principal strain was found in RVH hearts[10]. There was also an

observed ”twisting” of the RV with respect to the LV which would make an

LV-centric system useful to analyze the RV-LV interactions. While notable,

this local strain information does not connect back to the organ-level changes

that we are concerned with such as axial contraction and peristaltic motion.

3.3 Shape Representation using NURBS [3]

An additional project completed by researchers at Zhejiang University

of Technology is particularly insightful for our later step of shape represen-

tation, which will be thoroughly described within Section 5.1. In the work

done by Chen and Guan [3], they propose a method for representing the total

cardiac surface in terms of NURBS (Nonuniform rational B-splines). Using

cardiac MRI images (with no temporal component), they directly obtain their

point cloud by fitting an ASM (active shape model) directly to the image vol-

ume to obtain a triangular mesh then convert that to a tetrahedral mesh and

fit it to a NURBS geometry. Since it is not over any time span, the approach

10



shows a proof of concept that shows that measures of volume can be quite

accurately measured from this method. Unfortunately, the paper does not go

into great detail about the fitting process, but it once again brings up the

issue of a coordinate system that is geometrically valid without incorporating

important structural features. By pairing aspects of this approach with the

proposed method pipeline (as detailed in the following chapter) and extending

it to a temporal data set, we hope to derive more organ-level motion metrics.

In fact, the paper even goes into detail of possible extensions to images over

the cardiac cycle, but does not derive any kinematic metrics (outside of volume

change over time).
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Chapter 4

Data Processing Pipeline

In order to process clinical imaging data for analysis, a computational

framework has been developed as a project by the Center for Cardiovascular

Simulation at UT Austin. In this chapter, we detail each step of the current

state of the pipeline and next steps. Further, the we will show these steps

(listed in Figure 4.1) can lead to an improved representation of right ven-

tricular shape and motion. The last two steps of NURBS representation and

deformation analysis will be explored in more detail in Chapter 5.

Figure 4.1: Data processing pipeline for analyzing cardiac CT images
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In order to create physiologically-relevant metrics, this process focuses

on remapping the geometry of the right ventricle with regards to a physiolog-

ically relevant central axis rather than an arbitrary system. While the central

axis is not a physical structure within the heart, it represents the direction of

the blood flow through the ventricle which governs all of its movement across

the cardiac cycle.

4.1 Clinical Data

The raw data consists of bi-ventricular computed tomography (CT)

images from the 1999 Dallas Heart Study (DHS) via the Dept. of Radiology at

University of Texas Southwestern Medical Center at Dallas [CITE]. The DHS

is a particularly good source for these analyses (and moving forward) as it was

a multi-ethnic, population-based probability sample of Dallas County and has

a variety of imaging data per patient. In this report, we only examined CT

data where for a single heart,five images were obtained at intervals starting

from end-diastole to mid-systole. From each image, the right ventricle was

isolated and then segmented using anatomical features as a guide in order to

produce a point cloud as our starting data points.

4.2 Determining End Planes

For a given sample, there is now a point cloud P (x, y, z) of discrete

three-dimensional points which represents the heart’s geometry at the given

time point in the cardiac cycle.Next, in order to define the central axis, we need
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to have ”end planes” which define the fixed physical bounds of the geometry.

The start/acute end plane corresponds to the RV free wall while the end/sinus

end plane corresponds to the pulmonary valve on the other side. To determine

the planes, three points (P1,P2,P3) were manually marked and then the first

approximation of the end plane was defined by (P2, η) where η is the normal

defined as η = (P1−P2)×(P3−P2). From there, to find the best-fit plane, the

least squares matrix is defined as (P −X)T · (P −X) such that the centroid

of the three points is X = 1
N

∑N
i=1 Pi. Then, we can consider the principle

eigenvector to be the normal to the best fit plane passing through X.

Figure 4.2: The two best-fit end planes and their respective normal vectors.

4.3 Determining the Central Axis

The central axis (CA) is the vital part of this pipeline as it ties the RV

geometry to the hemodynamics of the cardiovascular system. Since the RV’s

primary function is pumping blood, the CA is designated by the path of blood

14



flow and allows us to re-map the geometry with respect to that flow path. For

these purposes, a central axis needs to:

1. Pass through the end points

2. Pass through sectional centroids

3. Have a tangent parallel to the the two end normals

4.3.1 Sectional Centroids

For our first approximation of an ideal CA, a cubic bezier curve is

used with four control points (P0, P1, P2, P3) where P0 and P3 are the two end

points that we identified in Section 4.2. A bezier curve is used to maintain

smoothness and easy shape manipulation to fit the given criteria. In order to

find the appropriate values for the two internal control points, we use the third

tangency condition to construct the following formulas:

B1(t) = (1− t)2P0 + 3(1− t)2tP1 + 3(1− t)2P2 + t3P3, t ∈ {0, 1} (4.1)

P1 = [a, y0 +
ny
0

nx
0

(a− x0), z0 +
nz
0

nx
0

(a− x0)] (4.2)

P2 = [b, y3 +
ny
3

nx
3

(b− x3), z3 +
nz
3

nx
3

(b− x3)] (4.3)

In terms of notation, nx
0 represents the x component of the normal for

P0 and so on. The components of Pi in each direction are written as xi,yi, and

zi with a and being free parameters to be solved.
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The first central axis shown in Figure 4.3 now has well oriented normals

and uses the end points so it fulfills the first and third requirements that we

defined for a central axis. Now, in order to fulfill the second condition, it

must pass through ”sectional centroids” in order to accurately represent the

center of the geometry along the entire axis. To do so, the total length of the

geometry and it’s axis are divided into equally spaced sections each denoted

by ti = i
stotal−1

where stotal = total number of sections (which was chosen to

be 50 ).

Figure 4.3: Bezier curve and its control points alongside the point cloud
P (x, y, z). Parameter values of a=65 and b=59 were used.

For each of these points ti, we can now compute the true geometric

centroid. However, since the point cloud is not very uniform, some subspaces

are significantly more dense or sparse. In order to compensate for this, we

first divide the point cloud into sections based on minimizing the perpendicular
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distance from the nearest ti on the initial curve. Then we can project the points

onto the sectional plane in order to condense it to a two-dimension problem.

This allows us to determine the convex hull to enclose the projected points and

label the points that fall inside the threshold. By averaging the locations of

the points in that area, we then obtain the centroid and can determine where

it lies in the three-dimensional point cloud. Once we have done this for all

sections, we not have a list of stotal sectional centroids (and associated planes)

that the curve should adhere to.

Figure 4.4: The right ventricle point cloud with the initial bezier curve (pur-
ple), the sectional centroids (green), and two end normals (yellow)

4.3.2 Second Bezier Curve

As expected, in Fig. 4.4, it is clear that our initial guess curve does not

fulfill the requirement of passing through all (or even most) of the sectional

centroid so we must adapt it. Let us define our sectional centroids to be

17



Figure 4.5: Central axis and sectional centroids (and corresponding sectional
planes).

Ii, i = {0, 1, ..., stotal − 1} and construct a new bezier curve with four control

points (P0, P1, P2, P3) as:

B2(t) = (1− t)2P0 + 3(1− t)2tP1 + 3(1− t)2P2 + t3P3 (4.4)

Now, we need to be fit the curve to our sectional centroids by minimiz-

ing the cost function e =
∑stotal−1

i=0 ||B2(ti) − Ii||2. However, since our bezier

curve is defined in terms of ti, we need to find the corresponding sectional

centroid Ii. By assessing the proportion of the chord length between two con-

secutive sectional centroids (defined in Eq. 4.5) over the total length, we can

define ti in terms of sectional centroid indices. This allows us to rewrite our

cost function as Equation 4.6.

`j = ||Ij − Ij−1|| (4.5)

18



e(a, b) =

stotal−1∑
i=0

||B2(ti, a, b)− Ii||2 , ti =

∑i
j=0 `j∑stotal−1

j=0 `j
(4.6)

Similar to our first bezier curve, the end points are fixed as our first and

last control points. However, to solve for the internal control points, we can

now simply minimize the cost function by setting ∂e
∂a

and ∂e
∂b

both to zero. This

gives us the appropriate parameters ( a = 31.106, b = 81.18) for Equations 4.2

and 4.3 which solves for the two internal control points P1 and P2 respectively.

With all four control points fit and B2 defined, we now have a curve that

passes through sectional centroids while still maintain the required properties

of our initial curve.

4.4 Remapping

With a central axis that now fulfills all the geometric and fit conditions,

we want to transform the coordinate system continuously with respect to this

central axis. In order to perform the re-mapping, we use a Frenet-Serret

frame, which is a locally defined system on a continuous curve consisting of

a othormonal basis of three components: a tangent to the curve (T), normal

unit vector (N), and bi-normal (V) as product of T and N shown below.

T (t) =
B′(t)

||B′(t)||
(4.7)

N(t) =
T ′(t)

||T ′(t)||
=
B′(t)× (B”(t)×B′(t))
||B′(t)||||B”(t)×B′(t)||

(4.8)

V (t) = T ×N =
B′(t)×B”(t)

||B′(t)×B”(t)||
(4.9)
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In order to determine which points of the RV data are considering to be

on the frame at a point t, it must satisfy T (t).(P (x, y, z)− B(t)) < ε where ε

is some planar tolerance. We must also compute the CA curve length s and a

set of new local coordinates (x, y) for each point along the central axis. Using

a Frenet frame, x and y are simply projections of a given point P (x, y, z) onto

the normal (N) and bi-normal(V ) vectors respectively.

scurve =

∫ ti

0

√
B′(t).B′(t)dt, x = R.N, y = R.V (4.10)

Figure 4.6 below shows the results of final mapping of a normal human

right ventricle from two different perspectives. As you can see, the central axis

is now ”straightened out” and the point cloud has been re-oriented.

Figure 4.6: The re-mapped point clouds with the central axis shown in green.
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Chapter 5

Preliminary Deformation Analysis

As previously discussed in Chapter 2, work by Chen and Guan showed

the potential for using deformable NURBS as parametric shape representation

for the heart. While that project primarly focused on volume and associated

metrics, we will explain how this could also be applied to deformation analysis

across time. In this section, we will provide an overview of using NURBS and

some exploratory 2-D analysis of our remapped point clouds. Further, we will

discuss how this will be extended to three-dimensional analysis as well.

5.1 NURBS

Non-uniform rational basis splines (NURBS) have become a common

mathematical model to represent complex geometric shapes for isogeometric

analysis and computer graphics. Most notably, computer-aided design (CAD)

systems use NURBS geometries as their underlying parametric surfaces to

represent and modify physical systems for engineering and data visualization

[33].

Using a NURBS-based framework allows one to represent both analyt-

ical shapes and the irregular free-form shapes that are more often encountered
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in biological systems. Further, they are invariant under projection and affine

transformations with regards to scale, rotation, and shear which makes it quite

ideal for kinematic analysis and manipulation [22]. Additionally, they hold a

strong convex hull property meaning it is contained within the convex hull of

its control points [4]. While for complex data such as cardiac images, NURBS

can be a good solution, it is not as efficient for more traditional shapes such

as a perfect circle (which requires ten knots and seven control points rather

than just the center and radius).

5.1.1 Definition

A NURBS curve in two dimensions can be mathematically defined as

a piecewise rational polynomial function composed of various weighted basis

functions and is of the form

C(u) =

∑n
i=0Ni(u)wiPi∑n
i=1Ni(u)wi

(5.1)

where n is the total number of control points, Pi is the ith control point, Ni(u)

is the ith b-spline basis function formed by the knot vector u, and wi is the

associated weight.

Similarly, we can define a NURBS surface in three dimensions by gen-

eralizing the tensor product surface form [22] to derive equation 5.2. Similar

to Eq. 5.1, w and P represent the weights and control points respectively

(but is referred to as a control net in two dimensions). The B-splines in each

respective direction are separated as N(u) and N(v) as functions of the two

knot vectors u and v.
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S(u, v) =

∑n
i=0

∑m
j=1Ni,p(u)Nj,qwi,jPi,j∑n

i=0

∑m
i=1Ni,p(u)Nj,qwi,j

(5.2)

In order to specify a NURBS geometry, we must choose a set of control

points and a knot vector. For a given NURBS curve of degree N , there must

be at least N + 1 control points with each having some associated weight.

Secondly, the knot vector needs to consist of exactly (degree-1+C) numbers

where C is the number of control points [23].

A NURBS curve can be constructed from a set of discrete data points

(such as a point cloud) via data fitting, interpolation, or manual selection

[22]. Using a least-squares fit approach and given an initial set of data points

Qk, k = 0...n, we need to find some b-spline curve Ni that fulfills Eq. 5.3 for

some parameters uk

Qk = C(uk) =
n∑

i=0

PiNi,p(uk) (5.3)

Defining this in matrix form as Q = NP and then using the fact that the sys-

tem is overdetermined (since there are more data points than control points),

we can use the following equation to approximate the data with Q∗ in Eq. 5.4.

Starting with some initial parameter guess, we can assess the least squares

error and modify the parameters until it converges within a certain error tol-

erance [23]. Similarly, we can extend the same approach for NURBS surfaces.

Q∗ = (NTN)−1NTP (5.4)
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5.1.2 Deformation

Since NURBS is a piecewise function of low degree polynomials, one of

the crucial properties is that local deformation of the shape only has a local

effect within that interval of basis functions while maintaining the global shape

[4].The shape of a NURBS geometry can be changed easily via changing the

weights or modifying the control point(s) as well as knot vector changes or

just changing the initial data points then re-constructing it [27]. The former

two techniques are shown in Fig. 5.1 below on an example curve.

Figure 5.1: The two main methods of modifying a NURBS curve.
(a) The effect of displacing control point pk to p∗k along direction v by a distance
d. This produces a new curve p∗(u) which is partially shifted towards v.
(b) The result of assigning a new weight w∗k to the k-th control point. The
origin O of the coordinate system is set to control point pk. Images from [27].

While the examples above represent a simplistic push/pull on their

own, these approaches can be systematically used to characterize a specific

deformation mode from our starting geometry which could be used to describe
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aspects of complex motion such as the bending, contractile, and peristaltic

movement in Fig. 5.3.

5.2 Application

In order to apply these methods to our remapped three-dimensional

point clouds, we used the simpler case of using NURBS curves over a 2-D

surface as a proof of concept and hope to extend it. As seen below from the

remapped geometries, some clear trends are already noticeable with a very

asymmetric deformation pattern.

Figure 5.2: The re-mapped point clouds over time from three perspectives.
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Phase: 1 2 3 4 5
X-axis length 75.6488 80.9228 72.2077 64.9070 55.3044
Y-axis length 53.6094 54.3632 51.7027 49.1525 46.7785
Z-axis length 97.7163 98.4612 96.8521 96.3695 91.2548

Table 5.1: Relative axes length over the five phase points for one normal RV.

Although we have not developed the 3-D analysis, Figure 5.3 shows

some of the main deformation motions that we expect to be able to decompose

it’s motion into. During each stage in the cardiac cycle, we hope to be able

to see a different configuration of motions such as these with some becoming

more pronounced during diastole or systole. Many of these motions involve

stretching or contracting along the direction of the central axis or twisting

from either of the end planes.

Figure 5.3: Four main types of motion expected to make up RV kinematics.
(1) Elongation and contraction.
(2) Twisting and rinsing.
(3) Peristaltic movement.
(4) Bending.
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Chapter 6

Conclusion and Future Work

In this report, we showed that the right ventricle is still poorly under-

stood in some respects despite playing an essential role in the cardiac system

and associated diseases. We introduced some of the underlying methods to

build a pipeline for creating a physiologically meaningful representation of the

right ventricle and showed how it can be potentially used to analyze the motion

throughout the cardiac cycle.

The next step of this project would be to extend our kinematic analysis

to three dimensions by using a trivariate NURBS representation and develop-

ing a method to extract the relative deformation gradient tensor and strain

between time points. In addition, the entire pipeline and deformation mea-

sures would need to be rigorously validated using more in-vivo data from the

DHS data set. Once we know we have a valid and physiologically-accurate

framework, we would like to compare the deformation and motion between

hearts with and without pulmonary hypertension (PH).

Ultimately, this would allow us to understand cardiovascular diseases

better and what role the RV plays in it. This could potentially aid in treat-

ment when paired with a predictive model or diagnostics if applied to image
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processing and classification.
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