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Answer set programming (ASP) is a new form of declarative logic pro-
gramming. ASP interprets a logic program as a constraint on sets of literals,
just as a propositional formula can be viewed as a constraint on assignments
of truth values to atoms. The concept of an answer set was originally proposed
as a semantics of negation as failure in Prolog. Instead of traditional Prolog
systems, ASP uses answer set solvers. The input of Prolog consists of a logic
program and a query, and Prolog computes answer substitutions; the input of
an answer set solver is a logic program, and the solver computes the program’s
answer sets. The idea of ASP is to represent a given computational problem
as a logic program whose answer sets correspond to solutions, and to use an

answer set solver to find an answer set.
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We have investigated the application of ASP to several combinatorial
search problems, including planning, wire routing, and phylogeny reconstruc-
tion. Planning is the problem of finding a sequence of actions that leads to a
given goal. Wire routing is the problem of determining the physical locations
of all wires interconnecting the circuit components on a chip. Phylogeny re-
construction is the problem of constructing and labeling an evolutionary tree
for a set of taxa (taxonomic units), which describes the evolution of the taxa
in that set from their most recent common ancestor. In our work on phylogeny
reconstruction, we have generated several conjectures about the evolutionary
history of Indo-European languages.

The work on the use of ASP for planning has led us to the investigation
of some theoretical questions related to answer sets. One is the problem of
equivalent transformations of logic programs: under what conditions can we
replace a program by an equivalent program that can be processed by an an-
swer set solver more efficiently? Another problem is related to completion—a
process that can translate a logic program into a set of formulas of classical
logic. In some cases, the interpretations satisfying the completion of a program
are also the answer sets for that program. In such cases, we can use propo-
sitional solvers—systems that compute a model of a given set of clauses—to
find the program’s answer sets. For some problems, propositional solvers are
more efficient than answer set solvers. Therefore, we have investigated under
what conditions we can use propositional solvers to find the program’s answer

sets.
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Chapter 1

Introduction

Answer set programming is a new form of declarative programming [Marek
and Truszczynski, 1999, [Niemels, 1999], [Lifschitz, 2002]. It is based on the
“answer set semantics” [Gelfond and Lifschitz, 1991] (called “stable model se-
mantics” in [Gelfond and Lifschitz, 1988]). It differs both from traditional logic
programming and from constraint logic programming [Jaffar et al., 1983] in
that it represents solutions to a problem by “answer sets” rather than “answer
substitutions.” Instead of PROLOG, it uses answer set solvers—software sys-
tems capable of computing answer sets, such as cCALC [McCain and Turner,
1998], pcs [East and Truszczyriski, 2000], DERES [Cholewinski et al., 1996],
pLv [Eiter et al., 1997], and SMODELS [Niemeld and Simons, 1996], [Simons et
al., 2002]. The idea of answer set programming is to represent a given compu-
tational problem as a logic program whose answer sets correspond to solutions,

and to use an answer set solver to find an answer set for this program.



Answer set programming is a constraint programming paradigm in the
sense that it interprets a program as a constraint on sets of literals, just as a
set of propositional formulas can be viewed as a constraint on an assignment
of truth values to propositional symbols.

We have investigated the possibility of using answer set programming for

solving combinatorial search problems of several kinds, including the following:

e Planning. In a planning problem, we want to find a plan—a sequence of

actions that leads to a given goal.

e Wire routing. This is the problem of determining the physical locations
of all wires interconnecting the circuit components on a chip. Since the
wires cannot intersect with each other, they are competing for limited
spaces, thus making routing a difficult combinatorial optimization prob-

lem.

e Phylogeny reconstruction. This is the problem of constructing and label-
ing an evolutionary tree for a set of taxa, which describes the evolution

of the taxa in that set from their most recent common ancestor.

We are interested in fully adequate declarative representations of prob-
lems in these areas, their relations to logic programming, and algorithms for
solving these problems. Our work on these applications led to the investigation

of some theoretical problems related to answer sets:

e Equivalent transformations. Under what conditions can we replace a



program by another program that has the same answer sets but can be

processed by an answer set solver more efficiently?

e Completion. Clark [1978] defined a “completion” procedure that trans-
lates a logic program into a set of formulas of classical logic. In some
cases, the interpretations satisfying the completion of a program are also
the answer sets for that program [Fages, 1994]. We have investigated
under what conditions this is the case so that we can use propositional
solvers—systems that can compute a model of a propositional theory
given as a set of clauses, such as CHAFF [Moskewicz et al., 2001], SATO
[Zhang, 1997] or RELSAT [Bayardo and Schrag, 1997], instead of answer

set solvers, to find the program’s answer sets.

In the following, we will describe the earlier work in logic programming
which set the stage for answer set programming, the answer set semantics, an-
swer set solvers, and computing answer sets for a program using propositional
solvers (Chapter 2). Next, we summarize our initial experiments on generating
plans using answer set solvers and using propositional solvers, and describe in
what ways these experiments motivated our theoretical work (Chapter 3).

The theoretical work completed so far is presented in the next three
chapters. We state the theorem showing that the transformations of logic
programs we use in our experiments preserve the answer sets for a program
(Chapter 4). We also justify our use of propositional solvers instead of an-

swer set, solvers by showing that the completion semantics and the answer set



semantics are equivalent for the programs we experiment with (Chapter 5).
In particular, we show that, under some conditions, these two semantics are
equivalent for programs containing the recursive definition of the transitive
closure of one of its predicates (Chapter 6). Proofs are presented in Chap-
ter 9.

Then we present applications of answer set programming to the wire
routing problems (Chapter 7) and to the phylogeny reconstruction problems
(Chapter 8).



Chapter 2

Origins of Answer Set

Programming

Answer set programming [Marek and Truszczynski, 1999], [Niemels, 1999,
[Lifschitz, 2002] is a new form of declarative programming. It differs from
traditional logic programming in that it represents solutions to a problem by
answer sets rather than answer substitutions. Instead of Prolog, it uses answer
set solvers—software systems capable of computing answer sets.

In the following, we will describe the earlier work in logic programming
which set the stage for answer set programming, and then will describe the
semantics that answer set programming is based on. (For more information
about the development of logic programming, see the surveys [Shepherdson,
1988], [Apt and Bol, 1994], [Baral and Gelfond, 1994], [Dix, 1995, [Brewka

and Dix, 2001}, [Dix et al., 2001].) After that, we will describe the systems we



can use to find the answer sets for a program. In particular, we will describe
the answer set solvers DLV [Eiter et al., 1997] and SMODELS |[Niemels and
Simons, 1996], and discuss the possibility of using a propositional solver, such
as CHAFF [Moskewicz et al., 2001, SATO [Zhang, 1997] or RELSAT [Bayardo
and Schrag, 1997] instead of an answer set solver, to find the answer sets for
a program. Then, we will describe the Causal Calculator (ccALc) [McCain
and Turner, 1998], a system which turns a logic program into a propositional

theory and uses a propositional solver to find the answer sets for that program.

2.1 Setting the Stage

2.1.1 Logic-Based Languages

The use of logic-based languages for representing declarative knowledge was
proposed by McCarthy [1959]. When a body of knowledge is presented in
logic, that knowledge can be used via automated theorem proving.

The work in automated theorem proving, in particular the introduction
of the resolution principle by Robinson [1965] and its refinements, i.e., linear
resolution [Loveland, 1970] and SL resolution [Kowalski and Kuehner, 1971],
to prove theorems in first-order logic led to the proposal of the concept of
logic programming by Kowalski [1974], and to the first implementation of
the programming language PROLOG by Colmerauer and his students [Roussel,

1975].! Both Kowalski and Colmerauer noted that a subset of first-order logic

1See [Colmerauer and Roussel, 1996] for the history of PROLOG.



was adequate for a programming language. In this subset of first-order logic,

logic programs consist of rules of the form
Ao(—Al,...,An (21)

for some n > 0. The head A, of rule (2.1) is an atom; the body Ay,..., A, is
a list of atoms. Such programs are called positive programs. Van Emden and
Kowalski [1976] showed that the meaning of positive programs can be described
in terms of fixpoints of an operator 7' applied to sets of atoms. Hill [1974]
refined SL resolution for positive programs and, Apt and van Emden [1982]
renamed this proof procedure as SLD resolution. Later implementations of
PROLOG were based on SLD resolution. SLD resolution is sound and complete
for positive programs.

A negation of an atom is never a logical consequence of a positive pro-
gram. Getting negative information from a positive program can be justified,
however, by adopting the “closed world assumption” (CWA) [Reiter, 1980].
Reiter’s CWA is based on the idea that a program contains all the positive
information about the objects in its domain and that any ground atom? that
is not implied by the program is false.

Using CWA can be viewed as a simple form of nonmonotonic reasoning.
Other forms of nonmonotonic reasoning emerged around the same time out
of attempts to capture the essential aspects of commonsense reasoning. One

of the main motivations came from reasoning about actions. McCarthy and

2A ground atom is an atom without variables.



Hayes [1969] proposed the situation calculus as a means to formalize change in
logic. It soon turned out that the problem was not so much to represent what
changes but to represent what does not change when an action occurs. This
problem is called the “frame problem” [McCarthy and Hayes, 1969]. McCarthy

proposed to handle the frame problem by a default rule:

If a property P holds at situation S then P normally also holds in

the situation obtained by performing an action A in S.

This rule is called the “commonsense law of inertia”. Many nonmonotonic
logics have been introduced to deal with the frame problem, such as circum-
scription [McCarthy, 1980], default logic [Reiter, 1980], and autoepistemic
logic [Moore, 1985]. In logic programming, default rules are represented using
a nonmonotonic negation, proposed by Clark [1978] and called negation as

failure.

2.1.2 Negation as Failure

Clark’s theory of negation as failure is based on program completion. He
considered rules whose bodies may consist not only of atoms, as (2.1), but
also of atoms preceded by negation as failure.

Clark’s program completion is based on the idea that, in a program,
the bodies of rules with the head Head provide not only a sufficient condition
for Head, but also a necessary condition.

The completion semantics is defined for finite programs only. (See Sec-



tion 3.4 for the definition of completion.) In [Apt et al., 1988], the authors
introduced a counterpart of the completion semantics, called “supportedness”,
for possibly infinite programs, and proved an important theorem saying that,
for a finite program Il and any set X of atoms, X satisfies the completion
of a program iff X is supported by II. (See Section 5.1 for the definition of
supportedness.)

In [Clark, 1978], a query evaluation procedure, called SLDNF resolution,
was also introduced. In this procedure, the query not @) succeeds in a program
IT if the query @ with respect to II fails on every evaluation based on SLD
resolution. SLDNF resolution is used in most of the recent implementations
of PROLOG. It is sound with respect to program completion but not complete.

Unfortunately, the completion semantics, even applied to a positive
program is sometimes unintuitive and not equivalent to the usual meaning of
the programs as a set of formulas of first-order logic. For instance, adding
the rule p < p to a program can change its meaning under the completion
semantics, although this rule is tautological. Examples like this prompted Apt,
Blair and Walker [1988] to look for a different explanation of the meaning of

negation as failure.

2.1.3 Stratified Programs

In 1988, Apt, Blair and Walker studied a class of programs restricted syntac-
tically in a way. These programs are called the “stratified” programs. They

introduced a new semantics for stratified programs via an iterated fixpoint

9



construction. Van Gelder [1988] independently developed the concept of strat-
ification, and introduced the tight tree semantics for such programs.

Lifschitz [1988] studied stratified programs using the concept of prior-
itized circumscription [McCarthy, 1986]. Przymusinski [1988] extended the
notion of stratification to programs that allow disjunction in heads of rules,
and defined “perfect models” for such programs.

Although the work on stratified programs led to a useful semantics for
this class of programs, there are programs of interest that are not stratified.
For instance, consider the program, similar to (5) of [Gelfond and Lifschitz,

1988],

move(a, b) +

move(b, c) < (22)

winning(z) < move(z,y), not winning(y).
This program describes a two-player game where a position x is winning for a
player if there is a legal move from z to y and y is not winning for the other
player. This program is not stratified. How can we give a meaning to such
programs and avoid the defects of the completion semantics mentioned above?
This question led to several semantics including the “well-founded semantics”
and the “answer set semantics”. The latter became the basis for answer set

programming that will be studied in this dissertation.

10



2.1.4 The Well-Founded Semantics

In 1988, Van Gelder, Ross, and Schlipf defined the well-founded semantics for
programs with negation as failure. Well-founded semantics defines a three-
valued interpretation of a program [Van Gelder et al., 1991]: each atom is
assigned one of the values true, false, unknown. As in [Lifschitz, 1996], we
say that an atom is well-founded (resp. unfounded) relative to a program if
it is mapped to true (resp. false) in the three-valued interpretation of that
program. For instance, for program (2.2), the set of well-founded atoms is
{move(a,b), move(b, c), winning(b)}, and the rest of the atoms are unfounded.
In some cases, some atoms may be neither well-founded nor unfounded. For

instance, consider the program

p + not q
(2.3)

q <+ not p.

Here none of the atoms is well-founded or unfounded: both p and ¢ get the
truth value unknown.

SLDNF resolution is sound with respect to the well-founded semantics,
but it is not complete. This led to the development of some logic program-
ming systems, such as XSB,? based on the well-founded semantics. The proof
procedure used in this system is SLG resolution [Chen et al., 1993], which is

SLDNF resolution where the “cycles” as in p < p are detected.

3http://xsb.sourceforge.net/ .

11



2.1.5 The Answer Set Semantics

In 1988, Gelfond and Lifschitz defined the answer semantics (also called the
stable model semantics) for programs with negation as failure. They obtain
the reduct of a program relative to a set X of atoms, denoted IIX, by deleting
the rules in IT that contain the expression not A in their bodies where A € X,
and by removing the remaining not A in II. For instance, the reduct of the

program
p < not q
q < not p (2.4)
TP
rq
relative to {p,r} is
p
T p (2.5)
T q.
A set X of atoms is an answer set for II if it is the set of consequences of the
reduct IT1*. For instance, the set of consequences of the reduct (2.5) is {p, r}.
Then, the set {p,r} is an answer set for (2.4). Similarly, the set {q,r} is an
answer set for (2.4).
The definition of an answer set was based on the study of the relation
between logic programming and autoepistemic logic in [Gelfond, 1987]. A

similar idea was proposed independently in [Bidoit and Froidevaux, 1987].

The well-founded semantics is weaker than the answer set semantics in

12



the sense that any answer set for a program II contains all the atoms that are
well-founded relative to II. However, an atom may belong to all answer sets
but may not be well-founded. For instance, none of the atoms is well-founded
or unfounded relative to (2.4), although the atom r belongs to both answer
sets {p, 7}, {g,7}

The answer set semantics belongs to a higher level of computational
complexity than the well-founded semantics. Thus the answer set semantics is
more expressive. For instance, the propositional satisfiability can be expressed
in terms of the answer set semantics but not in terms of the well-founded
semantics. Note that both the completion semantics and the answer set se-
mantics are in the same level of the complexity hierarchy. The relationship
between these two semantics was first investigated by Fages [1994]. Fages
showed that, for the programs that are now called “tight”, these two seman-
tics are equivalent. Fages’ theorem, its generalizations, and applications to
answer set programming are discussed in Section 3.4.2 and in Chapter 5.

As with the well-founded semantics, SLDNF resolution is sound with re-
spect to the answer set semantics, but it is not complete. This led to the devel-
opment of some systems, called answer set solvers, such as DLV and SMODELS,
based on the answer set semantics. These systems are the main computational

tools used in answer set programming. They will be described in Section 2.3.
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2.2 Extending the Syntax of Logic Programs

The syntax of logic programs has been extended in several ways resulting in
more expressive programs, and the answer set semantics has been extended to
these more general programs. There are four main extensions that played an

important role in answer set programming.

Classical negation. Sometimes the use of negation as failure leads to unde-
sirable results that can be eliminated by substituting classical negation for it.
Consider the following example by John McCarthy as appears in [Gelfond and
Lifschitz, 1991]. A school bus may cross railroad tracks under the condition

that there is no approaching train. We may try to express this by the rule
cross <— not train

but this rule is too strong: according to this rule, even if we do not have infor-
mation about train, the bus crosses the tracks. Just because the information
about an approaching train may not be available, for instance the driver’s vi-
sion may be blocked, we do not want the bus to cross the tracks. We need a

stronger negation, such as classical negation, in this case. Consider the rule
cross <— —train

instead. Here, the bus crosses the tracks only if —train is known.
Examples like this led to the introduction of classical negation into

logic programming. Gelfond and Lifschitz [1990, 1991] introduced the classical
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negation symbol — into the syntax of logic programs, and extended the answer
set semantics to handle such programs. A similar idea was independently
developed by Pearce and Wagner [1990].

Answer sets for a program with classical negation consist of literals
(propositional atoms possibly preceded by classical negation).

Computationally, adding classical negation to the language of logic pro-
grams is not an essential extension. In [Gelfond and Lifschitz, 1991], the au-
thors suggest that, instead of introducing classical negation explicitly, an atom
preceded by classical negation, such as —p, can be replaced by a new atom np.
Consider a program II with classical negation, and the program II' obtained
from IT by replacing every expression = A by the expression nA. It is shown
in [Gelfond and Lifschitz, 1991] that, for a consistent set X C Lit and the set
X' obtained from X by replacing every literal = A by nA, X is an answer set

for IT iff X' is an answer set for IT'.

Disjunction in the heads of rules. Gelfond and Lifschitz defined the an-
swer set semantics for the programs that may contain disjunction ; in the
heads of the rules.* Consider, for instance, the following problem from [Gel-
fond and Lifschitz, 1991]. Jack is employed by Stanford University or by SRI

International; an employed individual has an adequate income. This problem

4In [Gelfond and Lifschitz, 1990] and [Gelfond and Lifschitz, 1991], the authors use the
symbol | to denote disjunction.
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was formalized by the program
employed (jack, stanford); employed (jack, sri) <
adequate_income(x) < employed(x)

whose answer sets are

{employed(jack, stanford), adequate_income(jack)}

and

{employed(jack, sri), adequate_income(jack)}.

Here the disjunction ; is semantically different from the disjunction V of the

classical logic. Consider, for instance, the program
P;p (2.6)

that has two answer sets {p} and {—p}. Adding this rule to a program may
change the set of answer sets, unlike adding the tautology p V —p to a set of
formulas.

In particular, the number of literals in the head of a rule can be 0. A

rule with the empty head is called a constraint.

Negation as failure in the heads of rules. In 1992, Lifschitz and Woo
extended the answer set semantics to programs that may contain negation as

failure in the heads of rules. For instance, the answer sets for the program
p; not p (2.7)

are {p} and the empty set. Later on, Inoue and Sakama [1994] related such

programs to “abductive logic programs” in the sense of [Kakas et al., 1992].
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Nested expressions. In [Lifschitz et al., 1999], the answer set semantics is
defined for programs with nested expressions—formulas formed from literals
using negation as failure, conjunction (,) and disjunction (;) that can be nested

arbitrarily, and are allowed both in heads and bodies of rules. For instance,

T
(p; not p), (g; not q) < r;-s
is a program with nested expressions that has the answer sets {r}, {r,p},

{r,q}, and {r,p,q}.

2.3 Answer Set Solvers

In the last five years, several systems have been developed, which, among
other things, can be used to compute the answer sets of a logic program, such
as CCALC [McCain and Turner, 1998],> pcs [East and Truszczyniski, 2000].°
DERES [Cholewinski et al., 1996],” pLv [Eiter et al., 1997],2 and SMODELS
[Niemeld and Simons, 1996].°

The systems DLV and SMODELS are based on the answer semantics. The
other systems can be used to compute the answer sets for some logic programs
as well due to the relationships between the answer set semantics and the se-

mantics they are based on. For instance, CCALC can compute the models of

Shttp://www.cs.utexas.edu/users/tag/cc/ .
Shttp://www.cs.uky.edu/dcs/ .
"http://www.cs.engr.uky.edu/ai/deres.html .
8http://www.dbai.tuwien.ac.at/proj/dlv/ .
http://www.tcs.hut.fi/Software/smodels/ .
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the completion of a program using a propositional solver, and under some con-
ditions these models are also the answer sets for the program (Section 2.1.5).
DERES is an implementation of default logic, and, due to Proposition 3 of
[Gelfond and Lifschitz, 1991], there is a 1-1 correspondence between the an-
swer sets for a program and the “extensions” for the corresponding default
theory. In the following, we will briefly describe the answer set solvers DLV
and SMODELS, and then discuss computing answer sets using a propositional

solver.

2.3.1 DLV

DLV [Eiter et al., 1997] is a datalog system (i.e., a deductive database system

without function symbols) that supports disjunction and classical negation.
Given such a logic program, DLV finds the answers sets for the program

with an algorithm outlined in [Eiter et al., 1998] and explained in [Citrigno et

al., 1997] and [Eiter et al., 1997].

2.3.2 SMODELS

SMODELS [Niemels and Simons, 1996], [Simons et al., 2002] is an implementa-
tion of the answer set semantics for logic programs that may contain classical
negation and function symbols, but no disjunctive rules. This limitation is
mitigated to some extent by two circumstances.

First, the input language of SMODELS allows us to express any “exclusive
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disjunctive rule”. For instance, the combination

pq <
(2.8)
«~Dq

can be presented to SMODELS as an “exclusive disjunctive rule”:

plqg.

Second, SMODELS allows us to represent disjunctions of the form
L;not L

appearing in heads of rules. For instance, we represent program (2.7) in the

language of SMODELS as
{p}

This rule is called a “choice rule”: p can be chosen to be included or not
included in an answer set.

4

A nice feature of SMODELS is that it supports “weight constraints” [Si-
mons, 1999], [Niemeli et al., 1999], [Niemeld and Simons, 2000]. That is, we
can assign a “weight” to each literal, and put some constraints on the sum of
the weights of the literals that belong to the answer sets. If the weights of all
literals have the default value 1, then the constraint is called a “cardinality
constraint”.

SMODELS computes the answer sets for a given program according to

the algorithm explained in [Niemels and Simons, 1996], [Simons, 1997], and

[Simons, 2000].
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Figure 2.1: Computing answer sets for a tight program.

2.3.3 Computing Answer Sets using Propositional Solvers

Propositional solvers, such as CHAFF [Moskewicz et al., 2001], SATO [Zhang,
1997] and RELSAT [Bayardo and Schrag, 1997],'° are systems that can compute
a model of a propositional theory given as a set of clauses. Many of these
systems are based on the Davis-Putnam procedure [Davis and Putnam, 1960].

Propositional solvers can be used, in particular, to compute the models
of the completion of a logic program. As mentioned in Section 2.1.5, Frangois
Fages [1994] showed that the models of the completion of a tight program

are also the answer sets for that program. Consequently, we can use propo-

10http ://aida.intellektik.informatik.tu-darmstadt.de/“hoos/SATLIB/solvers.html .
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sitional solvers, instead of answer set solvers, to find the answer sets for a
tight program. (See Sections 3.4.1 and 3.4.2 for the definition of completion
and for the definition of tightness respectively.) The necessary preprocessing
step—turning a logic program into its completion and converting the comple-
tion into clausal form—can be performed by the Causal Calculator, or CCALC
(Figure 2.1). This is a system written by Norm McCain as part of his dis-
sertation defended at the University of Texas at Austin in 1997. Now it is
maintained by Texas Action Group at Austin.!! We will investigate the use

of propositional solvers as answer set programming tools in Chapters 5 and 6.

2.4 Answer Set Programming

The idea of answer set programming [Marek and Truszczynski, 1999], [Niemels,
1999], [Lifschitz, 1999 is to represent a computational problem as a logic pro-
gram whose answer sets correspond to the solutions of the problem, and to
find the answer sets for that program using an answer set solver. Answer set
programming has been used to solve combinatorial search problems in various
fields, such as graph theory, propositional satisfiability checking, planning'?
[Dimopoulos et al., 1997, Lifschitz, 1999], diagnosis [Eiter et al., 1999], [Gel-
fond and Galloway, 2001], model checking [Liu et al., 1998], [Heljanko and

Niemels, 2001], reachability analysis [Heljanko, 1999], product configuration

Unttp://www.cs.utexas.edu/users/tag/ .
12The idea of relating planning problems to answer sets was first proposed in [Subrahma-
nian and Zaniolo, 1995].
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[Soininen and Niemeli, 1998], dynamic constraint satisfaction [Soininen et al.,
1999], logical cryptanalysis [Hietalahti et al., 2000], network inhibition analy-
sis [Aura et al., 2000], workflow specifications [Trajcevski et al., 2000], [Koksal
et al., 2001], learning [Sakama, 2001], reasoning about policies [Son and Lobo,
2001], and circuit design [Balduccini et al., 2000], [Balduccini et al., 2001]. We
used answer set programming to solve wire routing problems [Erdem et al.,
2000] and phylogeny reconstruction problems [Erdem et al., 2002]. This will

be discussed in Chapters 7 and 8.
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Chapter 3

Answer Sets and Planning

In this chapter, we summarize experiments with the systems DLV, SMODELS,
and CCALC applied to some planning problems.

In the following, we first introduce the syntax of the logic programs used
in these experiments, and define the answer set semantics for such programs.
Then we discuss the problem of plan generation in general and describe the
first of the planning problems we experimented with-—the “suitcase problem”.
Then, we show how to present the problem to DLV, SMODELS and CCALC,
and describe the results of our experiments. Next, we define the blocks world
domain, and several larger planning problems that we experimented with us-
ing DLV, SMODELS and CCALC, and present the information on computation

times.! After that, we compare our approach to planning with related work,

!For details of our experiments with the use of systems ccALc, DLV and SMOD-
ELS to solve planning problems in the blocks world, see [Erdem, 1999] available at
http://www.cs.utexas.edu/users/ esra/experiments/experiments.html .
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and discuss some enhancements of the blocks world planning program.

3.1 Programs

The syntax of logic programs studied in this proposal is defined as follows.
We begin with a set of propositional symbols, called atoms. A literal is an
expression of the form A or —A, where A is an atom. A rule element is an
expression of the form L or not L, where L is a literal. A rule is an ordered
pair

Head < Body (3.1)

where Head is a finite set of literals, and Body is a finite set of rule elements.
If
Head = {Ly,..., Ly}

and

Body = {Lgy1, ..., Ly, not Ly1,...,n0t L,}

(0 <k <m < n) then we will write (3.1) as
Ly;...;Lg < Lgyq, ..., Lin,not Ly, ..., not Ly. (3.2)

If the body is empty, we will sometimes drop <—; a rule with the empty body
and one literal in the head is called a fact. If the head is empty, we will
sometimes denote it by L ; a rule with the empty head is called a constraint.

A program is a set of rules. A program is called nondisjunctive if, in every
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rule, £ < 1. We denote the set of literals in the language of a program II by

lit (11).
We say that a consistent set X of literals is closed under II if, for every

rule (3.2) in II,

{Ly,...,Li}NX #0 (3.3)
whenever
{Lis1,--, L} CX (3.4)
and
{Lpms1,-- -, Ly} N X =0. (3.5)

This definition of closure corresponds to the definition of closure introduced
in [Lifschitz, 1996] for programs without negation as failure.

Let II be a program without negation as failure. Then we say that X
is an answer set for II iff X is a minimal set closed under II. For instance, the

answer sets for

P q (3.6)

are {p} and {q}.

Now consider a program II that may contain negation as failure. The
reduct of II relative to a consistent set X of literals, as defined in [Gelfond and

Lifschitz, 1991] and [Lifschitz, 1996], is obtained from II

e by deleting each rule (3.2) that does not satisfy (3.5) and
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e by replacing each remaining rule (3.2) by

Ll;---;Lk<_Lk—|—1a---;Lm- (37)

This program will be denoted by II*. For instance, consider the program

piq
(3.8)
-7 < not p.

The reduct of this program relative to {p} is (3.6).

We say that X is an answer set for a program II iff X is an answer set
for II*. Consider, for instance, program (3.8) and its reduct (3.6) relative to
{p}. Since {p} is an answer set for (3.6), this set is an answer set for program
(3.8) as well. It is easy to check that {g, —r} is an answer set for program (3.8)
too.

The definitions of an answer set given above are different from the
ones in [Gelfond and Lifschitz, 1991] and [Lifschitz, 1996] in that we consider

consistent answer sets only.

3.2 Representing Actions and Planning

Computational problems related to action and change are an important ap-
plication area of answer set programming. Answer set programming can be
used, for instance, to solve temporal projection problems and planning prob-
lems. In a temporal projection problem, the task is, given an initial state and

a sequence of actions to be executed, to predict the outcome of these actions.
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For instance, if a monkey moves a box to a new location and then climbs
the box, we can predict that both the box and the monkey would be at that
location and the monkey would be on the box. In a planning problem, the
task is, given a goal, to find a plan—a sequence of actions that leads to the
given goal. For instance, think of a monkey faced with the problem of getting
a bunch of bananas hanging from the ceiling just beyond his reach. There is
a box in the room, so that the monkey can solve the problem by pushing the
box to an empty space under the bananas, climbing on top of the box, and
then reaching the bananas. This is a plan.

To represent actions and change, we think of the world as being in one of
many states (or situations [McCarthy and Hayes, 1969]). To be able to describe
the states of the world, McCarthy and Hayes introduced fluents—relations or
functions whose values depend on time or situation. For instance, the location
of an object is a fluent that may change over time. The world changes its state
due to some causal dependencies. Some of these causal dependencies involve
events, such as actions performed by some agent(s).

To describe a domain in the world, we need to introduce fluents and
actions, and then represent the causal dependencies that lead to change in
this domain. For that, we need to describe the changes caused by performing
actions. However, here, the challenge is to describe also what does not change,
i.e., to solve the frame problem [McCarthy and Hayes, 1969].

Consider, for instance, a robot that has to move boxes to some loca-

tions. If the robot walks to a location then the position of the robot changes.
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Meanwhile, the boxes do not change their locations. Representing this last
fact is an instance of the frame problem. Without solving the frame problem,
we would not be able to draw useful conclusions about the world.

A causal dependency does not always involve an action. Related to this
is the “ramification problem” discovered by Finger [1986]. The problem is to
represent the changes that are implied by the execution of actions. Another
problem is the “qualification problem” discovered by McCarthy [1980]. This
problem is about representing a change that prevents an action from being
executed.

Consider the problem described above. If the robot is at some location
then it is not anywhere else. This causal dependency does not involve any
action, but implies an “indirect” effect (or “ramification”) of walking in that
if the robot walks from location /1 to location [2 then it is not at location /1
anymore. On the other hand, the same causal dependency prevents the robot
from walking to two different locations at the same time. This serves as an
“implicit” precondition to performing the action of walking. Therefore, repre-
senting this causal dependency should address both the ramification problem
and the qualification problem.

A solution to the frame problem was proposed by Schubert [1990] us-
ing the “explanation closure axioms”, which, for every fluent, give a complete
explanation of how the fluent changes. This monotonic solution is not ap-
plicable in the presence of ramifications. This is why the frame problem has

been studied in many nonmonotonic logic formalisms. (See [Shanahan, 1993]
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for formalizations of the frame problem using the situation calculus, circum-
scription, event calculus, default logic, and logic programming; [Geffner, 1990]
and [McCain and Turner, 1997] for formalizations of the frame problem using
nonmonotonic causal logics, and [Kautz et al., 1996] for formalizations of the
frame problem in the context of satisfiability planning.)

There are other challenging problems with representing actions and
change, such as representing actions that can be concurrently executed, rep-
resenting actions that have nondeterministic effects, representing actions that
have delayed effects, representing “sensing” actions that change our knowledge

of the world (rather than the state of the world), etc.

3.3 The Suitcase Problem

3.3.1 Suitcase Domain

The suitcase domain is introduced in [Lin, 1995]. Consider a suitcase with two
latches L1 or L2; when these two latches are up then the suitcase automatically
opens. There are three propositional fluents: up(l), where [ is L1 or L2, and
open; up(l) holds iff latch [ is up, open holds iff the suitcase is open. There is
an action of toggling a latch [ denoted by toggle(l). If a latch is down (resp.
up) then it becomes up (resp. down) after toggling it.

This domain is interesting because it involves a simple instance of the

ramification problem: opening the suitcase may be an indirect effect of toggling
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a switch.

Our method of encoding planning problems by logic programs is similar
to the one used in [Lifschitz, 1999]. Lifschitz starts with a planning domain
described as a “transition system” —a directed graph whose nodes are charac-
terized by the values of fluents and whose edges correspond to the actions that
are executed. A path starting from an initial state and reaching a goal state
is a “history of the world” that corresponds to a plan for the given planning
problem. This transition system can be described by a logic program. We call
the logic program describing a transition system a “history program”—a pro-
gram whose answer sets represent possible histories of the world over a fixed
time interval.

The transition system describing this domain has 7 possible states:

{up(L1), up(L2), open} (1)
{up(L1), ~up(L2), open} (S2)
{up(L1), ~up(L2), mopen}  (S3)
{~up(L1), up(L2), open} (S4)
{-up(L1), up(L2), mopen}  (S5)
{-up(L1), ~up(L2), open}  (Ss)
{~up(L1), ~up(L2), ~open}  (S7)

Note that {up(L1),up(L2),—open} is not a possible state. At each

possible state there are 4 applicable actions:
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{toggle(L1), toggle(L2)} (A1)  “toggle L1 and L2 concurrently”
{—toggle(L1), —toggle(L2)}  (As)  “do nothing”

{toggle(L1), —toggle(L2)} (A3)  “toggle L1”

{—toggle(L1), toggle(L2)} (Ag)  “toggle L2”

so that each state has 4 outgoing edges. For instance, the edges outgoing from
S, are

<S1’ Ala S6>’ <S].’ A2’ S1>’ <S].’ A3’ S4>’ <S].’ A4’ S2>

The transition system that corresponds to the suitcase domain has 28 edges.
The first planning problem we experimented with can be described as

follows:
Initial State: The latches L1 and L2 are down, and the suitcase is closed.
Goal State: The latches L1 and L2 are down, and the suitcase is open.

This problem has a solution of length 2, corresponding to the following

path in the transition system:

<S71A1’31’A1’S6>' (39)

3.3.2 The Suitcase Problem as a Logic Program

We solve the suitcase problem described in Section 3.3.1 by formalizing it as
a logic program and then using an answer set solver. Let T),,. be a positive

integer—a fixed length of paths in the transition system. We describe the
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suitcase domain as the logic program consisting of the rules
open(t) < up(L1,t), up(L2,1) (3.10)

where t € {0, .., Tinas }, and the rules

up(l,t + 1) < toggle(l,t), ~up(l,t)

—up(l,t + 1) < toggle(l,t), up(l,t)

up(l,t + 1) < not ~up(l,t+ 1), up(l,t)

—up(l,t +1) < not up(l,t + 1), ~up(l,t)

open(t + 1) « not —open(t + 1), open(t) (3.11)

—open(t 4+ 1) < not open(t + 1), ~open(t)

up(l,0); ~up(l, 0)

open(0); —open(0)

toggle(l,t); —toggle(l, t)
where [ € {L1, L2} and t € {0, .., Trnae — 1}

In the program above, rule (3.10) says that if both latches L1 and L2
are open then the suitcase gets open. The first two rules of (3.11) describe the
effects of toggling: if a latch is down (resp. up) then it becomes up (resp. down)
after toggling it. The following four rules implement the commonsense law of
inertia presented in Section 2.1.1. (This is how the frame problem, discussed

in Sections 2.1.1 and 3.2, is solved.) For instance, the rule
up(l,t + 1) < not —up(l,t + 1), up(l,t)

says: if a latch is up at time ¢ and there is no evidence that it will not be up at

time ¢ 4+ 1 then indeed it will be up. The disjunctive rules say that the initial
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values of all fluents, and the occurrences and non-occurrences of actions are
exogenous: they may have any value.

The answer sets for program (3.10) U (3.11) with Ty, = 2 are in a 1-1
correspondence with the paths of length 2 in the transition system described in
Section 3.3.1. Specifically, each answer set is complete,2 and its “time slices”
correspond to the states and atoms forming such a path. For instance, the
answer set that corresponds to path (3.9) is

{—up(L1,0), ~up(L2,0), ~open(0), toggle(L1,0), toggle(L2,0),
up(L1,1), up(L2,1), open(1), toggle(L1,1), toggle(L2,1),
—up(L1,2), ~up(L2,2), open(2)}.
The suitcase problem can be described as the problem of finding an

answer set (for program (3.10) U (3.11) with T},,,, = 2) that contains

—up(L1,0), ~up(L2,0), ~open(0), ~up(L1,2), ~up(L2,2), open(2).

3.3.3 The Suitcase Problem presented to DLV

We want to present program (3.10) U (3.11) to DLV. A program has to satisfy
three conditions to be presentable to DLV.

The first condition is mentioned in Section 2.3.1: the program should
not contain any function symbols.

The second condition is that the program should be “range-restricted”.

A logic program is range-restricted if, for each rule of that program, every

2 A set of literals is said to be complete if, for every atom A, it contains A or —A.
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variable occurring in the rule also occurs in one of the literals that appears
in the body of the rule not preceded by negation as failure. For instance, the
program

p(x) < r(x), not q(zx) (3.12)

is range-restricted, whereas

p(z) < not q(z)

is not range-restricted.

The third condition is as follows. An expression of the form P or —P,
where P is a predicate symbol, is extensional in a program if every rule that
contains a literal beginning with this expression in the head is a fact, and
intensional if no such rule is a fact. In an input program presented to DLV,
every expression of the form P or —P, where P is a predicate symbol, is

required to be extensional or intensional. For instance, the program

violates this condition.
Lin’s suitcase domain can be presented to DLV as in Figure 3.1; and the
suitcase problem is described in a separate file as in Figure 3.2.> This input

satisfies the three conditions mentioned above. Then DLV can be invoked by

typing

3 Alternatively, the domain and the problem for Lin’s Suitcase can be introduced in the
same file.
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dlv suitcase_domain suitcase_problem —n=1 -N=2

where suitcase domain and suitcase problem are the names of the files
presented in Figures 3.1 and 3.2 respectively. The option -n=1 specifies that
only one answer set is to be computed. The option -N=2 determines the value
of #maxint (see below) to be 2.

The domain description in Figure 3.1 is an adaptation of program
(3.10) U (3.11) to the syntactic conventions of DLv. As in Prolog, we use

: - instead of <— and include a period at the end of every rule. Classical nega-

Y Y

tion is denoted by ‘-’ instead of ‘=’. One more difference is that Figure 3.1
contains the auxiliary predicates latch, time, and next. This difference is not
essential: we can easily show that there exists a 1-1 correspondence between
the answer sets for program (3.10)U(3.11) and the answer sets for the program
in Figure 3.1, using the “splitting set theorem” [Lifschitz and Turner, 1994].
In the problem description (Figure 3.2), the initial conditions and the

goal are presented as a “query”, i.e., an expression of the form
bi,...,bn,not byy1,...,not by? (3.13)

where 1 < n < m and each b; (1 < 7 < m) begins with an intensional
expression. An answer set satisfies query (3.13) if it contains by, ..., b,, but
not b,y1,...,bn. Given a domain description and a query that describes a

problem, DLV finds the answer sets for the domain description that satisfy the

query.
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% suitcase is open if both of the latches are open
open(T) :- up(11,T), up(12,T).

% effects of toggling

up(L,T1) :- latch(L), next(T,T1), toggle(L,T), -up(L,T).
-up(L,T1) :- latch(L), next(T,T1), toggle(L,T), up(L,T).

% inertia

up(L,T1) :- latch(L), next(T,T1), up(L,T), not -up(L,T1).
-up(L,T1) :- latch(L), next(T,T1), -up(L,T), not up(L,T1).

open(T1) :- next(T,T1), open(T), not -open(T1).
-open(T1) :- next(T,T1), -open(T), not open(T1).

% initial conditions are exogenous
up(L,0); -up(L,0) :- latch(L).
open(0); -open(0).

% actions are exogenous
toggle(L,T); -toggle(L,T) :- latch(L), time(T), T < #maxint.

% auxiliary predicates

latch(11).
latch(12).

time(T) :- #int(T).

next(X,Y) :- #succ(X,Y).

Figure 3.1: File suitcase domain for DLV.
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% initial conditions and the goal
-up(11,0), -up(12,0), -open(0), open(#maxint),
-up(11,#maxint), -up(1l2,#maxint) 7?7

Figure 3.2: File suitcase _problem for DLV.

A query is an alternative way of representing a set of constraints: in-
cluding query (3.13) in the input has the same effect as adding to the program

the constraints

1 < not by

1 < not b,

< bnta

1:

L+by

Files in Figures 3.1 and 3.2 use the DLv built-in functions #maxint,

#int and #succ. In DLV, #int(T) expresses that T is an integer between 0
and #maxint, where the value of #maxint is specified in the command line. The
atom #succ(T,T1) expresses that both T and T1 are between 0 and #maxint,
and T1is T + 1.

The answer set computed by DLV corresponds to solution (3.9).
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3.3.4 The Suitcase Problem presented to SMODELS

As mentioned in Section 2.3.2, a program given as input to SMODELS should
not contain disjunctive rules, but exclusive disjunctions and choice rules are
allowed. As in DLV, SMODELS also requires some syntactic restrictions on the
input programs.

A logic program presented to SMODELS is required to be “strongly”
range-restricted in the following sense. A predicate symbol P is a domain
predicate in a program II, if neither P nor the predicates P depends on use
recursion in their definitions. A logic program II is strongly range-restricted if,
for each rule of II, every variable occurring in the rule also occurs in a literal
that appears in the body of the rule not preceded by negation as failure,
which includes a domain predicate. For instance, rule (3.12) combined with

the definition
r(a)
of predicate r is strongly range restricted. But this property will be lost if we

extend the program by adding the rule

r(f(z)) < r(z).

Lin’s suitcase domain can be presented to SMODELS as in Figure 3.3;
and the suitcase problem is described in a separate file as in Figure 3.4. Then

SMODELS can be invoked by typing
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lparse -c¢ lasttime=2 ——true-negation suitcase_domain suitcase_problem

| smodels

where suitcase_domain is the name of the file in Figure 3.3, and suitcase_problem
is the name of the file in Figure 3.4. The option -¢ lasttime=2 specifies that
the value of the constant lasttime is 2, and the option --true-negation spec-
ifies that the classical negation symbol - is used. By the command lparse
the input files are grounded—each rule with variables is replaced by the set of
its ground instances. After that, the answer sets for the ground program are
computed by the command smodels.
Let us discuss the differences between Figure 3.3 and Figure 3.1. Noth-
ing in the input of SMODELS corresponds to -toggle in Figures 3.3 and 3.4

because the only rule in Figure 3.1 where -toggle appears in the head
toggle(L,T); -toggle(L,T) :- latch(L), time(T), T < #maxint.
is replaced by the choice rule
{toggle(L,T) :latch(L)} :- time(T), 1t(T,lasttime).

Alternatively, we could have expressed that actions are exogenous by

the exclusive disjunctive rule
toggle(L,T) | -toggle(L,T) :- latch(L), time(T), 1t(T,lasttime).

Since -toggle does not occur in any of the rules in Figure 3.3, using the choice

rule above is computationally more efficient.
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% suitcase is open if both of the latches are open
open(T) :- time(T), up(11,T), up(12,T).

% effects of toggling

up(L,T1) :- latch(L), next(T,T1), toggle(L,T), -up(L,T).
-up(L,T1) :- latch(L), next(T,T1), toggle(L,T), up(L,T).

% inertia

up(L,T1) :- latch(L), next(T,T1), up(L,T), not -up(L,T1).
-up(L,T1) :- latch(L), next(T,T1), -up(L,T), not up(L,T1).

open(T1) :- next(T,T1), open(T), not -open(T1).
-open(T1) :- next(T,T1), -open(T), not open(T1).

% initial conditions are exogenous
up(L,0) | -up(L,0) :- latch(L).
open(0) | -open(0).

% actions are exogenous
{toggle(L,T) :latch(L)} :- time(T), 1t(T,lasttime).

% auxiliary predicates
latch(11).
latch(12).

time(0..lasttime).

next(T,T+1) :- time(T), 1t(T,lasttime).

Figure 3.3: File suitcase domain for SMODELS.

% initial conditions and the goal
compute 1 {-up(11,0), -up(12,0), -open(0), open(lasttime),
-up(1l1,lasttime), -up(1l2,lasttime)}.

Figure 3.4: File suitcase _problem for SMODELS.
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The disjunctive rule

up(L,0); -up(L,0) :- latch(L)

is replaced by the exclusive disjunctive rule

up(L,0) | -up(L,0) :- latch(L).

which ensures that either up(L,0) or -up(L,0) is in an answer set provided
that latch(L) is already in that answer set. The disjunctive rule, which
specifies that open(0) is exogenous, is modified in a similar way.

As the rule

open(T) :- up(11,T), up(12,T)

is not strongly range-restricted, it is replaced by

open(T) :- time(T), up(11,T), up(1l2,T)

In the problem description, the initial conditions and the goal are in-
cluded in a compute statement. In a compute statement, we can specify how
many answer sets we want SMODELS to find, and which atoms the computed
answer sets should or should not contain. For instance, the compute statement

in Figure 3.4 tells SMODELS to find one answer set that contains

-up(11,0), -up(12,0), -open(0),

open(lasttime), -up(ll,lasttime), -up(l2,lasttime)
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If all were written instead of 1 in the compute statement of Figure 3.4, all

answer sets that contain the above atoms would have been found. Note that in

a compute statement the list in braces is a way to represent a set of constraints.

In our case including this list has the same effect as adding to the program

the constraints

= not
:— not
= not
:— not
:— not

:= not

-up(11,0)
-up(12,0)
-open(0)
open(lasttime)
-up(11,lasttime)

-up(12,lasttime)

SMODELS does not have built-in functions similar to #maxint, #int,

and #succ of DLv. However, it has built-in function + and operator 1t (“less

than”) used in

next(T,T+1) :- time(T), 1t(T,lasttime).

In addition, it has an elegant way of representing a range of integers, as in

time (0. .lasttime).

The programs in Figures 3.3 and 3.1 are not quite equivalent to each
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other, because of the difference in the use of -toggle mentioned above. But

there is a simple 1-1 correspondence between the answer sets of both programs.

3.4 Completion

In the next section, we investigate the use of propositional solvers to solve the
suitcase problem. As mentioned in Section 2.3.3, the idea is to run CCALC to
form the completion of the program and then invoke a propositional solver to
find a model of the completion.

In this section, we discuss the process of completing a program and its

relation to answer sets.

3.4.1 Definition of Completion

As mentioned in Section 2.1.2, program completion is introduced by Clark
[1978]. For programs without variables, it is defined as follows.
Consider a finite nondisjunctive program II without classical negation.

The rules of IT have the form
Head < A, ..., Amn,not Apy1, ..., not Ay, (3.14)

(n > m > 0) where each A; is a propositional atom, and Head is an atom or
the symbol L. If A is an atom or the symbol L, by Comp(Il, A) we denote
the formula

A = (Body| V ...V Body})
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where the disjunction extends over all rules
Head < Body;

in IT where Head is A, and each Body; (1 <1 < k) is obtained from Body, by
replacing each comma by A, and by replacing not by —. The completion of 11
is the set of formulas Comp(Il, A) for all A. For instance, the completion of
program (2.3) (page 11) is

p=q,
(3.15)

<
I

=
3.4.2 Fages’ Theorem

To relate the definition of completion to answer sets, observe first that an
answer set for a program without classical negation never contains negative
literals—it is a set of atoms. Second, any set X of atoms can be viewed as
a truth assignment: the atoms that belong to X are true, and the others are
false. For instance, take the answer set {p} for program (2.3). It represents
the truth assignment that makes p true, and makes ¢ false. Note that this
truth assignment satisfies the completion (3.15) of the program. The (truth
assignment corresponding to the) second answer set {q} satisfies (3.15) as well.
In this case, the models of the program’s completion are identical to its answer
sets.

The general situation is more complicated. Consider a finite nondis-

junctive program II without classical negation, and a set X of atoms. If X is
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an answer set for II then X, viewed as a truth assignment, satisfies the com-
pletion of II. The converse, generally, is not true. For instance, the completion
of

PP (3.16)

is p = p. This formula has two models 0, {p}; the first is an answer set for
(3.16), but the second is not. Fages’ theorem tells us that, for a tight program,
all models of the completion are the program’s answer sets.

Tightness (called “positive-order-consistency” by Fages) is defined for
nondisjunctive programs. Recall that, in a nondisjunctive program, every rule

is an expression of the form
Head < L1, ..., Ly, not Ly, ...,not L, (3.17)

(n > m > 0) where each L; is a literal, and Head is a literal or the symbol L
(Section 3.1).
A nondisjunctive program I is tight if there is a function A from it (IT)

to ordinals such that, for every rule (3.17) in II, if Head is not L then
ALY, - -, A(Lm) < M(Head).

For instance, program (2.4) (page 12) is tight: take A(p) = A(¢) = 0 and
A(r) = 1. Program (3.16) is not tight.
Consider the program (3.10) U (3.11). This program is tight, which can

be proved using the following function A:

1, if L has the form open(t),
A(L) =

0, otherwise.
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where [ € {L1,L2} and t € {0, .., Trhae }-

Fages’ theorem [Fages, 1994] can be stated as follows: For any finite
nondisjunctive program Il without classical negation, if Il is tight then the

models of completion of II are identical to the answer sets for II.

The proposition below gives a simple characterization of tightness that
does not refer to ordinals (and is actually close to Fages’ original formulation).
For any program II, we say about literals L, L' € lit(IT) that L is a parent of

L’ relative to II if there is a rule (3.17) in II such that
e Le{Ly,...,Ly,}, and
e ! = Head.

For instance, the parents of r relative to (2.4) are p and q.

Proposition 1 A program I1 is tight iff there is no infinite sequence Lo, L1, . ..

of elements of lit(I1) such that for every i, L;1 is a parent of L; relative to II.

[43

In other words, II is tight iff the parent relation relative to II is “well-

founded”. A binary relation R is well-founded if there is no infinite sequence
Loy L1y - (318)

of elements of its domain such that, for all ¢, ;1 Rz;. For instance, program
(3.16) is not tight; take all z; in sequence (3.18) to be p.

Proposition 1 is a special case of the following general fact of set theory:
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Lemma 1 A binary relation R is well-founded iff there exists a function A
from the domain of R to ordinals such that, for all x and y, xRy tmplies

Az) < A(y).

The proof of Lemma 1 [Erdem and Lifschitz, 2001b] is presented in
Section 9.1 (page 163). Tightness and Fages’ Theorem will be discussed further

in Chapter 5.

3.4.3 Literal Completion

The procedure implemented in CCALC is literal completion [McCain and Turner,
1997]. This is a syntactic transformation similar to Clark’s completion dis-
cussed above. Unlike Clark’s completion, literal completion is applicable to
programs with classical negation. When applied to a tight program, it pro-
duces a formula that characterizes the complete answer sets for that program
(see Footnote (?) on page 33).

Program (3.10) U(3.11) is tight, and its answer sets are complete. Con-
sequently, the models of the literal completion of this program are also its
answer sets. This justifies the use of CCALC to find the answer sets for this

program.

3.5 The Suitcase Problem presented to CCALC

Recall that completion is defined for nondisjunctive programs only. When

a program contains disjunctive rules, we cannot apply the process of com-
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pletion directly. But if all disjunctive rules of the program are of the form
(2.6) (page 16) then we can apply completion after we transform the program
into a nondisjunctive program by replacing every disjunctive rule (2.6) with

nondisjunctive rules

p < not —p
(3.19)
—p < not p.
This transformation preserves the answer sets for the program we start with

due to our theorem presented in Section 4.1.

For instance, program (3.10) U (3.11) contains disjunctive rules

up(l,0); ~up(l,0)

open(0); ~open(0)

toggle(l,t); —toggle(l,t).
Each of these rules can be replaced by a pair of nondisjunctive rules as shown
above.

Lin’s suitcase domain can be presented to CCALC as in Figures 3.5

and 3.6; and the suitcase problem can be described by a logic program as in
Figure 3.7.

After compiling CCALC in Sicstus Prolog by

compile(’ccalc’).

we “load” the files presented in Figures 3.5-3.7 by typing

48



:— sorts
latch; time >> step.

:— variables
L :: latch;
T :: step;
T1 :: time.

:— constants
0..lasttime-1 :: step;
lasttime :: time;
11, 12 :: latch;
up(latch,time),
open(time),
toggle(latch,step) :: atomicFormula.

:— macros
next (#1,#2) -> #2 is (#1) + 1.

% suitcase is open if both of the latches are open
open(T1) :- up(11,T1), up(12,T1).

% effects of toggling

up(L,T1) :- next(T,T1), toggle(L,T), -up(L,T).
-up(L,T1) :- next(T,T1), toggle(L,T), up(L,T).

% inertia

up(L,T1) :- next(T,T1), up(L,T), not -up(L,T1).
-up(L,T1) :- next(T,T1), -up(L,T), not up(L,T1).

open(T1) :- next(T,T1), open(T), not -open(T1).
-open(T1) :- next(T,T1), -open(T), not open(T1).

Figure 3.5: File suitcase domain.b for CCALC, part 1.
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% initial conditions are exogenous
up(L,0) :- not -up(L,0).
-up(L,0) :- not up(L,0).
open(0) :- not -open(0).
-open(0) :- not open(0).

% actions are exogenous
toggle(L,T) :- not -toggle(L,T).
-toggle(L,T) :- not toggle(L,T).

Figure 3.6: File suitcase_domain.b for CCALC, part 2.

:— macros lasttime -> 2.
:—= include ’suitcase_domain.b’.

% initial conditions and the goal
:= not -up(11,0).

:= not -up(12,0).

:= not -open(0).

:- not open(lasttime).

:— not -up(li,lasttime).

:= not -up(1l2,lasttime).

Figure 3.7: File suitcase_problem.b for CCALC.
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loadf (’suitcase_problem.b’).

This command turns the logic program presented in Figures 3.5-3.7 into a
propositional theory by the process of literal completion (Section 3.4.3). Solu-
tions to the suitcase problem correspond to satisfying interpretations for that

propositional theory, and such a solution can be found by typing

sat.

By this command, CCALC calls a propositional solver (in this case it calls the
default solver SATO) to find a satisfying interpretation of the propositional
theory it obtained from its input. Using a propositional solver to generate a
plan is known as “satisfiability planning” [Kautz and Selman, 1992].

The union of the programs presented in these figures is different from
the program presented to DLV, presented in Figure 3.1, in following ways. The
auxiliary predicates latch and time are turned into “sorts”. The sort step is
declared to be a “subsort” of the sort time, i.e., every step is a time. The vari-
able L ranges over the latches 11 and 12; the variable T ranges over the time
instants 0,...,lasttime-1; T1 ranges over the time instants 0. .lasttime.
Here, lasttime is declared as a macro in the problem description in Fig-
ure 3.7. The use of sorted variables allows us to do without the predicates
latch and time. The auxiliary predicate next (T,T1) is declared as a macro,

which is expanded into the atomic formula T1 = T+1. The disjunctive rules
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of the program in Figure 3.1 that define the exogenous atoms are replaced by

nondisjunctive rules in Figure 3.6 as explained above.

3.6 Blocks World Problems

The suitcase problem was interesting in that it shows how answer set program-
ming solves the ramification problem. However, it is computationally trivial.
Therefore, we consider larger planning problems in the blocks world domain.

In the blocks world domain, we have blocks By, Bs, ..., B, on a table
arranged in several towers. The fluent on(b,l) expresses that block b is at
location [, where [ can be a block or the table. There is an action of moving
a block b onto a location [ denoted by mowve(b,l). In this domain, the actions
are not allowed to occur concurrently. Here is a small blocks world problem,

called the Sussman anomaly [Sussman, 1990]: given

Initial State: Goal State:
B2
B2 B1
BO B1 BO

find a series of actions to reach the goal state from the initial state.
We can describe the blocks world domain by the following logic program.

In the rules below,
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e b b b range over a finite set of block constants,

e [, ' range over the set of location constants that consists of the block

constants and the constant table,

e ¢ ranges over the symbols representing an initial segment of integers

07"'aTma:c7

except that in atoms of the form mowve(b,l,t) we require ¢t < Tp,,. The pro-

gram consists of the following rules.

Both the initial values and the occurrences of actions are exogenous:

on(b,1,0); ~on(b,l,0)

(3.20)
move(b,l,t); —~move(b,l,t).
The following rule describes the effect of moving a block:
on(b,l,t+ 1) < move(b,,t). (3.21)
The commonsense law of inertia is postulated in the form:
on(b,l,t 4+ 1) < on(b,l,t), not =on(b,l,t + 1). (3.22)
Wherever a block is, it is not anywhere else:
—on(b,l',t) + on(b,1,t) (1#1). (3.23)
No two blocks can be on the same block at the same time:
1L« on(t",b,t), on(t,b,t) (0" #b"). (3.24)
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A block can be moved only when it’s clear:
1 + move(b,1,t), on(t, b, t). (3.25)
Actions cannot be executed concurrently:

1« move(b,l,t), move(V',l',t) (b#V orl#1). (3.26)

This formalization of the blocks world domain is presented to DLV in
essentially the same way as the suitcase domain (3.10) U (3.11) is presented to
DLV in Section 3.3.3.

In our experiments with SMODELS, we expressed the first rule of (3.20)
by an exclusive disjunctive rule, and the second rule of (3.20) by a choice rule

as in Figure 3.3. The no-concurrency constraint (3.26) is replaced by
: —2{move(B,L,T) : block(B) : location(L)}, time(T). (3.27)

The expression of the form 2{...} in the body of this rule is a cardinality
constraint (see Section 2.3.2). It expresses that the cardinality of the set {...}
is at least 2. Consequently, rule (3.27) eliminates the answer sets that contain 2
or more ground instances of move(b, [, t) for some time ¢. We turned constraint
(3.24) into a constraint similar to (3.27).

How can we use propositional solvers to find answer sets for the blocks
world program? As observed in Section 3.5, the disjunctive rules defining
exogenous atoms can be replaced by nondisjunctive rules. For instance, we can
express that the initial values of the fluents and the occurrences and the non-

occurrences of the actions are exogenous (3.20) by the following nondisjunctive
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rules:
on(b,1,0) < not —on(b,l,0)

—on(b,1,0) < not on(b,,0)
(3.28)
move(b,l,t) + not ~move(b,l,t)
—move(b,l,t) < not move(b,l,1).
In the presence of rule (3.23), the second rule above turns out to be redundant.
Consider program (3.21)-(3.26) U (3.28). We would like to find this
program’s answer sets using CCALC. To justify the applicability of this method,
we would need to check that the program is tight (Section 3.4.2), which is not
difficult. This allowed us to experiment with CCALC on the blocks world
problems. We presented the blocks world domain to CCALC in essentially in
the same way as we presented the suitcase domain to CCALC in Section 3.5.
DLV, unlike cCALC and SMODELS, use the general optimization tech-
nique described in [Faber et al., 1999] to produce a smaller ground program.

For instance, with this technique, no-concurrency constraint (3.26) are re-

placed by
movey (b, t) < move(b,l,t)
< movey (b, t), move, (V', t) (b#10) (3.29)
moves(l,t) < move(b,l,t)
<+ movex(l,t), movey(l', t) (L#£1).
Since the other rules of the program make it impossible to move a block

to two different places at the same time, the rules involving mowvey are actually

redundant, and the no-concurrency constraint can be expressed by the rules
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in the first and the second lines. This representation of no-concurrency in the
blocks world is used in [Niemeld, 1999] (see Section 5.2).

There is a 1-1 correspondence between the answer sets for a program
IT with constraints (3.26) and the answer sets for IT with rules (3.29). This is
proven in [Erdem and Lifschitz, 1999] and will be discussed in Section 4.2. This
allowed us to experiment with CCALC using both original programs (containing
(3.26)) and optimized programs (containing the first two of rules (3.29)).

Using rules (3.29) instead of constraints (3.26) has a significant effect
on the size of the program after grounding. For the original program, this size
grows as n* with the number n of blocks; for the modified program, it grows
as n’.

To describe, for instance, the Sussman anomaly we consider the blocks

By, B; and B,, and we specify T),,, to be 3. The problem can be described

as the problem of finding an answer set that contains

on(By, Table,0), on(Bsy, By, 0), on(By, Table, 0),
on(By, Table, 3), on(By, By, 3), on(Bsy, By, 3).

Besides the Sussman anomaly, we experimented with the blocks world

problems presented in Figure 3.8.
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P1 Initial State:

P2 Initial State:
BO
B1 B3
B4 B2
P3 Initial State:
B2 B7

B3 B4 B6
BO B1 B5

P4 Initial State:

B10 B8

Goal State:

B3
B2
B1
BO

Goal State:

B4
B3
B2
B1
BO

Goal State:
B7 B5

B3 B2 BO
B4 B6 B1

BO B7 B10

Figure 3.8: The blocks world problems we experimented with.



3.7 Experimental Evaluation of DLV, SMODELS
and CCALC

The table in Figure 3.9 summarizes the duration of the computations (in CPU
seconds) for DLV, SMODELS and CCALC applied to 5 blocks world problems.*
The first column of this table shows the problems used in these experiments.
The problem labeled PO is the Sussman anomaly problem. The problems
labeled P1-P4 are described in Figure 3.8. The number of blocks, for each
problem, is presented in the next column. The third column shows, for each
problem, the length of the shortest plan. (We can verify that a plan computed
by an answer set solver is the shortest possible by making the value of 7},
smaller and verifying that the resulting program has no answer sets.) The
computation times of DLV are presented in the next column. Then, we show,
for each problem, the timing for LPARSE and the timing for SMODELS. As for
CCALC, we introduce the computation times with the original program (3.21)-
(3.26) U (3.28), and with the optimized program obtained by replacing (3.26)
with the first two of rules (3.29). In both cases, for each problem, we present

the timings for CCALC and for CHAFF.

If we look at the time spent at each phase of the computation, we can

see that CCALC spends most of the elapsed time for transforming its input into

“We used CCALC 1.9 with CHAFF as implemented by Matthew Moskewicz; SMODELS
2.26 with LPARSE 1.0.4; DLV released October 2000. The experiments are performed on an
Ultra 5/10 with 120 MB main memory and a 360 MHz SUNW, UltraSPARC-IIi CPU.
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Pblms | number| length | DLV LPARSE + SMODELS CCALC + CHAFF

of of

blocks | plan original optimized
PO 3 3 0.09 0.08 4 0.06 0.38 + 0.02 | 0.25 4+ 0.02
P1 4 4 0.16 0.12 + 0.13 1.08 + 0.04 | 0.63 + 0.02
P2 5 6 0.52 0.23 + 0.28 3.22 + 0.13 1.5 + 0.05
P3 8 8 81.52 0.84 + 7.75 2243 + 091 | 6.49 4+ 0.35
P4 11 9 329.81 2.16 + 19.57 76.16 + 3.76 | 17.04 + 1.35

Figure 3.9: Planning with blocks world problems using DLV, SMODELS, and
CCALC.

an equivalent classical propositional theory while SMODELS spends most of the
elapsed time for finding an answer set. For instance, for P4, CCALC spends
76.16 seconds for grounding, transforming the causal theory into propositional
theory, and conversion to the clausal form, and 3.76 seconds in model-finding.
If we measure the time spent in grounding and model-finding separately for
SMODELS, we find out that SMODELS spends 2.16 seconds in grounding, and
19.57 seconds in model-finding for P4. SMODELS spends less time in grounding.
One reason for this is that SMODELS makes use of the given query to produce a
sufficient subset of the ground instances of the given program. Another reason
is that it eliminates all of the domain predicates appearing in the ground
program so that a smaller ground program is used to find the answer sets. This
makes SMODELS more efficient in computing the answer sets after grounding.
Also, it is important to keep in mind that grounding and conversion to clauses
in CCALC are implemented in Prolog, and CHAFF, LPARSE, SMODELS and DLV
are implemented in C++.

We do not have enough information about the time spent during each
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phase of computation in DLV.

As mentioned in the previous section, replacing no-concurrency con-
straints (3.26) by the first two rules of (3.26) reduces the size of the blocks
world program after grounding. For instance, for P4, with the original pro-
gram, CCALC produces a theory with 2508 atoms and 180378 clauses; with the
optimized program, it produces a theory with 2607 atoms and 39006 clauses.
As seen from the table above, this translation reduces the transformation time

as well.

3.8 Comparisons with Related Work

In our experiments, we specified the planning problems with logic programs.
As we emphasized earlier, our approach to logic programming is answer set
programming. In the next subsection, we will compare our experiments with
other experiments that apply answer set programming to planning. In the
last subsection, we will compare two approaches, answer set programming and

satisfiability checking, used to solve the planning problems.

3.8.1 Encodings of the Planning Problems

The earliest use of answer set programming for planning is described by Di-
mopoulos, Nebel, and Koehler [1997]. The encodings of planning problems
used in [Lifschitz, 1999] and in this chapter are different from theirs in three

ways.
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First, in [Dimopoulos et al., 1997], the authors start with planning
problems described in STRIPS representation [Fikes and Nilsson, 1971]; we are
interested in planning problems described by transition systems as in [Lifschitz,
1999).

Second, to encode the planning problems in a more compact and effi-
cient way, they use linear encodings (introduced by Kautz and Selman [1992]),
i.e., splitting the action predicates into a number of binary predicates. Our
encodings are more natural and straightforward but less efficient.

The third difference is as follows. In some of the problems, the ac-
tions are allowed to be executed concurrently, as in the suitcase problem. In
some other problems, such as the blocks world problems above, the parallel
execution of actions is not allowed. In such problems, it may be easier to
find a plan with concurrently executed actions and then “serialize” it. This
is what Dimopoulos, Nebel, and Koehler do for planning in the blocks world.
We do not use any post-processing methods to make planning more efficient.
This method makes planning more efficient, but generally, sequential plans

constructed in this way are longer than the shortest sequential plan.

3.8.2 Answer Set Planning vs. Satisfiability Planning

In our approach to planning, a plan corresponds to an answer set for the logic
program representation of the planning problem. In satisfiability planning
[Kautz and Selman, 1992, a plan corresponds to a model satisfying a set of

propositional formulas describing the planning problem.
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Using ccALC for planning can be viewed both as a form of answer set
programming—the input of CCALC is a logic program—and, at the same time,
as a form of satisfiability planning—an answer set is computed by converting

the program into a set of propositional formulas.

3.9 Eliminating Circular Configurations of Blocks

In Section 3.6, we described the blocks world domain by rules (3.20)—(3.26).
After constraints describing an initial configuration of blocks are added to
these rules, we get a program whose answer sets are in a 1-1 correspondence
with the histories of the blocks world that start with this initial configuration.

Unfortunately, this does not hold anymore if we allow concurrent execu-
tion of actions. If we drop no-concurrency constraint (3.26) then, for instance,
moving block a onto block b and moving block b onto block a at the same
time may be possible, and this would lead to a physically impossible, circular
configuration of blocks.

To overcome this difficulty, we need to make sure that every block is
supported by the table at every time instant. For that, we introduce the
atom supported(b,t): “block b is supported by the table at time ¢”. Then, we

describe that every block is supported by the table:

supported (b, t) < on(b, Table,t),
supported(b,t) < on(b,V,t), supported (¥, t) (b#10), (3.30)

1 < not supported(b,t).
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Adding rules (3.30) to the blocks world programs presented to DLV and
SMODELS would handle the problem above.

Unfortunately, this method does not work for cCALC: program (3.21)-
(3.26) U (3.28) U (3.30) is not tight, and the completion of this program has
models that correspond to circular configurations of blocks. A way to overcome
this difficulty is discussed in Chapter 6 of this proposal. The idea is to use the
transitive closure above of the fluent on, instead of the predicate supported.
“Bad” models of the program’s completion can be eliminated by replacing

rules (3.30) with the rules

above(b,l,t) < on(b,l,t)

(3.31)

above(b,l,t) < on(b, b, t), above(b',1,t)
1 < above(b, b, t) (3.32)
L < not above(b, Table,t). (3.33)

Atom above(b,l,t) expresses that block b is above location [ at time ¢. These
atoms are used to express constraint (3.33) that requires every block to be
“supported by the table”.5

In [Erdem and Lifschitz, 2001b], we showed that, for the program mod-
ified in this way, the models of completion are also its answer sets. This is
discussed in Chapter 6.

With the modified program, the computation times for DLV improve:

for P4, it takes 117.42 seconds. The timings for SMODELS do not change much:

SRules (3.31) and (3.32) were suggested to us by Norman McCain and Hudson Turner
on June 11, 1999; similar rules are discussed in [Lifschitz, 1999, Section 8.
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for P4, LPARSE takes 2.44 seconds and SMODELS takes 19.49 seconds. As for
CCALC, both the transformation time and the model-finding time increase

slightly: for P4, ccALcC takes 83.08 seconds, and CHAFF takes 5.27 seconds.

3.10 Next Three Chapters

In this chapter, we discussed our experiments with some planning problems
using the systems DLV, SMODELS, and CCALC. These experiments motivated
us to do the theoretical work presented in the next three chapters. Here are

the four main observations that led to this theoretical work .

Defining exogenous atoms. In Sections 3.3.3 and 3.6, we described the ex-
ogenous atoms, i.e., the atoms representing the initial values of fluents and the
occurrences of actions, by disjunctive rules to (see for instance, rules (3.20)).
To present this definition to CCALC, we had to transform these disjunctive
rules into nondisjunctive rules (see for instance, rules (3.28)). Our Theorem 1
justifies this transformation: it shows that this transformation preserves the

answer sets for a program.

No-concurrency constraints. In Section 3.6, we expressed that no two
actions are allowed to occur at the same time by constraint (3.26). Includ-
ing these constraints has a significant effect on the size of a program after

4

grounding. For a blocks world problem with n blocks, this size grows as n*.

To make the grounding more efficient we replaced (3.26) by rules (3.29). With
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this transformation the size of a program after grounding grows as n3. Our

Theorem 2 justifies this transformation: it shows that replacing (3.26) by rules
(3.29) may extend the answer sets by new literals, but the parts of the answer

sets that belong to the language of the original program remain the same.

Transitive closure. In Section 3.6, we observed that the completion of the
blocks world program (3.21)—(3.26) with (3.28) and (3.30), after eliminating
classical negation, has models that do not correspond to valid configurations
of blocks. We also observed that we can overcome this difficulty by defining
the transitive closure above of the fluent on by rules (3.31), and adding con-
straints (3.32) and (3.33). Our Theorem 4 shows that, the definition of above
with rules (3.31) is correct relative to answer set semantics. Our Theorem 5
shows that, with this modification, the models of completion of this program

are identical to its answer sets.

Generalization of Fages’ Theorem. Usually, to show that the models of
completion of a program are also its answer sets, we use Fages’ theorem, as
mentioned in Section 3.4.2. We noticed that Fages’ theorem is not applicable
to the blocks world program where we define the transitive closure above of
the fluent on because it is not tight. For that we defined “tightness on a set
of literals”, and generalized Fages’ theorem accordingly (see Theorem 3). Our

Theorem 3 is used to prove Theorem 5.
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Chapter 4

Transformations of Logic

Programs related to Planning

In this chapter we state two properties of logic programs under the answer set
semantics [Gelfond and Lifschitz, 1991] that may be useful in connection with
applications of logic programming to planning.

According to the first of the two theorems, replacing a disjunctive rule
of the form (2.6) (see page 16) by nondisjunctive rules (3.19) (see page 48) is
an equivalent transformation, as far as consistent answer sets are concerned.
Under some conditions, this fact follows from [Ben-Eliyahu and Dechter, 1994];
our Theorem 1 is more general.

The second theorem introduced in this chapter has to do with expressing

uniqueness assumptions in logic programming. In a language containing a
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binary predicate constant p and no function constants, the constraints
+ p(e,d),p(c,d') (c#cdord#d) (4.1)

(c,d, c,d range over the object constants) eliminate the answer sets that con-
tain more than one atom of the form p(c, d). Essentially the same result can

be achieved using the rules

p1(c) < p(e,d),

p2(d) < p(c, d),

—pi(e)p(cd)  (e#c),

—pa(d),po(d)  (d#d),
where pi, ps are auxiliary predicates. Theorem 2 is a generalization of this
fact. Like Theorem 1, it is related to applications of answer set solvers to
planning. When the goal is to find a plan in which actions are executed se-
quentially, the logic programming representation of the problem has to contain
a no-concurrency constraint similar to (4.1). The equivalent transformation
provided by Theorem 2 may allow us to state this constraint in a way that

provides some computational advantages, as discussed in Section 3.7.

4.1 Theorem 1

Theorem 1 For any program Il and any atom p, the programs

II
(4.2)

b;7p —
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and
II

p < not —p (4.3)
—p<4—not p

have the same answer sets.

Both the theorem and its proof can be extended to programs with nega-
tion as failure allowed in the heads of rules [Lifschitz, 1996]. The proof of
Theorem 1, given in [Erdem and Lifschitz, 1999], is presented in Section 9.3

(page 164).

4.2 Theorem 2

In the statement of Theorem 2, IT is a program, Ci,...,C, (n > 0) are sets,
and p is a function such that for all ¢; € Cy, ..., ¢, € C,, its values p(cy, . . ., ¢)
are pairwise distinct atoms in the language of II. The expressions p;(c), where
1 <i<nand c € Cj;, are assumed to be pairwise distinct atoms that do not

belong to the language of II.

Theorem 2 If X is an answer set for the program Il; obtained from II by

adding the rules

pi(ci) < pler,---,¢n) (4.4)

« pi(c), pi(c') (4.5)
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(1<i<n,c €Cy,...,cn € Cp, c,c €C;) then
X N Lt (1I) (4.6)
18 an answer set for the program Iy obtained from I by adding the rules

—pler, - -y en),p(c,---,ch)
ne " (4.7)
(c1,cf € Ch, ... cn,Cl € Cpyler, ... cn) #(ch,---,Ch)).
Moreover, every answer set for Ily can be represented in form (4.6) for some

answer set X for I1;.

The theorem asserts, in other words, that replacing constraints (4.7)
with rules (4.4) and (4.5) may extend the answer sets by new literals p;(c),
—p;(c), but the parts of the answer sets that belong to the language of II
remain the same.

To apply Theorem 2 to the blocks world example (Section 3.7), we use
it to replace the no-concurrency constraints by the rules involving move; and

moves consecutively for 7= 0, T = 1, etc., each time with

o n =2

C1 equal to the set of block constants,

C5 equal to the set of location constants,
e p(cy, cp) equal to move(cy, ca, T).

The proof of Theorem 2 is based on two facts. One is the splitting set

theorem [Lifschitz and Turner, 1994].
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The other is a property of constraints that easily follows from the defi-
nition of an answer set: the effect of adding a set of constraints to a program
is to eliminate the answer sets that are not closed under these constraints.

The proof of Theorem 2, given in [Erdem and Lifschitz, 1999], is pre-

sented in Section 9.4 (page 167).

4.3 Related Work

Gelfond et al. [1991] compare a disjunctive logic program II with the nondis-

junctive program II' obtained by replacing each rule of form (3.2) by k rules:

Ll “— Lk+17 .. .,Lm, not Lm+1, ..., not Ln, not Lg, ..., not Lk

Ly < Lyi1,...,Ly,not Lpyyq,...,n0t Ly,not Ly,...,not Ly_4

Here each L; is a literal, i.e., an atom possibly preceded by classical negation,
and 0 < k < m < n. They show that each answer set for II' is also an answer
set for II. Ben-Eliyahu and Dechter [1994] show that II is equivalent to II'
if I is “head-cycle free”. Their proof is based on translating II and II' into
propositional logic; for the two programs, the results happen to be the same.

Our Theorem 1 is different from that of [Ben-Eliyahu and Dechter, 1994]
in two ways. First, it allows us to replace a single disjunctive rule (2.6)—and
consequently any finite set of rules of this form—by nondisjunctive rules. This
is not the same as completely eliminating all disjunctive rules from a program.

Second, the disjunctive programs we consider are not required to be “head-
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cycle free”.

Consider, for instance, the program

D;q (4.8)
p;p (4.9)
p+gq (4.10)
g+ p. (4.11)

By Theorem 1, we can replace rule (4.9) by nondisjunctive rules (3.19) and
leave rule (4.8) as it is. The theorem from [Ben-Eliyahu and Dechter, 1994]
would not allow us to justify this replacement. It is not applicable to pro-
gram (4.8)—(4.11) because this program is not “head-cycle free”: its depen-
dency graph has a cycle that goes through the atoms p and ¢ that belong to
the head of the same disjunctive rule.

On the other hand, our theorem is not applicable to head-cycle free
disjunctive programs that do not contain any rule of the form (4.2).

After transforming programs (4.2) and (4.3) into programs without clas-
sical negation [Gelfond and Lifschitz, 1991], as explained in Section 2.2, The-
orem 1 can be derived from Theorem 2 of [Lifschitz et al., 2001]. According

to Theorem 2 of [Lifschitz et al., 2001], we need to show that the formulas

pVp

~(p, ")

71



are equivalent to the formulas

- Dp
“pDp
=(p, 1)
in the “logic of here-and-there”, which is a monotonic logic that is intermediate
between classical logic and intuitionistic logic [Godel, 1932).
Theorem 2 is similar to “action splitting” in satisfiability planning [Kautz
and Selman, 1996]. In “action splitting”, auxiliary atoms similar to p;(c) from

our Theorem 2 are sometimes used to eliminate action symbols altogether.
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Chapter 5

A Generalization of Fages’

Theorem

This chapter is about the relationship between the completion semantics [Clark,
1978] and the answer set (stable model) semantics [Gelfond and Lifschitz, 1991]
for logic programs with negation as failure. The study of this relationship
is important in connection with the emergence of answer set programming.
Whenever the two semantics are equivalent, answer sets can be computed by
a propositional solver, and the use of answer set solvers such as SMODELS and
DLV is unnecessary.

Consider a finite propositional (or grounded) program IT without clas-
sical negation, and a set X of atoms. As mentioned in Section 3.4, if X is
an answer set for II then X, viewed as a truth assignment, satisfies the com-

pletion of II. The converse, generally, is not true, as illustrated by program
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(3.16) introduced in Section 3.4 (see page 45). As mentioned in Section 3.4.2,
Frangois Fages [1994] defined tightness, and proved that, for a tight program,
every model of completion is an answer set. Thus, for tight programs, the
completion semantics and the answer set semantics are equivalent.

Our generalization of Fages’ theorem allows us to draw similar conclu-

sions for some programs that are not tight. Here is one such program:

p < not q,

q < not p, (5.1)
D4 D, T

It is not tight. Nevertheless, each of the two models {p}, {q} of its completion

p=-qV({pAT),
q=-p,
r=_1

is an answer set for (5.1).

The idea of this generalization is to make the function A from the def-
inition of tightness (Section 3.4.2) partial. Instead of tight programs, we will
consider programs that are “tight on a set of literals.”

In the following, answer sets are first related to a model-theoretic coun-
terpart of completion introduced in [Apt et al., 1988], called supportedness.
This allows us to make the theorem applicable to programs with both nega-
tion as failure and classical negation, and to programs with infinitely many

rules. Then, a corollary about completion is derived, and it is applied to a
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logic programming representation of the blocks world due to Ilkka Niemela.
Next, we show how the satisfiability solver SATO [Zhang, 1997] can be used
to find answer sets for that representation, and compare the performance of
SMODELS and SATO on several benchmarks. After that, we comment on the

limitations of this method.

5.1 Generalized Fages’ Theorem

For any program IT and any consistent set X of literals, we say that X is
supported by II if, for every L € X, there is a rule (3.2) in II such that (3.4),
(3.5), and

{L,..., Ly} N X = L. (5.2)

For instance, the set {p} is supported by program (2.3) (see page 11) whereas
the set {p, ¢} is not. Note that, for any program II, the empty set is supported
by II.

The definition of supportedness above corresponds to the definition of
supportedness introduced in [Apt et al., 1988] for nondisjunctive programs
without classical negation, and corresponds to the definition of supportedness
introduced in [Lifschitz and Turner, 1999] for nondisjunctive programs possi-
bly with classical negation. Our definition of supportedness conjoined with
our definition of closure (Section 3.1) corresponds to the definition of support-
edness introduced in [Baral and Gelfond, 1994].

In this chapter, we consider nondisjunctive programs, that is, programs
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consisting of rules of the form (3.17) (page 45).

Instead of “level mappings” used in Section 3.4.2, we consider here
partial level mappings—partial functions from literals to ordinals. A program
IT is tight on a set X of literals if there exists a function A with the domain X

such that, for every rule (3.17) in II, if Head, Ly, ..., Ly € X then

ML), ..., A(Lm) < A(Head).

For instance, program (5.1) is tight on {p, ¢}; on the other hand, it is not tight

on {p,q,r}.

The proposition below gives a simple characterization of tightness on a
set of literals that does not refer to ordinals. For any program II and any set
X of literals, we say about literals L, L' € X that L is a parent of L' relative

to IT and X if there is a rule (3.17) in II such that
o Li,....Ln€X,
e Le{Ly,...,L,}, and
e ' = Head.

For instance, the parents of p relative to (5.1) and {p, ¢, 7} are p and r; on the

other hand, p has no parents relative to (5.1) and {p, ¢}.

Proposition 2 A program II s tight on a set X of literals iff there is no
infinite sequence Ly, Ly, ... of elements of X such that for every i, L;\1 is a

parent of L; relative to Il and X.
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In other words, II is tight on a set X iff the parent relation relative to
IT and X is well-founded. Proposition 2 is a special case of Lemma 1 (take the
domain of R to be X); Proposition 1 is a special case of Proposition 2 (take

X to be lit(11)).

Our generalization of Fages’ theorem is stated as follows:

Theorem 3 For any program 11 and any consistent set X of literals such that
IT is tight on X, X is an answer set for I1 iff X is closed under and supported

by II.

The proof of Theorem 3, given in [Babovich et al., 2000], is presented
in Section 9.6 (page 170).

In the special case when II is a finite program without classical negation,
a set of atoms satisfies the completion of II iff it is closed under and supported

by II. We conclude:

Corollary 1 For any finite program I1 without classical negation and any set
X of atoms such that I1 is tight on X, X s an answer set for Il iff X satisfies

the completion of 1.

For instance, program (5.1) is tight on the model {p} of its completion:
take A\(p) = 0. By Corollary 1, it follows that {p} is an answer set for (5.1).
In a similar way, the theorem shows that {q} is an answer set also.

By pos(II) we denote the set of all literals that occur without negation

as failure at least once in the body of a rule of II.

77



Corollary 2 For any program Il and any consistent set X of literals disjoint

from pos(Il), X is an answer set for I iff X is closed under and supported

by II.

Corollary 3 For any finite program I1 without classical negation and any set
X of atoms disjoint from pos(I), X is an answer set for Il iff X satisfies the

completion of II.

To derive Corollary 2 from Theorem 3, and Corollary 3 from Corollary 1,
take A(L) = 0 for every L € X.

Consider, for instance, the program

p < not q,
q <+ not p, (5.3)
T,
P
The completion of (5.3) is
p=-qVr,
q="p,
r=r.
The models of these formulas are {p}, {¢} and {p, r}. The only literal occurring
in the bodies of the rules of (5.3) without negation as failure is r. In accordance

with Corollary 3, the models of the completion that do not contain r—sets

{p} and {gq}—are answer sets for (5.3).
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5.2 Planning in the Blocks World

As a more interesting example, consider a logic programming encoding of the
blocks world due to Ilkka Niemeld. This program is similar to the program
presented in [Dimopoulos et al., 1997]. The main part of the encoding consists

of the following schematic rules:

goal :- time(T), goal(T).

:- not goal.

goal(T2) :- nextstate(T2,T1), goal(T1).

moveop(X,Y,T) :-
time(T), block(X), object(Y), X != Y,
on_something(X,T), available(Y,T),
not covered(X,T), not covered(Y,T),

not blocked_move(X,Y,T).

on(X,Y,T2) :-
block(X), object(Y), nextstate(T2,T1),

moveop (X,Y,T1).

on_something(X,T) :-

block(X), object(Z), time(T), on(X,Z,T).
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available(table,T) :- time(T).

available(X,T) :-

block(X), time(T), on_something(X,T).

covered(X,T) :-

block(Z), block(X), time(T), on(Z,X,T).

on(X,Y,T2) :-
nextstate(T2,T1), block(X), object(Y),

on(X,Y,T1), not moving(X,T1).

moving (X,T) :- time(T), block(X), object(Y),

moveop(X,Y,T).

blocked_move(X,Y,T):-

block(X), object(Y), time(T), goal(T).

blocked_move(X,Y,T) :-

time(T), block(X), object(Y),

not moveop(X,Y,T).
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blocked_move(X,Y,T) :-
block(X), object(Y), object(Z), time(T),

moveop(X,Z,T), Y != Z.

blocked_move(X,Y,T) :-

block(X), object(Y), time(T), moving(Y,T).

blocked_move(X,Y,T) :-
block(X), block(Y), block(Z), time(T),

moveop(Z,Y,T), X != Z.

:= block(X), time(T), moveop(X,table,T),

on(X,table,T).

:- nextstate(T2,T1), block(X), object(Y),

moveop(X,Y,T1), moveop(X,table,T2).

nextstate(Y,X) :- time(X), time(Y),

object(table).

object(X) :- block(X).
To solve a planning problem, we combine the domain description with
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(i) a set of facts defining time/1 as an initial segment of nonnegative inte-

gers, for instance

time (0) . time(1). time(2).

(ii) a set of facts defining block/1, such as

block(a). block(b). block(c).

(iii) a set of facts encoding the initial state, such as

on(a,b,0). on(b,table,0).

(iv) a rule that encodes the goal, such as

goal(T) :- time(T), on(a,b,T), on(b,c,T).

The union is given as input to the “intelligent grounding” program LPARSE,
and the result of grounding is passed on to SMODELS [Niemeli, 1999, Section 7],
as seen in Section 3.3.4. The answer sets for the program correspond to valid
plans.

Concurrently executed actions are allowed in this formalization as long
as their effects are not in conflict, so that the plans described by this program
are serializable (see Section 3.8.1).

The schematic rules above contain the variables T, T1, T2, X, Y, Z that

range over the object constants occurring in the program, that is, over the
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nonnegative integers that occur in the definition of time/1, the names of blocks
a, b,... that occur in the definition of block/1, and the object constant table.

The expressions in the bodies of the schematic rules that contain = and
= restrict the constants that are substituted for the variables in the process

of grounding. For instance, we understand the schematic rule
nextstate(Y,X) :- time(X), time(Y), Y =X + 1.

as an abbreviation for the set of all ground instances of
nextstate(Y,X) :- time(X), time(Y).

in which X and Y are instantiated by a pair of consecutive integers. The

schematic rule

blocked_move(X,Y,T) :-
block(X), object(Y), object(Z), time(T),

moveop(X,Z,T), Y != Z.
stands for the set of all ground instances of

blocked_move(X,Y,T) :-
block(X), object(Y), object(Z), time(T),

moveop(X,Z,T).

in which Y and Z are instantiated by different object constants.
According to this understanding of variables and “built-in predicates,”
Niemeld’s schematic program, including rules (i)—(iv), is an abbreviation for a

finite nondisjunctive program BW.
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In the proposition below we assume that schematic rule (iv) has the

form
goal(T) :- time(T),

where the dots stand for a list of schematic atoms with the predicate symbol

on and the last argument T.
Proposition 3 Program BW is tight on each of the models of its completion.

The proof of Proposition 3, given in [Babovich et al., 2000], is presented
in Section 9.7 (page 172).

According to Corollary 1 from Section 5.1, we can conclude that the
answer sets for program BW can be equivalently characterized as the models

of the completion of BW.

5.3 Answer Set Programming with cCcALC and
SATO

As discussed in Section 3.4.2, the equivalence of the completion semantics to
the answer set semantics for program BW shows that it is not necessary to
use an answer set solver, such as SMODELS, to compute answer sets for BW;
a propositional solver can be used instead.

We have conducted a series of experiments aimed at comparing the run
times of SATO, when its input is generated from BW by cCALC, with the run

times of SMODELS, when its input is generated from BW by LPARSE.
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Since CCALC uses literal completion to compute the propositional theory
corresponding to its input, it requires that the input program has complete
answer sets (Section 3.4.3, page 47). Program BW does not have complete
answers since it does not contain classical negation. For that, we add to BW
the rule

—A <+ not A

for every atom in BW. These rules define the closed world assumption.
Because the built-in arithmetic of CCALC is somewhat different from
that of LPARSE, we had to modify BW slightly. Our cCALC input file is
presented in a similar way we present the suitcase domain. It uses variables
of sorts object, block and time instead of the unary predicates with these
names. The rules of BW that contain those predicates in their bodies are

modified accordingly. For instance, rule

on_something(X,T) :-

block(X), object(Z), time(T), on(X,Z,T).
turns into
on_something(B1,T) :- on(B1,02,T).
The macro expansion facility of CCALC expands
nextstate(T2,T1)

into the expression
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Problem Number Number Run time Run time

of of of of

blocks steps SMODELS SATO

large.c 15 7 5.22 1.90
8 22.58 2.42

large.d 17 8 10.37 10.17
9 44.61 4.80

large.e 19 9 15.46 13.26
10 75.77 12.53

Figure 5.1: Planning with BW: SATO vs. SMODELS
T2 is T1 + 1

that contains Prolog’s built-in is.

Figure 5.1 shows the run times of SMODELS and SATO measured using
the Unix time command, on the benchmarks from [Niemeld, 1999, Section 9,
Table 3]. (See Footnote (*) on page 58 for the versions of these programs and
the features of the machine.) For each problem, one of the two entries corre-
sponds to the largest number of steps for which the problem is not solvable,
and the other to the smallest number of steps for which a solution exists. The

numbers do not include the grounding and completion times.

5.4 Further Generalization of Fages’ Theorem

5.4.1 Weight Constraints and Nested Expressions

The generalization of Fages’ theorem discussed above is not applicable to

SMODELS programs with weight constraints (Section 2.3.2). According to [Fer-
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raris and Lifschitz, 2001], weight constraints can be eliminated in favor of
nested expressions (Section 2.2) in the sense of [Lifschitz et al., 1999]. A
generalization of the completion semantics to programs that contain such ex-
pressions was proposed by Lloyd and Topor [1984]. We have investigated how
Fages’ theorem on the relationship between completion and answer sets can
be further extended to such more general programs.

Consider a simple example. Program

p < not not p, (5.4)
P <D, q
contains nested occurrences of negation as failure in the body of the first
rule.! It belongs to the syntactic class for which our theorem guarantees the
equivalence of the answer set semantics to the completion semantics. This
program has two answer sets (), {p}; they are identical to the models of the
completion of (5.4):
p=-"pV(pAq)
qg= L.
We have extended, in [Erdem and Lifschitz, 2001a] and [Erdem and
Lifschitz, 2002], the definition of tightness (Section 5.1) to programs with

nested expressions to facilitate the verification of the equivalence between the

answer set semantics and the completion semantics for programs like this.

! The double negation in the first rule of (5.4) is redundant from the point of view of the
completion semantics, but it does affect the program’s answer sets. On the other hand, the
second rule is redundant from the point of view of the answer set semantics, but, generally,
dropping a rule like this can change a program’s completion in an essential way.
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In the syntax of SMODELS, the first of rules (5.4) can be written as a

choice rule
{pr} -

The relationship between cardinality constraints and nested expressions is sys-
tematically studied in [Ferraris and Lifschitz, 2001].

The extended definition of tightness and the further generalization of
Fages’ theorem for programs with nested expressions can be found in [Erdem
and Lifschitz, 2001a] and [Erdem and Lifschitz, 2002]. In the following we
will present two examples where the further generalization of Fages’ theorem
allows us to use a propositional solver instead of an answer set solver. The
first example is the New Year’s Party Problem (Section 5.4.2) and the second

example is the N-Queens Problem (Section 5.4.3).

5.4.2 Example: The New Year’s Party Problem

The New Year’s Party Problem was described by Vladimir Lifschitz on De-

cember 12, 2000 to Texas Action Group:?

You are organizing a large New Year’s Eve party. There will be
N tables in the room, with M chairs around each table. You need
to select a table for each of the guests, who are assigned numbers
from 1 to M x N, so that two conditions are satisfied. First, some

guests like each other and want to sit together; accordingly, you

’http://www.cs.utexas.edu/tag/ .

88



are given a set A of two-element subsets of {1,..., M x N}, and,
for every {i,j} in A, guests ¢ and j should be assigned the same
table. Second, some guests dislike each other and want to sit at
different tables; accordingly, you are given a set B of two-element
subsets of {1,..., M x N}, and, for every {i,j} in B, guests ¢ and
j should be assigned different tables. Your program should find

such a seating arrangement or determine that it is impossible.
This problem can be described by the nested program below. In this program,
e g,¢ range over the integers in {1,..., M * N} denoting guests,
e t ranges over the integers in {1,..., N} denoting tables, and
e ¢, c range over the integers in {1,..., M} denoting chairs.

We start with an arbitrary arrangement.
assign_table(g,t) < not not assign table(g,t)
assign_chair(g, c) < not not assign_chair(g, c)

Then we make sure that everyone sits in a chair at some table,
< not (assign_table(g,1);...;assign table(g, N))
« not (assign_chair(g,1);...;assign_chair(g, M))
that no two guests sit in the same chair,
+ assign_table(g,t), assign table(g',t),
assign_chair(g, c), assign_chair(g', c) (g<g)
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that the guests who like each other sit at the same table,
<+ not assign_table(g,t),likes(g,g"), assign_table(q',t)

and that the guests who do not like each other do not sit at the same table
+ assign_table(g,t), dislikes(g, g'), assign_table(g', t).

The further generalization of Fages’ Theorem allows us to use a propositional

solver to find the answer sets for the program above program.

5.4.3 Example: The N-Queens Problem

In this problem, the goal is to find a configuration of 8 queens on an 8 x 8
chessboard such that no queens can be taken by any other queen. In other
words, no two queens may be on the same row, on the same column, or on the
same diagonal.

The eight queens problem is presented to SMODELS as in Figure 5.2.
The rule in the GENERATE section of the program instructs SMODELS to select
atoms of the form occupied(R, C) for including in an answer set in such a way
that, for every column C, exactly one atom occupied(R,C) be selected. The
program has 92 answer sets, corresponding to the 92 possible arrangements of

eight queens. Given this input file, SMODELS produces one of the solutions:

Stable Model: occupied(4,1) occupied(2,2) occupied(7,3)
occupied(5,4) occupied(1,5) occupied(8,6) occupied(6,7)

occupied(3,8)
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% DOMAIN PREDICATES
row(1..8).
column(i..8).

% GENERATE
1{occupied(R,C) :row(R)}1 :- column(C).

% TEST
:- occupied(R,C), occupied(R,C1),
row(R), column(C), column(Ci), C < C1i.

:- occupied(R,C), occupied(R1,C1),
row(R), column(C), row(R1), column(C1),
C < C1, abs(R - R1) == abs(C - C1).

Figure 5.2: The eight queens problem presented to SMODELS

Consider the grounded version of the program in Figure 5.2, with the

domain predicates row and column dropped from the rules:
1{occupied(1,C), ..., occupied(8, C)}1 (5.5)
forall C'in {1,...,8};
+ occupied(R, C), occupied(R, C1) (5.6)
for all R,C,C1in {1,...,8} such that C < C1;
+— occupied(R, C), occupied(R1, C1) (5.7)

for all R, R1,C,C1in {1,...,8} such that C < C1 and |R— R1|=|C — C1].
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Rewritten in terms of nested expressions, as described in [Ferraris and

Lifschitz, 2001], rule (5.5) becomes

occupied(R, C) < not not occupied(R, C)
+ occupied(R, C), occupied(R1, C) (R < R1) (5.8)

+ not occupied(R,C), ..., not occupied(R,C).

The first of these rules allows each of the atoms occupied(R, C) to be included
or not included in an answer set. The second rule prohibits the selections that
include more than one atom occupied(R,C) with the same value of C. The
third rule prohibits the selections that include no such atoms for some value
of C.

To sum up, the program from Figure 5.2 can be rewritten as the union
of programs (5.8), (5.6) and (5.7).

We present the union of programs (5.8), (5.6) and (5.7) to CCALC as in

Figure 5.3. cCcALC produces the following output using SATO:

Satisfying Interpretation: occupied(1,5) occupied(2,8)
occupied(3,4) occupied(4,1) occupied(5,3) occupied(6,6)

occupied(7,2) occupied(8,7)

According to the results of our experiments, excluding the preprocessing
time, i.e., the time spent by LPARSE for grounding and the time spent by
CCALC for grounding and transformation, SMODELS takes 0.06 seconds and
SATO takes 0.01 seconds to find a solution to the eight queens problem. For 20

queens, SMODELS takes 200 seconds whereas SATO takes 0.08 seconds to find a
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:- sorts
row; column.

:—- variables
R,R1 :: row;
C,C1 :: column.
:— constants
1..8 :: row;
1..8 :: column;
occupied(row,column) :: cwAtomicFormula.

occupied(R,C) :- not (not occupied(R,C)).

occupied(R,C),occupied(R1,C), (R < R1).

(/\R: -occupied(R,C)).

occupied(R,C), occupied(R,C1), (C < C1).

occupied(R,C), occupied(R1,C1), (C < C1),
abs(R-R1) =:= abs(C-C1).

Figure 5.3: The eight queens problem presented to CCALC

solution. Our results show that, starting from an efficient SMODELS program,
it may be faster to find the answer sets for this program by transforming it to a
propositional theory if possible.® The further generalization of Fages’ theorem

verifies the use of SATO to compute solutions to the n-queens problem.

3The constraint logic programming system CLP [van Hentenryck, 1989] is computationally
even more efficient. For instance, for 20 queens, CLP takes 0.01 seconds to find a solution.
According to [Pelov et al., 2000], the queens problem can be also solved quickly using the
abductive logic programming system SLDNFAC [Denecker and Van Nuffelen, 1999).
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5.5 Discussion

Fages’ theorem, and its generalizations presented in Sections 5.1 and 5.4, allow
us to compute answer sets for some programs by completing them and then
calling a propositional solver. We showed that this method can be applied,
for instance, to the representation of the blocks world proposed in [Niemels,
1999]. This example shows that propositional solvers may serve as useful
computational tools in answer set programming.

There are cases, on the other hand, when the completion method is not
applicable. Consider computing Hamiltonian cycles in a directed graph [Marek

and Truszczynski, 1999]. We combine the rules

in(U,V) :- edge(U,V), not out(U,V).

out(U,V) :- edge(U,V), not in(U,V).

= in(U,V), in(U,W), V !'= W.

:— in(U,W), in(V,W), U != V.

reachable(V) :- in(v0,V).

reachable(V) :- reachable(U), in(U,V).

:- vertex(U), not reachable(U).

with a set of facts defining the vertices and edges of the graph; v0 is assumed to

be one of the vertices. The answer sets for the resulting program correspond to
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the Hamiltonian cycles. Generally, the completion of the program has models
different from its answer sets. Take, for instance, the graph consisting of two

disjoint loops:

vertex(v0). vertex(vl). edge(v0,vO0).

edge(vi,vl).

This graph has no Hamiltonian cycles, and, accordingly, the corresponding

program has no answer sets. But the set

vertex(v0), vertex(vl), edge(v0,v0),
edge(vl,vl), in(v0,v0), in(vi,vl),

reachable(v0), reachable(vl)

is a model of the program’s completion.
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Chapter 6

Transitive Closure, Answer

Sets, and Completion

In logic programming, the transitive closure tc of a binary predicate p is usually
defined by the rules

te(z,y) < p(z,y),

te(z,y) « p(z,v), tc(v, y).
If we combine this definition Def with any set II of facts (that is, ground
atoms) defining p, and consider the minimal model of the resulting program,
the extent of tc in this model will be the transitive closure of the extent of
p. In this sense, Def is a correct characterization of the concept of transitive
closure. We know, on the other hand, that the completion of II U Def in
the sense of Clark [1978] may have models different from the minimal model.

In these “spurious” models of completion, tc¢ is weaker than the transitive
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closure of p. The existence of such models is often considered a blemish on
the completion semantics. The absence of “spurious” models can be assured,
however, by requiring that facts II define relation p to be acyclic.

In this chapter, we consider the more general situation when II is a
logic program, not necessarily a set of facts. This program may define several
predicates besides p. Even tc is allowed to occur in II, except that all occur-
rences of this predicate are supposed to be in the bodies of rules, so that all
rules defining ¢c in IT U Def will belong to Def. The rules of II may include
negation as failure, and, accordingly, we talk about answer sets [Gelfond and
Lifschitz, 1990] instead of the minimal model mentioned in Section 2.1.1. Pro-
gram II U Def may have many answer sets. Is it true that, in each of them,
the extent of tc is the transitive closure of the extent of p? Theorem 4 gives a
positive answer to this question. Next, we would like to know under what con-
ditions the completion of a program containing Def has no “spurious” models.
Such conditions are provided in Theorem 5.

The questions discussed in this chapter are important from the perspec-
tive of answer set programming. A logic program whose answer sets we want
to find may define the transitive closure of one of its predicates—for instance,
the transitive closure above of the relation on in the blocks world presented
in Section 3.6. In such cases, we expect that the definition will “operate cor-
rectly” in the context of a set of rules with negation as failure, not merely in
combination with a set of facts. If every model of the completion of such a

program is an answer set then the program’s answer sets can be found using
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a propositional solver.

In the following, first we present our theorem showing the correctness
of the definition of transitive closure under the answer set semantics. Then,
we investigate the correctness of the definition of transitive closure relative to
the completion semantics. After that, this theory is illustrated by applying it

to the formalization of the blocks world from Chapter 3.

6.1 Transitive Closure and Answer Sets

We consider nondisjunctive programs consisting of rules (3.17). The syntax of
logic programs is propositional. Expressions containing variables, such as Def,
can be treated as schematic: we select a non-empty set C of symbols ( “object
constants”) and view an expression with variables as shorthand for the set of
all its ground instances obtained by substituting these symbols for variables.
It is convenient, however, to be a little more general. In the theorem below, p
and tc are assumed to be functions from C' x C' to the set of atoms such that

all atoms p(z,y) and tc(z, y) are pairwise distinct.

Theorem 4 Let II be a program that does not contain atoms of the form

tc(z,y) in the heads of rules. If X is an answer set for I U Def then

{(z,y) : te(z,y) € X} (6.1)
1s the transitive closure of

{{z,y) : p(z,y) € X}. (6.2)
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If atoms of the form t¢c(z,y) do not occur in IT at all then the answer
sets for I U Def are actually in a 1-1 correspondence with the answer sets for
II.! The answer set for IT U Def corresponding to an answer set X for II is
obtained from X by adding a set of atoms of the form tc(z,y). This is easy
to prove using the splitting set theorem [Lifschitz and Turner, 1994).

The proof of Theorem 4, given in [Erdem and Lifschitz, 2001b], is pre-

sented in Section 9.8 (page 174).

6.2 Transitive Closure and Completion

For any program IT and any set X of literals, we say about literals L, L' € X
that L is an ancestor of L' relative to IT and X if there exists a finite sequence
of literals Ly,...,L, € X (n > 1) such that L = L;, L' = L, and for every i
(1 <i<mn), L;is a parent of L;;; relative to I and X. In other words, the

ancestor relation is the transitive closure of the parent relation.

Theorem 5 Let II be a program that does not contain atoms of the form

tc(z,y) in the heads of rules. For any set X of literals, if
(i) 11 is tight on X,
(i) {{z,vy): p(y,x) € X} is well-founded, and

(#ii) no atom of the form tc(x,y) is an ancestor of an atom of the form p(x,y)

relative to Il and X,

1This observation is due to Hudson Turner (personal communication, October 3, 2000).
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then ITU Def is tight on X . If, in addition,
(i) X is a consistent set closed under and supported by II U Def

then X is an answer set for IL U Def, and {{z,y) : tc(z,y) € X} is the

transitive closure of {{z,y) : p(z,y) € X}.

The first part of the theorem tells us that, under some conditions, the
tightness of a program is preserved when the definition of the transitive closure
of a predicate is added. The second part, in application to finite programs
without classical negation, tells us that, under some conditions, the answer sets
for II U Def can be characterized as the models of this program’s completion,
so that, in any model of completion, the extent of fc is the transitive closure
of the extent of p.

Condition (ii) is similar to the acyclicity property mentioned in the
introduction. In fact, if the underlying set C' of constants is finite then (ii)
is obviously equivalent to the following condition: there is no finite sequence

Z1,...,&, € C (n > 1) such that

p(x1,22), -, P(Tp_1, Tn), p(Tn, 1) € X. (6.3)

For an infinite C', well-foundedness implies acyclicity, but not the other way
around.

Here is a useful syntactic sufficient condition for (ii):

Proposition 4 If II contains constraint
1+ te(z, ) (6.4)
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and C 1is finite then, for every set X of literals closed under I1 U Def, set

{{z,y) : p(y,x) € X} is well-founded.

The proof of Proposition 4, given in [Erdem and Lifschitz, 2001b], is
presented in Section 9.10 (page 177).
Without condition (ii), the assertion of the theorem would be incorrect.

Program II that consists of one fact p(1,1), with C = {1,2} and
X ={p(1,1), 2c(1,1), ¢c(1,2)},

provides a counterexample.
Condition (iii) can be verified by checking, for instance, that p does
not depend positively on tc in the dependency graph of II. This condition is

essential as well. Indeed, take II to be

p(z,y) + tc(z,y).

With C = {1,2}, set X = {p(2,1),tc(2,1)} is closed under and supported
by II U Def, but is is not an answer set for II U Def: the only answer set for
this program is empty.

The proof of Theorem 5,, given in [Erdem and Lifschitz, 2001b], is

presented in Section 9.9 (page 175).

6.3 Example: The Blocks World

As an example of the use of Theorem 5, consider the history program consisting

of rules (3.28), (3.21)—(3.26) and (3.31)—(3.33) for the blocks world. Theorem 5
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can be used to prove the following proposition:

Proposition 5 The program consisting of rules (3.28), (3.21)-(3.26) and

(8.81)—(3.33) is tight on every set of literals that is closed under it.

Since the program consisting of rules (3.28), (3.21)—(3.26) and (3.31)—
(3.33) contains classical negation, the completion process is not applicable to
it directly. But classical negation can be eliminated from the program by
the transformation explained in Section 3.6. Proposition 5 tells us that, after
this transformation, the program’s answer sets can be computed by using a
propositional solver to find models of the program’s completion, as described
in [Babovich et al., 2000].

The idea of the proof is to check first that the program consisting of
rules (3.28), (3.21)—(3.26) and (3.32)—(3.33) is tight, and then use Theorem 5
to conclude that tightness is preserved when we add the definition (3.31) of
above. There are two complications, however, that need to be taken into
account.

First, on and above are ternary predicates, not binary. To relate them
to the concept of transitive closure, we can say that any binary “slice” of above
obtained by fixing its last argument is the transitive closure of the correspond-
ing “slice” of on. Accordingly, Theorem 5 will need to be applied T}, + 1
times, once for each slice.

Second, the first two arguments of on do not come from the same set

C of object constants, as required in the framework of Theorem 5: the set of
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block constants is a proper part of the set of location constants. We need to
introduce a program similar to the program consisting of rules (3.28), (3.21)-
(3.26) and (3.31)—(3.33) in which, syntactically, Table is allowed as the first
argument of both on and above.

The proof of Proposition 5 that uses Theorem 5 is given in [Erdem and

Lifschitz, 2001b], and also presented in Section 9.11 (page 177).

6.4 Discussion

To prove that the completion of a program has no models other than the
program’s answer sets, we can check that the program is tight. When the
program contains the definition of the transitive closure of a predicate, it may
be difficult to check its tightness directly. But our Theorem 5 can be sometimes
used to show that the tightness of a program is not lost when such a definition
is added to it.

Essential for the applicability of that theorem is the presence of the
“irreflexivity” constraint from Proposition 4, such as constraint (3.32) from
the blocks world example. There are cases, however, when such constraints
cannot be included without distorting the meaning of the program, as, for
instance, when the concept of transitive closure is used to talk about paths in

an arbitrary graph (Section 5.5).
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Chapter 7

Applications of Answer Set

Programming to Wire Routing

Very large scale integrated circuits (VLSI), with millions of transistors and
wires on a single silicon chip, are too complex to design without the aid of com-
puters. Advances in integrated circuit technology will result in more complex
chips in the near future—it is predicted that there will be over 1 billion tran-
sistors and wires on a single chip in about 10 years [Semiconductor Industry
Association, 1997]. As a result, research and development in computer-aided
design (CAD) software is very active in both industry and academia.
Routing is an important step in CAD for VLSI circuits [Lengauer, 1990].
It is the problem of determining the physical locations of all the wires intercon-
necting the circuit components (transistors, gates, functional units, etc.) on

a chip. Since the wires cannot intersect with each other (otherwise resulting
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in short circuits), they are competing for limited spaces, thus making rout-
ing a difficult combinatorial optimization problem. In practice, the routing
problem for the whole VLSI chip is decomposed into smaller routing prob-
lems [Lengauer, 1990]. The chip is partitioned into an array of rectangular
regions. After determining the connections between adjacent regions, the rout-
ing of all the regions are carried out independently. But even for an individual
region the problem is computationally difficult. VLSI routing has been shown
to be NP-complete [Szymanski, 1985], and there are many heuristic routing
algorithms in the literature [Lengauer, 1990].

We have introduced a new approach to VLSI routing using answer set
programming. All existing routing systems are based on variations of the
sequential maze routing approach using a shortest path algorithm connecting
one wire at a time [Lee, 1961, Ohtsuki, 1986]. A major shortcoming of these
algorithms is that they cannot guarantee finding a routing solution even when
one exists. Our method differs from the existing ones in that it is complete: it
always correctly determines whether a given routing problem is solvable, and
it produces a routing solution whenever one exists.

Consider, for instance, the routing problem shown in Figure 7.1. The
wiring space here is a rectangular grid. The goal is to connect 4 pairs of points
(“pins”)—the two points labeled p0, the two points labeled pl, and so on—
without passing through the obstacles, shown in black. A solution—actually,
the solution found by our method proposed in the following section—is given

in Figure 7.2. If we try to solve this problem by finding first a shortest path

105



3| P3

1 p2

Figure 7.1: A routing problem with 4 wires.

between the points labeled p0, and then a shortest path between the points
labeled pl in the part of the grid that is still available, we will arrive at a
partial solution like the one shown in Figure 7.3. This partial solution cannot
be extended to a complete solution, however, because the points labeled p2
cannot be connected without intersecting the first of the two paths selected
earlier.

In the new approach the idea is characterize VLSI routing as a graph
problem. Consider, for instance, the routing problem shown in Figure 7.1. The
goal is to find 4 paths that connect 4 pairs of points—the two points labeled
p0, the two points labeled pl, and so on, and that do not pass through the

obstacles, shown in black. We describe the problem as a logic program, and
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Figure 7.2: Another solution to the problem from Figure 7.1.

use SMODELS to find the answer sets for the program that corresponds to the
graph problem.

In the next two sections we provide a more detailed description of this
method as it applies to the problem above. Then we show that our approach
can handle various kinds of additional routing constraints which ensure that
a circuit meets its performance specification: constraints on the lengths of
the wires, essential because signal delay through a wire is proportional to its
length, and spacing constraints between the wires, related to the problem of

avoiding signal interferences.
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3| P3

1 p2

Figure 7.3: A partial solution to the problem from Figure 7.1. It cannot be
extended to a complete solution.

7.1 Input and Output of SMODELS

The solutions of the wire routing problems with this approach are character-
ized by the truth values of the atoms in_h(N,XC,YC) (“the horizontal seg-
ment connecting the points (XC,YC) and (XC+1,YC) occurs in Path N”) and
in_v(N,XC,YC) (“ the vertical segment connecting the points (XC,YC) and
(XC,YC+1) occurs in Path N”).

Consider, for instance, the problem shown in Figure 7.5. This problem
is described to SMODELS by the file presented in Figure 7.4. The number of
wires and the size of the grid are represented in that file by the constants

k, maxX and maxY. These numeric values are defined in each particular rout-

108



% routing problem 0

const k = 1.
const maxX = 3.
const maxY = 3.

start(0,0,1).
start(1,0,2).
end(0,3,0).
end(1,2,3).
obstacle(1,3,1).
compute all {}.

minimize {in_h(N,X,Y): path(N): x_coordinate(X): y_coordinate(Y),
in_v(N,X,Y): path(N): x_coordinate(X): y_coordinate(Y)}.

hide.

show in_h(N,X,Y).
show in_v(N,X,Y).

Figure 7.4: Input file for the problem from Figure 7.5

3 pl

2 i-
1

po

po
0 1 2 3

Figure 7.5: A routing problem with 2 wires.
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ing problem. Then, for every path, the starting point and the ending point
are specified. Next, we describe the shape of the obstacle in this example
by obstacle(1,3,1). Here, obstacle(X1,X2,Y) expresses that there is an
obstacle occupying the points covered by the rectangle defined by the points
(X1,Y), (X2,Y), (X1,Y+1), and (X2,Y+1). After that, we specify that, among
all solutions, we want to find the one with the minimum number of horizontal
and vertical segments. We do this using the special command minimize of
SMODELS. With the expression minimize {...}, SMODELS finds an answer
set containing the least number of elements from the set {...}. By the last
three lines, we eliminate from SMODELS’ output all the atoms except the ones
that are either of the form in_h(N,X,Y) or of the form in_v(N,X,Y).

To find a solution to this problem we need the file routing.1p, describ-
ing the effects and the executability of actions in the routing domain. Parts
of file routing.1p are discussed in the next section.

Given these two files with the file presented in Figure 7.4, SMODELS

finds the following graph:

Stable Model: in_h(0,0,0) in_h(0,1,0) in_h(1,0,3) in_h(0,2,0)

in_h(1,1,3) in_v(0,0,0) in_v(1,0,2)

This is the solution shown in Figure 7.6.
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Figure 7.6: A routing problem with 2 wires.

7.2 The Routing Domain

In file routing.1p, first a set of atoms of the form in_h(N,XC,YC) are “gen-

erated” by the rule

{in_h(N,XC,YC)} :-
XC < maxX, path(N),
x_coordinate (XC),
y_coordinate(YC),

ends(N,X,Y).

where ends (N,X,Y) defines the end points of Path N. Similarly, a set of atoms of
the form in_v(N,XC,YC) are “generated”. The union of these sets describes a
graph—a subgraph of the grid. Then this set is “tested” with some constraints.
The constraints express that the graph is the union of several disjoint paths
forming a solution to the routing problem.

To express that both the starting point and the ending point of a path
should be in that path, that a point cannot be in two different paths, and that

a path cannot contain a point blocked by an obstacle, we introduced the atom
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at(N,X,Y) (“the point (X,Y) is in Path N”). We express that the end points
of Path N, specified in a problem description file, should be in Path N by the

constraint:

:— not at(N,XC,YC),

ends (N, XC,YC) .

We need to make sure that the end points of Path N cannot be connected
to two or more points, whereas each of the other points of Path N should be
connected to exactly two points. Furthermore, we should make sure that there
are no forks in the graph. For that, we defined the atom at (N,XC,YC,D) (“the
unit segment that begins at the point (XC,YC) and goes in the direction D
occurs in Path N”). We make sure that the end points of Path N cannot be

connected to two or more points by the constraint

:— 2{at(N,XC,YC,D) :direction(D)},
path(N),
x_coordinate (XC),
y_coordinate (YC),

ends (N, XC,YC) .
Each of the other points of Path N cannot be connected to exactly one point

:— 1{at(N,XC,YC,D) :direction(D) }1,
path(N),

x_coordinate (XC),
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y_coordinate(YC),

not ends(N,XC,YC).
and cannot be connected to more than three points.

:— 3{at(N,XC,YC,D):direction(D)},
path(N),
x_coordinate (XC),
y_coordinate (YC),

not ends(N,XC,YC).

That is, each of these points should be connected to exactly two points.

To make computation more efficient, we define the atoms r(N,X,Y)
(“the point (X,Y) is reachable from the starting point of Path N”) and express
that every node in Path N is reachable from the starting point of Path N by

the constraint:

:- at(N,X,Y),
path(N),
x_coordinate (X),
y_coordinate(Y),

not r(N,X,Y).

Strictly speaking, this constraint is redundant in the presence of the minimize
statement from Figure 7.5, because it cannot be violated in a graph of minimal
size. But it gives some “direction” to SMODELS in search, which makes the

computation time smaller.
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We express that no two paths intersect by the following constraint.

:- path(N), path(N1),
x_coordinate (XC),
y_coordinate (YC),
at(N,XC,YC),
at(N1,XC,YC),

N < Ni1.

After describing the shape of the obstacles on the grid by defining
obstacle(X1,X2,Y), we express that a path cannot contain a point blocked

by an obstacle as follows:

:- path(N),
x_coordinate (XC),
y_coordinate(YC),
at (N,XC,YC),
obstacle(XC1,XC2,YC),

le(XC1,XC), le(XC,XC2).

:- path(N),
x_coordinate (XC),
y_coordinate (YC),
at(N,XC,YC+1),

obstacle(XC1,XC2,YC),
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le(XC1,XC), le(XC,XC2).

With the routing domain described above, for instance, SMODELS finds
the solution presented in Figure 7.2 to the problem described in Figure 7.1 in

less than two seconds.

7.3 Bus Routing

A bus is a set of wires, each connecting a source pin and a sink pin, where
the source pins are all adjacent and the sink pins are all adjacent. In bus
routing, given several pairs of points on a rectangular grid, we want to find a
configuration of a bus such that all wires are of the same length: we want the
signal delays through all wires to be equal. The need to express the equality of
the lengths is the main special feature of bus routing problems. A bus routing
problem, along with its solution found by SMODELS, is displayed in Figure 7.7.

To express the equality of the lengths of the buses, among all possible
values of lengths of buses, we use the predicate bus_length to pick a particular
value, and make sure that the length of every bus is equal to this value. This

is done by adding to the problem description the following rules:

length(1l. .maxLength) .

1{bus_length(L) :1length(L)}1.
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Figure 7.7: A bus routing problem. The wires are required to have the same
length.
bus(N) :-

L+1 {at(N,XC,YC) :x_coordinate(XC) :y_coordinate(YC)} L+1,

bus_length(L), length(L), path(N).

:- not bus(N), path(N).

In some cases, a bus routing problem has no solution but becomes solv-
able if we relax the condition on the lengths of wires. For instance, with the
configuration of obstacles shown in Figure 7.8, it is impossible to connect all
pairs of pins by paths of the same length, but there is an “approximate solu-

tion” in which the lengths of wires do not differ by more than 2 (Figure 7.9).
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Figure 7.8:
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Figure 7.9: An approximate solution to the problem from Figure 7.8. The
differences between the lengths of wires are limited by 2.
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To find an approximate solution for the problem presented in Figure 7.8,
the condition on the lengths of the buses can be relaxed by replacing the third

rule above by

bus(N) :-
L+1 {at(N,XC,YC) :x_coordinate(XC) :y_coordinate(YC)} L+l+relax,

bus_length(L), length(L), path(N).

where relax is a constant declared in the problem description. When relax
is declared to be 2, SMODELS finds the solution presented in Figure 7.9 in less

than two seconds.

7.4 Restricting the Lengths of Wires

A wire routing problem may involve constraints on the lengths of some of
the wires—that is to say, on signal delays through them. The approach to
wire routing proposed in this chapter allows us to express such constraints by
simple changes in the goal condition of the planning problem.

We can put restrictions on the lengths of the wires as follows. We can
express that any wire cannot be longer than a specific value, say maxLength,

by adding to the problem description the constraint

:— maxLength + 2 {at(N,X,Y):x_coordinate(X):y_coordinate(Y)},

path(N) .
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Figure 7.11: A solution to the problem from Figure 7.11 with the length of
Wire 1 limited by 8.
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After this change, a solution found by SMODELS is presented in Figure 7.10.
We can put restrictions on the length of a specific wire. For instance,
for the problem described in Figure 7.11, we can express that Wire 0 cannot be

longer than 7 (inclusive) by adding to the problem description the constraint
:- 8 {at(0,X,Y): x_coordinate(X): y_coordinate(Y)}.

The solution found by SMODELS after this change is shown in Figure 7.11.
We can express that the total length of all k wires cannot be greater than
a specific value, say maxTotalLength by adding to the problem description the

constraint

:- maxTotallLength + k + 1 {at(N,X,Y):path(N):x_coordinate(X):

y_coordinate(Y)}.

7.5 Spacing Constraints

We say that two wires in a solution to a routing problem are adjacent if a
segment of one of them and a segment of the other form two opposite sides
of a unit square. In Figure 7.2, for instance, Wires 0 and 1 are adjacent,
and Wires 2 and 3 are adjacent. In this section we consider the problem
of finding a wire routing without adjacent wires. This is a simple spacing
constraint, interesting in view of its relation to the problem of avoiding signal

interferences.
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We describe that no two wires can be adjacent by the following con-

straints:

. —_

in_h(N,XC,YC),
in_h(N1,XC,YC+1),

YC < maxy,
path(N;N1), N != N1,
x_coordinate (XC),

y_coordinate (YC) .

in_v(N,XC,YC),
in_v(N1,XC+1,YC),

XC < maxX,
path(N;N1), N != Ni,
x_coordinate (XC),

y_coordinate (YC) .

More generally, we can describe that no two unit segments belonging

to different paths can form the opposite sides of a rectangle of size 1 x D

(1

< D < dist) by the constraints:

in_h(N,XC,YC),
in_h(N1,XC,YC+D),
distance(D), le(YC,maxY-D),

path(N;N1), N != N1,
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Figure 7.12: A solution to a routing problem without adjacent wires.

x_coordinate (XC),

y_coordinate (YC) .

:— in_v(N,XC,YC),
in_v(N1,XC+D,YC),
distance(D), le(XC,maxX-D),
path(N;N1), N != Ni,
x_coordinate (XC),

y_coordinate (YC) .

where dist is a constant declared in the problem description.

Figure 7.12 shows a solution to a routing problem, with adjacent wires
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prohibited, that was generated by SMODELS on the basis of such a formaliza-

tion.

7.6 Planning Approach to Wire Routing

In the earlier sections, we characterized the wire routing problems as graph
problems. Another approach is to consider the wire routing problems as plan-
ning problems [Erdem et al., 2000]. In the planning approach, the idea is to
think of each path as the trajectory of a robot moving along the grid lines,
and to understand a routing problem as the problem of planning the actions
of several robots. For instance, the problem presented in Figure 7.1 involves
4 robots. The initial position of Robot 0 is assumed to be (6,5), and its goal
is to reach point (10,6) (or the other way around), and similarly for the other
robots. The actions that a robot can perform are to move left, right, up or
down to the closest grid point, or to do nothing.

With the planning approach, we can formalize the wire routing prob-
lems as logic programs in the same way we formalize planning problems in
Chapter 3. Planning problems can be also formalized in a more compact way,
using “action languages”.

Action languages are formal models of parts of the natural language
that are used to talk about the effects of actions [Gelfond and Lifschitz, 1998].
Action languages, in general, use two kinds of symbols: fluent symbols and ac-

tion symbols. A set of propositions in an action language describes a transition
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system. One of many action languages is the action language C introduced in
[Giunchiglia and Lifschitz, 1998]. The language C is based on the theory of
causal explanation proposed in [McCain and Turner, 1997], which is closely
related to the concept of an answer set [McCain, 1997, Chapter 6 |.

For instance, the transition system describing the suitcase domain pre-

sented in Section 3.3.1 can be formalized in the action language C as follows:

caused open if up(L1) A up(L2)

toggle(l) causes up(l) if —up(l)

toggle(l) causes —up(l) if up(l)

inertial up(l), ~up(l), open, ~open
where | € {L1, L2}. Using the translation from C to logic programming de-
scribed in [Lifschitz and Turner, 1999] and Theorem 1 of [Erdem and Lifschitz,
1999], discussed in Section 4.1, this action description can be turned into the
union of logic programs (3.10) and (3.11), which is the first logic program pre-
sented in Section 3.3.2, on page 32 to describe the transition system for the
suitcase domain.

In [Lifschitz and Turner, 1999], the authors also proved that the models
of the completion of the program obtained from an action domain using their
translation are identical to the answer sets for that program. This is impor-
tant in that we can use propositional solvers to reason about action domains
described in C.

Besides the use of cCALC discussed in Chapters 3 and 5 above, this

system can also be used to solve problems related to actions. In this case, its
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Figure 7.13: A routing problem.

input can be represented in C. Starting with a problem described in C, CCALC
translates it into a propositional theory. Then, it uses a propositional solver
to find a model of this theory. This model corresponds to an answer set for
the program obtained from the action description we start with.

The possibility of using CCALC with an input described in the action
language C allows us to encode the wire routing problems in the action lan-

guage C and find solutions using CCALC as in [Erdem et al., 2000].
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Figure 7.14: A solution to the problem presented in Figure 7.13.

7.7 Other Wire Routing Problems

In the routing problems we have addressed, the goal was to connect pairs of
pins with wires, and the solutions consisted of paths that do not intersect with
each other, and that do not intersect with obstacles. There are routing prob-
lems where the goal is to connect multiple pins with wires where the solutions
consist of trees that do not intersect with obstacles. For instance, consider
Figure 7.13. We want to connect the pins p0, ..., p7 with wires. A solution to
this problem is presented in Figure 7.14 and consists of a “Rectilinear Steiner

Tree” (RST) for nodes p0, ..., p7 [Hanan, 1966].) Automatic routing of wires

!The Steiner tree problem asks for a connected graph spanning a given set of points such
that the total “length” of edges is minimum. A Steiner tree is different from a “minimum
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has been the premier application of RSTs since Hanan’s original paper [Hanan,
1965]. The routing problems with solutions as minimum RSTs are motivated
by delay optimization. The problem presented in Figure 7.13 differs from
other RST routing applications studied earlier in that there are obstacles on
the grid. (See [Lengauer, 1990] for the work on RST routing applications).
We can solve such a problem by removing the constraint expressing that no
two paths intersect from the basic program described in Section 7.2.

We have studied the wire routing problems with the spacing constraint
expressing that no adjacencies are allowed. In the future, we want to work on
wire routing problems with more complex spacing constraints where adjacent
wires are allowed but the total amount of adjacencies between each pair of
wires should be bounded. For instance, consider the problem presented in
Figure 7.12 with a solution where adjacencies are prohibited. If at most one
unit of adjacency are allowed the a more economical solution exists, such as
the one shown in Figure 7.15. This more general formulation captures the fact
that small amount of adjacencies may not produce enough signal interferences
to affect circuit performance.

Another future direction is to investigate how to extend both approaches

spanning tree” in that new auxiliary points (called Steiner points) can be introduced be-
tween the given points so that a connected graph spanning all the points will be “shorter”
than otherwise possible. This problem was proposed by Georg Steiner as a generalization
of a special case for three-points in the Euclidean plane, where the lengths of edges are
the Euclidean distances, introduced by Fermat (1601-1665) [Jarnik and Kossler, 1934]. A
Rectilinear Steiner Tree for a given set S of points in the plane is a Steiner tree for S where
edges are horizontal or vertical line segments and each point in S is a leaf of this tree [Hanan,
1966]. Here the length of an edge is the number of segments contained in that edge. (See
[Hwang et al., 1992] for more information about Steiner trees.)
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Figure 7.15: A solution to a routing problem where at most two units of
adjacencies are allowed.

to solve the “global routing” problem [Lengauer, 1990], which is the problem
of determining the connections between adjacent regions after a VLSI chip is
decomposed into an array of smaller rectangular regions. The global routing
problem resembles the routing problem we studied in this paper except that

we would allow more than one wire to be placed on a grid edge.

7.8 Discussion

We have introduced two approaches to wire routing using answer set program-

ming: the planning approach [Erdem et al., 2000] and the graph approach
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(Chapter 7). Both approaches always correctly determine whether a given
problem is solvable, and they always produce a solution if it exists. Both ap-
proaches are attractive in that some enhancements of the basic problem—in
which lengths of wires and distances between them come into play—can be
easily represented by modifying goals or by adding auxiliary fluents. In this
sense, both representation methods are similar to the work on elaboration
tolerance [McCarthy, 1999] described in [Lifschitz, 2000].

On the negative side, the size of the grid used in our examples is much
too small for serious applications. Investigating the applicability of these rout-
ing methods to larger problems is another topic for future work.

In the graph approach, to make our encoding more efficient, we can
introduce two “circles” around the endpoints of a path we are looking for, and
require that the path be contained in the union of these circles.? For that, we
first declare the constant radius, and then we replace the rule “generating” a

set of atoms of the form in_h(N,XC,YC) by

{in_h(N,XC,YC)} :-
XC < maxX, path(N),
x_coordinate (XC),
y_coordinate(YC),
ends(N,X,Y),
radius - abs(XC-X) - abs(YC-Y) >= 0.

Similarly, we modify the rule “generating” a set of atoms of the form in_v(N,XC,YC).
2This idea was suggested to us by Ilkka Niemeld at AAAI 2000.
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This modification improves the computation time of SMODELS significantly.
However, it can prevent SMODELS from finding a solution to a solvable prob-
lem if the value of radius is too small.

Another formalization of the routing domain for SMODELS is presented
in [East and Truszczyriski, 2001]. The encoding presented by East and Truszczynski
is similar to our encoding for SMODELS in that they also put some restrictions
on the area where the wires should be routed. It differs from our encoding in
that paths are characterized by the points occurring in the paths. Since the
paths are not defined in terms of segments, their formalization may need to be
modified when other routing problems are considered. East and Truszczynski
also present a similar encoding for the system DCS.

Another formalization of the routing problems presented to SMODELS
is due to Tommi Syrjénen (personal communication, July 31, 2000). His en-

codings are similar to ours.
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Chapter 8

Applications of Answer Set
Programming to Phylogeny

Reconstruction

A phylogeny is an evolutionary tree for a set of taxa, which describes the
evolution of the taxa in that set from their most recent common ancestor.
There are several reasons to construct phylogenies, as explained in [Hwang et
al., 1992]. The topology is of interest because it answers questions about basic
classification of taxa. Sometimes one wants to know when divergence occurred
and how “long” the edges of the tree are; this question is sometimes answered

by explicitly deriving a description of the inferred (extinct) taxa.l

!These questions can be regarded as a special case of Steiner tree problems (see Foot-
note (})). The input taxa correspond to the leaves of a Steiner tree. The internal nodes
are inferred ancestral taxa, and correspond to Steiner points. It is a special case because
the internal nodes of phylogenies are of degree 3 whereas the Steiner points are of degree at
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In particular, in biology, phylogeny reconstruction is crucial to a wide
range of basic and applied biological problems such as the epidemiology of
AIDS, the identification of viral agents, the analysis of protein structure and
function, and the prediction of RNA structure; it is the basic tool to trace
the evolutionary history. (See surveys [Felsenstein, 1982], [Felsenstein, 1988],
[DasGupta and Wang, 1999], and the book [Li and Graur, 1991] for further
discussion of biological motivation.)

In linguistics, phylogenies are reconstructed to trace the evolutionary
history of a collection of natural languages. The leaves represent the extant
languages, the internal vertices represent the ancestral languages, and the
edges represent the “genetic” relations between the languages. For instance,
when we say “French and Italian are both descendants of Latin” we refer
to such a tree where French and Italian are denoted by leaves, and Latin is
denoted by an internal vertex that is a common ancestor of these two leaves.

Reconstructing phylogenies for various language families is a major en-
deavor in historical linguistics, but is also of interest to archaeologists, human
geneticists, and physical anthropologists. For instance, an accurate recon-
struction of the evolutionary history of certain languages can help us answer
questions about human migrations, the time that certain artifacts were de-
veloped, when ancient people began to use horses in agriculture [Mair, 1998],
[Mallory, 1989], [Roberts et al., 1990], [White and O’Connell, 1982].

The idea of formulating the phylogeny reconstruction problem formally

least 3.
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and search for algorithmic solution started around 1950, when Hennig proposed
a systematic way of finding a phylogeny for a set of species [Hennig, 1966].
Although there is no agreement on how to define a phylogeny mathematically,
according to [Hwang et al., 1992], there are various formalizations and algo-
rithms to solve these problems. (See surveys [Felsenstein, 1982, [Felsenstein,
1988] for the phylogeny reconstruction methodologies in biology.)

In the following sections, we present applications of answer set program-
ming to phylogeny reconstruction in linguistics (Section 8.1) and in biology

(Section 8.2).

8.1 Phylogeny Reconstruction in Linguistics

Languages not only inherit characteristics from their ancestors but also some-
times borrow them from other languages. In such cases, “networks,” rather
than trees, are the appropriate model of evolution. Nakhleh et al. [2002] make
this idea precise by defining “perfect phylogenetic networks.” They start with

a phylogeny built automatically from a dataset describing characteristics of
Indo-European languages, and show how some perfect phylogenetic networks

can be obtained from it by adding a small number of new edges.

The following sections address the same computational problem—computing

a small set of additional edges that turn a given phylogeny into a perfect phy-
logenetic network. To solve this problem, we use answer set programming.

In the following, we will first describe the problem mathematically (Sec-
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tion 8.1.1) and then formalize it in the language of SMODELS (Section 8.1.2).
Useful heuristics and optimization techniques will be discussed in Sections 8.1.3—
8.1.5. After that, we will describe the dataset we used to find some explana-
tions to the evolutionary history of the Indo-European languages and present
the explanations computed by SMODELS (Section 8.1.6). Proofs of theorems,

as given in [Erdem et al., 2002], will be presented in Sections 9.12-9.17.

8.1.1 Problem Description

We describe the problem of computing perfect phylogenetic networks built on
a given phylogeny as a graph problem. Therefore, we first introduce some
definitions related to graphs.

Recall that a directed graph (digraph)is an ordered pair (V, E') where V
is a set and E is a binary relation on V. In a digraph (V, E), the elements of
V' are called vertices, and the elements E are called the edges of the digraph.

In a digraph, we say that the edge (u,v) is incident from u and is
incident into v. The out-degree of a vertex is the number of edges incident
from it, and the in-degree of a vertex is the number of edges incident into it.

In a digraph (V| E), a path from a vertex u to a vertex u' is a sequence
Vg, V1, - - -, Ug Of vertices such that v = vy and v’ = v, and (v;_1,v;) € E for
1 < i < k. If there is a path from a vertex u to a vertex v then we say that v
is reachable from u. If V' is a subset of V, and there exists a path from u to
v whose vertices belong to V' then we say that v is reachable from u in V.

A rooted tree is a digraph with a vertex of in-degree 0, called the root,
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such that every vertex different from the root has in-degree 1 and is reachable
from the root. In a rooted tree, a vertex of out-degree 0 is called a leaf.

A digraph (V',E') is a subgraph of a digraph (V, E) if V' C V and
E'CE.

A phylogeny is a triple of the form (V) E, f) where (V, E) is a finite
rooted tree and f is a function from L x I to S, where L is the set of leaves of
(V,E), and I, S are finite sets.

We are interested in the problem of turning a phylogeny into a perfect
phylogenetic network by adding at most k£ bidirectional edges. Formally, the

problem is defined as follows:
Input: A phylogeny (V, E, f), with f : L x I — S; a nonnegative integer k.

Output: a function g : V x I — S and a symmetric irreflexive binary relation

N on V such that

(i) gluxi=f,

(ii) foralli € T and s € S, if Viy = {u € V : g(u,i) = s} is not empty then
(V,E U N) has a subgraph with the set V;; of vertices that is a rooted

tree,
(iii) for every edge (u,v) € E, u is not reachable from v in (V,; E U N),
(iv) the cardinality of N is at most 2k.

If (V,E, N, g) satisfies conditions (i)—(iii) then we say that it is a perfect

(phylogenetic) network built on (V,E, f). The problem described above is
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Figure 8.1: A phylogeny.

essentially the Minimum Increment to Perfect Phylogenetic Network (MIPPN)
problem [Nakhleh et al., 2002]. In place of (iv), MIPPN as defined in that
paper includes a minimality condition.

Intuitively, the edges of the phylogeny (V, E, f) show the “genetic” re-
lations between languages; each leaf of this phylogeny corresponds to an ex-
tant language; the internal vertices represent ancestral languages. The lan-
guages are identified by a set of specific observable discrete characteristics,
called “(qualitative) characters” (such as grammatical features, unusual sound
changes, and cognate classes for different meanings). For every extant lan-
guage, function f maps every character to a “state”; we say that the leaves of
the tree (V, E) are “labeled” by f. Function g extends f to ancestral languages
(condition (i)).

Languages can affect each other by transmitting some linguistic proper-
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ties due to contact. These contacts are not represented on the given phylogeny.
They correspond to the elements of N in a perfect network (V, E, N, g) built
on (V,E, f). A perfect network explains how every state of every character
evolved from its original occurrence in some “root” language (condition (ii)).
Languages cannot borrow characteristics from their descendants (condition
(iii)). We are only interested in the perfect networks where the number of
postulated borrowings is small (condition (iv)), because inheritance of charac-
teristics of a language from its ancestors is far more probable than acquiring
them through borrowing. In the case of the phylogeny of Indo-European lan-
guages discussed in Section 8.1.6 the fact that a small number of edges is
sufficient was established in a preliminary analysis done by Tandy Warnow
and Donald Ringe.

For instance, consider the phylogeny presented in Figure 8.1 that is
reconstructed for 4 extant languages A, B, C, D. There is one character, i.e.,
|I| =1, and there are two states (S = {0,1}). The leaves of the phylogeny are
labeled: f(A,1) = f(C,1) =0 and f(B,1) = f(D,1) = 1. A perfect network
built on this phylogeny is presented in Figure 8.2. The new bidirectional edge
is added to make the vertices labeled 1 connected via a rooted tree, i.e., to
satisfy condition (ii).

Another example, with two characters (I = {0,1}) and two states (S =
{0,1}), is presented in Figure 8.3. The new edge is added to make the vertices
labeled 0 at Character 1 connected via a rooted tree.

The phylogeny of Indo-European languages described in Section 8.1.6
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Figure 8.2: A perfect network built on the phylogeny of Figure 8.1 with N =
{(B,D), (D, B)}.
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Figure 8.3: A perfect network.
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% a phylogeny for the extant languages A, B, C, D:

% denote A by 1, B by 2, C by 3, D by 4,

A the parent of A and B by 5,
h the parent of C and D by 6,
A the root by 0.

vertex(0..6).

edge(0,5). edge(0,6). edge(5,1).
edge(5,2). edge(6,3). edge(6,4).

state(0;1).
character(0).

£(1,0,0). £(2,0,1). £(3,0,0). £(4,0,1).

Figure 8.4: Input file describing the phylogeny of Figure 8.1.

below is a tree with 24 leaves, 370 characters, and 74 states.

8.1.2 Presenting the Problem to SMODELS

A phylogeny is defined by the domain predicates vertex(X), edge(X,Y),
state(S), character(C), £(X,C,S) (expressing that the function f maps
the leaf X and the character C to the state S). For instance, the phylogeny of
Figure 8.1 is described to SMODELS by the file presented in Figure 8.4.

The solutions of the problem are characterized by the atoms of the form
g(X,C,S) (expressing that the function g maps the vertex X and the character

C to the state S) and new(X,Y) (expressing that the pairs (X,Y) and (Y,X) are
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elements of the set N; X < Y). For instance, the output of SMODELS describing

the solution presented in Figure 8.2 (with I = {0}) is:

g(0,0,0) g(1,0,0) g(2,0,1) g(3,0,0) g(4,0,1) g(5,0,0) g(6,0,0)

new(2,4)

First we describe conditions on the labeling g of the vertices. According

to (i), g coincides with f where the latter is defined:

g(X,c,s) :- £(X,C,9).

Every internal vertex should be labeled by exactly one state for each

character:

1 {g(X,C,S): state(S)} 1 :-

vertex(X), not leaf(X), character(C).

Then, we add at most k pairs of edges between the vertices of this

phylogeny:
{new(X,Y): vertex(X;Y): X < Y} maxE.

(maxE represents the value of k).

However, due to (iii), we cannot add such a pair between two vertices
if adding it will create a cycle that includes at least one edge of the given
phylogeny. To express this condition, we first define the extended set of edges
E U N by the rules
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an_edge(X,Y) :- edge(X,Y).
an_edge(X,Y) :- new(X,Y), vertex(X;Y).

an_edge(X,Y) :- new(Y,X), vertex(X;Y).

Then we define the binary predicate directed_path as the transitive

closure of an_edge, and impose the constraint

:- directed_path(X,Y), edge(Y,X). (%)

Finally, we need to make sure that (ii) holds. For that we use the

following proposition:

Proposition 6 For any finite digraph (V, E), and any set V' C V, the fol-

lowing conditions are equivalent:

a ere exists a subgrapn o, y w1t € Se o vertices at 1S a roote
th ists a subgraph of (V, E) with the set V' of vertices that i ted

tree,

(b) there exists a vertex v € V' such that every vertex in V' is reachable from

vin V.

The proof of Proposition 6 is presented in Section 9.12 (page 179).

Proposition 6 shows that condition (ii) in the statement of the MIPPN
problem can be equivalently expressed as follows:

(i) for alli € T and s € S, if Vs = {u € V : g(u, i) = s} is not empty
then there exists a vertex v in Vj; such that every vertex in Vj, is reachable

from v in V.
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We consider pairs (4, s) for which some vertex is labeled by state s at
character ¢, so that V;, is not empty. After picking an element v of Vj,, and
defining reachability of vertices in V;; from v by the predicate reachable, we

express (ii') by the constraint

:- g(X,C,S), not reachable(X,C,S), character(C),

state(S), vertex(X).

The answer sets for the program described above correspond to the
solutions of the MIPPN problem. We will call it “the basic program.”

We can use SMODELS with the basic program to solve small instances
of the MIPPN problem. Larger data sets, such as the one described in Sec-
tion 8.1.6, require the use of some heuristics and optimization techniques.
Some of these techniques are not complete, that is, do not allow us, generally,

to find all solutions. We will discuss them in the following sections.

8.1.3 Preprocessing

Sometimes the MIPPN problem for a given phylogeny can be simplified by
making its set I of characters smaller. If (V) E,N,g) is a perfect network
built on a phylogeny (V, E, f) then, for any subset J of I, (V,E, N, g|rxs) is
obviously a perfect network built on (V, E, f |r«xs). Proposition 7 below shows,
for some special choice of J, that every perfect network built on (V, E, f|LxJ)

can be extended to a network built on (V, E, f).
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Consider a phylogeny (V, E, f), with f : L x I — S. We say that a
character j € I is inessential if there exists a perfect network (V, E, 0, g) built
on (V, E, f |Lx{;;)- For instance, in the phylogeny of Figure 8.3, the first of the
two characters is inessential. In the phylogeny of Indo-European languages

described in Section 8.1.6, 352 characters out of 370 are inessential.

Proposition 7 Let (V, E, f) be a phylogeny, with f : L x I — S, and let I
be the set of its inessential characters. There exists a function ¢' : V xI' — S
such that, for every perfect network (V,E,N,g) built on (V,E, f [pxi\r)),

(V,E,N,gU¢") is a perfect network built on (V, E, f).

This theorem shows that the sets IV in solutions to the MIPPN problem
for a phylogeny (V, E, f) are identical to the sets N in the solutions to the same
problem for the smaller phylogeny (V, E, f|rx (1)) (although the functions g
in these solutions are, generally, different).

The proof of Proposition 7 is presented in Section 9.13 (page 180).

Another way to make a given phylogeny smaller is to check whether it
has an internal vertex v such that all leaves descending from v are labeled in
the same way: for any such leaves vq, vo, and any character i, f(vy,7) = f(vs, ).
In Figure 8.5, for instance, this condition holds for the common parent of Al
and A2. If such a vertex v is found, then we remove all its descendants from
the tree, so that v turns into a leaf. The labeling of v in the reduced phylogeny
(V',E', f') is the same as the common labeling of the descendants of v in the

given phylogeny. For instance, this process turns Figure 8.5 into the phylogeny
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Figure 8.5: A phylogeny.

of Figure 8.3.

In our work on the phylogeny of Indo-European languages with 24
leaves, we repeated this process several times, and reduced the given tree
to a tree with 15 leaves. This process improved the computational efficiency
of sSMODELS. Consider, for instance, the use of SMODELS to find a perfect net-
work for just one character, Character 158, with at most one edge. Pruning
reduced the computation time in this case from 1.5 seconds to 0.6 seconds.

Every solution to the MIPPN problem for the pruned phylogeny can be

extended to a solution for the original phylogeny:

Proposition 8 Let (V, E, f) be a phylogeny, with f : LxI — S, and (V', E', f')
be the phylogeny obtained from it as described above. Let (V') E', N, ¢') be a per-
fect network built on (V' E', f'). Then there exists a function g from V x I to

S with glvixr= ¢’ such that (V, E, N, g) is a perfect network built on (V, E, f).

144



Figure 8.6: A perfect network with |N| = 3.

Figure 8.7: The phylogeny obtained from the phylogeny of Figure 8.6 by pre-
processing.
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However this preprocessing is not complete, i.e., there may be a solution
to the MIPPN problem such that its set N of new edges will not be found after
pruning vertices. For instance, the perfect network built on the phylogeny of
Figure 8.5 in which new edges connect C' with A1 and with A2 will not be
generated after A1 and A2 are removed from the tree.

Also, after preprocessing we may not find a perfect network with |N| =
k even when such a perfect network exists before preprocessing. For instance,
the perfect network built on the phylogeny of Figure 8.6 has 3 new edges. If
we prune the phylogeny of Figure 8.6 as described above, we get the phylogeny
of Figure 8.7. Note that there is no perfect network with 3 new edges built on
this phylogeny.

On the other hand, it is not known whether after preprocessing we may
find a perfect network with |N| < k when such a perfect network exists before
preprocessing.

The proof of Proposition 8 is presented in Section 9.14 (page 181).

8.1.4 Partial Perfect Networks and Essential States

The basic program (Section 8.1.2) can be improved using “partial” perfect
phylogenetic networks—a generalization of the “total” version of this concept
defined in Section 8.1.1.

Let (V,E, f) be a phylogeny, with f : L x I — S. A partial perfect
(phylogenetic) network built on this phylogeny is a quadruple of the form

(V,E, N, g), where N is a symmetric irreflexive binary relation on V', and g is

146



Figure 8.8: A partial perfect network built on the phylogeny of Figure 8.1 with
N = {(A’ C)a (Ca A)a (Ba D)’ (D,B)}a g = f

a partial mapping of V' x I to S such that the domain of g contains L x I,
and conditions (i)—(iii) from Section 8.1.1 are satisfied. For instance, a partial

perfect network built on the phylogeny of Figure 8.1 can be defined by
N={(4,0),(C,A),(B,D),(D,B)}, g=f
(Figure 8.8).

Every partial perfect network can be extended to a perfect network:

Proposition 9 Let (V,E, f) be a phylogeny, with f : L x I — S. For any
partial perfect network (V, E, N, g) built on this phylogeny there ezists an ex-
tension g’ of g to V x I such that (V, E,N,g') is a perfect network built on the

same phylogeny.

The proof of Proposition 9 is presented in Section 9.15 (page 183).
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Proposition 10 below shows, on the other hand, that every perfect net-
work can be obtained by extending a partial perfect network satisfying a cer-
tain condition, expressed in terms of “essential states.” Let (V,E, f) be a
phylogeny, with f: L x I — S. We say that a state s € S is essential with
respect to a character j € I if there exist two different leaves [; and I, in L such
that f(l1,7) = f(l2,7) = s. For instance, in the phylogeny of Figure 8.9, State
3 is essential, and States 1 and 2 are not. There is no need to use inessential

states to label internal vertices:

Proposition 10 Let (V, E, f) be a phylogeny, with f : L x I — S. For
any perfect network (V, E, N,g') built on this phylogeny there exists a partial

mapping g of V x I to S such that

e (V,E ,N,g) is a partial perfect network built on the same phylogeny,
e ¢' is an extension of g to V x I, and

e g(v,1) is essential with respect to i whenever v & L.

For instance, if (V, E, N, ¢') is the perfect network of Figure 8.9, then the
partial perfect network of Figure 8.10 satisfies the conditions of this theorem
as (V,E, N, g). In this partial perfect network, inessential states 1 and 2 are
not used for labeling internal vertices.

The proof of Proposition 10 is presented in Section 9.16 (page 185).

Propositions 9 and 10 show that the problem of computing a perfect
network built on a given phylogeny is closely related to the problem of com-

puting a partial perfect network (V, E, N, g) built on this phylogeny such that
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Figure 8.9: A perfect network.

Figure 8.10: A partial perfect network obtained from the perfect network of
Figure 8.9 via Proposition 10.
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g(v, 1) is essential with respect to ¢ for every internal vertex v and every char-
acter . The sets N in the solutions to this modification of the problem are
identical to the sets N in the solutions to the original problem (although the
functions g are, generally, different).

For instance, in the phylogeny of Indo-European languages described
in Section 8.1.6, the range of f for Character 39 contains 11 elements from S,
and only 3 of them are essential. When we consider essential states and want
to find a partial network built on the given phylogeny for this character, the
computation time reduces from 16 seconds to 5 seconds.

To adapt the basic program (Section 8.1.2) to the modification of the

problem described above, we replace

1 {g(X,C,8): state(S)} 1 :-

vertex(X), not leaf(X), character(C).
with the rule

{g(X,C,S): essential_state(C,S)} 1 :-

vertex(X), not leaf(X), character(C).
where essential state is defined by the rule

essential_state(C,S) :- f(X,C,S), character(C),

f(X1,C,S), X !'= X1, vertex(X;X1).

150



8.1.5 A Divide-and-Conquer Strategy

Unfortunately, even with all the preprocessing discussed above the program
representing the Indo-European languages remain far too large for SMODELS.
For some machines, even the grounding turned out to be impossible. For
some other machines, grounding was successful but SMODELS could not find
a solution after many days. This motivated us to divide the problem into
smaller problems.

Recall that a perfect network built on a phylogeny (V, E, f) is a quadru-
ple (V, E, N, g) satisfying conditions (i)—(iii) from Section 8.1.1. If (V, E, N, g)
satisfies the first two of these conditions, we will call it an almost perfect net-
work.

The divide-and-conquer approach we use is based on the following fact:
if, for each j € I, (V, E, Nj, g;) is an almost perfect network built on (V, E, f |vx (1)
then (V, E,U; N;,U, g;) is an almost perfect network built on (V, E, f). In view
of this fact, solutions to the MIPPN problem can be generated by finding such
networks (V, E, Nj, g;) for all characters j and checking that (V, E,U; N;, U, g;)
satisfies conditions (iii) and (iv).

Proposition 11 below shows that this process can generate every min-
imal solution—every network (V) E,N,g) in which the set N of new edges

cannot be replaced by its proper subset without violating condition (ii).

Proposition 11 Let (V,E,N,g) be a minimal almost perfect network built

on (V,E, f). For every j € I, there exists a minimal almost perfect network
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(V,E, Nj, glvxysy) built on (V, E, f|px(j) such that U;er Nj = N.

The proof of Proposition 11 is presented in Section 9.17 (page 187).

To compute almost perfect networks (V, E, N;, g;) for each character j,
we use the basic program without the definition of directed_path and without
constraint (*). We can find all such networks using the compute all {}
statement of SMODELS. However, there may be more than one such network
with the same set NV of new edges where the labelings g of the vertices differ;
we are only interested in solutions with different sets of new edges. For this
reason, we wrote a script that calls SMODELS repeatedly to compute one value
of N at a time. To ensure that every next N; computed by SMODELS is
different from the sets computed so far, we add appropriate constraints to the
program at every iteration. For instance, if the first call to SMODELS produces

new(1,2), new(3,4) then the constraint
:- new(1,2), new(3,4).

will be added to the program when SMODELS is called for the second time,
so that SMODELS will now compute an answer set that does not contain
{new(1,2), new(3,4)}. To compute all minimal almost perfect networks
with at most 2k new edges, we start with maxE=0 and increment maxE by 1
until it reaches k.

The verification of conditions (iii) and (iv) for the networks (V, E,U; N;, U; g;)
generated from the almost perfect networks (V, E, Nj,g;) is performed by

SMODELS programs.
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Figure 8.11: The phylogeny obtained from the Indo-European dataset.

This divide-and-conquer strategy can be extended to partial networks

(Section 8.1.4) in a straightforward way.

8.1.6 The Evolutionary History of the Indo-European
Languages

We have applied the computational methods described above to the phylogeny
of Indo-European languages that was generated automatically [Ringe et al.,

2002] on the basis of a dataset assembled by Donald Ringe and Ann Taylor,
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who are specialists in Indo-European historical linguistics, with the advice
of other specialist colleagues. Figure 8.11 shows the tree (V) E) of this phy-
logeny. Its leaves correspond to the following 24 Indo-European languages:
Hittite (HI), Luvian (LU), Lycian (LY), Tocharian A (TA), Tocharian B (TB),
Vedic (VE), Avestan (AV), Old Persian (PE), Classical Armenian (AR), An-
cient Greek (GK), Latin (LA), Oscan (OS), Umbrian (UM), Gothic (GO),
Old Norse (ON), Old English (OE), Old High German (OG), Old Irish (OI),
Welsh (WE), Old Church Slavonic (OC), Old Prussian (PR), Lithuanian (LI),
Latvian (LT), and Albanian (AL). All these languages are “historic,” that
is, recorded, and the position of every leaf vertex against the time line in
Figure 8.11 corresponds to the earliest period at which there is substantial
attestation of the corresponding language.

The internal vertices of this tree represent “prehistoric” languages, or
“protolanguages,” which were reconstructed by comparison of their descen-
dants. For instance, Vertex 38 is proto-Celtic, reconstructed by comparison of
Old Irish and Welsh. The position of every internal vertex against the time line
corresponds to the time period when the corresponding protolanguage split up
into daughter languages, each spoken by a different speech community.

There are 370 characters in this phylogeny.? Out of 370 characters,
22 are phonological characters encoding regular sound changes that have oc-

curred in the prehistory of various languages, 15 are morphological characters

2We disregard the 20 characters that take into account multiple character coding and
parallel development.

154



encoding details of inflection (or, in one case, word formation), and 333 are
lexical characters defined by meanings on a basic word list.

The SMODELS program used to generate perfect networks built on
this phylogeny incorporated several domain-specific constraints. One of these
constraints prohibits new edges incident with Vertex 24 and its descendants;
this constraint is justified by the fact that the labelings of the leaves HI, LU
and LY are “disjoint,” in their essential parts, from the labelings of the other
leaves. Other constraints prohibit contacts between specific pairs of languages
which, we know, were spoken at different times. For instance, Old Prussian
(Vertex 16) could not be in contact with proto-Celtic (Vertex 38).

Using such domain specific constraints with the heuristics and the opti-
mization techniques discussed earlier improves the performance of SMODELS.
For instance, consider Character 197. We want to find all minimal almost
perfect networks built on the given phylogeny with at most 1 edge. When we
do not use domain specific constraints, SMODELS computes 12 solutions in 100
seconds. When we add domain specific constraints, SMODELS computes 9 so-
lutions in 77 seconds. Therefore, using domain specific information SMODELS
computes fewer number of implausible solutions, and it does it faster.

Under these constraints, we have found that there are no solutions to
the MIPPN problem with fewer than 5 new bidirectional edges. There is only

one solution with 5 new edges:

e (32,38) (38,40) (32,43) (18,34) (7,44) .
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According to this solution there are 5 borrowings: between proto-Germanic
and proto-Celtic (32,38), between proto-Celtic and proto-Greco-Armenian (38,40),
between and proto-Germanic and proto-Baltic (32,43), between Gothic and
proto-West-Germanic (18,34), and between Old Church Slavonic and proto-
East-Baltic (7,44). Each of these contacts is understood to occur at a time
prior to the dates assigned to the two languages in the chronology of Fig-
ure 8.11. The approximate times of these contacts are shown in Figure 8.12.

We have also computed 52 solutions with 6 new edges; 8 of these solu-

tions do not include any borrowings that would be historically implausible:

e (32,38) (31,36) (27,41) (32,43) (18,34) (7,44)

(32,38) (31,36) (35,40) (32,43) (18,34) (7,44)

(32,38) (31,36) (36,40) (32,43) (18,34) (7,44)

(32,38) (31,36) (27,42) (32,43) (18,34) (7,44)

(32,38) (31,36) (31,40) (32,43) (18,34) (7,44)

(32,38) (31,36) (27,45) (32,43) (18,34) (7,44)

(7,27) (32,38) (38,40) (32,42) (18,34) (7,44)

(32,38) (38,40) (3,7) (32,42) (18,34) (7,44)

In addition to the phylogeny of Figure 8.11, we considered its mod-

ification in which additional internal vertices are introduced—one vertex in
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Figure 8.12: Contacts between Indo-European languages according to the 5-
edge solution.

the middle of every edge. This extension reflects the possibility of ancestral
languages not represented in the original phylogeny, and it was used as the
starting point in the work reported in [Nakhleh et al., 2002]. The calculations
described in that paper are limited to the case when new edges are inserted
between additional vertices only. Nakhleh et al. found 2 solutions with 5 new
edges that satisfy this restriction and are historically plausible. To facilitate
comparison with that work, we included the same restriction in our program.

For the modified problem, we have computed 11 solutions with 5 new
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edges; we found among them the 2 solutions from [Nakhleh et al., 2002], and
also one other historically plausible solution. This solution is very close to the
5-edge solution for the phylogeny of Figure 8.11.

To sum up, the collection of conjectures about the evolutionary history
of Indo-European languages generated in our experiments is richer than what
is found in [Nakhleh et al., 2002] in two ways. First, we arrived at several
historically plausible perfect networks built on the phylogeny of Figure 8.11
without additional vertices; this network was not studied in the earlier work at
all. Second, we found one new historically plausible perfect network built on
the extended phylogeny. The reason why this network could not be generated
by Nakhleh et al. is that these authors started their computations with a
major simplification step, in which every language group (such as Germanic
languages or Baltic languages) is reduced to a single vertex, and 16 of the 18
essential characters are considered. Nakhleh et al. found 2 plausible solutions
in 8 hours. Our program, with all the heuristics and optimization techniques,
and domain specific information, on the pruned phylogeny of [Nakhleh et al.,

2002] did not terminate in 8 hours.

8.2 Phylogeny Reconstruction in Biology

In biology, phylogenies can be reconstructed from “genomes” [Sankoff and
Blanchette, 1998]. The genome of a single-chromosome organism can be rep-

resented by circular configurations of numbers 1,...,n, with a sign + or —
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Figure 8.13: A genome.

assigned to each of them. For instance, Figure 8.13 shows a genome for n = 5.
Numbers £1, ..., +n will be called labels. Intuitively, a label corresponds to a
gene, and its sign corresponds to the orientation of the gene. By (I1,...,1,) we
denote the genome formed by the labels [y,...,l, ordered clockwise. For in-
stance, each of the expressions (1,2, -5, —4, —3), (2, —5,—4, —3,1), ... denotes
the genome in Figure 8.13.

About genomes g,g' we say that ¢’ is an inversion of g (or can be

obtained from g by an inversion) if, for some labels [y, ..., [, and a number m
(0 <m <n),
g=(l,...,ln),
g =(lmn 1, =l b1y 1n)-

For instance, the genome in Figure 8.14 is an inversion of the genome in
Figure 8.13.

The (inversion) distance between g and ¢’ is the smallest number & such
that ¢’ can be obtained from g by & successive inversions.

The median genome problem is the problem of finding, for given genomes

J1, 92, g3, @ genome g such that the sum of the distances from g to the genomes
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Figure 8.14: Another genome.

g; is minimal. This problem is proven to be NP-hard [Caprara, 1999]. Phylo-
genies can be constructed from a set of given genomes by solving the median
genome problem for triplets of genomes iteratively in the sense of [Sankoff and
Blanchette, 1998]. The problem of constructing a phylogeny is proven to be
NP-hard [Caprara, 1999].

We view the median genome problem as a planning problem. Given
the initial conditions of the three genomes, we want to reach a state, in at
most k steps, where all three genomes become equal and where the number of
inversions is minimal.

We represent a genome as an order on the set of labels. An inversion is
viewed as the concurrent execution of several “atomic inversions”, each involv-
ing one or two of labels. For instance, the inversions leading from Figure 8.13
to Figure 8.14 consists of two atomic inversions replacing 1, —5 by 5, —1 and
replacing 2 by —2.

We experimented on three groups of median genome problems. In the
first group, each genome is a circular ordering of 5 genes, i.e., n = 5, where the

maximum length of a plan is 2, i.e., K = 2. In the second group, each genome
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is a circular ordering of 10 genes where the maximum length of a plan is 2.
The third group of problems are generated using the simulator implemented
by Li-San Wang [Wang and Warnow, 2001]. Here each genome is a circular
ordering of 120 genes; the maximum length of a plan is 2. After “condensing”,
each genome becomes a circular ordering of 11 or 12 genes.

SMODELS cannot solve any of the problems in these three groups in
less than an hour whereas the system GRAPPA [Moret et al., 2001] with the
software REVMED [Siepel, 2002] can solve all of these problems in less than a
second.

When we consider the decision problem corresponding to the median
genome problem described above, SMODELS can find solutions to some of the
problems in the first group in less than 5 seconds; but still there are some
problems in the first group that SMODELS takes more than an hour to solve.
SMODELS cannot find a solution to any of the problems of the second and the

third groups in less than an hour either.

8.3 Discussion

The Minimum Increment to Perfect Phylogenetic Network problem discussed
above is a combinatorial search problem well suited to the use of answer set
programming. But the basic SMODELS program for the MIPPN problem will
produce solutions reasonably fast only if the given phylogeny is small. Several

ideas helped us adapt this program to a large phylogeny of Indo-European
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languages.

One idea is to make the given phylogeny smaller by removing its inessen-
tial characters and some of its vertices. This kind of preprocessing is somewhat
similar to reducing every language group to a single vertex in [Nakhleh et al.,
2002]. The difference is that our preprocessing is domain-independent—it is
defined for any phylogeny. Second, there is no need to use inessential states for
labeling the internal vertices of the tree. Finally, a divide-and-conquer strat-
egy allowed us to replace a single run of SMODELS by a series of invocations
that solve subproblems of the given problem.

The input program included some domain-specific information about
the impossibility of contacts between languages spoken at different times.
These constraints helped us further reduce the computation time. Even so,
computing the results reported in this paper involved thousands of calls to
SMODELS and took more than a week of CPU time. In spite of the presence
of several constraints of this kind, most perfect networks computed by our
program turned out to be impossible or implausible for historical reasons. To
weed out unacceptable solutions, we had to analyze each solution carefully on
the basis of the conclusions of earlier research in historical linguistics.

On the other hand, our attempts to apply ASP to the median genome

problem were mostly unsuccessful.
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Chapter 9

Proofs

9.1 Proof of Lemma 1

Lemma 1 (page 47) A binary relation R is well-founded iff there exists a
function A from the domain of R to ordinals such that, for all x and y, xRy
implies A(z) < A(y).

Proof. The “if” part follows from the well-foundedness of < on sets of ordi-
nals. To prove the “only if” part, consider the following transfinite sequence

of subsets of the domain of R:

SO - (Z];
Sar1 ={z: Vy(yRx = y € S,)},
Sa = Upg<a Sp if a is a limit ordinal.
For any = € U, Sa, define A(z) to be the smallest o such that z € S,. From

the well-foundedness of R we can conclude that J, S, is the whole domain of
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9.2 Proof of Proposition 1

Proposition 1 (page 46) A program 11 is tight iff there is no infinite sequence
Lo, Ly, ... of elements of lit(I1) such that for every i, L;y, is a parent of L;

relative to II.

Proof. Proposition 1 is a special case of Lemma 1: take the domain of R to

be lit(II).

9.3 Proof of Theorem 1

Theorem 1 (page 67) For any program II and any atom p, the programs

II
(9.1)
p; P
and
II
p < not —p (9.2)
—p +— not p

have the same answer sets.
We will use the following lemma to prove Theorem 1. In the proof of

Theorem 1, we denote program (9.1) by II; and program (9.2) by II,.
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Lemma 2 For any consistent set X of literals and any subset Y of X, Y is

closed under TI¥ ff Y is closed under T .

Proof of Theorem 1. Let X be a consistent set of literals. We want to show
that X is an answer set for II¥ iff X is an answer set for II. Recall that a
consistent set X of literals is an answer set for a disjunctive program without
negation as failure iff it is a minimal set closed under this program.

Notice first that X is closed under II;* iff X is closed under I, due to

Lemma 2 for Y = X. It remains to check that

(a) X is minimal among the sets closed under II;
iff
(b) X is minimal among the sets closed under II.
Assume (a), and consider any subset Y of X that is closed under ITy.

Due to Lemma 2, Y is closed under II¥ as well. By (a), it follows that X =Y.

The proof in the other direction is similar.

Proof of Lemma 2. Let X be a consistent set of literals, and let Y be a
subset of X. Since X is consistent, at least one of the literals p, —p does not

belong to X. Consider 3 cases.

Case 1: p ¢ X and —p ¢ X. Then II5* is

HX

p;p
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and IT is
X
p
—p
Since Y C X, p ¢ Y and —p ¢ Y. Consequently, Y is closed neither under IT;f

nor under IT.

Case 2: p€ X and —p ¢ X. Then IIy is

X
p;p

and II is

X

p
The “if part”: assume that Y is closed under II¥. Then Y is closed under IT¥.
In addition, p is in Y. Therefore, Y is also closed under II¥. The “only if”
part: assume that Y is closed under II¥. Then Y is closed under IT*. As —p
is not in X due to the case assumption, and ¥ C X, —p is not in Y either.

Then p is in Y. Therefore, Y is closed under Iy also.

Case 3: p ¢ X and —p € X. Similar to Case 2.
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9.4 Proof of Theorem 2

Theorem 2 (page 68) If X is an answer set for the program II; obtained

from II by adding the rules

pi(ci) < pler, - -, ¢n) (9.3)

« pi(c), pi(c) (9.4)
(1<i<n, cg€C,...,ch €Cy,cc €C;) then
X N Lit(10) (9.5)

is an answer set for the program Il, obtained from Il by adding the rules

—plery .-y cn),p(ch, ... c
(e ), p(c ) (96)

(c1,¢f € Cy oooyep,c € Cpy{Cry-.oycn) #{(ch, .. ).
Moreover, every answer set for Il can be represented in form (9.5) for some
answer set X for II;.

The proof of Theorem 2 is based on two facts. One is the splitting set
theorem [Lifschitz and Turner, 1994]. The other is a property of constraints
that easily follows from the definition of an answer set: the effect of adding
a set of constraints to a program is to eliminate the answer sets that are not
closed under these constraints.

Recall that in the statement of Theorem 2, II is a program, Ci,...,C,
(n > 0) are sets, and p is a function such that for all ¢; € C,...,¢, € C,

its values p(cy, ..., c,) are pairwise distinct atoms in the language of II. The
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expressions p;(c), where 1 < i < n and ¢ € Cj, are assumed to be pairwise
distinct atoms that do not belong to the language of II.

For any subset Y of lit(IT), we define:
Y*={pi(c;) :c1 € C1,...,cn € Cp, pley,...,cn) €Y}

Clearly

Y* N Gt() = 0.

Lemma 3 A consistent set X of literals is an answer set for the union of I1

with rules (9.3) iff X =Y UY™* for some consistent answer set Y for II.

Proof of Theorem 2. Let X be an answer set for II;. Then X is an answer
set for the union of IT with rules (9.3). As any answer set for a program with
constraints without negation as failure, X is consistent. By Lemma 3, X can

be represented as Y U Y™, where Y is an answer set for II. It is clear that
X NLt(Il) =Y. (9.7)

We will show that Y is an answer set for II;. As Y is an answer set for II, it
is sufficient to show that ¥ does not violate any of constraints (9.6). Assume
that it does. That means that Y contains a pair of distinct atoms p(cy, . .., ¢,)
and p(ci,...,c,). Take an ¢ such that ¢; # ¢j. Both p;(c;) and p;(c}) are in
Y*, and consequently in X. It follows that X violates (9.4), contrary to the

assumption that it is an answer set for II;.
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Now we will show that any consistent answer set Y for I, can be repre-
sented as X N/it(IT) for some consistent answer set X for IT;. Take X = YUY™.
By (9.7), to complete the proof, we only need to show that X is a consistent
answer set for II;. By Lemma 3, X is a consistent answer set for the union
of IT with rules (9.3). Assume that X violates constraints (9.4). Then X
contains a pair of atoms p;(c), p;(c’) with ¢ # . Since p;(c) € X =Y UY*
and Y C lit(IT), it follows that p;(c) € Y*. This means that ¢ = ¢; for some
atom p(cy, ..., c,) in Y. Similarly, ¢ = ¢} for some atom p(c},...,c,)in Y. It
follows that Y violates (9.6), contrary to the assumption that it is an answer

set for II,.

Proof of Lemma 3. Take U = [lit(II). This set splits the union of IT with
rules (9.3), and II is the bottom of this union relative to U. By the splitting
set theorem, X is an answer set for the union program iff X can be represented
as a union of an answer set Y for IT with an answer set for program ey (I, Y).

The latter consists of the rules

pi(ci)

for all ¢y, ..., ¢, such that

p(cr,...,cp) €Y.

Consequently, its only answer set is Y*.
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9.5 Proof of Proposition 2

Proposition 2 (page 76) A program II is tight on a set X of literals iff there
is no infinite sequence Lg, L1, ... of elements of X such that for every i, L; 1

is a parent of L; relative to Il and X.

Proof. Proposition 2 is a special case of Lemma 1: take the domain of R to

be X.

9.6 Proof of Theorem 3

Theorem 3 (page 77) For any program Il and any consistent set X of literals
such that II is tight on X, X is an answer set for Il iff X is closed under and
supported by II.

We use the following lemmas to prove Theorem 3. Recall that we con-

sider nondisjunctive programs.

Lemma 4 For any program I1 without negation as failure and any consistent
set X of literals such that 11 is tight on X, if X is an answer set for Il then

X 1s closed under and supported by II.

Lemma 5 For any program 11, and any consistent set X of literals,
(i) X is closed under I iff X is closed under 11X ;

(1) X is supported by I1 iff X is supported by I1X.
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Lemma 6 For any program II without negation as failure and any consistent
set X of literals such that 11 is tight on X, if X is closed under and supported

by I1, then X is an answer set for II.

Proof of Theorem 3.

Let II be a program and X be a consistent set of literals. Assume
that II is tight on X. We want to show that X is an answer set for II iff
X is closed under and supported by II. Left-to-right: assume that X is an
answer set for II. By the definition of an answer set, X is an answer set
for IT*. By Lemma 4, X is closed under and supported by II*. Then, by
Lemma 5, X is closed under and supported by II. Right-to-left: assume that
X is closed under and supported by II. Then, by Lemma 5, X is closed under
and supported by II*. Since II is tight on X, by the definition of tightness
and by the definition of reduct, so is II*. Hence, by Lemma 6, X is an answer

set for ITX | and consequently an answer set for II.

Proof of Lemma 4. Let II be a program without negation as failure and X
be an answer set for II. By the definition of an answer set for programs without
negation as failure, X is closed under II. To prove supportedness, take any
literal L in X. Since X is minimal among the sets closed under IT, X \ {L} is
not closed under II. This means that IT contains a rule (3.17) with n = m such
that Ly, ..., L, € X\ {L}, but Head ¢ X \ {L}. Then, L,,...,L,, € X, and,

since X is closed under II, it follows that Head € X. Therefore, Head = L.

Proof of Lemma 5. Immediately follows from the definitions of closure,
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supportedness, and the definition of a reduct of a program.

Proof of Lemma 6. We need to show that X is minimal among the sets
closed under IT. Assume that it is not. Let Y be a proper subset of X that
is closed under II, and let A be a partial level mapping establishing that II is

tight on X. Take a literal L € X \ Y such that A(L) is minimal. Since X is

supported by II, there is a rule
L+ Ly...,L,
in IT such that L4,...,L,, € X. By the choice of A,
ML), ..y ML) < A(L).

By the choice of L, we can conclude that Lq,...,L,, € Y. Consequently Y is

not closed under II, contrary to the choice of Y.

9.7 Proof of Proposition 3

Proposition 4 (page 84) Program BW is tight on each of the models of its
completion.

We use the following lemma to prove Proposition 3
Lemma 7 For any atom of the form nextstate(Y,X) that belongs to a model

of the completion of BW, Y =X+ 1.

Proof of Proposition 3. Let X be an answer set for BW. By T},., we denote

the largest argument of time/1 in its definition (i). Consider the partial level
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mapping A with domain X defined as follows:

A(time(T)) =0,

A(block(X)) =0,
A(object(X)) =1,
A(nextstate(Y,X)) = 1,
A(covered(X,T)) =4-T+ 3,

A(on_something(X,T)) =4 - T+ 3,

(

(

(

(

(

(

A(available(X,T)) =4 - T +4,

A(moveop(X,Y,T)) =4-T + 5,

Aon(X,Y,T)) =4 -T+ 2,

A(moving(X,T)) =4-T + 6,

A(goal(T)) =4-T+ 3,

A(blocked move(X,Y,T)) =4-T+7,
(

Agoal) =4 - Tper + 4.

This level mapping satisfies the inequality from the definition of a tight pro-
gram (page 75) for every rule of BW; Lemma 7 above allows us to verify this

assertion for the rules containing nextstate in the body.

Proof of Lemma 7. The completion of Program BW contains
nextstate(Y, X) = false

for all Y, X such that Y # X 4 1. Therefore, atoms nextstate(Y,X) with

Y # X 4+ 1 do not occur in any model of the completion of Program BW .
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9.8 Proof of Theorem 4

Theorem 4 (page 98) Let I be a program that does not contain atoms of

the form tc(x,y) in the heads of rules. If X is an answer set for I1U Def then

{{z,y) : te(z,y) € X} (9.8)

is the transitive closure of

{{z,y) : p(z,y) € X}. (9.9)

Proof. We will first prove the special case of Theorem 4 when II doesn’t
contain negation as failure. Let X be an answer set for II U Def; denote set
(9.9) by R, and its transitive closure by R*. We need to prove that for all =
and y, te(z,y) € X iff (z,y) € R*™.

Left-to right. Since there is no negation as failure in II, X can be
characterized as the union |J; X; of the sequence of sets of literals defined as
follows: X, = 0; X; 41 is the set of all literals L such that IT U Def contains
a rule L < Body with Body C X;. We will show by induction on ¢ that
te(z,y) € X; implies (z,y) € R*®. If i = 0, the assertion is trivial because
Xo = 0. Assume that for all z and y, tc(z,y) € X; implies (z,y) € R*, and
take an atom tc(z,y) from X;,;. Take a rule tc(z,y) + Body in II U Def
such that Body C X;. Since II doesn’t contain atoms of the form tc(z,y) in
the heads of rules, this rule belongs to Def. Case 1: Body = {p(z,y)}. Then

p(z,y) € X; C X, sothat (x,y) € R C R*®. Case 2: Body = {p(z,v), tc(v,y)}.
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Then p(z,v) € X; C X, so that (z,v) € R C R*; also, tc(v,y) € X;, so that,
by the induction hypothesis, (v,y) € R*. By the transitivity of R, it follows
that (z,y) € R*.

Right-to-left. Since R® = U;so R, it is sufficient to prove that for
all j > 0, (z,y) € R’ implies tc(z,y) € X. The proof is by induction on j.
When j = 1, (z,y) € R, so that p(z,y) € X; since X is closed under Def,
it follows that tc(x,y) € X. Assume that for all z and ¥, (z,y) € R’ implies
te(z,y) € X, and take a pair (z,y) from R/™!. Take v such that (z,v) € R and
(v,y) € R/. Then p(z,v) € X and, by the induction hypothesis, tc(v,y) € X.

Since X is closed under Def, it follows that tc(z,y) € X.

We have proved the assertion of Theorem 4 for programs without nega-
tion as failure. Now let II be any program that does not contain atoms of
the form tc(z,y) in heads of rules, and let X be an answer set for IT U Def.
Clearly, the reduct II¥ is a program without negation as failure that does not
contain atoms of the form tc(z,y) in the heads of rules, and X is an answer
set for II® U Def. By the special case of the theorem proved above, applied to

1%, (9.8) is the transitive closure of (9.9).

9.9 Proof of Theorem 5

Theorem 5 (page 99) Let II be a program that does not contain atoms of

the form tc(x,y) in the heads of rules. For any set X of literals, if
(i) 11 is tight on X,
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(ii)) {{(z,y) : p(y,z) € X} is well-founded, and

(iii) no atom of the form tc(z,y) is an ancestor of an atom of the form p(z, y)

relative to Il and X,
then ITU Def is tight on X. If, in addition,
(iv) X is a consistent set closed under and supported by I1 U Def

then X is an answer set for I1UDef, and {(z,y) : tc(z,y) € X} is the transitive

closure of {{z,y) : p(z,y) € X}.

Proof. Assume (i)—(iii). To prove the first assertion of Theorem 5,suppose
that ITU Def is not tight on X. By Proposition 2, there is an infinite sequence
Ly, Ly, ... € X such that for every i, L;,; is a parent of L; relative to I U Def

and X. Consider two cases.

Case 1: Sequence Lg, Ly, ... contains only a finite number of terms of the form
tc(z,y). Let L, be the last of them. Then for every ¢ > n, L;;; is a parent
of L; relative to II and X. Proposition 2, applied to sequence L, 1, Ly yo,- .-,

shows that II is not tight on X, contrary to (i).

Case 2: Sequence Ly, Ly, . .. contains infinitely many terms of the form tc(z, y).
By (iii), it follows that this sequence has no terms of the form p(z,y). The
examination of rules Def shows that every tc(x,y) in this sequence is imme-
diately followed by a term of the form tc(v,y) such that p(z,v) € X. Con-

sequently, sequence Ly, L1, ... consists of some initial segment followed by an
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infinite sequence of literals of the form

tc(UOa y)a tC(Ul, y)a s

such that, for every 7, p(v;, v;41) € X. This is impossible by (ii).

The second assertion of Theorem 5 follows from the first, in view of

Theorem 3, and by Theorem 4.

9.10 Proof of Proposition 4
Proposition 4 (page 100) IfII contains constraint
1+ te(z, ) (9.10)

and C is finite then, for every set X of literals closed under Il U Def, set
{{z,y) : p(y,x) € X} is well-founded.

Let II be a program containing constraint (9.10), with finite C, and let
X be a set of literals closed under ITU Def. Assume that {(z,y) : p(y,z) € X}
is not well-founded. Take z1,...,z, € C that satisfy (6.3). Since X is closed
under Def, tc(xq, 1) € X. But this is impossible because X is closed under

(9.10).

9.11 Proof of Proposition 5

Proposition 5 (page 102) The program consisting of rules (3.28), (3.21)-

(3.26) and (3.31)—(3.33) is tight on every set of literals that is closed under
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it.
Let IT be the program that differs from (3.28), (3.21)—(3.26) and (3.31)—

(3.33) in that

e its underlying set of atoms includes, additionally, expressions of the forms

on(table,l,t) and above(table,l,t), and
e rules (3.31) and (3.32) are replaced by

above(l,l',t) < on(l,l',t),
@,1,1) (@,1,t) (0.11)

above(l,l',t) « on(l,1",t), above(l",l',t)

and

L+ above(l,1,t). (9.12)

Let X be a set of literals that does not contain any of the newly introduced
atoms or their negations and is closed under the original program consisting of
(3.28), (3.21)—(3.26) and (3.31)—(3.33). We will prove that IT is tight on X. It
will follow then that the original program is tight on X as well, because that
program is a subset of II.

For every £k = 0,...,T + 1, let II; be the subset of the rules of II in
which rules (9.11) are restricted to ¢ < k. Since Il = II, it is sufficient to
prove that, for all k, I is tight on X. The proof is by induction on k. Basis:

k = 0. The rules of I, are (3.28), (3.21)—(3.26), (3.33) and (9.12). To see
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that this program is tight, define

Aon(l,I' 1)) =t + 1,
A(—on(l,l,t)) =t + 2,
A(move(b,l,t)) = A(—move(b,l,t)) =0,
Aabove(l, I, t)) = A(—above(l,l',t)) = 0.
Induction step: Assume that IIj is tight on X. Let C be the set of location
constants, and let functions p and tc be defined by

p(l,I") = on(l,l',k + 1),

te(l,l") = above(l, ',k + 1).
Then Il ; = [IyUDef. Let us check that all conditions of Theorem 5 are satis-
fied. Condition (i) holds by the induction hypothesis. Since X is closed under
the original program consisting of (3.28), (3.21)—(3.26) and (3.31)—(3.33) and
does not contain any of the newly introduced literals, it is closed under Il
as well; in view of the fact that IIj,; contains constraint (9.12), condition (ii)
follows by Proposition 4. By inspection, (iii) holds also. By Theorem 5, it

follows that Il is tight on X.

9.12 Proof of Proposition 6

Proposition 6 (page 141) For any finite digraph (V, E), and any set V' C V,

the following conditions are equivalent:

a) there exists a subgraph of (V, E) with the set V' of vertices that is a
(a) g

rooted tree,
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(b) there exists a vertex v € V' such that every vertex in V' is reachable

fromv inV'.

Proof. Let (V,E) be a finite digraph, and V' be a subset of V. We want
to show that conditions (a) and (b) are equivalent. Assume (a). Then, (b)
trivially holds by the definition of a rooted tree. Assume (b). Take a subset
E' of E minimal relative to set inclusion subject to the condition that every
vertex in V' is reachable from v in the subgraph (V’, E’). Then the in-degree of

v is 0, and the in-degrees of other vertices in V' are 1. Therefore, the subgraph

(V' E") of (V, E) is a rooted tree with the root v, that is, (a) holds.

9.13 Proof of Proposition 7

Proposition 7 (page 143) Let (V| E, f) be a phylogeny, with f : Lx I — S,
and let I' be the set of its inessential characters. There exists a function
g : V xI' = S such that, for every perfect network (V,E N, g) built on
(V,E, floxi\my), (V,E,N,gU¢') is a perfect network built on (V, E, f).

The following facts will be useful to prove Proposition 7:

Fact 1 If (V,E,N,g) is an almost perfect network built on (V,E, f) then,

for every j € I, (V,E,N,g |vxyj}) 5 an almost perfect network built on

(V: E, f ‘LX{J'})'

Fact 2 If, for each j € I, (V, E, Nj, g;) is an almost perfect network built on

(V. E, f lvxgiy) then (V, E,U; Nj,U; g5) is an almost perfect network built on
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(V. E, f).

Proof of Proposition 7. Let (V| E, f) be a phylogeny, with f: L x I — S.
Let I' be the set of its inessential characters. Then, for every j € I', there
exists a perfect network of the form (V, E, 0, g;) built on (V, E, f |rx;;). Define
g = U;g;. Let (V,E,N,g) be a perfect network built on (V, E, f |Lxu\11))-
Then, by Fact 1, for every j € I\ I', (V,E, N, g |vx{;) is an almost perfect
network built on (V, E, f |rxy;3). Then, by Fact 2, (V, E, N, gUg’) is an almost
perfect network built on (V) E, f). Since (V, E, N, g) is a perfect network built
on (V, E, f |Lxu\1)), for every edge (u,v) € E, u is not reachable from v in

(V,E U N). It follows that, (V,E,N,g U ¢') is a perfect network built on

(V. E, f)-

9.14 Proof of Proposition 8

Proposition 8 (page 144) Let (V, E, f) be a phylogeny, with f : LxI — S,
and (V') E', f') be the phylogeny obtained from it as described in Section 8.1.3.
Let (V',E',N,g') be a perfect network built on (V', E', f'). Then there exists
a function g from V x I to S with g|y«r= ¢’ such that (V, E, N, g) is a perfect

network built on (V) E, f).

Proof. Let (V,E, f) be a phylogeny with f : L x I — S, v be an internal
vertex of (V, E) such that all leaves descending from v are labeled in the same

way. Let (V' E', f') be the phylogeny, with f' : L' x I — S, obtained from
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(V, E, f) by removing all descendants of v from the tree (V, E), and labeling v
in the same way as its descendants were labeled in (V, E, f). Let (V', E', N, ¢')
be a perfect network built on (V’, E', f'). Define the function g : V. x I — S

recursively as follows:
e g(w,j)=4g'(w,j) if we V' and
o g(w,j)=g(u,j) if we V\V"and (u,w) € E.

We want to show that (V, E, N, g) is a perfect network built on (V, E, f), i.e.,

that conditions (i)—(iii) hold for (V, E, N, g).

(i) Since every descendant of v is labeled in the same way as v, by the

definition of g, g(w,j) = f(w,j) for all w € L and for all j € I.

(ii) Take any j € I and any s € S. Suppose that Vj; = {u € V : g(u,j) =
s} is not empty. Then, due to the definition of g, Vj, = {u € V :
g'(u,j) = s} is not empty. Since (V' E', N, ¢') is a perfect network built
on (V', E', f'), (V',E"U N) has a subgraph with the set V;, of vertices
that is a rooted tree. Then, by the definition of g, (V, E U N) has a

subgraph with the set Vj, of vertices that is a rooted tree.

(iii) We know that no cycle in (V', E’ U N) contains an edge from E'. It
follows that no cycle in (V, E U N) contains an edge from E: this graph
can be obtained from (V’, E' U N) by attaching a tree to vertex v, and

this operation does not create new cycles.
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9.15 Proof of Proposition 9

Proposition 9 (page 147) Let (V, E, f) be a phylogeny, with f : Lx I — S.
For any partial perfect network (V, E, N, g) built on this phylogeny there exists
an extension g’ of g to V' x I such that (V, E, N, ¢') is a perfect network built

on the same phylogeny.

Proof. Let (V,E, f) be a phylogeny, with f : L x I — S. Let (V,E,N,g)
be a partial perfect network built on (V| E, f). We want to show that there
exists a total function ¢’ from V x I to S with ¢'(v, j) = g(v, j) for every (v, j)
in dom(g), such that (V, E, N, ¢') is a perfect network built on (V| E, f). We
define such a function ¢’ as follows.

First we define a finite sequence of partial functions g; from V x I to S.
We start with gy = g. For some j € I and some s € S, we look for a vertex
Tjs € {u € V : gm(u,j) = s} from which all vertices in this set are reachable.
If such a vertex exists, and it has a parent v such that (v, j) ¢ dom(gn,) then

we define g,,.1 as follows:

_ m(u, 1), if (u,i) € dom(gm)
9Im+1 (ua 2) =
gm(lr‘jsaj)’ 1f u = ,Uall: :]
If it is impossible to find such r;; and v for any j € I and s € S then
gm is the last member of the sequence.
Since the tree (V, E) is finite, this process terminates and leads to a

finite sequence gy, ..., gy of partial functions.

We define ¢’ : V x I — S recursively:
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m(v, ), if (v,7) € dom(gm
g,(v’j):{ gu (v, 5), if (v,5) € dom(gm)

9'(u,j), if (v,7) & dom(gn) and (u,v) € E.

To justify the soundness of the definition of ¢’, we need to show that,
for all j € I, (ug,j) € dom(gnr), where ug is the root of the tree (V, E). To
prove this fact, first we define, for vertices w,w’' € V, w < w' to mean that
there exists a path from w to w' in (V, E U N) that contains at least one edge
from E. Relation < is transitive and irreflexive. It follows that any nonempty
set of vertices has an element minimal relative to <. Consider an element wy
of {w: (w,j) € dom(gp)} that is minimal relative to <, and let s = gy (wp, 7).
Then, every vertex in {w € V : gir(w, j) = s} is reachable from wy in this set.
Therefore, we can pick wy to be r;;. We claim that wy = u¢. Indeed, otherwise,
wp has a parent v in (V, E), and, by the choice of M, (v, j) € dom(gar), which
contradicts the minimality of wy.

What remains to show is that (V, E, N, ¢') is a perfect network built on
(V,E, f), i.e., that conditions (i)—(iii) hold for (V, E, N, ¢'):

(i) Since ¢'(v,j) = gu(v,j) = g(v,j) = f(v,j) for all v € L and for all
j € Ia gI|L><I: f

(ii) Take any j € I and any s € S. Since (V, E, N, g) is a perfect network
built on (V, E, f), (V,E U N) has a subgraph with the set {u € V :

g(u, j) = s} of vertices that is a rooted tree T'. Let r;; be the root of this

tree. Due to the definition of gu, there exists a vertex 7, € V such that
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(iii)

gum(rjs, J) = s and 7, is reachable from 7}, in {u € V : gu(u,j) = s}.
Then, there is a rooted tree 7" in (V, E U N) with the root 7}, and with
the set {u € V' : gap(u, j) = s} of vertices such that T is a subgraph of 7".
Therefore, (V, EUN) has a subgraph with the set {u € V' : gy (u, j) = s}
of vertices that is a rooted tree. Then, due to definition of ¢’, for every
descendant w of rj, in (V,E) with (w,j) € dom(gum), ¢'(w,j) = s.
It follows that there is a rooted tree 7" in (V, E U N) with the root
ris and with the {u € V : ¢'(u,j) = s} of vertices such that 7" is a

subgraph of T”. Therefore, (V,E U N) has a subgraph with the set

{u € V:g'(u,j) = s} of vertices that is a rooted tree.

Since (V, E, N, g) is a partial perfect network built on (V| E, f), for every

edge (u,v) € E, u is not reachable from v in (V, E U N).

9.16 Proof of Proposition 10

Proposition 10 (page 148) Let (V, E, f) be a phylogeny, with f : LxI — S.

For any perfect network (V,E, N, ¢') built on this phylogeny there exists a

partial mapping g of V. X I to S such that

(V,E,N,g) is a partial perfect network built on the same phylogeny,
g’ is an extension of g to V x I, and

g(v, 1) is essential with respect to i whenever v & L.
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Proof. Let (V, E, f) be a phylogeny, with f : L x I — S. Let (V,E,N,g')
be a perfect network built on (V, E, f). For every character j in I, let S
denote the set of essential states with respect to j, and let V; denote the set
{veV:g¢'(v,j) € S;}. Define g to be a partial function from V x I to S such

that, for every j € I,
e 9(v,/) = f(v,j) if v € L, and

* 9(v,5) =4'(v,j) ifveV;\ L

Note that ¢’ is an extension of g to V' x I, and g(v, %) is essential with respect
to ¢ whenever v ¢ L. We want to show that (V| E, N, g) is a partial perfect

network built on (V, E, f), i.e., that conditions (i)—(iii) hold for (V, E, N, g).
(i) Since g(v,j) = f(v,j) for all v € L and for all j € I, g|rxs= f-

(ii) Take any j € I and any s € S. Suppose that V;, = {u € V : g(u, j) = s}
is not empty. If s € S; then Vj, is equal to Vj; = {u € V : ¢'(u, j) = s}.
Since (V, E, N, g') is a perfect network built on (V| E, f), due to (ii),
(V,EU N) has a subgraph with the set Vj, of vertices that is a rooted
tree; therefore, (V, E U N) has a subgraph with the set Vj, of vertices
that is a rooted tree. Otherwise, i.e., s € Sj, Vs ={u eV : g(u,j) = s}
is a singleton due to the definition of S;. Then (V, EUN) has a subgraph

with the set Vj, of vertices that is a rooted tree.

(iii) Since (V, E, N, ¢') is a perfect network built on (V) E, f), for every edge

(u,v) € E, u is not reachable from v in (V, E U N).
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9.17 Proof of Proposition 11

Proposition 11 (page 151) Let (V,E, N, g) be a minimal almost perfect
network built on (V,E, f). For every j € I, there exists a minimal almost
perfect network (V, E, Nj, g|vx(;}) built on (V, E, f |px(;;) such that U;c; N; =
N.

Proof. Let (V| E, N, g) be a minimal almost perfect network built on (V, E, f).
Then, by Fact 1, forevery j € I, (V, E, N, g|vx{;}) is an almost perfect network
built on (V, E, f |Lxgj3)- Then, for every j € I, there exists a minimal set
N; C N such that (V, E, Nj, g |yxy;}) is an almost perfect network built on
(V,E, f |bxgjy).- Note that U; N; € N. Then, by Fact 2, (V, E,U; Ny, g) is
an almost perfect network built on (V| E, f). Since N is minimal subject to

condition (ii), N C U; N;. Therefore, N = U; N;.
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Chapter 10

Concluding Remarks

This dissertation is about answer set programming (ASP)—a new form of
declarative logic programming based on the answer set semantics. Instead of
traditional Prolog systems, ASP uses answer set solvers such as CCALC, DLV
and SMODELS. The input of Prolog consists of a logic program and a query,
and Prolog computes answer substitutions; the input of an answer set solver
is a logic program, and the solver computes the program’s answer sets. The
idea of ASP is to represent a given computational problem as a logic program
whose answer sets correspond to solutions, and to use an answer set solver to
find an answer set.

In this dissertation, we have investigated the possibility of using answer
set programming for solving combinatorial search problems of several kinds,

including the following:
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Planning (Chapter 3). In a planning problem, we want to find a plan—a
sequence of actions that leads to a given goal. We start with planning prob-
lems described by transition systems as in. We represent a planning problem
as a logic program whose answer sets correspond to plans. We use the answer
set solvers, such as CCALC, DLV and SMODELS to compute plans. In this way,
we have experimented with several planning problems, such as the Suitcase
problem and Blocks World problems. We have found out that, with our ap-
proach, ASP provides elegant solutions to challenging problems of representing
actions and change, such as the frame problem, the ramification problem, the

qualification problem, and representing concurrent execution of actions.

Wire routing (Chapter 7). This is the problem of determining the phys-
ical locations of all wires interconnecting the circuit components on a chip.
Since the wires cannot intersect with each other, they are competing for lim-
ited spaces, thus making routing a difficult combinatorial optimization prob-
lem. We have introduced two new approaches to wire routing using answer
set programming: the graph approach and the planning approach. All ex-
isting routing systems are based on variations of the sequential maze routing
approach using a shortest path algorithm connecting one wire at a time. A
major shortcoming of these algorithms is that they cannot guarantee finding
a routing solution even when one exists. Our methods differ from the existing
ones in that they are complete: they always correctly determine whether a

given routing problem is solvable, and they produce a routing solution when-
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ever one exists. We have used SMODELS with the graph approach and CCALC

with the planning approach to find solutions to routing problems.

Phylogeny reconstruction (Chapter 8). This is the problem of con-
structing and labeling an evolutionary tree for a set of taxa, which describes
the evolution of the taxa in that set from their most recent common ancestor.
We have presented two applications of ASP to phylogeny reconstruction: one
to solve the MIPPN problem in linguistics and the other to solve the median
genome problem in biology. Using SMODELS, we have computed some solu-
tions explaining the evolution of Indo-European languages. We have found

out the median genome problem cannot be efficiently solved using SMODELS.

We are interested in fully adequate declarative representations of prob-
lems in these areas, their relations to logic programming, and algorithms for
solving these problems. Our work on these applications led to the investigation

of some theoretical problems related to answer sets:

Equivalent transformations (Chapter 4). We have presented some con-
ditions under which we can replace a program by another program that has the

same answer sets but can be processed by an answer set solver more efficiently.

e Defining exogenous atoms. We can describe the exogenous atoms to
DLV and SMODELS by disjunctive rules similar to (2.6) (see for instance,
rules (3.20)). To present this definition to CCALC, we have to transform

these disjunctive rules into nondisjunctive rules (3.19) (see for instance,
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rules (3.28)). Our Theorem 1 justifies this transformation: it shows that

this transformation preserves the answer sets for a program.

No-concurrency constraints. When the goal is to find a plan in which ac-
tions are executed sequentially, the logic programming representation of
the problem has to contain a no-concurrency constraint similar to (4.1)
(see for instance, rules (3.26)). The equivalent transformation provided
by Theorem 2 may allow us to state this constraint in a way that pro-
vides some computational advantages, as discussed in Section 3.7. For
instance, according to the encoding of blocks world in Section 3.6, for
a blocks world problem with n blocks, the size of the program after
grounding grows as n*. After replacing (3.26) by rules (3.29), the size
of a program after grounding grows as n®. Our Theorem 2 justifies this
transformation: it shows that replacing (3.26) by rules (3.29) may ex-
tend the answer sets by new literals, but the parts of the answer sets

that belong to the language of the original program remain the same.

Completion (Chapters 5 and 6). Clark defined a “completion” procedure

that translates a logic program into a set of formulas of classical logic. In

some cases, the interpretations satisfying the completion of a program are

also the answer sets for that program (Fages’ Theorem). For some problems,

propositional solvers, such as CHAFF, SATO or RELSAT, are more efficient than

answer set solvers (see for instance, Figure 3.9 for a comparison of CHAFF

to SMODELS, Figure 5.1 for a comparison of SATO to SMODELS). Therefore,
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we have investigated under what conditions this is the case so that we can
use propositional solvers instead of answer set solvers, to find the program’s

answer sets.

e Generalization of Fages’ Theorem. Usually, to show that the models of
completion of a program are also its answer sets, we use Fages’ theorem,
as mentioned in Section 3.4.2. There are some programs where we cannot
use Fages’ theorem to show the equivalence of completion semantics to
answer set semantics. Consider, for instance, the blocks world program
due to Ilkka Niemeld, presented in Section 5.2. This program is not tight;
however, the models of the completion of this program are identical to
its answer sets. To make Fages’ theorem applicable to such programs,
we have defined “tightness on a set of literals”, and generalized Fages’

theorem accordingly (Theorem 3).

e Transitive closure. A logic program whose answer sets we want to find
may define the transitive closure of one of its predicates—for instance,
the transitive closure above of the relation on in the blocks world pre-
sented in Section 3.6. OQur Theorem 4 shows that, the definition of the
transitive closure of a predicate in the context of a set of rules with nega-
tion as failure, not merely in combination with a set of facts, is correct
relative to answer set semantics. If every model of the completion of such
a program is an answer set then the program’s answer sets can be found

using a propositional solver. When a program contains the definition
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of the transitive closure of a predicate, it may be difficult to check its
tightness directly. Our Theorem 5 can be sometimes used to show that
the tightness of a program is not lost when such a definition is added to

it. Theorem 3 is used to prove Theorem 5.

Further generalization of Fages’ Theorem. There are some applications
of ASP where the results summarized above are not sufficient. Consider,
for instance, the program describing the New Year’s Party problem and
the programs describing the N-Queens problem. These programs contain
cardinality constraints. The cardinality constraints can be equivalently
transformed to nested expressions. We have extended the definition of
tightness on a set of literals to programs with nested expressions to facil-
itate the verification of the equivalence between the answer set semantics

and the completion semantics for programs like this.

According to the results of our experiments, the computational effi-

ciency of ASP depends on several factors. How we present problems to answer

set solvers is important: wire routing problems can be solved faster using

SMODELS with the graph approach, or using CCALC with the planning ap-

proach. Another essential factor is the use of heuristics and optimization

techniques: using a divide-and-conquer strategy reduced solving the MIPPN

problem for Indo-European languages to smaller problems; representing no-

concurrency constraints in Blocks World using the optimization technique

stated in Theorem 2 reduced computation time; preprocessing and extracting
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essential states and characters allowed us to start with a smaller phylogeny to
solve the MIPPN problem for Indo-European languages. Using domain specific
information may also affect the computational efficiency of ASP: information
about Indo-European languages allowed us to eliminate many solutions that
do not make sense from the point of view of linguistics. Such information
takes the form of additional constraints that helps SMODELS compute solu-
tions faster. Depending on the problem, some systems may perform better
than the others: for the N-Queens problems, the SAT-solver SATO outper-
forms the answer set solver SMODELS; for the blocks world problems, CCALC
performs better than DLV and SMODELS.

Our experiments show that sometimes the computational efficiency of
ASP is very poor even for small problems (like the median genome problems),
sometimes it is good only for small problems (like the small wire routing prob-
lems), and sometimes it is good enough to solve serious problems (like the

MIPPN problem).

194



Bibliography

[Apt and Bol, 1994] Krzysztof Apt and Ronald Bol. Logic programming and

negation: a survey. Journal of Logic Programming, 19,20:9-71, 1994.

[Apt and Emden, 1982] K. Apt and van M. Emden. Contributions to the

theory of logic programming. Journal of ACM, 29(3):841-862, 1982.

[Apt et al., 1988] Krzysztof Apt, Howard Blair, and Adrian Walker. Towards
a theory of declarative knowledge. In Jack Minker, editor, Foundations of

Deductive Databases and Logic Programming, pages 89-148. Morgan Kauf-

mann, San Mateo, CA, 1988.

[Aura et al., 2000] Tuomas Aura, Matt Bishop, and Dean Sniegowski. An-
alyzing single-server network inhibition. In Proceedings of the 15th IEEE

Computer Security Foundations Workshop, pages 108-117, Cambridge, UK,

june 2000. IEEE Computer Society Press.

[Babovich et al., 2000] Yuliya Babovich, Esra Erdem, and Vladimir Lifschitz.

Fages’ theorem and answer set programming.! In Proc. NMR-2000, 2000.

lhttp://arxiv.org/abs/cs.ai/0003042 .

195



[Balduccini et al., 2000] M. Balduccini, M. Gelfond, and M. Nogueira. A-
Prolog as a tool for declarative programming. In Proceedings of the 12th In-

ternational Conference on Software Engineering and Knowledge Engineering

(SEKE’2000), 2000.

[Balduccini et al., 2001] M. Balduccini, M. Gelfond, M. Nogueira, R. Watson,
and M. Barry. An A-Prolog decision support system for the space shuttle.

In Working Notes of the AAAI Spring Symposium on Answer Set Program-

ming, 2001.

[Baral and Gelfond, 1994] Chitta Baral and Michael Gelfond. Logic pro-
gramming and knowledge representation. Journal of Logic Programming,

19,20:73-148, 1994.

[Bayardo and Schrag, 1997] Roberto Bayardo and Robert Schrag. Using CSP
look-back techniques to solve real-world SAT instances. In Proc. IJCAI-97,

pages 203-208, 1997.

[Ben-Eliyahu and Dechter, 1994] Rachel Ben-Eliyahu and Rina Dechter.
Propositional semantics for disjunctive logic programs. Annals of Math-

ematics and Artificial Intelligence, 12:53—87, 1994.

[Bidoit and Froidevaux, 1987] Nicole Bidoit and Christine Froidevaux. Mini-
malism subsumes default logic and circumscription. In Proc. LICS-87, pages

89-97, 1987.

196



[Brewka and Dix, 2001] Gerhard Brewka and Jiirgen Dix. Knowledge repre-
sentation with extended logic programs. In D. Gabbay and F. Guenthner,
editors, Handbook of Philosophical Logic, 2nd Edition, Volume 6, Method-
ologies, chapter 6. Reidel Publ., 2001. Shortened version also appeared in
Dix, Pereira, Przymusinski (Eds.), Logic Programming and Knowledge Rep-

resentation, Springer LNAT 1471, pages 1-55, 1998.

[Caprara, 1999] A. Caprara. Formulations and hardness of multiple sorting by
reversals. In Proc. 3rd Conf. Computational Molecular Biology RECOMBY99,

pages 84-93. ACM Press, 1999.

[Chen et al., 1993] Weidong Chen, Terrance Swift, and David Warren. Goal-
directed evaluation of well-founded semantics for XSB. In Dale Miller, edi-

tor, Proc. ILPS-93, page 679, 1993.

[Cholewitiski et al., 1996] Pawel Cholewiriski, Victor Marek, and Miroslaw
Truszczyniski. Default reasoning system DeReS. In Principles of Knowl-

edge Representation and Reasoning: Proc. of the Fifth Int’l Conf., pages
518-528, 1996.

[Citrigno et al., 1997] Simona Citrigno, Thomas Eiter, Wolfgang Faber, Georg
Gottlob, Christoph Koch, Nicola Leone, Cristinel Mateis, Gerald Pfeifer,
and Francesco Scarcello. The DLV system: Model generator and application
frontends. In Proceedings of Workshop on Logic Programming (WLP97),
1997.

197



[Clark, 1978] Keith Clark. Negation as failure. In Herve Gallaire and Jack
Minker, editors, Logic and Data Bases, pages 293-322. Plenum Press, New
York, 1978.

[Colmerauer and Roussel, 1996] Alain Colmerauer and Philippe Roussel. The
birth of PROLOG. In History of Programming Languages. ACM

Press/Addison-Wesley, 1996.

[DasGupta and Wang, 1999] Bhaskar DasGupta and Lusheng Wang. Biology
computing. In Wiley Encyclopedia of Electrical Engineering and Electronics,

pages 386-394. John Wiley and Sons, Inc., 1999.

[Davis and Putnam, 1960] M. Davis and H. Putnam. A computing procedure
for quantification theory. Journal of the Association for Computing Ma-

chinery, 7:201-215, 1960.

[Denecker and Van Nuffelen, 1999] Marc Denecker and Bert Van Nuffelen.
Experiments for integration CLP and abduction.? In Krysztof R. Apt, An-

tonios C. Kakas, Eric Monfroy, and Francesca Rossi, editors, Proceedings of

the 1999 ERCIM/COMPULOG workshop on Constraints, pages 1-15, 1999.

[Dimopoulos et al., 1997] Yannis Dimopoulos, Bernhard Nebel, and Jana
Koehler. Encoding planning problems in non-monotonic logic programs.
In Sam Steel and Rachid Alami, editors, Proc. Furopean Conf. on Planning

1997, pages 169-181. Springer-Verlag, 1997.

Zhttp://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ_info.pl?id=20013 .

198



[Dix et al., 2001] Jiirgen Dix, Ulrich Furbach, and Ilkka Niemeld. Nonmono-
tonic reasoning: Towards efficient calculi and implementations. In Andrei
Voronkov and Alan Robinson, editors, Handbook of Automated Reasoning.

Elsevier-Science-Press, 2001.

[Dix, 1995] Jiirgen Dix. Semantics of logic programs: Their intuitions and
formal properties. An overview. In Andre Fuhrmann and Hans Rott, edi-

tors, Logic, Action and Information — Essays on Logic in Philosophy and

Artificial Intelligence, pages 241-327. DeGruyter, 1995.

[East and Truszczyniski, 2000] Deborah East and Mirostaw Truszczynski. dcs:
An implementation of DATALOG with constraints. In Proceedings of the
8th International Workshop on Non-Monotonic Reasoning, 2000. Special

session on System descriptions and demonstration.

[East and Truszczynski, 2001] Deborah East and Mirostaw Truszczynski.
More on wire routing with ASP. In Working Notes of the AAAI Spring

Symposium on Answer Set Programming, 2001.

[Eiter et al., 1997] Thomas Eiter, Nicola Leone, Christinel Mateis, Gerald
Pfeifer, and Francesco Scarcello. A deductive system for non-monotonic
reasoning. In Proceedings of the 4th International Conference on Logic Pro-

gramming and Nonmonotonic Reasoning, pages 363—374. Springer-Verlag,

1997.
[Eiter et al., 1998] Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald

199



Pfeifer, and Francesco Scarcello. The KR system DLV: Progress report,
comparisons and benchmarks. In Anthony Cohn, Lenhart Schubert, and
Stuart Shapiro, editors, Proc. Sixth Int’l Conf. on Principles of Knowledge

Representation and Reasoning, pages 406-417, 1998.

[Eiter et al., 1999] Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald
Pfeifer. The diagnosis frontend of the DLV system. The Furopean Journal

on Artificial Intelligence, 12(1-2):99-111, 1999.

[Emden and Kowalski, 1976] Maarten van Emden and Robert Kowalski. The
semantics of predicate logic as a programming language. Journal of the

ACM, 23(4):733-742, 1976.

[Erdem and Lifschitz, 1999] Esra Erdem and Vladimir Lifschitz. Transforma-
tions of logic programs related to causality and planning. In Logic Program-
ming and Non-monotonic Reasoning: Proc. Fifth Int’l Conf. (Lecture Notes

in Artificial Intelligence 1730), pages 107-116, 1999.

[Erdem and Lifschitz, 2001a] Esra Erdem and Vladimir Lifschitz. Fages’ theo-
rem for programs with nested expressions. In Proceedings of the Seventeenth

International Conference on Logic Programming, pages 242—-254, 2001.

[Erdem and Lifschitz, 2001b] Esra Erdem and Vladimir Lifschitz. Transitive
closure, answer sets, and predicate completion. In Working Notes of the

AAAI Spring Symposium on Answer Set Programming, 2001.

200



[Erdem and Lifschitz, 2002] Esra Erdem and Vladimir Lifschitz. Tight logic
programs. To appear in the Special Issue of the Theory and Practice of

Logic Programming Journal on Answer Set Programming, 2002.

[Erdem et al., 2000] Esra Erdem, Vladimir Lifschitz, and Martin Wong. Wire

routing and satisfiability planning. In Proc. CL-2000, pages 822-836, 2000.

[Erdem et al., 2002] Esra Erdem, Vladimir Lifschitz, Luay Nakhleh, and Don-
ald Ringe. Reconstructing the evolutionary tree of natural languages using

answer set programming. Submitted for publication, 2002.

[Erdem, 1999] Esra Erdem. Applications of logic programs to planning: com-

putational experiments.> Unpublished draft, 1999.

[Faber et al., 1999] Wolfgang Faber, Nicola Leone, Cristinel Mateis, and Ger-
ald Pfeifer. Using database optimization techniques for nonmonotonic rea-
soning. In Proceedings of the Seventh International Workshop on Deductive

Databases and Logic Programming, 1999.

[Fages, 1994] Francois Fages. Consistency of Clark’s completion and existence
of stable models. Journal of Methods of Logic in Computer Science, 1:51-60,
1994.

[Felsenstein, 1982] J. Felsenstein. Numerical methods for inferring evolution-

ary trees. The Quarterly Review of Biology, 57:379-404, 1982.

3http://www.cs.utexas.edu/users/esra/experiments/experiments.html .

201



[Felsenstein, 1988] J. Felsenstein. Phylogenies from molecular sequences: In-

ference and reliability. Annual Reviews in Genetics, 22:521-565, 1988.

[Ferraris and Lifschitz, 2001] Paolo Ferraris and Vladimir Lifschitz. Weight

constraints as nested expressions. Submitted for publication.?, 2001.

[Fikes and Nilsson, 1971] Richard Fikes and Nils Nilsson. STRIPS: A new
approach to the application of theorem proving to problem solving. Artificial

Intelligence, 2(3-4):189-208, 1971.

[Finger, 1986] Jeffrey Finger. Ezploiting Constraints in Design Synthesis. PhD

thesis, Stanford University, 1986. PhD thesis.

[Geffner, 1990] Hector Geffner. Causal theories for nonmonotonic reasoning.

In Proc. AAAI-90, pages 524-530. AAAIT Press, 1990.

[Gelfond and Galloway, 2001] Michael Gelfond and Joel Galloway. Diagnos-
ing dynamic systems in AProlog. In Working Notes of the AAAI Spring

Symposium on Answer Set Programming, 2001.

[Gelfond and Lifschitz, 1988] Michael Gelfond and Vladimir Lifschitz. The
stable model semantics for logic programming. In Robert Kowalski and
Kenneth Bowen, editors, Logic Programming: Proc. Fifth Int’l Conf. and

Symp., pages 1070-1080, 1988.

[Gelfond and Lifschitz, 1990] Michael Gelfond and Vladimir Lifschitz. Logic

“http://www.cs.utexas.edu/users/vl/mypapers/weight.ps .

202



programs with classical negation. In David Warren and Peter Szeredi, edi-

tors, Logic Programming: Proc. Seventh Int’l Conf., pages 579-597, 1990.

[Gelfond and Lifschitz, 1991] Michael Gelfond and Vladimir Lifschitz. Classi-
cal negation in logic programs and disjunctive databases. New Generation

Computing, 9:365-385, 1991.

[Gelfond and Lifschitz, 1998] Michael Gelfond and Vladimir Lifschitz. Action

languages.® Electronic Transactions on AI, 3:195-210, 1998.

[Gelfond et al., 1991] Michael Gelfond, Vladimir Lifschitz, Halina Przy-
musinska, and Mirostaw Truszczynski. Disjunctive defaults. In James Allen,
Richard Fikes, and Erik Sandewall, editors, Principles of Knowledge Repre-

sentation and Reasoning: Proc. Second Int’l Conf., pages 230-237, 1991.

[Gelfond, 1987] Michael Gelfond. On stratified autoepistemic theories. In

Proc. AAAI-87, pages 207-211, 1987.

[Giunchiglia and Lifschitz, 1998] Enrico Giunchiglia and Vladimir Lifschitz.
An action language based on causal explanation: Preliminary report. In

Proc. AAAI-98, pages 623-630. AAAI Press, 1998.

[Godel, 1932] Kurt Godel. Zum intuitionistischen Aussagenkalkiil. Anzeiger
der Akademie der Wissenschaften in Wien, pages 65—66, 1932. Reproduced
in: Kurt Godel, Collected Works, Vol. 1, OUP, 1986.

Shttp://www.ep.liu.se/ea/cis/1998/016 .

203



[Hanan, 1965] M. Hanan. Net wiring for large scale integrated circuits. Tech-

nical report, IBM, 1965.

[Hanan, 1966] M. Hanan. On Steiner’s problem with rectilinear distance.

SIAM Journal on Applied Mathematics, 14:255-265, 1966.

[Heljanko and Niemels, 2001] K. Heljanko and I. Niemelid. Answer set pro-
gramming and bounded model checking. In Working Notes of the AAAI

Spring Symposium on Answer Set Programming, 2001.

[Heljanko, 1999] K. Heljanko. Using logic programs with stable model seman-
tics to solve deadlock and reachability problems for 1-safe petri nets. In
Proceedings of the 5th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’99), pages 240254,

1999.

[Hennig, 1966] W. Hennig. Phylogenetic Systematics. University of Illinois
Press, 1966. Translated from Grundzuege einer Theorie der phylogenetischen

Systematik (1950) by D. D. Davis and R. Zangerl.

[Hietalahti et al., 2000] M. Hietalahti, F. Massacci, and I. Niemelid. DES: a
challenge problem for nonmonotonic reasoning systems. In Proceedings of

the 8th International Workshop on Nonmonotonic Reasoning, 2000.

[Hill, 1974] R. Hill. LUSH resolution and it completeness. Technical report,

Department of Artificial Intelligence, University of Edinburgh, 1974.

204



[Hwang et al., 1992] F. K. Hwang, D. S. Richards, and P. Winter. The Steiner

Tree Problem, volume 53. North-Holland, Amsterdam, Netherlands, 1992.

[Inoue and Sakama, 1994] Katsumi Inoue and Chiaki Sakama. On positive
occurrences of negation as failure. In Proc. Fourth Int’l Conf. on Principles

of Knowledge Representation and Reasoning, pages 293-304, 1994.

[Jaffar et al., 1983] Joxan Jaffar, Jean-Louis Lassez, and John Lloyd. Com-
pleteness of the negation as failure rule. In Proc. IJCAI-83, volume 1, pages

500-506, 1983.

[Jarnik and Kossler, 1934] V. Jarnik and M. Késsler. O minimélnich grafech

obsahujicich n danych bodu. éasopz's Péstovani Mat., 63:223-235, 1934.

[Kakas et al., 1992] Antonis Kakas, Robert Kowalski, and F. Toni. Abductive

logic programming. Journal of Logic and Computation, 2(6):719-770, 1992.

[Kautz and Selman, 1992] Henry Kautz and Bart Selman. Planning as satis-
fiability. In Proc. ECAI-92, pages 359-363, 1992.

[Kautz and Selman, 1996] Henry Kautz and Bart Selman. Pushing the enve-
lope: planning, propositional logic and stochastic search. In Proc. AAAI-96,

pages 1194-1201, 1996.

[Kautz et al., 1996] Henry Kautz, David McAllester, and Bart Selman. En-
coding plans in propositional logic. In Principles of Knowledge Representa-

tion and Reasoning: Proc. of the Fifth Int’l Conf., pages 374-384, 1996.

205



[Ko6ksal et al., 2001] Pinar Koksal, Nihan Kesim Cicekli, and Ismail Hakk:
Toroslu. Specification of workflow process using the action description lan-
guage C. In Working Notes of the AAAI Spring Symposium on Answer Set

Programming, 2001.

[Kowalski and Kuehner, 1971] Robert A. Kowalski and Donald Kuehner. Lin-
ear resolution with selection function. Journal of Artificial Intelligence,

2:22-260, 1971.

[Kowalski, 1974] Robert A. Kowalski. Predicate logic as programming lan-
guage. In Jack L. Rosenfeld, editor, Proceedings of International Federation
of Information Processing Conference, pages 569-574, Stockholm, Sweden,
1974. North—Holland.

[Lee, 1961] C. Y. Lee. An algorithm for path connections and its application.

IRE Transactions on Electronic Computers, EC-10:346-365, 1961.

[Lengauer, 1990] T. Lengauer. Combinatorial Algorithms for Integrated Cir-

cuit Design. John Wiley & Sons, 1990.

[Li and Graur, 1991] W. Li and D. Graur. Fundamentals of Molecular Evolu-

tion. Sinauer Associates, Inc., 1991.

[Lifschitz and Turner, 1994] Vladimir Lifschitz and Hudson Turner. Splitting
a logic program. In Pascal Van Hentenryck, editor, Proc. Eleventh Int’l

Conf. on Logic Programming, pages 23-37, 1994.

206



[Lifschitz and Turner, 1999] Vladimir Lifschitz and Hudson Turner. Repre-
senting transition systems by logic programs. In Logic Programming and
Non-monotonic Reasoning: Proc. Fifth Int’l Conf. (Lecture Notes in Artifi-

cial Intelligence 1730), pages 92-106, 1999.

[Lifschitz and Woo, 1992] Vladimir Lifschitz and Thomas Woo. Answer sets in
general nonmonotonic reasoning (preliminary report). In Bernhard Nebel,
Charles Rich, and William Swartout, editors, Proc. Third Int’l Conf. on
Principles of Knowledge Representation and Reasoning, pages 603—614,
1992.

[Lifschitz et al., 1999] Vladimir Lifschitz, Lappoon R. Tang, and Hudson
Turner. Nested expressions in logic programs. Annals of Mathematics and

Artificial Intelligence, 25:369-389, 1999.

[Lifschitz et al., 2001] Vladimir Lifschitz, David Pearce, and Agustin
Valverde. Strongly equivalent logic programs. ACM Transactions on Com-

putational Logic, 2001. To appear.

[Lifschitz, 1988] Vladimir Lifschitz. On the declarative semantics of logic pro-
grams with negation. In Jack Minker, editor, Foundations of Deductive

Databases and Logic Programming, pages 177-192. Morgan Kaufmann, San

Mateo, CA, 1988.

[Lifschitz, 1996] Vladimir Lifschitz. Two components of an action language.

207



In Working Papers of the Third Symposium on Logical Formalizations of

Commonsense Reasoning, 1996.

[Lifschitz, 1999] Vladimir Lifschitz. Answer set planning. In Proc. ICLP-99,

pages 23-37, 1999.

[Lifschitz, 2000] Vladimir Lifschitz. Missionaries and cannibals in the causal
calculator. In Principles of Knowledge Representation and Reasoning:

Proc. Seventh Int’l Conf., pages 85-96, 2000.

[Lifschitz, 2002] Vladimir Lifschitz. Answer set programming and plan gener-

ation. Artificial Intelligence, 138:39-54, 2002.

[Lin, 1995] Fangzhen Lin. Embracing causality in specifying the indirect ef-

fects of actions. In Proc. IJCAI-95, pages 1985-1991, 1995.

[Liu et al., 1998] X. Liu, C. Ramakrishnan, and S. Smolka. Fully local and
efficient evaluation of alternating fixed points. In Proceedings of the 4th
International Conference on Tools and Algorithms for the Construction and

Analysis of Systems, pages 5—19. SpringerVerlag, 1998.

[Lloyd and Topor, 1984] John Lloyd and Rodney Topor. Making Prolog more

expressive. Journal of Logic Programming, 3:225-240, 1984.

[Loveland, 1970] D. W. Loveland. A linear format for resolution. In Proceed-
ings of the IRIA Symposium on Automatic Demonstration, pages 147-162,

New York, 1970. Springer-Verlag.

208



[Mair, 1998] V.H. Mair, editor. The Bronze Age and Early Iron Age Peoples

of FEastern Central Asia. Institute for the Study of Man, Washington, 1998.

[Mallory, 1989] J.P. Mallory. In Search of the Indo-Europeans. Thames and

Hudson, London, 1989.

[Marek and Truszczynski, 1999] Victor Marek and Mirostaw Truszczynski.
Stable models and an alternative logic programming paradigm. In The Logic

Programming Paradigm: a 25-Year Perspective, pages 375-398. Springer

Verlag, 1999.

[McCain and Turner, 1997] Norman McCain and Hudson Turner. Causal the-

ories of action and change. In Proc. AAAI-97, pages 460-465, 1997.

[McCain and Turner, 1998] Norman McCain and Hudson Turner. Satisfiabil-
ity planning with causal theories. In Anthony Cohn, Lenhart Schubert, and
Stuart Shapiro, editors, Proc. Sixth Int’l Conf. on Principles of Knowledge

Representation and Reasoning, pages 212-223, 1998.

[McCain, 1997] Norman McCain. Causality in Commonsense Reasoning about

Actions.® PhD thesis, University of Texas at Austin, 1997.

[McCarthy and Hayes, 1969] John McCarthy and Patrick Hayes. Some philo-
sophical problems from the standpoint of artificial intelligence. In B. Meltzer
and D. Michie, editors, Machine Intelligence, volume 4, pages 463-502. Ed-

inburgh University Press, Edinburgh, 1969.

6ftp://ftp.cs.utexas.edu/pub/techreports/tr97-25.ps.Z .

209



[McCarthy, 1959] John McCarthy. Programs with common sense. In
Proc. Teddington Conf. on the Mechanization of Thought Processes, pages

75-91, London, 1959. Her Majesty’s Stationery Office.

[McCarthy, 1980] John McCarthy. Circumscription—a form of non-monotonic
reasoning. Artificial Intelligence, 13:27-39,171-172, 1980. Reproduced in

[McCarthy, 1990].

[McCarthy, 1986] John McCarthy. Applications of circumscription to formal-
izing common sense knowledge. Artificial Intelligence, 26(3):89-116, 1986.

Reproduced in [McCarthy, 1990].

[McCarthy, 1990] John McCarthy. Formalizing Common Sense: Papers by
John McCarthy. Ablex, Norwood, NJ, 1990.

[McCarthy, 1999] John McCarthy. Elaboration tolerance.” In progress, 1999.

[Moore, 1985] Robert Moore. Semantical considerations on nonmonotonic

logic. Artificial Intelligence, 25(1):75-94, 1985.

[Moret et al., 2001] B. Moret, S. Wyman, D.Bader, T. Warnow, and M. Yan.
A new implementation and detailed study of breakpoint analysis. In

Proc. Sizth Pacific Symp. Biocomputing (PSB), pages 583-594, 2001.

[Moskewicz et al., 2001] Matthew W. Moskewicz, Conor F. Madigan, Ying

Zhao, Lintao Zhang, and Sharad Malik. Chaff: Engineering an efficient

"http://www-formal.stanford.edu/jmc/elaboration.html .

210



SAT solver. In Proceedings of Design Automation Conference (DAC2001),
2001.

[Nakhleh et al., 2002] L. Nakhleh, D. Ringe, and T. Warnow. Perfect phylo-
genetic networks: A new methodology for reconstructing the evolutionary

history of natural languages. Submitted for publication, 2002.

[Niemeld and Simons, 1996] Ilkka Niemels and Patrik Simons. Efficient imple-
mentation of the well-founded and stable model semantics. In Proc. Joint

Int’l Conf. and Symp. on Logic Programming, pages 289-303, 1996.

[Niemeld and Simons, 2000] Ilkka Niemeld and Patrik Simons. Extending the
Smodel system with cardinality and weight constraints. In Jack Minker,

editor, Logic-Based Artificial Intelligence. Kluwer, 2000.

[Niemeld et al., 1999] Ilkka Niemeli, Patrik Simons, and Timo Soininen. Sta-
ble model semantics of weight constraint rules. In Proceedings of the Fifth
International Conference on Logic Programming and Nonmonotonic Rea-

soning. Springer-Verlag, 1999.

[Niemeld, 1999] Ilkka Niemeli. Logic programs with stable model semantics as
a constraint programming paradigm. Annals of Mathematics and Artificial

Intelligence, 25:241-273, 1999.

[Ohtsuki, 1986] T. Ohtsuki. Maze-running and line-search algorithms. In
T. Ohtsuki, editor, Layout Design and Verification, chapter 3. Elsevier Sci-

ence Publishers, 1986.

211



[Pearce and Wagner, 1990] David Pearce and Gerd Wagner. Reasoning with
negative information I: Strong negation in logic programs. Acta Philosophica

Fennica, 49, 1990.

[Pelov et al., 2000] Nikolay Pelov, Emmanuel De Mot, and Marc Denecker.
Logic programming approaches for representing and solving constraint sat-
isfaction problems : a comparison.® In Parigot M. and Voronkov A., editors,
Proceedings of the 7th International Conference on Logic for Programming
and Automated Reasoning, volume 1955 of Lecture Notes in Artificial Intel-

ligence, pages 225-239. Springer, 2000.

[Przymusinski, 1988] Teodor Przymusinski. On the declarative semantics of
deductive databases and logic programs. In Jack Minker, editor, Founda-
tions of Deductive Databases and Logic Programming, pages 193-216. Mor-

gan Kaufmann, San Mateo, CA, 1988.

[Reiter, 1980] Raymond Reiter. A logic for default reasoning. Artificial Intel-

legence, 13:81-132, 1980.

[Ringe et al., 2002] D. Ringe, T. Warnow, and A. Taylor. Indo-European and
computational cladistics. Transactions of the Philological Society, 100(1):59—

129, 2002.

[Roberts et al., 1990] R.G. Roberts, R. Jones, and M.A. Smith. Thermolu-

8http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ_info.pl?id=32258 .

212



minescence dating of a 50,000-year-old human occupation site in Northern

Australia. Science, 345:153—-156, 1990.

[Robinson, 1965] Alan Robinson. A machine-oriented logic based on the res-

olution principle. Journal of the ACM, 12:23-41, 1965.

[Roussel, 1975] Philippe Roussel. = PROLOG, manuel de reference at

d’utilisation. Technical report, Université d’Aix-Marseille 1T, 1975.

[Sakama, 2001] Chiaki Sakama. Learning by answer sets. In Working Notes

of the AAAI Spring Symposium on Answer Set Programming, 2001.

[Sankoff and Blanchette, 1998] D. Sankoff and M. Blanchette.  Multiple
genome rearrangement and breakpoint phylogeny. Journal of Computa-

tional Biology, 5:555-570, 1998.

[Schubert, 1990] Lenhart Schubert. Monotonic solution of the frame problem
in the situation calculus: an efficient method for worlds with fully specified
actions. In H.E. Kyburg, R. Loui, and G. Carlson, editors, Knowledge

Representation and Defeasible Reasoning, pages 23-67. Kluwer, 1990.

[Semiconductor Industry Association, 1997] Semiconductor Industry Associa-

tion. The national roadmap for semiconductors, 1997.

[Shanahan, 1993] Murray Shanahan. Explanation in the situation calculus. In

Proc. IJCAI-93, pages 160-165, 1993.

213



[Shepherdson, 1988] John Shepherdson. Negation in logic programming. In
Jack Minker, editor, Foundations of Deductive Databases and Logic Pro-

gramming, pages 19-88. Morgan Kaufmann, San Mateo, CA, 1988.

[Siepel, 2002] Adam Siepel. An algorithm to find all sorting reversals. In
Proc. Sizth Int’l Conf. on Comput. Mol. Biol. (RECOMB), 2002.

[Simons et al., 2002] Patrik Simons, Ilkka Niemeld, and Timo Soininen. Ex-
tending and implementing the stable model semantics. Artificial Intelli-

gence, 138:181-234, 2002.

[Simons, 1997] Patrik Simons. Towards constraint satisfaction through logic
programs and the stable model semantics. Technical Report 47, Helsinki

University of Technology, 1997.

[Simons, 1999] Patrik Simons. Extending the stable model semantics with
more expressive rules. In Logic Programming and Non-monotonic Reason-
ing: Proc. Fifth Int’l Conf. (Lecture Notes in Artificial Intelligence 1730),

pages 305-316, 1999.

[Simons, 2000] Patrik Simons. Extending and implementing the stable model

semantics. Technical Report 58, Helsinki University of Technology, 2000.

[Soininen and Niemeli, 1998] Timo Soininen and Ilkka Niemeld. Developing
a declarative rule language for applications in product configuration. In

Gopal Gupta, editor, Proc. First Int’l Workshop on Practical Aspects of

214



Declarative Languages (Lecture Notes in Computer Science 1551), pages

305-319. Springer-Verlag, 1998.

[Soininen et al., 1999] T. Soininen, E. Gelle, and I. Niemeld. A fixpoint defi-
nition of dynamic constraint satisfaction. In Proceedings of the 5th Interna-

tional Conference on Principles and Practice of Constraint Programmaing,

pages 419-433, 1999.

[Son and Lobo, 2001] Tran Cao Son and Jorge Lobo. Reasoning about policies
using logic programs. In Working Notes of the AAAI Spring Symposium on

Answer Set Programming, 2001.

[Subrahmanian and Zaniolo, 1995] V.S. Subrahmanian and Carlo Zaniolo.

Relating stable models and AI planning domains. In Proc. ICLP-95, 1995.

[Sussman, 1990] J. Gerald Sussman. The virtuous nature of bugs. Readings

in Planning, pages 11-117, 1990.

[Szymanski, 1985] T. G. Szymanski. Dogleg channel routing is NP-complete.

IEEE Transactions on Computer-Aided Design, 4(1):31-41, 1985.

[Trajcevski et al., 2000] Goce Trajcevski, Chitta Baral, and Jorge Lobo. For-
malizing (and reasoning about) the specifications of workflows. In Proceed-

ings of the Fifth IFCIS International conference on Cooperative Information

Systems (CoopIS’2000), 2000.

[Van Gelder et al., 1988] Allen Van Gelder, Kenneth A. Ross, and John S.

215



Schlipf. Unfounded sets and well-founded semantics for general logic pro-
grams. In Proceedings of the Seventh ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems, pages 221-230. ACM Press,
1988.

[Van Gelder et al., 1991] Allen Van Gelder, Kenneth Ross, and John Schlipf.
The well-founded semantics for general logic programs. Journal of ACM,

38(3):620-650, 1991.

[Van Gelder, 1988] Allen Van Gelder. Negation as failure using tight deriva-
tions for general logic programs. In Jack Minker, editor, Foundations of
Deductive Databases and Logic Programming, pages 149-176. Morgan Kauf-
mann, San Mateo, CA, 1988.

[van Hentenryck, 1989] Pascal van Hentenryck. Constraint Satisfaction in

Logic Programming. MIT Press, 1989.

[Wang and Warnow, 2001] Li-San Wang and Tandy Warnow. Estimating true
evolutionary distances between genomes. In Proceedings of the Thirty-Third

Annual ACM Symposium on the Theory of Computing (STOC), pages 637—
646, 2001.

[White and O’Connell, 1982] J.P. White and J.F. O’Connell. A Prehistory of

Australia, New Guinea, and Sahul. Academic Press, New York, 1982.

[Zhang, 1997] Hantao Zhang. SATO: An efficient propositional prover. In
Proc. CADE-97, 1997.

216



Vita

Esra Erdem was born in Afyon, Turkey on December 5, 1974, the daughter
of Huriye Erdem and Orhan Erdem. In 1992 she entered Bilkent University,
Ankara, Turkey, where she received the degree of Bachelor of Science in Com-
puter Engineering and Information Sciences (June 1996). In 1996 she entered
the University of Texas at Austin for graduate studies. She received the degree

of Master of Science in Computer Sciences in December 1998.

Permanent Address: Vignelik Mahallesi
Savag Sokak, 21/9
Eskigehir, TURKEY

This dissertation was typeset with I#TEX 2:° by the author.

9ATREX 2¢ is an extension of BTEX. IKTEX is a collection of macros for TEX. TEX is
a trademark of the American Mathematical Society. The macros used in formatting this
dissertation were written by Dinesh Das, Department of Computer Sciences, The University
of Texas at Austin, and extended by Bert Kay and James A. Bednar.

217



