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PREFACE

In recent years the study of the plane continuum

from the viewpoint of Analysis Situs has undergone remark-

able development. Work in this field may he divided, roughly,

into two classes, to wit: (l) that concerning continua in

general, and (2) that concerning the particular kind of con-

tinua known as continuous curves. Research in the latter class

practically had its origin in the discovery by Hans Hahn in

1913 of the remarkably simple property of connectedness im

kleinen which completely characterizes a continuous curve.

Since that time various investigators have made great strides

in the study of continuous curves and of plane continua in

general. Some of the most prominent mathematicians whose names

should be mentioned on account of their contributions to this

field are : R.I. Moore, S. Mazurkiewicz, W. Sieppinski, A.

Schoenflies, L. Zoretti, J.R. Kline., R.I. Wilder, 0. Kuratowski,

3. Knaster, H.M. Qehrasn, K. Menger, L.E.J. Brouwer, end others

too numerous to mention.

This thesis, to a large extent, embodies an extension

of results previously obtained by R.L. Moore, A. Sohoenflies,

and R.L. Wilder. Part I is concerned with domains and their

boundaries. In this section there is given a necessary and

III



sufficient condition in order that the boundary of a domain

should be accessible from that domain from all sides in the

sense of Schoenflies* a necessary and sufficient condition is

given in order that a continuous curve should be the boundary

of a connected domain; and in addition to these and numerous

other results the following separation theorem is established:

If the point P of a continuous curve M belongs to the boundary

of no complementary domain of M, then M contains a simple closed

curve which encloses P and is of diameter arbitrarily small.

In Part II the properties of the out points and the

endpoints of continuous curves and of continua in general are

studied. Using R.L. Wilder’s definition of an endpoint of a

continuous curve, the following important proposition is es-

tablished: In order that the point 15 of a continuous curve

M should be an endpoint of M it is necessary and sufficient

that no arc of M should have P as one of its interior points.

A new definition of an endpoint of a continuum in general is

given. It is shown that every bounded continuum which is a

subset of the set of all the cut points plus the set of all

the endpoints of any continuum whatever is an acyclic continuous

curve. A characterization of an acyclic continuous curve is

given which generalizes a proposition previously established by

R.L. Moore. Of the many other results, perhaps the most impor-

tant ones are as follows: (l) The set of all the cut points of
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a oontinuous curve M which lie on some simple closed curve

belonging to M is countable, and (2) Every continuum M in a

plane S is connected im kleinen at every one of its endpoints

which is accessible from S - M.

Gordon T. Whyburn,

June V, 1926.
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Introductory

In this paper a study will be made of Plane continua.

Part I deals with continua which constitute the boundary of a

connected domain and is concerned in particular with (l) proper-

ties of domains which are consequences of certain conditions

imposed upon their boundaries, (2) properties of the boundaries

of domains which are consequences of conditions imposed upon the

domains, and (3) conditions under which the boundary of a domain

is accessible from that domain. Part II is concerned with the cut

points and endpoints of continua.

I wisk to acknowledge my indebtedness to Professor R.L.

Moore, to whom the success of this investigation should be large-

ly attributed. Credit is due him for the suggestion of most of

the problems treated in Part I; and it is his stimulating person-

ality, constant encouragement, and many helpful suggestions and

criticisms which has attracted my interest to this field of

mathematics and has made possible the solution of the problems

treated in this paper.
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I. Domains and their Boundaries

p
Definitions. A domain D is said to have property S

provided it is true that for every positive number £. ,
D may

be expressed as the sum of a finite number of connected point

sets each of diameter less than A point set Z will be said

to be uniformly connected im jcleinen with reference to every one

of its bounded subsets provided it is true that if M is any

bounded point set whatever and 61 is any positive number, then

there exists a positive number such that every two points

which are common to M and K and whose distance apart is less

than § lie together in a connected subset of Z of diameter less

than 6 . A boundary point Pof a domain D is accessible from all

sides from D provided it is true that if A and B are any two

points of the boundary of D and AZB is an arc such that AZB ~

(A-#*B) is a subset of D and such that AZB separates D into two

domains D-j_ and Dg, then P is accessible from every one of the

domains to whose boundary it belongs. Two point sets are

said to be mutually separated if they are mutually exclusive

and neither contains a limit point of the other. The point P of

a continuum M is said to be a cut point of M provided the set of

points M - P is not connected, i.e., is the sum of two mutually

separated point sets.

notation. In this paper wherever a symbol X is used to

denote a point set, the symbol X will be used to denote the set

X plus all those points which are limit points of X. And wherever
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a symbol AB is used to designate a simple continuous arc, the

symbol (AB) will be used to denote the point set AB - (A +B).

Theorem 1. In order that a bounded domain D should

have property S i_t is_ necessary and sufficient that every point

of the boundary of D should be accessible from all sides from D.

Proof. I shall first show that the condition is necess-

ary. Suppose D is a domain having property S and P is a point

of its boundary. Let A and B be any two points of the boundary

of D, and let AXB be an arc from A to B such that (AXB) is a

subset of D, and such that AXB separates I) into two domains

and Dg. In an unpublished paperf G.M. Cleveland has proved the

following theorem; In order that a bounded domain D should have

property S it is necessary and sufficient that (1) every maximal

connected subset of the boundary of D should be a continuous

curve, and (2) for any positive number £
,

there should be not

more than a finite number of these continuous curves of diameter

greater than £. Now since D has property S, it follows that the

boundary of I) satisfies conditions fl) and (2) of Cleveland’s

theorem. And since the boundary of I) satisfies these conditions,

it can easily be shown by methods almost identical with those

used by R.L. Moore to prove Theorem 4 of his paper Concerning

5
corniectedness im kleinen and a related property that the boundary

of 1>2.» and also the boundary of Dg f
must satisfy these conditions.

Hence it follows by Cleveland’s theorem that each of the domains

and Dg must have property S. Now let R denote either one of the



domains and Lg which has the point Pdn its boundary. It is

sufficient, then, to show that P is accessible from R.

Let R be expressed as the sura of connected, point

sets £]_]_»]£]_£* d.iaraeter less than l/3. Let

denote this collection of point sets. Let denote the collec-

tion ox all those elements of which have for a limit point,

and let denote the sum of all the point sets of the collection

S]_. There exists a circle having P as center and neither con-

taining nor enclosing any point of R - Let denote a

point common to and the interior of 0-, . Let denote the sum

of all those elements of which can he joined to that element

of S-j_ which contains by a connected subset of R lying wholly

within G
l

. Every point of which is a limit point of R -

lies within a circle c such that c plus its interior belongs to

R and is of diameter less than 1/9. Add to the interiors of all

such circles (c), and let denote the domain thus obtained.

Clearly is of diameter less than 1, and 13 is a boundary

point of Now let R be expressed as the sum of ng connected

point sets

and also less than the radius of C-.. Let G 0 denote this collection
l

of point sets. And let T 9 and 0g be point sets which
,

with respect

to Gg, correspond to f-j_ and selected previously with respect

to G
l . Let Xg be a Point common to Tg, to the interior of Cg, and

to 11.I 1 . Let Ig denote the sum of all those elements of Sg which

can be joined to that element of Sg which contains Xg by a con-

4
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nected subset of R lying wholly within Gg. Clearly is a sub-

set of I-p and hence also of Every point of Ig which is a

limit point of R - I 0 lies within some circle c such that c plus

its interior belongs to R and to and is of diameter less than

1/18. Add to I
g

the interiors of all such circ-les (c), and let

Rg denote the domain thus obtained. Clearly is a subset of

is of diameter less than and has the point P in its boundary.

This process may be continued indefinitely, and thus we obtain a

sequence of subdomains of R: Rg, R.
u , ,

such that for

every positive integer n, R has P in its boundary and is a

subset of R
, and such that the diameter of R

n approaches zero

as a limit as n increases indefinitely.

How let Q denote any point of H. For each positive

integer n, let denote a point of Thgre exists an arc

lying in R, and for each n, there exists an arc lying in

R
n . It is easy to that the point set -j-P^Pg-f- ..

is closed and that it contains as a subset an arc QP

such that IP - P is a subset of R. Hence P is accessible from R,

and since R is either one of the domains which has P in

its boundary, it follows that P is accessible from all sides

from D.

The condition is also sufficient. Suppose D is a hounded

domain such that its boundary,}!, is accessible from all sides

from D. Condition (I) will be said to exist if some maximal con-

nected subset of M fails to be a continuous curve; Condition (II)
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will "be said to exist if it is true that for some positive number

€, there exists infinitely many maximal connected subsets of

M of diameter greater than 6
. Suppose Condition (II) exists,

and let Q denote the collection of all those maximal connected

subsets of M which are of diameter greater than 6 . Since the

sum of all the continua of G is bounded and G contains infinite-

ly many elements, it follows*7 that there exists a continuum T

of diameter at least as great as 6 which is the sequential

limiting set of some sequence »
°£ elements of G.

There exist two points E and P of T whose distance apart is £ .

let be a circle with Eas center and of radius 36/4. Let Og

be a circle with E as center and of radius J 6
• Then since

E is within Gg and P is without there exists a positive inte-

ger d such that for every T
n

contains a point x
r

within

Og and a point without It follows from a theorem due to

JaniszewsSci
8

that for every n>d, contains a subcontinuura t
n n

which contains at least one point of each of the circles and

Gg and is a subset of the point set H consisting of the circles

and Cg together with all those points of the plane which lie

between Gq and Gg. Por every positive integer i, let denote

the set t^+i . The continuum T contains a subcontinuum Mm which

has at least one point on each of the circles and C
, is a

subset of H, and is the sequential limiting set of the sequence

How supmose Gondition (I) exists. It follows

directly from a theorem of R.L. that there exist circles
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and Cg, and that M contains a countable Infinity of continua

Mco f
M

I#
M

2 ,M , ,
having exactly the same properties as the

point sets of the same notation whose existence was shown as a

consequence of Condition (I). Hence, we see that the existence of
(I)

either Conditioner Condition (II) leads to exactly the situation

as described above.

Let A (Pig. l) denote a point common to and Cg, and

B a point common to and Since M is accessible from D, it

follows that there exists an arc AB such that (AB) is a subset

of B. It can be shown that there exists a bounded complementary

domain B of the point set AB*f Moo such that every point of the

arc AB belongs to the boundary of B. The arc AB separates D into

two domains D and D such that D liaS wholly within B, and L
t

lies wholly in Z, the unbounded complementary domain of the

boundary of B. Since no member of the sequence of continua

Mg,Mg, .
has a point in common with , it follows

that for every positive integer i, lies either wholly in B

or wholly in E. Hence, either R or K must contain infinitely

many of the continua M^,Mg,Mg,......

Suppose B contains infinitely many of these continua.

Then every point of Moo is a limit point of a set of points common

to D and B. And since all such points belong to it follows

that every point of Moo is a boundary point of and, by hypothe-

sis
,

is therefore accessible from Let 0 be a point of Z, and

let P be a point of distinct from A and from B. Then since the



Fig. 1
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arc AB does not of itself separate the plane, there exists an arc

OH which contains no point of the arc AB. On OE, in the order

from 0 to P, let z denote the first point belonging to Moo •

Then the point set Os - z is a subset of K. Nov/ either (a) there

exists a point x on the arc Cz such that the arc zx of Oz con-

tains no point of M, or fb ) z is a limit point of a set of points

common to D and K. In case fb), since all points common to K and

D belong to Dg, then z is a boundary point of Dg and is, therefore,

accessible from Dg. Hence, if x is a point of there exists an

arc xz such that xz - z is a subset of Dg. Hence, in either case,

fa) or fb), there exists an arc xz such that xz - z is a subset

of K and contains no point whatever of M. It was shown above that

z is accessible from Hence, if y is a point of D-p there

exists an arc yz such that yz - z is a subset of The two arcs

xz and yz can have in common only the point z.

Let I denote the point set consisting of Moo pins all

of its hounded complementary domains. Let L denote the closed

point set 1+ MnH-M -+ M-f It can easily he shown that
& 3

neither of the points x and y belongs to I. Now I does not separ-

ate the plane, and it is a maximal connected subset of the closed

set L. By a theorem of H.L. Moore 1 it follows that there

exists a simple closed curve J such that J encloses I and con-

tains no point of L and every point on or within J is at a distance

from some point of I less than the minimum distance from x to I

and also less than the minimum distance from y to I. Hence both

x and y are without J. On the arc zx, in the order from z to x,



and on zy, in the order from z to y, let X and Y respectively

denote the first points "belonging to J. Denote the two arcs of

J from X to Y "by XTY and XSY respectively, and let and

denote the interiors of the closed curves XzYTX and XzYSX res-

pectively. On the arc XzY there exist points E,U,H, and Gr in the

order X,E,U, z ,H, G,Y such that within some circle which has z as

center and which neither contains nor encloses any point of the

arc AB there exist arcs EFGr and UOH such that (EFG) and (UQH) are

subsets of and respectively.Since E and U lie in E, and H

and 0 lie in R, it follows that both (EFGr) and (UOH) must contain

a point in common with Moo . But (EFG) belongs to and (UOH)

belongs to R
O
. Hence contains a point uof Moo ,and Rg con-

tains a point v of . Let and G
y

be circles having u and v

respectively as centers and such that G
u

belongs to and

belongs to Rg. Now since J encloses and contains no point of

L, there exists a positive number - such that for every integer

lies wholly wi thin J. There exists a positive number dg

such that for every integer n>dg, has a point within and

also a point wi thin OV.0
V. Let ibe an integer which is greater than

each of the two numbers and dg. Then lies wholly wi thin J

and contains at least one point in each of the domains and Rg.

Therefore, since it is connected, must contain a point p of

the arc XzY. Since has no point in common with Moo ,
therefore

i. Hence p must belong either to (zX) or to (zY). But p

belongs to M, and neither (zX) nor (zY) contains any point

whatever of M. Thus in case R contains infinitely many of the

9
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continua
,

the supposition that either Con-

dition fl) or Condition (II) exists leads to a contradiction. In

an entirely analogus manner the same supposition leads to a con-

tradiction in case K contains infinitely many of continua.

Since neither Condition (I) nor Condition fII) can exist,

then fl) every maximal connected subset of M is a continuous

curve, and (2) for every positive number fc
,

there are not more

than a finite number of these maximal connected subsets of M of

diameter greater than Since D is bounded, it follows from

Cleveland’s theorem quoted above that I) has property S.

Theorem 2. If the domain D i_s uniformly connected im

klelnen wl th reference to every one of its bounded subsets, then

every point of the boundary of D is accessible from D.

Proof. Let ? denote a point of the boundary of D. Let

be a circle having P as center and of diameter less than 1.

For every point x common to D and the interior of G
,

let K
1

denote the greatest connected point set which contains x and is

common to D and the interior of Let denote the collection

of all such sets . Since D is uniformly connected im kleinen

with respect to every one of its bounded subsets, it follows that

if 0 is any circle concentric with and within C
, then there are

not more than a finite number of elements of which have points

on or within 0. Hence there exists a circle concentric with

and within 0-p such that k]_ neither contains nor encloses any

point of any element of which does not have P for a limit point.
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Let denote the finite oolleotion of all those elements of

which have points on or within k
,

and let denote the sum

of all the point sets of this oolleotion. Let he a point common

to and the interior of k • Let denote the element of

which contains Clearly is a domain which' fl) is a subset

of D and of the interior of (2) has P in its boundary, and

(3) contains every point common to D and the interior of

which can be joined to by an arc which is also a subset of

D and of the interior of Uow let Cg be a circle which is con-

centric with and of diameter less than ■§■ and also less than the

radius of Let Gg, kg, S_
t Tg, Xg, and Lg be collections and

sets which, with respect to 0
i; ,

correspond to

X}» and selected above with respect to with the additional

condition that Xg shall belong to r^^en Bo is a domain which

fl) is a subset of L, of D l# and of the interior of Og, (2) has

P in its boundary, and fo) contains every point common to D and

the interior of Co which can be joined to Xg by an arc which is

also a subset of D and of the interior of Cg. This process may

be continued indefinitely, and thus we obtain a sequence of sub-

domains of D: D^Dg.D^,, such that for every positive

integer n, D
n+l

has Pin its boundary and is a subset of L
n ,

and

such that the diameter of D atmroaches zero as a limit as n
n

increases indefinitely. By an argument which is identical with

the third paragraph of the proof of Theorem 1, it follows that

if A is any point of D, then there exists an arc A? such that

AP - P is a subset of D. Hence, every point of the boundary of
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D is accessible from D.

Theorem 3. In order that a domain D should be uniform-

ly connected im kleinen with reference to every one of its bound-

ed subse ts it is ne ce ssary and sufficient that (1) every maximal

connected subset of the boundary of should be either a point*

a simple closed curve
*

or an open curve, and f 2) if_ & is_ any

posi tive number and J is_ any simple closed curve, there should

b e not more than a finite number of maximal c onnected subsets

of the boundary of £ which have points within £ and are of

diameter greater than £. .

Proof. I shall show that the condition is necessary.

This may be done by the use of methods only slightly different

from those used by R.L. Moore in his paper A characterization

of Jordan regions by properties having no reference to their

to prove the proposition that every bounded, simply-

connected, and uniformly connected im kleinen domain is bounded

by a simple closed curve. X will merely indicate the modifications

necessary in his argument to establish Theorem 3.

Suppose the- domain D is uniformly connected im hleinen

with reference to every one of its hounded subsets* Then hy an

argument almost identical with that used hy Moore to show that the

boundary of his domain in the above mentioned proposition is a

continuous curve, it follows that every maximal connected subset

of the boundary of D is a continuous curve, and that if J is any

simple closed curve an.d is any positive number, then there are
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not more than a finite number of these maximal connected subsets

of the boundary of D which have points within J and are of diameter

greater than £ . How let M denote any definite maximal connected

subset of the boundary of D which consists of more than one point.

I shall show that M must be either a simple closed curve or an

open curve, let the points
,

the arcs

........ and the point set N* be selected and defined with respect

to M exactly as was done by Moore in the paragraph beginning

near the bottom of page 366 of his paper. I shall now show that

M is neither a simple continuous arc nor a ray of an open curve.

Suppose the contrary is true. Then if M is an arc, le t A and B

denote its endpoints, and if M is a ray, let A denote its end-

point. Let Z be a point of M which is distinct from A and from

B, and let 0 be a circle with Z as center and neither enclosing

nor containing either A or B. Within 0 and on M there exist points

E,U,W, and G in the order A,E,U,X,W,G, and within 0 there exist

arcs BEG and UVW having only their endpoints in common with M

and such that if R. and R denote the interiors of the closed

curves EFGWXUE and UVWZTJ respectively, then and are mut-

ually exclusive domains each of which wholly within 0.

Since under this supposition, M can contain no simple closed

curve, it follows readily that Z must be a limit point of a set

of points common to D and and also of a set lig common to

D and Rg. But clearly this is impossible, since I) is uniformly

connected im kleinen with reference to every one of its bounded
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subsets. It follows, then, that M is neither an arc nor a ray

of an open curve.

low suppose M is bounded. In this case, since M

cannot be an arc, it follows by exactly the same argument as

given by Moore in the first paragraph of page 369 of his paper

that M is a simple closed curve. Sup-nose M is unbounded. Since

M cannot be a ray of an open curve, it readily follows that both

of the sequences of points A_^ f
A

f Ag t
and

must be infinite and that neither of these sequences can have a

limit point. It follows that IT* is a closed point set vhichis

identical with which, evidently, must be an open curve.

Hence the conditions are necessary.

1 2
O.M. has proved that the conditions of

this theorem are sufficient.

The orem 4. If X denotes the set of all the cut points

of the boundary M of a complementary domain 1 of a continuous

curve
,

then 1-f-X is_ uniformly connected im hie inen.

13
Proof. By a theorem due to Miss Torhorst

1

,
M is a

continuous curve. Suppose D+K is not uniformly connected im klein-

en. Then for some positive number £
,

D contains two infinite

sequences of points ,
......

, and , such that

(1) for each positive integer n, the distance from X to Y is
n n

less than 1/n, (2) for no integer n is it true that and

lie together in some connected subset of D-f* X of diameter less

than €.
,

and (3) there exists in M a point 13 which is the sequen-

tial limiting set of each of these two sequences of points, let
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0 be a circle having as center and of diameter It follows

by a theorem of R.L. Moore T that B has property S. Hence, B is

expressible as the sum of a finite number of connected point sets

,X
n ,

all of diameter less than €./ 5. Lot r,

K
m , >

r
nL

denote those sets of this sequence which have 15

2 711

as a limit point. Clearly K -f* -f*Em
is a subset of

1 m 2 m
the interior of 0. Since P is not a limit point of D - (E

m + Z •+■
1 2

i" E
m

)
#

there exists a positive integer i such that both

and belong to K
m£f- • Let and Ny denote sets

of this sequence which contain and respectively. lect R
x

and

Ry denote the maximal connected subsets of B which contain N
x

and Uy respectively and lie within C. Clearly the domains R
x

and

Ry can have no points in common. The point P belongs to the

boundary of each of these domains, and by the method used in the

proof of Theorem 1, it can be shown that P is accessible from

each of them. Hence, there exist arcs X.P and Y.P such that

- P and - P are subsets of and Ry respectively. There

exists an arc t from to Y which is a subset of B. The point

set contains a simple closed curve J which contains

P and lies, except for the point P, wholly in B. Let I and E

denote the interior and exterior respectively of J. If either I

cr E, say I, contains no point of M, then since B contains points

of I, it follows that I is a subset of B, and clearly in this

case and can be joined by a connected subset of B of

diameter less than G
,

contrary to supposition. And if both I
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and E contain points of M, then clearly is a cut point of M

and therefore belongs tol. And in this case is a

connected subset of D -+-K which contains both and and is

of diameter less than contrary to supposition. Thus, in any

case, the supposition that D-f-H is not uniformly connected im

kleinen leads to a contradiction.

Theorem 5. In order that the simply connected bounded

domain D should become uniformly connected im kleinen upon the

addition of a single point 0 of its boundary 3 it_ is_ necessary

and sufficient that (1) if K be_ any maximal connected subset of

B -0, then Zrt 0 is a s imple closed curve, and f 2) the re should

be not more than a finite number of these curves of B of diameter

greater than any preassigned positive number.

Proof. The conditions are necessary. Suppose D is a

bounded domain with a connected boundary B, and 0 is a point of

3 such that D-f-0 is uniformly connected ira kleinen. Then B is a

continuous curve. Sfesn For suppose it is not. Then B contains a

point 13 which is distinct from 0 and at which B is not connected

im kleinen. Then by an argument identical with that used by

R.L. Moore in his paper A characterization of Jordan Regions by

properties having no reference to their in the

paragraph beginning at the bottom of page 365, with the additional

condition that the circle IC used in his argument be taken of

radius less than ■£■ the distance between 0 and P, it can be shown

that this supposition leads to a contradiction. Hence B is a

c ontinuous curve.
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Let X denote a maximal connected subset of B - 0. Then

since B - X is closed, it follows that X is connected im kleinen.

Now let an inversion of the plane he performed about some circle

which has oas center. Since K+ o is closed and connected, it

follows that X*, the image of X, is unbounded, closed, connected,

and connected im kleinen. Since the inversion does not act upon

the point 0, and since D-f-0 is uniformly connected im kleinen, it

can readily be shown that D*, the image of D, is uniformly connec-

ted im kleinen with reference to every one of its bounded subsets.

Therefore, by Theorem 3, it follows that X* is an open curve,

and hence, that X+-0 is a simple closed curve. Therefore, condition

(l) is necessary. Now since every maximal connected subset X of

3 - 0 is a simple closed curve minus one point, every such set X

contains an arc of diameter greater than the diameter of X.

16
By a theorem of R.L. Wilder's

,
B cannot contain, for any given

positive number £ ,
more than a finite number of mutually exclusive

arcs all of diameter greater than £ . In view if this result, it

follows that for any positive number £ ,
B - 0 cannot contain an

infinite number of maximal connected subsets each of diameter

greater than .
Hence condition (2) is necessary.

The conditions are also sufficient. Suppose D is a

hounded domain with a connected boundary B which satisfies condi-

tions (1) and (2) in the statement of this theorem. Olearly B

must he a continuous curve. Unless the point 0 is a cut point of

3, then 3 is a simple closed curve and D is its interior. In

this case D itself is uniformly connected im kleinen. Hence, un-



less this theorem is true, 0 must be a cut point of B. No other

point is a cut point of 3. For let P denote any other point of

B. Let II denote the maximal connected subset of 3 - 0 which

contains,?, and let J denote the point set E-f-O. By hypothesis

J is a simple closed curve. Hence, J - P is connected. But B - K

is connected, and since the connected sets J - P and B - II

have the point 0 in common, their sum S is connected. But Si=B - P.

Therefore 15 is not a cut point of B. It follows that 0 is the

only cut point of B, and therefore, by Theorem 4, D-/-0 is uni-

formly connected im kleinen.

Theorem 6. In order that a continuous curve M should be

the boundary of a connected domain it is necessary and sufficient

that if J_ denotes any simple closed curve of M, then f 1) Mis

a subse t either of J_ + l_ or_ of J -h E, where J_ and E denote the

interior and exterior respectively of J, and (2) if A and 3 are

any two points of J, then M - (A+R) is_ not connected^.

Proof, The conditions are necessary. That condition fl)

is necessary is evident. How let A and 3 denote any two points of

J, where J is any simple closed curve contained in the "boundary

M of a complementary domain D of a continuous curve. Since A arid

3 are accessible from D, it readily follows that there exists an

arc AX3 such that (AX3) is a subset of D. Now M+-D lies wholly

either in J plus its interior I, or in J plus its exterior E,

suppose in J-f- I. Then there exists an arc AYB such that (AYB)

is a subset of E. Let t and t* denote the two arcs of J from A

to 3. Then the simple closed curve AX3YA one of these

18



arcs minus A+*B, say t - (A-f-B), and neither contains nor encloses

any point of t' - (A-f-B), Since M has in common with the curve

AXBYA only the points A and B, it follows that M - (A-f-B) is not

connected. Hence the conditions are necessary.

The conditions are also sufficient. let M denote a

continuous curve which satisfies conditions fl) and (2) of this

theorem, let Z denote the unbounded complementary domain of M,

and let IT denote its boundary. Now IT contains a simple closed

17
curve J, or otherwise M is the boundary of Z and the theorem

is true. By hypothesis Mis a subset either of J-f-1 or of

where I and E denote the interior and exterior respectively of J.

Case I. Suppose M is a subset of J-f-E. I shall show that

in this case IteM, i.e., that M is the boundary of Z. Suprose M

contains a point P which does not belong to N. Then let R denote

the c omnlementary domain of IT which contains P and let G denote

-] o

its boundary. By a theorem of H.l. Moore’s it follows that G

is a simple closed curve. Since H is bounded, G enclosed P* and

? belongs to E, the exterior of J. Hence J contains a point Q

which does not belong to G. The curve G does not enclose Q, for

Q is a boundary point of Z, the unbounded complementary domain

of M. Hence Q, lies in the exterior of 0. But G encloses ? and,

by hypothesis, M is a subset either of G plus its exterior or of

0 plus its exterior. Thus the supposition that leads to a

contradiction. Hence M is the boundary of the connected domain Z.

Case 11. Suppose M is a subset of J*hl. With the aid of

hypothesis (2) it is shown that there existsa point 0 which does

19
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not belong to M and which is within J but not within any other

simple closed curve belonging to M. Let G be a circle having 0 as

center and not enclosing or containing any point of M. Let an

inversion of the plane be performed about 0. If X is a point set,

let X f denote the image cf X under this inversion. ITow M r is a

subset of J’-f-I 1
,

and I f is the exterior of J*. Let X 1 denote the

unbounded complementary domain of M l
,

and let IT T denote its

boundary. Then IT 1 contains J T

,
and by an argument identical with

that used in Oase I it is shown that M* is the boundary of the

connected domain X’. Hence, it follows that M is the boundary of

the connected domain X, where X is the point set of which X 1

is the image under this inversion of the plane.

Theo rem 7, If the point of continuous curve M

belongs to the boundary of no complementary domain of M, then

for every positive number £ ,
M contains a simple closed curve

which encloses P and is of diameter less than

Proof. Let P denote a point of a continuous curve M

which belongs to the boundary of no complementary domain of M,

and let denote any positive number. Let 0 be a circle having P

as center and of diameter less than and such that the exter-

ior of 0 contains at least one point of M. Let U denote the

maximal connected subset of M which contains 13 and is contained

19
in 0 plus its interior. By a theorem of H.M. Gehman's

,
N is a

continuous carve. The curve IT contains a point A which belongs

to 0. Any arc whatever from A to 3 must contain at least one point
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of N which is distinot from A and from P. For suppose there

exists an aro t from A to 13 which has only the points A and 13 in

common with N. Since M is connected im kleinen, it readily follows

that P is not a limit point of K - U. Hence, there exists a point

X on t such that the arc PX of t has only the point 73 in common

with M. Therefore the connected se t PX - P "belongs to some com-

plementary domain of M, and 13 must he a boundary point of that

domain. But 13 is not a boundary point of any complementary

domain of M. It follows, then, that every arc from A to P contains

a point of H which is distinct from A and from P. By a theorem

proved by G.M. Oleveland 20
f

it follows that N contains a simple

closed curve J which encloses either A or P. The curve J cannot

enclose A, because A belongs to G, and J is a subset of 0 plus its

interior. Hence J must enclose P. Since it is contained in 0

plus its interior, J is of diameter less than 6-.
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II. Cut Points and Endpoints

In this section, I shall make a study of the proper-

ties of the cut points and endpoints of a given plane contin-

uuin. Mo
Ae particularly, I shall study the connected subsets of

the set of all cut points and endpoints of a continuum, and

I shall establish some very fundamental properties of such

sets, both internal properties and properties relative to the

remainder of the continuum.

Definitions. The terra out point will he used as def-

ined in section I. The terra endpoint. as applied to a contin-

-21
uous curve, will he used in the sense as defined by R.L. Wilder,

i.e., a point P of a continuous curve M will he called an end-

point of M provided it is true that if t is any arc of M having

P as one of its extremities, then M - (t - P) contains no con-

nected subset which contains P. As aprlied to continua in

general, I shall define the terra endpoint as follows. The point

? of a continuum M will he called an endpoint of M provided

it is true that if N is any suhcontinuum of* M which contains P
t

then P is not a limit point of any connected subset of M - N.

It is obvious that this definition will allow as many, if not

more, points of a continuum to he endpoints as would the follow-

ing extension of Wilder*s definition: the point 13 of a contin-

uum M is said to he an endpoint of M provided it is true that

if H is any suhcontinuum of M which contains 15
, then P belongs
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to no connected subset of M - (H - P). The term acyclic con-

tinuous curve will be used, after G-ehman, to designate a con-

tinuous curve which contains no simple closed curve.

R.L. Moore has sh'own^ 2 that no subcontinuum K of a

given continuum M can contain an uncountable set of points

each of which is a cut point of M but not of 11. It follows

from this theorem that no simple closed curve K can contain

more than a countable number of cut points of any continuum

which contains K. Extensive use will be made of these results

ip. the proofs given in this section.

Theorem 8. If H i_s any connected subset of a continuum

M, not more than a countable number of points of F- H

are cut points of M.

Proof. Let T denote the set of all those points of

H - H which are cut points of M. Clearly no point of T is a

cut point of K. Hence, by R.L. Moore’s theorem quoted above,

it follows that T is countable.

fhe orem 9. If K denotes the set of all the cut no lilts

and H the set of all the endpoint s of a continuum M, and if T

is any countable subset of M, then every bounded, closed, and

c onne cted subse t of K-l-H + T is_ an acyclic continuous curve .

Proof. Let T.T denote any bounded continuum which is

a subset of EtH tT. I shall first show that IT is a continuous

curve. Suppose IT is not a continuous curve. by R.L. Moore

23
and R.L. Wilder’s characterisation of continua which are net
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continuosu curves it follows that there exist two concentric

circles kq and k and that H contains a countable infinity of

mutually exclusive continua Hoo
, , ,

such that

fl) each of these continua contains at Hg/6)st one point on each

of the circles k-, and k
,

(2) the set Ik> is the sequential1 2

limiting set of the sequence of sets H^, BA,H^, ,
and (3)

there exists a connected subset L of N which contains all of the

continua of the sequence

point whatever of N«> . Now clearly 1-1 contains the continuum

Noo • Hence, by Theorem 8, Noo can contain not more than a

countable number of points of X. And since every point of No«>

is a limit point of L, a connected subset of M - H<x,
,

it follows

thaft no point whatever of can belong to H. Therefore, since

T is countable and is a subset of K-f-H-f-f, it follows that

Nqo is countable. But this is absurd. Thus the supposition that

N is not a continuous curve leads to a contradiction*

How suppose H contains a simple closed curve J. Then

clearly no point of J can belong to H. And by R.L. Moore’s

theorem, only a countable number of points of J can belong to

X. Therefore, since T is countable, J must be countable. But

this is impossible. It follows, then, that N is an acyclic

continuous curve.

Theorem 10. If X is any closed and connected subset

of the set of all the cut points of a bounded continuum M, and

H is any connected subset of M - K, then H and X have at most
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one point in common. And if H is. a maximal connected subset of

M - X, then H and X have exactly one point in common.

Proof. Suppose, on the contrary, that for seme closed

and connected subset IC of the set of all the cut points of a

bounded continuum M
#

M - K contains a connected subset H such

that H and K have two points A sold B in common. Now since, by

Theorem 9, K is a continuous curve, it follows that K contains

an arc t from A to B. By Theorem 8, t contains only a countable

number of points of H. Hence, t contains an interior point 0

which does net belong to H. Let 0 denote a circle enclosing 0

and not enclosing or containing any point of H. Within 0 there

exist points E,£,U, and W on t in the order A
rE,TJ,0 f

W
#

G
fß, and

arcs EEG and UVW having only their endpoints in common with t

and such that if and Ng denote the interiors of the closed

curves EFGrWOUE and UVWOTJ respectively, then and Dg are mut-

ually exclusive domains each of which lies within 0. Let N

denote the continuum H-hl. Let X and Y denote points of and

D 0 respectively, and le t 2 denote a point belonging to the

unbounded complementary domain of M. It is readily

every arc from X to Y contains at laest one point of IT, and

that not both X and Y can be joined to Z by an arc which contains

no point of N. Let v denote one of the points which cannot

be so joined to Z, and let u denote the other one of the

points X,Y. Let Rv denote that complementary domain of N which

contains v, and let denote its boundary. Then let R
u

denote
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that complementary domain of which contains u, and let OC

denote its boundary. R.L. Moore has that under these

conditions c>( contains no cut point of itself. But since R
y

contains that one of the domains and which contains v

and R
u

contains the one which contains u, it readily follows

that cL contains the arc WOU of t. But W6U belongs to K and

every point of K is a cut point of M. Hence 0L contains an

uncountable set of points each of which is a cut point of M

but not of Oi
,

and since °Cis a continuum, this conclusion is

contcary to R.L. Moore’s theorem quoted above. Thus the suppo-

sition that H and K have more than one point in common, leads

to a contradiction.

How if H is any maximal connected subset of M - Z,

it is clear that K must contain at least one limit point of H.

And in view of the above argument it follows that IT and K must

have exactly one point in common.

Theorem 11. if L denotes the set of all the cut points

of a hounded continuum M, T is any countable subset of K
t

K

is any closed and connected subset of L-h T, and H is_ any connected

subset of M - Z, then K contains at most one limit point of H.

Theorem 11 may be proved by an argument only slightly

different from that given in the proof of Theorem 10.

Theorem 12. In order that PQint P of a nontinnrnA

curve M should he an endpoint of M it .is snfxin-

IniLf .that no aro jQf II shmild have Zas one of Its .antoxiar

points.
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Proof* The conditioijo. s sufficient. let P denote any

point of M which is not an endpoint of M. I shall show that

every such point is an interior point of some arc of M. From

the definition of an endpoint it follows that M contains some

arc t having extremities at and some other point A of M and

such that M - (t - P) contains a connected set H which contains

P. Let X denote a point of H which is distinct from Let X

denote the maximal connected subset of M - t which contains X.

I shall first show that P is a limit point of X. Suppose, on

the contrary, that P is not a limit point of X. Let T denote

the set of points common to II and X. Since M is connected im

kleinen at every one of its points and t is closed, it readily

follows that (l) II - T contains no limit point of T, and (2)

that T contains no limit point of II - T. Hence, II is express-

ible as the sum of two mutually separated point sets f and

H - T. But this is Impossible, because II is connected. It

follows, then, that P is a limit point of X. How X is a domain

O K

with respect to IrD

,
for tis a closed set of points. And the

boundary U of X with respect to Ivl is a subset of t. Hence U

contains no continuum of condensation. By a theorem of H.L.

in M

Wilder*s^ 0 it follows that every point of U is accessible^ from

X. I have just shown that P belongs to U. Hence, if B denotes

a point of E, there exists an arc BP such that BP - is a

subset of X. The arcs t and BP have in common only the point

P. Hence their sum, t-pßP,is an arc? APB from A to B which
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lies in M and contains 15 as an interior point. I have shown,

then, that every point of M which is not an endpoint of M is

an interior point of some arc of M. It follows that every point

of M which is not an interior point of any arc of M is an

endpoint of M.

2 7
The condition is also necessary. For suppose some

arc APB of M contains as an interior point the point P which

is an endpoint of M. Clearly this is impossible, because the

arc PB of APB i<s a connected subset of M - (AP - P) which

contains P.

I will remark that Theorem 12 shows the equivalence

of Wilder f s definition of an endpoint of a continuous curve and

the following one: the point P of a continuous curve M is said

to be an endpoint of M provided it is true that if t is any

arc of M having ? as one of its extremities, then P is not a

limit point of any connected subset of M - t. This latter

definition for the case of a continuous cjirve is analogous to

the one I have given above for continua in general.

Theorem 13. If K is a connected subset of the set of

all the cut points of a continuous curve M, then in order that

E should be an acvclic continuous curve it is necessary and

sufficient that everv point of E should be e:l ther a cut noint

or an endpoint of M.

Proof.That the condition is sufficient is a corollary

to Theorem 9. I shall show that it is necessagry.
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Suppose K is a connected set of cut points of a continuous

curve M such that K is an acyclic continuous curve. Let ?

denote a point of IT which is not an endpoint of M. I will

show that P is a cut point of M. Let U denote a point of K

which is distinct from I>
. Then IT contains an arc t from U

to Every point of t, except possibly the point P, is a

cut point of IU For suppose t contains an interior point 0

which is not a cut point of M. Then 0 does not belong to E.

28
Since, by a theorem of K.L. Wilder's

, every connected subset

of an acyclic continuous curve is arcwise connected, it follows

that E*f-P contains an arc t 0 from U to P which does not contain

O. -L'hen the sum of the arcs t+t contains a simple closed curve,

contrary to the hypothesis that E is acyclic. Hence, every point

of t, except possibly the point P, is a cut point of M. How

since P is not an endpoint of M, it follows by Theorem 12 that

M contains an arc APB having 13 as one of its interior points.

Hot both of the arcs AP and PB of APB can contain an interval

in common with t which contains 13
,

because P is an endpoint of

t. Suppose Ap has no interval in common with t which contains

P. Then AP and t have in common only the point P. For suppose they

have in common a point V ?/hich is distinct from P. The interval

VP of AP contains a point Q which does not belong to t. In the

order from Q to P and from Q to A respectively o# AP, let X and Y

denote the first points belonging to t. The simple closed curve

formed by the arc XY of t plus the arc XQY of Al 3 contains a seg-
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rnent XY every point of which is a cut point of M. Olearly this

is impossible. Hence, it follows that and t have in common

only the point ?.

Now suppose, contrary to this theorem, that ? is not

a cut point of M. Then by a theorem of R.L. Moore’s
,

M- V

contains an. arc b from U to A. The sum of the arcs

contains a simple closed curve J which contains a segment of t

every point of- which is a cut point of M. This is absurd, and

thus the supposition that is not a cut point of M leads to a

contradiction. It follows, then, that every point of K is either

a cut point or an endpoint of M.

Theorem 14. If K denotes the set of all the cut points

of a continuous curve M
f

then for every positive number E

contains not more than a finite number of mutually exclusive

continua each of diameter greater than £.

Proof. Suppose Theorem 14 is not true. Then there

exists a positive number 6: such that K contains infinitely many

mutually exclusive continua each cf' diameter greater than & .

Since by Theorem 9, every closed and connected subset of K is a

continuous curve, it follows that K contains infinitely many

mutually exclusive arcs each of diameter greater than 4s& •
Let

t-. ,t 0 ). denote some sequence of these arcs which have a

sequential limiting set t. It is evident that t contains two

points A and B whose distance apart i£ Now since M is

uniformly connected im kleinen, there exists a positive number S
e

such that every two points of M whose distance apart is less
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than bg are endpoints of an arc of M of diameter less than -J £
.

There exists a positive number d such that for every integer

n>d, t contains a point and a point Y whose distances from
n n ji

A and B respectively are less than Let i and j denote two

integers greater than d. Then and X
.

and also and can

be joined by an arc of M of diameter less than -• Let and

Y.Y. denote these two arcs. It is readily seen that the sum of
i j

the arcs t t,• ■f'X .X * -+-Y. Y
.

contains a simple closed curve J
IJiJ i j

r

which contains an interval of the arc But every point of

the arc is a cut point of M. Thus the supposition that Theorem

14 is false leads to a contradiction.

Theo rem 15. If Z is any closed and connected subset of

the set of all the cut points of a continuous curve M, then for

every positive number £, M- K contains not more than a finite

number of maximal connected subsets of diameter grester than
.

Proof. Suppose Theorem 15 is not true. Then there

exists a positive number £ such that M - K contains an infinite

collection G of maximal connected subsets each of diameter greater

than £• By Theorem 10, K contains exactly one limit point of

each set of the collection 0. For each set gof 0 let X denote

the limit point of g which belongs to K, and let H denote the set

of all such points [x] thus defined. Now if H contains infinitely

many distinct points, then Z contains a point A ¥/hich is a limit

point of H. And if H contains only a finite number of points,

then H contains a point A which is a limit point of each of an

infinite number of distinct sets of the collection G. Let us



first suprose that A is a limit point of H. Then H contains an

infinite sequence of points X ,X
o> ,

v hich has A as its,
X &

sequential limit point. For every positive integer n, let £
n

denote an element of G which has X as a limit point. The sequ-

ence has a sequential limiting set L which

contains A. And since every element of G is of diameter arrester

than cr ,
it follows that L contains a point B whose distance

from A is >6/3. How since M is connecter im kleinen, it can

readily he shown that B must "belong to IT. Let and be circles

having A and B respectively as centers and each of diameter less

than £/10. The sequence of points X^,X^ t
contains an

infinite subsequence Xn^,Xnr , , every point of which is

within There exists a circle having B as center and such

that every point of M which is enclosed by can be joined to B

by an arc common to M and to the interior of Qg. There exists an

integer i such that G contains sfe oint V within Hence, M

contains an arc t from V to B which lies within 0 . On t, in the

order from V to B, let E denote the first point belonging to

X. Then E is a limit point of G
n . But Xv,. is also a limit -point
1 i i

of G
*

an(i lies within Hence, X contains two distinct

limit points of G But this is contrary to Theorem 10. A

similar conclusion is reached when it is assumed that A is a

limit point of each of an infinite number of elements of G. Thus

the sup-nosition that Theorem 15 is false leads to a contradiction.

Theorem 16. Lf the bounded continuum M ha,s the property

32
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that every connected sub set of M is_ arowise connected, and Kis

any maximal connected subset of the se t of all the cut points

of M, and H denotes the set of all those limit points of Z which

K floes not contain, then every point of H is_ an endpoint of M.

Proof. Suppose, on the contrary, that H contains a

point ? which is not an endpoint of M. Now by a theorem of R.L.

M is a continuous curve. Hence M contains an arc APB

having P as one of its interior points. Let U denote a point of

E. By hypothesis E-f- 15 contains an arc t from Uto P. Now Pis

not a cut point of M, for otherwise it would belong to E. In

view of this fact, it follows by an argument almost identical

with the latter part of the proof of Theorem 13, beginning with

the fifteenth sentence, that this situation leads to an absurdity.

Hence, every point of H is an endpoint of M.

Theorem 17. Under the same hypothesis as in Theorem 16,

K+ H is an acyclic continuous curve
,

and every point of H i_s an

endpoint both of M and of the curve E+ H

Theorem 18. If K is any closed and connected subset of

the set of all the cut points of a continuum M, then E contains

at least one subcontinuum which belongs to the boundary of some

single complementary domain of M.

Proof. The complementary domains of M are countable.

let them he ordered
,

and let their respective

boundaries be ordered Bq,B£>,Ba,. It is a consequence of a

theorem of R.L. Moore’ that K is a subset of the point set
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Bl+V B
»

+ Let Ag,.. denote the point sets

common to B^,Bg,B s> ,
respectively, and to Z. Then for

every positive integer n, A
n

is a closed point set. Now K*=

. It is well known that no continuum is expressible

as the sum of a countable number of closed point sets each of

which is totally disconnected. Hence for some positive integer

i, is not totally disconnected and therefore contains a

continuum H. The continuum H belongs to B-j_, the boundary of IZ.

Theorem 19. In order that the point ?of a bounded

continuum M should be a_ cut point of M I_t ijs necessary and

sufficient that ? should be a cut point of the boundary of some

complementary domain of M.

gg
Proof. R.L. Moore has shown*"-that this condition is

necessary. I will show that it is sufficient. Suppose Pis a

cut point of the boundary N of a complementary domain D of a

bounded continuum M.

Case I. Suppose I) is bounded. Then let 3 denote the

outer of D. R.L. Moore has that B has no out

point. Hence, B -P
f

in case P belongs to 3, or 3, in case P

does not belong to 3, must be a subset either of <br of Sg,

where and Sg denote two mutually separated point sets into

which, by hypothesis, N is divided by the omission of the point

P. Suppose it belongs to Then let R denote the complementary

domain of the continuum sf P which contains D. Since no

point of Sg belongs to and since every point of Sg is a

limit point of 3, it follows that R contains Sg. Then Sg'-h 13 is
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a continuum which lies, except for the point P, wholly in R.

By a theorem of R.l. Moore
,

there exists a simple closed

curve J which contains P, enclosed So, and lies, except for the

point P, wholly in R. The curve J does not enclose or contain

any point of B - P. Since J encloses Sg, it follows that J - P

contains a point of D. And since J - P is connected and contains

no point of IT, then J -
13 must be a subset of D. Hence

,
J - P

contains no point whatever of M. But Sg belongs to the interior

of J, and B -
15 to the exterior of J, and J contains in common

wi th M onlj the point P. It readily follows that ? is a cut

point of M.

Case 11. Suppose D is unbounded. It is easily seen that

there exists a ray r of an open curve which has exactly one point

A, distinct from P, in common with N and lies
; except for the point

A wholly in D. Now by hypothesis, IT - is expressible as the

sum of two mutually separated point sets and Sg, one of which,

say S-g, contains the point A. The set D - (r - A) is connected,

let R denote that complementary domain of the continuum

which contains D - (r - A). The domain R is simply connected

and contains Sg. Then by R.L. Moore’s theorem quoted above, there

exists a simple closed curve J which encloses Sg, contains P,

and lies, except for the point ?, wholly in R. Just as in 9ase I

it follows that J -
13 is a subset of D and therefore contains no

point of M. But J encloses Sg and neither contains nor encloses

the point A. It follov/s that P is a cut point of M, and the

theorem is proved.
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Theorem 20. In order that the point ? oiT a continuous

curve M should be an endpoint of M i_t is_ suffioient, (but not

necessary 1), that P should be an endpoint of the boundary _of

some complementary domain of M.

Proof. Let 13 denote a point of M which is an endpoint

of IT, the "boundary of some complementary domain D of IL Suppose,

contrary to this theorem, that 13 is not an endpoint of M. Then,

"by Theorem 12, M contains an arc APB having 13 as one of its

interior points. How either fl) each of the segments (AP) and

(PB) of APB contains a point of IT, or (2) one of these segments

contains no point of IT. I will show that in either case 13 must

"belong to some simple closed curve of M. Suppose fl) is true.

Then let X and Y denote points of IT which belong to the segments

A73 and PB respectively of APB. Since 73 is not a cut point of IT,

it follows that IT - P contains m arc t from X to Y. The sum of

the arcs t and APB contains a simple closed curve which contains

P. Now suprose case (2) is true. Let S denote one of the segments

(A13 ) and (PB) of APB which contains no point of IT. Then S belongs

to some complementary domain R of IT. It follows from a theorem

of R.L. Moore’s u that the boundary of R is a simple closed curve

which belongs to M. Clearly this curve must contain P. Hence, in

any case, M contains a s implq/6 lose d curve J which contains P.

Let I and E denote the interior and exterior respectively of J.

Then I) is a subset either of I or of E, say of I. Let K dnote

the complementary domain of N which contains E. By R.L. Moore’s

theorem just cited, the boundary 0 of X is a simple closed curve



37

which belongs to E. Clearly 0 must contain P. But by hypothesis

P is an endpoint of H,and therefore, by Theorem IS, can belong

to no simple closed curve of H. Thus the supposition that P

is not an endpoint of M leads to a contradiction, and the

theorem is proved.

Theorem El. The set of all the endpoints of a continuous

37
curve is totally disconnected.

. Let K denote the set of all the endpoints of a

continuous curve M. Suppose IC contains a connected set E which

consists of more than one point. Then from Theorem IE and Theorem

7 it follows that every point of H must belong to the boundary

of some complementary domain of M. Let denote a complementary-

domain of M which has the point A of H on its boundary. How if

H is a subset of the boundary of then by a theorem of R.L.

o 8
Wilder T s

,
H is arcwise connected, and it easily follows that

some point of H must be an interior point of some arc of M,

contrary to Theorem lE. Hence, there exists a complementary

domain of M which has on its boundary a point B of H which

does not belong to the boundary of Let H denote the boundary

of L-|_. Let K denote the compleraentary domain of H which contains

D£. By R.L. Moore’s theorem mentioned above, the bounadry of R

is a simple closed curve J. It is easily seen that J separates

A from B. Therefore, since H is connected, it must contain a

point of J. But this is contrary to Theorem lE. It follows that

K is totally disconnected.
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Theorem 22. If X, H, and N respectively denote the set

of all the cut points, endpoints, aid simple closed curves of_ a

continuous curve M, then lOf* E-hN tr M.

Proof. Let denote a point of M, if there be any, which

is neither a cut point nor an endpoint of M. I will show that 13

belongs to some simple closed curve of M and therefore belongs

to IT. Since P is not an endpoint of M, it follows by Theorem 12

that P is an interior point of some arc of M. and since P is

not a cut point of M, it follows by R.L. Moore’s theorem mentioned

above that M - contains an arc t from A to B. On the arcs PA

and of APB, in the order from P to A and to B respectively,

let X and Y respectively denote the first points belonging to

t. The simple closed curve formed by the arc XT of t plus the

arc of APB contains the point 15 and lies in M. Hence, P

belongs to IT, and it follows that EtRtN sM.

Theorem 22. If R denotes the point set consisting- of

the sum of all the simule closed curves contained in a continuous

curve M, then every connected subse t of M-| is arowise connected.

Proof. Let L denote any definite connected subset of

M - N. It follows from Theorem 22 that every point of 1 is either

a cut point or an endpoint of M. And since, by Theorem SI, the

set of all the endpoints of M is totally disconnected, L must

contain at least one point p which is a cut point of M. By the

part of Theorem 19 established by R.L. Moore, V belongs to the

boundary B of some complementary domain D of M. I shall first s

show that L is a subset of B. Suppose, on the contrary, that L
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contains a point Q which does not belong to B. Then Q lies in some

complementary domain R of B. By R.L. Moore's theorem, the boundary

J of R is a simple closed curve which belongs to B. Since L

contains no point of N, J contains neither 15 nor Q. How R is

either the interior or the exterior of J. And if R is the exterior

[interior] of J, then Q belongs to the exterior [interior"! of J,

and 5 belongs to the interior [exterior*1

of J. Hence, in any case,

? and Q are separated by J. Therefore, L contains a point of J,

contrary to hypothesis. Thus the supposition that L contains a

point which does not belong to B leads to a contradiction. Hence,

L is a subset of B, and by a theorem of R.L. Wilder T
s it

follows that L is arcwise connected.

Theorem 24. Under the same hypothesis as in Theorem _23,

if 1 i_s any connected subset of M - N, then U is an acyclic

continuous curve which belongs to the boundary of some single

complementary domain of M, and every point of T is_ either a cut

point or an endpoint of M.

Proof. Prom the proof of Theorem 23 it follows that £

belongs to the boundary B oj* some complementary domain D of M.

How since, by R.L. Wilder T
s theorem, every connected subset of

B is arcwise connected, and since every uoint of I - 1 is a limit

point of L by definition, it can easily be shown by methods

identical with those used in the proof of Theorem 16 that every

point of 37 - L is either a cut point or an endpoint of 3. How, by

Theorem 19, every cut point of B is a cut point also of M; and

by Theorem 20, every endpoint of B is an endpoint also of M.
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Therefore, since by Theorem 22, every point of L is either a cut

point or an endpoint of M, every point of L is either a cut point

or an endpoint of M.By Theorem 9 and the above argument it

follows that T is an acyclic continuous curve which satisfies

all the conditions of Theorem 24.

Theorem 25. If M is_ the complete boundary of two

mutually exclusive domains D and D
O ,

then no point of M is an

endnoint of any continuum which contains M.

Proof. It is stiffioient to show that M contains no

endpoint of itself. Suppose, on the contrary, that there exists

a point P which is an endpoint of M. Then P belongs to no

continuum of condensation of M For let H he any subcontinuum of

M which contains P. R.L. Moore has shown4 '-' that M-H is connected.

Therefore, since, hy supposition, P is an endpoint of M, P is

not a limit point of M - H. Hence, P belongs to no continuum of

condensation of M. By a theorem of R.L. Wilder’s 44
it follows that

P is accessible from each of the domains Ih an 4 Hence, if A

and 3 are points of and Dp respectively, there exist arcs

AP and 815B 15 such that AP -
13 and BP - are subsets of an 4 Hr,

respectively. Since for any continuum H of M which contains P,

P is not a limit point of M - H, it can easily be shown that there

exists an arc PPG from a point E of AP -

13 to a point G of BP - P

which contains no point whatever of M. This is impossible, because

E belongs to an4 ® belongs to Dp, and and Do are mutually

exclusive complementary domains of M by hypothesis. Thus the

supposition that M has an endpoint leads to a contradiction and
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the theorem is proved.

Theorem 26. ITo_ endpoint of a continuum M can be a

boundary point of more than one comp1ementary domain of M.

Proof. Suppose, on the contrary, that an endpoint 15

of M belongs to the boundaries of each of two complementary

domains D and D of M. Let N denote the outer boundary of Do
12

with respect to By a theorem of R.L.Moore ' N is the

complete boundary of each of two mutually exclusive domains

and Rg which contain and Dp respectively. And since is a

limit point both of and of Rg, must belong to IT. But Pis

an endpoint of M, and by Theorem 25, it cannot belong to any

point set which belongs to M and is the complete boundary of

two mutually exclusive domains. Thus the supposition that P

belongs to the boundary of more than one complementary domain

of M leads to a contradiction.

Theorem 27. The co ll ection G of all the continua [x]

contained in the boundary M of a simply connected bounded domain

D such that X is_ the complete boundary of some two mutually

exclusive domains. is countable.

Proof. Let K denote the unbounded complementary domain

of M, and let B denote its boundary. For every element X of 0, I

shall define a domain R
x

as follows, (l) When X=rß, let R
x

—X.

(2). For every element [x] of G such that B is not a subset of X,

the unbounded complementary X contains D. For every such

element [X] of G, let R
x

denote one bounded domain which has X

as its boundary. (3). For every element Lxl of G such that B^X
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but such that B is a subset of X, it is true that X is the

complete boundary of at least two bounded mutually exclusive

domains, because for every such element X, the unbounded com-

plementary domain of X is identical with X, and X is not the

complete boundary of X. Not both of these bounded domains can

contain points of D. Then for every such element X of G, let R
A

denote one of the bounded domains of which X is the boundary

which contains no point whatever of D.

Glearly, for every element X of G, there corresponds

a domain R as above defined. It is evident th-t for every
A

element X, R
x

is a complementary domain of M. It is well known
T

that the collectioiyyof all such domains R
x

is countable. Since

every element of G is the boundary of at leafct one domain of

the collection T, it follows that G is countable.

I will remark here that Theorem 27 is a generalization

of a theorem of R.L. Wilder's to the effect that the collection

of all the simple closed curves contained in the boundary of a

complementary domain of a continuous curve is countable.

Theo rem 28. Lf X denotes the set o f all the cut points

of a hounded oontinuum M
f

G denotes the collection of all the

continua [x] of. M such that X is. the complete boundary of two

mutually exclusive domains. and T denotes the point set obtained

by adding together all the -point sets of the collection G, then

the set of points comrnon to X and T is. countable.

Proof. Let H denote the set jfjo| points common to E



43

and T. Let the complementary domains of M be ordered IpjD^Dg,.

...., and their boundaries denoted by
,

respectively

How by the part of Theorem 19 proved by 8.1. Moore, K is a

subset of the point set B^H-B^+ 8,,-f“ Hence, if for every

i, denotes the set of points common to H ahd Bp, then

Hrr A^-f-Ag-t I shall show that for every positive in-

teger i, Ap is a countable set of points. Let P denote a point

of Ap. Then belongs to some element Xof G, and Xis the

complete boundary of two domains Rp and One of these domains,

say R^, contains no point whatever of Dp. Let Y denote the outer

boundary of IL with respect to Rp. Then Y is an element of G

which contains P and is a subset of Bp. Let Gp denote the collec-

tion of all those elements of G which are subsets of Then

by Theorem 27, is countable. It was just shown that every

point of Ap belongs to some element of Gp. Since by R.L. Moore*s

theorem, no element of G contains any cut point of itself, it

follows that no element of Gp contains more than a countable

number of cut points of M. It follows, then, that Ap is countable,

and therefore H is countable.

Theorem 29. If | denotes the set of all the cut points

and M denote s the point set consisting of the sum of all the

simple closed curves of a continuous curve M, then the set of

points common to K and H is. countable.

Theorem 29 is a corollary to Theorem 28.

Theorem 30. Ey,e_£y ejmiLLQimm iliß & „As connected

im hleinen at every one of its endpoints..thich is accessible from
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some point of S_ - M.

Proof. Suppose 15 is any endpoint of M which is access-

ible from S - M. There exists an arc t having P as one of its

extremities and such that t - P is a subset of S - M. Suppose,

contrary to this theorem, that M is not connected im kleinen at

T>
. Then there exists a circle 0 1

having center at P and such that

every circle which is concentric with 0* encloses a point X which

belongs to M but which lies in no connected subset of M which

contains P and is enclosed by G l
.

Let 0 be a circle concentric

with O' and of diameter less than V the diameter of O 1 and also

less than 4- the diameter of t. Then M contains a countable infin-

ity of continua
,

IL ,M ,M such that (1) each of

these continua has at least one point on 0 and is contained in

G plus its interior, (2) no two of these continua have a point

in common, and, indeed, no one of them, save possibly ,
is a

proper subset of any connected point set common to M and to 0

plus its interior, (3) no point of the set M-j-t- Mgf*Mg-f

lies together with P in any connected subset of M which is enclosed

by o*, and (4) M** contains the point 15 and is the sequential

limiting set of the sequence of continua Let

I denote plus all the hounded complementary domains of Moo.

It is clear that I is a maximal connected subset of the closed

point set Mg 4 ....., and that I neither separates the

plane nor contains any point of t - P. Hence by a theorem of

R.L. Moore *s there exists a simple closed curve J which

encloses I, contains no point of the point set
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is a subset of the interior of O', and is such thatits exterior

contains at least one point A 0 of t. Let B (see Fig. 2) denote

45
a point which is common to and G. The point set M&0 contains

a continuum H which is irreducible between P and B. Let H l denote

the point set obtained by adding to H all of its bounded comple-

mentary domains. How in the order from 15 to A
Q

on t, let A denote

the first point belonging to J. It is readily shown that there

exists an arc BOE from B to a point E of J such that (BOE) is

common to the interior of J and to the exterior of 0. Let AXE and

AYE respectively denote the two arcs of J from Ato E. The

continuum consisting of H* plus the arc of t plus the arc

BOE divides the interior of J into just two domains D-j and D
r

.

one of these domains, say has .AXE in its boundary, and the

other, L
O ,

has AYE in its boundary. It follows that one of these

domains, say contains infinitely many of the continua M-,
,

M
,

* 2

M
S

How let us consider the maximal connected subsets of

M - H. It is evident that each of the continua

must belong to one sizch subset of M - H. And since 13 is an end-

point of M, it follows that no maximal connected subset of M - H

can contain more than a finite number of these continua. Hence,

it is true that there exists an infinite sequence of distinct

maximal connected subsets of M - H, each of which contains at

least one of the continua let one such sequence

be ordered For every positive integer i, H

contains at least one limit point of IC-. Let C x be a circle



Fig. 2
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having P as center which lies entirely within J and is of

diameter less than -J- the diameter of 0. From a theorem of

A C

Janiszewski ’s it follows that H contains a continuum Lq which

contains P and a point of Oq and which is the maximal connected

subset of H which contains 15 and belongs to Oq plus its interior.

47
By a theorem of Miss Mullikin s

, the continuusm H contains a

connected set Q which contains neither the point B nor any point

of lq, but which has B for a limit point and has at least one

limit point in Lq. Now since H is irreducible between P and B,

it readily follows that if Hq denotes the point set Q*t3, then

H
~ -f- Lq. Since is an endpoint of M, it follows fl) that P

is not a limit point of Hq, and (2) that for not more than a

finite number of positive integers (i) does Hq contain a limit

point of Lb. Hence, there exists a positive integer such that

Hq contains no limit point of H
nq.

Now from condition (3),

above, which the sequence Mq,M 0f ..... satisfies, it follows that

for every positive integer i, Hq contains at least one point in

common with J. Hence,by Miss Mullikin* s theorem mentioned above,

Hn_ contains a connected set N° which contains no roint of either
1 1

of the continua Lq and J + BQE but is such that each of these

continua contains at least one limit point of Nq'. N°

is a subset either of l)q or of Ng* And since Dq contains infin-

itely many of the continua of which only a finite

o

number can contain points in common with Nq, It can be shown

that Nq cannot belong to Dq, and therefore, must belong to Dq .

Let Nq denote the point set obtained by adding to Nq all of its
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limit points. It has already been shown that N must he a subset

of arc AYEO3. It is evident that II divides Dg into

at two domains, one of which must have the arc A° of t in

its boundary. Let Rp denote the one which has AP in its boundary.

It is clear, then, that no point of Hp - is a limit point

of Rp and, therefore, that thee boundary of Rp is a subset of

Np-h Lp ■+■ the arc PAYEO3.

Let C
P

■•■'be a circle concentric with which encloses

and contains no roint either of Ih or of and which is of

diameter less than 1 the diameter of Gp. Let Lg he a subcontinuum

of H which hears the same corresopndence to Og as Lp hears to 0
1 .

Let the sets H
ot

K
n ,

11°, and 1I
?

he selected and defined with

respect to Gg and L 0 just as the corresponding sets Hp,E , Np,
and lip were defined with respect to and Again Ng must he

a suhs\g§ of Dg. Hence, contains a point on the arc AYEO3.

And since ll_ and II can have no roint in common, it can easily
1 2

he shown that on AYEO3, in the order from A to 3, Ap precedes

every point which belongs to Up. Hence, 11° is a subset of R_ . Let

R
P

denote that complementary domain of the continuum L 4* U_-f* the
& 2 c,

arc PAYRC3 which is a subset of Rp and has the arc PA of t in

its boundary. Again, H - L contains no limit point of R*.
22 2 2

This process may he continued indefinitely, and it follows that

there exists an infinite sequence of continua I!-, f
II f ,

having

the properties as above indicated. Also there exists a sequence

of d omai ns Hi ,Rg, such that for every positive integer n,
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R has the arc PA of t in its boundary, contains R
„,

and

contains N
n

«4* And there exist two sequences of

connected point sets L^,L Qf
and H^,HO , ,

such

that for every positive Integer n, l
n

-h H, suet that if

r denotes the radius of 0, then L contains P, and is of diameter
n

*

less than 3r/n, and such that Hk - L .
H contains no limit

/’n n n

point whatever of R .

n

Let IT denote the limiting set of the sequence of

continua ih,N
0
,. It readily follows from the above proper-

ties of this sequence, that IT contains P but contains no other

point whatever of H. The set IT contains at least one point U

of J.- Now IT is a continuum. Let IT denote tiie maximal connected

subset of N - which contains U. Then clearly is a limit point

of N
u * But Pis an endpoint of M and is, therefore, not a limit

point of any connected subset of M - IT. Thus, the supposition that

M is not connected im kleinen at P leads to a contradiction, and

the theorem is proved.

The following example demonstrates that the conclusion

of Theorem 30 does not necessarily remain valid if the restric-

tion that the endpoint of M in question shall he accessible

from S - M is removed. Let I he the straight line interval from

(0,0) to (1,0). And for every integer n such that n^fS) 1
, where

i takes on all positive integral values from 1 to oG
,

let

denote the broken line through the points (l/n,O), (l/n,-l/n),

(~1/n,-l/n), (-l/n,l/n), (1,1/n), (l
t 3/4n), and (0,3/4n) in the

order named. (See Fig. 3.) If M denotes the continuum 1 + 1-,+



Fig. 3
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l
f

H-LrM
,

and P denotes the point (0,0), then P is an

endpoint of M, but M is not connected im kleinen at P.

Theorem 31. If a continuum M is_ irreducible between

some pair of points A,B, then M is_ connected im kleinen at

every one of its endpolnts.

Proof. let P denote an endpoint of M. Let us first sup-

pose that either ~A or say P*2LB. Then by Janiszewski T 3

theorem mentioned above it follows that if 0 denotes any circle

having as center, then 0 encloses a subcontinuum H of M

which consists of more than one point and which contains B but

not A. From Miss Mullikin’s theorem it follows immediately that

M - H contains a connected set N which contains A and which has

at least one limit point in H. Since M is irreducible between

A and P, clearly M ■= Hff. And since P is an endpoint of M, is

not a limit point of M - H. Hence, there exists a circle K

concentric with and within 0 which encloses no point of M - H.

Any point of M which is interior to K lies together with P in

a closed and connected subset of M which is enclosed by 0, namely

in H itself. Hence
,

M is com ected im kleinen at p.

Now in case neither ?» A nor P~B, then M is the sura

of two continua IT
a

and
,

irreducible between A and 15 and B

and ? respectively. By the above argument, both K and El are
a

connected im kleinen at P. It follows that their sum, M
#

is

connected im kleinen at P.

In Ms paper Concerning the out -points of continuous
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curves and of bther closed and connected point sets, R.L. Moore

proves the following theorems.

I. In order that a bounded continuum M should be an

acyclic continuous curve it is necessary and sufficient that

every subcontinuum of M should contain uncountably m.ny points

each of which is a cut point of M.

11. In order that the continuous curve M should contain

no simple closed curve it is necessary and sufficient that if Z

denotes the set of all those points of M that are not out points

of M, then no subset of Z disconnects M even in the weak sense.

In Theorem 32, below, I shall establish a generaliza-

tion of R.L. Moore’s result (II) quoted here.

Theorem 32. In order that the bounded continuum M

should be an acyclic continuous curve it is necessary and suffic-

ient that if K denotes the set of all those points of M whioh are

not cut points of M, then no subset of Z disconnects M even in

the weak sense.

Proof. The condition is sufficient, For suppose a

hounded continuum M satisfies the condition hut is not an acyclic

continuous curve. Then hy result fl), above, of R.L. Moore’s,

it follows that M contains a suhcontinuum IT which contains not

more than a countable number of cut points of M. Let A and B

denote two points of IT. By hypothesis, M - Lz - (A+B)] is con-

nected in the strong sense. Hence, it contains a continuum H

which contains A and B. Since every point of H, except possibly



the points A and B, is a cut point of M, it follows by Theorem

9 that H is a continuous curve. Therefore, H contains an arc t

from A to B. Since 1? contains not more than a countable nu-Tiber

of cut points of M, there exist points E and F on t in the

order A
# E,F,3 such that the interval EF of t contains no point

whatever of N. Since IT contains both A and B, it follows by Miss

Mullikin’s theorem that IT contains a connected set Q containing

no point of t and such that each of the intervals AE and FB of

t contains at least one limit point of Q. But t is a continuum

every point of which, save possibly two, is a cut point of M,

and Q is a connected subset of M - t. Hence, by Theorem 11, t

can contain at most one limit point of 1. Thus the supposition

that M is not an acyclic continuous curve leads to a contra,diction.

It follows by H.L. Moore’s theorem II quoted above that

the condition is necessary.

University of Texas.
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