The Thesis Committee for Jierui Lin
Certifies that this is the approved version of the following Thesis:

PointDrive: A Point-based Self-driving Policy

APPROVED BY
SUPERVISING COMMITTEE:

Philipp Krdhenbiihl, Supervisor

Yuke Zhu

PointDrive: A Point-based Self-driving Policy

by

Jierui Lin

Thesis
Presented to the Faculty of the Graduate School
of The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Master of Science in Computer Sciences

The University of Texas at Austin

May 2022

Acknowledgments

I would like to express my gratitude to my supervisor, Philipp Krdhenbiihl,
who guided me throughout this project. I would also like to thank Yuke Zhu who
offered deep insight into the study.

I would also like to thank all the lab mates in Deep Learning Lab (UT-DL) and
Robot Perception and Learning Lab (RPL) for the great time we spent together.

Last but not least, I would like to thank my parents for supporting me over the
years and continuing to support me for my future endeavor.

Abstract

PointDrive: A Point-based Self-driving Policy

Jierui Lin, MSCS

The University of Texas at Austin, 2022

Supervisor: Philipp Krahenbiihl

Vision-based urban driving is hard since the image representation learned solely
from action supervision cannot generalize well to new scenarios. Is there a better
representation of the traffic scenarios? We propose PointDrive, a simple driving
policy conditioned on feature vectors of nearby agents. With semantic points rep-
resentation, we can perform realistic and efficient data augmentations to alleviate
distributional shift. Also, this point representation is easy to get from existing com-
puter vision algorithms. Experiments show that PointDrive substantially outper-
forms other offline methods on the CARLA benchmark. Furthermore, we perform
extensive ablation studies and show that the current bottleneck of our system is
in the perception module, suggesting better model design or learning algorithm is

needed to produce a robust vision model for autonomous driving.

Table of Contents

[Chapter 1 Introduction|

[Chapter 2 Related Work|
2.1 Object detection and tracking|..............cccccooiiiiiiiiii
2 R nd lan TOIU +eeeeeeeeee e e e e e e e e e
2.3 Imitation Learning|...................

2.4 End-to-End vs. Modular approach in policy learning|.........................

|[Chapter 3 Preliminaries)

B.1 Partially Observed Markov Decision Process|............ccc.ccocviiiiiiinn

3.2 Behavioral Cloning].............ccccccooii

[Chapter 4 System Design|

.1 State representation..................ccoooo
.2 Perception Module|............cccooiiii
.3 Policy Module|...........cccooiiiii

[Chapter 5 Experiments|
D1 BENvIrONmMent]......coovviiiiiiiiiii e

0.2.3 Simulate multiple cameras|.............cccoooii
BaSelINes| .. .ceoouuiiiiiieiiiiiiie e

10
10

12
12
12

13
13
14
17

[Chapter 6 Conclusions

[Bibliography|

29

30

Chapter 1

Introduction

1.1 Introduction

Self-driving has the potential to reduce accidents, enable the mobility-impaired
and reduce emission. However, the technical challenge remains unsolved after
decades of research from the first project ALVINN [31], to the recent explosion of
self-driving companies. In this thesis, we propose a self-driving system that decou-
ples perception from action in learning vision-based driving policy from cameras.

End-to-end driving, especially from monocular cameras, is hard. It needs to
perceive the static lanes information, and dynamic agents, such as vehicles and
pedestrians to predict their potential interactions and output actions that satisfy
all the traffic rules and users’ subtle driving styles. It is unreasonable to expect
a deep network to learn all of them with only action supervision [8]. More im-
portantly, even if end-to-end learning solves autonomous driving, it is not likely
to commercialize since a crucial requirement for bringing self-driving cars to the
market is the ability to reproduce and explain its own decisions, especially mis-
takes that lead to traffic accidents. Such a regulation by NHTSA makes end-to-end
designs not realistic because of the credit assignment problem: it’s hard to disen-
tangle the perception error from the control’s fault.

On the other hand, a modular approach that decouples perception from action
makes training much easier, but the design choices of what high-level representa-
tion to use still matters a lot. The most popular representation is a rasterized map
with drivable areas, traffic lights, vehicles and pedestrians rendered in a bird’s eye
view [6;29; [7]. Such scene context information is often encoded with ConvNets,
which have limited receptive fields and fail to reason about global interactions be-
tween agents. Recently, VectorNet [15] pioneers to use vectorized representation
to encode the scene context and use GNNSs to model the interactions among traffic
participants. However, they require hierarchical information processing and is in-
efficient to deploy on real cars. We take a minimalist approach to represent objects
as their center points with other informative features. Then, a point encoder is ap-

plied to encode the scene before feeding into the action module. The whole system

7

is computationally efficient and can be parallelized easily with modern GPUs.

With our modular design, different modules can be trained with different data
distributions, which improves data efficiency and generalizability. Perception mod-
ule needs to be robust to different weather, lighting and road conditions. And such
data can be easily collected without requiring expert driver or special maneuvers.
On the other hand, action module needs to reason about challenging scenarios and
learns to recover from its own mistakes. However, collecting such data is expen-
sive since the real-world driving data contains very few interesting cases and thus,
it is not a scalable way to increase our model performance with increasingly more
fleets of cars. Interestingly, our point-based representation enables many kinds of
data augmentations for free. For instance, we can simulate any heading directions
of the ego vehicle by performing a matrix transformation on the points (author?)
[4]. This enables our driving policy to know how to recover from mistakes without
requiring dangerous expert maneuvers.

Besides the benefits in training self-driving agents, our modular design also
makes extensive offline testing possible. Many previous work reported that offline
metrics, such as offline prediction error, are not reliable for autonomous driving
and testing in the real world is the golden standard for its performance [9], which
leads to many safety and budget concerns. Our modular design makes compre-
hensive and meaningful offline testing possible. More specifically, the perception
module is detection and tracking, which have many well-studied evaluation met-
rics. And our point representation of local scenes enables us to exhaustively test
our policy. For example, we can perform grid search over possible vehicle poses
and test whether our policy will react to other traffic entities in a timely manner.
Such evaluations of our perception and policy module can be performed entirely
offline, which will speed up the development cycle dramatically.

In summary, our contributions are three-fold: First, we design a point-based
modular self-driving system that decouples perception from action and achieves
the best performance among offline methods on CARLA urban driving bench-
mark; Second, our choices of high-level scene representation enables many use-
ful data augmentations to cover potential scenarios and alleviate the distributional
shift in autonomous driving; Third, our modular design enables extensive offline

testing, which is crucial for bringing self-driving cars to the real world.

Chapter 2
Related Work

2.1 Object detection and tracking

Object detection is one of the most popular research areas in computer vision.
There are three main approaches of object detection: region classification [17} 16],
implicit anchors [35; 25; 26;34] and keypoint estimation [22};48;47].

Object tracking can be divided into two most well-known streams of meth-
ods, tracking-by-detection [3} 23] that first uses an off-the-shelf object detector to
find all objects in each individual frame and then associate those detected objects
across frames and joint detection and tracking [14;44;/46], which directly performs
tracking on frame sequences with either previous bounding boxes or keypoints as
additional references.

We directly adopt CenterTrack [46] for its simplicity. In our modular driving
pipeline, we only need to track object centers and can use them as a high-level

representation of our observations.

2.2 Road and lane detection

Object detection is useful for locating some objects of interest but are inade-
quate for continuous surfaces like roads. Determining the drivable surface or lane
boundary is critical for self-driving and has been specifically researched. While
drivable surfaces or lane boundaries can be determined through semantic segmen-
tation, many previous methods require understanding of lanes, and how they are
connected through merges and intersections, which remains a challenge from the
perspective of perception [2].

In our pipeline, we represent lanes as points to feed into our policy module.
Thus, we put fewer constraints on lane geometry, reduce the accuracy requirement
in perception and leave the rest of work to our policy module. In our experiments,
we use a basic semantic segmentation network, EfficientNet [1], to segment out the

lanes, which is sufficient for our self-driving cars to navigate.

2.3 Imitation Learning

Imitation learning is a powerful technique to learn complex decision and con-
trol behaviors from observed expert demonstrations. Compared to reinforcement
learning [28}; 137} 38; 18], imitation learning is more data efficient and does not re-
quire exhaustive exploration, which makes it appealing in safety-critical systems,
such as autonomous driving.

We mainly focus on the widely used behavioral cloning paradigm, which di-
rectly learns a mapping from observations to expert actions. Behavioral cloning
usually suffers from distributional shift because small error will compound through
time and finally leads to unfamiliar states not supported by the training data.

Our method builds on the high-level representation from tracking enables many
data augmentations, such as simulating different camera angles [4], counterfactual
data [30], challenging scenarios, almost for free, which is shown to be crucial for
tackling the distributional shift [4; 36] and causal confusion [12] problems com-

monly arised in autonomous driving.

24 End-to-End vs. Modular approach in policy learning

Modular policy learning pipelines usually decouple perception from action,
which can easily introduce different inductive biases into different modules. More
specifically, most autonomous driving stacks decompose the pipeline into HD
mapping, localisation, perception, prediction, planning and control [40; 20]. Such
a design enables separation of responsibilities, better interpretability, and parallel
development of different modules.

On the other hand, end-to-end visuomotor policy learning shifts away from
manually defined modules and proposes to learn to control directly from raw ob-
servations. These methods rely on the capability of deep networks that perceptual
capabilities will arise in the model as needed, as a result of training for specific
motor tasks. Although end-to-end visuomotor control has some promising re-
sults on challenging tasks, ranging from video games [27], robot control [24] to au-
tonomous driving [10], it’s been widely shown that learning from a high-level rep-
resentation from a well-designed computer vision system still outperforms them

by a large margin [45} 41} 29].

10

Our approach inherits all the advantages of modular design, and by using
carefully-designed data augmentations specifically to our point-based represen-
tation of the world, we will show a huge performance improvement and better

generalization ability across different weathers, cities and time of a day.

11

Chapter 3

Preliminaries

3.1 Partially Observed Markov Decision Process

The decision process of an agent can be described by a partially observed Markov
decision process (POMDP) since the sensors such as cameras or LIDARs can only
perceive part of the environment at each time step. A POMDP can be formalized
as a tuple (S, A, T,r, O), where S is the state space of the environment, A is the
action space of the agent, T is the transition probabilities between states with a
given action, 7 : S x A — R is the reward function and O is the observation space
of the agent. At each time step ¢, the agent does not access to the underlying true
state s, and has to take the action a; according to the observation o;.

In imitation learning, we are given a demonstration dataset of observation-
action tuples: {(os, a:)}. They represent expert behaviors, i.e., the trajectories that
achieve high accumulated rewards. However, the reward is not provided in the
imitation learning setup. Instead, the goal of imitation learning is to learn a func-
tion that maps observation histories o, to the expert action a; that leads to high

accumulated rewards.

3.2 Behavioral Cloning

Among all the variants of imitation learning, we focus on behavioral cloning
(BC), a straightforward but powerful approach to mimic expert behaviors from a
demonstration dataset D = {(o;, ai)}iNzl,

reduces policy learning to supervised learning by maximizing the log-likelihood

where N is the number of samples. BC

of the action a; conditioned on the observation history o, so that the agent can

behave similarly to the expert, i.e.,

0" = arg max Ep[log P(a¢|os; 0)). (3.1)

12

Chapter 4

System Design

4.1 State representation

State representation is crucial for learning a good driving policy. Many previ-
ous work [39] chooses to render the HD maps as color-coded attributes and encode
the scene context information with ConvNets, which ignores the structure of the
HD map and suffers from limited receptive size. Recently, VectorNet [15] proposes
to represent the static scene and the dynamic actors as vectors or polylines, which
is more efficient but still suffer from the overhead of hierachical feature encoding
and information exchange in GNNSs.

We take the minimalist ideology and propose to represent the local scene, in-
cluding ego vehicle, other vehicles, pedestrians, traffic lights and lanes, as points,
which contains the essential information about an agent/object to decide driving
actions. More specifically, at time step ¢, every point p! € R is defined as

o, oty, cos(0)', sin(0)", s*,id]
, which contains the following attributes: 3D center position (of, o’;), orientation
(cos(0)!, sin(0)"), speed (s') and their class label (id). For dynamic agents, such as
vehicles and pedestrians, their speed s, is defined as the distance traveled between
two consecutive time steps ¢ — 1 and ¢.

5 = \/(0; —ol71)? + (of, — of71)?

For static agents, their speed s, is set to 0 for all time steps ¢. Since lanes are con-
tinuous, we sample points regularly from them with a resolution of 1m. For traffic
light, we assign different ids to different light states (green, yellow and red) to in-
clude the necessary information to decide whether to throttle or brake. Note that
we do not include vehicle’s and pedestrian’s width and length in our state repre-
sentation because we believe the policy can be conservative by assuming a max-

sized blob around each center point of the traffic participants. Since these points

13

= S— >
5 N = Crosswalk l Crosswalk
i N
—
- B - R | |
. I Lane Lane

| |
WA
W

Lpli"ly /\ W i \\
Figure 4.1: Comparisons of different scene representations (Figure partly
from [15]). The left and middle figure represent scene as semantic map and vec-
tors respectively. The right figure is our proposed point representation, which uses
center points with different semantics to represent traffic agents.

o]

\gen
raject

are simply feature vectors, the state can be expanded to contain more attributes,
such as vehicle color, brand, traffic light remaining time if needed in specific driv-
ing cases.

By representing dynamic agents as point features of their 3D centers and lanes
as multiple regularly sampled points, we avoid the need of learning a polyline fea-
ture for each agent or object as in [15] and can directly model the high-level inter-
actions between different traffic participants, which further speeds up the training

and inference of the driving policy.

4.2 Perception Module

Since our goal is to learn a driving policy from monocular cameras, we need to
infer our state representation from images taken by the camera mounted in front
of the ego vehicle. With the rapid development of detection, tracking and segmen-
tation in Computer Vision, there are many off-the-shelf models to use. Specifically,
we choose CenterTrack [46] for detecting objects/agents, such as vehicles, pedes-
trians and traffic lights. And we use EfficientNet for lane segmentation [1]].

Our detection network Fj takes in the current image I' € R">*#*3 the previ-

ous image """ € R"W*#*3 and the previous detection results rendered in a class-

14

Projection
Image 1,_; e ._’—: /\
- .
4—.? 2 km/h
3 L] 26 km/h
Image 1, . CenterTrack e g0 ’ -
i .‘ED km/h

1 30 kmn

Traffic light
®
Ego
Tracks T,_; {] Detection,
[] Speed,
Orientation State

pixel world
hY S,

Figure 4.2: Perception module — Our perception module follows CenterTrack [46].
It takes current and previous observations as well as previous track as input and
predicts current object location, orientation and speed (displacement) in pixel co-
ordinates. Then, we project from pixel to world coordinates using known camera
intrinsics and extrinsics.

agnostic heatmap H'~! € R">*#*! and predicts the state defined in Section
Following [46], we use intense data augmentation to prevent the detector from
overfitting. Our data augmentations include simulating false positive, false neg-
ative and inaccurate detections in previous heatmap H'~! and sampling previous
image ["~" from k = 1,2,3 to prevent the detector from overfitting to the frame
rate.

We directly predict locations as a class-specific heatmap Y,,, € R"W/axH/ax¢

where C' = 5. We use focal loss [25] as shown below.

1 (1 N YWY log (}ij> ¥y =1 (4.1)
N wye | (1= Yo" (ff;yc) log <1 — ?myc> otherwise

where 8 = 2 and v = 4 are hyperparameters.

The orientation 6 is a single scalar by default. Following [19], we use an 8-scalar
encoding. The 8 scalars are divided into two groups [-F, %] and [—%, %], each
for an angular bin. Within each bin, 2 of the scalars b; € R? are used for softmax
classification. And the rest 2 scalars a; € R? are for the sin and cos value of in-bin
offset.

The classification are trained with softmax and the angular values are trained

15

with L1 loss:

Lo = L Z Z (softmax <b,, cz) + ¢ la; — a,|> 4.2)

N
k:l i=1

where

=1(0 € B)

and

a; = (sin (6 —m;), cos (0 —m;))

1 is the indicator function and m; is the middle of bin i. We do not include the time
step index () on the variables for clarity.

Moreover, we also predict center offset ., which avoids discretization issues
and tracking offset J, to provide us with agents” speed. They’re both supervised
with mean square loss to their ground-truth value.

b0 — (oz mt(<t>>)‘ (4.3)

— (01@71) — ol(-t)> ‘ (4.4)

where o'"Y and o) are the low-resolution pixel coordinates of objects at time

| N
5“)_sz:

s TN

step t — 1 and ¢. We avoid the downsampling factor o for simplicity.

Next, we will discuss our lane segmentation model. Since lanes are continuous,
a key-point based detector may produce overly sparse detections or inconsistent
local geometry. Thus, we use a segmentation model G, to segment out lanes of dif-
terent directions and the background. G, only takes the current image observation
I' € RW*H*3 ag input and is trained with Dice loss:

2| X; N X;|
ane — (45)
b NZ|X1+|X|

where X and X are the groud-truth and predicted segmentation map respectively.
The overall loss function is

16

- Conditional .
PointNet Module 2 4
Command Gas Brake

Figure 4.3: Policy module — Our policy module acts on detected states and pre-
dicts the driving actions conditioned on navigation commands.

Lp - Lloc + Lori + L§c + L(Ft + Llane (46)

4.3 Policy Module

As we represent the local scene as points, a natural choice is to use a permuta-
tion invariant point encoder H,, to obtain the feature. We use PointNet [33], which
has been shown successful in 3D classification, segmentation and reconstruction.
We directly predict the low-level controls, including steering, throttle and brake
following previous work [10]. Similar to [10], our policy is also conditioned on
navigation commands, such as turn left, go straight, turn right and follow., which
is proved to be useful especially at intersections.

The loss to train our policy is the following:

| X
L,= N Z |d; — al (4.7)
i=1

Since our policy is built upon the high-level point representation of the scene,
we can easily simulate different traffic scenarios for better training and testing pur-
poses. For example, we can simulate multiple cameras by rotating all the points,
except the ego vehicle point, with simple matrix multiplication. Moreover, we can
add, remove or disturb the points to simulate new scenarios to test the robustness
and generalization ability of our policy. Such low-cost and highly-realistic simula-
tion is crucial to bringing self-driving cars to the real-world as it greatly speedups

17

development cycle compared with traditional road testing pipeline.

18

Chapter 5

Experiments

5.1 Environment

511 CARLA

CARLA is a photorealistic urban autonomous driving simulator [13], and is
commonly adopted for closed-loop evaluation [10} 11; 8} 43; 32]. We collect our
own dataset using the autopilot in CARLA, which is about 10 hours of driving.
We evaluate all methods in the CARLA Nocrash benchmark, which has varying
numbers of pedestrians and vehicles in different towns. We pre-define the starting
and ending locations of our ego vehicle as shown in Figure 5.1| for evaluating our
agent. We use %success as our metric, which is the number of episodes that are
fully completed without colliding into other vehicles, pedestrians and lane bound-

aries.

5.1.2 Expert data collection

CARLA provides a hand-engineered autopilot, which have access to the true
state of the simulator. Note that the autopilot is not perfect as it has a success rate
of 85%. So, we immediately terminates an episode if the expert crashes to filter out
bad maneuvers.

We collect our expert data in CARLA [13]. During collecting, 10% expert ac-
tions are perturbed by noise [21] to augment the state. We use three cameras: a
forward-facing one and two lateral cameras facing 30 degrees away towards left
or right [5] to cover a large field of view. Both noise injection and multiple cam-
eras are common data augmentation techniques to alleviate distributional shift in
autonomous driving.

Our dataset is collected in Town(1 under 4 different weather conditions: clear

noon, hard rain noon, clear sunset and hard rain sunset.

19

48% #9498 232 5655 F8 g9 3 o3 6668
48

& 35
5 436
¥ oP9392 13013843 43 348 g48
&0 e
T #
£ 2 i
@ & ¢ 6 8 @£ @4
aH 7
26 »
s
&0
89688 @33 @38 @38 430 ¢33
@51 &5 &
40 o4
& B & &0
407
& 96 <i0 B

84 84289 J2b1933 g19 d18 gi3 g19 4pse0s gd9@e:

Figure 5.1: CARLA Town01 map — Red dots are the pre-defined starting and end
points used to test our agent.

5.2 Implementation Details

5.2.1 Data augmentaion in perception module

At inference time, this tracklet heatmap H;_; of previous frame can contain
some wrongly localized objects, false negatives and false positives. These errors
are not present in ground-truth tracklets provided during training.

Following [46], we simulate this test-time error during training. First, we sim-
ulate inaccurate detections by locally jittering each tracklet from the prior frame
by adding Gaussian noise to each center. Second, we randomly add false positives
near ground-truth object locations by rendering a spurious noisy peak with prob-
ability 0.1. Third, we simulate false negatives by randomly removing detections
with probability 0.5.

Moreover, similar to [46], we sample the previous frame H; ; from k = 1,2,3
with equal probability during training to prevent the model from overfitting to the
frame rate. And during inference, we only use k£ = 1 as the previous frame.

Note that we do not perform any image data augmentation for detection since
we believe our collected dataset is diverse enough, containing scenes collected in
different weathers and times of a day.

We follow the default setting in [1] for lane segmentation.

20

5.2.2 Coordinate transformation

Given a predicted object (0, of) in pixel coordinates, we compute its projection

onto the ground plane (0¥, 0%, 0) using the camera’s horizontal field of view (fov)

z Yy

| = stntfory Where w is the width of canvas. We project points onto a constant

ground plane z = 0 to avoid depth estimation.

¢ f
Oy = h/2—_0p2’c (51)
Y
0P —w/2
c=e 5.2
O 0%
v l=—pg| % (5.3)
— 1

The camera is placed at a height of z. = 1.4 in the vehicle’s reference frame. The
camera faces forward and has a resolution of w x h = 384 x 160 with horizontal
fov = 90° and extrinsic matrix F.

Then, we project from global world coordinates to local coordinates in ego ve-

hicle’s frame. Assume ego vehicle is at (e}, ;) with orientation ey, then
l w w
o o (&
| =R o 5.4)
%y o e

cosey —siney]

where

R= (5.5)

siney cosey

5.2.3 Simulate multiple cameras

The expert drives almost perfectly, which lacks data points about recovering
from mistakes. For example, what should I do if I'm oriented 30 degree to the right
of the center lane? If we can augment our dataset with scenarios of different ego
orientations and their corresponding steerings, we can recover from our mistakes

after deployment. As a result, we need to simulate those bad maneuvers to learn

21

a robust driving policy.

Our point representation gives us an easy way to simulate those scenarios. We
can simply let ey = ey + dp where §y is the radiance angle offset of the simulated
camera sensor. And the coordinate transformation in Section will take care of
the rest.

We can apply the steering physical equation to calculate the corresponding

steering of the new orientation.

59><Cl

6
55 eer — t 5.6
teer = 0 X ATCRAN TG (5.6)
where cl is the car’s length and is set to 6.
5steer = min (5steer7 03) (57)
Agteer = INAX (17 min(—l, Asteer + 5St8€7")) (58)

5.3 Baselines

CIRLS [9]. Behavioral cloning from the current observation conditioned on
high-level navigation commands, which is shown to perform better than BC with
observation histories [12].

LBC [8]. Learning by cheating decouples perception from action by first learn-
ing a state-based agent and then distills an image agent. It uses online rollout to
bootstrap its performance.

LBC-Offline [8]. Since LBC rolls out the priviliged agent in the environment
to generate additional training data for the image agent. We also compare with a
version without any online rollout.

Autopilot. We use the autopilot in Carla to generate our training data. Though
it is not perfect due to the limitations of a rule-based policy, we treat it as an upper
bound of our method.

22

Task Weather CILRS LBC-Offline LBC Autopilot OURS

Empty 87T+ 1 88 + 2 100£0 1000 100=+0
Regular train 83+ 0 74+4 99 +1 99t 1 98+ 1
Dense 42 + 2 28 +4 95+ 2 86 + 3 76 £+ 2
Empty 87T+ 1 91+ 3 100£0 100£0 100=+0
Regular test 88 +2 71+5 99+1 99 +1 85+ 2
Dense 70+ 3 24+ 2 97 + 2 83+ 6 60 +4

Table 5.1: Success rate of OURS and baselines in training and testing weathers in
CARLA NoCrash benchmark.

5.4 Self-driving peformance

As shown in Table our method performs the best among offline meth-
ods, including an end-to-end approach (CIRLS) and a policy distillation approach
(LBC-Offline). CIRLS uses significantly more data (100 hrs driving), but still per-
forms much worse than OURS. LBC-Offline distills an image agent from the se-
mantic map based state agent, which lacks supervising signals to reason about
the image and thus, is hard to learn an accurate low-level control. This demon-
strates the advantage of our scene representation and our modular design of the
self-driving stack.

Compared with an online method (LBC), which uses the state-based agent as
expert during online rollout to supervise the image agent, OURS performs worse,
especially in dense traffic. This suggests that learning from a broader state distri-
bution is crucial for driving. However, online rollout is expensive and not practical
in the real world.

The autopilot, with access to ground-truth state, uses a PID controller to get the
driving actions. There is still a 20% gap between OURS and the autopilot in dense
traffic. We will investigate where does the gap come from in our ablations.

5.5 Perception results

We use the Pascal VOC metrics to evaluate our object detector. Since we repre-
sent the agents by their center points and do not predict their sizes, we heuristically
set a bounding box with height and width equal to 10 pixels around the center. Our
policy network uses a local region of 80m around the ego vehicle, so we evaluate

23

Weather AP (vehicles) AP (pedestrians) mAP
train 49.81 18.04 33.92
test 42.33 14.73 28.53

Table 5.2: APs of vehicles and pedestrians in train and test weather.

Distance (m) 10 20 30 40 50
vehicle 44 6731 456 3355 28
pedestrian 2.17 695 63 2497 1874

Table 5.3: APs of vehicles and pedestrians within different distances to the ego
vehicle.

APs within the same region. As shown in Table 5.5, the vehicle AP is 49.81 and the
pedestrian AP is 18.04. The pedestrians are much harder to detect since they are
often in a crowd and are often too small to detect when they are far away from the
ego vehicle.

Since nearby objects are more important to our driving policy, we also evaluate
APs within different distances relative to the ego vehicle, ranging from 10m to
50m. Table [5.5] shows how APs change with the relative distance of the object.
Vehicle detection performance improves when it gets closer to the ego vehicle, but
when it is too close (less than 10m), it becomes hard to detect because the center
points often fall outside the image. Pedestrian detection performance is poor in
close regions. The reason is that in our simulation, it is more likely to spawn more
pedestrians nearby the ego vehicle to make the scenario more challenging and
thus, it is hard for our detector to correctly identify every pedestrian in the crowd.

Moreover, we show some visualizations of the detected agents’ center points
in pixel and world coordinates. The green dot is the ego vehicle. The green and
blue circles are ground-truth vehicles and pedestrians respectively. The light blue
crosses are the detected vehicles while the yellow crosses are the detected pedestri-
ans. These detected agents are also shown in the front-view image with the same
color code. The top two examples show some successful detections of vehicles and
pedestrians, but it is still hard to detect every pedestrian when they are in a crowd.
The bottom example is a common failure case: the vehicle on the opposite lane is
extremely close to the ego vehicle so that its center point is out of the canvas frame
and is not detected. One potential solution is to render a point on the edge of the

24

Figure 5.2: Visualizations of our object detector. Solid green dot is the self-driving
car. Green and blue circles are ground-truth vehicles and pedestrians. Blue and
yellow crosses are detected vehicles and pedestrians. The squares in the image are
the detected centers of each object.

canvas and predict an offset vector to handle those extremely close objects, which

we leave for future work.

5.6 Ablations

We perform all of our ablations in the most difficult dense traffic setting. In our
ablations, we hope to answer the following three questions:

1) Which is the bottleneck of our driving pipeline? The perception module
or the policy module?

An advantage of our modular driving system is that we can develop, train and
evaluate each module separately, which greatly speeds up the development cycle
and is a crucial but often ignored factor to bring self-driving cars to the real-world.

25

Since OURS still has a 20% gap to the autopilot, we would like to identify the
bottleneck in our system. We simply replace our detection results by the ground-
truth states provided by the simulator and keep the same policy module. We name
this ablation as OURS w/ GT detection.

OURS w/ GT detection performs even better than the hand-engineered autopi-
lot, achieving 96% success rate across different weathers. This demonstrates that
if we have a perfect perception module, a point-based driving policy can be bet-
ter than a hard-coded policy, which again emphasizes the idea that a good scene
representation is important for the performance of a driving model.

2) Does simulating multiple cameras improve driving performance?

Simulating multiple cameras easily and efficiently is an advantage of our point
representation. But, how useful is it? In order to answer this question, we compare
with an ablation OURS w/o multi-view simulation that doesn’t augment the point
representation with simulated camera transformation.

OURS w/o multi-view simulation has a success rate of 5% drop in the training
weather and 8% drop in testing weather.

This is validated by many prior work [4; [10; [11] that data points of different
ego orientations are important. However, since these methods are focused on end-
to-end driving, they need to mount multiple cameras in order to simulate diverse
ego orientations, which increases the hardware cost. In [8], they also simulate
multiple ego orientations in the bird’s-eye view. However, since they represent the
scene as a semantic map, they need to re-render everything from scratch, which is
inefficient and time-consuming.

3) Does a rule-based controller help?

Since our perception module is not perfect and our observation is usually par-
tially observed, we want to take the history observations into account. However,
many previous work [12; 42] reports that adding historical observations hurts the
driving policy’s performance.

Since our driving system is modularized, we can utilize historical observations
in a very simple way. More specifically, we constrain the self-driving car to stop
if a nearby obstacle (vehicle or pedestrian) is detected in any one of the past 10
frames. Thus, our policy is more robust to false negatives of the detector, which is

a more severe problem than false positives in real driving scenarios.

26

1a 1a

—— throttle
—— brake

0.8 0.8

0.6 06
—— throttle
—— brake

action
action

04 0.4

02 02

0.0 0.0

2 4 & 8 10 12 14 16 —& -4 -2] 2 4 &
distance ahead the ego wehicle (m) heorizontal distance to the ego vehicle (m)

Figure 5.3: Action of the self-driving car when a front other vehicle is at different
vertical and horizontal offsets.

We compare with an ablation without the controller, namely OURS w/o con-
troller. The performance drops 23% in the training weather and 27% in the testing
weather, validating the importance of temporal information to the policy.

4) Does joint training of the perception and policy module help?

Although we decople the perception and policy module in our design, we can
also train the whole system end-to-end using both object bounding boxes and ex-
pert actions as supervision. However, in practice, we find it difficult to achieve

good driving performance with joint training.

5.7 Offline Evaluation

Since we represent agents as points, we can perform extensive offline evalua-
tion by adding, removing or perturbing the points.

Here, we test the scenario when there is a vehicle in front of the ego vehicle.
Figure 5.7] shows the ego car’s reaction to the other car at different vertical and
horizontal offsets. If we fix the horizontal offset of the front car to 0, we can test the
self-driving car’s reaction to obstacles of varying vertical offset. When the vertical
offset is less than 10m, the self-driving car brakes hard and keep throttling if the
front car is more than 10m ahead of it. On the other hand, if we fix the vertical
offset to 10m, the self-driving car will brake when the horizontal offset is less than
3m.

27

Such grid-search style test shows that our self-driving car can react to nearby
agents in time to avoid collision, which is more reliable than the L1 or L2 error
used in prior work [9]].

28

Chapter 6

Conclusions

In this work, we propose a modular driving system that decouples perception
from action. Our perception module detects and tracks the dynamic agents in
the scene and represents them as points in bird’s-eye view. Our policy directly
takes in those semantic points and predicts the maneuvers at the current time step.
Such a design choice together with our point representation of traffic scene allows
many data augmentations for free, such as multi-view simulation, targeted data
generation and so on. We extensively evaluate our driving pipeline in the most
popular driving benchmark and it achieves state-of-the-art performance compared
with offline imitation methods. Our ablation studies show that the current system
bottleneck is in the perception module and can be further improved with better

model choices or larger training datasets.

29

Bibliography

[1] Bhakti Baheti, Shubham Innani, Suhas S. Gajre, and Sanjay N. Talbar. Eff-
unet: A novel architecture for semantic segmentation in unstructured envi-
ronment. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pages 1473-1481, 2020.

[2] Aharon Bar-Hillel, Ronen Lerner, Dan Levi, and Guy Raz. Recent progress in
road and lane detection: a survey. Machine Vision and Applications, 25:727-745,
2011.

[3] Alex Bewley, ZongYuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. Sim-
ple online and realtime tracking. CoRR, abs/1602.00763, 2016.

[4] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner,
Beat Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller,
Jiakai Zhang, Xin Zhang, Jake Zhao, and Karol Zieba. End to end learning for
self-driving cars. CoRR, abs/1604.07316, 2016.

[5] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner,
Beat Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller,
Jiakai Zhang, Xin Zhang, Jake Zhao, and Karol Zieba. End to end learning for
self-driving cars. CoRR, abs/1604.07316, 2016.

[6] Sergio Casas, Wenjie Luo, and Raquel Urtasun. Intentnet: Learning to predict
intention from raw sensor data. CoRR, abs/2101.07907, 2021.

[7] Yuning Chai, Benjamin Sapp, Mayank Bansal, and Dragomir Anguelov. Mul-
tipath: Multiple probabilistic anchor trajectory hypotheses for behavior pre-
diction. CoRR, abs/1910.05449, 2019.

[8] Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Krahenbiihl. Learning
by cheating. In Conference on Robot Learning, pages 66—75. PMLR, 2020.

[9] Felipe Codevilla, Antonio M. Lépez, Vladlen Koltun, and Alexey Dosovitskiy.
On offline evaluation of vision-based driving models. CoRR, abs/1809.04843,
2018.

[10] Felipe Codevilla, Matthias Miiller, Antonio Lépez, Vladlen Koltun, and
Alexey Dosovitskiy. End-to-end driving via conditional imitation learning.
In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages
1-9. IEEE, 2018.

[11] Felipe Codevilla, Eder Santana, Antonio M Lépez, and Adrien Gaidon. Ex-

30

ploring the limitations of behavior cloning for autonomous driving. In Pro-
ceedings of the IEEE International Conference on Computer Vision, pages 9329—
9338, 2019.

[12] Pim de Haan, Dinesh Jayaraman, and Sergey Levine. Causal confusion in im-
itation learning. Advances in Neural Information Processing Systems, 32:11698—
11709, 2019.

[13] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and
Vladlen Koltun. CARLA: An open urban driving simulator. In Proceedings
of the 1st Annual Conference on Robot Learning, pages 1-16, 2017.

[14] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Detect to track
and track to detect. CoRR, abs/1710.03958, 2017.

[15] Jiyang Gao, Chen Sun, Hang Zhao, Yi Shen, Dragomir Anguelov, Congcong
Li, and Cordelia Schmid. Vectornet: Encoding HD maps and agent dynamics
from vectorized representation. CoRR, abs/2005.04259, 2020.

[16] Ross B. Girshick. Fast R-CNN. CoRR, abs/1504.08083, 2015.

[17] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich
feature hierarchies for accurate object detection and semantic segmentation.
CoRR, abs/1311.2524, 2013.

[18] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with
a stochastic actor. In International conference on machine learning, pages 1861
1870. PMLR, 2018.

[19] Hou-Ning Hu, Qi-Zhi Cai, Dequan Wang, Ji Lin, Min Sun, Philipp Krdhen-
btihl, Trevor Darrell, and Fisher Yu. Joint monocular 3d vehicle detection and
tracking. CoRR, abs/1811.10742, 2018.

[20] Ashesh Jain, Luca Del Pero, Hugo Grimmett, and Peter Ondruska. Autonomy
2.0: Why is self-driving always 5 years away? CoRR, abs/2107.08142, 2021.

[21] Michael Laskey, Anca Dragan, Jonathan Lee, Ken Goldberg, and Roy Fox.
Dart: Optimizing noise injection in imitation learning. In Conference on Robot
Learning (CoRL), volume 2, page 12, 2017.

[22] Hei Law and Jia Deng. Cornernet: Detecting objects as paired keypoints.
CoRR, abs/1808.01244, 2018.

[23] Laura Leal-Taixé, Cristian Canton-Ferrer, and Konrad Schindler. Learning by
tracking: Siamese CNN for robust target association. CoRR, abs/1604.07866,

31

2016.

[24] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end
training of deep visuomotor policies. CoRR, abs/1504.00702, 2015.

[25] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Doll4r.
Focal loss for dense object detection. CoRR, abs/1708.02002, 2017.

[26] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E.
Reed, Cheng-Yang Fu, and Alexander C. Berg. SSD: single shot multibox
detector. CoRR, abs/1512.02325, 2015.

[27] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei Rusu, Joel
Veness, Marc Bellemare, Alex Graves, Martin Riedmiller, Andreas Fidje-
land, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis
Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg,
and Demis Hassabis. Human-level control through deep reinforcement learn-
ing. Nature, 518:529-33, 02 2015.

[28] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-
ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. Human-level control through deep reinforce-
ment learning. nature, 518(7540):529-533, 2015.

[29] Jonah Philion and Sanja Fidler. Lift, splat, shoot: Encoding images from ar-
bitrary camera rigs by implicitly unprojecting to 3d. CoRR, abs/2008.05711,
2020.

[30] Silviu Pitis, Elliot Creager, and Animesh Garg. Counterfactual data augmen-
tation using locally factored dynamics. CoRR, abs/2007.02863, 2020.

[31] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network.
In Advances in neural information processing systems, pages 305-313, 1989.

[32] Aditya Prakash, Kashyap Chitta, and Andreas Geiger. Multi-modal fu-
sion transformer for end-to-end autonomous driving. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
7077-7087, June 2021.

[33] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Point-
net: Deep learning on point sets for 3d classification and segmentation. CoRR,
abs/1612.00593, 2016.

[34] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali
Farhadi. You only look once: Unified, real-time object detection. CoRR,

32

abs/1506.02640, 2015.

[35] Shaoqging Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN:
towards real-time object detection with region proposal networks. CoRR,
abs/1506.01497, 2015.

[36] Stéphane Ross, Geoffrey J. Gordon, and]J. Andrew Bagnell. A reduction of im-
itation learning and structured prediction to no-regret online learning. Journal
of Machine Learning Research, 15:627-635, 2011.

[37] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp
Moritz. Trust region policy optimization. In International conference on machine
learning, pages 1889-1897, 2015.

[38] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[39] Rainer Stiefelhagen, Keni Bernardin, Rachel Bowers, John Garofolo, Djamel
Mostefa, and Padmanabhan Soundararajan. The clear 2006 evaluation. vol-
ume 4122, pages 1-44, 04 2006.

[40] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics (In-
telligent Robotics and Autonomous Agents). The MIT Press, 2005.

[41] Dequan Wang, Coline Devin, Qi-Zhi Cai, Philipp Krdhenbiihl, and Trevor
Darrell. Monocular plan view networks for autonomous driving. CoRR,
abs/1905.06937, 20109.

[42] Chuan Wen, Jierui Lin, Trevor Darrell, Dinesh Jayaraman, and Yang Gao.
Fighting copycat agents in behavioral cloning from observation histories. In
Advances in Neural Information Processing Systems, volume 33, 2020.

[43] Chuan Wen, Jierui Lin, Jianing Qian, Yang Gao, and Dinesh Jayaraman.
Keyframe-focused visual imitation learning. In Proceedings of the 38th Inter-
national Conference on Machine Learning, Proceedings of Machine Learning Re-
search. PMLR, 18-24 Jul 2021.

[44] Zheng Zhang, Dazhi Cheng, Xizhou Zhu, Stephen Lin, and Jifeng Dai. In-
tegrated object detection and tracking with tracklet-conditioned detection.
CoRR, abs/1811.11167, 2018.

[45] Brady Zhou, Philipp Krdhenbiihl, and Vladlen Koltun. Does computer vision
matter for action? CoRR, abs/1905.12887, 2019.

[46] Xingyi Zhou, Vladlen Koltun, and Philipp Krdhenbiihl. Tracking objects as

33

points. CoRR, abs/2004.01177, 2020.

[47] Xingyi Zhou, Dequan Wang, and Philipp Krdhenbiihl. Objects as points.
CoRR, abs/1904.07850, 2019.

[48] Xingyi Zhou, Jiacheng Zhuo, and Philipp Krahenbiihl. Bottom-up object de-
tection by grouping extreme and center points. CoRR, abs/1901.08043, 2019.

34

	Introduction
	Introduction

	Related Work
	Object detection and tracking
	Road and lane detection
	Imitation Learning
	End-to-End vs. Modular approach in policy learning

	Preliminaries
	Partially Observed Markov Decision Process
	Behavioral Cloning

	System Design
	State representation
	Perception Module
	Policy Module

	Experiments
	Environment
	CARLA
	Expert data collection

	Implementation Details
	Data augmentaion in perception module
	Coordinate transformation
	Simulate multiple cameras

	Baselines
	Self-driving peformance
	Perception results
	Ablations
	Offline Evaluation

	Conclusions
	Bibliography

