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This dissertation develops adaptive hp-Finite Element (FE) technology and

a parallel sparse direct solver enabling the accurate modeling of the absorption of

Electro-Magnetic (EM) energy in the human head.

With a large and growing number of cell phone users, the adverse health

effects of EM fields have raised public concerns. Most research that attempts to ex-

plain the relationship between exposure to EM fields and its harmful effects on the

human body identifies temperature changes due to the EM energy as the dominant

source of possible harm. The research presented here focuses on determining the

temperature distribution within the human body exposed to EM fields with an em-

phasis on the human head. Major challenges in accurately determining the temper-

ature changes lie in the dependence of EM material properties on the temperature.

This leads to a formulation that couples the BioHeat Transfer (BHT) and Maxwell

equations.
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The mathematical model is formed by the time-harmonic Maxwell equa-

tions weakly coupled with the transient BHT equation. This choice of equations

reflects the relevant time scales. With a mobile device operating at a single fre-

quency, EM fields arrive at a steady-state in the micro-second range. The heat

sources induced by EM fields produce a transient temperature field converging to a

steady-state distribution on a time scale ranging from seconds to minutes; this ne-

cessitates the transient formulation. Since the EM material properties depend upon

the temperature, the equations are fully coupled; however, the coupling is realized

weakly due to the different time scales for Maxwell and BHT equations. The BHT

equation is discretized in time with a time step reflecting the thermal scales. Af-

ter multiple time steps, the temperature field is used to determine the EM material

properties and the time-harmonic Maxwell equations are solved. The resulting heat

sources are recalculated and the process continued.

Due to the weak coupling of the problems, the corresponding numerical

models are established separately. The BHT equation is discretized with H1 con-

forming elements, and Maxwell equations are discretized with H(curl) conforming

elements. The complexity of the human head geometry naturally leads to the use of

tetrahedral elements, which are commonly employed by unstructured mesh genera-

tors. The EM domain, including the head and a radiating source, is terminated by a

Perfectly Matched Layer (PML), which is discretized with prismatic elements. The

use of high order elements of different shapes and discretization types has motivated

the development of a general 3D hp-FE code.

In this work, we present new generic data structures and algorithms to per-
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form adaptive local refinements on a hybrid mesh composed of different shaped

elements. A variety of isotropic and anisotropic refinements that preserve con-

formity of discretization are designed. The refinement algorithms support one-

irregular meshes with the constrained approximation technique. The algorithms

are experimentally proven to be deadlock free.

A second contribution of this dissertation lies with a new parallel sparse di-

rect solver that targets linear systems arising from hp-FE methods. The new solver

interfaces to the hierarchy of a locally refined mesh to build an elimination order-

ing for the factorization that reflects the h-refinements. By following mesh refine-

ments, not only the computation of element matrices but also their factorization is

restricted to new elements and their ancestors. The solver is parallelized by exploit-

ing two-level task parallelism: tasks are first generated from a parallel post-order

tree traversal on the assembly tree; next, those tasks are further refined by using

algorithms-by-blocks to gain fine-grained parallelism. The resulting fine-grained

tasks are asynchronously executed after their dependencies are analyzed. This ap-

proach effectively reduces scheduling overhead and increases flexibility to handle

irregular tasks. The solver outperforms the conventional general sparse direct solver

for a class of problems formulated by high order FEs.

Finally, numerical results for a 3D coupled BHT with Maxwell equations

are presented. The solutions of this Maxwell code have been verified using the

analytic Mie series solutions. Starting with simple spherical geometry, parametric

studies are conducted on realistic head models for a typical frequency band (900

MHz) of mobile phones.
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Chapter 1

Introduction

A rapid increase in the use of wireless devices such as cell phones and

wireless Local Area Networks (LANs) has produced growing concerns about the

potential adverse health effects from exposure to Radio Frequency (RF), Electro-

Magnetic (EM) fields emitted by those devices. This research focuses on determin-

ing the temperature distribution in the human body exposed to EM fields with an

emphasis on the human head. A precise evaluation of the interaction between the

human body and EM fields is important not only for the study of harmful effects

on the human body but also for medical diagnoses and treatments. For example,

hyperthermia treatment can shrink tumors by locally heating cancer cells with a

minimum damage to neighboring normal cells. The localized deep heating inside

of the human body can be obtained by means of EM radiation. The possibility of

precisely determining the effects of EM radiation on the human body can ultimately

be used for an optimal design of cell phones and other mobile devices to minimize

adverse effects of EM waves on the tissues.

1



1.1 Problem statement

Coupled problem. Modeling of temperature effects of EM waves in the human

body relies on the solution of Maxwell equations coupled with the Pennes BioHeat

Transfer (BHT) equation. EM waves emitted from a cell phone determine the rate

of heat generation in the tissue which results in a non-uniform temperature distri-

bution in the body. In turn, the electromagnetic material properties (permittivity,

permeability and conductivity) depend not only upon the radiating frequency of the

antenna but also the temperature distribution in biological media. This creates a

two-way coupling effect between EM waves and heat transfer procedures.

Nature of the coupling. As EM properties depend upon the operating frequency

and temperature, the two models are fully coupled with each other in time, which re-

quires discretization in both space and time. However, with an antenna operating at

a single frequency, transient effects in Maxwell equations can be neglected because

EM fields arrive at steady-state in micro-seconds. Hence, Maxwell equations can

be approximated by time-harmonic Maxwell equations corresponding to the forc-

ing frequency. Contrary to Maxwell equations, transient temperature changes range

from seconds to minutes, and have to be resolved using the transient BHT equa-

tion. We determine the rate of heat generation from the solution of time-harmonic

Maxwell equations for a single time step in thermal scales. Given the solution to

time-harmonic Maxwell equations, we compute the heat sources and evolve the

temperature fields by solving the BHT equation. EM material properties are up-

dated based on the new temperature distribution, and the process continues. The
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Linear model G1-continuous model

Figure 1.1: Reconstructed G1-continuous geometry of the human head.

two problems are never solved together, but they are weakly coupled by data trans-

fer, in terms of variation of EM material properties and a temperature distribution,

sharing the same geometry and mesh structure.

Geometry. An accurate model of the geometry of the human body is essential

for the quality of solution [58, 59]. The geometry in biomedical engineering does

not usually come from Computer-Aided Design (CAD) data, but it is reconstructed

from an imaging system such as Computerized Tomography (CT) and/or Magnetic

Resonance Imaging (MRI). We reconstruct piecewise linear geometry from MRI

data using a third party software. Next, the reconstructed geometry is upgraded

to a smooth, G1-continuous representation like the one shown in Fig. 1.1 using a

Geometry Modeling Package (GMP) developed by Demkowicz et al. [24, 100].
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hp-Finite Element Method. Highly accurate numerical methods are desirable to

solve Maxwell equations in the complex geometry of the human head. In this dis-

sertation, the hp-Finite Element Method (FEM) is used for solving the spatial and

temporal distribution of temperature, and EM fields. The method uses both h and p

refinements to improve the solutions: h-refinements locally reduce the element size

h by subdividing the elements and p-refinements improve the solution by increasing

the polynomial order p of approximation. Small elements are necessary to capture

complex geometries. On the other hand, large elements with higher orders are less

prone to phase (pollution) error [4, 61]. Additionally, for solutions with singulari-

ties or boundary layers, a judicious combination of h and p refinements generally

achieves higher convergence rates [26, 27].

The two problems are approximated independently due to the weak cou-

pling: the BHT equation is discretized with H1-conforming elements while the

time-harmonic Maxwell problem uses H(curl)-conforming elements. Additionally,

the EM domain, which includes radiating sources, must be truncated with a bound-

ary condition that does not reflect outgoing waves but absorbs the radiating energy.

To accomplish this, the Perfectly Matched Layer (PML) [12] with higher order el-

ements is employed.

Direct solver. A large sparse system created by the FEM can be solved by ei-

ther direct or iterative methods. In the hp-FEM, the use of direct methods is often

preferred since the condition number of sparse matrices arising from the high or-

der FEM may grow significantly with the order of approximation p [9, 17]. This
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fact makes it difficult to use iterative methods without a suitable preconditioner;

building a good preconditioner is another challenging task.

As a part of the dissertation, we have developed a new parallel direct solver

that exploits typical sparsity patterns generated by the hp-FEM. In particular, the

following aspects in hp-FEM are extensively used in the entire solution procedure:

• the linear systems generated in a sequence of consecutively adapted meshes

are locally updated;

• sparse matrices derived from hp-discretizations consist of dense subblocks

characterized by the order of approximation p.

Unlike the traditional black-box interface, the solver provides an opportunity to

reuse element matrices and partial factors previously computed during the adaptive

iterations [14]. Secondly, the adjacency graph of the sparse system can be con-

structed in a compressed form, which consists of topological nodes (i.e., vertex,

edge, face and interior) and their Degrees of Freedom (DOFs). This also implies

that almost all matrix operations on the sparse systems based on the hp-mesh can be

cast in terms of block matrix computations, which enable the efficient use of high

performance level 3 Basic Linear Algebra Subprograms (BLAS) operations [29].

While a general sparse direct solver devotes considerable efforts to finding such

supernodal information through a graph analysis, the proposed solver obtains the

information from the hp-FEM a priori. These features are not yet explored by

the previously developed direct solvers. Together with advances in modern High
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Performance Computing (HPC) architectures, the solver outperforms conventional

direct solvers for the system of equations resulting from hp-discretizations.

1.2 Background

In this section, we present some background on the EM wave radiation on

the biological tissue and a brief review historical aspects of the numerical methods

for solving Maxwell equations and the Pennes BHT model.

1.2.1 Electro-Magnetic wave radiation in biological tissues

EM waves at frequencies ranging between 1 MHz and 100 GHz, propagate

through a human body, and the EM energy is absorbed by biological tissues gen-

erating localized heat sources in the medium. At the molecular level, two types

of heating mechanisms are known: resistive heating by ionic conduction and di-

electric heating by the inter-molecular friction of dipole molecules e.g., water and

proteins [45]. The energy deposited in a tissue leads to a temperature rise, which

is also dependent on the cooling system of the tissue. The temperature of the tis-

sue may continuously increase if the absorbed energy is greater than the metabolic

output by the cooling system of the tissue, such as blood perfusion. As a result, the

increase of temperature may cause severe damage of the tissue.

The heating pattern due to EM energy absorbed by a human body depends

on various tissue properties:

• heterogeneous dielectric properties and conductivity,
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• the shape of different tissues and their interfaces.

For instance, materials with high water content like muscle and brain tissue are

expected to have higher energy absorption than materials with low water content

such as fat and bone tissue. Besides, the complex shape of biological tissues and

their interfaces may cause standing waves which result in hot spots [41]. This

effect can lead to a deep burn of the tissue under the skin; however, the heating and

damage of tissues inside of a human body are not usually noticeable because nerve

cells are not evenly distributed throughout the body.

The dielectric properties and conductivity are dependent on the temperature

of tissues. In the microwave spectrum, the dispersion relation is relatively small

compared to the frequency dependence. The following linearized relation is given

in [45]:

∆σ

σ
= 0.02∆u and

∆ε

ε
=−0.005∆u,

where σ and ε represent relative conductivity and permittivity, and ∆u is the change

in temperature with a ◦C degree unit. Also, we note that the temperature depen-

dence of dielectric properties of biological tissues was modeled through quadratic

curve fitting for the temperature range from 20 ◦C to 60 ◦C in [53].

The trend of using higher frequency and higher power in mobile devices

possesses increasing EM hazards [63]. When EM waves are transmitted in a hu-

man body, the waves excite specific tissues, and the tissue resistivity to the EM

hazards varies based on the frequency of operation, the anatomical location, and
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external environments. For example, EM heating is more dangerous to the brain

and eyes than muscle tissue because the circulating blood on the muscle can dis-

tribute the heat effectively throughout the entire body. This suggests that differ-

ent safety thresholds for different exposure conditions need to be established; see

International Commission on Non-Ionizing Radiation Protection (ICNIRP) [2].

1.2.2 Computational ElectroMagnetics

Finite Difference Time Domain. The development of Finite Difference Time

Domain (FDTD) for Maxwell equations originated in Yee’s work in 1966 [103]. In

his algorithm, electric and magnetic fields are approximated in space and time by

using a coupled form of Maxwell equations instead of solving a single wave equa-

tion for either the electric or the magnetic field alone. The method is simple enough

to deliver higher efficiency on modern parallel computing architectures. How-

ever, the method has difficulties in handling complex geometries; it requires reg-

ular structured grids and curved boundaries are approximated by staircase meshes.

The method also loses accuracy when the problem involves inhomogeneous media.

These bottlenecks are partially fixed by hybrid methods [11] and local mesh refine-

ment strategies [13,66,106], but the revised schemes are more complicated and less

efficient than those used for regular geometry.

Method of Moments. In 1968, Harrington presented a unified approach for inte-

gral equations called the Method of Moments (MOM) [42]. The method evaluates

point sources that correspond to a boundary condition using a Green’s function. The
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basis functions satisfy the radiation condition for open domain problems. Hence,

unlike the methods based on differential equations, the method does not need an

artificial boundary condition to truncate a domain. Radiating fields are identified

by summing up contributions from all sources. This makes the approach efficient,

especially for scattering from perfect conductors; the problem reduces to an inte-

gral equation formulated on the two-dimensional scattering surface. However, the

method has a drawback when the problem is formulated with inhomogeneous me-

dia. In addition, the resulting linear systems are dense, which requires intensive

computations and memory usage. Many fast algorithms have been introduced to

solve the problem more efficiently (e.g., Fast Fourier Transform [104, 105], Fast

Multipole Method [90], and Hierarchical Matrix [39] methods).

Finite Element Method. The FEM, based on the Galerkin approach, approxi-

mates solutions to Partial Differential Equations (PDEs) by constructing piecewise

polynomial basis functions spanned over on a collection of subdomains called Finite

Elements (FEs). The method is superior to other methods in modeling complex ge-

ometries (using elements of all shapes), and material inhomogeneities. The first

FEM application to EM problems is found in Silvester’s work who studied a ho-

mogeneous waveguide problem in 1969 [88]. The method was not widely accepted

until a theoretical breakthrough made by Nédélec [64,65], who solved the problem

of spurious modes and introduced a family of edge-based vector elements providing

the necessary (tangential) continuity in the electric (or magnetic) fields across the

inter-element boundaries. These elements are also called the H(curl)-conforming
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elements. There are many implementations of the H(curl)-conforming elements

with the lowest order, but very few for 3D high order elements of all shapes [80].

This is because of the complexity of high order basis functions preserving tangential

continuity and technical difficulties related to orientations of edges and faces.

Perfectly Matched Layer. For unbounded domain problems such as scattering

or radiating waves, grid based methods such as FDTD and FEM need to truncate

the unbounded domain with proper boundary conditions mimicking the waves at

infinity. The Perfectly Matched Layer (PML) technique, which was first proposed

by Berenger [12] in 1994 for solving the time dependent Maxwell equations, is

most widely used to obtain accurate solutions on the domain of interest. The main

idea of this technique is to surround the computational domain with an absorb-

ing boundary layer of finite thickness, called the Perfectly Matched Layer. Waves

travelling outward through this layer are changed into evanescent ones. The idea

was re-interpreted as the complex stretch of variables by Chew and Weedon [22].

Recently, a systematic approach for constructing the Perfectly Matched Layer for

all energy spaces forming the exact sequence has been proposed by Matuszyk and

Demkowicz [60]. The construction is based on generalizing the pull-back maps

(Piola transforms) to complex stretching.

1.2.3 Pennes BioHeat Transfer equation

The construction of a mathematical model for the BHT in the living tissue

is very complex due to the following reasons:
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1. The model needs to deal with complex thermal processes and their interac-

tions: conduction, convection, radiation, metabolism, perfusion, phase change,

and other factors.

2. The tissue structures are highly heterogeneous, and the material properties

vary even if they are measured for the same kind of tissues. It is difficult or

impossible to measure accurate material properties in living tissues.

3. Due to the complex geometry of blood vessels including their irregular tissue

structures, the construction of precise discrete model for the human body is

inherently difficult.

4. The BHT problem involves a wide range of length scales from micrometers

(cells) to centimeters (tissue).

5. A precise heat-transfer model for the blood perfusion and metabolism in-

creases significantly the complexity of the model.

The first mathematical model for BHT was proposed by Pennes [72] in

1948. Pennes conducted a set of experiments to measure the temperature distribu-

tion of forearms, and presented quantitative analysis of relationship between arterial

blood and tissue temperature in the forearms. The Pennes model states the energy

conservation law; the energy generated or deposited in the control volume reaches

a thermal equilibrium with energy transferred energy through the surroundings. In

particular, two major thermal effects are included: metabolism (heat source) and
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blood perfusion (heat sink). The equation looks as follows:

ρc
∂u
∂t

= ∇ · (k∇u)︸ ︷︷ ︸
heat flux

+Wbcb (ua0−u)︸ ︷︷ ︸
perfusion rate

+ q̇m︸︷︷︸
metabolism

,

where

q̇m = metabolic heat source,

Wb = volumetric blood perfusion rate,

cb = specific heat of blood,

ua0 = temperature of arterial blood,

ρ,c,k = tissue density, specific heat, and effective thermal conductivity.

The model assumes that the metabolic heat source is uniformly distributed in the

tissue. Blood is also assumed to be isotropically distributed in the tissue, and the

fact that the blood flows in a certain direction is ignored. The convective interaction

across the vascular wall is not included; instead, the model introduces the arterial

blood temperature to compute total heat transfer with capillaries in the tissue.

This model is widely used in many application problems thanks to its sim-

plicity. On the other hand, it has also been criticized for the same reason. Chen [21]

pointed out that arterial blood equilibrates with the local tissue temperature before

it reaches the capillary bed. Weinbaum [96] reported that the counter-current heat

exchange between parallel arterial and venous vessels is an important factor. How-

ever, the modified models introduce a great deal of complexities, and they often

require fine-scale models to describe complex vascular networks. In practice, the

original Pennes model has been defended and validated with numerous experimen-

tal results [98].
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1.3 Scope of the dissertation

The dissertation focuses on the development of hp-Finite Element technolo-

gies and a parallel sparse direct solver. The technological advances described

above have been driven by the coupled Maxwell – BioHeat Transfer problem de-

scribed earlier to which the developed technology has been applied. Numerical

simulations presented in Chapter 6 illustrate the technology. These results repre-

sent an important step toward modeling the deposition of EM energy in the human

head, but much additional work remains to be done before complete understanding

of these phenomena is in hand.

Here, we give a short overview of the dissertation.

In Chapter 2, we describe variational formulation for the time-harmonic

Maxwell equations and the transient Pennes BHT model. Two problems are inde-

pendently formulated and weakly coupled through data transfer; the BHT model

accounts for Specific Absorption Rates (SARs) induced by EM waves.

Chapter 3 is devoted to hp3d, a general hp-FE code, that supports exact se-

quence elements for solving multi-physics problems. The code includes elements

of all shapes (i.e., hexahedron, tetrahedron, prism, and pyramid) that enable to de-

scribe complex geometry. Of particular interest is the general mesh refinement

scheme, which includes isotropic and anisotropic refinements for hybrid meshes

that consist of the elements of all the available shapes. The proposed refinement

strategy is experimentally shown to be deadlock free.

In Chapter 4, we discuss the Unassembled HyperMatrix (UHM) solver that
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utilizes application information induced from hp-refinements. This direct solver

has an ability to reuse the element matrices and partial factors previously computed

during the mesh adaptation process. In this application context, higher efficiency is

obtained from its unique workflow interface to the hp-code.

In Chapter 5, we explain our parallelization strategy for the developed sparse

direct solver. Our particular interest lies in the multi-core architectures and investi-

gated task-level parallelism. The solver exploits two-level tasking structures match-

ing two-level parallelism in the multifrontal factorization. Coarse grain tasks are

first generated via the post-order traversal in an assembly tree; next, the coarse grain

task is decomposed into fine-grained tasks using algorithms-by-blocks. Those fine-

grained tasks are asynchronously scheduled via multiple Directed Acyclic Graph

(DAG) schedulers, where those schedulers are also scheduled during the parallel

tree traversal. In effect, we achieve an efficient task scheduling system as if we

have a global DAG of tasks. We show that our solver outperforms other state-of-

the-art direct solvers such as PARDISO and MUMPS when the system of equa-

tions is based on higher polynomial orders. This approach is extended to heteroge-

neous multi-core architectures that are accelerated by multiple Graphic Processing

Units (GPUs). A new task subdivision scheme is developed aiming at the efficient

use of all computing resources.

In Chapter 6, we present numerical results of the BHT problem coupled

with Maxwell equations. There, we focus on the verification aspect of the problem

to demonstrate the effectiveness of the described FE technology.
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Chapter 2

Formulation of the Problem

In this chapter, we formulate the boundary-value problem of interest: the

time-harmonic Maxwell equations coupled with the transient Pennes BioHeat Trans-

fer (BHT) equation.

2.1 Electromagnetics

It took almost a century from Newton’s Law of Universal Gravitational At-

traction published in his Philosophical Naturalis Principia Mathematica in 1687,

to the analogous law in Electrostatics published by Coulomb in 1775, marking the

beginning of electromagnetics. It took almost another century and work of such in-

tellectual giants as Ampère, Faraday, Gauss, Lenz and many others until 1856 when

a Scottish mathematician James Clerk Maxwell formulated what is known today as

Maxwell equations; a proper mathematical model to describe the electromagnetic

wave propagation. The present form of Maxwell equations is due to Heaviside who

reformulated the work of Maxwell to his contemporaries in 1884. So, it took ex-

actly two centuries from the development of the foundations of pure mechanics to

the development of theories of electromagnetics and electromechanics.
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2.1.1 Time-harmonic Maxwell equations

First-order Maxwell equations. In this work, we will restrict ourselves to the

time-harmonic case only. For instance, we assume the following Ansatz for the

unknown electric field

E(x, t) =R
(
E(x)e jωt) ,

where ω is the angular frequency and E(x) is the unknown complex-valued phasor,

being only a function of the position x and the frequency ω. Alternatively, the

phasor can be identified as the Fourier transform (in time) of real-valued electric

field E(x, t). Analogous formulas are assumed for all other involved quantities, and

time derivatives in the transient Maxwell equations translate into the presence of jω

factor. Then, we obtain the following set of equations:

∇×E =− jωB Faraday’s law, (2.1a)

∇×H = J+ jωD Ampère’s law, (2.1b)

jωρ+∇ ·J = 0 conservation of charge, (2.1c)

accompanied with Gauss’s laws:

∇ ·D = ρ electric Gauss’s law, (2.2a)

∇ ·B = 0 magnetic Gauss’s law, (2.2b)
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where

E = electric field intensity [V/m],

H = magnetic field intensity [A/m],

D = electric flux density [C/m2],

B = magnetic flux density [Wb/m2],

J = electric current density [A/m2],

ρ = electric charge density [C/m3].

E and H fields are related to the corresponding fluxes D and B as well as the im-

pressed current Jimp and free current J through the following constitutive laws:

D = εE, (2.3a)

B = µH, (2.3b)

J = Jimp +σE, (2.3c)

with three material parameters of the medium:

ε= permittivity [F/m],

µ= permeability [H/m],

σ = conductivity [(Ω ·m)−1].

These parameters are tensors for anisotropic media; they can be functions of both

the position and frequency, and may also depend on the field intensities. For the

case of lossy media, the material parameters become complex-valued. In this work,

we consider isotropic media only; therefore, the material constants are scalars.
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The Maxwell system of equations is overdetermined. Using the constitutive

relations in (2.3) to eliminate D, B, and J, we end up with two vector unknowns:

E, H, and one scalar unknown ρ; those unknowns have to satisfy two vector equa-

tions and three scalar equations. In this context, the two divergence equations are

regarded as being dependent and often neglected in numerical computations. This,

unfortunately, leads to spurious modes and inaccurate solutions in Computational

ElectroMagnetics (CEM), and they can be corrected by using a correct discretiza-

tion (e.g., H(curl)-conforming elements) satisfying the divergence free conditions

of the electric and magnetic fields implicitly.

Second-order wave equation. By combining (2.1a) and (2.1b) described in the

first-order Maxwell equations, the second-order wave (curl-curl) equation can be

formulated as follows:

∇×
(

1
µ

∇×E
)
−
(
ω

2
ε− jωσ

)
E =− jωJimp. (2.4)

The resulting equation is decoupled and expressed exclusively in either the electric

field or magnetic field. The field variable used in this formulation is usually selected

for the ease of handling given boundary conditions. We formulate equations with

respect to the electric field, and the conversion to the magnetic field is made by

using the Faraday’s law in (2.1a).

2.1.2 Variational formulation

A variational formulation can be obtained by connecting the Ampère’s law

and Faraday’s law: one of these two equations is satisfied weakly in the distri-
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butional sense, and the other equation is imposed strongly. For the electric field

formulation, (2.1b) is relaxed; a test function F is multiplied to the equation and in-

tegrated over the domain Ω. Integrating by parts, we obtain the following equation:

∫
Ω

H ·∇×Fdx+
∫

∂Ω

(n×H) ·FtdS =
∫
Ω

Jimp ·Fdx+
∫
Ω

(σ+ jωε)E ·Fdx. (2.5)

Next, we impose the Faraday’s law pointwise to remove the magnetic field H:

H =− 1
jωµ

(∇×E) . (2.6)

By substituting (2.6) into the (2.5), the variational formula can be written as follows:

∫
Ω

1
µ

∇×E ·∇×Fdx−
∫
Ω

(
ω

2
ε− jωσ

)
E ·Fdx

=− jω
∫
Ω

Jimp ·Fdx+ jω
∫

∂Ω

(n×H) ·FtdS. (2.7)

This variational equation can be rewritten with relative parameters using the fol-

lowing free space material parameters:

ε0 = free space permittivity (8.854×10−12F/m),

µ0 = free space permeability (4.0π×10−7H/m).

Then, relative parameters are set:

εr =
ε

ε0
, εσ =

σ

ωε0
, µr =

µ
µ0

, k0 = ω
√

ε0µ0, Z0 =

√
µ0

ε0
, (2.8)
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and the (2.7) is expressed with free space wave number k0 and its free space impedance

Z0 as follows:∫
Ω

1
µr

∇×E ·∇×Fdx−
∫
Ω

k2
0 (εr− jεσ)E ·Fdx

=− jk0Z0

∫
Ω

Jimp ·Fdx+ jk0Z0

∫
∂Ω

(n×H) ·FtdS.

Proper interface conditions can be derived from the integral form of Maxwell equa-

tions. At the interface between two media, the boundary conditions for the electric

field are expressed in the following equation:

n̂× (E1−E2) = 0,

n̂ · (D1−D2) = ρs.

Similarly, the boundary conditions for magnetic fields are derived as follows:

n̂× (H1−H2) = Jimp
s ,

n̂ · (B1−B2) = 0,

where n̂ is a unit normal vector from medium 1 to medium 2; ρs is the imposed

surface charge density; Jimp
s is the imposed surface electric current density.

The main types of possible boundary conditions are as follows.

• Perfect Electric Conductor (PEC). This boundary condition models an in-

terface with a perfectly conducting region. Since a perfect conductor cannot

hold any electric fields in it, the tangential component of the electric field on

the boundary must be zero:

n̂×E = 0 on ΓD. (2.9)
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• Impressed surface current. An antenna can be modeled by prescribing an

impressed current on the surface boundary of the antenna, and expressed by

n̂×H = Jimp on ΓN . (2.10)

Splitting the boundary ∂Ω into two disjoint boundaries namely ΓD and ΓN , which

indicate Dirichlet and Neumann boundary conditions, we can complete the varia-

tional formula as follows:

b(E,F) = l (F) , ∀F ∈H(curl,Ω) and n̂×F = 0 on ΓD, (2.11)

where

E ∈H(curl,Ω) and n̂×E = n̂×ED on ΓD,

b(E,F) =
∫
Ω

(
1
µr

∇×E ·∇×F− k2
0 (εr− jεσ)E ·F

)
dx,

l(F) =− jk0Z0

∫
Ω

Jimp ·Fdx+ jk0Z0

∫
ΓN

Jimp
S ·FdS.

(2.12)

2.1.3 Non-dimensionalization

We introduce the following non-dimensional quantities:

x :=
x
a
, ω := k0a, E :=

E
E0

, Jimp :=
aZ0

E0
J, Jimp

s :=
Z0

E0
Js, (2.13)

where a is a characteristic length, and E0 is a characteristic electric field intensity.

For our problem of interest, the scales are naturally determined by the size of the

human head and the intensity of incident electric field representing the antenna of

a cell phone. Note that the non-dimensional angular frequency coincides with the

non-dimensional free space wave number.
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a = 1m
ω = 18.8624 (0.9 GHz) ω = 37.7248 (1.8 GHz) ω = 104.7911 (5.0 GHz)

εr εσ εr εσ εr εσ

Blood 61.360718 30.718839 59.372261 20.409070 53.950397 19.397026
Skin (Dry) 41.405334 17.311626 38.871857 11.831546 35.773590 11.004411

CSF 68.638336 48.185794 67.200493 29.196078 61.952278 23.716978
Brain 45.805496 15.308879 43.544899 11.515098 39.295105 12.508021
Skull 16.620754 4.826096 15.561986 4.311201 13.045326 4.985904

Muscle 55.955475 19.356274 54.442284 13.874880 50.132092 15.245332

Table 2.1: Non-dimensionalized dielectric parameters of biological tissues [1].

The variational formula, which is rewritten with the non-dimensional vari-

ables, retains its original form given by:

E ∈H(curl,Ω) and n̂×E = n̂×ED on ΓD,

b(E,F) =
∫
Ω

(
1
µr

∇×E ·∇×F−ω
2 (εr− jεσ)E ·F

)
dx,

l(F) =− jω
∫

Ω

Jimp ·Fdx+ jω
∫

ΓN

Jimp
S ·FdS.

(2.14)

Table 2.1 shows the range of the non-dimensional material constants relevant for

the problem of interest.

2.2 Perfectly Matched Layer

For scattering problems, Maxwell equations are formulated in the unbounded

domain, and the scattered field is required to satisfy the Silver-Müller radiation con-

dition at infinity:

lim
r→∞

r[∇×E− jk0er× (er×E)] = 0,

where r is a spherical coordinate centered at the scatterer. This radiation condition

represents the requirement that the wave should propagate outward; the radiating
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electric and magnetic fields are apt to be transverse in the far-field region, which

also implies that the Poynting vector becomes radial. In addition to Maxwell equa-

tions, this radiation condition should be imposed to ensure that the scattered field is

uniquely determined.

However, the Finite Element (FE) discretization can be applied only in a

bounded domain. Consequently, the infinite domain has to be truncated via an arti-

ficial boundary layers mimicking the radiating conditions. A number of techniques

have been invented over the last three decades including coupling with Boundary

Elements, Infinite Elements [18], and Absorbing Boundary Conditions [32]. In

this work, we shall use perhaps the most popular and effective Perfectly Matched

Layer (PML) [12] technique and follow the construction presented by Matuszyk

and Demkowicz [60].

PML formulation in spherical coordinates. Suppose our domain of interest

Ω ⊂ R3 is truncated with a sphere of radius a, and the PML complex stretching

is applied to the exterior domain ΩPML where r > a as depicted in Fig. 2.1. The

stretching will convert physically correct outgoing waves into evanescent waves

decreasing exponentially away from the scatterer, with a simultaneous exponential

amplification of the incoming waves. A consecutive application of the PEC condi-

tion at r = b > a eliminates the exponentially blown-up of incoming waves.

First, we define the complex variable, z(r) through complex stretching of

23



n̂ ⇥ E = 0

a
b ⌦

⌦PML

Figure 2.1: Illustration of the Perfectly Matched Layer (PML).

the real variable r, described as follows:

z(r) =

{
r 0≤ r < a domain of interest,(

1.0− j
k

( r−a
b−a

)α
)

r a≤ r ≤ b PML layer,

where α represents a tuning parameter. The complex coordinate stretching is con-

structed in such a way that the outgoing wave reaches a zero (to machine-precision)

at r = b so that no wave is reflected from the exterior boundary. This leads to a

stretching map xC : Ω3 x→ x̃∈ Ω̃ from real coordinates x to the complex-stretched

coordinates x̃. Analogus to the Piola mapping between a master element and a cor-

responding physical element, the complex-stretched mapping can be applied in the

same way.

Next, we compute the Jacobian corresponding to the complex-stretching.

Since we compute in Cartesian coordinates and stretch them in spherical coordi-
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nates, the following chain rules are used to determine the complex variable Jaco-

bian:

J̃ =
∂x̃
∂x

=
∂x̃
∂z
· ∂z

∂r
· ∂r

∂x
,

where x and x̃ are defined as follows
x = r sinθcosφ

y = r sinθsinφ

z = r cosθ

,


x̃ = z(r)sinθcosφ

ỹ = z(r)sinθsinφ

z̃ = z(r)cosθ.

Recalling the Piola maps transforming master elements onto physical elements, the

same exact sequence logic should be applied to the stretched transformation:

Ẽ◦xC = J̃−T E and (∇̃× Ẽ)◦xC = J̃−1J̃(∇̃×E). (2.15)

Since the electric field E in the PML region satisfies the stretched version of the

Maxwell equations, we obtain the following modified bilinear form:

b̃
(
Ẽ, F̃

)
=

∫
Ω

(
1
µr

∇̃× Ẽ · ∇̃× F̃−ω
2 (εr− jεσ) Ẽ · F̃

)
J̃dx

=
∫
Ω

(
1
µr
(J̃−2J̃T J̃)∇×E ·∇×F−ω

2 (εr− jεσ)(J̃−1J̃−T )E ·F
)

J̃dx

=
∫
Ω

 1
µr
(J̃−1J̃T J̃︸ ︷︷ ︸

Ā−1

)∇×E ·∇×F−ω
2 (εr− jεσ)(J̃J̃−1J̃−T︸ ︷︷ ︸

Ā

)E ·F

dx.

Introducing a metric tensor Ā = J̃J̃−1J̃−T , the above bilinear form can be rewritten

as follows:

b̃
(
Ẽ, F̃

)
=

∫
Ω

(
1
µr

Ā−1
∇×E ·∇×F−ω

2 (εr− jεσ) ĀE ·F
)

dx. (2.16)

This implies that the complex-stretching changes the transmitting medium in which

the original Maxwell systems is posed into an anisotropic one.
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2.3 BioHeat Transfer

The temperature rise in biological tissues exposed to Electro-Magnetic (EM)

waves can be determined by solving the BHT equation. The BHT model is charac-

teristic in two unique mechanisms: blood perfusion and metabolism. Additionally,

the model is also dependent on external heating sources such as EM energy de-

position. In this section, we consider the Pennes BHT model accounting for blood

perfusion, metabolism, and Specific Absorption Rate (SAR) induced by EM waves.

2.3.1 The Pennes model

The Pennes BHT model [72] assumes that the net heat transfer q̇perf between

the blood and the tissue in a control volume Ωbody is proportional to the temperature

difference between the arterial blood entering the volume and the venous blood

leaving the tissue. The constant of proportionality includes a scalar parameter Wb,

defined as the volumetric rate of blood perfusion. In this sense, the blood is modeled

as being locally distributed as scalar sources or sinks of heat,

q̇perf =Wbcb(ua−uv), (2.17)

where

q̇perf = net heat transfer in a control volume [W/m3],

Wb = volumetric blood perfusion rate [kg/m3s],

cb = specific heat of blood [J/kg◦C],

(ua−uv) = temperature difference between the arteries and veins [◦C].
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In addition to the standard Pennes model, deposited energy by EM waves transmit-

ted in the tissue is included as SAR:

q̇SAR = ρSAR =
σ|E|2

2
, (2.18)

where

σ = conductivity of the tissue [Ω/m],

E = electric field intensity [V/m],

ρ = density of the tissue [kg/m3].

Then, the energy conservation law in a control volume of the tissue yields the BHT

equation that accounts for the volumetric blood flow, metabolism, and localized

heating by EM waves:

ρc
∂u
∂t

= ∇ · k∇u︸ ︷︷ ︸
diffusion of heat

+Wbcb (ua0−u)︸ ︷︷ ︸
perfusion rate

+ q̇m︸︷︷︸
metabolism

+ q̇SAR︸︷︷︸
EM energy

, (2.19)

where

k = effective thermal conductivity of the tissue [W/m◦C],

c = specific heat of the tissue [J/kg◦C],

u = temperature of veins in the tissue [◦C].

In general, the thermal properties of the tissue and blood are experimentally deter-

mined. We also assume that the arterial temperature ua0 is constant in the tissue,

and metabolic heat generation is given.
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2.3.2 Variational formulation

For the simplicity, the following dimensionless variables are defined with a

reference time t0, a reference length a and a reference temperature u0:

α :=
kt0

ρca2 , β :=
Wbcbt0

ρc
, θ :=

u−ua0

u0
, h :=

ht0
ρca

, t :=
t
t0
, x :=

x
a
.

(2.20)

Then, the Pennes equation in (2.19) can be rewritten:

θ̇ = ∇ · (α∇θ)−βθ+ q̇, and q̇ :=
(q̇m + q̇SAR) t0

ρcu0
. (2.21)

Multiplying (2.21) by a space test function ψ ∈H1, and integrating by parts

over the domain of interest, Ωbody, we obtain

∫
Ω

(
θ̇ψ+α∇θ ·∇ψ+βθψ

)
dx+

∫
∂Ω

α∇θ ·ψndS =
∫
Ω

q̇ψdx. (2.22)

The boundary condition should be specified accounting for the heat exchange with

external environments. The convective boundary condition with a prescribed exter-

nal temperature θair is specified as a Cauchy boundary condition:

n · (α∇θ) = h(θ−θair) , (2.23)

where h represents the heat transfer coefficient on the surface of the domain.

Integrating over time, we obtain the following variational form accounting

for the boundary ΓD and ΓC, which denote Dirichlet and Cauchy boundaries:

(
θ̇,ψ

)
+b(θ,ψ) = l (ψ) , ∀ψ ∈ H1(Ω) and ψ = 0 on ΓD, (2.24)
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where (·, ·) denotes the L2-inner product on Ω and

θ ∈ H1(Ω), θ̇ ∈ L2(Ω) and θ = θD on ΓD,

b(θ,ψ) =
∫
Ω

(α∇θ ·∇ψ+βθψ)dx+
∫
ΓC

h(θ−θair)ψdS,

l (ψ) =
∫
Ω

q̇ψdx.

(2.25)

2.3.3 Coupling through material properties

Attempting to model the complex BHT involving EM waves in living tissue

is challenging due to the interdependent nature of the material properties. More

precisely,

• in the EM problem, the temperature is dependent on the local SAR distribu-

tion;

• the SAR is dependent on local EM properties, which are also a function of

the local tissue temperature, water content, and other factors.

In the present study, coupling is made in two steps: first, the SAR distribu-

tion in the human head is computed; next, the temperature distribution is determined

taking into account of blood perfusion, metabolism, and EM energy deposited in the

tissue.

The temperature dependence of the tissue thermal properties is not consid-

ered because the temperature range increased by mobile devices is expected to be

sufficiently small (below a ◦C degree). A list of thermal properties of the human

tissues is tabulated in Table 2.2.
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ρ[kg/m3] c[J/kg ◦C] k[W/m ◦C] q̇m[W/m3] Wbcb[W/m3 ◦C]

Air 1.16 1006 0.0263 0 0
Brain 1039 3700 0.57 7100 40000

White matter 1043 3600 0.5 7100 40000
Fat 916 2500 0.25 300 1700

Muscles 1041 3600 0.5 480 2700
Skin 1100 3500 0.42 1620 9100

Skull 1645 1300 0.4 590 3300

Table 2.2: Material thermal properties of various biological tissues [43].

However, the temperature dependence of the dielectric properties and con-

ductivity in the tissue can be observed during the time integration. This weak cou-

pling mechanism is justified by noting the different time scale between the EM field

and transient temperature field in BHT. While the EM field reaches a steady-state

in micro seconds, the temperature field is transient over a range of seconds or min-

utes.

30



Chapter 3

3D hp-Finite Element Technologies for Hybrid
Meshes

The hp-adaptive Finite Element Method (FEM), which controls locally both

the element size h and the polynomial order p, can lead to substantial savings in the

cost of both computation and storage, at the expense of increasing complexity of al-

gorithms and implementations. A few hp-adaptive codes have been developed and

have demonstrated the efficiency of the overall idea. However, technical problems

such as precise geometry description, generation of curved meshes, and dynamic

hp-mesh refinements still remain as algorithmic and software engineering chal-

lenges. Particularly, three-dimensional mesh refinements for unstructured hybrid

meshes are rarely implemented in practice due to these barriers.

While most academic research projects for the adaptive methods focus on

delivering precise error estimates to achieve a fast convergence, little attention has

been paid to

• whether such refinements can be applied to target elements satisfying neces-

sary mesh regularity assumptions,

• whether these processes can be repeated through the entire adaptive proce-

dure.
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The answer is not straightforward when we deal with unstructured hybrid meshes

that include the elements of all shapes (i.e., hexahedra, tetrahedra, prisms and pyra-

mids). A major challenge in implementing a general refinement scheme lies in

how to keep track of dynamically changing mesh connectivities. In particular,

anisotropic refinements may create an incompatible refinement pattern so that the

adaptive procedure cannot proceed further, a situation known as a deadlock.

In this chapter, we present general mesh refinement algorithms that support

both isotropic and anisotropic mesh refinements on three-dimensional unstructured

hybrid hp-meshes, and discuss their implementation. To the best of our knowledge,

our 3D hp-code is the only code that supports the both isotropic and anisotropic

refinements on a hybrid mesh that includes elements of all shapes.

3.1 Code overview: hp3d

The hp3d code, a general software package for the hp-adaptive FEM, has

been under development for the last three years by the author in collaboration

with P. Gatto and L. Demkowicz. To facilitate the adaptive workflow described

in Fig. 3.1, a basic modular framework for the refinement package is designed as

follows:

Geometry. An initial mesh triangulation is generated once from a given input ge-

ometry. Unlike for the standard FE procedure, the geometry information is

continuously updated as a sequence of hp-meshes is generated through local

refinements. To facilitate an interactive relationship between hp-mesh and
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Mesh Based Geometry 
(GMP)

Mesh Generation

Finite Element Analysis
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Visualization
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Geometry DOFs

Mesh Generator

Sparse Solver

Not converge
Converged

Figure 3.1: A general workflow in hp-adaptive FEM.

the reference geometry, the Geometry Modeling Package (GMP) [101] pro-

vides a Mesh-Based Geometry (MBG) [70] interface: the geometry is treated

as a collection of blocks that topologically form a mesh-like structure, with

globally C0-continuous parameterizations provided in each block.

Data structure. The data structure contains only two array structures: initial mesh

elements and nodes 1. The NODES array supports information on nodal trees

originated from mesh refinements. While the initial mesh elements corre-

spond to the MBG description in GMP, nodal trees store the hierarchical

relations for a series of meshes updated by h-refinements. Each node in-

1An abstraction for all topological entities: vertices, edges, faces and element interiors.
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cludes an independent polynomial order to support variable order elements.

Extending the previous work for hexahedral meshes [23,28], the current data

structure is a generalization designed to support the elements of all shapes

along with both isotropic and anisotropic refinements.

Mesh modification. In providing the various mesh refinements for unstructured

meshes, complexity is the major obstacle. This module contains generic inter-

faces and lookup tables to perform diverse kinds of isotropic and anisotropic

refinements for elements of all shapes. Refinement algorithms are designed

to support one irregular meshes, and the code provides the constrained ap-

proximation technique [75] to resolve one-level hanging nodes.

In the following sections, we provide detailed descriptions for the data structure and

mesh modification modules.

3.2 Data abstraction for unstructured hybrid hp-meshes

The data structure in hp3d is designed to represent a general, unstructured

3D hybrid mesh consisting of the elements of all shapes i.e., the hexahedron, prism,

pyramid, and tetrahedron.

3.2.1 Mesh topology

A conventional mesh data structure, which consists of vertex nodes and

element-to-nodes connectivities, is not appropriate for the hp-FEM. In the adaptive

context, an hp-mesh evolves via local mesh refinements; element-to-nodes con-
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Vertices Edges Interior face
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Inheritance Node refinements

Quad element

Refined mesh

Figure 3.2: Topological representation of a quadrilateral element and its refinement
procedure.

nectivities are reconstructed from dynamically updated data structure array NODES.

To enable the reconstruction of connectivities, the concept of an (abstract) node

is extended to include all topological entities: vertices, edges, faces and elements.

Specifically, an element is defined as a set of topological nodes enclosing the inte-

rior of the element. Namely,

Element = Vertices+Edges+Faces+ Interior node.

In this topological framework, mesh refinements translate into a set of orchestrated

node refinements. As seen in Fig. 3.2, a quadrilateral element is first decomposed

into associated topological nodes; next, nodes are individually refined appropri-

ately.

In addition, storing all topological entities is advantageous in supporting

different energy spaces and discretizations arising from multi-physics problems.
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Figure 3.3: The lowest DOFs associated with different topological entities accord-
ing to the selected energy space and discretization.

Figure 3.3 illustrates the lowest order elements corresponding to the well-known

exact sequence:

H1 ∇−→H(curl) ∇×−→H(div) ∇·−→ L2.

For instance, the lowest order H1-conforming elements have Degrees of Freedom

(DOFs) at vertex nodes and provide a continuous scalar-valued space; H(curl)-

conforming elements (known as Nédélec elements) employ edge-based vector-valued

basis functions. Similarly, DOFs for H(div)-conforming and L2 elements are as-

signed to face nodes and an interior node respectively. This characteristic feature

of the exact sequence elements naturally leads to the concept of the abstract node

including all topological entities. The element shape functions and corresponding

DOFs are then grouped into subsets corresponding to its nodes: vertices, edge,

face and element interiors. This results in a natural definition of the object called

“node”. For details on higher order FEs and the exact sequence properties, we refer

to [27, 80].
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Adjacency(in::type, in::node)

- EDGE TO VERT FACE TO VERT
VERT TO EDGE - FACE TO EDGE
VERT TO FACE EDGE TO FACE -

Table 3.1: Adjacency relations of the element-to-node connectivity.

3.2.2 Definition of an element: an object oriented approach

To facilitate hybrid meshes, elements of particular shapes are defined in an

abstract way in terms of their topologies and (master element) geometry. A com-

plete set of adjacency relations is provided for each element type as tabulated in

Table 3.1. An example for a tetrahedral element is shown in Fig. 3.4. The edge-

to-vertex and face-to-vertex connectivities define also local, master element orien-

tations of element edges and faces 2. Globally, each edge, face and element in the

physical domain comes with its own system of coordinates. The element coordi-

nates coincide topologically with the corresponding master element coordinates.

Given an element, however, the corresponding element local parameterizations of

its edges and faces (as implied by the element coordinates) will differ in general

from the (global) edge and face coordinates. One of the key constructions needed

in FE computations is the local-to-global change of coordinates for element edges

and faces. These correspond to what we call the node (edge and face) orientations.

As an example, Fig. 3.5 defines six different orientations for a triangular node with

the corresponding re-enumeration of vertex nodes. The triangle vertices determine

its local coordinates while the global coordinates are indicated with axes 1,2.

2In other words, the master element edge and face parameterizations.
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“tetr” in out “tetr” in out

EDGE TO VERT 6 [2,3] VERT TO EDGE 2 [5,6,9]
FACE TO VERT 13 [2,3,4] VERT TO FACE 2 [11,12,13]
FACE TO EDGE 13 [6,10,9] EDGE TO FACE 6 [11,13]

Figure 3.4: Adjacency relations on a tetrahedral element.

3.2.3 Nodal trees

Mesh refinements translate into creation of new nodes and growth of cor-

responding nodal trees [28, 76]. For example, Fig. 3.6 depicts a series of 2D h-

refinements along with the corresponding growth of nodal trees. Unlike other adap-

tive codes [50, 71], we do not rely on global lookup tables (e.g., hash-tables and

binary-search trees) to keep track of the dynamically evolving connectivities. In-

stead, the connectivities are reconstructed from those nodal trees. Detailed algo-

rithms will be discussed in Section 3.4.
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Figure 3.5: Re-enumeration of vertex nodes accounting for the global orientations.

3.3 Refinement patterns

A refinement pattern defines node hierarchies and orientations of child nodes,

and their enumerations. As an element is seen as a collection of nodes, the mesh re-

finement procedure can be described breaking a set of nodes. Naturally, refinement

patterns are incrementally constructed to support higher dimensional node shapes.

Various refinements for 2D faces are illustrated in Fig. 3.7. Note that when a par-

ent node is split into its child nodes, the child nodes are setup with orientations

consistent with that of the parent node, the so called a inheritance rule. While the

inheritance rule provides a natural (implicit) definition of child nodes orientations
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Figure 3.6: Representation of h-refinements using a family of nodal trees.

Ref kind=1 Ref kind=2 Ref kind=3 Ref kind=4

Ref kind=01 Ref kind=10 Ref kind=11

Figure 3.7: Supported 2D refinement patterns.

for the illustrated cases, we have encountered situations 3 where there is no natu-

3For instance, when defining three isotropic refinements of a parent tetrahedron into eight child
tetras depicted in Fig. 3.9.
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Regular Wedge Spire

Figure 3.8: Various shapes of tetrahedral elements.

rally defined inheritance rule. Consequently, we had to introduce appropriate look

up tables that define the child nodes orientations explicitly.

Tetrahedron refinements.

Complex 3D geometries are most commonly represented with unstructured

tetrahedral meshes for which a number of supporting algorithms has been devel-

oped [7, 56, 84, 85]. For a detailed review of those methods, we refer [69].

Unstructured tetrahedral meshes may contain badly shaped tetrahedral ob-

jects (e.g., a wedge or a spire) as depicted in Fig. 3.8. It is well-known that such

elements affect the convergence and accuracy of discrete solutions [8, 86]. Thus, a

refinement package should be able to control the shape regularity so that the refined

mesh is not degenerate.

Unlike for hexahedral or prismatic meshes, tetrahedral child elements need

not inherit the shape regularity from their parent, even in the case of an isotropic

refinement. Several research projects [51, 73] were devoted to the development of

41



Ref kind=11 Ref kind=12 Ref kind=13

Tetr. Ref=11 Ref=12 Ref=13 Tria. Ref=11 Ref=12 Ref=13

1 (1,2,3,4) 9 (2,3,4)
2 (2,5,6,8) 10 (2,6,8)
3 (3,6,7,9) 11 (3,6,9)
4 (4,8,9,10) 12 (4,8,9)
5 (2,9,4,8) (3,8,2,6) (4,6,8,2) 13 (2,9,4) (3,8,2) (4,6,2)
6 (2,9,8,6) (3,8,6,9) (4,6,2,3) 14 (2,9,8) (3,8,6) (4,6,3)
7 (2,9,6,3) (3,8,9,4) (4,6,3,9) 15 (2,9,6) (3,8,9) (4,6,9)
8 (2,9,3,4) (3,8,4,2) (4,6,9,8) 16 (2,9,3) (3,8,4) (4,6,8)

Edge. Ref=11 Ref=12 Ref=13

17 (2,9) (3,8) (4,6)

Figure 3.9: Isotropic refinements of tetrahedral elements.

stable refinement schemes for unstructured grids.

Consider the isotropic refinements depicted in Fig. 3.9. First, a tetrahe-

dral element is split into four tetrahedral elements and an octahedron. Next, the

octahedron can be refined into four tetrahedral elements in three different ways cor-

responding to the selected diagonal edge. The first four tetrahedral elements, which

are obtained by cutting the four corners, are similar to the parent tetrahedron, and

their orientations are also set to be consistent with their parent. In contrast, the

tetrahedral elements resulting from the octahedron in the middle are not similar to
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Ref kind=24 Ref kind=32

Figure 3.10: Anisotropic refinements of tetrahedral elements. These refinements
are specially designed for wedge and spire shapes.

the parent tetrahedron; the elements are not only scaled but also stretched. This also

implies that a mesh may degenerate if inappropriate subdivisions are repeated. It

has been proved [52, 54] that the shape regularity is preserved if the octahedron is

broken by the shortest diagonal edge. This rule has been enforced in our code as

well.

For completeness, we also introduce the anisotropic refinements depicted in

Fig. 3.10. These anisotropic refinements have been developed to enable refinement

of thin membrane structures, see [35].

Prism refinements

A hybrid mesh consisting of tetrahedral and prismatic elements (see, [10,

20,102]) is often used in modelling boundary layers on a complex geometry. A pris-

matic layer is created by extruding triangular facets on the surface of 3D objects.

This hybridization provides flexibility in managing a complex geometry modeled

with tetrahedral elements, providing an opportunity to achieve cost-effective so-
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Ref kind=01 Ref kind=10 Ref kind=11

Figure 3.11: Isotropic and anisotropic refinements of prismatic elements.

Admissible mesh Local refinements Global closure

Figure 3.12: Two-step refinement procedure.

lutions by using anisotropic hp-refinements on prismatic elements as depicted in

Fig. 3.11.

We skip the discussion on similar refinements that have been developed for

hexahedra and pyramids [35], since these are not used in this study.

3.4 Algorithm description

In this section, we describe refinement algorithms. Our refinement scheme

allows one-level hanging nodes and completes within two steps, see Fig. 3.12:
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1. Local refinements. Selected elements are refined. As a result, the refined

mesh may include arbitrary level hanging nodes.

2. Global mesh closure. By enforcing additional refinements, the refined mesh

recovers one-level mesh irregularity.

In actual FE computations, the one-level hanging nodes are appropriately resolved

by enforcing constraints providing the continuity of the solution across the inter-

element boundaries [75]. As no DOF is assigned to hanging nodes, we also identify

them as inactive nodes. Solution DOFs are then constrained (or interpolated) by

active DOFs on their parent and neighboring nodes. In the following sections we

describe the algorithms involved in more detail.

3.4.1 Reconstruction of nodal connectivities

As mentioned earlier, we do not store element-to-nodes connectivities that

are dynamically modified during the adaptive refinements. Instead, we provide a re-

construction scheme to retrieve updated connectivities. The basic idea is to consider

the refined mesh as a locally structured mesh where the connectivities within that lo-

cal structure is ruled by a refinement logic. Given an element, the element-to-nodes

connectivities for the element and its ancestors are partially (locally) reconstructed

by traversing over a family of nodal trees. Traversing upward in the nodal trees, we

reach the initial mesh ancestor for which the connectivities are stored explicitly. We

back traverse the refinement trees reproducing virtually the stored node refinements

and reconstructing the connectivities.
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!> The routine create new nodes and associate them as child nodes
!! under the input nod.
s u b r o u t i n e break_node( in ::nod, in ::refinement)
!! nod, refinement - target node and refinement flag

do i=1, refinement.number_of_children
child = mesh.insert_node(refinement.child_type(i))
nod.associate(child)

end do

!! record the applied refinement in the input node
nod.set_refinement(refinement)

end s u b r o u t i n e elem_nodes

Figure 3.13: Node breaking procedure.

Figure 3.14: Node enumeration in the isotropic refinement of a triangular face node.

Before explaining the detailed reconstruction scheme, we first briefly de-

scribe the element/node refinement procedure. When a node is refined, new nodes

are created and they are hierarchically associated with the node as its children. We

give pseudo code for this in Fig. 3.13. An important observation is that the re-

fined element connectivities can be explained by applied refinements. In practice,

the connectivity logic for each refinement pattern is encoded into three lookup ar-

rays; namely PARENT, CHILD, and ORIENTATION 4. For a 2D example, consider an

isotropic refinement applied to a triangular element depicted in Fig. 3.14. Starting

4The lookup arrays are mechanically generated by exhaustive search algorithms.
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with a set of lookup arrays, we can reconstruct the element-to-node connectivity of

the first triangular child node (node number 17) as follows.

Encoded lookup arrays for the 1st child triangular node:
PARENT (1:7)= { 1,4,6, 4,7,6, 7 }
CHILD (1:7)= { 0,3,3, 1,5,1, 1 }
ORIENTATION(1:7)= { 0,0,0, 0,0,0, 0 }

Reconstruction rule at i-th node:
nodes(i) = mesh.nodes(PARENT(i)).child(CHILD(i))

Reconstruction of the first child node:
nodes(1) = mesh.nodes(PARENT(1)=1).child(CHILD(1)=0) = 1
nodes(2) = mesh.nodes(PARENT(2)=4).child(CHILD(2)=3) = 10
nodes(3) = mesh.nodes(PARENT(3)=6).child(CHILD(3)=3) = 16
nodes(4) = mesh.nodes(PARENT(4)=4).child(CHILD(4)=1) = 8
nodes(5) = mesh.nodes(PARENT(4)=7).child(CHILD(5)=5) = 21
nodes(6) = mesh.nodes(PARENT(5)=6).child(CHILD(6)=1) = 14
nodes(7) = mesh.nodes(PARENT(7)=7).child(CHILD(7)=1) = 17

We stress that this reconstruction scheme is generic for all kinds of refinements and

no shape-dependent information is used.

A general procedure for this one-level reconstruction is clearly captured

in Fig. 3.15. One can easily realize that the scheme is recursive as described in

Fig. 3.16. The scheme traverses nodal trees until it reaches an initial mesh element

which stores the full spatial connectivity. After that, the element-to-node connec-

tivity is level-by-level reconstructed going down the trees.

3.4.2 Local refinements

A major challenge in performing 3D hybrid mesh refinements is to avoid a

deadlock situation so that mesh refinements can be repeatedly applied. Particularly

interesting is the case of anisotropic refinements; a combination of isotropic and
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!> The subroutine perform one-level reconstruction using nodal trees
!! and refinement lookup tables.
s u b r o u t i n e reconstruct_element2nodes( in ::p_nodes , in ::p_orients ,

in ::intr ,
out ::nodes , out ::orients)

!! p_nodes, p_orients - parent and its nodal connectivity
!! intr - target element (interior node)
!! nodes, orients - the reconstructed element to node connectivities

!! choose lookup tables for given interior node
c a l l select_lookup(intr , PARENT , CHILD , ORIENTATION)

!! reconstruct the element-to-node connectivity and orientations
do i=1,NNODE(intr)

nod = mesh.nodes(p_nodes(PARENT(i)))

!! child node and orientation should be re-enumerated
!! accounting for the given parent orientation
nodes(i) = nod.child(local2global(p_orient(i), CHILD(i)))
orients(i) = rotate(p_orient(i), ORIENTATION(i))

end do
end s u b r o u t i n e reconstruct_elem_nodes

Figure 3.15: One-level reconstruction procedure of the element-to-nodes connec-
tivity using refinement lookup arrays.

!> The routine recursively reconstructs nodal connectivities by
!! traversing the nodal trees
r e c u r s i v e s u b r o u t i n e elem_nodes( in ::intr , out ::nodes , out ::orients)
!! intr - a given interior node
!! nodes, orients - reconstructed element-to-node connectivity

i f (is_root(intr)) then
!! the recursion is terminated at a root (initial mesh element)
c a l l copy_nodes_from_initial_mesh(intr , nodes , orients)

e l s e
c a l l elem_nodes(intr.parent , nodes_temp , orients_temp)
c a l l reconstruct_elem_nodes(nodes_temp , orients_temp ,

intr , nodes , orients)
end i f

end s u b r o u t i n e elem_nodes

Figure 3.16: Recursive reconstruction procedure of the element-to-nodes connec-
tivity.
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Admissible mesh Deadlock in the middle element

(a) Deadlock encountered during local mesh refinements

Face one-irregular rule Local refinements

(b) Face one-irregular rule is enforced

Figure 3.17: The face one-irregular rule enforces to refine the element in the middle
first to avoid a deadlock during the mesh adaptation process.

anisotropic refinements can subdivide a face node in such a way that no 3D refine-

ment is available for neighboring elements. For example, consider a case depicted

in Fig. 3.17a. The given mesh is admissible and one-irregular; two small face nodes

on each side are constrained by the big face node associated with the element in the

middle. Next, elements on both sides are locally refined as depicted in the figure.

Consequently, the refined face nodes are now doubly constrained by the big face

node. To recover the one-irregularity of the mesh, the element in the middle should

be appropriately refined. However, no refinement can cope with such exotic refine-

ment patterns of the face node. As a result, the mesh adaptation process reaches a

deadlock.
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A natural way to overcome this type of deadlocks is to first refine the ele-

ment in the middle. As a result, the face nodes in the middle become regular so that

refinement will take place in selected elements. The idea behind this approach is

to enforce the one-irregularity rule for the face nodes. This treatment is necessary

to support anisotropic refinements. Unlike in the case of isotropic refinements, an

arbitrary combination of anisotropic refinements on a face node may produce mul-

tiple constraints on a face node, which may result in the deadlock as depicted in

Fig. 3.7.

Motivated by this discussion, we introduce the following local mesh refine-

ment rules to support isotropic and anisotropic refinements together:

Upgrading rule. A refinement type assigned to an element is always upgraded to

accommodate existing refinements of face nodes.

Face one-irregular rule. No element is refined unless all its face nodes are active.

The first rule upgrades a given refinement flag by accommodating existing refine-

ments of face nodes. This is easily implemented as the element refinement is de-

composed into a set of orchestrated node refinements, where each node owns a

separate hierarchy.

The face one-irregular rule creates a list of elements linked via constraining

(inactive) face nodes. A series of mesh refinements is recursively performed on the

list of elements to resolve the constraints on the face nodes. After all face nodes

connected to a target element become regular, the target element is refined.
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Admissible mesh Face one-irregular rule Refined mesh

Local mesh refinement procedure

Modification in nodal trees

Figure 3.18: A list of elements connected through constrained face nodes refined
observing the face one-irregular rule.

By enforcing these mesh refinement rules, the local refinement procedure is

deadlock free. For simplicity, we explain this with 2D examples. Here, a face node

is analogous to an edge node. As illustrated in Fig. 3.18, the face one-irregular rule

refines a list of elements connected via constraining edges. Given the admissible

mesh, a target element (red color) is selected and this refinement introduces doubly

constrained nodes. Next, the face one-irregular rule gathers a list of elements; they

are recursively refined in a Last-In First-Out (LIFO) manner.

As our second example, we consider a case that the face one-irregular rule

51



Admissible mesh Face one-irregular rule Refined mesh

Local mesh refinement procedure

Modification in nodal trees

Figure 3.19: Anisotropic refinements may lead to a circular list of elements to keep
the face one-irregular rule.

creates a circular list of elements. As depicted in Fig. 3.19, the face one-irregular

rule creates a circular list of elements; the algorithm visits an element that is already

kept in the list. When this happens, the algorithm start to refine elements in the list

to avoid an unintentional infinite loop. The resulting mesh is still admissible.

From the perspective of the tree representation, it is easier to see that the

local algorithms are deadlock free. Consider tree traversals illustrated in both

Fig. 3.18 and Fig. 3.19. If the face one-irregular rule is seen in nodal trees, the al-

gorithm collects a list of elements via traversing upward in the tree or horizontally

(possibly circular) within the same hierarchy level. The first case is natural as nodes
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!> The routine performs local mesh refinements keeping one-irregular
!! mesh rule on face nodes
s u b r o u t i n e refine( in ::intr , in ::refinement)
!! intr - a given interior node to be refined
!! refinement - refinement pattern to be applied

type (stack_container) :: stack

!! Step 1: push elements connected through constrained nodes
stack.push_back(intr , refinement)
intr.visited = .true.
do whi l e (.true.)
!! pick the last element from the stack
current = stack.back()
c a l l elem_nodes(current.intr , nodes , orients)

!! check if all face nodes are unconstrained
all_faces_unconstrained = .true.
f o r a l l (iface=1:NFACE(current.intr))

i f (is_constrained(face_node(nodes ,iface)) then
neighbor = find_neighbor(current.intr , iface)
i f (neighbor.visited == .true.) then
!! do not visit the element in the stack
e x i t

e l s e
!! if constrained, the neighboring element is added with
!! a relevant refinement kind which is decided to resolve the
!! face irregularity
stack.push_back(neighbor , HP3D_DECIDE)
neighbor.visited = .true.
all_faces_unconstrained = .false.

end i f
end i f

end f o r a l l

!! exit condition to terminate the loop
i f (all_faces_unconstrained) then

e x i t
end

end do

!! Step 2: pop back an element from the stack and refine it
do whi l e (is_empty(stack))

current = stack.pop_back()
c a l l break(current.intr , current.refinement)
current.intr.visited = .false.

end do
end s u b r o u t i n e refine

Figure 3.20: Pseudo code that describes the local refinement procedure.
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are hierarchically constrained. The latter case is due to the presence of anisotropic

refinements. An observation is that the algorithm never traverse downward in the

tree; for both cases, the tree traversal is terminated within a finite number of itera-

tions. This implies that the scheme is deadlock free. A detailed procedure for the

local refinement algorithms is given in Fig. 3.20. This procedure has been verified

through extensive numerical tests.

3.4.3 Global mesh closure

During the local refinements, selected elements are refined respecting the

face one-irregular rule and the upgrading rule. Then, the resulting mesh may con-

tain arbitrary-level hanging nodes on edges or vertices.

As an edge is always broken by half, a deadlock problem like one caused

by unmatched face refinements is not encountered. One solution is to perform ad-

ditional (unwanted) refinements to recover the mesh one-irregularity, called mesh

closure 5. The closure repeats the following three global-level operations until it

recovers the mesh one-irregularity condition:

1. Activate. In this phase, we sweep all edges and vertices to count the number

of applied constraints.

2. Mark. Next, the elements including double constraints on edges and vertices

are marked.

5Note that if arbitrary-level hanging nodes for edges and vertices are allowed, this procedure is
unnecessary. For 2D meshes and 3D structured meshes, there exist techniques supporting arbitrary-
level hanging nodes [81, 89]; however, no implementation is found for 3D hybrid meshes.
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3. Refine. Marked elements are refined to recover the mesh one-irregularity.

The closure is terminated in a finite number of iterations (in the worst case, we may

converge to a uniformly refined mesh). At present though, we cannot provide a

formal proof that the described algorithms are deadlock free. The claim has been

verified through extensive numerical test involving randomly defined refinements

resulting in hybrid meshes with millions of elements.

3.5 Construction of global basis functions

Global basis functions are constructed by gluing (or assembling) element

shape functions with appropriate continuity conditions. To provide correct match-

ing conditions at the inter-element boundaries, the element shape functions should

be modified to account for the global orientations. For 2D elements, such modifica-

tions are easily made by applying a sign factor to the odd functions. For a detailed

description, we refer to a book written by Demkowicz [26], pages 169–172.

For 3D elements, the orientation problem is more complicated. In particular,

gluing triangular faces is a non-trivial task as the local coordinate system is not

rotationally symmetric. This implies that a local shape function associated with

a face node may need to be related to all face shape functions that belong to the

neighboring element. In other words, one can say that the face shape function is

rather interpolated by the corresponding all face shape functions in the neighboring

element.

Instead, we can resolve this orientation problem by constructing the ele-
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Figure 3.21: Examples of the orientation embedded shape functions. The first face
bubble shape function corresponding to p= 4 is illustrated for different orientations.

ment shape functions in such a way that they automatically conform to the global

edge and face orientations, see an example depicted in Fig. 3.21. The procedure of

constructing the orientations embedded shape functions consists of three steps:

Step 1: Construction of edge or face shape function in the (global) edge or face

coordinates.

Step 2: Change of coordinates from global-to-local as implied by the element coor-

dinates and edge and face parameterizations defined in the abstractly defined

element. This is where the information about the nodes orientations is used.

Step 3: Extension of the shape function to the whole element using appropriate

blending functions.

For a more detailed description of the construction, we refer to [36, 80, 83].
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One-irregular mesh Edge basis function Face basis function

Figure 3.22: Constrained approximation on irregular tetrahedral meshes.

As the global orientations are controlled in the construction of the local

shape functions, the assembly procedure simplifies to the one for classical FEs. This

approach is more advantageous when implementing the constrained approximation.

The constrained approximation [25, 75] is introduced to obtain conformal

global basis functions on irregular meshes, which are characterized by the presence

of hanging nodes. To preserve proper continuity conditions across the inter-element

boundaries, DOFs on hanging nodes must be expressed in terms of linear combina-

tions of active (constraining) DOFs.

A major challenge again comes from the inconsistency of local and global

coordinates for faces. For unstructured tetrahedral elements, the element local coor-

dinates of refined elements can be arbitrarily set (see Fig. 3.9), which significantly

increases the complexity of enforcing the continuity across the constrained faces.

Probably, due to such technical difficulties, to our best knowledge, we could not

find any implementation.

In our implementation (see Fig. 3.22), the complexity is considerably re-

duced as we construct local shape functions consistently with the global orienta-
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tions. Remember that orientations are explicitly set up only for initial mesh ele-

ments, and the coordinates system for refined nodes are always inherited from their

ancestors (initial mesh). Hence, we only need to build the constraint matrices cor-

responding to the cases depicted in Fig. 3.7 6. More detailed description is much

too technical and go beyond the scope of this exposition.

3.6 Code verification

The developed code has been cross-verified in collaboration with P. Gatto,

who researched bone conduction of sound in the human head [35].

Deadlock free local mesh refinements. As claimed in Section 3.4, our local

mesh refinement procedure should not incur a deadlock. To verify our conjec-

ture, we performed a “torture test” that repeats local mesh refinements on randomly

selected elements with arbitrary refinement flags. Figure 3.23 illustrates examples

of randomly refined meshes after 20 iterations of the test. The test increased the

number of elements up to a million starting with a minimum number of initial mesh

elements to represent the geometry. Each refinement step was accompanied with a

number of consistency checks. For instance, element-to-face and face-to-element 7.

connectivities (including orientations) were compared against each other.

6Quadrilateral face modes are tensorial and constraint matrices are dynamically formed by using
the 1D constraint matrix.

7One of several algorithms based on nodal trees that we have not discussed.
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Tetrahedral mesh Hybrid mesh (prisms + tets)

Figure 3.23: Random mesh refinement test.

Verification of mesh generation. As described earlier, nodal geometry DOFs are

determined by interpolating exact element geometry maps. The interpolation is per-

formed in the reference GMP domain and has been verified by computing p- and

h-convergence rates. Some of the geometrical parameterizations are of limited reg-

ularity and experience singularities in higher derivatives. As the boundary-value-

problems are effectively solved in the reference domain with polynomial discretiza-

tions (see [27], pages 101–104 for an extensive discussion of the issue), computing

interpolation h-convergence rates for the geometry maps not only helps to verify

that the code is bug free but provides also a valuable information about the regu-

larity of the geometry maps. As we solve for the composition of the element map

and solution defined in the physical domain, irregular parameterizations may induce

low regularity of the solution in the reference domain and overall low convergence

rates. We discuss this later in Chapter 6.
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(a) Locally refined mesh (b) Solution

Figure 3.24: Locally refined mesh to capture a shock in the middle.

Verification with manufactured solutions. Two classes of verifications have been

performed. The first one deals with manufactured polynomial solutions defined

on meshes with affine elements. With sufficiently high polynomial degree, these

solutions have been reproduced with a machine precision including one-irregular

meshes, verifying also constrained approximation routines. A second class of ver-

ification tests included more complicated manufactured solutions and computation

of h-convergence rates for adaptive meshes. It is well known that h-refinements

should restore asymptotically optimal h-convergence rates and checking this is part

of the verification test.

An example of such a convergence test is illustrated in Fig. 3.24. We per-

formed an H1-projection test using the manufactured solution: u(r) = tan−1(α(r−

r0)) with a parameter α = 60 and r0 =
√

3, where r = |x+(0.25,0.25,0.25)|. The
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solution involves a sharp layer inside of a unit cube domain. We used the standard

greedy adaptive refinement strategy using element contributions to the global H1

error (squared). Figure 3.24 shows the locally refined mesh to capture the shock.

3.7 Summary

In this chapter, we presented hp3d, a general hp-FE code, that is designed

to support exact sequence elements for multi-physics problems. The code supports

hybrid meshes including the elements of all shapes (i.e., hexahedron, tetrahedron,

prism, and pyramid), which allows us to describe a complex geometry.

From the implementation perspective, the code stores only two object ar-

rays; ELEMS stores the full spatial connectivity of a given initial mesh; NODES stores

a family of nodal trees that records h-refinements. With generalization of an el-

ement as a set of nodes, major subroutines in the code is written in an “object-

oriented” fashion.

A particular interest is in the development of a general mesh refinement

scheme including various isotropic and anisotropic refinements in hybrid meshes

that includes the elements of all shapes. The proposed refinement scheme completes

in two steps allowing one-irregular hanging nodes. In the first step, local mesh

refinements are applied to marked elements. During the local refinement procedure,

the algorithm refines a list of elements that are connected through constrained face

nodes, called the face one-irregular rule. This local algorithm is necessary to avoid

a “deadlock” which possibly occur with anisotropic refinements. At this stage,

the mesh may include arbitrary-level hanging nodes on edges and vertices. In the
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second step, the global mesh closure performs additional refinements to recover the

mesh one-irregularity.

Since we allow one-irregular meshes, DOFs on hanging nodes should be ap-

propriately constrained by regular (active) nodes. For ease of implementation, we

introduce a new orientation embedding technique in shape functions; shape func-

tions are always constructed with respect to the global orientations. This idea sig-

nificantly simplifies the assembly procedure and constrained approximation.
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Chapter 4

Unassembled HyperMatrix Solver

In this chapter, we discuss an efficient sparse direct solver targeting linear

systems of equations derived specifically from the hp-Finite Element (FE) method.

The following two aspects are extensively used in designing of this new sparse

direct solver:

• Sparse linear systems are locally updated during mesh adaptation. As the

mesh is locally refined, the solver can preserve the partial factors previously

computed and reuse them for solving the current system of equations [14].

• Element matrices derived from an hp-discretization include fairly large dense

subblocks characterized by the order of approximation p. This implies that all

operations are essentially dense, which allows highly efficient level 3 BLAS

functions [29] to be utilized.

Compared to a conventional black-box solver, the proposed solver gains additional

performance from the hp-workflow interface by exploiting application information

inherited from the hp-FE method.
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Figure 4.1: Applied mesh refinements and its induced elimination ordering.

4.1 Source of sparse matrices: the hp-Finite Element Method

Adaptive workflow. During the mesh adaptation process, the same problem is

repeatedly generated and solved with local mesh refinements; the next system of

equations is locally updated from the previous one. A drawback in using the stan-

dard black-box approach is that element matrices are recomputed even for the ele-

ments inherited from the previous mesh. Similar redundant computations are also

performed in the linear solver. Consequently, a black-box solver may not achieve

the best overall application performance when it only focuses on an individual sub-

problem.

We presented a new approach, called Unassembled HyperMatrix (UHM)

solver [14], to solve sparse matrix problems with local hp-refinements. The solver
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Refinements Updating factorization

Figure 4.2: Updating factorization with local mesh refinements. In the last adaptive
iteration, element matrices and their partial factors previously computed (grey lines)
are reused and element matrices (black line) affected by the applied local refinement
are updated.

is designed based on the multifrontal method. However, the solver is distinct from

other sparse solvers in that it has an ability to construct an elimination order from the

applied mesh refinements as illustrated in Fig. 4.1. This induced elimination order

provides an opportunity to reuse the partial factors that was previously computed.

As depicted in Fig. 4.2, the solver does not factorize the entire system of equations

from scratch but reuses some of partial factors. For instance, the problem depicted

in Fig. 4.3 has a singularity at the re-entrant corner, and the hp-adaptivity refines the
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(b) Updating factorization

Figure 4.3: Time complexity of the updating factorization in the mesh adaptation
procedure.

mesh around the corner. One can see that a fairly large amount of element matrix

computations and their partial factors can be reused in the next adaptive iteration.

The graph in the figure shows that the updating factorization gives us considerable

cost saving cost compared to MUMPS that factorize the matrix from scratch. We

described details of this approach in [14].

Supernodes. A characteristic of the hp-discretization is that multiple DOFs can

be grouped in a topological node, as illustrated in Fig. 4.4a. This in turn gives a

shape of an element matrix depicted in Fig. 4.4b. By assembling element matri-

ces, a global system of equations is formed. As seen in Fig. 4.5, higher p gives

a block sparse structure, which is denser than one derived from a linear order of

approximation.

A sparse system derived from an hp-discretization can be described in terms
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(a) High order element

P-1
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(b) Element matrix

Figure 4.4: An element matrix structure derived from the high order discretization
with a polynomial order of approximation p.

(a) p = 1, nz = 226,981 (b) p = 4, nz = 1,771,561

Figure 4.5: Characteristic sparsity patterns for p = 1 and p = 4 keeping the same
system DOFs.

of topological nodes and associated DOFs rather than individual variables. For-

mally, we can create a quotient graph of unknowns by dividing out the equivalence

class of basis functions associated with the same topological node. This leads an

efficient solver since the graph is considerably smaller while as a bonus presenting
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an increased opportunity for using Level 3 BLAS operations [29]. In contrast, the

black-box interface of a general purpose sparse direct solver does not recognize

well the presence of such supernodes a priori.

4.2 Factorization algorithms

A general procedure for direct methods consists of four phases: order-

ing, analysis, factorization, and forward/backward substitution. Our factorization

scheme has the same structure, but several aspects are different from the general

sparse direct solver as we have a specific target application of the hp-FE method.

4.2.1 Ordering strategy

In our ordering phase we construct a partial order of the elements and sub-

domains. For an initial hp-mesh given without a hierarchy, a refinement tree is

virtually constructed a posteriori. This gives us a balanced tree where all elements

are recursively defined as refinements from a (fictitious) top element. From this

tree structure we obtain a partial ordering of elements; the factorization tasks will

be forced to obey this ordering. We also emphasize that a full linear ordering of the

unknowns is never constructed. All unknowns inside of an element matrix in a level

are treated together as a block; in between levels we observe a partial ordering that

the coarse subdomains can only be eliminated after the finer subdomains.

The ordering strategies are very different; our solver mirrors the hp-mesh

structure and preserves inherent dense subblocks characterized by the order of ap-

proximation p. In contrast, the standard black-box interface loses the block struc-
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(a) UHM (mesh mirroring), nz = 4,074,597 (b) Node-based nested dissection, nz = 4,047,837

Figure 4.6: The left figure shows fills computed by the UHM solver, which keeps
the given block structures (p = 4) of the matrix. On the other hand, the figure on
the right shows fills computed by node-based nested dissection ordering.

ture of the hp-mesh and such information is imperfectly reconstructed. In Fig. 4.6,

we compare nonzero fill patterns after symbolic factorization respectively obtained

from our solver and Metis [46] node-based nested dissection ordering. One can

clearly see the difference between two sparsity patterns; however, the two ap-

proaches report a similar number of nonzeros and floating point operations. How-

ever, the different ordering may directly impact the performance of the numerical

factorization. For this particular case, the scattered fill distribution constructed by

Metis may lead to less efficient use of level 3 BLAS functions.

4.2.2 Unassembled matrix factorization

We store matrices in an unassembled form: (dense) matrices corresponding

to elements are stored on leaves in the tree, where inter-element boundary variables
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Figure 4.7: An assembly tree can be organized by recursively coarsening the hp-
mesh. The constructed tree can also be dynamically modified to control a large
element growth.

are remained unassembled. This strategy is illustrated in Fig. 4.7. The procedure is

recursively driven by a partial order tree traversal. More formally we describe this

recursion as follows.

1. Subassembly. An element matrix on any but the tree level is assembled from

its children:

A := assemble
(

Ale f t
BR ,Aright

BR

)
,

where Ale f t
BR and Aright

BR represent the Schur complements from the children.

2. Identification of interior variables. The element matrix is permuted and con-

formally partitioned into quadrants with square diagonal blocks separated

by their topological relation: the fully assembled internal variables and the

boundary variables:

A→
(

AT L AT R
ABL ABR

)
.
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3. Partial LU factorization with pivoting of a block AT L. AT L contains the fully

assembled nodes of an element and can therefore be eliminated. Block LU

factorization is applied to the matrix A where pivots are selected within the

submatrix AT L:(
P 0
0 I

)(
AT L AT R
ABL ABR

)
=

(
LT L 0
LBL LBR

)(
UT L UT R

0 UBR

)
→
(

ÂT L ÂT R

ÂBL ÂBR

)
,

where LT L and LBR are normalized to have unit diagonal entries, and UT L

and UBR are upper triangular matrices. Factors are computed in-place and

overwritten on the same submatrices. By equating corresponding submatrices

on the left and right, the partial elimination proceed as follows:

• Interior variables within the submatrix AT L are eliminated by a standard

right-looking LU algorithm, giving the factors ÂT L = {LT L\UT L}.

• Next, submatrices AT R and ABL are respectively updated into ÂT R :=

L−1
T LAT R and ÂBL := ABLU−1

T L .

• Submatrix ABR is updated into ÂBR := ABR− ÂBLÂT R, which yields a

Schur complement to update its parent.

4. Stability check. After this partial elimination, we check the element growth

of Â to ensure the factorization is stable with a given threshold α:

max
∣∣Âi j
∣∣< α ·max

∣∣Ai j
∣∣ ,

where α is a threshold value to monitor excessive element growth. In general,

the α is a function of a prescribed constant value and size of the element
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matrix. For instance, we use the following criterion:

α = (1.0+u−1
0 ) · size(AT L),

where the criterion is slightly modified from [30]. In the case that unaccept-

able element growth is encountered, matrices are re-assembled and corre-

sponding eliminations for the interior variables are delayed to their parent,

see Fig. 4.7.

The recursive factorization finishes at the root, where ABR is an empty matrix.

4.2.3 Stability check

In the course of multifrontal factorization, large element growth leads to nu-

merical instability [33] and should be managed in a proper manner keeping fills as

small as possible [55]. In principle, we use standard partial pivoting (row exchange)

within the elimination block matrix. After each element matrix is factorized, we

check the element growth; if unacceptable element growth is detected, child Schur

complements are re-assembled and elimination of the nodes are delayed to its par-

ent. Thus, the solver can examine and select a potential pivot from a relatively large

column vector. We use this approach to preserve the block structures derived from

the hp-discretization at the factorization phase.

Figure 4.8 compares the element growth during unassembled factorization

with different stability thresholds. In practice, as the size of UHMs increases at the

upper-level hierarchy, partial pivoting within its elimination block become stable for

such cases. On the other hand, when delayed pivots occur for small sized element
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Figure 4.8: Element growth of dense subproblems for different pivot thresholds.

matrices, the overhead in handling (recomputing) those pivots slightly increases the

factorization cost.

4.2.4 Algorithms-by-blocks

The multifrontal method has a natural parallelism from its recursive tree

traversal; tasks on separate branches can be processed simultaneously. However,

the task parallelism decreases as the factorization is closer to the root. Further par-

allelism for the dense blocks nearby the root is necessary to improve the efficiency

of the parallel factorization.

Further task-level parallelism can be pursued by organizing a matrix by

blocks (submatrices) [40, 57, 93]. For processing these blocks, we use so-called

algorithms-by-blocks [16,19,74], which reformulate dense matrix computations al-

gorithms in terms of blocks. For example, consider a matrix is partitioned into an
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Figure 4.9: Algorithm-by-blocks of LU factorization without pivoting on a 3× 3
block matrix.

N×N matrix of blocks:

A =


A(0,0) A(0,1) · · · A(0,N−1)

A(1,0) A(1,1) · · · A(1,N−1)

...
... . . . ...

A(N−1,0) A(N−1,1) · · · A(N−1,N−1)


In the first iteration of LU factorization without pivoting,

• A(0,0) is factored,

• for i= 1, . . . ,N−1 block A(i,0) is overwritten by A(i,0)U (0,0)−1; this triangular

solve with multiple right-hand sides is done with the BLAS routine TRSM;

• for k = 1, . . .N−1 block A(0,k) is overwritten by L(0,0)−1A(0,k); this is a trian-

gular solve with multiple right-hand sides, executed by TRSM, and

• for i,k = 1, . . . ,N− 1 blocks A(i,k) are overwritten by A(i,k)−A(i,0)A(0,k); re-

quires a matrix-matrix multiplication using the BLAS routine GEMM.

This and subsequent iterations are illustrated in Fig. 4.9.
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Figure 4.10: An example of a DAG of tasks produced by applying the algorithm-
by-blocks of LU factorization without pivoting.

Fine-grained tasks are generated via algorithms-by-blocks. After task de-

pendencies are analyzed, tasks are scheduled asynchronously. This leads to highly

efficient task parallelism on modern multi-core architectures. An example of this

approach for the LU factorization without pivoting is shown in Fig. 4.10.

4.3 Summary

In this chapter, we presented the unassembled factorization scheme and its

efficient workflow interface to hp-adaptive FE methods. In particular, our solver

utilizes the following information inherited from hp-refinements:

• an elimination ordering can be derived from h-refinements;
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• higher order approximation gives supernodal information a priori.

To incorporate this application information, we store unassembled element ma-

trices in a tree structure and perform the factorization. Nodes are only assem-

bled when they are eliminated and it produces a generalized element matrix in

the next level of the tree. Our solver has an ability to dynamically insert/delete

element matrices resulting from hp-refinements. With an elimination ordering in-

duced from h-refinements, our solver reuses the partial factors that were previously

computed [14].

Representing a global sparse system of equations, we construct a quotient

graph that mirrors the hp-mesh in terms of topological nodes and their DOFs. Our

graph representation is considerably smaller than one constructed with individual

variables. This condensed graph is beneficial as it preserve the block structures in

the sparse matrix, which allows efficient Level 3 BLAS operations.

Finally, we briefly give an overview of algorithms-by-blocks and their use

in our solver.
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Chapter 5

High Performance Computing

In this chapter, we present an approach to multi-level task scheduling that

matches the two-level parallelism in the multifrontal factorization. Our solution is

based on Directed Acyclic Graph (DAG)-based task scheduling. Unlike the classic

fork-join parallel model, this approach enables efficient asynchronous task schedul-

ing. Our task scheduler is unique in that multiple instances of the task scheduler

are invoked for solving subproblems that are encountered during the multifrontal

factorization.

5.1 Hierarchical task scheduling

In the course of a sparse factorization, as depicted in Fig. 5.1, we have two

oppositely behaving types of parallelism as the factorization progresses from the

leaves to the root of the tree:

• a decreasing amount of task parallelism;

• an increasing opportunity for parallelism inside the blocks as their sizes grow.

Now, the question is how to exploit the two-level parallelism in harmony to ex-

tract near-optimal utilization from multi-core architectures while avoiding exces-
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Figure 5.1: Irregular coarse grain tasks resulting from the multifrontal factorization
characterized by its assembly tree.

Assemble child Schur complements

{LTL / UTL} := LU(ATL)

ABL:=TRSM (LTL,ABL) ATR:=TRSM (UTL,ATR)

ABR:=GEMM(ABL,ATR,ABR)

Matrix addition

BLAS 3

Task granularity Workflow Matrix blocking

Sanity check

PASS

FAIL

Delay pivots

Figure 5.2: The workflow of the tree-level task associated with partial factorization
of the element matrix.

sive complexity in implementation.

In our parallelization approach, coarse grain tasks are first generated by the

post-order tree traversal along the assembly tree: each node in the tree becomes a

task that handles an element matrix. These tree-level tasks are hierarchically related

and a task cannot proceed until its children have been processed. We illustrate a

tree-level task in Fig. 5.2. The workflow in a typical tree-level task consists of the
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assembly of the Schur complement of the children factorization, which carries an

O(n2) cost, followed by level 3 BLAS operations for the factorization, all of which

are O(n3) in the element matrix size.

By applying algorithms-by-blocks in each tree-level task, a group of fine-

grained tasks is generated and their dependencies are captured by a DAG; the entire

factorization can then be represented by hierarchically related subgraphs as depicted

in Fig. 5.3. Rather than unrolling all fine-grained tasks in a global DAG, we first

schedule tasks encountered during tree-traversal. Those tree-level tasks are then

scheduled with local DAG schedulers. In this way we schedule schedulers. Next,

each group of fine-grained tasks is dispatched with local scheduling policies, which

are guided by the associated local DAG. No global DAG is formed; thus, scheduling

overhead is considerably reduced.

5.1.1 Parallel tree traversal

We use OpenMP to schedule all tasks generated in the factorization phase.

We do not use an explicit data structure to reflect the schedule according to which

tasks are to be executed. Instead, we rely on the OpenMP framework: by declaring

tasks in the right execution order with OpenMP pragmas, they are entered into the

OpenMP internal scheduler.

The mechanism we use is a part of the explicit task management that was

added in OpenMP 3.0, released in 2008 [68]. The new task scheme includes two

compiler directives:
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Figure 5.3: Illustration of two-level task scheduling.
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// ** Sparse factorization via UHMs
i n t factorize_sparse_matrix(Tree::Node *root) {
// begin with the root node
post_order_task(root));
re turn SUCCESS;

}

// ** Post-order tree traversal
i n t post_order_task(Tree::Node *me) {

f o r ( i n t i=0;i<me->get_n_children ();++i) {
// tree-level task generation for child tree-nodes
#pragma omp task firstprivate(i)
post_order_task(me->get_child(i));

}

// parent task is suspended
#pragma omp taskwait

// process the function (local scheduling)
factorize_uhm(me);

re turn SUCCESS;
}

// ** Partial factorization in UHM
i n t factorize_uhm(Tree::Node* nod) {
// merge the Schur complements from child tree-nodes
nod->assemble();

// local DAG scheduling for LU factorization
Scheduler s;

// tasks are created using algorithms-by-blocks
// and they are associated with a local scheduler
create_lu_tasks(nod->ATL, s);
create_trsm_tasks(nod->ATL, nod->ABL, s);
create_trsm_tasks(nod->ATL, nod->ATR, s);
create_gemm_tasks(nod->ABL, nod->ATR, nod->ABR, s);

// parallel execution of tasks in a DFS-like manner
s.flush();

// monitoring element growth;
// if necessary, UHM is re-assembled and eliminations are delayed
nod->stability_check();

re turn SUCCESS;
}

Figure 5.4: Recursive generation of tree-level tasks.
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• #pragma omp task creates a new task

• #pragma omp taskwait is used to synchronize invoked (nested) tasks.

Importantly, a task can recursively create descendent tasks inside the task. When a

task spawns descendent tasks, #pragma omp taskwait can suspend the task until

those tasks are completed. For example, Fig. 5.4 outlines the parallel multifrontal

factorization via parallel post-order tree traversal with OpenMP tasking. Invoked

tasks are scheduled based on a Breadth First Search (BFS) order; tasks in the current

recursion level are executed before their parent task is processed.

OpenMP utilizes thread pools to execute tasks; when a task is ready to exe-

cute, an idle thread picks it up to process the task. Hence, the programming burden

for dispatching tasks is removed, and portable performance can be achieved in var-

ious architectures which support OpenMP standards.

5.1.2 Scheduling the block matrix operations

Using algorithms-by-blocks, we generate a list of fine-grained tasks, and

these resulting tasks can be scheduled by an existing scheduler like SuperMa-

trix [19, 74] or PLASMA [16]. The problem here is that the number of tasks is

very large, which causes excessive overhead in scheduling. Moreover, task sizes

that encountered are very irregular; the grain size for assembling element matrices

(a set of block additions) is much smaller than tasks generated from elimination pro-

cess (level 3 BLAS). Scheduling such small sized tasks may incur more overhead

rather than parallel performance. A further problem is that the task list is dynamic
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0 LU 1 Tr 2 Tr 3 Tr 4 Tr 5 Gm 6 Gm 7 Gm 8 Gm 9 LU 10 Tr 11 Tr 12 Gm 13 LU
- 0 LU 0 LU 0 LU 0 LU 1 Tr 1 Tr 2 Tr 2 Tr 5 Gm 5 Gm 5 Gm 6 Gm 8 Gm
- - - - - 3 Tr 4 Tr 3 Tr 4 Tr - 7 Gm 6 Gm 7 Gm 12 Gm
- - - - - - - - - - 9 LU 9 LU 8 Gm -
- - - - - - - - - - - - 10 Tr -
- - - - - - - - - - - - 11 Tr -

Table 5.1: Tasks are generated by applying algorithm-by-blocks of LU factorization
without pivoting to a 3×3 block matrix. The first row represents a list of enqueued
tasks; each task records a set of pointers to dependent tasks, which are listed in a
corresponding column.

because of numerical pivoting, and these packages can not yet deal with that.

Adopting DAG-based task scheduling for matrix-level parallelism, we de-

signed a new out-of-order task scheduler and implemented this using the OpenMP

framework. As OpenMP is used for low-level binding of tasks to threads, we have

no control over the specific order in which tasks are executed. Instead, our task

scheduler invokes a list of tasks in parallel and enforces a partial order that observe

dependencies among tasks. More specifically, our implementation is based on the

following scheduling rules;

• no task is executed before all dependent tasks are executed;

• tasks are executed only once regardless of how many times they are invoked.

In addition, as these local schedulers are scheduled in the proper post-order in

Fig. 5.4, we find that all tasks are executed in the right global order with only local

analysis.

We explain our approach using the example of the dense LU factorization

without pivoting. Consider LU factorization on a 3×3 block matrix in Fig. 4.9. A
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// ** Invoke all tasks
i n t Scheduler::flush() {

whi le (tasks_not_empty()) {
open_window(); // set a range of tasks for analysis
analyze(); // construct a DAG for those tasks
execute(); // execute tasks in parallel

}
tasks.clear(); // clean-up task queue

re turn SUCCESS;
}

// ** Execute tasks in an active window
i n t Scheduler::execute() {

f o r ( i n t i=_begin;i<_end;++i) {
#pragma omp task firstprivate(i) // schedule fine-grained tasks using OpenMP
t h i s ->tasklist.at(i).execute_once();

}
#pragma omp taskwait // complete the execution of a set of tasks
close_window(); // close the window

re turn SUCCESS;
}

// ** Tasking policies
i n t Task_::execute_once() {
// return flag
i n t r_val = SUCCESS;

// atomic capture of the execution status
i n t status = __sync_add_and_fetch(& t h i s ->_once_execute , 1);

// Rule 2: execute the current task once
i f (status == 1) {
// Rule 1: recursive calls on dependent tasks
f o r ( i n t i=0;i< t h i s ->get_n_dependency ();++i) {

#pragma omp task firstprivate(i)
t h i s ->get_dependent_task(i)->execute_once();

}
// execute the current task after all dependent tasks are processed
#pragma omp taskwait
r_val = t h i s ->execute();

}

// yield the current thread until this task is completed
whi le ( t h i s ->_n_dependency != COMPLETED) {

#pragma omp taskyield
}
re turn r_val;

}

Figure 5.5: A pseudo code that describes recursive task scheduling.
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list of tasks is generated by the LU algorithm-by-blocks. After task dependencies

are analyzed, tasks are organized in the scheduler as tabulated in Table 5.1. Details

of our scheduler are given in Fig. 5.5. Notably, the execute invokes a list of tasks

in the first row of the table and the first scheduling rule drives a recursion on the

dependent tasks. For any given task in the list, OpenMP executes the task in an

order that obeys the dependencies. For instance, task 6 creates a recursive call

stack:

Task 6 -> Task 1,4 -> Task 0.

This recursive process is naturally suited to the nested parallelism supported by the

omp task pragma. However, the recursion can also invoke the same task multiple

times. The second rule prevents this situation and enforces a task to be executed

once by the first-reached thread. In this example, both Task 1 and Task 4 invoke

Task 0, but Task 0 is exclusively executed by the first-reached thread; the other

encountered thread is redirected to other available tasks by omp taskyield. In

this scheduling mechanism, the task table such as one depicted in Table 5.1 can be

interpreted as scheduling hints which represent the concurrent tasks (in a row) and

data locality (in a column):

• tasks in the first row can be independently executed in an arbitrary order, and

• dependent tasks in the same column can be tied to the current working thread

in favor of reusing data.

Together with various work-queue models and scheduling policies studied in [31,
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67, 82, 91], the current OpenMP implementation shows reasonable performance

gains in both dense and sparse matrix factorization.

5.1.3 Memory usage in the tree traversal

During the post-order tree traversal, the solver dynamically creates/destroys

temporary storage for Schur complements. In principle, the necessary memory

usage for the factorization mostly depends on the applied fill-reducing ordering.

However, actual memory usage in the parallel factorization also depends on the

shape of the assembly tree and specific parallel implementation [38].

With regards to the memory usage in our implementation, the solver has the

following characteristics:

• Our solver creates a virtual refinement tree (assembly tree) using a recursive

bisection scheme on an hp-mesh; consequently, the constructed tree is well-

balanced.

• During the recursive factorization, element matrices are dynamically created

and destroyed by encountered threads. We also note that our solver neither

pre-allocates nor over-allocates matrices before the factorization begins.

As depicted in Fig. 5.4, tasks are generated within a BFS manner to im-

prove the level of concurrency. This approach naturally assigns threads to inde-

pendent subtrees during the tree traversal. All necessary temporary storage is dy-

namically allocated by the encountered threads. This feature is well suited since,

Non-Uniform Memory Access (NUMA) architectures by default, physical memory
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Lonestar

Processors 4x6 Intel Xeon E7540 2.0 GHz
Memory 1TB, 64x16GB, DDR3-1066MHz, 4x QPI
Cache 18 MB shared L3 cache, 256 KB L2 cache/core

Compiler & OpenMP GNU 4.4.5
BLAS Intel MKL 12.1
DLA FLAME ver 10519

Peak performance 8.0 GFLOPS/core

Table 5.2: Specifications of the Lonestar large memory node at the Texas Advanced
Computing Center (TACC).

is allocated on the local NUMA node in which the thread is running, following a

“first-touch” rule.

Next, nested tasks created within a task are sent to a private task pool asso-

ciated with a thread executing the current task and the current task is suspended by

omp taskwait. OpenMP gives a priority to tasks in the thread-private pool. As a

result, a high degree of data locality can be achieved in each thread.

5.2 Performance on a Symmetric Multi-Processing architecture

We compare the performance of the proposed solver against the state-of-

the-art parallel sparse direct solvers MUltifrontal Massively Parallel sparse direct

Solver (MUMPS) and PARDISO:

• MUMPS [5,6] was developed for distributed architectures via Message Pass-

ing Interfaces (MPI) starting in 1996. For this comparison, MUMPS version

4.10.0 is interfaced to the Scalable Linear Algebra PACKage (ScaLAPACK)

and Basic Linear Algebra Communication Subprograms (BLACS) provided
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by Intel’s Math Kernel Library (MKL) version 12.1. Single threaded BLAS

and Linear Algebra PACKage (LAPACK) are interfaced with 24 MPI nodes.

• PARDISO [78,79] solver was developed for multi-core architectures in 2004,

and is a part of MKL. For this comparison, we use version 12.1.

For all cases, we use a single node with 24 cores of Lonestar, a massively parallel

architecture at the Texas Advanced Computing Center (TACC), which we describe

in Table 5.2. Solution accuracy is not reported as all solvers produces similar rela-

tive residual.

Strong scalability.

We consider the speed-up by increasing the number of processing units for

a fixed problem derived from a high order discretization (p = 4).

In this comparison, Metis version 4.0 [46] is commonly interfaced to reorder

the sparse matrix. Detailed performance data is tabulated in Table 5.3 and Table 5.4;

some observations are:

• While the UHM solver and MUMPS report the almost same number of FLoating

Point Operations (FLOPs) in the factorization phase, PARDISO estimates al-

most twice that of the others.

• As for the utilization of multi-core resources, PARDISO and UHM solvers

show higher performance than MUMPS.
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Total cost: 3476 GFLOP

Cores Time (sec) GFLOP/sec Memory (GB)

1 473.65 6.84 7.37
2 257.36 13.43 8.25
4 189.77 17.42 8.14
8 93.02 35.03 8.14

12 54.59 59.32 8.25
16 45.00 73.81 8.14
20 37.63 87.43 8.26
24 29.44 113.29 8.18

(a) UHM solver

Total cost: 3264 GFLOP

Cores Time (sec) GFLOP/sec Memory (GB)

1 454.14 7.19 8.328
2 278.40 11.73 10.10
4 166.78 19.58 10.11
8 104.19 31.36 12.16

12 71.89 45.45 12.72
16 60.07 54.39 12.86
20 50.64 64.52 12.61
24 43.83 74.83 12.79

(b) MUMPS

Total cost: 7490 GFLOP

Cores Time (sec) GFLOP/sec Memory (GB)

1 1153.07 6.50 9.57
2 610.16 12.28 9.59
4 309.32 24.22 9.65
8 173.55 43.16 9.68

12 119.79 62.53 9.77
16 92.38 81.08 9.83
20 77.15 97.09 9.89
24 66.28 113.53 9.89

(c) PARDISO

Table 5.3: Performance benchmark of different direct solvers with a varying number
of cores. The test problem has 357,889 DOFs and discretized with p = 4.
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Total GFLOP GFLOP/sec Time (sec) Memory (GB)

UHM 3476 113.29 29.44 8.18
MUMPS 3264 74.83 43.83 12.79

PARDISO 7490 113.53 66.28 9.89

Table 5.4: Performance summary of the sparse direct solvers for 24 cores.

Order p # of DOFs # of non-zeros

1 6,017 524,288
2 45,825 3,276,800
3 152,193 13,107,200
4 357,889 40,140,800
5 695,681 102,760,448
6 1,198,337 231,211,008

Table 5.5: Sparse matrices are generated based on a unstructured tetrahedral mesh
corresponding to a unit spherical domain with a varying order of approximation
from 1 to 6.

• With the controlled computational cost and high performance floating point

operations, the UHM solver with 24 cores achieves respectively 1.48x and

2.25x speed-up compared to MUMPS and PARDISO.

Figure 5.6 compares the strong scaling of the solvers and their memory usages as

a function of the number of cores. Our solver achieves 16x speed-up on 24 cores

while MUMPS and PARDISO respectively achieve 11x and 7x speed-up. The graph

also shows that the memory usage in our solver does not grow with the number of

cores being used.
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Figure 5.6: Performance in the factorization phase for a fixed problem discretized
with p = 4. A reference of the speed-up graph is a sequential performance of the
UHM solver.

Analysis phase

Our test problems are based on the same tetrahedral mesh with a varying

polynomial order of approximation p from 1 to 6. The problem sizes and sparsity
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Figure 5.7: Time (lower is better) measured in the analysis phase.

are described in Table 5.5.

Figure 5.7 shows that our solver is highly efficient when a sparse system

is based on a high order discretization. The higher efficiency of our solver can

be attributed to its unique interface that takes into account the hp-discretization

process. Instead of partitioning the matrix graph itself, we construct a weighted

quotient graph based on the element connectivity, where the weights are associated

with nodal Degrees of Freedom (DOFs). Hence, the time complexity does not

vary if we only change the polynomial orders. On the other hand, MUMPS and

PARDISO spend a considerable amount of time in reordering and analyzing the

matrix that increases with higher p.
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p UHM MUMPS

1 1,104 658
2 9,527 3,613
3 32,149 8,829
4 62,955 18,646
5 63,033 30,583
6 63,042 65,400

# of fronts

p UHM MUMPS

1 694 594
2 2,508 2,661
3 5,746 6,025
4 10,197 10,343
5 16,171 16,541
6 22,336 23,380

Max front size

Table 5.6: Frontal matrices used in the factorization.

Table 5.6 compares the frontal matrices constructed during factorization 1.

An interesting observation is that two different solvers report similar maximal front

sizes. This implies that the asymptotic FLOPs and required memory would be

almost the same for the two solvers. However, the number of fronts is distinctly

different for different p.

For the example of p ≥ 4, the hp-mesh populates DOFs for all topological

nodes i.e., vertices, edges, faces and interior nodes. As we analyze a quotient graph

based on the hp-mesh, our solver reports a similar number of frontal matrices when

p≥ 4. In contrast, MUMPS does not recognize this topological structure.

Numerical factorization phase

Figure 5.8 shows that our solver is more efficient than others for problems

derived with higher p. MUMPS and the UHM solver report roughly the same num-

1For this comparison, we do not evaluate PARDISO as it is implemented with left-looking su-
pernodal factorization.
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Figure 5.8: Time complexity in the factorization phase (24 cores are used).

ber of FLOPs estimates for the factorization. Hence, the performance gain over

MUMPS is largely due to the efficient use of level 3 BLAS operations and asyn-

chronous parallel execution of fine-grained tasks. On the other hand, MUMPS also

suffers from more communication overhead created by explicitly managed MPI.
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Figure 5.9: Peak memory used in the factorization phase (24 cores are used).

While the PARDISO solver outperforms the others for the problem with the

lowest order approximations, the solver performs slower for problems with higher

p. The number of FLOPs in the factorization phase is twice as large as the others.

We were not able to determine why PARDISO reports a different computational
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cost compared to others.

Figure 5.9 compares the space complexity of the solvers: the graph com-

pares the peak memory used for solving the problems. Our solver shows substantial

memory saving compared to other solvers. Compared to MUMPS, our solver uses

30% less memory for high p. We also see that our solver uses 20% less memory

than the PARDISO solver. This is probably due to the fact that other sparse direct

solvers over-allocate the workspace to accommodate the delayed pivots and addi-

tional fills. On the other hand, our solver dynamically creates or destroy matrices

when UHMs are assembled during the factorization.

5.3 Scheduling tasks to multiple GPUs

When a heterogeneous architecture with multiple Graphic Processing Units

(GPUs) is used for large-scale sparse matrix factorization, a naive task offloading is

unlikely to be efficient due to the irregular nature of the density in the sparse matrix.

In the course of multifrontal factorization, the sizes of encountered subproblems

vary significantly, and these irregularly grained problems are the main concern for

performance:

• at the start, there exist many small-sized subproblems, and those problems are

mostly not large enough to yield performance gains from GPU offloading;

• on the other hand, the large subproblems at the upper-level hierarchy may not

fit in the local storage of a GPU.
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Our factorization scheme using algorithms-by-blocks is still viable to solve these

issues. In the hybrid context, where both a CPU and a GPU are utilized, a problem

with this approach is that a single algorithmic block size is not apt to both GPUs

and the host processor. For instance:

• tasks should be coarse enough to obtain performance from GPUs over the

invested overhead such as data transfers;

• fine-grained tasks are preferred for the multi-core processor to improve par-

allel efficiency and workload balance in cores.

This task granularity issue is more significant when the computational power of

GPUs and the host multi-core processor is greatly imbalanced.

To overcome these conflicting performance issues, nonuniform block sizes

are used in our solver. Initially, element matrices are partitioned with a block size

that is best-suited for GPUs. Coarse grain tasks are first generated using algorithms-

by-blocks, and they are scheduled to GPUs. Simultaneously, some of those tasks

are further refined with a smaller block size to assign them to the host multi-core

processor.

Here we explain this multi-level task subdivision scheme with an example

depicted in Fig. 5.10. For simplicity, we consider a target compute node consisting

of a multi-core processor and a GPU with following characteristic parameters:

• there is one GPU, hosted on a quad-core CPU;

• the GPU has double the optimal block size b of the CPU; and
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Figure 5.10: Task adaptation and workload balancing on a heterogeneous architec-
ture accelerated by a GPU.

• the GPU is three times faster than the quad-core CPU

We also assume that the GPU is only used for BLAS functions 2.

First, the element matrix is partitioned with the GPU block size 2b. By

applying an algorithm-by-blocks LU factorization to the partitioned matrix, a list of

2This restriction of earlier GPUs may no longer hold, but it illustrates the principle that in het-
erogeneous setups certain operations may only be executable on one type of device.
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Lonestar

Processors 2x Hex-Core, Westmere 3.33 GHz
Memory 24 GBytes
BLAS Intel MKL 10.3

DLA library libflame ver 6192, CUBLAS
DGEMM Peak 13.3 GFLOPS/core

Interconnection BUS PCI Express 2.0
GPUs 2x NVIDIA Tesla, M2070 (6 GB RAM)

Compiler GNU 4.4.5
DGEMM 300 GFLOPS/device

Table 5.7: Specifications of the Lonestar GPU node at TACC.

coarse grained tasks is produced. Considering the three-to-one performance balance

of the two devices, we immediately see that one out of every four tasks should

be computed on the multi-core processor to achieve global load balance. When a

coarse grain task is dispatched to the multi-core processor, the task is dynamically

adapted with its block size b. Resulting fine-grained tasks are redistributed to the

available cores. For more detailed descriptions of this approach, we refer [48, 49].

5.4 Performance on a heterogeneous architecture with multiple
GPUs

In this section, we demonstrate the performance of our sparse direct solver

on a heterogeneous architecture. Experimental results are again obtained from a

single GPU node on Lonestar: 12x multi-core processor with two GPUs. Detailed

specification of this machine is tabulated in Table 5.7 3. For performance evalua-

tion, we use the same problem as one used in Section 5.2 with a uniform order of

3Note that this machine is different from the large memory node which is used in Section 5.2.
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Figure 5.11: Dense DGEMM performance with M = N and K = 1024 for a 12x
Intel Xeon X5680 @ 3.33GHz processor and a single Fermi GPU M2070.

approximation, p = 4.

Node characterization

The machine is equipped with two Fermi GPUs, where each GPU delivers a

peak performance of 300 GFLOPS for DGEMM, whereas the multi-core processor

delivers 13 GFLOPS per a core performing DGEMM.

Extracting the most performance from different devices, we use only two

performance parameters (i.e., block size and performance ratio) at the setup phase.

However, several factors such as individual performance profiles, different memory

hierarchy, data transfers (or caching policies) interact in determination of these two

parameters, and some of them are not clearly identified a priori. In this benchmark,

the following parameters are used;
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• there is one 12-core CPU with a block size of 256,

• there are two GPUs with a block size of 2048, and

• a single GPU is 3 times faster than the full CPU.

In principle, block sizes for different types of devices can be empirically

determined by running individual test problems like one depicted in Fig. 5.11. If

we include the data transfer cost in DGEMM performance, the GPU with a block

size below 2000 does not provide any performance over the host processor in our

computing model. This performance graph also shows that an order of magnitude

higher device performance can be achieved if the data on GPU memory are man-

aged/reused.

Scalability

In Fig. 5.12, we compare the dense factorization accelerated by multiple

GPUs. Little performance is obtained from GPUs for the small sized problems, but

the asymptotic speed-up of 3.5x from two GPUs is observed for large problems.

As the most computational complexity comes from the large element matrices, the

higher asymptotic performance offers an opportunity to use GPUs more efficiently

for large scale multifrontal factorization.

Table 5.8 describes the performance of our sparse solver varying the number

of GPUs used. For this model sparse problem, the asymptotic speed-up for dense

problems (3.5x) seen in Fig. 5.12 is not observed due to the range of subproblem

sizes and irregularity of the sparse problem. This model problem creates dense
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Figure 5.12: Dense LU factorization without pivoting accelerated by multiple
GPUs.

Performance Speed-up

Cores GPUs Time [sec] GFLOP/sec vs 1 core vs 12 cores

1 0 291 11.13 1.00 -
2 0 213 15.21 1.36 -
4 0 85 38.11 3.42 -
8 0 45 71.98 6.46 -

12 0 33 98.16 8.81 1.00
12 1 23 140.84 12.65 1.43
12 2 19 170.50 15.31 1.69

Table 5.8: Sparse LU with partial pivoting accelerated by multiple GPUs. Note that
the sparse system has 357,889 DOFs and a max frontal matrix size is 10,791.

submatrices upto a size 11k, which is expected to lead at most 2.51x speed-up as

depicted in Fig. 5.12. However, being aided by two GPUs, we are able to obtain

1.69x speed-up in this example problem.
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5.5 Summary

In this chapter, we presented a two-level task scheduling approach for the

multifrontal factorization of a matrix. First-level tasks are generated via the post-

order tree traversal; next, those tasks are decomposed into fine-grained tasks us-

ing algorithms-by-blocks. By constructing a DAG of the fine-grained tasks for an

encountered dense subproblem, those tasks are asynchronously executed while re-

specting their dependencies. As task schedulers are invoked following the partial

order of elements in the assembly tree, we achieve efficient task scheduling with

low overhead, without the need for the construction of a global DAG.

From the perspective of implementation, our task scheduler is particularly

designed for multiple dense problems. This feature is necessary for multifrontal

factorization as the method converts sparse matrix problem into a set of dense sub-

problems. Our task scheduler exploits the nested parallelism supported by OpenMP

tasking. This enables nested multi-level DAG scheduling. We demonstrated the ef-

ficiency of our approach by comparing with state-of-the-art sparse direct solvers.

Our solver outperforms the others when a system of equations is based on higher

order discretization.

Responding to emerging heterogeneous GPU architectures, we introduced

a simple but efficient task subdivision scheme. Our approach dynamically adapts

task granularity by adjusting a block size to be suitable for the device that is used.

For instance, a large block size is selected for the efficient use of GPUs while a

smaller block size is used to improve concurrency in a multi-core processor. The

main benefit of this approach is in portable performance. Two tuning parameters are
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used to characterize various kinds of heterogeneous architectures. We also showed

that our approach is viable by applying the technique to both dense and sparse

problems.
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Chapter 6

Numerical Results

In this chapter, we present numerical examples that have been conducted to

verify our FE code and results for the coupled BioHeat Transfer (BHT) problem.

Overall, we will follow a verification procedure similar to the one used in [35, 99].

This procedure includes the following numerical experiments:

• evaluation of geometry error and verification of mesh generation;

• verification of the Electro-Magnetic (EM) code against manufactured solu-

tions;

• verification of the Perfectly Matched Layer (PML) by solving EM wave scat-

tering problems.

After the EM code is thus verified, we present a few case studies for the BHT

problem coupled with Maxwell equations.

6.1 Geometry error and verification of the curvilinear mesh gen-
eration

A precise description of geometry is critical for high order FEs. As men-

tioned earlier, our computational domain is partitioned into Geometry Modeling
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Figure 6.1: Element mapping. Coordinates of ξ, η, and x represent master, refer-
ence, and physical element coordinates respectively.

Package (GMP) blocks that coincide with an initial FE mesh. For each block, GMP

provides a parameterization that maps a corresponding reference GMP block onto

a physical one. These parameterizations are globally C0-conforming; mesh refine-

ments are performed in the reference GMP blocks.

The exact geometry element map is constructed by composing an affine map

from the master element onto the corresponding element in the reference domain,

with the exact GMP parameterization. With this geometry map, the geometry is

exactly represented and no geometry error is present.

In practice, the exact geometry element is replaced by the isoparametric el-

ement with a polynomial approximation constructed using H1-conforming element

shape functions. This approximation is performed through the Projection-Based In-
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terpolation (PBI) of the exact GMP parameterizations in the reference domain [27].

The PBI is invariant under a similarity map 1 but not invariant under a general affine

transformation. Unfortunately, in the process of refining tetrahedral elements in the

reference domain, we obtain elements that are not similar to the master tetrahedral

element. Consequently, the PBI of the element map is not longer equivalent with

the PBI done in the reference domain. This does not happen for hexahedral and

prismatic elements.

As the interpolation of the GMP parameterizations is done in the reference

domain, the corresponding geometry error is defined using the H1 norm in the ref-

erence domain. More precisely, if

xGMP : Ωb 3 η→ x ∈Ω

denotes the GMP parameterization for a particular reference block Ωb, the corre-

sponding geometry error is defined as

errx =
‖xGMP−xhp‖H1,Ωb

‖xGMP‖H1,Ωb

,

where xhp denotes the interpolant computed by PBI over the mesh in the reference

domain. We verify the generation of geometry Degrees of Freedom (DOFs) through

PBI by studying the global h-convergence rates of the PBI error. The theoretical

convergence rates are of the form

error≈Chmin{p,r},

1Rigid body motion composed with a simple (isotropic) scaling.
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where h is the element size, C denotes a generic constant, p is the uniform element

order and r is the regularity of the GMP parameterizations measured in Sobolev

norms. With the number of DOFs proportional to p3/h3, the convergence rate in

terms of the total number of DOFs N (with fixed p) is

error≈CN−min{p,r}/3.

Reproduction of a plane wave. As our first example, we solve a Neumann bound-

ary value problem for the time-harmonic Maxwell equations in a spherical domain:

∇×
(

1
µr

∇×E
)
−ω2 (εr− jεσ)E = 0 in Ω,

n×
(

1
µr

∇×E
)

=− jωJimp
s on ΓN ,

where Ω represents a spherical domain with a diameter d = 2λ and λ represents

the wavelength in the medium. For verification purposes, the spherical domain

is discretized using both tetrahedral elements and prismatic elements as shown in

Fig. 6.2. A Neumann boundary condition is imposed on the surface of the prismatic

layer and the boundary data is generated from a manufactured plane wave solution:

E(x) = E0e− jk·x.

Here, the polarization vector E0 and propagating wave vector k must satisfy the

following condition:

E0 ·k = 0.

For convenience, we set them as E0 = (1,0,0) and k = (0,0,π). The convergence
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Figure 6.2: Ex component of the plane wave solution.

rates for the solution E to the Maxwell problem are measured in the H(curl) norm

defined in the physical domain.

errE =
‖E−Ehp‖H(curl),Ω

‖E‖H(curl),Ω

With tetrahedral and prismatic elements of order (p+1/2) 2, the expected rates of

convergence are identical with those for the geometry error.

A detailed convergence history for both geometry and solution errors is tab-

ulated in Table 6.1. Note that the problem size corresponding to p = 3 and p = 4

meshes after the third global mesh refinement is larger than the limited memory

space (100 GB) of our workstation. The obtained convergence rates coincide with

ones predicted by the theory and indicate that the geometry maps are at least of H5

2Nédélec’s elements of the first type.
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Geometry Solution

# of refine. errG rate errE rate

p = 2

0 0.55047E-02 n/a 0.25671E-01 n/a
1 0.14172E-02 -0.689 0.65863E-02 -0.675
2 0.35724E-03 -0.679 0.16654E-02 -0.671
3 0.89576E-04 -0.673 0.42027E-03 -0.667

p = 3

0 0.28910E-03 n/a 0.27565E-02 n/a
1 0.37623E-04 -1.015 0.35990E-03 -1.000
2 0.47491E-05 -1.012 0.45640E-04 -1.003
3 0.59512E-06 -1.007 - -

p = 4

0 0.12783E-04 n/a 0.24933E-03 n/a
1 0.83480E-06 -1.345 0.16572E-04 -1.324
2 0.52771E-07 -1.344 0.10557E-05 -1.334
3 0.33109E-08 -1.339 - -

Table 6.1: Convergence rates of both the geometry and the solution on a series of
globally refined meshes.

regularity.

This sanity check does not only verify the interpolation routines but also

provides important information about the regularity of the GMP parameterizations

that affects the overall convergence rates for the FE solution.

6.2 Electro-Magnetic wave scattering problems

For a general EM scattering problem, we consider an incident EM wave

(Einc,Hinc) satisfying Maxwell equations in the entire domain Ω⊂R3. We separate

the interior domain of a scatterer represented by Ωint =
⋃n

i=1 Ωi, where Ωi denotes

a subdomain occupied by the object. This geometry is illustrated in Fig. 6.3, where

110



⌦1

⌦2

⌦ext

Einc

E

�12

Figure 6.3: A scattering object places in the domain of interest (Ω) with an incident
wave Einc.

Ωext denotes the exterior domain outside the scatterer and Γi j represent the interface

between different materials.

Let us begin with the non-dimensionalized second-order wave equation dis-

cussed earlier; that is

∇×
(

1
µr

∇×E
)
−ω

2 (εr− jεσ)E =− jωJimp. (6.1)

We assume that the materials are isotropic and homogeneous in each subdomain

Ωi. However, the material properties are not necessarily the same among different

subdomains. Next, we decompose the total electric field into the scattered wave E

and the incident wave Einc:

Etot = E+Einc. (6.2)

Then, the total electric field should satisfy the Maxwell equations subject to bound-

ary conditions on the surface ∂Ω. In addition, the incident wave satisfies the reduced

wave equation in the free space:

∇×∇×Einc−ω
2Einc = 0,
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where ω corresponds to the free space wave number. Assuming no current source

inside of the scatterer, we obtain the following equation by substituting (6.2) into

(6.1):

∇×
(

1
µr

∇×E
)
−ω

2
ε̂rE =−∇×

(
1
µr

∇×Einc
)
+ω

2
ε̂rEinc

=− 1
µr

∇×∇×Einc−ω
2Einc︸ ︷︷ ︸

0

−ω
2 (ε̂rµr−1)Einc


= ω

2 (
ε̂r−µ−1

r
)

Einc,

where ε̂r = εr− jεσ is defined as a complex relative permittivity. By defining the

equivalent volume current Jimp in the scatterer

− jωJimp = ω
2 (

ε̂−µ−1
r
)

Einc, (6.3)

the homogeneous wave equation for the total electric field is transformed to a non-

homogeneous wave equation for the scattered field. This formulation changes the

Einc to the equivalent electric volume current Jimp.

To complete this formulation, proper boundary conditions should be im-

posed. For a Perfect Electric Conductor (PEC) surface, the total electric field E

should vanish and this leads a non-homogeneous Dirichlet condition for the scat-

tered field:

n×
(

E+Einc
)
, on ∂Ω.

In addition, we impose the Silver-Müller radiation condition at infinity to ensure

that the solution is uniquely determined. Since the FE mesh cannot be constructed

for an unbounded domain, the infinite domain should be properly truncated with an
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Free space PML

Figure 6.4: A cutaway view of the spherical shell for the PEC scattering problem.
Note that PML is rescaled for the visualization purpose.

absorbing boundary condition mimicking the outgoing waves. As discussed earlier,

we use the PML technique and follow the construction in [60].

Next, we verify the EM code by solving EM scattering problems: a plane

wave scattering on a PEC and a dielectric sphere. The numerical solution will be

compared against the analytic Mie series solution; the exact solution was imple-

mented using the algorithms described by Wiscombe [97].

Scattering of a plane wave on a PEC sphere. In this example, we set up a unit-

radius sphere (non-dimensional) with an incident plane wave of which wavelength

is λ. Figure 6.4 shows the cutaway view of the problem domain. The free space

domain (1 ≤ r ≤ 3) is composed of tetrahedral elements. The PML domain is
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Real part of Ex Imaginary part of Ex

Figure 6.5: A slice view normal to y-axis of the manufactured wave solution for the
PEC scattering problem.

extruded with prismatic elements of a thickness t = λ; the layer is anisotropically

refined and we use four elements to the thickness direction. Figure 6.5 describes a

manufactured solution for a case when the diameter of the scatterer coincides with

the free space wavelength λ. The actual frequency is

frequency =
ω

2πa
√

ε0µ0
,

where a is a reference length. By relating with a scale of the human head a = 0.1m,

the frequency used in this example corresponds to 1.5 GHz. In Table 6.2, we report

the relative H(curl) error against the Mie series solution for different wavelengths.

The use of higher order elements give us an accurate and cost-effective solution.

We also observe that the error is only slightly reduced when the approximation

order increases from p = 3 to p = 4. This is probably because our PML is not

precisely tuned; a discrete version of the PML may not resolve the rapidly changing

114



λ/h

p 8 4 2

1 0.25184E+00 0.53327E+00 0.10921E+01
2 0.58567E-01 0.11029E+00 0.64884E+00
3 0.52356E-01 0.72234E-01 0.23300E+00
4 0.52017E-01 0.70954E-01 0.20881E+00

Table 6.2: PEC scattering. The relative solution error is measured in the standard
H(curl) norm against the manufactured Mie series solution.

solution behavior and this can result in spurious reflections. The optimal PML

discretization can be obtained by using hp-adaptivity [62]. However, we have not

used an automatic adaptivity in this work and the same PML parameters have been

used for all test cases.

Scattering of a plane wave on a dielectric sphere. We use two layered spheres

(r = 1,3), representing the scatterer and the free space domain. These spheres

are modeled with tetrahedral elements. The domain of interest is surrounded by

prismatic elements to construct a PML, for which the thickness corresponds to a

single free space wavelength. Element sizes are locally adjusted to account for the

dielectric medium; four elements per wavelength are used in both the dielectric

sphere and the free space including the PML.

The Mie series solution and the EM material properties of the dielectric

sphere are illustrated in Fig. 6.6. Numerical results obtained from two domains are

tabulated in Table 6.3. An observation is that the numerical error in the scatterer

is much smaller than the error in the free space domain. This is probably because

115



Real part of Ex Imaginary part of Ex

Sphere diameter (=λ) εr µr σr

2.0 4.0 1.0 0.0

Material properties of the dielectric sphere

Figure 6.6: A slice view normal to y-axis of the manufactured wave solution for
the dielectric scattering problem. The internal wave (E tot

x ) is plotted inside of the
scatterer and the scattered wave (Ex) is plotted outside of the sphere.

Relative error

p Scatterer Free space

1 0.56911E+00 0.53326E+00
2 0.15919E+00 0.14165E+00
3 0.53515E-01 0.11358E+00
4 0.47789E-01 0.11358E+00

Table 6.3: Scattering waves in a dielectric sphere. The relative solution error is
measured in the standard H(curl) norm against the manufactured Mie series solu-
tion.
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Figure 6.7: The magnitude of the electric field Ex scattered by the dielectric sphere,
where the internal field (E tot

x ) is plotted for r ≤ 1.
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Figure 6.8: The phase angle of the electric field Ex component scattered by the
dielectric sphere, where the internal field (E tot

x ) is plotted for r ≤ 1.

the discrete version of the PML, which is not precisely tuned, incurs an irreducible

error in the domain of interest. We also compare the Ex component sampled over
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the z-axis in Fig. 6.7 and Fig. 6.8. The graph shows that our numerical solution

approximated with p = 2,3 is well-matched to the Mie series solution. In contrast,

the solution with p = 1 does not capture the propagating wave inside. Note that the

standard criterion for wave scattering and radiation problems for linear elements is

to use 10 elements per wavelength.

6.3 Transient BioHeat Transfer problem

As discussed earlier, the two problems are weakly coupled with each other.

The Maxwell equations are used to compute the Specific Absorption Rate (SAR),

which represents the absorbed power density when a tissue is exposed to the EM

field. The temperature distribution in the human head is determined by the Pennes

BHT equation taking account of SAR as a localized heating source. Here, we recall

the Pennes equation as follows:

ρc
∂u
∂t

= ∇ · k∇u︸ ︷︷ ︸
diffusion of heat

+Wbcb (ua0−u)︸ ︷︷ ︸
perfusion rate

+ q̇m︸︷︷︸
metabolism

+ q̇SAR︸︷︷︸
EM energy

,

where

k = effective thermal conductivity of the tissue [W/m◦C],

c = specific heat of the tissue [J/kg◦C],

u = temperature of veins in the tissue [◦C],

ρ = density of the tissue [kg/m3].
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Head Free space PML

# of elements 8,715 26,491 2,472
Element shape Tetrahedron Tetrahedron Prism
Order (p) 3 3 34
Size(cm) (h = 26,w = 16, l = 24) r = 36 t = λ

Material Brain Air Air

Table 6.4: The phantom model; λ denotes the wavelength of the incident wave Einc.

EM properties Thermal properties

ω = 0.06π εr εs α β h

Brain 4.5805E+01 1.5309E+01 1.4827E-00 1.0405E+01 2.7313E-01

Table 6.5: Non-dimensionalized material parameters used in the phantom model; a
reference length a = 0.01[m] and a reference time t0 = 1000[sec] are used.

We also note that the temperature dependence of the material thermal properties is

not considered as the temperature rise due to the deposited EM energy is expected

adequately small. However, SAR will be re-evaluated after a certain number of time

steps accounting for the temperature dependence of the EM materials. The relation

is given in [45]:

∆σ

σ
= 0.02∆u and

∆ε

ε
=−0.005∆u, (6.4)

where σ and ε represent relative conductivity and permittivity, and ∆u is tempera-

ture difference with a ◦C unit.

Problem set-up. We consider a homogeneous head model, called a phantom. The

model is obtained from a commercial FE package COMSOL. The surface model is

made up with 14,316 triangles. Given this fine-grid surface mesh, GMP recon-

structs a smooth G1-continuous surface [24] that is suitable for the computation
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(a) G1-upgraded mesh (b) Linear mesh (c) Internal view

(d) Free space

Figure 6.9: G1-continuous phantom model. The figure (a) illustrates the recon-
structed curve-linear mesh. The figure (b) and (c) describe the mesh topology that
is used in the computation. The figure (d) describes the free space domain.
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using higher order elements. A problem in using this precisely defined geometry is

the trade-off between the computational efficiency and the quality of representation.

We will use isoparametric elements that replace the exact geometry maps in GMP

with higher order H1-conforming shape functions.

The phantom model represented by the reference GMP blocks coincides

with the initial tetrahedral mesh as illustrated in Fig. 6.9; this head model is enclosed

by a spherical domain (free space), and the entire domain (including the phantom)

is remeshed using TetGen [87]. Finally, the outer surface of the sphere is extruded

to construct a PML using prismatic elements. This prismatic layer is anisotropically

refined twice along the radial direction; consequently, four elements are used to the

thickness direction. A detailed description of the phantom model is tabulated in

Table 6.4. Non-dimensionalized electric and material thermal properties used in

this study are tabulated in Table 6.5, where they are obtained from [1] and [43]

respectively.

Initial Specific Absorption Rate (SAR) distribution. We now compute the SAR

distribution in the phantom model. Recall that

q̇SAR = ρSAR =
σ|E|2

2
,

where

σ = conductivity of the tissue [(Ω ·m)−1],

E = electric field intensity [V/m],

ρ = density of the tissue [kg/m3].
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Slice view normal to y-axis Slice view normal to z-axis

Figure 6.10: Absorbed power density of the propagating plane wave in the phantom
model. This figure is scaled by dB = 10log10

(
σ|E|2/2

)
.
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Figure 6.11: Absorbed power density of the propagating plane wave in the phantom
model, where the data is sampled over the x-axis.

Two types of incident EM waves are considered in this study: a plane wave and a

Hertzian dipole.
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Slice view normal to y-axis Slice view normal to z-axis

Figure 6.12: SAR distribution in the phantom model exposed to an infinitesimal
dipole radiation (P = 1[W ]) located at x = 10cm. This figure is scaled by dB =
10log10 (SAR).

A plane wave is used in this simulation:

Einc = E0e− jk·x, where E0 = (0,0,1) and k = ω(−1,0,0).

Figure 6.10 describes the power density of the propagating wave in the phantom

model. More quantitatively, we present the power density sampled over the x-axis

as depicted in Fig. 6.11. The graph shows the decaying trend of the propagating

wave in the lossy medium. We also observe that the solution approximated with

p = 2 is slightly under-resolved. Regarding to the solution accuracy of our discrete

model, we will discuss later in this chapter.

As for our second example, we use a Hertzian dipole to model the EM wave

radiation from an antenna of a cell phone. The radiating electric field from the

dipole is analytically determined from the magnetic vector potential (see, pages
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Slice view normal to y-axis Slice view normal to z-axis

Figure 6.13: SAR distribution in the phantom model exposed to an infinitesimal
dipole radiation (P = 1[W ]) located at x = 16cm. This figure is scaled by dB =
10log10 (SAR) and the maximum SAR is found as 0.5950 [W/kg].

55–60 in [44]); the following electric field is used as an incident wave in (6.3):

Er =
Z0Il cosθ

2πr2

(
1+

1
jk0r

)
e− jk0r,

Eθ = j
Z0k0Il sinθ

4πr

(
1+

1
jk0r
− 1

(k0r)2

)
e− jk0r,

Eφ = 0,

where

Il = dipole moment,

r = distance from the dipole source,

k0,Z0 = free space wave number and impedance.

The time-averaged radiating power is approximated by using the following far-field
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Figure 6.14: Pointwise SAR distribution when the phantom is exposed to dipole
sources.

approximation:

Eθ ≈
jk0Z0Il sinθ

4πr
e− jk0r, Hφ ≈

jk0Il sinθ

4πr
e− jk0r.

The corresponding radiating power is computed as follows:

P =
1
2

∮
S

Re(E×H∗) ·dS =
1
2

∫ 2π

0

∫
π

0
EθH∗φ r2 sinθdθdφ =

Z0k2
0

12π
(Il)2.

Suppose that a cell phone operates in 1 watt of radiating power and we take

Il = 0.016771[A ·m]. With a constant output power, the level of absorbed EM en-

ergy in the head is determined by the location of the dipole source. Two dipole

sources located at (10,0,0) and (16,0,0) 3 are considered in this experiment. We

present the pointwise SAR distribution in Fig. 6.12 and Fig. 6.13. More quantita-

3The location is about a quarter wavelength away from the left side of the phantom model.
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tively, we plot the SAR over the x-axis in Fig. 6.14. From the graph, we can see

that the SAR rapidly decreases as the wave propagates into the head.

It should be noted that the SAR limit commonly accepted is 2.0[W/kg] over

average any 10[g] tissues [2] and 1.6[W/kg] over average any 1[g] tissues [3]. Since

we evaluate the SAR pointwise, the spatial SAR distribution shown in the figure

would be over-estimated compared to what is expected in the averaged values. In

this study, we do not consider an averaging scheme as the unstructured tetrahedral

mesh is inherently difficult to generate cells by a 10 g or 1g mass. In the transient

BHT problem presented next, we only consider a dipole located at x = 16.

Time integration. When solving the Pennes BHT equation, we first determine the

initial temperature distribution taking into account blood perfusion and metabolism,

as well as the convective heat transfer rate in the room temperature. A problem here

is that the determination of such physiological quantities is extremely difficult as

they are related to complex geometry and temperature inside/outside of the body.

For the simplicity, we assume that the human body maintains a constant

temperature and model the metabolic heat generation q̇m as follows:

∫
Ω

Wbcb
(
ubody−ua0

)
vdx =

∫
Ω

q̇mvdx,

where the temperature ubody denotes the body temperature. This gives us an almost

uniform temperature distribution inside and a thermal boundary layer on the skin.

Figure 6.15 shows the steady-state initial temperature distribution in the phantom
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Figure 6.15: Initial temperature distribution in the phantom head model, where the
core body temperature is set 37◦C and the room temperature is set 20◦C. The heat
convective coefficient is set h = 10.5[W/(m2 ◦C)].

model, where the room temperature is set to be 20◦C and the convective heat trans-

fer coefficient h is taken as 10.5[W/(m2 ◦C)] [77]. Note that the mesh is locally

refined on the skin surface to resolve the thermal boundary layer.

Starting with the thermal equilibrium status, we advance the time transient

BHT equation using the Crank–Nicolson scheme. In FEM, the space and time vari-

ables are decoupled and discretized independently to obtain a sequence of algebraic

systems. The temperature field θ at the k time iteration is expressed

θ
k(x, t) =

ndof

∑
j=1

θ
k
j(t)φ j(x). (6.5)

Given the abstract variational form (2.24), the time discretization is described as

follows: (
θk+1−θk

∆t
,ψ

)
+b
(

θk+1 +θk

2
,ψ

)
= l (ψ) ,
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Temperature rise Slice to y-axis Slice to z-axis

Figure 6.16: Temperature rise after 20 minutes (40 time steps).

where ∆t is the time step. It is well known that the scheme is unconditionally sta-

ble for diffusion equations [34, 92]. We determine the time step size considering

the transient behavior of the temperature in the body. For instance, consider that

our head is uniformly heated by SAR = 1.6[W/kg], which is the safety limit sug-

gested in [3]. By assuming that the EM induced heat is entirely used to raise the

temperature of the head model, we see that

∆θ

∆t
=

SAR
Specific heat of the brain

≈ 4.3243E-04.

This implies that it will take about 16 minutes to raise the temperature of the brain

by 0.25 ◦C. Here we set the time step to 30 seconds and proceed time-stepping

until the temperature field reaches the steady-state.

Figure 6.16 illustrates the solution of the BHT problem taking into account

the EM induced heat generation. Volume averaged temperature increase is depicted

in Fig. 6.17. The graph shows that the temperature field is quickly elevated in the
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Figure 6.17: Volume averaged temperature rise for 20 minutes.

first six minutes. After then, the temperature field reaches at steady-state temper-

ature distribution in 10 minutes. We compare the result against the solution of

the steady-state BHT problem. The non-linear effect due to the temperature de-

pendence of the EM material property is very weak, see (6.4). The EM material

properties vary 0.005 for 1 ◦C degree change 4.

6.4 Four-layered spherical head model

The head model used here consists of a sphere and three layered shells. As

depicted in Fig. 6.18, the core sphere represents a brain; it is surrounded by three

spherical shells that represent Cerebro-Spinal Fluid (CSF), skull and skin respec-

tively. The sphere comprises tetrahedral elements and three spherical shells are

4One degree change is huge considering the SAR level.
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Thickness(m) Element type p εr εs ρ[kg/m3]

Brain r = 0.1 Tetrahedron 3 4.5805E+01 1.5309E+01 1039
CSF 0.008 Prism 32 6.8638E+01 4.8185E+01 1039
Skull 0.004 Prism 32 1.6621E+01 4.8261E+00 1645
Skin 0.004 Prism 32 4.1405E+01 1.7312E+01 1100

Figure 6.18: Four-layered spherical head model. The core sphere represents a brain;
three outer shells represent CSF, skull, and skin respectively.

modeled with prismatic elements. The same incident waves (i.e., a plane wave and

a Hertzian dipole) discussed in the previous section are used in this case study. A

particular interest lies in the effect of the thin layers on the propagating EM waves.

We will compare the numerical result against one obtained from the homogeneous

head model.

The plane wave scattering in the four-layered spherical head model is illus-

trated in Fig. 6.19. One can observe that higher power density appears in the skin

and the CSF regions. This is probably due to reflected waves from the skull and the
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Slice to y-axis Slice to z-axis)

Figure 6.19: Absorbed power density of the propagating plane waves in the four-
layered spherical head model. This figure is scaled by dB = 10log10

(
σ|E|2/2

)
.
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Figure 6.20: Magnitude of the field Ez component propagating in the four-layered
spherical head model.

higher conductivity of the CSF. To verify this numerical result, we also compare

our four-layered model against the Mie series solution, see Fig. 6.20 and Fig. 6.21.

The figures show that our numerical solution approximated with p = 3 coincides
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Figure 6.21: Phase angle of the field Ez component propagating in the four-layered
spherical head model.

with the analytic Mie series solution. On the other hand, we see the discontinuous

electric field when the solution is approximated by p = 2. Note that the tangential

component of the electric field i.e., Ez should be should be continuous across the

material interfaces.

We now consider a case with a dipole source. The dipole is placed at

(0.2m,0,0), which is about 8.4cm away from the skin surface. Figure 6.22 illus-

trates the different SAR distributions for the layered head model and the homoge-

neous head model. Higher SAR appears in the CSF region while relatively low

level of the SAR is observed in the skull tissue. The maximum SAR for the layered

model is computed to be 0.786827[W/kg] at the surface of the skin tissue. In addi-

tion, almost the same level of SAR is found at the interface between the CSF and

skull tissues. This is probably due to the higher contrast in the material properties
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Four-layered spherical head model (slice to y and z axes); max SAR = 0.786828 W/kg

Homogeneous spherical head model (slice to y and z axes); max SAR = 0.433603 W/kg

Figure 6.22: SAR distribution in the spherical head models exposed to an infinites-
imal dipole radiation (P = 1[W]) located at x = 20cm. This figure is scaled by
dB = 10log10 (SAR).

between the skull and CSF tissues. In Fig. 6.23, we describe the SAR distribution

sampled over the x-axis. The graph captures the characteristic SAR distribution in

the thin tissue layers.

As seen in the previous section, the temperature dependence of EM material

properties is very weak considering the output power of typical mobile devices.

Thus, its non-linear effect is negligible for this case study. We solve a steady-state

BHT problem to illustrate the temperature increase induced by the dipole radiation.
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Figure 6.23: Pointwise SAR distribution in the four-layered spherical head model.

Max ∆u = 0.03577 ◦C Max ∆u = 0.00929 ◦C

Figure 6.24: Steady-state temperature increase.

We uses thermal properties tabulated in Table 2.2. For this simulation, we used the

metabolism data specified in the table. We present the steady-state temperature rise

in Fig. 6.24.
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FDTD (Hexa=2mm) AIM (Tet=2mm) hp3d (Tet=12.5mm ≈ 0.25λ)

f = 900MHz Thickness(m) εr εs

Brain r = 0.092 4.5805E+01 1.5309E+01
Bone 0.008 8.9770E+00 1.8325E+00
Fat 0.004 5.4620E+00 1.0193E+00
Skin 0.004 4.1405E+01 1.7312E+01

EM material properties

Figure 6.25: Different mesh densities adopted by different numerical methods.

6.5 Comparison to other methods: FDTD and AIM

In this section, we briefly compare our solution against ones obtained by

other methods 5: Finite Difference Time Domain (FDTD) [103] and Adaptive Inte-

gral Method (AIM) [15, 104].

As discussed in Section 1.2.2, each algorithm has its own advantages and

disadvantages. Here we summarize the characteristic features of these methods:

• FDTD is easy to implement as the scheme is explicit. Further, the method

can be easily extended to a parallel computing environment; the computa-

5Numerical results used in this comparison are obtained from [37].
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FDTD (Hexa=2mm) AIM (Tet=2mm) hp3d (Tet=12.5mm)

Figure 6.26: Absorbed power density of the propagating plane waves for three dif-
ferent head models. This figure is scaled by dB = 10log10

(
σ|E|2/2

)
.
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Figure 6.27: Power absorption in the four-layered model, where the solutions are
scaled by dB = 10log10

(
σ|E|2)/2

)
.

tional domain is easily subdivided and indexed in Cartesian coordinates. On

the other hand, the use of regular structured grids limits the flexibility in de-

scribing complex geometries and curved boundaries, and this results in a less

accurate solution than ones obtained by other methods.
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• AIM adopts auxiliary uniform grids that enclose scattering objects to accel-

erate the solution of Method of Moments (MOM); the method reduces the

computational cost of iterative solution methods from O(N2) to O(N logN)

by using compressed representation of the far-field area using Fast Fourier

Transform (FFT).

As seen in Fig. 6.25, different mesh structures are used to describe the four-layered

spherical head model. Clearly, the structured voxel mesh used for the FDTD method

shows limited capabilities in depicting the curved interfaces and boundaries. The

tetrahedral mesh adopted by the AIM method significantly increases the number

of DOFs to describe precisely the curved boundary and thin spherical shells. On

the other hand, we construct a hybrid mesh consisting of tetrahedral elements with

p = 3 and prismatic elements with p = 32 for the thin layers. The element size

in our model corresponds to a quarter wave length for f = 900MHz, which is six

times larger than the size adopted in other methods.

When we first look at the solutions depicted in Fig. 6.26, they look similar

to each other. However, the FDTD solution is less accurate than other solutions

as demonstrated in Fig. 6.27. This inaccuracy of the FDTD solution is mainly

due to the inaccurate geometry description of the voxel mesh. For more rigorous

comparison of the errors and costs of these methods, we refer [37, 94, 95].
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6.6 Summary

In this chapter, we applied the developed FE technology to solve Maxwell

equations coupled with Pennes BHT equation. We verified our EM solver starting

with reproduction of the plane wave solutions including a geometry convergence

test. Note that, due to the presence of the element map Jacobian in the Piola trans-

form, H(curl)-conforming discretization is much more sensitive to the regularity of

geometry parameterizations than standard H1-conforming elements.

In the second set of experiments, we solved scattering problems: a plane

wave on a PEC and a dielectric sphere. The classical Mie series solutions were

used for the code verification. This verification includes our construction of the

PML. The numerical examples qualitatively and quantitatively demonstrated that a

high quality solution can be delivered by using higher order elements. In addition,

we also observed that a precise PML tuning is necessary.

We presented numerical results of the SAR distribution and temperature

increase in a head model exposed to EM waves. A G1-continuous homogeneous

head model is constructed in this study using a cloud of fine-grid points. To model

cell phone antenna, a Hertzian dipole radiation of output power 1 watt at 900 MHz is

placed about 8cm away from the skin. As expected, the higher SAR is found closer

to the dipole source; the maximum SAR is detected 0.553604 at skin. The obtained

SAR distribution is below the safety limit 1.6 W/kg. The computed corresponding

maximum temperature increase in the head is 0.0120◦C.

We also presented a case study of a four-layered sphere model consisting
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of a core brain and surrounding tissues i.e., skin, skull, and CSF. In particular, we

demonstrated the effect of those thin-layers on determination of the SAR distribu-

tion. The maximum SAR is located at the surface of the skin and the interface

between skull and CSF. This is probably due to the reflection/transmission effects

caused by the higher contrast of the dielectric material properties in the two media.
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Chapter 7

Conclusion

In this chapter, we summarize the results in the present work and suggest

opportunities for future research.

7.1 Summary

This dissertation presented the development of a general hp-adaptive Finite

Element (FE) technology and a parallel sparse direct solver for solving 3D multi-

physics coupled problems. We applied the developed technology to modeling of

the Electro-Magnetic (EM) wave propagation in the human head accounting for the

resulting dielectric heating effects.

We now present the major achievements and contributions of this disserta-

tion.

FE modeling of EM waves in the human body. The problem is formulated as

a coupled form of the time-harmonic Maxwell equations and the transient Pennes

BioHeat Transfer (BHT) equation. The EM problem is discretized in space with

high order H(curl)-conforming elements while the BHT problem is discretized with

H1-conforming elements. As accuracy of the time discretization (transient effects)
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is of little concern, the BHT equation is discretized in time with a simple implicit

scheme, the Crank–Nicolson method. Two equations are weakly coupled through

the data transfer of Specific Absorption Rate (SAR) induced by EM waves and

dependence of EM material properties upon the temperature.

Solving the coupled problem, we implemented H(curl)-conforming ele-

ments for tetrahedral and prismatic elements to simulate EM scattering problems.

Starting with a simple sphere model, we verified the correctness of the numerical

model and developed EM solver against the analytic Mie series solution [97].

Finally, we demonstrated the solution of the coupled problem. Several nu-

merical experiments were conducted; two different head models (i.e., the phantom

model and the four-layered sphere model) were mainly used for the study of the

temperature rise due to the EM wave radiations. The experimental result indicates

that the dependence of the EM material properties on the temperature change is

weak and almost negligible in the range of cell phone powers.

hp−FE technology. The hp3d, a general purpose three-dimensional hp-adaptive

FE code, was developed in this work. Departing from the earlier version of hp3D,

the code is designed to support the exact sequence elements for complex multi-

physics problems. The code has a superior ability in describing a complex geometry

using the elements of all traditional shapes i.e., hexahedron, prism, pyramid, and

tetrahedron.

In particular, the development of the deadlock free refinement algorithms

that supports a variety of isotropic and anisotropic refinements for the elements of
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all shapes is regarded as a contribution to hp-FEM theory and implementations. To

the best of our knowledge, no hp-code has been developed supporting hybrid mesh

refinements for the element of all shapes allowing the mesh one-irregularity. The

refinement strategy completes in two steps: 1) local mesh modifications that refine

selected elements, and 2) a global closure that recovers the one-irregularity of the

mesh. We do not have a formal proof that the algorithm is deadlock-free. However,

we verified that the algorithm is deadlock-free through extensive numerical tests.

We also have redesigned and re-implemented the constrained approxima-

tion [25, 75] to support constraints on triangular faces. In dealing with triangular

faces, a major difficulty arises from the inconsistent system of coordinates between

local and global shape functions. This complexity was considerably reduced by

adopting the novel idea of orientation embedded shape functions [36,80]. The local

shape functions are always constructed according to the global orientation; a single

constraint matrix is only needed for a family of constraints with different orienta-

tions. This approach significantly reduces the complexity in implementation.

The developed refinement package was successfully integrated in the hp3d

code and used as a key component in P. Gatto’s project, which researched modeling

bone conduction of sound in the human head [35].

The Unassembled HyperMatrix (UHM) solver. As part of the research, we

developed a parallel sparse direct solver. In an adaptive context, the developed

solver gains higher performance compared to other state-of-the-art direct solvers

by reusing the element matrices and their partial factors previously computed [14].
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This updating sparse matrix factorization is the first attempt to use the nature of the

hp-adaptivity in its application context.

We parallelized the UHM solver with two-level task scheduling [47] that

matches the two-level parallelism in the multifrontal factorization. We demon-

strated that our approach leads to efficient fine-grained task scheduling without the

need for explicitly constructing a global Directed Acyclic Graph (DAG).

We proposed a recursive task subdivision scheme to extend our solver to

heterogeneous multi-core architectures. By applying our dynamic task subdivision

scheme to the UHM solver, we demonstrated that our approach is an effective solu-

tion to deliver portable performance on heterogeneous architectures [48, 49].

7.2 Future work

The following list of possible projects is recommended for further research:

• The head problem should be further studied with a more realistic geometry

and inhomogeneous material parameters. As realized in the simulation of the

layered head model, material heterogeneity can incur complex reflection and

transmission of the propagating EM waves. In addition, the complex shape

of biological tissues may leads to standing waves that may result in a deep

burn inside of tissues.

• This effect can be resolved with finer scale discrete models, which also re-

quire the use a large distributed cluster machine. With the increasing com-

puting power at a single node, employing the MPI/OpenMP hybrid model to
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parallelize the hp3d code should be considered to solve large scale 3D prob-

lems.
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[9] I. Babuška, M. Griebel, and J. Pitkäranta. The problem of selecting the shape

functions for a p-type finite element. International Journal for Numerical

Methods in Engineering, 28(8):1891–1908, August 1989.

[10] Timothy J. Baker. Mesh generation: Art or science? Progress in Aerospace

Sciences, 41(1):29–63, January 2005.

[11] Larisa Beilina and Marcus J. Grote. Adaptive hybrid finite element/differ-

ence method for maxwells equations. Technical Report September, Univer-

sity of Basel, Switzerland, 2004.

[12] Jean-Pierre Berenger. A perfectly matched layer for the absorption of elec-

tromagnetic waves. Journal of computational physics, 114(2):185–200,

1994.

[13] Marsha J. Berger and Randall J. LeVeque. Adaptive mesh refinement us-

ing wave-propagation algorithms for hyperbolic systems. SIAM Journal on

Numerical Analysis, 35(6):2298–2316, 1998.

[14] Paolo Bientinesi, Victor Eijkhout, Kyungjoo Kim, Jason Kurtz, and Robert

van de Geijn. Sparse Direct Factorizations through Unassembled Hyper-

146



Matrices. Computer Methods in Applied Mechanics and Engineering, 199:430–

438, 2010.

[15] E. Bleszynski, M. Bleszynski, and T. Jaroszewicz. AIM: Adaptive inte-

gral method for solving large-scale electromagnetic scattering and radiation

problems. Radio Science, 31(5):1225–1251, 1996.

[16] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. A Class

of Parallel Tiled Linear Algebra Algorithms for Multicore Architectures.

Parallel Computing, 35(1):38–53, 2009.

[17] P. Carnevali, R. B. Morris, Y. Tsuji, and G. Taylor. New basis functions

and computational procedures for p-version finite element analysis. Inter-

national journal for numerical methods in engineering, 36(22):3759–3779,

1993.

[18] W. Cecot, W. Rachowicz, and L. Demkowicz. An hp-Adaptive Finite El-

ement Method for Electromagnetics. Part 3: A Three-dimensional Infinite

Element for Maxwell’s Equations. International Journal for Numerical

Methods in Engineering, 57(7):899–921, June 2003.

[19] Ernie Chan, Field G. van Zee, Enrique S. Quintana-Orti, Gregorio Quintana-

Orti, and Robert A. van de Geijn. Satisfying your dependencies with Su-

permatrix. In 2007 IEEE International Conference on Cluster Computing,

pages 91–99. IEEE, 2007.

147



[20] Alice J. Chen and Yannis Kallinderis. Adaptive hybrid (prismatic-tetrahedral)

grids for incompressible flows. International Journal for Numerical Meth-

ods in Fluids, 26(9):1085–1105, May 1998.

[21] Michael M. Chen and Kenneth R. Holmes. Microvascular constributions in

tissue heat transfer. Annals of the New York Academy of Sciences, 335:137–

150, 1980.

[22] Weng Cho Chew and William H. Weedon. A 3D perfectly matched medium

from modified Maxwell’s equations with stretched coordinates. Microwave

and optical technology, 7(13):599–604, 1994.

[23] L. Demkowicz, A. Bajer, W. Rachowicz, and K. Gerdes. 3D hp-Adaptive

Finite Element Package Fortran 90 Implementation (3Dhp90). Technical

report, TICAM Report 99-29, The University of Texas at Austin, 1999.

[24] L. Demkowicz, P. Gatto, W. Qiu, and A. Joplin. G1-Interpolation and geom-

etry reconstruction for higher order finite elements. Computer Methods in

Applied Mechanics and Engineering, 198(13-14):1198–1212, March 2009.

[25] L. Demkowicz, J. T. Oden, W. Rachowicz, and O. Hardy. Toward A Univer-

sal hp Adaptive Finite Element Strategy, Part 1. Constrained Approximation

and Data Structure. Comput. Methods. Appl. Mech. and Engg, 77:79–112,

1989.

[26] Leszek Demkowicz. Computing with hp-Adaptive Finite Elements, vol 1,

One and Two Dimensional Elliptic and Maxwell Problems. Chapman &

148



HallCRC, 2007.

[27] Leszek Demkowicz, Jason Kurtz, David Pardo, Maciej Paszynski, Walde-

mar Rachowicz, and Adam Zdunek. Computing with Hp-Adaptive Finite

Elements, Vol. 2: Frontiers Three Dimensional Elliptic and Maxwell Prob-

lems with Applications. Chapman & HallCRC, 2007.

[28] Leszek Demkowicz, David Pardo, and Waldek Rachowicz. 3D hp-Adaptive

Finite Element Package (3Dhp90) Version 2.0: The Ultimate Data Struc-

ture for Three Dimensional, Anisotropic hp Refinements. Technical Report

TICAM Report 02-24, TICAM Report 02-24, The University of Texas at

Austin, 1999.

[29] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. A set

of level 3 Basic Linear Algebra Subprograms. ACM Trans. Math. Soft.,

16(1):1–17, March 1990.

[30] I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse

symmetric linear. ACM Transactions on Mathematical Software (TOMS),

9(3):302–325, 1983.

[31] Alejandro Duran, J. Corbalán, and E. Ayguadé. Evaluation of OpenMP task
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[80] Joachim Schöberl and Sabine Zaglmayr. High order Nédélec elements with
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