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High-frequency wave phenomena is observed in many physical settings,

most notably in acoustics, electromagnetics, and elasticity. In all of these

fields, numerical simulation and modeling of the forward propagation problem

is important to the design and analysis of many systems; a few examples which

rely on these computations are the development of metamaterial technologies

and geophysical prospecting for natural resources. There are two modes of

modeling the forward problem: the frequency domain and the time domain.

As the title states, this work is concerned with the former regime.

The difficulties of solving the high-frequency wave propagation problem

accurately lies in the large number of degrees of freedom required. Conven-

tional wisdom in the computational electromagnetics commmunity suggests

that about 10 degrees of freedom per wavelength be used in each coordinate

direction to resolve each oscillation. If K is the width of the domain in wave-

lengths, the number of unknowns N grows as O(K2) for surface discretizations

and O(K3) for volume discretizations in 3D. The memory requirements and

vi



asymptotic complexity estimates of direct algorithms such as the multifrontal

method are too costly for such problems. Thus, iterative solvers must be used.

In this dissertation, I will present fast algorithms which, in conjunction with

GMRES, allow the solution of the forward problem in O(N) or O(N logN)

time.
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Chapter 1

Introduction

1.1 Motivation

The fields of computational electromagnetics, acoustics, and elasticity

have improved significantly in the past few decades. With the advancement

of processor speeds, problems that were deemed impossible to solve years ago

are now trivially done in a few seconds. As a result, the frequency band which

scientists and engineers can simulate on a computer has expanded greatly.

Despite the current hardware trend following Moore’s law, however, the need

for fast numerical algorithms is ever present.

For the medium-to-high frequency range, there are two solution meth-

ods. The first method involves taking the geometric optics approximation

of the underlying PDE and assuming the phase and amplitude functions are

separated. These approximations are accurate as the frequency approaches

infinity, or as the width of the structure being analyzed becomes much larger

than the wavelength. The simplification reduces the computational complex-

ity of the problem greatly; unfortunately, these methods are inaccurate in

the medium frequency range, as they do not account for diffraction, caustics,

creeping waves, and other phenomena seen in full wave theory. The second
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∂D

D

H = Hinc +Hsca

Einc, Hinc

Esca, HscaE = Einc + Esca

Figure 1.1: The exterior scattering problem. An incident field (usually a plane wave) is
propagating in the medium and reflects off of a scatterer in the domain. The total field E

is comprised of the incident field and reflected or scattered field Esca.

method is the direct numerical simulation of the true wave equation, whether

it is Maxwell’s equations, the Helmholtz equation, or the elastic wave equation.

This will produce an accurate representation of the physics for all frequencies,

but it is very expensive to compute as one enters the high-frequency range.

The goal of this thesis is to develop algorithms which allow the efficient solution

of high-frequency problems using direct numerical methods.

1.2 Current status of fast solvers for boundary integral

equations

For scattering problems in piecewise homogeneous media, the problem

can be formulated as a boundary integral equation on the surface of the scat-

2



tering object, with the unknown quantity being the induced electric current.

The general setup of the problem is roughly illustrated in figure 1.1. The

strength of this approach is that the outgoing radiation condition is auto-

matically satisfied by the formulation; thus, an absorbing boundary condition

does not need to be introduced. Once the integral equation is discretized,

the resulting computational task is to solve a dense N × N linear system of

equations, where N is the number of degrees of freedom. Because the system

matrix is dense, a standard direct solver such as Gaussian elimination would

take O(N3) operations. Recently, fast direct solvers have been developed for

the integral equations in potential theory in 2D and 3D [65, 45], as well as

for scattering theory in the low-to-medium frequency range in 2D [66, 64];

these methods rely on the fact that the off-diagonal blocks of the impedance

matrix are low-rank, and can be compressed using hierarchical matrices and

other low-rank factorization schemes. The complexity estimates of these di-

rect solvers is typically O(N) for non-oscillatory problems and O(N logN)

for low-frequency scattering problems. For the high-frequency regime and 3D

problems, however, these estimates break down, and the solvers are no longer

efficient.

On the other hand, iterative methods can be used. The boundary el-

ement discretization leads to a dense linear system which is well-conditioned

for convex scatterers, resulting in a reasonable number of iterations necessary

for GMRES convergence. The main computational bottleneck in this situa-

tion is the matrix-vector multiplication required at each iteration; because the

3



system matrix is dense, the product takes O(N2) flops to perform. For large

N , this task becomes too costly to compute. To accelerate the matrix-vector

product, a variety of techniques have been introduced:

• Fast multipole methods (FMM). The original FMM was developed

for potential theory by Greengard and Rokhlin [46], then adapted for

the Helmholtz equation and high-frequency applications [81, 82, 22]. In

electromagnetics, it is known as the multilevel fast multipole algorithm

(MLFMA) [84, 85]. Recent work has produced variants of the FMM

which use different expansion techniques [20, 101]. For high-frequency

problems, these methods usually scale as O(N logN).

• FFT-based methods. FFT-based methods take advantage of the con-

volutional structure of the integral operator; by mapping the original

sources to equivalent sources on a cartesian grid, one can use the FFT to

compute the interactions, then map the potentials back on to the origi-

nal grid. Both the pre-corrected FFT method [76] and adaptive integral

method [12] are variants of this algorithm; in low-frequency applications,

these methods scale as O(N logN).

Recently, the Directional Multilevel Algorithm or Directional FMM

was introduced by Enguist and Ying [32]. By utilizing the directional low-

rank property in the high-frequency regime, they showed that an O(N logN)

algorithm can be achieved. The approach for Maxwell’s equations presented

here is an extension of the Directional FMM. This method maintains the

4



O(N logN) complexity estimate for all frequencies and is a strong competitor

to the most commonly used high-frequency FMM [84] in electromagnetics. In

addition to this extension, I present some work on accelerating the uncertainty

quantification computations in high-frequency acoustic scattering utilizing the

Directional FMM.

1.3 Current status of fast solvers for finite element meth-

ods

For fully heterogeneous media, the entire volume must be discretized,

making finite element and finite difference methods more attractive. After

introducing perfectly matched layers to emulate the radiation condition, the

PDE can be discretized on a tetrahedral or hexahedral mesh, resulting in a

large sparse linear system; this makes direct solvers such as the multifrontal

method [28, 63] attractive. The complexity of the multifrontal factorization is

O(N3/2) in 2D and O(N2) in 3D; thus, for 3D problems, the direct solution

becomes too expensive in terms of computational time and memory require-

ments, and iterative methods are more practical.

Unfortunately, these sparse systems are highly indefinite. Precondi-

tioners and iterative methods that would converge nicely for positive-definite

problems either completely fail or converge in a number of iterations which

depends linearly with frequency; the shortcomings and difficulties of these

methods are well documented in [36, 39]. There has been extensive work

done on the preconditioning and iterative solvers for frequency-domain wave

5



problems, with the majority of the literature being focused on finite differ-

ence methods for the Helmholtz equation. Recently, a preconditioner which

has garnered much attention is the shifted Laplacian [9, 37]. The main goal

of the method is to “shift” the eigenvalues of the Helmholtz operator away

from the origin and into the positive half of the complex plane; in doing so,

the condition number is improved and the problem becomes less indefinite.

For ı =
√
−1 and wavenumber κ, discretizing the complex-perturbed operator

∆ + (1 + ıβ)κ2 for β > 0 and applying the inverse approximately can act as

an effective preconditioner. The inversion can be achieved by either multigrid

or incomplete LU decomposition. Despite these advances, convergence of the

iterative solver still deteriorates as frequency increases.

Recently, a new family of preconditioners for time-harmonic wave equa-

tions, called the “sweeping” preconditioners, was introduced in [34, 35]. Devel-

oped for Cartesian finite difference grids of the Helmholtz equation, the initial

step is to order the degrees of freedom lexicographically in layers so that the

linear system can be written in block tridiagonal form; this process allows a

block LDLt factorization. The main observation then is that the inverse of

each Schur complement block on the diagonal of D is the Green’s function

of the Dirichlet half-space problem; as a result, they can be represented effi-

ciently using the hierarchical matrix algebra, or by truncating the half-space

problem further by moving the perfectly matched layer. The approximate in-

verse of the LDLt factorization can be constructed with O(N) complexity in

2D and O(N4/3) complexity in 3D, and applied to a right hand side with O(N)

6



complexity in 2D and O(N logN) complexity in 3D. As a preconditioner, the

number of GMRES iterations necessary for convergence is drastically lower

compared to other preconditioning techniques, and is essentially independent

of frequency. In this dissertation, I will show that these preconditioning meth-

ods work for higher-order discretizations on uniform and non-uniform meshes,

with more complex physical equations. A highly scalable parallel version of

the preconditioner will be presented, with computations performed on the Lon-

estar machine at the Texas Advanced Computing Center (TACC). I will also

provide a proof illustrating the frequency-independent nature of the algorithm.

1.4 Physical Models

Throughout this work, various frequency-domain models will be in-

vestigated, with each model capturing a different set of physics. The common

denominator in all of these problems is that the physical domain is unbounded;

that is, there is no wall or boundary enclosing the system, and wave propaga-

tion is outgoing. Thus, each set of equations carries its own outgoing radiation

condition, which I will list here:

• For acoustics, we have the Helmholtz equation with an anisotropic coef-

ficient tensor and Sommerfeld radiation condition,

∇ · (a∇u) +
ω2

c2
u = f in R

d (1.1)

lim
r→∞

r

(

∂u

∂r
− ıκu

)

= 0, (1.2)

7



where u is the pressure, c is the wave speed, f is the acoustic source,

r = |r|, and the wavenumber in this instance is κ = ω
c
. The material

tensor a takes the form

a =





axx axy axz
ayx ayy ayz
azx azy azz



 . (1.3)

• For electromagnetics, we have Maxwell’s equations augmented by the

Silver Muller radiation conditions,

∇×E = −ıωµ0µrH (1.4)

∇×H = ıωε0εrE+ J (1.5)

∇ · (ε0εrE) = qe (1.6)

∇ · (µ0µrH) = 0 (1.7)

lim
|r|→∞

(H× r− |r|E) = 0 (1.8)

lim
|r|→∞

(E× r+ |r|H) = 0. (1.9)

Here, E is the electric field, H is the magnetic field, J is the current

distribution, ω is the angular frequency, ε0 is the permittivity of free

space, µ0 is the permeability of free space, r ∈ Rd, and ı =
√
−1. The

charge distribution qe satisfies the continuity equation ∇ · J = −ıωqe.

The free-space wavenumber is defined as κ = ω
√
µ0ε0; the material is

characterized by the relative permittivity and permeability tensors

εr =





εxx εxy εxz
εyx εyy εyz
εzx εzy εzz



 , µr =





µxx µxy µxz

µyx µyy µyz

µzx µzy µzz



 . (1.10)

8



For the 2D case, I will consider transverse electric propagation modes,

where H is oriented in the z direction and E is only in the x-y plane.

The material parameters are then simplified to

εr =

(

εxx εxy
εyx εyy

)

, µr = µzz (1.11)

• For linear elasticity, the time-harmonic problem for the displacement

field u = (u1, u2, u3) is given as

−(Cijkluk,l),j −ω2ρui = fi in R
3

lim
r→∞

r

(

∂us

∂r
− ıκsus

)

= 0 (1.12)

lim
r→∞

r

(

∂up

∂r
− ıκpup

)

= 0.

where Cijkl is the fourth-order tensor, u is the displacement vector, and

ρ is the material density. The last two equations are the Kupradze-

Sommerfeld radiation conditions [14], where the displacement field can

be decomposed into its solenoidal part us and irrotational part up, and

κs and κp are the wavenumbers for the S-wave and P-wave, respectively.

9



Part I:
Fast Algorithms for Boundary

Integral Equations
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The first part of this thesis will be concerning fast algorithms for bound-

ary integral equations. Chapter 2 will detail the work I have done in developing

fast multipole methods for Maxwell’s equations in 3D. I will begin with some

background material on boundary integral equations and discretization issues,

then move on to the main algorithm and its implementation. I will present

numerical results on some benchmark problems at the end of the section.

Chapter 3 will go over some of the work that has been explored in random

surface scattering. I will briefly review boundary integral equations for acous-

tics, then continue with the stochastic methods which have been employed for

these problems.
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Chapter 2

Directional FMM for Maxwell’s Equations

2.1 Boundary Integral Equations for Electromagnetics

In electromagnetics, the integral equations can be obtained in various

ways. First, radiation formulas due to a current distribution J must be defined

for the fields E andH. Consider Maxwell’s equations (1.9) in free space, where

εr and µr are both the identity tensor. Taking the curl of (1.4) and substituting

into the right hand side of (1.5) for ∇×H results in

∇×∇× E− κ2E = −ıωµ0J. (2.1)

Using the vector identity ∇×∇×E = ∇(∇·E)−∇2E and continuity equation

∇ · J = −ıωρ, one arrives at the vector Helmholtz equation

∇2E+ κ2E = ıωµ0J− 1

ıωε0
∇(∇ · J) (2.2)

The Green’s function of the scalar Helmholtz equation can now be used in a

convolution with the right hand side of (2.2) to define an integral operator

acting on J. The radiation formula for the electric field is then

E(r) = −ıωµ0

∫

V

G(r, r′)

[

J(r′) +
1

κ2
∇′∇′ · J(r′)

]

dr′. (2.3)

Following a similar procedure for the magnetic field, one can derive the integral

H(r) = ∇×
∫

V

G(r, r′)J(r′)dr′. (2.4)
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Alternatively, one can form these radiation integrals through vector

and scalar potentials. By using the Helmholtz decomposition theorem, it is

assumed that E and H take the form

E = −ıωA−∇Φe (2.5)

H =
1

µ0
∇×A. (2.6)

for some vector potential A and scalar potential Φe. Choosing the Lorentz

gauge

∇ ·A = −ıωµ0ε0Φe, (2.7)

one can obtain the inhomogeneous Helmholtz equations for A and Φe,

∇2A+ κ2A = −µ0J (2.8)

∇2Φe + κ2Φe = −qe
ε0
. (2.9)

Using the Helmholtz Green’s function again, the integrals

A(r) = µ0

∫

V

G(r, r′)J(r′)dr′ (2.10)

Φe =
1

ε0

∫

V

G(r, r′)qe(r
′)dr′ (2.11)

give the corresponding radiation formulas; the only difference is that the gra-

dient operator in (2.5) is outside the integral acting on unprimed coordinates.

The equivalent formula can be obtained by using the symmetry of the Green’s

function and integration by parts, redistributing the operator onto the current

J. The details of this derivation are contained in [42].

13



To form the boundary integral equation, one must use equivalence prin-

ciples to define “equivalent sources” which, when radiated using the integral

formulas derived previously, will produce the same scattered fields as the orig-

inal problem. Huygen’s principle, also known as the surface equivalence the-

orem [21], states that every point on an advancing wavefront is a source of

radiated waves. For a perfectly conducting object, it is postulated that the

scattered field in the exterior of the object is generated by an induced current

on the surface. Enforcing the tangential boundary conditions for the PEC

along with the incident field-scattered field decompositions E = Einc + Esca

and H = Hinc +Hsca gives

n̂× (Einc + Esca) = 0 (2.12)

n̂× (Hinc +Hsca) = Js, (2.13)

where Js is the surface current. For a scatterer which occupies the region D

with the boundary surface ∂D, the scattered fields (Esca,Hsca) generated at

location r by Js are

Esca(r) = −ıωµ0

∫

∂D

G(r, r′)

[

Js(r
′) +

1

κ2
∇′∇′ · Js(r

′)

]

dr′ (2.14)

Hsca(r) = ∇×
∫

∂D

G(r, r′)Js(r
′)dr′. (2.15)

By crossing with the unit normal vector n̂, taking the limit as r approaches

∂D, and substituting the scattered fields with the incident fields in (2.13), the

14



resulting integral equations are

n̂(r)× Einc(r) = ıωµ0n̂(r)×
∫

∂D

G(r, r′)

[

Js(r
′) +

1

κ2
∇′∇′ · Js(r

′)

]

dr′

n̂(r)×Hinc(r) =
1

2
Js(r)− n̂(r)×

∫

∂D

Js(r
′)×∇′G(r, r′)dr′, (2.16)

where the curl operator has been distributed inside the integral in the second

equation; the 1
2
Js term is a result of the hypersingularity in the gradient of the

Green’s function. Since the incident fields (Einc,Hinc) are known, one can solve

for the current Js, then compute the scattered fields at any point r using the

radiation formulas. Equations (2.16) are known as the electric field integral

equation (EFIE) and magnetic field integral equation (MFIE), respectively.

For closed surface scattering problems, both the EFIE and MFIE suffer

from spurious solutions due to internal resonant modes; at these frequencies,

there exists a solution to the interior cavity problem. To eliminate these solu-

tions, a common formulation is the combined field integral equation (CFIE).

Because the null spaces of the EFIE and MFIE operators differ, taking a lin-

ear combination of the two ensures that there is a unique solution for each

frequency. For a constant α between 0 and 1, the CFIE in electromagnetics is

n̂(r)×
[

αEinc(r) + (1− α)Hinc(r)

]

= αLEFIE[Js](r) + (1− α)LMFIE[Js](r),

where LEFIE[Js](r) and LMFIE[Js](r) are the operators

LEFIE[Js](r) = ıωµ0n̂(r)×
∫

∂D

G(r, r′)

[

Js(r
′) +

1

κ2
∇′∇′ · Js(r

′)

]

dr′

LMFIE[Js](r) =
1

2
Js(r)− n̂(r)×

∫

∂D

Js(r
′)×∇′G(r, r′)dr′.
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In many scattering applications, such as radar or sonar, the quantity of

interest is the far field pattern; this quantity describes the visibility of an object

to an observer from different angles. Once the boundary integral equation is

solved, the scattered field can be computed; if the field is being observed at

a location r such that |r| ≫ λ, then the leading order approximation of the

radiation integral can be taken. In electromagnetics, the far field pattern of

the electric field is

Esca(r) ≈ −ıωµ0
e−ıκ|r|

4π|r|

∫

∂D

J(r′)eıκr̂·r
′

dr′, (2.17)

where r̂ = r

|r| . The radar cross section (RCS) in the direction r̂ is defined by

σ(r̂) = lim
ρ→∞

4πρ2
|Esca(ρr̂)|2
|Einc(ρr̂)|2

=
(ωµ)2

4π

∣

∣

∣

∣

∫

∂D

J(r′)eıκr̂·r
′

dr′
∣

∣

∣

∣

2

(2.18)

2.2 Method of Moments

For electromagnetics, using a triangular mesh to represent the surface of

the scatterer and expanding the current in terms of local basis functions such as

the popular Rao-Wilton-Glisson (RWG) elements [80] is most common. This

technique is known as the “method of moments” [53]. Consider the RWG basis

function fn defined on edge n of the triangular mesh of ∂D; an illustration of

the RWG function is in figure 2.1. The support of each fn consists of a pair of

triangles T+
n ∪ T−

n = ∂Dn sharing edge n. These functions satisfy

fn(r) =











Ln

2A+
n
ρ+
n (r) r ∈ T+

n

Ln

2A−
n
ρ−
n (r) r ∈ T−

n

0 otherwise

, (2.19)
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Edge n

T−n

p+n

T+n

v− v+p−n

Figure 2.1: An RWG basis function defined on edge n.

where Ln is the length of edge n, A±
n is the area of T±

n , and the vectors ρ±
n are

defined by

ρ+
n (r) = v+ − r r ∈ T+

n (2.20)

ρ−
n (r) = r− v− r ∈ T−

n . (2.21)

Here, v± are the vertices of T±
n which are not vertices of edge n. Taking the

surface divergence of the function yields

∇ · fn(r) =











− Ln

A+
n

r ∈ T+
n

Ln

A−
n

r ∈ T−
n

0 otherwise

. (2.22)

This computation illustrates that the RWG is divergence conforming; the re-

sult is normal continuity of the current over triangle edges.

For a triangular surface mesh with N interior edges, the current J(r)
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can be expanded in terms of N basis functions,

J(r) =
N
∑

n=1

cnfn(r), (2.23)

where {cn}Nn=1 ∈ C are the unknown coefficients. Plugging this expansion into

the CFIE gives a semi-discrete version of the integral equation; at this stage,

a test space can be chosen. Popular choices are the Galerkin method or point-

wise collocation. For this work, I chose the “razor-blade” testing functions for

the EFIE and point-matching for the MFIE because of their simplicity and

ease of implementation; the details of these testing functions can be found in

[75]. With this formulation, the N ×N linear system of equations obtained is

ZI = V, (2.24)

where the entries of Z, I, and V are

Zmn = αAmn + (1− α)η∆tmBmn, (2.25)

Amn = ıκη

∫

Cm

∫

∂Dn

G(r, r′)fn(r
′)dr′ · dr− (2.26)

η

ıκ

∫

Cm

∇
[
∫

∂Dn

G(r, r′)∇′ · fn(r′)dr′
]

· dr, (2.27)

Bmn = êm ·
∫

∂Dn

fn(r
′)×∇G(r, r′)dr′

∣

∣

∣

∣

r=rm

, m 6= n (2.28)

Bmm =
2π − Ωm

2π
(2.29)

In = cn, (2.30)

Vm = α

∫

Cm

Einc(r) · dr+ (1− α)η∆tmêm ·Hinc(rm). (2.31)

Here, Cm is the path of the razor-blade function along the surface of the m-th

RWG, êm is the unit vector in the direction of the adjoining edge of the m-th

18



Figure 2.2: Illustration of a razor-blade function defined on the m-th edge.

RWG (oriented so that n̂ × êm points in the direction of the basis function,

for either triangle), rm is the center of the same adjoining edge, and Ωm is the

interior angle created by the two triangles (Tm,1, Tm,2) (see Figure 2.2 for an

illustration of these notations). For the outer integrals in the matrix entries

of A, the formulas

∫

Cm

∇φ(r)·dr = φ(cm,2)−φ(cm,1),

∫

Cm

F(r)·dr ≈ F(cm,1)·tm,1+F(cm,2)·tm,2

are used, where cm,1 and cm,2 are the centroids of Tm,1 and Tm,2, respectively,

and tm,1, tm,2 are the vectors prescribed by the razor-blade function at the

centroids. If φ(r) =
∫

∂Dn
G(r, r′)∇′ · fn(r′)dr′ and F(r) =

∫

∂Dn
G(r, r′)fn(r

′)dr′,

the matrix entries of A now become

Amn = ıκη

(

tm,1 ·
∫

∂Dn

G(cm,1, r
′)fn(r

′)dr′ + tm,2 ·
∫

∂Dn

G(cm,2, r
′)fn(r

′)dr′
)

− η

ıκ

(
∫

∂Dn

G(cm,2, r
′)∇′ · fn(r′)dr′ −

∫

∂Dn

G(cm,1, r
′)∇′ · fn(r′)dr′

)

.
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2.3 Directional FMM

The matrix-vector product performed at each iteration takes the form

of the N -body problem,

ui =

N
∑

j=1
i 6=j

G(xi, xj)fj (2.32)

for the point set {xi}Ni=1 ⊂ R
3, where fj ∈ C is the source located at point

xj and ui is the potential computed at xi. Very recently, Engquist and Ying

proposed an algorithm [32, 33] which computes this summation for each xi

in O(N logN) time; this algorithm has been named as the fast directional

multilevel algorithm, or directional fast multipole method, due to its structural

similarity to the FMM.

The main idea behind the directional FMM is the directional low rank

property of the Green’s function. That is, consider a box B of width wλ with

w ≥ 1 and a wedge WB,ℓ as illustrated in Figure 2.3 (a); if WB,ℓ spans an angle

of size O(1/w) and the distance between B and WB,ℓ is at least O(w2λ), it

is said that WB,ℓ and B satisfy the directional parabolic separation condition.

In [32], it was proven that for any arbitrary accuracy ε, there exists a tε-term

separated approximation of G(x, y) for any y ∈ B and x ∈ WB,ℓ. In practice,

one can find sets {yB,ℓ
q }tεq=1, {xB,ℓ

p }tεp=1 and a matrix DB,ℓ = (dB,ℓ
qp )1≤p,q≤tε such

that
∣

∣

∣

∣

∣

G(x, y)−
tε
∑

q=1

G(x, yB,ℓ
q )

tε
∑

p=1

dB,ℓ
qp G(xB,ℓ

p , y)

∣

∣

∣

∣

∣

≤ ε, (2.33)

for y ∈ B and x ∈ WB,ℓ. This is called the directional separated approximation

of B in direction ℓ. The locations {yB,ℓ
q }, {xB,ℓ

p }, and the matrix D can be
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(a) (b)

Figure 2.3: 2-D illustrations for components of the 3-D algorithm. (a) B and WB,ℓ

follow the directional parabolic separation condition. (b) A cross-section of the octree of a
kite-shaped scatterer.

computed easily using the low-rank factorization scheme detailed in [33]; it is

important to emphasize that the separation rank tε is independent of the size

of B.

Consider the sources {fi} located at {zi} in B. The directional sepa-

rated approximation allows the computation of the potentials in WB,ℓ gener-

ated by {fi} with a smaller set of tε sources. More precisely, after applying

(2.33) to each zi and summing them up over all the sources, one has the

estimate
∣

∣

∣

∣

∣

∑

zi∈B
G(x, zi)fi −

tε
∑

q=1

G(x, yB,ℓ
q )

(

tε
∑

p=1

dB,ℓ
qp

∑

zi∈B
G(xB,ℓ

p , zi)fi

)∣

∣

∣

∣

∣

= O(ε). (2.34)

This states that a set of sources
{

fB,ℓ
q :=

tε
∑

p=1

dB,ℓ
qp

∑

zi∈B
G(xB,ℓ

p , zi)fi

}

(2.35)

can be placed at points {yB,ℓ
q } in order to reproduce the potential at x ∈ WB,ℓ

generated by the sources {fi} located at points {zi} in B. These sources are
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called the directional equivalent sources of B in direction ℓ, and they play the

role of the multipole expansions in the original FMM [46]. It is obvious from

(2.34) that the computation of {fB,ℓ
q } essentially requires only the potentials

{
∑

zi∈B G(xB,ℓ
p , zi)fi

}

at {xB,ℓ
p }.

Because of the symmetry of the Green’s function, the role of the source

and target can be reversed to get a similar result for the analogous local

expansions. Consider now the sources {fi} located at points {zi} in WB,ℓ.

Applying (2.33) to each zi and summing over all the sources gives
∣

∣

∣

∣

∣

∣

∑

zi∈WB,ℓ

G(y, zi)fi −
tε
∑

p=1

G(y, xB,ℓ
p )





tε
∑

q=1

dB,ℓ
qp

∑

zi∈WB,ℓ

G(yB,ℓ
q , zi)fi





∣

∣

∣

∣

∣

∣

= O(ε).

This means that from the potentials {uB,ℓ
q :=

∑

zi∈WB,ℓ G(yB,ℓ
q , zi)fi}, one can

reproduce the potential at any y ∈ B generated by {fi} at {zi} ⊂ WB,ℓ. These

potentials are called the directional check potentials of B in direction ℓ; they

play the role of the local expansions in the original FMM.

For a box B of width wλ with w < 1, the wedges are replaced with a

single annulusWB with an outer radius that extends to infinity. The equivalent

sources, the check potentials, the point sets {xB
p } and {yBq }, and the transform

matrices can be defined similarly, but they are non-directional now (see [101]

for details). For example, the equivalent sources for B can be computed by
{

fB
q :=

tε
∑

p=1

dBqp
∑

zi∈B
G(xB

p , zi)fi

}

, (2.36)

and it is clear that the computation again requires only the potentials at xB,

which are
∑

zi∈B G(xB
p , zi)fi.
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The directional multilevel algorithm begins by constructing an octree

that contains the entire scatterer (see Figure 2.3(b)). Similarly to [22], the tree

is split into two regimes: the low-frequency regime and high-frequency regime.

A box B of width wλ is considered to be in the low frequency regime if w < 1

and in the high-frequency regime if w ≥ 1. In the low-frequency regime, a box

B is partitioned as long as the number of points in B is greater than a fixed

constant P ; in the high-frequency regime, the domain is partitioned uniformly

without any adaptivity, with empty boxes being discarded. The algorithm

now uses the translation operators introduced in [101] in the low-frequency

regime. In order to use the directional separated approximation in (2.33), the

far field FB of a box B is defined as the region that is at least w2λ away in the

high-frequency regime; conversely, the near field NB is defined as the union of

boxes which are less than w2λ away. A box A is said to be in the interaction

list of B if A is in B’s far field but not in the far field of B’s parent. FB

is further partitioned into a group of directional wedges {WB,ℓ}, where each

wedge is contained in a cone with spanning angle O(1/w).

A crucial point is that the wedges of the parent box and the child

box are nested, so that the construction of M2M, M2L, and L2L translations

are of O(1) complexity as in the original FMM algorithm [46]. However, these

translations in the high frequency regime are now directional. Combining these

parts gives the following high-frequency directional multilevel algorithm.

1. Construct the octree. In the high-frequency regime, the boxes are parti-

tioned uniformly. In the low-frequency regime, the boxes are partitioned
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adaptively until each leaf level box contains at most P points.

2. Travel up the low-frequency regime. For each box B, compute the non-

directional equivalent sources following [101].

3. Travel up the high-frequency regime. For each box B and each WB,ℓ,

compute {fB,ℓ
q } using the directional M2M translation. The boxes with

width greater than
√
Kλ are skipped since their interaction lists are

empty.

4. Travel down the high-frequency regime. For each box B and each WB,ℓ

(a) Transform {fA,ℓ
q } of the boxes {A} in B’s interaction list and in

direction ℓ using the directional M2L translation. Next, add the

result to {uB,ℓ
q }.

(b) Transform {uB,ℓ
q } into the directional check potentials for B’s chil-

dren using the directional L2L translation.

5. Travel down the low-frequency regime. For each box B:

(a) Transform the non-directional equivalent sources of the boxes {A}

in B’s interaction list using the non-directional M2L translation.

Next, add the result to the non-directional check potentials.

(b) Perform the non-directional L2L translation. If B is a leaf box, add

the result to the potentials at the original points inside B. If not,

then add the result to the non-directional check potentials of B’s

children.
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6. Compute the near-field interactions. For each leaf box B, add contribu-

tions from sources in NB directly to the potentials at points in B.

For a point set {zi}Ni=1 obtained from discretizing the surface of a scatterer, it

is shown in [32, 33] that the overall cost of this algorithm is O(N logN).

2.4 DFMM for Maxwell’s Equations

To solve the linear system (2.24) with GMRES, at each iteration the

updated vector of coefficients I is given and a summation of the form

N
∑

n=1

ZmnIn (2.37)

for m = 1, 2, ..., N must be computed. If the matrix entries are done explicitly

and each summation is performed directly, this obviously yields a complexity

of O(N2), with an O(N2) memory requirement. Instead, the approach is

modified by considering the evaluation of the potential integrals at the test

points first, before applying the test vectors. That is, define the following

integral operators

U [J](r) =
Nt
∑

i=1

∫

Ti

G(r, r′)J(r′)dr′, (2.38)

V [J](r) =
Nt
∑

i=1

∫

Ti

G(r, r′)∇′ · J(r′)dr′, (2.39)

W [J](r) =

Nt
∑

i=1

∫

Ti

J(r′)×∇G(r, r′)dr′, (2.40)

where the integrals are now over each triangle instead of each RWG; Nt is

the number of triangles in the mesh and Ti is the i-th triangle. Using these
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operators and (2.31), the summation in (2.37) is simply

N
∑

n=1

ZmnIn = α

{

ıκη
(

tm,1 · U [J](cm,1) + tm,2 · U [J](cm,2)
)

− η

ıκ

(

V [J](cm,2)− V [J](cm,1)
)

}

+(1− α)η∆tm

{

êm ·W [J](rm) +
2π − Ωm

2π
jm

}

. (2.41)

At each iteration, the expansion (2.23) can be used to interpolate the

current on every triangle given the input {jn}Nn=1. It can be observed from the

matrix entries that the necessary task is to evaluate U [J](r) and V [J](r) at

points {cℓ}Nt

ℓ=1 and W [J](r) at points {rm}Nm=1. Since these integrals cannot be

analytically evaluated in most cases, it is necessary to introduce a numerical

quadrature scheme. First, consider the evaluation of U [J](cℓ) and V [J](cℓ).

If cℓ /∈ Ti, then symmetric Gaussian quadrature in [91] can be used over Ti;

if cℓ ∈ Ti, however, a quadrature rule especially constructed to handle the

1
r
singularity in the integral is employed. To handle this, the triangle Ti is

subdivided into three new triangles which share cℓ as a vertex, and the Duffy

quadrature rule proposed in [29] is used over each of the new triangles (see

Figure 2.4).

For a triangle Ti, let {pi,q}Qq=1 and {αi,q}Qq=1 be the nodes and weights

of the Gaussian quadrature rule and let {ti,s}Ss=1 and {βi,s}Ss=1 be the unions of

the three sets of Duffy quadrature nodes and weights (one for each of the three

new triangles). It is important to note here that the weights take into account

the area when integrating over Ti, i.e. that the Jacobian is already built into
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Figure 2.4: Integrating over an RWG basis function with a singularity at the centroid of
one triangle. The triangle is subdivided into 3 new triangles. The ×’s mark the location of
the Duffy quadrature nodes.

each set of weights. The integrals for each cℓ can then be approximated as

U [J](cℓ) ≈
Nt
∑

i=1
i 6=ℓ

Q
∑

q=1

G(cℓ,pi,q)J(pi,q)αi,q +

S
∑

s=1

G(cℓ, tℓ,s)J(tℓ,s)βℓ,s,

V [J](cℓ) ≈
Nt
∑

i=1
i 6=ℓ

Q
∑

q=1

G(cℓ,pi,q)∇ · J(pi,q)αi,q +

S
∑

s=1

G(cℓ, tℓ,s)∇ · J(tℓ,s)βℓ,s.

The main computation is the first double sum in each formula, since for each

cℓ one needs to sum over O(qNt) terms. It is not easy to apply fast summation

algorithms directly to this sum, since the summation is performed over a set

that depends on cℓ, i.e., the constraint i 6= ℓ. In order to facilitate the fast
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summation, formulas are rewritten as

U [J](cℓ) ≈
Nt
∑

i=1

∑

q:cℓ 6=pi,q

G(cℓ,pi,q)J(pi,q)αi,q −

∑

q:cℓ 6=pℓ,q

G(cℓ,pℓ,q)J(pℓ,q)αℓ,q +
S
∑

s=1

G(cℓ, tℓ,s)J(tℓ,s)βℓ,s, (2.42)

V [J](cℓ) ≈
Nt
∑

i=1

∑

q:cℓ 6=pi,q

G(cℓ,pi,q)∇ · J(pi,q)αi,q −

∑

q:cℓ 6=pℓ,q

G(cℓ,pℓ,q)∇ · J(pℓ,q)αℓ,q +

S
∑

s=1

G(cℓ, tℓ,s)∇ · J(tℓ,s)βℓ,s. (2.43)

The advantage of this form is that now the summation is essentially over all

possible pairs (i, q), except the case cℓ = pi,q, which can be handled easily by

fast algorithms. For the evaluation of W [J](rm), Gaussian quadrature nodes

are again used when rm /∈ Ti. For rm ∈ Ti, since ∇G(rm, r) lies in the plane

of Ti, fn(r) × ∇G(rm, r) is perpendicular to Ti; thus, when dotted with êm,

the contribution from Ti is zero. There is no need for singularity correction

quadrature, so the sum is just

W [J](rm) ≈
Nt
∑

i=1

∑

q

αi,qJ(pi,q)×∇G(rm,pi,q). (2.44)

It is clear that the double sums for U , V , and W result in O(N2) complexity,

and their computation will be accelerated using the directional FMM.

It is first observed that in (2.32), there is only one set of points that

serve both as “sources” and “targets,” while in (2.42), (2.43), and (2.44), the

source points and target points are different. To address this difference, the
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source points and target points are combined into a single set of points. If the

target points are assigned zero weights, then the FMM can be applied to the

combined set of points and the potentials at the target points can be extracted.

Clearly, this does not change the complexity of the algorithm; from now on,

it is safely assumed that the source and target points can be different. If uℓ

denotes the double sum in (2.42), j(i, q) = (i− 1)Q+ q, Ny = NtQ, yj = pi,q,

and fj = αi,qJ(pi,q), then the double sum for U can be rewritten as

uℓ =

Ny
∑

j=1
cℓ 6=yj

G(cℓ,yj)fj , (2.45)

where uℓ = (uℓ,1, uℓ,2, uℓ,3) and fj = (fj,1, fj,2, fj,3). Similarly, if vℓ is the double

sum of (2.43) and gj = αi,q∇ · J(pi,q), the double sum for V is of the form

vℓ =

Ny
∑

j=1
cℓ 6=yj

G(cℓ,yj)gj. (2.46)

Thus, these are the forms in which one is able to apply the directional mul-

tilevel algorithm. The summation for vℓ is in the exact same form as (2.32),

i.e. the product of an Nt ×Ny matrix and an Ny × 1 vector. The summation

for uℓ is also of the same form, only now there are three components to sum

over; instead of a matrix-vector operation, it is a multiplication of an Nt ×Ny

matrix with an Ny × 3 matrix. In practice, since the discretization points are

the same for both sums, the computations are aggregated by combining the

three components from fj with gj. By defining αℓ = (uℓ,1, uℓ,2, uℓ,3, vℓ) and
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βj = (fj,1, fj,2, fj,3, gj), the sum is

αℓ =

Ny
∑

j=1
cℓ 6=yj

G(cℓ,yj)βj . (2.47)

Here, instead of running the directional multilevel algorithm four times (once

for each component), the algorithm is performed once but with all of the

translation operators vectorized to handle multiple columns. This process is

fairly simple, since the equivalent source and potential locations remain the

same; the only difference is that the sources and potentials take on vector

values. When computing the equivalent sources or any of the translation

operators, matrix-matrix products are used instead of matrix-vector products.

The resulting complexity of this computation is O(Ny logNy) whereNy = NtQ.

Since Q is constant and the number of triangles Nt is always less than the

number of unknowns, this complexity is O(N logN).

Using the same notation for j, yj , Ny, and fj , the double sum of (2.44)

is of the form

wm =

Ny
∑

j=1

∇G(rm,yj)× fj , (2.48)

where wm = W [J](rm) = (wm,1, wm,2, wm,3) and the gradient operator ∇ =

(∂x, ∂y, ∂z) acts on the first argument of G. Rewriting the cross product as a

matrix-vector operation, it is clear that




wm,1

wm,2

wm,3



 =

Ny
∑

j=1





0 −Gz(rm,yj) Gy(rm,yj)
Gz(rm,yj) 0 −Gx(rm,yj)
−Gy(rm,yj) Gx(rm,yj) 0









fj,1
fj,2
fj,3



 . (2.49)

At first, it may seem as if the directional multilevel algorithm cannot be applied

to this situation. If a minor modification is made, however, it will become
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apparent that the algorithm can work for (2.49). More specifically, consider

the first component,

wm,1 =

Ny
∑

j=1

(−Gz(rm,yj)fj,2 +Gy(rm,yj)fj,3) . (2.50)

The essential step of the directional multilevel algorithm is the construction

of the equivalent sources. For a leaf level box B in the low-frequency regime,

(2.36) states that the potential field produced by an arbitrary set of sources

inside B can be well approximated by a small set of equivalent sources in

B, when observing the far field of B. As Gz and Gy are derivatives of the

Green’s function, the sources in (2.50) are essentially dipoles in the z and y

directions. Since the field generated by a dipole can be well approximated by

a group or a distribution of monopoles (i.e., sources determined by the Green’s

function) in its vicinity, the field generated by points in B with the kernels

of (2.50) can also be approximated by a small set of equivalent sources, when

observing the far field of B. Moreover, notice that in (2.36) the construction

of the equivalent sources for a box B requires only the potentials at {xB
p };

clearly, these potentials can be evaluated directly using the formulas of the

kernels Gz(·,yj) and Gy(·,yj). Two points need to be emphasized here: first,

the equivalent sources are always computed using the Green’s function even

though the kernels of (2.50) are the derivatives; second, once the true sources of

(2.50) are transformed into equivalent sources at the leaf level, the computation

in the high-frequency regime only involves the Green’s function G(x, y), and

hence requires no modification at all. Compared with the algorithm for the
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Green’s function G(x, y), the algorithm for the kernels of (2.50) requires only

the following modifications:

• For the computation of the equivalent sources for the leaf boxes in the

low-frequency regime, use the kernels of (2.50) to compute the potentials

at {xB
p }.

• Use the kernels of (2.50) for direct near-field calculations in the low-

frequency regime.

The computation of the second and third components wm,2 and wm,3 can

be handled in essentially the same way. In fact, since the algorithm for

wm,1, wm,2, and wm,3 above the leaf level is exactly the same, the compu-

tations can be aggregated by vectorizing the translation operations for all

three components, allowing one to perform the necessary calculations by run-

ning the algorithm once. The resulting algorithm for the MFIE kernel has

O(Ny logNy) = O(N logN) complexity.

2.5 Numerical Results for Maxwell DFMM

The first test of the directional multilevel algorithm is to show the

scaling properties and attainable accuracy. The tests are performed on two

commonly-used examples: the sphere and the NASA almond (see Figure 2.6).

Here, the triangular meshes use roughly 5 elements per wavelength. In these

tables, K is the diameter of the object in terms of wavelength, ε is the pre-

scribed order of accuracy, Te is the time of the EFIE summation, Tm is the
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time of the MFIE summation, εe is the relative error for the EFIE summation,

and εm is the relative error for the MFIE summation. Np is the total number

of discretization points in the directional multilevel algorithm, including the

Gaussian quadrature nodes over each triangle, the centroid of each triangle,

and the center of each edge. To estimate the relative error between direct cal-

culation and the algorithm, the true values of the summations are computed

at a subset R of 200 points sampled from the total number of points. The

relative error is computed via

√

∑

i∈R |ui − uc
i |2

∑

i∈R |ui|2
(2.51)

where ui is the value by direct computation and uc
i is the value by the direc-

tional algorithm.

Table 2.1 shows data for the sphere, while table 2.2 shows data for the

NASA almond. It is observed that the computational time grows roughly by a

factor of 3 or 4 when increasing the accuracy by two digits. It is also noted that

the algorithm for the MFIE summation is slightly less accurate; nevertheless,

the same order of accuracy is retained. To illustrate the O(N logN) scaling of

the algorithm, a plot of the computational time versus the number of unknowns

for the sphere is in figure 2.5. Here, the size of the sphere ranges from K = 3

to K = 48, and the error tolerance is 1e-4.

For electromagnetic scattering examples, there are a few test geometries

that have been well established in the electromagnetics community. In these

tests, the residual tolerance for GMRES iteration is set at 1e-3, while the error
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(K, ε) Np Te(sec) Tm(sec) εe εm
(12,1e-4) 4.669e+5 1.080e+2 1.250e+2 3.771e-4 6.428e-4
(24,1e-4) 1.867e+6 4.830e+2 5.470e+2 4.027e-4 6.594e-4
(48,1e-4) 7.471e+6 2.150e+3 2.384e+3 3.760e-4 6.991e-4
(12,1e-6) 4.669e+5 4.140e+2 3.690e+2 1.500e-6 3.639e-6
(24,1e-6) 1.867e+6 1.790e+3 1.601e+3 1.646e-6 3.794e-6
(48,1e-6) 7.471e+6 7.665e+3 6.773e+3 2.227e-6 3.472e-6
(12,1e-8) 4.669e+5 1.217e+3 1.000e+3 8.648e-9 6.371e-8
(24,1e-8) 1.867e+6 5.148e+3 4.198e+3 1.637e-8 6.625e-8
(48,1e-8) 7.471e+6 2.165e+4 1.742e+4 1.349e-8 5.284e-8

Table 2.1: Computational times and relative error 2-norms for the directional algorithm
with discretization points on the surface of a sphere.

(K, ε) Np Te(sec) Tm(sec) εe εm
(32,1e-4) 3.164e+5 8.400e+1 8.800e+1 4.083e-4 5.291e-4
(64,1e-4) 1.265e+6 3.860e+2 3.860e+2 3.463e-4 5.042e-4
(128,1e-4) 5.059e+6 1.785e+3 1.745e+3 4.350e-4 4.824e-4
(32,1e-6) 3.164e+5 3.130e+2 2.700e+2 2.386e-6 2.860e-6
(64,1e-6) 1.265e+6 1.372e+3 1.171e+3 1.363e-6 2.814e-6
(128,1e-6) 5.059e+6 6.082e+3 5.177e+3 1.977e-6 2.579e-6
(32,1e-8) 3.164e+5 9.310e+2 7.460e+2 1.396e-8 3.300e-8
(64,1e-8) 1.265e+6 3.978e+3 3.226e+3 1.361e-8 3.139e-8
(128,1e-8) 5.059e+6 1.719e+4 1.363e+4 1.573e-8 3.099e-8

Table 2.2: Computational times and relative error 2-norms for the directional algorithm
with discretization points on the surface of the NASA almond.
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Figure 2.6: The NASA almond geometry.
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tolerance of the directional algorithm and butterfly algorithm are set at 1e-4.

The constant α, which determines the balance between the EFIE and MFIE,

is set at 0.3. Since the goal is to produce sufficiently accurate RCS plots, more

refined meshes with 10 elements per wavelength are utilized. To show the

accuracy of the butterfly algorithm, the radar cross section computations are

compared to either analytical results or measured experiments. For analytical

results, the relative error of the radar cross section is measured; that is, if σ(r̂)

is the analytical solution of the RCS and σc(r̂) is the numerical result, given

the point set {r̂s}Nr̂

s=1 on the unit sphere, this error is defined as
√

∑N
r̂

s=1 |σ(r̂s)− σc(r̂s)|2
√

∑N
r̂

s=1 |σ(r̂s)|2
. (2.52)

Three commonly-used surfaces were used for these tests. The first ex-

ample is a conducting sphere, which has well-documented analytical solutions

[52]. In this setup, the incident plane wave is propagating in the −ẑ direction,

with the E-field in the +x̂ direction and H-field in the −ŷ direction. For each

simulation, the bistatic RCS was calculated along θ for φ = 0 and φ = π
2
; here,

θ and φ take on their usual definitions in spherical coordinates. Table 2.3(top)

shows the bistatic RCS of a 12λ-radius sphere. The Mie series solution is

compared to the boundary element method using the directional multilevel

algorithm in Table 2.3(bottom) for diameters K=6, 12, and 24. Both the

solver times and number of unknowns for each example are listed to show the

O(N logN) scaling, where N is the number of RWG basis functions. Here,

Tsolve is the total run-time of the GMRES iterative solver, and Niter is the
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(K, ε) N Tsolve(sec) Niter RCS error
(6,1e-4) 7.373e+4 3.439e+3 18 1.659e-02
(12,1e-4) 2.949e+5 1.856e+4 23 1.136e-02
(24,1e-4) 1.180e+6 9.602e+4 28 8.851e-03

Table 2.3: Top: Bistatic RCS of a 12λ radius sphere (K = 24). Bottom: Solver times
and RCS relative error 2-norms for the boundary element code with the fast directional
algorithm for the sphere.

number of iterations necessary for convergence. It is important to note that

no preconditioning techniques were used, leading to an increased number of

iterations for higher frequency problems.

The second example is a conducting cube with the same incoming field

as the previous example. Table 2.4(top) shows the bistatic RCS of a cube with

sides which are 15λ long; although there is no analytical solution for the RCS

or measured data on the cube, two figures from the MLFMA paper by Song

and Chew [84] are placed side-by-side as a comparison. The running time and

iteration numbers are reported in Table 2.4(bottom). It is clear that the RCS

for the φ = 0 cut is not exactly symmetric, but by no fault of the butterfly
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Figure 2.7: The ogive geometry.

algorithm; this is merely the result of using a crude testing scheme and not

employing accurate near-field techniques in the regions of corners and edges.

The third example, the ogive, is a popular benchmark target for test-

ing electromagnetics codes [94] (see Figure 2.7). Here, the specific example

is of the 10 inch ogive at a frequency of 9.0 GHz. Since the wavelength is

assumed to be 1 at all times, the geometry is scaled appropriately so that the

object is still of the same diameter K in terms of wavelength. Table 2.5(top)

shows the monostatic RCS about the observation angle φ. In these plots, VV

polarization signifies the E-field oriented in the +ẑ direction, while HH polar-

ization signifies the H-field oriented in the −ẑ direction. In the comparison

plots provided by Gibson in [42], the RCS curves are not normalized by wave-

length; thus, in order to scale the RCS calculations down to their actual levels,

one must compute 10 log10(RCS · λ2), where λ is the free-space wavelength at

the chosen frequency. Table 2.5(bottom) illustrates the complexity in solving

larger problems; that is, for K=16, 32, and 64.

38



0 20 40 60 80 100 120 140 160 180
−10

0

10

20

30

40

50

60

θ (degrees)

R
C

S
 (

dB
sm

)

Bistatic RCS of 15λ cube, φ=0

0 20 40 60 80 100 120 140 160 180
10

15

20

25

30

35

40

45

50

55

60

θ (degrees)

R
C

S
 (

dB
sm

)

Bistatic RCS of 15λ cube, φ=π/2

(K, ε) N Tsolve(sec) Niter

(3.75,1e-4) 1.843e+4 9.620e+2 14
(7.5,1e-4) 7.373e+4 2.887e+3 16
(15,1e-4) 2.949e+5 1.466e+4 18

Table 2.4: Top: Bistatic RCS of a 15λ cube. On the left are figures for the boundary
element code using the fast directional algorithm and butterfly algorithm. On the right are
figures done by Song and Chew in [84] using the MLFMA. Bottom : Solver times for the
boundary element code with the fast directional algorithm for the cube.
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(K, ε) N Tsolve(sec) Niter

(16,1e-4) 3.246e+4 1.012e+3 14
(32,1e-4) 1.297e+5 5.183e+3 16
(64,1e-4) 5.188e+5 2.529e+4 18

Table 2.5: Top: Monostatic RCS of the ogive at 9.0 GHz. On the left are figures for the
boundary element code using the fast directional algorithm and butterfly algorithm. On the
right are figures done by Gibson in [42] using the MLFMA. Bottom: Solver times for the
boundary element code with the fast directional algorithm for the ogive.
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Chapter 3

Uncertainty Quantification for Acoustic

Scattering

In many practical situations, the shape and properties of the scattering

object may be slightly perturbed from the specifications of the original geome-

try. This may occur if a vehicle has manufacturing defects, or if it has suffered

damage after combat use. As a result, there is a level of uncertainty when

observing physical quantities that are dependent on the characteristics of the

scatterer. This chapter will go over my work on random surface scattering for

the Helmholtz equation.

3.1 Boundary Integral Equations for Acoustics

For the scalar Helmholtz equation (1.2), if a is the identity tensor and

c is constant, the exterior Helmholtz problem reads as

∆u+ κ2u = 0 in R
d\D (3.1)

u = −uinc on ∂D (3.2)

lim
r→∞

r

(

∂u

∂r
− ıκu

)

= 0. (3.3)
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Using Green’s identities, it has been proven that the scattered field u can be

represented as a combination of single and double layer potentials

u(x) =

∫

∂D

[

∂G(x,y)

∂n(y)
− ıκG(x,y)

]

ϕ(y)ds(y), (3.4)

for surface density ϕ, where G is the free-space Green’s function for the

Helmholtz equation,

G(r, r′) =

{

ı
4
H1

0 (κ|r− r′|) in 2D
e−ıκ|r−r

′|

4π|r−r′| in 3D
. (3.5)

Taking the limit as x approaches ∂D gives us the combined field integral

equation

−uinc(x) =
1

2
ϕ(x) +

∫

∂D

[

∂G(x,y)

∂n(y)
− ıκG(x,y)

]

ϕ(y)ds(y). (3.6)

The solution process for computing u is as follows: first, solve the boundary

integral equation for the density ϕ. After this density is found, the 2D far field

pattern F is computed by

F (s) =
e−ıπ

4√
8πκ

∫

∂D

{κ (n(y) · s) + η}e−ıκs·yϕ(y)dy. (3.7)

3.2 Nystöm Method

Various discretization techniques exist for the integral equations above.

For acoustics, the most popular method is Nyström discretization [71, 61, 4],

where the field takes a pointwise representation by way of quadrature rule ap-

plied to the boundary surface. This is especially attractive in two dimensions,

since the quadrature scheme can be defined on the unit circle. Consider the
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quadrature rule with weights {wj}Nj=1 and points {xj}Nj=1. Starting with (3.6),

the equation is enforced at each node xi, i.e.

−uinc(xi) =
1

2
ϕ(xi) +

∫

∂D

[

∂G(xi,y)

∂n(y)
− ıκG(xi,y)

]

ϕ(y)ds(y). (3.8)

To discretize the integral, a combination of the original quadrature rule and

a singularity correction rule must be used in a small neighborhood of xi. The

fully discretized equation takes the form

−uinc(xi) =
1

2
ϕ(xi) +

∑

i 6=j

wj

[

∂G(xi,xj)

∂n(xj)
− ıκG(xi,xj)

]

ϕ(xj) (3.9)

+
∑

j

w̃j

[

∂G(xi, x̃j)

∂n(x̃j)
− ıκG(xi, x̃j)

]

ϕ(x̃j). (3.10)

where the singularity correction weights and nodes for the integral near xi are

{w̃j} and {x̃j}.

3.3 Stochastic Methods

To quantify the far-field and radar cross section of a randomly per-

turbed scatterer, stochastic methods are necessary. The traditional approach

is the Monte Carlo method, but this usually results in long computational

times due to the slow O(1/
√
N) convergence with respect to the number of

realizations N . Very recently, a class of methods based on generalized polyno-

mial chaos (gPC) have been developed and become popular in many practical

applications. Most notable is the stochastic collocation method using Smolyak

sparse grids [96], which may offer much better convergence properties than the

Monte Carlo method while keeping the same ease of implementation. For wave
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scattering with random shapes, the gPC method was applied in [97] and found

to be effective in low-frequency scattering. However, for the high-frequency

scattering problem considered here, the sparse grid collocation method does

not offer a big advantage over other methods. In order to resolve the highly

oscillatory solution, a higher order method is required in the random space;

in addition, to properly model the rough physical domain, the random space

needs to be parametrized by a larger set of random variables. Therefore, for

gPC-based methods, the problem would require a high-order implementation

in a large number of dimensions. To alleviate this computational difficulty,

quasi-Monte Carlo (QMC) methods based on low discrepancy sequences are

introduced. The QMC methods [70, 18] are in fact deterministic approaches

based on pseudo-random numbers; they have much faster convergence rates

(O(1/N) up to logarithmic factors) without sacrificing the generality of the

Monte Carlo method, and their dependence on dimensionality is much weaker

than for stochastic collocation methods.

To incorporate the uncertainty of the scattererD, a probabilistic setting

is adopted and the surface is modeled as a random process. In this section

only, N is denoted as the number of random samples and sℓ, ℓ = 0, 1, ..., Ns

are the far-field observation directions

sℓ = (sℓ,1, sℓ,2) =

(

cos

(

2πℓ

Ns

)

, sin

(

2πℓ

Ns

))

.

The 2D boundary takes the form

∂Dz(ω) = {x(t, ω) = b(t) · (1 + p(t, ω)), t ∈ [0, 2π), ω ∈ Ω},
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where b(t) = (b1(t), b2(t)) is the base geometry, Ω is the event space in a

properly defined probability space, and p(t, ω) is the perturbation. For a fixed

ω, p(t, ω) is a deterministic function representing how the base geometry b(t) is

scaled, while for a fixed location t, p(t, ω) is a random variable representing the

uncertainty of the surface at the location associated with t. The perturbation

p(t, ω) is also assumed to be sufficiently regular so that the scattering problem

is well posed almost everywhere in Ω.

A critical step in modeling the random surface is to properly parametrize

the random process by a finite number of independent random variables. Let

Z(ω) = (Z1(ω), . . . , ZM(ω)), M ≥ 1, be such a set of independent random vari-

ables, whose probability distribution is FZ(z) = Prob(Z ≤ z), where z ∈ RM .

Without loss of generality, I focus on the continuous random variables, where

a probability density function ρ(z) = dFZ(z)/dz exists. The random surface

can now be expressed in terms of Z in the following manner:

∂Dz = {b(t) · (1 + p(t, Z)), t ∈ [0, 2π), Z ∈ R
M}.

Now, the integral formulations given in (3.6) and (3.7) depend on z. The

density ϕz(x) for x ∈ ∂Dz satisfies

−uinc(x) =
1

2
ϕ(x) +

∫

∂Dz

[

∂G(x,y)

∂n(y)
− ıκG(x,y)

]

ϕz(y)ds(y). (3.11)

The far field pattern and the radar cross sections are equal to

Fz(s) =
e−ıπ

4√
8πκ

∫

∂Dz

{κ (n(y) · s) + η}e−ıκs·yϕz(y)dy (3.12)

Rz(s) = |Fz(s)|2 (3.13)
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Finally, the mean and the variance of the observable R(s) are given by

E[R(s)] =

∫

Rz(s)ρ(z)dz, (3.14)

V ar[R(s)] =

∫

(Rz(s)−E[R(s)])2 ρ(z)dz. (3.15)

One can follow [70] for a short description of the quasi-Monte Carlo

methods. The main idea of the quasi-Monte Carlo method is the construction

of low discrepancy sequences. For any integer b ≥ 2, define Zb = {0, 1, . . . , b−

1}. For any integer n ≥ 1, one can write the unique b-ary representation of n

as

n =
∞
∑

j=0

aj(n)b
j , aj(n) ∈ Zb.

The radical inverse function φb(n) is defined to be

φb(n) =

∞
∑

j=0

aj(n)b
−j−1, ∀n ≥ 0.

Clearly, 0 ≤ φb(n) ≤ 1. Two of the most commonly used low discrepancy

sequences are defined based on the radical inverse functions. Let M be an

arbitrary dimension and b1, . . . , bM coprime to each other. The Halton sequence

is defined for each integer n > 0 as

z(n) = (φb1(n), . . . , φbM (n)) ∈ [0, 1]M

The definition of the Hammersley sequence is similar. LetM be the dimension,

N be the length of the sequence, and b1, . . . , bM−1 coprime to each other. The

Hammersley sequence is defined for n = 1, . . . , N as

z(n) =
( n

N
, φb1(n), . . . , φbM−1

(n)
)

∈ [0, 1]M .

46



For a fixed sample size N , the samples z(1), z(2), . . . , z(N) are generated us-

ing a low discrepancy sequence (in the numerical examples, the Hammersley

sequence is chosen due to its lower discrepancy). For each sample z(i), the

directional FMM is used to solve the Helmholtz problem and compute the

RCS Rz(i)(sℓ) for ℓ = 0, 1, . . . , Ns − 1. Once they are ready, the statistical

estimations of the mean and variance are given, respectively, by

R̄N (sℓ) =
1

N

N
∑

i=1

Rz(i)(sℓ)

V̄N(sℓ) =
1

N − 1

N
∑

i=1

(

Rz(i)(sℓ)− R̄N(sℓ)
)2

.

3.4 Numerical Results for Random Surface Scattering

In this section, the results of some numerical experiments are presented.

The two base shapes that were tested are the cylinder and the kite; these ob-

jects were chosen because they are smooth and have a simple parametrization

in the two-dimensional plane.

• Cylinder. b(t) = (b1(t), b2(t)) =
K
2
(cos(t), sin(t)).

• Kite. b(t) = (b1(t), b2(t)) =
K
2

(

cos(t)+0.65 cos(2t)−0.65
1.5

, sin(t)
)

.

The perturbation p(t, z) is modeled as follows. First, choose a set

number of frequencies or modes {ξi}M/2
i=1 . For simplicity, it is assumed that

each component Zi of the random parameter Z = (Z1, . . . , ZM) has a uni-

form probability density function over the unit interval [0, 1] (this assumption
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(a) (b)

Figure 3.1: The base shape of the scatterers used in the test. (a) Circle. (b) Kite.

can certainly be removed by performing appropriate re-parametrization to

each Zi). As a result, the joint probability density function for z is the con-

stant one function over the M-dimensional cube [0, 1]M . For a given sample

Z = (Z1, . . . , ZM), the perturbation p(t, Z) is defined as

p(t, Z) =
µ

K

M/2
∑

i=1

((

Z2i−1 −
1

2

)

cos(ξit) +

(

Z2i −
1

2

)

sin(ξit)

)

. (3.16)

Depending on the choice of the frequencies {ξi}M/2
i=1 , p(t, Z) can model both

low frequency and high frequency perturbations.

• Low frequency perturbation sets ξi = i for i = 1, 2, . . . ,M/2; thus, the

perturbation function does not have many oscillations and the resulting

boundary ∂D does not have rough edges.

• High frequency perturbation sets ξi =
iK
M

for i = 1, 2, . . . ,M/2. Here,

the high frequency range extends to modes which are comparable to the

size of the scattering object in terms of wavelength and the resulting

boundary ∂D exhibits small-scale oscillations.
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In each case, the uncertainty quantification results of the Monte Carlo method

and the quasi-Monte Carlo method are compared for a fixed sample size N .

In Monte-Carlo, the random parameter sample Z(i) = (Z
(i)
1 , . . . , Z

(i)
M ) for i =

1, 2, . . . , N is generated randomly for each entry Z
(i)
j for j = 1, 2, . . . ,M . In

quasi-Monte Carlo, the random parameter Z(i) = (Z
(i)
1 , . . . , Z

(i)
M ) for each i is

constructed using the Hammersley sequence. For the simulations, the goal is

to see how the estimations of the expected value and the variance of the radar

cross section converge for the Monte Carlo and quasi-Monte Carlo. In each

case, the statistical estimations of the mean and variance for a fixed sample

size N are given, respectively, by

R̄N (sℓ) =
1

N

N
∑

i=1

Rz(i)(sℓ)

V̄N(sℓ) =
1

N − 1

N
∑

i=1

(

Rz(i)(sℓ)− R̄N(sℓ)
)2

.

In order to measure the convergence rate depending on the sample size N , the

error is estimated using the relative ℓ2 norm. Suppose that Nmax is the largest

sample size used in the tests. Then for each fixed N , the errors εR̄,N and εV̄ ,N

are defined as

εR̄,N =

√

∑Ns−1
ℓ=0 |R̄N(sℓ)− R̄Nmax

(sℓ)|2
∑Ns−1

ℓ=0 |R̄Nmax
(sℓ)|2

εV̄ ,N =

√

∑Ns−1
ℓ=0 |V̄N(sℓ)− V̄Nmax

(sℓ)|2
∑Ns−1

ℓ=0 |V̄Nmax
(sℓ)|2

In these tests, the diameter of the scatterer K is set to be 512, the

number of random modes M = 8 and the perturbation amplitude in (3.16)
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µ = 0.1. The incident field is chosen to be a plane wave propagating in the

x1-direction, i.e.

uinc(x) = e2πıx1 , (3.17)

where x = (x1, x2); once again, the wavenumber is 2π and the wavelength λ

is 1. Both the cylinder and kite geometries were tested, using both low fre-

quency and high frequency perturbations mentioned earlier. First, the results

of stochastic collocation using Smolyak sparse grids for the random parameter

are given, with accuracy level of 1, 2, and 3. Figure 3.2 shows close-ups of

the variance curve for the low frequency and high frequency perturbations of

the kite, respectively. It is clear that stochastic collocation produces some-

what nonsensical results, as it should be impossible to have a negative value

for the variance of the RCS. This artifact is purely a result of utilizing nega-

tive weights in the quadrature of the random space; for this reason, stochastic

collocation does not work well when the solution is highly oscillatory.

Next, the results of both the Monte Carlo and the quasi-Monte Carlo

methods are presented. In order to measure the convergence, different sample

sizes of N = 64, 256, 1024 are used with Nmax = 1024 for the highest order

accuracy. Figures 3.3 and 3.4 summarize the results of the cylinder for the low

frequency and high frequency perturbations, respectively. The errors in both

cases are tabulated in Table 3.1. For low frequency perturbations, the expecta-

tion and variance converge significantly faster for quasi-Monte Carlo when the

sample size N increases. However, for the high frequency perturbations, it is

observed that the improvement in error for both quantities is modest at best;
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Figure 3.2: The variance of the radar cross section for the kite, using stochastic collocation.
The figures on the left are for low frequency perturbations, while the figures on the right are
for high frequency perturbations. For each type of perturbation, the top figure shows the
full plot, while the bottom figure shows a close-up where the curves show negative variance.
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Figure 3.3: The expectation and variance of the radar cross section for low frequency
perturbations on the cylinder. The figures on the left are regular Monte Carlo, while the
figures on the right use the Hammersley low-discrepancy sequence.

that is, the rougher the surface of the cylinder, the more difficult it is to quan-

tify the RCS accurately. Tests for larger values of M were also performed and

gave similar results for both low-frequency and high-frequency perturbations.
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Figure 3.4: The expectation and variance of the radar cross section for high frequency
perturbations on the cylinder.

low frequency perturbations high frequency perturbations
(method,N) εR̄,N εV̄ ,N εR̄,N εV̄ ,N

MC, 64 6.17e-05 1.33e-01 2.35e-03 2.69e-01
MC, 256 1.50e-05 9.68e-02 1.28e-03 1.62e-01
QMC, 64 2.71e-05 8.06e-02 2.25e-03 2.27e-01
QMC, 256 4.80e-06 3.48e-03 9.32e-04 1.11e-01

Table 3.1: 2-norm errors for the RCS of the cylinder geometry.
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Figure 3.5: The expectation and variance of the radar cross section for low frequency
perturbations on the kite scatterer.

low frequency perturbations high frequency perturbations
(method,N) εR̄,N εV̄ ,N εR̄,N εV̄ ,N

MC, 64 1.91e-03 1.27e-01 3.39e-03 2.15e-01
MC, 256 1.07e-03 7.08e-02 1.84e-03 9.87e-02
QMC, 64 1.60e-03 9.90e-02 2.01e-03 1.29e-01
QMC, 256 5.01e-04 5.08e-02 6.45e-04 6.01e-02

Table 3.2: 2-norm errors for the RCS of the kite geometry.
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Figure 3.6: The expectation and variance of the radar cross section for high frequency
perturbations on the kite scatterer.
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Figures 3.5 and 3.6 summarize the results of the kite for the low fre-

quency and high frequency perturbations, respectively, using quasi-Monte Carlo.

The errors in both cases are tabulated in Table 3.2. The results suggests that,

when the sample size N is quadrupled, the expectation for both the low fre-

quency and high frequency perturbations converge by a factor of 3 for the

quasi Monte-Carlo method and by a factor of 2 for the standard Monte-Carlo

method. On the other hand, the convergence rates for the variance seem to

be comparable for the two methods.

One difficulty that was encountered in the numerical tests is the sensi-

tivity of the RCS calculation varying with the size of the perturbation µ. For

larger perturbations approaching the size of the operating wavelength, such

convergence to the actual mean or variance proved to be quite difficult with-

out having an inordinate number of samples. In order to achieve something

sensible, especially for high frequency problems, it was deduced computation-

ally that the perturbation size must satisfy µ ≤ λ
5
.
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Part II:
Sweeping Preconditioners for

Time-Harmonic Wave Equations
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The next few chapters will be dedicated to work I have done on develop-

ing the moving PML sweeping preconditioner [35] for a variety of physics and

discretization techniques. I will proceed first with two chapters on Maxwell’s

equations, then go on to parallel preconditioners for the Helmholtz and elastic

wave equation with higher order elements. I will conclude with a proof of the

approximability of the free-space Green’s function using the perfectly matched

layer boundary condition.
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Chapter 4

Preconditioners for Maxwell’s Equations:

the Yee Grid

4.1 PMLs for Maxwell’s Equations

Recall the time-harmonic Maxwell equations (1.9) for general media on

an infinite domain, i.e.

∇×E = −ıωµ0µrH

∇×H = ıωε0εrE+ J

∇ · (ε0εrE) = qe

∇ · (µ0µrH) = 0

lim
|r|→∞

(H× r− |r|E) = 0

lim
|r|→∞

(E× r+ |r|H) = 0.

It should be noted that the current and charge satisfy the continuity equation

∇ · J = −ıωqe. The last two limits are the Silver-Müller radiation conditions,

which enforce the fields to radiate away from the current source and dissipate

as |r| goes to infinity. The relative permittivity and permeability tensors εr and

µr are measurable with respect to the spatial variable r ∈ R3; as a reminder,
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the entries of these matrices are

εr =





εxx εxy εxz
εyx εyy εyz
εzx εzy εzz



 , µr =





µxx µxy µxz

µyx µyy µyz

µzx µzy µzz



 .

Since it is impossible to numerically solve Maxwell’s equations in all of R3, the

computational domain is truncated and a boundary condition which emulates

the radiation condition is introduced; for this setting, the domain of interest

is the unit cube Ω = [0, 1]3. Absorbing boundary conditions [68, 31] have

been very popular for the wave equation. Here, the perfectly matched layer

derived by complex-stretched coordinates [23] is chosen because of its ubiquity

in computational electromagnetics.

Define the width of the PML as ℓ, so that the non-PML region in Ω is

[ℓ, 1− ℓ]3. The complex stretching variables sξ for ξ = x, y, z are of the form

sξ(ξ) = a(ξ) + ıσ(ξ), (4.1)

with a ≥ 1 and σ ≥ 0; in the physical space outside the PML, sξ = 1.

Typically, a is chosen to be 1 everywhere, and σ is the ramp-like function

σ(ξ) =











θ
(

ξ−ℓ
ℓ

)2
, ξ ∈ [0, ℓ]

0, ξ ∈ [ℓ, 1− ℓ]

θ
(

ξ−1+ℓ
ℓ

)2
, ξ ∈ [1− ℓ, 1]

, (4.2)

where θ is an optimal constant inversely proportional to frequency [58]. Now

define the matrix

S =





1
sx

0 0

0 1
sy

0

0 0 1
sz



 , (4.3)
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so det
(

S
)

= (sxsysz)
−1. It has been shown in [24] that Maxwell’s equations

in complex stretched coordinates can be written in terms of this operator;

when these equations are recast in the non-stretched coordinates, the material

tensors take on the form

ε̃r =
(

det
(

S
))−1(

SεrS
)

, µ̃r =
(

det
(

S
))−1(

SµrS
)

.

Explicitly, these matrix entries are

ε̃r =





εxx
sysz
sx

εxysz εxzsy
εyxsz εyy

sxsz
sy

εyzsx
εzxsy εzysx εzz

sxsy
sz



 , µ̃r =





µxx
sysz
sx

µxysz µxzsy
µyxsz µyy

sxsz
sy

µyzsx
µzxsy µzysx µzz

sxsy
sz



 .

Now, ε̃r and µ̃r can be used as the material tensors in the whole computational

domain, since sξ = 1 in [ℓ, 1− ℓ]3 and the PML reduces to the actual material.

At the boundary of the domain ∂Ω, a PEC boundary condition is artificially

placed to close the system; because of the exponential decay of any plane wave

entering the perfectly matched layer, the field is so small that the reflections off

of the PEC outside of the PML are deemed insignificant. The infinite domain

problem is now reduced to the truncated problem,

∇×E = −ıωµ0µ̃rH

∇×H = ıωε0ε̃rE+ J

∇ ·
(

ε0ε̃rE
)

= qe

∇ ·
(

µ0µ̃rH
)

= 0

in Ω

(4.4)

n̂× E = 0

n̂×H = 0
on ∂Ω.
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4.2 Yee Grid Discretization

For the scalar Helmholtz equation, standard central differencing meth-

ods are sufficient and produce reasonably accurate results. In the case of

Maxwell’s equations, however, dispersion becomes a major problem if the

components of the electric field E and magnetic field H are all defined at

the same locations. The celebrated Yee grid, which was originally used for

finite-difference time-domain simulations [86], is also applicable to the fre-

quency domain. In this scheme, the components of E and H are defined on

a staggered grid. The advantages to using the Yee grid are two-fold: the di-

vergence equations in (1.9) are implicitly satisfied, and boundary conditions

between materials are naturally handled.

Ex
i+1,j,k+2

Ez
i+2,j,k+1

Ey
i+2,j+1,k+2

Ey
i+2,j+1,k

Ez
i,j,k+1

Ex
i+1,j,k

Ez
i+2,j+2,k+1

Ex
i+1,j+2,k+2

Ey
i,j+1,k+2

Hz
i+1,j+1,k+2

Hx
i+2,j+1,k+1

Hy
i+1,j,k+1

Figure 4.1: The Yee grid on a cubic cell. The red vectors are components of
H and the blue vectors are components of E.

Figure 4.1 illustrates the locations of the field components in Yee’s
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scheme for an orthogonal Cartesian grid; with this structure, the finite differ-

ence formulas are

Ey
i,j+1,k − Ey

i,j+1,k+2 + Ez
i,j+2,k+1 − Ez

i,j,k+1 +

2ıωh(µ0µ̃rH)xi,j+1,k+1 = 0

Ez
i,j,k+1 − Ez

i+2,j,k+1 + Ex
i+1,j,k+2 − Ex

i+1,j,k +

2ıωh(µ0µ̃rH)yi+1,j,k+1 = 0

Ex
i+1,j,k − Ex

i+1,j+2,k + Ey
i+2,j+1,k − Ey

i,j+1,k +

2ıωh(µ0µ̃rH)zi+1,j+1,k = 0

Hz
i+1,j+1,k −Hz

i+1,j−1,k +Hy
i+1,j,k−1 −Hy

i+1,j,k+1 −

2h
(

ıω(ε0ε̃rE)
x
i+1,j,k

)

= 2h
(

Jx
i+1,j,k

)

Hx
i,j+1,k+1 −Hx

i,j+1,k−1 +Hz
i−1,j+1,k −Hz

i+1,j+1,k −

2h
(

ıω(ε0ε̃rE)
y
i,j+1,k

)

= 2h
(

Jy
i,j+1,k

)

Hy
i+1,j,k+1 −Hy

i−1,j,k+1 +Hx
i,j−1,k+1 −Hx

i,j+1,k+1 −

2h
(

ıω(ε0ε̃rE)
z
i,j,k+1

)

= 2h
(

Jz
i,j,k+1

)

,

(4.5)

where h = 1
n+1

is the distance between two nodes in the grid, and the subscript

notation for each component follows the convention Ex
i,j,k ≈ Ex(ih, jh, kh).

In the derivation of the finite difference formulas, the tensor product

terms are the result of using the midpoint rule on the integrals
∫

D1
(µ̃rH) · n̂dA

and
∫

D2
(ε̃rE) · n̂dA, where D1 is a square face orthogonal to H, D2 is a square

face orthogonal to E, and n̂ is the unit normal vector. Observing the diagram
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in Figure 4.1, it is clear that only one component of the electric and magnetic

fields is defined at each point. This creates a problem when µ̃r and ε̃r have

non-zero off-diagonal entries, as the individual components of µ̃rH and ε̃rE

will be summations of these terms; a local approximation must be constructed

for the field components which are not defined at the midpoints of D1 and

D2. To this end, the simple schemes introduced in previous works on FDTD

methods [92] are used, which take the average of the nearest four field values.

The products µ̃rH and ε̃rE on the grids are then

(µ̃rH)xi,j+1,k+1 ≈ µ̃xx
i,j+1,k+1H

x
i,j+1,k+1

+µ̃xy
i,j+1,k+1

Hy
i+1,j,k+1 +Hy

i+1,j+2,k+1 +Hy
i−1,j,k+1 +Hy

i−1,j+2,k+1

4

+µ̃xz
i,j+1,k+1

Hz
i+1,j+1,k +Hz

i+1,j+1,k+2 +Hz
i−1,j+1,k +Hz

i−1,j+1,k+2

4

(ε̃rE)
x
i+1,j,k ≈ ε̃xxi+1,j,kE

x
i+1,j,k

+ε̃xyi+1,j,k

Ey
i,j+1,k + Ey

i+2,j+1,k + Ey
i,j−1,k + Ey

i+2,j−1,k

4

+ε̃xzi+1,j,k

Ez
i,j,k+1 + Ez

i+2,j,k+1 + Ez
i,j,k−1 + Ez

i+2,j,k−1

4
(4.6)

for the x-components; the other components can be defined similarly. Now,

these approximations can be inserted into (4.5) to get the finite difference

formulas for fully anisotropic media.

4.3 Block tridiagonal structure and node ordering

Observe the finite difference equations given by (4.5) and (4.6), and

consider the unknowns on the layer z = kh. It is clear that each node on this
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layer of the grid only interacts with nodes that satisfy (k−1)h ≤ z ≤ (k+1)h.

Denoting uk as the vector of unknowns on the layer z = kh, the unknowns

within each layer can be ordered lexicographically by the x-coordinate first

and y-coordinate second. The full vector of unknowns can be written as u =

(ut
1, u

t
2, . . . , u

t
n)

t, where

u1 = (Hx
2,1,1, H

x
4,1,1, ..., H

y
1,2,1, E

z
2,2,1, ..., H

x
n−3,n,1, H

x
n−1,n,1)

t

u2 = (Hz
1,1,2, E

y
2,1,2, ..., E

x
1,2,2, E

x
3,2,2, ..., E

y
n−1,n,2, H

z
n,n,2)

t

...

un−1 = (Hz
1,1,n−1, E

y
2,1,n−1, ..., E

x
1,2,n−1, E

x
3,2,n−1, ..., E

y
n−1,n,n−1, H

z
n,n,n−1)

t

un = (Hx
2,1,n, H

x
4,1,n, ..., H

y
1,2,n, E

z
2,2,n, ..., H

x
n−3,n,n, H

x
n−1,n,n)

t.

Similarly, the right hand side f contains the information on the current source

and can be written as f = (f t
1, f

t
2, . . . , f

t
n)

t following the same ordering.

Given the full vector of unknowns u = (ut
1, ..., u

t
n)

t and the right hand

side f = (f t
1, ..., f

t
n)

t, the linear system Au = f takes the block tridiagonal

form










A1,1 A1,2

A2,1 A2,2
. . .

. . .
. . . An−1,n

An,n−1 An,n





















u1

u2
...
un











=











f1
f2
...
fn











. (4.7)

It is important to note that the off-diagonal blocks here are not square; because

of the staggered grid, there is a slightly different number of unknowns in each

layer.
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4.4 Preconditioners for the Yee Grid

In [35], the sweeping preconditioner with moving PML was developed

for the scalar Helmholtz equation with variable media. Here, the precondi-

tioner is reviewed and adapted to Maxwell’s equations and the Yee grid.

After arriving at (4.7), the discussion of the sweeping factorization can

begin. Let Pk be the unknowns on the k-th layer. By eliminating the unknowns

layer by layer, the block LDLt factorization for the matrix A can be written

A = L1...Ln−1











S1

S2

. . .

Sn











Lt
n−1...L

t
1, (4.8)

where S1 = A1,1, Sm = Am,m − Am,m−1S
−1
m−1Am−1,m for m = 2, ..., n, and Lk

are the block lower triangular matrices given by

Lk(Pk+1, Pk) = Ak+1,kS
−1
k , Lk(Pi, Pi) = I (1 ≤ i ≤ n), zero otherwise.

Inverting this factorization and applying it to the right hand side f , the solu-

tion is

u = (Lt
1)

−1...(Lt
n−1)

−1











S−1
1

S−1
2

. . .

S−1
n











L−1
n−1...L

−1
1 f. (4.9)

The goal is to find an approximate inverse M−1 efficiently and solve the precon-

ditioned system M−1Au = M−1f iteratively. Here, the main computational

task is constructing the inverse operators of S1, ..., Sn, as these matrices are

dense; this problem will be addressed shortly.
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Before an accurate approximation for the inversion of the Schur com-

plement matrices can be made, it is important to gain some physical intuition

by restricting the problem to the first m layers. Consider the upper m × m

blocks of the block tridiagonal matrix A; if only the degrees of freedom for

layers 1, ..., m are considered, where layer m is outside the PML, then the

relevant linear system is still block tridiagonal, i.e.











A1,1 A1,2

A2,1 A2,2
. . .

. . .
. . . Am−1,m

Am,m−1 Am,m





















u1

u2
...
um











=











f1
f2
...
fm











. (4.10)

Removing the degrees of freedom for layers m + 1 to n essentially strips the

domain of these layers and enforces PEC boundary conditions at layer m+ 1;

that is, the matrix equation (4.10) corresponds to the discretization of the half-

space PEC plane problem for Maxwell’s equations on layers 1 to m, where the

PEC plane is located at layer m+ 1. If the inverse of the operator on the left

hand side is taken, then it takes the form

A−1 = (Lt
1)

−1...(Lt
m−1)

−1







S−1
1

. . .

S−1
m






L−1
m−1...L

−1
1 . (4.11)

The inversion formula above is similar in structure to the inverse of the full

matrix A; this time, however, only the lower triangular matrices L1, . . . , Lm−1

and Schur complements S1, . . . , Sm are necessary. The left hand side in equa-

tion (4.11) is the Green’s function for the half-space problem, a dense matrix
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which can be written in block form as











A1,1 A1,2

A2,1 A2,2
. . .

. . .
. . . Am−1,m

Am,m−1 Am,m











−1

=











G1,1 G1,2 . . . G1,m

G2,1 G2,2
. . .

...
...

. . .
. . .

...
Gm,1 . . . . . . Gm,m











, (4.12)

where the entries in each block Gi,j give the fields in layer i due to sources

in layer j. The crucial observation here is that S−1
m remains untouched by

the left operator (Lt
1)

−1... (Lt
m−1)

−1 and right operator L−1
m−1...L

−1
1 , due to the

definition of L1, ..., Lm−1; that is, if the matrix multiplications on the right

hand side of (4.11) are carried out, then the matrix in the (m,m)-th block

is just S−1
m . Algebraically, this gives the result Gm,m = S−1

m . The physical

knowledge gained here is that S−1
m is approximately the discrete half-space

Green’s function for Maxwell’s equations with PEC boundary conditions on

layer m + 1, restricted to degrees of freedom on the m-th layer. By solving

the half-space problem on a grid of the first m layers, an operator which

reproduces S−1
m can be constructed. However, this becomes very costly as m

approaches n, so the goal is to approximate S−1
m efficiently. The authors of

[34, 35] have proposed two methods for this approximation: the hierarchical

matrix approach and the moving PML approach. Here, the latter approach is

taken.

4.5 Moving PML method

The application of S−1
m only involves the degrees of freedom on the

m-th layer; that is, the half space Green’s function matrix which will be ap-
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proximated (Gm,m) only maps the right hand side on layer m to the solution

on layer m. Therefore, the solution of the half-space problem only needs to

be accurate in a small neighborhood of z = mh. Recall that the purpose of

the PML is to be an absorbing boundary; in the original problem, the fields

outside the cube [ℓ, 1 − ℓ]3 are of little interest, so a PML was placed at the

boundary to make the computational domain to be [0, 1]3. The same exact

reasoning can be used to truncate each half-space problem; if only the layers

in the immediate vicinity of the m-th layer are of importance, then layers 1 to

m − 1 can be treated as buffer layers or “white space.” Thus, the PML can

be pushed up to the edge of the domain of interest and still reproduce a good

approximation of the solution on layer m. The computational advantage here

is that the subproblem for each S−1
m is much smaller than the full half-space

problem. The technique of truncating the domain and pushing the PML closer

is called the moving PML method.

To be more precise, let b = ℓ
h
be the number of PML layers and consider

the domain Ωm = [0, 1]× [0, 1]× [(m− b)h, (m+ 1)h]. Define also the shifted

PML function

smz (z) = 1 + ıσ(z − (m− b)h), (4.13)

and shifted material tensors

ε̃r,m =







εxx
sysmz
sx

εxys
m
z εxzsy

εyxs
m
z εyy

sxsmz
sy

εyzsx
εzxsy εzysx εzz

sxsy
smz






, µ̃r,m =







µxx
sysmz
sx

µxys
m
z µxzsy

µyxs
m
z µyy

sxsmz
sy

µyzsx
µzxsy µzysx µzz

sxsy
smz






.

With the PML pushed to the edge, the subproblem to be solved for each S−1
m
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is

∇×E = −ıωµ0µ̃r,mH

∇×H = ıωε0ε̃r,mE+ J

∇ ·
(

ε0ε̃r,mE
)

= qe

∇ ·
(

µ0µ̃r,mH
)

= 0

in Ωm (4.14)

(4.15)

n̂×E = 0

n̂×H = 0
on ∂Ωm

and the subgrid on which the above equations are discretized is

Gm = {(ih, jh, kh) | 1 ≤ i, j ≤ n,m− b+ 1 ≤ k ≤ m}. (4.16)

To solve each discretized subproblem, a version of the multifrontal method

[62, 35] is utilized, with a modification that allows the Yee grid to be handled

naturally. Consider the matrix Hm resulting from the discretization of (4.14)

on Gm. Essentially, each subproblem can be viewed as a quasi-2D problem,

since the number of PML and buffer layers is small. The first step of the

algorithm is to partition the nodes of Gm hierarchically in the x-y plane,

i.e. nodes with the same x and y indices remain in the same group. In the

Helmholtz case, every node is associated with a variable; in the Maxwell case,

however, the Yee grid does not have an unknown assigned to every node. To

keep the same efficiency of the method with the Helmholtz grid, these empty

nodes are left in at the hierarchical partitioning stage; after each cluster is set,

any empty nodes are removed, as they contain no information relevant to the

factorization. The unknowns associated with the full nodes are then reordered
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according to their hierarchical groups to minimize the number of fill-ins in

the LDLt factorization of Hm. The costs of computing the factorization and

applying to a vector are O(b3n3) and O(b2n2 log n), respectively; the previous

works for can be referred to for details.

Once the multifrontal factorization of Hm is constructed, the approx-

imate application of S−1
m to a vector is as follows. Given a vector of values

gm defined on the grid points of layer m, a longer vector padded with zeros

is constructed, which will correspond to the grid points on layers m − b to

m− 1; the zeros are necessary to ensure that the solution is not corrupted by

the Green’s function on these layers. After the vector is made long enough to

match the dimensions of Hm, the matrix-vector product

H−1
m











0
...
0
gm











=











∗
...
∗
vm











(4.17)

is computed and the vector vm can be extracted; this will give the approx-

imation of S−1
m gm = vm necessary. This combined process of concatenation,

application of H−1
m , and extraction is denoted as the operator T̃m : gm → vm.

The moving PML preconditioner can now be summarized in two stages:

the construction of the approximate sweeping factorization, and the applica-

tion to an arbitrary vector. Staying consistent to [35], the vector uF is defined

as

uF = (ut
1, ..., u

t
b), fF = (f t

1, ..., f
t
b), (4.18)
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while A is rewritten as










AF,F AF,b+1

Ab+1,F Ab+1,b+1
. . .

. . .
. . . An−1,n

An,n−1 An,n





















uF

ub+1
...
un











=











fF
fb+1
...
fn











, (4.19)

where AF,F is the upper left block of A for the first b layers.

Algorithm 4.5.1. Construct the approximate sweeping factorization of A.

1. Let GF be the subgrid of the first b layers and HF = AF,F ; construct the

multifrontal factorization of HF .

2. for m = b+ 1, ..., n do

Let Gm be as defined in (4.16) and Hm be the matrix resulting

from the finite difference discretization of (4.14). Construct the

multifrontal factorization of Hm.

end for

Algorithm 4.5.2. Apply the approximate inverse to get u ≈ A−1f .

1. uF = fF and um = fm for m = b+ 1, ..., n.

2. ub+1 = ub+1−Ab+1,F (H
−1
F uF ), using the multifrontal factorization of HF .

3. for m = b+ 1, ..., n− 1 do

um+1 = um+1 − Am+1,m(T̃mum), where T̃mum is computed by the

process described earlier in section 4.5.

end for
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4. uF = H−1
F uF , using the multifrontal factorization of HF .

5. for m = b+ 1, ..., n do

um = T̃mum. See previous steps for the application of T̃m.

end for

6. for m = n− 1, ..., b+ 1 do

um = um− T̃m(Am,m+1um+1). See previous steps for the application

of T̃m.

end for

7. uF = uF −H−1
F (AF,b+1ub+1), using the multifrontal factorization of HF .

Because the total number of degrees of freedom is N = n3 and there are n

layers, it is clear that the cost of algorithms 4.5.1 and 4.5.2 are O(b3n4) =

O(b3N4/3) and O(b2n3 log n) = O(b2N logN), respectively.

In practice, the approach is slightly different. First, the block LDLt

factorization is constructed so that multiple layers can be preconditioned for

each subproblem; that is, S−1
m is not just applied to layer m, but layers m−d+1

to m, where d is a specified number of buffer layers. The subproblem for each

Sm is instead defined on an expanded domain Ω′
m = [0, 1]× [0, 1]× [(m− b−

d + 1)h, (m + 1)h]. Secondly, the perturbed matrix associated with the curl

equations

∇× E = −ı(ω + ıα)µ0µ̃rH, ∇×H = ı(ω + ıα)ε0ε̃rE+ J (4.20)
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is used instead of the true matrix A, for some small damping constant α;

the preconditioner produced from this matrix is much more stable and effec-

tive. The approximate inverse operator constructed by algorithm 4.5.1 with

constant α is denoted as M−1
α ; this approximate inverse is used as a left pre-

conditioner, and the preconditioned linear system to be solved is

M−1
α Au = M−1

α f. (4.21)

4.6 Numerical results

In this section, some preliminary results are provided illustrating the

effectiveness of the sweeping preconditioner for the Yee grid. The general setup

of the problems is as follows. A point source oriented in the z-direction with

current magnitude |J|=1 is embedded in the material domain at (0.5, 0.25, 0.5).

As mentioned before, the domain is the unit cube [0, 1]3, and has a PEC

boundary. K is the size of the domain in terms of wavelengths, so λ = 1
K
.

For the Yee grid, the number of points per wavelength is set at 6 to attain

reasonably accurate results; this implies that field components of the same

kind are separated by λ
6
, but the distance between two nodes in the physical

grid is h = λ
12
. The PML width is chosent to be ℓ = λ

2
, and the number of

buffer layers is d = 12. For the damping constant, α is set to 1. As for the

iterative solver, GMRES iteration with a relative residual tolerance of 1e − 3

is used. For ease of implementation and generating figures, all of the code is

run serially in MATLAB.

Three example mediums were chosen. The first example is the con-
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verging lens with a Gaussian profile centered at rc = (0.5, 0.5, 0.5) for both

permittivity and permeability; that is, the material is isotropic, and

εr(r) =
1

4
3

(

1− 1
2
e−32|r−rc|2

) , µr(r) =
1

4
3

(

1− 1
2
e−32|r−rc|2

) .

The second example is a random isotropic medium, which is formed with a

random smooth perturbation function δ(r) satisfying 0 < δ < 1; once again,

the material tensors are formed by multiplying the identity tensor with scalar

functions

εr(r) =
4

3

(

1− 1

2
δ(r)

)

, µr(r) =
4

3

(

1− 1

2
δ(r)

)

.

Finally, for an anisotropic, inhomogeneous example, the medium

εr(r) =





1.1 0.1ı 0
−0.1ı 0.9 0
0 0 γ(r)



 , µr(r) =





1.1 0.1ı 0
−0.1ı 0.9 0
0 0 γ(r)



 .

is constructed, where γ is a smooth random perturbation function satisfying

0.7 < γ < 1.3. This medium is similar to gyrotropic mediums found in crystals,

except the z-component of the tensor is randomized.

To start, the preconditioner is tested to see how it affects the eigenvalues

and condition numbers of the original matrix. Figure 4.2 shows that the

original problem is indefinite and very ill-conditioned; a plot of the eigenvalues

for the converging lens media illustrates that the original matrix A has large

eigenvalues which can have a negative real part, as well as eigenvalues close to

the origin. After preconditioning, the spectrum is clustered around (1, 0) in the

positive real half of the complex plane, which is conducive for the convergence

of GMRES. Using MATLAB’s condition number estimator condest, the 1-norm
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Eigenvalues after preconditioning

Medium cond(A) cond(M−1
α A)

Converging lens 1.875e+07 42.407
Random isotropic 2.959e+07 22.729

Random anisotropic 3.305e+07 11.841

Figure 4.2: Eigenvalues of the coefficient matrix A in the converging lens problem, before
and after preconditioning, along with condition number estimates for different media.

condition numbers for small problems (K = 2) are estimated before and after

preconditioning; the method reduces the condition number by several orders

of magnitude.

For each medium, the Ez component in the x-y plane at z = 0.5 is

plotted; because the source is aligned in the z-direction, the most significant

behavior in the isotropic case happens in this component. Figures 4.3, 4.4,

and 4.5 give the numerical results for each particular example. To illustrate

the characteristics of the material, the relative material parameters for the

isotropic cases and εzz for the anisotropic example are shown. The tables under

each plot list the size of the problemK, number of unknowns N , preconditioner
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−0.05

0

0.05

0.1

0.15

K N Tsetup Tsolve Niter

4 7.783e+4 24 8 4
8 6.429e+5 303 84 4
16 5.225e+6 3938 851 4

Figure 4.3: Converging lens example. Left: Re(Ez) in the x-y plane at z = 0.5. Right: εr
and µr in the medium.

 

 

−0.05

0
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0.1

0.15

K N Tsetup Tsolve Niter

4 7.783e+4 23 8 4
8 6.429e+5 301 105 5
16 5.225e+6 3946 1064 5

Figure 4.4: Random isotropic media example. Left: Re(Ez) in the x-y plane at z = 0.5.
Right: εr and µr in the medium.
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K N Tsetup Tsolve Niter

4 7.783e+4 24 8 4
8 6.429e+5 305 85 4
16 5.225e+6 3942 859 4

Figure 4.5: Random anisotropic media example. Left: Re(Ez) in the x-y plane at z = 0.5.
Right: εzz in the medium.

setup time Tsetup, iterative solver time Tsolve, and number of iterations Niter.

It is observed that even if the size of the problem is increased, the number of

iterations remains almost constant. The preconditioner takes the same time

for the anisotropic medium as it does for the isotropic mediums; thus, there is

no dependency on the type of medium for the method to work.

Next, the accuracy of the preconditioning method is tested by running

GMRES to a smaller residual tolerance and comparing with the numerical

solution of the linear system using MATLAB’s backslash operator; in these

examples, the tolerance is set at 1e−6. The relative 2-norm error between the

direct solver and iterative solver result is ǫ. For the converging lens problem,

table 4.6 shows that the preconditioner agrees with numerically stable direct

78



K N Niter ǫ
4 7.783e+4 7 2.4572e-7
8 6.429e+5 7 3.5560e-7
16 5.225e+6 8 4.3398e-7

Figure 4.6: Accuracy of the preconditioning method for the converging lens problem.
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Figure 4.7: Setup and apply times plotted against the number of DOFs.

solvers, as the relative error does not exceed the given residual tolerance. It is

significant that although the residual tolerance has decreased, the number of

iterations does not grow significantly.

Finally, to show the complexities for the setup and apply stages, the

setup time and apply time have been plotted against the total number of

degrees of freedom. Figure 4.7 illustrates the almost linear complexity of the

sweeping preconditioner. Since the number of gridpoints per wavelength is

kept constant, each time the frequency is doubled, the total number of DOFs

should increase by a factor of 8; this implies that the setup time should increase

by a factor of 84/3 = 16. However, an increase by a factor of 12 or 13 is usually

observed; this trends with an O(N6/5) complexity instead.
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Chapter 5

Preconditioners for Maxwell’s Equations:

Nédélec elements

5.1 Variational Formulations

Consider the PML-truncated Maxwell problem (4.5). By multiplying

the first equation with µ−1
r and then operating with ∇×, the magnetic field

variable can be eliminated; the boundary value problem now is to solve

∇× µ̃−1
r ∇× E− κ2ε̃rE = −ıωµ0J in Ω, (5.1)

n̂× E = 0 (5.2)

n̂× (µ̃−1
r ∇× E) = 0 on ∂Ω. (5.3)

By multiplying with a test function φ ∈ H0(curl,Ω) and integrating by parts,

the weak form of the PDE is obtained; that is,

(µ̃−1
r ∇×E,∇× φ)Ω − κ2(ε̃rE,φ)Ω = −ıωµ0(J,φ)Ω, (5.4)

with the standard inner product being (u,v) =
∫

Ω
u · v̄dV . For the space

X = H0(curl,Ω), define the sesquilinear form B : X × X → C and linear

functional F : X → C as

B(E,φ) = (µ̃−1
r ∇×E,∇× φ)Ω − κ2(ε̃rE,φ)Ω (5.5)

F (φ) = −ıωµ0(J,φ)Ω. (5.6)
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The problem of solving Maxwell’s equations can be rephrased as the following:

find the electric field E ∈ X such that

B(E,φ) = F (φ), ∀φ ∈ X. (5.7)

Proving existence and uniqueness for the indefinite Maxwell problem is more

difficult than for positive-definite elliptic PDEs; because of the −ω2 term,

the sesquilinear form is not coercive, which is clear for large wavenumbers.

Thus, the Lax-Milgram lemma is not directly applicable. In addition, the curl

operator contains a large null space in H(curl,Ω), which needs to be removed

using the Helmholtz decomposition. The reader can refer to [67] for the details.

5.2 Nédélec elements

For Maxwell’s equations, curl-conforming basis functions are necessary

so that the resulting fields satisfy the divergence conditions, which negate the

problem of “spurious solutions” [58]. To this end, the low-order edge elements

introduced by Whitney [93] and Nédélec [69] are most popular in the CEM

community. Consider the standard p = 1 nodal basis functions φi defined at

the vertices vi for i = 1, . . . , d+1 of each triangular/tetrahedral element; these

functions satisfy φi(vj) = δij . The first order Whitney form is defined as

ψi,j = (φi∇φj − φj∇φi)ℓi,j, (5.8)

where ℓi,j is the length of the edge between vertex i and vertex j. This term is

necessary to normalize the function and make it dimensionless. The resulting
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function ψi,j has the properties

∇ ·ψi,j = ∇ · (φi∇φj)ℓi,j −∇ · (φj∇φi)ℓi,j = 0, (5.9)

∇×ψi,j = 2∇φi ×∇φjℓi,j. (5.10)

If ei,j is the unit vector in the direction from vertex i to vertex j, then ei,j ·ψi,j =

1; that is, the tangential component of the basis function along its prescribed

edge is constant. On the contrary, the tangential component of the function

along its complementary edges is 0.

Given a quasi-uniform tetrahedral mesh of Ω with edge lengths bounded

by h, with a little abuse of notation the finite element approximation can be

written as

Eh =

N
∑

i=1

ciψi, (5.11)

where ψi is the edge function defined on edge i, N is the total number of

degrees of freedom (interior edges in this case), and ci ∈ C are the undeter-

mined coefficients. Using the same space for both trial and test functions, the

Galerkin method yields the linear system

Ax = b, (5.12)

with the matrix and vector entries Aij = B(ψi,ψj), xj = cj, and bi = F (ψi).

5.3 Preconditioners for Unstructured Meshes

The preconditioner for finite elements on an unstructured mesh is simi-

lar to the uniform finite difference case; however, there are some key differences
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which need to be addressed, so some parts of the overall algorithm will be re-

viewed to highlight their context.

Figure 5.1: Left: triangular mesh partitioned into eight layers. Right: tetrahedral mesh
partitioned into eight layers.

In the unstructured mesh case, the first step to setting up the precon-

ditioner is to divide the mesh into layers or slabs. Consider the problem for a

particular wavenumber κ such that the number K := κ
π
=

ω
√
µ0ε0
π

is an integer;

here, K is the width of the domain in wavelengths. Let it be assumed for the

sake of simplicity that the PML width is ℓ = λ. The domain can then be

divided into the subdomains Ωi, i = 1, . . . , K as

Ωi = [−1, 1]d−1 × [−1 + (i− 1)λ,−1 + iλ), for i = 1, . . . , K − 1

ΩK = [−1, 1]d−1 × [−1 + (K − 1)λ, 1].

The partition occurs in the y-direction for 2D problems and in the z-direction

for 3D problems. It is clear that Ω̄ = ∪K
i=1Ωi and Ωi ∩ Ωj = ∅ if i 6= j.

For a tetrahedral mesh T = {t1, . . . , tNT
} with edges denoted by ej ,
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j = 1, . . . , N , define vjk for k = 1, . . . , d+1 to be the vertices of tetrahedron tj

in d dimensions and denote the centroid of tj with cj =
1

n+1

∑n+1
k=1 vjk . Next,

define Ti as the union of tetrahedra whose centroids are in Ωi, i.e.,

Ti = ∪{tj : cj ∈ Ωi}. (5.13)

Clearly, Ω̄ = ∪K
i=1Ti. Figure 5.1 shows an unstructured triangular mesh and

tetrahedral mesh partitioned into eight layers, with a different color for each

layer; in general, the boundary of each layer is not a smooth surface.

Once the task of partitioning the mesh is completed, the integer sets Ei

can be constructed; these sets will point to the degrees of freedom which are

associated with layer Ωi. This organizational structure is necessary to obtain

the block LDLt factorization for the sweeping factorization. At first, this may

seem trivially similar to the previous algorithm, but a conflict occurs at the

boundary between two layers; specifically, when a simplex in Ti and a simplex

in Ti−1 share an edge. This problem can be remedied by always choosing to

associate boundary edges with the upper layer. If ∂Ti is the boundary and T
int
i

is the interior of the domain defined by elements in Ti, such that Ti = ∂Ti∪Tint
i ,

the edges ej, j = 1, . . . , N can be categorized in the following manner:

E1 = {j : ej is an interior edge of T1}

Ei = {j : ej is an interior edge of Ti or ej ∈ ∂Ti ∩ ∂Ti−1} for i = 2, . . . , K.

With the degrees of freedom in each layer defined by the integer sets Ei

for i = 1, . . . , K, the sparse linear system can be written in block tridiagonal
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form. Using MATLAB-style notation for indexing matrices and vectors, the

system can be reordered as













A(E1,E1) A(E1,E2)

A(E2,E1) A(E2,E2)
. . .

. . .
. . . A(EK−1,EK)

A(EK ,EK−1) A(EK ,EK)























x(E1)
x(E2)

...
x(EK)











=











b(E1)
b(E2)
...

b(EK)











,

(5.14)

where x(Ei) are the unknown coefficients associated with degrees of freedom

in layer i, b(Ei) is the right hand side computed from basis functions defined

in layer i, and A(Ei,Ej) are the blocks of the stiffness matrix corresponding

to the degrees of freedom in layer i and layer j. This permits the block LDLt

factorization

L1 . . . LK−1











S1

S2

. . .

SK











Lt
K−1 . . . L

t
1, (5.15)

where the Schur complement matrices take the form S1 = A(E1,E1), Si =

A(Ei,Ei) − A(Ei,Ei−1)S
−1
i−1A(Ei−1,Ei) for i = 2, . . . , K. Define the index sets

Pi for i = 1, . . . , K as

Pi =

{

i−1
∑

s=1

|Es|+ 1, . . . ,

i
∑

s=1

|Es|
}

, (5.16)

where |Ei| is the cardinality of set Ei. The block lower triangular matrices Li

are then

Li(Pi+1,Pi) = A(Ei+1,Ei)S
−1
i , Li(Pi,Pi) = I (1 ≤ i ≤ K), zero otherwise.
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Explicitly inverting the factorization yields the solution











x(E1)
x(E2)

...
x(EK)











= (Lt
1)

−1 . . . (Lt
K−1)

−1











S−1
1

S−1
2

. . .

S−1
K











L−1
K−1 . . . L

−1
1











b(E1)
b(E2)
...

b(EK)











.

The factorization and inversion process are similar to the previous chapter,

and can be summarized in the following algorithms.

Algorithm 5.3.1. Construct the sweeping factorization of A.

1: Set S1 = A(E1,E1) and compute S−1
1 .

2: for i = 2, . . . , K do

3: Set Si = A(Ei,Ei)− A(Ei,Ei−1)S
−1
i−1A(Ei−1,Ei) and compute S−1

i .

4: end for

Algorithm 5.3.2. Apply the inverse to get x = A−1b.

1: Set x(Ei) = b(Ei), for i = 1, . . . , K.

2: Compute x(E2) = x(E2)−A(E2,E1)S
−1
1 x(E1).

3: for i = 2, . . . , K − 1 do

4: Compute x(Ei+1) = x(Ei+1)− A(Ei+1,Ei)S
−1
i x(Ei).

5: end for

6: Compute x(E1) = S−1
1 x(E1).

7: for i = 2, . . . , K do

8: Compute x(Ei) = S−1
i x(Ei).

9: end for
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10: for i = K − 1, . . . , 2 do

11: Compute x(Ei) = x(Ei)− S−1
i A(Ei,Ei+1)x(Ei+1).

12: end for

13: Compute x(E1) = x(E1)− S−1
1 A(E1,E2)x(E2).

Once again, the main computational cost comes from inverting the

Schur complement blocks Si. For Cartesian finite difference grids, the cost of

computing the inversion of the above factorization was shown to be O(N2) in

2D and O(N7/3) in 3D. A similar argument for finite element meshes can be

made, as the number of edges varies approximately linearly with the number

of simplex elements.

Just as in the finite difference case, an important physical observation

for each Si can be made. Specifically, restrict the full problem to the first

m subdomains, for m < K; that is, instead of the whole system in (5.14),

consider the smaller system of equations













A(E1,E1) A(E1,E2)

A(E2,E1) A(E2,E2)
. . .

. . .
. . . A(Em−1,Em)

A(Em,Em−1) A(Em,Em)























x(E1)
x(E2)

...
x(Em)











=











b(E1)
b(E2)
...

b(Em)











.

This system corresponds to the discretization of the semi-infinite half-space

Maxwell problem with a PEC boundary condition on the boundary of ∪m
i=1Ti,

∇× µ̃−1
r ∇×E− κ2ε̃rE = −ıωµ0J in int (∪m

i=1Ti) , (5.17)

n̂× E = 0 on ∂(∪m
i=1Ti). (5.18)
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Note that this boundary is generally not a flat plane; it conforms to the faces

of the elements, which results in a rough surface. If the upper m blocks are

inverted, one obtains







x(E1)
...

x(Em)






= (Lt

1)
−1 . . . (Lt

m−1)
−1







S−1
1

. . .

S−1
m






L−1
m−1 . . . L

−1
1







b(E1)
...

b(Em)






.

(5.19)

However, due to the structure of Li for i = 1, . . . , m, it is noticed that the S−1
m

is unaffected by the left and right operators in (5.19), i.e. the (m,m)-th block

in the right hand side is exactly S−1
m . Based on this fact, it can be concluded

that S−1
m is the discrete Green’s function for degrees of freedom in the m-th

layer for (5.18); solving the half-space problem above implicitly constructs an

operator for S−1
m . The full half-space problem is once again approximated by

the moving PML method.

The process of approximating S−1
i for i = 2, . . . , K in operator form is

as follows. Consider the shifted stretching function for subdomain Ωi,

sξ,i(ξ) = 1 + ıσi(ξ), (5.20)

where σi is the ramp-like function

σi(ξ) =











θ
(−1+(i−1)ℓ−ξ

ℓ

)2
, ξ ∈ [−1 + (i− 2)ℓ,−1 + (i− 1)ℓ]

0, ξ ∈ [−1 + (i− 1)ℓ, 1− ℓ]

θ
(

ξ−1+ℓ
ℓ

)2
, ξ ∈ [1− ℓ, 1]

. (5.21)

The truncated half-space problem for layer i is then

∇× µ̃−1
r,i∇× E− κ2ε̃r,iE = −ıωµ0J in int (Ti−1 ∪ Ti) (5.22)

n̂×E = 0 on ∂(Ti−1 ∪ Ti), (5.23)
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where the material parameters in 2D are

ε̃r,i =

(

εxx
sy,i
sx

εxy
εyx εyy

sx
sy,i

)

, µ̃r,i = sxsy,iµzz, (5.24)

and the tensors in 3D are

ε̃r,i =







εxx
sysz,i
sx

εxysz,i εxzsy
εyxsz,i εyy

sxsz,i
sy

εyzsx

εzxsy εzysx εzz
sxsy
sz,i






, µ̃r,i =







µxx
sysz,i
sx

µxysz,i µxzsy
µyxsz,i µyy

sxsz,i
sy

µyzsx

µzxsy µzysx µzz
sxsy
sz,i






.

(5.25)

Clearly, subproblem (5.23) requires only the first two layers of the shifted

PML function. Denote the stiffness matrix resulting from the discretization of

(5.23) as Hi; it is crucial that the degrees of freedom in the local subproblem

maintain the same order as in (5.14). Using the multifrontal method with

nested dissection, the optimal sparse LU factorization ofHi can be constructed,

and the inverse operator H−1
i can be applied efficiently. Now consider the

vector v ∈ CNi, where Ni is the number of degrees of freedom in layer i. If a

vector of zeros 0 ∈ CNi−1 is concatenated with v and H−1
i is applied, the result

is

H−1
i

(

0
v

)

=

(

w1

w2

)

. (5.26)

for vectors w1 ∈ C
Ni−1 , w2 ∈ C

Ni. The vector w2 can then be extracted

from the right hand side of (5.26) to obtain the approximation of S−1
i v; the

operator which performs this concatenation/extraction process is defined as

S̃−1
i : CNi → CNi.

The setup and application algorithms 5.3.1 and 5.3.2 can be modified
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accordingly with the new operator S̃−1
i ; although it is not entirely obvious,

they maintain the same complexity estimates as in the finite difference case.

Algorithm 5.3.3. Setup the sweeping preconditioner of A.

1: Let H1 = A(E1,E1); construct the sparse LU factorization of H1.

2: for i = 2, . . . , K do

3: LetHi be the stiffness matrix of (5.23). Construct the optimal sparse LU

factorization of Hi using the multifrontal method with nested dissection.

4: end for

The setup of the preconditioner requires the solution of each subproblem in

(5.23.) In the 2D case, each subproblem has O(
√
N) degrees of freedom. The

multifrontal method constructs the solution of the quasi-1D problem with

linear complexity, so each subproblem can be solved in O(
√
N) time. Since

there are O(K) = O(
√
N) subproblems to be solved, the total setup time in

2D is O(N). In the 3D case, each subproblem contains O(N1/3)×O(N1/3) =

O(N2/3) degrees of freedom; consequently, the multifrontal method can solve

the quasi-2D problem in O((N2/3)3/2) = O(N) time. Since there are O(K) =

O(N1/3) subproblems, the total complexity to setup the 3D preconditioner is

O(N4/3).

Algorithm 5.3.4. Apply the approximate inverse to b to get x ≈ A−1b.

1: Set x(Ei) = b(Ei), for i = 1, . . . , K.

2: Compute x(E2) = x(E2)−A(E2,E1)H
−1
1 x(E1).

3: for i = 2, . . . , K − 1 do
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4: Compute x(Ei+1) = x(Ei+1) − A(Ei+1,Ei)S̃
−1
i x(Ei), where the operator

S̃−1
i is described above.

5: end for

6: Compute x(E1) = H−1
1 x(E1).

7: for i = 2, . . . , K do

8: Compute x(Ei) = S̃−1
i x(Ei).

9: end for

10: for i = K − 1, . . . , 2 do

11: Compute x(Ei) = x(Ei)− S̃−1
i A(Ei,Ei+1)x(Ei+1).

12: end for

13: Compute x(E1) = x(E1)−H−1
1 A(E1,E2)x(E2).

The main cost in Algorithm 5.3.4 is the application of S̃−1
i . In 2D, the cost

of applying the inverse of the sparse LU factorization is linear; for each layer,

this amounts to O(
√
N) time. The computation is done O(

√
N) times, which

results in a total complexity of O(N). In 3D, applying each inverse can be

done in logarithmic linear time, i.e. O(N2/3 logN2/3). With O(N1/3) layers,

this results in a total complexity of O(N logN2/3) = O(N logN).

Algorithms 5.3.3 and 5.3.4 define an inverse operator M−1, which is an

approximation of A−1. Once again, for stability reasons, it is more prudent to

construct the approximate sweeping factorization for the equation

∇× µ̃−1
r ∇× E− (κ+ ıα)2ε̃rE = −ıωµ0J, (5.27)

where α is a positive damping constant of O(1). With M−1
α being the ap-
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proximate inverse operator for the discretization of (5.27), the preconditioned

linear system

M−1
α Ax = M−1

α b. (5.28)

can be solved using a Krylov subspace iterative solver. As the numerical

results will show, the rate of convergence of the iterative solver will be either

independent or logarithmically dependent on frequency, with a low number of

iterations.

A few remarks must be made about practical issues with the algorithm.

First, the moving PML method is presented here with sweeping in the z-

direction for 3D; this choice is arbitrary, as the mesh can also be partitioned

into slabs orthogonal to the x or y axes. For these cases, the appropriate

PML functions must be shifted for the material tensors in (5.25). Second,

each subdomain is defined to have the same thickness as the PML; this is not

a restriction, as one could configure the subdomains so that each slab is of a

different thickness. This is particularly useful when computing on adaptive or

locally refined meshes. In addition, the PML used to back each slab does not

need to coincide with the adjacent slab; this simplification is chosen for ease

of implementation. Finally, other absorbing boundary conditions (ABC) can

be utilized in place of the PML. The use of an ABC would significantly reduce

the memory and computational time, as each subproblem would not need to

be paddded with a buffer layer.
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5.4 Numerical Results in 2D

Several numerical results are presented to support the claims for the

accuracy and linear complexity of the sweeping preconditioner. All of the

2D algorithms are implemented in sequential C++ code on a server equipped

with Intel Xeon E7420 2.13 GHz processors. For the multifrontal method used

to solve each subproblem, a sequential version of MUMPS [3] is employed;

the iterative solver is GMRES with a residual tolerance set to 10−3. With

Cartesian PMLs, there are a few examples of heterogeneous media which are

of importance to the optics and photonics community:

1. A converging lens profile. Here, consider the isotropic, heterogeneous

material

εr =
(

1 + e−30(x2+y2)
)

(

1 0
0 1

)

, µr =
(

1 + e−30(x2+y2)
)

. (5.29)

At the center of the lens, the wavespeed is 1
2
c, where c = 1√

µ0ε0
is the

speed of light in free space.

2. A periodic medium. The 2D function

f(x, y) = 1+
1

4
cos

(

20

(

x√
2
+

y√
2

))

+
1

4
cos

(

20

(

x√
2
− y√

2

))

(5.30)

is used to form the isotropic material

εr =
√

f(x, y)

(

1 0
0 1

)

, µr =
√

f(x, y). (5.31)
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In these examples, the current J is a solenoidal vector field in the x-y plane

derived from a Gaussian point source oriented in the z-direction, i.e.

J(x, y) = ∇×
(

ẑe−κ2(x2+(y−0.5)2)
)

. (5.32)

The preconditioner is constructed with α = 1 and PML width ℓ = 2λ. For each

experiment, the domain is fixed while simultaneously increasing the wavenum-

ber κ, keeping the same resolution for elements per wavelength; listed in each

table are the width of the problem in wavelengths K := κ
π
=

ω
√
µ0ε0
π

, the num-

ber of degrees of freedom N , the preconditioner setup time Tsetup, the iterative

solver time Tsolve, and the number of iterations necessary for convergence Niter.

From the Table in Figure 5.3, it is observed that when K doubles, the

number of degrees of freedom increases by a factor of 4. At the same time,

Tsetup also increases approximately by a factor of 4, which shows the linear

complexity of Algorithm 5.3.3. The time per iteration Tsolve

Niter
also grows roughly

by a factor of 4; thus, it can be inferred that the application Algorithm 5.3.4 is

also O(N). As the number of iterations either remains constant or grows very

weakly with frequency, the entire solver has O(N) complexity. The complexity

graphs in Figure 5.4 support these claims.

The sweeping preconditioner can also be used with a cylindrical PML;

in this case, the computational domain is a circle of radius 1. Instead of par-

titioning the domain into equally sized horizontal or vertical layers, a series

of concentric shells are introduced. This organization is natural because the

cylindrical PML is a shell surrounding the domain; the sweeping direction
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Figure 5.2: Material εr and µr for the 2D converging lens (left) and periodic medium
(right).
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K N Tsetup Tsolve Niter

16 5.549e+04 4 2 5
32 2.216e+05 15 8 5
64 8.855e+05 61 32 5
128 3.540e+06 253 133 5
256 1.416e+07 1028 742 7

K N Tsetup Tsolve Niter

16 5.549e+04 4 2 5
32 2.216e+05 15 8 5
64 8.855e+05 61 32 5
128 3.540e+06 251 132 5
256 1.416e+07 1040 630 6

Figure 5.3: 2D cartesian PML results for Maxwell’s equations. Real part of the magnetic
field Hz at K = 64 with computational results for the converging lens (left) and periodic
medium (right).
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Figure 5.4: The complexity graphs for setup time of the preconditioner (left) and time
per iteration of the iterative method (right) in the 2D case for Maxwell’s equations.

is oriented along the radial direction, towards the center. The following are

standard examples in the high-frequency scattering and metamaterial commu-

nities:

1. A cylindrical PEC scatterer. Here, a PEC cylinder is embedded in free

space with a radius of 0.25.

2. A transformation optics cloaking device. Consider the cylindrical cloak

derived from coordinate transformations [74] with singular parameters

near the inner radius of the cloak; inside the cloak lies a PEC. The mate-
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rial is characterized by the relative parameters in cylindrical coordinates:

ερρ = µρρ =
ρ− a

ρ
(5.33)

εθθ = µθθ =
ρ

ρ− a
(5.34)

εzz = µzz =
ρ− a

ρ

(

b

b− a

)2

(5.35)

where a and b are the inner and outer radii of the cloak, respectively.

For these experiments, a = 0.25 and b = 0.5. This example is partic-

ularly interesting for a few reasons: the medium is discontinuous over

the boundary of the cloaking shell, and its material tensor in Cartesian

coordinates is anisotropic with off-diagonal entries.

Instead of a current source, a plane wave is chosen for the incident field.

This requires the use the scattered field formulation; although the right hand

side is altered slightly, this does not change the construction of the stiffness

matrices or preconditioner. Here, the plane wave is

Einc = ŷe−ıκx (5.36)

The results for the cylindrical PML examples also show the linear complexity

of the 2D algorithm. In this instance, every time the frequency is doubled,

the radius of the domain in terms of wavelength is multiplied by a factor of

2; this yields an increase in the degrees of freedom by a factor of 4. For

the PEC scatterer, the setup time grows roughly by a factor of 4, and the

application time also increases by a factor of 4, implying O(N) complexity.
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K N Tsetup Tsolve Niter

16 3.652e+04 2 1 4
32 1.454e+05 9 3 4
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256 9.270e+06 633 291 5

K N Tsetup Tsolve Niter
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64 3.335e+06 258 104 5
128 1.333e+07 1150 442 5
256 - - - -

Figure 5.5: 2D cylindrical PML results for Maxwell’s equations. Real part of the scattered
field Hz at K = 64 for the PEC cylinder (left) and real part of the total field Ex at K = 64
for the transformation optics cloak (right), with computational results.
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For the cloaking device, however, it is observed that the setup and solve times

increase by a factor of 4.2 instead, implying an O(N logN) complexity. The

reason this example has a less optimal complexity result is because of the dense

mesh used to discretize the cloaking layer. Because the cloaking device relies

on transformation optics, the oscillations are condensed inside the outer shell;

thus, the mesh must be refined inside to keep the same dispersion relationship.

Each subproblem on the cloaking shell results in a thicker 2D problem instead

of a quasi-1D strip, resulting in the increase in computational time. The added

DOFs also increase the memory requirements for each problem, limiting the

largest domain to K = 128.

5.5 Numerical Results in 3D

In the 3D case, a few examples are given to show the O(N4/3) complex-

ity of the sweeping preconditioner. The 3D code is implemented in sequential

C++ on a server equipped with 2.2 GHz AMD Opteron 6174 processors. Once

again, a sequential version of MUMPS is used for the multifrontal method and

GMRES iteration is set to a residual tolerance of 10−3. The preconditioner is

tested on the following 3D media:

1. A converging lens profile. Here, consider the isotropic, heterogeneous

material

εr =

(

1 + e−8(x2+y2+z2)

)

I µr =

(

1 + e−8(x2+y2+z2)

)

I (5.37)

where I is the 3× 3 identity matrix. At the origin, the wavespeed is 1
2
c.
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2. A periodic medium. Using the functions

f±(x, y) = cos

(

2π

(

x√
2
± y√

2

))

, (5.38)

g(x, y, z) = 1 +
f+(x, y)f−(x, y) cos(2πz)

2
, (5.39)

the oscillatory medium is

εr =

(

0.3 +
√

g(x, y, z)

)

I, µr =

(

0.3 +
√

g(x, y, z)

)

I. (5.40)

The current source in the first example is a Gaussian point source

oriented in the z-direction, i.e.

J(x, y, z) = ẑe−
κ2

π2 (x
2+(y−0.75)2+z2). (5.41)

Note that the source is located farther away from the center to allow the

caustics to develop behind the inhomogeneity at the center of the domain.

In most cases this tends to increase the number of iterations necessary for

convergence, as the source is closer to the PML, but this effect was not observed

for this case. For example 2, the source is placed closer to the origin since the

inhomogeneities are all over the domain. The preconditioner is constructed

with α = 1 and PML width ℓ ≈ λ.

The complexity of the 3D algorithm is illustrated in Figure 5.7. Keeping

the element-to-wavelength ratio constant while doubling the frequency forces

the total degrees of freedom to increase by a factor of 8. At the same time, the

O(N4/3) complexity estimate implies that the setup time should increase by a

factor of 84/3 = 16. However, an increase in setup time by a factor of 11 or 13
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Figure 5.6: Slice plots of εr and µr for the 3D converging lens (left) and periodic medium
(right).

is observed. The cause of this improvement is clear; in practice, the number

of subdomains is closer to O(N1/5) rather than O(N1/3). Thus, the complex-

ity grows as O(N6/5) instead. For the application of the preconditioner, the

O(N logN) estimate implies that the solve time should increase roughly by a

factor of 10 given the same number of iterations. Figure 5.8 supports these

claims.
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Figure 5.7: Real part of the field Ez in the x-y plane at K = 20 with computational
results for the converging lens (left) and the periodic medium (right).
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Figure 5.8: The complexity graphs for setup time of the preconditioner and time per
iteration of the iterative method in the 3D case for Maxwell’s equations.
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Chapter 6

Preconditioners for Acoustics and Elasticity:

Spectral Element Methods

6.1 PMLs for Helmholtz and Elastic Wave Equations

Consider the domain Ω = [0, 1]3 with PML thickness ℓ, and recall the

ramp functions σ and stretching functions sξ for ξ = x, y, z from (4.1) and

(4.2). Given these functions, the differential operator ∇̃ in complex-stretched

coordinates is

∇̃ = S · ∇ = x̂
1

sx

∂

∂x
+ ŷ

1

sy

∂

∂y
+ ẑ

1

sz

∂

∂z
, (6.1)

where S is the matrix defined in (4.3). The source-free Helmholtz equation in

complex coordinates is then

∇̃ · (a∇̃u) +
ω2

c2
u = 0. (6.2)

If the stretching functions from ∇̃ are transferred onto the material parameters,

the equation can be rewritten in regular space as

∇ · (ã∇u) +
ω2

c̃2
u = 0, (6.3)

where the PML material parameters ã and c̃ satisfy

ã =





axx
sysz
sx

axysz axzsy
ayxsz ayy

sxsz
sy

ayzsx
azxsy azysx azz

sxsy
sz



 , c̃2 =
c2

sxsysz
. (6.4)
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For linear elasticity, the formulation is similar [51]. Starting with the

elastic wave equation (1.12) in index notation, introduce the stretching func-

tions si for the i-th component of u = (u1, u2, u3). This yields

−s−1
j

(

Cijkluk,ls
−1
l

)

,j −ω2ρui = 0.

By multiplying the equation with s1s2s3, the PDE can be written as

−
(

C̃ijkluk,l

)

,j −ω2ρ̃ui = 0,

where the fourth-order elasticity tensor and density for the PML problem are

C̃ijkl = Cijkl
s1s2s3
sjsl

, ρ̃ = ρs1s2s3.

6.2 Variational Formulations

The full Helmholtz problem with the radiation condition is reduced to

∇ · (ã∇u) +
ω2

c̃2
u = f in Ω (6.5)

u = 0 on ∂Ω. (6.6)

Multiplying the PDE by a test function v ∈ H1
0 (Ω) and integrating by parts,

the variational formulation derived is

∫

Ω

ã∇u · ∇vdV − ω2

∫

Ω

1

c̃2
uvdV =

∫

Ω

fvdV (6.7)

Note that the 1
c̃2

term is inside the integral because the material is heteroge-

neous (even if c̃ were constant, the PML is heterogeneous). The sesquilinear
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form and linear functional in the Helmholtz case are then

B(u, v) =

∫

Ω

ã∇u · ∇vdV − ω2

∫

Ω

1

c̃2
uvdV (6.8)

F (v) =

∫

Ω

fvdV. (6.9)

Now, denote X = H1
0 (Ω). The weak form of the problem is to find u ∈ X such

that

B(u, v) = F (v), ∀v ∈ X. (6.10)

Like the indefinite Maxwell problem in the previous chapter, proving existence

and uniqueness for indefinite Helmholtz problem is more difficult than for the

Poisson problem. These proofs are detailed in [56].

Since the elastic wave equation is vector-valued, vector testing functions

are necessary. Consider v = (v1, v2, v3) ∈ (H1
0 (Ω))

3. If the dot product of

the PDE and v is taken, and integration-by-parts is performed on the j-th

derivative, the result in index notation is

∫

Ω

vi,jC̃ijkluk,ldΩ− ω2

∫

Ω

ρ̃uividΩ =

∫

Ω

fividΩ

Defining the sesquilinear form and linear functional as

B(u,v) =

∫

Ω

vi,jC̃ijkluk,ldΩ− ω2

∫

Ω

ρ̃uividΩ (6.11)

F (v) =

∫

Ω

fividΩ, (6.12)

the weak form of the problem is to find u ∈ (H1
0 (Ω))

3 such that

B(u,v) = F (v), ∀v ∈ (H1
0 (Ω))

3. (6.13)

105



6.3 Spectral Element Methods

In time-harmonic wave propagation, there are a variety of higher-order

finite element methods which have been developed to improve the dispersion

relationship and reduce pollution error. A review of these methods can be

found in [87, 50]. Recently, the spectral element method [73] has gained pop-

ularity in the seismic wave propagation community, most notably for time-

domain simulations [59, 60]; the main reason is that the diagonal mass matrix

allows for computationally efficient time-stepping algorithms. In this section,

these ideas are applied to the frequency domain.

The spectral element method (SEM) is simply a higher-order finite ele-

ment method with the basis functions defined at the Gauss-Lobatto quadrature

nodes; in contrast, the standard high-order FEM defines its basis at equispaced

points of the element. The irregular spacing of the nodes produces interpo-

lation functions which have a global maximum of 1 at the node which each

function is defined on, minimizing the spurious oscillation error from Runge

phenomena. Consider the Gauss-Lobatto nodes {xj}p+1
j=1 on the interval [−1, 1],

where p will be the resulting polynomial order. The 1D Lagrangian interpola-

tion functions for this grid are

Li(x) =

p+1
∏

j=1
i 6=j

(x− xj)

(xi − xj)
(6.14)

For the master hexahedral element, a tensor-product structure is used with the

1D interpolation functions to generate the basis function at node (xi, yj, zk):

φe
ijk(x, y, z) = Li(x)Lj(y)Lk(z). (6.15)
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Thus, in 3D, there are (p + 1)3 nodal basis functions for each hexahedral

element.

The discretization of the weak form (6.10) is as follows; by abusing the

notation slightly and denoting {φm}Nm=1 as the tensor-product basis functions

of a hexahedral mesh, the finite element approximation uh takes the form

uh =

N
∑

m=1

cmφm. (6.16)

Following the Galerkin formulation, this expansion is inserted into the sesquilin-

ear form for u, while the testing functions v are represented using the same

basis. The linear system is then

Ax = b, (6.17)

where Amn = B(φm, φn), xn = cn, and bm = F (φm).

For elasticity, each component of the vector field u is discretized us-

ing the scalar basis functions defined above; thus, when comparing to the

Helmholtz problem on the same mesh, a discretization of the elastic wave

equation should have three times the number of DOFs in 3D. The finite ele-

ment approximation of the i-th component of u is then

uh
i =

N
∑

m=1

ci,mφm. (6.18)

If the degrees of freedom are ordered in the coefficient vector as

x = (c1,1, c2,1, c3,1, c1,2, c2,2, c3,2, . . . , c1,N , c2,N , c3,N)
t.
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and the auxiliary indices I(i,m) = 3(m − 1) + i and J(j, n) = 3(n − 1) + j

are used, then the Galerkin formulation yields the system Ax = b, where the

entries are

AIJ = B(φmei, φnej), bI = F (φmei), xI = ci,m.

Here, ei is the unit vector in direction i.

To evaluate the integrals in the sesquilinear form and linear functional,

a few quadrature methods can be considered. The most common approach

is to reuse the Gauss-Lobatto quadrature nodes and weights. Because the

Lagrangian polynomial functions are defined at the Gauss-Lobatto nodes and

Li(xj) = δij , many of the terms in the quadrature summation are zero. This

allows for very efficient computation; the complexity of the computation over

each element is O((p+ 1)6) in 3D, as opposed to O((p+ 1)9) for exact Gauss-

Legendre quadrature. Furthermore, the −ω2 mass term produces a diagonal

matrix; this is mainly a benefit for time-domain simulations, in which inverting

the mass matrix is usually necessary. Very recently, a non-standard “blended”

quadrature scheme [1] has been introduced to reduce the dispersion error of

the discretization. The main idea rests on the fact that the exact mass matrix

(computed by Gauss-Legendre) produces a wavefield with accelerated phase

velocity, while the diagonal mass matrix (computed by Gauss-Lobatto) pro-

duces a wavefield with lagging phase velocity. If the two methods are linearly

combined, then their dispersion errors can be cancelled out, resulting in an im-

provement of two orders of accuracy in the dispersion relationship. For tests
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Figure 6.1: Relative error for the 2D Helmholtz Green’s function computed by spectral
elements as a function of h. The blue lines are for Gauss-Lobatto quadrature, while the red
lines are for Ainsworth-Wajid quadrature.

with the free-space Green’s function for p = 1 and p = 2 on an 8λ-wide domain,

significant improvement can be seen in the L2 relative error in the wavefield

as seen in figures 6.1 and 6.2. For higher-order polynomials, the improvement

was observed to be less drastic; thus, when p > 2, the code developed uses

regular Gauss-Lobatto quadrature for efficiency.

6.4 Sweeping Preconditioners for Helmholtz and Elas-
ticity

For uniform hexahedral elements, the same mesh partition algorithm

can be utilized, and the block tridiagonal structure and block LDLt factor-

ization maintain the same structure as in the unstructured mesh case. A few

points must be emphasized for the spectral element implementation, however.

Since the hexahedral mesh is uniform on the cube, the cartesian PML is aligned
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Figure 6.2: Relative error for the 3D Helmholtz Green’s function computed by spectral
elements as a function of h. The blue lines are for Gauss-Lobatto quadrature, while the red
lines are for Ainsworth-Wajid quadrature.

with the elements; in other words, the PML thickness is an integer multiple of

the element length h. Second, for high p values, there are significantly more

nonzero entries in both the L and D matrices. To minimize the nonzero entries

in the off-diagonal blocks of L, the domain is partitioned into subdomains Ωi

along the element boundaries; this ensures that the interior degrees of freedom

in an element are not split between two preconditioning layers.

Nevertheless, the inversion of each Schur complement still represents

the half-space Green’s function, and the moving PML method can be applied

with the same complexity estimates. In this case, mesh T is now made up of

elements tj which are hexahedrals. For the Helmholtz problem, the half space

problem for the set of degrees of freedom Ei corresponding to Ωi, i = 2, ..., K,
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is then

∇ · (ãi∇u) +
ω2

c̃2i
u = f in Ti ∪ Ti−1 (6.19)

u = 0 on ∂(Ti ∪ Ti−1), (6.20)

where the shifted material parameters are

ãi =







axx
sysz,i
sx

axysz,i axzsy
ayxsz,i ayy

sxsz,i
sy

ayzsx
azxsy azysx azz

sxsy
sz,i






, c̃2i =

c2

sxsysz,i
, (6.21)

in 3D. The shifted stretching function sξ,i for ξ = x, y, z is defined in (5.20).

For the elastic wave problem, the truncated PML problem to be solved

for the degrees of freedom in Em corresponding to Ωm, m = 2, ..., K is

−
(

C̃m
ijkluk,l

)

,j −ω2ρ̃mui = fi in Tm ∪ Tm−1

ui = 0 on ∂(Tm ∪ Tm−1),

where the shifted fourth-order elasticity tensor and density are

C̃m
ijkl = Cijkl

s1s2s3,m
sj,msl,m

, ρ̃m = ρs1s2s3,m.

Here, sj,m and sl,m are the shifted stretching functions only if j = 3 or l = 3,

respectively.

6.5 Parallelization

A parallel version of the moving PML preconditioner using 2nd order

finite differences and the Helmholtz equation is outlined in [77]. Here, the

algorithms are extended to higher order spectral elements and elasticity.
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The parallelization of the sweeping preconditioner is challenging from

a few perspectives. First, it is clear from algorithms 5.3.3 and 5.3.4 that

the setup stage of the preconditioner can be parallelized, but the application

stage of the preconditioner cannot. The multifrontal factorization of each

truncated subproblem is completely independent of the other subproblems;

however, when applying the approximate inverse, each sweep of the domain

must be done sequentially, because the off-diagonal blocks of the lower trian-

gular matrices (Li)
−1 and upper triangular matrices (Lt

i)
−1 apply the Schur

complement inverse of one subdomain to the adjacent subdomain. This is

similar to the problem faced in domain decomposition, where multiplicative

Schwarz methods are not parallelizable because of the interaction between ad-

jacent subdomains and their effect on the updated residual. Thus, even if the

factorizations can be done in parallel, the information for each factorization

would have to be redistributed across all processors to be the most efficient in

the solve stage.

Secondly, there are very few options for scalable sparse direct solvers in

the open source community. Many of the most popular codes, such as MUMPS

or SuperLU, are not fully scalable when increasing the number of cores into

the thousands [49]. It should be noted that the Watson Sparse Matrix Package

(WSMP) is a highly scalable direct solver which is freely available. For this

work, however, the open source multifrontal code Clique [25] developed by Jack

Poulson is employed. Clique uses ParMETIS to generate a nested dissection

ordering for the supernodal elimination tree, and subtree-to-subteam process
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mappings [48] for scalable factorizations. In addition, during the factorization

stage, Clique does selective inversion [79] to obtain more scalable triangular

solves.

Some general issues must also be discussed when implementing the par-

allel spectral element method. In many domain decomposition algorithms such

as Schur complement approaches or non-overlapping Schwarz methods, local

subproblems are defined by doing a 3D decomposition of the global mesh and

assigning a group of elements to each process. In the sweeping preconditioner,

however, the mesh partitioning algorithm does a 1D decomposition of the full

domain; as illustrated earlier, these subproblems are quasi-2D slabs. To uti-

lize all processors efficiently in both construction of the global stiffness matrix

and local subproblem stiffness matrices, a 2D decomposition orthogonal to the

direction of the sweeping is performed. Each process only contains mesh in-

formation local to a pillar of elements. This way, mesh partitioning can occur

individually on each process in parallel. For sparse matrices, both the global

sparse matrix and local subproblems are stored using a distributed row for-

mat; this format is common for sparse direct solvers. Since degrees of freedom

on the boundary of an element may be shared by multiple processes, some

communication is necessary when computing the contribution of a process to

the stiffness matrix.

In consideration of all of these issues, the most efficient parallel algo-

rithm is as follows. For the setup stage, factorize the stiffness matrix for each

subproblem one after another, using all processors for each problem; since the
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construction of the stiffness matrix and multifrontal factorization are scalable,

the setup stage is observed to be highly scalable as well. In the solution stage,

all processors are used for each triangular solve in the application of the pre-

conditioner. Since the triangular solve is not highly scalable when going to

a large number of cores, the iterative solution by GMRES usually takes a

majority of the time.

6.6 Numerical Results

The parallel spectral element code with the sweeping preconditioner is

implemented in C++ on the Lonestar Linux Cluster at the Texas Advanced

Computing Center (TACC). On each node of the cluster, there are 2 six-core

Intel Xeon 5680 processors and 24 GB of DDR3-1333MHz memory. In each

of the examples, the number of processors is always a power of 2; thus, only

eight of the twelve cores on each node is used. The number of total nodes can

be determined by dividing the total number of processors by eight.

Many of the inputs and parameters have been kept the same as in the

electromagnetics code. Specifically, the iterative solver used is GMRES with

a residual tolerance of 1e-4. The damping parameter of the preconditioner, α,

is set to 1. In each problem, the polynomial order for the Helmholtz equation

is set to 5, while the polynomial order for the elasticity problem is set to 3.

Both the PML and subdomain thickness are set to be approximately half a

wavelength wide, at the fastest wave speed of the model. The models are

discretized so that at the shortest wavelength (or slowest wave speed), there
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are approximately 4 or 5 grid points per wavelength. The forcing function

for each problem is a point source placed in the middle of the domain; in the

elasticity case, the orientation of the source is in the x-direction.

Because an anisotropic elasticity version of the models are not available,

most geophysicists would interpret the data as P-wave velocity; here, we have

modeled the data as the S-wave velocity. If µ is the shear modulus, then the

speed of the S-wave is
√

µ
ρ
; the parameters are modified so that this quantity

is the speed given by the model. In the following examples, isotropic elasticity

is considered; that is, the fourth order elasticity tensor Cijkl takes the form

Cijkl = µ(δikδjl + δilδjk) + λδijδkl

where λ and µ are the first and second Lamé parameters, respectively.

6.6.1 Overthrust Model

A standard example of a wave speed model in seismic imaging is the

SEG/EAGE Overthrust model, which takes data from thrust belts in the

Canadian rockies. The dimensions are 20 km × 20 km × 4.65 km , and the

original data for the wave speed is given on a 801×801×187 grid. The model

is characterized by discontinuous layers of material with varying wave speeds,

as shown in the slice plot of figure 6.3. The minimum wave speed in the model

is 2.179 km/s, while the maximum wave speed is 6 km/s. Because the data

is given on a uniform grid, interpolation is necessary to get the velocities at

the Gauss-Lobatto points of the spectral element mesh. For simplicity, linear

interpolation is done.
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Figure 6.3: SEG/EAGE Overthrust model. Velocity data is given in meters/second.

For this problem, we have enforced the sweeping direction to be in the

x-direction; realistically, the top plane which represents the surface should be

a zero Dirichlet boundary condition, so sweeping from this direction is not

an option, because there is no PML. In addition, since the majority of the

reflections are oriented in the direction of the discontinuities, sweeping in this

direction would kill some of these fields when approximating the half-space

problem. It is more prudent to sweep orthogonal to the reflected rays, as

pushing the PML to the domain of interest would not remove the contribution

of fields that are returning to the domain.

Figures 6.4 and 6.5 show the results for the Overthrust model. For each

example, the relevant quantities listed are the frequency f , number of degrees

of freedom N , setup time Tsetup, GMRES time Tsolve, number of iterations

Niter, and the number of cores Nproc. With the Helmholtz equation, the largest

problem solved is the 20 Hz example, with about 116 million degrees of freedom

on 2048 processors. Because the elastic wave equation contains three times
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−1 −0.5 0 0.5 1 1.5 2 2.5 3

x 10
−3

f N Tsetup Tsolve Niter Nproc

5 1.858e+06 46 46 10 32
10 1.463e+07 194 149 10 256
20 1.161e+08 563 910 11 2048

Figure 6.4: Results for the Helmholtz equation with the Overthrust model. The fields in
the xz-plane at 20 Hz are shown.

the number of degrees of freedom and has a much denser sparsity pattern, and

normal jobs on Lonestar only allow for 4104 processors, the largest problem

solved for elasticity is the 10 Hz case.

6.6.2 Salt Dome Model

Another example of a commonly used velocity model is the SEG/EAGE

Salt Dome. The model is identified by the large salt body in the middle of

sedimentary layers; inside the salt body, the wave speed is very fast relative

to the surrounding material. The dimensions of the model are 13.5 km ×

13.5 km × 4 km , and the velocity data is given on a 676 × 676 × 210 grid.

The minimum velocity is 1500 m/s, while the maximum velocity is 4482 m/s.

Figure 6.6 shows a slice plot of the model.
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−1 −0.5 0 0.5 1 1.5 2 2.5 3

x 10
−3

f N Tsetup Tsolve Niter Nproc

5 4.511e+06 164 98 11 128
10 3.548e+07 670 468 12 1024

Figure 6.5: Results for the elastic wave equation with the Overthrust model. The fields
in the yz-plane at 10 Hz are shown.

Figure 6.6: SEG/EAGE Salt Dome model. Velocity data is given in meters/second.

118



Figures 6.7 and 6.8 show the results for the Salt Dome model. For

acoustics, the largest problem solved is the 20 Hz example, with about 88 mil-

lion degrees of freedom on 2048 processors. Once again, the memory require-

ments are very demanding for the elasticity case, so only the 10 Hz example

is given here, with about 33 million degrees of freedom on 2048 processors. In

this example, the sweeping direction is taken to be the z-direction; regardless

of this choice, however, it was observed that the number of iterations increased

with frequency. One reason this happens is because of the large difference in

the velocity between the salt body and surrounding area; it is difficult to re-

solve the smallest wavelength with enough grid points while keeping the PML

wide enough to dampen the largest wavelength. Secondly, because the salt

body is significantly large compared to the wavelength in all directions, the

secondary reflections inside the structure are not restricted to a particular di-

mension as in a layered medium like the Overthrust case. Because there are

reflected rays returning to subdomains in both the horizontal and vertical di-

rections, the moving PML does not approximate the Green’s function as well

for this problem.
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−1 −0.5 0 0.5 1 1.5 2 2.5 3

x 10
−3

f N Tsetup Tsolve Niter Nproc

5 1.405e+06 73 23 8 32
10 1.106e+07 203 71 10 256
20 8.782e+07 600 558 18 2048

Figure 6.7: Results for the Helmholtz equation with the Salt Dome model. The fields in
the xz-plane at 20 Hz are shown.

−1 −0.5 0 0.5 1 1.5 2 2.5 3

x 10
−3

f N Tsetup Tsolve Niter Nproc

5 4.198e+06 150 37 7 256
10 3.305e+07 431 221 11 2048

Figure 6.8: Results for the elastic wave equation with the Salt Dome model. The fields in
the yz-plane at 10 Hz are shown.
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Chapter 7

Approximability of the Green’s Function with

PML Boundary Condition

In approximating the Schur complements in the block LDLt factoriza-

tion, the perfectly matched layer is pushed to the edge of the domain where

the solution of the local subproblem acts as a Green’s function. Thus, it is

important to understand the effect that shifting the PML has on the solution

in this area. In this chapter, a theoretical result is provided on the Helmholtz

Green’s function with PMLs.

7.1 Spectral Analysis of the Green’s Function

In domain decomposition, particularly for alternating Schwarz methods

[40], analysis is usually done on the eigenfunctions after reducing the problem

to one dimension with Fourier decomposition. Here, a similar approach out-

lined in [72] is followed. To start, consider the 2D Helmholtz equation on a

semi-infinite domain (−∞,∞)× [−D,D] with Dirichlet boundary conditions
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at y = ±D and radiation conditions as x → ±∞,

∂2u

∂x2
+

∂2u

∂y2
+ κ2u = 0 in (−∞,∞)× [−D,D]

u = 0 at y = ±D

lim
|x|→∞

[

∂u

∂|x| − ıκu

]

= 0.

Taking the Fourier transform of the PDE in the x-variable defined by

U(λ, y) =

∫ +∞

−∞
u(x, y)eıλxdx,

the 2D problem is reduced to the 1D problem for every eigenfrequency λ,

∂2U

∂y2
+ (κ2 − λ2)U = 0 in [−D,D]

U = 0 at y = ±D.

The spectral Green’s function GD(λ, y) for a source on the line y = 0 with

zero Dirichlet boundary conditions at y = ±D is then the solution to

∂2GD

∂y2
+ (κ2 − λ2)GD = δ(y) in [−D,D]

GD = 0 at y = ±D.

and is found to be

GD(λ, y) =
sin
(√

κ2 − λ2(|y| −D)
)

2
√
κ2 − λ2 cos

(√
κ2 − λ2D

) .

It is clear that the zero Dirichlet boundary condition is not the problem of

interest; to extend this to the PML, the function can be analytically continued

into the complex plane by shifting the real coordinate y to be complex [72].
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Thus, instead of D, the zero boundary condition is set at D + ıα, where α is

the maximum damping value which the PML reaches. The spectral Green’s

function GD+ıα(λ, y) with PMLs is then

GD+ıα(λ, y) =
sin
(√

κ2 − λ2(|y| −D − ıα)
)

2
√
κ2 − λ2 cos

(√
κ2 − λ2(D + ıα)

) ,

and the spatial Green’s function gD+ıα with PMLs can be written as the inverse

Fourier transform,

gD+ıα(x, y) =
1

2π

∫ ∞

−∞

sin
(√

κ2 − λ2(|y| −D − ıα)
)

2
√
κ2 − λ2 cos

(√
κ2 − λ2(D + ıα)

)e−ıλxdλ.

7.2 Main result for moving PMLs

The theorem presented in this section will show that the Green’s func-

tion for the semi-infinite domain (−∞,∞)×[−D,D] can be approximated well

with the Green’s function for the truncated semi-infinite domain (−∞,∞)×

[−d, d], on the line y = 0.

Theorem 7.2.1. Suppose D > 0 and α > 0. For any ε > 0, there exists

δ(ε) > 0 such that δ(ε) < D and

d > δ(ε) =⇒
∣

∣gD+ıα(x, 0)− gd+ıα(x, 0)
∣

∣ < ε. (7.1)

Proof. Using trigonometric identities, the difference between the two Green’s
functions is

gD+ıα(x, 0) − gd+ıα(x, 0) =

1

2π

∫ ∞

0

sin
(√

κ2 − λ2(D − d)
)

e−ıλx

√
κ2 − λ2 cos

(√
κ2 − λ2(D + ıα)

)

cos
(√

κ2 − λ2(d+ ıα)
)dλ
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Im(λ)

τ

κ− τ κ Re(λ)κ + τ

Figure 7.1: The contour path of integral (7.2).

This integral can be evaluated over the contour illustrated in figure 7.1, and is split
into three parts:

∫ ∞

0
. . . dλ =

∫ κ−τ

0
. . . dλ+

∫

cτ

. . . dλ+

∫ ∞

κ+τ
. . . dλ. (7.2)

Since sin(x) ≤ x for x ≤ 0, the first integral can be bounded by

∣

∣

∣

∣

∫ κ−τ

0

sin
(√

κ2 − λ2(D − d)
)

√
κ2 − λ2 cosh

(√
κ2 − λ2(ıD − α)

)

cosh
(√

κ2 − λ2(ıd− α)
)dλ

∣

∣

∣

∣

≤
∫ κ−τ

0

4(D − d)e−2
√
κ2−λ2α

∣

∣(e2
√
κ2−λ2(ıD−α) + 1)(e2

√
κ2−λ2(ıd−α) + 1)

∣

∣

dλ.

But
∣

∣1+ e−2
√
κ2−λ2αe2ı

√
κ2−λ2D

∣

∣ ≥ 1− e−2
√
κ2−λ2α (equal when

√
κ2 − λ2 = π

2D ), so

∣

∣

∣

∣

∫ κ−τ

0
. . . dλ

∣

∣

∣

∣

≤
∫ κ−τ

0

4(D − d)e−2
√
κ2−λ2α

(1− e−
πα
D )(1 − e−

πα
d )

dλ

≤
∫ κ−τ

0

4(D − d)e−2
√
2κτ−τ2α

(1− e−
πα
D )(1 − e−

πα
d )

dλ

=
4(D − d)(κ − τ)e−2

√
2κτ−τ2α

(1− e−
πα
D )(1 − e−

πα
d )

. (7.3)

For the integral over the arc cτ , the polar coordinate transformation λ = κ− τe−ıθ

for θ ∈ [0, π] is used. Denote g(θ) = 2κτe−ıθ − τ2e−2ıθ. Because | sin(z)| ≤ sinh(|z|)
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for z ∈ C,

∣

∣

∣

∣

∫

cτ

. . . dλ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ π

0

ıτ sin
(√

g(θ)(D − d)
)

e−ıθ

√

g(θ) cos
(√

g(θ)(D + ıα)
)

cos
(√

g(θ)(d+ ıα)
)dθ

∣

∣

∣

∣

≤
∫ π

0

τ sinh
(∣

∣

√

g(θ)
∣

∣(D − d)
)

∣

∣

√

g(θ) cos
(√

g(θ)(D + ıα)
)

cos
(√

g(θ)(d+ ıα)
)∣

∣

≤
∫ π

0

τ sinh
(√

2κτ + τ2(D − d)
)

√
2κτ − τ2

∣

∣ sinh
(

Im(
√

g(θ)(d+ ıα))
)∣

∣

∣

∣ sinh
(

Im(
√

g(θ)(D + ıα))
)∣

∣

.

Denote σ(α, d) = min(
√
2κτ − τ2α,

√
2κτ + τ2d). The argument of the hyperbolic

sine in the denominator, Im(
√

g(θ)(d+ ıα)), can be bounded below by σ(α, d); thus,

∣

∣

∣

∣

∫

cτ

. . . dλ

∣

∣

∣

∣

≤
∫ π

0

4τ sinh
(√

2κτ + τ2(D − d)
)

e−σ(α,d)e−σ(α,D)

√
2κτ − τ2(1− e−2σ(α,d))(1− e−2σ(α,D))

dθ

=
4πτ sinh

(√
2κτ + τ2(D − d)

)

e−σ(α,d)e−σ(α,D)

√
2κτ − τ2(1− e−2σ(α,d))(1 − e−2σ(α,D))

(7.4)

From | cosh(x+ ıy)| = | cosh(x) cos(y)+ ı sinh(x) sin(y)| ≥ sinh(x), the third integral
can be bounded by

∣

∣

∣

∣

∫ ∞

κ+τ

sinh
(√

λ2 − κ2(D − d)
)

√
λ2 − κ2 cosh

(√
λ2 − κ2(D + ıα)

)

cosh
(√

λ2 − κ2(d+ ıα)
)dλ

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ ∞

κ+τ

sinh
(√

λ2 − κ2(D − d)
)

√
λ2 − κ2 sinh(

√
λ2 − κ2D) sinh(

√
λ2 − κ2d)

dλ

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ ∞

κ+τ

2(e−2
√
λ2−κ2d − e−2

√
λ2−κ2D)√

λ2 − κ2(1− e−2
√
λ2−κ2d)(1 − e−2

√
λ2−κ2D)

dλ

∣

∣

∣

∣

(7.5)

Using the change of coordinates z =
√
λ2 − κ2, this becomes

∣

∣

∣

∣

∫ ∞

κ+τ
. . . dλ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ∞
√
2κτ+τ2

2(e−2zd − e−2zD)√
z2 + κ2(1− e−2zd)(1− e−2zD)

dz

∣

∣

∣

∣

≤

(

e−2zd

−d

∣

∣

∣

∣

∞

√
2κτ+τ2

− e−2zD

−D

∣

∣

∣

∣

∞

√
2κτ+τ2

)

(κ+ τ)(1− e−2
√
2κτ+τ2d)(1− e−2

√
2κτ+τ2D)

=

(

e−2
√

2κτ+τ2d

d − e−2
√

2κτ+τ2D

D

)

(κ+ τ)(1− e−2
√
2κτ+τ2d)(1− e−2

√
2κτ+τ2D)

(7.6)
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Combining (7.3), (7.4), and (7.6), define the function f(α, d) as

f(α, d) =
4(D − d)(κ− τ)e−2

√
2κτ−τ2α

(1− e−
πα
D )(1− e−

πα
d )

+
4πτ sinh

(√
2κτ + τ2(D − d)

)

e−σ(α,d)e−σ(α,D)

√
2κτ − τ2(1− e−2σ(α,d))(1− e−2σ(α,D))

+

(

e−2
√

2κτ+τ2d

d − e−2
√

2κτ+τ2D

D

)

(κ+ τ)(1− e−2
√
2κτ+τ2d)(1 − e−2

√
2κτ+τ2D)

(7.7)

Note that f(α, d) is monotonically decreasing as d increases to D. It has been shown
that

∣

∣

∣

∣

∫ ∞

0
. . . dλ

∣

∣

∣

∣

< f(α, d) for ∀ α > 0, D > d > 0.

Thus, by the implicit function theorem, there exists a function h(α, ε) such that
f(α,h(α, ε)) = ε, which proves that

∣

∣

∣

∣

∫ ∞

0
. . . dλ

∣

∣

∣

∣

< ε if d > h(α, ε).

To give an idea about how f(α, d) behaves for a sample problem, a

domain with D = 100 wavelengths is chosen, and the PML is pushed closer

and closer to the line y = 0. Figure 7.2 shows the error bound on the Green’s

function at y = 0 as the parameter d is varied, with the maximum value of

the complex shift in the PML set to α = 2π and contour radius set to τ = 0.1.

The plot shows that for d ≈ 5 wavelengths, the upper bound on the error is

f(α, d) ≈ 0.04.

The result above shows that the Green’s function for the semi-infinite

problem with PMLs in the finite direction can be approximated by the trun-

cated problem. To apply this result to the half-space approximation posed
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Figure 7.2: Decay of the error function f(α, d) as d → D. The parameters are α = 2π,
κ = 200π, D = 100λ, and τ = 0.1.

for the sweeping preconditioner, image theory can be used. Specifically, it is

well known that the Green’s function for the half-space problem on the do-

main (−∞,∞)× [0,∞) with zero Dirichlet boundary condition at y = 0 can

be computed by g(x, y) + g(x,−y), where g(x, y) is the free space Green’s

function. Since the PML is an approximation to the radiation condition, the

same image theory idea can be applied to approximating each PML half-space

problem.
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Chapter 8

Conclusions and Future Work

In this thesis, fast algorithms for solving linear systems in time-harmonic

wave propagation were presented. For exterior scattering problems, the direc-

tional FMM was adapted to solve boundary integral equations in electromag-

netics. An additional area of concern was uncertainty quantification and rough

surface problems, where quasi-Monte Carlo methods were used to obtain bet-

ter convergence to statistical quantities for high-frequency acoustic scattering.

For variable coefficient media, sweeping preconditioners were generalized to un-

structured meshes and higher-order finite element methods, with application

problems such as electromagnetic cloaking and seismic wave propagation. Fur-

thermore, theoretical justification of the sweeping preconditioner was provided

by analyzing the Helmholtz Green’s function with PML boundary conditions.

In light of these advancements, there are several topics which can be

explored moving forward. One problem which the sweeping preconditioner

suffers from is lack of parallelism in the apply stage. Unlike some domain

decomposition methods, the approximation of the Schur complement relies

on the structure of the block LDLt factorization, so each Schur complement

block can not be solved against independently from the others; that is, the
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right hand side of each local subproblem relies on the solution vector from the

previous subproblem, which couples the subproblems across the whole domain.

Although there exist more parallelizable methods for solving tridiagonal sys-

tems, like cyclic reduction, these destroy the structural properties of the Schur

complement which are needed to justify the moving PML approximation.

Secondly, some analysis of the infinite-dimensional problem was done,

but a discrete analysis of the Schur complement operator would be more useful

in characterizing the eigenspectrum of the preconditioned matrix; presumably

it will be dependent on factors such as the PML thickness, the maximum PML

damping value, the complex perturbation parameter α, the number of layers

being preconditioned, and the discretization. One way to approach this is

through the idea of continued fractions. Because the Schur complement for

the m-th subdomain is recursively defined through

Sm = Am,m −Am,m−1S
−1
m−1Am−1,m

with S1 = A1,1, the second term in the formula can be expanded with matrix-

valued continued fractions, i.e.

Am,m−1
1

Am−1,m−1 − Am−1,m−2
1

Am−2,m−2−Am−2,m−3
1

...
Am−3,m−2

Am−2,m−1

Am−1,m

To get an estimate on the condition number, a truncation of the continued

fraction above must be inverted against the true Schur complement. If an up-

per bound can be computed on the norm of the product of these two fractions,
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then a useful estimate might be obtained. Unfortunately, many of the esti-

mates for truncated scalar-valued continued fractions involve cutting off levels

1, ...n of the recursion, for some n, instead of removing the intermediary levels

between the most dominant entry (Am,m) and the first level (A1,1); the latter

is precisely what happens when the PML is pushed to the domain of interest.

Therefore, obtaining a useful estimate using this approach has proven to be

difficult.

Finally, one idea that has yet to be realized in code is the idea of a

recursive or multilevel sweeping preconditioner. That is, if there is a PML in

more than one direction, then each local subproblem itself can be solved using

a sweeping preconditioner, with a sweeping direction orthogonal to the original

sweep. Instead of computing the multifrontal factorization for quasi-2D slabs,

the setup stage now requires the factorization of subproblems on long quasi-1D

pillars. In the application stage, applying the Schur complement inverse for

a particular layer would require an iterative solve of the subdomain problem.

The main benefit of this algorithm is significant savings in memory; because

the multifrontal method needs O(N) memory in 1D and O(N logN) memory

in 2D, there is a factor of logN in savings. The asymptotic complexity of the

algorithm would also be slightly faster, but it is not entirely obvious if such a

method would be more efficient in the frequency regime considered.
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