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Novel Tools for Engineering Eukaryotic Cells Using a Systems Level 
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Amanda Morgan Lanza, PhD 
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Supervisor:  Hal S. Alper 

 

Engineered cellular systems are a promising avenue for production of a wide 

range of useful products including renewable fuels, commodity and specialty chemicals, 

industrial enzymes, and pharmaceuticals.  Achieving this breadth of biological products 

is facilitated by the diversity of organisms found in nature.  Using biological and 

engineering principles, this diversity can be harnessed to make efficient and renewable 

bio-based products. Such advancements rely upon our ability to modify host genetics and 

metabolism.  This work focuses on the development of new biotechnological tools which 

enable cellular engineering, and the implementation of these tools in eukaryotic systems.   

Mammalian cell engineering has important implications in protein therapeutics 

and gene therapy.  One major limitation, however, is the ability to predictably control 

gene expression.  We address this challenge by examining critical aspects of gene 

expression in human cells.  First, we evaluate the impact of selection markers, a common 

mammalian expression element, on cell line development.  In doing so, we determine that 

Zeocin is the best selection agent for human cells.  Next, we identify loci across the 

genome that support high level expression of recombinant DNA and demonstrate their 

advantage for stable integration.  Finally, we optimize a Cre recombinase based 
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methodology that enables efficient retargeting of genomic loci.  Collectively, this work 

augments the current genetic toolbox for human cell lines.   

Beyond basic gene expression, there is interest in understanding global 

interactions within the cell and how they relate to phenomena including gene regulation, 

expression and disease states.  Although our tools are not yet sufficient to study these 

phenomena in many hosts, methods can be developed in lower eukaryotes and then 

adapted for more complex hosts later.  We demonstrated two methods in S. cerevisiae 

that utilize a systems-level approach to understand complex phenotypes.  First, we 

developed condition-specific codon optimization that utilizes systems biology 

information to optimize gene sequence in a condition-specific manner.  Additionally, we 

developed a Graded Dominant Mutant Approach which can be used to dissect 

multifunctional proteins, understand epigenetic factors, and quantitatively determine 

protein-DNA interactions.   Both can be implemented in many cellular hosts and expand 

our ability to engineer complex phenotypes in eukaryotic cell systems. 
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 Chapter 1: Introduction and Background 

1.1 CELL AND METABOLIC ENGINEERING 

Since the advent of recombinant DNA technology in the 1970s1, cellular hosts 

have been used to produce a wide range of useful products including therapeutics, 

antibiotics, biofuels, specialty chemicals and other small molecules.  Bio-based processes 

are often renewable, environmentally friendly and cost effective, making them an 

attractive alternative to chemical synthesis.  As petroleum-based resources continue to 

dwindle and society’s need for more complex and diverse products increases, the demand 

for biological processes to make these products will increase.   

In order to meet the increasing demand for bio-based products, technology must 

be developed that enables us to manipulate and engineer a wide variety of cellular hosts.  

Model organisms such as Escherichia coli and Saccharomyces cerevisiae have been used 

to commercially produce many products because they are relatively easy to culture and 

molecular biology tools for these organisms are well established.  Despite their success, 

these model organisms cannot be used for all bio-based processes.  The characteristics of 

a product, such as toxicity and post-translational modifications, often dictate which 

cellular hosts can be used on an industrial scale.  Although a vast diversity of organisms 

exist in nature, most of them are not culturable and no biotechnological tools have been 

developed for them.  The development of new tools and approaches that enable 

controlled, robust manipulation of cellular hosts is a key challenge for cell and metabolic 

engineering.   
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1.2 PREDICTED GENE EXPRESSION IN MAMMALIAN CELLULAR HOSTS 

The advancement of biotechnological tools is particularly important in 

mammalian cells and other eukaryotic hosts because of their important roles in medicine, 

human health and the production of protein therapeutics.  Mammalian cells remain the 

predominant host for producing antibodies and other protein therapeutics based on 

advantageous post-translational modifications2-7, reduced immunogenicity, and the 

establishment of an infrastructure of mammalian cell cultivation and bioprocess 

engineering at pharmaceutical companies.  Our capacity to culture and engineer 

mammalian cell systems for protein production has rapidly expanded in past decades and 

has raised the importance of mammalian bioprocess engineering efforts.  This 

improvement is most apparent in the ever-increasing titers of monoclonal antibodies that 

have gone from 50 mg/L to upwards of 5 g/L in just over two decades8.  Moreover, the 

production of complex proteins in mammalian hosts continues to be a successful 

approach and accounts for a good number of the over 9,700 clinical drug candidates in 

industry pipelines annually9.  Collectively, these advancements have led to increases in 

the quality, quantity and complexity of recombinant products.   

Despite these advantages and many improvements in cell engineering technology, 

mammalian cells lack many of the useful characteristics inherent in bacterial and simple 

eukaryotic hosts.  Specifically, these cells are unable to autonomously replicate plasmid 

DNA.  A long term, stable production cell therefore requires integration of heterologous 

DNA into the host cell genome and the subsequent isolation of a high expressing cell 

line.  Furthermore, homologous recombination is very inefficient8, making targeted 

integration challenging. This makes the cell line development process time consuming, 

labor intensive, unreliable and expensive and involves the screening of thousands of 

potential cell lines8,10-12.  Advancements that eliminate this screening process would 
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provide significant cost and time savings, in addition to functioning as a useful genetic 

tool in human cell engineering11.   

  Furthermore, issues of cell productivity, cell stability, cost of goods and services, 

and speed of development have put new demands on the field.  In general, the cost of 

bringing a drug to the market is quite high13 as a result of significant R&D, clinical 

testing, and failure rates.  While improved cell engineering tools cannot solve clinical 

testing and failure rates, they can improve the speed of R&D as well as reduce cost of 

goods.  To this end, there is a need to develop novel tools that facilitate predicted gene 

expression in recombinant mammalian cell lines.  

1.2.1 Traditional cell line development is inefficient 

The vast majority of protein therapeutics are produced in recombinant mammalian 

cell hosts including Chinese hamster ovary (CHO)7,14-16, mouse myeloma (NS0)15,16, 

human embryo kidney (HEK293) cells14,17 and human sarcoma (HT1080) cells17-19.  

While advancements in mammalian cell technology have resulted in improved titers, 

quality and techniques, the process of developing a cell line with sufficient production 

capability remains both time and labor intensive5,8,11,20.  In a typical cell line development 

program, a transgenic construct containing both the transgene of interest and a selection 

marker is introduced, usually by illegitimate (random) integration21-23, into the host cell 

genome.  While it is well-known that integration locus can strongly influence gene 

expression3,8,10,24,25, most cell line development programs still rely on illegitimate 

integration followed by selection and amplification over site-specific recombination 

approaches.  After integration, a selection agent is used to kill off a significant portion of 

the cell population with either no or low expression of the transgene.  The success of this 

selection can be enhanced by using an IRES element26,27 to transcriptionally link the 
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selection marker and the transgenic protein genes.  In some instances, the selection 

pressure is continuously increased to enable cells to amplify transgene copy number5 and 

likewise protein expression. 

Regardless of the approach used, the pools of cells that survive selection are 

subsequently diluted to single cell lines and expanded to produce homogenous, clonal 

populations, as many as 10,000 at once5,23,28,29, which are then subjected to a series of 

selection strategies.  This typically involves multiple assessment stages where clones are 

evaluated at each stage for characteristics including growth, production, and stability 

characteristics8 and low performers are removed from the data set.  This methodology 

assumes the final, desirable cell lines will perform well for each assessment, despite 

variations in culture conditions and feed strategies.   

This cell line development process is time consuming, with a fast-tracked 

scenario, under ideal conditions, estimating at least 70 days between transfection and 

identification of a candidate cell line11.  Additionally, screening of thousands of clones 

for a variety of characteristics is laborious and costly.  Furthermore, there are instances 

where selection strategy can falsely remove top performers and promote low 

performers12.  There is clear motivation to streamline and improve the efficiency and 

success rate of the cell line development process11,20,30.  The development of tools that 

enable controlled and predictable recombinant DNA expression in mammalian cell 

systems will do much to advance cell line development. 

1.2.2 Selection markers as a component of mammalian expression constructs 

Regulating gene expression in mammalian hosts involves not only the gene of 

interest, but many other genetic elements that collectively enable and enhance synthetic 

gene circuits.  Some of these elements previously used in mammalian expression 
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constructs include enhancers, promoters, internal ribosome entry sites (IRES), ubiquitous 

chromatin opening elements (UCOEs), scaffold/matrix attachment regions (S/MARs), 

micro RNAs (miRNAs), and selection markers, which can be combined with both 

recombinant and native genes to enhance genetic engineering efforts in these cells31.  The 

utility of such genetic elements has been clearly demonstrated in microbes32-36; however, 

adaptation and adoption across mammalian genomes is in its early stages37.   

One critical component of most mammalian expression constructs is a selection 

marker.  This genetic element enables cells expressing the transgenic construct at 

sufficient levels to survive exposure to an otherwise toxic agent during a selection phase.  

The effectiveness of this selection phase directly influences the quality of the selected 

pool and the resulting single cell clones, making it a critical component of cell line 

development.  

Although several selection markers are available for mammalian cells, the most 

commonly used is DHFR in which cell line production typically involves identification of 

increased copy number loci using methotrexate (MTX) selection3,8,10,38.  In DHFR 

screening, cells are exposed to progressively higher concentrations of MTX, which 

inhibits folic acid metabolism.  The DHFR gene and the gene of interest are co-

transfected, thus the surviving population is able to over express DHFR, which usually 

indicates higher expression of the gene of interest.  This system is commonly used to 

identify cell line candidates.   

Despite its popularity, the DFR/MTX system, and other auxotrophic systems like 

glutamine synthetase (GS), has some drawbacks.  MTX selection favors those cell lines 

with multiple copies, even hundreds of copies, of the DHFR gene10,25.  Once selective 

pressure is removed, these cell lines are typically unstable and lose many or most copies 

of the heterologous DNA8,10,39.  The cytogenetic effects of MTX, as well as additional 
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cost, prohibits continued use of the selective drug8 in growth media.  Additionally, the 

DHFR system does not work in all cell lines and can even result in decreased 

productivity of the desired gene25.  This is likely a result of increased expression of 

DHFR while the desired gene is either lost or unexpressed.  Finally, although deletion 

strains are available for CHO, these diploid deletion cell lines have not been established 

for most other cellular hosts, making it ineffective to use an auxotrophic selection system.   

Fortunately, a variety of eukaryotic antibiotic selection markers and 

corresponding resistance genes are available and can be used in mammalian expression.  

Some common antibiotics include blasticidin, geneticin, hygromycin B, mycophenolic 

acid, neomycin, puromycin, and Zeocin.  In many cases of cell line development, these 

agents and corresponding markers are used interchangeably despite the wide variations in 

stringency that are known8,10,25,40.  Furthermore, these antibiotics act through several 

different modes of action resulting in both rapid and slow cell death.  Because of these 

factors, and the near ubiquitous presence of selection markers in transgenic constructs, it 

is probable that selection marker choice plays an important role in mammalian cell line 

development.  In other model eukaryotes including plants41-43, yeasts44,45, and insects46, 

studies comparing selection marker performance have been conducted.  Analogous 

studies of selection markers in mammalian cells would likely contribute directly to 

predicted gene expression efforts. 

1.2.3 The influence of integration locus on gene expression 

Stable, long term expression of heterologous DNA requires integration into the 

host cell genome because mammalian cells lack the ability to autonomously replicate 

plasmids.  Like many other chromosome-related phenomena39,47-54, recombinant gene 

expression has been shown to be heavily dependent on the site of genomic 
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integration3,8,10,12,25.  The non-random distribution of such events across the genome 

indicates that a novel structural environment or specific genetic elements must be 

present55.  The biases of retroviral integration sites in the genome further illustrate that 

not all loci are accessible or capable of sustained, stable transcription.  Retroviral 

integration occurs at a non-random frequency and exhibits an integration bias with 

defined motifs and preference for CpG islands, regions of high gene density, and regions 

near transcription start sites and transcription factor binding sites51,56-59.  As an example, 

HIV has been shown to preferentially integrate into actively transcribed genes in an 

attempt to identify transcriptional hot spots52,60.   

While non-viral integration appears to be a distributed, random process aided by 

native recombination mechanisms61,62, not all genomic regions are conducive to 

expression.  Integration into euchromatin, lightly packed gene rich regions, is most likely 

to favor expression10.  Due to the proximity to essential genes, these regions are often 

actively recruiting transcription machinery, which the integrated transgene can take 

advantage of.  Alternatively, integration into heterochromatin is unlikely to confer 

transcription capacity, as these regions are often silenced by histone deacetylation, 

histone methylation and promoter methylation10.    

Stable integration of recombinant DNA is commonly used for transgenic studies, 

stable cell line development, and gene therapy applications.  Despite the widely accepted 

importance of integration locus on recombinant DNA expression3,8,10,12,25, and its utility 

in advancing predicted gene expression efforts, limited information is available about 

desirable genomic integration sites.  Attempts to determine the exact genetic location of 

transgene insertions have only been performed in isolated cases for a particular germline 

or cell line with interesting characteristics63,64, while for most high expressing cell lines, 

no effort is made.  Alternatively, pre-determined criteria, such as ‘Good Safe Harbours’65 
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have been applied a priori to identify potentially useful integration sites before targeting 

them and measuring expression66.  Although these guidelines have utility in gene therapy 

applications, such an approach is inherently biased and does not sample any significant 

portion of the genome.  No global study has been conducted in mammalian cells to more 

comprehensively identify loci capable of supporting high expression of heterologous 

DNA.  The closest related dataset that does exist is global expression analysis using 

microarray data.  However, this dataset is limited in its utility because it exclusively 

encompasses protein coding sequences and lacks information about non-coding regions 

which can confer high expression.   

  Studies comparing genomic integration sites have been conducted in other model 

organisms including E. coli67, S. cerevisae68 and zebrafish69.  A recent study in yeast 

examined 20 genomic integration sites and found more than an 8 fold difference in 

expression levels for these sites68.  A similar or even greater expression range could exist 

in mammalian genomes and identifying loci suitable for integration is an important step 

in developing better tools for stable recombinant cell lines, especially if these sites can be 

retargeted70.  By identifying and mapping transcriptionally active areas, existing and 

future technologies can be used to deliver a gene of interest to those loci.   

1.2.4 Site-specific genetic editing techniques for mammalian hosts 

Genetic engineering is required to transform mammalian host cells into super-

producers of proteins.  Specifically, efficient mammalian cell engineering requires 

precise, site-specific genome editing techniques to enable the expression of heterologous 

genes and deletion of unwanted genes at known loci.    In most microbial systems, this is 

efficiently achieved via homologous recombination.  Unfortunately, homologous 

recombination is a rare and inefficient process in mammalian cells8.   Alternative 
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approaches have been and continue to be developed which typically rely on targeted 

double strand breaks that trigger DNA repair mechanisms.  As part of the repair process, 

non-homologous end joining can occur, which has a probability of resulting in both loss 

of nucleotides (deletion events) and incorporation of DNA constructs (integration 

events).  There are a variety of enzymes naturally capable of performing these double 

strand breaks and many can be modified to increase or introduce site specificity. 

Cre and FLP recombinase and ΦC31 integrase have long been utilized in this 

capacity29,71,72 and continue to be a popular area of innovation73-76.  Each of these 

enzymes targets genomic regions based on recognition of specific sequences, which 

reduces their flexibility.  Cre recombinase was prolifically utilized in early mouse 

recombineering efforts77, resulting in the development of hundreds of cell lines with the 

loxP targeting sequence integrated at specific sites.  However, extending this effort to all 

mammalian hosts is impractical.  There are several hundred sites that are naturally 

recognized by ΦC31 integrase and this can lead to undesired heterogeneous 

integrations78-80.  While useful in some applications, this characteristic makes ΦC31 

integrase unreliable for site-specific integration at a single, unique locus. Endonucleases 

are another class of enzymes that can be engineered to recognize specific genomic 

sequences and perform cleavages81.   

Zinc finger nucleases (ZFNs) do not require generic targeting sequences and are 

modular in assembly, allowing greater flexibility in their targeting6.  ZFNs facilitate both 

genomic integrations and gene knockouts6.  Custom ZFNs can be ordered through 

companies such as Sangamo BioSciences and have been demonstrated in a variety of cell 

types and applications82, including the rapid and efficient deletion of genes83,84.  

Recently, zinc-finger recombinases (ZFR) were developed by fusing zinc finger domains 

and serine recombinases, and utilized in human cells to deliver reporter genes at specific 
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loci22.  Although this method requires pre-insertion of ZFR recognition sites, DNA 

damage responses are circumvented and thus higher levels of specificity are achieved22.  

Transcription activator-like effector nucleases (TALENs) are also modular in nature and 

can be built to recognize any DNA sequence85,86.  Efficient endogenous deletions87 and 

gene insertions88 were recently demonstrated in human cells using TALEN architecture.  

The type II bacterial CRISPR system has also been engineered to function in conjunction 

with custom RNA sequences to create targeted double strand breaks in human and mouse 

cells89,90.  This approach is more easily adapted than ZFNs or TALENs and targeting 

rates have been demonstrated to be similar or even better89.   

Artificial chromosomes present an alternative technology that does not require 

integration into the host genome.  This technology can support large quantities of 

recombinant DNA and has been demonstrated to generate monoclonal antibody 

expressing CHO cells exhibiting high productivity28.  Human artificial chromosomes 

(HACs), which act as a small, 47th chromosome, can be used to introduce up to 10 

megabases of foreign DNA into host cells91,92.  HACs, however, are only mitotically 

stable for six months and could be subjected to regulation and silencing much sooner.  

The recent discovery of small, circular microDNAs in mammalian tissues represents 

another genetic avenue that could be engineered to complement and extend existing 

transgene expression technologies93.   

These tools collectively provide flexibility and precision in genome editing and 

represent significant improvements over standard practices such as homologous 

recombination or illegitimate integration.  Further innovation and discovery in this area 

will prove to be valuable in the larger goal of predictable mammalian gene expression.   
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1.3 ADVANCEMENTS IN CELL ENGINEERING THROUGH SYSTEMS BIOLOGY 

The advent of high-throughput biology has led to a rapid acceleration in the ability to 

obtain systems-level information about living organisms including genomes, 

transcriptomes, proteomes, metabolomes, epigenetic states, and transcription factor 

binding profiles.  This global information, integrated with computational approaches for 

analysis and model-based prediction, has led to an enormous and transformative 

understanding of biomolecular networks in a field termed ‘systems biology’94.  

Combining these global measurements has led to robust, high resolution information 

about cellular responses and metabolism95.  Recent advances allow dissection of 

apoptotic signals96, elucidation of mechanisms of complex phenotypes97, construction of 

predictive, genome-scale metabolic models98,99, the modeling of complex 

microbiomes100, the cataloguing of complexity through metabolomics101, and the study of 

complex signal cascades102,103.  Collectively, these advancements are driven by the need 

to understand biological systems at the quantitative level, and exemplify the breadth of 

knowledge enabled by systems biology. These examples serve to illustrate the power of a 

top-down approach to understand cellular function and underlying design principles.  

Furthermore, many of these techniques are generic tools and can easily be applied to 

other cellular hosts for which basic gene expression methodologies are available.   

1.3.1 The interplay between recombinant DNA and systems biology 

Successful implementation of systems biology across a variety of biological 

techniques and cellular hosts requires recombinant DNA technology, or the assembly and 

expression of well-characterized, heterologous genetic parts.  Despite being relatively 

young disciplines, important and transformative contributions to biotechnology have 

come from both systems biology and recombinant DNA technology.  However, a new 

age of understanding and advancement lies at the intersection of these approaches, as 
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demonstrated by the recent dramatic increase in the number of studies utilizing 

recombinant DNA techniques in conjunction with systems biology104-111.  The precision 

resulting from this synergy eliminates much of the uncertainty and failure associated with 

biological design and allows for more meaningful conclusions to be drawn from 

experimental studies.  There is much to be gained from the development of models which 

capture ever-increasing biological complexity.  Moreover, the ability to precisely perturb 

these systems will enable further high-resolution insight into biological networks.  Such 

advances hold great promise for deciphering the mechanisms underlying development 

and disease112,113 and will enable further development of versatile, robust, and useful 

organisms for industrial biotechnology.  While sufficient tools are not currently available 

to dissect many of these phenomena in higher eukaryotes like human cells, lower 

eukaryotes can be used to develop appropriate and adaptable methods. 

The merger of recombinant DNA technology and systems biology will provide 

unique opportunities to both study and build cellular function.  Specifically, synthetic 

perturbations can enable higher resolution systems analysis.  In this regard, modifying 

genes via precise, recombinant DNA-enabled control may yield higher-resolution data 

compared with standard, traditional coarse genetic approaches such as gene deletions.  

Higher resolution datasets including causative linkages, cellular localization, and 

controlled regulation are uniquely enabled at this intersection.  This information will 

certainly upgrade the quality of genome scale modeling efforts.  Likewise, cataloging 

cellular interactions can help predict failures of designed synthetic circuits by predicting 

(and avoiding) component cross-talk and interference.  Understanding the global 

interactions and overlap between cellular components can facilitate better design of 

synthetic circuits that can be isolated from endogenous cellular control.  By borrowing 

advances in computational tools to model cellular systems, it will eventually be possible 



 13 

to model and predict synthetic circuit design.  Collectively, these prospective advances 

help mitigate the great complexity and uncertainty currently impeding the study and 

design of cellular systems114. Along this vein, there exist many recombinant DNA 

techniques that can be augmented and improved by utilizing widely available -omics data 

and a systems biology approach.   

1.3.2 The role of codon optimization in host engineering 

One common recombinant DNA technique which could be improved through a 

systems biology approach is codon optimization.  Codon optimization refers to the 

rational redistribution of synonymous codon usage for improved expression of a protein.  

Proteins, which perform nearly all cellular functions, are built from just twenty amino 

acids, designated by a corresponding three base pair codon.  Although there are only 

twenty unique amino acids, there are sixty-one codons, which results in synonymous 

codon usage for eighteen of the twenty amino acids (methionine and tryptophan being the 

exceptions).  Interestingly, the distribution of synonymous codons for a given amino acid 

is not uniform, resulting in both rare and abundant codons.  Furthermore, the preference 

for particular codons throughout the genome varies across all organisms115-117.  This 

species-specific deviation is defined as codon usage bias (CUB)118 and is known to 

influence translational efficiency119.  CUB can be uniquely determined for a given 

organism’s genome or subset of genes, and used for codon optimization of heterologous 

genes116-118.  The traditional approach to codon optimization involves the removal of rare 

codons and replacement with more abundant codons, which often increases non-native 

gene expression116.  To this end, codon optimization has emerged as a popular synthetic 

biology tool to improve heterologous gene expression across a variety of host organisms, 

and has applications in metabolic and cellular engineering116,120,121.   
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Codon optimization of heterologous genes requires a methodology for identifying 

a CUB.  For most organisms, a CUB is determined using the Codon Usage Tabulated 

from GenBank (CUTG)122.  CUTG determines a CUB using all of the annotated protein 

coding genes of the host organism.  This process is easily carried out for any fully 

sequenced organism and is the primary source of codon bias information being used to 

optimize heterologous genes.  Currently, CUTG has CUB information for 35,799 

organisms.  This process can be done commercially by companies including Blue Heron, 

GeneArt and DNA 2.0.  However, although codon optimization is generically applied to a 

variety of cellular hosts, it fails to take into account any systems level information 

previously collected for the host strain or growth conditions. 

There are alternative approaches for determining CUB, including codon 

adaptation index (CAI)123,124, codon bias index (CBI) and the effective number of codons 

(Nc)125.  From these approaches, online optimization programs have been developed and 

are freely available126-128.  Much of the research involving these alternative approaches is 

focused around endogenous gene expression, which greatly limits the utility of the work.  

Furthermore, these alternative approaches have predominantly been explored in 

prokaryotic hosts and there are very few examples of their use in optimizing heterologous 

gene expression.  

While a CUTG approach to determining CUB often results in improved gene 

expression and translational efficiency, this is not always the case.  There are many 

instances where traditional codon optimization does not lead to improved expression 

compared to a wild-type, unmodified sequence129-132.  In fact, in a survey of 44 synthetic 

genes manufactured by Blue Heron, 32% of the “optimized” synthetic genes expressed at 

lower levels than the wild-type, indicating that their algorithms are not ideal for all 

conditions and hosts130.  One possible explanation for this could be that traditional codon 
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optimization neglects to take into account variation in charged tRNA abundance known 

to result from changes in environmental factors including growth condition and cell-

cycle133-135.  Furthermore, despite the fact that much of an organism’s protein coding 

genes are lowly expressed and minimal evolutionary pressure has been present to drive 

efficient natural evolution118,136, the CUTG approach assumes that using all of a 

genome’s protein coding information, as opposed to a subset, provides the best 

information for codon optimization.  These factors suggest that applying a systems 

biology perspective to CUB identification, and subsequently codon optimization, could 

result in a better, more robust methodology for codon optimization. 

1.3.3 Methods for understanding multi-functional proteins 

Another area that would greatly benefit from an approach combining systems 

biology and recombinant DNA technology is the study of multi-functional proteins.  

These proteins often act globally within the cell, impacting hundreds of targets.  

Establishing high-resolution, causative mapping of all protein functions, interactions, and 

cell responses is a critical facet underlying success in genetics, drug discovery, and 

molecular biotechnology137. Some of this work has been done, utilizing methodologies 

including chromatin immunoprecipitation (ChIP)138, ChIP sequencing139 and yeast two-

hybridization140.  Although these approaches can provide useful information, they are in 

vitro techniques and therefore the conditions used are not very representative of a normal 

cell environment.  Many of the proteins we wish to study are multifunctional and contain 

diverse functionalities including protein and DNA interactions and catalytic activity. 

These proteins are often non-essential and act globally in critical roles including 

epigenetic modification, signaling cascades, and transcriptional regulation.  
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The typical approach to studying these proteins in vivo is gene deletion followed 

by characterization of phenotypic changes.  This approach has been demonstrated to 

cause pleiotropic effects that can often lead to misinformation.  This is particularly 

problematic for multifunctional proteins, where it is difficult to directly link one 

particular function of these proteins (such as catalytic activity or a specific protein-

protein interaction) to downstream gene regulation, as knockouts remove the entire 

protein and thus all of its functions, thereby creating an environment for non-natural 

associations or activity compensations that confound data analysis.  In this regard, gene 

knockout studies probe cellular response and compensation, not necessarily precise 

protein function.  Ultimately, this results in the collection of inaccurate information that 

is incorporated into metabolic and systems models.   

Some alternative strategies to gene deletion are available141-146.  The use of 

molecular analogues to competitively inhibit biological function is a commonplace 

technique that allows for controllable or graded activity.  Epigenetic inhibitors include 

nucleotide analogues to inhibit methyltransferase activity147,148 and other small molecules 

such as valproic acid149, butyrates, and hydroxamic acids150,151 to inhibit methylation and 

acetylation.  However, these small molecules are difficult to design de novo, lack single 

target specificity, are limited in their concentration ranges, and often have a lower than 

anticipated response rate151.  In some respect, dominant mutations (a mutant allele that 

acts competitively with the wild-type allele) act as specific inhibitors.  Dominant 

mutations are used in classic genetics to assess gene function, improve tolerances and 

drug resistances152-154 and characterize disease states155-158.   

The development of new synthetic approaches that enable the dissection of 

individual protein functionalities would be useful.  It would enable the discovery of new 

gene targets for proteins of interest, as well as the determination of causative linkages 
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between protein-DNA interactions.  Such a methodology would be implementable and 

useful in a variety of protein classes and eukaryotic hosts and would contribute directly to 

an expansion of systems biology information. 

 

Novel tools are needed for a variety of cellular hosts.  The development of these 

tools enables the production of useful compounds from bio-based processes.  

Furthermore, it facilitates our understanding of cellular interactions and how these 

interactions can be controlled to enable complex phenotypes and regulate disease states.  

With these goals in mind, I have developed novel tools for engineering eukaryotic cells 

using a systems level approach.  Many of these tools are specific to mammalian cells and 

enable more precise, controlled gene expression in this host.  Other tools were developed 

in S. cerevisiae, because we currently lack the technology necessary to robustly explore 

complex phenotypes in many higher eukaryotes.  These tools focus on the development 

of complex phenotypes using systems level information.  Collectively, the tools and 

approaches described herein utilize a systems level approach, improve our ability to 

flexibly engineer eukaryotic cellular hosts, and have many biotechnology and health 

applications.     
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Chapter 2: Evaluating the Influence of Selection Markers on Obtaining 
Selected Pools and Stable Cell Lines using Human HT1080 Cells 

2.1 CHAPTER SUMMARY 

Stable and constitutive gene expression in mammalian cells can be controlled and 

influenced by a variety of genetic elements.  However, the impact of these genetic 

elements has not been fully characterized.  One such genetic element used to isolate 

recombinant populations is a selection marker.  Selection markers are a nearly ubiquitous 

element in mammalian expression cassettes.  While several selection systems exist for 

use in mammalian cell lines, no previous study has comprehensively evaluated their 

performance in the isolation of recombinant populations and cell lines.  Here we examine 

four antibiotics, hygromycin, neomycin, puromycin, and Zeocin, and their corresponding 

selector genes, using a green fluorescent protein (GFP) as a reporter in two model cell 

lines, HT1080 and HEK293.  We identify Zeocin as the best selection agent for cell line 

development in human cells.  In comparison to the other selection systems, Zeocin is able 

to identify populations with higher fluorescence levels, which in turn leads to the 

isolation of better clonal populations and less false positives.  Further, Zeocin-resistant 

populations exhibit better transgene stability in the absence of selection pressure 

compared to other selection agents. All isolated Zeocin-resistant clones, regardless of cell 

type, exhibited GFP expression.    By comparison, only 79% of hygromycin-resistant, 

47% of neomycin-resistant and 14% of puromycin-resistant clones expressed GFP.  

Based on these results, we would rank Zeocin > hygromycin ~ puromycin > neomycin 

for cell line development in human cells.   
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2.2 INTRODUCTION 

Selection markers are known to be a critical part of expression vector 

design159,160.  Several selection markers (and corresponding agents) are widely available 

for mammalian cells; however, their efficacy has not been compared in a single study.  

Previous studies, each acknowledging their variations in stringency and stability for 

different selection agents8,10,25,40, support the need for a direct, unbiased evaluation of 

selection systems.  We chose to examine the performance of four common antibiotics 

(Zeocin, hygromycin, neomycin and puromycin)10,20 that can be utilized in nearly all 

recombinant mammalian cell lines, as resistance is only imparted by a single gene.   

The modes of action of these commonly used antibiotics are quite different.  

Zeocin, a bleomycin analogue, is a small molecule that binds and cleaves DNA.  The 

resistance gene encodes a protein that binds the antibiotic to prevent it from acting on 

DNA.  False positives were shown to be rare but previous studies have suggested that 

Zeocin is not fully detoxified and chronic exposure during prolonged selection could 

cause mutagenesis and adaptive responses in clonal selection161.  Hygromycin is an 

aminoglycoside that kills eukaryotic cells by binding ribosomal components and 

inhibiting translation162.  The resistance gene, which encodes for a kinase that inactivates 

hygromycin via phosphorylation, was first demonstrated for cultured mammalian cells in 

1985 with rare false positive rates162.   Neomycin is also an aminoglycoside and the 

resistance gene has similar kinase activity163.  Although widely used, neomycin has been 

shown to induce changes in global gene expression163.  Puromycin is an aminonucleoside 

that disrupts translation.  Part of the molecule resembles a charged tRNA and is able to 

bind a growing polypeptide chain and prematurely terminate it164,165.  This mechanism is 

not specific to eukaryotes.  Puromycin resistance is conferred by the puromycin N-acetyl 
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transferase (pac) gene natively found in Streptomyces alboniger. Resistance was first 

demonstrated in mammalian cells in 1986 using VERO cells166. Puromycin has also been 

linked to a breakdown of the polysomes165. 

No prior study has tested the efficacy of all of these selection agents in the same 

context and cell lines for a mammalian protein production host.  Specifically, we were 

interested in determining the influence of the selection marker on the quality of selected 

populations, the stability of those populations, and the quality of clonal populations.  We 

chose to focus on two human cell systems, HEK293 and HT1080, which have important 

industrial applications. Although this study was limited to human cell lines, such an 

evaluation could be extended to other cell lines including CHO. 

 

2.3 RESULTS AND DISCUSSION 

In this study, we evaluate the efficacy of hygromycin, neomycin, puromycin and 

Zeocin in the human cell lines, HT1080 and HEK293 on the basis of selected pool 

quality, stability, and success-rate of isolating single cell lines.  To establish the same 

genetic context for this comparison, we created four mammalian expression cassettes that 

were identical in sequence with the exception of the resistance gene (Figure 2.1).  These 

constructs each contain the constitutive immediate-early enhancer CMV promoter, 

followed by the human optimized hrGFP fluorescent reporter gene, and the selection 

marker gene under study.  The wild-type EMCV- IRES was placed between the two 

genes to link their transcription levels.   

2.3.1 Zeocin selection results in pools with highest GFP fluorescence 

These selection markers were first tested on the basis of selected pool quality.  To 

assess this facet, healthy wild-type HT1080 and HEK293 cells were transfected in 
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batches with one of the four linearized plasmids shown in Figure 2.1.  Three days after 

transfection, cells were treated with the respective selection agent at a concentration 

corresponding to the MIC75 level for non-transfected, parental cells as determined 

through experimental trials outlined in Materials and Methods.  These values are shown 

in Table 2.1.   

  Table 2.1: MIC75 values for HT1080 and HEK293 

Selection Marker HT1080 (μg/mL) HEK293 (μg/mL) 
Hygromycin 50 85 
Neomycin 50 170 
Puromycin 0.7 1.0 
Zeocin 70 60 

MIC75 values were determined for two human cell lines, HT1080 and HEK293, and four antibiotics: 
hygromycin, neomycin, puromycin and Zeocin.  These concentrations were used for stable library 
selection, with the exception of neomycin when applied to HEK293 cells.  This library was unable to 
stabilize after more than 40 days at the MIC75 value and the concentration was eventually lowered to 42.75 
μg/mL. 

In order to establish a selected population, each pool was passaged routinely 

under selective pressure until cell viability rose above 90% (roughly lasting until 25 days 

post transfection).  These selected populations, established in duplicate, were profiled for 

fluorescent hrGFP protein expression using flow cytometry.  The percentage of the 

population expressing GFP was determined by comparing fluorescence profiles to that of 

a wild-type control population (auto fluorescence).  



 22 

Figure 2.1: Transgene constructs for comparison of four mammalian selection agent

 
Four transgene DNA cassettes were designed for expression in the human cell lines, HT0180 and HEK293.  
Expression of the GFP and selector genes was driven by the CMV promoter and a single cistron was 
enabled by an IRES site.  A separate cassette was made for each of the hygromycin, neomycin, puromycin 
and Zeocin resistance genes.  Bacterial elements, including the F1 origin of replication and an ampicillin 
marker, allowed for plasmid maintenance in bacteria 

At this early time point in the cell line development process, we find that hrGFP 

fluorescence was not detected in the vast majority of the resistant populations, except the 

HEK293 Zeocin selected population.  It is important to note that these values are in stark 

contrast to the values seen shortly after the transfection where the percent of GFP positive 

cells can be upwards of 70-85% with our transfection conditions.  Thus, despite the 

selection used, a significant fraction of the population had a silenced transgene when it 

became integrated into the genome.  Nevertheless, the Zeocin selected libraries had the 

best fluorescence profiles, with 15.35% of the HT1080 population and 89.8% of the 

HEK293 population exhibiting GFP fluorescence above control values.  This fraction was 

significantly higher than any of the other selection systems (p-value = 0.029 and 0.007 

for HT1080 and HEK293 respectively).  In HT1080, puromycin was the second best 

antibiotic followed by hygromycin with no statistical difference between the two (Figure 

2.2a & c).  In HEK293, hygromycin performed slightly better than puromycin but there 

was no real statistical difference between the two (Figure 2.2a & c). Regardless of cell 
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types, neomycin selection resulted in the lowest percentage of the population expressing 

GFP.  In HEK293, neomycin significantly underperformed both hygromycin and 

puromycin (p-values = 0.046 and 0.034 respectively).   

Figure 2.2: Zeocin selection enables a higher percentage of GFP expression and greater 
stability. 

 
Four stable pools were established in duplicate in both cell lines after transfecting DNA constructs and 
treatment with the corresponding selection agent.  A. In HT1080, the GFP expression levels, as a 
percentage of the total population, were measured using flow cytometry.   
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Figure 2.2 (continued) 

 

 
B. GFP expression was measured for the HT1080 populations with prolonged selection pressure (white) 
and without prolonged selection pressure (grey) using flow cytometry.  C. In HEK293, the GFP expression 
levels, as a percentage of the total population, were measured using flow cytometry.   
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Figure 2.2 (continued) 

 

 
D. GFP expression was measured for the HEK293 populations with prolonged selection pressure (white) 
and without prolonged selection pressure (grey) using flow cytometry.  E. GFP expression profiles of the 
Zeocin population without prolonged selection (red dashed) and with prolonged selection (blue dotted) 
were compared to a wild-type control population (black).  The standard deviations (±) of duplicate trials are 
indicated by error bars in A and C.  A single trial was conducted for the stability analysis (B and D), thus 
error bars are not presented. 
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Based on these results, it is evident that Zeocin selection identifies resistant cell 

pools with a greater percentage of the population expressing GFP, as compared to the 

three other selective markers.  These results strongly support the use of Zeocin as the 

selective agent of choice, as it is likely these improved pools will result in better single 

cell clones (described in later sections). 

2.3.2 Zeocin selection enables the generation of better stable populations 

While the level of enrichment in selected population is an important first aspect in 

cell line development, it is perhaps superseded by the quality of stable, long-term 

expression of transgenes.  Frequently, excision or silencing of the integrated transgene 

can occur over time8, especially when selection pressure is relieved, which results in 

undesirable, decreased expression of a gene of interest.  While previous reports suggest 

that some selection agents contribute to a wide variation in stable expression5,8,10,14,25, no 

previous study has compared these four selection markers simultaneously in a single cell 

line.  Therefore, we sought to evaluate the stability of GFP expression within the selected 

pools identified above.  To do so, each of these pools were split such that one half of the 

pool was cultured under continued selection pressure while the other half was maintained 

without selection over the course of one month (roughly 60 generations).  After the 

month of growth, fluorescent profiles (as determined relative to the auto fluorescence 

signal of a wild-type population) were once again analyzed and compared using flow 

cytometry.   

By comparing the populations subcultured over the month with and without 

antibiotic pressure (either hygromycin, neomycin, puromycin or Zeocin), we observed 

that continued selection generally results in a higher percentage of the population 

expressing GFP, as shown in Figures 2.2b and d, compared with Figures 2.2a and c.  This 
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result is expected since continued selection is known to delay or inhibit excision and 

silencing of transgenic DNA10 and potentially results in gene amplification events.  This 

trend holds for all of the HT1080 populations except puromycin-selected, as shown in 

Figures 2.2a and b.  This effect is particularly prominent for the HT1080 Zeocin selected 

library.  An additional one month of antibiotic pressure increased the percent of the 

population expressing GFP to 59.5% from an original value of 15.35% (Figure 2.2b).  

Hygromycin saw a similar upwards shift from 2.82 to 18.4% and the neomycin 

population shifted from 2.58 to 3.36% GFP expressing.  A similar trend was observed in 

the case of the HEK293 selected populations, as shown in Figures 2.2c and d.  The 

largest observed shift was in the hygromycin resistant population, which shifted from 

7.52% to 37.9% GFP expressing after one month of prolonged selection.  The puromycin 

resistant population shifted upwards from 7.9% to 14.5% GFP expressing, neomycin 

resistant population from 1.07 to 5.14% GFP expressing and Zeocin resistant population 

from 89.8% to 99.3% GFP expressing.   

Furthermore, in the case of the HT1080 Zeocin population, prolonged selection 

resulted not only in an increase in the percent of positive cells with GFP, but also in an 

enhancement of absolute GFP expression level.  The GFP expression profiles of the 

Zeocin-resistant populations (both with and without prolonged selection) are shown in 

Figure 2.2e.  These histograms show a bimodal distribution of GFP expression for both 

conditions; a portion of the Zeocin-resistant populations have low GFP expression and a 

second portion of the population exhibits distinctly higher GFP expression.  This finding 

suggests prolonged selection may result in a further enrichment of gene expression.  

While this can easily be monitored using a reporter protein like GFP, most proteins of 

interest cannot be easily measured.  Therefore, prolonged selection could be 

advantageous prior to single cell cloning. 
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In HT1080 cells, for the majority of the selection systems, removal of the 

selection pressure over the course of the month resulted in a decrease in the percent of the 

population expressing GFP.  In the case of the hygromycin pool, the percentage of the 

population expressing GFP decreased from 2.82 to 0.63%.  Likewise, for neomycin the 

percentage of the population expressing GFP decreased from 2.58 to 0.22% (comparing 

Figure 2.2a to Figure 2.2b).  In contrast, the Zeocin and puromycin selected population 

appeared to be extremely stable with very little loss of GFP expression or intensity 

occurring.  The Zeocin selected pool had a negligible change in the percentage of 

population expressing GFP, going from 15.35% to 15.1%.  Likewise, the mean 

fluorescence levels of these subpopulations within the Zeocin enriched pool remained 

unchanged even in the absence of selection pressure.  Similarly, the puromycin selected 

pool only decreased from 3.94% to 3.29% of the population expressing GFP (comparing 

Figure 2.2a to Figure 2.2b).  This observed stability in the absence of Zeocin selection is 

particularly important in cell line development applications. 

In contrast, for HEK293 cells, the removal of selection pressure for one month 

actually resulted in an increased percentage of GFP expressing cells compared to the 

initial pool.  Comparing Figures 2.2c and d, the hygromycin pool went from 7.52% to 

10.5% GFP expressing, neomycin from 1.07% to 2.34%, puromycin from 3.30% to 

11.5%, and for Zeocin from 89.8% to 98.9%.  This result is unexpected but may be a 

result of increased HEK293 cell health associated with the removal of selection pressure.  

This may especially apply in the case of the neomycin selected population, in which it 

was not possible to establish a stable population at the pre-transfection determined MIC75, 

as mentioned in the Materials and Methods.  In the presence of even lowered 

concentrations of neomycin, HEK293 cells exhibited an unusual cell morphology and 

elevated levels of cell debris.  Collectively, these results highlight the benefit of 
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prolonged selection as well as the differences of the selection markers with respect to 

their efficiency of selection and the stability of resulting pools.   

As a secondary test, RNA was extracted from each of the HT1080 selected 

populations (Figure 2.2a, excluding neomycin) and GFP mRNA levels were measured 

using Real Time PCR.  In the case of HT1080, the hygromycin population had the lowest 

GFP mRNA expression; puromycin had 1.65 times more GFP mRNA expression and 

Zeocin had 3.77 times more GFP mRNA expression.  These results trend closely with 

flow cytometry measurements depicted in Figure 2.2a, which reflect protein expression 

levels.  These results are summarized in Figure 2.3. 

Figure 2.3: Zeocin enables higher GFP expression at the transcriptional level 

 
Whole cell mRNA was extracted from the HT1080 hygromycin, puromycin and Zeocin selected 
populations.  GFP expression levels were determined using RT-PCR and normalized using the comparative 
Ct method and the RPS11 housekeeping gene.  Relative GFP expression levels were observed to be highest 
in the Zeocin selected population, followed by the puromycin and then hygromycin populations.   
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2.3.3 Zeocin selection aids in the identification of stable, enriched GFP expression at 
the clonal level 

The final step in recombinant stable cell line development is the isolation and 

expansion of single cell clones with high level transgene expression.  The impact of 

selection marker on single cell cloning has not been previously addressed, thus we were 

interested in isolating clones from our selected populations and evaluating resulting 

fluorescence levels.  To do so, limited dilution cloning was utilized and cell cultures were 

prepared into 96-well culture plates for each of the four resistant HT1080 populations and 

the HEK293 Zeocin resistant population, as described in the Materials and Methods.  In 

total, six to eight weeks of non-selective culturing was achieved for each clone.  Eighty-

two of the eighty-four single cell clones successfully grew and were expanded and 

evaluated (one hygromycin and one puromycin resistant clone did not survive).  GFP 

fluorescent profiles and mean expression levels were determined using flow cytometry.  

Clones exhibiting fluorescence levels higher than the range exhibited by a wild-type 

population (auto-fluorescence) were determined to be expressing GFP.   Mean 

fluorescence values (in relative fluorescence units) were measured for all clones. 

Table 2.2: Zeocin clones result in no false positives  

Selection Agent  GFP positive clones, count  Total clones, count  
HT1080 Clones 
Hygromycin  11  14  
Neomycin  7  15  
Puromycin  2  14  
Zeocin  15  15  
HEK293 Clones  
Zeocin  24  24  

Between 14 and 24 clones were isolated from stably selected HT1080 populations and the Zeocin-selected 
HEK293 population.  Each clonal population was expanded and GFP fluorescence profiles determined 
using flow cytometry.  Positive GFP expression was compared to an untransfected, wild-type cell line.   
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The results for each set of clones are summarized in Table 2.2.  Comparing the 

clonal populations isolated from each selected library, we see that all of the Zeocin 

selected clones (both HT1080 and HEK293) exhibit GFP expression and there are no 

false positives.  Single cell cloning from each of the other HT1080 populations did result 

in false positives.  Only eleven of the fourteen hygromycin clones (79%) and seven of the 

fifteen (47%) neomycin clones show some GFP expression.  The puromyin selected 

clones performed the worst, with only two of the fourteen clones (14%) having any GFP 

expression. Additionally, the level of GFP expression is important in cloning, and these 

values for clones from each selected population are summarized in Figures 2.4a and b 

with box and whisker plots.  The median fluorescence for each set of HT1080 clones was 

very similar, 111 RFU for hygromycin, 103 RFU for neomycin, 137 RFU for puromycin 

and 150 for Zeocin.  However, the Zeocin selected clones have the largest range (6398 

RFU) and correspondingly four clones with fluorescence above 500 RFU.  None of the 

other HT1080 selected populations (hygromycin, neomycin or puromycin) produced 

clones with fluorescence levels above 150 RFU.  Similarly, for the HEK293 Zeocin 

clones we see a high range (3710 RFU) and all of the clones have fluorescence levels 

exceeding 500 RFU.  Again, these findings are consistent with our previous conclusions 

that Zeocin selection outperforms the three other agents evaluated.  All of these clones 

were expanded over an extended period of time without selection pressure, which further 

illustrates that Zeocin selection can result in a stable, enriched, high-expressing 

populations.     
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Figure 2.4: Zeocin selection identifies better candidate cell lines 

 

 
Single cell clones were isolated from the selected pools.  After expansion, clonal populations were 
examined for GFP expression, with fluorescence data shown in box and whisker plots.  A. In HT1080, 
clones were isolated from all four selected pools.  While median values (x) were similar across the sets of 
clones, the Zeocin clones have a large range of expression, indicative of several highly expressing clones.  
B.  In HEK293, clones were only isolated from the Zeocin population.  The median GFP value was more 
than an order of magnitude higher than in HT1080. 
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Fluorescence of several of the best performing clones (isolated from the HT1080 

and HEK293 Zeocin-resistant pools) are depicted in Figure 2.5.   The best single cell 

clone isolated from the HT1080-zeocin selection population pool (specifically, clone 6 in 

Figure 2.5a) exhibits both high fluorescence (a 2.05 fold increase over transient 

expression) and a unimodal distribution.  All five of the HEK293 clones depicted in 

Figure 2.5b exhibit a unimodal distribution and four have fluorescent levels exceeding 

that of transient expression.  The best HEK293-zeocin clone (clone 5 in Figure 2.5b) has 

a 2.60 fold increase over transient expression.  These results demonstrate that from a 

Zeocin-resistant population, we successfully isolated clones exhibiting high expression of 

GFP and low variance in expression, both characteristics that are desirable in candidate 

cell lines and important characteristics in successful cell line development. 

Figure 2.5: Zeocin-resistant single cell clones exhibit high level, stable GFP expression 
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Figure 2.5 (continued) 

 
The fluorescent profiles for select Zeocin-resistant clones are shown compared to control population (black 
solid).  A. In HT1080, clone 6 exhibits both high GFP expression and a stable, unimodal distribution. B. In 
HEK293, all five depicted clones exhibit high GFP expression and a stable, unimodal distribution. 

 

2.4 CONCLUDING REMARKS 

For the first time in human cell lines, four common selection markers (and the 

corresponding resistance genes) were consistently and comprehensively evaluated on the 

basis of selected pool quality, stability, and resulting single-cell clones.  This study 

clearly demonstrates that compared to the other three selection systems, Zeocin is the best 

selection agent for the establishment of recombinant cell populations in human cell lines.  

We evaluated selection marker performance in both HT1080 and HEK293 cells and saw 
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similar trends regardless of cell type, demonstrating these results are generic to human 

cell lines.   

We have shown that Zeocin is able to identify pools with higher recombinant 

protein expression levels (through GFP fluorescence), which in turn leads to the isolation 

of better clonal populations and less false positives.  Moreover, the Zeocin-resistant 

populations appear to be relatively stable when cultured in the absence of selective 

pressure.  Based on these results, we believe Zeocin would be a good selection agent for 

the identification of high transcription loci throughout the genome.  As a distant second, 

we identify hygromycin as the next best selection agent, followed closely by puromycin.  

Neomycin performed the worst and showed limited success in establishing a stable 

transgenic population in HEK293.  These results strongly suggest that for genetic 

engineering in human cell lines, Zeocin is the best selection agent, and likely a good 

starting point for engineering other mammalian cell types.  Furthermore, this finding 

suggests that antibiotics that work through mechanisms similar to that of Zeocin (the 

bleomycin family, a class of molecules that initiate DNA double strand breaks) could be 

of interest and a useful starting point for the development of better mammalian selection 

systems.    

Finally, we demonstrated that a slightly prolonged selection after cell recovery 

can further increase production levels.  While the establishment of candidate cell lines is 

a time-consuming process, we have demonstrated that the initial choice of a selection 

agent can strongly influence the quality of eventual clonal populations.  This is an 

important finding for the areas of biotechnology and cell line development because 

selection conditions and selective genes are an important component in mammalian 

expression constructs and the establishment of transgenic populations.   



 36 

Chapter 3: Identifying High Transcription Loci in the Human Genome  

3.1 CHAPTER SUMMARY 

Mammalian gene expression and stability are strongly influenced by the genomic 

locus of integration.  Here, we seek to identify productive loci within the human genome 

that will result in stable, high expression of heterologous DNA.  Using an unbiased, 

random integration approach and a green fluorescent reporter construct, we identify ten 

single-integrant, recombinant human cell lines that are stable, high-expressors.  From 

these cell lines, eight corresponding integration loci were identified.  These loci are 

concentrated in both non-protein coding regions and intronic regions of protein coding 

genes.  Expression mapping of the surrounding genes reveals minimal disruption of 

endogenous gene expression.  Finally, we demonstrate that targeted integration at one of 

the identified loci, the 5th intron of the GRIK1 gene on chromosome 21, results in 

superior expression compared to the standard, illegitimate integration approach.  The 

information identified here can be used in conjunction with site-specific genomic editing 

techniques, which are continually advancing, to retarget these advantageous integration 

loci.  Such improvements in site-specific genomic editing techniques can result in 

flexible, predictable and robust cell line engineering which can reduce both the cost and 

time to identify candidate cell lines.   

 

3.2 INTRODUCTION 

One major limitation with mammalian cell hosts is their inability to autonomously 

replicate plasmid DNA.  A long term, stable production cell therefore requires integration 

of heterologous DNA into the host cell genome and the subsequent isolation of a high 

expressing cell line.  This process is time consuming, labor intensive, unreliable and 
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expensive and involves the screening of thousands of potential cell lines8,10-12.  

Advancements that eliminate this screening process would require techniques that enable 

heterologous DNA to be efficiently integrated in a site-specific manner, and the 

identification of genomic sites that support stable, high level expression of foreign DNA.  

These technologies would provide significant cost and time savings in BioPharma cell 

line development, facilitate gene therapy, and function as useful genetic tools in 

mammalian cell engineering11.   

In the past few years, many exciting technologies have been identified that 

facilitate site-specific integration in mammalian cell lines167, often using enzymes to 

execute double-strand breaks at specific sites within the genome.  These breaks then 

increase the likelihood that heterologous DNA constructs will be incorporated into the 

genome during non-homologous end joining (NHEJ) DNA repair168.  Before these 

genome editing tools can be effectively employed however, it is necessary to know where 

to integrate a transgene to ensure high level, stable expression.  Although it is well 

established that integration site is important to expression3,8,10,12,25, limited information is 

available about desirable sites.  Attempts to determine the exact genetic location of 

transgene insertions have been performed in isolated cases for cell lines with interesting 

characteristics63,64,66.  In other cases, specific exonic sites have been targeted and 

evaluated, but this is a biased approach66,169. No unbiased, global study has been 

conducted in human cells to more comprehensively identify loci capable of supporting 

high expression of heterologous DNA.   

Identifying loci suitable for integration is an important step in developing better 

tools for stable recombinant cell lines, especially if these sites can be retargeted70.  This 

study seeks to identify transcriptionally active areas, demonstrate improved expression 

and stability compared to illegitimate integration, and map the surrounding expression 
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landscape.  Studying productive integration loci in the human genome is an important 

advancement that can be coupled with existing technologies to advance our abilities to 

predictably engineer human cell lines.  This work is novel and addresses an unmet need 

at the forefront of human genome and biologics research. 

 

3.3 RESULTS AND DISCUSSION 

3.3.1 Isolation of stable, high expression recombinant cell lines 

Despite advancements in our ability to target integration to specific genomic loci 

and our understanding that integration loci strongly impacts transgene expression levels, 

very little information is known about which sites are advantageous to target.  Industrial 

cell line development is often still conducted through random integration of transgenic 

DNA, followed by a laborious screening process.  Many commercial technologies 

continually exploit a small number of integration loci that have previously been 

demonstrated to be easily targeted, but very little thought is given to the productivity of 

these sites.  Furthermore, only a small number exonic regions of protein coding 

sequences are considered170,171, giving no consideration to the majority of protein coding 

and all non-coding regions of the genome for integration. 
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Figure 3.1: Dual-selection transgene constructs for high expression clones 

 

 
HT1080 cells were transfected with two heterologous constructs, each containing a single promoter and 
IRES to allow for simultaneous expression of two genes that enable dual expression. A. The pIRES-hrGFP 
construct contains the Zeocin resistance gene in the first cistron and a human optimized GFP gene in the 
second cistron.  B. The pHL-GFP contruct contains a GFP gene in the first cistron and the hygromycin 
resistance gene in the second position. 

We sought to conduct an unbiased survey of the human genome to identify 

genomic loci that afforded stable, high-level heterologous gene expression.  As genomic 

integration of recombinant DNA in human cell lines has been shown to be a random 

process aided by native recombination mechanisms61,62, we used a random integration 

strategy with a transgenic reporter construct to remove biases and explore the entire 

genome.  We first established reporter constructs, shown in Figure 3.1, which contain 

both an antibiotic selection marker and fluorescent reporter gene (GFP) expressed with 

the CMV promoter in a single cistron.  The human sarcoma cell line, HT1080, was 

transfected with the pIRES-hrGFP reporter construct (Figure 3.1a), as described in the 

Materials and Methods, and recombinant populations expressing the transgene were first 

identified through Zeocin antibiotic selection.  We used Zeocin as our selection agent 

because previous work had demonstrated its superiority in establishing recombinant 

human cell populations172.  These recombinant populations were initially identified using 

two different Zeocin concentrations: 100 and 250 μg/mL.  At a later point, a Zeocin-

resistant HT1080 population was established with 50 μg/mL selection. Hygromycin-

resistant single cell clones were similarly established by Shire Human Genetic Therapies 
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using the pHL-GFP reporter construct (Figure 3.1b).  Expression of the GFP reporter 

gene was measured using flow cytometry. Each population shows a broad range in 

expression, as designated by high coefficient of variance.  Additionally, the more 

stringent selection at 250 μg/mL identified a population with enriched GFP expression.  

The GFP expression profiles of the recombinant populations established with 100 and 

250 ug/mL are shown in Figure 3.2a.   
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Figure 3.2: Establishing recombinant HT1080 populations 

 

 
HT1080 recombinant populations were selected using both antibiotic resistance (A) and high GFP 
expression (B) as criteria.  A. Antibiotic selection was first applied, using Zeocin concentrations of 100 
(blue) or 250 (red) µg/mL.  The GFP expression of the resultant populations are shown compared to 
untransfected HT1080 (black).  B. FACS Aria sorting was next applied to isolate the top 10-15% of the 
resistant populations.  The GFP expression of the populations following two rounds of FACS Aria sorting 
are shown for the 100 (blue) or 250 (red) µg/mL resistant populations and untransfected HT1080 (black). 
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These recombinant populations established with 100 and 250 ug/mL were further 

enriched using FACS Aria technology to isolate a sub-population expressing GFP at high 

levels.  As discussed in the Materials and Methods, we selected the top 10-15% of these 

Zeocin-resistant populations.  These profiles are shown in Figure 3.2b.  This enrichment 

was performed prior to dilution cloning, which was used to isolate single cells and 

establish homogenous populations.  In order to identify stable clone lines, the expansion 

of single cell clones, which extended over a period of 6-8 weeks, was performed without 

any antibiotics in the media.  After expansion, the transgene copy number was 

determined for each of the clones using a previously established protocol173.  We 

continued to work with ten clone lines in which only a single integration event had 

occurred.  GFP expression of these clone lines was evaluated using both flow cytometry 

to measure protein expression (Figure 3.3a) and RT-PCR to measure mRNA expression 

(Figure 3.3b).  Each of these clones has a stable expression profile and mRNA levels are 

very high relative to the endogenous 40S ribosomal protein, encoded by the RPS11 gene.  

These results indicate that these clone lines represent integration loci that are supporting 

stable, high-level transgene expression. 
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Figure 3.3: Isolated single cell clones exhibit high protein and mRNA expression 

 

 
Ten single cell clonal populations were isolated from the recombinant populations and protein (A) and 
mRNA expression (B) were measured.  A. GFP expression profiles for clonal populations (A-J) were 
measured using flow cytometry and are shown compared to untransfected HT1080 (top).  B. Relative 
mRNA expression of the clonal populations (A-J) was measured by RT-PCR for the first cistron gene.  
mRNA expression levels are normalized to clone F. 
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3.3.2 Determination of high-expression integration loci in the human genome 

After isolating these ten clonal populations, we next sought to identify where in 

the genome the GFP construct had integrated.  Genomic DNA was extracted for each 

clone and a variety of PCR techniques were used to isolate and amplify genomic DNA 

adjacent to the GFP construct.  These fragments were then identified using standard 

sequencing techniques and a BLAST search of the publicly available genome sequence.  

Each integration site was re-confirmed through a positive PCR reaction in which a primer 

specific to the GFP construct and a primer matching the amplified, genomic sequence 

were used together.  The details for these confirmations are included in Appendix B for 

each clone. 

Identification of these integration events would be greatly aided by high-

throughput sequencing techniques.  However, given the size of the human genome, this is 

an expensive approach.  Therefore, we employed a variety of low throughput 

methodologies, including TAIL PCR, inverse PCR and plasmid recovery.  Each is 

explained in the Materials and Methods.  Using these approaches, we were able to 

identify the integration loci of our ten GFP-expressing clone lines.  These integration 

sites are summarized in Table 3.1.  We see that these integration loci are distributed 

throughout the human chromosomes.  Interestingly, none of the integration sites are in 

exonic regions of protein coding genes.  We do see three integration events into intronic 

regions.  Although not previously explored, it makes sense that intronic regions afford 

high-level expression because of their proximity to promoter and transcription factor 

binding sites.  In many cases, however, we see that integration events have occurred very 

far from the nearest protein-coding regions.  This is a surprising result and clearly 

demonstrates that regions outside of protein-coding sequence are hospitable towards 

heterologous gene expression.   
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Additionally, we identified two integration sites through duplicate, independent 

integration events.  Clones I and J both arose from integration into the 5th intron of the 

GRIK1 gene on chromosome 21.  Clones A and B both arose from integration into an 

unplaced genomic contig.  Unfortunately, very little information is available about this 

genomic contig, including its chromosome, because this is a region of high redundancy 

that has not yet been resolve.  Of these ten clones, the highest expresser (from mRNA 

measurements, Figure 3.3b), was integrated on chromosome 14 in the IGHG2 gene.  This 

region of the genome is rich in immunoglobulin proteins, which are closely spaced.  

Table 3.1: High transcription loci are distributed throughout the genome 

Clone Chromosome Intron Nearest gene Nearest gene function 
A Unknown  Unplaced genomic 

contig (3980 bp) 
 

B Unknown  Unplaced genomic 
contig (3980 bp) 

 

C 18 26 DCC Netrin 1 receptor 
D 5  SEMA6A, 31kb 

downstream 
Transmembrane domain 

E 4  SPINK2, 9kb upstream Serine peptidase inhibitor 
F 15 1 SV2B Synaptic vesicle glycoprotein 
G 7  SEMA3A, 78 kb 

upstream 
Secreted neuronal protein 

H 14  IGHG2 Immunoglobulin heavy 
constant gamma 2 

I 21 5 GRIK1 Glutamate receptor, neuronal 
J 21 5 GRIK1 Glutamate receptor, neuronal 

From ten stable, high expressing clones we identified eight integration loci using PCR-based low 
throughput methodologies.  Each site was confirmed using primers matching the transgene and genomic 
locus, which produced a positive band but lack of band with wild-type gDNA.  Each locus is discussed in 
detail in Appendix B. 

3.3.3 Expression mapping reveals minimal disruption of endogenous gene 
expression 

Next, we sought to determine what we could learn from these integration sites that 

may guide rational identification of future integration loci.  In particular, we examined 
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the expression profiles of surrounding protein coding genes.  We were interested in 

benefits to transgene expression provided by the surrounding genomic DNA, as well as 

perturbations that may be caused by integration.  Perturbations are specifically important 

in gene therapy applications, where ‘harmless’ integration loci must be chosen such that 

surrounding cancer related genes are not impacted65. Previous studies have indicated 

cases where integration events caused no impact to surrounding genes, as well as cases 

where it resulted in an undesirable phenotype66,174.   

Expression levels of protein coding genes were determined using RT-PCR 

conducted with whole cell RNA, as described in the Materials and Methods.  Expression 

of each gene was compared to RPS11 for both the GFP positive clone and wild-type 

HT1080.  The resulting expression maps for all clones (excluding those integrated in the 

unplaced human genomic contig for which no information is available) are shown in 

Figure 3.4.  Universally, we see that for protein coding sequences distantly located from 

the site of integration, there is no expression difference between the wild-type and GFP 

positive clone.  This indicates minimal expression perturbation caused by transgene 

integration and agrees with other findings that transgene integration does not impact 

neighboring gene expression66.  Negligible invasion of endogenous expression can be 

observed for clones C, E, F, and I in Figures 3.4a, c, d and g.  In a few cases, we see 

changes in expression of endogenous genes closest to the integrated transgene.  For clone 

D (Figure 3.4b), expression in the GFP positive clone of SEMA6A is elevated compared 

to a wild-type gene.  This could be caused by the presence of the strong CMV promoter 

in the integration cassette, which would recruit transcription factors to the region. 
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Figure 3.4: Expression maps for protein-coding sequences surrounding integration loci 

 
Using RT-PCR and whole-cell RNA, mRNA expression was determined for the integrated transgene and 
surrounding protein-coding genes.  Fold change in mRNA expression was measured relative to RPS11, an 
endogenous gene.  The black arrow indicates the promoter direction for the transgene.  Error bars indicate 
standard deviation from RT-PCR triplicates.  A. mRNA expression profile for clone C on chromosome 18, 
including the transgene and endogenous genes DCC, MBD2 and uncharacterized locus 100287225.   
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Figure 3.4 (continued) 

 

 
 
B. mRNA expression profile for clone D, integrated on chromosome 5, including the transgene, AQPEP, 
COMMD10, SEMA6A and DTWD3.  C. mRNA expression profiles for clone E, integrated on 
chromosome 4, including the transgene, ARL9, SPINK2 and REST.   
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Figure 3.4 (continued) 

 

 
D. mRNA expression profile for clone F, integrated on chromosome 15, including the transgene and 
endogenous genes VPS33B, SV2B and SLCO3A1.  E. mRNA expression profile for clone G, integrated on 
chromosome 7, including the transgene, SEMA3E, SEMA3A, and SEMA3D.   
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Figure 3.4 (continued) 

 

 
F. mRNA expression profile for clone H, integrated on chromosome 14, including the transgene, 
TMEM121, IGHA2, IGHG2 and ADAM6.  G. mRNA expression profiles for clones I and J integrated on 
chromosome 21, including the transgene and endogenous genes BACH1, GRIK1 and CLDN8.   



 51 

With the exception of the integration site for clone E, we see that expression of 

the transgene is significantly elevated relative to the surrounding genes, which in most 

cases are lowly expressed.  However, in the case of the clone E integration event (Figure 

3.4c), which is 9kb downstream of the SPINK2 gene, we observe that SPINK2 

expression exceeds that of the transgene expression.  In this case, we hypothesize that the 

transgene is piggy-backing off of endogenous gene expression, which is creating a 

hospitable expression environment.  The orientation of the transgene, which matches that 

of SPINK2, further supports this.  Again, clone D (Figure 3.4b) may be benefitting from 

the highly expressed, adjacent COMMD10 gene.  Although it is 119kb from the 

transgene, the promoter of the COMMD10 gene and GFP construct are similarly 

oriented.   
 

3.3.4 Site-specific targeting of Grik1 intron 5 demonstrates superior transgene 
expression 

Finally, we sought to demonstrate the impact of combining the high-transcription 

loci identified here with site-specific genomic targeting techniques.  As an alternative to 

random integration followed by tedious and resource-intensive clonal screening, we can 

use pre-existing technologies to initiate double-strand breaks (DSBs) at these 

advantageous loci and efficiently deliver a transgenic construct to that site.  Although 

many technologies exist to perform these DSBs, we utilized the CRISPR system, which 

was recently demonstrated to be a flexible, highly efficient method for mammalian 

genome editing89.  This method combines the Cas9 protein with an editable crRNA-

tracrRNA fusion transcript to site-specifically cleave DNA. We selected the 5th intron of 

the Grik1 gene on chromosome 21 as the target of choice.  We were interested in 

replicating this integration site because of the high mRNA expression we observed in 
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clones I and J, as well as the independent occurrence of two clones with the same 

integration locus.   

Tests were conducted in both HT1080 and HEK293 cells.  Control cells were 

transfected with a mammalian expression cassette containing both hrGFP and Zeocin 

driven by the CMV promoter (Figure 2.1) and the hCas9 plasmid, which encodes for the 

cas9 protein.  Because these reactions lacked targeting sequence, they function as 

illegitimate integrations.  

Additionally, two targeted integrations were performed in which a guide RNA 

(gRNA) construct was transfected with the hCas9 and hrGFP cassettes.  The gRNA 

encodes a crRNA-tracrRNA fusion transcript driven by the U6 polymerase III promoter 

and can be modified to include a specific 23 nucleotide region of homology.  We 

designed two distinct gRNA constructs specific to our locus of interest, named Grik1A 

and Grik1B.  Both were selected to minimize off-targeting effects using the criteria 

outlined by previous researchers89.  The Grik1A construct contains the targeting sequence 

GCTATTTTAGATATATAGCAAGG and was designed to cut within the previously 

identified integration locus.  The Grik1B construct contains the targeting sequence 

GTGGGGGTTATACCACTCGTAGG and was designed to cut 65 base pairs away from 

the previous site.  Seventy-two hours after the transfection event, cells were subjected to 

selection at MIC75 levels until viability recovered to greater than 90%.  The heterogenous 

populations were then evaluated for both mRNA and protein expression.  Flow cytometry 

was used to evaluate GFP protein expression and RT-PCR was used to determine mRNA 

expression levels. 
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Figure 3.5: Targeted integration into the Grik1 loci results in elevated transgene 
expression 

 

 
A mammalian expression cassette expressing GFP and Zeocin was transfected into HT1080 cells in a 
random (control) and targeted fashion (Grik1A/B) using the CRISPR system.  Following antibiotic 
selection, heterogeneous populations were evaluated.  A. Flow cytometry was used to measure mean GFP 
expression (black) and RT-PCR was used to determine transcript levels (gray).  Error bars reflect the 
standard deviation of RT-PCR technical triplicates. B. A sub-population expressing GFP at high levels was 
gated for and used to estimate Grik1 targeting efficiency.  This sub-population is 4.18% of the total Grik1B 
population, shown here. 
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Compared to the control, the targeted transfections in HT1080 resulted in 

increased GFP expression levels.  A FACS Fortessa was used to evaluate 10,000 cells 

from each population.  The mean fluorescence of the Grik1A targeted population was 

1.52 fold higher than the control population and the Grik1B targeted population was 2.09 

fold higher.  We also evaluated mRNA expression levels of the integrated construct using 

RNA extracted from the control populations as well as the Grik1A and B targeted 

populations.  Although we observed no difference in transgene transcripts levels between 

the control and Grik1A targeted populations, we did see 2.39 fold higher transcript levels 

in the Grik1B targeted population, which aligns closely with our GFP expression data.  

These results are summarized in Figure 3.5a. 

Using flow cytometry, the expression profiles of the selected populations were 

examined.  Both the Grik1A and Grik1B targeted populations contained a clear, sub-

population with very high GFP expression in the upper region of the histogram.  We 

believe this sub-population represents successful Grik1 integration events.   This sub-

population is shown for Grik1B in Figure 3.5b.  Gating for these events, we calculated 

that 2.29 and 4.18% of the total population for the Grik1A and B cases respectively fall in 

this region.  In the control case, less than 1% of the population is in this region.  Based on 

these results, we estimate that our targeted integration efficiency is 2-4% depending on 

the gRNA construct used and the Grik1B construct is more efficient than the Grik1A 

construct.  These efficiencies, as well as variation between constructs, are similar to 

previously reported values for other human cell types89.   

No enrichment of the HEK293 targeted populations was observed using either 

flow cytometry or RT-PCR.  This is likely a result of low transfection efficiencies for this 

cell line (less than 30%).  We are currently optimizing a protocol to alleviate this 

bottleneck before proceeding with additional experiments in HEK293. 
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Collectively, the results in HT1080 cells confirm that the Grik1 integration locus 

supports high level expression of heterologous DNA.  Furthermore, the targeted 

populations we evaluated are heterogeneous and we expect a much larger expression 

difference on the clonal level.  We are currently isolating single cell clones to carry out 

this comparison.  In measuring both transcript and GFP levels of the mixed populations, 

we observed more than a two-fold increase in expression in targeted populations 

compared to random integration.  However, in examining the sub-population which we 

believe includes Grik1 integration, we see more than an order of magnitude increase in 

expression levels.  These results clearly demonstrate the advantage of targeted integration 

in cell line development and can be combined with other approaches, such as gene 

duplication, to achieve further increases in protein expression.   

 

3.4 CONCLUDING REMARKS 

Here, using an unbiased, random integration approach, we identify ten 

recombinant human cell lines with stable, high-level heterologous gene expression.  Each 

was confirmed to have a single copy of the transgenic cassette.  Using low-throughput 

methodologies, we have identified the corresponding integration loci, which occur in 

intronic regions of protein coding sequences and non-protein coding regions.  These 

results indicate the importance of non-protein coding regions for heterologous gene 

expression, despite the fact that previous studies have focused exclusively on exonic 

regions.  Expression maps for each integration loci demonstrated that in most cases, 

negligible perturbation has been caused to surrounding genes. This is an important 

observation that suggests that many of these identified loci good have gene therapy 

applications65.  Finally, we demonstrate that targeted integration at one of the identified 
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loci, the 5th intron of the GRIK1 gene on chromosome 21, results in superior expression 

compared to the standard, illegitimate integration approach.  Although locus of 

integration is well known to influence gene expression, little effort has been made to 

identify desirable loci.  This work demonstrates that desirable genomic integration sites 

can be identified for human cell lines.  Furthermore, coupling this information with site-

specific genomic editing techniques, which are continually advancing, is advantageous to 

cell line development.  Retargeting these advantageous integration loci can significantly 

reduce the time, labor and materials associated with cell line development.  Additionally, 

this approach can be extended to other mammalian cell lines used for industrial protein 

production, including CHO and NS0.  This is an important finding for the areas of 

biotechnology and cell line. 
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Chapter 4: Exploring the Cre/lox System for Targeted Integration into 
the Human Genome 

4.1 CHAPTER SUMMARY 

Once productive integration loci have been identified for mammalian cell hosts, it 

is important to be able to efficiently target recombinant DNA to those sites.  A variety of 

site-specific genomic editing techniques are being developed that enable these precise 

manipulations.  Cre recombinase is a genome editing tool suitable for site-specific 

integrations in mammalian genomes. This enzyme is commonly used for deletions and 

insertions in the mouse genome and has been extended to other model organisms 

including CHO and human cells.  Despite its utility, the efficiency of transgenic 

swapping events compared to excision remains limited.  Here we sought to identify 

important parameters and limiting factors that influence swapping propensity in this 

system, especially when using one wild-type loxP site.  To modulate and increase the 

occurrence of swapping events, we identify two novel parameters.  First, we identify the 

loxFAS-loxP pairing, a sequence never before used in mammalian systems, as the best 

choice for increasing swapping events in human cell lines.  Second, for the first time we 

implicate the importance of delayed introduction of Cre DNA for optimal swapping 

efficiency.  This same modification could potentially be of use to other systems 

catalyzing trimolecular reactions such as ΦC31 integrase and FLP recombinase where we 

hypothesize that transport of the exchange cassette is likewise initially rate limiting.  The 

total number of recombination events, but not the ratio of swapping to excision, was 

found to be influenced by the quantity of Cre DNA transfected.  Through this study, we 

obtain Cre-mediated swapping frequencies of 8 to 12% without antibiotic enrichment, 

which represents nearly an order of magnitude increase over prior reports in literature.  
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4.2 INTRODUCTION 

Integrases and recombinases are widely-used DNA-modifying enzymes that 

enable site-specific genome modifications in many hosts including mammalian cells.  

These enzymes, including Cre recombinase175, facilitate genome editing functions such as 

deletions, insertions, inversions and exchanges based on recognition of short, palindromic 

sequences that are typically integrated into the host’s genome176.  These enzymes can be 

used to specifically retarget productive genomic loci in contrast to current practices that 

rely on randomly sampling the genome each time a stable cell line is desired.  While 

many such enzymes have been utilized in mammalian cells, Cre recombinase is the most 

popular in the literature and thus the focus of this study.  Cre recombinase has several 

distinct advantages: it does not require protein factors177, has high expression in 

mammalian systems80, is more efficient than both FLP recombinase178 and ΦC31 

integrase179, and pseudo Cre recognition sites (loxP) do not interfere with recombinase 

activity in the mammalian genome180.  Despite the fact that Cre recombinase is one of the 

most widely-used tools for precise, site-specific editing of mammalian genomes, its 

efficiency for transgene swapping and integration still remains limited77,181.   

Cre recombinase can mediate both intramolecular (excision or inversion of DNA 

fragment) and intermolecular (exchange of two DNA fragments) recombination77. Cre 

recombinase natively recognizes the loxP site, a thirty-four base pair palindromic 

sequence with an 8-base pair asymmetric spacer region77,80,181-185, and acts upon the 

neighboring DNA sequences. Intermolecular recombination, often the desired outcome 

and hereafter referred to as ‘swapping,’ is accomplished by translocation between two 

DNA fragments with corresponding lox sites80,186. In contrast, intramolecular 

recombination, hereafter referred to as ‘excision,’ is the preferred function of Cre 



 59 

recombinase181 and involves removal of genetic material between two lox sites.  Of these 

two functions, Cre-mediated swapping is desirable for site-specific integration and is the 

focus of this study.   

Cre recombinase was first recognized as a mammalian genome editing tool in 

1988175.  Since then, adaptations have expanded the utility of the Cre/lox system in 

mammalian cells beyond mouse cell lines181,183-185,187,188 to include Chinese Hamster 

Ovary (CHO)189, flies190, pig191 and human cells192.  Prior work has developed engineered 

variants with optimized performance in both CHO193 and mouse cells188.  Through 

protein engineering, variants able to recognize new target sequences have been 

developed194,195. Other studies have evaluated the impact of transfection methods and 

absolute amount of transgene DNA on recombination efficiency192. Many efforts to 

improve the preference of the Cre/lox system for swapping have focused on altering the 

lox site sequence. The use of mutated lox sites can significantly reduce excision and 

increase swapping efficiency182,183,185,192, and have been tested for gene integration in 

vitro196,197.  However, many applications still utilize at least one copy of the wild-type 

loxP site, often as an artifact of pre-established cell lines187. 

Despite improvements to the Cre/lox system, the frequency of targeted swapping 

still remains lower than desired and varies significantly with genomic site of 

interest184,187.  Prior to antibiotic selection, Cre recombination typically results in site-

specific targeting at frequencies of less than 1% of cells surviving transfection77,181.  

Furthermore, while many studies examine individual parameters influencing Cre-

mediated intermolecular recombination, there is a surprising lack of research evaluating 

the parameters simultaneously for improving swapping efficiency.  In this study, we 

sought to better understand Cre/lox swapping by examining multiple mutant lox pairings, 

relative and absolute amounts of transgene DNA, and timing of transfections.   
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4.3 RESULTS AND DISCUSSION 

4.3.1 Evaluation of mutant lox sites for improved swapping efficiency  

Heterologous lox site pairings have previously been shown to improve swapping 

efficiency77,80,182,184,185 and reduce excision198, whereas the loxP-loxP pairing results 

almost exclusively in excision events. While several combinations of mutant sites have 

been tested in vivo using bacterial182 or mouse cells185, we were interested in determining 

an optimal pairing for use in human cell lines.  Three mutant lox sites were paired with 

wild-type loxP for this experiment: lox2272, lox5171 and loxFAS (Figure 4.1). The 

lox2272 and lox5171 are frequently used variants each containing two mutations in the 

spacer region and have previously been shown to have a higher efficiency for swapping 

compared to a lox site with a single mutation183. The loxFAS sequence occurs natively in 

S. cerevisiae and contains 8 mutations compared to wild-type loxP. To date, loxFAS has 

rarely been utilized in Cre recombination despite one in vivo phagemid study suggesting 

that 99.8% of excision was lost when paired with loxP182. This work represents the first 

functional test of this mutant site in a mammalian cell system. 

To evaluate the impact of these pairings on Cre-mediated swapping rates in 

human cells, we utilized a dual fluorescent screening system. Specifically, this assay 

facilitates detection of excision that cannot be assessed using standard antibiotic selection 

techniques.  This screen was validated through the use of a Southern Blot for one of the 

clones and resembles a similar approach previously used to identify successful RMCE 

events199.  
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Figure 4.1: Mammalian expression vectors for dual fluorescent screen 

 

 
 
Two mammalian expression vectors were constructed: A. The pIRES-hrGFP vector contains a Zeocin 
resistance gene and human optimized GFP gene, both under the control of the CMV promoter and flanked 
by a mutant lox site preceding the promoter and loxP site following the GFP gene. B. A Strawberry 
construct is similarly flanked by a mutant and wild-type lox site. C. The lox2272 and lox5171 sites both 
contain two mutations localized to the asymmetric, 8 base pair spacer region (underlined) of the lox 
sequence.  The loxFAS site contains 8 mutations, with the majority of the spacer region being altered, as 
well as two mutations to the palindromic region of the sequence. 

First, we constructed the pIRES-hrGFP vector (Figure 4.1). The operon is flanked 

on both sides by a mutant lox site and a loxP site, and was randomly integrated into the 

HT1080 genome.  Based on its superior performance in HT1080 populations, the Zeocin 

selection marker was used.  Cells were treated with Zeocin and subjected to single cell 

cloning.  In total, clones from 3 distinct libraries were selected to cover the 3 mutant lox 

sites used in this study (FAS, 2272 and 5171). We surveyed multiple clones for each lox 

site, allowing us to deconvolute the importance of integration site and lox sequence on 

recombination efficiency. Collectively, 5 clones from the loxFAS pool, 5 with lox5171, 

and 8 with lox2272 sequence were selected to test swapping and excision efficiency. 
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Figure 4.2: A dual fluorescent screen to determine Cre-mediated swapping and excision 

 

 
An example of flow cytometry patterns for the dual fluorescent screen are shown here.  A. Prior to 
transfection with the Strawberry construct, high levels of GFP expression are seen (most cells in Q1) and 
the non-fluorescent population is small (Q4).  B. After transfection with the Strawberry construct and Cre 
vector, a portion of the population expresses the Strawberry protein (Q2 and Q3).   

A 

B 
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Figure 4.2 (continued) 

 

 
C. A flow chart illustrates how swapping and excision frequencies were measured.  D. A southern blot was 
conducted on clone R (described in Materials and Methods) to validate the dual fluorescent assay and 
demonstrate swapping. Digested DNA was loaded in the following order: GFP positive (1), Strawberry-
expressing sorted population (2), Strawberry and GFP-expressing, sorted population (3), and GFP positive 
clone R transfected with the Strawberry construct but no Cre recombinase (4).  The left half of the 
membrane was exposed to the mStrawberry probe, and the right half to the GFP probe.  The two bands 
present for samples 1, 3 and 4 on the right indicate two integrations of the GFP construct.  The prominent 
band for sample 2 on the left (and lack of the equivalent band on the right) indicates site-specific swapping 
of the fluorescent constructs.     
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A second transgene construct containing the Strawberry gene (Figure 4.1) was 

used to visualize recombination events in 18 GFP-expressing cell lines. Specifically, we 

attempted to replace the GFP construct with the Strawberry construct bearing the same 

lox site combinations for each clone. Clones underwent a co-transfection using 30μg of 

Strawberry construct and 5μg of Cre construct, and swapping and excision rates were 

simultaneously measured using a dual fluorescent screen (Figure 4.2). The reported 

values correct for false positives using a control reaction, conducted for each cell line and 

condition (Figure 4.2). This dual fluorescent assay was validated for site-specific 

swapping activity in one clone using a Southern Blot and P32-labeled probes specific to 

the GFP and Strawberry genes (Figure 4.2). In particular, these results suggest that, even 

for a cell line with multiple integrations, the cell population in quadrant 3 represents site-

specific swapping. Moreover, under the conditions of this study, random integration is 

negligible and the dual fluorescence region (quadrant 2) was a result of transient 

expression of Strawberry. We conjecture that the presence of a single Strawberry band 

indicates that clone R contains only one full (or functional) copy of the GFP construct, 

and the second integration could contain mutations or be lacking one of the lox sites 

necessary for targeting.  In the absence of a swapping target, transfection of Cre vector 

alone results exclusively in excision (Figure 3).   
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Figure 4.3: Without a swapping target, Cre recombinase results exclusively in excision. 

 
Excision was measured for 6 different cell lines representing three lox pairings in duplicate.  GFP 
expressing cell lines were transfected with 10 µg of a Cre recombinase vector and compared to 
untransfected cell lines 72 hours later.  In the absence of a swapping target, Cre recombinase results 
exclusively in excision, which varied from 5-20%.   

Significant variation was seen in clone-to-clone swapping and excision efficiency 

(Figure 4.4) indicating that integration locus impacts the accessibility and effective 

activity of Cre recombinase. This result echoes prior work demonstrating that chromatin 

state can influence recombination efficiency175,184. Despite this variation, the loxFAS-

loxP pairing exhibited statistically significantly higher swapping efficiency compared to 

either the lox2272-loxP (P<0.05) and lox5171-loxP (P=0.05) pairings. Under these initial 

test conditions, the loxFAS-loxP pairing had a median swapping efficiency of 2.35%, 

whereas the lox2272-loxP and lox5171-loxP pairings have median efficiencies of 0.44 

and 1.01% respectively (Figure 4.4). Excision efficiencies had a similar trend with 

median values of 9.21, 1.43 and 3.25% for the loxFAS, lox2272 and lox5171-loxP 

pairings respectively (Figure 4.4). These results implicate the loxFAS site as a novel 



 66 

mutant site for mammalian cell recombination. Moreover, it demonstrates that heavily 

mutated lox sites can potentially be more efficient than sites closer to wild-type sequence. 

On the basis of these statistically higher recombination frequencies, we selected the 

loxFAS-loxP pairing for further study.   

Figure 4.4: Swapping and excision rates for three mutant lox-loxP pairings. 

 
Box and whisker plots are used to depict the distribution of swapping and excision efficiencies measured 
using 18 different cell lines, 8 containing a lox2272 site, 5 containing a lox5171 site and 5 containing a 
loxFAS site. A. Swapping efficiencies varied significantly regardless of mutant lox site, indicating the 
importance of integration locus on site accessibility.  Despite variability, loxFAS exhibited statistically 
significant (P<0.05) higher swapping than lox2272.   
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Figure 4.4 (continued) 

 
B. A similar trend was observed regarding excision efficiencies, with loxFAS statistically outperforming 
both lox2272 and lox5171 (P<0.05).   

4.3.2 Sequential introduction of target DNA and Cre increases swapping efficiency 

In nearly all prior reports, the Cre vector and swapping cassette are co-transfected, 

resulting in lower than desired swapping and high levels of excision. Mechanistically, a 

swapping event requires both Cre recombinase and a target cassette (here, Strawberry 

construct) to be present at the chromosomal integration locus of the first cassette (here, 

GFP construct). From a probabilistic standpoint, this three-body event is less likely to 

occur than excision, which only requires Cre recombinase to interact with the integrated 

cassette. Cre recombinase is known to be actively transported to the nucleus80,200 and is 

relatively small in size, thus, we hypothesized that transport of the Strawberry construct 

was limiting swapping efficiency. This tri-molecular mechanistic problem is not limited 

to Cre recombinase, and applies generically to all integrases, recombinases and 

transposons performing transgene swapping at a specific locus. For these reasons, we 
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examined the impact of a sequential transfection scheme in which the target DNA was 

transfected first to allow more time for nuclear transport prior to introduction of Cre 

recombinase. Twenty-five μg of linear, Strawberry construct (bearing the loxFAS-loxP 

pairing) was transfected at time zero, followed by 5μg of the Cre vector at a later time 

ranging from 0 to 83 hours. Swapping and excision efficiency were measured as a 

function of transfection gap time and compared to a control (Figure 4.2c).   

We observed that delaying transfection of the Cre vector, and therefore Cre 

recombinase expression, increases swapping efficiency (Figure 4.5). While we believe 

this phenomena applies generically to any lox pairing, we chose to study the impact of 

delayed introduction of Cre with two loxFAS clones in an effort to achieve the highest 

possible swapping efficiencies. The experiments indicate an optimal time of 18 to 24 

hours between transfections, where swapping efficiencies could be increased from a 

median of 2.35% to values between 8.2 and 12.3%, all without antibiotic selection. We 

also observed the lowest efficiencies when the Cre vector and Strawberry construct were 

co-transfected, strongly indicating that a time delay of Cre addition (even as great as 83 

hours) improves swapping.  This is an important observation, and suggests that for 

optimal results, a swapping cassette and Cre vector should not be simultaneously 

introduced.  

We observed that swapping is controlled by two regimes: an early, linear phase in 

which we hypothesize transport of the exchange cassette is limiting, and a later, 

logarithmic decay phase in which DNA degradation and dilution due to cell divisions 

dominate. We tested two separate cell lines, and following maximal swapping, observed 

the same decay constant (-4.76 ± 0.14 1/hr).  This indicates a conserved rate process 

within the cell (namely, growth dilution and DNA/protein decay).  The rate of swapping 

during early times, however, varied between the two samples (0.19 and 0.55% 
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swapping/hr). This variation in slope reflects the variation in swapping efficiency 

expected at different chromosomal loci.  A higher initial swapping rate in this linear 

phase likely indicates a more accessible chromosomal location.  These observations are 

shown in Figure 4.5 for two cell lines.   

Figure 4.5: Delayed introduction of Cre DNA improves swapping efficiency. 

 
The impact on swapping of delayed transfection of Cre DNA was measured for two loxFAS clones (A, B). 
In both cases (○ = R, ∆ = Q), maximal swapping efficiency occurs between 18 and 24 hours.   
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Figure 4.5 (continued) 

 

 
C. Total recombination (excision and swapping) was measured as a function of delayed transfection of Cre 
DNA.  While total recombination is relatively constant, the proportion of swapping to excision decreases 
with time.   
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We also examined total Cre recombination events (excision and swapping 

together), compared to time between addition of the Strawberry construct and Cre vector 

(Figure 4.5). Total recombination efficiency was relatively constant for each cell line 

with a median value of 14.4%. This indicates that while the propensity for swapping 

versus excision activity can be influenced by sequential transfection, the total Cre activity 

is fixed for a specific amount of Cre vector transfected. As time between transfections 

increases, the ratio of swapping to excision activity decreases, likely due to degradation 

of the Strawberry construct and dilution by cell divisions.   

4.3.3 Modeling the delayed introduction of Cre DNA to improve swapping efficiency 

Based on these heuristic experimental observations, we developed a mathematical 

model that captures both the initial, linear time dependence in which swapping efficiency 

increases, followed by the later, logarithmic decay of swapping efficiency. This behavior 

can be mathematically described: S = At + Bln(t) + C where S is swapping efficiency, t 

is time between the two transfection events (in hours), and A, B and C are constants. 

These parameters are cell line specific and using best fit analysis, we determined these 

values for one cell line with a loxFAS-loxP pairing, for which A is -0.164, B is 3.593 and 

C is 1.284. This model of time-dependent swapping is shown in Figure 4.6 compared to 

corresponding experimental data.   
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Figure 4.6: Time-dependent swapping behavior can be mathematically modeled. 

 
This behavior can be mathematically described, where swapping, S = At + Bln(t) + C.   For one cell line 
(○), these parameters were fit as S = -0.164 t + 3.593 ln(t) + 1.284 and are shown compared to 
corresponding experimental data.   

4.3.4 Determining the optimal ratio of Cre and target DNA 

There is evidence that in the absence of a lox target site, expression of Cre 

recombinase can cause chromosomal rearrangements and DNA damage180,182, thus using 

minimal amounts of Cre is desirable. This motivated us to examine the impact of the ratio 

of swapping cassette to Cre expression vector. To evaluate this phenomenon in the 

sequential transfection setting, 25μg of the Strawberry construct was transfected at time 

zero, and 23 hours later, the Cre vector was transfected in amounts ranging from 1 to 16 

μg. Swapping and excision efficiency were measured and are shown in Figure 4.7. We 

observed that both increased linearly with the amount of Cre transfected.  This 

phenomenon is likely due to increased Cre recombinase transfection and expression 

efficiency.  Interestingly, the rate of increase in swapping efficiency does not exhibit site 
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dependence, as both cell lines have a rate of approximately 0.35% recombination per μg 

Cre transfected. Excision efficiency does exhibit site dependence, with the rate of one 

clone being higher than the other (0.93 and 0.41% excision per μg Cre respectively). This 

difference illustrates the variability in recombination accessibility of cell lines, but that 

with swapping (a three-body event), many factors contribute to rate dependence. 

However, in the case of excision, this process is mainly guided by the accessibility of 

chromosomal sites and Cre recombinase levels. 

Figure 4.7: Increased quantities of Cre DNA improves net recombination. 

 
The impact of increasing Cre DNA levels on swapping (A) and excision (B) was measured for two clones 
(○ = R, ∆ = Q). A. Swapping increased linearly with Cre DNA, with a similar slope for both clones tested.  
One of the clones (∆) exhibited a maximum increase in swapping efficiency at 12μg of Cre vector.   
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Figure 4.7 (continued) 

 
B. Excision also increased linearly with Cre DNA, and slope varied for the two clones (○ = 0.41, ∆ = 0.93).   

While adding more Cre vector increases net recombination, it does not result in 

improved or biased swapping efficiency. In fact, as more Cre vector is transfected, the 

ratio of swapping to excision remains fairly constant (Figure 4.8). This indicates that 

increasing the amount of transfected Cre vector does not favor either excision or 

swapping activity, only the total amount of recombination events that occur within the 

cell. We normalized recombination efficiency with respect to the amount of Cre vector 

transfected (Figure 4.8), and observed that increasing the amount of Cre transfected has a 

diminishing impact on both swapping and excision, and per microgram of DNA, 

recombination efficiency actually decreases.  These results were observed in both cell 

lines tested and thus are independent of integration locus.   
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Figure 4.8: Increased transfection of Cre vector does not improve swapping compared to 
excision activity. 

 

 
The impact of transfected Cre DNA on excision and swapping was measured for two clones (○, ∆). Twelve 
million cells were transfected with 25μg linear Strawberry DNA.  Twenty-three hours later, Cre DNA was 
transfected in amounts ranging from 1 to 16μg. A. While transfecting more Cre vector increased net 
recombination, it does not preferentially increase either swapping or excision efficiency.  The ratio of 
swapping to excision activity is relatively constant for Cre vector levels above 2.5μg.  B, C. Swapping and 
excision were normalized per μg of Cre vector, illustrating that the rate of both events significantly 
decreases as more Cre is added to the system.   
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Figure 4.8 (continued) 

 

 

4.4. CONCLUDING REMARKS 

The Cre/lox system is an important site-specific genome editing tool with 

significant applications in human cell lines. Despite wide adoption of Cre recombinase, 

there has previously been a lack of research simultaneously examining many of the 

variables shown to influence Cre activity. As a result, swapping efficiencies have 

typically been reported as being extremely low (<1%).  This work identifies a set of 

optimal parameters that resulted in the highest swapping efficiencies ever reported 

(upwards of 12%). We identify the loxFAS-loxP pairing as a better choice, compared to 

either the lox5171 or lox2272-loxP pairings, and we implicate the importance of delayed 

introduction of Cre DNA for optimal swapping efficiency. As many other genome editing 

enzymes require trimolecular interactions, these findings can be extended to other 

recombinases and integrases.  The swapping frequencies identified here can greatly 

improve the prospects of using this genome editing tool in mammalian cell systems.   
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Chapter 5: A Method for Condition-Specific Codon Optimization for 
Improved Heterologous Gene Expression 

5.1: CHAPTER SUMMARY 

Heterologous gene expression is an important biotechnology tool that enables 

metabolic engineering and the production of non-natural biologics in a variety of host 

organisms.  The translational efficiency of heterologous genes can often be improved by 

optimizing synonymous codon usage for the host organism.  Traditional approaches for 

optimization neglect to take into account many factors known to influence synonymous 

codon distributions.  Here we define an alternative approach for codon optimization that 

utilizes systems level information and codon context for the condition under which 

heterologous genes are being expressed.  Furthermore, we utilize a stochastic algorithm 

to generate multiple variants of a given gene.  We demonstrate improved translational 

efficiency using this condition-specific codon optimization approach with two 

heterologous genes, eGFP and CatA, expressed in S. cerevisiae.  Gene variants were 

optimized for conditions of high expression and stationary phase expression.  Compared 

to wild-type genes and traditional approaches, we observe improved protein expression, 

up to three times higher, for both genes. 

 

5.2: INTRODUCTION 

Codon optimization, which is a rational redistribution of synonymous codons in a 

gene sequence, can result in improved translational efficiency and gene 

expression116,120,121.   Because different organisms exhibit diverse codon usage, codon 

optimization has emerged as a powerful tool to improve heterologous gene expression.  

In doing so, it can often relieve pathway bottlenecks and improve overall flux, making 

this approach a critical part of both metabolic and cellular engineering.   
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Typical approaches for codon optimization utilize whole genome information to 

determine which synonymous codons are rare and should be replaced or abundant and 

should be used frequently.  While this methodology has resulted in some significant 

successes regarding gene expression, it can often result in gene variants with lower 

expression levels than wild-type sequences129-132.  These failures are problematic and 

likely result from an oversimplified approach to codon optimization.  In particular, 

traditional approaches fail to take into account changes in tRNA abundance known to 

result from changes in environmental factors including growth condition and cell-

cycle133-135,201.  Furthermore, despite the fact that much of an organism’s protein coding 

genes are lowly expressed and minimal evolutionary pressure has been present to drive 

efficient natural evolution118,202, the traditional optimization approach assumes that using 

all of a genome’s protein coding information, as opposed to a subset, provides the best 

information for codon optimization.  Finally, traditional approaches examine each codon 

individually, as opposed to adjacent codon pairs (known as codon context), the 

importance of which was recently demonstrated203-205. 

We hypothesize that codon optimization would be improved by evaluating 

synonymous codons using a subset of the total protein coding genes in a stochastic design 

that takes codon context into account.  In particular, codon usage would be determined 

using only those genes upregulated under a specific environmental condition.  We refer to 

this alternative approach as ‘condition-specific codon optimization’ and propose that 

heterologous genes are optimized using codon usage information corresponding to the 

environmental conditions under which the host organism will be grown and the gene will 

be expressed.  Furthermore, we utilize a stochastic approach that incorporates codon 

context into optimized gene design.  The method for this condition-specific codon 
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optimization, as well as several applications to heterologous gene expression, are 

described herein. 

 

5.3: RESULTS AND DISCUSSION 

5.3.1: Developing a Condition-Specific Codon Usage Bias 

The distribution and frequency of synonymous codons is often referred to as the 

codon usage bias (CUB).  Traditional methods for determining CUB and codon 

optimizing a heterologous gene rely on information obtained by either all protein-coding 

genes or a subset of protein-coding genes.  Alternatively, we propose that a CUB take 

into account the specific conditions under which the gene will be expressed.  This 

approach is termed condition-specific codon optimization and utilizes those genes most 

upregulated under the growth condition of interest for the CUB.  By doing so, the 

charged tRNA levels which fluctuate in response to environmental conditions are 

indirectly taken into account, resulting in improved gene expression over current 

methods.  The steps for generating a condition-specific CUB are outlined in Figure 5.1a.   

Before the CUB is generated, the condition(s) under which the heterologous gene 

of interest will be expressed must be identified and global expression data for the host 

should be obtained under the condition.  Studies including but not limited to RNA 

microarray, RNA-seq and proteomics can be used.  Thousands of such studies have 

previously been conducted and results can be freely accessed using databases such as 

Gene Expression Omnibus (GEO), the Center for Information Biology Gene Expression 

database (CIBEX) and Array Express.  However, if a study has not previously been 

conducted for conditions of interest, a global RNA-seq experiment can be conducted and 

used as the starting point for condition-specific codon optimization.  This has an 
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advantage over CUTG-based codon optimization, which requires a fully sequenced 

genome, therefore limiting cellular host options. 

Figure 5.1: Condition-specific codon optimization utilizes systems level information and 
codon context  

 
We utilize condition-specific gene expression information and codon context to generate optimized gene 
sequences in a stochastic manner.  A. The steps taken to apply this approach for a given condition are 
outlined in this flow chart.   
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Figure 5.1 (continued) 

 
B. The control codon matrix is compiled from 6,666 protein-coding genes in S. cerevisiae and serves as a 
point of comparison for condition-specific matrices.  The first amino acid is indicated by the first column, 
and the second amino acid by the first row.  The color indicates probability between 0 (red) and 1 (blue). 

The global expression data set can then be analyzed to determine genes that are 

differentially upregulated under the condition of interest, as compared to a control 

condition.  For the conditions examined in this study, we selected the top fifty to one 

hundred most differentially upregulated genes.  Using the corresponding DNA sequences, 

codon frequency and probability can be determined for both individual codons and codon 

pair usage, or codon context.  Previous studies suggest that codon context may be more 

important to gene optimization than individual codons203-205 and that codon context 

directly correlates with translation elongation rate206.  In particular, steric hindrance of 

charged tRNAs for adjacent codons can be avoided by taking adjacent codon pairing into 

account204.  We generate a ‘condition-specific codon usage table’ with individual codon 

information, and keeping the importance of codon context in mind, a ‘condition-specific 
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codon usage matrix’ with codon context information.  The python script used to generate 

the condition-specific tables and matrices is entitled ‘CodonUsageBias’ (Appendix D).  

For comparison, we generated a control table and codon context matrix (hereafter 

referred to as the control matrix), which were assembled using the protein coding 

sequences of 6,666 S. cerevisiae genes.  The control table is identical to the CUTG from 

GenBank for S. cerevisiae, which is used commercially.   The control matrix is shown in 

Figure 5.1b with the y-axis representing the first codon and the x-axis representing the 

second codon in a pair.  Each square represents the probability of a codon pair occurring 

given that the first codon is specified.  The matrix has been gradient-colored such that 

blue represents a probability of one and red represents a probability of zero.  The two 

solid blue columns correspond to a second codon of ATG (methionine) and TGG 

(tryptophan).  Because there are no synonymous codons for these amino acids, the ATG 

and TGG codons will be used 100% of the time these amino acids are incorporated.  We 

see that amongst the synonymous codons, this is not the case and some are used more 

frequently than others.  Interestingly, we see very little diversity amongst each second 

codon regardless of the preceding codon, which can be determined by examining the 

columns of the matrix.  Although some columns are shades of red (low probability) or 

yellow (medium probability) or blue (high probability), the color tends to be very 

consistent.  This can be contrasted with the matrices made for specific conditions 

(Figures 5.2, and 5.4) where significant variation can be seen in nearly every column. 

Because this control matrix incorporates codon context for nearly all protein coding 

genes in S. cerevisiae, the probability values are an average of codon usage across the 

entire genome.  As a result, the columns become indicative of the frequency of each 

codon, with the rarest indicated in red. 
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The condition-specific table and matrix can then be used as a starting point for 

optimization of heterologous genes that will be expressed under the condition of interest.  

In the simplest case, the condition-specific table can directly replace the standard table 

currently used for codon optimization and the most frequently occurring codon should be 

incorporated for each amino acid.   Alternatively, DNA sequence can be optimized by 

considering each adjacent codon pairing in the chain.  In this case, we elect to 

stochastically reconstruct the DNA sequence from the protein sequence utilizing the 

codon context probabilities stored in the condition-specific matrix and an algorithm 

developed in house.   

This stochastic methodology is achieved using the python script entitled 

‘GeneDesigner’ (Appendix D).  Specifically, if the first two amino acids are methionine 

followed by cysteine, there are two possible corresponding DNA sequences: ATGTGT or 

ATGTGC.  The condition-specific matrix stores the probability that each DNA sequence 

occurred in the genes upregulated for that condition.  GeneDesigner selects the DNA 

sequence based on the corresponding probability.  For example, if 60% of Met-Cys pairs 

are ATGTGT and only 40% are ATGTGC, GeneDesigner will stochastically select 

ATGTGT 60% of the time and ATGTGC 40% of the time that a Met-Cys pair is present 

in the peptide sequence.  This approach allows us to easily generate many versions of a 

single gene, all with the same protein sequence.  Furthermore, this approach biases the 

DNA sequences for codon pairs with a higher frequency, takes into account codon 

context, and minimizes the presence of rare codons while maintaining codon diversity.  

This is an important advantage because exclusive use of specific codons can result in 

bottlenecks with the formation of charged tRNA-amino acid complexes, thereby reducing 

translational efficiency201.   
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After GeneDesigner has been used to generate one or more condition-specific 

codon optimized sequences, the corresponding DNA can be synthesized and introduced 

into an expression system for the cellular host of interest.  In the case where several 

sequences are used, a metric can then be applied to experimentally determine which 

variant performs the best.  This can be done by directly measuring translational 

efficiency, measuring protein production or measuring crude protein activity.  As a point 

of comparison, activity can be compared to gene variants optimized using the control 

matrix. 

The steps for this condition-specific codon optimization are outlined in Figure 

5.1a.  In order to validate our hypothesis and this approach, we selected three 

heterologous genes of interest, applied the approach as outlined above, expressed the 

resulting optimized genes in S. cerevisiae, and measured expression.   

5.3.2: Condition-specific optimization of eGFP for high expression outperforms 
wild-type and control variants 

The first condition we sought to codon optimize for was constitutive high 

expression in S. cerevisiae.  Nearly all codon optimization efforts to date in yeast have 

sought to optimize codon usage using rules derived from all of the protein coding genes 

in the genome.  This is problematic because a large majority of the S. cerevisiae genome, 

as with other eukaryotic genomes, is lowly expressed207.  Considering the scientific 

community is often interested in expressing heterologous genes constitutively and at the 

highest possible expression level, we sought to determine an alternative CUB that could 

be used for codon optimization.    
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Figure 5.2: High expression codon optimization matrix 

 
The high expression codon optimization matrix is compiled from the 100 most highly expressed protein-
coding genes in S. cerevisiae207.  The first amino acid is indicated by the first column, and the second 
amino acid by the first row.  The color indicates probability between 0 (red) and 1 (blue).  The Frobenius 
norm of the difference between the control matrix and this high-expression matrix is 14.48. 

The condition-specific table and matrix were assembled as described above and in 

the Materials and Methods using the 100 most highly expressed yeast genes when grown 

on YPD media207.  The resulting table and matrix are shown in Figure 5.2.  An E. coli 

optimized green fluorescent protein (eGFP), which is poorly expressed in S. cerevisiae, 

was selected as a reporter protein.  Eight sequence variants of eGFP were generated and 

compared to the wild-type sequence.  One variant was optimized using the control table 

(Table 5.1), one variant using the high expression table (Table 5.2), three variants using 

the control matrix (Figure 5.1b) and three variants using the high expression matrix 

(Figure 5.2).  The sequences can be found in Appendix C.  Each variant, including wild-

type eGFP, was inserted into the p41K-GPD yeast expression vector and transformed into 

BY474144.  Three replicates of each variant were grown on YPD media and fluorescence 
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was screened in mid-log phase.  The results of this test are shown in Figure 5.3 in grey.  

We observed that the eGFP variants generated using the high expression matrix are 

statistically better expressed than those variants generated using the control matrix 

(pvalue = 6.08e-6) and wild-type eGFP (pvalue = 1.36e-6).  This demonstrates that 

optimizing codon usage specifically for high expression was effective.  While all three of 

the high expression matrix-generated variants outperform the wild-type eGFP, only two 

of the three control matrix-generated variants outperform wild-type eGFP.   

Table 5.1: Control codon usage table  

Amino Acid Codon 
 

Count Frequency per 1000 Fraction 

Ala 

GCG 18708 6.22 0.11 
GCA 48873 16.25 0.30 
GCT 60549 20.13 0.37 
GCC 36389 12.1 0.22 

Cys TGT 24477 8.14 0.62 
TGC 15123 5.03 0.38 

Asp GAT 112614 37.44 0.65 
GAC 60473 20.1 0.35 

Glu GAG 58013 19.29 0.30 
GAA 135489 45.04 0.70 

Phe TTT 80562 26.78 0.59 
TTC 54877 18.24 0.41 

Gly 

GGG 18301 6.08 0.12 
GGA 33737 11.22 0.23 
GGT 67010 22.28 0.45 
GGC 29538 9.82 0.20 

His CAT 41902 13.93 0.64 
CAC 23507 7.81 0.36 

Ile 
ATA 55646 18.5 0.28 
ATT 90225 29.99 0.46 
ATC 51005 16.96 0.26 

Lys AAG 90474 30.08 0.41 
AAA 127843 42.5 0.59 

Leu TTG 79567 26.45 0.28 
TTA 79072 26.29 0.28 
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Table 5.1 (continued) 

 

CTG 32360 10.76 0.11 
CTA 40619 13.5 0.14 
CTT 38311 12.74 0.13 
CTC 17438 5.8 0.06 

Met ATG 62753 20.86 1 

Asn AAT 109078 36.26 0.60 
AAC 73921 24.57 0.40 

Pro 

CCG 16471 5.48 0.12 
CCA 53446 17.77 0.41 
CCT 40872 13.59 0.31 
CCC 20970 6.97 0.16 

Gln CAG 37106 12.34 0.32 
CAA 80576 26.79 0.68 

Arg 

AGG 28378 9.43 0.21 
AGA 62777 20.87 0.47 
CGG 5765 1.92 0.04 
CGA 9673 3.22 0.07 
CGT 19062 6.34 0.14 
CGC 8225 2.73 0.06 

Ser 

AGT 43985 14.62 0.16 
AGC 30320 10.08 0.11 
TCG 26613 8.85 0.10 
TCA 57738 19.19 0.21 
TCT 70764 23.53 0.26 
TCC 42720 14.2 0.16 

Thr 

ACG 24689 8.21 0.14 
ACA 54561 18.14 0.31 
ACT 60493 20.11 0.34 
ACC 37621 12.51 0.21 

Val 

GTG 32469 10.79 0.19 
GTA 36737 12.21 0.22 
GTT 64463 21.43 0.38 
GTC 33842 11.25 0.20 

Trp TGG 31313 10.41 1 

Tyr TAT 57528 19.12 0.57 
TAC 43710 14.53 0.43 

A control codon usage table was generated from the sequences of 6,666 protein-coding genes in S. 
cerevisiae using the CodonUsageBias python script.  From these sequences, we are able to determine for all 
64 codons the total count of each codon, frequency of occurrence per 1000 codons, and probability 
amongst synonymous codons (fraction). 
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Table 5.2: High expression codon usage table 

Amino Acid Codon 
 

Count Frequency per 1000 Fraction 

Ala 

GCG 19 1.02 0.04 
GCA 22 1.18 0.05 
GCT 299 16.01 0.65 
GCC 118 6.32 0.26 

Cys TGT 256 13.71 0.68 
TGC 119 6.37 0.32 

Asp GAT 258 13.81 0.53 
GAC 227 12.15 0.47 

Glu GAG 215 11.51 0.28 
GAA 553 29.61 0.72 

Phe TTT 212 11.35 0.46 
TTC 245 13.12 0.54 

Gly 

GGG 58 3.11 0.12 
GGA 47 2.52 0.10 
GGT 345 18.47 0.73 
GGC 25 1.34 0.05 

His CAT 140 7.5 0.55 
CAC 113 6.05 0.45 

Ile 
ATA 62 3.32 0.14 
ATT 195 10.44 0.44 
ATC 188 10.07 0.42 

Lys AAG 944 50.54 0.61 
AAA 592 31.7 0.39 

Leu 

TTG 788 42.19 0.26 
TTA 308 16.49 0.10 
CTG 773 41.39 0.25 
CTA 442 23.67 0.14 
CTT 523 28 0.17 
CTC 234 12.53 0.08 

Met ATG 332 17.78 1 

Asn AAT 341 18.26 0.50 
AAC 335 17.94 0.50 

Pro 

CCG 296 15.85 0.26 
CCA 610 32.66 0.53 
CCT 168 9 0.14 
CCC 86 4.6 0.07 

Gln CAG 198 10.6 0.36 
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Table 5.2 (continued) 
 CAA 348 18.63 0.64 

Arg 

AGG 427 22.86 0.37 
AGA 663 35.5 0.58 
CGG 10 0.54 0.01 
CGA 6 0.32 0.01 
CGT 34 1.82 0.03 
CGC 3 0.16 <0.01 

Ser 

AGT 208 11.14 0.11 
AGC 119 6.37 0.06 
TCG 360 19.28 0.19 
TCA 490 26.24 0.26 
TCT 472 25.27 0.25 
TCC 259 13.87 0.14 

Thr 

ACG 449 24.04 0.27 
ACA 504 26.99 0.30 
ACT 421 22.54 0.25 
ACC 300 16.06 0.18 

Val 

GTG 510 27.31 0.30 
GTA 390 20.88 0.23 
GTT 467 25 0.27 
GTC 340 18.2 0.20 

Trp TGG 433 23.18 1 

Tyr TAT 80 4.28 0.32 
TAC 169 9.05 0.68 

A high expression codon usage table was generated from the sequences 100 most highly expressed protein-
coding genes in S. cerevisiae using the CodonUsageBias python script.  From these sequences, we are able 
to determine for all 64 codons the total count of each codon, frequency of occurrence per 1000 codons, and 
probability amongst synonymous codons (fraction). 

We also tested the eGFP variants generated using the control and high expression 

table.  While there was no statistical difference between the two conditions, expression of 

these variants were higher than any of the matrix-generated conditions.  This result is not 

surprising, as the table-optimized variants lack codon diversity, but we recognize that 

there are many metabolic engineering applications that require high protein production, in 

which case we anticipate low codon diversity will become a bottleneck and decrease 

enzyme fitness132,201.   
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Figure 5.3: Optimization for a high expression condition results in eGFP expression 
exceeding the wild-type 

 
In addition to wild-type eGFP, eight variants were generated.  The high expression variants were made 
from a codon usage table and matrix constructed using the 100 most highly expressed genes in yeast grown 
in rich media.  Control variants were constructed from the standard usage table and control matrix (Figure 
5.1b).  eGFP expression was measured using flow cytometry for yeast grown in both YPD (grey) and 
minimal media (white).  Biological triplicates were used to calculate standard deviations, indicated by error 
bars. 

Finally, we measured GFP expression for all nine variants grown in minimal 

media.  These results are shown in Figure 5.3 in white.  We observed changes in the 

relative expression of these variants as we changed environmental context.  This further 

demonstrates the importance of condition-specific codon optimization, and how small 

changes in growth conditions can influence protein expression.   

5.3.3: Stationary Phase Optimization of CatA 

We were interested in extending the condition-specific codon optimization 

approach to a gene involved in a metabolic pathway.  We selected the heterologous 
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expression of catechol 1,2-dioxygenase (CatA) from Acinetobacter baylyi in S. 

cerevisiae.  CatA converts catechol to muconic acid, a useful polymer precursor9 that is 

not natively produced by S. cerevisiae.  In this case, we selected stationary phase growth 

for our condition of interest.  In some cases, including the formation of toxic products, it 

is preferable to delay gene expression until stationary phase to increase product output.  

Therefore, this was a useful condition for us to explore.  We developed our codon usage 

matrix as previously described using the 50 genes most differentially upregulated in yeast 

grown for three days as compared to exponential growth yeast208, shown in Figure 5.4.  

This data is publicly available under GEO ID E-TABM-496.  We designed three CatA 

variants using the stationary phase matrix and three using the control matrix (Figure 

5.1b).  Additionally, we included wild-type A. baylyi CatA and a variant that was codon-

optimized for expression in S. cerevisiae by Blue Heron. These sequences are included in 

Appendix C.  Expression of these 8 variants was determined using a protein activity 

assay as previously described131 during various stages of growth (6, 18 and 24 hours). We 

calculated a Vmax (mM/min*μg protein) for each variant, where a high Vmax is indicative 

of higher CatA concentration. These results are summarized in Figure 5.5a. 

In exponential phase (6 hours of growth), there is no statistical difference between 

the stationary derived variants, the control variants and wild-type CatA.  However, the 

Vmax for wild-type CatA is significantly higher than the Blue Heron optimized variant (p-

value = 0.002).  This illustrates again that traditional codon optimization approaches can 

often result in poor performance.  Although the most highly expressed variant after 6 

hours of growth is stationary #3, the lowest expressed variant is stationary #1.   
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Figure 5.4: Stationary phase codon optimization matrix 

 
The stationary codon optimization matrix is compiled from the 50 most highly expressed protein-coding 
genes in S. cerevisiae grown for 3 days, compared to an exponential population208.  The first amino acid is 
indicated by the first column, and the second amino acid by the first row.  The color indicates probability 
between 0 (red) and 1 (blue).  The Frobenius norm of the difference between the control matrix and this 
stationary phase matrix is 8.80. 

As growth continues to the beginning of stationary phase, 18 hours, the CatA 

expression shifts.  Vmax for the majority of the control variants (#1 and #2), as well as the 

Blue Heron optimized variant, decreases between 6 and 18 hours of growth.  By 

comparison, Vmax for stationary #2 and #3 is unchanged between 6 and 18 hours, and for 

stationary #1 Vmax actually increases.  At this growth phase, Vmax for the stationary 

variants is significantly higher than the control variants (p-value = 0.013) and the Blue 

Heron variant (p-value = 0.026).  While the stationary phase variants either maintain or 

increase their Vmax, the activity of the control variants decrease significantly across the 

board.  At 18 hours, the control variants perform worse than the A. baylyi wild-type 
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variant.  These results clearly illustrate that condition-specific optimization for growth 

phase results in improved protein characteristics. 

Figure 5.5: Optimization for stationary phase results in CatA variants that are improved at 
late growth  

 
Eight CatA variants were generated, including wild-type and a version optimized by Blue Heron.  The three 
stationary phase variants were made from a codon usage matrix (Figure 5.4) constructed using the 50 most 
highly expressed genes after three days of growth.  The three control variants were constructed from the 
control matrix (Figure 5.1b).  A. Cells expressing the CatA variants were grown for 6, 18 or 24 hours prior 
to bulk protein extraction.  The Vmax for conversion of catechol to muconic acid was determined for the 
bulk protein (mM/min*μg protein) using Lineweaver-Burke plots.  A higher Vmax is indicative of higher 
concentrations of CatA.  Biological triplicates and technical triplicates were measured to determine 
standard deviations.   
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Figure 5.5 (continued) 

 
B. Cells expressing the CatA variants were grown for 18 hours in 30mL before spiking the media with 1g/L 
of catechol.  After 24 additional hours of growth, 1mL of supernatant was extracted and analyzed using 
HPLC, as previously described131, to determine total muconic acid production.  Normalized muconic acid 
levels (mg/L/OD600) are reported and standard deviation was determined using biological triplicates. 

The contrast between the stationary and control variants is even more significant 

(p-value = 0.0005) at 24 hours.  Interestingly, at 24 hours of growth, the variant with the 

highest Vmax is stationary #1, which performed the worst in exponential phase.  This is a 

further demonstration that codon optimization can result in genes whose expression is 

strongly influenced by the conditions under which they are expressed.  Here, we were 

able to design three CatA variants which performed better than both a commercially-

optimized sequence (Blue Heron variant) and three control CatA variants when grown in 

stationary phase.   

Finally, we sought to measure product output using these eight CatA variants in 

an in vivo setting.  Specifically, we grew yeast constitutively expressing each CatA 

variant for 18 hours and spiked the culture media with 1mg/mL catechol.  Twenty-four 
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hours after the addition of catechol, supernatant was collected and analyzed using HPLC 

as previously described131.  Total muconic acid was determined as the sum of cis-cis and 

cis-trans isomers.  Results were normalized based on OD600 readings when supernatant 

was collected, as shown in Figure 5.5b.  The stationary 1 variant outperforms all other 

conditions, resulting in 2.4 to 2.9 fold higher muconic acid levels.  This mirrors the Vmax 

measurements we made in vitro and is not unexpected.  Further, it demonstrates the 

utility of condition-specific codon optimization in the context of product formation.  

Interestingly, we observed no difference between the other seven variants. 

5.3.4: Organization of transcription factors suggests codon usage is linked to gene 
regulation 

Our examination of two heterologous genes in S. cerevisiae (eGFP and CatA) 

under two different conditions demonstrates that the condition-specific codon 

optimization approach can result in improved protein expression.  This likely reflects 

changes in tRNA expression levels that are demonstrated to arise under different growth 

conditions.  We were interested in exploring additional underlying aspects of cell 

physiology that might explain this improvement.  Utilizing a systems biology 

perspective, we concentrated on global transcription factors. 

We examined sixteen global transcription factors for S. cerevisiae: CBF1, 

DAL82, GCN4, GLN3, HAP4, HSF1, LEU3, MBP1, MSN4, NRG1, PHO4, RTG3, 

SKN7, STE12, TEC1, and UPC2 and identified their genomic targets using data 

tabulated at yeastgenome.org.  We were interested in defining a codon profile for those 

gene targets interacting with each global regulator and comparing it to our previously 

established control matrix that uses 6,666 protein coding genes.  A codon usage matrix 

was established for the genetic targets of each transcription factor.  In order to compare 

these matrices to our control condition, we sought to quantify drift or distance using the 
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Frobenius matrix norm of the difference between the matrices.  This metric is well 

established as a quantitative tool to determine drift between matrices of the same size209.  

A smaller Frobenius matrix norm indicates higher similarity between matrices, such that 

identical matrices have a norm of zero.  The Frobenius matrix norm was calculated for all 

pairs of the 17 matrices (control and 16 transcription factors), the results of which are 

shown in Table 5.3.  This data set was then used to generate a node-edge map 

representing drift differences between conditions (Figure 5.6a). 

Figure 5.6: Drift of transcription-factor codon matrices reveals diverse codon usage 
relative to the control matrix 

 
The genetic interaction targets for sixteen S. cerevisiae transcription factors were identified using 
yeastgenome.org.  Using those corresponding gene target sequences, codon usage matrices were 
constructed for each transcription factor.  A. Frobenius matrix norms were calculated for all matrix pairs, 
including the control matrix (Figure 5.1b) using MATLAB.  The Frobenius norms represent drift between 
matrices and create the edges in this map between the nodes (transcription factors).  The map was 
constructed using the Map_Draw python script (Appendix D).    
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Figure 5.6 (continued) 

 
B. The matrix drift (as indicated by Frobenius norm) versus number of genes used to generate the codon 
usage matrices was plotted for each transcription factor (blue).  For comparison, codon usage matrices were 
generated from a random sampling of genes (red).  Both were fit with a power regression model.  Standard 
deviation from five independent samples were used to generate error bars.  Codon usage matrices from 
subsets of the most highly expressed genes are shown in green. 

The two matrices that are the most similar are the control and genetic targets for 

RTG3.  The control matrix and the genetic targets for CBF1 are also very similar.  The 

most disparate matrices are the genetic targets for GCN4 and HSF1.  This map clearly 

shows that overall, the genetic targets of transcription factors have very disparate codon 

usage.  Furthermore, each transcription factor matrix is more similar to the control 

condition that to another transcription factor matrix.  This further supports the averaging 

effect on codon usage caused by using all protein coding genes, as opposed to a subset.  

Additionally, these results suggest genes regulated by the same global factors may have 

similar codon usage patterns.   
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Table 5.3: Drift calculations using the Frobenius Matrix Norm 

 CBF1 DAL82 GCN4 GLN3 HAP4 HSF1 LEU3 MBP1 MSN4 NRG1 PHO4 RTG3 SKN7 STE12 TEC1 UPC2 Control 

CBF1 0 7.83 10.30 5.09 6.92 10.16 9.58 6.65 6.78 5.35 9.04 4.26 4.94 7.68 7.21 6.48 3.53 

DAL82  0 11.94 8.23 9.48 12.10 11.71 9.08 9.32 8.03 11.41 7.79 7.91 10.01 9.69 9.59 7.43 

GCN4   0 10.45 11.28 12.88 12.78 11.29 10.79 10.47 12.46 10.06 10.44 11.96 11.81 11.60 9.62 

GLN3    0 7.39 10.54 10.30 7.47 7.41 6.32 9.66 4.99 5.75 8.20 8.23 7.51 4.78 

HAP4     0 10.81 11.08 8.53 8.75 7.39 10.15 6.54 7.33 9.04 8.70 8.54 5.97 

HSF1      0 12.66 11.37 10.86 10.74 12.77 10.08 10.23 11.37 11.54 11.53 9.51 

LEU3       0 10.81 10.54 10.10 12.50 9.46 9.84 11.60 11.05 10.72 9.08 

MBP1        0 8.12 7.26 10.55 6.74 6.97 9.05 8.58 8.21 6.21 

MSN4         0 7.12 10.31 6.59 7.16 9.44 8.93 8.47 6.39 

NRG1          0 9.19 5.13 5.80 8.10 7.98 7.16 4.37 

PHO4           0 9.14 9.59 10.94 10.72 10.21 8.66 

RTG3            0 4.98 7.58 7.22 6.40 3.34 

SKN7             0 8.14 7.71 7.32 4.40 

STE12              0 8.64 9.04 6.90 

TEC1               0 8.57 6.80 

UPC2                0 6.07 

Control                 0 

Codon usage matrices were generated for a control condition (Figure 5.1b) as well as for the gene targets of 16 transcription factors.  Drift was 
determined by taking the Frobenius norm of the difference between two matrices.  These values are reported above. 
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Next we looked at the relationship between the Frobenius matrix norm for each 

transcription factor relative to the control matrix and the number of genes that 

transcription factor is interacting with.  We see that for the most part, as the number of 

genetic interactions increases, the Frobenius matrix norm or drift relative to the control 

condition decreases.  This behavior is expected, as the inclusion of more genes in a codon 

context matrix will result in an averaging effect that begins to resemble the control matrix 

composed of all gene sequences.  This data is shown in Figure 5.6b and closely fits a 

power regression model of the form y = Axb.  As a comparison, we generated a 

corresponding control curve for which genes were selected at random and the 

corresponding Frobenius matrix norm was calculated.  Control conditions of 30, 50, 100, 

150, 200, 250 and 300 genes were selected in five independent events with the average 

matrix norm shown in Figure 5.6b.  Again we see the power regression model fits well, 

however the two curves are distinct, indicating a difference between the genes selected at 

random and the genetic targets of transcription factors.  An F test was used to determine 

that the two curves are statistically different with a p-value of 0.003.   

A high drift relative to the control matrix may be indicative of evolutionary 

pressure on codon usage.  This is especially evident when we consider the most highly 

transcribed genes in S. cerevisiae, as shown in green.  This set of genes, which is 

arguably evolved for high expression, has very different codon usage than the control 

matrix.  Interestingly, there are only 12 common genes between the top 100 most highly 

expressed genes and the approximately 1000 gene targets of the sixteen transcription 

factors.  This may indicate that genes regulated by transcription factors are not highly 

expressed.  We also see that the transcription factor curve sits below the curve of genes 

selected at random, indicating that genetic targets of these transcription factors have 

codon usage more closely resembling the control matrix than genes selected at random.  
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This is a surprising result and may indicate that the codon usage of genes regulated by 

transcription factors have evolved less, on average, than other parts of the genome.   

 

5.4: CONCLUDING REMARKS 

Here, we propose an alternative approach to traditional codon optimization 

methods that utilizes both systems-level information and codon context to generate 

condition specific variants stochastically.  This approach, termed condition-specific 

codon optimization, takes into account environmental growth conditions that are known 

to influence tRNA abundance and therefore translational efficiency to determine codon 

frequency.  In contrast, traditional codon optimization neglects codon context entirely 

and determines codon frequency using all genomic protein coding sequences.  While 

traditional codon optimization can result in improved protein expression, this approach is 

not robust and often results in decreased translational efficiency.  Alternatively, we 

validate the robustness of our approach through experiments under three disparate 

conditions. 

We expressed two heterologous genes in S. cerevisiae, eGFP and CatA, under 

different growth conditions.  In each case, compared to the wild-type and variants 

generated using traditional approaches, we observe improved protein expression in the 

condition-optimized cases.  eGFP expression was successfully optimized for high 

expression in rich media and the CatA enzyme was optimized for high expression in 

stationary phase growth.  

Codon optimization is an important biotechnology tool that enables recombinant 

DNA expression.  As our ability and desire to produce chemicals in a renewable and 

environmentally-friendly capacity increases, more biological processes will be 
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developed.  In doing so, the robust and high-level expression of foreign genes will be a 

crucial component of the process.  Furthermore, many of these processes will be carried 

out under diverse, non-standard environmental conditions, including changes in 

temperature, pH, mineral concentration, carbon source, and oxygen concentration.  The 

condition-specific approach to codon optimization can be used to identify gene variants 

with the ideal codon usage for these conditions.   

This approach is simple, robust and generic.  As a starting point, it utilizes global 

systems level expression data for the host strain and condition of interest.  Much of this 

data is publicly available for common host organisms.  In the case where it is not 

available a priori, a standard microarray or RNA-seq experiment can be conducted and 

utilized.  From this data set, an algorithm can be used to extract codon usage, while 

preserving codon context, and to generate a codon usage matrix.  From this matrix, a 

second algorithm can stochastically determine gene variants whose codon usage closely 

aligns with the codon usage matrix.  This approach can be generically applied for any 

environmental condition in any sequenced host organism.   
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Chapter 6: Linking yeast Gcn5p catalytic function and gene regulation 
using a quantitative, graded dominant mutant approach 

 6.1 CHAPTER SUMMARY 

Establishing causative links between protein functional domains and global gene 

regulation is critical for advancements in genetics, biotechnology, disease treatment, and 

systems biology.  This task is challenging for multifunctional proteins when relying on 

traditional approaches such as gene deletions since they remove all domains 

simultaneously.  Here, we describe a novel approach to extract quantitative, causative 

links by modulating the expression of a dominant mutant allele to create a function-

specific competitive inhibition.  Using the yeast histone acetyltransferase Gcn5p as a case 

study, we demonstrate the utility of this approach and (1) find evidence that Gcn5p is 

more involved in cell-wide gene repression, instead of the accepted gene activation 

associated with HATs, (2) identify previously unknown gene targets and interactions for 

Gcn5p-based acetylation, (3) quantify the strength of some Gcn5p-DNA associations, (4) 

demonstrate that this approach can be used to correctly identify canonical chromatin 

modifications, (5) establish the role of acetyltransferase activity on synthetic lethal 

interactions, and (6) identify new functional classes of genes regulated by Gcn5p 

acetyltransferase activity—all six of these major conclusions were unattainable by using 

standard gene knockout studies alone.  We recommend that a graded dominant mutant 

approach be utilized in conjunction with a traditional knockout to study multifunctional 

proteins and generate higher-resolution data that more accurately probes protein domain 

function and influence. 
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6.2 INTRODUCTION 

The development of novel approaches for dissecting multifunctional proteins and 

their individual domain-target interactions in vivo would be a valuable expansion of the 

biotechnology toolbox.  Such an approach would greatly increase our ability to collect 

systems level information about protein-DNA interactions and complement gene 

knockout techniques.  Here, we demonstrate the capacity of a unique, graded dominant 

mutant approach to enable such goals.   

This graded dominant mutant approach is illustrated with a systems biology study 

of the yeast histone acetyltransferase (HAT), Gcn5p.  HAT proteins are important targets 

of genetic studies since they are critical for establishing acetylation of histones, which 

have long been recognized as a mark of euchromatin and an important activating 

genomic modification210,211.   Gcn5p is a multifunctional protein with catalytic and 

binding domains (including Ada2 interaction and a bromodomain).  A causative study of 

acetyltransferase activity thus requires a removal or reduction of catalytic function while 

maintaining native protein interactions.  The yeast gene, GCN5, serves as a well-studied 

prototype212-214 for transcription-associated HAT activity. Gcn5p has a known crystal 

structure215 and direct homologues in higher eukaryotic systems.  Only a small number of 

Gcn5p putative gene targets have been identified even though it is presumed that this 

HAT globally controls gene expression216.  Moreover, as this HAT is nonessential like 

many epigenetic factors, inherent protein redundancy implies that other HAT proteins 

may compensate for Gcn5p in its absence and thus confound data relying on knockout 

studies alone.   

Classically, dominant mutations have been widely used to probe gene function,217 

improve tolerances and drug resistances,152,154,218 characterize disease states,155-158 and 

map protein functional domains219. In this regard, small point mutations can abolish a 
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particular function in isolation without disrupting other protein activities.  Here, we 

exploit the inhibitory nature of dominant mutations and demonstrate that varying the 

expression level of a non-catalytic dominant mutant in the presence of the native, wild-

type allele can specifically isolate and titer the catalytic activity of the wild type protein.  

This can be achieved by identifying a mutant protein that lacks activity but still folds 

properly, thus functioning as a dominant mutant and causing competitive inhibition of a 

single, wild-type protein domain. 

Despite the common use of dominant mutants, no prior study has paired these 

alleles with a promoter library to specifically and quantitatively grade an isolated protein 

function and collect systems level information.  Here we demonstrate the power of a 

graded dominant mutant approach to isolate and causatively study the histone 

acetyltransferase catalytic activity of Gcn5p protein in the yeast Saccharomyces 

cerevisiae and in doing so, uncover previously unknown gene targets and functions of 

Gcn5p. 

 

6.3 RESULTS AND DISCUSSION 

6.3.1: Identifying Gcn5p dominant mutants  

We sought to identify a Gcn5p dominant mutant that lacked catalytic activity but 

was still able to fold like the wild-type allele.  Previous studies conducted an alanine scan 

across the catalytic domain and measured acetylation activity in vitro212,220.  Based on an 

absence of activity, we initially selected three mutations (E173A, M193A and F221A).  

We utilized a complementation assay in a gcn5 null strain transformed with mutant gcn5 

on plasmids to test the in vivo activity of all three mutations.  Activity was correlated 
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with growth in the presence of 5-aminotriazole, which is a known inhibitor of histidine 

synthesis that is naturally regulated by Gcn5p. 

Figure 6.1: GCN5 complementation assay to determine potential dominant mutants. 

Using a BY4741 gcn5Δ strain, we expressed two Gcn5p mutants (gcn5-M193A and F221A) and wild-type 
GCN5 with varying promoter strengths.  Strains were grown in minimal media and growth rate was 
measured using a Bioscreen C.  We compared the mutant growth rates to that of the native yeast.  This 
process was repeated with an S288C gcn5Δ strain, in which we expressed two Gcn5p mutants (gcn5-
M193A and E173A) with varying promoter strengths.   

The M193A mutant exhibited the same growth rate as the control strain, indicating 

that catalytic activity was still intact.  However, we observed that the gcn5-E173A and 
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mutants were unable to complement gcn5Δ and behaved similar to the knockout strain, 

indicating a complete loss of catalytic activity.  Next, we determined the impact of the 

E173A and F221A mutations to Gcn5p’s Gibbs Free energy using the Protein Interfaces, 

Surfaces and Assemblies221 database.  Both mutations resulted in no change to Gibbs 

Free energy, indicating a conservation of protein structure.  These analyses established 

both gcn5-F221A and gcn5-E173A as dominant mutant candidates for Gcn5p-acetylation 

activity. 

In order to create quantitative, graded expression of these dominant alleles, 

expression (and thus level of competitive inhibition) was modulated through the use of a 

promoter library.  Expression of the mutant alleles was established by cloning gcn5-

F221A and gcn5-E173A into centromeric yeast expression vectors under the control of a 

collection of mutant TEF-based promoters with previously established expression 

capacities222,223.  This library resulted in a ratio of mutant to wild-type expression ranging 

from 2.5 fold with the weakest promoter to 8-10 fold with the strongest promoter (Figure 

6.2).  While the majority of experiments were conducted with the gcn5-F221A mutant, 

several were done with both gcn5-F221A and gcn5-E173A to demonstrate robustness of 

the approach. 
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Figure 6.2: Measuring native and mutant Gcn5p mRNA expression levels 

 
Wild-type and mutant GCN5 mRNA levels were measured using RT-PCR and whole cell mRNA extracted 
from S288C wild-type, gcn5Δ and gcn5-F221A (with 5 different promoter strengths) strains.  Average Ct 
values and standard deviation were calculated from triplicates, and mRNA levels were normalized relative 
to the wild-type sample.  At the lowest promoter strength of .07, mutant gcn5-F221A is expressed at levels 
2.5 fold higher than wild-type, and at the highest promoter levels of .95 and 1.17, gcn5-F221A is expressed 
at levels 8-10 fold higher than wild-type GCN5.   

6.3.2 gcn5-F221A competitively inhibits the catalytic function of Gcn5p in a dose-
responsive manner 

After identifying candidate dominant mutants for Gcn5p, three genetic tests were 

used to establish and validate the gradation and competition of catalytic activity.  The 

first test involved the HIS3 locus, a known acetylation target for Gcn5p224. Gene 

activation of HIS3 by Gcn5p-based acetylation enables higher tolerance to a histidine 

analogue, 3-aminotriazole (3-AT). In a gcn5Δ strain, HIS3 expression is decreased, 

leading to amino acid starvation in the presence of 3-AT and decreased cell growth.  Each 

expression cassette controlling gcn5-F221A was transformed into S. cerevisiae S288C 

and growth rate was evaluated in the presence of 3-AT (Figure 6.3) to determine the 
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impact of mutant expression on the HIS3 locus.  Strains with low expression of the 

mutant allele most-closely resembled the wild-type strain, whereas at higher expression 

levels, strains resembled that of the gcn5 null strain.  Transcription of HIS3 was found to 

decrease in a manner that followed a competitive inhibition curve (Figure 6.3).  This data 

provides strong evidence that the gcn5-F221A allele competes for Gcn5p acetylation sites 

in the HIS3 promoter region and effectively decreases HIS3 transcription.   

Figure 6.3: gcn5-F221A can impart a graded phenotype as detected by starvation assays 

 
The gcn5-F221A mutant was expressed in S288C with varying promoter strengths, and starvation response 
measured via growth rate in minimal media supplemented with 3.75mM 3-aminotriazole. A. Growth rates 
of strains harboring gcn5-F211A () were compared to wild-type () and gcn5Δ strains (). Error bars 
represent the standard deviation of biological triplicates. Increasing the expression level of gcn5-F221A 
(through progressively stronger promoters) results in a decrease in growth rate approaching the value of the 
knockout strain.  
  



 109 

Figure 6.3 (continued) 

 
B. HIS3 mRNA levels were measured for select promoter strengths (.07, .32, .68 and .95) using RT-PCR. 
As gcn5-F221A promoter strength increases, HIS3 expression decreases following a competitive inhibition 
pattern. These results demonstrate that gcn5-F221A can exhibit a graded, competitive phenotype at HIS3 as 
measured by starvation response. 

While the growth rate trend (Figure 6.3) shows a clear correlation between mutant 

expression and growth rate, the trend is linear rather than an inhibition curve.  We believe 

this arises from the more indirect measurement of growth rate, which is impacted by 

many cellular and environmental factors, and therefore integrates multiple signals, not 

just HIS3 expression levels.  By comparison, the measurement of HIS3 mRNA levels 

(Figure 6.3) is a more direct measurement and thus presents the more expected 

competitive inhibition curve. 

A second test involved inhibiting the well-characterized Gcn5p-based regulation 

of the Pho5 promoter225-227.  This test was conducted in two pho80 knockout strains of 

yeast, a haploid (BY4741) and diploid (BY4743), as this mutation results in a 

constitutively active Pho5 promoter226.  Both hosts contained an episomal synthetic gene 
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circuit with the Pho5 promoter regulating expression of the fluorescent protein yECitrine.  

The activation of the Pho5 promoter was assayed in yeast strains harboring the collection 

of plasmids with graded gcn5-F221A expression (Figure 6.4).  In response to increased 

expression of gcn5-F221A, the fluorescent signal was observed to decrease.  This is 

consistent with the hypothesis that this mutant allele directly competes with the native 

Gcn5p protein.  We found that mean fluorescence followed a competitive inhibition 

model, where increased expression of the dominant mutant decreased the mean 

fluorescence.    

We were able to fit our data to the Hill-slope competitive inhibition model:  

)50log(101 ICPS

BottomTopBottomsignal −+
−

+=  

where Top is the signal strength in the absence of competition, Bottom is the 

signal strength of a competitively saturated system and IC50, or 50% effective 

concentration, occurs when the signal strength is reduced to the value halfway between 

the upper and lower bounds.  The signal is a measure of average fluorescence in RFU and 

PS is the relative promoter strength of the dominant mutant.  A best-fit was determined 

using a sum of least squares regression with the experimentally determined values.  These 

models demonstrate that increased promoter strength is required to inhibit the two 

chromosomal copies of GCN5 in a diploid strain (curve shown in Figure 6.4).  Results of 

the IC50 values are found in Figure 6.4.  Finally, yECitrine mRNA levels decreased as a 

function of gcn5-F221A expression (Figure 6.4).  This test demonstrates the ability of a 

dominant mutant allele approach to make a direct measurement relating the grading of 

acetyltransferase activity to downstream gene expression (in this case, Gcn5p 

acetyltransferase activity and Pho5 promoter activity).   
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Figure 6.4: Evaluating competitive inhibition by gcn5-F221A using a synthetic construct   
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The gcn5-F221A mutant was expressed with varying promoter strengths in A. the haploid BY4741 pho80Δ 
and B. the diploid BY4743 pho80Δ, and co-expressed with a second plasmid, containing the yECitrine gene 
driven by pPho5. Average fluorescence in mid-exponential phase is reported and error bars represent 
standard deviations of biological triplicates. The data was fit to a Hill-slope competitive inhibition model 
(dashed line) and IC50 values were extracted (C), indicating the relative promoter strength of gcn5-F221A 
resulting in half-maximal inhibition. D. yEcitrine mRNA levels were measured using RT-PCR for select 
promoter strengths (.07, .16, .32, and .70).  
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6.3.3: Gcn5p graded dominant mutants competitively inhibit global histone 
acetylation at H3K18  

In a third test, we sought to demonstrate that the graded dominant mutant, gcn5-

F221A, was directly impacting histone acetylation.  In S. cerevisiae, lysine 18 of histone 

3 is primarily acetylated by Gcn5p, with very little acetylation occurring in a gcn5Δ 

strain228. An immunofluorescence assay for acetylated H3K18 residues was conducted 

using mid-exponential phase, fixed yeast cells.  Three promoter strengths (0.32, 0.68, and 

0.95 relative to wild-type TEF) were used to drive the expression of gcn5-F221A and 

these strains were compared to wild-type and gcn5Δ strains.  Additionally, two further 

controls (over-expression of wild type GCN5 and graded expression of a catalytically 

active mutant allele, gcn5-M193A) were used to demonstrate the specific acetylation 

inhibition only afforded by gcn5-F221A.  Neither the wild-type GCN5 nor the 

catalytically active mutant gcn5-M193A showed a change in global H3K18ac.  By 

comparison, expression of the inactive, dominant mutants, gcn5-F221A, resulted in a 

dose-dependent decrease of H3K18 acetylation.  These results, illustrated and quantified 

in Figure 6.5, demonstrate that gcn5-F221A competes directly with native Gcn5p, 

resulting in reduced histone acetylation.   

This immunofluorescence test was repeated with an additional catalytically 

inactive, dominant mutant (gcn5-E173A). As shown in Figure 6.6, the gcn5-E173A 

mutant also results in global attenuation of H3K18 acetylation.  Using a high strength 

promoter, acetylation levels are very similar to that of the gcn5Δ strain.  These results 

indicate that like gcn5-F221A, this second, graded dominant mutant is able to 

competitively inhibit Gcn5p and directly interfere with acetylation activity.   
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Figure 6.5: Global acetylation at H3K18 is attenuated by expression of mutant gcn5-
F221A 

Using immunofluorescence, H3K18 acetylation was assayed globally for strains harboring the gcn5-F221A 
mutant () expressed with varying promoter strengths (.32, .68, and .95). For comparison, gcn5-M193A 
mutant (●) (fully functional) with the same promoter strengths, along with wild-type (), gcn5Δ () and 
wild-type with GCN5 (Δ) over-expressed, were also examined. The primary antibody targets H3K18ac and 
the secondary antibody is an IgG tagged with DyLight 649. Cells were stained with DAPI to visualize 
nuclear material. A. Cells were imaged with both DAPI and Cy5 filters. The gcn5-F221A mutant results in 
global attenuation of H3K18ac and approaches gcn5Δ strain at high strength promoters. By comparison, the 
gcn5-M193A mutant and wild-type with GCN5 result in no change to acetylation levels.  
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Figure 6.5 (continued) 

B. Average cell intensity was quantified using Metamorph software and normalized relative to the wild-
type.  

Figure 6.6: Global H3K18 acetylation is attenuated by expression of mutant gcn5-E173A 

Using immunofluorescence, H3K18 acetylation was assayed globally for strains harboring the gcn5-E173 
mutant expressed with varying promoter strengths (0.32, 0.68, and 0.95), along with wild-type and gcn5Δ 
cells.  The primary antibody, raised in rabbit, targets H3K18ac, and the secondary antibody is an anti-rabbit 
IgG tagged with DyLight 649.  All cells were also stained with DAPI to visualize nuclear material.  Cells 
were imaged with both a DAPI and Cy5 filter.  The gcn5-E173A mutant results in global attenuation of 
H3K18 acetylation.  Average cell intensity quantification, using Metamorph software, confirms that 
increased gcn5-E173A expression decreased acetylation (average cell intensity from left to right: 133050, 
89607, 48178, 37252, 32128). 

6.3.4: Combining expression profiling with a graded dominant mutant approach 
reveals novel Gcn5p targets and function 

Next, we sought to evaluate the global influence of Gcn5p acetyltransferase 

activity on yeast gene expression.  By using our approach, genes whose expression 



 116 

changes as a function of gcn5-F221A level are changing as a result of decreased 

acetyltransferase activity.  Using microarrays, we identified and classified differentially 

expressed genes between S. cerevisiae (S288C) wild-type, the gcn5 null strain, and 

mutant gcn5-F221A expressed at three different promoter strengths (0.32, 0.68 and 

0.95)229.  A total of 282 genes were found to be differentially expressed (p-value<0.05, 

abs(log2)>1) between the wild-type and knockout strain.  This dataset overlaps a 

previously reported gene expression study for gcn5Δ with 98% coverage230.  A total of 

288 genes were found to be differentially graded in response to gcn5-F221A (i.e. genes 

whose expression changes monotonically in response to gcn5-F221A and all of which 

had p-values<0.05).  Despite these similar numbers, only 153 genes (53%) found in the 

knockout data set overlap with the graded dominant mutant dataset (Figure 6.7c).  This 

initial analysis indicates that, for multifunctional proteins, classifying genes and 

regulation based exclusively on knockout data is misleading.  This data set augments our 

knowledge of gene targets regulated by Gcn5p-acetyltransferase activity.   

Despite the common conception that Gcn5p-based acetylation is gene activating, 

we posit that Gcn5p-based acetylation serves a dominant role in maintaining global gene 

repression in yeast.  We found that over-expression of a catalytically inactive dominant 

mutant led to up regulation of 66% of affected genes (Figure 6.7a), whereas the gcn5 null 

strain significantly overestimates the number of under-expressed genes (Figure 6.7b).    

This finding is unexpected and not evident from traditional knockout experiments, as 

gene expression changes in the knockout strain were equally distributed between over 

and under expression.  This is the first time that Gcn5p-based acetylation has been 

implicated with global gene repression, and may be a direct function of Gcn5p or an 

indirect result of additional gene regulators that are controlled by Gcn5p. 
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Figure 6.7: Expression analysis comparing a graded dominant mutant of gcn5-F221A to 
gcn5Δ. 

 
 
Microarray analysis was conducted for strains expressing the gcn5-F221A mutant at varying promoter 
strengths (.32, .68, and .95) along with wild-type and gcn5Δ cells. A. Of the genes found to be up-regulated 
compared to the wild-type, only 84 were commonly identified by both the dominant mutant and knockout, 
and 107 were only identified by the dominant mutant. B. Fewer genes were found to be down-regulated, of 
which only 69 were commonly identified and 28 were only identified by the dominant mutant.  
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Figure 6.7 (continued) 

C. Characterization of the 288 genes observed to exhibit a graded response with respect to increasing levels 
of gcn5-F221A. 

Four non-mutually exclusive classifications of gene expression were used to 

characterize the targets found in this study—catalytically associated, non-catalytically 

associated, false negatives (compared to a knockout), and opposites—by comparing these 

gene targets to data obtained using the traditional knockout approach.  A subset of 

Gcn5p-impacted genes illustrates these trends (Figure 6.8).  The 288 genes identified 

through gcn5-F221A inhibition of native Gcn5p acetylation display a ‘graded’ response 

and are therefore associated with Gcn5p catalytic activity.  Within this classification, 

variations in the response to level of gradation exist.  Some genes (such as ETR1 and 

YLR211C, Figure 6.8a) achieve maximal gradation (a plateaued response matching that 

of a knockout condition) at low levels of gcn5-F221A.  We posit that similarly 

responding genes (with low grading thresholds) are strongly impacted by Gcn5p 

acetylation and potentially have the fewest redundant epigenetic modification 

mechanisms in yeast.  In contrast, genes that require higher levels of the dominant mutant 

to achieve maximal gradation (such as IDH2 and RRT5, Figure 6.8a) are less sensitive to 

acetylation by Gcn5p or have more redundant regulation mechanisms.  This approach 
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allows for an evaluation of gene thresholding responses, an important concept in systems 

biology modeling.   

Figure 6.8: Gene expression heat maps for select genes illustrating unique traits. 

 
Four key (non-mutually exclusive) trends in gene expression were observed in this study.  In the heat map, 
red indicates underexpression, and green overexpression relative to the control, and the size of the dot is 
proportional to magnitude of expression. A select sample of genes was used to display the four trends. A. 
Catalytically associated genes have expression that changes (either up or down compared to control) as a 
function of gcn5-F221A. B. 129 non-catalytically associated genes (changed in gcn5Δ, but not graded by 
gcn5-F221A) were identified. C. 36 false negative genes were identified, in which expression is graded by 
the dominant mutant, but are unchanged in the knockout strain. D. An additional set of 44 genes 
demonstrate an opposite effect in the presence of the dominant mutant compared to the gcn5Δ. 
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We observed 129 ‘non-catalytically associated’ genes in this data set (genes 

differentially expressed in the knockout strain, but not significantly impacted in response 

to the graded dominant mutant) (Figure 6.8b).  Since gcn5-F221A only inhibits 

acetyltransferease activity, we hypothesize that these non-catalytically associated genes 

are not influenced by Gcn5p acetylation activity, but instead are influenced by another 

indirect effect of Gcn5p, such as protein complex association.  Furthermore, we observed 

that 36 (12.5%) of those genes impacted by the dominant mutant showed no change in 

expression between the wild-type and knockout strains (Figure 6.7c, Figure 6.8c).  These 

‘false negatives’ are clearly impacted by Gcn5p activity, and we hypothesize that these 

genomic loci are directly acetylated by Gcn5p, but in its absence, another HAT with 

redundant functionality steps in.   

Finally, we observed that 44 genes (15%) impacted by the dominant mutant 

display an ‘opposite’ effect in expression as predicted by the gene knockout (Figure 6.7c, 

Figure 6.8d).  In the majority of these cases, these genes were over-expressed in response 

to gcn5-F221A but significantly decreased in expression in the gcn5Δ strain.  Further 

analysis of this set of genes indicates that nearly half are shown to be associated with the 

SAGA complex in an independent study230.  It is likely that this ‘opposite’ phenomena is 

due to the partitioning of Gcn5p function and targeting across the domains (potentially 

the catalytic and bromodomains).  In the case of the graded dominant, targeting of the 

SAGA complex can still occur and thus transcription is increased at these genes.  

However, in a gene knockout, the entire Gcn5p transcriptional coactivator is missing and 

thus transcription is impeded significantly.  Underacetylated H4 histone proteins have 

also been shown to have a biased association with SAGA-regulated genes230, further 

solidifying the SAGA-complex link to these opposite genes.  These results provides 

another example that removing a globally functioning protein like Gcn5p results in an 
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artificial genetic background with misleading observations regarding true protein-DNA 

interactions.  Moreover, these results highlight how novel hypotheses of function can be 

deduced from this approach.   

6.3.5: Perturbation control experiments for gcn5-F221A mutant 

The impact of these various gene classes was further evaluated using RT-PCR for 

select genes exhibiting a graded response.  We used additional promoter strengths to 

allow for a more quantitative, high-resolution measurement of the impact of Gcn5p 

catalytic activity.  Our global microarray study identified 288 genes whose expression 

levels were impacted by the gcn5-F221A dominant mutant.  We selected four of these 

graded genes; TKL2, SPL2, IDH2 and ZRT1, and quantified the impact of dominant 

mutant expression on mRNA levels using real-time PCR.  These tests confirmed the 

results of the microarray study, while adding better resolution by including additional 

promoter strengths.  These results are depicted in Figure 6.9.  As an additional 

complementation control, we included a p416-TEF5-GCN5 wild-type plasmid 

transformed into gcn5Δ.  The cycle threshold values for this complementation control 

match very closely with that of the wild-type yeast, indicating that the observed 

differences in gene expression in both this study and the microarray study are not an 

artifact of replicative plasmids expressing high levels of Gcn5p. 
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Figure 6.9: RT-PCR of select graded genes confirms microarray findings. 

As a follow-up to the gcn5-F221A microarray study, 4 graded genes (TKL2, SPL2, ZRT1, IDH2) were 
selected for higher resolution RT-PCR analysis.   RNA was extracted from S288C wild-type cells (), 
S288C Δgcn5 (), S288C Δgcn5 with p416-TEF5-GCN5 (X), and S288C with p416-TEFx-gcn5 F221A 
().  Real-time PCR was performed as previously described using primers 25 to 32 for TKL2, SPL2, ZRT1 
and IDH2 respectively.  Based on the microarray study, TKL2 was categorized as graded and up-regulated 
by the dominant mutant with Δgcn5 displaying false negative behavior.  Both trends are reflected in the real 
time PCR data for TKL2.  SPL2, ZRT1 and IDH2 were all categorized as graded and down-regulated by the 
dominant mutant from the microarray data.  Additionally, Δgcn5 displayed opposite behavior for ZRT1.  
These behaviors are again reflected in the real time PCR data for these three genes.  Furthermore, ZRT1 and 
IDH2 show significant gradation at a much higher promoter strength compared to TKL2 and SPL2.   

Finally, we sought to determine what, if any, impact varying expression of mutant 

Gcn5p had on the expression of native Gcn5p.   A p415-pGcn5-yECitrine plasmid was 

constructed, with both a short and long GCN5 promoter, and co-transformed with the 

p416-TEFx-gcn5-F221A plasmid collection.  In this system, fluorescent protein 
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expression is controlled by the GCN5 promoter, thus this construct serves as a promoter-

based transcription reporter.  Using mid-exponential, biological triplicates and flow 

cytometry, we measured fluorescent levels across the full range of mutant gcn5-F221A 

expression.  Regardless of promoter strength driving mutant gcn5-F221A, we observed 

no change in fluorescent expression (Figure 6.10).  This result indicates that expression 

of gcn5-F221A does not create artificial feedback or perturbations of native GCN5 

expression.  Thus, these results demonstrate the clear link between the data we observe 

and the lack of catalytic function inherent in gcn5-F221A.   

Figure 6.10: Expression of gcn5-F221A does not influence the native GCN5 promoter 

 
We sought to determine what impact, varying expression of mutant Gcn5p had on the expression of native 
Gcn5p.   A p415-pGcn5-yECitrine plasmid, with both a short (●) and long (Δ) GCN5 promoter, is co-
expressed with the p416-TEFx-gcn5-F221A plasmid collection.  In this system, fluorescent protein 
expression is controlled by the GCN5 promoter.  Regardless of promoter strength, we observed no change 
in fluorescent expression.   
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6.3.6: Chromatin DB analysis determines histone modifications using a graded 
dominant mutant approach  

We next sought to see whether specific chromatin modifications can be deduced 

from microarray data alone when using a graded dominant mutant approach.  To do so, 

genes identified in our microarray study were analyzed using Chromatin DB231 

(Appendix E). Using genes identified by a gcn5Δ knockout (including subclasses of up-

regulated, down-regulated, and differentially expressed), no significant enrichment or 

depletion of chromatin lysine acetylation is evident.  This same lack of enrichment or 

depletion is observed using the microarray data obtained by a separate and independent 

gcn5Δ study230.  However, by examining the graded up genes with low grading thresholds 

identified in this study, significant depletion is seen in H2BK11ac, H2BK16ac, H3K18ac, 

H3K14ac, and H3K23ac with p-values of less than 10-3 to 10-4.  This profile of histone 

modifications mimics those observed in a Gcn5p binding study213.  Furthermore, the 

‘false negative’ gene set exhibits acetylation depletions for the same lysine residues as 

genes that are graded up.  This clearly demonstrates that ‘false negative’ genes are indeed 

direct targets of Gcn5p acetylation and explains why the vast majority of these ‘false 

negative’ genes increase in expression in response to gcn5-F221A.  In contrast, the non-

catalytically associated data set exhibits no enrichment or depletion of chromatin lysine 

modifications.  In the case of those genes exhibiting an ‘opposite’ response, the primary 

histone modification that is observed is a depletion of H4K16ac (p-value <10-3).  It is 

well known that Sir2p and Esa1p are responsible for targeting H4K16232, which implicate 

the actions of these proteins as potential compensators for Gcn5p.  Collectively, these 

results demonstrate that the graded dominant mutant approach can identify the canonical 

acetylation targets of Gcn5p233.  
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6.3.7: Gene ontology analysis reveals new cellular processes impacted by Gcn5p 
acetylation 

Gene ontology and network analysis tools were used to further classify the genes 

influenced by gcn5-F221A activity and evaluate the dataset (Appendix F). Three 

functional classes (nucleolus, ribosome biogenesis, and RNA metabolic processes) were 

significantly enriched in the set of genes exhibiting an under-expression graded response.  

Nearly 70% of the genes exhibiting under-expression were associated with these 

functional classes. Furthermore, one gene ontology class (oxidoreductase activity) was 

overrepresented in genes exhibiting an over-expression in a graded fashion, and is thus a 

target for Gcn5p-based gene repression.  This analysis expands the role of Gcn5p activity 

to other fundamental cellular processes.   

6.3.8: Graded dominant mutant approach can interface with phenotypic and genetic 
assays 

Finally, we sought to demonstrate how the graded dominant mutant approach can 

be used in conjunction with phenotypic and genetic assays.  Prior to this work, it was 

unclear whether acetylation or protein-protein interaction is the root cause of gcn5Δ 

synthetic lethal genes.  To address this issue, we paired a gene deletion with various 

promoter strengths driving gcn5-F221A to simulate the lethal double knockout strain in 

the haploid yeast BY4741.  Twenty two of these synthetic lethal genes were selected for 

this study and evaluated (Table 6.1).  Only three gene knockouts, Δccr4, Δrsc2 and 

Δrtt109, were highly impacted in a graded fashion by the dominant mutant. Δrtt109, a 

HAT known to acetylate H3K56 and H3K9234, demonstrated the most significant impact.  

Fifteen of the gene deletions were moderately impacted and four showed almost no 

change.  Collectively, these results implicate the relative importance of Gcn5p’s catalytic 

activity versus its protein and DNA interactions.  As a comparison, ten BY4741 null 
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strains were selected at random to serve as a control group.  None of these strains showed 

a growth-rate dependent response to the gcn5-F221A mutant, indicating the significance 

of the results described above. 

Finally, we sought to investigate the global impact of Gcn5p acetyltransferase 

activity on cellular phenotypes.  To do so, we evaluated the impact that grading this 

activity has on the basis of documented large-scale chemical tolerance assays of null 

mutants.  Yeast strains with a gcn5 null allele have previously been shown to have 

increased sensitivity to cycloheximide235, ethanol235, 5-fluorouracil236, KCl237, MnCl2237, 

CaCl2
237, and sulfanilamide238.  Growth inhibition assays were performed using strains 

containing gradations of the dominant mutant, as well as a wild-type control and a Δgcn5 

control, as described in the Materials and Methods.   
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Table 6.1: Impact of gcn5-F221A on the growth rate of GCN5 synthetic lethal genes. 

gcn5 synthetic 

 

Control  

  

 

.16 growth 

  

.32 growth 

  

.68 growth 

  

.95 growth 

  
ccr4 .225 ± .003 .218 ± .007 .192 ± .000 .180 ± .003 .168 ± .001 
eaf7 .252 ± .003 .225 ± .001 .232 ± .002 .225 ± .001 .208 ± .003 
elp3 .229 ± .001 .220 ± .002 .212 ± .002 .208 ± .001 .208 ± .002 
hhf2 .249 ± .003 .234 ± .004 .222 ± .001 .209 ± .002 .206 ± .002 
hht2 .253 ± .006 .227 ± .022 .238 ± .004 .209 ± .006 .221 ± .009 
hsl1 .260 ± .006 .250 ± .004 .244 ± .002 .228 ± .009 .222 ± .013 
hsl7 .244 ± .001 .232 ± .004 .243 ± .005 .216 ± .007 .197 ± .003 
iki3 .225 ± .002 .217 ± .002 .219 ± .003 .208 ± .002 .206 ± .003 
leu2 .255 ± .004 .237 ± .004 .232 ± .002 .227 ± .002 .219 ± .001 
mot2 .271 ± .008 .248 ± .005 .258 ± .006 .234 ± .003 .230 ± .003 
nam2 .233 ± .001 .228 ± .003 .235 ± .000 .217 ± .005 .219 ± .000 
not5 .259 ± .002 .246 ± .003 .244 ± .001 .230 ± .001 .221 ± .002 
paa1 .245 ± .005 .236 ± .004 .195 ± .004 .188 ± .005 .197 ± .010 
pap2 .263 ± .005 .250 ± .002 .246 ± .002 .236 ± .001 .232 ± .006 
pho23 .231 ± .003 .228 ± .001 .218 ± .004 .219 ± .004 .210 ± .003 
rad6 .193 ± .008 .180 ± .002 .176 ± .005 .163 ± .004 .159 ± .002 
rpd3 .260 ± .003 .247 ± .005 .240 ± .002 .232 ± .002 .222 ± .003 
rtt109 .204 ± .003 .167 ± .010 .154 ± .007 .131 ± .006 .131 ± .004 
rsc2 .209 ± .013 .194 ± .001 .194 ± .004 .167 ± .006 .158 ± .000 
sin3 .195 ± .001 .183 ± .002 .186 ± .008 .162 ± .022 .173 ± .005 
snf2 .176 ± .003 .161 ± .012 .139 ± .020 .146 ± .002 .152 ± .019 
spt20 0.149 ± .001 0.144 ± .002 0.151 ± .002 0.142 ± .002 0.140 ± .004 
Random 

  

 

Control  

  

 

.16 growth 

  

.32 growth 

  

.68 growth 

  

.95 growth 

  
cad1 .155 ± .022 .128 ± .070 .190 ± .018 .163 ± .028 .175 ± .024 
hpa2 .124 ± .006 .161 ± .024 .139 ± .006 .138 ± .024 .132 ± .007 
lsb3 .136 ± .039 .131 ± .042 .130 ± .007 .131 ± .006 .132 ± .003 
nma2 .163 ± .031 .141 ± .015 .147 ± .022 .114 ± .014 .160 ± .007 
nup170 .125 ± .014 .135 ± .023 .151 ± .023 .110 ± .014 .159 ± .020 
rpl20b .120 ± .034 .113 ± .019 .128 ± .063 .125 ± .011 .152 ± .018 
vps28 .147 ± .017 .138 ± .023 0.139 ± .018 .145 ± .002 0.126 ± .043 
YBR287W .154 ± .021 .172 ± .022 .144 ± .033 .144 ± .002 .138 ± .034 
YML131W .138 ± .009 .120 ± .007 .144 ± .031 .166 ± .016 .126 ± .022 
YNL234W .141 ± .019 0.164 ± .017 0.165 ± .040 0.154 ± .020 0.154 ± .039 
We examined 22 gene knockouts with known synthetic lethal interactions to gcn5 null. The gcn5-F221A 
dominant mutant was expressed at varying levels in the background of a knockout strain and growth rate 
was measured. Three gene knockouts (shown in bold), are highly impacted by the gcn5-F221A mutant and 
exhibited a more than a 20% reduction in growth rate when the mutant was highly expressed. The majority 
of the genes show a moderate decrease in growth rate (shown in underline) as mutant expression is 
increased while several showed no growth rate changes.  Ten gene deletions were randomly selected as a 
control and none exhibit any response. 
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Figure 6.11: Decreased growth rate caused by cycloheximide treatment of S288C is 
linked with Gcn5p acetylation activity. 

 
Using an S288C wild-type strain expressing gcn5-F221A at varying promoter strengths (), we measured 
growth rate in the presence of 0.18 μg/mL cycloheximide.  As mutant expression increased, growth rate 
decreased and approached that of the gcn5Δ strain ().  At low mutant expression levels, growth rate 
resembled that of the wild-type strain ().  This demonstrates that the cellular response to cycloheximide 
is linked with Gcn5p acetylation.  A similar impact was observed at the HIS3 locus (Figure 6.3), a known 
Gcn5p gene target. 

When treating the strains with cycloheximide, we observed a graded, linear 

decrease in growth rate that coincided with increasing gcn5-F221A expression, showing 

that cycloheximide tolerance is controlled by Gcn5p acetyltransferase activity (Figure 

6.11).  Assays performed using ethanol, 5-fluorouracil, KCl, 4mM MnCl2, and 8mM 

MnCl2 as a growth inhibitor did not exhibit this trend (Table 6.2).  These growth 

inhibitors are akin to the non-catalytically associated gene expression data set, and we 

hypothesize that increased sensitivity to these growth inhibitors is not a result of 

decreasing cellular Gcn5p acetylation, but by a separate, indirect effect.  Despite prior 

reports, sulfanilamide, CaCl2, and 40mM MnCl2 inhibitors did not impact growth rate for 

any of the strains in our liquid-culture based experiment.  
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Table 6.2: Putative GCN5-Dependant growth inhibitors tested for an impact with mutant  

Putative GCN5-Dependent 

  

Test Culture 

 

Previous Study 

 

Previous 

  
Ethanol 6% w/v High throughput Solid 
Cycloheximide 0.18μg/mL High throughput Solid 
Sulfanilamide 200μg/mL High throughput Liquid 
5-Fluorouracil 15μg/mL High throughput Solid 
KCl 1M Individual Solid 
CaCl2 0.25M Individual Solid 
MnCl2 4mM Individual Solid 
MnCl2 8mM Individual Solid 
MnCl2 40mM Individual Solid 
MnCl2 200mM Individual Solid 

Previous studies have identified the following compounds and concentrations which inhibited growth of a 
Δgcn5 strain compared to wild-type yeast.   We tested the growth of S288C strains expressing gcn5-F221A 
in the presence of these compounds in liquid media, as described in the Materials and Methods. 

 

6.4 CONCLUDING REMARKS 

Using a graded dominant mutant approach and Gcn5p as a case study, we are able 

to determine global gene targets and impacts, and to extract the causative linkage 

between the catalytic domain of Gcn5p and gene regulation.  In particular, we (1) find 

evidence that Gcn5p is more involved in cell-wide gene repression, instead of the 

accepted gene activation associated with HATs, (2) identify previously unknown gene 

targets and interactions for Gcn5p-based acetylation, (3) quantify the strength of some 

Gcn5p-DNA associations, (4) demonstrate that this approach can be used to correctly 

identify canonical chromatin modifications, (5) establish the role of acetyltransferase 

activity on synthetic lethal interactions, and (6) identify new functional classes of genes 

regulated by Gcn5p acetyltransferase activity—all six of these major conclusions were 

unattainable by using standard gene knockout studies alone.  These results demonstrate 

the power of the graded dominant mutant approach, which unlike traditional methods, 

only impacts one particular facet of the querying protein (in this case, acetyltransferase 
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activity) and is therefore especially useful for studying multifunctional proteins and 

global regulators.   

Based on the results presented here, we would recommend that a graded dominant 

mutant approach be utilized in conjunction with a traditional gene knockout to study gene 

regulatory proteins, especially those that serve multiple functions.  The resulting data is 

higher-resolution and more accurately defines protein domain function and influence.  

While demonstrated here for the case of acetyltransferase activity of the yeast protein 

Gcn5p, this approach can theoretically be extended to other proteins and domains of 

interest. This approach uniquely enables a systems biology view of the cell while at the 

same time leveraging synthetic biology tools239.  The identification of dominant 

mutations that can remove single functions are either well-documented for many proteins 

of interest or can be identified with the proper genetic screens.  Additionally, promoter 

libraries with documented expression capacity are available for most major model 

systems222,240,241.  Thus, this approach is generalizable for other proteins in classes such 

as epigenetic modification, signaling cascades, and transcriptional regulation as well as 

for essential genes, which cannot be deleted, and this method is not necessarily restricted 

to the yeast system studied here.  In addition, this approach can be combined with any 

cell state assay including, but not limited to, gene expression analysis, phenotypic assays, 

genetic screens, ChIP analysis, and metabolomics.  In conclusion, the graded dominant 

mutant approach is able to circumvent the problems seen in standard genetic approaches 

and can provide a causative linkage between specific protein function and phenotype. 
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Chapter 7: Conclusions and Major Findings 

Compared to other cellular hosts, our ability to genetically manipulate and 

engineer human cell lines (and other mammalian hosts such as CHO) is limited.  In 

particular, robust, stable, high expression of heterologous DNA is difficult and standard 

approaches are both unreliable and variable in their results.  Resolving this issue through 

the development of tools that enable predictable gene expression would be greatly 

advantageous.  Not only would such tools have great traction in mammalian cell research, 

they could enable medical progress in the areas of gene therapy and disease states. 

Furthermore, these tools would be directly applied to the production of protein 

therapeutics and could result in significant time and cost savings to current practices. 

We evaluated the influence of a selection marker, a nearly ubiquitous element of 

mammalian expression cassettes, on the cell line development process172.  This is the first 

study to compare four common antibiotics, hygromycin, neomycin, puromycin and 

Zeocin, in the same context.  We evaluated the selection agents on the quality of selected 

populations, the stability of those populations, and the expression levels of clonal 

populations.  Across all metrics and two human cell lines (HT1080 and HEK293), Zeocin 

outperformed the other antibiotics, and is therefore recommended for human cell line 

development. 

We sought to identify sites across the human genome that support stable, high 

level expression of transgenic DNA.  It is well established that integration locus strongly 

influences foreign gene expression levels, yet little effort has been made to catalogue or 

identify the quality of sites across the genome.  Although several sites have been used for 

transgenic integration, and in some cases the performance of those sites have been 

evaluated66, the majority of these studies look only at protein coding regions, which 
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represents less than 3% of the human genome.  Alternatively, we applied an unbiased, 

random integration approach, followed by isolation of productive, single copy clonal cell 

lines, and retrieval of the integration locus.  In doing so, we identify eight sites in the 

genome that support heterologous gene expression.  These sites are distributed in both 

intronic regions and non-protein coding regions, which demonstrates that searching only 

exonic regions is limiting.  Furthermore, we find transgenic integration at the majority of 

the loci caused negligible perturbation to expression of surrounding genes, indicating 

these loci could be used in gene therapy applications65.  These results are profound, and 

can be coupled with site-specific targeting methods to reliably deliver transgenic DNA to 

a hospitable genomic locus.  

Site-specific integration and genome editing techniques are critical for genetic 

manipulations including controlled integrations and endogenous gene deletions.  In recent 

years, this component of mammalian cell engineering research has seen significant 

technological advancement167,242.  Nonetheless, there remains room for improvement.  

We sought to optimize a Cre recombinase method for recombination-mediated cassette 

exchange173.  We used a dual fluorescent assay to measure recombination efficiencies 

without selection, and examined parameters including mutant targeting sequences, 

delayed introduction of the recombinase, and varying the ratio of the recombinase to 

exchange cassette.  Pairing a highly mutated targeting sequence with a native sequence, 

we observed a more than two-fold average increase in recombination efficiency.  By 

delaying the introduction of Cre recombinase 18 to 20 hours, we achieved recombination 

efficiencies of more than an order of magnitude greater than previous reports.  These 

optimizations greatly improve the efficiency of Cre based recombination-mediated 

cassette exchange and can be applied to related enzymes such as Flp recombinase and 

ΦC31 integrase. 
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Another major component of this dissertation utilizes a systems biology approach 

to develop generic cell engineering techniques.  As our ability to collect global 

information about cellular hosts has increased through transcriptomics, proteomics, 

metabolomics and other approaches, we are able to generate vast amounts of data under a 

variety of environmental conditions.  This data is continually being generated, is often 

publicly available and enables a systems level view of the cell.  In some cases, this 

information is incorporated and used to evolve and update the state of the art, including in 

silico metabolism models and gene interactions databases.  However, there are many 

common cell engineering approaches that have not been reevaluated on a systems level, 

which could be used to guide the development of better recombinant DNA tools239. 

Codon optimization, which is a widely used technique for heterologous gene 

expression, is one such tool not previously been examined from a systems biology 

perspective.  Currently, synonymous codon optimization is determined through the codon 

usage of all protein coding genes in the host’s genome.  Although this approach improves 

gene expression in many cases, it fails inexplicably in other cases.  We have developed 

an alternative, condition-specific codon optimization method.  This method determines 

synonymous codon optimization using the genes known to be highly expressed under 

relevant growth conditions and uses codon context to stochastically generate optimized 

gene variants.  We implemented this approach in S. cerevisiae and successfully improved 

expression of three heterologous genes (eGFP, CatA and Lac1) under three different 

conditions (constitutive high expression, stationary phase growth and xylose and glucose 

as carbon sources).  Condition-specific codon optimization is a useful tool for metabolic 

engineering and can be generically applied to a variety of environmental conditions and 

can be implemented in any genome-sequences cellular host. 
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Multifunctional proteins perform important functions in eukaryotic cells including 

gene regulation and epigenetic modification.  These proteins are typically studied through 

gene deletion, which is problematic because gene and protein targets, as well as 

phenotypic changes, cannot be directly linked to any one domain.  We developed an 

alternative Graded Dominant Mutant Approach that can be used to study multi-functional 

proteins229.  This approach uses a dominant mutant allele able to competitively inhibit the 

domain of interest expressed in the presence of the wild-type allele.  Combining the 

dominant mutant with a promoter library allows for modulated mutant expression and 

discrete levels of competitive inhibition.  A case study with S. cerevisiae histone 

acetyltransferase, Gcn5p, was performed.  Using a Graded Dominant Mutant Approach 

and global microarray, we were able to identify over 289 catalytically associated Gcn5p 

gene targets and in many cases, determine the strength of their interactions with Gcn5p.  

Through gene ontology, we identified several biological functions associated with Gcn5p 

acetylation and determined for the first time that this modification is largely repressive in 

S. cerevisiae.  The quality of this information far exceeds that which can be achieved 

with a ∆gcn5 knockout strain.  Furthermore, this approach is generic and can be coupled 

with many global techniques and implemented in a variety of cellular hosts. 

Collectively, these studies constitute significant contributions to the genetic tools 

available for eukaryotic hosts.  I have developed and characterized novel approaches that 

enable precise, stable gene expression in mammalian cells.  Furthermore, I applied a 

systems level approach to develop methodologies that enable complex phenotypes in S. 

cerevisiae.  These methods are generic and can be adapted to higher eukaryotes.  The 

development of these tools represents a novel addition to the field of cellular engineering 

and has many applications in both biotechnology and medicine. 
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Chapter 8: Proposals for Future Work 

This work is composed of studies in the areas of predicted gene expression for 

mammalian cellular hosts and cell engineering through systems biology.  Collectively, 

these experiments have resulted in significant findings that will be impactful in basic 

biology, cell engineering, biotechnology and medicine.  Furthermore, this work can be 

used to guide and outline the future direction of studies in these areas.  Here, I outline 

unanswered questions as well as several follow-up studies that can be carried out to 

expand upon these findings.  

We evaluated four common antibiotic selection systems to determine their impact 

on human cell line development.  In doing so, we identify that Zeocin performs better in 

three critical areas; recombinant population identification, stable gene expression, and 

candidate cell line identification.  These trends were consistently demonstrated across 

two industrial human cell lines, HT1080 and HEK293.  There is interest in extending this 

type of study to other mammalian cell types, including Chinese hamster ovary (CHO) 

cells, because of their importance in the biopharmaceutical industry and protein 

production14.  In addition to examining the antibiotic markers studied here, it would be 

advantageous to extend the study in CHO to auxotrophic marker systems (dihydrofolate 

reductase and glutamine synthetase) because of their popularity in industrial cell line 

development.  One concern in addressing the influence of selection markers in CHO is 

that transgene duplication is commonplace38, as well as chromosomal aberrations243,244, 

which could confound results of the study.  For this reason, transgene copy number must 

be carefully evaluated. 

Additionally, it would be interesting and valuable to try to understand why Zeocin 

identifies better recombinant cell populations compared to other common antibiotics.  
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Zeocin’s mode of action involves DNA cleavage, while the other antibiotics evaluated 

here either interfere with ribosome function or translation.  Although it is clear that 

Zeocin functions through a different mechanism compared to other selection systems, the 

exact details of this mechanism have not been previously explored.  By gaining a better 

understanding of Zeocin’s intercellular mechanism, it may be possible to identify other 

antibiotics or Zeocin analogues that act in a similar manner and are likewise 

advantageous and robust for cell line development applications.  Regardless, increased 

options for mammalian selection markers would increase flexibility for synthetic circuit 

design. 

We have identified eight stable, high transcription loci in the human genome 

using a GFP reporter system.  The initial identification of these loci was done in HT1080.  

As a follow-up, these sites are being retargeted in a second human cell line, HEK293, and 

compared to illegitimate integration to validate that the loci are advantageous and not 

cell-line specific.  In addition to fluorescent proteins, these sites should be evaluated with 

secreted proteins, such as SEAP and a model IgG, which better represent target products 

for these cells.  This will also allow for productivity measurements on a per cell basis.  

Finally, bioreactor scale-up experiments can be conducted on the 1-2 most productive 

cell lines to demonstrate the industrial applicability of this technology and determine 

maximum titers.   

Furthermore, it would be advantageous to identify a larger set of stable, high 

transcription loci.  Although we were able to establish sufficient populations, both clonal 

and heterogeneous, exhibiting high and stable expression, we were limited by our ability 

to determine the corresponding loci of integration.  The low-throughput methods we 

employed were both slow and not sufficiently robust.  Alternatively, hundreds of 

integration loci could be more easily identified using high-throughput deep sequencing 
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techniques.  This approach would eliminate the necessity of single clonal populations, as 

well as PCR amplification of the integration locus.  Identifying a larger set of 

advantageous integration sites would provide increased flexibility for cell line 

engineering applications and expand our understanding of Safe Harbor criteria for gene 

therapy applications65. 

We examine and optimize one approach for site-specific retargeting using the Cre 

recombinase enzyme.  In doing so, we identify two criteria that significantly impact 

efficiency; mutated lox targeting sequences and delayed introduction of Cre recombinase.  

These modifications result in retargeting efficiencies of 8-13%173.  We observed that of 

the mutated lox targeting sequences we evaluated, the heavily mutated loxFas site out-

performed the less-mutated lox5171 and lox2272 sites.  Thus, more research should be 

conducted to identify highly mutated lox sites that can further improve efficiencies.  

Additionally, this method has not been directly compared to the many other genome 

editing techniques available, including ZFNs, TALENs and CRISPR.  It would be 

advantageous to directly compare the efficacy of several site-specific targeting methods 

at several integration loci.  This would not only help evaluate the robustness of the 

approaches, but also identify if some approaches are less variable than others with 

regards to locus. 

  The condition-specific codon optimization approach has been demonstrated as an 

improvement over conventional codon optimization in S. cerevisiae using two 

heterologous genes.  This approach is currently being extended to a third case.  We are 

demonstrating that carbon-source codon optimization (glucose vs. xylose) is 

advantageous in the expression of a laccase gene native to M. albomyces.  Laccases are a 

useful class of enzymes with applications in industrial biosciences because of their ability 

to oxidize phenolic compounds.  Furthermore, the utilization of alternative carbon 
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sources is useful in applied biosciences.  Additionally, other useful classes of enzymes 

and relevant process conditions can be evaluated. 

 Condition-specific codon optimization is a generic approach that combines 

systems level information and codon context to optimize gene sequence.  To demonstrate 

that this approach is generic, it should be extended beyond S. cerevisiae to other 

industrially relevant cellular hosts including Pichia pastoris, Bacillus subtilis, and 

Yarrowia lipolytica.   

The graded dominant mutant approach is a methodology for understanding the 

intercellular interactions of a single domain of a multifunctional protein.  This method 

was applied to the acetylation domain of Gcn5p in S. cerevisiae, which enabled the 

identification of previously unknown gene targets.  This methodology can be expanded to 

the other Gcn5p domains, the Ada2 binding domain and the bromodomain.  After 

identifying dominant mutants corresponding to these other loci, this approach can be used 

globally to map all of the gene targets for each of Gcn5p’s three domains.  Furthermore, 

the mutants can be co-expressed to get a complete picture of Gcn5p’s targets and how 

they relate to each functionality.   

Additionally, this graded dominant mutant approach is generic and can be 

expanded to other enzyme classes and organisms.  It would be advantageous to use this 

approach, in conjunction with site-specific genome editing techniques, to study 

epigenetic factors in human cell lines.  Because gene knockout is so difficult in 

mammalian cell lines, this graded dominant mutant approach would be a useful 

alternative to understand in vivo interactions of regulatory proteins.  Many epigenetic 

classes, including methylases and histone deacetylases have been implicated in cancer 

disease states245-249 and would be good candidates for this work.  
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Collectively, the experimental findings described herein resulted in significant 

findings that will be impactful in basic biology, cell engineering, biotechnology and 

medicine and have laid the groundwork for both precise and complex cellular engineering 

of eukaryotic organisms.  These findings can be used to guide future experiments and 

used as a framework for the extension of these approaches to other cellular hosts.   
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Chapter 9: Materials and Methods 

9.1 COMMON MATERIALS AND METHODS 

9.1.1 Conditions and media for human cell growth  

The suspension-adapted and serum free cell lines were provided by Shire 

Pharmaceuticals.  HT1080250 was established from ATCC #CCL-121 and HEK293251 

from ATCC#CRL-1573.  HT1080 cells were grown in a defined media with an added 

4mM glutamine, 1x penicillin-streptomycin, and pH adjustment to 7.20.  HEK293 cells 

were grown in HyClone media (ThermoFisher) supplemented with 4mM glutamine and 

1x penicillin-streptomycin.  All cells were passaged every 48 to 72 hours and seeded 

between 2e5 and 3e5 viable cells/mL. Cell viability, concentration, and size were 

measured using a Beckman Coulter ViCell.  Shake flasks were maintained at 37ºC, 5% 

CO2, humidity above 80% and 125 rpm.   

9.1.2 Conditions and media for microbial growth 

Bacteria were grown in lysogeny broth with ampicillin at 37ºC.  Yeast were 

grown at 30ºC.  YPD media contained 20g/L yeast extract, 10g/L peptone and 10g/L 

glucose. Minimal media contained yeast nitrogen base and 20g/L glucose and was 

supplemented with amino acids; 0.77 g/L of CSM –Ura (MP Biomedicals) for p426/416 

vectors, 0.77 g/L of CSM –His for p413 vectors and 0.79 g/L of CSM for p41K vectors. 

For gentamycin resistant strains, media was supplemented with 200 μg/L of G418.  Agar 

plates were grown in standing incubators and cultures in shakers operating at 225 rpm. 

Passage numbers for yeast cultures were kept low (2–3) for all experiments. 

 



 141 

9.1.3 Transfection and selection of human cell populations 

Prior to transfection, plasmid DNA was extracted from 150mL of DH10β culture 

using the Qiagen High Speed Maxi Prep kit.  If linearization was necessary, DNA was 

digested overnight with appropriate restriction enzymes at 37ºC.  Linearized DNA was 

purified using a phenol-chloroform extraction.  To establish recombinant cells, batches of 

12 million viable cells were re-suspended in RPMI media (0.75 mL per cuvette) and 

transfected with 30 to 50μg of plasmid DNA using a 4mm electroporation cuvette, 950μF 

of capacitance and either 350V (HT1080) or 160V (HEK293).  Surviving cells were then 

transferred to the respective growth media and allowed to recover for 48-72 hours before 

the addition of selection pressure.  Selective pressure was maintained until culture 

viability was above 90%.   

9.1.4 Isolation of human cell clonal populations 

To establish single cell clones, resistant cultures were diluted to permit the 

addition of one cell per well in EX-CELL CHO cloning media (Sigma), supplemented 

with 4mM glutamine, 1x penicillin-streptomycin, and 1x Insulin-Transferrin-Selenium 

(Invitrogen).  150μL were plated per well in 96 well plates.  After one week, 100μL of 

cloning media was added.  Upon the appearance of a cell mass, the contents of wells were 

transferred to a six well plate and split when confluent.  The single cell clones were 

expanded until freezer stocks were established.  Freezer stocks consisted of 12 million 

cells in 1mL of 10% DMSO preconditioned media. 

9.1.5 Flow cytometry for human cell populations 

GFP or mStrawberry fluorescence profiles were examined using either a FACS 

Fortessa or FACS Calibur.  In the case of the FACS Fortessa, the 488nm laser was used 

to detect GFP fluorescence (505 LP, 530/30).  Forward scattering had a voltage setting of 
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82, side scattering of 181, GFP fluorescence of 381.  Forward and side scattering data 

were linear and fluorescence was collected on a logarithmic scale.  In the case of the 

FACS Calibur, forward scattering had a voltage setting of E00, side scattering 371, GFP 

fluorescence 381 and Strawberry fluorescence 375 and ampgain was 1.00.  Compensation 

for GFP and Strawberry fluorescence was set to 0.8% and 33%, respectively.  Analysis of 

flow cytometry data was performed using FlowJo version 7.6.   

9.1.6 Flow cytometry for yeast populations 

Flow cytometry was used to determine eGFP and yECitrine expression.  

Stationary phase culture was used to inoculate 6mL of appropriate media at an OD600 of 

0.005.  Biological triplicates were grown for approximately 12 hours, allowing cultures to 

reach mid-log phase.  Cells were pelleted and re-suspended in cold water.  Fluorescent 

expression profiles were determined using both a FACS Calibur and Fortessa and 

compared to a control population.  For the FACS Calibur, forward scattering had a 

voltage setting of E00 and ampgain of 2.96, side scattering a voltage of 505 and ampgain 

of 1.00 and fluorescence a voltage of 551 and ampgain of 1.00. Forward and side 

scattering data were linear and fluorescence was collected on a logarithmic scale. 

Threshold was set to a forward scattering value of 52.  For the FACS Fortessa, forward 

scattering had a voltage setting of 209 and ampgain of 1.00, side scattering a voltage of 

209 and ampgain of 1.00 and fluorescence a voltage of 308 and ampgain of 1.00. 

Forward and side scattering data were linear and fluorescence was collected on a 

logarithmic scale. Threshold was set to a forward scattering value of 5000 with an 

OrOperator and area scaling of 0.71.  Gating and statistical analysis of the data was 

performed using FlowJo 7.6. 
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9.2 MATERIALS AND METHODS FOR CHAPTER 2 

9.2.1 Plasmid Construction 

The pAML-hrGFP plasmids (Figure 2.1) were constructed through modification 

of the pCI-neo vector (Clonetech) by introducing a human optimized GFP gene (hrGFP), 

an EMVC-based IRES site, and one of four distinct selection marker genes. The plasmid 

backbone (including the cytomegalovirus (CMV) immediate-early enhancer promoter, 

polyA tail and bacterial replication elements) were amplified from the pCI-neo vector 

using primers 1 and 2 (Table A.1), which include BamHI restriction sites. Using primers 

3 and 4, the hrGFP gene was amplified from pIRES-hrGFP-1a (Stratagene) and cloned 

directly after the CMV promoter using a HindIII restriction site. The IRES site, amplified 

from pIRES-hrGFP-1a (Stratagene) using primers 5 and 6, was cloned directly after the 

hrGFP gene using an XbaI restriction site. Finally, using a ClaI restriction site, each of 

the four selection marker resistance genes were added directly after the IRES site. The 

puromycin resistance gene (600 bp) was amplified using primers 7 and 8 from the 

pLKO.1-puro plasmid (Addgene). The hygromycin resistance gene (1029 bp) was 

amplified from pAG26252 using primers 9 and 10. The Zeocin resistance gene (375 bp) 

was amplified from the pSV40-zeo2 plasmid (Invitrogen) using primers 11 and 12 and. 

The neomycin resistance gene (795 bp) was amplified from the pCI-neo vector using 

primers 13 and 14. The total plasmid size (excluding selection marker) was 4475 bp.  The 

largest size difference between two markers is 654 base pairs (hygromycin and Zeocin), 

which represents 13% of total plasmid size.  All plasmids were transformed and 

propagated in E. coli DH10β.  All primers for this work can be found in Appendix A, 

Table A.1. 
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9.2.2 MIC75 Measurements 

In order to fairly compare the four selection markers, pools were established using 

a selection concentration corresponding to an MIC75 for both HT1080 and HEK293, as 

determined empirically through experiments.  At time zero, 30 mL of healthy HT1080 or 

HEK293 wild-type cells (viability above 90%, density of 3e5 cells/mL) were treated with 

four different selection agents at six different concentrations and monitored for cell 

viability over the course of 8-10 days.  For both cell lines, concentrations of 10, 25, 50, 

75, 100 and 200 µg/mL of Zeocin and hygromycin were used, 25, 50, 75, 100, 200 and 

350 µg/mL for neomycin and 5, 2.5, 1, 0.75, 0.5, 0.25 and 0.1 µg/mL for puromycin.  

Based on viability data, an MIC75 was calculated for each selection agent; In HT1080, 50 

µg/mL for hygromycin and neomycin, 70 µg/mL for Zeocin and 0.7 µg/mL for 

puromycin.  In HEK293, 85 µg/mL for hygromycin, 170 µg/mL for neomycin, 60 µg/mL 

for Zeocin and 1.0 µg/mL for puromycin.  These values are summarized in Table 2.1. 

9.2.3 Cell Line Development 

For each antibiotic, 3 batches of 12 million viable cells were transfected with the 

appropriate DNA construct, as previously described.  Surviving cells were transferred to 

the respective growth media and allowed to recover for 72 hours before the addition of 

selection pressure at the measured MIC75 levels.  Excluding neomycin, these selection 

conditions were sufficient to establish stable libraries and employed for selection.  

Neomycin selection at the MIC75 levels resulted in significant cell debris, especially in 

the HEK293 library.  In HEK293 cells, the neomycin concentration had to be lowered, 

first to 85 µg/mL and eventually to 42.75 µg/mL, in order to establish a stable pool with 

viability above 90%.  Because we were unable to establish a neomycin-resistant HEK293 

population at the MIC75 concentration, we did not attempt a duplicate, nor include 
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neomycin in the mRNA analysis.  Although plasmid size can sometimes influence 

transfection efficiency, we observed no such trend with the plasmids used in this study.   

9.2.4 Real-Time PCR Measurements 

Relative GFP expression at the RNA level was evaluated for hygromycin, 

puromycin and Zeocin stable HT1080 populations.  Five million cells were collected by 

centrifugation from each population and RNA was extracted using the RiboPure RNA kit 

(Ambion).  1100 ng of RNA were then converted in a 40μL total reaction volume to 

cDNA using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems).  

Real-time PCR for both the hrGFP gene and the RPS11 housekeeping gene were 

performed in technical triplicate using primers 15 and 16, and 17 and 18 (Table A.1), 

respectively.  Relative GFP expression was determined using a comparative calculation 

and the observed RPS11 values.   

 

9.3 MATERIALS AND METHODS FOR CHAPTER 3 

9.3.1 Plasmid Construction 

The pIRES-hrGFP plasmid (Figure 1a) was constructed through modification of 

pIRES-hrGFP-1a (Stratagene). The Zeocin resistance gene was amplified from pSV40-

zeo2 (Invitrogen) using primers 57 and 58 (Table A.2) and cloned into pIRES-hrGFP-1a 

using BamHI and XhoI. Mutant lox sites were included for retargeting purposes and 

constructed as previously described173.  An XbaI site was introduced using the 

QuikChange II Site-Directed Mutagenesis Kit (Stratagene) with primers 59 and 60.  The 

pHL-GFP plasmid (Figure 3.1b) was provided by Shire Pharmaceuticals. 
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9.3.2 Sterile FACS Sorting 

After stable cell selection was completed (approximately 15-25 days), cells were 

prepared for flow cytometry sorting and analysis.  For each sort, 300,000 cells of the top 

10-15% of the population (based on GFP expression) were isolated using a FACS Aria.  

This population was transferred to a six well plate and split every 24-48 hours, expanding 

the population until another sort was feasible.  This process was iterated twice to ensure 

stringent selection and sustained expression.   

9.3.3 Methods for identifying integration loci 

Low throughput methodologies for identifying integration loci rely on approaches 

that both isolate and amplify genomic DNA adjacent to the transgene.  We utilized three 

primary approaches to identify the integration sites in our high expression clones: TAIL 

PCR, inverse PCR and plasmid recovery.  TAIL PCR utilizes three interlaced PCR 

reactions to amplify genomic fragments adjacent to the integrated transgene.  Long 

primers, specific to the integrated sequence flanking the gDNA, along with an arbitrary, 

degenerate primer(s) of 12-16 base pairs in length are used in each PCR reaction.  Based 

on previous reports, we adapted a methodology that uses three interlaced PCR reactions 

to enrich the flanking genomic DNA fragment253-256.  The transgene was linearized prior 

to transfection and the long, specific primers were designed to cover approximately the 

last 200 bp of the linearized cassette.  This methodology was used to successfully identify 

the integration loci for clones A, B, C, H, I and J, and further details for each clone can be 

found in the Appendix B. 

A second approach, inverse PCR, was adapted from previous reports 39,50,63,64,257.  

Genomic DNA was first fragmented, either with a restriction enzyme located close to the 

end of the transgene or in a non-biased fashion by shearing.  DNA was sheared using a 

HydroShear instrument between SC7 and SC12 for 20 cycles to obtain fragments 
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between 3 and 6 kb in size.  A low density ligation reaction is then used to circularize the 

genomic fragments, after which the ligation mixture is then subjected to a PCR reaction 

using inverted primers specific to the transgene.  In the even that a circular fragment 

containing both the transgene and the adjacent DNA was formed, the entire fragment can 

be amplified and then sequenced.  This approach was used to successfully identify the 

integration locus for clone E and further details are discussed in the Appendix B. 

The third approach, plasmid recovery, provided better capture and recovery of 

genomic fragments, thereby increasing our coverage of the human genome.  In this 

method, genomic DNA was fragmented, either with a specific restriction enzyme or by 

shearing to achieve fragments between 3 and 6 kb in size.  These fragments were then 

ligated into a bacterial expression vector to create a genomic fragment library.  This 

library was then transformed into DH10β using electroporation and plated on LB plates 

supplemented with antibiotics.  After overnight growth, the plates were scraped and the 

colonies were pooled and mixed.  Plasmid DNA was extracted and subjected to an 

inverse PCR reaction (as described above) using primers specific to the GFP gene.  The 

amplified DNA was then sequenced.  This approach was used to successfully identify the 

integration loci for clones D, F and G, and further details are discussed in the Appendix 

B. 

9.3.4 Real-Time PCR 

Whole cell RNA was extracted using the RiboPure kit (Ambion) and 5e6 cells per 

sample.  RNA was converted to cDNA using the High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems).  Relative mRNA expression for genes of interest 

was measured and compared to a common housekeeping gene, RPS11.  The primer pairs 

for each gene can be found in Table A.2, (1-56) and were designed using PrimerExpress 
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software.  Roche SYBR Green 2x master mix was used to prepare samples in triplicate.  

The Viia7 Applied Biosystems instrument and software was used to run RT-PCR and 

analyze results.  The comparative Ct method was used to normalize measurements 

relative to RPS11. 

9.3.5 Site-Specific Retargeting 

The hCas9 plasmid (41815), previously constructed by the Church group89, was 

obtained from Addgene. Two gRNA constructs were designed, as recommended 

previously89, each containing a unique, 23 base-pair sequence homologous to a portion of 

the 5th intron of the Grik1 gene on chromosome 21 and ordered as a single gBlock from 

IDT.  These gRNA sequences, Grik1A and Grik1B, are 

TGTACAAAAAAGCAGGCTTTAAAGGAACCAATTCAGTCGACTGGATCCGGTA

CCAAGGTCGGGCAGGAAGAGGGCCTATTTCCCATGATTCCTTCATATTTGCAT

ATACGATACAAGGCTGTTAGAGAGATAATTAGAATTAATTTGACTGTAAACA

CAAAGATATTAGTACAAAATACGTGACGTAGAAAGTAATAATTTCTTGGGTA

GTTTGCAGTTTTAAAATTATGTTTTAAAATGGACTATCATATGCTTACCGTAA

CTTGAAAGTATTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAAC

ACCGCTATTTTAGATATATAGCAGTTTTAGAGCTAGAAATAGCAAGTTAAAA

TAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTT

TCTAGACCCAGCTTTCTTGTACAAAGTTGGCATTA and 

TGTACAAAAAAGCAGGCTTTAAAGGAACCAATTCAGTCGACTGGATCCGGTA

CCAAGGTCGGGCAGGAAGAGGGCCTATTTCCCATGATTCCTTCATATTTGCAT

ATACGATACAAGGCTGTTAGAGAGATAATTAGAATTAATTTGACTGTAAACA

CAAAGATATTAGTACAAAATACGTGACGTAGAAAGTAATAATTTCTTGGGTA

GTTTGCAGTTTTAAAATTATGTTTTAAAATGGACTATCATATGCTTACCGTAA
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CTTGAAAGTATTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAAC

ACCGTGGGGGTTATACCACTCGTGTTTTAGAGCTAGAAATAGCAAGTTAAAA

TAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTT

TCTAGACCCAGCTTTCTTGTACAAAGTTGGCATTA respectively.  The hrGFP-

Zeocin construct (Figure 2.1) was linearized and used for genomic integration. 

HT1080 and HEK293 cells were transfected as previously described.  Control 

samples included 20μg of hCas9 and 20μg of the GFP construct only.  The targeting 

samples included 20μg of hCas9, 20μg of the GFP construct and 20μg of either Grik1A 

or Grik1B.  Each transfection was re-suspended in 30mL of fresh media and grown for 72 

hours prior to Zeocin selection at MIC75 levels.  Following the recovery of the cultures, 

GFP expression profiles were determined using flow cytometry.  Whole cell RNA was 

extracted and mRNA expression levels of RPS11 and Zeocin were determined are 

previously described. 

 

9.4 MATERIALS AND METHODS FOR CHAPTER 4 

9.4.1 Plasmid Construction 

The pIRES-hrGFP plasmid (Figure 4.1) was constructed through modification of 

pIRES-hrGFP-1a (Stratagene). The Zeocin resistance gene was amplified from pSV40-

zeo2 (Invitrogen) using primers 1 and 2 (Table A.3) and cloned into pIRES-hrGFP-1a 

using BamHI and XhoI. Mutant lox sites (FAS, 2272 and 5171) were constructed by 

annealing two primers (Table A.3: 3, 4 for loxFAS; 5, 6 for lox2272; 7, 8 for lox5171). 

Primers were re-suspended at a concentration of 500mM in 1x T4 ligase buffer, 

denatured at 95ºC for 2.5 minutes and slowly cooled to 25ºC.  DNA was purified using 

the MERmaid spin kit (MP Biologicals) and lox sites were cloned in front of the CMV 



 150 

promoter using NsiI. An XbaI site was introduced using the QuikChange II Site-Directed 

Mutagenesis Kit (Stratagene) with primers 27 and 28.   

The backbone of the Strawberry construct (Figure 4.1), including the SV40 

promoter, poly-A tail, bacterial origin of replication and ampicillin marker, are derived 

from pSV40-Zeo2 (Invitrogen). The hygromycin B resistance gene was cloned from 

pAG26 (primers 9 and 10, using AscI and SpeI), the IRES from pIRES-hrGFP-1a 

(Stratagene) and the Strawberry gene from pmStrawberry (Clonetech). Primers 11 and 

12, and 13 and 14 were used to amplify the IRES and Strawberry gene respectively. The 

IRES site was added using a SpeI restriction site, and SpeI and FseI restriction sites were 

used to add the Strawberry gene.  The loxP site was added using a HindIII restriction site 

(primers 15 and 16).  A second mutant site was added using an EcoRV site. The loxFAS 

site was created by annealing primers 17 and 18, lox2272 primers 19 and 20, and lox5171 

primers 21 and 22.  These plasmids were linearized (Figure 4.1) using SspI. 

The pCI-Cre plasmid was derived from pCI-neo (Clonetech).  A SwaI restriction 

site was added after the CMV promoter by annealing primers 23 and 24 and digesting 

with SacI.  The wild-type Cre gene was amplified from pET28a-Cre (gift of the Jayaram 

Lab, UT Austin) using primers 25 and 26 and introduced using SwaI and XhoI.   

9.4.2 Cell Line Development 

To establish stable, GFP expressing cells, 3 batches of cells were transfected with 

50μg of pIRES-hrGFP DNA as previously described.  Cells were allowed to recover for 

48 hours before adding 50μg/mL of Zeocin.  Single cell cloning was conducted as 

previously described. 
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9.4.3 Copy Number Assay 

The copy number of GFP integrants was determined for each clone as previously 

described173,258.  RPPH1, a previously purported two copy human housekeeping gene, 

was cloned into the pIRES-hrGFP vector.  RT-PCR primers were designed for RPPH1 

(Table A.3, 31 and 32) and hrGFP (Table A.3, 29 and 30) and primer efficiency was 

calculated using a standard curve method (99% for hrGFP and 102% for RPPH1).  All 

real-time PCR measurements used the SYBR Green Master Mix (Roche) and were run on 

the 7900HT model using 96-well plates (Applied Biosystems).  RT-PCR was conducted 

with both primer sets in triplicate, using 50 to 500 ng of genomic DNA.  The hrGFP copy 

number was determined by the ratio of hrGFP to RPPH1.  Of the eighteen cell lines we 

measured, twelve contain a single copy and no cell line has a copy number greater than 

three (Table 9.1). 
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Table 9.1: Copy Number for GFP-expressing clones 
Lox Pairing Clone Copy Number 
lox2272-loxP A 1 

B 1 
C 1 
D 1 
E 2 
F 1 
G 1 
H 1 

lox5171-loxP I 3 
J 1 
K 2 
L 1 
M 2 

loxFAS-loxP N 2 
O 1 
P 1 
Q 1 
R 2 

 
Eighteen clones were used to evaluate the impact of lox pairing on recombination.  The GFP copy number 
of these clones was determined using a peer-reviewed, RT-PCR based method, as described in the 
Materials and Methods.  Of the eighteen clones, thirteen carry a single copy of the transgene.  The two 
loxFAS-loxP cell lines used for further studies (Q and R) are both single copy integrants. 

9.4.4 Measuring Cre recombinase performance 

Cre recombinase function was measured using a dual-fluorescence screening 

method.  HT1080 cell lines stably expressing GFP were transfected with either the 

Strawberry construct (linear), pCI-Cre (circular), or both.  In cases where both the 

Strawberry construct and pCI-Cre were introduced, DNA was either co-transfected (i.e. 

added directly to cell mixture prior to a single electroporation) or sequentially 

transfected.  In the latter case, Strawberry DNA was transfected first and some period 

later, Cre DNA was introduced in a separate electroporation event.  Approximately two 

days after electroporation, samples were analyzed using flow-cytometry as previously 

described.   
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Fluorescent quadrants were established using a wild-type HT1080 sample (Figure 

4.2), with positive Strawberry fluorescence above 5 RFU and positive GFP fluorescence 

above 8 RFU.  Excision activity due to Cre was measured by subtracting the non-

fluorescent population of GFP positive HT1080 cells transfected with the Strawberry 

construct (control) from the same cells transfected with Strawberry and Cre constructs 

(test).  Swapping activity due to Cre was measured by subtracting the control population 

exhibiting Strawberry fluorescence from the test cells (Q3, Figure 4.2).  Cells exhibiting 

both GFP and Strawberry fluorescence (Q2, Figure 4.2) were excluded from these 

calculations and are a result of transient expression. 

9.4.5 Southern Blot 

Three batches of a GFP positive cell line with a loxP-loxFAS pairing (clone R) 

were transfected with 30µg of Strawberry construct per batch.  Twenty-three hours post 

transfection, surviving cells were divided evenly into three batches and transfected with 

5µg of pCI-Cre.  Forty-eight hours later, using FACSAria, the cell population was sorted 

for red fluorescent cells (expressing Strawberry only) and dual fluorescent cells 

(expressing Strawberry and GFP).  Sorted cells were expanded as previously 

described173. As a control, a batch of cells was transfected with 30 µg of Strawberry 

construct only and grown for 72 hours. 

Genomic DNA was extracted with the Wizard kit (Promega) from 4 distinct cell 

populations; the GFP positive cell line (clone R) (Q1, Figure 4.2), the GFP positive, 

control cell line (72 hours post-transfection), the Strawberry-expressing sorted cell 

population (Q3, Figure 4.2), and the Strawberry and GFP-expressing sorted cell 

population (Q2, Figure 4.2).  Thirty µg of DNA was digested overnight using 60U of 

SphI, concentrated to 50µL by ethanol precipitation, and loaded on a 0.7% agarose gel.  
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In the first lane, the 2-log ladder (NEB) was loaded.  In the third lane, GFP positive 

digested gDNA was loaded, followed by the Strawberry-expressing sorted cell 

population, the Strawberry and GFP-expressing sorted cell population, and the GFP 

positive control cell line.  Lanes 7 and 8 were empty, and the four gDNA samples were 

again loaded in the same pattern.  Lane 13 was empty followed by the lambda BsteII 

ladder (New England Biolabs).  Both ladders were labeled by T4 polynucleotide kinase 

(NEB) using gamma-32P ATP (Perkin Elmer).  The gel was run at 35V for 5 hours, then 

soaked for fifteen minutes with agitation in an alkaline transfer buffer (0.4N NaOH and 

1M NaCl).  A transfer stack was assembled with two layers of blotting paper, the agarose 

gel, a positively-charged nylon membrane (Ambion Brightstar), two additional layers of 

blotting paper and a stack of paper towels with weight on top.  Alkaline buffer was used 

as a transfer medium overnight. 

The nylon membrane was cut between empty lanes 7 and 8.  The halves were 

soaked for 15 minutes in a neutralization buffer (0.5M Tris-Cl at pH 7.2 with 1M NaCl).  

Full-length PCR constructs complimentary to both the hrGFP and mStrawberry genes 

were created using primers 33, 34 and 13, 14 respectively.  Twenty-five nanograms of the 

PCR product were radiolabeled using the High Primer random labeling kit (Roche) and 

alpha-32P dTTP (Perkin-Elmer).  Probes were cleaned using P-30 spin size exclusion 

columns (Bio-Rad).  The membrane was pre-hybridized with Amersham Rapid-hyb 

buffer (GE) at 65ºC for 45 minutes.  Each probe was added to the respective membrane, 

and hybridization was conducted for 2 hours at 65ºC. Four washes were conducted for 20 

minutes each using 50mL of 2xSSC (.3M NaCl, 0.03M Na3 citrate) with 0.1% (w/v) SDS 

for the first and second washes at room temperature, followed by 1xSSC and 0.8xSSC at 

65ºC.  The membranes were exposed to a phosphor screen overnight and imaged using a 

Typhoon Trio (GE Healthcare). Contrast was adjusted such that 0.1% of pixels were 
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over-exposed using ImageJ (NIH).  Each half of the membrane image was aligned based 

on large fragment DNA that had not migrated from the top of the wells. 

 

9.5 MATERIALS AND METHODS FOR CHAPTER 5 

9.5.1 Microarray Data Analysis 

Codon usage profiles were assembled using publicly available microarray data, 

downloaded from the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/).  

Data pre-processing and normalization was performed using the Robust Multichip 

Average algorithm259-261, and Bioconductor's Affy package in R version 2.15.1.  

Differentially expressed genes were identified using the Linear Models for Microarray 

Data (LIMMA) package. Probe sets were matched with S. cerevisiae genes using 

information included in Affymetrix's Expression Console Software.  Genes with an 

adjusted p-value less than 0.05 and a log-fold change greater than one or less than 

negative one were considered differentially expressed.  A subset of differentially 

expressed genes (typically 50) was used to generate a condition-specific codon usage 

table and matrix, as previously described in Chapter 5.  

9.5.2: Plasmid construction 

Yeast expression vectors were propagated in E. coli.  All experiments were 

carried out in S. cerevisiae, with parent strains including BY4741, BY4743 and YSX3.  

The sequences of all genes used in this study are available in Appendix C.  The wild-type 

and Blue Heron optimized CatA variants were taken from a previous study131.  All other 

CatA variants were assembled using IDT’s gBlocks.  The eight CatA sequences were 

assembled in the p413-TEF vector262.  The wild-type eGFP gene was amplified from the 

pZE-eGFP plasmid using primers 
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TAAAACACCAGAACTTAGTTTCGACGGATTCTAGAATGCGTAAAGGAGAAGA

ACTTTTCA and 

AGGTCGACGGTATCGATAAGCTTGATATCGAATTCTTAAACTGCTGCAGCGT

AGTTTTCG.  The other eight eGFP variants were assembled using IDT’s gBlocks.  The 

eGFP genes were cloned into the p41K-GPD and p426-CYC plasmids using yeast 

homologous recombination and overlapping sequences.  The expression plasmids were 

constructed using yeast homologous recombination and a high efficiency, lithium-acetate 

transformation.  The formation of correct plasmids was confirmed using DNA 

sequencing.  For each variant, three biological replicates were isolated and stored. 

9.5.3: CatA Activity Assay 

Yeast minimal media was inoculated at an OD600 of 0.1 using stationary phase 

cultures of the CatA variants.   Flasks contained 200mL, 100mL and 50mL of media for 

the 6, 18 and 24 hour growth experiments respectively.  After the designated time period, 

cells were pelleted and protein was extracted as previously described131.  Total protein 

was determined using a Bradford assay.  Vmaxes were measured on a per microgram of 

protein basis using a kinetic assay measuring the conversion of added catechol to 

muconic acid, which can be detected at 288nm.  All biological replicates were included 

and measurements were done in technical triplicate.  Catechol was mixed with protein 

extract at four concentrations, 0.1, 0.2, 0.3 and 0.4 mM, and Lineweaver-Burke plots 

were used to calculate Vmax in units of mM/min*μg protein.  A higher Vmax corresponds 

to more CatA enzyme in the protein extract.   

9.5.4: Muconic acid production  

High pressure liquid chromatography (HPLC) was used to measure the 

intercellular conversion of catechol to muconic acid in S. cerevisiae cultures as 
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previously described131.  Triplicate yeast cultures expressing each CatA variant were 

grown in 30 mL of media for 18 hours with a starting OD600nm of 0.1.  After 18 hours, 

cultures were spiked with 1 mg/mL of catechol and grown for an additional 24 hours.  At 

this point, 1 mL of supernatant was filtered and analyzed using a Zorbax SB-Aq column 

(Agilent Technologies).  The injection volume was 2.0 µL and the mobile phase was 84% 

25 mM potassium phosphate buffer (pH=2.0) and 16% acetonitrile with a flow rate of 1.0 

mL/min.  The column was maintained at 30ºC and the UV-Vis absorption was measured 

at 280nm. Muconic acid production levels were calculated using a standard curve.  

Cis,cis-muconic acid standards were purchased from Sigma-Aldrich and cis,trans-

muconic acid was provided by Draths Corporation. 

 

9.5.5: Matrix Drift Analysis 

The Frobenius matrix norm is defined as the square root of the product of the 

trace of the conjugate transpose of the matrix and the matrix itself.  This is defined in 

Figure 9.1.  The drift between any two codon usage matrices was determined by taking 

the difference between the matrices (excluding stop codon usage) and the Frobenius 

matrix norm of that resultant matrix of differences, or ||A-B||F where A and B represent 

two distinct matrices of identical size.   

Figure 9.1: Mathematical Definition of Frobenius Matrix Norm  

 

The genetic interaction targets for sixteen S. cerevisiae transcription factors were 

identified using yeastgenome.org.  Using those corresponding gene target sequences, 
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codon usage matrices were constructed for each transcription factor.  Frobenius matrix 

norms were calculated for all matrix pairs, including the control matrix, using MATLAB.  

The Frobenius norms create the edges in the map between the nodes, as shown in Figure 

5.6a.  The map was constructed using the Map_Draw script (Appendix D) which uses the 

networkz and pygraphviz python packages and Graphviz 2.28. 

 

9.6 MATERIALS AND METHODS FOR CHAPTER 6 

9.6.1: Strain and Plasmid Construction 

Yeast expression vectors were propagated in E. coli DH10β. All experiments 

were carried out in S. cerevisiae.  The genotype of the parent strains including BY4741, 

BY4743, and S288C and their derivatives have been previously described229. The 

BY4741 knockout strains were provided by the Marcotte laboratory (University of Texas 

at Austin, ICMB). S288C and BY4743 homozygous Δpho80/Δpho80 strains were 

purchased from OpenBiosystems. The S288C Δgcn5 strain was made by replacing the 

wild-type GCN5 gene with a hygromycin-B resistance gene amplified from plasmid 

pAG32 using primers 1 and 2 (Table A.4) and extended using primers 3 and 4, for a final 

fragment with 80 base pairs of genomic homology both upstream and downstream. Using 

a high efficiency yeast transformation protocol263, 1 μg of fragment was transformed into 

competent S288C cells and were plated on YPD supplemented with 100 μg/mL 

hygromcyin-B. The genotype of the S288C Δgcn5 strain was confirmed by extracting 

genomic DNA and performing both a positive PCR control (primers 5-8) and a negative 

PCR control (primers 9 and 10).   

The wild-type GCN5 gene was amplified from BY4741 gDNA using primers 9 

and 10 and cloned into the pUC19 vector using restrictions enzymes XbaI and SalI. After 
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confirming the accuracy of the GCN5 sequence, mutations M193A, F221A and E173A 

were introduced using the Stratagene Quikchange mutagenesis kit and primers 11 to 14, 

and 39 and 40. The mutant GCN5 genes, as well as the wild-type gene, were cloned into 

the library of p416-TEFmutant vectors222 using the XbaI and SalI restriction enzymes. The 

gcn5-M193A, F221A, and E173A plasmid collections were transformed into BY4741 

Δgcn5 using a Gietz lithium acetate protocol263 and selecting on drop out media deficient 

in uracil.  

To allow for expression in amino acid free media, the p416-TEFmutant-gcn5-F221A 

plasmid collection was modified to include a G418 resistance gene. Using primers 15 and 

16, the gene was amplified from the pUG6 plasmid. The p416-TEFmutant-gcn5-F221A 

plasmid collection and the resistance gene were digested with StuI and EcoRV. The new 

p416-TEFmutant-gcn5-F221A-G418 plasmid collection was transformed into S288C using 

a Gietz lithium acetate protocol and selected on YPD plates supplemented with 200 

μg/mL G418. This process was repeated to create p416-TEFmutant-gcn5-E173A-G418 and 

p416-TEFmutant-gcn5-M193A-G418 plasmid collections. 

The p415-pPho5-yECitrine plasmid was constructed for fluorescence assays. The 

PHO5 promoter, shown to be contained in the thousand base pairs upstream of PHO225, 

was amplified using primers 17 and 18. Using restriction enzymes SacI and XbaI, pPho5 

was cloned into the p416-TEF-yECitrine vector, replacing the TEF promoter in front of 

the yECitrine fluorescence gene. Using SacI and KpnI, the pPho5-yECitrine fragment 

was moved to the p415 plasmid, which contains a leucine auxotrophic marker.  Along 

with the p416-TEFmutant-GCN5 plasmid collections, the p415-pPho5-yECitrine plasmid 

was transformed into BY4741 Δpho80 and BY4743 Δpho80 and selected on drop out 

media deficient in both uracil and leucine. The p415-pGcn5-yECitrine plasmid was 

constructed for fluorescence assays. The GCN5 short promoter (350 bp) was amplified 
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using primers 41 and 42, and the long (640 bp) promoter with primers 42 and 43 directly 

upstream from the GCN5 gene. Using SacI and XbaI, the p415-pPho5-yECitrine plasmid 

was replaced with p415-pGcn5-yECitrine, and then along with the p416-TEFmutant-GCN5 

plasmid collection, transformed into BY4741 Δpho80 and selected on drop out media 

deficient in both uracil and leucine. 

Twenty-two BY4741 single gene knockouts, corresponding to genes that form a 

synthetic lethal phenotype with gcn5Δ, were transformed with a p416-TEF control 

plasmid, and p416-TEFmutant-gcn5-F221A plasmids with promoter strengths of 0.16, 0.32, 

0.68 and 0.95. Colonies were selected in triplicate from drop out media deficient in 

uracil. An additional ten BY4741 single gene knockouts, selected at random, were 

transformed under identical conditions to serve as an experimental control.  

All strains were selected and tested in biological triplicate at minimum. Some 

strains and assays were tested with up to 6 biological replicates.  

9.6.2: Growth Experiments 

Complementation studies were conducted using gcn5∆ strains expressing each of 

the gcn5 mutant plasmid libraries. From stationary phase culture, a honey-comb plate was 

inoculated in triplicate with a starting OD of 0.1. Minimal media lacking uracil was 

supplemented with 3-aminotriazole. Using a Bioscreen C Growth Curve Analysis 

System, optical density measurements were taken every ten minutes for 24 hours. 

Temperature was maintained at 30ºC and continuous, high shaking was used. Growth rate 

was calculated as the slope of the natural log of optical density versus time during the 

exponential growth phase. The histidine starvation assay was conducted using the p416-

TEFmutantx-gcn5-F221A-G418 strains. From stationary phase culture, a honey-comb 

plate was inoculated with 4-6 biological replicates with a starting OD of 0.1. A minimal 
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media composed of glucose, yeast nitrogen base without amino acids, 3.75 mM 3-

aminotriazole and 200 ug/mL G418 was used. S288C wild-type and S288C Δgcn5, both 

transformed with an empty p416-TEF-G418 plasmid, served as controls. Optical density 

measurements were collected over a period of 30 hours. 

Ten additional growth inhibition assays were conducted, in which a total of 50 

strains were assayed, including the above controls, and 4-5 biological replicates of the 

p416-TEFmutantx-gcn5-F221A-G418 strains. The 50 strains were grown to stationary 

phase in 3mL of YPD media supplemented with G418 and then a honey-comb plate was 

inoculated with a starting OD600 of 0.1 in 250μl of fresh media either with or without 

(control cultures) a putative Gcn5p-dependent growth inhibition additive (Table 6.2). 

Optical density measurements were collected for the 100 cultures over a period of 60 

hours using the Bioscreen C.   

9.6.3: Yeast Immunofluorescence 

Global histone acetylation at H3K18 was measured using yeast 

immunofluorescence.  S288C strains containing p416-TEFmutantx-gcn5-M193A-G418, 

p416-TEFmutantx-gcn5-E173A-G418, and p416-TEFmutantx-gcn5-F221A-G418 

(promoter strength 0.32, 0.68 and 0.95), as well as wild-type and knockout controls, were 

grown to mid-exponential phase and fixed by adding a 10th volume of 37% formaldehyde 

for 2 hours. Cells were washed twice with PBS and resuspended in 500 µl of a 

spheroplasting buffer (1.2M sorbitol and 0.1M KH2PO4 at pH of 7.5). Cells were stored 

for 1-2 days at 4ºC. Spheroplasts were made by incubating 200 µl of fixed cells with 1.2 

µl of zymolase (Zymo Research) and 3.2 µl of β-mercaptoethanol for 30 minutes at 30ºC. 

Spheroplasts were washed once with 1 mL of PBS+0.05% Tween 20 and resuspended in 

100 µl of PBS+0.05% Tween 20. Slides were treated with 50 µl of 1mg/mL poly-L-
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lysine (>400,000 MW) for 15 minutes, followed by 3 water washes. After the slides were 

completely dry, 20 µL of spheroplasts were added to each well for 5 minutes, followed 

by 3 PBS washes. The slide was immersed in ice cold methanol for 5 minutes and ice 

cold acetone for 30 seconds. After drying, the slide was rehydrated by adding 50 µl of 

PBS for 5 minutes, followed by a PBS wash. A blocking solution composed of PBS and 

1mg/mL BSA was added (20 µL) to each slide followed by 30 minutes in a humid 

chamber. The slide was then washed 3 times with PBS. 20 µl of H3K18ac primary Rabbit 

antibody (Abcam) diluted 500-fold in blocking solution was added to each slide and 

incubated for 90 minutes. The slide was washed 3 times with PBS. 20 µl of anti-Rabbit 

Goat IgG DyLight 649 secondary antibody (Abcam) diluted 200-fold in blocking solution 

was added to each slide and incubated for 90 minutes in the dark. The slide was washed 3 

times with PBS.  20 µl of 1 µg/mL DAPI in PBS was added to each well for 5 minutes, 

followed by 3 washes with PBS. A drop of fluorescent mounting medium (KPL) was 

added to each slide along with cover glass (#1.5 thickness) before sealing with nail 

polish. Slides were imaged using the Zeiss Axiovert instrument and a 100x magnifying 

lens. The DAPI and Cy5 filters were used respectively to image DAPI and DyLight 649 

staining. Average intensity per cell was determined using Metamorph software. 

9.6.4: Gene Expression Microarrays 

Global mRNA analysis was conducted using whole cell RNA taken from S288C 

cell lines grown in minimal media. In addition to the control plasmid (no gcn5-F221A) 

and a gcn5 null strain, mutant promoter strength 0.32, 0.68 and 0.95 were tested. Cell 

lines were grown in biological triplicate with a starting optical density of 0.0045 and 

harvested at a density between 0.4 and 0.5. Whole cell RNA was extracted using the 

Ambion Ribo-Pure kit for yeast. cRNA synthesis and fragmentation was conducted by 
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the Genome Sequencing and Analysis Facility at the University of Texas using the 

Ambion MessageAmp Premier kit. Hybridization and scanning was performed by 

Asuragen in Austin, TX using Affymetrix Yeast 2.0 arrays. Data pre-processing and 

normalization was performed using the Robust Multichip Average algorithm259-261 and 

Bioconductor's Affy package. Differentially expressed genes were identified using the 

Linear Models for Microarray Data (LIMMA) package, which resulted in 529 probe sets. 

Probe sets were matched with S. cerevisiae genes using information included in 

Affymetrix's Expression Console Software, resulting in 504 unique genes. The log2 

expression data for differentially expressed probe sets are available online229 and were 

deposited to Gene Expression Omnibus under accession number GSE26923. 

9.6.5: Real Time PCR 

Relative transcription levels were quantified using real time PCR from whole cell 

RNA extracts. Cell lines were grown in minimal media with a starting optical density 

between 0.004 and 0.005 until they reached a density between 0.4 and 0.5, at which point 

whole cell RNA was extracted using Ambion’s Ribo-Pure kit for yeast.  RNA 

quantification was performed with a Nanodrop 2000.   

RT-PCR was conducted using whole cell RNA extracted from S288C to 

determine the level of mutant Gcn5p expression relative to native Gcn5p.  Two control 

strains, wild-type S288C and S288C gcn5Δ carried empty vectors.  Additionally, S288C 

with gcn5-F221A expressed from varying promoter strengths (.07, .32, .68, .95, and 1.17) 

were used.  Primers were designed such that both wild-type and mutant GCN5 would be 

detected.  Average Ct values were normalized with respect to the wild-type sample.  

Since the sequences are similar between the wild-type and mutant, it was necessary to 

deduce the expression level.   
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The S288C cell lines used for the analysis of HIS3 mRNA levels were grown in 

media supplemented with 3.75mM 3-aminotriazole. In addition to the control plasmid 

(not containing the gcn5-F221A), promoter strengths of .07, .32, .68 and .95 were tested. 

cDNA synthesis and quantitative PCR were performed simultaneously using the 

iScriptTM One-Step RT-PCR Kit with SYBR Green (Bio-Rad). We followed the 

manufacturer’s instructions, with the following modifications: 100ng of whole cell RNA 

per 25 μL reaction, an extended, 15 minute reverse transcription time, and a 56ºC 

annealing temperature. For the analysis of yECitrine mRNA levels, BY4741 p415-

pPho5-yECitrine, p416-TEFmutant-gcn5-F221A cell lines were grown in minimal media. 

In addition to the control strain (no gcn5-F221A), promoter strengths of .07, .16, .32 and 

.68 percent were tested. We determined relative RNA concentration by comparing the 

cycle thresholds to ALG9, which has shown to be an ideal housekeeping gene for yeast264. 

Primers 19 and 20 were used to amplify HIS3, whereas 21 and 22 were used for ALG9. 

Primers 22 and 23 were used to amplify yECitrine.  

Real-time PCR confirmation of microarray findings was conducted on a small 

scale using whole cell RNA taken from S288C cell lines grown in minimal media (Figure 

6.9). In addition to the control plasmid (no gcn5-F221A) and a gcn5 null strain, a range of 

promoter strengths were tested. cDNA synthesis was performed using Invitrogen’s High 

Capacity cDNA reverse synthesis kit. For quantitative PCR, we used Roche’s SYBR 

Green Master Mix, following the manufacturer’s instructions with an annealing 

temperature of 58ºC. We concentrated on four gene targets; TKL2, SPL2, IDH2 and 

ZRT1. Primers 25 and 26 were used for TKL2, 27 and 28 for SPL2, 29 and 30 for ZRT1, 

and 31 and 32 for IDH2. Additionally, GCN5 mRNA levels were measured with primers 

37 and 38, and mRNA extracted from AML31, 32, 34, 35 and 39.  All primer sequences 

can be found in Appendix A, Table A.4. 
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9.6.6: Growth Analysis for Synthetic Lethal Genes 

The impact of the gcn5 dominant mutant on synthetic lethal genes was assessed 

using a growth based assay and 22 BY4741 gene knockout strains.  Synthetic lethals 

were selected from yGcn5 interaction data, available on yeastgenome.org, and 

corresponding single knockout strains were transformed with p416-TEFmutantx-gcn5-

F221A plasmids (promoter strengths of 0.32, 0.68, 0.95 and control). The resulting strains 

were grown in minimal media for 2 days prior to inoculating a honey-comb plate with a 

starting OD of 0.1.  Minimal media lacking uracil was used. Optical density was 

measured using a Bioscreen C, as previously described. An average growth rate and 

standard deviation were calculated from the biological replicates. Values (Table 6.1) are 

reported for each synthetic lethal gene and control strains. 

9.6.7: TEF Promoter Engineering 

Additional variants of a weak TEF promoter (TEFpmut7)222 were generated via 

error-prone PCR using the Genemorph II Random Mutagenesis Kit from Stratagene and 

primers 33 and 34, Table A.4. Six reactions containing differing template concentrations 

were combined to create 2 libraries of differing error rates (Table 7.1). Libraries were 

cleaned using the QIAquick PCR Purification Kit and cut with SacI and XbaI restriction 

enzymes (New England Biolabs). Fragments were ligated into a yeast expression vector 

upstream of the yECitrine fluorescent gene. 150 ng of each ligation was transformed into 

competent E. coli and plated onto LB agar plates containing 100 µg/mL ampicillin.  For 

each library, approximately 17,500 colonies were scraped and collected in liquid culture 

and diluted to an optical density of 6 using LB media, and plasmid DNA was extracted 

using a Qiagen miniprep kit. From each plasmid library, 50ng DNA was transformed265 

into S. cerevisiae BY4741 and plated on drop out media deficient in uracil. 
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Table 9.2: Reaction conditions for error-prone PCR 

Reaction Library Plasmid Template (ng) Mutation Rate (1/kb) 
1 Low 30.18 7.5 +/- 3.5 2 9.62 
3 3.07 
4 High 0.98 9.2 +/- 4.3 5 0.31 
6 0.10 

Three new low strength mutant TEF promoters were developed for this study (Figure 9.2) using error-prone 
PCR and a fluorescence based screen.  The error-prone PCR conditions (shown above) resulted in a 
mutation rate between 4 and 13.5 per kilobase. 

110 yeast colonies were isolated from the libraries and grown in minimal media 

deficient in uracil to an optical density of 0.5 and analyzed by FACS Calibur, compared 

to a control strain. Mutants displaying fluorescence between 30% and 2% of the control 

population and low cell-to-cell variability were isolated, and plasmid DNA was extracted 

using the Zymoprep Yeast Plasmid Miniprep I. These plasmids were then sequenced 

(primers 35 and 36, Table A.4), and retransformed into yeast to confirm promoter 

strength. The sequences are shown in Figure 9.2.  The selected promoters (Tef32, 51 and 

77) have strengths of 0.10 ± 0.01, 0.15 ± 0.01, and 0.22 ± 0.02 relative to a native TEF 

promoter. 
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Figure 9.2: Sequence of additional low strength TEF promoters  

Three low strength TEF promoters were constructed for this study using error-prone PCR and a 
fluorescence based screen.  Base pair mutations compared to the native TEF promoter are shown in 
underlined text above.  
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Appendix A: Primers 

Table A.1: Primers from Chapter 2 

Primer Sequence 
1 GATAAGGATCCGCGTATGGTGCACTCTCAGTACAATCT 
2 GTGACGGATCCGCCCGGATCGATCCTTATCGGATTTTAC 
3 ACTAGAAGCTTATGGTGAGCAAGCAGATCCTGAAGA 
4 CTAGTAAGCTTGAATCTAGATTGTTACACCCACTCGTGCAGGCTG 
5 ACTAGTCTAGACCCCTCTCCCTCCCCCCC 
6 GATTATCTAGAGGTAATCGATGATTAGCATTATCATCGTGTTTTTCAAAGGAAAACCACG 
7 GGTTAATCGATATGACCGAGTACAAGCCCACGGTGCGCCTC 
8 GGTTAATCGATTCAGGCACCGGGCTTGCGGGTCATGCACCA 
9 CTAAGATCGATATGGGTAAAAAGCCTGAACTCACCGC 
10 GGTTAATCGATTTATTCCTTTGCCCTCGGACGAGT 
11 GGTTAATCGATATGGCCAAGTTGACCAGTGCC 
12 GGTTAATCGATTCAGTCCTGCTCCTCGGCCA 
13 GGTTAATCGATATGATTGAACAAGATGGATTGCACGCA 
14 GGTTAATCGATTCAGAAGAACTCGTCAAGAAGGCGAT 
15 TCAGCGACTTCTTCATCCAGAGCTTC 
16 ACACGAACATCTCCTCGATCAGGTTG 
17 GCCCCTGCGTAATCGATAAG 
18 GTCTGAATGTCCGCCATCTTC 

Table A.2: Primers from Chapter 3 

Primer Target Sequence 
1 ADAM6 CTCTCTGCAGACCTATCCAAAATATATG 
2 ADAM6 ATATAAACGTTTGCGGGACATGT 
3 AQPEP GAAAAGATTCAACTTGCTTATGCAAT 
4 AQPEP GATGAAGCCACAACCTCAATTATATTT 
5 ARL9 ACCCAGTACTTCCTCTGGTTGTGT 
6 ARL9 GCCAAAGCTTCATGGATATCTGT 
7 BACH1 ACATATGAGTCCATGTGCTTAGAGAAG 
8 BACH1 ACTCTGTCAGTTCCAAATGCTTTTT 
9 CLDN8 TCTGGAGTAGACGTGACTTCTTTCC 
10 CLDN8 CAACGAAAAGAGCAGTAGCTACAGATAC 
11 pCMV TGCCCAGTACATGACCTTATGG 
12 pCMV TGGAAATCCCCGTGAGTCAA 
13 COMMD10 TACGTGGTCTTCTATGGGTCAAGAA 
14 COMMD10 CAGAGTGAGCCATCTGAAGGTTAAG 
15 DCC CCAGACTAACTGCATCATCATGAGTT 
16 DCC CAACGCCATAACCGATAATATAACCT 
17 DTWD2 CTCAGAAAGTGTGTTTGTGTCCATTT 
18 DTWD2 TCTGCTGGATGCTGAATTATGTACA 
19 GFP TCAGCGACTTCTTCATCCAGAGCTTC 

Table A.2 (continued) 
20 GFP ACACGAACATCTCCTCGATCAGGTTG 
21 GRIK1 GAAGCCCAATGGTACCAATCC 
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22 GRIK1 CAAGCAGGCTAAGAGCACATACAT 
23 hrGFP TCAGCGACTTCTTCATCCAGAGCTTC 
24 hrGFP ACACGAACATCTCCTCGATCAGGTTG 
25 IGHA2 GTGACCTCTGTGGCTGCTACAG 
26 IGHA2 GTGTTTCCGGATTTTGTGATGTT 
27 IGHG2 TTCGGCACCCAGACCTACAC 
28 IGHG2 CACAACATTTGCGCTCAACTG 
29 LOC100287225 TTCATTTTCCAGTCTCCTTCAGATG 
30 LOC100287225 CTTTTTGTGATGGTGAGTTCCTTCT 
31 MBD2 CCAAAGTCACAAATCATCCTAGTAATAAA 
32 MBD2 CTTGTAGCCTCTTCTCCCAGAAAAG 
33 REST TGAAGTTGCTTCTATCTGCTGTTTTG 
34 REST TGTGGCCTCTAATCAACATGAAGTA 
35 RPPH1 AATGGGCGGAGGAGAGTAGTCTGAAT 
36 RPPH1 AGCGAAGTGAGTTCAATGGCTGAGGT 
37 RPS11 GCCCCTGCGTAATCGATAAG 
38 RPS11 GTCTGAATGTCCGCCATCTTC 
39 SEMA3A CAACTATCAATGGGTGCCTTATCA 
40 SEMA3A TGTAGAGTCAAAACCACCAAATGTTT 
41 SEMA3D TCTGGCAGACTGAAATGTCCTTT 
42 SEMA3D TCAGAAGCTGTTCCAGAGTAGAGGTA 
43 SWMA3E TTTTCGAGGGCATGCTATATGTG 
44 SEMA3E AGGTCCTTCCTTATGTGCATATGGT 
45 SEMA6A GGTCAGATACCGCCTTACCAAA 
46 SEMA6A CTCTGATCCCAGAAAAACCACAGT 
47 SLCO3A1 GTCTACCGATACCTGTATGTCAGCAT 
48 SLCO3A1 GTTTTTGATGTAGCGTTTATAGTTTTTCCT 
49 SPINK2 TGCTGCTCCTGGCAGTTACC 
50 SPINK2 TGAGAGCAGTTTGGCGTTCTATATT 
51 SV2B CCCCCATAATTGTCCTGATACTTG 
52 SV2B ACAGAGCGAGGGATATAGCTCAA 
53 TMEM121 AGATCGGCGTGTGCATCA 
54 TMEM121 GTTCTGGAAGATGAAGTAGAGCTTGA 
55 VPS33B ACAAGCTATACAAGGTGGAGAACAAG 
56 VPS33B ACAAGACTGGCAATGTATCGCATAT 
57 Zeocin CGCGGATCCATGGCCAAGTTGACC 
58 Zeocin CCGCTCGAGTCAGTCCTGCTCCTC 
59 QuikChange CTCTTCCTCAGGTTACTCATATATACTCTAGATTGATTTAAAACTTC 
60 QuikChange GAAGTTTTAAATCAATCTAGAGTATATATGAGTAACCTGAGGAAGAG 
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Table A.3: Primers from Chapter 4 

Primer Sequence 
1 CGCGGATCCATGGCCAAGTTGACC 
2 CCGCTCGAGTCAGTCCTGCTCCTC 
3 CCAATGCATACAACTTCGTATATACCTTTCTATACGAAGTTGTATGCATTGGTTCTGCAGTT 
4 AACTGCAGAACCAATGCATACAACTTCGTATAGAAAGGTATATACGAAGTTGTATGCATTGG 
5 TGACTATGCATATAACTTCGTATAGGATACCTTATACGAAGTTATATGCATGGCA 
6 TGCCATGCATATAACTTCGTATAAGGTATCCTATACGAAGTTATATGCATAGTCA 
7 TGACTATGCATATAACTTCGTATAGTACACATTATACGAAGTTATATGCATGGCA 
8 TGCCATGCATATAACTTCGTATAATGTGTACTATACGAAGTTATATGCATAGTCA 
9 TTGGCGCGCCTAAACAACCATGGGTAAAAAGCCTGAACTCAC 
10 GGACTAGTAGTACTGATTATTCCTTTGCCCTCGGAC 
11 TAATGGACTAGTTTACCCCCCTCTCCCTCCC 
12 TAATGGACTAGTGGTTGTGGCCATTATCATCGTGTTTTTC 
13 GGACTAGTATGGTGAGCAAGGGCGAGGA 
14 ATCTAGGTGGCCGGCCCTTGTACAGCTCGTCCATGCCG 
15 TGACTAAGCTTATAACTTCGTATAATGTATGCTATACGAAGTTATAAGCTTGGCA 
16 TGCCAAGCTTATAACTTCGTATAGCATACATTATACGAAGTTATAAGCTTAGTCA 
17 TGACTGATATCACAACTTCGTATATACCTTTCTATACGAAGTTGTGATATCGGCA 
18 TGCCGATATCACAACTTCGTATAGAAAGGTATATACGAAGTTGTGATATCAGTCA 
19 TGACTGATATCATAACTTCGTATAGGATACCTTATACGAAGTTATGATATCGGCA 
20 TGCCGATATCATAACTTCGTATAAGGTATCCTATACGAAGTTATGATATCAGTCA 
21 TGACTGATATCATAACTTCGTATAGTACACATTATACGAAGTTATGATATCGGCA 
22 TGCCGATATCATAACTTCGTATAATGTGTACTATACGAAGTTATGATATCAGTCA 
23 ATTCGGAGCTCGTTTAGTGAACCGTCAGATCACTATTTAAATCGGTGAGCTCATTCG 
24 CGAATGAGCTCACCGATTTAAATAGTGATCTGACGGTTCACTAAACGAGCTCCGAAT 
25 TTACAGATTTAAATATGGGCAGCAGCCATCATCATCA 
26 TTACAGCTCGAGCTAATCGCCATCTTCCAGCAGGCG 
27 CTCTTCCTCAGGTTACTCATATATACTCTAGATTGATTTAAAACTTC 
28 GAAGTTTTAAATCAATCTAGAGTATATATGAGTAACCTGAGGAAGAG 
29 TCAGCGACTTCTTCATCCAGAGCTTC 
30 ACACGAACATCTCCTCGATCAGGTTG 
31 AGCGAAGTGAGTTCAATGGCTGAGGT 
32 AATGGGCGGAGGAGAGTAGTCTGAAT 
33 TTACAGATTTAAATATGGTGAGCAAGCAGATCCTGAAGAAC 
34 TTACAGCTCGAGTTACACCCACTCGTGCAGGCTGC  
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Table A.4: Primers from Chapter 6 

Primer Sequence 
1 AGTCTTCAGTTAACTCAGGTTCGTATTCTACATTAGATGGGCGCGCCAGATCTGTTTAGC 
2 CGAAAGGAATAGTAGCGGAAAAGCTTCTTCTACGCATTACGTTTTCGACACTGGATGGCG 
3 GATTGGTAAGGGAAGACCGTGAGCCGCCCAAAAGTCTTCAGTTAACTCAGGTTCGTATTC 
4 ACATCGTCTCGCCGTACTAAACATTTATTTCTTCTTCGAAAGGAATAGTAGCGGAAAAGC 
5 CGGGGATTCCCAATACGAGGTCGCC 
6 CCTCAATTGATCACATCGTCTCGCCGTAC 
7 CAGAAACTTCTCGACAGACGTCGCGG 
8 GTAGGGCGTAATGATGTTTGCTTGTCAAC 
9 CTAGTCTAGAAAAATGGTCACAAAACATCAGATTGAAGAGGATC 
10 CTAGCGGTCGACTTAATCAATAAGGTGAGAATATTCAGGTATTTCTTTTACTTTATTATT 
11 GCAGATAATTACGCTATTGGATACGCTAAAAAGCAAGGCTTCACTAAAG 
12 CTTTAGTGAAGCCTTGCTTTTTAGCGTATCCAATAGCGTAATTATCTGC 
13 CGGTTATGGTGCGCATCTAGCGAATCACTTAAAAGACTATGTTAG 
14 CTAACATAGTCTTTTAAGTGATTCGCTAGATGCGCACCATAACCG 
15 GCTAAAAGGCCTTAGGTCTAGAGATCTGTTTAGCTTGCCTCG 
16 ATTACTGATATCATTAAGGGTTCTCGAGAGCTCGTTTTCG 
17 GCTAGCGAGCTCTAAATACAATGTTCCTTGGTTATCCCATCGCC 
18 GCTCTAGATGGTAATCTCGAATTTGCTTGCTCTATTTGTTGT 
19 ACGACCATCACACCACTGAAGACT 
20 CCAAAGGCGCAAATCCTGATCCAA 
21 ATCGTGAAATTGCAGGCAGCTTGG 
22 CATGGCAACGGCAGAAGGCAATAA 
23 TTCTGTCTCCGGTGAAGGTGAA 
24 TAAGGTTGGCCATGGAACTGGCAA 
25 CCAACTTTGCCGCCACTTAT 
26 TTGTAAGCAACCATCCCCTACA 
27 ACATCGCAGTCACAATCTCTCAGT 
28 CATGGGCGAGCTTGCTTAAA 
29 AGTAGCGTCTGGGTTGAAAGAAAGTA 
30 CAGTGTTTCTCACAACAGTGTCTTTAAT 
31 TGACATTGAGAAAAACATTTGGGTTA 
32 TCAACGTTTTCGTAAGTGGTCTTAA 
33 CCTCACTAAAGGGAACAAAAGCTG 
34 CAGTGAATAATTCTTCACCTTTAGACATTTT 
35 TGTTGTGTGGAATTGTGAGC 
36 TAGCATCACCTTCACCTTCAC 
37 CGGCTGGACTCCCGAGAT 
38 TTGTAGCTCTGTGAGTATATTCTGTATTGC 
39 CGATAAGAGAGAATTCGCAGCAATTGTTTTCTGTGCCATCA 
40 TGATGGCACAGAAAACAATTGCTGCGAATTCTCTCTTATCG 
41 CACACACGAGCTCAGAGCAAAGACAAAAAAAATAAGACA 
42 CTAGTCTAGACTAATGTAGAATACGAACCTGAGTT 
43 CACACACGAGCTCTCTTAAACACTTATGGGCAGC 
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Appendix B: Integration Loci Identification and Validation 

A variety of low throughput methodologies were used to identify the integration 

loci for the ten clones (A through J) discussed in Chapter 3.  Using a modified TAIL PCR 

method256, clones A & B were identified in an unplaced genomic contig of the human 

genome.  A set of 3 specific primers were used in succession 

(GGACTCAAGACGATAGTTACCGGA, TACAGCGTGAGCTATGAGAAAGCG and 

TTATAGTCCTGTCGGGTTTCGCCA) along with a series of linker primers 

(GTGCAGCCTTGGGTCGCCGTGT/3InvdT/, CGTTTGCTATTTACGCTCCTGCCA 

and TACGCTCCTGCCATGTGCCGCTGG).  Following sequence confirmation, the 

locus was confirmed using primers CTGTGAGTTGAATGCACACATCACAAAGGA 

(genome specific) and TTATAGTCCTGTCGGGTTTCGCCA (transgene specific).   

Clone C was identified in the 26th intron of the DCC gene on chromosome 18 

using TAIL PCR.  The DCC gene encodes for a netrin receptor protein.  Prior to TAIL 

PCR, clonal gDNA was fragmented by shearing.  A set of 3 specific primers 

(TACCGCGCCACATAGCAGAACTTTAAAAGTGCTCAT, 

TACCGCGCCACATAGCAGAACTTTAAAAGTGCTCAT, and 

ACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAG) were used in succession 

along with the degenerate primer WGTGNAGWANCANAGA.  Following sequence 

confirmation, the locus was confirmed using the 3rd specific primer and primer 

TAACACAAGAACAGAAAACCAAACACCACATGTT (genomic specific). 

Clone G was identified on chromosome 7, 31kb from the SEMA3A gene, which 

is a secreted neuronal protein, using a modified TAIL PCR method256.  A set of 3 specific 

primers were used in succession (CACTGCATTCTAGTTGTGGTTTGTCC, 

CGAGATAGGGTTGAGTGTTGTTCC and CCCACTACGTGAACCATCACCCTA) 
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along with a series of linker primers (GTGCAGCCTTGGGTCGCCGTGT/3InvdT/, 

CGTTTGCTATTTACGCTCCTGCCA and TACGCTCCTGCCATGTGCCGCTGG).  

Following sequence confirmation, the locus was confirmed using primers 

GAGTTGAAATGTAAACGCAATTATTTACAATGGTA (genome specific) and 

CGTTTGCTATTTACGCTCCTGCCA (transgene specific).   

Additionally, clone H was identified in the immunoglobulin rich region of 

chromosome 14 using TAIL PCR.  The integration locus is within the IGHG2 gene, 

which is an immunoglobulin heavy constant gamma 2. A set of three specific primers 

(CGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAA, 

AGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTT, and 

CTGATCTTCAGCATCTTTTACTTTCACCAGCGTTT) were used in succession along 

with degenerate primer NTCGASTWTSGWGTT.  The resulting fragment was sequenced 

using primer GAAGGCAAAATGCCGCAAAAAAGG. This locus was confirmed by 

PCR using primers CTTTATTTCCATGCTGGGTGCCTGGGAAGTATGTACA 

(genome specific) and GAAGGCAAAATGCCGCAAAAAAGG (transgene specific). 

Finally, TAIL PCR was used to identify the 5th intron of the GRIK1 gene on 

chromosome 21 as the integration site for clones I and J.  This gene encodes for a 

glutamate receptor that is typically expressed in neuronal cells.    For clone I, the three 

transgene specific primers were TGTGTGAAATTGTTATCCGCTCACAATTC, 

TGCCTAATGAGTGAGCTAACTCACATTAAT, and 

ATCGCGAGCACTTTTCGGGGAAATGT and the degenerate primer was 

AGWGNAGWANCA.  For clone J, the three transgene specific primers were 

ATAACACACAATCAACAGGGGAGTGAGCTGGAGGG, 

TTCCTGTGTGAAATTGTTATCCGCTCACAATTCCA, and 

TGAGCTAACTCACATTAATTGCGTTGCGCTCACTG and the degenerate primer 
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was NTCGASTWTSGWGTT.  The resulting fragments were sequenced using primers 

GCTCATGAGACAATAACCCTGATAAATGC and 

TTTATTTTTCTAAATACATTCAAATATGTATCCGC for clones I and J respectively.  

The locus was confirmed for each clone using the transgene specific sequencing primer 

and AGAAGAATTCAGTAGACATAGAGCTGAGGA (genomic specific). 

An inverse PCR strategy was used to identify the integration locus of clone E, 9kb 

downstream from the SPINK2 gene, which encodes for a serine peptidase inhibitor, 

Kazal type 2 on chromosome 4.  First, the clonal gDNA was fragmented using an AvrII 

restricition enzyme digest.  An overnight, low-concentration ligation reaction was used to 

circularize the fragmented DNA.  Transgene-specific inverted primers 

AAGGGCGACACGGAAATGTTGAATACTCATACT and 

AGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTC were used.  Following 

sequencing, the locus was confirmed using 

primers TTTAGTAGAGACAAGGTTTCACTATGTTGGCC (genome specific) 

and AAGGGCGACACGGAAATGTTGAATACTCATACT (transgene specific). 

Plasmid recovery was used to identify the loci of the remaining two clones, D and 

F.  Clone D is located near the SEMA6A gene, which encodes for a transmembrane 

domain on chromosome 5.  The clonal gDNA was first digested with NdeI and ligated 

with a Kanamycin fragment with NdeI sites on either end.  The resulting ligation was 

transformed into E. coli and selected on kanamycin plates.  The resulting plasmid DNA 

was sequenced using primer TTGACAAACTACAGCATTCTGTCCTGGG.  The locus 

was confirmed using primers CCCAGGACAGAATGCTGTAGTTTGTCAA (genomic 

specific) and GCCTGGTATCTTTATAGTCCTGTCG (plasmid specific) 

Clone F was identified in the 1st intron of the SV2B gene, which encodes for a 

synaptic vesicle glycoprotein, on chromosome 15.  First, clonal gDNA was fragmented 
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using a HydroShear.  The pUC19 bacterial expression vector was linearized and blunted.  

Both were end-repaired and cleaned up prior to an overnight ligation reaction to create a 

plasmid library of Clone F gDNA.  This library was transformed into E. coli and plated 

on large, LB plates supplemented with ampicillin.  After overnight growth, the plates 

were scraped, pooled and the plasmid DNA was extracted. From the plasmid DNA, 

primers GATCTCCTGCAGGCCGGTGTTCTTCAGGATCTGCTTGC and 

CCAGCCTGGGCAAGCCCCTGGGCAGCCTGCACGAGTGG (specific to hrGFP) 

were used to perform an inverse PCR and the resulting fragments were TOPO cloned and 

sequenced using M13 forward and reverse primers.  The locus was confirmed using 

primers GGAGAGGAAGTGACATCTGAATTAGATTTTATAGG (genomic specific) 

and GCAGCCTGCACGAGTGGGTGTAATA (transgene specific). 
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Appendix C: Codon Optimized Gene Variants 

All genes were assembled from gBlock fragments ordered from IDT using 

homologous recombination.  Gene sequence was confirmed by standard sequencing. 
 
eGFP WT 

atgcgtaaaggagaagaacttttcactggagttgtcccaattcttgttgaattagatggtgatgttaatgg
gcacaaattttctgtcagtggagagggtgaaggtgatgcaacatacggaaaacttacccttaaatttattt
gcactactggaaaactacctgttccatggccaacacttgtcactactttcggttatggtgttcaatgcttt
gcgagatacccagatcatatgaaacagcatgactttttcaagagtgccatgcccgaaggttatgtacagga
aagaactatatttttcaaagatgacgggaactacaagacacgtgctgaagtcaagtttgaaggtgataccc
ttgttaatagaatcgagttaaaaggtattgattttaaagaagatggaaacattcttggacacaaattggaa
tacaactataactcacacaatgtatacatcatggcagacaaacaaaagaatggaatcaaagttaacttcaa
aattagacacaacattgaagatggaagcgttcaactagcagaccattatcaacaaaatactccaattggcg
atggccctgtccttttaccagacaaccattacctgtccacacaatctgccctttcgaaagatcccaacgaa
aagagagaccacatggtccttcttgagtttgtaacagctgctgggattacacatggcatggatgaactata
caaaaggcctgcagcaaacgacgaaaactacgctgcagcagtttaa 

eGFP control table 

ATGAGAAAAGGTGAAGAATTGTTTACTGGTGTTGTTCCAATTTTGGTTGAATTGGATGGTGATGTTAATGG
TCATAAATTTTCTGTTTCTGGTGAAGGTGAAGGTGATGCTACTTATGGTAAATTGACTTTGAAATTTATTT
GTACTACTGGTAAATTGCCAGTTCCATGGCCAACTTTGGTTACTACTTTTGGTTATGGTGTTCAATGTTTT
GCTAGATATCCAGATCATATGAAACAACATGATTTTTTTAAATCTGCTATGCCAGAAGGTTATGTTCAAGA
AAGAACTATTTTTTTTAAAGATGATGGTAATTATAAAACTAGAGCTGAAGTTAAATTTGAAGGTGATACTT
TGGTTAATAGAATTGAATTGAAAGGTATTGATTTTAAAGAAGATGGTAATATTTTGGGTCATAAATTGGAA
TATAATTATAATTCTCATAATGTTTATATTATGGCTGATAAACAAAAAAATGGTATTAAAGTTAATTTTAA
AATTAGACATAATATTGAAGATGGTTCTGTTCAATTGGCTGATCATTATCAACAAAATACTCCAATTGGTG
ATGGTCCAGTTTTGTTGCCAGATAATCATTATTTGTCTACTCAATCTGCTTTGTCTAAAGATCCAAATGAA
AAAAGAGATCATATGGTTTTGTTGGAATTTGTTACTGCTGCTGGTATTACTCATGGTATGGATGAATTGTA
TAAAAGACCAGCTGCTAATGATGAAAATTATGCTGCTGCTGTTTAA 

eGFP high expression table  

ATGAGAAAGGGTGAAGAATTGTTCACAGGTGTGGTGCCAATTTTGGTGGAATTGGATGGTGATGTGAATGG
TCATAAGTTCTCAGTGTCAGGTGAAGGTGAAGGTGATGCTACATACGGTAAGTTGACATTGAAGTTCATTT
GTACAACAGGTAAGTTGCCAGTGCCATGGCCAACATTGGTGACAACATTCGGTTACGGTGTGCAATGTTTC
GCTAGATACCCAGATCATATGAAGCAACATGATTTCTTCAAGTCAGCTATGCCAGAAGGTTACGTGCAAGA
AAGAACAATTTTCTTCAAGGATGATGGTAATTACAAGACAAGAGCTGAAGTGAAGTTCGAAGGTGATACAT
TGGTGAATAGAATTGAATTGAAGGGTATTGATTTCAAGGAAGATGGTAATATTTTGGGTCATAAGTTGGAA
TACAATTACAATTCACATAATGTGTACATTATGGCTGATAAGCAAAAGAATGGTATTAAGGTGAATTTCAA
GATTAGACATAATATTGAAGATGGTTCAGTGCAATTGGCTGATCATTACCAACAAAATACACCAATTGGTG
ATGGTCCAGTGTTGTTGCCAGATAATCATTACTTGTCAACACAATCAGCTTTGTCAAAGGATCCAAATGAA
AAGAGAGATCATATGGTGTTGTTGGAATTCGTGACAGCTGCTGGTATTACACATGGTATGGATGAATTGTA
CAAGAGACCAGCTGCTAATGATGAAAATTACGCTGCTGCTGTGTAA 

eGFP control matrix 1 
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ATGCGAAAAGGCGAGGAACTGTTTACAGGTGTAGTGCCCATTTTGGTGGAGCTAGATGGTGACGTTAACGG
TCATAAATTCTCGGTATCCGGAGAAGGCGAAGGTGACGCTACCTATGGTAAACTCACCTTAAAGTTCATCT
GCACAACTGGAAAGCTTCCAGTCCCTTGGCCCACATTGGTAACGACATTTGGCTATGGTGTACAATGCTTC
GCAAGATACCCGGATCACATGAAACAACATGACTTTTTCAAGTCTGCTATGCCTGAAGGTTACGTCCAGGA
GCGGACTATTTTCTTTAAGGATGATGGTAATTACAAAACCCGTGCCGAAGTAAAGTTCGAAGGCGACACGT
TGGTAAACCGCATCGAACTTAAAGGCATAGATTTTAAGGAAGATGGTAATATCTTGGGTCATAAATTAGAA
TATAACTACAATTCTCATAACGTTTACATTATGGCTGATAAGCAAAAGAACGGAATTAAAGTGAACTTTAA
AATCAGACACAACATTGAGGATGGTTCTGTTCAATTGGCTGATCATTACCAACAGAATACACCTATCGGAG
ACGGCCCAGTTTTACTACCAGATAATCATTACTTAAGTACTCAGTCTGCATTAAGCAAGGATCCAAATGAG
AAGAGAGATCACATGGTTTTGTTGGAATTTGTAACAGCAGCCGGAATAACACATGGCATGGACGAGTTGTA
CAAAAGACCTGCGGCAAATGATGAAAACTATGCAGCTGCTGTATAA 

eGFP control matrix 2 

ATGAGAAAAGGTGAAGAATTGTTCACAGGAGTTGTTCCCATTTTAGTTGAATTAGACGGTGATGTAAATGG
TCATAAATTTTCTGTTTCCGGCGAAGGAGAGGGAGATGCAACGTACGGAAAGTTGACATTGAAGTTTATAT
GCACCACAGGAAAGCTTCCCGTTCCATGGCCTACCTTGGTAACGACGTTTGGTTATGGTGTTCAATGCTTT
GCTCGATATCCGGATCACATGAAGCAGCATGATTTCTTCAAGAGCGCTATGCCCGAAGGGTATGTTCAAGA
AAGAACCATTTTCTTTAAAGATGATGGCAATTATAAGACAAGAGCTGAAGTAAAATTCGAGGGAGATACAT
TGGTTAATCGAATAGAATTAAAGGGTATTGACTTTAAAGAGGATGGTAATATTCTGGGTCACAAACTTGAA
TACAATTATAATTCCCATAACGTCTACATAATGGCCGACAAACAAAAGAATGGTATTAAAGTCAATTTCAA
AATTCGTCATAACATCGAGGACGGCAGCGTCCAATTAGCGGATCACTATCAACAAAATACACCTATAGGTG
ACGGTCCCGTGCTTTTACCAGACAACCACTATCTAAGCACTCAATCTGCTCTATCGAAAGATCCTAACGAA
AAAAGAGATCATATGGTGCTGTTAGAATTTGTCACTGCGGCTGGTATTACACATGGGATGGACGAACTTTA
CAAAAGGCCCGCTGCTAATGATGAAAATTATGCAGCCGCCGTTTAA 

eGFP control matrix 3 

ATGAGAAAGGGCGAAGAGCTATTCACAGGTGTCGTACCAATTTTAGTAGAATTAGACGGTGATGTTAACGG
GCACAAGTTTTCTGTTTCTGGAGAAGGAGAAGGCGATGCAACTTATGGTAAATTGACTTTAAAATTTATTT
GCACGACTGGTAAATTGCCAGTTCCATGGCCAACTTTAGTTACTACATTTGGTTATGGTGTTCAGTGTTTT
GCAAGATACCCAGATCATATGAAACAACACGATTTCTTTAAATCTGCAATGCCAGAAGGTTACGTTCAAGA
AAGAACTATCTTCTTTAAAGATGATGGCAACTATAAAACAAGAGCAGAGGTTAAGTTCGAGGGTGATACTT
TGGTTAACAGGATAGAACTAAAGGGCATAGATTTCAAGGAAGATGGGAATATATTGGGTCACAAGCTAGAA
TACAATTACAATAGTCATAACGTTTATATAATGGCAGACAAGCAAAAAAATGGAATAAAGGTAAATTTTAA
AATTAGACACAATATAGAGGATGGCAGCGTTCAATTAGCTGACCATTATCAACAGAATACACCAATTGGTG
ATGGCCCAGTTCTACTGCCTGATAATCATTATTTGTCCACTCAAAGTGCCCTGTCTAAAGATCCAAATGAG
AAGCGAGATCATATGGTACTCTTAGAGTTTGTGACTGCAGCTGGTATCACACATGGGATGGATGAATTATA
CAAAAGACCAGCTGCAAATGACGAAAATTATGCCGCTGCGGTTTAA 
 
eGFP high expression matrix 1 
 
ATGAGAAAGGGTGAAGAACTTTTTACAGGTGTTGTTCCAATCTTGGTAGAACTGGACGGTGACGTCAACGG
TCACAAGTTCTCAGTGTCAGGGGAGGGTGAAGGTGATGCTACCTACGGTAAGCTTACTCTAAAGTTCATCT
GTACCACGGGGAAATTACCCGTGCCATGGCCAACTCTAGTTACAACTTTTGGATACGGTGTTCAATGTTTT
GCTAGATACCCAGATCATATGAAGCAACACGATTTTTTTAAATCAGCGATGCCGGAAGGTTACGTGCAAGA
AAGGACTATCTTTTTCAAAGATGACGGTAACTACAAGACCAGGGCTGAAGTTAAATTTGAAGGTGACACTC
TGGTGAACCGAATAGAATTAAAGGGTATTGATTTCAAGGAAGATGGTAACATTTTGGGTCACAAGTTGGAA
TACAATTATAACTCCCATAACGTTTACATTATGGCTGATAAACAAAAGAATGGTATCAAGGTAAATTTTAA
AATCAGACACAACATTGAAGACGGTTCCGTACAATTGGCTGATCATTATCAACAAAATACACCTATTGGTG
ACGGTCCTGTTTTACTCCCCGATAATCATTATTTGTCCACTCAATCCGCTTTGTCAAAGGATCCAAATGAA
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AAGCGTGACCATATGGTGTTACTGGAATTCGTTACTGCTGCAGGGATCACGCATGGCATGGATGAATTGTA
TAAGAGACCAGCTGCCAATGACGAAAACTACGCTGCCGCCGTTTAA 
 
eGFP high expression matrix 2 
 
ATGCGTAAAGGTGAAGAGCTCTTCACAGGTGTCGTTCCAATCTTGGTCGAACTAGATGGTGACGTTAACGG
TCACAAGTTTTCTGTTTCCGGTGAAGGTGAAGGTGACGCTACCTATGGGAAGCTTACGCTGAAATTTATCT
GTACAACCGGTAAGTTGCCAGTCCCATGGCCAACTTTGGTAACAACATTTGGCTACGGTGTTCAATGTTTT
GCGCGCTACCCAGATCATATGAAGCAGCATGATTTCTTTAAAAGCGCCATGCCAGAGGGTTATGTCCAAGA
AAGGACGATATTCTTCAAGGACGACGGTAACTACAAGACCAGGGCTGAAGTTAAATTTGAAGGCGACACTC
TGGTGAATAGAATAGAACTGAAAGGTATCGATTTCAAGGAAGATGGTAACATTCTTGGGCATAAACTAGAA
TACAATTATAACTCCCATAACGTGTATATTATGGCTGACAAGCAAAAAAATGGAATCAAGGTTAACTTCAA
AATTCGTCATAACATCGAGGACGGTTCTGTCCAATTGGCTGATCATTATCAACAAAACACCCCAATCGGTG
ATGGTCCAGTTCTTCTGCCAGATAACCATTACTTGTCAACTCAAAGCGCACTCTCTAAGGACCCTAATGAA
AAGAGAGATCATATGGTTCTTCTCGAGTTCGTCACTGCTGCTGGTATCACTCACGGTATGGATGAACTATA
CAAGAGACCAGCTGCTAATGACGAAAATTATGCCGCTGCTGTTTAA 
 
eGFP high expression matrix 3 
 
ATGCGTAAAGGTGAAGAATTGTTTACAGGTGTTGTCCCAATCTTGGTCGAATTGGACGGTGACGTGAATGG
GCATAAATTTTCGGTATCTGGGGAGGGTGAAGGTGATGCTACCTACGGTAAGTTGACTCTGAAATTTATCT
GTACCACAGGCAAGTTGCCGGTACCGTGGCCCACGCTCGTTACGACGTTTGGCTACGGTGTTCAATGTTTT
GCGCGCTACCCAGACCACATGAAACAACACGATTTCTTTAAAAGCGCAATGCCGGAAGGCTACGTTCAAGA
AAGGACAATCTTTTTCAAGGACGACGGTAACTACAAAACTAGAGCTGAAGTCAAGTTTGAAGGTGACACGC
TGGTCAACCGTATTGAATTGAAAGGTATTGACTTCAAGGAAGACGGTAACATTCTTGGACATAAACTCGAA
TATAACTACAACTCCCACAACGTTTATATCATGGCCGATAAGCAAAAGAATGGTATTAAGGTGAATTTTAA
AATTCGTCACAACATTGAAGATGGTTCTGTTCAACTAGCTGACCATTACCAACAAAACACTCCAATCGGTG
ACGGTCCAGTCTTGCTGCCCGACAACCATTATCTCTCTACACAATCTGCTCTTTCTAAGGACCCAAATGAA
AAAAGGGATCATATGGTATTGTTAGAGTTTGTTACAGCAGCTGGTATCACGCATGGTATGGACGAACTGTA
CAAGAGACCAGCGGCAAACGATGAAAACTACGCTGCTGCCGTTTAA 
 
CatA wild type 
 
ATGGAAGTTAAAATATTCAATACTCAGGATGTGCAAGATTTTTTACGTGTTGCAAGCGGACTTGAGCAAGA
AGGTGGCAATCCGCGTGTAAAGCAGATCATCCATCGTGTGCTTTCAGATTTATATAAAGCCATTGAAGATT
TGAATATCACTTCAGATGAATACTGGGCAGGTGTGGCATATTTAAATCAGCTAGGTGCCAATCAAGAAGCT
GGTTTACTCTCGCCAGGCTTGGGTTTTGACCATTACCTCGATATGCGTATGGATGCCGAAGATGCCGCACT
AGGTATTGAAAATGCGACACCACGTACCATTGAAGGCCCGCTATACGTGGCAGGTGCGCCTGAATCGGTAG
GTTATGCGCGCATGGATGACGGAAGTGATCCAAATGGTCATACCCTGATTCTACATGGCACGATCTTTGAT
GCAGATGGAAAACCTTTACCCAATGCCAAAGTTGAAATCTGGCATGCCAATACCAAAGGCTTTTATTCACA
CTTCGACCCAACAGGCGAGCAGCAGGCGTTCAATATGCGCCGTAGTATTATTACCGATGAAAACGGTCAGT
ATCGCGTTCGTACCATTTTGCCTGCGGGTTATGGTTGCCCACCAGAAGGTCCAACGCAACAGTTGCTGAAT
CAGTTGGGCCGTCATGGTAACCGCCCTGCGCACATTCACTATTTTGTTTCTGCCGATGGACACCGCAAACT
AACTACGCAAATTAATGTGGCTGGCGATCCGTACACCTATGACGACTTTGCTTATGCAACCCGTGAAGGCT
TGGTGGTTGATGCAGTGGAACACACCGATCCTGAAGCCATTAAGGCCAATGATGTTGAAGGCCCATTCGCT
GAAATGGTTTTCGATCTAAAATTGACGCGTTTGGTTGATGGTGTAGATAACCAAGTTGTTGATCGTCCACG
TCTAGCGGTGTAA 
 
CatA Blue Heron 
 



 179 

ATGGAAGTTAAGATTTTTAACACTCAAGACGTACAAGATTTTTTACGTGTCGCAAGCGGATTAGAACAAGA
AGGCGGAAATCCCAGAGTAAAGCAAATAATACACAGAGTTTTATCAGATTTGTACAAAGCGATAGAAGATT
TAAATATAACTTCAGATGAATATTGGGCTGGTGTAGCATACTTAAATCAATTAGGAGCAAATCAAGAAGCA
GGATTATTATCACCCGGACTAGGTTTCGATCATTATTTAGATATGAGAATGGACGCAGAAGACGCAGCCTT
AGGTATTGAAAACGCCACGCCAAGAACAATAGAAGGACCACTTTATGTTGCAGGTGCCCCCGAATCAGTAG
GTTACGCAAGAATGGATGACGGTTCCGACCCAAATGGCCACACTTTAATTTTACACGGAACAATTTTTGAC
GCTGATGGTAAACCCCTTCCTAATGCTAAAGTTGAGATATGGCACGCAAACACTAAAGGTTTCTATTCACA
TTTTGACCCAACAGGAGAACAACAAGCATTCAACATGAGAAGATCAATTATAACAGACGAGAACGGACAAT
ACAGAGTAAGGACTATATTACCAGCAGGATACGGTTGCCCGCCAGAAGGCCCAACACAACAATTACTAAAT
CAATTAGGTAGACATGGAAATAGACCCGCTCACATTCATTATTTTGTTAGCGCAGATGGACACAGGAAATT
GACCACACAAATCAATGTTGCAGGAGATCCCTATACTTACGACGATTTTGCATACGCTACAAGAGAAGGGC
TAGTAGTAGACGCAGTAGAGCATACAGATCCAGAAGCAATAAAAGCAAATGACGTAGAAGGACCATTCGCA
GAAATGGTTTTCGACCTAAAACTTACTAGATTAGTAGATGGAGTAGATAATCAAGTTGTAGACAGACCAAG
ATTAGCAGTCTAA 
 
CatA control 1 
 
ATGGAAGTTAAGATTTTTAATACCCAAGATGTGCAGGATTTTTTGAGAGTTGCTTCGGGCCTAGAACAAGA
AGGTGGTAATCCTCGTGTTAAACAGATTATACACCGTGTCTTGTCCGATCTATATAAAGCAATTGAAGATT
TGAACATTACGTCAGATGAATATTGGGCTGGCGTAGCGTATTTGAACCAGTTAGGTGCTAACCAAGAGGCA
GGCTTGTTAAGTCCCGGTTTGGGCTTTGATCATTACTTGGACATGAGGATGGATGCAGAAGATGCTGCATT
AGGTATTGAAAATGCCACGCCAAGAACTATAGAAGGTCCACTTTATGTTGCAGGTGCCCCAGAAAGCGTCG
GTTACGCTCGTATGGATGATGGATCTGACCCAAATGGACACACCTTAATCTTGCACGGAACAATCTTTGAT
GCAGACGGAAAACCTCTTCCGAACGCAAAAGTGGAAATTTGGCATGCAAACACTAAGGGCTTTTACAGCCA
CTTTGACCCAACTGGTGAGCAGCAGGCATTTAACATGCGAAGAAGTATAATAACTGATGAAAACGGACAAT
ACAGAGTGAGGACCATCTTGCCAGCAGGTTACGGATGTCCTCCAGAGGGTCCCACACAACAACTACTTAAC
CAGTTAGGACGCCATGGTAATAGACCTGCTCATATTCATTACTTTGTCTCTGCGGACGGCCATAGAAAGTT
AACAACACAAATAAACGTTGCGGGTGATCCTTACACTTATGACGACTTCGCATATGCCACCCGTGAGGGCT
TAGTTGTAGATGCTGTCGAACACACTGATCCAGAAGCTATTAAGGCTAATGACGTAGAAGGTCCTTTTGCG
GAAATGGTTTTCGATTTAAAATTAACAAGATTAGTCGATGGAGTTGATAACCAAGTTGTTGATAGGCCACG
ACTTGCTGTCTAA 
 
CatA control 2 
 
ATGGAAGTGAAAATCTTCAACACACAGGACGTACAGGACTTTTTGAGAGTGGCATCTGGTTTGGAACAAGA
AGGGGGCAATCCTCGAGTGAAGCAGATCATTCATAGAGTGCTTTCTGATCTATACAAAGCTATCGAAGATT
TAAATATTACGTCAGACGAATATTGGGCAGGGGTCGCTTATTTGAATCAATTAGGTGCCAACCAAGAGGCA
GGCCTTTTGAGTCCAGGATTGGGATTTGACCATTACTTGGATATGCGTATGGATGCTGAGGATGCAGCATT
AGGAATAGAGAATGCAACACCCAGAACGATAGAGGGACCGTTATATGTTGCTGGTGCTCCAGAGTCAGTTG
GTTACGCCCGTATGGATGATGGCTCTGATCCAAATGGCCATACATTAATTTTGCATGGTACTATATTTGAT
GCTGATGGAAAACCACTTCCCAACGCTAAAGTTGAAATTTGGCATGCCAACACCAAGGGGTTTTATTCACA
CTTTGATCCGACAGGCGAGCAACAAGCTTTTAACATGAGACGGAGTATAATAACAGATGAAAATGGCCAGT
ATAGGGTAAGGACTATTCTACCAGCCGGTTACGGATGTCCCCCAGAAGGTCCCACACAACAATTACTAAAC
CAACTGGGACGACATGGAAATAGGCCAGCTCATATACACTACTTCGTTAGCGCTGATGGCCATAGAAAACT
AACAACACAAATAAATGTGGCAGGAGACCCTTACACATATGACGACTTTGCATATGCCACACGTGAAGGCT
TAGTTGTTGACGCTGTCGAACATACAGATCCAGAAGCTATCAAGGCTAATGACGTCGAGGGTCCTTTTGCA
GAAATGGTATTTGATTTAAAGTTAACTAGACTAGTGGATGGGGTTGACAATCAAGTAGTAGATCGCCCCAG
ATTGGCGGTGTAA 
 
CatA control 3 
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ATGGAGGTAAAAATATTCAACACACAAGATGTTCAAGATTTTTTGAGAGTGGCTTCTGGCTTAGAGCAAGA
AGGTGGGAACCCAAGAGTCAAACAAATAATACACCGAGTGCTGTCAGATTTATACAAAGCTATTGAAGATC
TCAATATAACAAGCGATGAATATTGGGCCGGCGTGGCATACCTAAACCAATTAGGTGCCAATCAAGAGGCT
GGTCTTCTGAGCCCAGGCCTTGGGTTTGATCATTACTTAGACATGAGGATGGATGCTGAGGACGCAGCATT
AGGGATAGAAAATGCGACTCCAAGAACTATAGAGGGCCCACTATATGTAGCCGGCGCACCCGAAAGTGTGG
GATATGCAAGAATGGATGACGGCTCTGATCCGAACGGTCATACTTTGATACTTCACGGCACCATTTTTGAT
GCCGATGGCAAGCCATTACCGAATGCGAAGGTTGAAATTTGGCACGCTAACACTAAGGGCTTTTATTCCCA
TTTTGATCCTACAGGAGAACAACAAGCTTTTAACATGAGAAGATCAATAATCACCGACGAGAATGGCCAAT
ATAGGGTTAGAACAATATTACCAGCTGGCTACGGTTGTCCTCCTGAGGGCCCGACCCAACAGCTCCTTAAT
CAGTTAGGTCGTCATGGTAACAGACCAGCTCATATACACTATTTTGTCAGTGCAGATGGACATCGGAAATT
AACTACTCAAATAAACGTAGCAGGCGATCCGTACACATATGACGATTTCGCCTATGCAACAAGGGAAGGTC
TTGTGGTTGACGCTGTAGAGCATACCGACCCTGAAGCAATTAAAGCGAATGACGTTGAGGGTCCTTTCGCC
GAAATGGTGTTTGATTTAAAGTTAACTAGACTGGTGGATGGCGTTGATAATCAAGTTGTAGATCGCCCTAG
GCTCGCGGTGTAA 
 
CatA stationary 1 
 
ATGGAAGTAAAGATCTTCAACACTCAAGACGTTCAAGATTTTTTAAGAGTTGCTTCAGGACTTGAACAGGA
AGGCGGTAACCCTCGGGTAAAGCAAATTATCCATCGGGTCCTGTCTGATCTATACAAGGCAATCGAAGACC
TAAACATCACTTCTGACGAATATTGGGCGGGCGTGGCGTACCTTAACCAATTGGGAGCGAATCAAGAGGCT
GGCTTATTAAGCCCAGGCCTTGGATTCGATCACTATCTTGATATGAGAATGGACGCAGAAGATGCAGCCTT
AGGTATAGAGAACGCTACCCCAAGAACTATCGAAGGCCCATTGTATGTCGCTGGTGCCCCCGAGAGTGTCG
GTTATGCCCGTATGGATGATGGGTCGGATCCAAACGGTCATACTTTGATATTGCACGGTACTATATTCGAT
GCCGATGGTAAACCTCTGCCTAATGCAAAGGTGGAAATATGGCATGCGAATACAAAGGGATTCTACTCACA
TTTTGACCCAACGGGAGAACAACAAGCCTTCAATATGCGGCGGTCTATTATAACGGATGAGAACGGCCAAT
ACAGGGTAAGGACCATATTGCCCGCAGGGTACGGCTGCCCACCAGAAGGTCCAACTCAACAACTCTTAAAC
CAATTGGGCAGGCATGGCAACAGGCCTGCCCACATTCACTATTTCGTGTCAGCGGATGGTCACAGGAAGTT
AACAACACAAATCAACGTCGCAGGTGATCCGTACACCTACGACGATTTTGCATATGCTACCAGAGAAGGCC
TTGTAGTTGATGCTGTGGAACATACGGACCCCGAAGCGATCAAGGCCAATGATGTAGAAGGTCCTTTCGCG
GAGATGGTTTTCGATTTGAAATTGACGAGACTAGTTGATGGTGTAGATAATCAGGTTGTAGACAGACCAAG
GTTAGCAGTCTAA 
 
CatA stationary 2 
 
ATGGAAGTTAAAATCTTCAACACCCAGGATGTTCAAGACTTTTTGCGTGTAGCCTCCGGACTTGAACAAGA
AGGTGGTAATCCAAGAGTAAAGCAGATCATTCACAGAGTTTTATCTGATCTATACAAGGCGATCGAAGATT
TGAATATCACTTCGGACGAGTACTGGGCCGGAGTTGCTTACTTGAATCAGTTGGGTGCTAACCAAGAAGCC
GGTTTGTTGTCACCAGGCTTGGGTTTTGACCATTACCTCGACATGCGGATGGATGCTGAAGACGCGGCCCT
GGGTATTGAAAACGCTACCCCAAGGACGATAGAAGGCCCCCTTTATGTTGCAGGTGCTCCTGAGAGTGTGG
GCTATGCAAGAATGGACGACGGTTCTGACCCCAACGGTCACACATTGATTTTGCACGGTACAATCTTTGAC
GCCGATGGTAAGCCGTTGCCAAACGCTAAGGTGGAGATTTGGCATGCGAATACCAAAGGTTTTTATAGCCA
CTTCGATCCAACAGGAGAACAACAAGCTTTCAATATGAGAAGATCGATTATTACAGACGAAAACGGACAAT
ATAGAGTCAGGACTATACTGCCCGCGGGATACGGTTGTCCTCCAGAAGGTCCAACGCAGCAACTACTTAAT
CAATTAGGAAGGCATGGAAATAGACCCGCTCATATCCACTATTTCGTTTCTGCTGATGGCCATCGTAAATT
GACTACTCAAATCAACGTTGCCGGTGATCCATATACTTATGATGACTTTGCCTATGCAACACGAGAAGGCT
TAGTAGTGGACGCTGTGGAGCACACCGACCCTGAAGCTATCAAAGCTAACGACGTTGAAGGGCCTTTCGCG
GAAATGGTCTTTGACTTGAAACTAACCAGATTAGTCGACGGAGTAGATAACCAAGTTGTGGACCGGCCTCG
ATTAGCAGTCTAA 
 
CatA stationary 3 
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ATGGAGGTTAAGATTTTCAACACTCAAGATGTCCAAGACTTTTTAAGAGTGGCCTCGGGGCTGGAACAAGA
AGGCGGCAATCCAAGAGTTAAACAGATCATCCATAGAGTTTTGTCCGATCTTTACAAAGCCATTGAAGATT
TAAACATCACTTCAGACGAATATTGGGCAGGAGTAGCTTACTTGAATCAGTTGGGTGCTAACCAGGAAGCC
GGTCTGCTATCTCCTGGCCTAGGTTTCGATCACTATTTGGATATGAGAATGGATGCTGAAGATGCAGCATT
AGGTATCGAGAATGCTACTCCAAGAACGATAGAAGGGCCTCTATATGTAGCAGGTGCTCCCGAGTCGGTCG
GCTACGCCCGTATGGACGACGGTTCAGATCCGAACGGACATACTCTGATTCTACATGGAACAATCTTTGAC
GCCGATGGAAAGCCCCTTCCCAACGCTAAAGTTGAAATCTGGCATGCCAATACTAAGGGATTTTATTCGCA
CTTCGATCCCACTGGTGAACAACAGGCTTTCAATATGAGGCGTAGTATCATCACTGATGAGAATGGCCAAT
ACAGAGTTAGAACAATATTACCCGCGGGATACGGGTGTCCTCCTGAAGGACCCACTCAACAATTACTCAAC
CAATTAGGTAGACATGGTAACCGCCCTGCTCATATTCACTACTTTGTGTCCGCAGACGGTCACCGTAAGTT
AACGACACAAATCAACGTTGCCGGTGACCCGTACACTTACGACGATTTCGCCTACGCTACTAGAGAGGGTT
TAGTTGTCGATGCTGTAGAACATACTGATCCGGAAGCTATTAAAGCAAATGACGTTGAAGGGCCATTTGCA
GAGATGGTTTTTGACTTGAAACTGACACGGTTAGTCGATGGGGTGGACAACCAAGTGGTTGATAGACCCAG
GCTCGCAGTCTAA 
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Appendix D: Python Scripts 

CODONUSAGEBIAS 

#Read a file into the program as a string, name that string Linestring 

myfile = raw_input("What file should be analyzed? Remember to include .txt! ") 

linestring = open(myfile, 'r').read() 

#Remove all spaces, carraige returns and name string Linestring_scrub 

linestring_scrub = linestring.rstrip('\r\n') 

linestring_scrub = linestring_scrub.replace("\r","") 

linestring_scrub = linestring_scrub.replace("\n","") 

#Determine the number of codons by dividing the length of the scrubbed string by 3 

CodonNumber = len(linestring_scrub)/3 

#Assign each codon to a string 

Ala1 = 'GCG'; Ala2 = 'GCA'; Ala3 = 'GCT'; Ala4 = 'GCC'; Cys1 = 'TGT'; Cys2 = 'TGC'; 

Asp1 = 'GAT'; Asp2 = 'GAC'; Glu1 = 'GAG'; Glu2 = 'GAA'; Phe1 = 'TTT'; Phe2 = 'TTC' 

Gly1 = 'GGG'; Gly2 = 'GGA'; Gly3 = 'GGT'; Gly4 = 'GGC'; His1 = 'CAT'; His2 = 'CAC' 

Ile1 = 'ATA'; Ile2 = 'ATT'; Ile3 = 'ATC'; Lys1 = 'AAG'; Lys2 = 'AAA'; Leu1 = 'TTG' 

Leu2 = 'TTA'; Leu3 = 'CTG'; Leu4 = 'CTA'; Leu5 = 'CTT'; Leu6 = 'CTC'; Met1 = 'ATG' 

Asn1 = 'AAT' Asn2 = 'AAC' Pro1 = 'CCG' Pro2 = 'CCA' Pro3 = 'CCT' Pro4 = 'CCC' 

Gln1 = 'CAG' Gln2 = 'CAA' Arg1 = 'AGG' Arg2 = 'AGA' Arg3 = 'CGG' Arg4 = 'CGA' 

Arg5 = 'CGT' Arg6 = 'CGC' Ser1 = 'AGT' Ser2 = 'AGC' Ser3 = 'TCG' Ser4 = 'TCA' 

Ser5 = 'TCT' Ser6 = 'TCC' Thr1 = 'ACG' Thr2 = 'ACA' Thr3 = 'ACT' Thr4 = 'ACC' 

Val1 = 'GTG' Val2 = 'GTA' Val3 = 'GTT' Val4 = 'GTC' Trp1 = 'TGG' Tyr1 = 'TAT' 

Tyr2 = 'TAC' Stp1 = 'TGA' Stp2 = 'TAG' Stp3 = 'TAA' 

#Creat list of codons, CodonList 
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CodonList = [Ala1, Ala2, Ala3, Ala4, Cys1, Cys2,Asp1,Asp2, 

Glu1,Glu2,Phe1,Phe2,Gly1,Gly2,Gly3,Gly4,His1,His2,Ile1,Ile2,Ile3, Lys1 , Lys2, Leu1, 

Leu2, Leu3, Leu4, Leu5, Leu6, Met1, Asn1, Asn2, Pro1, Pro2, Pro3,  Pro4, Gln1, Gln2, 

Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Ser1, Ser2, Ser3, Ser4, Ser5, Ser6, Thr1,Thr2, 

Thr3, Thr4,Val1,Val2, Val3,Val4,Trp1,Tyr1,Tyr2,Stp1,Stp2,Stp3] 

#Create list CodonCount to keep track of each codon in the imported string 

CodonCount = 64*[0] 

#Examine each codon in the string by splicing every three characters 

for i in range(0,CodonNumber): 

    codoni = linestring_scrub[i*3:(i+1)*3] 

    #Compare each codon against the strings as assigned above 

    for j in range(0,64): 

        if codoni == CodonList[j]: 

 #If a codon match is found, increment the corresponding position in CodonCount list 

           CodonCount[j]=CodonCount[j]+1 

#Put codon table data into a text file named myfile 

data1 = raw_input("Enter file name for simple codon table, include .txt: ") 

myfile = open(data1, 'w') 

#Add a header 

header = "%s %s %s" % ("Codon", "Count ", " Frequency per 1000") 

myfile.write(header + '\n') 

#Add each codon, the count for that codon and its frequency per 1000 

for l in range(0,64): 

    frequency = float(CodonCount[l]*1000.00/CodonNumber) 

    line = "%s %8.2f %8.2f" % (CodonList[l], CodonCount[l], frequency) 
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myfile.write(line + '\n') 

myfile.close() 

#This code will now deal with creating the Markov chain associated with adjacent codons 

#Define the 64x64 matrix, CodonCount_adj, which will initially contain all zeros 

CodonCount_adj = [ [ 0 for i in range(64) ] for j in range(64) ] 

#Examine two adjacent codons in the string by splicing every three characters 

for i in range(0,CodonNumber-1): 

    codoni = linestring_scrub[i*3:(i+1)*3] 

    codonk = linestring_scrub[(i+1)*3:(i+2)*3] 

#Compare each codon against the strings as assigned above 

    for j in range(0,64):  

        if codoni == CodonList[j]: 

            #When a match is identified, save the x position for the matrix 

            xvar = j 

    for l in range(0,64): 

        if codonk == CodonList[l]: 

            yvar = l 

#If a codon pair match is found, increment the corresponding position in CodonCount list 

    CodonCount_adj[xvar][yvar]=CodonCount_adj[xvar][yvar]+1      

#Reset the stop codon positions to zero, as they cannot be adjacent. 

CodonCount_adj[61]=64*[0] 

CodonCount_adj[62]=64*[0] 

CodonCount_adj[63]=64*[0] 

#Put Adj. codon table data into a text file named Adjfile 

data2 = raw_input("Enter file name for adjacent codon table, include .txt: ") 
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Adjfile = open(data2, 'w') 

#Add the 64 codons across the top row 

header = "%s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s 

%s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s 

%s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s" % (' 

','GCG','GCA','GCT','GCC','TGT','TGC','GAT','GAC','GAG','GAA','TTT','TTC','GGG','G

GA','GGT','GGC','CAT','CAC','ATA','ATT', 'ATC', 'AAG', 'AAA', ‘TTG', 'TTA', 'CTG', 

'CTA', 'CTT', 'CTC', 'ATG', 'AAT', 'AAC', 'CCG', 'CCA', 'CCT', 'CCC', 'CAG', 'CAA', 

'AGG', 'AGA', 'CGG', 'CGA', 'CGT', 'CGC', 'AGT', 'AGC', 'TCG', 'TCA', 'TCT', 'TCC', 

'ACG','ACA','ACT','ACC','GTG','GTA','GTT','GTC','TGG','TAT','TAC','TGA','TAG', 

'TAA') 

Adjfile.write(header + '\n') 

#Add each codon name, the first row represents position1 

for l in range(0,64): 

    line = CodonList[l]+'\t' 

#Add each codon pair count, followed by a tab 

    for m in range(0,64): 

        line = line+str(CodonCount_adj[l][m])+'\t' 

    Adjfile.write(line + '\n') 

Adjfile.close() 

print "Analysis completed, data written to files: " + data1 + " and " +data2 

GENEDESIGNER 

This script has been abbreviated in places for ease of understanding. 
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ProteinSeq=raw_input("Input protein sequence using capitalized, single letter 

abbreviations: ") 

#Read in Protein Sequence as a string  

#Define AA codes 

A=["GCG","GCA","GCT","GCC"] #alanine 

C = ["TGT","TGC"] #cysteine 

D = ["GAT","GAC"] #aspartic acid 

E = ["GAG","GAA"] #glutamic acid 

F = ["TTT","TTC"] #phenylalanine 

G = ["GGG","GGA","GGT","GGC"] #Glycine 

H = ["CAT","CAC"]#histidine 

I = ["ATA","ATT","ATC"] #isoleucine 

K = ["AAG","AAA"] #Lysine 

L = ["TTG","TTA","CTG","CTA","CTT","CTC"] #Leucine 

M = ["ATG"] #Methionine 

N = ["AAT","AAC"] #Asparagine 

P = ["CCG","CCA","CCT","CCC"] #proline 

Q = ["CAG","CAA"] #glutamine 

R = ["AGG","AGA","CGG","CGA","CGT","CGC"] #Arginine 

S = ["AGT","AGC","TCG","TCA","TCT","TCC"] #serine 

T = ["ACG","ACA","ACT","ACC"] #threonine 

V = ["GTG","GTA","GTT","GTC"] #valine 

W = ["TGG"] #tryptophan 

Y = ["TAT","TAC"] #tyrosine 

#Create an 8x8 matrix in which to store the probability values, Prob_list 
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Prob_list=61*[0] 

#Read data from the csv file and unpack values, in same order, into the Prob_list 

matrix_file=raw_input("Provide the file name containing the probability distribution, 

remember to include .csv! ") 

import csv 

ifile  = open(matrix_file, "rb") 

reader = csv.reader(ifile) 

rownum=0 

j=0 

for row in reader: 

    Prob_list[j]=row 

    j=j+1 

#Convert the strings to floats 

for a in range(61): 

    for b in range(61): 

        Prob_list[a][b]=float(Prob_list[a][b]) 

#Define the GCGA list (Ala1 followed by Ala) 

GCGA = [ [ 0 for i in range(2) ] for j in range(4) ] 

#Fill the AA list, first element is the 3bp string followed by the probability 

#Probability is read in from the Prob_list 

#Strings are read in from the 'A' list at the begining of the script 

#create a placeholder variable for the Prob_list 

m=0 

n=0 

for i in range(len(A)): 
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    GCGA[i][0]=A[i] 

    GCGA[i][1]=Prob_list[n][m] 

    m=m+1 

GCGC = [ [ 0 for i in range(2) ] for j in range(2) ] 

#Continue in this manner for all paired amino acid combinations… 

TACY = [ [ 0 for i in range(2) ] for j in range(2) ] 

#Create a dictionary, Master, that pairs each list with the corresponding string 

Master = {'GCGA':GCGA…'TACY':TACY} 

 

for i in range(len(C)): 

    GCGC[i][0]=C[i] 

    GCGC[i][1]=Prob_list[n][m] 

    m=m+1 

#Continue for each element… 

for i in range(len(Y)): 

    TACY[i][0]=Y[i] 

    TACY[i][1]=Prob_list[n][m] 

    m=m+1 

 

DNASeq='ATG' #Save DNASeq in a DNASeq string 

##couplet=DNASeq+ProteinSeq[1:2] #Look at one couplet at a time 

import random #Define the pick_random function 

import sys 

def pick_random(prob_list): 

  r, s = random.random(), 0 
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  for num in prob_list: 

    s += num[1] 

    if s >= r: 

      return num[0] 

  print >> sys.stderr, "Error: shouldn't get here" 

###Send the couplet to the pick_random function 

##correct_list= Master[couplet] 

##new = pick_random(correct_list) 

##DNASeq=DNASeq+new 

new=DNASeq 

for i in range(len(ProteinSeq)-1): 

    #take the last 3 bases, add the AA in ProteinSeq 

    couplet = new+ProteinSeq[i+1:i+2] 

    correct_list= Master[couplet] 

    new = pick_random(correct_list) 

    DNASeq=DNASeq+new 

DNASeq=DNASeq+'TAA' 

print "DNA sequence: " 

print DNASeq 

 

MAP_DRAW 

#You have to install three libraries/programs before using this script 

#Install networkx, pygraphviz & graphviz.   

import networkx as nx 
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import numpy as np 

import string 

import pygraphviz 

#Read data from the csv file and unpack values, in same order, into A 

matrix_file=raw_input("Provide the file name containing the drift data, remember to 

include .csv! ") 

size = raw_input("Input size of matrix, must be symmetric: ") 

size=int(size) 

#Create a symmetric matrix in which to store the probability values, A 

A=np.zeros(shape=(size,size)) 

import csv 

#Read data from the csv file into matrix A 

ifile  = open(matrix_file, "rb") 

reader = csv.reader(ifile) 

rownum=0 

j=0 

for row in reader: 

    A[j]=row 

    j=j+1 

#Convert the strings to floats 

for a in range(size): 

    for b in range(size): 

        A[a][b]=float(A[a][b]) 

dt = [('len', float)] 

#Resize the edge lengths by modifying the multiplier here 
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A = np.array(A)*8 

A = A.view(dt) 

G = nx.from_numpy_matrix(A) 

#Create a dictionary with names for each node.  Note, names must be entered in the same 

order that the data is in. 

mapping = {0:'CBF1', 1:'DAL82', 2:'GCN4', 3:'GLN3', 4:'HAP4', 5:'HSF1', 6:'LEU3', 

7:'MBP1', 8:'MSN4', 9:'NRG1', 10:'PHO4', 11:'RTG3', 12:'SKN7', 13:'STE12', 14:'TEC1', 

15:'UPC2', 16:'control'} 

G = nx.relabel_nodes(G, mapping)    

G = nx.to_agraph(G) 

#These style attributes can be changed to meet your needs. 

G.node_attr.update(color="cyan", shape='circle', fontsize='25.0', style="filled,bold") 

G.edge_attr.update(color="white", width="5.0") 

#Give the output a file name in the first entry 

#Output format can be changed, many options including .png, .jpeg, .bmp, .gif, .pdf 

G.draw('TFmap_test.pdf', format='pdf', prog='neato') 

#Maps can be made in other formats, remove commenting if desired 

##G.draw('testout2.png', format='png', prog='dot') 

##G.draw('testout3.png', format='png', prog='twopi') 

##G.draw('testout4.png', format='png', prog='circo') 

##G.draw('testout5.png', format='png', prog='fdp') 
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Appendix E: Chromatin DB systems analysis of microarray data  

We sought to determine which covalent chromatin modifications, if any, were 

enriched or depleted under the various conditions explored in our microarray experiment.  

Using Chromatin DB231, which utilizes the Bonferroni Correction, we examined those 

genes (1) differentially expressed between the wild-type and knockout, (2) graded by 

gcn5-F221A, (3) differentially expressed between the wild-type and knockout, but not 

graded (non-catalytically associated), (4) graded but not differentially expressed between 

the wild-type and knockout (False negatives), and (5) genes with knockout expression 

levels opposite the expression levels in the presence of the gcn5-F221A mutant 

(opposites).  We have catalogued those statistically significant covalent modifications for 

which each data set is enriched and depleted with corrected p values in parentheses.  

1. Differentially expressed (DE) genes between wild-type & knockout 

No significant enrichment or depletion of chromatin 

DE genes between wild-type & knockout, up-regulated in knockout 

Depletion: H4Nterm ac (<10-3) 

DE genes between wild-type & knockout, down-regulated in knockout 

 Enrichment: H3K4me2 (<10-4) 

 Depletion: H3 occupancy (<10-4), H4 occupancy (<10-3) 

DE genes between wild-type & knockout, no grading observed  

No significant enrichment or depletion of chromatin 

2. Graded genes compared to wild-type 

No significant enrichment or depletion of chromatin 

Graded up compared to wild-type 

Depletion: H3K18ac (<10-3), H3K14ac (<10-3) 



 193 

 Graded up, early 

 No significant enrichment or depletion of chromatin 

Graded up, late 

Depletion: H2AK7ac (<10-4), H2BK11ac (<10-4), H2BK16ac (<10-3), 

H3K14ac (<10-4), H3K18ac (<10-4), H3K23ac (<10-4) 

Graded down compared to wild-type 

Depletion: H4 occupancy (<10-3) 

Graded down, early 

 No significant enrichment or depletion of chromatin 

Graded down, late 

Depletion: H4 occupancy (<10-3) 

Graded up compared to wild-type, no change in knockout 

No significant enrichment or depletion of chromatin 

Graded down compared to wild-type, no change in knockout 

No significant enrichment or depletion of chromatin 

3. Non-catalytically associated genes (differentially expressed in knockout, no 

gradation) 

Depletion: H2AZ occupancy (<10-3) 

4. False negative genes 

Depletion: H2BK11ac (<10-3), H2BK16ac (<10-3), H3K18ac (<10-4), 

H3K14ac (<10-4), H3K23ac (<10-4),  

5. Opposite genes 

Depletion: H4K16ac (<10-3), H2AZ occupancy (<10-3) 
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Appendix F: Cytoscape BiNGO systems analysis of microarray data 

From our microarray study, we sought to determine which cellular processes, if 

any, were related to the observed cellular phenomena.  Using Cytoscape BiNGO version 

2.44266, we examined the over represented cellular processes (ORCP) and 

underrepresented cellular processes (URCP) for subsets of genes.  We examined those 

genes (1) differentially expressed between the wild-type and knockout, (2) catalytically 

associated, (3) differentially expressed between the wild-type and knockout, but not 

catalytically associated, (4) catalytically associated but not differentially expressed 

between the wild-type and knockout (False negatives), and (5) genes with knockout 

expression levels opposite the expression levels in the presence of the gcn5-F221A 

mutant (opposites).  Statistically significant ORCPs and URCPs are reported below, with 

corrected p values calculated for false discovery rates in parentheses, except in the case 

of the false negatives and opposites for which there were no statistically significant 

ORCPs or URCPs.   
 

1. Differentially expressed (DE) genes between wild-type & knockout 

ORCP: cell wall (2.10e-4), conjugation (4.83e-2), extra-cellular region (4.94e-4), 

plasma membrane (1.57e-4) 

URCP: cytoplasm (9.03e-10), DNA metabolic process (6.93e-4), triplet codon-

amino acid adaptor activity (3.89e-5), endomembrane system (2.31e-2), ribosome 

(8.88e-4), mitochondrial envelope (3.55e-2), response to stress (1.74e-2), 

chromosome segregation (3.55e-2), golgi apparatus (3.55e-2), protein complex 

biogenesis (3.55e-2), translation (2.34e-2), structural molecule activity (3.55e-2) 
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DE genes between wild-type & knockout, up-regulated in knockout 

ORCP: cell wall (1.80e-3) 

URCP: cytoplasm (5.29e-3), DNA metabolic process (5.29e-3), triplet codon-

amino acid adaptor activity (1.42e-2), translation (3.13e-2), nucleolus (2.40e-2), 

nucleus (8.55e-3), ribosome biogenesis (5.29e-3), RNA binding (6.51e-4), RNA 

metabolic process (3.49e-4) 

DE genes between wild-type & knockout, down-regulated in knockout 

ORCP: nucleolus (4.39e-5), ribosome biogenesis (3.05e-4), conjugation (3.14e-4), 

plasma membrane (3.60e-3), extra-cellular region (2.02e-2), RNA metabolic 

process (4.05e-2) 

URCP: cytoplasm (2.65e-7), response to stress (1.04e-2), triplet codon-amino acid 

adaptor activity (2.17e-2), protein binding (2.17e-2), mitochondrial envelope 

(2.17e-2), structural molecule activity (2.17e-2), ribosome (2.17e-2), golgi 

apparatus (3.70e-2), protein complex biogenesis (3.70e-2) 

DE genes between wild-type & knockout, no grading observed  

URCP: RNA metabolic process (3.32e-2), RNA binding (3.32e-2) 

 

2. Graded genes compared to wild-type 

 ORCP: oxidoreductase activity (3.00e-2) 

URCP: triplet codon-amino acid adaptor activity (2.71e-5), cytoplasm (3.27e-3), 

translation (1.42e-5), ribosome (8.70e-4), structural molecule activity (2.25e-2) 

Graded up compared to wild-type 



 196 

ORCP: Oxidoreductase activity (8.86e-3), cellular protein catabolic process 

(3.16e-2) 

URCP: RNA binding (2.28e-2), triplet codon-amino acid adaptor activity (3.11e-

3), Ribosome biogenesis (3.11e-3), RNA metabolic process (4.48e-3), translation 

(7.53e-5), heterocycle metabolic process (1.1e-2), ribosome (2.28e-2), nucleolus 

(2.28e-2) 

Graded up compared to wild-type, no change in knockout 

  ORCP: mitochondrial envelope (1.71e-2) 

  URCP: translation (1.10e-2) 

Graded down compared to wild-type 

ORCP: Nucleolus (2.53e-7), Ribosome biogenesis (5.51e-6), RNA metabolic 

process (6.93e-3), plasma membrane (2.52e-2) 

URCP: Cytoplasm (2.87e-4), protein binding (3.09e-2), response to stress (3.09e-

2), mitochondrial envelope (4.48e-2), structural molecule activity (4.48e-2) 

 

3. Non-catalytically associated genes (differentially expressed in knockout, no gradation) 

ORCP: Conjugation (1.55e-4), plasma membrane (1.55e-4), extracellular region 

(3.08e-3), cell wall (6.16e-3), membrane (1.83e-2) 

URCP: Cytoplasm (1.00e-5), DNA metabolic process (1.97e-2), protein 

modification process (1.97e-2), RNA binding (3.63e-2), nucleus (2.66e-2), triplet 

codon-amino acid adaptor activity (3.47e-2), response to stress (3.63e-2), 

ribosome (3.63e-2) 
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4. False negative genes 

 No functional enrichment/depletion of cellular processes detected. 

5. Opposite genes 

 No functional enrichment/depletion of cellular processes detected. 

Table A.5: Microarray genes identified as over represented for cellular processes 

Gene Category ORCP  Yeast Gene IDs 
Differentially expressed 
(DE) genes between 
wild-type & knockout 

Cell wall YDR055W YJL171C YIR039C YJR004C 
YNR044W YBR067C YLR042C YKL163W 
YLR194C YJL052W YLR040C YIL011W 
YOR382W YGR189C YMR008C YMR006C 
YDR077W 

conjugation YCL027W YBL016W YNR044W YJR004C 
YNL279W YBR083W YIL037C YHR005C 
YKL178C YFR008W YLR452C YJL157C 
YGL089C 

Extra-cellular region YDR055W YNR044W YBR067C YJR004C 
YKL163W YLR042C YPL123C YLR040C 
YIL011W YOR382W YGR189C YHR057C 
YMR006C YGL089C YDR077W 

Plasma membrane YPL265W YAR033W YDR055W YBR021W 
YGL053W YCL027W YNL279W YBL042C 
YLR194C YAR027W YMR319C YPR194C 
YML123C YLR214W YOL020W YOR101W 
YJL219W YMR008C YFL051C YLR452C 
YLR121C YAR031W YFL041W YBR068C 
YIR039C YPR124W YCL048W YIR032C 
YPL058C YHR005C YPR192W YOL156W 
YKL178C YGR121C YDR508C YLR413W 
YOL152W 

DE genes between wild-
type & knockout, up-
regulated in knockout 

Cell Wall YIL011W YOR382W YJL171C YDR055W 
YIR039C YGR189C YKL163W YLR194C 
YMR008C YJL052W YDR077W 

DE genes between wild-
type & knockout, down-
regulated in knockout 
 

Nucleolus YLR068W YIL127C YNL175C YGR280C 
YBL028C YNL124W YIL096C YDR021W 
YMR131C YBR247C YJL050W YJL033W 
YBR141C YJL109C YGL029W YGR159C 
YKL078W YLR145W YMR128W YAL059W 
YCR072C 
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Table A.5 (continued) 
 Ribosome 

biogenesis 
YBR267W YLR068W YGR280C YNL124W 
YNL112W YDR101C YDR021W YMR131C 
YBR247C YJL050W YHR197W YJL033W 
YJL109C YGL029W YLR059C YNL182C 
YGR159C YKL078W YLR145W YCR018C 
YMR128W YAL059W YCR072C 

Conjugation YKL178C YBL016W YCL027W YNR044W 
YJR004C YNL279W YBR083W YLR452C 
YIL037C YJL157C YGL089C YHR005C 

Plasma membrane YFL041W YBR021W YPR124W YCL027W 
YNL279W YBL042C YIR032C YHR005C 
YPR192W YMR319C YKL178C YML123C 
YLR214W YOL020W YOR101W YGR121C 
YLR452C YDR508C YLR413W YOL152W 

Extracellular region YHR057C YBR067C YNR044W YJR004C 
YLR042C YMR006C YGL089C YLR040C 

RNA metabolic 
process 

YNL141W YLR068W YJL050W YJL033W 
YJL109C YOL124C YNL182C YGR159C 
YLR145W YKL078W YMR128W YCR072C 
YBR267W YOL125W YOL066C YIL131C 
YGR280C YNL040W YNL124W YNL112W 
YDR021W YLR298C YMR131C YBR247C 
YHR197W YLR059C YGL029W YCR018C 
YAL059W YGR129W YDR465C 

Graded genes compared 
to wild-type 
 

Oxidoreductase 
activity 

YPL171C YNL274C YER069W YKL107W 
YLL041C YML131W YGL055W YOR136W 
YJL052W YOR374W YNL037C YLR214W 
YIR036C YGR234W YIR038C YEL024W 
YJR096W YAL061W YLR460C YCL026C-B 
YIL155C YIL111W YMR118C YGR088W 
YBR026C YDL085W YCR102C YOR120W 
YOL152W 

Graded up compared to 
wild-type 

Oxidoreductase 
activity 

YNL274C YPL171C YER069W YLL041C 
YML131W YKL107W YCL026C-B YIL155C 
YOR136W YJL052W YIL111W YOR374W 
YMR118C YGR088W YNL037C YBR026C 
YIR036C YDL085W YIR038C YEL024W 
YJR096W YAL061W YOR120W 

Cellular protein 
catabolic process 

YOR173W YFR053C YGR161C YIL155C 
YDR003W YPL002C YOR185C YGL156W 
YFR050C YLR178C YBR214W YKR098C 
YER054C YGR088W YJL020C YMR174C 
YDR358W YGL180W YIR038C YAL061W 
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Table A.5 (continued) 
Graded up compared to 
wild-type, no change in 
knockout 
 

Mitochondrial 
envelope 

YIL136W YDL142C YEL039C YJL161W 
YIL155C YJL066C YIL111W YER004W 
YMR118C YPL004C YDR178W YBR147W 
YDL085W YDR236C YIR038C YKL087C 
YEL024W 

Graded down compared 
to wild-type 
 

Nucleolus YLR068W YIL127C YMR290C YNL175C 
YGR280C YBL028C YMR269W YDR021W 
YDL148C YMR131C YJL050W YJL109C 
YGL029W YGR159C YKL078W YLR145W 
YPL157W YMR128W YAL059W YGR245C 

Ribosome 
biogenesis 

YLR068W YMR290C YGR280C YNL112W 
YDR101C YMR269W YDR021W YLR074C 
YDL148C YMR131C YJL050W YHR197W 
YJL109C YGL029W YGR159C YKL078W 
YLR145W YPL157W YMR128W YAL059W 
YGR245C 

RNA Metabolic 
process 

YNL141W YLR068W YMR290C YDL201W 
YDL148C YJL050W YJL109C YGR159C 
YLR145W YKL078W YMR128W YOL066C 
YOL125W YIL131C YGR280C YNL112W 
YDR021W YMR269W YLR298C YMR131C 
YHR197W YGL029W YPL157W YAL059W 
YGR129W YDR465C 

Plasma membrane YBR294W YBR021W YOR273C YPR124W 
YGL255W YMR319C YHL016C YPR194C 
YML123C YLR214W YOL020W YGR121C 
YLR413W YOL152W 

Non-catalytically 
associated genes 
(differentially expressed 
in knockout, no 
gradation) 

Plasma membrane YAR033W YFL041W YBR068C YGL053W 
YCL027W YNL279W YBL042C YCL048W 
YLR194C YPL058C YIR032C YHR005C 
YPR192W YOL156W YKL178C YOR101W 
YJL219W YFL051C YLR452C YLR121C 
YDR508C YAR031W 

Conjugation YKL178C YBL016W YCL027W YNR044W 
YJR004C YNL279W YBR083W YLR452C 
YIL037C YJL157C YGL089C YHR005C 

Extracellular Region YOR382W YGR189C YHR057C YBR067C 
YNR044W YJR004C YLR042C YGL089C 
YLR040C 

Cell Wall YOR382W YJL171C YGR189C YBR067C 
YNR044W YJR004C YLR042C YLR194C 
YLR040C 
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Table A.5 (continued) 
 Membrane YDR492W YGL053W YBL042C YLR040C 

YJL082W YJL037W YLR050C YAR035W 
YJL157C YBR222C YAR031W YNR065C 
YCL048W YIR032C YFL054C YCL021W-A 
YER100W YDR366C YGR189C YDL072C 
YDR508C YNR066C YAR033W YJL171C 
YPL156C YCL027W YJR004C YBR067C 
YNL279W YLR042C YLR194C YIL037C 
YPL057C YEL004W YOR382W YLR145W 
YOR101W YFL051C YJL219W YLR121C 
YLR452C YHL026C YFL041W YBR068C 
YER060W YNR044W YDR034C-A YPL058C 
YHR005C YPR192W YDR275W YOL156W 
YKL178C YDR218C 
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