
Copyright

by

Xiang-Yang Alexander Liu

2006

The Dissertation Committee for Xiang-Yang Alexander Liu
certifies that this is the approved version of the following dissertation:

A Theory for the Design and Analysis of Firewalls

Committee:

Mohamed G. Gouda, Supervisor

Adnan Aziz

Benjamin Kuipers

Simon S. Lam

Charles Gregory Plaxton

Lili Qiu

A Theory for the Design and Analysis of Firewalls

by

Xiang-Yang Alexander Liu, B.S., M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2006

Dedicated with love and respect

to my parents

Shuxiang Wang and Yuhai Liu (God rest his soul),

to my family

Huibo Heidi Ma, Max Boyang and Louis Boyang,

to whom I owe

all that I am and all that I have accomplished.

Acknowledgments

This dissertation represents the culmination of my career as a graduate

student and at this moment, I would like to pause and thank the many people

whose support and guidance brought me here. First and foremost, I would like

to thank my advisor, Professor Mohamed Gouda. His taste in research topics,

his rigor of thinking, his clarity of purpose, his insistence on elegance, and his

high standard of excellence have shaped the substance of this dissertation. I

will always be grateful to him for his invaluable advice and support during my

graduate studies.

I am grateful to my committee members, Professors Adnan Aziz, Ben-

jamin Kuipers, Simon S. Lam, Charles Gregory Plaxton, and Lili Qiu, for

their great help in this endeavor. I am also grateful to Professor Aloysius K.

Mok for his generous help. I would also like to thank Professor Ninghui Li of

Purdue University for his feedbacks and advices on this dissertation.

I owe deep gratitude to my wife Huibo Heidi Ma for her unwavering love,

support, and encouragement, without which the completion of this dissertation

would have been impossible.

I have too many friends and colleagues to thank individually. However,

my special thanks go to one of my best friends David Littrell. He was always

there when I needed help.

v

A Theory for the Design and Analysis of Firewalls

Publication No.

Xiang-Yang Alexander Liu, Ph.D.

The University of Texas at Austin, 2006

Supervisor: Mohamed G. Gouda

Firewalls are the most critical and widely deployed intrusion prevention

systems. A firewall is a security guard placed at the point of entry between a

private network and the outside Internet such that all incoming and outgoing

packets have to pass through it. The function of a firewall is to examine every

incoming or outgoing packet and decide whether to accept or discard it. This

function is conventionally specified by a sequence of rules, where rules often

conflict. To resolve conflicts, the decision for each packet is the decision of the

first rule that the packet matches. Consequently, the rules in a firewall are

order sensitive. Because of the conflicts and order sensitivity of firewall rules,

firewalls are difficult to design and analyze correctly. It has been observed

that most firewalls on the Internet are poorly designed and have many errors

in their rules.

Towards the goal of correct firewalls, this dissertation focuses on the

following two fundamental problems: first, how to design a new firewall such

vi

that the errors introduced in the design phase is reduced; second, how to

analyze an existing firewall such that we can detect errors that have been

built in. For firewall design, we proposed two methods for designing stateless

firewalls, namely the method of structured firewall design and the method

of diverse firewall design, and a model for specifying stateful firewalls. For

firewall analysis, we proposed two methods, namely firewall queries and firewall

redundancy detection.

The firewall design and analysis methods presented in this dissertation

are not limited to just firewalls. Rather, they are extensible to other rule-

based systems such as general packet classification systems and IPsec. This

extension is straightforward.

vii

Table of Contents

Acknowledgments v

Abstract vi

List of Tables xi

List of Figures xii

Chapter 1. Prologue 1

1.1 Background and Motivation 2

1.2 Previous Work . 5

1.2.1 Previous Work on Firewall Design 5

1.2.2 Previous Work on Firewall Analysis 6

1.3 Contributions of the Dissertation 8

1.3.1 Structured Firewall Design 8

1.3.2 Diverse Firewall Design 9

1.3.3 Stateful Firewall Model 10

1.3.4 Firewall Queries . 11

1.3.5 Firewall Redundancy Detection 12

1.4 Overview of the Dissertation 13

Chapter 2. Structured Firewall Design 14

2.1 Motivation . 16

2.1.1 Consistency, Completeness and Compactness 16

2.1.2 Structured Firewall Design 20

2.2 Firewall Decision Diagrams . 22

2.3 FDD Reduction . 27

2.4 FDD Marking . 28

2.5 Firewall Generation . 33

viii

2.6 Firewall Compaction . 37

2.7 Firewall Simplification . 41

2.8 Summary of Structured Firewall Design 42

Chapter 3. Diverse Firewall Design 45

3.1 Construction Algorithm . 51

3.2 Shaping Algorithm . 54

3.2.1 FDD Simplifying . 57

3.2.2 Node Shaping . 57

3.2.3 FDD Shaping . 63

3.3 Comparison Algorithm . 65

3.4 Experimental Results . 67

Chapter 4. Stateful Firewall Model 70

4.1 Firewall Model . 74

4.2 Firewall Examples . 81

4.2.1 Example I: Tracking Outgoing Packets 81

4.2.2 Example II: Tracking FTP Ptotocol 83

4.3 Removing Packets from Firewall State 87

4.4 Firewall States . 90

4.4.1 Truly Stateful and Truly Stateless Firewalls 91

4.4.2 Stateless Derivatives . 93

4.5 Firewall Properties . 95

4.5.1 Conforming Firewalls 95

4.5.2 Proper Firewalls . 97

Chapter 5. Firewall Queries 100

5.1 Structured Firewall Query Language 105

5.1.1 Firewalls . 105

5.1.2 Query Language . 107

5.2 Firewall Query Examples . 109

5.3 Firewall Query Processing . 111

5.4 FDT-based Firewall Query Processing Algorithm 113

5.5 Experimental Results . 117

ix

Chapter 6. Firewall Redundancy Detection 119

6.1 Firewall Redundant Rules . 125

6.2 Removing Upward Redundancy 128

6.3 Removing Downward Redundancy 137

6.4 Experimental Results . 142

Chapter 7. Epilogue 144

7.1 Conclusions . 144

7.2 Topics for Future Research . 146

Bibliography 147

Vita 155

x

List of Tables

xi

List of Figures

2.1 A Firewall Example . 17

2.2 An FDD example . 24

2.3 All rules represented by FDD in Figure 2.2 25

2.4 Algorithm 1 (FDD Reduction) 29

2.5 A reduced FDD . 30

2.6 Two marked FDDs . 30

2.7 Algorithm 2 (FDD Marking) 32

2.8 Algorithm 3 (Firewall Generation) 36

2.9 A generated firewall . 37

2.10 A firewall with no redundant rules 37

2.11 Algorithm 4 (Firewall Compaction) 38

2.12 Algorithm 5 (Firewall Simplification) 41

2.13 A simple firewall . 42

2.14 Five steps of our firewall design method (f ≡ f1 ≡ f2 ≡ f3 ≡
f4 ≡ f5) . 43

3.1 A firewall . 49

3.2 The requirement specification 50

3.3 The FDD by Team A . 50

3.4 The Firewall by Team B . 51

3.5 Appending rule (I ∈ {0}) ∧ (S ∈ [α, β]) ∧ (D ∈ all) ∧ (N ∈
all) ∧ (P ∈ all) → d . 54

3.6 The FDD constructed from Figure 3.4 55

3.7 Two shapable nodes in two FDDs 58

3.8 Two semi-isomorphic nodes 63

3.9 The FDD transformed from the FDD in Figure 3.3 65

3.10 Experimental Results . 69

4.1 A firewall for a private network 74

xii

4.2 Tracking the Ping protocol . 75

4.3 Processing a given packet . 81

4.4 Tracking outgoing packets . 84

4.5 FTP Ptotocol . 85

4.6 Tracking the FTP protocol . 86

4.7 Tracking the Ping protocol (with packets removal) 90

4.8 Firewall state transition . 90

4.9 A truly stateless firewall and its simplified version 93

5.1 Firewall f1 . 107

5.2 Firewall f . 109

5.3 Consistent firewall f2 . 112

5.4 Rule-based Firewall Query Processing Algorithm 114

5.5 Firewall Decision Tree t3 . 115

5.6 FDT-based Firewall Query Processing Algorithm 116

5.7 Query Processing Time vs. Number of rules 118

6.1 A simple firewall . 120

6.2 Geometric representation of Figure 6.1 120

6.3 A partial FDT . 130

6.4 A firewall of 4 rules . 131

6.5 Geometric representation of the rules in Figure 6.4 131

6.6 Partial FDT t1 and the effective rule set E1 calculated for rule
r1 in Figure 6.4 . 132

6.7 Partial FDT t2 and the effective rule set E2 calculated for rule
r2 in Figure 6.4 . 133

6.8 Effective rule sets calculated for the firewall in Figure 6.4 . . . 137

6.9 An FDT . 141

6.10 Average processing time for removing all (both upward and
downward) redundant rules vs. Total number of rules in a firewall143

xiii

Chapter 1

Prologue

1

1.1 Background and Motivation

Firewalls are crucial elements in network security, and have been widely

deployed in most businesses and institutions for securing private networks. A

firewall is a security guard placed at the point of entry between a private

network and the outside Internet such that all incoming and outgoing packets

have to pass through it. A packet can be viewed as a tuple with a finite

number of fields such as source IP address, destination IP address, source

port number, destination port number, and protocol type. By examining the

values of these fields for each incoming and outgoing packet, a firewall accepts

legitimate packets and discards illegitimate ones according to its configuration.

A firewall configuration defines which packets are legitimate and which are

illegitimate. An error in a firewall configuration, i.e., a wrong definition of

being legitimate or illegitimate for some packets, means that the firewall either

accepts some malicious packets, which consequently creates security holes on

the firewall, or discards some legitimate packets, which consequently disrupts

normal businesses. Given the importance of firewalls, such errors are not

acceptable. Unfortunately, it has been observed that most firewalls on the

Internet are poorly designed and have many errors in their configurations [59].

Therefore, how to design a new firewall configuration and how to analyze an

existing firewall configuration become important issues.

Conventionally, a firewall configuration is specified as a sequence of

rules. Each rule in a firewall configuration is of the form

〈predicate〉 → 〈decision〉

2

The 〈predicate〉 of a rule is a boolean expression over some packet fields to-

gether with the physical network interface on which a packet arrives. For

simplicity, we assume that each packet has a field containing the identification

of the network interface on which a packet arrives. The 〈decision〉 of a rule can

be accept, or discard, or a combination of these decisions with other options

such as a logging option. For simplicity, we assume that the 〈decision〉 of a

rule is either accept or discard. A packet matches a rule if and only if (iff) the

packet satisfies the predicate of the rule. The rules in a firewall configuration

often conflict. Two rules in a firewall configuration conflict iff they overlap

and also have different decisions. Two rules in a firewall configuration overlap

iff there is at least one packet that can match both rules. Due to conflicts

among rules, a packet may match more than one rule in a firewall configu-

ration, and the rules that a packet matches may have different decisions. To

resolve conflicts, the decision for each packet is the decision of the first (i.e.,

highest priority) rule that the packet matches. Consequently, the rules in a

firewall configuration are order sensitive. To ensure that every packet has at

least one matching rule in a firewall configuration, the predicate of the last

rule in a firewall configuration is usually a tautology. The last rule of a firewall

configuration is usually called the default rule of the firewall.

Because of the conflicts and order sensitivity of firewall rules, firewall

configurations are difficult to design and analyze correctly. The goal of this

dissertation is to reduce firewall configuration errors. We approach this goal

from two directions: (1) how to reduce errors when a firewall configuration

3

is being designed, and (2) how to detect errors after a firewall configuration

has been designed. In this dissertation, we present two methods for designing

firewall configurations, one model for specifying stateful firewalls, and two

methods for analyzing firewall configurations.

Since the correctness of a firewall configuration is the focus of this dis-

sertation, we assume a firewall is correct iff (if and only if) its configuration is

correct, and a firewall configuration is correct iff it satisfies its given require-

ment specification, which is usually written in a natural language. In the rest

of this dissertation, we use “firewall” to mean “firewall configuration” if not

otherwise specified.

In this dissertation, for ease of presentation, we assume that a firewall

maps every packet to one of two decisions: accept or discard. Most firewall

software supports more than two decisions such as accept, accept-and-log,

discard, and discard-and-log. Our firewall design and analysis methods can be

straightforwardly extended to support more than two decisions.

The firewall design and analysis methods presented in this dissertation

are not limited to just firewalls. Rather, they are extensible to other rule-

based systems such as general packet classification systems and IPsec. This

extension is straightforward.

4

1.2 Previous Work

Most of previous work on firewalls focuses on improving the perfor-

mance of firewalls in the area of packet classification [10, 11, 46, 48–51, 57].

Because the central theme of this dissertation concerns about the correctness

of firewalls, below we mainly survey related work in this respect.

1.2.1 Previous Work on Firewall Design

Previous work on firewall design focuses on high-level languages that

can be used to specify firewall rules. Examples of such languages are the simple

model definition language in [13, 14], the Lisp-like language in [32], the declar-

ative predicate language in [15], and the high level firewall language in [1].

These high-level firewall languages are helpful for designing firewalls because

otherwise people have to use vendor specific languages to describe firewall

rules. However, a firewall specified using these high-level firewall languages is

still a sequence of rules and the rules may still conflict. The three issues of

consistency, completeness and compactness that are inherent in designing a

firewall by a sequence of rules still remain.

In comparison, in this dissertation, we propose two new firewall design

methods: Structured Firewall Design and Diverse Firewall Design. The Struc-

tured Firewall Design method is the first method that addresses all the three

issues of consistency, completeness and compactness. The Diverse Firewall

Design method is the first method that applies the principle of diverse design

to designing firewalls. These two design methods are complementary and prior

5

steps to those high-level firewall languages.

Although a variety of stateful firewall products have been available and

deployed on the Internet for some time, such as Cisco PIX Firewalls [19], Cisco

Reflexive ACLs [20], CheckPoint FireWall-1 [18] and Netfilter/IPTables [43],

no model for specifying stateful firewalls exists. The lack of such a model con-

stitutes a significant impediment for further development of stateful firewall

technologies. In this dissertation, we introduce the first model for specifying

stateful firewalls. Our model of stateful firewalls has several favorable prop-

erties. First, despite its simplicity, it can express a variety of state tracking

functionalities. Second, it allows us to inherit the rich results in stateless fire-

wall design and analysis. Third, it provides backward compatibility such that

a stateless firewall can also be specified using our model.

1.2.2 Previous Work on Firewall Analysis

Previous work on firewall analysis focuses on conflict detection [12, 23,

33, 41], anomaly detection [3–5], and firewall queries [24, 34, 40, 58].

The basic idea of firewall conflict detection is to first detect all pairs

of rules that conflict, and then the firewall designer manually examines every

pair of conflicting rules to see whether the two rules need to be swapped or

a new rule needs to be added. Similar to conflict detection, six types of so-

called “anomalies” were defined in [3–5]. Examining each conflict or anomaly

is helpful in reducing errors; however, the number of conflicts in a firewall is

usually large, and the manual checking of each conflict or anomaly is unreliable

6

because the meaning of each rule depends on the current order of the rules in

the firewall, which may be incorrect.

In [40, 58], a firewall analysis system that uses some specific firewall

queries was presented. However, no algorithm was presented for processing

firewall queries. In [34], some ad-hoc “what if” questions that are similar

to firewall queries were discussed. Again, no algorithm was presented for

processing the proposed “what if” questions. In [24], expert systems were

proposed to analyze firewall rules. Clearly, building an expert system just for

analyzing a firewall is overwrought and impractical.

There are some tools currently available for network vulnerability test-

ing, such as Satan [25, 27] and Nessus [42]. These vulnerability testing tools

scan a private network based on the current publicly known attacks, rather

than the requirement specification of a firewall. Although these tools can pos-

sibly catch errors that allow illegitimate access to the private network, they

cannot find the errors that disable legitimate communication between the pri-

vate network and the outside Internet.

In comparison, in this dissertation, we introduce a simple and effec-

tive SQL-like query language, called the Structured Firewall Query Language

(SFQL), for describing firewall queries; a theorem, called the Firewall Query

Theorem, as a foundation for developing firewall query processing algorithms;

and an efficient firewall query processing algorithm.

7

1.3 Contributions of the Dissertation

Towards the goal of correct firewalls, this dissertation focuses on the

following two fundamental problems: how to design a new firewall such that the

errors introduced in the design phase is reduced, and how to analyze an existing

firewall such that we can detect errors that have been built in. For firewall

design, we proposed two methods for designing stateless firewalls, namely the

method of structured firewall design and the method of diverse firewall design,

and a model for specifying stateful firewalls. For firewall analysis, we proposed

two methods, namely firewall queries and firewall redundancy detection.

1.3.1 Structured Firewall Design

Designing a firewall directly by a sequence of rules suffers from three

types of major problems: (1) the consistency problem, which means that it

is difficult to order the rules correctly; (2) the completeness problem, which

means that it is difficult to ensure thorough consideration for all types of

traffic; (3) the compactness problem, which means that it is difficult to keep

the number of rules small (because some rules may be redundant and some

rules may be combined into one rule).

To achieve consistency, completeness, and compactness, we proposed

a new method called the Structured Firewall Design in [28], which consists

of two steps. First, one designs a firewall using a Firewall Decision Diagram

instead of a sequence of often conflicting rules. Second, a program converts the

firewall decision diagram into a compact, yet functionally equivalent, sequence

8

of rules.

This method addresses the consistency problem because a firewall de-

cision diagram is conflict-free. It addresses the completeness problem because

the syntactic requirements of a firewall decision diagram force the designer to

consider all types of traffic. It also addresses the compactness problem because

in the second step we first used two algorithms, a standard algorithm for de-

cision diagram reduction and a new algorithm called firewall decision diagram

marking, to combine rules together, and then used a new algorithm to remove

redundant rules.

1.3.2 Diverse Firewall Design

Fundamentally, firewall errors result from human errors. To reduce

human errors, we proposed the method of Diverse Firewall Design in [37].

This method consists of two phases: a design phase and a comparison phase.

In the design phase, the same requirement specification of a firewall is given

to multiple teams, who proceed independently to design the firewall. In the

comparison phase, the resulting designs from the teams are compared with

each other to identify all the discrepancies among them. Each discrepancy is

then investigated further and a correction is applied if necessary.

The main technical challenge of this method is how to identify all the

discrepancies between two given firewalls. We present a series of three efficient

algorithms in this dissertation to solve this problem: (1) a construction algo-

rithm for constructing an equivalent firewall decision tree from a sequence of

9

rules, (2) a shaping algorithm for transforming two firewall decision trees to

become semi-isomorphic without changing their semantics, and (3) a compari-

son algorithm for detecting all the discrepancies between two semi-isomorphic

firewall decision trees.

1.3.3 Stateful Firewall Model

In order to determine whether a packet should be accepted or discarded,

traditional firewalls (i.e., stateless firewalls) examine only the packet itself. In

contrast, newer stateful firewalls examine not only the packet but also the

state of the firewall. Stateful firewalls can achieve finer access control by

tracking the communication state between a private network and the outside

Internet. State tracking functionalities in current stateful firewall products,

unfortunately, are often hard coded, and different vendors hard code different

state tracking functionalities. So far, there is no model for specifying stateful

firewalls. Consequently, not only is firewall administrators unable to fully

control the function of their firewall, but also it is difficult to design and

analyze stateful firewalls.

To facilitate the development of stateful firewalls, in [29], we proposed

a simple model for specifying stateful firewalls. Our model of stateful firewalls

has several favorable properties. First, despite its simplicity, it can express

a variety of state tracking functionalities. Second, it allows us to inherit the

rich results in stateless firewall design and analysis. Third, it provides back-

ward compatibility such that a stateless firewall can also be specified using

10

our model. Moreover, we proposed several methods in [29] to analyze the

properties of a stateful firewall specified in this model.

1.3.4 Firewall Queries

Although a firewall is specified by a mere sequence of rules, under-

standing its function is by no means an easy task. Even understanding the

implication of a single rule is difficult because one has to go through all the

rules listed above that rule to figure out their logical relations. Understanding

the function of an entire firewall is even more difficult because the firewall may

have a large number of rules and the rules often conflict with each other. Fur-

thermore, firewall administrators often have to analyze legacy firewalls that

were written by different administrators, at different times, and for different

reasons. Effective methods and tools for analyzing firewalls, therefore, are

crucial to the success of firewalls.

Firewall queries are questions concerning the function of a firewall. An

example firewall query is “Which computers in the private network can receive

packets with destination port 1434 and protocol type UDP from the outside

Internet?”. Such queries are of tremendous help for firewall administrators to

understand and analyze the function of their firewalls. For example, the above

firewall query example can be used to detect which computers in a private

network are vulnerable to Sapphire Worm attacks because Sapphire Worms

use UDP port 1434. If the answer to this firewall query is not an empty set,

then the firewall administrator may need to modify the firewall to prevent

11

Sapphire Worm attacks.

No algorithm for processing such queries exists in previous literature.

In [39], we presented a simple and effective SQL-like query language, called the

Structured Firewall Query Language (SFQL), for describing firewall queries;

a theorem, called the Firewall Query Theorem, as a foundation for developing

firewall query processing algorithms; and an efficient firewall query processing

algorithm.

1.3.5 Firewall Redundancy Detection

Firewalls, especially those that have been updated many times, often

contain redundant rules. A rule in a firewall is redundant if and only if re-

moving the rule does not change the function of the firewall. When a firewall

consists of many redundant rules, the firewall becomes difficult to manage. A

redundant rule may indicate a possible error if the rule is not expected to be

redundant. In addition, redundant rules significantly degrade the performance

of firewalls, especially TCAM based firewalls. The technical challenge is how

to detect all the redundant rules in a firewall. There is no previous solution for

this problem. In [38], we developed theorems for identifying all the redundant

rules in a firewall, and we presented the first algorithm that can detect all the

redundant rules in a firewall, which means that in the resulting firewall no rule

can be removed without changing the function of the firewall.

12

1.4 Overview of the Dissertation

The rest of this dissertation proceeds as follows. In Chapter 2, we

introduce the method of structured firewall design. In Chapter 3, we present

the method of diverse firewall design. In Chapter 4, we show a model for

specifying stateful firewalls and some method for analyzing the the properties

of stateful firewalls specified in this model. In Chapter 5, we present how to

describe and process firewall queries. In Chapter 6, we develop theorems and

algorithms for removing all the redundant rules in any given firewall. Finally,

in Chapter 7, we summarize our research and suggest several topics for future

research.

13

Chapter 2

Structured Firewall Design

14

The current practice of designing a firewall directly as a sequence of

rules suffers from three types of major problems: (1) the consistency problem,

which means that it is difficult to order the rules correctly; (2) the completeness

problem, which means that it is difficult to ensure thorough consideration for

all types of traffic; (3) the compactness problem, which means that it is difficult

to keep the number of rules small (because some rules may be redundant and

some rules may be combined into one rule).

To achieve consistency, completeness, and compactness, we propose a

new method called Structured Firewall Design, which consists of two steps.

First, one designs a firewall using a Firewall Decision Diagram instead of a

sequence of often conflicting rules. Second, a program converts the firewall de-

cision diagram into a compact, yet functionally equivalent, sequence of rules.

This method addresses the consistency problem because a firewall decision

diagram is conflict-free. It addresses the completeness problem because the

syntactic requirements of a firewall decision diagram force the designer to con-

sider all types of traffic. It also addresses the compactness problem because

in the second step we use two algorithms (namely FDD reduction and FDD

marking) to combine rules together, and one algorithm (namely Firewall com-

paction) to remove redundant rules.

15

2.1 Motivation

2.1.1 Consistency, Completeness and Compactness

Because of the conflicts and order sensitivity of firewall rules, designing

a firewall directly as a sequence of rules suffers from these three problems: the

consistency problem, the completeness problem, and the compactness problem.

Next, we expatiate on these three problems via a simple firewall example

shown in Figure 2.1. This firewall resides on a gateway router that connects a

private network to the outside Internet. The gateway router has two interfaces:

interface 0, which connects the router to the outside Internet, and interface 1,

which connects the router to the private network. In this example, we assume

that every packet has the following five fields.

name meaning
I Interface
S Source IP address
D Destination IP address
N Destination Port Number
P Protocol Type

A firewall on the Internet typically consists of hundreds or thousands of

rules. Here for simplicity, this firewall example only has four rules. Although

this firewall is small, it exemplifies all the following three problems.

1. Consistency Problem: It is difficult to order the rules in a firewall cor-

rectly. This difficulty mainly comes from conflicts among rules. Because

rules often conflict, the order of the rules in a firewall is critical. The

decision for every packet is the decision of the first rule that the packet

16

C ISC OS Y ST EM S

 0 1
Internet

Mail Server Host 1 Host 2
Firewall

(Gateway Router)

A Private Network

1. Rule r1: (I = 0) ∧ (S = any) ∧ (D = Mail Server) ∧ (N = 25) ∧ (P = tcp) → accept

(This rule allows incoming SMTP packets to proceed to the mail server.)

2. Rule r2: (I = 0) ∧ (S = Malicious Hosts) ∧ (D = any) ∧ (N = any) ∧ (P = any) → discard

(This rule discards incoming packets from previously known malicious hosts.)

3. Rule r3: (I = 1) ∧ (S = any) ∧ (D = any) ∧ (N = any) ∧ (P = any) → accept

(This rule allows any outgoing packet to proceed.)

4. Rule r4: (I = any) ∧ (S = any) ∧ (D = any) ∧ (N = any) ∧ (P = any) → accept

(This rule allows any incoming or outgoing packet to proceed.)

Figure 2.1. A Firewall Example

matches. In the firewall example in Figure 2.1, rule r1 and r2 conflict

since the SMTP packets from previously known malicious hosts to the

mail server match both rules and the decisions of r1 and r2 are differ-

ent. Because r1 is listed before r2 and the decision of rule r1 is “accept”,

the SMTP packets from previously known malicious hosts are allowed

to proceed to the mail server. However, such packets probably should

be prohibited from reaching the mail server because they originate from

malicious hosts. Therefore, rules r1 and r2 probably should be swapped.

Because of the conflicts, the net effect of a rule cannot be understood

by the literal meaning of the rule. The decision of a rule affects the

fate of the packets that match this rule but does not match any rule

listed before this rule. To understand one single rule ri, one needs to

go through all the rules from r1 to ri−1, and for every rule rj, where

17

1 ≤ j ≤ i − 1, one needs to figure out the logical relationship between

the predicate of rj and that of ri. In the firewall example in Figure 2.1,

the net effect of rule r2 is not to “discard all packets originated from

previously known malicious hosts”, but rather is to “discard all non-

SMTP packets originated from previously known malicious hosts”. The

difficulty in understanding firewall rules in turn makes the design and

maintenance of a firewall error-prone. Maintenance of a firewall usually

involves inserting, deleting or updating rules, and reporting the function

of the firewall to others such as managers. All of these tasks require

precise understanding of firewalls, which is difficult, especially when the

firewall administrator is forced to maintain a legacy firewall that is not

originally designed by him.

2. Completeness Problem: It is difficult to ensure that all possible pack-

ets are considered. To ensure that every packet has at least one matching

rule in a firewall, the common practice is to make the predicate of the last

rule a tautology. This is clearly not a good way to ensure the thorough

consideration of all possible packets. In the firewall example in Figure

2.1, due to the last rule r4, non-email packets from the outside to the

mail server and email packets from the outside to the hosts other than

the mail server are accepted by the firewall. However, these two types

of traffic probably should be blocked. A mail server is usually dedicated

to email service only. When a host other than the mail server starts to

18

behave like a mail server, it could be an indication that the host has

been hacked and it is sending out spam. To block these two types of

traffic, the following two rules should be inserted immediately after rule

r1 in the above firewall:

(a) (I = 0) ∧ (S = any) ∧ (D = Mail Server) ∧ (N = any) ∧ (P =

any) → discard

(b) (I = 0)∧ (S = any)∧ (D = any)∧ (N = 25)∧ (P = tcp) → discard

3. Compactness Problem: A poorly designed firewall often has redun-

dant rules. A rule in a firewall is redundant iff removing the rule does

not change the function of the firewall, i.e., does not change the decision

of the firewall for every packet. In the above firewall example in Figure

2.1, rule r3 is redundant. This is because all the packets that match r3

but do not match r1 and r2 also match r4, and both r3 and r4 have the

same decision. Therefore, this firewall can be made more compact by

removing rule r3.

The consistency problem and the completeness problem cause firewall

errors. An error in a firewall means that the firewall either accepts some ma-

licious packets, which consequently creates security holes on the firewall, or

discards some legitimate packets, which consequently disrupts normal busi-

nesses. Given the importance of firewalls, such errors are not acceptable.

19

Unfortunately, it has been observed that most firewalls on the Internet are

poorly designed and have many errors in their rules [59].

The compactness problem causes low firewall performance. In general,

the smaller the number of rules that a firewall has, the faster the firewall can

map a packet to the decision of the first rule the packet matches. Reducing the

number of rules is especially useful for the firewalls that use TCAM (Ternary

Content Addressable Memory). Such firewalls use O(n) space (where n is the

number of rules) and constant time in mapping a packet to a decision. Despite

the high performance of such TCAM-based firewalls, TCAM has very limited

size and consumes much more power as the number of rules increases. Size

limitation and power consumption are the two major issues for TCAM-based

firewalls.

2.1.2 Structured Firewall Design

To achieve consistency, completeness, and compactness, we propose

a new method called Structured Firewall Design, which consists of two steps.

First, one designs a firewall using a Firewall Decision Diagram (FDD for short)

instead of a sequence of often conflicting rules. Second, a program converts

the FDD into a compact, yet functionally equivalent, sequence of rules. This

method addresses the consistency problem because an FDD is conflict-free.

It addresses the completeness problem because the syntactic requirements of

an FDD force the designer to consider all types of traffic. It also addresses

the compactness problem because in the second step we use two algorithms

20

(namely FDD reduction and FDD marking) to combine rules together, and

one algorithm (namely Firewall compaction) to remove redundant rules.

In some sense, our method of structured firewall design is like the

method of structured programming, and the method of designing a firewall

directly as a sequence of conflicting rules is like the method of writing a pro-

gram with many goto statements. In late 1960s, Dijkstra pointed out that

goto statements are considered harmful [22] because a program with many

goto statements is very difficult to understand and therefore writing such a

program is very error prone. Similarly, a firewall of a sequence of conflicting

rules is very difficult to understand and writing a sequence of conflicting rules

directly is extremely error prone.

Using the method of structured firewall design, the firewall adminis-

trator only deals with the FDD that uniquely represents the semantics of a

firewall. The FDD is essentially the formal specification of a firewall. Since

an FDD can be converted to an equivalent sequence of rules, our method does

not require any modification to any existing firewall, which takes a sequence

of rules as its configuration. Whenever the firewall administrator wants to

change the function of his firewall, he only needs to modify the FDD and then

use programs to automatically generate a new sequence of rules. This process

is like a programmer first modifying his source code and then compiling it

again.

21

2.2 Firewall Decision Diagrams

A field Fi is a variable whose domain, denoted D(Fi), is a finite interval

of nonnegative integers. For example, the domain of the source address in an

IP packet is [0, 232 − 1].

A packet over fields F1, · · · , Fd is a d-tuple (p1, · · · , pd) where each

pi (1 ≤ i ≤ d) is an element of D(Fi). We use Σ to denote the set of all

packets over fields F1, · · · , Fd. It follows that Σ is a finite set and |Σ| =

|D(F1)| × · · · × |D(Fd)|, where |Σ| denotes the number of elements in set Σ

and each |D(Fi)| (1 ≤ i ≤ d) denotes the number of elements in set D(Fi).

Definition 2.2.1 (Firewall Decision Diagram). A Firewall Decision Dia-

gram (FDD) f over fields F1, · · · , Fd is an acyclic and directed graph that has

the following five properties:

1. There is exactly one node in f that has no incoming edges. This node

is called the root of f . The nodes in f that have no outgoing edges are

called terminal nodes of f .

2. Each node v in f is labeled with a field, denoted F (v), such that

F (v) ∈

{F1, · · · , Fd} if v is nonterminal

{accept , discard} if v is terminal.

3. Each edge e in f is labeled with a nonempty set of integers, denoted

I(e), such that if e is an outgoing edge of node v, then we have

I(e) ⊆ D(F (v)).

22

4. A directed path in f from the root to a terminal node is called a decision

path. No two nodes on a decision path have the same label.

5. The set of all outgoing edges of a node v in f , denoted E(v), satisfies

the following two conditions:

(a) Consistency : I(e)∩ I(e′) = ∅ for any two distinct edges e and e′ in

E(v).

(b) Completeness :
⋃

e∈E(v) I(e) = D(F (v)). 2

Figure 2.2 shows an example of an FDD over two fields F1 and F2.

The domain of each field is the interval [1, 10]. Note that in labelling the

terminal nodes, we use letter “a” as a shorthand for “accept” and letter “d” as

a shorthand for “discard”. These two notations are carried through the rest

of this dissertation.

In this chapter, the label of an edge in an FDD is always represented by

the minimum number of non-overlapping integer intervals whose union equals

the label of the edge. For example, one outgoing edge of the root is labeled

with the set {1, 2, 3, 4, 9, 10}, which is represented by the two intervals [1, 4]

and [9, 10].

For brevity, in the rest of this chapter, we assume that all packets and

all FDDs are over the d fields F1, · · · , Fd unless otherwise specified.

A firewall decision diagram maps each packet to a decision by testing

the packet down the diagram from the root to a terminal node, which indicates

23

a

[7,8]

d

[3,4]

[1,4][5,6] [9,10]

[6,8]
[1,2]
[5,5]

[9,10]

da

[3,4] [1,2]
[5,5]

dd

[6,10] [1,5][6,8]
[9,10]

PSfrag replacements

F1

F2F2 F2

Figure 2.2. An FDD example

the decision of the firewall for the packet. Each nonterminal node in a firewall

decision diagram specifies a test of a packet field, and each edge descending

from that node corresponds to some possible values of that field. Each packet

is mapped to a decision by starting at the root, testing the field that labels

this node, then moving down the edge whose label contains the value of the

packet field; this process is then repeated for the sub-diagram rooted at the

new node.

A decision path in an FDD is represented by 〈v1e1 · · · vkekvk+1〉 where

v1 is the root, vk+1 is a terminal node, and each ei (1 ≤ i ≤ k) is a directed

edge from node vi to node vi+1.

A decision path 〈v1e1 · · · vkekvk+1〉 in an FDD represents the following

rule:

F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd → 〈decision〉

where

Si =

I(ej) if there is a node vj in the decision path that is labeled with field Fi

D(Fi) otherwise

and 〈decision〉 is the label of the terminal node vk+1 in the path.

24

For an FDD f , we use f.rules to denote the set of all rules that are

represented by all the decision paths of f . For any packet p, there is one

and only one rule in f.rules that p matches because of the consistency and

completeness properties of an FDD. For example, the rules represented by all

the decision paths of the FDD in Figure 2.2 are listed in Figure 2.3. Taking

the example of the packet (7, 9), it matches only rule r4 in Figure 2.3.

r1: F1 ∈ [5, 6] ∧ F2 ∈ [3, 4] ∪ [6, 8] → a
r2: F1 ∈ [5, 6] ∧ F2 ∈ [1, 2] ∪ [5, 5] ∪ [9, 10] → d
r3: F1 ∈ [7, 8] ∧ F2 ∈ [3, 4] ∪ [6, 8] → a
r4: F1 ∈ [7, 8] ∧ F2 ∈ [1, 2] ∪ [5, 5] ∪ [9, 10] → d
r5: F1 ∈ [1, 4] ∪ [9, 10] ∧ F2 ∈ [1, 5] → d
r6: F1 ∈ [1, 4] ∪ [9, 10] ∧ F2 ∈ [6, 10] → d

Figure 2.3. All rules represented by FDD in Figure 2.2

The semantics of an FDD f is defined as follows: for any packet p, f

maps p to the decision of the rule (in fact the only rule) that p matches in

f.rules . More precisely, a packet (p1, · · · , pd) is accepted by an FDD f iff there

is a rule of the form

F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd → accept

in f.rules such that the condition p1 ∈ S1 ∧ · · · ∧ pd ∈ Sd holds. Similarly, a

packet (p1, · · · , pd) is discarded by an FDD f iff there is a rule of the form

F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd → discard

25

in f.rules such that the condition p1 ∈ S1 ∧ · · · ∧ pd ∈ Sd holds. For example,

the packet (6, 8) is discarded by the FDD in Figure 2.2 because the rule that

this packet matches is rule r4 in Figure 2.3 and the decision of this rule is

“discard”.

Let f be an FDD. The accept set of f , denoted f.accept , is the set of

all packets that are accepted by f . Similarly, the discard set of f , denoted

f.discard , is the set of all packets that are discarded by f . These two sets

associated with an FDD precisely define the semantics of the FDD.

Based on the definitions of accept set and discard set, we have the

following theorem. (Recall that Σ denotes the set of all packets over the fields

F1, · · · , Fd.)

Theorem 2.2.1 (Theorem of FDDs). For any FDD f , the following two

conditions hold:

1. f.accept ∩ f.discard = ∅, and

2. f.accept ∪ f.discard = Σ 2

Two FDDs f and f ′ are equivalent iff they have identical accept sets

and identical discard sets, i.e., f.accept = f ′.accept and f.discard = f ′.discard .

There are some similarities between the structure of Firewall Decision

Diagrams and that of Interval Decision Diagrams [52], which are mainly used

in formal verification. However, there are two major differences. First, in a

firewall decision diagram, the label of a nonterminal node must have a finite

26

domain; while in an interval decision diagram, the label of a nonterminal

node may have an infinite domain. Second, in a firewall decision diagram,

the label of an edge is a set of integers which could be the union of several

noncontinuous intervals; while in an interval decision diagram, the label of an

edge is limited to only one interval. In broader sense, the structure of Firewall

Decision Diagrams is also similar to other types of decision diagrams such as

the Binary Decision Diagrams [16] and Decision Trees [47]. But note that the

optimization goal of reducing the total number of simple rules generated is

unique to firewall decision diagrams, which will be explored next.

2.3 FDD Reduction

In this section, we present an algorithm for reducing the number of

decision paths in an FDD. This reduction helps to reduce the number of rules

generated from an FDD. First, we introduce two concepts: isomorphic nodes

in an FDD and reduced FDDs.

Two nodes v and v′ in an FDD are isomorphic iff v and v′ satisfy one

of the following two conditions:

1. Both v and v′ are terminal nodes with identical labels.

2. Both v and v′ are nonterminal nodes and there is a one-to-one corre-

spondence between the outgoing edges of v and the outgoing edges of

v′ such that every pair of corresponding edges have identical labels and

they both point to the same node.

27

An FDD f is reduced iff it satisfies all of the following three conditions:

1. No node in f has only one outgoing edge.

2. No two nodes in f are isomorphic.

3. No two nodes have more than one edge between them.

Algorithm 1 (FDD reduction) in Figure 2.4 takes any FDD and outputs

an equivalent but reduced FDD. The correctness of this algorithm follows

directly from the semantics of FDDs. Note that this algorithm for reducing

an FDD is similar to the one described in [16] for reducing a BDD.

As an example, if we apply Algorithm 1 to the FDD in Figure 2.2, we

get the reduced FDD in Figure 2.5. Note that the FDD in Figure 2.2 consists

of six decision paths, whereas the FDD in Figure 2.5 consists of three decision

paths.

2.4 FDD Marking

A firewall rule of the form F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd → 〈decision〉

is simple iff every Si (1 ≤ i ≤ d) is a nonnegative integer interval. Because

most firewalls require simple rules, we want to minimize the number of simple

rules generated from an FDD. The number of simple rules generated from a

“marked version” of an FDD is less than or equal to the number of simple

rules generated from the original FDD. Next, we define a marked FDD.

28

Algorithm 1 (FDD Reduction)
Input : An FDD f
Output : A reduced FDD that is equivalent to f
Steps:

Repeatedly apply the following three reductions to f until none of them can
be applied any further.

1. If there is a node v that has only one outgoing edge e, assuming e points
to node v′, then remove both node v and edge e, and let all the edges
that point to v point to v′.

2. If there are two nodes v and v′ that are isomorphic, then remove v′

together with all its outgoing edges, and let all the edges that point to
v′ point to v.

3. If there are two edges e and e′ that both are between a pair of two nodes,
then remove e′ and change the label of e from I(e) to I(e)∪I(e′). (Recall
that I(e) denotes the label of edge e.)

Figure 2.4. Algorithm 1 (FDD Reduction)

A marked version f ′ of an FDD f is the same as f except that exactly

one outgoing edge of each nonterminal node in f ′ is marked “all”. Since the

labels of the edges that are marked “all” do not change, the two FDDs f and

f ′ have the same semantics, i.e., f and f ′ are equivalent. A marked version of

an FDD is also called a marked FDD.

Figure 2.6 shows two marked versions f ′ and f ′′ of the FDD in Figure

2.5. In f ′, the edge labeled [5, 8] and the edge labeled [1, 2]∪ [5, 5]∪ [9, 10] are

both marked all . In f ′′, the edge labeled [1, 4] ∪ [9, 10] and the edge labeled

[1, 2] ∪ [5, 5] ∪ [9, 10] are both marked all .

29

a d

[3,4]

[1,4]
[9,10]

[5,5]

[5,8]

[6,8] [9,10]

[1,2]PSfrag replacements

F1

F2

Figure 2.5. A reduced FDD

a d

[3,4]
[6,8]

[1,4][5,8]

[9,10][1,2]
[5,5]

[9,10]

a d

[3,4]
[6,8]

[1,4][5,8]

[9,10][1,2]
[5,5]

[9,10]

PSfrag replacements

(a) f ′ (b) f ′′

F1 F1

F2 F2 all
all

all all

Figure 2.6. Two marked FDDs

The load of a nonempty set of integers S, denoted load(S), is the min-

imal number of non-overlapping integer intervals that cover S. For example,

the load of the set {1, 2, 3, 5, 8, 9, 10} is 3 because this set is covered by the

three integer intervals [1, 3], [5, 5] and [8, 10], and this set cannot be covered

by any two intervals.

The load of an edge e in a marked FDD, denoted load(e), is defined as

follows:

load(e) =

1 if e is marked all

load(I(e)) otherwise

The load of a node v in a marked FDD, denoted load(v), is defined

30

recursively as follows:

load(v) =

1 if v is terminal

∑k

i=1(load(ei) × load(vi)) if v is nonterminal: suppose v has k
outgoing edges e1, · · · , ek, which point to
nodes v1, · · · , vk respectively

The load of a marked FDD f , denoted load(f), equals the load of the

root of f .

Different marked versions of the same FDD may have different loads.

Figure 2.6 shows two marked versions f ′ and f ′′ of the same FDD in Figure

2.5. The load of f ′ is 5, whereas the load of f ′′ is 4.

As we will see in Section 2.7, for any two marked versions of the same

FDD, the one with the smaller load will generate a smaller number of simple

rules. Therefore, we should use the marked version of FDD f that has the

minimal load to generate rules.

Algorithm 2 (FDD marking) in Figure 2.7 takes any FDD and outputs

a marked version that has the minimal load.

As an example, if we apply Algorithm 2 to the reduced FDD in Figure

2.5, we get the marked FDD in Figure 2.6(b).

The correctness of Algorithm 2 is stated in Theorem 2.4.1.

Theorem 2.4.1. The load of an FDD marked by Algorithm 2 (FDD Marking)

is minimal. 2

31

Algorithm 2 (FDD Marking)
Input : An FDD f
Output : A marked version f ′ of f such that for every marked version f ′′ of f ,

load(f ′) ≤ load(f ′′)
Steps:

1. Compute the load of each terminal node v in f as follows: load(v) := 1

2. while there is a node v whose load has not yet been computed, suppose v
has k outgoing edges e1, · · · , ek and these edges point to nodes v1, · · · , vk

respectively, and the loads of these k nodes have been computed
do

(a) Among the k edges e1, · · · , ek, choose an edge ej with the largest
value of (load(ej) − 1) × load(vj), and mark edge ej with “all”.

(b) Compute the load of v as follows: load(v) :=
∑k

i=1(load(ei) ×
load(vi)).

end

Figure 2.7. Algorithm 2 (FDD Marking)

Proof of Theorem 2.4.1 Consider an FDD f . Let f ′ be the version marked

by algorithm 2, and let f ′′ be an arbitrary marked version. Next we prove that

load(f ′) ≤ load(f ′′).

Consider a node v, which has k outgoing edges e1, e2, · · · , ek and these

edges point to v1, v2, · · · , vk respectively, such that the loads of v1, v2, · · · , vk

in f ′ is the same as those in f ′′. Clearly such node v exists because the load

of any terminal node is constant 1.

Let ei be the edge marked ALL in f ′ and ej be the edge marked ALL

in f ′′. Suppose i 6= j. We use load ′(v) to denote the load of node v in f ′ and

32

load ′′(v) to denote the load of node v in f ′′. We then have

load ′(v) =
∑i−1

t=1(load(et) × load(vt)) + load(vi) +
∑k

t=i+1(load(et) × load(vt))

load ′′(v) =
∑j−1

t=1(load(et) × load(vt)) + load(vj) +
∑k

t=j+1(load(et) × load(vt))

load ′(v) − load ′′(v) = (load(ej) − 1) × load(vj) − (load(ei) − 1) × load(vi)

According to Algorithm 2, (load(ej) − 1) × load(vj) ≤ (load(ei) − 1) ×

load(vi). So, load ′(v) ≤ load ′′(v).

Apply the above argument to any node v in f , we have load ′(v) ≤

load ′′(v). So, the load of an FDD marked by Algorithm 2 is minimal. 2

2.5 Firewall Generation

In this section, we present an algorithm for generating a sequence of

rules, which form a firewall, from a marked FDD such that the firewall has

the same semantics as the marked FDD. First, we introduce the semantics of

a firewall.

A packet (p1, · · · , pd) matches a rule F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd →

〈decision〉 iff the condition p1 ∈ S1 ∧ · · · ∧ pd ∈ Sd holds. A firewall con-

sists of a sequence of rules such that for any packet there is at least one rule

that the packet matches. A firewall maps every packet to the decision of the

first rule that the packet matches. Let f be a firewall of a sequence of rules.

The set of all packets accepted by f is denoted f.accept , and the set of all

packets discarded by f is denoted f.discard . The next theorem follows from

33

these definitions. Recall that Σ denotes the set of all packets over the fields

F1, · · · , Fd.

Theorem 2.5.1 (Theorem of Firewalls). For a firewall f of a sequence of

rules,

1. f.accept ∩ f.discard = ∅, and

2. f.accept ∪ f.discard = Σ 2

Based on Theorem 2.2.1 and 2.5.1, we now extend the equivalence re-

lations on FDDs to incorporate the firewalls. Given f and f ′, where each is an

FDD or a firewall, f and f ′ are equivalent iff they have identical accept sets

and identical discard sets, i.e., f.accept = f ′.accept and f.discard = f ′.discard .

This equivalence relation is symmetric, reflexive, and transitive. We use f ≡ f ′

to denote the equivalence relation between f and f ′.

To generate an equivalent firewall from a marked FDD f , we basically

make a depth-first traversal of f such that for each nonterminal node v, the

outgoing edge marked “all” of v is traversed after all the other outgoing edges

of v have been traversed. Whenever a terminal node is encountered, assuming

〈v1e1 · · · vkekvk+1〉 is the decision path where for every i (1 ≤ i ≤ k) ei is the

most recently traversed outgoing edge of node vi, output a rule r as follows:

F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd → F (vk+1)

34

where

Si =

I(ej) if the decision path has a node vj that is labeled with field Fi

and ej is not marked “all”

D(Fi) otherwise

Note that the i-th rule output is the i-th rule in the firewall generated.

For the above rule r, the predicate F1 ∈ S1 ∧ · · · ∧Fd ∈ Sd is called the

matching predicate of r.

The rule represented by the path 〈v1e1 · · · vkekvk+1〉 is F1 ∈ T1 ∧ · · · ∧

Fd ∈ Td → F (vk+1), where

Ti =

I(ej) if the decision path has a node vj that is labeled with field Fi

D(Fi) otherwise

We call the predicate F1 ∈ T1 ∧ · · · ∧ Fd ∈ Td the resolving predicate of the

above rule r. Note that if a packet satisfies the resolving predicate of r, r is

the first rule that the packet matches in the firewall generated. If a packet

satisfies the resolving predicate of rule r in firewall f , we say the packet is

resolved by r in f .

Algorithm 3 (firewall generation) in Figure 2.8 takes any marked FDD

and outputs an equivalent firewall. Recall that the i-th rule output by Al-

gorithm 3 is the i-th rule in the firewall generated. The correctness of this

algorithm follows directly from the semantics of FDDs and firewalls. In Algo-

rithm 3, for every rule generated, we also generate its matching predicate and

its resolving predicate. In the next section, we will see that these two pred-

35

icates associated with each rule play important roles in removing redundant

rules.

Algorithm 3 (Firewall Generation)
Input : A marked FDD f
Output : A firewall that is equivalent to f . For each rule r, r.mp and r.rp

is computed
Steps:

Depth-first traverse f such that for each nonterminal node v, the outgoing edge
marked “all” of v is traversed after all other outgoing edges of v have been tra-
versed. Whenever a terminal node is encountered, assuming 〈v1e1 · · · vkekvk+1〉
is the decision path where each ei is the most recently traversed outgoing edge
of node vi, output a rule r together with its matching predicate r.mp and its
resolving predicate r.rp as follows:

r is the rule F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd → F (vk+1), where

Si =

I(ej) if the decision path has a node vj that is labeled with field Fi

and ej is not marked “all”

D(Fi) otherwise
r.mp is the predicate of rule r.
r.rp is the predicate F1 ∈ T1 ∧ · · · ∧ Fd ∈ Td, where

Ti =

I(ej) if the decision path has a node vj that is labeled with field Fi

D(Fi) otherwise

Figure 2.8. Algorithm 3 (Firewall Generation)

As an example, if we apply Algorithm 3 to the marked FDD in Figure

2.6(b), we get the firewall in Figure 2.9.

36

r1 = F1 ∈ [5, 8] ∧ F2 ∈ [3, 4] ∪ [6, 8] → a,
r1.mp = F1 ∈ [5, 8] ∧ F2 ∈ [3, 4] ∪ [6, 8]
r1.rp = F1 ∈ [5, 8] ∧ F2 ∈ [3, 4] ∪ [6, 8]

r2 = F1 ∈ [5, 8] ∧ F2 ∈ [1, 10] → d,
r2.mp = F1 ∈ [5, 8] ∧ F2 ∈ [1, 10]
r2.rp = (F1 ∈ [5, 8] ∧ F2 ∈ [1, 2] ∪ [5, 5] ∪ [9, 10])

r3 = F1 ∈ [1, 10] ∧ F2 ∈ [1, 10] → d,
r3.mp = F1 ∈ [1, 10] ∧ F2 ∈ [1, 10]
r3.rp = F1 ∈ [1, 4] ∪ [9, 10] ∧ F2 ∈ [1, 10]

Figure 2.9. A generated firewall

2.6 Firewall Compaction

Firewalls often have redundant rules. A rule in a firewall is redundant

iff removing the rule does not change the semantics of the firewall, i.e., does not

change the accept set and the discard set of the firewall. Removing redundant

rules from a firewall produces an equivalent firewall but with fewer rules. For

example, the rule r2 in Figure 2.9 is redundant. Removing this rule yields an

equivalent firewall with two rules, which are shown in Figure 2.10.

1. F1 ∈ [5, 8] ∧ F2 ∈ [3, 4] ∪ [6, 8] → a,

2. F1 ∈ [1, 10] ∧ F2 ∈ [1, 10] → d

Figure 2.10. A firewall with no redundant rules

In this section, we present an efficient algorithm for discovering redun-

dant rules. Algorithm 4 (firewall compaction) in Figure 2.11 takes any firewall

37

and outputs an equivalent but more compact firewall.

Algorithm 4 (Firewall Compaction)
Input : A firewall 〈r1, · · · , rn〉
Output : An equivalent but more compact firewall
Steps:
1. for i = n to 1 do

redundant [i] := false.
2. for i = n to 1 do

if there exist a rule rk in the firewall, where i < k ≤ n, such that the
following four conditions hold
(1) redundant [k] = false.
(2) ri and rk have the same decision.
(3) ri.rp implies rk.mp.
(4) for every rule rj, where i < j < k, at least one of the following

three conditions holds:
(a) redundant [j] = true.
(b) ri and rj have the same decision.
(c) no packet satisfies both ri.rp and rj.mp.

then redundant [i] := true.
else redundant [i] := false.

3. for i = n to 1 do
if redundant [i] = true then remove ri from the firewall.

Figure 2.11. Algorithm 4 (Firewall Compaction)

In Algorithm 4, “ri.rp implies rk.mp” means that for any packet p, if

p satisfies ri.rp, then p satisfies rk.mp. Checking whether ri.rp implies rk.mp

is simple. Let ri.rp be F1 ∈ T1 ∧ F2 ∈ T2 ∧ · · · ∧ Fd ∈ Td and let rk.mp be

F1 ∈ S1 ∧ F2 ∈ S2 ∧ · · · ∧ Fd ∈ Sd. Then, ri.rp implies rk.mp iff for every j,

where 1 ≤ j ≤ d, the condition Tj ⊆ Sj holds.

Checking whether no packet satisfies both ri.rp and rj.mp is simple.

38

Let ri.rp be F1 ∈ T1 ∧ F2 ∈ T2 ∧ · · · ∧ Fd ∈ Td and let rj.mp be F1 ∈

S1 ∧ F2 ∈ S2 ∧ · · · ∧ Fd ∈ Sd. We have ri.rp ∧ rj.mp = F1 ∈ (T1 ∩ S1) ∧ F2 ∈

(T2 ∩ S2) ∧ · · · ∧ Fd ∈ (Td ∩ Sd). Therefore, no packet satisfies both ri.rp and

rj.mp iff there exists j, where 1 ≤ j ≤ d, such that Tj ∩ Sj = ∅.

As an example, if we apply Algorithm 4 to the firewall in Figure 2.9,

we get the compact firewall in Figure 2.10.

Let n be the number of rules in a firewall and d be the number of

packet fields that a rule checks, the computational complexity of Algorithm 4

is O(n2 ∗ d). Note that d can be regarded as a constant because d is usually

small. Most firewalls checks five packet fields: source IP address, destination

IP address, source port number, destination port number, and protocol type.

The correctness of Algorithm 4 is stated in Theorem 2.6.1.

Theorem 2.6.1. If we apply Algorithm 4 to a firewall f and get the resulting

firewall f ′, then f and f ′ are equivalent. 2

Proof of Theorem 2.6.1: Suppose for the rule ri in firewall 〈r1, · · · , rn〉,

there exist a rule rk in this firewall, where i < k ≤ n, such that the following

four conditions hold:

1. redundant [k] = false.

2. ri and rk have the same decision.

3. ri.rp implies rk.mp.

39

4. for every rule rj, where i < j < k, at least one of the following three

conditions holds:

(a) redundant [j] = true.

(b) ri and rj have the same decision.

(c) no packet satisfies both ri.rp and rj.mp.

If we remove rule ri from firewall 〈r1, · · · , rn〉, the packets whose de-

cision may be affected are the packets that are resolved by ri in 〈r1, · · · , rn〉,

i.e., the packets that satisfy ri.rp. Let S be the set of all the packets that

satisfy ri.rp. Because ri.rp implies rk.mp and redundant [k] = false, if we

remove rule ri, the packets in S will be resolved by the rules from ri+1 to

rk in 〈r1, · · · , ri−1, ri+1, · · · , rn〉. Consider a rule rj where i < j < k. If

redundant [j] = true, we assume rj has been removed; therefore, rule rj does

not affect the decision of any packet in S. If the two rules ri and rj have the

same decision, then rule rj does not affect the decision of any packet in S. If

no packet satisfies both ri.rp and rj.mp, then any packet in S does not match

rule rj; therefore, rule rj does not affect the decision of any packet in S. Note

that ri and rk have the same decision. Therefore, for any packet p in S, the

decision that the firewall 〈r1, · · · , ri−1, ri+1, · · · , rn〉 makes for p is the same

as the decision that the firewall 〈r1, · · · , ri−1, ri, ri+1, · · · , rn〉 makes for p. So

rule ri is redundant.

Suppose we apply Algorithm 4 to a firewall f . Since any rule removed

by Algorithm 4 is redundant, the resulting firewall f ′ is equivalent to the

40

original firewall f . 2

2.7 Firewall Simplification

Most firewall software, such as Linux’s ipchains [2], requires each fire-

wall rule to be simple. A firewall rule of the form F1 ∈ S1 ∧ · · · ∧ Fd ∈

Sd → 〈decision〉 is simple iff every Si (1 ≤ i ≤ d) is an interval of consecutive

nonnegative integers. A firewall is simple iff all its rules are simple.

Algorithm 5 (firewall simplification) in Figure 2.12 takes any firewall

and outputs an equivalent firewall in which each rule is simple. The correctness

of this algorithm follows directly from the semantics of firewalls.

Algorithm 5 (Firewall Simplification)
Input : A firewall f
Output : A simple firewall f ′ where f ′ is equivalent to f
Steps:

while f has a rule of the form F1 ∈ S1 ∧ · · · ∧ Fi ∈ Si ∧ · · · ∧ Fd ∈
Sd → 〈decision〉 where some Si is represented by [a1, b1] ∪ · · · ∪ [ak, bk] where
k ≥ 2.

do
replace this rule by the following k non-overlapping rules:
F1 ∈ S1 ∧ · · · ∧ Fi ∈ [a1, b1] ∧ · · · ∧ Fd ∈ Sd → 〈decision〉,
F1 ∈ S1 ∧ · · · ∧ Fi ∈ [a2, b2] ∧ · · · ∧ Fd ∈ Sd → 〈decision〉,

...
F1 ∈ S1 ∧ · · · ∧ Fi ∈ [ak, bk] ∧ · · · ∧ Fd ∈ Sd → 〈decision〉

end

Figure 2.12. Algorithm 5 (Firewall Simplification)

41

As an example, if we apply Algorithm 5 to the firewall in Figure 2.10,

we get the firewall in Figure 2.13.

1. F1 ∈ [5, 8] ∧ F2 ∈ [3, 4] → a,

2. F1 ∈ [5, 8] ∧ F2 ∈ [6, 8] → a,

3. F1 ∈ [1, 10] ∧ F2 ∈ [1, 10] → d,

Figure 2.13. A simple firewall

What we get from Algorithm 5 is a simple firewall. For each rule

F1 ∈ S1 ∧ · · · ∧ Fi ∈ Si ∧ · · · ∧ Fd ∈ Sd → 〈decision〉, Si is an interval of

nonnegative integers. Some existing firewall products, such as Linux’s ipchains

[2], require that Si be represented in a prefix format such as 192.168.0.0/16,

where 16 means that the prefix is the first 16 bits of 192.168.0.0 in a binary

format. In this chapter we stop the level of discussion at simple rules because

an integer interval can be converted to multiple prefixes algorithmically. For

example, integer interval [2, 8] can be converted to 3 prefixes: 001∗, 01∗, 1000.

A w−bit integer interval can be converted to at most 2w − 2 prefixes [31].

2.8 Summary of Structured Firewall Design

In this section, we summarize our firewall design method. Figure 2.14

shows the five steps of this method.

Our firewall design method starts by a user specifying an FDD f . The

consistency and completeness properties of f can be verified automatically

42

PSfrag replacements A user specified FDD f
Algorithm 1 (FDD Reduction)

A reduced FDD f1

Algorithm 2 (FDD Marking)

A marked FDD f2

Algorithm 3 (Firewall Generation)

A generated firewall f3

Algorithm 4 (Firewall Compaction)

A compact firewall f4

Algorithm 5 (Firewall Simplification)

A simple firewall f5

Figure 2.14. Five steps of our firewall design method (f ≡ f1 ≡ f2 ≡
f3 ≡ f4 ≡ f5)

based on the syntactic requirements of an FDD. After an FDD is specified,

it goes through the following five steps, and we get a simple firewall that is

equivalent to the FDD. The first step is to apply Algorithm 1 (FDD Reduction)

to the user specified FDD. We then get an equivalent but reduced FDD, which

has a smaller number of decision paths. The second step is to apply Algorithm

2 (FDD Marking) to the reduced FDD. We then get an equivalent FDD where

each nonterminal node has exactly one outgoing edge that is marked all . The

third step is to apply Algorithm 3 (FDD Generation) to the marked FDD.

We then get an equivalent firewall. The fourth step is to apply Algorithm 4

(Firewall Compaction) to the generated firewall. We then get an equivalent

firewall with a smaller number of rules. The fifth step is to apply Algorithm 5

43

(Firewall Simplification) to this firewall. We then get the final result: a simple

firewall that is equivalent to the user specified FDD.

Three of the above five algorithms, namely Algorithm 1 (FDD Reduc-

tion), Algorithm 2 (FDD Marking) and Algorithm 4 (Firewall Compaction),

are for the purpose of reducing the number of rules in the final simple firewall.

Algorithm 1 (FDD Reduction) does so by reducing the number of decision

paths in the user specified FDD. Algorithm 2 (FDD Marking) does so by re-

ducing the load of some edges in the FDD. Algorithm 4 (Firewall Compaction)

does so by removing some redundant rules from the generated firewall. These

three algorithms could reduce the number of simple rules dramatically. Con-

sider the running example illustrated in Figures 2.2 through 2.13. If we directly

generate and simplify our firewall from the FDD in Figure 2.2, ignoring Al-

gorithm 1, 2, and 4, we would have ended up with a simple firewall that has

14 rules. However, with the help of these three algorithms, we end up with a

simple firewall that has only 3 rules.

44

Chapter 3

Diverse Firewall Design

45

We categorize firewall errors into specification induced errors and de-

sign induced errors. Specification induced errors are caused by the inherent

ambiguities of informal requirement specifications, especially if the require-

ment specification is written in a natural language. Design induced errors are

caused by the technical incapacity of individual firewall designers. We observe

that different designers may have different understandings of the same infor-

mal requirement specification, and different designers may exhibit different

technical strengths and weaknesses. This observation motivates our method

of diverse firewall design.

Our diverse firewall design method has two phases: a design phase and

a comparison phase. In the design phase, the same requirement specification is

given to multiple teams who proceed independently to design different versions

of the firewall. Different teams preferably have different technical strengths

and use different design methods. By maximizing diversity in the design phase,

the coincident errors made by all teams are rare. In the comparison phase,

the resulting multiple versions are compared with each other to discover all

discrepancies. Then each discrepancy is further investigated and a correction is

applied if necessary. After these comparisons and corrections, all the versions

become equivalent. Then any one of them can be deployed.

The technical challenge in this diverse firewall design method is that

how to discover all the functional discrepancies between two given firewalls,

where each is designed by either a sequence of rules or a firewall decision dia-

gram. Our solution for comparing two given firewalls consists of the following

46

three steps: (1) If either of the two firewalls is designed as a sequence of rules,

we construct an equivalent ordered firewall decision diagram from the sequence

of rules using the construction algorithm in Section 3.1. If either of the two

firewalls is designed as a non-ordered firewall decision diagram, we at first

generate an equivalent sequence of rules from the diagram, then construct an

equivalent ordered firewall decision diagram from the sequence of rules. Af-

ter this step, we get two ordered firewall decision diagrams. (2) We transform

the two firewall decision diagrams to two semi-isomorphic firewall decision dia-

grams without changing their semantics using the shaping algorithm in Section

3.2. After this step, we get two semi-isomorphic firewall decision diagrams.

(3) We discover all the discrepancies between the two semi-isomorphic firewall

decision diagrams using the comparison algorithm in Section 3.3.

The experimental results in Section 3.4 shows that these three algo-

rithms, namely the FDD construction algorithm, the FDD shaping algorithm,

and the FDD comparison algorithm, are very efficient. Note that it is fairly

straightforward to extend our algorithms for comparing two firewalls to com-

pare N firewalls where N > 2.

The idea of diverse firewall design is inspired by N -version program-

ming [7–9, 53], and back-to-back testing [55, 56]. The basic idea of N -version

programming is to give the same requirement specification to N teams to

independently design and implement N programs using different algorithms,

languages, or tools. Then the resulting N programs are executed in parallel.

A decision mechanism is deployed to examine the N results for each input

47

from the N programs and selects a correct or “best” result. The key element

of N -version programming is design diversity. The diversity in the N pro-

grams should be maximized such that coincident failure for the same input is

rare. The effectiveness of N -version programming method for building fault-

tolerant software has been shown in a variety of safety-critical systems built

since the 1970s, such as railway interlocking and train control [6], Airbus flight

control [54], and nuclear reactor protection [21].

Back-to-back testing is a complementary method to N -version pro-

gramming. This method is used to test the resulting N versions before de-

ploying them in parallel. The basic idea is as follows. At first, create a suite

of test cases. Second, for each test case, execute the N programs in parallel;

cross-compare the N results; then investigate each discrepancy discovered, and

apply corrections if necessary.

Our diverse firewall design method has two unique properties that dis-

tinguish it from N -version programming and back-to-back testing. First, only

one firewall version needs to be deployed and executed. This is because all the

discrepancies between the multiple firewall versions can be discovered by the

algorithms presented in this chapter, and corrections can be applied to make

them equivalent. By contrast, the N -version programming method requires

the deployment of all the N programs and executing them in parallel. Second,

the algorithms in this chapter can detect all the discrepancies between the

multiple firewall versions. By contrast, back-to-back testing is not guaranteed

to detect all the discrepancies among N programs.

48

In this chapter, we use the following running example. Consider the

simple network in Figure 3.1. This network has a gateway router with two

interfaces: interface 0, which connects the gateway router to the outside In-

ternet, and interface 1, which connects the gateway router to the inside local

network. The firewall for this local network resides in the gateway router. The

requirement specification for this firewall is depicted in Figure 3.2.

Suppose we give this specification to two teams: Team A and Team B.

Team A designs the firewall by the FDD in Figure 3.3 and Team B designs

the firewall by the sequence of rules in Figure 3.4. In this chapter, we use

the following shorthand: a (Accept), d (Discard), I (Interface), S (Source IP),

D (Destination IP), N (Destination Port), P (Protocol Type). We use α to

denote the integer formed by the four bytes of the IP address 192.168.0.0, and

similarly β for 192.168.255.255, and γ for 192.1.2.3. We assume the protocol

type value in a packet is either 0 (TCP) or 1 (UDP). For ease of presenta-

tion, we assume that each packet has a field containing the information of the

network interface on which a packet arrives.

C ISC O SY ST EM S

 0 1
Internet

Mail Server
(IP: 192.1.2.3) Host 1 Host 2

Gateway
Router (Firewall)

Figure 3.1. A firewall

Given these two firewalls, one in Figure 3.3 and the other in in Figure

49

The mail server with IP address 192.1.2.3 can receive emails. The packets
from an outside malicious domain 192.168.0.0/16 should be blocked. Other
packets should be accepted and allowed to proceed.

Figure 3.2. The requirement specification

PSfrag replacements

0

0

1

1

[α, β]
[0, α − 1]

[β + 1, 232)

γ
[0, γ − 1]

[γ + 1, 232)

25 [0, 24]
[26, 216)

a

a

a

d

d

d

I

S

D

N

P

Figure 3.3. The FDD by Team A

3.4, we use the following three steps to discover all the discrepancies between

them: (1) construct an equivalent ordered FDD (in Figure 3.6) from the se-

quence of rules in Figure 3.4 using the construction algorithm in Section 3.1;

(2) transform the two ordered FDDs, one in Figure 3.3 and the other in Fig-

ure 3.6, to two semi-isomorphic FDDs (where one is in Figure 3.9) using the

shaping algorithm in Section 3.2; (3) discover all the discrepancies between

the two semi-isomorphic FDDs using the comparison algorithm in Section 3.3.

50

1. (I ∈ {0}) ∧ (S ∈ all) ∧ (D ∈ {γ}) ∧ (N ∈ {25}) ∧ (P ∈ {0}) → a

2. (I ∈ {0}) ∧ (S ∈ [α, β]) ∧ (D ∈ all) ∧ (N ∈ all) ∧ (P ∈ all) → d

3. (I ∈ all) ∧ (S ∈ all) ∧ (D ∈ all) ∧ (N ∈ all) ∧ (P ∈ all) → a

Figure 3.4. The Firewall by Team B

3.1 Construction Algorithm

In this section, we discuss how to construct an equivalent FDD from

a sequence of rules 〈r1, · · · , rn〉, where each rule is of the format (F1 ∈

S1)∧ · · · ∧ (Fd ∈ Sd) → 〈decision〉. Note that all the d packet fields appear in

the predicate of each rule, and they appear in the same order.

We first construct a partial FDD from the first rule. A partial FDD

is a diagram that has all the properties of an FDD except the completeness

property. The partial FDD constructed from a single rule contains only the

decision path that defines the rule. Suppose from the first i rules, r1 through

ri, we have constructed a partial FDD, whose root v is labelled F1, and suppose

v has k outgoing edges e1, · · · , ek. Let ri+1 be the rule (F1 ∈ S1)∧ · · · ∧ (Fd ∈

Sd) → 〈decision〉. Next we consider how to append rule ri+1 to this partial

FDD.

At first, we examine whether we need to add another outgoing edge to

v. If S1 − (I(e1) ∪ · · · ∪ I(ek)) 6= ∅, we need to add a new outgoing edge with

label S1 − (I(e1) ∪ · · · ∪ I(ek)) to v because any packet whose F1 field is an

element of S1 − (I(e1) · · · ∪ I(ek)) does not match any of the first i rules, but

matches ri+1 provided that the packet satisfies (F2 ∈ S2) ∧ · · · ∧ (Fd ∈ Sd).

51

Then we build a decision path from (F2 ∈ S2) ∧ · · · ∧ (Fd ∈ Sd) → 〈decision〉,

and make the new edge of the node v point to the first node of this decision

path.

Second, we compare S1 and I(ej) for each j where 1 ≤ j ≤ k. This

comparison leads to one of the following three cases:

1. S1 ∩ I(ej) = ∅: In this case, we skip edge ej because any packet whose

value of field F1 is in set I(ej) doesn’t match ri+1.

2. S1 ∩ I(ej) = I(ej): In this case, for a packet whose value of field F1 is

in set I(ej), it may match one of the first i rules, and it also may match

rule ri+1. So we append the rule (F2 ∈ S2)∧· · ·∧ (Fd ∈ Sd) → 〈decision〉

to the subgraph rooted at the node that ej points to.

3. S1 ∩ I(ej) 6= ∅ and S1 ∩ I(ej) 6= I(ej): In this case, we split edge e into

two edges: e′ with label I(ej) − S1 and e′′ with label I(ej) ∩ S1. Then

we make two copies of the subgraph rooted at the node that ej points

to, and let e′ and e′′ point to one copy each. We then deal with e′ by the

first case, and e′′ by the second case.

In the following pseudocode of the construction algorithm, we use e.t

to denote the (target) node that the edge e points to.

Construction Algorithm

Input : A firewall f of a sequence of rules 〈r1, · · · , rn〉

52

Output : An FDD f ′ such that f and f ′ are equivalent

Steps:

1. build a decision path with root v from rule r1;

2. for i := 2 to n do APPEND(v, ri);

End

APPEND(v, (Fm ∈ Sm) ∧ · · · ∧ (Fd ∈ Sd) → 〈decision〉)

/*F (v) = Fm and E(v) = {e1, · · · , ek}*/

1. if (Sm − (I(e1) ∪ · · · ∪ I(ek))) 6= ∅ then

(a) add an outgoing edge ek+1 with label

Sm − (I(e1) ∪ · · · ∪ I(ek)) to v;

(b) build a decision path from rule

(Fm+1 ∈ Sm+1) ∧ · · · ∧ (Fd ∈ Sd) → 〈decision〉,

and make ek+1 point to the first node in this path;

2. if m < d then

for j := 1 to k do

if I(ej) ⊆ Sm then

APPEND(ej.t, (Fm+1 ∈ Sm+1) ∧ · · · ∧ (Fd ∈ Sd)

→ 〈decision〉);

else if I(ej) ∩ Sm 6= ∅ then

(a) add one outgoing edge e to v,

and label e with I(ej) ∩ Sm;

(b) make a copy of the subgraph rooted at ej.t,

53

and make e points to the root of the copy;

(a) replace the label of ej by I(ej) − Sm;

(d) APPEND(e.t, (Fm+1 ∈ Sm+1) ∧ · · · ∧ (Fd ∈ Sd)

→ 〈decision〉);

As an example, consider the sequence of rules in Figure 3.4. Figure 3.5

shows the partial FDD that we construct from the first rule, and the partial

FDD after we append the second rule. The FDD after we append the third

rule is shown in Figure 3.6.

ddd

PSfrag replacements

00

00

0 1

[α, β]
[0, α − 1]

[β + 1, 232)

βββ
[0, γ − 1]
[γ + 1, 232)

252525
[0, 24]

[26, 216)

[26, 216)

aaa

d

II

SS

DDD

NN NN

PPP PP
all all

all

all

Before Appending: After Appending:

Figure 3.5. Appending rule (I ∈ {0}) ∧ (S ∈ [α, β]) ∧ (D ∈ all) ∧ (N ∈
all) ∧ (P ∈ all) → d

3.2 Shaping Algorithm

In this section we discuss how to transform two ordered, but not semi-

isomorphic FDDs fa and fb to two semi-isomorphic FDDs f ′
a and f ′

b such that

54

dd d

PSfrag replacements

00

0

1

1

1

[α, β]
[0, α − 1]

[β + 1, 232)

γγ
[0, γ − 1]

[0, γ − 1] [γ + 1, 232)
[γ + 1, 232)

2525
[0, 24]

[0, 24]
[26, 216)

[26, 216)

aaa aa a

d

I

SS

DDD

N
N

NNN

P PPP P PPP
all

all

all

all

all

all

all

allall

all

Figure 3.6. The FDD constructed from Figure 3.4

fa is equivalent to f ′
a, and fb is equivalent to f ′

b. We define ordered FDDs and

semi-isomorphic FDDs as follows.

Definition 3.2.1 (Ordered FDDs). Let ≺ be the total order over the packet

fields F1, · · · , Fd where F1 ≺ · · · ≺ Fd holds. An FDD is ordered iff for each

decision path (v1e1 · · · vkekvk+1), we have F (v1) ≺ · · · ≺ F (vk). 2

From this definition, the FDDs constructed by the construction algo-

rithm in Section 3.1 are ordered. Therefore, if a firewall f designed by a team

is a non-ordered FDD f , we first generate a sequence of rules that consists

of all the rules in f.rules , where f.rules is the set of all the rules defined by

the decision paths of f ; second, we construct an equivalent ordered FDD f ′

from the sequence of rules. Then use f ′, instead of f , to compare with other

firewalls.

Informally, two FDDs are semi-isomorphic if their graphs are isomor-

phic, the labels of their corresponding nonterminal nodes match, and the labels

55

of their corresponding edges match. In other words, only the labels of their

terminal nodes may differ. Formally:

Definition 3.2.2 (Semi-isomorphic FDDs). Two FDDs fa and fb are semi-

isomorphic iff there exists a one-to-one mapping σ from the nodes of fa onto

the nodes of fb, such that the following two conditions hold:

1. For any node v in fa, either both v and σ(v) are nonterminal nodes with

the same label, or both of them are terminal nodes;

2. For each edge e in fa, where e is from a node v1 to a node v2, there is

an edge e′ from σ(v1) to σ(v2) in fb, and the two edges e and e′ have the

same label. 2

The algorithm for transforming two ordered FDDs to two semi-isomorphic

FDDs uses the following three basic operations. (Note that none of these op-

erations changes the semantics of the FDDs.)

1. Node Insertion: If along all the decision paths containing a node v, there

is no node that is labelled with a field F , then we can insert a node v ′

labelled F above v as follows: make all incoming edges of v point to v ′,

create one edge from v′ to v, and label this edge with the domain of F .

2. Edge Splitting: For an edge e from v1 to v2, if I(e) = S1 ∪ S2, where

neither S1 nor S2 is empty, then we can split e into two edges as follows:

replace e by two edges from v1 to v2, label one edge with S1 and label

the other with S2.

56

3. Subgraph Replication: If a node v has m (m ≥ 2) incoming edges, we

can make m copies of the subgraph rooted at v, and make each incoming

edge of v point to the root of one distinct copy.

3.2.1 FDD Simplifying

Before applying the shaping algorithm, presented below, to two ordered

FDDs, we need to transform each of them to an equivalent simple FDD. A

simple FDD is defined as follows:

Definition 3.2.3 (Simple FDDs). An FDD is simple iff each node in the

FDD has at most one incoming edge and each edge in the FDD is labelled

with a single interval. 2

It is straightforward that the two operations of edge splitting and sub-

graph replication can be applied repetitively to an FDD in order to make this

FDD simple. Note that the graph of a simple FDD is an outgoing directed

tree. In other words, each node in a simple FDD, except the root, has only

one parent node, and has only one incoming edge (from the parent node).

3.2.2 Node Shaping

Next, we introduce the procedure for transforming two shapable nodes

to two semi-isomorphic nodes, which is the basic building block in the shaping

algorithm for transforming two ordered FDDs to two semi-isomorphic FDDs.

Shapable nodes and semi-isomorphic nodes are defined as follows.

57

Definition 3.2.4 (Shapable Nodes). Let fa and fb be two ordered simple

FDDs, va be a node in fa and vb be a node in fb. Nodes va and vb are shapable

iff one of the following two conditions holds:

1. Both va and vb have no parents, i.e., they are the roots of their respective

FDDs;

2. Both va and vb have parents, their parents have the same label, and their

incoming edges have the same label. 2

For example, the two nodes labelled F1 in Figure 3.7 are shapable since

they have no parents.
PSfrag replacements

[1, 50] [51, 100] [1, 30] [31, 100]

F1 F1

F2 F2F2 F2

shapable nodes

Figure 3.7. Two shapable nodes in two FDDs

Definition 3.2.5 (Semi-isomorphic Nodes). Let fa and fb be two ordered

simple FDDs, va be a node in fa and vb be a node in fb. The two nodes va

and vb are semi-isomorphic iff one of the following two conditions holds:

1. Both va and vb are terminal nodes;

58

2. Both va and vb are nonterminal nodes with the same label and there

exists a one-to-one mapping σ from the children of va to the children of

vb such that for each child v of va, v and σ(v) are shapable. 2

The algorithm for making two shapable nodes va and vb semi-isomorphic

consists of two steps:

1. Step I: This step is skipped if va and vb have the same label, or both of

them are terminal nodes. Otherwise, without loss of generality, assume

F (va) ≺ F (vb). It is straightforward to show that in this case along

all the decision paths containing node vb, no node is labelled F (va).

Therefore, we can create a new node v′
b with label F (va), create a new

edge with label D(F (va)) from v′
b to vb, and make all incoming edges of

vb point to v′
b. Now va have the same label as v′

b. (Recall that this node

insertion operation leaves the semantics of the FDD unchanged.)

2. Step II: From the previous step, we can assume that va and vb have

the same label. In the current step, we use the two operations of edge

splitting and subgraph replication to build a one-to-one correspondence

from the children of va to the children of vb such that each child of va

and its corresponding child of vb are shapable.

Suppose D(F (va)) = D(F (vb)) = [a, b]. We know that each outgoing

edge of va or vb is labelled with a single interval. Suppose va has m

outgoing edges {e1, · · · , em}, where I(ei) = [ai, bi], a1 = a, bm = b, and

59

every ai+1 = bi + 1. Also suppose vb has n outgoing edges {e′1, · · · , e′n},

where I(e′i) = [a′
i, b

′
i], a′

1 = a, b′n = b, and every a′
i+1 = b′i + 1.

Comparing edge e1, whose label is [a, b1], and e′1, whose label is [a, b′1],

we have the following two cases: (1) b1 = b′1: In this case I(e1) = I(e′1),

therefore, node e1.t and node e′1.t are shapable. (Recall that we use e.t

to denote the node that edge e points to.) Then we can continue to

compare e2 and e′2 since both I(e2) and I(e′2) begin with b1 + 1. (2)

b1 6= b′1: Without loss of generality, we assume b1 < b′1. In this case,

we split e′1 into two edges e and e′, where e is labelled [a, b1] and e′ is

labelled [b1 + 1, b′1]. Then we make two copies of the subgraph rooted at

e′1.t and let e and e′ point to one copy each. Thus I(e1) = I(e) and the

two nodes, e1.t and e.t are shapable. Then we can continue to compare

the two edges e2 and e′ since both I(e2) and I(e′) begin with b1 + 1.

The above process continues until we reach the last outgoing edge of va

and the last outgoing edge of vb. Note that each time that we compare an

outgoing edge of va and an outgoing edge of vb, the two intervals labelled

on the two edges begin with the same value. Therefore, the last two edges

that we compare must have the same label because they both ends with

b. In other words, this edge splitting and subgraph replication process

will terminate. When it terminates, va and vb become semi-isomorphic.

In the following pseudocode for making two shapable nodes in two

ordered simple FDDs semi-isomorphic, we use I(e) < I(e′) to indicate that

every integer in I(e) is less than every integer in I(e′).

60

Procedure Node Shaping(fa, fb, va, vb)

Input : Two ordered simple FDDs fa and fb, and

two shapable nodes va in fa and vb in fb

Output: The two nodes va and vb become semi-isomorphic, and the

procedure returns a set S of node pairs of the form (wa, wb)

where wa is a child of va in fa, wb is a child of vb in fb,

and the two nodes wa and wb are shapable.

Steps:

1. if (both va and vb are terminal) return(∅);

else if ∼(both va and vb are nonterminal and they have the same label)

then /*Here either both va and vb are nonterminal and they have different

labels, or one node is terminal and the other is nonterminal.

Without loss of generality, assume one of the following conditions holds:

(1) both va and vb are nonterminal and F (va) ≺ F (vb),

(2) va is nonterminal and vb is terminal.*/

insert a new node with label F (va) above vb, and call the new node vb;

2. let E(va) be {ea,1, · · · , ea,m} where I(ea,1) < · · · < I(ea,m).

let E(vb) be {eb,1, · · · , eb,n} where I(eb,1) < · · · < I(eb,n).

3. i := 1; j := 1;

while ((i < m) or (j < n)) do{

/*During this loop, the two intervals I(ea,i) and

I(eb,j) always begin with the same integer.*/

let I(ea,i) = [A,B] and I(eb,j) = [A,C], where

61

A, B, C are three integers;

if B = C then {i := i + 1; j := j + 1; }

else if B < C then{

(a) create an outgoing edge e of vb,

and label e with [A,B];

(b) make a copy of the subgraph rooted at eb,j.t and

make e point to the root of the copy;

(c) I(eb,j) := [B + 1, C];

(d) i := i + 1;}

else {/*B > C*/

(a) create an outgoing edge e of va,

and label e with [A,C];

(b) make a copy of the subgraph rooted at ea,j.t and

make e point to the root of the copy;

(c) I(ea,i) := [C + 1, B];

(d) j := j + 1;}

}

4. /*Now va and vb become semi-isomorphic.*/

let E(va) = {ea,1, · · · , ea,k} where

I(ea,1) < · · · < I(ea,k) and k ≥ 1;

let E(vb) = {eb,1, · · · , eb,k} where

I(eb,1) < · · · < I(eb,k) and k ≥ 1;

S := ∅;

62

for i = 1 to k do

add the pair of shapable nodes (ea,i.t, eb,i.t) to S;

return(S);

End

If we apply the above node shaping procedure to the two shapable nodes

labelled F1 in Figure 3.7, we make them semi-isomorphic as shown in Figure

3.8.

PSfrag replacements

[1, 50]

[51, 100] [51, 100][1, 30] [1, 30]

[31, 100]

[31, 50] [31, 50]

F1 F1

F2F2 F2 F2F2 F2

shapable nodesshapable nodesshapable nodes

semi-isomorphic nodes

Figure 3.8. Two semi-isomorphic nodes

3.2.3 FDD Shaping

To make two ordered FDDs fa and fb semi-isomorphic, at first we make

fa and fb simple, then we make fa and fb semi-isomorphic as follows. Suppose

we have a queue Q, which is initially empty. At first we put the pair of shapable

nodes consisting of the root of fa and the root of fb into Q. As long as Q is

not empty, we remove the head of Q, feed the two shapable nodes to the above

Node Shaping procedure, then put all the pairs of shapable nodes returned

63

by the Node Shaping procedure into Q. When the algorithm finishes, fa and

fb become semi-isomorphic. The pseudocode for this shaping algorithm is as

follows:

Shaping Algorithm

Input : Two ordered FDDs fa and fb

Output : fa and fb become semi-isomorphic.

Steps:

1. make the two FDDs fa and fb simple;

2. Q := ∅;

3. add the shapable pair (root of fa, root of fb) to Q;

4. while Q 6= ∅ do{

remove the header pair (va, vb) from Q;

S :=Node Shaping(fa, fb, va, vb);

add every shapable pair from S into Q;

}

End

As an example, if we apply the above shaping algorithm to the two

FDDs in Figure 3.3 and 3.6, we obtain two semi-isomorphic FDDs. One of

those FDDs is shown in Figure 3.9, and the other one is identical to the one

in Figure 3.9 with one exception: the labels of the black terminal nodes are

reversed.

64

d d dd d dd

PSfrag replacements

0

0

00 1

1

11

[α, β]
[0, α − 1] [β + 1, 232)

γγγ

[0, γ − 1]
[0, γ − 1][0, γ − 1]

[γ + 1, 232)
[γ + 1, 232)[γ + 1, 232)

252525
[0, 24] [0, 24][0, 24] [26, 216) [26, 216)[26, 216)

aa aaaa a ddddd

I

SS

DDDD

N NN NNN NNN N

P PPPP PPP PPPPPPP P

all

all

allall

all

allall

all all

all

all

all

all allall

all

allall all

all

all

all

Figure 3.9. The FDD transformed from the FDD in Figure 3.3

3.3 Comparison Algorithm

In this section, we consider how to compare two semi-isomorphic FDDs.

Given two semi-isomorphic FDDs fa and fb with a one-to-one mapping σ,

each decision path (v1e1 · · · vkekvk+1) in fa has a corresponding decision path

(σ(v1)σ(e1) · · · σ(vk)σ(ek)σ(vk+1)) in fb. Similarly, each rule (F (v1) ∈ I(e1))∧

· · ·∧(F (vk) ∈ I(ek)) → F (vk+1) in fa.rules has a corresponding rule (F (σ(v1)) ∈

I(σ(e1))) ∧ · · · ∧ (F (σ(vk)) ∈ I(σ(ek))) → F (σ(vk+1)) in fb.rules . Note that

F (vi) = F (σ(vi)) and I(ei) = I(σ(ei)) for each i where 1 ≤ i ≤ k. Therefore,

for each rule (F (v1) ∈ I(e1)) ∧ · · · ∧ (F (vk) ∈ I(ek)) → F (vk+1) in fa.rules ,

the corresponding rule in fb.rules is (F (v1) ∈ I(e1))∧ · · · ∧ (F (vk) ∈ I(ek)) →

F (σ(vk+1)). Each of these two rules is called the companion of the other. This

companionship implies a one-to-one mapping from the rules defined by the

65

decision paths in fa to the rules defined by the decision paths in fb. Note that

for each rule and its companion, either they are identical, or they have the

same predicate but different decisions. Therefore, fa.rules − fb.rules is the set

of all the rules in fa.rules that have different decisions from their companions.

Similarly for fb.rules −fa.rules . Note that the set of all the companions of the

rules in fa.rules − fb.rules is fb.rules − fa.rules ; and similarly the set of all the

companions of the rules in fb.rules −fa.rules is fa.rules −fb.rules . Since these

two sets manifest the discrepancies between the two FDDs, the two design

teams can investigate them to resolve the discrepancies.

Let fa be the FDD in Figure 3.9, and let fb be the FDD that is identical

to fa with one exception: the labels of the black terminal nodes are reversed.

Here fa is equivalent to the firewall in Figure 3.3 designed by Team A, and fb

is equivalent to the firewall in Figure 3.4 designed by Team B. By comparing

fa and fb, We discover the following discrepancies between the two firewalls

designed by Team A and Team B:

1. (I ∈ {0}) ∧ (S ∈ [α, β]) ∧ (D ∈ {γ}) ∧ (N ∈ {25}) ∧ (P ∈ {0}) → d in

fa / a in fb

Question to investigate: Should we allow the computers from the ma-

licious domain send email to the mail server? Team A says no, while

Team B says yes.

2. (I ∈ {0})∧ (S ∈ [0, α−1]∪ [β +1, 232))∧ (D ∈ {γ})∧ (N ∈ {25})∧ (P ∈

{1})∧ → d in fa / a in fb

66

Question to investigate: Should we allow UDP packets sent from the

hosts who are not in the malicious domain to the mail server? Team A

says no, while Team B says yes.

3. (I ∈ {0}) ∧ (S ∈ [0, α − 1] ∪ [β + 1, 232)) ∧ (D ∈ {γ}) ∧ (N ∈ [0, 24] ∪

[26, 216) ∧ (P ∈ all)∧ → d in fa / a in fb

Question to investigate: Should we allow the packets with a port number

other than 25 be sent from the hosts who are not in the malicious domain

to the mail server? Team A says no, while Team B says yes.

3.4 Experimental Results

In this chapter we presented three algorithms, a construction algorithm,

a shaping algorithm and a comparison algorithm. These three algorithms can

be used to detect all discrepancies between two given firewalls. In this section,

we evaluate the efficiency of each of these three algorithms.

The construction algorithm is evaluated by the average time for con-

structing an FDD from a sequence of rules. The shaping algorithm is evaluated

by the average time for shaping two FDDs where each is an FDD constructed

from a sequence rules that we generate independently. The comparison al-

gorithm is measured by the average time for detecting all the discrepancies

between two semi-isomorphic FDDs that we get from the shaping algorithm.

In the absence of publicly available firewalls, we create synthetic firewalls based

on the characteristics of real-life packet classifiers discovered in [10, 30]. Each

67

rule has the following five fields: interface, source IP address, destination IP

address, destination port number and protocol type.

The programs are implemented in SUN Java JDK 1.4. The experiments

were carried out on a SunBlade 2000 machine running Solaris 9 with 1Ghz

CPU and 1 GB memory. Figure 3.10 shows the average execution times for

the construction algorithm, for the shaping algorithm, and for the comparison

algorithm versus the total number of rules. We also measured the average total

time for detecting all the discrepancies between two sequences of rules, which

includes the time for constructing two ordered FDDs from two sequences of

rules, shaping the two ordered FDDs to be semi-isomorphic, and comparing

the two semi-isomorphic FDDs. From this figure, we see that it takes less

than 5 seconds to detect all the discrepancies between two sequences of 3000

rules. In fact, it is very unlikely that a firewall can have this many rules

(see the characteristics of real-life packet classifiers in [10, 30]). Clearly the

efficiency of our three algorithms make them attractive to be used in practice

for supporting our diverse firewall design method.

68

0 1000 2000 3000
0

1

2

3

4

5

Number of rules

C
on

st
ru

ct
io

n
A

lg
or

ith
m

 (s
ec

)

0 1000 2000 3000
0

1

2

3

4

5

Number of rules

S
ha

pi
ng

 A
lg

or
ith

m
 (s

ec
)

0 1000 2000 3000
0

1

2

3

4

5

Number of rules

C
om

pa
ris

on
 A

lg
or

ith
m

 (s
ec

)

0 1000 2000 3000
0

1

2

3

4

5

Number of rules

To
ta

l t
im

e
(s

ec
)

Figure 3.10. Experimental Results

69

Chapter 4

Stateful Firewall Model

70

A firewall is placed at the point of entry between a private network

and the outside Internet so that all incoming and outgoing packets have to

pass through it. The function of a firewall is to map each incoming or outgo-

ing packet to one of a set of predefined decisions, such as accept or discard.

Based on how a decision is made for every packet, firewalls are categorized

into stateless firewalls and stateful firewalls. If a firewall decides the fate of

every packet solely by examining the packet itself, then the firewall is called

a stateless firewall. If a firewall decides the fate of some packets not only by

examining the packet itself but also by examining the packets that the firewall

has accepted previously, then the firewall is called a stateful firewall. Using

a stateful firewall to protect a private network, one can achieve finer access

control by tracking the communication state between the private network and

the outside Internet. For example, a stateful firewall can refuse to accept any

packet from a remote host to a local host unless the local host has previously

sent a packet to the remote host.

Although a variety of stateful firewall products have been available and

deployed on the Internet for some time, such as Cisco PIX Firewalls [19], Cisco

Reflexive ACLs [20], CheckPoint FireWall-1 [18] and Netfilter/IPTables [43],

no model for specifying stateful firewalls exists. The lack of such a model

constitutes a significant impediment for further development of stateful firewall

technologies. First, without a model, it is difficult to conduct research on

stateful firewalls. This explains why so little research on stateful firewalls

has been done so far. In contrast, benefiting from the well-established rule

71

based model of stateless firewalls, the research results for stateless firewalls

have been numerous. People have known how to design stateless firewalls [13,

28, 32, 37] and how to analyze stateless firewalls [5, 26, 36, 39, 40, 58]. But the

question of how to design and analyze stateful firewalls remains unanswered.

Second, because there is no specification model for stateful firewalls, in existing

stateful firewall products, state tracking functionalities have been hard coded

and different vendors hard code different state tracking functionalities. For

example, the Cisco PIX Firewalls do not track the state for ICMP packets.

Consequently, it is hard for the administrator of such a firewall to track the

Ping [44] protocol. Last, without a specification model, it is difficult to analyze

the properties of stateful firewalls. For example, it is difficult to analyze the

properties of existing stateful firewalls because some of the functions of these

firewalls are hard coded while others are specified by their administrators. All

in all, a specification model for stateful firewalls is greatly needed.

In this chapter, we propose the first stateful firewall model. In our

firewall model, each firewall has a variable set called the state of the firewall,

which is used to store some packets that the firewall has accepted previously

and needs to remember in the near future. Each firewall consists of two sec-

tions: a stateful section and a stateless section. Each section consists of a se-

quence of rules. For every packet, the stateful section is used to check whether

the state has a previous packet that may affect the fate of the current packet.

To store this checking result, we assume that each packet has an additional

field called the tag. The stateless section is used to decide the fate of each

72

packet based on the information in the packet itself and its tag value.

Our stateful firewall model has the following favorable properties. First,

it can express a variety of state tracking functionalities. Using a set of packets

to record communication state provides a great deal of flexibility in expressing

state tracking functionalities since the state of a communication protocol is

characterized by packets. In a sense, our stateful firewall model captures the

essence of communication states. Second, because we separate a firewall into a

stateful section and a stateless section, we can inherit the existing rich results

in designing and analyzing stateless firewalls because a stateless section alone

is in fact a full-fledged stateless firewall. Third, our model is simple, easy to

use, easy to understand, and easy to implement. Last, our model is a general-

ization of the current stateless firewall model. Although our model is intended

to specify stateful firewalls, it can also be used to specify stateless firewalls,

simply by leaving the stateful section empty and keeping the state empty. This

backward compatibility gives a stateful firewall product the flexibility of being

specified as either a stateful firewall or a stateless firewall.

This chapter goes beyond proposing the stateful firewall model itself.

A significant portion of this chapter is devoted to analyzing the properties

of stateful firewalls that are specified using our model. We outline a method

for verifying that a firewall is truly stateful. The method is based on three

properties of firewalls: conforming, grounded, and proper. We show that if a

firewall satisfies these three properties, then the firewall is truly stateful. We

also discuss the implementation details of the model. To speed up membership

73

query, we use Bloom filters to facilitate implementing and querying the set

“state”.

The rest of this chapter proceeds as follows. In Section 4.1, we introduce

the syntax and semantics of our firewall model. In Section 4.2, we give two

examples of stateful firewalls that are specified using our model. In Section

4.3, we discuss how to remove packets that are no longer needed from the state

of a firewall. In Section 4.4, we study the issues related to firewall states. In

Section 4.5, we present a method for verifying that a firewall is truly stateful.

For simplicity, in the rest of this chapter, we use “firewall” to mean

“stateful firewall” unless otherwise specified.

4.1 Firewall Model

In this section, we introduce our firewall model through an example of a

simple firewall that resides on the gateway router depicted in Figure 4.1. This

router has two interfaces: interface 0, which connects the router to the outside

Internet, and interface 1, which connects the router to a private network.

C ISC OS Y ST EM S

 0 1
Internet

Mail Server
(IP: 192.1.2.3) Host 1 Host 2

Firewall
(Gateway Router)

A private network

Figure 4.1. A firewall for a private network

74

Stateful Section:

R1 : I ∈ {0} ∧ P ∈ {icmp} ∧ T ∈ {pong} ∧ S = D′ ∧ D = S′ ∧ ID = ID ′ ∧
SN = SN ′ → tag := 1

Stateless Section:

r1 : I ∈ {1} ∧ P ∈ {icmp}∧T ∈ {ping}∧tag ∈ all → accept ; insert

r2 : I ∈ {1} ∧ P ∈ all ∧T ∈ all ∧tag ∈ all → accept

r3 : I ∈ {0} ∧ P ∈ {icmp}∧T ∈ {pong}∧tag ∈ {1} → accept

r4 : I ∈ {0} ∧ P ∈ {icmp}∧T ∈ {pong}∧tag ∈ {0} → discard

r5 : I ∈ {0} ∧ P ∈ all ∧T ∈ all ∧tag ∈ all → accept

Figure 4.2. Tracking the Ping protocol

This firewall tracks the Ping protocol (Packet Internet Groper Proto-

col) [44] to counter “smurf” attacks. The Ping protocol is used by a host to

determine whether another host is up. When a host A wants to test whether a

host B is up, A sends to B a series of ICMP (Internet Control Message Proto-

col) ping (i.e., echo request) packets. All of these ping packets have the same

ID but different sequence numbers. When B receives from A a ping packet

with ID x and sequence number y, B sends back to A a pong (i.e., echo reply)

packet with the same ID x and the same sequence number y. The “smurf”

attack, a type of Denial of Service attack, works as follows. An attacker sends

a ping packet, whose source IP address has been forged to be the IP address of

a victim host, to the broadcast address of a subnetwork. Subsequently, every

host on the subnetwork will send a pong packet to the victim host.

One way to counter “smurf” attacks for a private network is to use a

firewall to discard every incoming pong packet unless the packet corresponds

to a previous ping packet sent from the private network. Suppose that we want

75

to configure the firewall in Figure 4.1 in such a fashion. When a pong packet

arrives, the firewall needs to check whether it has seen the corresponding ping

packet. This requires the firewall to remember the ping packets sent from

the private network to the outside. In our firewall model, each firewall has a

variable set called the state. The state of a firewall contains the packets that

the firewall has accepted previously and needs to remember in the near future.

In this firewall example, we store in the state of the firewall the ping packets

that are sent from the private network to the outside Internet.

In our firewall model, each firewall consists of two sections: a stateful

section and a stateless section. The stateful section is used to check each

packet against the state. The stateless section is used to decide the fate of

a packet after the packet has been checked against the state. To store the

checking result of the stateful section for each packet, we assume that each

packet has an additional field called the tag. The value of the tag field of

a packet is an integer, whose initial value is zero. The domain of this tag

field depends on how many possible tag values that a firewall needs. In the

above firewall example, when a packet arrives, if it is a pong packet and its

corresponding ping packet is in the state, then the tag field of the packet is

assigned 1; otherwise the tag field of the packet retains the initial value of 0.

Therefore, the domain of the tag field in this example is [0, 1].

We define a packet over the fields F1, · · · , Fd to be a d-tuple (p1, · · · , pd)

where each pi is in the domain D(Fi) of field Fi, and each D(Fi) is an interval

of nonnegative integers. For example, the domain of the source address in an

76

IP packet is [0, 232).

The stateful section of a firewall consists a sequence of rules where each

rule is called a stateful rule. A stateful rule is of the form

P (F1, · · · , Fd, F
′
1, · · · , F ′

d, tag
′) → tag := x

where P (F1, · · · , Fd, F
′
1, · · · , F ′

d, tag
′) is a predicate over F1, · · · , Fd, F

′
1, · · · , F ′

d,

tag ′. A packet (p1, · · · , pd) matches the above rule iff (if and only if) there

exists a packet (p′1, · · · , p′d) with tag value t′ in the state of the firewall such

that P (p1, · · · , pd, p
′
1, · · · , p′d, t

′) is true. The meaning of this stateful rule is as

follows. Given a packet p such that p matches this stateful rule (but p does

not match any other stateful rules listed before this rule), the tag value of this

packet p is changed from its initial value 0 to the new value x.

The stateless section of a firewall also consists a sequence of rules where

each rule is called a stateless rule. A stateless rule is of the form

F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd ∧ tag ∈ St → 〈decision〉

where each Si is a nonempty subset of the domain of Fi for 0 ≤ i ≤ d, and

St is a nonempty subset of the domain of the tag field, and the 〈decision〉

is “accept”, or “accept ; insert”, or “discard”. For each i (1 ≤ i ≤ d), if

Si = D(Fi), we can replace Fi ∈ Si by Fi ∈ all , or remove the conjunct

Fi ∈ D(Fi) from the rule. A packet (p1, · · · , pd) with tag value t matches the

above rule iff the condition p1 ∈ S1∧· · ·∧pd ∈ Sd∧ t ∈ St holds. The meaning

of this stateless rule is as follows. Given a packet p such that p matches this

77

stateless rule (but p does not match any other stateless rules listed before this

rule), the decision for this packet is executed. If the decision is “accept”,

then the packet p is allowed to proceed to its destination. If the decision is

“accept ; insert”, then the packet p is allowed to proceed to its destination and

additionally packet p (together with its tag value) is inserted into the state of

the firewall. If the decision is “discard”, then the packet p is discarded by the

firewall.

In the firewall example in Figure 4.1, we assume that each packet has

the following seven fields. For simplicity, in this chapter we assume that each

packet has a field containing the identification of the network interface on

which a packet arrives. Figure 4.2 shows this firewall specified using our model.

name meaning domain

I Interface [0, 1]

S Source IP address [0, 232)

D Destination IP address [0, 232)

P Protocol Type {tcp, udp, icmp}

T echo packet type {ping , pong}

ID echo packet ID [0, 216)

SN echo packet sequence number [0, 216)

In this firewall example, the stateful section consists of one rule: I ∈

{0}∧P ∈ {icmp}∧T ∈ {pong} ∧S = D′∧D = S ′∧ ID = ID ′∧SN = SN ′ →

tag := 1. The meaning of this rule is as follows: if a packet p is an incoming

pong packet (indicated by I ∈ {0} ∧ P ∈ {icmp} ∧ T ∈ {pong}), and there

exists a packet p′ in the state such that the following four conditions hold:

1. the source address of p equals the destination address of p′ (denoted

S = D′),

78

2. the destination address of p equals the source address of p′ (denoted

D = S ′),

3. the ID of p equals the ID of p′ (denoted ID = ID ′),

4. the sequence number of p equals the sequence number of p′ (denoted

SN = SN ′),

then the tag field of packet p is assigned 1; otherwise the tag field of packet p

retains its initial value 0. In this firewall example, the stateless section consists

of five rules whose function is to map every packet with a certain tag value to

one of predefined decisions. Note that the meaning of the rule r1 is as follows.

Given a packet over the seven fields (namely I, S, D, P, T, ID, SN), if the

packet matches rule r1, then the firewall allows this packet to proceed to its

destination and additionally the packet (which is a tuple over the seven fields)

together with its tag value is inserted into the state of the firewall.

Note that when a firewall inserts a packet (p1, · · · , pd) with a tag value

into the state of the firewall, the firewall may not need to insert all the d

fields of the packet. For example, considering the above firewall example in

Figure 4.2, its stateful section consists of one rule I ∈ {0}∧P ∈ {icmp}∧T ∈

{pong} ∧S = D′∧D = S ′∧ ID = ID ′∧SN = SN ′ → tag := 1. This rule only

examines four fields of the packets in the state: S, D, ID and SN. Therefore,

instead of inserting a packet of all the seven fields (namely I, S, D, P, T, ID,

SN) together with the tag value of the packet into the state, we only need to

insert a tuple over the above four fields of S, D, ID and SN.

79

Two stateless rules conflict iff there exists at least one packet that

matches both rules and the two rules have different decisions. For example,

rule r1 and rule r2 in the stateless section of the firewall in Figure 4.2 conflict.

Two stateful rules conflict iff in a reachable state of the firewall there exists

at least one packet that matches both rules and the two rules have different

decisions. In our firewall model, for both the stateful section and the stateless

section, we follow the convention that stateless firewalls use to resolve conflicts:

a packet is mapped to the decision of the first rule that the packet matches.

A set of rules is comprehensive iff for any packet there is at least one

rule in the set that the packet matches. The set of all the rules in the stateless

section of a firewall must be comprehensive because each packet needs to be

mapped to a decision. Note that the set of all the rules in the stateful section

of a firewall does not need to be comprehensive. This is because the function of

a stateful section is to assign nonzero values to the tag fields of some packets,

but not all packets.

Given a packet to a firewall specified using our model, Figure 4.3 de-

scribes how the firewall processes this packet.

By separating a firewall into a stateful section and a stateless section,

we can inherit existing research results of stateless firewalls because a stateless

section alone is in fact a full-fledged stateless firewall. For example, existing

stateless firewall design methods [13, 28, 32, 37], and stateless firewall analysis

methods [5, 26, 36, 39, 40, 58], are still applicable to the design and analysis of

a stateless section. In addition, existing packet classification algorithms for

80

Step 1. Checking in the stateful section:
If P (F1, · · · , Fd, F

′
1, · · · , F ′

d, tag
′) → tag := x

is the first stateful rule that the given packet matches
then the tag of the packet is assigned value x;
else the tag of the packet retains value 0.

Step 2. Checking in the stateless section:
If F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd ∧ tag ∈ St → 〈decision〉
is the first stateless rule that the given packet matches
then the 〈decision〉 is executed for the packet.

Figure 4.3. Processing a given packet

stateless firewalls can still be used to map a packet with a certain tag value to

the first rule that the packet matches in the stateless section.

4.2 Firewall Examples

In this section, we show two more examples of stateful firewalls.

4.2.1 Example I: Tracking Outgoing Packets

Suppose that the requirements for the firewall in Figure 4.1 are as

follows:

1. Any packet from the outside malicious domain 192.168.0.0/16 should be

discarded.

2. The mail server, with IP address 192.1.2.3, should be able to send and

receive emails, but non-email traffic is not allowed to proceed to the mail

server.

81

3. Any packet from a remote host to a local host, which is not the mail

server, is discarded unless the local host has already sent a packet to the

remote host earlier. In other words, the communication between a local

host and a remote host can only be initiated by the local host.

In this example, we assume that each packet has six fields. Four of them

have been discussed earlier: I (interface), S (source IP address), D (destination

IP address), and P (protocol type). The remaining two are as follows:

name meaning domain
SP Source Port [0, 216)
DP Destination Port [0, 216)

Figure 4.4 shows the specification of this firewall. Its stateful section

consists of one rule I ∈ {0}∧S = D′∧D = S ′∧SP = DP ′∧DP = SP ′∧P =

P ′ → tag := 1. The meaning of this rule is as follows: if a packet p is an

incoming packet (denoted I ∈ {0}), and there exists a packet p′ in the state

such that the following five conditions hold:

1. the source address of p equals the destination address of p′ (denoted

S = D′),

2. the destination address of p equals the source address of p′ (denoted

D = S ′),

3. the source port number of p equals the destination port number of p′

(denoted SP = DP ′),

82

4. the destination port number of p equals the source port number of p′

(denoted DP = SP ′),

5. the protocol type of p equals that of p′ (denoted P = P ′),

then the tag field of packet p is assigned 1; otherwise the tag field of packet p

retains value 0.

The stateless section of this firewall consists of seven rules from r1 to

r7. Note that the meaning of rule r2 is as follows. Any outgoing packet from a

local host other than the mail server is allowed to proceed to its destination,

and additionally this packet, which is a tuple of the six fields (namely I, S,

D, P, SP, DP), together with its tag value, is inserted into the state of the

firewall. Since the stateful section of this firewall only examines the five fields

(namely S, D, P, SP, and DP) of the packets in the state of this firewall, we

only need to insert these five fields of a packet into the state.

4.2.2 Example II: Tracking FTP Ptotocol

In this section, we show an example of a firewall that tracks the FTP

protocol. File Transfer Protocol (FTP) [45] is an application protocol that

is used to transfer files between two hosts. We assume that the firewall in

Figure 4.1 allows any local host to initiate an FTP connection to a remote

host, but any remote host cannot initiate an FTP connection to a local host.

For simplicity, we assume that non-FTP traffic is discarded.

What complicates the tracking of FTP is its dual-connection feature.

83

Stateful Section:

R1 :I ∈ {0} ∧ S = D′ ∧ D = S′ ∧ SP = DP ′ ∧ DP = SP ′ ∧ P = P ′ → tag := 1
Stateless Section:

r1 : I ∈ {1} ∧ S ∈ {192.1.2.3}∧D ∈ all ∧ DP ∈ all ∧ P ∈ all ∧ tag ∈ all

→ accept

r2 : I ∈ {1} ∧ S ∈ all ∧D ∈ all ∧ DP ∈ all ∧ P ∈ all ∧ tag ∈ all

→accept ;
insert

r3 : I ∈ {0} ∧ S ∈ [192.168.0.0, 192.168.255.255] ∧ D ∈ all ∧ DP ∈ all ∧
P ∈ all ∧ tag ∈ all → discard

r4 : I ∈ {0} ∧ S ∈ all ∧ D ∈ {192.1.2.3} ∧ DP ∈ {25} ∧ P ∈ {tcp} ∧ tag ∈ all

→ accept

r5 : I ∈ {0} ∧ S ∈ all ∧ D ∈ {192.1.2.3} ∧ DP ∈ all ∧ P ∈ all ∧ tag ∈ all

→ discard

r6 : I ∈ {0} ∧ S ∈ all ∧ D ∈ all ∧ DP ∈ all ∧ P ∈ all ∧ tag ∈ {1} → accept

r7 : I ∈ {0} ∧ S ∈ all ∧ D ∈ all ∧ DP ∈ all ∧ P ∈ all ∧ tag ∈ {0} → discard

Figure 4.4. Tracking outgoing packets

FTP uses two TCP connections to transfer files between two hosts: a control

connection and a data connection. When a client wants to connect to a remote

FTP server, the client uses one of its available port numbers, say x, to connect

to the server on the well-known port 21. This connection, between the client’s

port x and the server’s port 21, is called the control connection. FTP uses the

control connection to transfer FTP commands such as CWD (change working

directory) and PORT (specify the port number that the client will use for the

data connection). After this control connection is built between the client and

the server, the client sends a PORT command with a value y, where y is an

available port on the client, to the server via this control connection. After

this PORT command is received, the server uses its well-known port 20 to

84

connect back to the port y of the client. This connection, between the client’s

port y and the server’s port 20, is called the data connection. Note that the

control connection is initiated by the FTP client and the data connection is

initiated by the FTP server. This dual-connection feature of the FTP protocol

is illustrated in Figure 4.5.

iMac

Figure 4.5. FTP Ptotocol

This firewall is specified in Figure 4.6. In this example, we assume

that each packet has eight fields. Six of them have been discussed earlier:

I (interface), S (source IP address), D (destination IP address), P (protocol

type), SP (source port) and DP (destination port). The remaining two are as

follows:

name meaning domain
T Application Type [0, 1]
A Application Data [0, 216)

For a packet, if the value of its field T is 1, then the value of its field A is

the port number of a port command; otherwise field A contains another FTP

control command.

In this example, the firewall only possibly accepts the following four

types of packets: outgoing TCP packets to port 21, incoming TCP packets

85

Stateful Section:

R1 : I ∈ {0} ∧ SP ∈ {21} ∧ P ∈ {tcp} ∧ S = D′ ∧ D = S′ ∧ DP =SP ′∧
DP ′ ∈ {21} → tag := 1

R2 : I ∈ {0} ∧ SP ∈ {20} ∧ P ∈ {tcp} ∧ S = D′ ∧ D = S′ ∧ T ′ = 1∧
DP = A′ ∧ DP ′ ∈ {21} → tag := 1

R3 : I ∈ {1} ∧ DP ∈ {20} ∧ P ∈ {tcp} ∧ S = D′ ∧ D = S′ ∧ SP = DP ′∧
SP ′ ∈ {20} → tag := 1

Stateless Section:

r1 : I ∈ {1} ∧ SP ∈ all ∧ DP ∈ {21} ∧ P ∈ {tcp} ∧ tag ∈ all → accept ;
insert

r2 : I ∈ {1} ∧ SP ∈ all ∧ DP ∈ {20} ∧ P ∈ {tcp} ∧ tag ∈ {1} → accept

r3 : I ∈ {1} ∧ SP ∈ all ∧ DP ∈ all ∧ P ∈ all ∧ tag ∈ all → discard

r4 : I ∈ {0} ∧ SP ∈ {20} ∧ DP ∈ all ∧ P ∈ {tcp} ∧ tag ∈ {1} → accept ;
insert

r5 : I ∈ {0} ∧ SP ∈ {21} ∧ DP ∈ all ∧ P ∈ {tcp} ∧ tag ∈ {1} → accept

r6 : I ∈ {0} ∧ SP ∈ all ∧ DP ∈ all ∧ P ∈ all ∧ tag ∈ all → discard

Figure 4.6. Tracking the FTP protocol

from port 21, incoming TCP packets from port 20, and outgoing TCP packets

to port 20. Next we discuss each of these four types of packets.

1. Outgoing TCP packets to port 21: Any packet p of this type is accepted

and inserted into the state. See rule r1 in Figure 4.6.

2. Incoming TCP packets from port 21: A packet p of this type is accepted

iff there exists a packet p′ in the state such that p’s source IP address

equals p′’s destination IP address, p’s destination IP address equals p′’s

source IP address, p’s destination port number equals p′’s source port

number, and p′’s destination port number is 21. See the three rules r1,

R1, and r5 in Figure 4.6.

86

3. Incoming TCP packets from port 20: A packet p of this type is accepted

iff there exists a packet p′ in the state such that p’s source IP address

equals p′’s destination IP address, p’s destination IP address equals p′’s

source IP address, p′’s destination port number is 21, p′ contains a PORT

command and p’s destination port equals the port number in this PORT

command of p′. See the three rules r1, R2, and r4 in Figure 4.6.

4. Outgoing TCP packets to port 20: A packet p of this type is accepted

iff there exists a packet p′ in the state such that p’s source IP address

equals p′’s destination IP address, p’s destination IP address equals p′’s

source IP address, p’s source port number equals p′’s destination port

number, and p′’s source port number is 20. See the three rules r4, R3,

and r2 in Figure 4.6.

4.3 Removing Packets from Firewall State

After a packet is inserted into the state of a firewall, the packet should

be removed when it is no longer needed, otherwise security could be breached.

We show this point by the firewall example in Figure 4.2 that tracks the Ping

protocol. Suppose a local host named A sends a ping packet to a remote host

named B. According to the specification of this firewall in Figure 4.2, this ping

packet is inserted into the state of this firewall. When the corresponding pong

packet comes back from host B, it is accepted by the firewall because of the

stored ping packet, and additionally this stored ping packet should be removed

from the state of the firewall. Otherwise, an attacker could replay the pong

87

packet for an unlimited number of times and each of the replayed pong packets

would be incorrectly allowed to proceed to the victim host A.

A new command, “remove”, is used to remove the packets that are no

longer needed from the state of a firewall. Therefore, there are two more possi-

ble decisions that a stateless rule may use: “accept ; remove” and “accept ; insert ;

remove”, in addition to the three decisions (namely “accept”, “accept ; insert”,

and “discard”) that we have seen earlier. The meaning of a stateless rule

with decision “accept ; remove” is as follows. Given a packet p, if p matches

this rule (but p does not match any stateless rule listed before this rule),

then p is accepted. Moreover, if the state has a packet p′ such that p sat-

isfies the predicate of the first stateful rule that p matches using p′, then

packet p′ is removed from the state. Similarly for the meaning of a rule

with decision “accept ; insert ; remove”. Consider the example of the firewall

in Figure 4.2 that tracks the Ping protocol. When a ping packet is sent

from a local host to a remote host, the ping packet is inserted into the state

of the firewall by the stateless rule r1 : I ∈ {1} ∧ P ∈ {icmp} ∧ T ∈

{ping} ∧ tag ∈ all → accept ; insert . When the corresponding pong packet

comes back from the remote host, it is accepted by the stateless rule r3 and

it should also trigger the removal of the stored ping packet. Therefore, a

“remove” command should be added to rule r3. In other words, rule r3 should

be I ∈ {0} ∧ P ∈ {icmp} ∧ T ∈ {pong} ∧ tag ∈ {1} → accept ; remove.

Usually the packet that initiates the “conversation” between two hosts

is stored in the state of a firewall, and the packet that terminates the “conver-

88

sation” triggers the removal of the stored packet. Examples of the packets that

can initiate a conversation are ping packets and TCP SYN packets. Examples

of the packets that can terminate a conversation are pong packets and TCP

FIN packets.

To remove the packets that are no longer needed in the state of a

firewall, we cannot only rely on some packets to trigger the removal for two

reasons. First, these triggering packets may get lost on their way. Second,

the processes that are supposed to send triggering packets may abnormally

terminate before sending out the triggering packets. In either case, the packets

that should be removed still remain in the state. To deal with these two cases,

when a packet is inserted into the state of a firewall, it is assigned a TTL (Time

To Live) value. The TTL value of every packet in the state decreases as time

goes by. When the TTL value of a packet expires, the packet is automatically

removed from the state.

Different packets may need different TTL values. Therefore, the “insert”

command has a parameter t, which is the TTL value for the packet to be in-

serted into the state of a firewall. The meaning of a stateless rule with decision

“accept ; insert(t)” is as follows. Given a packet p such that p matches this rule

(but p does not match any stateless rule listed before this rule), provided that

p is not an element of the state, then p is inserted into the state with TTL

value t. On the other hand, if p already exists in the state, then the TTL value

of p in the state is reassigned the value t.

Figure 4.7 shows the complete firewall for tracking the Ping protocol

89

after we incorporate the TTL extension to the “insert” command in rule r1

and add the “remove” command to rule r3. In this example, the TTL value

in the “insert” command is 10 seconds.

Stateful Section:

R1 : I ∈ {0} ∧ P ∈ {icmp} ∧ T ∈ {pong} ∧ S = D′ ∧ D = S′ ∧ ID = ID ′∧
SN = SN ′ → tag := 1

Stateless Section:

r1 : I ∈ {1} ∧ P ∈ {icmp}∧T ∈ {ping}∧tag ∈ all → accept ; insert(10)
r2 : I ∈ {1} ∧ P ∈ all ∧T ∈ all ∧tag ∈ all → accept

r3 : I ∈ {0} ∧ P ∈ {icmp}∧T ∈ {pong}∧tag ∈ {1} → accept ; remove

r4 : I ∈ {0} ∧ P ∈ {icmp}∧T ∈ {pong}∧tag ∈ {0} → discard

r5 : I ∈ {0} ∧ P ∈ all ∧T ∈ all ∧tag ∈ all → accept

Figure 4.7. Tracking the Ping protocol (with packets removal)

4.4 Firewall States

Recall that each firewall has a variable set named the state of the

firewall. Initially, the state of a firewall is empty. The transition between

two states of a firewall is illustrated in Figure 4.8.

current firewall state next firewall state

discard a packet accept a packet with
insertion or removal

accept a packet without
insertion or removal

Figure 4.8. Firewall state transition

A history of a firewall is a finite sequence S.1, p.1, S.2, p.2, · · · , S.n such

90

that the following three conditions hold.

i. Each S.i is a state of the firewall. Note that S.1 is the initial state of the

firewall, which is an empty set.

ii. Each p.i is a packet.

iii. For every i (1 ≤ i < n), if the firewall is in state S.i and receives packet

p.i, then the firewall accepts p.i and the state of the firewall becomes

S.(i + 1).

Note that in a firewall history, S.1, p.1, S.2, p.2, · · · , S.n, for every i

(1 ≤ i < n), we have

S.i 6= S.(i + 1) if in state S.i, p.i is accepted, and
p.i is inserted into the state or p.i
triggers the removal of an packet;

S.i = S.(i + 1) otherwise

A state of a firewall is called a reachable state iff the state is in a history

of the firewall.

4.4.1 Truly Stateful and Truly Stateless Firewalls

Before we define truly stateful firewalls, we first define two important

concepts associated with each firewall: the accepted set and the acceptable

set.

A packet is called an accepted packet of a firewall iff the packet can

be accepted in every reachable state of the firewall. The set of all accepted

91

packets of a firewall is called the accepted set of the firewall. For a firewall f ,

we use f.a to denote its accepted set.

A packet is called an acceptable packet of a firewall iff the packet can

be accepted in some (possibly every) reachable state of the firewall. The set of

all acceptable packets of a firewall is called the acceptable set of the firewall.

For a firewall f , we use f.b to denote its acceptable set.

Note that a stateless firewall can also be specified using our model.

When we specify a stateless firewall, we leave the stateful section empty and

specify no “insert” command in any rule in the stateless section. In this case,

the state of the firewall remains empty and the firewall is therefore stateless.

For a stateless firewall f , we use f.a to denote the set of all accepted packets

of f and use f.b to denote the set of all acceptable packets of f . From the

definition of stateful firewalls and stateless firewalls, we have the following

theorem:

Theorem 4.4.1. Let f be a firewall.

i. f.a is a subset of f.b (f.a ⊆ f.b)

ii. If f is stateless, then f.a = f.b.

A firewall f is truly stateful iff f.a is a proper subset of f.b; i.e., f.a ⊂

f.b. A firewall f is truly stateless iff f.a = f.b. Clearly, a stateless firewall is

truly stateless, but a stateful firewall can either be truly stateful or be truly

stateless. A stateful firewall that is truly stateless can be simplified, without

92

changing its function, by making its stateful section empty and removing the

“insert” command from every rule in its stateless section.

As an example, consider the firewall in Figure 4.9(a). This firewall

accepts each packet where S ∈ {0} and D ∈ {1} in each reachable state, and

discards all other packets in each reachable state. Thus, this firewall is truly

stateless (although it is syntactically stateful). Therefore, this firewall can be

simplified as shown in Figure 4.9(b).

Stateful Section:
R1 : S = D′ ∧ D = S ′ → tag := 1

Stateless Section:
r1 : S ∈ {0} ∧ D ∈ {1} ∧ tag ∈ all→ accept ; insert
r2 : S ∈ all ∧ D ∈ all ∧ tag ∈ all→ discard

(a)

Stateful Section:
Stateless Section:
r1 :S ∈ {0} ∧ D ∈ {1} ∧ tag ∈ all→ accept
r2 :S ∈ all ∧ D ∈ all ∧ tag ∈ all→ discard

(b)

Figure 4.9. A truly stateless firewall and its simplified version

4.4.2 Stateless Derivatives

It is important that if a firewall designer designs a stateful firewall f ,

then he should verify that f is truly stateful. This is because if f is truly

stateless, then f can be simplified into a stateless firewall. In this section, we

identify a sufficient condition for verifying that a firewall is truly stateful. But

93

first we introduce the concept of a stateless derivative of a firewall.

The stateless derivative of a firewall f is the firewall obtained after

making the stateful section of f empty and removing the “insert” command

from every rule in the stateless section of f . For example, Figure 4.9(b) shows

the stateless derivative of the firewall in Figure 4.9(a).

The relationship between a firewall and its stateless derivative is stated

in the following theorem.

Theorem 4.4.2. Let f be a firewall and g be its stateless derivative,

i. f.a ⊆ g.a

ii. g.a = g.b

iii. g.b ⊆ f.b

Proof of Theorem 4.4.2:

Proof of i: This assertion holds because f.a is the set of all the packets where

each packet can be accepted in every reachable state of f and g.a is the set of

all the packets that can be accepted in the initial state of f .

Proof of ii: Note that g is a stateless firewall. By Theorem 4.4.1, this assertion

holds.

Proof of iii: This assertion holds because g.b is the set of all the packets that

can be accepted in the initial state of f , and f.a is the set of all the packets

where each packet can be accepted in some reachable state of f . 2

94

Recall that a firewall f is truly stateful iff f.a ⊂ f.b. By Theorem 4.4.2,

one way to prove that a firewall f , whose stateless derivative is denoted g, is

truly stateful is to prove that the following two conditions hold:

i. f.a = g.a;

ii. g.b ⊂ f.b

We call firewalls that satisfy the first condition conforming firewalls ; and call

firewalls that satisfy the second condition proper firewalls.

4.5 Firewall Properties

In this section, we discuss how to verify that a firewall is conforming

or proper.

4.5.1 Conforming Firewalls

Before we give a theorem on how to verify that a firewall is conforming,

we need to introduce the two concepts of complementary rules and accepting

rules.

Let rule r, that appears in the stateless section of some firewall, be of

the form

F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd ∧ tag ∈ St → 〈decision〉

Rule r is complementary iff the set St does not contain the value 0. Rule r is

accepting iff the 〈decision〉 of r contains the command “accept”.

95

The following theorem can be used to verify that a firewall is conform-

ing.

Theorem 4.5.1. A firewall f is conforming if every complementary rule in

the stateless section of f is accepting.

Proof of Theorem 4.5.1: Given a firewall f and its stateless derivative g,

we know f.a ⊆ g.a according to Theorem 4.4.2. Next we prove that if every

complementary rule of f is accepting, then g.a ⊆ f.a. For any packet p ∈ g.a,

there is an accepting rule r whose predicate is of the form

F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd ∧ tag ∈ St

such that 0 ∈ St, and the packet p with tag value being 0 matches r but does

not match any rule listed above r. Because every complementary rule is an

accepting rule, every packet with a certain tag value that satisfies

F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd ∧ tag ∈ (D(tag) − St)

is accepted by the firewall. Here D(tag) denotes the domain of tag. So, no

matter what the tag value of p is, p is accepted by f . Therefore, p ∈ f.a. 2

As an example, we use Theorem 4.5.1 to prove that the firewall in Figure

4.2 is conforming as follows. This firewall has only one complementary rule,

which is rule r3 : I ∈ {0} ∧ P ∈ {icmp} ∧ T ∈ {pong} ∧ tag ∈ {1} → accept .

And rule r3 is an accepting rule. Therefore, this firewall is conforming.

96

4.5.2 Proper Firewalls

Based on our experience in designing firewalls, most firewalls are con-

forming. By Theorem 4.4.2, a conforming firewall is truly stateful iff it is

proper. Next we discuss how to verify that a firewall is proper.

A firewall is proper iff its acceptable set is a proper superset of the

acceptable set of its stateless derivative. For a firewall to be proper, we first

need to make sure that its state does not remain empty forever. We call such

firewalls grounded. More precisely, grounded firewalls are defined as follows.

Let f be a firewall whose stateless section consists of n rules r1, r2, · · · , rn:

r1 : P1 → 〈decision1〉

r2 : P2 → 〈decision2〉

· · ·

rn : Pn → 〈decisionn〉

A rule rk, where 1 ≤ k ≤ n, is called a ground rule iff the following three

conditions hold:

i. rk is non-complementary;

ii. 〈decisionk〉 is “accept ; insert” or “accept ; insert ; remove”;

iii. ∼ P1∧ ∼ P2 ∧ · · · ∧ ∼ Pk−1 ∧ Pk is satisfiable by at least one packet.

97

A firewall is grounded iff it has a ground rule.

A ground rule of a grounded firewall guarantees that in the initial state

of the firewall, there exists at least one packet that can be accepted and inserted

into the state of the firewall.

To test whether a firewall is grounded, we can go through each rule

and test whether it is a ground rule according to the above definition. Once

we find a ground rule in a firewall, we know that the firewall is grounded. For

example, consider the firewall in Figure 4.4. The second rule in the stateless

section of this firewall is a ground rule because (1) it is non-complementary;

(2) its decision is “accept ; insert”; and (3) ∼ P1 ∧ P2 is satisfiable. Note that

∼ P1 ∧ P2 = I ∈ {1} ∧ S ∈ [0, α− 1] ∪ [α + 1, 232) ∧D ∈ all ∧DP ∈ all ∧ P ∈

all ∧ tag ∈ all , where α denotes the integer formed by the four bytes of the IP

address 192.1.2.3. Therefore, this firewall is grounded.

For a grounded firewall to be proper, we need to show that there exists

at least one packet, denoted p, such that (1) p is discarded by the stateless

derivative of the firewall, (2) p can be accepted by the firewall in some state.

As an example, we show how to verify that a grounded firewall is proper by

examining the firewall example in Figure 4.2 as follows. For this firewall, we

assume that each packet consists of the fields of I, S, D, P, T, ID, and SN.

Consider the two packets p′ and p in the following table. It is straightforward

to verify that packet p is discarded by the stateless derivative of this firewall

(because of rule r4). At any state of this firewall, p′ is accepted and inserted

into the state because of rule r1. Because of the stateful rule R1 and the

98

stateless rule r3, as long as p′ is in the state, packet p is accepted. Therefore,

this firewall is proper.

I S D P T ID SN
p′ 1 192.1.2.4 192.32.1.2 icmp ping 10 200
p 0 192.32.1.2 192.1.2.4 icmp pong 10 200

99

Chapter 5

Firewall Queries

100

Although a firewall is specified by a mere sequence of rules, under-

standing its function is by no means an easy task. Even understanding the

implication of a single rule is difficult because one has to go through all the

rules listed above that rule to figure out their logical relations. Understanding

the function of an entire firewall is even more difficult because the firewall may

have a large number of rules and the rules often conflict with each other. Fur-

thermore, firewall administrators often have to analyze legacy firewalls that

were written by different administrators, at different times, and for different

reasons. Effective methods and tools for analyzing firewalls, therefore, are

crucial to the success of firewalls.

An effective way to assist humans in understanding and analyzing fire-

walls is by issuing firewall queries. Firewall queries are questions concerning

the function of a firewall. Examples of firewall queries are “Which computers

in the outside Internet cannot send email to the mail server in a private net-

work?” and “Which computers in the private network can receive BOOTP1

packets from the outside Internet?”.

Figuring out answers to these firewall queries is of tremendous help

for a firewall administrator to understand and analyze the function of the

firewall. For example, assuming the specification of a firewall requires that all

computers in the outside Internet, except a known malicious host, are able to

1The Bootp protocol is used by workstations and other devices to obtain IP addresses
and other information about the network configuration of a private network. Since there is
no need to offer the service outside a private network, and it may offer useful information
to hackers, usually Bootp packets are blocked from entering a private network.

101

send email to the mail server in the private network, a firewall administrator

can test whether the firewall satisfies this requirement by issuing a firewall

query “Which computers in the outside Internet cannot send email to the mail

server in the private network?”. If the answer to this query contains exactly

the known malicious host, then the firewall administrator is assured that the

firewall does satisfy this requirement. Otherwise the firewall administrator

knows that the firewall fails to satisfy this requirement, and she needs to

reconfigure the firewall. As another example, suppose that the specification

of a firewall requires that any BOOTP packet from the outside Internet is to

be blocked from entering the private network. To test whether the firewall

satisfies this requirement, a firewall administrator can issue a firewall query

“Which computers in the private network can receive BOOTP packets from

the outside Internet?”. If the answer to this query is an empty set, then the

firewall administrator is assured that the firewall does satisfy this requirement.

Otherwise the firewall administrator knows that the firewall fails to satisfy this

requirement, and she needs to reconfigure the firewall.

Firewall queries are also useful in a variety of other scenarios, such

as firewall maintenance and firewall debugging. For a firewall administrator,

checking whether a firewall satisfies certain conditions is part of daily mainte-

nance activity. For example, if the administrator detects that a computer in

the private network is under attack, the firewall administrator can issue queries

to check which other computers in the private network are also vulnerable to

the same type of attacks. In the process of designing a firewall, the designer

102

can issue some firewall queries to detect design errors by checking whether the

answers to the queries are consistent with the firewall specification.

To make firewall queries practically useful, two problems need to be

solved: how to describe a firewall query and how to process a firewall query.

The second problem is technically difficult. Recall that the rules in a firewall

are sensitive to the rule order and the rules often conflict. The naive solution

is to enumerate every packet specified by a query and check the decision for

each packet. Clearly, this solution is infeasible. For example, to process the

query “Which computers in the outside Internet cannot send any packet to the

private network?”, this naive solution needs to enumerate 288 possible packet

and check the decision of the firewall for each packet, which is infeasible.

There is little work that has been done on firewall queries. In [40, 58], a

firewall analysis system that uses some specific firewall queries was presented.

In [40, 58], a firewall query is described by a triple (a set of source addresses,

a set of destination addresses, a set of services), where each service is a tuple

(protocol type, destination port number). The semantics of such a query are

“which IP addresses in the set of source addresses can send which services in

the set of services to which IP addresses in the set of destination addresses?”.

We go beyond [40, 58] in the following two major aspects.

i. No algorithm for processing a firewall query over a sequence of rules was

presented in [40] or [58]. Consequently, how fast and scalable that a

firewall query can be processed remains unknown, while the efficiency of

103

a firewall query processing algorithm is crucial in order to interact with a

human user. In contrast, we present an efficient algorithm for processing

a firewall query over a sequence of rules. Our firewall query algorithm

takes less than 10 milliseconds to process a query over a firewall that has

up to 10,000 rules.

ii. The query language described in [40] and [58] is too specific: it is only

applicable to IP packets and it only concerns the four fields of source ad-

dress, destination address, protocol type and destination port number.

This makes the expressive power of the query language in [40, 58] lim-

ited. For example, even only considering IP packets, it cannot express a

firewall query concerning source port numbers or application fields. In

contrast, our Structured Firewall Query Language is capable of express-

ing firewall queries with arbitrary fields.

In [34], some ad-hoc “what if” questions that are similar to firewall

queries were discussed. However, no algorithm was presented for processing

the proposed “what if” questions. In [24], expert systems were proposed to

analyze firewall rules. Clearly, building an expert system just for analyzing a

firewall is overwrought and impractical.

In this chapter, we present solutions to both problems. First, we in-

troduce a simple and effective SQL-like query language, called the Structured

Firewall Query Language (SFQL), for describing firewall queries. This lan-

guage uses queries of the form “select...from...where...”. Second, we present a

104

theorem, called the Firewall Query Theorem, as the foundation for developing

firewall query processing algorithms. Third, we present an efficient query pro-

cessing algorithm that uses Firewall Decision Trees (FDTs) as its core data

structure. For a given firewall of a sequence of rules, we first construct an

equivalent FDT using the construction algorithm introduced in Chapter 3.

Then the FDT is used as the core data structure of this query processing

algorithm for answering each firewall query. Experimental results show that

our firewall query processing algorithm is very efficient: it takes less than 10

milliseconds to process a query over a firewall that has up to 10,000 rules.

Clearly, our firewall query processing algorithm is fast enough in interacting

with firewall administrators.

Note that firewalls that we consider in this chapter are stateless fire-

walls. Also note that the queries of a firewall are intended primarily for the

administrator of the firewall to use. For a firewall that protects a private

network, neither normal users in the private network nor the outsiders of the

private network are able to query the firewall.

5.1 Structured Firewall Query Language

5.1.1 Firewalls

In this section, we present the actual syntax of the firewall query lan-

guage and show how to use this language to describe firewall queries.

We use Σ to denote the set of all packets. It follows that Σ is a finite

set and |Σ| = |D(F1)| × · · · × |D(Fn)|. Given a firewall f , each packet p in

105

Σ is mapped by f to a decision, denoted f(p), in the set {accept , discard}.

Two firewalls f and f ′ are equivalent, denoted f ≡ f ′, iff for any packet p in

Σ, the condition f(p) = f ′(p) holds. This equivalence relation is symmetric,

self-reflective, and transitive.

A firewall consists of a sequence of rules. Each rule is of the following

format:

(F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) → 〈decision〉

where each Si is a nonempty subset of D(Fi), and the 〈decision〉 is either

accept or discard . If Si = D(Fi), we can replace (Fi ∈ Si) by (Fi ∈ all), or

remove the conjunct (Fi ∈ D(Fi)) altogether. Some existing firewall products,

such as Linux’s ipchain, require that Si be represented in a prefix format

such as 192.168.0.0/16, where 16 means that the prefix is the first 16 bits of

192.168.0.0 in a binary format. In this chapter, we choose to represent Si as

a nonempty set of nonnegative integers because of two reasons. First, any

set of nonnegative integers can be automatically converted to a set of prefixes

(see [31]). Second, set representations are more convenient in mathematical

manipulations.

A packet (p1, · · · , pd) matches a rule (F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) →

〈decision〉 iff the condition (p1 ∈ S1) ∧ · · · ∧ (pd ∈ Sd) holds. Since a packet

may match more than one rule in a firewall, each packet is mapped to the

decision of the first rule that the packet matches. The predicate of the last

rule in a firewall is usually a tautology to ensure that every packet has at least

one matching rule in the firewall.

106

Here we give an example of a simple firewall. In this example, we

assume that each packet only has two fields: S (source address) and D (des-

tination address), and both fields have the same domain [1, 10]. This firewall

consists of the sequence of rules in Figure 5.1. Let f1 be the name of this

firewall.

r1 : S ∈ [4, 7] ∧ D ∈ [6, 8] → accept
r2 : S ∈ [3, 8] ∧ D ∈ [2, 9] → discard
r3 : S ∈ [1, 10] ∧ D ∈ [1, 10]→ accept

Figure 5.1. Firewall f1

5.1.2 Query Language

A query, denoted Q, in our Structured Firewall Query Language (SFQL)

is of the following format:

select Fi

from f
where (F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) ∧ (decision = 〈dec〉)

where Fi is one of the fields F1, · · · , Fd, f is a firewall, each Sj is a nonempty

subset of the domain D(Fj) of field Fj, and 〈dec〉 is either accept or discard.

The result of query Q, denoted Q.result, is the following set:

{pi|(p1, · · · , pd) is a packet in Σ, and

(p1 ∈ S1) ∧ · · · ∧ (pd ∈ Sd) ∧ (f((p1, · · · , pd)) = 〈dec〉)}

107

Recall that Σ denotes the set of all packets, and f((p1, · · · , pd)) denotes the

decision to which firewall f maps the packet (p1, · · · , pd).

We can get the above set by first finding all the packets (p1, · · · , pd) in

Σ such that the following condition

(p1 ∈ S1) ∧ · · · ∧ (pd ∈ Sd) ∧ (f((p1, · · · , pd)) = 〈dec〉)

holds, then projecting all these packets to the field Fi.

For example, a question to the firewall in Figure 5.1, “Which computers

whose addresses are in the set [4, 8] can send packets to the machine whose

address is 6?”, can be formulated as the following query using SFQL:

select S
from f1

where (S ∈ {[4, 8]}) ∧ (D ∈ {6}) ∧ (decision = accept)

The result of this query is {4, 5, 6, 7}.

As another example, a question to the firewall in Figure 5.1, “Which

computer cannot send packets to the computer whose address is 6?”, can be

formulated as the following query using SFQL:

select S
from f1

where (S ∈ all) ∧ (D ∈ {6}) ∧ (decision = discard)

The result of this query is {3, 8}.

Next we give more examples on how to use SFQL to describe firewall

queries.

108

5.2 Firewall Query Examples

In this section, we describe some example firewall queries using SFQL.

Let f be the name of the firewall that resides on the gateway router in Figure

5.2. This gateway router has two interfaces: interface 0, which connects the

gateway router to the outside Internet, and interface 1, which connects the

gateway router to the inside local network. In these examples, we assume each

packet has the following five fields: I (Interface), S (Source IP), D (Destination

IP), N (Destination Port), P (Protocol Type).

C ISC O SY ST EM S

 0 1
Internet

Mail Server Host 1 Host 2
Firewall

(Gateway Router)

Figure 5.2. Firewall f

Question 1:
Which computers in the private network protected by the firewall f can
receive BOOTP2 packets from the outside Internet?

Query Q1:
select D
from f
where (I ∈ {0}) ∧ (S ∈ all) ∧ (D ∈ all) ∧ (N ∈ {67, 68})

∧(P ∈ {udp}) ∧ (decision = accept)
Answer to question 1 is Q1.result.

2Bootp packets are UDP packets and use port number 67 or 68.

109

Question 2:
Which ports on the mail server protected by the firewall f are open?

Query Q2:
select N
from f
where (I ∈ {0, 1}) ∧ (S ∈ all) ∧ (D ∈ {Mail Server} ∧ (N ∈ all)

∧(P ∈ all) ∧ (decision = accept)
Answer to question 2 is Q2.result.

Question 3:
Which computers in the outside Internet cannot send SMTP3 packets
to the mail server protected by the firewall f?

Query Q3:
select S
from f
where (I ∈ {0}) ∧ (S ∈ all) ∧ (D ∈ {Mail Server}) ∧ (N ∈ {25})

∧(P ∈ {tcp}) ∧ (decision = discard)
Answer to question 3 is Q3.result.

Question 4:
Which computers in the outside Internet cannot send any packet to
the private network protected by the firewall f?

Query Q4:
select S
from f
where (I ∈ {0}) ∧ (S ∈ all) ∧ (D ∈ all) ∧ (N ∈ all) ∧ (P ∈ all)

∧(decision = accept)
Answer to question 4 is T − Q4.result, where T is the set of all IP addresses
outside of the private network

3SMTP stands for Simple Mail Transfer Protocol. SMTP packets are TCP packets and
use port number 25.

110

Question 5:
Which computers in the outside Internet can send SMTP packets to both
host 1 and host 2 in the private network protected by the firewall f?

Query Q5a:
select S
from f
where (I ∈ {0}) ∧ (S ∈ all) ∧ (D ∈ {Host 1}) ∧ (N ∈ {25})

∧(P ∈ {tcp}) ∧ (decision = accept)
Query Q5b:

select S
from f
where (I ∈ {0}) ∧ (S ∈ all) ∧ (D ∈ {Host 2}) ∧ (N ∈ {25})

∧(P ∈ {tcp}) ∧ (decision = accept)
Answer to question 5 is Q5a.result ∩ Q5b.result.

5.3 Firewall Query Processing

In this section, we discuss how to process a firewall query for consistent

firewalls. Consistent firewalls and inconsistent firewalls are defined as follows:

Definition 5.3.1 (Consistent Firewalls). A firewall is called a consistent

firewall iff any two rules in the firewall do not conflict.

Definition 5.3.2 (Inconsistent Firewalls). A firewall is called an incon-

sistent firewall iff there are at least two rules in the firewall that conflict.

Recall that two rules in a firewall conflict iff they have different decisions

and there is at least one packet that can match both rules. For example, the

first two rules in the firewall in Figure 5.1, namely r1 and r2, conflict. Note

that for any two rules in a consistent firewall, if they overlap, i.e., there is

111

at least one packet can match both rules, they have the same decision. So,

given a packet and a consistent firewall, all the rules in the firewall that the

packet matches have the same decision. Figure 5.1 shows an example of an

inconsistent firewall, and Figure 5.3 shows an example of a consistent firewall.

In these two firewall examples, we assume that each packet only has two fields:

S (source address) and D (destination address), and both fields have the same

domain [1, 10].

r′1 : S ∈ [4, 7] ∧ D ∈ [6, 8] → a
r′2 : S ∈ [4, 7] ∧ D ∈ [2, 5] ∪ [9, 9] → d
r′3 : S ∈ [4, 7] ∧ D ∈ [1, 1] ∪ [10, 10]→ a
r′4 : S ∈ [3, 3] ∪ [8, 8] ∧ D ∈ [2, 9] → d
r′5 : S ∈ [3, 3] ∪ [8, 8] ∧ D ∈ [1, 1] ∪ [10, 10]→ a
r′6 : S ∈ [1, 2] ∪ [9, 10] ∧ D ∈ [1, 10] → a

Figure 5.3. Consistent firewall f2

Our interest in consistent firewalls is twofold. First, each inconsistent

firewall can be converted to an equivalent consistent firewall, as described in

Section 5.4. Second, as shown in the following theorem, it is easier to process

queries for consistent firewalls than for inconsistent firewalls.

Theorem 5.3.1 (Firewall Query Theorem). Let Q be a query of the

following form:

select Fi

from f

where (F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) ∧ (decision = 〈dec〉)

112

If f is a consistent firewall that consists of n rules r1, · · · , rn, then we have

Q.result =
n

⋃

j=1

Q.rj

where each rule rj is of the form

(F1 ∈ S ′
1) ∧ · · · ∧ (Fd ∈ S ′

d) → 〈dec ′〉

and the quantity of Q.rj is defined as follows:

Q.rj =

Si ∩ S ′
i if (S1 ∩ S ′

1 6= ∅) ∧ · · · ∧ (Sd ∩ S ′
d 6= ∅) ∧ (〈dec〉 = 〈dec ′〉),

∅ otherwise

2

The Firewall Query Theorem implies a simple query processing algo-

rithm: given a consistent firewall f that consists of n rules r1, · · · , rn and a

query Q, compute Q.rj for each j, then
⋃n

j=1 Q.rj is the result of query Q. We

call this algorithm the rule-based firewall query processing algorithm. Figure

5.4 shows the pseudocode of this algorithm.

5.4 FDT-based Firewall Query Processing Algorithm

Observe that multiple rules in a consistent firewall may share the same

prefix. For example, in the consistent firewall in Figure 5.3, the first three

rules, namely r′1, r
′
2, r

′
3, share the same prefix S ∈ [4, 7]. Thus, if we apply the

above query processing algorithm in Figure 5.4 to answer a query, for instance,

whose “where clause” contains the conjunct S ∈ {3}, over the firewall in Figure

113

Rule − based Firewall Query Processing Algorithm

Input : (1) A consistent firewall f that consists of n rules: r1, · · · , rn,
(2) A query Q:

select Fi

from f

where (F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) ∧ (decision = 〈dec〉)
Output: Result of query Q

Steps:

1. Q.result := ∅;
2. for j := 1 to n do /*Let rj = (F1 ∈ S′

1) ∧ · · · ∧ (Fd ∈ S′
d) → 〈dec′〉*/

if (S1 ∩ S′
1 6= ∅) ∧ · · · ∧ (Sd ∩ S′

d 6= ∅) ∧ (〈dec〉 = 〈dec′〉)
then Q.result := Q.result ∪ (Si ∩ S′

i);
3. return Q.result;

Figure 5.4. Rule-based Firewall Query Processing Algorithm

5.3, then the algorithm will repeat three times the calculation of {3} ∩ [4, 7].

Clearly, repeated calculations are not desirable for efficiency purposes.

In this section, we present a firewall query processing method that has

no repeated calculations and can be applied to both consistent and inconsis-

tent firewalls. This method consists of two steps. First, convert the firewall

(whether consistent or inconsistent) to an equivalent firewall decision tree.

Second, use this FDT as the core data structure for processing queries. We

call the algorithm that uses an FDT to process queries the FDT-based firewall

query processing algorithm. Firewall Decision Trees are defined as follows.

Definition 5.4.1 (Firewall Decision Tree). A Firewall Decision Tree t over

fields F1, · · · , Fd is a special firewall decision diagram that has the following

two additional properties:

i. Each node has at most one incoming edge (i.e., t is a directed tree).

114

ii. Each decision path contains d nonterminal nodes, and the i-th node from

the root is labelled Fi for every i where 1 ≤ i ≤ d.

Figure 5.5 shows an example of an FDT named t3. In this example,

we assume that each packet only has two fields: S (source address) and D

(destination address), and both fields have the same domain [1, 10].

DD

S

D

PSfrag replacements

[4, 7]

[6, 8]
[2, 5]
[9, 9]

[1, 1]
[1, 1]

[10, 10]
[10, 10]

[3, 3] [8, 8]

[2, 9]

[1, 2]
[9, 10]

[1, 10]

a a aa dd

Figure 5.5. Firewall Decision Tree t3

Considering the FDT t3 in Figure 5.5, Figure 5.3 shows all the six rules

in t3.rules .

Given a sequence of rules, an equivalent FDT can be constructed using

the construction algorithm described in Chapter 3.

The pseudocode of the FDT-based firewall query processing algorithm

is shown in Figure 5.6. Here we use e.t to denote the (target) node that the

edge e points to, and we use t.root to denote the root of FDT t.

The above FDT-based firewall query processing algorithm has two in-

puts, an FDT t and an SFQL query Q. The algorithm starts by traversing the

FDT from its root. Let Fj be the label of the root. For each outgoing edge

115

FDT − based Firewall Query Processing Algorithm

Input : (1)An FDT t,
(2)A query Q: select Fi

from t

where (F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) ∧ (decision = 〈dec〉)
Output : Result of query Q

Steps:

1. Q.result := ∅;
2. CHECK(t.root , (F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) ∧ (decision = 〈dec〉)
3. return Q.result;

CHECK(v, (F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) ∧ (decision = 〈dec〉))
1. if (v is a terminal node) and (F (v) = 〈dec〉) then

(1) Let (F1 ∈ S′
1) ∧ · · · ∧ (Fd ∈ S′

d) → 〈dec′〉 be the rule
defined by the decision path containing node v;

(2) Q.result := Q.result ∪ (Si ∩ S′
i);

2. if (v is a nonterminal node) then /*Let Fj be the label of v*/
for each edge e in E(v) do

if I(e) ∩ Sj 6= ∅ then

CHECK(e.t, (F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) ∧ (decision = 〈dec〉))

Figure 5.6. FDT-based Firewall Query Processing Algorithm

e of the root, we compute I(e) ∩ Sj. If I(e) ∩ Sj = ∅, we skip edge e and do

not traverse the subgraph that e points to. If I(e) ∩ Sj 6= ∅, then we continue

to traverse the subgraph that e points to in a similar fashion. Whenever a

terminal node is encountered, we compare the label of the terminal node and

〈dec〉. If they are the same, assuming the rule defined by the decision path

containing the terminal node is (F1 ∈ S ′
1) ∧ · · · ∧ (Fd ∈ S ′

d) → 〈dec ′〉, then we

add Si ∩ S ′
i to Q.result.

116

5.5 Experimental Results

So far we have presented two firewall query processing algorithms, the

rule-based algorithm in Section 5.3 and the FDT-based algorithm in Section

5.4. In this section, we evaluate the efficiency of both algorithms. In the

absence of publicly available firewalls, we create synthetic firewalls according

to the characteristics of real-life packet classifiers discussed in [10, 30]. Note

that a firewall is also a packet classifier. Each rule has the following five fields:

interface, source IP address, destination IP address, destination port number

and protocol type. The programs are implemented in SUN Java JDK 1.4. The

experiments were carried out on a SunBlade 2000 machine running Solaris 9

with 1Ghz CPU and 1 GB of memory.

Figure 5.7 shows the average execution time of both algorithms versus

the total number of rules in the original (maybe inconsistent) firewalls. The

horizontal axis indicates the total number of rules in the original firewalls,

and the vertical axis indicates the average execution time (in milliseconds)

for processing a firewall query. Note that in Figure 5.7, the execution time

of the FDT-based firewall query processing algorithm does not include the

FDT construction time because the conversion from a firewall to an equivalent

FDT is performed only once for each firewall, not for each query. Similarly,

the execution time of the rule-based firewall query processing algorithm does

not include the time for converting an inconsistent firewall to an equivalent

consistent firewall because this conversion is performed only once for each

firewall, not for each query.

117

From Figure 5.7, we can see that the FDT-based firewall query pro-

cessing algorithm is much more efficient than the rule-based firewall query

processing algorithm. For example, for processing a query over an inconsis-

tent firewall that has 10,000 rules, the FDT-based query processing algorithm

uses about 10 milliseconds, while the rule-based query processing algorithm

uses about 100 milliseconds. The experimental results in Figure 5.7 confirm

our analysis that the FDT-based query processing algorithm saves execution

time by reducing repeated calculations.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

60

70

80

90

100

Number of rules in an inconsistent firewall

A
ve

ra
ge

 Q
ue

ry
 P

ro
ce

ss
in

g
Ti

m
e

(m
se

c)

Rule−based Query Processing Algorithm
FDD−based Query Processing Algorithm

Figure 5.7. Query Processing Time vs. Number of rules

118

Chapter 6

Firewall Redundancy Detection

119

Firewalls often have redundant rules. A rule in a firewall is redundant

iff removing the rule does not change the function of the firewall, i.e., does not

change the decision of the firewall for every packet. For example, consider the

firewall in Figure 6.1, whose geometric representation is in Figure 6.2. This

firewall consists of four rules r1 through r4. The domain of field F1 is [1, 100].

r1 : F1 ∈ [1, 50] → accept
r2 : F1 ∈ [40, 90] → discard
r3 : F1 ∈ [30, 60] → accept
r4 : F1 ∈ [51, 100]→ discard

Figure 6.1. A simple firewall

PSfrag replacements

r1 :

r2 :

r3 :

r4 :

1 50

40 90

30 60

51 100

accept

accept

discard

discard

Figure 6.2. Geometric representation of Figure 6.1

We have the following two observations concerning the redundant rules

in the firewall in Figure 6.1.

i. Rule r3 is redundant. This is because the first matching rule for all

packets where F1 ∈ [30, 50] is r1, and the first matching rule for all

packets where F1 ∈ [51, 60] is r2. Therefore, there are no packets whose

120

first matching rule is r3. We call r3 an upward redundant rule. A rule

r in a firewall is upward redundant iff there are no packets whose first

matching rule is r. Geometrically, a rule is upward redundant in a firewall

iff the rule is overlayed by some rules listed above it.

ii. Rule r2 becomes redundant after r3 is removed. Note that r2 is the first

matching rule for all packets where F1 ∈ [51, 90]. However, if both r2

and r3 are removed, the first matching rule for all those packets becomes

r4 instead of r2. This is acceptable since both r2 and r4 have the same

decision. We call r2 a downward redundant rule. A rule r in a firewall,

where no rule is upward redundant, is downward redundant iff for each

packet, whose first matching rule is r, the first matching rule below r

has the same decision as r.

Redundant rules are harmful in terms of the performance a firewall.

When a firewall receives an incoming or outgoing packet, the firewall needs

to find the first rule that the packet matches. This processing time is critical

because it affects the delay of every packet. In general, the smaller the number

of rules that a firewall has, the faster the firewall can map a packet to the

decision of the first rule the packet matches. The algorithm that maps a

packet to the decision of the first rule that the packet matches uses either

O(n) space and O((log n)d−1) time or O(nd) space and O(log n) time, where n

is the total number of rules and d is the total number of distinct packet fields

that are examined [30]. Reducing the number of rules is especially useful for

121

the firewalls that use TCAM (Ternary Content Addressable Memory). Such

firewalls use O(n) space (where n is the number of rules) and constant time in

mapping a packet to a decision. Despite the high performance of such TCAM-

based firewalls, TCAM has very limited size and consumes much more power

as the number of rules increases. Size limitation and power consumption are

the two major issues for TCAM-based firewalls.

Redundant rules are harmful in terms of the correctness a firewall.

First, if a firewall has many redundant rules, it may indicate that the firewall

rules are not well designed. A badly designed firewall may have many errors.

An error in firewall rules means that some illegitimate packets are identified as

being legitimate, or some legitimate packets are identified as being illegitimate.

This will either allow unauthorized access from the outside Internet to the

private network, or disable some legitimate communication between the private

network and the outside Internet. In fact, it has been observed that most

firewall security breaches are caused by errors in firewall rules [17].

Redundant rules are harmful in terms of the understandability a fire-

wall. A redundant rule could be misleading and give a false sense of security.

For example, suppose a firewall has a redundant rule ”discard all Slammer

worm packets”, this rule could give the administrator the impression that all

the Slammer worm packets are indeed discarded, which in fact may not be

true since this rule is redundant.

Previous work on redundant rules includes [3–5, 30]. In [30], two special

types of redundant rules are identified: backward redundant rules and forward

122

redundant rules. A rule r in a firewall is backward redundant iff there exists

another rule r′ listed above r such that all packets that match r also match

r′. Clearly, a backward redundant rule is an upward redundant rule, but not

vice versa. For example, rule r3 in Figure 6.1 is upward redundant, but not

backward redundant. A rule r in a firewall is forward redundant iff there exists

another rule r′ listed below r such that the following three conditions hold:

(1) all packets that match r also match r′, (2) r and r′ have the same decision,

(3) for each rule r′′ listed between r and r′, either r and r′′ have the same

decision, or no packet matches both r and r′′. Clearly, a forward redundant

rule is a downward redundant rule, but not vice versa. For example, rule r2 in

Figure 6.1, assuming r3 has been removed previously, is downward redundant,

but not forward redundant. It has been observed in [30] that 15% of the rules

in real-life firewalls are backward redundant or forward redundant.

The redundant rules identified in [3–5] are similar to those identified

in [30], except that for the case of backward redundant rules, they require

that the two rules r and r′ must have the same decision, which is in fact

unnecessary.

The bottom line is that the set of redundant rules identified by pre-

vious work is incomplete. In other words, given a firewall, after we remove

the redundant rules identified in previous work, the firewall still possibly has

redundant rules. So, how to detect all the redundant rules in a firewall? This

is a hard problem and this problem has never been addressed previously.

In this chapter, we solve the problem of detecting all redundant rules in

123

a firewall. First, we give a necessary and sufficient condition for identifying all

redundant rules. Based on this condition, we categorize redundant rules into

upward redundant rules and downward redundant rules. Second, we present

two efficient graph based algorithms for detecting these two types of redun-

dant rules. The experimental results show that these two algorithms are very

efficient.

There are two ways to apply the procedure redundancy detection and

removal. One way is to apply it prominently with user’s attention for detecting

firewall errors. For every redundant rule detected, the firewall administrator

can examine whether the rule should be removed; if not, then clearly the fire-

wall has errors and the administrator can further investigate how to correct

them. The other way is to apply the firewall redundancy detection and re-

moval procedure transparently without user’s attention for improving firewall

performance. In other words, the interface of a firewall to the firewall admin-

istrator is always the original sequence of rules with redundant rules, while

what is actually used in the firewall is the compact sequence of rules with-

out redundant rules. Whenever the original sequence of rules is updated, the

firewall redundancy detection and removal procedure is automatically applied,

and the resulting compact sequence of rules is henceforth used in the firewall.

The rest of this chapter is organized as follows. We give a necessary

and sufficient condition for identifying upward and downward redundant rules

in Section 6.1. The upward and downward redundancy removal algorithms

are presented in Section 6.2 and 6.3. The experimental results are shown in

124

Section 6.4.

6.1 Firewall Redundant Rules

A sequence of rules 〈r1, · · · , rn〉 is comprehensive iff for any packet p in

Σ, there is at least one rule in 〈r1, · · · , rn〉 that p matches. A sequence of rules

needs to be comprehensive for it to serve as a firewall. From now on, we assume

that each firewall is comprehensive. Henceforth, the predicate of the last rule

in a firewall can always be replaced by (F1 ∈ D(F1)) ∧ · · · ∧ (Fd ∈ D(Fd))

without changing the function of the firewall. In the rest of this chapter, we

assume that the predicate of the last rule in a firewall is (F1 ∈ D(F1)) ∧

· · · ∧ (Fd ∈ D(Fd)). It follows from this assumption that any postfix of a

firewall is comprehensive, i.e., given a firewall 〈r1, r2, · · · , rn〉, we know that

〈ri, ri+1, · · · , rn〉 is comprehensive for each i, 1 ≤ i ≤ n. This assumption is

crucial for our downward redundancy removal algorithm in Section 6.3.

We use f(p) to denote the decision to which a firewall f maps a packet

p. Two firewalls f and f ′ are equivalent, denoted f ≡ f ′, iff for any packet p in

Σ, f(p) = f ′(p) holds. This equivalence relation is symmetric, self-reflective,

and transitive. Using the concept of equivalent firewalls, we define redundant

rules as follows.

Definition 6.1.1. A rule r is redundant in a firewall f iff the resulting firewall

f ′ after removing rule r is equivalent to f .

Before introducing our redundancy theorem, we define two important

125

concepts that are associated with each rule in a firewall: matching set and

resolving set. Consider a firewall f that consists of n rules 〈r1, r2, · · · , rn〉.

The matching set of a rule ri in this firewall is the set of all packets that

match ri. The resolving set of a rule ri in this firewall is the set of all packets

that match ri, but do not match any rj where j < i. For example, consider

rule r2 in Figure 6.1: its matching set is the set of all the packets whose F1

field is in [40, 90]; and its resolving set is the set of all the packets whose F1

field is in [51, 90]. The matching set of a rule ri is denoted M(ri), and the

resolving set of a rule ri is denoted R(ri, f). Note that the matching set of a

rule depends only on the rule itself, while the resolving set of a rule depends

both on the rule and on all the rules listed above it in a firewall.

The following theorem, whose proof is in the Appendix, states several

important properties of matching sets and resolving sets.

Theorem 6.1.1 (Resolving Set Theorem). Let f be any firewall that

consists of n rules: 〈r1, r2, · · · , rn〉. The following four conditions hold:

i. Equality:
⋃i

j=1 M(rj) =
⋃i

j=1 R(rj, f) for each i, 1 ≤ i ≤ n

ii. Dependency: R(ri, f) = M(ri) −
⋃i−1

j=1 R(rj, f) for each i, 1 ≤ i ≤ n

iii. Determinism: R(ri, f) ∩ R(rj, f) = ∅ for each i 6= j

iv. Comprehensiveness:
⋃n

i=1 R(ri, f) = Σ 2

126

The redundancy theorem below gives a necessary and sufficient condi-

tion for identifying redundant rules. Note that we use the notation 〈ri+1, ri+2, · · · , rn〉(p)

to denote the decision to which the firewall 〈ri+1, ri+2, · · · , rn〉 maps packet p.

Theorem 6.1.2 (Redundancy Theorem). Let f be any firewall that con-

sists of n rules: 〈r1, r2, · · · , rn〉. A rule ri is redundant in f iff one of the

following two conditions holds:

i. R(ri, f) = ∅,

ii. R(ri, f) 6= ∅, and for any p that p ∈ R(ri, f), 〈ri+1, ri+2, · · · , rn〉(p) yields

the same decision as that of ri. 2

The correctness of this theorem is quite straightforward to argue. Note

that removing rule ri from firewall f only possibly affects the decision of the

packets in R(ri, f). If R(ri, f) = ∅, then ri is clearly redundant. If R(ri, f) 6= ∅,

and for any p that p ∈ R(ri, f), 〈ri+1, ri+2, · · · , rn〉(p) yields the same as that

of ri, then ri is redundant because removing ri does not affect the decision

of the packets in R(ri, f). The redundancy theorem allows us to categorize

redundant rules into upward and downward redundant rules.

Definition 6.1.2. A rule that satisfies condition 1 in the redundancy theorem

is called upward redundant. A rule that satisfies condition 2 in the redundancy

theorem is called downward redundant.

Consider the example firewall f in Figure 6.1. Rule r3 is an upward re-

dundant rule because R(r3, f) = ∅. Let f ′ be the resulting firewall by removing

127

rule r3 from f . Then rule r2 is downward redundant in f ′.

6.2 Removing Upward Redundancy

In this section, we discuss how to remove upward redundant rules. By

definition, a rule is upward redundant iff its resolving set is empty. Therefore,

in order to remove all upward redundant rules from a firewall, we need to

calculate resolving set for each rule in the firewall. How to represent a resolving

set? In this chapter, we represent the resolving set of a rule by an effective

rule set of the rule. An effective rule set of a rule r in a firewall f is a set

of rules where the union of all the matching sets of these rules is exactly the

resolving set of rule r in f . More precisely, an effective rule set of a rule r is

defined as follows:

Definition 6.2.1. Let r be a rule in a firewall f . A set of rules {r′1, r
′
2, · · · , r′k}

is an effective rule set of r iff the following three conditions hold:

i. R(r, f) =
⋃k

i=1 M(r′i),

ii. r′i and r have the same decision for 1 ≤ i ≤ k. 2

For example, consider the firewall in Figure 6.1. Then, {F1 ∈ [1, 50] →

accept} is an effective rule set of rule r1, {F1 ∈ [51, 90] → discard} is an

effective rule set of rule r2, ∅ is an effective rule set of rule r3, and {F1 ∈

[91, 100] → discard} is an effective rule set of rule r4. Clearly, once we obtain

an effective rule set of a rule r in a firewall f , we know the resolving set of the

128

rule r in f , and consequently know whether the rule r is upward redundant in

f . Note that by the definition of an effective rule set, if one effective rule set

of a rule r is empty, then any effective rule set of the rule r is empty. Based

on the above discussion, we have the following upward redundancy theorem:

Theorem 6.2.1 (Upward Redundancy Theorem). A rule r is upward

redundant in a firewall iff an effective rule set of r is empty. 2

Based on the above upward redundancy theorem, the basic idea of

our upward redundancy removal algorithm is as follows: given a firewall

〈r1, r2, · · · , rn〉, we calculate an effective rule set for each rule from r1 to rn.

If the effective rule set calculated for a rule ri is empty, then ri is upward

redundant and is removed. Now the problem is how to calculate an effective

rule set for every rule in a firewall.

We use t.rules to denote the set of all the rules defined by all the

decision paths in a partial FDT t. For any packet p that p ∈
⋃

r∈t.rules M(r),

there is one and only one rule in t.rules that p matches. We use t(p) to denote

the decision of the unique rule that p matches in t.rules .

Given a partial FDT t and a sequence of rules 〈r1, r2, · · · , rk〉 that may

be not comprehensive, we say t is equivalent to 〈r1, r2, · · · , rk〉 iff the following

two conditions hold:

i.
⋃

r∈T.rules M(r) =
⋃k

i=1 M(ri),

ii. for any packet p that p ∈
⋃

r∈T.rules M(r), t(p) is the same as the decision

of the first rule that p matches in the sequence 〈r1, r2, · · · , rk〉.

129

For example, the partial FDT in Figure 6.3 is equivalent to the sequence of

rules 〈(F1 ∈ [20, 50]) ∧ (F2 ∈ [35, 65]) → a, (F1 ∈ [10, 60]) ∧ (F2 ∈ [15, 45]) →

d〉.

PSfrag replacements

F1

F2F2

[20, 50] [10, 19]
[51, 60]

[35, 65] [15, 34] [15, 45]

E2 = {F1 ∈ [10, 19] ∪ [51, 60] ∧ F2 ∈ [15, 45] → d

F1 ∈ [20, 50] ∧ F2 ∈ [15, 34] → d}

〈 r1 : F1 ∈ [20, 50] ∧ F2 ∈ [35, 65] → a

r2 : F1 ∈ [10, 60] ∧ F2 ∈ [15, 45] → d 〉

a dd

Figure 6.3. A partial FDT

An effective rule set for each rule in a firewall is calculated with the help

of partial FDTs. Consider a firewall that consists of n rules 〈r1, r2, · · · , rn〉.

Our upward redundancy removal algorithm first builds a partial FDT, denoted

t1, that is equivalent to the sequence 〈r1〉, and calculates an effective rule set,

denoted E1, of rule r1. Then the algorithm transforms the partial FDT t1 to

another partial FDT, denoted t2, that is equivalent to the sequence 〈r1, r2〉, and

during the transformation process, we calculate an effective rule set, denoted

E2, of rule r2. The same transformation process continues until we reach rn.

When we finish, an effective rule set is calculated for every rule.

Here we use ti to denote the partial FDT that we constructed from

the rule sequence 〈r1, r2, · · · , ri〉, and Ei to denote the effective rule set that

we calculated for rule ri. By the following example, we show the process of

transforming the partial FDT ti to the partial FDT ti+1, and the calculation

130

of Ei+1. Consider the firewall in Figure 6.4 over fields F1 and F2, where

D(F1) = D(F2) = [1, 100]. Figure 6.5 shows the geometric representation of

this firewall, where each rule is represented by a rectangle. From Figure 6.5,

we can see that rule r3 is upward redundant because r3, whose area is marked

by dashed lines, is totally overlaid by rules r1 and r2. Later we will see that

the effective rule set calculated by our upward redundancy removal algorithm

for rule r3 is indeed an empty set.

r1 : (F1 ∈ [20, 50]) ∧ (F2 ∈ [35, 65]) → a
r2 : (F1 ∈ [10, 60]) ∧ (F2 ∈ [15, 45]) → d
r3 : (F1 ∈ [30, 40]) ∧ (F2 ∈ [25, 55]) → a
r4 : (F1 ∈ [1, 100]) ∧ (F2 ∈ [1, 100]) → d

Figure 6.4. A firewall of 4 rules

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

 Packet Field F1

 P
ac

ke
t F

ie
ld

 F
2

 r
4

 r
2

 r
1

 r
3

 r
4

 r
2

 r
1

 r
3

 r
4

 r
2

 r
1

 r
3

Figure 6.5. Geometric representation of the rules in Figure 6.4

131

Figure 6.6 shows a partial FDT t1 that is equivalent to 〈r1〉 and the

effective rule set E1 calculated for rule r1. In this figure, we use v1 to denote

the node with label F1, e1 to denote the edge with label [20, 50], and v2 to

denote the node with label F2.

PSfrag replacements

F1

F2

[20, 50]

[10, 19]

[51, 60]

[35, 65]

[15, 34]

[15, 45]

〈 r1 : F1 ∈ [20, 50] ∧ F2 ∈ [35, 65] → a 〉

E1 = {F1 ∈ [20, 50] ∧ F2 ∈ [35, 65] → a}

a

d

Figure 6.6. Partial FDT t1 and the effective rule set E1 calculated for
rule r1 in Figure 6.4

Now we show how to append rule r2 to t1 in order to get a partial

FDT t2 that is equivalent to 〈r1, r2〉, and how to calculate an effective rule

set E2 for rule r2. Rule r2 is (F1 ∈ [10, 60]) ∧ (F2 ∈ [15, 45]) → d. We first

compare the set [10, 60] with the set [20, 50] labelled on the outgoing edge of

v1. Since [10, 60]− [20, 50] = [10, 19]∪ [51, 60], r2 is the first matching rule for

all the packets that satisfy F1 ∈ [10, 19] ∪ [51, 60] ∧ F2 ∈ [15, 45], so we add

one outgoing edge e to v1, where e is labeled [10, 19] ∪ [51, 60] and e points to

the path built from F2 ∈ [15, 45] → d. The rule defined by the decision path

containing e, i.e., F1 ∈ [10, 19] ∪ [51, 60] ∧ F2 ∈ [15, 45] → d, should be put in

E2 because for all packets that match this rule, r2 is their first matching rule.

132

Since [20, 50] ⊂ [10, 60], r2 is possibly the first matching rule for a packet that

satisfies F1 ∈ [20, 50]. So we further compare the set [35, 65] labeled on the

outgoing edge of v2 with the set [15, 45]. Since [15, 45]− [35, 65] = [15, 34], we

add a new edge e′ to v2, where e′ is labeled [15, 34] and e′ points to a terminal

node labeled d. Similarly, we add the rule, F1 ∈ [20, 50] ∧ F2 ∈ [15, 34] → d,

defined by the decision path containing the new edge e′ into E2. The partial

FDT t2 and the effective rule set E2 of rule r2 is shown in Figure 6.7.

PSfrag replacements

F1

F2 F2

[20, 50] [10, 19]
[51, 60]

[35, 65] [15, 34] [15, 45]

E2 = {F1 ∈ [10, 19] ∪ [51, 60] ∧ F2 ∈ [15, 45] → d
F1 ∈ [20, 50] ∧ F2 ∈ [15, 34] → d}

〈 r1 : F1 ∈ [20, 50] ∧ F2 ∈ [35, 65] → a

r2 : F1 ∈ [10, 60] ∧ F2 ∈ [15, 45] → d 〉 a d d

Figure 6.7. Partial FDT t2 and the effective rule set E2 calculated for
rule r2 in Figure 6.4

Let f be any firewall that consists of n rules: 〈r1, r2, · · · , rn〉. The

partial FDT that is equivalent to 〈r1〉 consists of only one decision path that

defines the rule r1.

Suppose that we have constructed a partial FDT ti that is equivalent

to the sequence 〈r1, r2, · · · , ri〉, and have calculated an effective rule set for

each of these i rules. Let v be the root of ti, and assume v has k outgoing

edges e1, e2, · · · , ek. Let rule ri+1 be (F1 ∈ S1)∧ (F2 ∈ S2)∧ · · · ∧ (Fd ∈ Sd) →

133

〈decision〉. Next we consider how to transform the partial FDT ti to a par-

tial FDT, denoted ti+1, that is equivalent to the sequence 〈r1, r2, · · · , ri, ri+1〉,

and during the transformation process, how to calculate an effective rule set,

denoted Ei+1, for rule ri+1.

First, we examine whether we need to add another outgoing edge to

v. If S1 − (I(e1) ∪ I(e2) ∪ · · · ∪ I(ek)) 6= ∅, we need to add a new outgoing

edge ek+1 with label S1 − (I(e1)∪ I(e2)∪ · · · ∪ I(ek)) to v. This is because any

packet, whose F1 field satisfies S1− (I(e1)∪I(e2)∪· · ·∪I(ek)), does not match

any of the first i rules, but matches ri+1 provided that the packet also satisfies

(F2 ∈ S2)∧(F3 ∈ S3)∧· · ·∧(Fd ∈ Sd). The new edge ek+1 points to the root of

the path that is built from (F2 ∈ S2)∧(F3 ∈ S3)∧· · ·∧(Fd ∈ Sd) → 〈decision〉.

The rule r, (F1 ∈ S1 − (I(e1) ∪ I(e2) ∪ · · · ∪ I(ek))) ∧ (F2 ∈ S2) ∧ · · · ∧ (Fd ∈

Sd) → 〈decision〉, defined by the decision path containing the new edge ek+1

has the property M(r) ⊆ R(ri+1, f). Therefore, we add rule r to Ei.

Second, we compare S1 and I(ej) for each j (1 ≤ j ≤ k) in the following

three cases:

i. S1 ∩ I(ej) = ∅: In this case, we skip edge ej because any packet whose

value of field F1 is in set I(ej) doesn’t match ri+1.

ii. S1 ∩ I(ej) = I(ej): In this case, for a packet p whose value of field F1 is

in set I(ej), the first rule that p matches may be one of the first i rules,

and may be rule ri+1. So we append (F2 ∈ S2) ∧ (F3 ∈ S3) ∧ · · · ∧ (Fd ∈

134

Sd) → 〈decision〉 to the subtree rooted at the node that ej points to in

a similar fashion.

iii. S1 ∩ I(ej) 6= ∅ and S1 ∩ I(ej) 6= I(ej): In this case, we split edge e into

two edges: e′ with label I(ej) − S1 and e′′ with label I(ej) ∩ S1. Then

we make two copies of the subtree rooted at the node that ej points to,

and let e′ and e′′ point to one copy each. Thus we can deal with e′ by

the first case, and e′′ by the second case.

In the process of appending rule ri+1 to partial FDT ti, each time

that we add a new edge to a node in ti, the rule defined by the decision

path containing the new edge is added to Ei+1. After the partial FDT ti is

transformed to ti+1, according to the transformation process, the rules in Ei+1

satisfy the following two conditions: (1) the union of all the matching sets of

these rules is the resolving set of ri+1, (2) all these rules have the same decision

as ri+1. Therefore, Ei+1 is an effective rule set of rule ri+1.

The pseudocode for removing upward redundant rules is as follows. In

the algorithm, we use e.t to denote the node that edge e points to.

Upward Redundancy Removal Algorithm

input : A firewall f that consists of n rules 〈r1, r2 · · · , rn〉

output: (1) Upward redundant rules in f are removed.

(2) An effective rules set for each rule is calculated.

135

1. Build a decision path from rule r1 and let v be the root;

2. for i := 2 to n do

(1) Ei := ∅;

(2) Ecal(v, i, ri);

(3) if Ei = ∅ then remove ri;

Ecal(v, i, (Fj ∈ Sj) ∧ · · · ∧ (Fd ∈ Sd) → 〈decision〉)

/*F (v) = Fj and E(v) = {e1, · · · , ek}*/

1. if Sj − (I(e1) ∪ · · · ∪ I(ek)) 6= ∅ then

(1) Add an outgoing edge ek+1 with label Sj − (I(e1) ∪ · · · ∪ I(ek)) to v;

(2) Build a path from (Fj+1 ∈ Sj+1) ∧ · · · ∧ (Fd ∈ Sd) → 〈decision〉,

and let ek+1 point to its root;

(3) Add the rule defined by the decision path containing edge ek+1 to Ei;

2. if j < d then

for g := 1 to k do

if I(eg) ⊆ Sj then

Ecal(eg.t, i, (Fj+1 ∈ Sj+1)∧· · · ∧ (Fd ∈ Sd) → 〈decision〉);

else if I(ej) ∩ Si 6= ∅ then

(1) I(eg) := I(eg) − Sj;

(2) Add one outgoing edge e with label I(eg) ∩ Sj to v;

(3) Replicate the graph rooted at eg.t, and

let e points to the replicated graph;

(4) Ecal(e.t, i, (Fj+1 ∈ Sj+1) ∧ · · · ∧ (Fd ∈ Sd) → 〈decision〉);

136

By applying our upward redundancy removal algorithm to the firewall

in Figure 6.4, we get an effective rule set for each rule as shown in Figure 6.8.

Note that E3 = ∅, which means that rule r3 is upward redundant, therefore r3

is removed.

1 : E1 = {F1 ∈ [20, 50] ∧ F2 ∈ [35, 65] → a};
2 : E2 = {F1 ∈ [10, 19] ∪ [51, 60] ∧ F2 ∈ [15, 45] → d

F1 ∈ [20, 50] ∧ F2 ∈ [15, 34] → d};
3 : E3 = ∅;
4 : E4 = {

F1 ∈ [1, 9] ∪ [61, 100] ∧ F2 ∈ [1, 100] → d
F1 ∈ [20, 29] ∪ [41, 50] ∧ F2 ∈ [1, 14] ∪ [66, 100]→ d
F1 ∈ [30, 40] ∧ F2 ∈ [1, 14] ∪ [66, 100] → d
F1 ∈ [10, 19] ∪ [51, 60] ∧ F2 ∈ [1, 14] ∪ [46, 100]→ d}

Figure 6.8. Effective rule sets calculated for the firewall in Figure 6.4

6.3 Removing Downward Redundancy

One particular advantage of detecting and removing upward redundant

rules before detecting and removing downward redundant rules in a firewall is

that an effective rule set for each rule is calculated by the upward redundancy

removal algorithm; therefore, we can use the effective rule set of a rule to check

whether the rule is downward redundant. Note that knowing an effective rule

set of a rule equals knowing the resolving set of the rule.

Our algorithm for removing downward redundant rules is based on the

137

following theorem.

Theorem 6.3.1. Let f be any firewall that consists of n rules: 〈r1, r2, · · · , rn〉.

Let t′i (2 ≤ i ≤ n) be an FDT that is equivalent to the sequence of rules

〈ri, ri+1, · · · , rn〉. The rule ri−1 with the effective rule set Ei−1 is down-

ward redundant in f iff for each rule r in Ei−1 and for each decision path

(v1e1v2e2 · · · vdedvd+1) in t′i where rule r overlaps the rule that is defined by

this decision path, the decision of r is the same as the label of the terminal

node vd+1.

Proof Sketch: Since the sequence of rules 〈ri, ri+1, · · · , rn〉 is comprehensive,

there exists an FDT that is equivalent to this sequence of rules. By the re-

dundancy theorem, rule ri−1 is downward redundant iff for each rule r in Ei−1

and for any p that p ∈ M(r), 〈ri, ri+1, · · · , rn〉(p) is the same as the decision

of r. Therefore, Theorem 6.3.1 follows. 2

Now we consider how to construct an FDT t′i, 2 ≤ i ≤ n, that is

equivalent to the sequence of rules 〈ri, ri+1, · · · , rn〉. The FDT t′n can be built

from rule rn in the same way that we build a path from a rule in the upward

redundancy removal algorithm.

Suppose we have constructed an FDT t′i that is equivalent to the se-

quence of rules 〈ri, ri+1, · · · , rn〉. First, we check whether rule ri−1 is downward

redundant by Theorem 6.3.1. If rule ri−1 is downward redundant, then we re-

move ri, rename the FDT t′i to be t′i−1, and continue to check whether ri−2 is

downward redundant. If rule ri−1 is not downward redundant, then we append

138

rule ri−1 to the FDT t′i such that the resulting tree is an FDT, denoted t′i−1,

that is equivalent to the sequence of rules 〈ri−1, ri, · · · , rn〉. This procedure of

transforming an FDT by appending a rule is similar to the procedure of trans-

forming a partial FDT in the upward redundancy removal algorithm. The

above process continues until we reach r1; therefore, all downward redundant

rules are detected and removed.

The pseudocode for detecting and removing downward redundant rules

is as follows.

Downward Redundancy Removal Algorithm

input : A firewall 〈r1, r2 · · · , rn〉 where each rule ri has an effective rule

set Ei.

output: Downward redundant rules in f are removed.

1. Build a decision path from rule rn and let v be the root;

2. for i := n − 1 to 1 do

if IsDownwardRedundant(v, Ei) = true

then remove ri;

else Append(v, ri);

IsDownwardRedundant(v, E) /*E = {r′1, · · · , r′m}*/

1. for j := 1 to m do

if HaveSameDecision(v, r′j) = false then

139

return(false);

2. return(true);

HaveSameDecision(v, (Fi ∈ Si) ∧ · · · ∧(Fd ∈ Sd) → 〈decision〉)

/*F (v) = Fi and E(v) = {e1, · · · , ek}*/

1. for j := 1 to k do

if I(ej) ∩ Si 6= ∅ then

if i < d then

if HaveSameDecision(ej.t, (Fi+1 ∈ Si+1)

∧ · · · ∧ (Fd ∈ Sd) → 〈decision〉) = false

then return(false);

else

if F (ej.t) 6= 〈decision〉 then return(false);

2. return(true);

Append(v, (Fi ∈ Si) ∧ · · · ∧ (Fd ∈ Sd) → 〈decision〉)

/*F (v) = Fi and E(v) = {e1, · · · , ek}*/

if i < d then

for j := 1 to k do

if I(ej) ⊆ Si then

Append(ej.t, (Fi+1 ∈ Si+1) ∧ · · · ∧ (Fd ∈ Sd) → 〈decision〉);

else if I(ej) ∩ Si 6= ∅ then

(1) I(ej) := I(ej) − Si;

140

(2) Add one outgoing edge e with label I(ej) ∩ Si to v;

(3) Replicate the graph rooted at ej.t, and

let e points to the replicated graph;

(4) Append(e.t, (Fi+1 ∈ Si+1) ∧ · · · ∧ (Fd ∈ Sd) → 〈decision〉);

else /*i = d*/

(1) for j := 1 to k do

(a) I(ej) := I(ej) − Si;

(b) if I(ej) = ∅ then remove edge ei and node ei.t;

(2) Add one outgoing edge e with label Si to v,

create a terminal node with label 〈decision〉,

and let e point this terminal node;

Applying our downward redundancy removal algorithm to the firewall

in Figure 6.4, assuming r3 has been removed, rule r2 is detected to be downward

redundant, therefore r2 is removed. The FDT in Figure 6.9 is the resulting

FDT by appending rule r1 to the FDT that is equivalent to 〈r4〉.

PSfrag replacements

F1

F2F2

[1, 19] [20, 50]
[51, 100]

[1, 100] [1, 34] [35, 65]
[66, 100]

ad d

Figure 6.9. An FDT

The time and space complexity of the upward and downward redun-

141

dancy removal algorithm is O(nd), where n is the total number of rules and d

is the total number of distinct packet fields that are examined by a firewall.

Although in the worst case our algorithms need nd time and space, our algo-

rithms are practical for two reasons. First, d is typically small. Most real-life

firewalls only examine four packet fields: source IP address, destination IP

address, destination port number and protocol type. Second, the worst case

of our algorithms are very unlikely to happen in real-life.

6.4 Experimental Results

In this section, we evaluate the efficiency of the upward and downward

redundancy removal algorithms. In the absence of publicly available firewalls,

we create synthetic firewalls that embody the important characteristics of real-

life firewalls that have been discovered so far in [30].

We implemented the algorithms in this chapter in SUN Java JDK

1.4 [35]. The experiments were carried out on one SunBlade 2000 machine

running Solaris 9 with a 1Ghz CPU and 1 GB of memory. The average pro-

cessing time for removing all upward and downward redundant rules from a

firewall versus the total number of rules in the firewall is shown in Figure 6.10.

From this figure, we can see that the running time of our algorithms increases

slightly faster than linearly as the number of rules grows. This shows that

our redundancy removal algorithms are efficient enough for practical uses. For

example, it takes less than 3 seconds to remove all the redundant rules from a

firewall that has up to 3000 rules, and it takes less than 6 seconds to remove

142

all the redundant rules from a firewall that has up to 6000 rules. In fact, most

real-life firewalls have less than 1000 rules [30].

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
0

1

2

3

4

5

6

Number of rules

Ti
m

e
fo

r R
em

ov
in

g
A

ll
R

ed
un

da
nt

 R
ul

es
 (s

ec
)

Figure 6.10. Average processing time for removing all (both upward
and downward) redundant rules vs. Total number of rules in a firewall

143

Chapter 7

Epilogue

7.1 Conclusions

Towards to goal of correct firewalls, in this dissertation, we rigorously

and systematically studied the two fundamental problems of how to design a

new firewall such that the errors introduced in the design phase is reduced and

how to analyze an existing firewall such that the errors that have been built-in

in the design phase can be detected.

In this dissertation, we made the following five major contributions:

i. We proposed the method of structured firewall design. This design

method addresses all the three problems of consistency, completeness

and compactness in designing firewalls. Using this design method, a

firewall administrator only needs to focus on the high-level logical de-

sign of a firewall. A series of five algorithms can automatically convert

the high-level logical design into low-level firewall rules.

ii. We proposed the method of diverse firewall design. This method can

greatly reduce the human errors introduced in the design phase. This

method is the first attempt of applying the principle of diverse design to

144

firewalls. The method for comparing two given firewalls could be used

for many other purposes such as change-impact analysis.

iii. We proposed a model for specifying stateful firewalls. This model can

express a variety of state tracking functionalities. It also allows us to

inherit the rich results in stateless firewall design and analysis. Further-

more, it provides backward compatibility such that a stateless firewall

can also be specified using our model.

iv. We proposed a method of querying firewalls, which includes a language

for specifying firewall queries and an algorithm for processing firewall

queries. This method is very helpful for firewall administrators to debug

and non-intrusively test existing firewalls.

v. We proposed a method of detecting redundant rules in a firewall. This is

the first algorithm that can detect all the redundant rules in a firewall,

which means that the resulting firewall after all the redundant rules are

removed has no redundant rules. Detecting redundant rules is useful in

detecting firewall errors because a rule being redundant may not be the

intent of the firewall administrator. Removing useless redundant rules

improves the performance of firewalls.

The design and analysis methods presented in this dissertation are not

limited to firewalls. Rather, they are extensible to other rule-based systems

such as general packet classification systems and IPsec. This extension is fairly

straightforward.

145

7.2 Topics for Future Research

This dissertation opens many research problems for further investiga-

tion in the area of firewall policy management.

We can extend our work on firewall design by conducting extensive

usability studies. It is certainly our belief that the methods of structure firewall

design and diverse firewall design are effective in real setting. However, it

would be more convincing if we can validate the effectiveness of these firewall

design methods by the result of usability studies.

We have proposed a model for specifying stateful firewalls. Further,

we need to investigate how to use this model to design stateful firewalls. It

will be very helpful to provide users with a methodology to design stateful

firewalls using this model. We also need to investigate how to analyze a stateful

firewalls that are designed using this model. This is hard problem because of

the statefulness.

Another interesting direction of future research is to investigate dis-

tributed firewalls. An large enterprise may have hundreds of firewalls that

connects many local area networks together. How to analyze the properties of

these distributed firewalls is worth studying.

146

Bibliography

[1] High level firewall language, http://www.hlfl.org/.

[2] ipchains, http://www.tldp.org/howto/ipchains-howto.html.

[3] Ehab Al-Shaer and Hazem Hamed. Firewall policy advisor for anomaly

detection and rule editing. In IEEE/IFIP Integrated Management IM’2003,

pages 17–30, March 2003.

[4] Ehab Al-Shaer and Hazem Hamed. Management and translation of fil-

tering security policies. In IEEE International Conference on Communi-

cations, pages 256–260, May 2003.

[5] Ehab Al-Shaer and Hazem Hamed. Discovery of policy anomalies in

distributed firewalls. In IEEE INFOCOM’04, pages 2605–2616, March

2004.

[6] H. Anderson and G. Hagelin. Computer controlled interlocking system.

Ericsson Review, (2), 1981.

[7] A. Avizienis. The n-version approach to fault tolerant software. IEEE

Transactions on Software Engineering, SE-11(12):1491–1501, 1985.

[8] A. Avizienis. The methodology of n-version programming. Chapter 2 of

Software Fault Tolerance, M. R. Lyu (ed.), Wiley, 23-46, 1995.

147

[9] A. Avizienis and L. Chen. On the implementation of n-version program-

ming for software fault-tolerance during program execution. In Proceed-

ings of Intl. Computer software and Appl. Conf., pages 145–155, 1977.

[10] Florin Baboescu, Sumeet Singh, and George Varghese. Packet classifica-

tion for core routers: Is there an alternative to cams? In Proceedings of

IEEE INFOCOM, 2003.

[11] Florin Baboescu and George Varghese. Scalable packet classification. In

Proceedings of ACM SIGCOMM, pages 199–210, 2001.

[12] Florin Baboescu and George Varghese. Fast and scalable conflict detec-

tion for packet classifiers. In Proceedings of the 10th IEEE International

Conference on Network Protocols, 2002.

[13] Yair Bartal, Alain J. Mayer, Kobbi Nissim, and Avishai Wool. Firmato:

A novel firewall management toolkit. In Proceeding of the IEEE Sympo-

sium on Security and Privacy, pages 17–31, 1999.

[14] Yair Bartal, Alain J. Mayer, Kobbi Nissim, and Avishai Wool. Firmato:

A novel firewall management toolkit. Technical Report EES2003-1, Dept.

of Electrical Engineering Systems, Tel Aviv University, 2003.

[15] Andrew Begel, Steven McCanne, and Susan L. Graham. BPF+: Ex-

ploiting global data-flow optimization in a generalized packet filter archi-

tecture. In Proceedings of ACM SIGCOMM ’99, 1999.

148

[16] Randal E. Bryant. Graph-based algorithms for boolean function manip-

ulation. IEEE Trans. on Computers, 35(8):677–691, 1986.

[17] CERT. Test the firewall system. http://www.cert.org/

security-improvement/practices/p060.html.

[18] CheckPoint FireWall-1. http://www.checkpoint.com/. Date of access:

March 25, 2005.

[19] Cisco PIX Firewalls. http://www.cisco.com/. Date of access: March 25,

2005.

[20] Cisco Reflexive ACLs. http://www.cisco.com/. Date of access: March

25, 2005.

[21] A.E. Condor and G.J. Hinton. Fault tolerant and fail-safe design of candu

computerised shutdown systems. IAEA Specialist Meeting on Micropro-

cessors important to the Safety of Nuclear Power Plants,, May 1988.

[22] Edsger W. Dijkstra. Goto statement considered harmful. Communica-

tions of the ACM, 11(3):147–148, March 1968.

[23] David Eppstein and S. Muthukrishnan. Internet packet filter manage-

ment and rectangle geometry. In Symp. on Discrete Algorithms, pages

827–835, 2001.

[24] Pasi Eronen and Jukka Zitting. An expert system for analyzing firewall

rules. In Proceedings of the 6th Nordic Workshop on Secure IT Systems

(NordSec 2001), pages 100–107, 2001.

149

[25] Dan Farmer and Wietse Venema. Improving the security of your site by

breaking into it. http://www.alw.nih.gov/Security/Docs/admin-guide-to-

cracking.101.html, 1993.

[26] Michael Frantzen, Florian Kerschbaum, Eugene Schultz, and Sonia Fahmy.

A framework for understanding vulnerabilities in firewalls using a dataflow

model of firewall internals. Computers and Security, 20(3):263–270, 2001.

[27] M. Freiss. Protecting Networks with SATAN. O’Reilly & Associates, Inc.,

1998.

[28] Mohamed G. Gouda and Alex X. Liu. Firewall design: consistency,

completeness and compactness. In Proceedings of the 24th IEEE In-

ternational Conference on Distributed Computing Systems (ICDCS-04),

pages 320–327, March 2004.

[29] Mohamed G. Gouda and Alex X. Liu. A model of stateful firewalls and

its properties. In Proceedings of the IEEE International Conference on

Dependable Systems and Networks (DSN-05), pages 320–327, June 2005.

[30] Pankaj Gupta. Algorithms for Routing Lookups and Packet Classifica-

tion. PhD thesis, Stanford University, 2000.

[31] Pankaj Gupta and Nick McKeown. Algorithms for packet classification.

IEEE Network, 15(2):24–32, 2001.

150

[32] Joshua D. Guttman. Filtering postures: Local enforcement for global

policies. In Proceedings of IEEE Symp. on Security and Privacy, pages

120–129, 1997.

[33] Adiseshu Hari, Subhash Suri, and Guru M. Parulkar. Detecting and

resolving packet filter conflicts. In Proceedings of IEEE INFOCOM,

pages 1203–1212, 2000.

[34] Scott Hazelhurst, Adi Attar, and Raymond Sinnappan. Algorithms for

improving the dependability of firewall and filter rule lists. In Proceed-

ings of the Workshop on Dependability of IP Applications, Platforms and

Networks, 2000.

[35] Java. http://java.sun.com/. September 2004.

[36] Seny Kamara, Sonia Fahmy, Eugene Schultz, Florian Kerschbaum, and

Michael Frantzen. Analysis of vulnerabilities in internet firewalls. Com-

puters and Security, 22(3):214–232, 2003.

[37] Alex X. Liu and Mohamed G. Gouda. Diverse firewall design. In Proceed-

ings of the International Conference on Dependable Systems and Networks

(DSN-04), pages 595–604, June 2004.

[38] Alex X. Liu and Mohamed G. Gouda. Complete redundancy detection

in firewalls. In Proceedings of 19th Annual IFIP Conference on Data and

Applications Security, LNCS 3654, S. Jajodia and D. Wijesekera Ed.,

Springer-Verlag, pages 196–209, August 2005.

151

[39] Alex X. Liu, Mohamed G. Gouda, Huibo Heidi Ma, and Anne HH.

Ngu. Firewall queries. In Proceedings of the 8th International Con-

ference on Principles of Distributed Systems, LNCS 3544, T. Higashino

Ed., Springer-Verlag, pages 124–139, December 2004.

[40] Alain Mayer, Avishai Wool, and Elisha Ziskind. Fang: A firewall analysis

engine. In Proceedings of IEEE Symp. on Security and Privacy, pages

177–187, 2000.

[41] Jonathan D. Moffett and Morris S. Sloman. Policy conflict analysis in

distributed system management. Journal of Organizational Computing,

4(1):1–22, 1994.

[42] Nessus. http://www.nessus.org/. March 2004.

[43] Netfilter/IPTables. http://www.netfilter.org/. Date of access: March

25, 2005.

[44] J. Postel. Internet control message protocol. RFC 792, 1981.

[45] J. Postel and J. Reynolds. File transfer protocol. RFC 959, 1985.

[46] Lili Qiu, George Varghese, and Subhash Suri. Fast firewall implementa-

tions for software-based and hardware-based routers. In Proceedings the

9th International Conference on Network Protocols (ICNP), 2001.

[47] J.R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–

106, 1986.

152

[48] Sumeet Singh, Florin Baboescu, George Varghese, and Jia Wang. Packet

classification using multidimensional cutting. In Proceedings of ACM

SIGCOMM, 2003.

[49] Ed Spitznagel, David Taylor, and Jonathan Turner. Packet classification

using extended tcams. In Proceedings of IEEE International Conference

on Network Protocols (ICNP), November 2003.

[50] V. Srinivasan, Subhash Suri, and George Varghese. Packet classification

using tuple space search. In Proceedings of ACM SIGCOMM, pages

135–146, 1999.

[51] Venkatachary Srinivasan, George Varghese, Subhash Suri, and Marcel

Waldvogel. Fast and scalable layer four switching. In Proceedings of

ACM SIGCOMM, pages 191–202, 1998.

[52] Karsten Strehl and Lothar Thiele. Interval diagrams for efficient symbolic

verification of process networks. IEEE Trans. on Computer-Aided Design

of Integrated Circuits and Systems, 19(8):939–956, 2000.

[53] Xiaolin Teng and Hoang Pham. A software-reliability growth model

for n-version programming systems. IEEE Transactions on Reliability,

51(3):311–321, 2002.

[54] P. Traverse. Airbus and atr system architecture and specification. Soft-

ware Diversity in Computerised Control Systems, U. Voges (ed.), Springer

Verlag, 1988.

153

[55] Mladen A. Vouk. On back-to-back testing. In Proceedings of Annual

Conference on Computer Assurance (COMPASS), pages 84–91, 1988.

[56] Mladen A. Vouk. On growing software reliability using back-to-back test-

ing. In Proceedings 11th Minnowbrook Workshop on Software Reliability,

1988.

[57] Thomas Y. C. Woo. A modular approach to packet classification: Algo-

rithms and results. In Proceedings of IEEE INFOCOM, pages 1213–1222,

2000.

[58] Avishai Wool. Architecting the lumeta firewall analyzer. In Proceedings

of the 10th USENIX Security Symposium, pages 85–97, August 2001.

[59] Avishai Wool. A quantitative study of firewall configuration errors.

IEEE Computer, 37(6):62–67, 2004.

154

Vita

Xiang-Yang Alexander Liu received the B.S. degree in computer sci-

ences from Jilin University, China, in 1996. He received the M.S. degree in

computer sciences from the University of Texas at Austin in 2002. His main

research interest is computer and network security. He is also interested in

dependable computing, distributed computing, computer networks and op-

erating systems. He has published fourteen refereed conference and journal

papers on a variety of network security topics.

Xiang-Yang Alexander Liu was the recipient of the 2004 IEEE&IFIP

William C. Carter Award for his paper ”Diverse Firewall Design” (coauthored

with Mohamed G. Gouda), the 2004 National Outstanding Overseas Students

Award sponsored by the Ministry of Education of China, the 2005 George H.

Mitchell Award for Excellence in Graduate Research in the University of Texas

at Austin, and the 2005 James C. Browne Outstanding Graduate Student

Fellowship in the University of Texas at Austin.

Permanent address: 4573 Spicewood Drive, Okemos, Michigan 48864

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

155

