
Copyright

by

Matthew Franklin Halpern

2016

The Report committee for Matthew Franklin Halpern
Certifies that this is the approved version of the following report:

Bridging the Gap Between Mobile CPU Design

and User Satisfaction Via Crowdsourcing

APPROVED BY

SUPERVISING COMMITTEE:

Supervisor:

Vijay Janapa Reddi

Mohit Tiwari

Bridging the Gap Between Mobile CPU Design

and User Satisfaction Via Crowdsourcing

by

Matthew Franklin Halpern, B.S.E.E.

REPORT

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2016

Bridging the Gap Between Mobile CPU Design

and User Satisfaction Via Crowdsourcing

Matthew Franklin Halpern, M.S.E.

The University of Texas at Austin, 2016

Supervisor: Vijay Janapa Reddi

This report aims to provide an understanding of how the mobile CPU designs have

evolved and its influence on end-user satisfaction. To that end, a quantitative per-

formance analysis is conducted across ten cutting-edge mobile CPU designs stud-

ied within top-selling off-the-shelf smartphones released over the past seven years.

This analysis is then used to guide a large-scale user study spanning over 25,000

participants via crowdsourcing on the Amazon Mechanical Turk service. The user

study asks participants to assess the responsiveness of interactive application use

cases for a set of current-generation applications (e.g. Angry Birds and FaceBook)

and next-generation applications (i.e. face recognition and augmented reality) rela-

tive to the performance capabilities of the devices studied. This framework allows

us to quantitatively link how the mobile CPU designs studied impacted end-user

satisfaction.

The study results indicate that mobile CPU designs have exhibited signifi-

cant performance improvements through aggressive core scaling techniques preva-

lent in desktop CPUs. Just as was observed in desktop CPU design, these same

techniques have lead to excessive mobile CPU power consumption. However, from

iv

an end-user perspective this power consumption was not without success. Mo-

bile CPUs have evolved to provide satisfactory experiences for the studied current-

generation applications. The reason is that many of these applications rely heavily

on single-threaded performance. Other, more recent applications, actually multi-

thread user-critical parts of the applications, which also demonstrates that multi-

core mobile CPUs are an important design consideration – contrary to conventional

wisdom. However, looking ahead, the same mobile CPUs where not able to provide

satisfactory experiences for many of the next-generation applications studied, ques-

tioning the sustainability of these power-hungry design techniques in future mobile

CPU designs.

v

Table of Contents

Abstract iv

List of Tables viii

List of Figures ix

Chapter 1. Introduction 1

Chapter 2. Motivation: Mobile CPU Design Trends 4
2.1 Mobile CPU Selection and Experimental Approach 4

2.1.1 Mobile CPU Selection Criteria 5
2.1.2 Workloads . 7
2.1.3 Power Measurements . 7
2.1.4 Challenges, Precautions, and Assumptions 8

2.1.4.1 Operating System 8
2.1.4.2 Memory (DRAM) 9

2.2 Performance Analysis . 9
2.3 Power and Energy Analysis . 11

Chapter 3. Methodology: Crowdsourcing a User Study 15
3.1 Interactive Application Selection 15
3.2 Experimental Flow . 18

3.2.1 Mechanical Turk . 18
3.2.2 Record User Interaction . 19
3.2.3 Parameterized Replay and Phone Mapping 19
3.2.4 Publish Replay . 20
3.2.5 Crowdsourced User Study 20
3.2.6 Precautions, Limitations and Assumptions 21

vi

Chapter 4. Findings: Architecting for End-Users 22
4.1 Interpretting Results . 22
4.2 Role of Single-core CPU Performance Improvements 23
4.3 Role of Multi-core CPU Performance Improvements 24
4.4 Role of GPU and Other Accelerators’ Performance 27

Chapter 5. Related Work 30
5.1 Trend-based CPU Studies . 30
5.2 User Experience Studies . 30
5.3 CPU Evaluation Metrics . 31
5.4 Mobile Application Benchmarking 31
5.5 Crowdsourcing . 32

Chapter 6. Conclusion 33

Index 34

Bibliography 35

vii

List of Tables

2.1 Mobile CPUs Under Study. 6

3.1 Interactive Application Used In User Study 16

viii

List of Figures

2.1 Breakdown of Yearly ARM Cortex-A CPU Design Market Share. . 5
2.2 Mobile CPU Single-core Performance Trends. 10
2.3 Mobile CPU Instruction-Per-Cyle Trends. 11
2.4 Mobile CPU Single-core Power Consumption Trends. 12
2.5 Mobile CPU Single-core Energy Efficiency Trends. 13

3.1 Crowdsourced User Study Methodology. 18
3.2 S5Q CPU mapping. 20
3.3 Mapping error. 20

4.1 User Satisfaction Results for Single- and Multi-core CPU Analysis 23
4.2 User Satisfaction Results for GPU Analysis 28

ix

Chapter 1

Introduction

The success of any mobile computing system is dicted by its end-users. As

a result, mobile hardware design is driven by ambitious user requirements. End-

users have come to expect that each mobile device generations heralds performance

improvements while providing longer battery lifes and slimmer device form factors.

At the forefront of this hardware innovation is the mobile CPU. The mobile

CPU has been, and will continue to be, a critical SoC component for three reasons.

First, mobile applications are developed in general-purpose languages that target

the CPU, such as Objective-C, Java, and Swift. Second, the most of the other

mobile device components are orchestrated through the CPU as the OS kernel and

device driver code executes on it. Lastly, accelerators are typically extracted from

computational kernels previously executed on the CPU.

Mobile CPUs have evolved into high-performance processors in hopes of

maximizing end-user satisfaction. However, despite almost a decade of existence,

mobile CPU design trends and their impact on end-user experience are not well-

understood in both industry and academia. Current mobile CPU architecture re-

search exclusively focuses on the interactions between the hardware and software.

This “system efficiency” approach largely ignores the end-user, treating them as a

secondary concern at best. Yet end-users will ultimately determine whether or not

these designs are successful.

1

This report seeks to provide an understanding of the mobile CPU’s evo-

lution by observing real-world mobile CPU trends in conjunction with end-user

experience. It does so by measuring and quantifying the performance, power, en-

ergy, and user satisfaction trends across mobile CPU designs released between 2009

and 2015. Our study spans across ten mobile CPUs, representing the evolution of

the seven consecutive generations of cutting-edge ARM-based mobile CPU tech-

nology. These mobile CPUs span nine different microarchitectures, six different

process nodes and also include recent trends towards asymmetric multiprocessing

and core customization.

To extend the conventional research scope to include the end-user and con-

sider how generation mobile CPU design trends have affected them, we construct

and conduct a novel crowdsourcing-based user study. Using Amazon’s Mechanical

Turk service, we are able to solicit over 25,000 participants – orders of magnitude

more than prior work in computer architecture studies [50, 53–55]. Our methodol-

ogy allows us to quantitatively determine the relationship between end user satis-

faction and mobile CPU design evolution. The survey participants evaluate a wide

variety of applications that exhibit different types of user interaction and computa-

tional characteristics common to current (e.g. Angry Birds), and likely future (e.g.

augmented reality), mobile applications.

Our measurements show that mobile CPUs have evolved rapidly to deliver

peak performance increases for better application responsiveness. Mobile CPU de-

signs changed dramatically from 2008 to 2015, leveraging over 20 years of desktop

CPU design techniques (i.e. resource scaling). However, as with desktop CPU de-

signs, this aggressive resource scaling has resulted in excessive power consumption

over time. Additionally, energy efficiency improvements have been stagnating as

the power consumption increases have outpaced performance improvements.

2

Despite their power hungry nature, the results from the crowdsourced user

study demonstrate that these mobile CPU design improvements have not been in

vain. The participants’ satisfaction improved for all of the current generation ap-

plication use cases (e.g., YouTube, Photoshop). Therefore, the transition to out-of-

order cores, and more recently big, aggressive cores coupled with little, efficient

cores, has ultimately benefited end users. Overall, the results suggest that current

mobile CPUs designs are overprovisioned for the bursty behavior of today’s ap-

plications. Even with applications that utilize the GPU and other accelerators, the

participants were still sensitive to CPU performance.

Looking ahead, our users did not find the mobile CPU performance satis-

factory for many of the next-generation applications (e.g., real-time face detection),

which motivates the need to better understand how to provide the power-efficienct

performance improvements they necessitate in future designs.

3

Chapter 2

Motivation: Mobile CPU Design Trends1

To understand how mobile CPU designs have progressed to deliver perfor-

mance, this chapter presents a quantitative performance analysis across ten ARM-

based mobile CPUs found in top-selling smarthphones released from 2009 to 2015.

Each smartphone encapsulates the cutting-edge mobile CPU technology available

within a particular year.

The results demonstrate that mobile CPU performance has increased dra-

matically over time – ultimately at the expense of excessive power consumption.

These performance improvements are the result of desktop-like resource scaling:

more aggressive microarchitectural mechanisms, clock frequency increases, and

memory hierarchy growth (as well as multi-core scaling, which is not considered

in this section). Energy efficiency at peak performance also improved significantly

but has recently started to diminish because of excessive power consumption.

2.1 Mobile CPU Selection and Experimental Approach

This section introduces the mobile CPUs that will be studied throughout the

remainder of this report. The CPUs were carefully chosen to reflect the mobile CPU

design trends most prevalant in the real-world.

1This chapter includes research previously published in [36]

4

100

80

60

40

20

0

N
or

m
al

iz
ed

 A
R

M
 IP

 M
ar

ke
t S

ha
re

2010
2011

2012
2013

2014
2015

Year

 ARM11 A8 A5 A9 A15 A7 A53 A57

Fig. 2.1: Breakdown of Yearly ARM Cortex-A CPU Design Market Share.

2.1.1 Mobile CPU Selection Criteria

An important aspect of conducting any generational study is selecting the

right “samples” to study. Our work focuses on ten ARM Cortex-A-based CPUs

released between 2009 and 2015, which has been the dominant line of mobile CPUs

used to date [1]. It is important to note that in this report “CPU” is used to refer to

the all of the processing subsystems that support general purpose compute (i.e. core

and memory). Both the core and memory subsystems have dramatically improved

over time, so we study their holistic evolution across the mobile device generations.

Mobile CPUs are being introduced at an unprecedented rate. To make an

informed selection of what mobile CPUs to study, Fig. 2.1, was generated from

data mined from over 1700 Android smartphone specifications. Fig. 2.1 conveys

the fast pace at which mobile CPU designs have evolved. Considering the ARM-

based Cortex-A series alone, the most dominant mobile CPU design in smartphones

5

Table 2.1: Mobile CPUs Under Study.

Year 2009 2010 2011 2012 2013 2014 2015
Manufacturer Motorola Samsung
Name Droid Galaxy S Nexus Galaxy S 3 Galaxy S 4 Galaxy S 5 Galaxy S 6
Label D S N S3S S3Q S4S S4Q S5S S5Q S6

SoC
Texas Samsung Texas Samsung Qualcomm Samsung Qualcomm Samsung Qualcomm Samsung

Instruments Exynos 3110 Instruments Exynos 4412 Snapdragon Exynos 5410 Snapdragon Exynos 5422 Snapdragon Exynos 7420
OMAP 3430 OMAP 4460 MSM8960 APQ8064T 8930AB

Process 64 nm 45 nm 32 nm 28 nm LP 28 nm 28 nm LP 28 nm HKMG 28 nm HPm 14 nm LPE
CPU ARM A8 ARM A8 ARM A9 ARM A9 Krait ARM A15 + A7 Krait 300 ARM A15 + A7 Krait 400 ARM A57 + A53
Cores 1 1 2 4 2 4 + 4 4 4 + 4 4 4 + 4
Frequency 600 MHz 1 GHz 1.2 GHz 1.4 GHz 1.5 GHz 1.6 GHz + 1.2 GHz 1.9 GHz 2.1 GHz + 1.5 GHz 2.5 GHz 2.1 GHz + 1.5 GHz
L0 $ (I/D) - - - - 4 KB / 4 KB - 4 KB / 4 KB - 4 KB / 4 KB -
L1 $ (I/D) 32 KB/ 32 KB 16 KB / 16 KB 32 KB / 32 KB 16 KB / 16 KB 32 KB / 32 KB 16 KB / 16 KB 48 KB / 32 KB
L2 $ 256 KB 512 KB 1 MB 2 MB 2 MB + 512 KB 2 MB 2 MB + 512 KB 2 MB 2 MB + 512 KB
RAM 256 MB LPDDR 512 MB LPDDR2 1 GB LPDDR3 2 GB LPDDR3 3 GB LPDDR4
OS Version 2.2.3 2.2.1 4.2.0 4.0.4 4.1.2 4.2.2 4.4.2 5.02

and tablets to date [1], at least one new CPU core design has been released each year

for the last six years – each significantly more advanced than the last.

The mobile CPUs studied in this report, shown in Table 2.1, track the mo-

bile CPU design trends shown in Fig. 2.1. These tens mobile CPU designs com-

prehensively cover the past six years of mobile CPU design, covering the 32-

bit ARM-based CPU microarchitectures, process technologies, and both symmet-

ric and asymmetric multiprocessing trends prevalent throughout this time period.

These are also the same CPU designs used in other mobile device form factors.

For example, both the Samsung Galaxy Tab 12.6 tablet and Samsung Galaxy S5

(S5S) and Google Glass and Samsung Galaxy Nexus (N) utilize the same SoC fam-

ilies. From hereon forward and throughout the rest of the paper, we refer to each

smartphone model by its abbreviation.

For completeness, different design methodologies between the various CPU

manufacturers are also considered. Specifically, two CPUs vendor designs for each

year from 2012 to 2014 are studied. Samsung uses stock ARM A7 and A15 microar-

chitectures in a heterogeneous multicore configuration whereas Qualcomm creates

its own custom microarchitecture (Krait) and homogenous multicore CPU for the

ARM instruction set architecture.

6

2.1.2 Workloads

The goal of this section is to quantify performance, power, and energy effi-

ciency across mobile CPU generations. To that end, we solely use industry standard

CPU-intensive benchmarking applications to isolate the peak CPU performance ca-

pabilities within each system. We defer the study of interactive mobile applications

under realistic use cases involving users to the next section.

The mobile CPUs are evaluated amongst well-established embedded and

desktop system benchmarks; both within industry and the research community.

EEMBC’s Coremark benchmark is used to represent embedded benchmarking,

which specifically targets the embedded market segment. The benchmark has been

used in prior research to evaluate mobile CPUs [21], as well as in industry [2].

In addition, a subset of the SPEC CPU2006 integer benchmark suite [3] is

used. Specifically, gcc, libquantum, omnetpp, hmmer, and bzip2, whose

inclusion is limited due to compiler and storage issues. The test inputs are used

due to memory limitations, also observed in [21]. While it may seem unconven-

tional to use desktop CPU benchmarks to evaluate mobile CPUs, industry actually

does this. Many industry companies have acknowledged the use of SPEC to evalu-

ate future mobile CPU designs [37, 49, 52].

Sunspider [4], Geekbench [5], and Stream [44], have become popular bench-

marking workloads amongst end-users and within technology journalism. There-

fore, these “magazine workloads” are also used in the study.

2.1.3 Power Measurements

Smartphones do not provide (or openly disclose) mechanisms to directly

measure CPU power consumption. Instead, we use differential power measurement

7

techniques practiced in prior work [21]. Battery-level power measurements are col-

lected from each device using the Monsoon Power Meter [6], which has a five kilo-

samples per second and performs self-calibration. Differential power measurements

(Pactive−Pidle) are used to isolate the CPU’s dynamic power consumption. Extract-

ing power consumption differentially removes static power consumption from idle

components such as the display and the other (unused) SoC components. The radio

and other components unrelated to our study are disabled throughout each power

measurement.

2.1.4 Challenges, Precautions, and Assumptions

Physically extracting generational trends from representative mobile CPUs

is challening. Ideally, such a study should strictly isolate differences between CPUs

– holding operating system, memory (RAM) and other external factors constant

across experiments. However, mobile processors are tightly integrated and cannot

be easily isolated (as in desktop systems), and such a completely isolated study

is infeasible. As a result, the main challenge is to extract CPU trends that are

largely independent of the other system-level differences across the smartphones

under study. These experiments reflect a best effort attempt to reduce the impact of

these differences and only the conclusions drawn from them are meant to be robust

to these external factors, following similar approaches as prior work [21, 29].

2.1.4.1 Operating System

Many of the smartphones utilize different OS versions from one another.

These differences are minimized by the benchmark selection and compilation pro-

cess. SPEC and CoreMark are designed to be robust to different kernel versions by

limiting system calls throughout the program [3,7]. In addition, to mitigate any dy-

8

namically linked library effects, the benchmarks are statically cross-compiled under

the same toolchain so that each system executes the same binaries containing the

exact same library code. The only exception is the S6, which uses ARMv8 binaries

(but are still statically compiled).

2.1.4.2 Memory (DRAM)

Memory does not significantly affect our measurements and conclusions.

Directly measuring the CPU and DRAM power rails on the ODroid-XU develop-

ment platform (the same components in S4S) indicates that DRAM accounts for

less than 9% of the total power across the benchmarks. Prior work observed sim-

ilar proportions [23, 24]. The differential power measurements also filter out the

DRAM’s self-refresh and static power consumption. From a performance perspec-

tive, it is reasonable to assume that each DRAM module is carefully selected by the

mobile device manufacturer to adequately feed data to its corresponding CPU.

2.2 Performance Analysis

Fig. 2.2 shows the single-core speedup for CoreMark, SPEC, Sunspider,

Geekbench and Stream workloads. The data is presented relative to D, the

oldest phone in our study, and smartphones become more recent in the rightward

direction along the x-axis. The solid lines represents the stock ARM IP line (e.g.

Samsung and TI) and the dashed lines denote the custom ARM IP (e.g. Qualcomm).

The S6, the newest device, achieves a 10X average speedup over D for CoreMark

and the SPEC workloads. On average, performance approves 32% generation-to-

generation.

Frequency scaling has fostered significant performance improvements across

9

11

9

7

5

3

1

N
or

m
al

iz
ed

 S
pe

ed
up

D S N S3 S4 S5 S6
Smartphone Model

 SPEC
 Coremark
 Sunspider
 Geekbench
 Stream

 Stock IP
 Custom IP

Fig. 2.2: Mobile CPU Single-core Performance Trends.

mobile CPU generations. As Table 2.1 shows, clock frequency increased by over

4X (500 MHz per year). In 2009, the D operated at 600 MHz, whereas the S5Q

reached a top clock frequency of 2.5 GHz in 2014 – near PC speeds.

Performance improvements cannot be contributed to frequency scaling alone.

Fig. 2.3 shows the performance of the seven stock CPU designs normalized by their

corresponding clock frequency. Microarchitecture-level and the memory hierarchy

improvements were able to provide an almost 3X speedup from D to the S6, without

considering frequency.

The oldest phones we study, the D and S, use the A8 (2008). Unlike its

predecessor, the single-issue ARM11, the A8 has a dual-issue in-order superscalar

design [8] to exploit instruction-level parallelism. The transition for in-order to out-

of-order pipeline designs facilitated significant performance improvements. The A9

(2010), used in the N and S3, utilizes a dual-issue out-of-order pipeline [8]. Even

more aggressive, the A15 (2013), utilized in the S4S and S5S, increases the depth

and issue width of its out-of-order pipeline beyond the A9 [9]. The A57 (2014),

10

4.0

3.0

2.0

1.0Sp
ee

du
p

pe
r H

er
tz

D S N S3 S4 S5 S6
Smartphone Model

Cortex-A9
(2010)

Out-of-order
Superscalar

Cortex-A15
(2013)

Deep pipeline
Triple-issue

Cortex-A57
(2014)

64-bit ISA

Cortex-A8
(2008)

Dual-issue
Superscalar

On-chip L2 cache

Fig. 2.3: Mobile CPU Instruction-Per-Cyle Trends.

used in the S6, incorporates a new 64-bit instruction set architecture (ISA) into an

A15-like design [10].

On-chip and off-chip memory hierarchy enhancements also facilitated per-

formance improvements. The most recent S6 incorporates a larger 48 KB L1

instruction cache to address the growing instruction footprints of mobile applica-

tions [46] while the L1 data cache size remains fixed at 32 KB. Beyond the D, mo-

bile CPUs incorporated a shared L2 cache, which also double in size from 512 KB

at the S to 1 MB at the S3S to 2 MB at the S3Q for the remainder of the CPUs.

Off-chip DRAM also evolved to support the CPUs. From LPDDR to LPDDR4,

data rates doubled from one generation to the next, starting at 400 MHz and reach-

ing 3.2 GHz.

2.3 Power and Energy Analysis

Fig. 2.4 shows the power consumption trend across mobile CPU genera-

tions. Initially, power consumption mostly reduced as performance improved from

11

2.5

2.0

1.5

1.0

0.5

0.0

D
yn

am
ic

 P
ow

er
 (W

)

D S N S3 S4 S5 S6
Smartphone Model

Fig. 2.4: Mobile CPU Single-core Power Consumption Trends.

the D’s in-order A8 design to the S3S’s out-of-order A9 design. The power con-

sumption for all of the workloads reduced from 0.8 W to 0.5 W (38%). However,

S4S begins a trend where complex coupled with higher clock frequencies increases

have caused the average power consumption to hover around 1.5 W. We observe this

trend for the five most recent smartphone generations. At its peak, the S5S’s power

consumption almost reaches 2 W during SPEC’s execution. Somewhat similar be-

havior is observed during experiments in the most recently released S6.

Stream exemplifies the different design strategies for the stock and custom

ARM cores. Fig. 2.2 and Fig. 2.4 demonstrate that the custom Krait cores pursue

performance improvements that are more power-efficient than the stock cores. The

S5S scores 10% higher than the S5Q in performance but does so with almost 50%

higher power consumption because of its more aggressive pipeline and memory

hierarchy subsystem.

Process technology has played a large role in curbing power consumption.

When the A9 shrank from 45 nm in N to 32 nm in S3S, power consumption dropped

12

1.0

0.8

0.6

0.4

0.2

0.0

N
or

m
al

iz
ed

 E
ne

rg
y

D S N S3 S4 S5 S6
Smartphone Model

Fig. 2.5: Mobile CPU Single-core Energy Efficiency Trends.

by 44%. The S3S was fabricated using the high-k metal gate (HKMG) technology,

which utilizes a new gate-level dielectric to minimize static leakage. The remaining

CPUs also use processing nodes with HKMG technology (or one of the LP and

HPm variants). HMKG is a prime example of “good [and rare] fortune” in processor

evolution [48]. Process innovations do not occur frequently, so we do not see large

improvements (or dips) in CPU power consumption in the following generations.

Fig. 2.5 shows CPU energy consumption across the seven generations nor-

malized to D. We observed rapid energy efficiency improvements between D and

S3S. Simultaneous performance improvements and power reductions reduced single-

core energy use by as much as 80%. For the next two mobile CPU generations

(S4S and S4Q), energy efficiency worsens as these mobile CPUs are unable to sus-

tain performance improvements without sacrificing power efficiency. The S5S and

S5Q almost double the S3S’s energy consumption. Qualcomm’s custom core de-

signs consume less power than their Samsung-manufactured counterparts, but also

typically lag in performance. The Qualcomm core’s power-efficiency outweighs

13

Samsung’s performance advantage to provide better energy-efficiency. Finally, the

S6 achieves substantial performance improvements beyond the S5S and S5Q with-

out further increasing power consumption. Thus, it is capable of achieving energy

efficiency almost on par with the S3S.

14

Chapter 3

Methodology: Crowdsourcing a User Study1

To determine whether the generational mobile CPU performance enhance-

ments justify the power increases, we perform a novel crowdsourced user study that

includes over 25,000 participants solicited through Amazons Mechanical Turk ser-

vice [11]. Our large-scale user study allows us to comprehensively assess mobile

users’ sensitivities to different CPU architecture and performance configurations

with high statistical confidence. Most prior work [55, 57, 59] only uses a handful

of users, and thus it is unlikely that one can derive strong conclusions with high

statistical confidence.

3.1 Interactive Application Selection

We study a broad range of popular Android applications, shown in Table 3.1.

Our application selection criteria decompose applications beyond typical applica-

tion domain categories into user- and hardware-level metrics.

Our user-oriented application selection criteria include various user behav-

iors (e.g. waiting for a webpage to load, watching a video, etc.). To convey the

variety of interactiveness across applications, we present the number of interactive

events (e.g. tap, swipe, etc.) used to exercise each application use case in the “User

Events” column.

1This chapter includes research previously published in [36]

15

Table 3.1: Interactive Application Used In User Study

Application Description User-level Metrics Computational Metrics (TLP)
Name Description Installs Duration Events 1 2 3 4 Avg

Angry Birds Navigate to and play first level 0.5-1E9 0:41 6 21% 8% 2% 0% 1.43

C
ur

re
nt

-G
en CNN (Chrome) Navigate to and scroll through CNN.com 1-5E8 0:36 12 16% 11% 7% 2% 1.90

Epic Citadel Navigate through environment 0.5-1E6 0:44 15 25% 22% 5% 0% 1.67
Facebook Log-in and visit ESPN brand page 0.5-1E9 0:57 23 16% 8% 3% 1% 1.67
Gladiator Sword-fight opponent in first level 1-5E6 0:36 31 31% 8% 2% 0% 1.34
Photoshop Express Apply various filters and effects to image 1-5E7 0:48 15 13% 9% 6% 15% 2.52
Youtube Navigate to and watch video 1-5E7 0:46 13 16% 10% 5% 1% 1.73
Ambiant Occlusion Brute force ray primitive intersection 1-5E3 0:21 4 7% 3% 2% 46% 3.46

N
ex

t-
G

en Face Detection Face detection on video 1-5E3 0:21 3 17% 4% 2% 47% 3.09
Gaussian Blur Guassian Blur on video 1-5E3 0:21 3 51% 4% 2% 4% 1.37
Julia Visualization of Julia Set dynamics 1-5E3 0:17 4 11% 4% 2% 24% 2.93
Particles Particle simulation in a spatial grid 1-5E3 0:21 4 17% 14% 14% 7% 2.21

The application use cases also exhibit diverse computational characteristics.

We measure each application’s thread-level parallelism (TLP) with the systrace An-

droid utility to identify the amount of parallelism hardware can exploit [30].

We also incorporate applications from emerging application domains, such

as augmented reality and physics simulation. These forward looking applications

are are part of CompuBench [12], an industry-strength benchmark suite, used by

various mobile device manufacturers [40] that consists of user-facing application

demos built on top of computationally intensive kernels.

We select a broad range of applications for our user study, which are shown

in Table 3.1. These applications are not only amongst the most popular Android ap-

plications downloaded from Google Play [13], but more importantly, they represent

a diverse set of usage and computational characteristics typical of today’s interactive

mobile applications. In addition, we also incorporate applications from emerging

application domains into our study. These applications are contained within Com-

puBench, an industry-strength benchmark suite [12], used by various mobile device

manufacturers [40], that consists of user-facing demos that rely on computationally

intensive next-generation application domains, such as augmented reality, physics

simulation and advance image processing.

16

Our application selection criteria decomposes applications beyond typical

application domain categories into user- and hardware-level metrics, as shown in Ta-

ble 3.1. Our user-oriented application selection criteria includes various user be-

haviors, i.e., waiting for a webpage to load versus watching a video. To convey

the variety of interactiveness across applications, we present the number of interac-

tive events that take place within each use case in the “User Events” column. Each

interactive event corresponds to an individual tap, swipe, or drag activity.

In order to faithfully examine the mobile CPU design in our study, we also

ensure select application whose use cases demonstrate diverse computational char-

acteristics. In particular, we use thread-level parallelism (TLP) collected using

the systrace Android utility. TLP quantifies the amount of parallelism within

each application. We will discuss these characteristics and their impact on user

satisfaction and mobile CPU design throughout the remainder of the section.

While we aim to broadly cover mainstream application domains, we inten-

tionally include three different gaming applications that exhibit different usage and

computational behaviors. A recent study observed that 32% of mobile device us-

age is devoted to gaming, with no one particular outstanding game type [14]. For

similar interactive session durations (36-44 seconds), these three games exhibit dif-

ferent interactivity and computational characteristics. Gladiator is a first-person

fighter where the user presses a button to swing a sword at an opponent, requiring 31

presses to win the level. Angry Birds required six interactions to navigate sev-

eral menus and a single drag to complete the level, and Epic Citadel requires

15 taps to navigate through the game’s environment.

17

Peak CPU
Frequency

Max CPU
Cores Enabled

Peak GPU
Frequency

CPU
Frequency

CPU Core
Count

GPU
Frequency

Record User Interaction Parameterized Replay Publish Replay Crowdsourced User Survey

Survey
Analysis

YouTube
Hosting

Survey
Monkey

A/B Testing
Screen

Recording
RERAN
Replay

Tool

User
Interaction

 Event
 Stream

Amazon
Mechanical

Turk

Fig. 3.1: Crowdsourced User Study Methodology.

3.2 Experimental Flow

Our crowdsourced study consists of having participants rank their satisfac-

tion while we replay representative application use cases under various CPU per-

formance configurations, i.e., core counts and clock frequency – a total of 24 con-

figurations across 13 workloads. Our study presents a unique set of challenges and

showcases a new approach for conducting studies at this scale in the future. There-

fore, we present the rationale behind key choices and design decisions taken for the

study.

3.2.1 Mechanical Turk

Amazon’s Mechanical Turk [11] service is a marketplace for Human Intelli-

gence Tasks (HITs) where requesters post tasks with a price for workers to perform.

Crowdsourcing through Mechanical Turk is well-established in other research ar-

eas, such as for computer vision training data [26] and answering psychological

questionnaires [22].

We solicited over 25,000 users for our study. We got high user engagement

by posting $0.10 HITs for workers. In order to establish statistical confidence in our

study, we each configuration is rated by at least 50 participants. Fig. 3.1 outlines

the MTurk-based study methodology, which we describe next.

18

3.2.2 Record User Interaction

For each application, we record a user manually performing a representative

use case. The Android getevent utility captures raw touchscreen driver events

that capture user input and timing seen throughout the user interaction. To ensure

reproducibility of these interactive “use cases” during later replay stages, we use

the RERAN [32], which is a low-overhead, deterministic touchscreen event injection

tool that was developed for the Android platform.

We record each application with the S5Q fixed to operating at peak per-

formance (i.e., all four CPU cores at 2.4 GHz). We deem this the baseline user

interaction trace. Intuitively, recording the trace at peak performance maximizes

the likelihood of capturing a seamless user experience where the user does not feel

constrained by mobile CPU performance [45].

3.2.3 Parameterized Replay and Phone Mapping

To investigate the impact of mobile CPU evolution on user satisfaction, we

replay the interactive use cases while we sweep S5Q single- and multicore perfor-

mance configurations. The device’s power management facilities (e.g., DVFS) are

disabled to ensure the clock frequency and number of enabled cores remains fixed

throughout each replay session. By parameterizing single- and multicore perfor-

mance across the S5Q, from the latest CPU generation, we are able to simulate the

CPU performance configurations found across the earlier mobile CPU generations

we study.

To allow intuitive comparison between different mobile CPU generations,

we map the performance of earlier smartphones to S5Q. Specifically, the peak

single-core performance of each earlier phone is mapped to an S5Q DVFS fre-

quency that provides the cloest performance. Multicore performance is approxi-

19

42
2.

4

72
9.

6

10
36

.8

14
97

.6

19
58

.4

24
57

.6

Frequency (MHz)

1

2

3

4
C

o
re

s
E
n
a
b
le

d

D S

N

S3S S4SS5Q

Fig. 3.2: S5Q CPU mapping.

D S N S3S S4S
Phone

30

20

10

0

10

20

30

M
ap

pi
ng

 E
rro

r (
%

)

Fig. 3.3: Mapping error.

mated with CPU core count. Fig. 3.2 shows the mapping. Using S3S as an example

of reading the mapping, its location indicates that its peak single-core performance

is closest to 1497.6 MHz on S5Q, and it has 4 cores. Fig. 3.3 shows that the map-

ping error is less than 10% for each phone.

3.2.4 Publish Replay

During each replay session, we record a video clip using screenrecord

to include in our survey. We host the recorded video clips of the different processor

performance configurations on the youtube.com website.

3.2.5 Crowdsourced User Study

The replayed user interaction video is embedded into a publicly accessible

online survey at surveymonkey.com. Each user satisfaction survey consists of a

single, randomly selected video clip and a single multiple choice question that asks

the user to rate their satisfaction of the video. We ask “how satisfied are you with

the smartphone’s performance (i.e., application responsiveness and fluidness)?” We

20

provide five simple answer choices common to many satisfaction surveys: (1) Very

Dissatisfied, (2) Dissatisfied, (3) Neutral, (4) Satisfied, and (5) Very Satisfied.

3.2.6 Precautions, Limitations and Assumptions

We are careful to minimize the impact of the survey question and answer

choices on the participants’ judgment. The survey establishes that the study is about

the perceived mobile device performance, rather than the quality of the application

itself, for the single video clip in question. We chose to not provide a reference

video for comparison to prevent a bias in the results.

Real mobile device users interact with a physical device, whereas our sur-

vey results are based on participants watching a video. Therefore, there may be a

slight mismatch in user satisfaction results. To develop an intuition about this effect,

We evaluated the videos across a small group of users in-house. The crowdsourced

results are consistent with the trends we observe in-person, which is demonstrated

more generally in [41]. We did not rely on in-person user studies because they do

not allow us to gain enough samples for statistical confidence in a scalable man-

ner. In addition, having each participant watch a video clip, instead of performing

direct interaction with the mobile device, still allows the participants’ situational

awareness to focus on the perceived system performance [25].

21

Chapter 4

Findings: Architecting for End-Users1

4.1 Interpretting Results

We present the results of our crowdsourced user study for the workloads in

Fig. 4.1. Each heatmap corresponds to an application in Table 3.1. The heatmap

cells represent the user satisfaction score for a particular (single-core, multicore)

performance configuration that increases along the x- and y-axis, respectively. The

intensity of a tile corresponds to the average satisfaction score. The darker the tile,

the more satisfactory the application use case was with that performance configura-

tion.

To form sound conclusions between adjacent tiles, we determined the con-

fidence interval for each configuration. On average, the 95% confidence interval

for each configuration extends 0.26 from the reported average score centered in the

tile. Thus, only tiles whose satisfaction score differ by more than 0.52 should be

compared. For example, in Fig. 4.1a it is reasonable to conclude that that user satis-

faction improves from (729.6 MHz, one core) to (1036.8 MHz, one core). However,

the same conclusion cannot be reached by comparing (1036.8 MHz, one core) to

(1958.4 MHz, one core).

1This chapter includes research previously published in [36]

22

42
2.4

72
9.6

10
36

.8

14
97

.6

19
58

.4

24
57

.6

Frequency (MHz)

1

2

3

4

C
or

es
 E

na
bl

ed

2.47

3.65

3.64

3.87

3.44

4.16

4.29

4.38

4.23

4.33

4.40

4.15

4.23

4.33

4.52

4.15

4.46

4.50

4.35

4.53

4.35

4.59

4.40

4.60

(a) Angry Birds.

42
2.4

72
9.6

10
36

.8

14
97

.6

19
58

.4

24
57

.6

Frequency (MHz)

1

2

3

4

C
or

es
 E

na
bl

ed

1.65

2.79

3.95

4.02

2.82

4.17

4.13

4.43

2.98

4.17

4.09

4.10

4.17

4.57

4.31

4.48

4.24

4.21

4.31

4.30

3.90

4.31

4.37

4.18

(b) YouTube.

42
2.4

72
9.6

10
36

.8

14
97

.6

19
58

.4

24
57

.6

Frequency (MHz)

1

2

3

4

C
or

es
 E

na
bl

ed

2.47

3.68

3.96

3.78

2.98

4.10

4.38

4.22

3.73

4.21

4.37

4.44

4.24

4.17

4.28

4.47

4.35

4.25

4.21

4.26

4.22

3.98

4.12

4.12

(c) Gladiator.

42
2.4

72
9.6

10
36

.8

14
97

.6

19
58

.4

24
57

.6

Frequency (MHz)

1

2

3

4

C
or

es
 E

na
bl

ed

2.55

3.39

4.10

3.91

3.40

3.80

4.00

4.05

4.11

4.02

4.22

4.26

3.90

4.30

4.34

4.29

4.14

4.17

4.07

4.15

4.15

4.34

4.16

4.19

(d) CNN (Chrome).

42
2.4

72
9.6

10
36

.8

14
97

.6

19
58

.4

24
57

.6

Frequency (MHz)

1

2

3

4

C
or

es
 E

na
bl

ed

3.14

3.76

4.20

4.39

3.26

4.17

4.32

4.39

3.37

4.37

4.22

4.23

3.77

4.50

4.60

4.46

4.20

4.18

4.43

4.65

4.44

4.65

4.32

4.33

(e) Epic Citadel.

42
2.4

72
9.6

10
36

.8

14
97

.6

19
58

.4

24
57

.6

Frequency (MHz)

1

2

3

4
C

or
es

 E
na

bl
ed

2.70

2.77

2.49

2.40

2.54

2.66

2.85

2.56

2.67

2.79

3.90

4.08

2.65

4.19

3.72

3.89

2.82

4.06

3.90

3.82

3.71

3.82

3.88

4.14

(f) Facebook.

42
2.4

72
9.6

10
36

.8

14
97

.6

19
58

.4

24
57

.6

Frequency (MHz)

1

2

3

4

C
or

es
 E

na
bl

ed

2.14

3.44

2.53

3.08

2.78

3.52

3.98

3.24

2.81

3.65

3.85

4.03

2.98

3.93

3.95

3.72

3.54

3.97

4.02

4.03

3.24

3.79

4.17

4.24

(g) Photoshop.

42
2.4

72
9.6

10
36

.8

14
97

.6

19
58

.4

24
57

.6

Frequency (MHz)

1

2

3

4

C
or

es
 E

na
bl

ed

2.57

2.86

3.33

3.11

2.73

3.53

3.67

3.66

3.58

3.56

3.44

3.70

3.62

3.55

3.80

3.73

3.57

3.85

4.02

3.85

3.75

3.62

3.85

4.02

(h) Particles.

42
2.4

72
9.6

10
36

.8

14
97

.6

19
58

.4

24
57

.6

Frequency (MHz)

1

2

3

4

C
or

es
 E

na
bl

ed

2.19

2.14

2.28

2.25

2.39

2.27

2.28

2.42

2.28

2.59

2.66

2.38

2.42

2.65

2.72

2.48

2.59

2.74

2.28

2.70

2.64

3.04

2.78

2.71

(i) Gaussian.

42
2.4

72
9.6

10
36

.8

14
97

.6

19
58

.4

24
57

.6

Frequency (MHz)

1

2

3

4

C
or

es
 E

na
bl

ed

1.83

2.16

2.25

2.21

2.17

2.29

2.49

2.56

2.34

2.83

2.63

2.79

2.33

2.70

2.84

2.98

2.71

2.92

2.98

3.23

2.44

2.90

2.94

3.08

(j) Julia.

42
2.4

72
9.6

10
36

.8

14
97

.6

19
58

.4

24
57

.6

Frequency (MHz)

1

2

3

4

C
or

es
 E

na
bl

ed

2.05

2.62

2.31

2.82

2.72

2.69

2.60

2.54

2.47

2.47

2.76

2.90

2.70

2.91

2.80

2.93

2.51

2.72

2.96

3.13

2.53

3.11

3.24

2.98

(k) Face Detection.

42
2.4

72
9.6

10
36

.8

14
97

.6

19
58

.4

24
57

.6

Frequency (MHz)

1

2

3

4

C
or

es
 E

na
bl

ed

2.06

2.29

2.04

2.29

1.84

2.26

1.94

2.13

1.79

1.91

1.88

2.07

1.83

2.20

2.21

1.96

2.03

1.98

1.91

1.80

2.00

1.79

2.05

2.45

(l) Ambiant Occl.

Fig. 4.1: User Satisfaction Results for Single- and Multi-core CPU Analysis

4.2 Role of Single-core CPU Performance Improvements

Early mobile CPU designs struggled to provide sufficient single-threaded

performance. None of the tiles corresponding to the single-core in-order A8 CPUs

found within the D and S were “satisfactory” to survey participants. In interactive

gaming, such as Angry Birds (Fig. 4.1a) and Gladiator (Fig. 4.1c), and webpage

loading (Fig. 4.1d), users expect faster response times. The transition to the out-

of-order A9, used in N and S3S, makes these applications satisfactory. Although

CNN (Chrome) and YouTube (Fig. 4.1b) each has a thread-level parallelism

(TLP) [30] close to two (Table 3.1), a single core A9 achieves satisfactory user

experience for them.

23

More aggressive out-of-order core designs were needed to meet the response

latencies end-users expect for other applications. For example, Epic Citadel

(Fig. 4.1e) uses the computationally intensive Unreal Game Engine [15]. Single-

core performance on par with an S4S A15 core can provide a satisfactory experi-

ence to participants.

4.3 Role of Multi-core CPU Performance Improvements

Early mobile CPU designs struggled to provide sufficient single-threaded

performance. None of the tiles corresponding to the single-core in-order A8 CPUs

found within the D and S were “satisfactory” to survey participants. In interactive

gaming, such as Angry Birds (Fig. 4.1a) and Gladiator (Fig. 4.1c), and webpage

loading (Fig. 4.1d), users expect faster response times. The transition to the out-

of-order A9, used in N and S3S, makes these applications satisfactory. Although

CNN (Chrome) and YouTube (Fig. 4.1b) each has a thread-level parallelism

(TLP) [30] close to two (Table 3.1), a single core A9 achieves satisfactory user

experience for them.

More aggressive out-of-order core designs were needed to meet the response

latencies end-users expect for other applications. For example, Epic Citadel

(Fig. 4.1e) uses the computationally intensive Unreal Game Engine [15]. Single-

core performance on par with an S4S A15 core can provide a satisfactory experi-

ence to participants.

The proliferation of multicore mobile CPUs have helped achieve user satis-

faction improvements for several reasons. First, some applications rely on multicore

capabilities by design. Multimedia applications, such as Photoshop, leverage

data-level parallelism within signal processing algorithms to enable multithread-

24

ing. Photoshop (Fig. 4.1g), has a TLP of at least three for 48% of its non-idle

runtime. As a result, it requires multiple cores to deliver a satisfactory experience.

It first becomes satisfactory at four cores with the performance of an N core. Sim-

ilarly, Particles (Fig. 4.1h), whose average TLP is 2.21, requires at least three

S3S cores.

Second, multicore CPUs can alleviate worst-case application interaction

bursts that threaten otherwise high user satisfaction. For example, Facebook

(Fig. 4.1f) requires at least two cores to provide end-users satisfactory respon-

siveness while logging into the application. Login is a bursty and multitasking

application process. The application must process network requests to retrieve ap-

plication content and then render it on screen. While substantial computational

resources may not be needed for steady-state application usage scenarios, applica-

tion launches, and logins are well-established application use cases that can impact

user satisfaction [59]. To provide the same level of user satisfaction, the S5Q would

have to run at peak single core frequency, but even then the result is only marginally

satisfactory to users.

Third, multicore CPUs mitigate the contention between application and

background threads that can affect user experience. Gladiator has the least TLP

of all applications (1.34). Its performance relies heavily on the CPU’s single-thread

execution capabilities. On the S5Q, the application needs to run at nearly 1.5 GHz

when one core is enabled. However, similar high user satisfaction can be achieved

by cutting the frequency by half and running at 729.6 MhZ using two cores. Back-

ground tasks that interfere with the main thread’s execution are readily offloaded by

the kernel to the second core, allowing the first core to operate undisturbed.

With the proliferation of multicore processors in recent years, there has been

growing interest in supporting computationally challenging applications efficiently

25

through the use of parallelism. Many parallel programming frameworks, such as

Mare [16], RenderScript [17], and OpenCL [18], are emerging to support general-

purpose computation on mobile platforms.

We evaluate several forward-looking applications from emerging applica-

tion domains, such as perceptual computing, augmented reality, and advanced im-

age processing. These applications are built using the RenderScript framework and

targeted specifically at mobile multicore CPUs. The applications are much more

computationally intensive than the mainstream applications. Most of them spend a

significant amount of non-idle execution time on all four cores. Their average TLP

is 2.41. User events in these applications is low because they do not require heavy

interactivity to use.

We find that these next-generation applications require single- and mul-

ticore improvements beyond what today’s mobile CPUs provide. For instance,

Gaussian Blur has high single-threaded performance requirements. It spends

the majority of its non-idle execution time executing within a thread. With an aver-

age TLP of 1.37, Gaussian Blur does not see a dramatic satisfaction improve-

ment as more cores are added at peak frequency (Fig. 4.1i). Julia (Fig. 4.1j) with

average TLP of 2.93 and 14% of execution time with a TLP of four, sees satis-

faction increase from unsatisfactory to neutral as it maximizes resource utilization.

However, enough end-user satisfaction (¿ 4.0) has still not been achieved.

To validate that our participants are capable of recognizing satisfactory per-

formance for these applications, we conducted the survey a second time based on a

desktop system. Our participants noticed a dramatic user experience improvement

and declared them as satisfactory, which implies satisfaction is in fact attainable for

these workloads for our survey participants.

Furthermore, we ran the crowdsourcing experiments a third time to confirm

26

single- and multicore performance improvements beyond the S6 are needed in fu-

ture mobile CPUs. Recall that we use the S5 for our experiments. The S6 was

unavailable at the time of our experiments. Despite the performance enhancements

in the S6, we observed similar results as we did with the S5Q. User experience was

unsatisfactory.

4.4 Role of GPU and Other Accelerators’ Performance

Mobile applications typically rely on a variety of on-chip SoC accelerators

to provide rich end-user experiences, and this trend will likely continue into the

future. Therefore, there is a need to understand the extent to which these processing

elements also impact end-user satisfaction. Incorporating such an analysis for these

other components also provides the means to compare their contributions against

the CPU in terms of end-user satisfaction.

In addition to the CPU, the proposed crowdsourcing metholodogy can also

be applied to other SoC components. To demonstrate the extensibility of this

methodology to these other components, this report considers the role of the GPU

performance. All mobile applications exercise the mobile GPU to some degree,

making it the most heavily utilized SoC accelerator.

User satisfaction was not sensitive to the performance differences across

the S5Q’s Adreno 330 GPU for almost all of the applications studied. Fig. 4.2

shows user satisfaction as the S5Q’s Adreno 330 GPU frequency is sweeped while

the CPU operates with all four cores at peak frequency. Besides Gladiator,

user satisfaction does not significantly change as GPU frequency increases from

200 MHz to 578 MHz. Gladiator is the most aggressive interactive use case we

study, with 31 user events in a 36 second timespan, spawning a significant number

27

200.0 320.0 389.0 462.4 578.0

GPU Frequency (MHz)

Angry Birds
Epic Citadel

Youtube
Photoshop

Chrome CNN
Facebook

Particles
Julia

Facedetection
Gaussian
Ambiant

Gladiator
Be

nc
hm

ar
ks

4.23
4.44
4.38
4.19
4.23
4.06
4.00
3.12
3.14
2.69
2.18
2.27

4.57
4.51
4.38
4.00
4.31
3.89
3.77
3.58
2.72
2.62
2.08
2.88

4.44
4.48
4.31
4.19
4.22
4.04
3.83
3.52
3.16
2.57
2.04
3.24

4.30
4.57
4.37
4.17
4.18
3.94
3.71
3.02
2.83
2.87
2.00
3.76

4.60
4.33
4.18
4.24
4.19
4.14
4.02
3.08
2.98
2.71
2.45
4.12

Fig. 4.2: User Satisfaction Results for GPU Analysis

of screen updates. Thus, user satisfaction increases with frequency by nearly four-

fold from the lowest to highest GPU frequency. GPU computations invoked by the

other current-generation applications are infrequent and underwhelming compared

to the CPU-based computation. The forward-looking applications are too compute

bound and CPU-stifled to stress the GPU.

Applications also rely on fixed-function acceleration. Multimedia applica-

tions, such as YouTube and NetFlix, rely on specialized hardware accelerators to to

avhieve high frame rates. For instance, YouTube by default uses the VP9/WebM

video coding format, used in the S5Q. However, the CPU remains on the criti-

28

cal execution path even though computations are offloaded to these accelerators.

Fig. 4.1b shows that if the single-core CPU performance drops below 1.5 GHz,

user satisfaction plummets from 4.17 to 2.98. The is because mobile CPU has to

manage the device drivers to use these accelerators while also orchestrating other

computations [58].

29

Chapter 5

Related Work1

Our study provides insight into how the interactions between user experi-

ence, mobile applications, architecture and mobile device form factors shape and

impact the mobile CPU design.

5.1 Trend-based CPU Studies

Trend-based studies, specifically using real systems, help identify impactful

research opportunities. Looking back on power and performance trends help iden-

tify impending bottlenecks and issues that may otherwise go unnoticed until it is

too late. Recently, measurement-based trend studies were used to discuss ISAs [21]

and desktop CPUs and managed languages [29]. Other trend-based studies use

analytical models to identify the limits of clock [19], multicore [28] and memory

bandwidth [51] scaling.

5.2 User Experience Studies

Conventional user experience research consists of in-person user studies [34,

50, 53–55, 57, 59, 60], where experiments are conducted in person, which limits the

reach and diversity across participants. The majority of past user experience perfor-

1This chapter includes research previously published in [36]

30

mance modeling research is geared towards producing power- and energy-efficiency

techniques.

Our crowdsourcing framework allows us to include several orders of mag-

nitude more participants spread across the world. Our work also bridges the gap

between CPU design trends and user satisfaction by taking the feedback of over

20,000 users by proposing and using a novel crowdsourcing approach.

5.3 CPU Evaluation Metrics

There are no shortage of evaluation metrics for CPU designs. However,

these metrics largely ignore the end user. In particular, traditional hardware-centric

perspectives such as performance-per-Watt, EDP [33], ED2P [43], ILP and TLP [20,

30,31] only evaluate systems from a hardware efficiency perspective. While insight-

ful, these metrics are not directly correlated with the end-to-end user-satisfaction

that is important in mobile systems.

We take a different approach of using measured user satisfaction to explic-

itly bridge the gap between CPU performance capabilities and end-user satisfaction.

The crowdsourcing based feedback allows us to quantitatively determine the extent

to which a given CPU configuration achieves user satisfaction.

5.4 Mobile Application Benchmarking

Mobile application benchmarking and characterization has recently become

an active research area. Similar to our user study, almost all benchmarking efforts

involve evaluating mainstream Android applications on ARM-based mobile proces-

sors. These prior studies are typically concerned with either architecture- [31] or

microarchitectural-level [35, 39, 46] in the context of power and performance on a

31

single architecture.

5.5 Crowdsourcing

Crowdsourcing [38] has been used for some time in a variety of research

areas from machine-learning [26] to psychology [22] to astronomy [42] to biol-

ogy [56]. Our work is most similar to HCI-related crowdsourcing [27], which uses

the crowd to conduct user studies. The key distinction of our work is our empha-

sis on using the results to evaluate computer hardware mechanisms, as opposed to

UI/UX design. Since this work begain, crowdsourcing has also begun to emerge in

other computer systems research [47]. So far, these works focus on identifying the

user-perceived quality of a program’s final result (i.e. an image) as opposed to the

user-perceived quality of interacting with the program (i.e. interactive applications)

as was done in this work.

32

Chapter 6

Conclusion

This reports demonstrates the ability to incorporate the end-user into mo-

bile computer architecture evaluation. In the face of power, thermal, and energy

constraints, understanding what design decisions are going to impact the end-user

will be an important aspect of future mobile CPU design. While the mobile CPU

is amongst the most important components within the mobile device in terms of

its affect on the end-user, there is a need to conduct these same kinds of analyses

with other mobile hardware components both at the compute-level (e.g. GPU) and

device-level (e.g. display and radio). The techniques and methodologies outlined

in this report provide insight as to how to go about doing so.

33

Index

Abstract, iv

Bibliography, 41

Conclusion, 33

Findings, 22

Introduction, 1

Methodology, 15
Motivation, 4

Related, 30

34

Bibliography

[1] Intel watches ARM as low-powered computing thrives.

[2] CoreMark Benchmarking for ARM Cortex Processors.

[3] Standard Performance Evaluation Corporation (SPEC). SPEC CPU2006 re-

sults.

[4] SunSpider JavaScript Benchmark.

[5] Geekbench.

[6] Monsoon Power Monitor.

[7] EEMBC CoreMark.

[8] Cortex-A9 Reference Manual.

[9] Cortex-A15 Reference Manual.

[10] Cortex-A57 Reference Manual.

[11] Amazon Mechanical Turk.

[12] CompuBench.

[13] Google Play.

[14] Apps Solidfy Leadership Six Years into the Mobile Revolution.

[15] Unreal Engine.

35

[16] Parallel Computing (MARE).

[17] RenderScript.

[18] OpenCL.

[19] Vikas Agarwal, MS Hrishikesh, Stephen W Keckler, and Doug Burger. Clock

rate versus IPC: The end of the road for conventional microarchitectures, vol-

ume 28. ACM, 2000.

[20] Geoffrey Blake, Ronald G Dreslinski, Trevor Mudge, and Krisztián Flaut-

ner. Evolution of thread-level parallelism in desktop applications. In ACM

SIGARCH Computer Architecture News, volume 38, pages 302–313. ACM,

2010.

[21] Emily Blem, Jaikrishnan Menon, and Karthikeyan Sankaralingam. Power

struggles: Revisiting the risc vs. cisc debate on contemporary arm and x86

architectures. In High Performance Computer Architecture (HPCA2013),

2013 IEEE 19th International Symposium on, pages 1–12. IEEE, 2013.

[22] Michael Buhrmester, Tracy Kwang, and Samuel D Gosling. Amazon’s me-

chanical turk a new source of inexpensive, yet high-quality, data? Perspec-

tives on Psychological Science, 6(1):3–5, 2011.

[23] Aaron Carroll and Gernot Heiser. An analysis of power consumption in a

smartphone. In USENIX annual technical conference, pages 271–285, 2010.

[24] Aaron Carroll and Gernot Heiser. The systems hacker’s guide to the galaxy:

Energy usage in a modern smartphone. In Proceedings of the 4th Asia-Pacific

Workshop on Systems, page 5. ACM, 2013.

36

[25] Andrew R Dattel, Jason E Vogt, Jessica K Fratzola, Daniel P Dever, Matthew

Stefonetti, Chelsea C Sheehan, Marissa C Miller, and Joseph A Cavanagh.

The gorillas role in relevant and irrelevant stimuli in situation awareness and

driving hazard detection. In Proceedings of the Human Factors and Er-

gonomics Society Annual Meeting, volume 55, pages 924–928. Sage Publi-

cations, 2011.

[26] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Im-

agenet: A large-scale hierarchical image database. In Computer Vision and

Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248–255.

IEEE, 2009.

[27] Serge Egelman, Ed H Chi, and Steven Dow. Crowdsourcing in hci research.

In Ways of Knowing in HCI, pages 267–289. Springer, 2014.

[28] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankaralingam,

and Doug Burger. Dark silicon and the end of multicore scaling. In Prof. of

ISCA, pages 365–376. IEEE, 2011.

[29] Hadi Esmaeilzadeh, Ting Cao, Yang Xi, Stephen M Blackburn, and Kathryn S

McKinley. Looking back on the language and hardware revolutions: mea-

sured power, performance, and scaling. In ACM SIGARCH Computer Archi-

tecture News, volume 39, pages 319–332. ACM, 2011.

[30] Kristián Flautner, Rich Uhlig, Steve Reinhardt, and Trevor Mudge. Thread-

level parallelism and interactive performance of desktop applications. ACM

SIGOPS Operating Systems Review, 34(5):129–138, 2000.

[31] Cao Gao, Anthony Gutierrez, Ronald G. Dreslinski, Trevor Mudge, Krisztian

Flautner, and Geoffery Blakey. A study of thread level parallelism on mobile

37

devices. In Proc. of ISPASS, 2014.

[32] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd Millstein. Reran:

Timing-and touch-sensitive record and replay for android. In Proc. of ICSE,

2013.

[33] Ricardo Gonzalez and Mark Horowitz. Energy dissipation in general purpose

microprocessors. Solid-State Circuits, IEEE Journal of, 31(9):1277–1284,

1996.

[34] Ashish Gupta, Bin Lin, and Peter A Dinda. Measuring and understanding user

comfort with resource borrowing. In High performance Distributed Com-

puting, 2004. Proceedings. 13th IEEE International Symposium on, pages

214–224. IEEE, 2004.

[35] A. Gutierrez, R. Dreslinski, A. Saidi, C. Emmons, N. Paver, T. Wenisch, and

T. Mudge. Full-system analysis and characterization of interactive smart-

phone applications. In Proc. of IISWC, 2011.

[36] Matthew Halpern, Yuhao Zhu, and Vijay Janapa Reddi. Mobile cpu’s rise to

power: Quantifying the impact of generational mobile cpu design trends on

performance, energy, and user satisfaction. In Proceedings of the 22nd Inter-

national Symposium on High Performance Computer Architecture (HPCA).

IEEE, 2016.

[37] Rema Hariharan. Personal (email) communication, Apr. 18 2012. AMD.

[38] Jeff Howe. The rise of crowdsourcing. Wired magazine, 14(6):1–4, 2006.

[39] Yongbing Huang, Zhongbin Zha, Mingyu Chen, and Lixin Zhang. Moby: A

mobile benchmark suite for architectural simulators.

38

[40] Laszlo Kishonti. Personal (email) communication, Jul. 24 2014. Com-

puBench.

[41] Steven Komarov, Katharina Reinecke, and Krzysztof Z Gajos. Crowdsourc-

ing performance evaluations of user interfaces. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, pages 207–216. ACM,

2013.

[42] Chris J Lintott, Kevin Schawinski, Anže Slosar, Kate Land, Steven Bamford,

Daniel Thomas, M Jordan Raddick, Robert C Nichol, Alex Szalay, Dan An-

dreescu, et al. Galaxy zoo: morphologies derived from visual inspection

of galaxies from the sloan digital sky survey. Monthly Notices of the Royal

Astronomical Society, 389(3):1179–1189, 2008.

[43] Alain J Martin, Mika Nyström, and Paul I Pénzes. Et2: A metric for time

and energy efficiency of computation. In Power aware computing, pages

293–315. Springer, 2002.

[44] John McCalpin. Stream benchmark. Link: www. cs. virginia. edu/stream/ref.

html# what, 1995.

[45] Robert B. Miller. Response time in man-computer conversational transac-

tions. In Proceedings of the December 9-11, 1968, Fall Joint Computer Con-

ference, Part I, AFIPS ’68 (Fall, part I), pages 267–277, New York, NY, USA,

1968. ACM.

[46] Dhinakaran Pandiyan, Shin-Ying Lee, and Carole-Jean Wu. Performance,

energy characterizations and architectural implications of an emerging mobile

platform benchmark suite-mobilebench. In IISWC, 2013.

39

[47] Jongse Park, Emmanuel Amaro, Divya Mahajan, Bradley Thwaites, and Hadi

Esmaeilzadeh. Approxigame: Towards crowd-sourcing quality target deter-

mination in approximate computing. 2016.

[48] Yale Patt. Requirements, bottlenecks, and good fortune: Agents for micro-

processor evolution. In Proceedings of IEEE, 2001.

[49] Ramesh Peri. Personal (email) communication, Nov. 23 2014. Intel.

[50] Carson Jonathan Reynolds. The sensing and measurement of frustration with

computers. PhD thesis, Massachusetts Institute of Technology, 2001.

[51] Brian M Rogers, Anil Krishna, Gordon B Bell, Ken Vu, Xiaowei Jiang, and

Yan Solihin. Scaling the bandwidth wall: challenges in and avenues for cmp

scaling. In ACM SIGARCH Computer Architecture News, volume 37, pages

371–382. ACM, 2009.

[52] Samsung. Personal (email) communication, Apr. 28 2014.

[53] Alex Shye, Berkin Ozisikyilmaz, Arindam Mallik, Gokhan Memik, Peter A.

Dinda, Robert P. Dick, and Alok N. Choudhary. Learning and leveraging

the relationship between architecture-level measurements and individual user

satisfaction. In Proc. of ISCA, pages 427–438, Washington, DC, USA, 2008.

IEEE Computer Society.

[54] Alex Shye, Yan Pan, Benjamin Scholbrock, J Scott Miller, Gokhan Memik,

Peter A Dinda, and Robert P Dick. Power to the people: Leveraging human

physiological traits to control microprocessor frequency. In Microarchitec-

ture, 2008. MICRO-41. 2008 41st IEEE/ACM International Symposium on,

pages 188–199. IEEE, 2008.

40

[55] Alex Shye, Benjamin Scholbrock, and Gokhan Memik. Into the wild: study-

ing real user activity patterns to guide power optimizations for mobile archi-

tectures. In MICRO, 2009.

[56] Brian L Sullivan, Christopher L Wood, Marshall J Iliff, Rick E Bonney, Daniel

Fink, and Steve Kelling. ebird: A citizen-based bird observation network in

the biological sciences. Biological Conservation, 142(10):2282–2292, 2009.

[57] Zhen Wang, Felix Xiaozhu Lin, Lin Zhong, and Mansoor Chishtie. How far

can client-only solutions go for mobile browser speed? In Proc. of WWW,

2012.

[58] Praveen Yedlapalli, Nachiappan Chidambaram Nachiappan, Niranjan Soundarara-

jan, Anand Sivasubramaniam, Mahmut T Kandemir, and Chita R Das. Short-

circuiting memory traffic in handheld platforms. In Proceedings of the 47th

Annual IEEE/ACM International Symposium on Microarchitecture, 2014.

[59] Zhijia Zhao, Mingzhou Zhou, and Xipeng Shen. Satscore: Uncovering and

avoiding a principled pitfall in responsiveness measurements of app launches.

In Proc. of Ubicomp, 2014.

[60] Yuhao Zhu, Matthew Halpern, and Vijay Janapa Reddi. Event-based schedul-

ing for energy-efficient qos (eqos) in mobile web applications. In Proc. of

HPCA, 2015.

41

