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     Dense wavelength division multiplexing has become a preferred technique for 

increasing the information-carrying capability of optical networks by making full 

use of the huge bandwidth available in optical fibers.  In this approach, hundreds 

of optical channels are multiplexed at the transceiver end and separated at the 

receiving end, each operating at peak electronic speed. This dissertation focuses 

on grating-based DWDM, including holographic grating and ruled diffraction 

grating. Two eight-channel multimode grating-based DWDMs were designed and 

fully packaged.  One of them utilized holographic grating; the other deployed a 

22nd order echelle grating and had a thermally optimized optical design.  The 

thermal responses of grating-based DWDM are analyzed and the solution for 

achieving athermal devices is given.  Two ruled diffraction grating-based 32-

channel DWDMs were fabricated and demonstrated. Both of them had low, 

uniform insertion loss; the typical crosstalk was better than –50dB for the single 
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mode device. Finally the improved optical design and realization of passband 

broadening, and nonlinear correction of gratings’ angular dispersion are described. 
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Chapter 1:  Introduction to Optical Networks and DWDM 

1.1  Optical networks 

       The tremendous growth of the Internet and other data, image, voice services is 

driving the need for more and more bandwidth in networks. The bandwidth of one 

single-mode optical fiber is about 25 THz in the 1.5 µm band alone. Optical 

networks, having optical layer as the dominant technology for transport, becomes a 

key technology to fulfill the demands for bandwidth. 

      Optical networks can be opaque or all optical. In opaque networks the optical-

electronic-optical (OEO) conversion operation interrupts the path between end users 

at intermediate nodes. The optical layer resides under existing layers such as the 

traditional synchronous optical networks (SONET) or synchronous digital hierarchy 

(SDH). This multiple layers can significantly reduce network equipment cost and 

make it work more efficiently. Usually, SONET and SDH layers are used to process 

smaller amounts of bandwidth at a finer level. Optical layers process large amounts of 

bandwidth at a relatively coarse level [1].  

     In all-optical networks, each light path is completely optical, or at least totally 

transparent, except at the end nodes [2]. There are three major reasons that human 

want to go to all-optical networks: Most apparent is the huge bandwidth available in 

optical fibers. The fiber bandwidth is mined by deploying dense wavelength division 

multiplexing (DWDM), increasing the information carrying capability of optical 

networks by transmitting multiple highly resolved wavelengths on the same fiber.  
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The second reason is that there is totally no protocol dependency in all-optical 

wavelength division multiplexing (WDM) light path; different channels may have 

different bit rate and formats. The third advantage is the functional simplicity and low 

cost. All-optical networks do not require OEO conversion, making the transmission 

more efficient and cost-effective. The maintenance is also much simpler than that of 

traditional fiber-plus-OEO systems.      

1.2  Application of DWDM in optical networks 

     The main function of WDM is to combine two or more wavelengths into a single 

fiber at the transceiver end. The separation of these wavelengths takes place at the 

receiver end by deploying different demultiplexing techniques. When the wavelength 

spacing is less than 1nm, it is defined as DWDM.     DWDM increases the capacity of 

embedded fiber by dividing the incoming optical signals into a number of non-

overlapping frequency bands and then multiplexing the resulting signals out onto one 

fiber [3] (Figure 1.1).  The combined multiple optical signals can be amplified as a 

group and transported thousands of miles on an optical fiber.  DWDM  effectively 

multiplies the capacity of a single optical fiber by a factor of 160 or more.  Utilizing 

WDMs in optical networks can achieve link capacities on the order of 50THz. 

     Because incoming signals are never terminated in the optical layer, the interface 

can be bit-rate and format independent [4]. DWDM can carry individual signals at a 

different rate (OC–48/192, etc.) and in a different format (SONET, SDH, ATM, data, 

etc.).  For instance, a DWDM network with a mix of SONET signals operating at 
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OC–48 (2.5 Gbps) and OC–192 (10 Gbps) over a DWDM infrastructure can achieve 

capacities of over 40 Gbps. As a method of leveraging unused capacity in existing 

embedded fiber, DWDM technology is easy to integrate into existing networks 

because the optical layer is bit and format independent.  DWDM also offers several 

alternate channels to link various nodes and is therefore more resilient to channel 

failure [5].     

     The invention of erbium doped fiber amplifiers (EDFA’s) enable to amplify signals 

in a band of frequencies, rather than individually.  Therefore the maximum number of 

channels of DWDM is directly related to the bandwidth of EDFA’s. Ultra wideband 

EDFA’s have become available with a bandwidth of 80 nm, approximately 7 times the 

bandwidth of standard EDFA (1528-1568nm) [6]. Using this ultra wideband 

amplifier, 100 channels were transmitted over a distance of 400 km with a data rate of 

10 Gbps/channel [7] with a system capacity of 400 Tbps km. On the other hand, more 

than 1000 optical channels have been multiplexed in a fiber by using a single laser 

[8]. This trend is expected to continue further. 

     But DWDM is really just the first step to all-optical networks. We also need to 

have all-optical add-drop multiplexers (OADMs) to fully access to traffic at different 

nodes optically. OADM selectively drops a wavelength from a multiplicity of 

wavelengths in a fiber, and thus the information carried on this wavelength. Then it 

adds the same wavelength, carrying different data content, in the same direction of 

data flow.  The all-optical crossconnects (OXCs) act as a large photonic switch, which 

gives networks the ultimate bandwidth management flexibility.   An OXC has N full-
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duplex ports, each of which can connect to any other and also itself.  Only combining 

OXCs, DWDMs, and OADMs together, we can realize flexible, efficient, 

configurable, and high-capacity optical networks with full optical bandwidth 

management. 

1.3  WDM network architectures 

     WDM network architectures can be classified into two broad categories: broadcast 

and select architectures and wavelength routing architectures [1,9].   

       Broadcast and select WDM networks enable the sharing of information among 

nodes.  Figure 1.2 shows this structure. The sharing medium here is a star coupler; 

bus topologies and ring topologies are also common.  The star coupler combines and 

broadcasts all the signals transmitted by different nodes. Each output node receives a 

fraction of power from each signal. Wavelength selection can be realized using 

tunable receivers at different nodes. However, protocols are needed to determine the 

corresponding wavelength that individual nodes can receive.  This form of a network 

is simple and suitable for use in local or metropolitan area networks, such as access 

networks. Because the wavelength cannot be reused in the network, and transmitted 

power from a node must be split among all the receivers in the network, the number 

of nodes in these networks is limited.  A number of broadcast and select testbeds [10-

14] have been developed by various research laboratories. Primarily, these 

demonstrate circuit switching rather than packet switching.  
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     Figure 1.3 gives a wavelength routing network, in which information is routed, 

switched, and forwarded based on wavelength. Compared to broadcast-and-select 

networks, wavelength routing networks are more sophisticated and practical. This 

architecture does not suffer from the splitting loss caused by broadcasting the power 

to unwanted receivers. The nodes in the networks are capable of routing different 

wavelength at one input port to different output ports.  These networks also allow 

spatial reuse of wavelength, i.e., many simultaneous lightpaths using the same 

wavelength can be set up.  Thus wavelength routing networks are suitable for 

deployment in metropolitan- and wide-area networks, such as local-exchange and 

interchange networks.  

1.4  Approaches to multiplexers (MUXs) / demultiplers (DEMUXs) 

        At this time, several competing technologies for making MUXs/DEMUXs are 

being actively developed [15]. These technologies include multiplayer dielectric thin-

film filters, Bragg grating filters [16-21], phased-array-waveguide-gratings [22-28], 

and diffraction gratings[29-33]. The important characteristics of WDMs used in 

telecommunications systems are insertion loss, polarization dependent loss (PDL), 

temperature effect, passband flatness, crosstalk, packaging size, and cost.  

      Thin-film dielectric devices are the most broadly deployed filters for low-channel-

count DWDM systems in the 400- and 200-GHz channel spacing regime. As Fig. 1.4 

shows, two or more resonant cavities are separated by reflective dielectric thin-film 

layers, which have quarter-wave thickness, and alternating high and low indices. 
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These resonant cavities form a bandpass filter, transmitting a specific wavelength and 

reflecting all other wavelengths. This mature technology offers good temperature 

stability (<0.002 nm/°C), channel-to-channel isolation, and a flat passband. It’s 

primary challenge is to decrease the channel spacing to 100 GHz and below, with 

good yield, as well as increasing the channel count beyond 16.  

     The principle of array waveguide gratings (AWGs) is interferometry. Fig.1.5 

shows the structure of an array waveguide WDM [34]. The wavelength-dependent 

phase delays are caused by the length differences of the arrayed waveguides.  The 

varies wavelengths with different phase interfere with each other in such a manner 

that each wavelength achieve maximum energy at a designed position. The separated 

wavelengths can be coupled into a fiber array.  Since AWGs are fabricated using 

stander IC technologies, these devices lend themselves to high integration and 

consequently large channel counts. Channel spacings are typically 100 GHz, although 

50 GHz devices are also available. But temperature stability is often a concern, 

requiring active temperature controller.   

     The dispersion of fiber Bragg grating is achieved by periodically varying the 

index of refraction of a fiber segment. Fig.1.6 shows how the fiber gratings are made.  

The periodic variation of index is formed by exposing the germano-silicate core of 

the fiber to an intense periodic ultra-violet (UV) pattern. 
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        Insertion loss and uniformity of fiber Bragg grating based devices are very good 

because they are fabricated from standard single-mode fiber. The long-term stability 

is an issue due to the stability of tuning.  

     Diffraction-grating devices feature a finely ruled grating that diffracts the incident 

beam into different angles and positions. As shown in Fig. 1.7, each wavelength 

channel corresponds to a unique diffraction angle and can be collected by individual 

fibers. This technology has several major advantages, including low and uniform 

insertion loss across the entire passband, superior crosstalk, accurate wavelength, and 

athermal performance. It is also scalable: lower channel count devices can be 

upgraded to higher count devices simply by installing more fibers. Table 1.1 [35] 

gives a comprehensive comparison among those technologies for making 

MUXs/DEMUXs. 

      The research work presented in this dissertation focuses on diffraction grating-

based DWDM. The overall objective of this dissertation was to design and build 

MUXs/DEMUXs with good performance for local, metropolitan, and backbone area 

networks. The good performance includes low insertion loss (Less than 3dB for low 

channel count multimode MUXs, less than 6 dB for 32 channel single-mode MUXs), 

low crosstalk (lower than –30dB), and good thermal performance, i.e., minimizing the 

central wavelength, insertion loss shift across the temperature range 20-60°C. The 

date transmission bit rate should be higher than 2.5 Gbps for multimode devices, and 

higher than 10 Gbps for single-mode devices. 
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     In Chapter 2, coupled wave theory related to transmission holograms, and the 

fabrication of holographic gratings will be presented. A fully packaged eight-channel 

dispersion-enhanced volume holographic grating based DWDM is described in 

Chapter 3, Chapter 4 presents an athermalized low-loss echelle grating-based eight-

channel multimode DWDM. Chapter 5 analyzes the thermal responses of different 

parts of diffraction grating-based DWDMs, and presents the means of achieving 

athermalized WDM devices.  In Chapter 6, two fully packaged 32-channel DWDMs 

are demonstrated. One of them was designed for metropolitan area networks; the 

other was designed for long-haul telecommunications networks.  Chapter 7 proposes 

various means of broadening the optical passband of grating-based DWDMs; the 

optimized design for non-linear correction of angular dispersion is then presented.  
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Fig.1.4  Interference filter [34] 
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Fig. 1.5  Array waveguide grating [34]  
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 Fig. 1.6  A fiber is exposed under UV light to create index modulation [34]. 
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 Fig.1.7  Diffraction grating based WDM; different wavelength is diffracted into 
different angles and positions  
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 Table1.1  Comparison among various technologies for making DWDMs [35] 

Technologies Advantages Disadvantages 
Thin-film dielectric 
interference 
 

Mature technology 
 
Good temperature stability  
 
Good wavelength selectivity 
 
Very good PDL 
 
Flat passband 
 

Difficult to product narrow 
channel spaced filters 
(<100GHz) 
 
Insertion loss is not uniform 
for high channel counts 
 
Filters can only be 
manufactured for a fixed 
wavelength 
 
Not scalable 

Planar array 
Waveguide 

Uses IC fabrication processes. 
 
Scalable to high channel counts 
 
Can integrate multiple functions 
on a single chip 

Difficult fiber interface 
 
Capital-intensive 
 
Requires large infrastructure 
 
Need temperature controller 

Fiber Bragg  
Gratings 

Mature technology Mechanical stability problem  
 
High back reflection; must use 
isolator. 

Fused, cascaded 
Mach-Zehnder 
Interferometers 

Low insertion loss and 
polarization effects 
 
Can produce very narrow 
channel spaced devices 
 
Easy coupling to fiber 
 
Generates filter “comb”  rather 
than wavelength-specific filter 

High channel count devices 
require cascaded devices 
resulting in a larger form 
factor device. 

Diffraction  
Gratings 

Low & uniform insertion 
Loss 
 
Best crosstalk, less than –40dB 
 
Good temperature stability 
 
Scalable 

Devices can be bulky 
 
Typically used in a free space 
mode requiring careful 
assembly techniques. 
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Chapter 2:  The Pr inciple, Design, and Fabr ication of 

Photopolymer-Based Volume Transmission Holographic 

Gratings 

 2.1  Coupled wave theory  

     When analyzing diffraction mechanism of thick holographic gratings, one can 

think in this way that the amplitude of the incident wave decreases while propagating 

through the gratings, whereas that of the diffracted wave increases progressively. One 

way to analysis this is by means of a coupled-wave approach [36-38]. The remainder 

of this section outlined Kogelnik’s coupled-wave theory [39]. 

      Here, we only take into account the incoming reference wave R and the outgoing 

signal wave S which obey the Bragg condition; the other diffraction orders are 

neglected because they violate the Bragg condition strongly. 

      Figure 2.1 shows the model of a holographic grating, which was used for the 

analysis.  The x-axis is parallel to the medium boundaries and in the plane of 

incidence, the y-axis perpendicular to the paper, and the z-axis is perpendicular to the 

surfaces of the medium. The grating fringes are slanted with respect to the medium 

boundaries at an angle Φ.  The grating vector, K=2π/Λ, is perpendicular to the 

fringes, where Λ is the period of the grating.  The incident angle in the medium is θi. 

Wave propagation in the grating is described by the scalar wave equation 

                                                        ∇ 2E+k2E=0 ,                                               (2.1) 
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where E(x,z) is the complex amplitude of the y-component of electric field, which is 

assumed to be independent of y. The propagating constant k(x,z) is spatially 

modulated and can be calculated by Eq. (2.2)  

                                     ),(2222 xjKxjK eejk ⋅−⋅ ++−= καββ                                 (2.2) 

where,                           00 2/;/2 εσµαλπβ cn == ,                                    (2.3) 

ε0  is the average dielectric constant; σ0 is the average conductivity; c is the light 

velocity in free space, and µ is the permeability of the medium. 

When the modulation is small, the coupling constant κ describing the coupling 

between the reference wave R and the signal wave S can be expressed as Eq. (2.4) 

                                                    2// 11 αλπκ jn −= .                                             (2.4) 

     The spatial modulation indicated by 1n  and 1α  causes the coupling and the energy 

exchange between the waves R and S.  If κ=0, there is no coupling between R and S; 

therefore, there is no diffraction. The total electric field in the grating is the 

superposition of the two waves: 

                                           xjxj ezSezRE ⋅−⋅− += δρ )()(                                            (2.5) 

Figure 2.2 shows phase matching condition among the propagation vectors ρ, δ, and 

the grating vector K.  

                                                   K−= ρδ .                                                            (2.6) 

When the Bragg condition is satisfied, the lengths of both ρρρρ and δδδδ are equal to the free 

propagation constant β. 
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                                            βθφ 2/)cos( K=−                                                (2.7) 

The amplitude of a wave changes along z because of coupling to the other wave 

(κR,κS) or absorption (αR,αS).  The transmitted or reflected wave amplitude can be 

obtained by applying the boundary condition. For transmission volume holographic 

gratings, the boundary conditions are R(0) = 1 and S(0) = 0, where cs > 0.  For an s-

polarized optical signal, the diffraction efficiency is 

                                           ηs =  sin2 (γs
2 +  ξ2)

1

2  /  (1 +  ξ2 / γs
2 ),                (2.8) 

where  

                                               
2/1)( SR

s
s cc

dκγ =                                                         (2.9) 

                                    
ss nc

dK

c

Kd

π
λθϕθξ
82

)sin( 2⋅∆=−⋅∆=                                    (2.10) 

                                                       
λ

πκ n
s

∆= ,                                                       (2.11) 

                                        θcos=Rc , and φ
β

θ coscos
K

cs −=                            (2.12)  

      For a p-polarized input optical signal, the above equations can be used again by 

replacing κs  in Eq. (2.8) with 

                                                    )(2cos ϕθκκ −−= sp                                         (2.13)  

where γ and ξ are real-valued and d is the thickness of emulsion. 
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The diffraction efficiency can be controlled by intensities of recording beams in the 

formation of recording holographic gratings, since γ is dependent on only index 

modulation with given reconstruction wavelength,  

2.2  Recording parameter calculation and exper imental setup 

     The hologram was fabricated in-house by a two-beam interference method (Figure 

2.3). The hologram material was DuPont photopolymer HRF 600X001-20 (20 µm 

thick) made by DuPont (DuPont Holographic Materials, Wilmington, Delaware).  A 

Verdi Laser was operated in single wavelength (532 nm). A beam coming from the 

laser was divided into two by a beam splitter and then collimated by two sets of 

collimators. Light attenuators adjust the intensity of the two beams. The objective 

lenses expend the laser beams, followed by spatial filters at their focal points to 

eliminate scattering light. A piece of holographic material was mounted on a 

rotational stage. One collimated beam directly illuminated the hologram while a 

mirror deflected the other beam. The holographic material was exposed to the 

interference pattern of two collimated laser beams. The two beams interfered and 

created a periodic structure of refractive index modulation inside the hologram.  

       The two recording angles, α1 and α2, can be set by tuning the relative positions 

and angles of the rotation stage and the mirror. The slant angle φ of the grating and 

the grating period Λ are given by [40] 

                                          
22

ihdh θθπ −
+=Φ ,                                                   (2.14) 
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and                                
)

2
sin(2 ihdh

rc

n
θθ

λ
+

=Λ   ,                                                  (2.15) 

     where, λc, λrc are the wavelengths of the recording beam and the reconstruction 

beam respectively.  θih and θdh
 are the incident angle and the diffraction angle of the 

optical signals in the holographic grating region at the center wavelength of λrc; 

n=1.52 is the average refractive index of the holographic grating region. Figure 2.4 

shows that the grating vector K (|K| = 2π / Λ) is phase-matched with the recording 

wave vector kc (|kc| = 2πn' / λc), and with the reconstruction wave vector krc (|krc| 

= 2πn / λrc).  The average refractive index of the guided-wave holographic emulsion 

at recording wavelength λc is n'. The angle between recording beams in the hologram 

medium at wavelength λ is given by  

                                             ))sin(
'

(sin2 1
ihdh

rc

c

n

n θθ
λ
λβ += −                                (2.16) 

The recording angle inside the holographic grating can be calculated by Eqs. (2.17), 

and (2.18) 

                                           α1h = π / 2 - (φ - β / 2),                                                (2.17) 

                                          α2h =  (φ + β / 2) - π / 2,                                               (2.18) 

The recording angles in the air can be calculated by Snell's Law: 

                                        )sin'(sin 1
1

1 hn αα −=                                                      (2.19)  

                                       )sin'(sin 2
1

2 hn αα −=                                                      (2.20) 
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When incident angle θih=60°, diffraction angle θdh=34.7°, the calculated recording 

beam angles in the air are α1=44° and α2=-2°.  

2.3  Holographic grating formation in DuPont photopolymer films   

DuPont photopolymers are promising holographic films due to their dry 

processing, long shelf life, good photo-speed, and large index modulation [41-44]. 

The holographic photopolymer is spin coated from solvent on a clear support, 

typically Mylar polyester film. A removable cover sheet is used as a protecting cover. 

The thickness of the photopolymer film is available from 10 to 100 µm.  

       The formation mechanism of holographic grating in photopolymer films is 

known to be a three-step process [40].  First, an exposure initiates the interference 

pattern, which causes initial polymerization and diffusion of the monomer molecules 

to bright fringe areas from the dark fringe neighborhoods in the photopolymer. A 

higher concentration of polymerization means a higher refractive index.  Second, a 

uniform UV light is required for dye bleaching and complete polymerization. Third, a 

baking process can further enhance the refractive index modulation of the hologram 

formed in the photopolymer film.  

     The dynamic range of the diffraction efficiency versus exposure time is related to 

the polymerization rates and the diffusion rates, which can be controlled by the 

intensities of the two recording beams. Assuming the ratio of the two recording beam 

intensities is 1:1, before saturation, if the intensities of the two recording beams are 

too low, the polymerization rates in both dark and bright fringes will be relatively 
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low, therefore, the diffraction efficiency increases at a very low speed. On the other 

hand, if the intensities of the two recording beams are too high, the polymerization 

rates will be larger than the diffusion rates in the dark fringe regions, thus the 

resulting diffraction efficiency shows a decrease when the diffusion processing is 

stopped by rigidity in the in the polymerized portion of the film. It is important to 

have optimum recording intensity to achieve monomer diffusion rates compatible 

with the polymerization rates in the dark fringe regions of the photopolymer film. In 

this case, a smoothly increasing diffraction efficiency curve with a saturation region 

can be obtained. 

     In our experiment, DuPont HRF 600X001-20 (20 µm thick) was selected as the 

recording material because it exhibits lower scattering and higher diffraction 

efficiency [44].  The ratio of the recording beam intensities was 1:1.2. The laser 

power was 5mW.  The optimum exposure time was 60s for reconstruction wavelength 

of 1550 µm.  After recording, the hologram was UV-cured for three minutes.  Then it 

was baked for two hours at 100ºC. 
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Fig. 2.1  Model of a thick holographic grating with slanted fringes. 
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Fig. 2.2  Propagation vectors of the input wave, output wave, and grating vector. 
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Fig. 2.3  Experimental setup for recording volume holograms using the two-beam   
               interference method 
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Fig. 2.4  Phase matching condition for recording and reconstruction of the 
grating 
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 Chapter 3:  Eight-Channel Dispersion-Enhanced Volume 

Holographic Grating-Based Dense Wavelength-Division 

Demultiplexer  

 
     For long-haul telecommunications and data communication in metropolitan areas 

at wavelengths of 1330 nm and 1550 nm, WDM technologies have been focusing on 

Bragg grating [16-21] and arrayed waveguide gratings (AWG) [22-28].  Holographic 

gratings have been extensively deployed in integration optics and optical 

interconnects due to their flexible design and fabrication capability [45-52].  In this 

chapter, an eight-channel fully packaged dense wavelength division demultiplexer 

(DWDDM) is presented (Sections 3.1 and 3.2) which employs a novel dispersion-

enhanced grating design [53], using a path-reversed substrate-guided-wave 

configuration working at a center wavelength of 1555 nm [54].  The polymer-based 

holographic grating [55-62] lowers the cost of the device compared to using gratings 

made from other materials. Multi-mode fibers enable the demultiplexer to resist 

mechanical and environmental disturbance well. The lights are zigzagged within a 

wedge-angled substrate, decreasing the device’s size effectively. This demultiplexer is 

not only compact in size, but also reliable in operation and more cost-effective 

compared with counterparts using other methods [16-28].  
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3.1  The grating design pr inciple and the device structure 

A path-reversed photopolymer-based substrate-guided holographic grating is 

used for demutiplexing eight wavelengths with 2 nm separations. The particular 

choice of wavelengths and wavelength channel spacing is due to the requirements of 

the parallel optical interconnect system built by the Jet Propulsion Lab [63]. 

Figure 3.1 shows the structure of the substrate-guided-wave interconnect 

scheme. Collimated optical signals with different wavelengths are coupled into a 

waveguiding plate with an aluminum-coated beveled edge of an angle α, zig-zagged 

within the substrate with a bouncing angle larger than the critical angle of the 

waveguiding plate, and then coupled out by the photopolymer-based volume 

holographic grating fabricated on one side of the substrate. The dispersed optical 

signals can be coupled by a focusing lens into a fiber array.  The thickness of the 

waveguiding plate is t. Figure 3.2 shows the detailed structure of a volume 

holographic grating with a thickness of d. The grating has a period of Λ and a slant 

angle of φ. The grating equation is given by [36] 

                           Λy (sinθdh + sinθin) = m λ / n ,      m = 0, +1, +2, ……              ( 3.1 ) 

where θin and θdh
 are the incident angle and the diffraction angle respectively of the 

optical signals in the holographic grating region at the center wavelength of λ (in the 

air). The average refractive index of the holographic grating region is n.   

Λy = Λ / sin φ is the grating period projected in the direction Y. The mth forward 

diffraction order is represented by m. In our case, m = 1. Let θdiff  be the designed 
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diffraction angle in the air of refractive index n3
, and let θ in be the bouncing angle, 

i.e., the incident angle at the interface between the waveguiding plate and the grating. 

From the geometrical layout of the beveled edge, we have θ in = 2 α.  

The dispersion of the grating can be derived by differentiating Eq. (3.1), 

giving 

                     dθdiff / dλ = sinφ / Λ cosθdiff  

                                   = n (sinθdh + sinθin) / λcosθdiff .                                           ( 3.2 ) 

From Equation 3.2, one can easily conclude that the larger the diffraction angle, or 

the larger the incident angle, the greater the angular dispersion. The larger the angular 

dispersion, the smaller the packaging size. Consequently, large angular dispersion is 

always preferable in DWDM design. 

For grating design, the spectral bandwidth of the grating is also a quite 

important parameter, which has to accommodate all wavelength channels 

demultiplexed. The approximate spectral bandwidth is given by Ludman [64] in the 

form of 

                                       ∆λ / λ = Λ cosθdh sin φ / d sin θdh,                                 ( 3.3 )  

which indicates that the larger the diffraction angle, or the larger the incident angle, 

the smaller the bandwidth. There exists a trade-off between the dispersion and the 

bandwidth of the guided-wave holographic gratings.  

     The diffracted multi-wavelength signals are coupled into a silicon V-grooved 

multimode fiber array with a 62.5µm diameter core, and a 250µm channel-to-channel 
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spacing. The linearity of the angular dispersion among different wavelengths is 

critical for achieving balanced coupling efficiency. Since the channel spacing of the 

multimode fiber array in the experiments under discussion is exactly 250 µm, and the 

required wavelength separation is also uniform (2 nm), we definitely expect to 

achieve perfect linearity of angular dispersion to meet these two factors.  But 

Equation 3.2 shows that angular dispersion is not a linear function of diffraction 

angle. The condition for achieving linear angular dispersions among different 

channels can be found by taking the second-order derivative of the diffraction angle, 

i.e., 

232
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)sin(
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When the diffraction angle in the air is zero, the best angular dispersion linearity can 

be achieved. The diffraction angle at different wavelengths is 

 

     

The diffraction angle difference between a specific wavelength and the center 

wavelength is:  

                                   )()()( λλλ θθθ −−=∆ centerdiffdiffdiff                                    (3.6) 

Channel spacing between the specific wavelength and the center wavelength is thus 

determined to be 

)tan( )()( λλ θ difffd ∆×=∆  

(3.5) ))sin(/arcsin()( dhydiff n θλθ λ ×−Λ=

  (3.4) 
 

 (3.7) 



 32

In Equation (3.7), f is the focal length of the lens used for focusing the light spot 

down to diffraction limit. The simulation result of channel spacing deviation at two 

different incident angles and diffraction angles is shown in Table 3.1. For the incident 

angle of 60° in the air, the diffraction angle of 0° in the air (60° / 0° structure), we can 

achieve relatively accurate wavelength, but the dispersion ability is only 0.0485 

degree per nanometer. For a grating structure with the incident angle of 60° in the air, 

the diffraction angle of 60° in the air (60° / 60° structure), the dispersion ability is 

0.1600 degree per nanometer, which is 2.3 times greater than that of the 60° / 0° 

structure. But the linearity of its angular dispersion is less satisfactory than that of the 

60° / 0° structure. Table 3.1 indicates that there exists a trade-off between the 

dispersion ability and the dispersion linearity.  For the 60° / 60° structure, most of the 

channel spacing deviations are smaller than 6µm. Compared to the core diameter of a 

multimode fiber and the small light spot size, which is close to diffraction limit.  This 

result is tolerable. The largest deviation is 24.08 µm, which can be compensated for 

by tuning the wavelength slightly at the particular channel. We selected a grating 

structure with a grating period Λ of 694 nm, a diffraction angle θdiff of 60o in the air 

and an incident angle θ of 60o in the grating. This structure can provide a relatively 

large dispersion and bandwidth, dθdiff / dλ = 0.16o/ nm. The beveled edge provides a 

means of overcoming the limitation of the critical angle inside the waveguiding 

substrate and to enhance the dispersion of the holographic grating.  



 33

3.2  Device packaging and per formance 

      Figure 3.1 illustrates the design layout of the device. A collimator with a single-

mode fiber and an FC fiber connector, a computer-optimized achromatic lens, a 

silicon V-grooved multimode fiber array, and the holders of these parts are integrated 

on a 4.3 × 2.7-inch base plate.  The light coming from WDM lasers is transposed to a 

collimator by a polarization-maintaining single-mode fiber, and is diffracted by a 60° 

/ 60° holographic grating. Diffracted beams outside the grating vary almost linearly 

with the deviation of eight input wavelengths. A lens is used to focus the beams down 

to diffraction-limited spots, which can be coupled into an eight-channel silicon V-

grooved multi-mode fiber array. The device is designed for optical communications 

for metropolitan-area networks where both free space DWDM and multi-mode fiber 

band networks are jointly employed [65]. 

        To maintain precision and accuracy during the packaging, the V-grooved fiber 

array is installed on a specially designed gripper whose positioning can be controlled 

by a position system with six degrees of freedom including X, Y, Z translation, 

rotation, pitch, and yaw. Because infrared light is invisible, it becomes critical to 

locate the exact focal plane of the lens. First, we coupled the center wavelength 1555 

nm to the 4th channel of the V-grooved fiber array, which is the channel designed for 

coupling the center wavelength. The smallest insertion loss and balanced crosstalk to 

the two neighboring channels can be reached by adjusting the X, Y, and Z translation 

stage. At this time, the focal point of the lens is immediately on the front face of the 
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V-grooved fiber array when operating at the center wavelength. Similarly, the other 

seven wavelengths are coupled to the corresponding channels with the smallest 

insertion loss and balanced crosstalks.  

      Epoxy injection and UV curing are used to fix all the optical components on their 

mounts permanently. There is no observed component displacement after UV curing. 

     Because WDM laser sources usually contain a spectral width dependent on the 

laser cavity structures and the operating conditions [66], Laser wavelength shift is 

also present when the laser is internally modulated [67]. Dispersion non-linearity 

limits the wavelength range and channel spacing. It was observed that there was an 

extremely small shift in the coupled wavelength compared to the designed.  

     The fully packaged device is shown in Figure 3.3. Two terms need to be defined 

here. Insertion loss is defined as the power loss from the pigtail of the WDM laser to 

the output of the silicon V-grooved fiber array, including the loss of the input signal 

mode fiber, the collimator, the holographic grating, the lens, and the silicon V-

grooved fiber array and its coupling loss. Crosstalk is the power difference between a 

specific channel and its neighbor channels when only that specific channel is on.  The 

measured insertion losses and crosstalk of the DWDDM system are listed in Table 

3.2. The typical value of crosstalk is less than –35dB, which is satisfactory for optical 

communications networks. The typical insertion loss of this system is in the 

neighborhood of –5.5dB. Grating loss is a major factor in the total insertion loss. The 

diffraction efficiency of the holographic grating is 40% [53], which is due to the fixed 

index modulation and film thickness provided by DuPont photopolymers (DuPont 
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Holographic Materials, Wilmington, Delaware, USA) [68,69] We are trying to use 

other gratings from other sources which have much higher diffraction efficiency at 

the required working wavelength. (The diffraction efficiency of grating made by 

American Holographic, Inc is higher than 97.3% at the wavelength range from 1540 

nm to 1570 nm. The diffraction efficiency of gratings made by Optometrics USA is 

higher than 86% at the wavelength range from 1400 nm to 1600 nm.) The insertion 

losses can be decreased significantly, down to –1.5 dB to –2.5 dB, by using these 

gratings. The measured optical 1dB passband is 0.2 nm, which corresponds to the 

30µm movement range of the fiber array. The wide optical passband makes the device 

robust to variation in environmental temperature.  

        Figure 3.4 shows the output spectrum from the eight-channel V-grooved fibers 

when input wavelengths are 1549, 1551, 1553, 1555, 1557, 1559, 1561, and 1563 nm. 

The output spectrum was measured by a laser rather than by a wide-band white-light 

source, so it shows the center wavelength of each individual channel rather than the 

exact loss spectrum of each channel, because of the narrow line width and uneven 

input power of the laser.  

3.3  Summary of Chapter 3 

      The DWDDM designed here employed dispersion-enhanced volume holographic 

gratings and silicon V-grooved multi-mode fiber array with 250 um spacing to 

demultiplex optical signals to eight channels, namely at wavelengths of 1549 nm, 

1551 nm, 1553 nm, 1555 nm, 1557 nm, 1559 nm, 1561 nm, and 1563 nm. The 
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packaging losses of these channels are -5.68, -5.6, -5.40, -5.3, -5.68, -5.59, -5.58, and 

-5.49 dB respectively. The typical crosstalk is –35dB. Most parts of the DWDDM 

device are off-shelf optical components, ensuring that the cost is reasonable low. All 

the components were permanently fixed with Epoxy injection and UV-cured to make 

the device robust and rigid. 
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Fig. 3.1  Schematic of an eight-channel DWDM device, and the geometric structure 
of a path-reversed substrate-guided-wave interconnected model. 
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Fig. 3.2   Guided-wave holographic grating. 
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Fig. 3.3 (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.3 (b) 
 
 

                                  Fig. 3.3  (a) Fully packaged eight-channel DWDDM device  

                                                (b) Inside setup of the packaged device  
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Fig 3.4:  Output signals from an optical spectrum analyzer 
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Table 3.1  Spacing deviation for two different grating structures 

Wavelength (nm) 1549 1551 1553 1555 1557 1559 1561 1563 

Expected spacing to 
center wavelength (µm) 

-750 -500 -250 0 250 500 750 1000 

60°/60°  

structure 
-725.92 -486.09 -244.15 0 246.43 495.24 746.52 1000.37 Spacing to 

center 
wavelength 
(um) of two 
different 
structure 

60°/0°  

structure 

 

-746.05 -497.36 -248.68 0 248.68 497.36 746.05 994.75 

60°/60°  

structure 
 

-24.08 -13.91 -5.85 0 -3.57 -4.76 -3.48  0.37 Deviations 
of spacing 
(um) 

60°/0°  

structure 
-3.94 -2.63 -1.32 0 -1.32 -2.63 -3.94 -5.25 
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Table 3.2   Insertion loss and crosstalk of the packaged device 
 

Channel #  
&Wavelength 
(nm) 

1 2 3 4 5 6 7 8 

1.  (1549.45) -5.68 -5.72 -
40.80 

-44.91 -45.82 / / / 

2.  (1551.37) -3.12 -5.6 -36.3 -42.0 -46.6 / / / 

3.  (1553.20) -42.2 -40.7 -5.40 -36.6 43.2 / / / 

4.  (1555.10) -46.9 -42.9 -41.0 -5.3 -40.3 -43.27 -47.49 / 

5.  (1556.86) /*  / -41.7 -40.1 -5.68 -38.5 -46.1 / 

6.  (1558.79) / / -41.9 -41.9 -38.3 -5.59 -40.1 -45 

7.  (1560.62) / / -43.6 -43.5 -42.3 -33.5 -5.58 -39.2 

8.  (1562.65) / / / / / -39.9 -31.7 -5.49 

Note: “* ”  means undectable 
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Chapter 4:  Athermalized Low-Loss Echelle Grating-Based 

Multimode Dense Wavelength Division Demultiplexer  

 

     Due to the explosive demand for high-bandwidth applications and the 

accompanying short distance, multimode dense wavelength division multiplexing has 

become an essential, robust, and high-performance data-link technology in 

metropolitan and local area networks ( MANs and LANs ) [70-76].  Multimode fiber 

represents the sizable portion of the fibers used in LANs, due to its low-cost 

installation and maintenance. It was being installed in LAN as early as the 1980s [77]. 

The WDM has been a cost-effective method of increasing the capacity of long-haul 

fiber links. But the WDM for data communications has to be quite low cost, compact, 

and compatible with multimode fiber.  The potential for a large number of closely 

spaced channels and the inherent advantage of compactness make bulk diffraction 

grating-based demultiplexers quite attractive for multimode dense WDM applications 

[78-85]. Meanwhile, there is also an urgent need to find a way to overcome the 

temperature dependence in multimode DEMUXs, and to decrease the cost and the 

device size. In this chapter we present an athermalized low loss and low crosstalk 

DEMUX for MANs and LANs.  
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4.1  High-order echelle grating design pr inciple and parameters 

     A high-order echelle grating has several special properties, which make it an 

excellent diffraction component for WDM diffraction. Most apparent is its high 

dispersion, which permits compact optical systems with a high throughput and high 

resolution. In addition, because it is never used far from the blaze direction, the 

grating efficiency remains relatively high over a large spectral range. Furthermore, 

when the grating is operated at higher orders, it is nearly free of the polarization effect 

[86]. Under the Littow mount condition, when the incident angle is the same as the 

diffraction angle, another useful property comes into play: one lens can both collimate 

and focus simultaneously, resulting in lower cost and decreased packaging size for the 

WDM system. Figure 4.1 shows our measurements of the grating efficiency across all 

working wavelengths. The grating efficiency varies from 61%-75% within the whole 

working wavelength range (1549.32-1560.61 nm).  

4.1.1  Calculation of desired diffraction order      

      Usually, the higher the grating order, the smaller the polarization effect of the 

grating.  But any given grating order is also limited by certain factors. One of them is 

its working spectral range. We calculated the corresponding grating working order to 

cover the C band spectral range (from 1528 nm to 1560 nm).  When the extremes of 

the C band are represented by 1λ =1528 nm and 2λ =1560 nm, the formula for 

calculating the grating order for a certain spectrum range can be expressed as [86]: 
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1

λλ
λ
−

=m  

So that the spectrum of the C band signal 2λ  operating at m order does not overlap 

the spectrum of signal λ1when operating at m+1 order, m must be less than 47.  On 

the other hand, we must leave room to fully reduce the noise caused by the scattering 

of adjacent orders. 

       We chose 22 as the grating working order, and the grating groove spacing (18µm) 

is large compared to the wavelength (1.5µm). This in turn implies that scalar theory 

of diffraction may be used. The scalar theory, based on the Huygens principle of 

secondary wavelets, assumes that the optical properties of the material of the grooves 

are the same on a microscopic scale as they are on a macroscopic scale. In other 

words, each groove facet is a small mirror or a small prism, but behaves in the same 

way as a large one. When the widths of the grooves are comparable with the 

wavelength of light this assumption is no longer valid.  

      For example, consider the operation of a metal mirror. The incident 

electromagnetic wave induces oscillations of the free conduction electrons in the 

surface of the metal.  These behave as a series of oscillating dipoles, which re-radiate 

in phase with the incident wave and may be considered as a series of secondary 

sources, which interfere constructively in the direction of the reflected wave, in 

accordance with Huygens’s theory. But when the dimensions of the facet are of the 

same order as the wavelength of the light, then the oscillations of the electrons are 

(4.1) 
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impeded or curtailed by the boundary of the facet, and the simple scalar theory no 

longer applies. In practice when the groove spacing is less than about three times the 

wavelength, the efficiency curves for the two polarizations differ dramatically, and 

the “blaze wavelengths”  differ [86]. By using 22nd-order grating, the diffraction 

efficiency is almost independent of the polarization of incident light.   

4.1.2  Diffraction angle and angular  dispersion calculation 

      In figure 4.2 the light is incident at angle iθ  and diffracted at an angle dθ ; φ is the 

facet angle, where all three are measured from the grating normal. The reflection 

grating diffraction equation is [87] 

                                     λθθ mn di =+Λ )sin(sin ,                                                    (4.2) 

where m is the order of diffraction, λ the wavelength, Λ is the groove spacing, and n 

is the refraction index of the medium containing the incident and diffracted rays. 

Here, n=1. We found the angular dispersion by taking the first-order derivative of θd  

                                             
d

did

d

d

θλ
θθ

λ
θ

cos

sinsin +
=  .                                             (4.3) 

For the Littrow condition iθ = dθ , and angular dispersion is      

                                                       λ
θ

λ
θ dd

d

d tan2= .                                                (4.4) 

      The larger the diffraction angle, the greater the angular dispersion.  In our design 

of the eight-channel DEMUX, the incident and diffraction angles are iθ = dθ = 63.86° 

at the center wavelength of 1555.32 nm, which is the 4th channel of our device. The 
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angular dispersion of the grating at the central wavelength (λ=1555.32 nm) was 2.62 

mrad/nm. 

      Blazed grating redirects the incident light in the direction of a chosen diffracted 

order if each groove is formed appropriately. Thus in a transmission grating each 

groove constitutes a tiny prism, and for a reflection grating each groove consists of a 

small mirror inclined at an appropriate angle. The blaze condition is satisfied when 

the angle of incidence with respect to the facet normal is equal to the angle of 

reflection from the facet; i.e. 

φθφθ +=− di ; 

2
di θθφ −=       or     φθθ 2−= id  

Considering the Littrow mount, θi=-θd,, so φ =θd, which is the situation depicted in 

figure 4.3. The grating blaze angle was 64°.  

4.2  Device configuration and optical design details 

     The device was designed to have eight channel outputs and to be operated in the 

frequency region from 192.1THz to 193.5THz (Wavelength from 1548.90-1560.19 

nm) within the ITU grid.  The channel spacing is 200 GHz. Figure 4.4 shows a 

schematic diagram of this device. The input optical signals coming from a tunable 

external cavity semiconductor laser passed through 1-kilometer of coiled multimode 

fiber, which was used as a mode scrambler. The source was then introduced to the 

demultiplexer through the input channel of a silicon V-grooved multimode fiber 

(4.6) 

(4.5) 
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array. This 62.5/125µm multimode fiber array has one input fiber and eight output 

fibers placed in single-layer silicon V-groove chip, which was designed to have 

variable fiber spacing because of the nonlinear effect of the angular dispersion. The 

channel spacing was 150, 151.57, 153.17, 154.88, 156.43, 158.29, 159.90 µm from 

the shorter wavelength to the longer wavelength end.  An optimized diffraction 

limited triplet lens was used to collimate the incident light from the inputs and to 

focus the diffracted lights from the grating into the corresponding fiber array 

channels.  

     The grating used operates in a high diffraction order in order to minimize the 

polarization-dependent loss.  The grating operates at large angles of incidence and 

diffraction in order to provide large angular dispersion.  The large dispersion reduces 

the focal length of the lens, and hence the size of the instrument.   

     The 62.5 µm multimode fiber has a numerical aperture of 0.275, requiring the use 

of a lens large enough to accept and collect light with this numerical aperture across 

the entire fiber array.  Figure 4.5 shows a cross section of the optics of the eight-

channel demultiplexer.  The vertical line at the left of this figure is the focal plane, 

and the front end of the fiber array (not shown) is in this plane.  Light leaves the input 

fiber and is collimated by the lens.  The grating gives an angular dispersion of the 

light into its constituent frequencies, the rays of one of which are shown in the 

diagram. The light for this frequency, 192.1THz, is focused by the lens onto an output 

fiber.  For simplicity, rays for the other seven channels are not shown. 
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      Because the size of the instrument is essentially proportional to the spacing of the 

fibers, which are only 150µm in diameter, the fiber spacing could have been reduced 

to slightly less than this value, with a consequent reduction in size and weight of the 

device. 

      The lens is telecentric.  That is, the input beam and all output beams are parallel to 

the optical axis.  This fact has important consequences.  First, insertion loss is 

minimized because all of the output beams are perpendicular to their respective 

fibers.  Second, the frequency of a channel is invariant with respect to changes in 

focus.  Since there are small changes in focus with changes in temperature, the 

frequency will not be a function of temperature.  The experimental data below 

confirmed this fact. 

     The focal length f of the lens can be calculated by Equation 4.7 once the fiber 

spacing y∆  and wavelength increment λ∆  between adjacent channels is known. 

                                                 
d

y
f

θ
λ

λ tan2∆
∆=                                                (4.7) 

      The above formula shows that the focal length of the lens is directly proportional 

to the fiber spacing and to the tangent of the angle of diffraction.  Thus, in order to 

make the lens small, one can use closely spaced fibers and a large diffraction angle. 

For blazed grating, the diffraction angle is approximately equal to the blaze angle φ.  

For the center wavelength λ=1555.32 µm, ∆λ=1.6 nm, ∆y=154.88µm, we can obtain 

f=36.9mm. 
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4.3  Simulation for the tolerance of image shift 

     Disturbances caused by laser drifting, temperature change, and vibration are 

reflected as a relative movement of the input light spot at the receiving fiber or as a 

shifting of wavelength. A larger 1-dB passband is therefore always preferable. To 

calculate the transverse loss of the WDM system, assume that the core diameter of the 

receiving fiber is D=2R, and the diameter of the input light spot is d=2r.  We express 

the ratio of energy in the area of overlap (input light spot and receiving fiber) to 

energy in the entire area of the input light spot as 

∫
∫=

s

s

dsyxf

dsyxf

),(

'),('
'η , 

where η is the ratio of energy, s′ is the overlap area, s is the input light spot area. The 

optical power distribution function at the overlap area and the whole area of input 

light spot are ),(' yxf , ),( yxf  respectively.  Figure 4.6 illustrates Equation 4.8. We 

can obtain the maximum tolerance of image shift when the WDM system functions 

within 1-dB passband range.  

     Here, we assume a uniform power distribution across the whole area of the input 

light spot.  We simulated the theoretical 1-dB passband calculation, in which D= 

62.5µm and d = 62.5µm.  Figure 4.7 shows the simulation result, which indicates that 

when a system is diffraction-limited, i.e., the input spot size is the same as the multi-

mode fiber core diameter; the maximum image shift tolerance can be up to ±10µm 

(4.8) 



 51

within 1dB passband. This large image shift tolerance helps the device to resist 

various kinds of environmental disturbances.   

4.4.  High data transmission bit rate  

      To achieve a high data transmitting bit rate in the telecommunications field is the 

goal of WDM technology. The maximum bit rates are determined by numerous 

factors, including the signal modulation rate, the transmission bandwidth through the 

transmission media, and the response time of the opto-electronic devices. In a 

communications network, the WDM system is simply one part of the transmission 

regime. The pulse broadening of grating-based DWDM imposes inherent limitations 

on the data transmission bit rate. We need to optimize the WDM design to decrease 

pulse broadening caused by grating, which can be calculated by the formula below: 

 

where, the intensity of input light posses Gaussian distribution; n0 is the refractive 

index of the media where light is transmitted, c is the speed of light at vacuum. 

NA=0.275, is the numerical aperture of the input fiber. The focal length of the lens 

f=36.9mm.θd =63.86 is the diffraction angle of grating. So, the pulse broadening 

caused by grating is ∆τg=3.4×10-11s. Equations 4.9 clearly shows that, when working 

at a certain wavelength, pulse broadening caused by gratings is proportional to the 

numerical aperture of the input fiber, to the focal length of the lens, and to the 

diffraction angle of the grating.  

c

NAfn d
g 2

)tan()tan(0 θτ ⋅⋅⋅
=∆ (4.9) 
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Mode dispersion is another major factor causing pulse broadening in multimode 

DWDM. For graded index multimode fibers, the pulse broadening can be calculated 

by Eq. (4.10) 

                                                      21

8
∆=∆

c

Ln
mτ                                                    (4.10) 

Where, the refractive index of the core is n1=1.473; relative index difference is 

∆=1.74%; the speed of light in the vacuum c=3×108 m/s; L=100m is the length of the 

multimode fiber. The calculated pulse broadening caused by mode dispersion 

∆τm=1.9×10-11s. The total pulse broadening can be calculated by Eq. (4.11) 

                                          22
mg τττ ∆+∆=∆                                                     (4.11)  

The maximum data transmission bit rate can be expressed as Equation (4.12) when 

neglecting initial pulse width. 

                                                
τ∆

=
4

1
BR                                                               (4.12) 

Here, the total pulse broadening ∆τ=4.3×10−11s, therefore the theoretical bit rate BR = 

5.8 Gbps. We measured the data transmission bit rate using the setup shown in Figure 

4.8. The maximum signal speed of the signal generator was 3.5 Gbps. The random 

signal from the signal generator at the speed of 3.5 Gbps was sent to a modulator to 

modulate the intensity of the optical signal from a tunable laser.  The modulated 

optical signal passed through a mode scrambler and then was sent to the input channel 

of the WDM device. A digital communication analyzer was used to measure the eye 

diagram of the output channels.  Figure 4.9 shows a clearly open eye diagram when 
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the input optical signal was modulated at 3.5Gbps. The applied current is 120 mA; the 

ratio of signal to noise is S/N=8.7. 

4.5  Device per formance 

       The multiplexer was fabricated as a stand-alone unit deploying a stainless steel 

housing to provide compatible thermal expansion coefficient with the lens material. 

The entire assembling and packaging process is passive and epoxy-free, which 

avoided the possible wavelength and insertion loss shifting caused by the UV curing 

of epoxy.  Figure 4.10 shows the inside of the fully packaged 8-channel multimode 

demultiplexer.  By improving the mechanical design, by careful choices of optical 

materials, by employing the epoxy-free packaging and sealed package housing, we 

have obtained excellent thermal behavior for this DEMUX, from the point view of 

insertion loss, as well as center wavelength accuracy.  The detailed thermal analyses 

will be given in Chapter 5.  

     We measured the transmission spectrum using an amplified spontaneous light 

emission (ASE) light source and an optical spectrum analyzer having a 0.01 nm 

resolution. All the measurement results were obtained after taking the average of 

three sets of the input and output signals. Figure 4.11 shows the transmission 

spectrum for each of the eight channels. These figures were measured at the 

wavelength of minimum loss, which was always within 0.04 nm of the nominal 

channel center wavelength. The lowest insertion loss for any channel was 1.50 dB; all 

of the channels show under 2.70dB loss with a mean figure of 1.95dB, which includes 
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connector loss. Of the 1.95 dB, 1.55dB is due to the grating diffracting 70% of 

incident power into the desired diffraction order. 0.1dB is caused by lens transmission 

and reflection loss; and the other 0.3dB is caused by fiber array coupling and 

connection loss.  

      We also monitored the change in insertion loss and center wavelength when 

increasing the operating temperature from 20°C to 60 °C. The average insertion loss 

changed from 1.95dB to 2.34dB, which gave a 0.00975dB/degree loss shift. Figure 

4.12 shows the loss variation against different channels at 20°C and 60°C.  We could 

then find that the maximum change of the 8 channels in loss was 1.1dB, which was 

within the loss deviation range of 1.2dB for different channel at room temperature. 

The average wavelength shift with temperature is 0.00033 nm/°C. 

     The wavelength temperature dependence was successfully suppressed within 

0.032 nm in the 20 to 60°C temperature ranges, which is also within the wavelength 

accuracy range at room temperature. The detailed measured device parameters are 

listed in Table 4.1.  The wavelength accuracy is within 0.04 nm in the worst case, 

which was due to the imperfect positions of fibers in the array and the output power 

shifting of the white band ASE light source.  The device has fairly good isolation; the 

average crosstalk is 46.5dB. The measured 1dB and 3dB bandwidths are 0.34, 0.60 

nm respectively. The typical polarization dependence loss was measured to be 

0.13dB. 
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4.6  Summary of Chapter 4 

      We designed and demonstrated a high resolution and low insertion loss 

athemalized grating-based 8-channel DEMUX. This device has 1.95 and 2.34dB 

insertion loss at 20°C and 60°C respectively. The mean crosstalk is 46.7dB. To the 

author’s knowledge, those are the best-reported results for a multimode DWDM. The 

wavelength accuracy is within 0.04 nm. The 3dB passband was measured to be 0.60 

nm. This low-cost and highly stable DEMUX can be employed for both metropolitan 

and local area networks.  
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Fig. 4.1  Diffraction efficiency of the 22nd echelle grating   
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Fig. 4.2  Configuration of a blazed grating 
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                               Fig.4.3  A blazed grating used in the Littow mounting 
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         Fig.4.4  Geometrical layout of the eight-channel multimode demultiplexer  
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Fig. 4.5.  A cross section of the optics of the eight-channel demultiplexer  
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Fig. 4.6.  Illustration of the overlap region of a receiving fiber and the input spot 
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Fig. 4.7  Simulation result shows ±10µm image shift tolerance within 1dB passband.  
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Fig. 4.8 Experimental setup for data transmission bit rate testing  
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      Fig. 4.9  Experiment confirms that the data-transmission bit rate of the 

demulplexer is higher than 3.5 Gbps.  
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Fig. 4.10  Inside of the fully packaged eight-channel multimode-in, multimode-out 
demultiplexer. 
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Fig.4.11  Output spectrum of the demultiplexer. The resolution of the optical 

spectrum analyzer is 0.01nm. The result was obtained by taking the average of three 

sets of measurement. 
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Fig. 4.12 Insertion loss variation plotted against channel frequency at 20°C and 60°C 
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Table 4.1   Device parameters of the multimode demultiplexer. 

    Ch#1 Ch# 2 Ch# 3 Ch# 4 Ch# 5 Ch# 6 Ch# 7 Ch#8 

Designed Center 1560.61 1558.98 1557.36 1555.75 1554.13 1552.52 1550.92 1549.32 

 wav. (nm)                 

Waveleng. Error  0.02 0.02 0.04 0 0.02 0.01 0 0.02 

at 20°C (nm)                 

Waveleng. Error  0.02 0.04 0.008 0.008 0.016 0.032 0.032 0.024 

at 60°C (nm)                 
Insertion loss (db) 
  2.7 2.3 1.6 1.7 1.5 1.6 1.9 2.3 

CrossTalk (db)  47.8 47.6 48 48 46 45.7 44.6 44.4 

 3dB BW (nm) 0.6 0.61 0.6 0.6 0.6 0.6 0.56 0.6 

PDL(dB)   0.2 0.15 0.07 0.1 0.28 0 0.16 0.07 
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 Chapter 5:  Thermal Analysis and Compensation of 
Grating-Based Wavelength Division Demultiplexers 

 

      When temperature changes, insertion loss and center wavelength may change 

accordingly. The center wavelength shift is mainly caused by the change in grating 

groove spacing and the change of fiber position along the dispersion direction. The 

change in insertion loss is due to the thermal variation in lens focal length, and the 

image shift in vertical and horizontal direction caused by the difference in the thermal 

coefficient of expansion (TCE) of lens and its supporting material. It is desirable to 

design wavelength division demultiplexers (WDDMs) in such a way as to eliminate 

or reduce changes in performance that are caused by temperature fluctuations.   

      A typical operating temperature range is -5° C to 60 °C, so we were seeking 

nearly constant performance over this range.  We will show in this section that it is 

possible to eliminate or reduce the thermal effect by careful optical design and by 

judicious choices in constructing the grating, lens, and housing. 

5.1  Effects caused by the var ious par ts 

     A vertical cross section of a typical WDDM of our design is shown in Figure 5.1. 

For ease of interpretation, the tilt of the grating is omitted.  From the figure, in the 

latter drawing the fibers are not shown, the simplified lens is replaced by an actual 

lens, and the grating is shown as a flat, shaded, tilted plane.   
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      Thermal compensation may be achieved by dividing the problem into three parts.  

First, we show that thermal changes in grating dispersion occur unless the grating 

material has a zero coefficient of expansion.  Thus, we use zero-expansion gratings in 

most of our WDDMs. 

      Lens materials are more complex than grating materials in that they possess both 

a coefficient of thermal expansion and a temperature derivative of the refractive 

index.  Thus one cannot merely use zero-expansion lens materials unless these 

materials also have refractive indices that are invariant with temperature.  We are not 

aware of any materials that meet both of these criteria, except for mirrors. The second 

part of the problem calls for keeping the fibers in focus as the temperature varies, as 

well as keeping the thermal variation in lens focal length small enough to be 

negligible.  

     The third part of the problem involves shifts of the optics in the vertical direction.  

Referring to Figure 5.1, this is the x-direction.  The lens assembly is symmetric about 

the x-z plane, and the fiber assembly is nearly symmetric about this plane, so that 

there will be no shifts in these components in the y-direction.  The front surface of the 

grating will, in general, move along both the y and z axes due to expansion of its 

backing plate (see Figure 5.1).  However, since the grating is used in collimated light, 

this movement will have no effect other than a minute lateral shift of the collimated 

beam.  This shift can readily be shown to be a negligible fraction of the size of the 

clear aperture of the lens, and will therefore have a negligible effect on the 

performance, or no effect at all if the beam is smaller than the lens aperture (the usual 
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case).   In summary, there are only three effects of importance, enumerated above.   

We discuss these effects in detail in the following sections. 

5.2.  Center wavelength shift 

5.2.1  Effect of grating thermal expansion  

     We consider here a WDDM that is designed as a Littrow spectrograph, as shown 

in Figure 5.2.  The lens collimates the light from the input fiber and sends it to the 

grating.  The grating separates the light into its constituent wavelengths and sends the 

angularly dispersed spectrum to the lens.  The lens focuses the linearly dispersed 

spectrum onto the focal plane, and each output fiber receives a different portion of the 

spectrum.  Typically, the spectral range is less than 5% of the central wavelength, so 

that the wavelength is, to a first approximation, constant. 

      Let Λ represent the grating groove period, iθ , dθ  the angles of incidence and 

diffraction, m the grating working order, and λ the working wavelength. 

The grating equation can be expressed as  

                                                         λθθ mdi =+Λ )sin(sin .                                    (5.1) 

We define the grating’s linear temperature coefficient of expansion (TCE) as:        

                                                          )1(0 T∆⋅+Λ=Λ β ,                                      (5.2)   

where β is the TCE of the grating, and ∆T is the change of temperature. Assuming 

that the incident and diffraction angle remain constant with temperature, we can 

easily find the wavelength shift with temperature change thus: 

                                                          ∆Τ⋅⋅=∆ λβλ                                                (5.3) 
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      Replica gratings have a substrate that is coated with a thin layer of epoxy, which 

forms the surface-relief features of the grating.  The epoxy in turn is coated with a 

quite thin layer of metal to give the finished grating reflecting properties.  We assume 

that the expansion of the grooves is equal to the expansion of the substrate, because 

the substrate is much thicker than its coatings. When temperature changes within a 

certain range, the larger the TCE of the grating substrate, the greater the shift in 

center wavelength. We substitute typical values into Eq. (5.3), as follows.  Let 0λ = 

1555 nm, 0 20T = °C, T=60 °C, and use BK7 glass.  The expansion coefficient of this 

glass is 7.1×10-6/K [88].  From (5.3), we have ∆λ=0.44nm. Suppose the channel 

bandwidth λ′∆  is 0.4 nm, which is a typical 3-dB width for a WDDM with narrow 

channel spacing.  Then 1.1λ λ′∆ = ∆ , which represents an extremely large effect.  

Now suppose that λ′∆ = 11 nm, such as is typical for wide channel spacing.  Then 

0.036λ λ′∆ = ∆ , and the effect on performance will be negligible. 

       The grating we deployed for the DWDM has ultra-low TCE. The TCE is zero 

from 0-35°C, and less than 0.06 ×10-6/ °C when the temperature is higher than 35°C  

(which is 1180 times less than the TCE of BK7). When operating at the same 

wavelength and temperature range, Eq. (5.3) predicted a maximum ∆λ=0.037 nm 

wavelength shift which was in good agreement with the experimental result ∆λ=0.032 

nm showed in Section 4.5. Deploying ultra-low expansion grating suppressed the 

wavelength shift successfully. 
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     Our conclusions were twofold.  First, the center wavelengths of all channels will 

shift with temperature by an amount λ∆  that is nearly the same for all channels, due 

to the fact that the spectral range is small compared to the mean wavelength.  Second, 

when designing a WDDM that has channel bandwidths that are on the order of 0.0071 

times the wavelength (a so-called coarse WDDM), one can use optical glass for the 

grating substrate material.  For narrower bandwidths, the thermal shifts of glass 

gratings become very significant, and one must either resort to the use of low-

expansion grating materials or compensate for thermally induced changes in the 

grating period.  We have chosen to use low-expansion materials, since they simplify 

the design and eliminate residual variations in λ∆ . 

5.2.2  Effect of fiber  mount in direction of dispersion 

      We found the amount nfmy ,∆  by which the nth fiber moves away from the 

optical axis when the temperature is raised from room temperature, 0T , to the 

maximum operating temperature, 1T .  This parameter originates from thermal 

expansion of the fiber mount, hence the subscript “ fm.”   Using this data and the 

known linear dispersion of the instrument y∂∂λ  at wavelength λ , we can predict the 

change in wavelength due to fiber mount expansion nfm,λ∆  by the equation 

          
y

y nfmnfm ∂
∂∆=∆ λλ ,, .                                             (5.4) 

The equation for the linear expansion of a material as a function of temperature is 
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)](1[ 0101 TTLL −+= α ,  

where 0L  is the length of the material at temperature 0T , 1L  is the length of the 

material at temperature 1T , and α  is the coefficient of the material’s linear expansion. 

In the eight-channel 200 GHz units described in the previous chapter, the fiber mount 

was made out of silicon, which has a coefficient of expansion of 2.33 × 10-6 per 

centigrade degree.  These units have a nominal fiber spacing of 150 µm; the distance 

endy  of the endmost fiber from the optical axis is 0.60 mm; and the linear dispersion 

is about 0.00649 nm per micrometer. Let =0T  20° C and let =1T  60° C; then 

=−=∆ 01, LLy endfm +5.59 × 10-5 mm.  

     By combining Eqs. (5.4) and (5.5), we found that =∆ endfm,λ  +0.000363 nm.            

This is a negligible change in wavelength.   

     In conclusion, for eight-channel devices with channel spacing of 150 µm or less, 

our analysis has shown that the change in wavelength of any channel due to lateral 

expansion of the fiber mount is quite small. Such effects will be negligible for fiber 

mounts composed of metal, ceramic, or silicon. However, the lateral expansion of the 

fiber mount plays a more significant role as the number of channels increases.  For 

devices with more than eight channels or with fiber spacing greater than 150 µm, one 

must calculate the effect of lateral expansion upon the channel center wavelengths 

and, if necessary, compensate for it.  

(5.5) 
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5.3  Image shift caused by thermal effect 

5.3.1  Effects in the ver tical direction 

     The vertical direction is the x-z plane, as shown in Figure 5.1. Our first 

observation concerns the grating. Since the grating has no optical power in the 

vertical (x) direction, its vertical expansion has no effect. 

In our WDDMs (see Fig. 5.1) all parts that support the optics, except the V-groove  

(i.e., the fiber holder), are made of the same material.  Let this material have a linear 

coefficient of expansion Mα .  The V-groove, which holds the fibers, is quite thin, and 

no fiber is ever more than 1.64 mm above a thin layer of cement (not shown) that 

holds the V-groove to the pedestal.  At present, the V-groove is silicon, which has a 

coefficient of expansion of 2.33×10-6 per °C.  A typical operating temperature range 

is 20 to +60 °C.  According to Eq. (5.2), the 1.64 mm dimension changes to 1.64025 

mm, as the temperature is increased from 20 °C to 60 °C.  The change in fiber 

location is only 0.25 µm, which is negligible compared to 62.5 µm, the diameter of a 

typical output fiber.  We thus disregard the thickness of the V-groove.  If the cement 

thickness is 0.5 mm or more, its expansion will have a noticeable effect, since 

cements typically have expansion coefficients of ~ 50 × 10-6 per degree C.  The 

thickness of cement can be easily controlled within 0.025mm, so we neglect this 

effect in what follows. Especially, for single-mode DWDM design, we eliminate the 

usage of cement to minimize the image shift in vertical direction. 
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      We make the assumption that the lens remains in contact with the lower part of 

the lens cell as the temperature changes.  The validity of this assumption depends 

upon the precise means by which the lens is held in its cell, and different methods of 

mounting will dramatically change the results of our analysis.  For instance, if the 

lens remains in contact with the upper portion of the lens cell, the sign of the result 

[Eq. (5.10)] is reversed.   

      The system is initially aligned at room temperature 0T .  At this temperature the 

fibers and the center of the lens are both at a height H above the baseplate.   At a new 

temperature, 1T , the fiber height is 

                                                               ),1( THx MF ∆+= β                                   (5.6) 

where 01 TTT −=∆ .  At temperature 1T , the center of the lens is at a height of  

                                      )1()1)(( 2
1

2
1 TDTDHx LML ∆++∆+−= ββ ,                    (5.7) 

where Lβ  is the coefficient of expansion of the lens. D is the diameter of lens. At this 

temperature, the fiber height exceeds the lens center height by the distance  

                                          ).(2
1

MLFL TDxxx ββ −∆=−=∆                                  (5.8) 

Because the lateral magnification of the system is −1, the image of the fibers also 

moves by the distance x∆− relative to the center of the lens.  Thus, the image of the 

fibers has moved away from the fibers themselves by a distance of x∆− 2 , and the 

vertical distance between the image and the fibers is 
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     )(2 MLTDx αα −∆−=∆− .                                 (5.9) 

       Letting Ix  be the distance of the image from the baseplate, Eq. (5.9) becomes 

                                                )( MLFI TDxx αα −∆−=− .                                  (5.10) 

We call the quantity FI xx −  the image shift. Equations (5.9) and (5.10) give the 

distance between the image of the fibers and the fibers themselves in terms of the lens 

diameter, the temperature change, and the coefficients of expansion of the lens and of 

the supports.  We have assumed that all supports are made of the same material. 

     Equation (5.10) indicates that, when the temperature changes within a certain 

degree, the better matched the TCE of the lens and its supporting materials, the less 

the image shift, and then the less the insertion loss shift. The differential expansion in 

the vertical direction is directly proportional to the lens diameter, so that thermal 

problems become severe for large lenses unless the expansion coefficients of the lens 

elements are nearly equal to each other and to that of the support. For the eight-

channel dense multi-mode WDDM (D=39.6mm), we used stainless steel as 

supporting material for all the parts whose TCE is 9.9×10-6/K. We chose F7 as lens 

material since it has almost the same TCE (9.8×10-6/K) as stainless steel.  Its image 

shift is 0.16 µm, which can be ignored compared to the fiber core diameter. 
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5.3.2  Effect in the lateral direction 

Because the WDM system is symmetric in the lateral direction, the image shift in the 

lateral direction is mainly caused by the change of central wavelength. The image 

shift ∆y corresponding to the original designed position can be expressed as                 

                                            
λ

θλ f
y diff ⋅⋅∆⋅

≅∆
tan2

                                            (5.11) 

where θdiff is the diffraction angle at a working wavelength λ; ∆λ is the shift of 

working wavelength caused by temperature variation. The focal length is f. 

Combining equations (5.3) and (5.11), We can easily obtain the relation between the 

lateral shift and the TCE of grating material and temperature change. 

                                                       difffTy θβ tan.2 ⋅∆⋅≅∆                                  (5.12) 

       It is obvious that the larger the diffraction angle, or the larger the TCE of the 

grating material, the greater the lateral image shift with temperature. In our design, 

the lateral image shift is effectively suppressed to be less than 0.058µm. The insertion 

loss caused by image shift in either direction is insignificant, considering the large 

core size of the multimode fiber.  The conclusions obtained in this section were based 

on the assumption that the alignment is perfect. A WDDM can give excellent 

performance at room temperature, but still be misaligned.  This misalignment can 

cause significant changes in signal as the temperature changes.  Thus, it may be 

necessary to check that, at room temperature, an alignment parameter is near the 

center of its range, not merely within its range.  
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5.4.  Change in lens focus 

      We analyzed the thermal performance of the lens shown in Figure 5.1 and found 

that its focus relative to the end of the fiber mount varied with temperature.  Referring 

to Figure 5.3, the change in back focal length bf∆  due to a change in temperature T∆  

must be equal and opposite to the change in length mz∆  of the portion of the baseplate 

that lies between the lens and the fiber mount  That is, 

      b mf z∆ = −∆ .                                                          (5.13) 

In order to correctly calculate thermal changes in the WDDM, one must consider 

thermal changes in the refractive index of each lens element, the thermal expansion of 

the lens elements, the thermal expansion of the spacers between the optical parts, and 

the thermal expansion of the grating period.  All of these parameters were handled by 

the optical design software (ZEMAX) that we used, so that we were able to 

accurately simulate thermal changes of back focal length and overall optical 

performance.  

       Because available optical glasses have wide variations in the first derivative of 

the refractive index with respect to temperature, one is able to select a glass or glasses 

for the lens elements that not only will satisfy Eq. (5.13) for a chosen baseplate 

material, but will also provide an opportunity for the lens to be aberration-corrected 

over the entire temperature range.  That is, we have been able to fully optimize our 

lenses to have athermal performance, considering the effect of expansion in the lens 

spacers and the mount.  This is a considerable improvement, compared to the 
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conventional approach of merely keeping the effective focal length or the back focal 

length constant. 

      For example, the WDDM in Chapter 5 has a 0.275 NA, and 150 µm fiber spacing.  

We used F7 as lens material, in conjunction with Type 416 stainless steel mounts and 

lens spacers, and produced optical performance that was diffraction-limited at all 

wavelengths and invariant with temperature. We expect this design to have no 

observable changes in insertion loss with temperature, provided the alignment is 

perfect, and the fiber array is mounted in such a way that the fiber ends remain above 

the same point on the base plate at all temperatures.  This can be done by clamping 

the fiber array at the end nearest the lens and letting the other end change its position 

with temperature.  Other means of achieving this effect while having both ends 

clamped are possible, but are not discussed here. Section 4.5 shows a maximum 

1.1dB of insertion loss shift across temperature operation range 20-60°C. This 

insertion loss shift was mainly due to that the alignment was not perfect. 

     Equation (5.13) does not guarantee that the focal length of the lens will be 

invariant with temperature, only that the lens will stay in focus.  The focal length and 

back focal length are strongly correlated, but not identically so. The focal length can 

be controlled by thermal optimization of the lens design. 
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5.5  Chapter 5 Summary 

      In Chapter 5, we analyzed the thermal effects on diffraction grating based 

DWDMs. When the temperature changes, normally the various parts of the DWDM 

will expand with rising temperatures and shrink with falling temperatures. Various 

responses from different parts of the device upon central wavelength accuracy and 

insertion loss were discussed. Central wavelength shift is mainly caused by the effect 

of the grating’s thermal expansion. Insertion loss shift is mainly due to the change of 

focal length and image shift in both the vertical and horizontal directions.  By 

adopting the ultra-low expansion gratings; compatible materials for lenses, spacers, 

holders, housings; and optimized optical design, it is possible to build thermal-

insensitive WDM devices.   
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Fig. 5.1.  A simplified cross sectional view of a typical echelle grating based  
WDDM.  The dispersion is in the y-z direction, and the y-axis points away from the 
reader’s eyes. 
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 Fig. 5. 2   WDDM in Littrow mount 
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Fig. 5.3.  A simplified cross-sectional view of the section of a WDDM that 

includes the lens and the fiber holder.   
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Chapter 6:  32-Channel 100-GHz Echelle Grating-based 
Demultiplexers  

 

      Rapid growth in the demand for high-capacity telecommunications links, in the 

context of the speed limitation of single-wavelength links, has generated worldwide 

interest in dense wavelength division demultiplexers (DEMUXs) [29-33,89] as an 

effective higher-capacity solution for optical networks. Several major technologies 

for making DEMUXs include interference filters, Bragg grating filters [16-21], and 

phased-array-based DEMUXs [22-28].  Technologies using interference filters and 

Bragg grating filters experience a low level of fiber-to-fiber loss, but the losses are 

not uniform across the whole wavelength range. Interference filters and Bragg grating 

filters use discrete components, so that increasing the number of channels 

proportionately increases the cost as well as the volume of packaging.  Interference 

filters entail multi-cavity structures requiring tens of tightly controlled dielectric 

layers in order to produce individual filters.  By this means it is difficult to fabricate 

devices with channel spacing less than 100GHz.  Phasars and etched gratings [15] 

have good, uniform insertion losses, but may not have satisfactory temperature 

control and polarization sensitivity, depending on the composite materials. Ruled 

diffraction gratings have low, uniform insertion loss, and excellent isolation; further, 

the complexity and cost of packaging do not increase significantly when the number 

of channels increases [29-34]. In this chapter, we discuss two kinds of 32-channel 100 

GHz DEMUXs based on echelle gratings. One of them has single-mode input and 
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multimode output which can work as the bridge between optical backbone and 

metropolitan area networks. The other DEMUX has one input single-mode fiber, and 

32 output single-mode fibers. The second approach is desirable for 

telecommunications networks because of the excellent qualities of single-mode fiber 

for long distance communications. Section 6.1.1 will show the optical design of the 

single-mode-in, single-mode-out device. Followed by the packaging process 

description (Section 6.1.2), non-linear effect discussion (Section 6.1.3) and the 

performance report (section 6.1.4). 

     The optical design and performance of a passband broadened single-mode-in and 

single-mode-out 32-channel 100GHz DWDM is given in section 6.2.1, 6.2.2. Finally, 

the summary is given in Section 6.3 

6.1  A 32-channel 100 GHz single-mode-in, multimode-out DWDM 

6.1.1  Device configuration and optical design 

     A simplified diagram of the optics of the DEMUX is shown in Figure 6.1. Thirty-

two-channel WDM wavelengths are introduced into the DWDM device by a single-

mode fiber with an FC connector, and then are collimated by a two-element lens. The 

same lens functions as the focusing lens for the demultiplexed signals. We used a 

22nd-order echelle grating to demultiplex 32 optical signals within the C band with 

100-GHz channel spacing. The working wavelength range of operation is from 

1541.37 to 1565.47 nm. A 22nd order grating having the same parameters as described 

for the eight-channel multimode device in Chapter 4 was used here. The blaze angle 
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was 64°, the incident angle equals to diffraction angle that was 64.1° at the center 

wavelength of 1554.93 nm. The grating efficiency varies from 48% to 80% across the 

whole wavelength range.  This grating gave us high dispersion, low polarization 

dependent loss (PDL), and relatively high diffraction efficiency. The ITU fiber-optic 

telecommunications channel standard [90, 91] determined the wavelength choice. In 

order to eliminate multiple alignments for individual fibers and to increase 

throughput, we employed a 32-channel silicon V-grooved fiber array to receive the 32 

demultiplexed signals. The input fiber array, which has only a single fiber, sits 

directly on the top of the output fiber array. The input fiber is aligned with the center 

of the optical axis. This over/under configuration allows for better optical 

performance and a slightly smaller lens field of view than one in which the input fiber 

is at the end of the row of output fibers. The optical performance is better because the 

input fiber is near the optical axis of the lens, rather than being far from it, as in the 

other case.  The core size of the multi-mode glass fiber is 62.5 µm.  This DWDM 

device is designed for optical communications for metropolitan-area networks where 

free-space DWDM and multi-mode fiber band networks are jointly employed [65]. 

6.1.2.  Demultiplexer  Packaging and Performance 

      We used active alignment in the whole packaging process. It is critical to locate 

the focal point of the lens and to set the input fiber array exactly at the focal plane. 

We used a stage with 5 degrees of freedom to actively align the grating. We found the 

position of highest diffraction efficiency for the grating by fine-tuning the rotation 
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and the pitch of the grating. To arrive at its highest and most balanced coupling 

efficiency, we simultaneously monitored the output of the two end channels and the 

center channel, i.e., the 1st channel, the 18th channel, and the 32nd channel, at 

wavelengths of 1541.37 nm, 1554.93 nm, and 1564.47 nm respectively. In this way 

the alignments for other channels can be optimized automatically.  

     Figure 6.2 shows the output spectrum of the 32-channel DWDM. This figure 

indicates that the output signals of the 32 channels are quite uniform. The output 

spectrum was measured by a laser rather than a by wide-band white light source, so it 

shows the center wavelength of each individual channel rather than the exact loss 

spectrum, because of the narrow line-width of the laser. Insertion loss is defined as 

the difference between the input power of the DWDM device and the output power 

via the silicon V-grooved fiber array. This loss includes the loss of the input single-

mode fiber, the lens, the grating, the silicon V-grooved fiber array, the connectors, 

and the coupling loss from free space to the output fiber array. Adjacent crosstalk is 

the power ratio between a specific channel and its adjacent channels when only that 

given channel is activated. Figure 6.3 shows the measurement of insertion loss for all 

32 channels, which is also quite uniform across channels. Our measurements showed 

the typical insertion loss of this WDM system to be -3.0±0.2dB. Typical adjacent 

channel crosstalk is -30dB among all 32 channels. The final packaging size was 

6.2×2.4×1.5 inch. 
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     When all the channels are aligned, we tuned the wavelength of individual channel, 

and found the average 1-dB optical passband of the 32 channels to be 0.256 nm. 

Figure 6.4 shows the 1-dB optical passband of all channels. The 1-dB passbands of all 

32 channels vary from 0.22 nm to 0.31 nm, because the quality of the output light 

spot varies at different channels. The average value of the 1-dB passband is 0.256 nm. 

Because WDM laser sources usually contain a spectral width that depends on laser 

cavity structures and on operating conditions, laser wavelength shift is also present 

when the laser is internally modulated [67].  The relatively large 1-dB optical 

passband makes our DEMUX robust to the disturbance caused by laser wavelength 

shift.  When all the channels are aligned and minimum insertion losses are achieved, 

the output fiber array is moved laterally every 2µm to the left and to the right side of 

a specific channel until the insertion loss increases by 1-dB. We measured the 1-dB 

passband of all channels as a function of lateral misalignment. The experiment 

supports the conclusion that the WDM system can tolerate lateral misalignment up to 

30µm while maintaining a better than 0.256 nm 1-dB passband for all 32 channels.  

     Figure 6.5 shows the measurement of the 1dB physical passband for Channel 32, 

corresponding to 30µm lateral misalignment. This large dynamic range makes the 

device highly robust against any displacement of output fiber array caused by 

misalignment, temperature fluctuation, or vibration. Employing a specially made 

single-mode fiber array, and thereby decreasing fiber-to-fiber spacing by half, we 
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were able to use the same configuration to realize a 64 channel DWDM with 50-GHz 

spacing.  

6.1.3  Simulation and exper imental results of the fiber  array’s lateral movement 

tolerance  

       The wavelength shift of a specific channel causes the image of the input light 

spot to move accordingly. By using Equation (4.13), we can obtain the maximum 

movement tolerance of the WDM system when operating within the 1-dB passband 

range. We did simulation for two cases.  In one case, the diameter of the input light 

spot d = 9 µm; in the other, d=44 µm.  Figure 6.6 shows the simulation result, which 

indicates that when a system is diffraction-limited, i.e., the input spot size is the same 

as the single-mode fiber core diameter; the maximum lateral movement tolerance can 

be up to ±29µm within the 1-dB passband.  

     An average of ±15µm lateral movement tolerance was demonstrated in our 

experiment, a result which agrees with d=44µm, representing the worst spot quality 

that we found in our lens-design simulation. The lens used in our WDM system is a 

two-element lens. We can certainly achieve larger lateral movement tolerance by 

using more elements to obtain a diffraction-limited system.   

6.1.4  Non-linear ity per formance of the device when working at ITU standard 

wavelength 

     By combining Equations (4.2) and (4.3), we can simulate the relationship between 

angular dispersion and wavelength. The result is shown in Figure 6.7. The 32-channel 
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designation on the x-axis of the figure corresponds to the 32 wavelengths, which are 

determined by the ITU grid. We found that the angular dispersion increases when the 

wavelength increases, and that therefore the channel spacing depends on wavelength. 

Figure 6.8 shows the simulated channel spacing of the 32 wavelengths, which fit 

exactly within the ITU grid. We found the channel spacing to vary from 115µm to 

135µm across all 32 channels. When building the 32-channel prototype DEMUX, we 

tuned the individual wavelengths slightly to eliminate the non-linear effect of angular 

dispersion. We could make the wavelengths to fit exactly within the ITU grid by 

using nonlinear spaced V-grooved fiber array.   

6.2  A 32-channel 100 GHz single-mode-in, single-mode-out DWDM  

6.2.1  Device structure and optical design 

      We designed and built another 32-channel demultiplexer with one single-mode-

input fiber and 32 single-mode-output fibers using the same structure as that in 

Section 6.1, but with different optical design. For telecommunications networks, 

single-mode DWDMs have been employed exclusively [31-33]. The major goal of 

this design is to have a pass band-broadened single-mode DWDM to compensate for 

the wavelength drift of lasers. Figure 6.9 shows the simplified schematic drawing of 

this demultiplexer (one layer). The major difference between this DEMUX and the 

one in Section 4.1 is that a graded-index lensed fiber array was used here to increase 

the filling ratio. The mode field diameter of graded-index lensed fiber can be 

expanded up to 45µm, thus reducing the lateral and longitudinal misalignment 
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sensitivities [92,93]. The detailed design and analysis of graded-index lens fiber will 

be given in Chapter 7.  The one-layer fiber array has one input single-mode fiber and 

32-single-mode output fibers. The spacing of the fiber array was designed to be non-

uniform varying from 140.1 to 164.4 µm to obtain accurate center wavelength within 

the ITU grid. 

     Figure 6.10 shows the optical layout of the demultiplexer. This three element lens 

was designed for a 50-channel 100-GHz spaced-DEMUX covering wavelength range 

from 1528.63 to 1567.53 nm. The focal length is 72.5mm. The grating is tilted at 

62.7°. The incident angle equals to the diffraction angle, which was 62.7° at the 

center wavelength 1555.73nm.  The whole optical design was done using optical 

design software ZEMAX. The spot diagrams for channel 1, 2, 25, 49, 50 are shown in 

figure 6.11. The spots across the whole wavelength range are diffraction limited. The 

average light spot diameter is 10µm, much smaller than the core size of graded-index 

lensed fiber. This factor eased the lateral and longitudinal alignment greatly. Since the 

mode field diameter of this special fiber was increased, the numerical aperture is 

decreased to 0.032 restricting the tolerance of the angular alignment. This 

demultiplexer was fully packaged. The final packaging size was 10.5× 3.0× 0.9 inch. 

6.2.2  Device per formance  

A 32-channel single-mode-in and single-mode-out demultiplexer was actually built 

and tested. The spectral passband of the 32-channel WDDM is shown in Figure 6.12 

as measured with an ASE source. The average insertion loss was 4.5 dB, and the 
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standard deviation was 0.74dB. The wavelength accuracy is within 0.078 nm. The 

1db passband varied from 0.09 to 0.16 nm, and the 3dB passband varies from 0.16 to 

0.26 nm. The variation among channels was mainly due to the non-uniform spacing 

of the fiber array (varying from 140.1 to 164.4µm from one end to the other). The 

theoretical 3dB passbands varies from 0.219 to 0.257 nm. This outcome was in 

relatively good agreement with the experimental results. The average measured 3dB 

passbands (0.2 nm) was slightly smaller then the theoretical ones (0.23 nm). This 

difference is because it is quite difficult to control the exact position of the front faces 

of individual fibers during silicon fiber array fabrication. Also, polishing after 

fabrication might also cause the length of the graded-index fiber to be smaller than 

designed.  The passband is much better than simply using standard single-mode fibers 

as output fibers. The theoretical 3dB passband of 100GHz DWDMs using standard 

single-mode fibers is only 0.06 nm. (See Chapter 7.1) The average crosstalk is –

51dB, which is the best channel isolation so far achieved by all kinds of technologies.  

The average PDL is 0.36 dB. Table 6.1 shows the detail measurement results for 

wavelength; insertion loss; passband at the 1-dB, and 3-dB points; crosstalk; and 

polarization independence loss. This device was designed for telecommunication 

networks which require 10Gbps minimum bit rate. The theoretical maximum data 

transmission bit rate was calculated by combining Eqs. (4.9) & (4.12). The result was 

33Gbps. We measured the data transmission bit rate of this single-mode DEMUX 

using a similar setup as Figure 4.8.  The difference was that there was no mode 
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scrambler and the maximum signal speed of the signal generator was 12.5Gbps. 

Figure 6.13 shows a clearly opened eye diagram of this device, when the input signal 

was modulated at 12.5Gbps. The ratio of signal to noise was 7.43. 

6.3  Chapter 6 Summary  

     We designed, built, and tested two fully packaged 32-channel 100-GHz 

demultiplexers. For the single-mode-in, multimode-out model, the insertion losses of 

all 32 channels were within -3.0±0.2dB. The crosstalk between adjacent channels for 

all channels is close to  -30dB. The average 1-dB optical passband is 0.256 nm, 

making the device robust against disturbances caused by wavelength and temperature 

fluctuations.   

       For the single-mode-in and single-mode-out device, especially designed graded-

index lensed fibers were applied to expand the mode field diameter, and then to 

increase passband and alignment tolerance. The average insertion loss is 4.5dB; the 

crosstalk between adjacent channels is –51dB; the average 1-dB, and 3-dB passbands 

are 0.11 nm, and 0.2 nm respectively, much better than that of simply using standard 

single-mode fibers. 
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Fig. 6.1  Schematic optical layout of the 32-channel single-mode-in,  multimode-out 
demultiplexer 
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Fig. 6.3  Insertion loss measurement results for all 32 channels 
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Fig.6.6  Simulation results of transverse loss versus offset of fiber cores with different 
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Fig. 6.7  Angular dispersion at different wavelengths. This graph shows that the larger 
the wavelength, the greater the angular dispersion. (Larger channel number 
corresponds to longer wavelength.) 
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Fig.6.9  The simplified schematic drawings of a 32-channel single-mode-in and 
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Fig. 6.10  The optical layout of the demultiplexer.  All the optical designs for lens, 
fiber array, and grating are good for demultiplexing 50 wavelengths covering the 
whole C band. 
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Fig. 6.11  The spot diagram for the diffracted wavelengths at two ends and the middle 
of the spectral range. The circles outside of individual spots represents the core size of 
GILF 
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Fig. 6.12  Output spectrum of the 32-Channel single mode DWDM  
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Fig. 6.13 The eye diagram of the 32-channel DEMUX when input single signal was 
modulated at 12.5Gbps. The signal to noise ratio was 7.43. 
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Table 6.1 Detailed measurement results for individual channels 
 Design   Measured  Difference  Insertion  BW1: @ BW2: @  Crosstalk PDL  
 Wavelength  Wavelength (nm) Loss  1.00 dB 3.00 dB  (dB) (dB) 
 (nm)  (nm)   (dB) (nm) (nm)     

1 1567.9522 1567.953 0.0008 3.874 0.101 0.179 49.77 0.828 
2 1567.1312 1567.132 0.0008 5.099 0.093 0.164 50.09 0.821 
3 1566.3138 1566.324 0.0102 5.148 0.097 0.168 48.99 0.767 
4 1565.4959 1565.482 -0.0139 4.467 0.095 0.167 50.23 0.74 
5 1564.6788 1564.683 0.0042 4.316 0.096 0.168 49.84 0.681 
6 1563.8626 1563.881 0.0184 3.749 0.105 0.176 52.76 0.672 
7 1563.0472 1563.052 0.0048 4.336 0.1 0.177 50.81 0.618 
8 1562.2327 1562.244 0.0113 4.724 0.105 0.185 50.84 0.577 
9 1561.4191 1561.43 0.0109 4.108 0.101 0.173 51.61 0.552 

10 1560.6062 1560.627 0.0208 3.361 0.109 0.183 54.03 0.482 
11 1559.7943 1559.802 0.0077 4.191 0.102 0.177 53.15 0.449 
12 1558.9831 1558.981 -0.0021 4.127 0.097 0.177 52.13 0.414 
13 1558.1729 1558.192 0.0191 4.053 0.108 0.188 51.71 0.378 
14 1557.3634 1557.378 0.0146 3.71 0.099 0.173 54.8 0.362 
15 1556.5548 1556.584 0.0292 4.487 0.099 0.172 53.78 0.313 
16 1555.7471 1555.768 0.0209 4.231 0.099 0.171 53.97 0.256 
17 1554.9401 1554.959 0.0189 3.61 0.109 0.19 54.89 0.269 
18 1554.134 1554.146 0.012 4.059 0.113 0.199 53.2 0.197 
19 1553.3288 1553.36 0.0312 4.52 0.123 0.206 50.88 0.176 
20 1552.5244 1552.558 0.0336 4.552 0.11 0.193 50.79 0.13 
21 1551.7208 1551.736 0.0152 4.372 0.11 0.191 52.51 0.099 
22 1550.918 1550.956 0.038 3.546 0.104 0.185 51.6 0.067 
23 1550.1161 1550.13 0.0139 5.357 0.123 0.216 48.95 0.013 
24 1549.315 1549.357 0.042 3.703 0.119 0.206 52.03 0.068 
25 1548.5148 1548.55 0.0352 5.079 0.121 0.205 48.32 0.078 
26 1547.7153 1547.742 0.0267 5.554 0.123 0.211 48.12 0.096 
27 1546.9167 1546.927 0.0103 6.236 0.132 0.231 49.09 0.141 
28 1546.1189 1546.16 0.0411 5.288 0.133 0.223 47.22 0.186 
29 1545.3219 1545.375 0.0531 4.236 0.144 0.24 49.95 0.218 
30 1544.5258 1544.539 0.0132 5.909 0.135 0.235 49.07 0.26 
31 1543.7305 1543.768 0.0375 5.866 0.157 0.26 46.14 0.297 
32 1542.936 1543.014 0.078 5.104 0.116 0.206 46.55 0.299 

Ave.     0.02055 4.5304 0.1118 0.1936 50.8694 0.36 
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Chapter 7:  Optimized Optical Design for Passband 

Broadening and Nonlinear Correction of Angular Dispersion 

7.1  Passband broadening 

           Broadening and flattening of the passband in WDM is a key to maximizing 

spectral efficiency and relaxing the tolerance on wavelength control in the networks 

[94]. Typical grating-based WDMs have passbands or spectral responses that are 

generally highly peaked with a slow roll-off in their wavelength response. This effect 

results from the diffraction response of the associated grating element that separates 

the wavelengths, from the transmission response of intervening optical lens elements, 

and from the receiving optics. Such responses do not use the full bandwidth of most 

multiplexers and demultiplexers. As a result, it is often difficult to specify wavelength 

tolerances for associated components such as laser light sources, amplifiers and other 

optical components.  

     The width of the optical passband is mainly determined by the filling ratio “F” , 

i.e., the ratio of the receiving fiber core diameter to the distance between the centers 

of two neighbor fibers. The larger this ratio, the larger the passband. In order to 

increase passband, one can either increase the core diameter or decrease the central 

spacing between adjacent output fibers. The output image reshaping and broadening 

approach [95,96] has been used for array waveguide-based WDM. For diffraction 

grating based WDM, in order to increase core diameter or increase mode field 

diameter (MFD), one can use thermal expanded core fibers [97, 98], use graded-index 



 110

lensed fibers [99-102], or defocus the focused beam spots at the focal plane [103]. In 

order to decrease the fiber spacing, we can strip the coating or etch the cladding to the 

smallest allowable size. But one can neither increase the core diameter nor decrease 

the channel spacing without limitation. There is an intrinsic trade-off between 

passbands and crosstalks. A lower crosstalk implies a wider separation between the 

output fibers and, therefore, necessarily higher linear dispersion, resulting in 

proportional bandwidth narrowing. 

     The Littrow mount geometry of our WDM design provided aberration-free image 

systems. The light spots of diffracted beams are almost identical in size to the cores of 

the fibers. In this case, the optimized value of this ratio F=0.667 [104].  

     Figure 7.1 shows the geometrical layout of the fiber array. D is the fiber cladding 

diameter, d is the fiber core diameter; and b is the distance between the centers of two 

adjacent fibers. For the most compact fiber array layout, b=D. For typical single-

mode fibers, the value of d is approximately 9.5 µm; cladding diameter D is 125 µm, 

meaning that b is usually no smaller than 125 µm. The resulting filling ratio is:  

%6.7
125

5.9 ==F  

For a 100-GHz (0.8nm) single-mode DWDM, the corresponding 3dB passband is 

only 0.06nm. Generally we need a 0.2nm 3-dB passband to compensate the 

wavelength shift in laser sources. Thus it is of the utmost importance to find solutions 

for broadening the passband of grating-based single-mode DWDM. 

     The typical value of “d”  of multimode fiber is 62.5µm, the value of  “b”  is  

(7.1) 
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125 µm. Therefore, the resulting filling ratio for multimode fiber is: 

5.0
125

5.62 ==F  

The filling ratio of the multimode DWDM is superior to that of single mode devices. 

For a 100GHz multimode DWDM, the corresponding 3dB passband is 0.4nm.  

7.2  Design of Graded-index lensed fibers (GILFs) 

     Cascading a graded-index fiber (GIF) to a single-mode fiber to either expand or 

reduce the MFD of the single mode fiber has been reported for fiber/waveguide [100] 

and laser/fiber coupling [101].  For WDM application, we can use GIFs as spot 

expender to increase the 1dB optical passband. 

     Figure 7.2 shows the beam propagation through lensed media following 

Kogelnik’s ABCD low [105].  The input plane contains the end face of a single-mode 

fiber and the beam waist win; the output plane contains the final beam waist wout which 

is formed after passing through a square-law lensed medium.  The square-low 

dependence of the refractive index of the lens media can be expressed as:  

                                              2

1
22' )1()( rgnrn −= ,                                                (7.3) 

where, n is the refractive index on the lens axis; r is the radial position from the axis. 

The focusing parameter g  can be expressed as 

                                                          
r

g
∆= 2

,                                                     (7.4) 

where in, ∆ is the relative refractive index difference between the core axis and its 

perimeter at r. 

(7.2) 
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     When the fiber-lens is fused to a single mode fiber directly, the final waist size and 

its location can be expressed as [106]:  
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     A quarter-pitch length of graded-index fiber acts as a collimator that can expand 

mode field diameters (MFDs) of single-mode fibers (SMFs). Figure 7.3 shows the 

direct cascading of a single mode fiber and a graded-index multimode fiber.  

The period (1 pitch) of a ray trajectory is given by 2π/g. Substituting the length of a 

quarter pitch d=π/2g in Equations (7.5) and (7.6), yields zw =0, and Equation (7.7) can 

be derived: 

                                                     
ng

ww outin π
λ= .                                                   (7.7) 

 This relationship indicates that the product of the input and output mode-field 

diameters is reci-proportional to focusing parameter g. If the input MFD is smaller 

than the fundamental MFD of the graded-index fiber (GIF) it will expand; if larger, it 

will contract. So g is a significant parameter. From Equation (7.4), we can find out the 

smaller the value of difference in refractive index ∆, the smaller g.  Figure 7.4 shows 

the respective different output MFDs when varying the value of g and the MFDs of a 



 113

input fiber.  If a standard single mode fiber (MFD=10.2 µm) is cascaded with a 

Corning multimode fiber having core diameter of 50µm (g=0.053), the output MFD 

of GILF has a value of 24.3µm; if a standard single mode fiber is cascaded with a 

Corning multimode fiber having core diameter of 62.5µm (g=0.0057), the output 

MFD of the GILF is 22.9µm. This figure clearly shows that, when given the input 

MFDs, the smaller the value of g, i.e, the smaller the value of ∆, the larger output 

MFDs we can obtain. 

      We also calculated different output MFDs by varying the MFDs of input fibers 

while keeping the same value for g.  For instance, if dispersion-shift fibers (DSFs) 

which have a smaller MFD (7.6µm) are cascaded to specially-made graded-indexed 

fibers (GIFs) (g=0.0033), larger output MFDs (57µm) were obtained. On the other 

hand, if standard single-mode fibers are cascaded to the same GIFs, the output MFDs 

are only 40µm. When we decrease the value of g to 0.028, the output MFDs can reach 

47µm. The conclusion then is that DSF or GIF with a smaller value of g are always 

preferable to expand the output MFDs in GILF design. 

     The GILFs in our WDM design have MFDs of 45 µm. Section 6.2.2 confirmed 

that a maximum 0.256nm 3-dB passband had been achieved in a 32-channel single-

mode-in and single-mode-out DWDM. 

7.3  Cylindr ical lens for passband broadening 

     Various techniques may be used to defocus multiple wavelength optical signals to 

achieve some spectral broadening. Previously available defocusing techniques [103] 
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and procedures generally create significant losses due to spreading of the multiple 

wavelength signals in directions which are both parallel and perpendicular to the 

direction of dispersion. Therefore, defocusing of multiple wavelength optical signals 

has generally been avoided in most optical communications systems. 

     For the 200GHz eight-channel multimode DWDM described in Chapter 4, an 

improved optical design has been done to increase the optical passband. A spectral 

modifying-element cylindrical lens was used to preferably defocus or spread optical 

signals only along the direction of dispersion of diffraction gratings to provide desired 

spectral broadening or passband broadening without increasing much signal loss level 

as compared with conventional defocusing techniques. Figure 7.5 shows the 

broadened and flattened oval-shaped profiles of output light spots after adding the 

cylindrical lens mentioned above.  We also etched the cladding of the output fiber 

down to 90µm in order to further increase the filling ratio. The optical design is 

shown in figure 7.6. It is a three-element diffraction limited-lens design, a concave-

plano cylindrical lens with a curvature of -7324mm on the left surface. A thickness of 

5mm was inserted 5mm behind the third element.  Figure 7.7 shows the transmission 

spectrum of the eight-channel 200GHz multimode DWDM both with and without the 

cylindrical lens. Figure 7.7 clearly shows that the passband is broadened by adding 

this cylindrical lens, but it does introduce 1dB of extra insertion loss. The total 

average loss will be around –3.5dB.  Table 7.1 shows the passband value at different 

loss levels with and without the cylindrical lens. At -0.5dB insertion loss point, the 
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passband was increased from 0.2nm to 0.4nm. The crosstalk is –30dB at the 3-dB 

point.  The major advantage of this design is that adding the cylindrical lens does not 

affect the devices’  focusing. The cylindrical lens can be inserted or removed 

according to passband requirement. 

7.4  40-Channel single-mode demultiplexer using a thermally-

diffused expanded-core fiber ar ray with uniform spacing 

      Thermally-diffused expanded core (TEC) techniques allow the fabrication of 

fibers with their mode fields expanded by the thermal diffusion of core dopants 

[97,98].  The TEC fiber is fabricated by micro-flame heating. The dopants distributed 

in the fiber determine the core region. The concentrated dopants will spread along the 

radial axis by thermal diffusion when the fiber is heated. As a result, the core region 

diameter becomes larger than the original diameter. The core expansion rate depends 

on dopant intensity in the core of the fiber, on the heating temperature, and on heating 

time. Figure 7.8 shows the schematic diagram of a TEC fiber. The adoption of a larger 

mode field diameter in single-mode WDM design certainly will reduce the stringent 

requirements on optical alignment and broaden the optical passband [92,93]. 

           We designed a 40-channel 100-GHz single-mode-in, single-mode-out DWDM 

to further improve passband and correct the nonlinear effect of angular dispersion. 

The frequency operating range is from 192.2 to 196.1THz.  Figure 7.9 shows the 

optical layout of this demultiplexer. The working principle is the same as our previous 

grating-based WDM design. There are two major improvements in this design. a) 
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TEC fibers with MFDs of 40µm, cladding diameter of 73µm were installed in a 

silicon V-grooved fiber array. b) The fiber array had almost uniform channel spacing 

of 75µm. The filling ratio was increased from 7.6% to 53%.  Figure 7.10 shows the 

comparison of the spectral profiles using TEC fibers and SMFs. The profile of the 

TEC fiber is much broader than that of the SMF.  The simulation results from 

ZEMAX showed 0.26nm 1-dB passband and 0.44nm 3-dB passband. 

     In order to make DWDM working at the ITU grid, which requires uniform 

frequency spacing, we either need to use fiber array having non-uniform channel 

spacing or to improve the optical design to correct the nonlinear effect of angular 

dispersion [29,54].  We designed a DWDM (see Section 6.2) with fiber array having 

non-uniform spacing so that we could obtain accurate central wavelength for 

individual channels, but it also gave us non-uniform optical passband. In this new 

design, a concave lens tilted at 12° was inserted 2mm away from the front face of a 

TEC fiber array to correct the non-linear angular dispersion effect. The tilt angle, 

curvature, and thickness of this concave tilt element were obtained by using the 

optimization function of ZEMAX. These three parameters together with the 

thickness, curvature of other lens elements were set as variables; a uniform channel 

spacing of 75µm and diffraction limited output spot quality were set as the targets of 

the merit functions in the optimization process.  Figures 7.11(a) and 7.11(b) show the 

simulated channel spacing of the fiber array without and with nonlinear correction 

respectively.  Figure 7.11(a) shows that the channel spacing varies from 75 to 
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95.74µm when there is no nonlinear correction.  The variation is 21.67%.  Figure 

7.11(b) shows that the channel spacing varies from 74.68 to 75.86µm when using 

nonlinear correction. The maximum variation is 1.18µm, which corresponds to a 

0.0126nm wavelength shift. The relatively large 1-dB pass band (0.256nm) achieved 

from this design can definitely tolerate this small wavelength shift without suffering 

appreciable insertion loss.  

7.5  Chapter 7 Summary 

     Three kinds of techniques used to broaden the optical passband have been reported 

in this chapter. Both GILF and TEC fibers expanded the core diameter to increase the 

filling ratio. The pitches of fiber arrays were decreased by stripping coatings and 

etching claddings. 

     The 3-dB passband of GILF-based single-mode DWDM was increased from 

0.06nm to 0.2nm. The 3-dB passband of the TEC fiber-based single-mode DWDM 

reached 0.44nm by further etching the cladding down to 73µm.  

     A cylindrical lens was inserted into a DWDM optical design to supply defocusing 

along the grating dispersion. For a 200-GHz spaced multimode DWDM, the 1-dB 

passband can be enlarged from 0.4nm to 0.6nm, and the 3-dB passband can be 

enlarged from 0.8nm to 1nm The minimum channel spacing for this design was 

90µm. 
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Fig. 7.2  Beam propagation through lensed media following Kogelnik’s ABCD law 
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Fig. 7.4  Output MFD of a graded-index lensed fiber with a different value of g. 
When g=0.0033, for dispersion shift fibers (MFD of 7.6 µm at 1555nm), the output 
MFD is 57 µm; for the standard single mode fiber (MFD=10.2µm), the output MFD 
is about 47µm. 
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Fig. 7.5  The broadened and fattened oval-shaped profiles of output light spots after 
adding the cylindrical lens 
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Fig. 7.6  Optical layout of a passband broadened 40-channel single-mode DWDM. A 
5mm-thick cylindrical lens is inserted 5mm right of three-element main lens. The 
curvature of cylindrical is –7324mm, infinity for the left and right surfaces 
respectively. The nominal output fiber array spacing is 90µm.  
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Fig. 7.7  Transmission spectrum of an eight-channel, 200-GHz multimode DWDM 
with and without the cylindrical lens 
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Fig. 7.8  The schematic diagram of TEC fiber. The concentrated dopants in the  
core region will spread along the radial axis by thermal diffusion when the fiber 
 is heated. As a result, the core region diameter becomes larger than the original  
diameter. 
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Fig. 7.9  Optical layout of a passband-broadened 40-channel single-mode 
demultiplexer with uniform fiber array channel spacing. 
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Fig. 7.10  Comparison of spectral profiles using TEC fiber and SMF.  The profile of 
TEC fiber is much broader than that of SMF.  
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         Fig. 7.11  (a) Channel spacing of the fiber array without nonlinear correction 
              (b) Channel spacing of the fiber array with nonlinear correction 
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Table 7.1  Passband at different loss lever with and without cylindrical lens 
 
 
 

 

 

 

 

 

 

 

Passband 
 

Without cylindrical 
lens (nm) 

With cylindrical lens 
(nm) 

0.5 dB point 0.2 0.4 
1 dB point 0.4 0.6 
3 dB point 0.8 1 
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