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We formulate an analogue of factorization algebras theory over a nonar-

chimedean field K, building on work of Costello and Gwilliam in the complex

analytic case. Several constructions involved in factorization algebras theory,

leading to a wealth of standard examples, are developed in the nonarchimedean

setting. En route, we build aspects of Jacob Lurie’s Verdier duality theory in

the rigid analytic setting. Last, an analogue of the factorization theorems tra-

ditionally studied in rational conformal field theory, as in Faltings’ work on the

Verlinde Formula, is developed in the nonarchimedean setting by interpreting

nodal degenerations of smooth algebraic curves in terms of nonarchimedean

gluing.
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Chapter 1

Introduction

In this paper, we introduce a theory of factorization algebras in the

setting of rigid analytic geometry, a version of complex analytic geometry for

nonarchimedean fields. Our factorization algebras are defined in the style of

Costello and Gwilliam, as in their volumes Factorization Algebras in Quan-

tum Field Theory. A motivation for the paper was the appearance of nonar-

chimedean methods in Faltings’ work on the factorization rules in classical

rational conformal field theory in his A Proof of the Verlinde Formula, which

correspond to Segal’s theory of modular functors in his original work defin-

ing conformal field theories. In this spirit, our main results develop nonar-

chimedean versions of the examples considered by Costello and Gwilliam of

factorization algebras associated to Lie algebras, and show that, specializing

to rigid analytic curves, these satisfy analogues of the aforementioned factor-

ization rules attached to semistable models of the rigid curves. An integral

part of this contribution is defining nonarchimedean factorization algebras ap-

propriately.
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1.1 Factorization Algebras Basics

There are a few formalisms of factorization algebras, but they share

the general theme of being related to (co)sheaves on spaces with points cor-

responding to finite collections of points of a given topological space or geo-

metric object. Two major such formalisms are those of Beilinson-Drinfeld and

Costello-Gwilliam. The first is defined in the setting of algebraic geometry,

and is based on the geometry of diagonals (encoding the collision of points).

Costello-Gwilliam style factorization algebras, on the other hand, are closer

to algebras over operads of disks considered in algebraic topology, but can

(particularly via the work of Dwyer-Stolz-Teichner) be considered in various

geometric settings (for instance, the holomorphic one). They are essentially

multiplicative versions of precosheaves on the given geometric object, satisfy-

ing a more restricted codescent condition than cosheaves.

Let us briefly review the ideas of Costello and Gwilliam most salient

to our work. Here is a sketch of a definition of their notion of factorization

algebra:

Definition 1.1.1. Let X be a topological space. A factorization algebra F

is an assignment to opens U of X objects F(U) of a symmetric monoidal

category C sending disjoint unions to the corresponding monoidal products,

together with structure maps F(U) ⊗ F(V ) → F(W ) for U, V disjoint opens

in W , so that the assignment satisfies codescent for Weiss covers.

Weiss covers are covers of the topological space X, usually a manifold
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for Costello and Gwilliam’s purposes, so that every finite subset S ⊂ X is

contained in some open of the cover. This is a kind of proxy for referring to

the Ran space of X, which is a topological space with underlying set the set

of finite subsets of X. To generalize the Ran space to algebraic geometry, as

is imaginable, we must replace finite collections of points in this set-theoretic

sense with finite collections of points in a functor-of-points sense.

Costello and Gwilliam develop important examples of factorization al-

gebras by showing how to attach a factorization algebra to a cosheaf (many

times, notions like cosheaf can refer to a homotopical version). Namely, for a

cosheaf F, the assignment U 7→ SymF(U) defines a prefactorization algebra in

a natural way, and at least if the underlying topological space X is a reason-

able space like a manifold, and F arises by passing to compact supports from a

reasonable sheaf (such as one underlying a vector bundle), Costello-Gwilliam

demonstrate Weiss codescent is also satisfied. The case of the symmetric fac-

torization algebra is used to also build an enveloping factorization algebra,

whose Weiss-codescent can be reduced to that of the symmetric case.

There is also a rich literature on factorization algebras as certain cosheaves

on Ran spaces, as alluded to above, and there is a particularly rich literature

on factorization algebras in the context of topological field theory, where we

are concerned most with the special case of disjoint disks inside a bigger disk

(this leads to the theory of En-algebras). There are beautiful stories to tell

on equivalences of categories between categories of En-algebras and those of

locally constant factorization algebras. There is also a celebrated result sat-
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isfied by locally constant factorization algebras called excision, which is not

unlike the factorization formulas the present work was motivated by. Roughly,

this says the following: suppose A is a locally constant factorization algebra

(where we can identify A(Dr) ∼= A(Ds) for Dr ⊂ Ds disks of possibly differ-

ent sizes) on a manifold M , and let N be a codimension 1 submanifold with a

trivialization of its neighborhood N×D1 (D1 denotes a 1-dimensional disk) so

that M can be glued as X∪N×D1 Y , where X, Y are submanifolds of M . Then,

A(N ×D1) has an E1-algebra structure for which A(X) is a right module and

A(Y ) is a right module, and there is a natural equivalence

A(M) ∼= A(X)⊗L
A(N×D1) A(Y )

Results of this sort are close to gluing laws in topological field theory,

and in functorial field theory in general; the version that inspired our work

appears in Segal’s notion of a modular functor.

Let us also briefly discuss the more Beilinson-Drinfeld flavor of factor-

ization algebras. Commonly, this involves considering an algebraic scheme X

and the fiber product spaces Xn for all positive integers n, since these help to

classify points of X in the appropriate functor-of-points sense. A Beilinson-

Drinfeld factorization algebra involves sheaves (in fact, D-modules) Fn on Xn

together with compatibilities like isomorphisms i!Fn ∼= Fk for closed immer-

sions i : Xk ↪→ Xn, as well as compatibilities involving the off-diagonals.

The idea is that the way these sheaves fit together along the diagonals is en-

coded using the famous operator product expansion in conformal field theory.
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There are also analytic versions of this flavor of definition discussed by Fred-

eric Paugam, involving, to the author’s knowledge, intuitions about analyticity

results for operator product expansions. To the author’s knowledge, these fla-

vors of factorization algebras involving sheaves (or cosheaves) on powers of a

space with compatibilities tend to define cosheaves on a Ran space that should

be regarded as endowed with a colimit topology, not quite (but still related to)

the topologies on Ran spaces closest to what Costello and Gwilliam discuss.

Beilinson-Drinfeld factorization algebras are one of many equivalent

formulations of the same idea: chiral algebras are another, and vertex algebras

are yet another, if we restrict to affine spaces (also, a vertex algebra can, by

a local-to-global procedure, define a Beilinson-Drinfeld factorization algebra;

for details, see the book of Edward Frenkel and David Ben-Zvi called Vertex

Algebras and Algebraic Curves. )

The reader should note that vertex algebras are equipped with maps

Y (−, z) : V ⊗ V → V ((z)), which should be thought of as analogous to maps

F(D1) ⊗ F(D2) → F(D3) (the Di are complex analytic disks) arising from

an operad of holomorphic disks. Costello and Gwilliam develop this point of

view and show how to attach aa vertex algebra to one of their holomorphic

factorization algebras.

1.2 Rigid Analytic Geometry

Rigid analytic geometry is one among a few different formulations of

an analogue of complex analytic geometry for nonarchimedean spaces. Other
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major formulations include Raynaud’s theory of formal models, Huber’s adic

spaces, and Berkovich geometry. The basic idea behind rigid analytic geom-

etry is that nonarchimedean spaces, when defined in roughly the same way

as ordinary real or complex analytic spaces, are totally disconnected, so Tate

proposed the solution of treating the nonarchimedean space using a restricted,

more abstract topology called a G-topology. The idea of the G-topology,

whose building blocks are called affinoids, analogues of compact spaces like

closed balls, is to ensure that the types of coverings considered are restricted

so that affinoids behave like compact spaces despite the disconnectedness of

the naive nonarchimedean topology.

The theory of Raynaud formal models of rigid analytic spaces describes

the category of suitable rigid analytic spaces in terms of the birational geom-

etry of formal schemes. We utilize Raynaud’s theory eventually in the specific

context of semistable formal models of rigid analytic curves, particularly when

discussing factorization rules. Briefly, Huber’s adic spaces are genuine topo-

logical spaces encoding roughly the same information as the G-topologies on

rigid spaces. We can think of these adic spaces as arising from considering all

possible admissible formal blowups of a formal model of a rigid space. We will

not consider adic spaces in this work, but possibly in future work.

1.3 Summary of Paper

Here, we summarize the paper in some more detail. Chapter 2’s major

purpose is to define the appropriate notion of an admissible covering with
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respect to which our nonarchimedean geometric factorization algebras satisfy

(a homotopical version of) codescent. The key difficulty is that we require an

appropriate combination of the notion of admissibility and that of Weiss cover.

We then move in the third chapter to showing how to produce exam-

ples of homotopical cosheaves from homotopy sheaves. Here, we utilize the

language of ∞-categories, and our treatment is quite different from that of

Costello-Gwilliam. We opt to use Lurie’s formalism of the Verdier duality

functor (developing an appropriate analogue for our setting), as the more ex-

plicit arguments of Costello-Gwilliam are unavailable to us in the more formal

setting of rigid spaces. One main theorem of the section is the following the-

orem:

Theorem 1.3.1. Let C be a stable ∞-category admitting all small limits and

colimits. Let X be a separated rigid analytic space. Then, the assignment

given by sending F 7→ (U 7→ Γc(F, U)) defines a functor of∞-categories (−)c :

Shv(X,C)→ CShv(X,C) from C-valued sheaves to cosheaves.

This defines a functor from sheaves to cosheaves, but, due to the fact

that rigid sheaves are not necessarily determined by their behavior on wide

opens, only affinoids, there are further restrictions that are natural to impose to

attempt to get a genuine equivalence. We suspect the equivalence should hold

either for all or a wide class of separated rigid analytic spaces, but we check

the details of an equivalence for ambient affinoid spaces, after restricting from

all rigid analytic sheaves to overconvergent ones (and appropriate analogues

on the cosheaf side). Here is the main result:
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Theorem 1.3.2. Let C be as above, and suppose X is affinoid. Then, the above

functor defines an equivalence of∞-categories OverShv(X,C) ∼= OverCShv(X,C)

between overconvergent sheaves and co-overconvergent cosheaves.

Chapter 4 covers examples of factorization algebras arising from ho-

motopical cosheaves, and is motivated by the fact that the previous section

provides a rich source of such cosheaves. These are the symmetric and en-

veloping factorization algebras. There are two main results here. The first

tells us that taking the symmetric powers of a homotopy cosheaf is a rigid

factorization algebra, and the second uses the first to say the following:

Theorem 1.3.3. Let L be a Lie-structured cosheaf on a rigid space X (a

precosheaf of dg Lie algebras that is a homotopy cosheaf of dg vector spaces,

all over a nonarchimedean field K). Then, the prefactorization algebra U(L)

given by the assignment U 7→ C∗(L(U)) of Chevalley-Eilenberg chains on L(U)

to an admissible open U ⊂ X is a rigid factorization algebra.

Chapter 5 specializes to the case of rigid analytic curves, and is the

construction of factorization rules for rigid factorization algebras. We use the

notion of basic wide open pairs in rigid geometry as a version of rigid analytic

curves with boundary annuli, akin to manifolds with boundary. To such a

pair Σ with two boundary wide open annuli (open annuli in rigid geometry),

and some rigid factorization algebra on Σ, we attach a bimodule over certain

dg categories we attach to the annuli. The main result of the section states

that, given two such basic wide open pairs Σ1,Σ2 (each with, for simplicity,
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at most two boundary annuli) appearing in a semistable covering with some

extra marked structure (with two elements overlapping in a single wide open

annulus Ann) attached to the underlying wide open (the underlying curve

without specifying boundary annuli) of some basic wide open pair Σ, there is

a certain dg-categorical factorization formula. Let the bimodule attached to

Σ be given by M(Σ), and similarly for other basic wide open pairs. Let the

dg category attached to a wide open annulus A be given by A(A). Then, we

have the following:

Theorem 1.3.4. The natural map M(Σ1)⊗L
A(Ann) M(Σ2)→ M(Σ) is a weak

equivalence.

Section 6 sketches how to build a locally constant prefactorization al-

gebra on R≥0 (in particular, not a rigid factorization algebra but a standard

one as in Costello-Gwilliam) attached to the vector space of a Kac-Moody

vertex algebra, and show this prefactorization algebra densely approximates

the cohomology of our Kac-Moody factorization algebras on wide open disks

and annuli (defined in the appendices).

Last, we provide appendices on rigid geometry and on homotopical no-

tions like the relation between homotopy (co)limits and∞-categorical (co)limits,

since we freely utilize the dictionary between model and∞-categorical notions

in this paper.
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1.4 Motivation and Outlook

A motivation for our work arose from noting two rather different pic-

tures in algebro-geometric conformal field theory. One is the Beilinson-Drinfeld

theory of factorization algebras defined in terms of colliding points on algebraic

curves and the geometry of diagonals. The other is also closely related to the

geometry of colliding points on curves: the story of Deligne-Mumford com-

pactifications of moduli of curves, where colliding points are received by the

sprouting of Riemann spheres attached to the original curve at nodal singu-

larities. This latter story plays a role in some algebro-geometric formulations

of the factorization rules satisfied by spaces of conformal blocks of rational

conformal field theories. In Faltings’ A Proof of the Verlinde Formula, the

factorization rules are formulated as a relation between spaces of vacua asso-

ciated to generic and special fibers of a semistable model of a nonarchimedean

curve, which expresses the degeneration of a smooth, projective curve to a

curve with nodal singularities.

Our work may be seen as an attempt to cast this picturing involving

semistable models in terms of the relation between rigid analytic geometry

and the Raynaud theory of formal models. A potential outlook for the present

work would be a proof using factorization algebras methods of the factorization

rules considered by Faltings. It seems that rigid geometry is quite suited

for the situation, as both spaces of vacua considered, strictly speaking, are

associated to smooth curves. That is, the vacua attached to the special fibers

above ultimately are attached to the normalizations of these singular nodal
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curves. The slogan that rigid spaces are generic fibers which remember a good

amount about the special fibers thus seems particularly relevant. It is also

worth noting that the rational conformal field theory situation considered by

Faltings has also been considered in a more complex analytic context, involving

degenerating families parametrized by holomorphic disks, so our considerations

should relate to more standard conformal field theory when considering the

base field to be (in general, an appropriate extension of) K = C((t)), although

an advantage of our more algebro-geometric/rigid analytic approach is also

that we can replace C by more general fields.

We should also make some remarks about the place of our theory

within theories of factorization algebras on nonarchimedean analytic spaces.

We would expect one very natural definition in a style not so reminiscient of

Costello and Gwilliam would involve simply considering families of cosheaves

Fn on powers (fiber products) Xn of the rigid analytic space X in question,

together with appropriate compatibilities (probably via a !-pullback, where

the precise variety of ! may depend on whether we are working in the world

of (co)sheaves of dg vector spaces, or if there is some O-module or D-module

structure to consider) with respect to closed immersions of form Xk ↪→ Xn,

where k < n (and also compatibilities with regard to the off-diagonals), and so

on. It is to be noted that, as with scheme theory, there is a big gap between a

naive product topology flavored definition and the actual Grothendieck topol-

ogy considered on Xn. Further, even at the level of underlying sets, these Xn

do not correspond to the n-fold products of the underlying set of X, unless the
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base field is algebraically closed. Last, but not least, definitions of the men-

tioned flavor tend in the topological setting to correspond to cosheaves on a

colimit-topologized Ran space. All these potential subtle differences from our

flavor of factorization algebras theory warrant some discussion of our work’s

place within the jungle of possible approaches.

It seems that the major advantage a Costello-Gwilliam style offers us

is its reliance on the notion of Weiss covers to capture the topology of Ran

spaces, because this enables us to relate decompositions of Ran spaces to

those of X, the latter of which is precisely the sort of thing we may expect

to encounter in a factorization theorem. Hence, it would be our hope that

a theory of the above families-of-Fn flavor should still produce objects whose

factorization homology on various admissible opens (global sections across the

full Ran space, built from the global sections of each Fn on Xn) roughly defines

a factorization algebra in our sense (that is, satisfies what we call admissible

Weiss codescent) in the same sort of way the factorizable cosheaves considered

by, for instance, Lurie in Higher Algebra can be used to define factorization

algebras on manifolds. It seems to us that for there to be a hope of this in

general, the base field may have to be algebraically closed, as then at least,

direct products of rigid spaces set-theoretically agree with the products of

the factors’ underlying sets. In particular, should the families-of-Fn flavored

factorization algebras satisfy a kind of admissible Weiss codescent, it seems it

should arise from the codescent condition satisfied by Fn for admissible covers

of Xn (here, unlike in the body of the paper, powers denote fiber products) of

12



form {Un
i }i∈I , where the Ui admissibly cover X. That is, the Ui should have

the property involving the Un
i for any positive integer n. Roughly, our theory

seems to correspond to considering cosheaves on a sort of Ran space Ran(X)

of finite collections of points of a rigid space X with coverings of Ran(U) of

form {Ran(Ui)i∈I} satisfying an admissibility condition involving pullbacks to

subsets of form Ran≤nK, where K ⊂ X is compact.

We end by remarking that our discussion suggests there may be three

flavors of factorization algebras theory over a nonarchimedean field: one in-

volving our present work/cosheaves on something roughly like a Grothendieck-

topologized Ran space, the families-of-Fn living on fiber products of a rigid

space Xn flavor, and last, the Beilinson-Drinfeld algebro-geometric theory for

schemes X/K. Future work may endeavor to compare/contrast any of these.

Probably one of the main applications of this kind of work should,

paralleling the reduction of Verlinde formula computations for higher genus

curves to lower genus curves, involve the ability to reduce questions about

factorization homology for complicated (probably algebro-geometric) objects

to simpler ones. With progress in relating the Beilinson-Drinfeld and Costello-

Gwilliam flavors, this suggests hope of some applications to settings where the

former figures in prominent ways, such as the geometric Langlands program.

Remark 1.4.1. Throughout, we will refer to the work of Costello and Gwilliam,

and we mention here (so we need not in the future) that we specifically are

referring to their volumes Factorization Algebras in Quantum Field Theory,

though also at times to Gwilliam’s closely related thesis.
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Remark 1.4.2. Throughout, K will denote a complete, discretely valued field of

nontrivial valuation. Let RK denote its ring of integers, and denote by mK the

maximal ideal of RK . For some purposes, the reader might want to imagine

K is algebraically closed (please see the discussion above on the place of our

theory among possible nonarchimedean factorization algebras theories). Last,

denote by FK the residue field, which for us is of characteristic 0, since we

are mainly concerned with the case of K being the field of Laurent series (or

appropriate extensions) over the complex numbers, where curves over K can

be thought of as families of curves over the complex numbers, and semistable

models thought of as families of smooth curves degenerating to nodal curves.

Also, we will assume our rigid spaces are separated to ensure finite intersections

of affinoids remain affinoid. Whenever not specified, our (pre)factorization

algebras and (pre)/(co)sheaves take values in dg vector spaces over the base

field K, though the reader can freely imagine substituting cochain complexes

in some appropriate quasi-abelian category or more general sort of category.

When we refer to wide opens of curves in Chapter 5, these correspond to those

defined by (for instance) Robert Coleman (see bibliography), but there is also

a notion of a wide open used in Schneider’s work Points on Rigid Analytic

Varieties which we use in our discussion of Verdier duality, which the reader

should beware not to confuse, though they are related.

Remark 1.4.3. When working ∞-categorically, the only concrete model we

appeal to of∞-categories is the theory of quasicategories in the style of Jacob

Lurie’s work.
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Chapter 2

Nonarchimedean Factorization Algebras: The

Basic Notions

Throughout this section, we will let C = dgV ectK denote the symmet-

ric monoidal model category of dg vector spaces over K, endowed with the

projective model structure and the usual tensor product (this is for simplicity

of presentation, as many other stable monoidal model categories should work

well for the constructions presented in this thesis with a little modification of

the details, not least model categories of cochain complexes in quasi-abelian

categories of functional-analytic interest, like bornological vector spaces). We

sometimes refer to C simply as the model category of dg vector spaces. A

compact subspace of a rigid space is defined to be an admissible open which

admits a finite admissible covering by affinoids.

We will introduce some terminology to facilitate defining rigid analytic

prefactorization algebras.

Definition 2.0.1. Let X be a rigid analytic space. We will term V1, ..., Vk an

admissible sequence of admissible opens of X if the Vi are pairwise disjoint,

their union is admissible open in X, and they constitute an admissible covering

of their union.
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Remark 2.0.1. In multicategories, it is important to be able to concatenate

sequences of objects. As we will be dealing with structures very like functors

out of multicategories whose objects are admissible opens as above, we make

the following remark regarding concatenating admissible sequences. Given a

finite set I = 1, ..., n and finite sets Ji corresponding to each i ∈ I, and given

an admissible sequence consisting of Vj indexed by j ∈ Ji for each Ji, we can

concatenate these to get a new sequence in the obvious way. It turns out that

this concatenated sequence is an admissible sequence if and only if the sequence

indexed by I given by ∪j∈JiVj for every i, is itself an admissible sequence.

This is simply a consequence of basic properties of admissible coverings: if

the covering {∪j∈JiVj}i∈I is admissible, then the concatenated cover given by

all Vj ranging over all j in any Ji must be admissible by an axiom of G-

topologies. In the other direction, if a concatenated cover is admissible, the

covering {∪j∈JiVj}i∈I is as well, since it has an admissible refinement.

Definition 2.0.2. A rigid prefactorization algebra (sometimes referred to as

nonarchimedean prefactorization algebra, nonarchimedean geometric prefac-

torization algebra, or prefactorization algebra when the nonarchimedean con-

text is understood) on a rigid space X is

(1) an assignment U 7→ F(U) to admissible opens U of X

(2) structure maps mV,U : F(V ) → F(U) for V ⊂ U admissible opens

(mU,U = idF(U)), and mU1,...,Un;U : F(U1) ⊗ · · · ⊗ F(Un) → F(U), also denoted

mI,U if I = 1, ..., n indexes the Ui, for any admissible sequence U1, ..., Un,
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so that these structure maps satisfy the usual symmetry condition,

and so that the following associativity condition is satisfied: for any Ui as

above, and for Ji a finite set of indices corresponding to each i, given an

admissible sequence of Vj with j ∈ Ji (with union sitting in Ui) for each Ji, if

the admissible sequence given by the concatenation of the Vj as described in the

above remark is an admissible sequence indexed by s ∈ S, then the map mS,U :

⊗i ⊗s∈Ji F(Vs)→ F(U) coincides with the composition ⊗imJi,Ui
◦mU1,...,Un,U

Definition 2.0.3. A prefactorization algebra will be called unital if there is

a unit map 1 → F(∅) satisfying the following: for any admissible open U ,

the left unitor 1 ⊗ F(U) → F(U) equals 1 ⊗ F(U) → F(∅) ⊗ F(U) → F(U),

where this latter composition is given first by tensoring the unit map with the

identity on F(U), and secondly by the structure map m∅,U ;U (and similarly for

the right unitor and the structure map mU,∅,U). We will also assume that the

empty admissible open is sent to the tensor unit.

We can also view such objects as functors out of multicategories of

admissible opens.

Remark 2.0.2. We remark that the concatenation of the Vj above always pro-

duces an admissible sequence for the following reason: it suffices to show that

the collection {∪j∈JiVj}i∈I admissibly covers its union, where the union is ad-

missible open. This follows because the Ui constitute an admissible sequence,

since this means U1

∐
· · ·
∐
Un has the rigid structure coming from gluing

disjoint pieces.
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Our multicategory of choice is the following:

Definition 2.0.4. Let X be a rigid analytic space. Define a multicategory

DisjX as follows. The objects are connected admissible opens U ⊂ X. The

maps are given as follows: Maps({U1, ..., Un} , U) is empty, unless the Ui con-

stitute an admissible sequence with union sitting in U , in which case it is a

singleton. Composition is defined in the obvious way.

Proposition 2.0.1. Any nonarchimedean prefactorization algebra F defines

a functor of multicategories DisjX → dgV ectK, where an admissible open U

is once again sent to F(U).

PROOF: If {U1, ..., Un} is an admissible sequence whose union sits

in U , the structure map mU1,...,Un;U provides us with a way of assigning to the

singleton MapsDisjX (U1, ..., Un;U) a map F(U1) ⊗ · · · ⊗ F(Un) → F(U), and

the identity map U → U is sent to the identity in dgV ectK (this tells us units

are respected). That composition is respected follows from the associativity

condition for nonarchimedean prefactorization algebras.

There is a further notion which we will require before moving to define

factorization algebras (akin to defining cosheaves after defining precosheaves).

Definition 2.0.5. Let F be a prefactorization algebra on X. It is said to

be multiplicative if it satisfies the following factorization axiom: for any dis-

tinguished sequence {U1, ..., Un}, the structure map F(U1) ⊗ · · · ⊗ F(Un) →

F(U1

∐
· · ·
∐
Un) is a weak equivalence.
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We can now proceed to the final ideas needed to define factorization

algebras, namely the ones having to do with the locality/gluing condition,

analogous to a cosheaf gluing condition. We make the note that, when we

refer to products of rigid spaces, unlike in the introduction, we will simply

mean, for this work, the set-theoretic product, not fiber product (unless oth-

erwise specified) where the underlying factors’ rigid analytic structure is still

referenced in the normal way. The reader who wishes a closer correspondence

between these products and genuine fiber-products of rigid spaces is invited

to consider the case where the base field is algebraically closed.

Remark 2.0.3. When we refer, without further clarification, to products of

admissible opens in a product of rigid spaces X1 × · · · ×Xn, we simply mean

a product of n different admissible opens Ui of Xi of form U1 × · · · × Un.

The analogous remark applies for products of affinoids. Further, we refer to

products of admissible coverings in a product of k rigid spaces when we mean

a covering gotten from taking all combinations of products of elements from

admissible coverings of the individual factors. More precisely, for a product of

rigid spaces X × Y , a product admissible cover is one of form {Ui × Vj}i∈I,j∈J
where {Ui}i∈I and {Vj}j∈J are admissible coverings of X and Y respectively.

Definition 2.0.6. We define a p-admissible covering (for any given positive

integer k ≥ 2) of a product of rigid analytic spaces X1×· · ·Xk to be a covering

by products of admissible opens so that, for any product of k affinoids, the

pullback of the covering to this product of affinoids admits a finite refinement

consisting of products of affinoids.
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It turns out that we can define a Grothendieck pretopology on the set-

theoretic finite product of rigid spaces. For ease of notation, we just pursue the

case of a product of two spaces X and Y . Define a poset category of subsets of

X × Y of form U × V , where U ⊂ X, V ⊂ Y are admissible opens of X and Y

respectively. The coverings of U × V will be the p-admissible coverings. That

this defines a Grothendieck pretopology is quite straightforward. The identity

U×V ⊂ U×V is p-admissible, since for any product of affinoids (we are being

loose here about distinguishing the underlying G-topologized space from the

affinoid with a structure sheaf) M(A) × M(B) ⊂ U × V , the pullback has

refinement M(A)×M(B) itself. Any two U ×V and U ′×V ′ intersect to yield

a product (U∩U ′)×(V ∩V ′). Further, given an inclusion V1×V2 ⊂ U1×U2, the

pullback of a p-admissible cover of the latter to the former yields a p-admissible

cover of the former, since any product of affinoids M(A) ×M(B) ⊂ V1 × V2

is contained in U1×U2, and the p-admissibility condition for U1×U2 easily is

seen to yield that for V1×V2. Last, given a p-admissible covering {Ui × Vi}i∈I
of U × V , if we have p-admissible covers {Uj × Vj}j∈Ji of Ui × Vi for every i,

concatenating them yields a p-admissible covering of U×V as follows. Given a

product M(A)×M(B) ⊂ U×V , the pullback of {Ui × Vi}i∈I to this has a finite

refinement consisting of products of affinoids. Let M(Ak)×M(Bk) ⊂ Ui × Vi

be one such product. We can then find a refinement of {Ui × Vj}j∈Ji ’s pullback

to M(Ak)×M(Bk) consisting of products of affinoids (finitely many of them).

Putting together these refinements for each k, we obtain the desired one for

M(A)×M(B).
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The following fact will be very useful for us in the future.

Proposition 2.0.2. Let M(A1)× · · · ×M(An) = X1 × · · · ×Xk be a product

of (admissible open subsets underlying) affinoids. Any p-admissible covering

admits a refinement of a special form, where the refinement consists of all

products of elements from individual admissible (finite) coverings by affinoids

of each factor. Further, this refinement can be chosen so that each individual

admissible covering of a factor is closed under finite intersections (and thus,

so is the product cover).

PROOF: Given a p-admissible covering of a product of affinoids (we

mean the product of the underlying G-topologized spaces, but are abusing

terminology for convenience) X1 × · · · × Xn, we can find a finite refinement

consisting of products of affinoids: call this set {M(Ai,1)× · · · ×MAi,n)}i∈I .

Let x ∈M(Ak) for some k. We can consider the intersection of all the M(Ai,k)

containing x, and call this M(Ax). Note that this is a finite intersection,

and is thus an affinoid admissible open. The upshot is that, for any point

(x1, ....xn) ∈ X1 × · · · ×Xn, we know it is contained in M(Ax1)× · · ·M(Axn),

but is also contained in some M(Ai,1) × · · · ×M(Ai,n). By construction, we

must have that M(Axk) ⊂ M(Ai,k) for each k. Thus, we have constructed a

refinement (consisting of all products of form M(Ax1) × · · ·M(Axn))) of the

original p-admissible cover (by constructing a refinement of its refinement) that

is finite (since it is built out of products of finite intersections among finitely

many possible open affinoids). Further, by construction, this is a product cover

(that is, constructed as a product of covers of factors), so we are done.
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Definition 2.0.7. Let X be a rigid analytic space. An admissible Weiss cover

of X is a collection {Ui}i∈I of admissible opens satisfying the following: first,

it is an admissible covering of X; second, for any integer n ≥ 2, {Un
i }i∈I

constitutes a p-admissible covering of Xn by p-admissible opens.

Remark 2.0.4. The point of the notion of p-admissible covering is that we do

not need to consider the more sophisticated rigid analytic topology on fiber

products, and need something closer to the product topology for our purposes.

This corresponds roughly to the fact that we are defining a Costello-Gwilliam

flavored theory.

Remark 2.0.5. Given an admissible Weiss cover, we can form an associated one

closed under finite intersections by throwing all finite intersections in. This will

be such that the associated p-admissible covers of Xk for each k will be closed

under finite intersection. Also, note that any refinements associated to p-

admissible coverings consisting of products of affinoids can always be assumed

to be closed under finite intersection. The same thing holds for admissible

coverings and associated refinements consisting of affinoids.

Proposition 2.0.3. A covering of Xn by products of admissible opens is p-

admissible if and only if for any compact K ⊂ X, the pullback to Kn admits

a finite refinement consisting of products of affinoids.

PROOF: Suppose we have a p-admissible covering. Let K be a finite

union of affinoids M(A1), ...,M(Ak) of X. Then, Kn is a finite union of the

mutual n-fold products of these affinoids. The pullback of our p-admissible
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covering to each of these products of affinoids admits the desired type of finite

refinement. Putting all these refinements together yields the first direction.

For the second, note that to show our covering is p-admissible, we

consider some product of n affinoids M(A1) × · · · ×M(An). Consider K =

M(A1)∪· · ·∪M(An). The pullback of the covering to Kn now has a refinement

consisting of finitely many products of affinoids. Now, noting that M(A1) ×

· · · ×M(An) ⊂ Kn, we can simply intersect the constructed refinement with

M(A1) × · · ·M(An) to produce the desired refinement. This completes the

proof.

Remark 2.0.6. Given an admissible covering of a rigid space X, can we produce

an admissible Weiss cover from it? One option would be to take all finite

unions of elements of our covering. If we assume the elements of the admissible

covering are compact, the resulting covering is in fact admissible Weiss. This

is firstly because the separatedness hypothesis ensures these finite unions are

admissible open. Secondly, we can use the criterion established later. Let us

call our admissible covering {Xi}i∈I = U. Consider K ⊂ X compact, and

let n ≥ 2. Denote by W the covering of X consisting of all finite unions

of elements of {Xi}i∈I . We note there is a finite subcover of U containing K.

Further, taking n-fold unions of the elements of this finite subcover and calling

the resulting collection {Fj}j∈J , it is now clear that
{
F n
j

}
j∈J contains Kn.

Here is perhaps the simplest, most lucid characterization of an admis-

sible Weiss cover:
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Proposition 2.0.4. Let {Ui}i∈I = U be an admissible cover of U . It is ad-

missible Weiss if and only if it is a Weiss cover in the ordinary sense and,

for any n ≥ 2, and any compact K ⊂ U , there is a finite refinement of U,

called {Kj}j∈J , consisting of Kj all compact, such that
{
Kn
j

}
j∈J has union

containing Kn.

PROOF: For one direction, assume that our cover satisfies the con-

dition involving Kjs. We must show that for every n ≥ 2, the cover {Un
i }i∈I of

Un is p-admissible. To this end, let us consider some Kn ⊂ Un. The pullback

of {Un
i }i∈I to Kn admits a refinement consisting of elements of form Kn

j . Note

now that every such Kn
j is a finite union of products of affinoids, so putting

together all these products (given there are only finitely many Kj), we are

done with one direction.

For the other direction: suppose given an admissible Weiss cover as in

the proposition, and let K ⊂ X be compact. Consider some power Kn. The

pullback of {Un
i }i∈I to this power has a finite refinement consisting of products

of affinoids. For any given product of affinoids, say M(A1) × · · · ×M(An) ⊂

Un
i ∩ Kn, note that we can consider the union C = M(A1) ∪ · · · ∪M(An).

Now, Cn ⊂ (Ui ∩K)n. Doing this for every product of affinoids occurring in

aforementioned finite refinement produces the desired collection of compacts

Kj.

Corollary 2.0.5. An admissible covering {Ui}i∈I of U ⊂ X is admissible

Weiss if and only if, for any compact K ⊂ X, there is a refinement consisting
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of compacts of the pullback cover to K that is n-Weiss, in the sense that for

any n points in K, we can find a refinement element containing all the n

points.

The corollary now makes it easy to check that admissible Weiss covers

let us define a natural Grothendieck pretopology associated to a rigid space X.

Namely, we can consider for each admissible open U ⊂ X the coverings given

by admissible Weiss coverings of U . It is clear the single {U} is admissible

Weiss, and of course, admissible opens are stable under finite intersection.

That admissible Weiss covers are stable under pullbacks along inclusions of

admissible opens is easy to see. Note also that, given an admissible Weiss

cover {Ui}i∈I of U and ones {Vj}j∈Ji of Ui for each i ∈ I, we can see the

concatenated cover of U is admissible Weiss as follows. Consider a positive

integer n. Let K ⊂ U be compact. The pullback {Ui ∩K}i∈I has a finite

refinement of compacts that is a n-Weiss cover of K. Note that, for any given

Kv ⊂ Ui, we have that the pullback of {Vj}j∈Ji to Kv has a finite refinement of

compacts that is n-Weiss for Kv. Now, for any n points of U , it is clear they

must be in some Kv, so in some element of the refinement of {Vj ∩Kv}j∈Ji .

Concatenating the refinements associated to each v produces the refinement

needed to verify the admissible Weiss condition for K.

Definition 2.0.8. A multiplicative, unital rigid prefactorization algebra F

on X is a rigid factorization algebra (also referred to as a nonarchimedean

factorization algebra, nonarchimedean geometric factorization algebra, or just
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factorization algebra) if it satisfies locality with respect to admissible Weiss

covers. That is, for {Ui}i∈I = U, where U is an admissible Weiss cover of U , an

admissible open in X, the natural map from the associated Čech complex of F

viewed as a precosheaf to F(U) is a weak equivalence. Equivalently, consider

the simplicial object given in degree k by ⊕j1,...,jkF(Uj1 ∩ · · · ∩ Ujk) with the

simplicial structure induced by the precosheaf extension maps. The geometric

realization is the Čech complex, so locality is equivalently defined by saying,

for C(U,F)∗ the aforementioned Čech simplicial diagram, the natural map

|C(U,F)∗| → F(U) is a weak equivalence.

Remark 2.0.7. Equivalently, we can define a rigid factorization algebra’s lo-

cality condition as requiring that, for any admissible Weiss cover {Ui}i∈I , the

natural map hocolimS(F(US)) → F(U) is a weak equivalence, where S ∈ J

range over the finite subsets of I, and US denotes the intersection of all Ui for

i ∈ S. This follows, for instance, as in Costello and Gwilliam, Appendix 5,

Definition 5.4.4 and Lemma 5.4.5, where the functor considered is the diagram

in dgV ectK indexed by J viewed as a poset category. Basically, the simplicial

bar construction in this case is precisely the Čech simplicial diagram above

whose geometric realization is the Čech complex.

Remark 2.0.8. Note that any prefactorization algebra has an underlying pre-

cosheaf, given by only considering the structure maps of form mV ;U , where

V ⊂ U are admissible opens in the ambient X.

Remark 2.0.9. We refer to a precosheaf which satisfies the analogue of the

gluing/locality condition for factorization algebras for all admissible covers
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(not just admissible Weiss ones) as a homotopy cosheaf, and analogously for

homotopy sheaves. The interested reader can see a discussion of these objects

in Costello-Gwilliam.
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Chapter 3

From Sheaves to Cosheaves: A

Nonarchimedean Verdier Duality Functor

In order to have a good source of examples of factorization algebras of

the sorts we are interested in, it will be important to know how to associate

cosheaves to sheaves, since there is a natural way to then associate factoriza-

tion algebras to these cosheaves. This procedure will supply a version of fac-

torization algebras associated to Lie algebras in our nonarchimedean setting.

Another application of knowing how to pass between sheaves and cosheaves

is to future work on factorization algebras given by families of (co)sheaves on

fiber products Xn of a rigid space: compatible families of sheaves can yield

compatible families of cosheaves by applying our Verdier duality functor (this

is especially salient in cases where there is a genuine duality/equivalence of

sheaf/cosheaf categories).

The basic means of associating a cosheaf to a sheaf in the ordinary

topological setting (in particular, in context of a locally compact space) is

considering the functor of compactly supported sections associated to a sheaf,

with Lurie’s Verdier duality yielding in this way an equivalence of∞-categories

between Shv(X,C) and CShv(X,C) for X a locally compact, Hausdorff topo-
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logical space and C a stable ∞-category with all small limits and colimits

where our (co)sheaves take values, and Shv, CShv denoting the categories of

sheaves and cosheaves. Our aim will be to adapt this story to the rigid set-

ting. We define a version of Lurie’s Verdier duality functor for sheaves on

separated rigid analytic spaces, but we only demonstrate it is an equivalence

in the case of affinoid spaces, and between overconvergent versions of the sheaf

and cosheaf categories. It seems such overconvergence may even be necessary

to get a Verdier duality equivalence.

3.0.1 Defining a Verdier Duality Functor

The goal of this section, as in the title, is to define a functor from

sheaves to cosheaves. We will begin by selecting appropriate analogues of

Lurie’s Verdier duality ingredients for our setting. The analogue of a compact

subset of a locally compact, Hausdorff topological space will be an admissible

open subset of a separated rigid analytic space that is a finite union of affinoids.

This is sensible, because the affinoids are, by definition of the G-topology,

compact in an appropriate sense. Another nice property of our setting is

that the theory of what Lurie calls K-sheaves (that is, a version of sheaves,

and indeed, crucial to Lurie’s proof, an equivalent model for ordinary sheaves,

evaluated on compact subsets of the spaces he considers) is very clearly related

to ordinary rigid analytic sheaves, given that rigid analytic spaces are built up

from affinoids.

We recall the notion of K-sheaf, a sheaf on compact subsets, in the
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rigid analytic setting. First, we recall the correct notion of compact subspace

for our setting.

Definition 3.0.1. A compact subspace K ⊂ X is an admissible open that is

a finite union of affinoids. Denote the category given by the poset of compact

subspaces by K(X).

Remark 3.0.1. We reiterate that such finite unions are automatically admissi-

ble coverings, due to the separatedness we are always assuming.

Definition 3.0.2. A K-sheaf on a rigid analytic space X valued in a stable

∞-category C with small limits and colimits is a functor F : N(K(X))op → C

satisfying the following:

(i) F(∅) is final.

(ii) For every pair of compact subspaces K,K ′ of X, the diagram

F(K ∪K ′) F(K)

F(K ′) F(K ∩K ′)

is a pullback square.

(Note that we do not need an analogue of Lurie’s condition (iii) defining

K-sheaves; in fact, this can be seen to be because our situation is special, where

the G-topology is generated by affinoids, and thus compact subspaces.)

Denote the K-sheaves by ShvK(X). We can define K-cosheaves simi-

larly, and denote them by CShvK(X).
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Remark 3.0.2. We will at times refer to K-(co)sheaves also in the topological

space setting, for instance when considering the underlying topological space

of the Berkovich space of an affinoid rigid analytic space.

We state the main theorem of this section, whose proof is deferred until

a little later. It is a partial analogue of Lurie’s Proposition 5.5.5.10.

Theorem 3.0.1. Let C be a stable ∞-category with all small limits and colim-

its. Let X be a separated rigid analytic space. Then, the assignment given

by sending F 7→ (Fc : U 7→ Γc(U,F)) defines a functor of ∞-categories

(−)c : Shv(X,C) → CShv(X,C). Here, the functor sends F to the assign-

ment U 7→ colimK⊂UΓK(X,F), where K is compact in U .

Remark 3.0.3. Note the above does not read U 7→ colimK⊂UΓK(U,F), and

this point is discussed further later.

Remark 3.0.4. The separatedness hypothesis will (among the other useful roles

it is playing) ensure that, when we take complements of compact K in X, we

get an admissible open set.

We will have a couple of lemmas first that are analogues of results in

Higher Topos Theory , namely 7.3.4.8-9. The first shows that K-(co)sheaves

are determined locally. The second shows that, by right Kan extension, we

get a sheaf from a K-sheaf (that is, the extension to all admissible opens from

merely compact ones by right Kan extension is a sheaf). This second lemma’s

analogue for cosheaves and left Kan extensions holds by the same arguments.
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Lemma 3.0.2. Let X be a rigid analytic space, C a stable ∞-category with

small limits and colimits. Consider an admissible covering by admissible opens

U of X. Denote by KU(X) the collection of compact admissible opens of X

contained in a given element of U. Consider F a K-sheaf. Then this is a right

Kan extension of its restriction to N(KU(X))op.

PROOF: It is a fact that a covering U satisfies the conclusion of the

lemma (henceforth, such a cover is called a good cover ) if and only if for any

compact K ⊂ X, the set of {K ∩ U}K∈K(X) for U ∈ U satisfies the analogous

conclusion replacing X with K. Therefore, we may assume X is compact.

This implies that U has a finite (admissible) refinement consisting of compact

subsets. We will induct on the size of this refinement to show that U is a good

cover if it has such a finite refinement.

Call the refinement {K1, ..., Kn}. The case of n = 0 just involves show-

ing F(∅) is final (since in this case, X is empty), which follows from the

definition of K-sheaf.

To carry out the inductive step, we notice the following fact. Suppose

that we have two admissible coverings with one, U a refinement of the other, U′;

additionally, suppose that for every U ′ ∈ U′, {U ′ ∩ U}U∈U is a good covering

of U ′. Then, we note that we have U′ is good if and only if U is. Here, we are

appealing to Higher Topos Theory, 4.3.2.8 for the chain KU(X) ⊂ KU′(X) ⊂

K(X).

Now, suppose for the inductive step that we’ve shown the conclusion
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for n− 1, and consider the admissible open V = K2 ∪ · · · ∪Kn. We put U′ :=

U ∪ {K1} ∪ {V }. This is an admissible covering with admissible refinement

U. We wish to apply the above paragraph’s fact of notice to each of the

elements. This is easy for those of U and K1. For V , notice by the inductive

hypothesis that, since {W ∩ V }W∈U has an admissible refinement consisting

of n − 1 compact subsets, that this is a good cover of V . (To elaborate

slightly, the refinement is produced by noting U has the refinement consisting

of all the Ki, and we can intersect each of these with V to get a refinement

of {W ∩ V }W∈U, and of course, this has refinement simply consisting of all

the Ki for i 6= 1.) Therefore, we have reduced to demonstrating the lemma

for U′ instead of for U. Further, we can reduce to showing the lemma for

the covering consisting of K1 and V . This reduction also follows from the

fact of notice from above: indeed, all we must know is that K1 ∩W,V ∩W

for W admissible open in U′ is a good cover of W . Notice that this can

be demonstrated simply by demonstrating the analogous fact for K ⊂ W

compact. In this case, appealing to separatedness of X, each of K1∩K,V ∩K

is compact, and we can set R equal to the admissible cover of K consisting of

K1 ∩K,V ∩K. This is certainly good, as our F evaluated on any compact K ′

inside K is realized as the appropriate right Kan extension by considering R′

to be the admissible covering given by K1∩K ′, V ∩K ′ and noting the cofinality

of N(K1 ∩K ′, V ∩K ′, K1 ∩K ′ ∩ V ) ⊂ N(KR′(K ′)), plus the fact that F is a

K-sheaf.

To complete the proof, we want to demonstrate that F(K), for K a
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compact subset of X, is the limit of F|(N(KR(K))op). This once again follows

by the aforementioned cofinality argument, exactly as above.

Remark 3.0.5. We note that the main significance of good coverings being

admissible above is seen in the fact that we could reduce to the case of U

being finite (of size 2, in particular). Indeed, it is unsurprising that a rigid

sheaf would be determined by its behavior on affinoids. However, since K-

sheaves only exhibit a limited gluing property with respect to covers with

two compact subspaces, some further argument (such as the above lemma) is

crucial. A concise summary of the above lemma is that any admissible covering

is good.

Let us now continue on to the second required lemma.

Lemma 3.0.3. Let X be a rigid analytic space, and C be a stable ∞-category

with all small limits and colimits. Let G be a K-sheaf on X, and let F :

N(U(X))op → C be a functor derived from G by right Kan extension. Then, F

is a sheaf on the rigid space X.

PROOF: Let W be a covering sieve. We must show that N(W)/ → C

is a colimit diagram. Let KW(X) denote those members of K(X) so that each

is contained in some element of W. Noting that N(W) ⊂ N(W ∪ KW(X))

is cofinal, it suffices to demonstrate that, for any admissible U , the restric-

tion of F to N(W ∪ KW(X))op has right Kan extension the restriction to

N(W ∪ KW(X) ∪ {U})op. To show this, by appealing to Higher Topos The-

ory, 4.3.2.8 for the tower KW(X) ⊂ KW(X) ∪W ⊂ KW(X) ∪W ∪ {U}, it
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suffices to show that F|(KW(X) ∪ W ∪ {U})op is a right Kan extension of

F|(KW(X))op. However, since we already know this is true at every element

except U , it will suffice to show F|(KW(X) ∪ {U})op is a right Kan extension

of the corresponding restriction to KW(X)op.

This is straightforward, because of the previous lemma and another

appeal to Higher Topos Theory, 4.3.2.8 for the tower KW(X) ⊂ K(X) ⊂

K(X)∪{U}. The Kan extension condition at U for our KW(X) can be shown

as follows: as long as we can demonstrate the analogous one from left to center

and center to right, we will be done. The left to center case follows from the

previous lemma. The center to right case is clear by construction.

Remark 3.0.6. The analogue of the above with cosheaves instead of sheaves

and left Kan extension instead of right holds by exactly analogous arguments.

We are now almost ready for the proof of Theorem 3.1. There is just

one lemma to verify first:

Lemma 3.0.4. Suppose that X is a separated rigid analytic space. Then, for

any compact subspaces K,K ′ ⊂ X, {X \K,X \K ′} constitutes an admissible

covering of its union X \ (K ∩K ′).

PROOF: Suppose first that X is affinoid. Now we can appeal to

the results of Schneider’s Points on Rigid Analytic Varieties in connection

with the assignment M(−), his version of the topological space underlying

the Berkovich space of an affinoid. The statement of the lemma holds for X
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precisely if {M(X) \M(K),M(X) \M(K ′)} is a cover in the ordinary topo-

logical sense of M(X \K ∩K ′), since the complement of a compact subspace

is a wide open in the sense of Schneider’s article (for the rest of this argument,

when we use the term wide open, we refer to Schneider’s article, not to be con-

fused with the use later based on Coleman’s work on rigid analytic curves).

However, due to the compatibilities of the assignment M(−), we have that

M(X \ (K ∩K ′)) = M(X) \M(K ∩K ′) = M(X) \ (M(K) ∩M(K ′)). This

is in turn (M(X) \M(K)) ∪ (M(X) \M(K ′)) = M(X \K) ∪M(X \K ′), as

desired.

We now suppose X is a general separated space and show we can re-

duce to the affinoid case. Let {Xi}i∈I be an admissible covering of X by

open affinoids. We intersect it with X \ (K ∩ K ′) to obtain an admissible

covering {Xi \ ((Xi ∩K) ∩ (Xi ∩K ′))}i∈I of this admissible open. Thus, to

show that {X \K,X \K ′} constitutes an admissible covering of X \ (K ∩

K ′), it is sufficient to show intersecting the former with each Xi \ ((Xi ∩

K) ∩ (Xi ∩ K ′)) yields an admissible covering of it. So it is enough to

show {Xi \ (Xi ∩K), Xi \ (Xi ∩K ′)} constitutes an admissible covering of

Xi \ ((Xi ∩ K) ∩ (Xi ∩ K ′)). However, this follows from the work on the

affinoid case, applied to the compact subspaces Xi ∩K,Xi ∩K ′ of Xi.

PROOF OF THEOREM 3.0.1: We produce our functor Shv(X,C)→

CShv(X,C) by way of a composition of two functors Shv(X,C)→ CShvK(X,C)→

CShv(X,C). The first functor is given by sending F 7→ (K 7→ ΓK(X,F)).

The second is given by sending G 7→ (U 7→ colimK⊂UG(K)). The composition,

36



then, is given by taking sections over X with support in some compact of the

given admissible open. Given the second lemma we proved applies equally well

to left Kan extensions and K-cosheaves with exactly the same sort of argu-

ment, there is nothing to do except to show that the first assignment produces

not just a functor on N(K(X))op, but an actual K-cosheaf. We check each of

the conditions. Condition (i) follows easily from noting that Γ∅(X,F) is zero,

given it is gotten from the kernel of an equivalence. Condition (ii) follows if

we note that, if we denote the precosheaf we want to show to be a cosheaf by

G, the square

G(K ∪K ′) G(K)

G(K ′) G(K ∩K ′)

is a pullback if and only if it is a pushout (the latter of which we want

to be the case). The former is the case, because it arises as the fiber of a map

of pullback squares

F(X) F(X)

F(X) F(X)

and
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F(X \ (K ∪K ′)) F(X \K)

F(X \K ′) F(X \ (K ∩K ′))

Applying a previous lemma, we know that {X \K,X \K ′} constitutes

an admissible covering of X \ (K ∩K ′), so the sheaf condition for F gives us

the last of what we need to verify condition (ii), whence the proof is finished.

3.0.2 Verdier Duality Equivalence for Affinoids

Let us now proceed to demonstrate that, in the special case where

we restrict to overconvergent sheaves and analogous cosheaves on an affinoid

rigid analytic space, we can do better than the above: Lurie’s Verdier dual-

ity functor furnishes us with a version of Verdier duality relevant to the rigid

analytic setting. Let us recall the notion of overconvergence, and additionally

consider an analogous notion to overconvergence for cosheaves. This section

intimately uses Schneider’s article Points on Rigid Analytic Varieties, and the

basic notions, including many of those most relevant to us, are reviewed in

the appendix on rigid geometry. This includes (and the reader is warned to

be careful about this) the definition of wide opens (which should correspond

to the notion of a partially proper open immersion from discussions of mor-

phisms of rigid analytic spaces without boundary) relevant to this chapter,

as opposed to those employed when specializing to curves and factorization

theorems (which deal with a version used by Robert Coleman, among others,

to discuss semistable coverings).
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Definition 3.0.3. Let F be a sheaf on an affinoid rigid analytic space X val-

ued in an ∞-category C. We say that F is overconvergent if, for any compact

admissible open K ⊂ X, the natural map colimK⊂WF(W )→ F(K) (where all

W are wide opens) is an equivalence. Denote the overconvergent sheaves by

OverShv(X,C). Similarly, letting F be a K-sheaf on X, we call it overconver-

gent as well, if the natural map colimK⊂⊂K′F(K ′)→ F(K) is an equivalence.

Denote the overconvergent K-sheaves by OverShvK(X,C).

Definition 3.0.4. Similarly, define G a cosheaf on an affinoid rigid analytic

space X as above to be co-overconvergent if, for any compact admissible open

K of X, the natural map G(K) → limK⊂WG(W ), again where W range over

the wide opens containing K, is an equivalence. Denote the co-overconvergent

cosheaves by OverCShv(X,C). Similarly, we define a co-overconvergent K-

cosheaf to be a K-cosheaf G so that the natural map G(K)→ limK⊂⊂K′G(K ′)

is an equivalence.

Here is the main theorem involving these two definitions:

Theorem 3.0.5. Let X be an affinoid rigid analytic space. There is an equiv-

alence of ∞-categories OverShv(X,C) → OverCShv(X,C) furnished by the

functor F 7→ Fc constructed earlier.

PROOF: This proof will intimately use Schneider’s characteriza-

tion of the Berkovich space of an affinoid rigid analytic space, given by the

assignment M(−) discussed above. Note that M(X) is a locally compact,
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Hausdorff space. Thus, Lurie’s Verdier duality functor yields an equivalence

of∞-categories Shv(M(X),C) ∼= CShv(M(X),C), and en route also an equiv-

alence betwee the K-sheaves and cosheaves.

The proof will consist of first demonstrating that the category of sheaves

in the wide open G-topology on X, denoted Shvwo(X,C), is equivalent to

the category of overconvergent K-sheaves on X, and then checking that the

category of sheaves for the wide open G-topology is equivalent with that

of ordinary sheaves on M(X), and that the category of overconvergent K-

sheaves is equivalent to that of overconvergent sheaves. This yields an equiv-

alence OverShv(X,C) ∼= Shv(M(X),C), and we will not give the details for

the analogous equivalence OverCShv(X,C) ∼= CShv(M(X),C), as the argu-

ment is clear by symmetry. We will then furnish our final equivalence by the

string OverShv(X,C) ∼= OverShvK(X,C) ∼= Shvwo(X,C) ∼= Shv(M(X),C) ∼=

CShv(M(X),C) ∼= OverCShv(M(X),C). We touch on why this is given by

the Verdier duality functor constructed earlier.

Let us now prove all that we need in a sequence of lemmas. Denote

by W(X) the poset of wide opens of X. First note that the posets K(X) and

that M(K(X)) can be identified, due to the behavior of M(−) with respect to

inclusions. We can also identify W(X) and M(W(X)). Thus, we can identify

functors out of N(W(X))op with those out of N(M(W(X)))op, and analogous

remarks apply to K(X).

Lemma 3.0.6. Let F be a functor N(K(X) ∪ W(X))op → C. Then, the

following conditions are equivalent: (1) The restriction F |(N(K(X))op is an
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overconvergent K-sheaf, and F is a right Kan extension of this restriction. (2)

The restriction F |(N(W(X))op is a sheaf for the wide open G-topology, and F

is a left Kan extension of this restriction.

PROOF: First suppose (2). We show that the restriction of F to

N(K(X))op is an overconvergent K-sheaf as follows. By our aforementioned

identification, we can identify F with a functor N(M(K(X))∪M(W(X)))op →

C. To show the appropriate restriction is a K-sheaf first of all, let us note what

needs to be shown is that the empty object is sent to 0, and the usual gluing

condition must be satisfied for unions of two compacts K,K ′. Note that,

under our identification, we can think of F |N(M(W(X))op) equivalently as

a sheaf, in the topological sense, with respect to the opens M(W(X)). To

see this, we must show that presheaves (under our identification) satisfy the

gluing condition in the topological sense precisely if they do so in the wide

open G-topology sense. First, note that, as Schneider shows, a collection in

W(X) {Ui}i∈I is an admissible covering of U if and only if {M(Ui)}i∈I covers

M(U). Further, either applying or undoing M preserves finite intersections,

and this completes the identification of the topological sheaf condition with

the wide open G-topology one.

This is used as follows. Note that F is a left Kan extension of the

restriction to N(M(W(X))op under our identification precisely if it is a left

Kan extension of the restriction to N(W(X))op before the identification. This

means that our F is a left Kan extension of a topological sheaf on images of

wide opens under M . From now on, let us call such sheaves W-sheaves. First,
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we take for granted that this means the restriction to N(M(K(X))op of F

must satisfy that M(∅) is sent to 0, and the usual K-sheaf gluing condition for

M(K),M(K ′) unioning to M(K ∪K ′) = M(K) ∪M(K ′) and intersecting at

M(K)∩M(K ′) = M(K ∩K ′). However, under our identification of compacts

with their images under M , this is exactly the K-sheaf gluing condition (on

X) for the restriction of F |N(K(X))op. This leaves justifying what we took

for granted above. Again viewing the restriction of F to the wide opens as a

W-sheaf on M(X), note such a sheaf can be uniquely extended to a sheaf on

M(X). When we left Kan extend this latter sheaf to the compacts, we claim

subsequently restricting to N(M(K(X)))op yields a functor equivalent to the

restriction of F to N(M(K(X)))op. This follows by noting that, for any given

K ⊂ X compact, the poset {M(W ) : W ∈W(X),M(K) ⊂M(W )} includes

cofinally into the poset of opens of M(X) containing M(K). This uses that

the M(W ) constitute a fundamental system of open neighborhoods of M(K).

Basically, this shows that F restricted to N(M(K(X)))op is produced by left

Kan extending a sheaf on M(X) to the M(K) with K ⊂ X compact, whence

by Higher Topos Theory 7.3.4.9, it must of course satisfy the K-sheaf condition

for the M(K),M(K ′) as above.

So we’ve verified that the restriction of F to the compacts yields a K-

sheaf. Now we must show that it is overconvergent. This follows quite easily

by identifying the colimit condition involved in left Kan extending F from its

restriction to the wide opens with the one involved in overconvergence (it uses

that the M(K ′) so that K ⊂⊂ K ′ constitute a fundamental system of compact
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neighborhoods of M(K)). Let K be some compact subspace of X. Let V be

the union of the posets of wide opens containing K and the compacts K ′ so

that K ⊂⊂ K ′. Let V′ be the further union adding the element K itself. It

is clear that F restricted to both N(V)op and N(V′)op are left Kan extensions

of their restrictions to the wide opens. Thus, the restriction to N(V′)op is a

left Kan extension of that to N(V)op. Denote the poset of compacts K ′ so

K ⊂⊂ K ′ by KK⊂⊂(X). It is now enough to demonstrate that the inclusion

N(KK⊂⊂(X))op ⊂ N(KK⊂⊂(X)) ∪ {U ∈W(X) : K ⊂ U})op

is cofinal. However, this follows from the aforementioned fact about

fundamental systems of compact neighborhoods, using the good behavior of

M along inclusions. In particular, to demonstrate that the usual contractibility

criterion is satisfied, let us note that for any K ⊂ W ∈ W(X), we can find

some K ⊂⊂ K ′ ⊂ W . This is because we can certainly find M(K) ⊂M(K ′) ⊂

M(W ) where M(K ′) is a compact neighborhood of M(K). But this implies

K ⊂ W ′ ⊂ K ′ ⊂ W for some W ′ wide open. We must show K ⊂⊂ K ′. To

do this, pick some x an analytic point of X so that K is a neighborhood of it.

Then, we must show x to be inner in K ′. But notice that x ∈ M(W ′), since

x ∈ M(K) ⊂ M(W ′), and by definition of wide open, this implies that x is

inner in W ′. Now it follows from the definitions that x is also inner in K ′, as

desired (the desired affinoid subdomain of K ′ we must find to prove this can

be taken to be the open affinoid of W ′ guaranteed by virtue of x being inner
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in W ′). Also, such K ′ are clearly closed under finite intersection, whence the

proof is finished.

So we have shown that the restriction of F to the compacts yields

an overconvergent K-sheaf. Now, we must demonstrate, further, that F is

actually a right Kan extension of the restriction to the compacts. To see

this, we will produce a new functor as follows: restrict F to the wide opens,

and extend this to a sheaf on M(X). Then, produce by left Kan extension a

functor on the union of the posets of compacts in M(X) and opens in M(X).

Notice that this is a functor of the sort dealt with in Higher Topos Theory,

7.3.4.9. Also, by construction, its restriction to the wide opens coincides with

that of F , and we can also see the restriction to N(K(X))op coincides with

that of F . Thus, it will be enough to show that this functor is a right Kan

extension of its restriction to N(K(X))op at every element of N(W(X))op. But,

this now directly follows because it is a right Kan extension of its restriction

to the category of compact subspaces of M(X), and, using that for a given

M(W ) for W wide open, the category of M(K) with K ⊂ X compact such

that M(K) ⊂M(W ) includes into that of compacts contained in M(W ), and

this is cofinal, meaning that the right Kan extension condition we desire for

F follows from the one F ′ satisfies.

We have now completed the proof that (2) implies (1). It remains

to show that (1) implies (2). To this end, suppose that F restricted to the

compacts yields an overconvergent K-sheaf, and that it is a right Kan extension

of this restriction. We must demonstrate, first of all, that its restriction to the

44



wide opens is a sheaf for the wide open G-topology, and secondly that it is

a left Kan extension of the restriction to the wide opens. This can be done

as follows. First of all, that the restriction to the wide opens is a sheaf for

the wide open G-topology follows very easily, since left Kan extending from

the compacts to N(E(X))op, where E(X) denotes the admissible opens poset,

yields a sheaf with respect to all admissible coverings, so certainly with respect

to the wide open G-topology.

It remains to demonstrate that F is a left Kan extension of the restric-

tion to the wide opens. This follows by considering a given compact K, and

simply noting the inclusions N(WK⊂(X))op, N(KK⊂⊂(X))op ⊂ N(WK⊂(X) ∪

KK⊂⊂(X))op are cofinal. Here WK⊂ denotes the wide opens containing K.

The idea is that this lets us use the colimit condition guaranteed by the over-

convergent K-sheaf property to deduce the analogous one with respect to wide

opens. This completes the proof that (1) and (2) are equivalent.

It is now clear that our proof actually demonstrates an equivalence

between OverShvK(X,C) and Shvwo(X,C), since the category E satisfying the

equivalent conditions of the lemma maps to both of these by the appropriate

restriction functors, both of which yield trivial Kan fibrations, due to our

characterization of E using Kan extensions. Thus, we are now ready for the

next lemma:

Lemma 3.0.7. There is a functor OverShvK(X,C) → OverShv(X,C) fur-

nished by right Kan extension, and it is an equivalence of ∞-categories.
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PROOF: The functor is simply given by restricting the functor

ShvK(X,C)→ Shv(X,C) toOverShvK(X,C). That this has image inOverShv(X,C)

is verified, since the proof of the lemma above shows that any F in the image,

if restricted to N(K(X) ∪ W(X))op, is a left Kan extension of its restric-

tion to the wide opens. Note that, letting E denote the full subcategory of

functors N(E(X))op → C that are right Kan extensions of their restriction

to the compacts, we have a trivial Kan fibration E → Fun(N(K(X))op,C)

given by restriction. This implies that there is also a trivial Kan fibra-

tion E′ → OverShvK(X,C), where E′ is the full subcategory of functors

N(E(X))op → C whose restriction to the compacts yields an overconver-

gent K-sheaf, and are right Kan extensions of these restrictions. We have

seen any object of E′ is an overconvergent sheaf. Composing the inverse

to E′ → OverShvK(X,C)) with the inclusion of E′ into the overconvergent

sheaves, we have a fully faithful functor. OverShvK(X,C). It remains to see

that it is essentially surjective. This now follows, because any overconvergent

sheaf is the right Kan extension of its restriction to compacts (this is true for

any sheaf), but in addition, this restriction defines an overconvergent K-sheaf.

This again follows from examining our work for the previous lemma, and the

proof is finished.

Let us finally note the lemma:

Lemma 3.0.8. The ∞-categories Shvwo(X,C) and Shv(M(X),C) are equiv-

alent.
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PROOF: The functor will be given as follows: first, we can identify

sheaves for the wide open G-topology with sheaves for the basis elements

M(W ) of the topology on M(X). This was covered earlier. Then, simply

appeal to the equivalence between sheaves for these basis elements and all

sheaves on M(X), since this is a basis closed under finite intersections.

It is now time to note why the equivalence we have built between over-

convergent sheaves and co-overconvergent cosheaves is actually given by the

rigid Verdier duality functor we defined earlier. To see this, let us note that the

application of Lurie’s Verdier duality equivalence between sheaves on M(X)

and cosheaves on it is ultimately determined by composing the restriction

functor from sheaves to cosheaves with the analogous equivalence between K-

sheaves and cosheaves on M(X). However, this composition is given by send-

ing a sheaf on M(X), call it F, to the K-cosheaf given by C 7→ ΓC(X,F). In

the particular case where C is of form M(K), this is given by fib(F(M(X))→

F(M(X) \M(K))). However, by identifying M(X) \M(K) with M(X \K),

it is now clear (and left to the reader) that given our descriptions above that

our equivalence OverShv(X,C) ∼= OverCShvK(X,C) is given by the usual

F 7→ (K 7→ fib(F(X)→ F(X \K))).

We now note that our Verdier duality functor from sheaves to cosheaves

is, in a sense, most meaningful (because it is given by genuine compact sup-

ports) when we consider what the cosheaves do on wide opens (that is, for

partially proper morphisms U ↪→ X, where X is separated). Let W be an

admissible open of X containing a compact admissible open K. Note the
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diagram

fib 0

F(X) F(X \K)

F(W ) F(W \K)

where the top square is a pullback (that is, fib is ΓK(X,F)). We

would like the outer square to be a pullback as well, so as to identify fib

with ΓK(W,F). However, as {W,X \K} may not be an admissible covering

of X, the bottom square may not always be a pullback, which would be the

natural way to get the desired identification. It turns out this condition holds

naturally with further conditions (related to the idea of being wide open) on

W .

Lemma 3.0.9. Let W ⊂ X be an admissible open, where X is a separated

rigid analytic space, and suppose K ⊂ W is a compact admissible open of X.

Suppose that there is an admissible covering of X by open affinoids {Xi}i∈I so

that the intersection of W with each Xi is a wide open of it. Then, {W,X \K}

is an admissible covering of X.

PROOF: First, let us demonstrate the result for X affinoid. Note

that in this case, W defines a wide open in the sense of Points on Rigid

Analytic Varieties . Note that we can verify the lemma for this case by showing

{M(W ),M(X \K)} is a topological covering of M(X). However, this follows
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because M(X \K) = M(X)\M(K), and M(K) ⊂M(W ), as M(−) preserves

inclusions.

We now suppose X is a general separated space. Let {Xi}i∈I be the

given admissible covering of X by open affinoids. Now, note that we can check

our covering {W,X \K} is admissible by checking it by intersecting with every

Xi. An arbitrary such intersection looks like {W ∩Xi, Xi \ (Xi ∩K)}. As X

is separated, Xi ∩K is a compact open of Xi. Thus, as W ∩Xi is a wide open

of Xi, containing K ∩ Xi, we can apply the lemma using this wide open of

Xi and the compact K ∩Xi of Xi to conclude the intersection covering is an

admissible covering of Xi, and the proof is finished.

We will now give a somewhat more detailed presentation of the functor

passing from sheaves to cosheaves, and also comment on what appears to

work best about extending Lurie’s proof to the specialized situation considered

above (as opposed to for more general rigid analytic sheaves).

3.0.3 Further Details of Duality Functor

Proceeding much as Lurie does in Higher Algebra, let us consider a

poset M , consisting of pairs (i, S) with i = 0, 1, 2 and S ⊂ X, where X is a

separated rigid analytic space. Further, require that S is compact if i = 0 and

X \ S is compact if i = 2. We declare (i1, S1) ≤ (i2, S2) if i1 ≤ i2 and S1 ⊂ S2

or if i1 = 0, i2 = 2. We can, in addition, consider a larger poset M ′ consisting

of pairs (i, S) with i as above, and S as above for i = 1, 2, but with the lax

requirement that X \ S is an admissible open of X for i = 2. We give here
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an argument for Verdier duality more directly building a version of the ideas

of Lurie, rather than by more exclusive appeal to Lurie’s theorem in context

to the locally compact Hausdorff Berkovich spaces attached to certain rigid

analytic spaces.

Theorem 3.0.10. Let X be an affinoid rigid analytic space. Then the Verdier

duality functor yields an equivalence between overconvergent sheaf and co-

overconvergent cosheaf categories.

Proposition 3.0.11. Let X, C be as above. Then, the following are equivalent

conditions for a functor F : N(M) → C to satisfy: (i) The restriction to

N(M0) determines an overconvergent K-cosheaf, the restriction to N(M1) is

zero, and F is a left Kan extension of the restriction to N(M0∪M1). (ii) The

restriction to N(M2) determines an overconvergent K-sheaf, the restriction to

N(M1) is zero, and F is a right Kan extension of the restriction to N(M1∪M2).

Assuming the proposition, the proof of the theorem proceeds by defin-

ing E(C) as the full subcategory of Fun(N(M),C) satisfying the equivalent

conditions of the proposition. There are restriction functors to the overcon-

vergent K-sheaf and cosheaf categories. These are trivial Kan fibrations by

application for Higher Topos Theory 4.3.2.15.

PROOF OF PROPOSITION: We prove just one direction, noting

the other follows by symmetry. Suppose the truth of (ii) and consider a functor

F : N(M) → C satisfying the relevant hypotheses. Extend this to a functor

F ′ : N(M ′)→ C, and consider the restriction of this extended functor to a rigid
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analytic sheaf F (using that M ′
2 can be identified with the opposite of the poset

category of admissible opens of X). One part of (i) essentially follows once we

demonstrate that the restriction of F ′ to M0 sends a pair (0, K) 7→ ΓK(X,F),

since we have already demonstrated this is a K-cosheaf, so we will only need

to verify the co-overconvergence condition (that the restriction has the desired

interpretation in terms of supports at compacts is established towards the end

of our discussion). For this, we must consider the following diagram, which is

a map of fiber sequences

G(K) lim←,K⊂⊂K′G(K ′)

F(X) lim←,K⊂⊂K′F(X)

F(X \K) lim←K⊂⊂K′F(X \K ′)

The middle horizontal arrow is an equivalence since its right-hand limit

is taken with respect to a filtered poset, and the lower horizontal arrow is an

equivalence because it is precisely asking for the sheaf condition for M(F) for

the covering of M(X)\M(K) by the sets M(X)\M(K ′) (that this is a covering

amounts to the fact that the M(K ′) form a fundamental system of compact

neighborhoods of M(K), which is all we need, since the set of all complements

in M(X) of compact neighborhoods of M(K) covers M(X) \M(K), and any

such is contained in some M(X) \M(K ′)). Also, note that this covering is

closed under finite intersections, as (X \K1)∩ (X \K2) = X \ (K1 ∪K2), and

in particular, if K ⊂⊂ K1, K ⊂⊂ K2, K ⊂⊂ K1 ∪K2 is clear.
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At this point, we just need to establish the following: the original

functor N(M) → C is a left Kan extension of the restriction to M1 ∪M2. To

get this, put M ′′ to consist of those objects of form (i, S) where i = 0, 1 and

S ⊂ X is compact. We note the restriction of F to M0 ∪M1 is a left Kan

extension of the restriction to M ′′, so all we need to do is show that F is a left

Kan extension of F |N(M ′′) at every object (2, X \ K) with K compact. To

demonstrate this, we will use an auxiliary poset B, which is defined to consist

of the pairs (2, X \ U) with U wide open of form X \ C with C compact. It

now suffices to demonstrate that F ′|N(M ′′ ∪ B ∪M2) is a left Kan extension

of the restriction to N(M ′′).

To demonstrate this last assertion, we will proceed in two steps. The

second step will be to show that F ′|N(M ′′ ∪B) is a left Kan extension of the

restriction to N(M ′′). The first will be to demonstrate that F ′|N(M ′′∪M2∪B)

is a left Kan extension of the restriction to N(M ′′ ∪B).

The first step’s proof proceeds by first noting that we know F ′|N(M2∪

B) is a left Kan extension of the restriction to N(B). This follows from noting

that the proof of Proposition 4 in Points on Rigid Analytic Varieties demon-

strates that, given C ⊂M(X) any compact subset, given any compact V with

ever analytic point occurring in C inner in V , we can find some M(Ω) with Ω

one of the wide opens occurring in B, with C ⊂ M(Ω) ⊂ M(V ). In particu-

lar, this means that, for any (2, X \ K) ∈ M2, the colimits appearing in our

left Kan extension condition can be identified with colimK⊂⊂K′F(K), where

F = F |N(M2). We can now finish the proof by noting that for every object
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(2, X \ K) ∈ M2, the inclusion N(B)/(2,X\K) ⊂ N(B ∪M ′′)(2,X\K) is cofinal;

this is seen by noting that, for any (i, S) ∈ M ′′ satisfying (i, S) ≤ (2, X \K),

the poset {(2, X \ U) ∈ B : (i, S) ≤ (2, X \ U) ≤ (2, X \K)} is nonempty and

stable under finite unions. To expand on this, the nonemptiness claim can be

demonstrated by showing that, given (i, S) ≤ (2, X \ K) as above, there is

always U as above with K ⊂ U but with U having empty intersection with

S. Note that M(S) and M(K) are compact in M(X), and we can certainly

find an open neighborhood of M(K) that does not overlap M(S) based on

elementary properties of our locally compact Hausdorff spaces. However, we

can certainly find some M(Ω), where Ω occurs in some element of B, between

the open neighborhood of M(K) mentioned and M(K) itself. This means

M(Ω) does not overlap M(S). Hence, neither does Ω overlap with S, yet Ω is

a wide open containing K of the desired form. The closure under finite unions

follows from the fact that X \ U1 and X \ U2 union to X \ (U1 ∩ U2), and we

know that wide opens in B are closed under finite intersection, since for Ci

compact, X \ C1 and X \ C2 intersect at X \ (C1 ∪ C2).

We are now down to demonstrating the second of the two desired steps.

Here, we will consider a particular (2, X \ U) ∈ B, with U = X \ C, and in

particular will note the diagram (0, X) ← (0, C) → (1, C) is left cofinal in

N(M ′′)/(2,X\U). Thus, we are reduced to proving that the diagram
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F ′(0, C) F ′(1, C)

F ′(0, X) F ′(2, X \ U)

is a pushout square. We will demonstrate this by considering the following

diagram (of which the above is a part):

F ′(0, C) F ′(1, C)

F ′(0, X) Z F ′(1, X)

F ′(2, ∅) F ′(2, X \ U) F ′(2, X)

The lower right square is assumed to be a pullback. Notice that the

outer lower square is a pullback simply by basic properties of F ′ we will es-

tablish at the end (basically why it is given on (0, K) by ΓK(X,F) where

F = F ′|N(M ′
2)). So, the left lower square is also a pullback square. Also,

noting X \ (X \ U) = C, the same holds true of the left larger/outer square.

Noting the left outer and left lower squares are pullback squares, the same

is true of the left upper square. Now, to finish the proof, all we need is to

know that the map Z → F ′(2, X \ U) is an equivalence, since the left-upper

square being a pullback (which we have established) is equivalent to its being

a pushout because C is a stable ∞-category. However, noting that F ′(1, X)

and F ′(2, X) are both zero, and noting the lower right square is a pullback

square, this is immediate, and the proof is finished.
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It remains to give an explicit description of our purported functor

OverShvK(X,C) → OverCShvK(X,C). We will do this by constructing a

full subcategory D ⊂ Fun(N(M ′),C) closely related to E(C) from earlier,

again following Lurie. We let D consist of the functors so that (i) The restric-

tion to N(M2) is an overconvergent K-sheaf; (ii) the restriction to N(M ′
2) is

a right Kan extension of that to N(M2); (iii) the restriction to N(M ′
1 is zero;

and finally, (iv) the restriction to N(M ′) is a right Kan extension of that to

N(M ′
1 ∪M ′

2).

Let us note that we can reconstrue condition (ii) as asking that the

restriction to N(M ′
1 ∪M ′

2) is a right Kan extension of that to N(M1 ∪M2).

That is, let (2, X \ U) be in M ′
2. The limit condition involving N(M2)(2,X\U)/

is the same as that involving N(M1∪M2)(2,X\U)/, since it is impossible for any

(1, S) to satisfy (2, X \ U) ≤ (1, S).

We can thus also reconstrue condition (iv) as asking that F ′|N(M ′) is a

right Kan extension of the restriction to N(M1∪M2). This in particular implies

that restricting a functor in D to N(M) will produce something in E(C): the

zero condition at M1 is satisfied, as M1 coincides with M ′
1, the overconvergent

K-sheaf condition on N(M2) is built in, and the final condition is taken care

of by what we have just discussed.

We now note that the goal is to show that the compositionOverShv(X,C)→

OverShvK(X,C)→ OverCShvK(X,C) is given by sending F to the assignment

given on K by ΓK(X,F). This composition is given as follows. Note the re-

striction functor D → OverShv(X,C) is a trivial Kan fibration. Composing
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its inverse with the restriction to E(C) and subsequently to OverCShvK(X,C)

is the desired composition we are trying to make explicit. We thus realize that

it suffices to know the behavior of F ′ on elements (0, K) where K is compact.

However, this is easily done: the diagram (2, ∅) → (2, K) ← (1, K) is left

cofinal in N(M ′)(0,K)/ ×N(M ′) N(M ′
1 ∪M ′

2). Thus, we know that the square

F ′(0, K) F ′(1, K)

F ′(0, ∅) F ′(2, K)

is a pullback. We know that F ′(1, K) = 0, F ′(0, ∅) = F(X), and

F ′(2, K) = F(X \ K). The bottom arrow is given by restriction. That this

square is a pullback shows that F ′(0, K) is in fact given by ΓK(X,F), and our

recharacterization of the significance of F ′ being a right Kan extension of its

restriction to N(M ′
1 ∪M ′

2) now shows that F ′|N(M0) is indeed the functor on

compacts given by the assignment K 7→ ΓK(X,F), as desired.
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Chapter 4

Construction of Examples of Nonarchimedean

Factorization Algebras

This section will construct several of the analogues of factorization al-

gebras associated to Lie algebras familiar from the world of locally constant

factorization algebras on topological manifolds.

The most basic examples that we produce are the factorization algebras

arising from a symmetric algebra construction on (homotopy) cosheaves. Since

we have shown that homotopy cosheaves can be constructed from sheaves by

taking compactly supported sections, we will have one easy source of exam-

ples, albeit basic. The arguments here owe debt to the work of Costello and

Gwilliam on factorization algebras, although the reader should be warned that

the technical details differ considerably, even if the flavor is the same.

We will appeal to some results first about external tensors of cosheaves,

which will consider the same situation from infinity and model categorical

points of view. First, we need a definition.

Definition 4.0.1. Consider F : C→ V some∞-cosheaf, where C arises from a

Grothendieck topology on a rigid analytic space X as in Higher Topos Theory

Remark 6.2.2.3 (that is, C is endowed with a Grothendieck topology on an

57



infinity-category given by the nerve of the ordinary category of admissible opens

of X, and the reader can see the appendix on homotopical notions for more

details), and V is stable, symmetric monoidal ∞-category where ⊗V commutes

with colimits. Write F�k for the functor on k-fold products of admissible opens

of X given by U1 × · · · × Uk 7→ F(U1)⊗ · · · ⊗ F(Uk).

Proposition 4.0.1. With notation as in the above definition, for any positive

integer k, F�k satisfies the ∞-codescent condition with respect to p-admissible

covers stable under finite intersection.

PROOF: Denote the collection of all products of affinoids contained

in some element of a given collection of products of admissible opens W in a

given product admissible open U = U1×· · ·×Un by PKW(U). For the special

case of the cover equal to U itself, we use the notation PK(U). The major fact

we use again and again in this proof is that the gluing condition for products

of admissible coverings of individual factors follows from the cosheaf condition

for F along with the commutativity of the monoidal product with colimits.

First, let us consider W to be a p-admissible covering of some product

of admissible opens as above. We want that F�k|N(PK(U)) is a left Kan

extension of the restriction to N(PKW(U) first of all (this will help immensely

in the proof later). Notice that this assertion needs to be demonstrated for

every product of affinoids in U , so in fact, it is enough to assume that U itself

is a product of affinoids. Then, notice W has a refinement that is given by

taking a product of admissible coverings (closed under finite intersection as

well) by affinoids. We call this W′. We now have a tower
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N(PKW′(U)) ⊂ N(PKW(U)) ⊂ N(PK(U)).

If we get that the restriction of F�k to the center is a left Kan extension

of that to the left, and similarly for the right and left, we will have the result

for p-admissible covers of products of affinoids. To see that both of these

facts hold, note that the collection of all products of affinoids, each of which is

contained in some element of W′, is given as follows: consider every admissible

open of X occurring in a kth factor of W′. Consider all affinoids contained in

some such admissible open. These affinoids constitute an admissible covering

of Uk, since they are built by considering the union of admissible coverings of

each admissible open occurring in a kth factor of W′. Further, these affinoids

are closed under finite intersection. This being said, notice that the collection

of all products of affinoids contained in some element of W′and contained

in some given product of affinoids can be assembled by taking all mutual

products of affinoids built as above, letting k vary, and replacing W′ with

its interesection with the given product of affinoids. Thus, it is a product of

admissible covers, and F�k satisfies codescent with respect to these, and we

are done showing the restriction of F�k to N(PK(U)) is a left Kan extension

of that to N(PKW(U)).

Now, consider an arbitrary p-admissible covering W, closed under finite

intersections, of arbitrary U . We can reduce, via cofinality of N(W) ⊂ N ∗W∪

PKW(U)), to showing that the restriction of F�k to N(W∪PKW(U)∪{U}) is

a left Kan extension of that to N(W ∪ PKW(U)). Considering the analogous
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fact for N(PKW(U)) and N(W∪PKW(U)) is just asking for the colimit gluing

condition for all products of affinoids contained in a given element of W, we

can in fact reduce to showing the restriction of F�k to N(PKW(U) ∪ {U}) is

a left Kan extension of that to N(PKW(U)).

To show this, we can consider the tower

N(PKW(U)) ⊂ N(PK(U)) ⊂ N(PK(U) ∪ {U})

because the Kan extension condition from left to right entails the one

we need. To show this, we can simply appeal to showing the result from left

to center and center to right. Center to right is obvious. Left to right follows

from our earlier work on p-admissible covers of products of affinoids.

Theorem 4.0.2. Let F be an ∞-cosheaf valued in a stable ∞-category with

small limits and colimits. Then the assignment U 7→ Sym(F(U)) is an ∞-

categorical admissible Weiss cosheaf (it satisfies codescent for admissible Weiss

covers).

PROOF: We are asked to show that, for {Ui}i∈I an admissible Weiss

cover of U , the natural map colimUi
SymF(Ui)→ SymF(U) is an equivalence.

Notice that this is simply a direct sum of the maps colimUi
SymkF(Ui) →

SymkF(U) for k = 0, 1, ..., and it suffices to show each such map is an equiva-

lence. However, we know from our earlier work that the maps colimUi
F�k(Uk

i )→

F�k(U) are equivalences. Passing to Sk-coinvariants now yields the result for

the k-fold symmetric powers, and thus the theorem as well.

60



Corollary 4.0.3. Let F be a homotopy cosheaf in dgV ectK endowed with the

projective model structure, and suppose K to contain Q. Also, let us suppose

that the natural map F(U) ⊕ F(V ) → F(U
∐
V ) is an isomorphism (stricter

than weak equivalence), where U, V are admissible opens admissibly covering

their disjoint union. Then, the assignment U 7→ Sym(F(U)) is a factorization

algebra.

PROOF: This has two parts: first, we should note this assignment

naturally defines a multiplicative, unital prefactorization algebra. The details

of this are exactly as in Costello-Gwilliam’s presentation for ordinary topolog-

ical spaces. The structure maps are determined, for disjoint U, V admissibly

covering their union and contained in some admissible W , for instance, by

the precosheaf maps SymF(U
∐
V ) → SymF(W ) by using the isomorphism

Sym(F(U
∐
V )) ∼= Sym(F(U))⊗ Sym(F(V )) (which also gives multiplicativ-

ity). Unitality arises from noting that Sym(F(∅)) ∼= K, using the identity map

1dgV ectK = K → Sym(F(∅)). The only thing left to check is admissible Weiss

locality: this follows from considering the associated ∞-functor, and noting

that we can identify the homotopy admissible Weiss codescent condition with

the analogous ∞-categorical one. Thus, it will suffice to know that the ∞-

functor associated to our assignment is simply given by the composition of

the∞-functor associated to F with the∞-categorical total symmetric powers

functor. For this, we just need to observe that the naive Sym construction

presents the ∞-categorical one, since our hypotheses guarantee that dgV ectK

is freely powered (that is, for any positive integer n and any cofibrant object
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X, the Sn-shaped diagram given by endowing X⊗n with the natural Sn action

permuting factors is projectively cofibrant), and since any object is automati-

cally cofibrant in dgV ectK . Thus, the proof is finished.

The above result will come in handy for the main type of factorization

algebras we are concerned with, namely ones associated to Lie algebras. This

is because, by applying a PBW type result in addition to a spectral sequence

argument, we can reduce the locality condition for these enveloping factor-

ization algebras to that for the above symmetric factorization algebras. The

usual type of (precosheaf of) dg Lie algebras relevant to universal envelop-

ing factorization algebra constructions looks like the tensor of an ordinary Lie

algebra with the compactly supported sections of a resolution of a structure

sheaf. Costello and Gwilliam, for instance, consider compactly supported Dol-

beaut forms, where the Dolbeaut resolution is one of a sheaf of holomorphic

functions. This is analogous to considering a de Rham resolution of the locally

constant sheaf valued at R, which is used to construct locally constant factor-

ization algebras corresponding to universal enveloping algebras of (ordinary)

Lie algebras.

We now proceed with defining (universal) enveloping factorization al-

gebras; a stepping stone is recalling a notion used by Costello and Gwilliam,

which we of course are considering in a rigid analytic setting.

Definition 4.0.2. A Lie-structured cosheaf is a precosheaf of dg Lie algebras

that is a homotopy cosheaf at the level of underlying dg vector spaces (using

the projective stable symmetric monoidal model structure, as usual).
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This leads immediately to the enveloping factorization algebra:

Definition 4.0.3. Let L be a Lie-structured cosheaf. Its associated enveloping

prefactorization algebra denoted U(L) is defined by sending U 7→ C∗(L(U)),

the Chevalley-Eilenberg chains of L(U).

Theorem 4.0.4. In the above definition, once again assuming K contains Q,

and the underlying homotopy cosheaf of g[1], satisfies the strictness condition

from the earlier result on the symmetric factorization algebra, the enveloping

prefactorization algebra is actually a factorization algebra valued in the model

category of dg vector spaces (with the projective model structure).

PROOF: The details of the multiplicative, unital prefactorization

algebra structure are left to the reader and are analogous to the details for

the symmetric factorization algebra. So we focus on demonstrating admissible

Weiss locality. There is a filtration on the Chevalley-Eilenberg complex at-

tached to a given admissible open by expressions of degree ≤ k, and similarly

on the Čech complex of the locality condition (for concreteness, use the total

complex realization, which can transparently be filtered). In both cases, the

filtration is ascending, and we have a filtered map from the Čech side to the

other. At every step of the filtration, we have a filtered quasi-isomorphism

associated to finite filtrations (this follows from the Sym functor yielding a

factorization algebra), hence a quasi-isomorphism outright (see for instance

the Stacks Project). This actually gives that the original filtered map from

the Čech complex to sections of the enveloping factorization algebra is itself a
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quasi-isomorphism. The reason is that we can view each filtration as defining a

sequential diagram, and the filtered map yields a map of sequential diagrams,

inducing a map on colimits that we want to be a quasi-isomorphism. Note that

each sequential diagram is a diagram consisting of cofibrant objects (since ev-

erything is cofibrant in dgV ectK), with maps between the cofibrant objects

all cofibrations (since these maps are monomorphisms, and projective cofibra-

tions of dg vector spaces coincide with injective cofibrations). Such a diagram

is automatically projectively cofibrant. So, we have a map of projectively cofi-

brant diagrams that is a weak equivalence. The colimit functor preserves weak

equivalences between cofibrant diagrams, so the induced map on colimits is

a weak equivalence as well, which completes the proof of locality. That our

prefactorization algebra is multiplicative follows from elementary facts about

the Chevalley-Eilenberg chains functor.

The following is an example of an enveloping factorization algebra, the

analogue of the vertex algebra associated to a loop algebra.

Let us assume K contains the rational numbers for this example. Let L

be a homotopy sheaf of dg vector spaces that is a presheaf of dg Lie algebras.

Then, its associated ∞-functor is an ∞-categorical sheaf in dgV ectK which

is a presheaf of dg Lie algebras. The assignment U 7→ Lc(U) now produces

a precosheaf of dg Lie algebras that is a cosheaf (all in the ∞-sense) of dg

vector spaces. The latter point follows because sifted ∞-colimits commute

with the forgetful functor from dg Lie algebras to dg vector spaces. Last, we

can produce a Lie-structured cosheaf whose associated ∞-functor is Lc. We
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will justify this claim in the first appendix.

A special case of this construction can be performed for g a Lie algebra

over K, where L as an∞-categorical presheaf of dg Lie algebras that is a sheaf

of dg vector spaces is given by g ⊗ OX . Here, to give the idea without full

rigor, we can regard OX as an object of presheaves of dg-algebras modulo weak

equivalences, where the weak equivalences are given by those maps which, on

applying the forgetful functor to dg vector spaces, are those inducing isomor-

phisms on cohomology sheaves (viewing a presheaf of dg vector spaces as a

complex of presheaves).

In any case, applying Chevalley-Eilenberg cochains to a Lie-structured

cosheaf yields a factorization algebra, so we have a good source of examples. In

the special case outlined above, we call the example the factorization algebra

associated to g. This also corresponds roughly to the vertex algebra attached

to an affine Lie algebra at level 0.

We will now give a somewhat more nuanced, homotopical treatment of

the ideas involved in establishing admissible Weiss locality of the factorization

algebra associated to a Lie-structured cosheaf. We begin with a definition.

Definition 4.0.4. A filtered prefactorization algebra is a prefactorization al-

gebra F whose underlying precosheaf is equipped with map from a sequence

of precosheaves F0 → F1 → F2 → · · ·, where all maps are monomorphisms

when evaluating on any admissible open U , and induce filtrations of F(U) for

every U . A filtered factorization algebra is just a factorization algebra that is

65



filtered as a prefactorization algebra.

Remark 4.0.1. For any admissible open U , the sequence

F0(U)→ F1(U)→ · · ·

is automatically a projectively cofibrant diagram, since all the arrows

are monomorphisms, and the objects Fi(U) are automatically cofibrant. Fur-

ther, notice that the natural map colimiFi(U)→ F(U) represents the natural

map hocolimiFi(U) → F(U). That the former is an isomorphism shows that

the latter is a weak equivalence.

We make an additional definition before we state the main proposition

about filtered factorization algebras.

Definition 4.0.5. A filtered prefactorization algebra satisfies graded admis-

sible Weiss-locality if, for any given admissible Weiss cover {Uk}k∈I , and for any

i, we have that the natural map hocolimUk
(Fi(Uk)/Fi−1(Uk))→ Fi(U)/Fi−1(U)

is a weak equivalence.

Proposition 4.0.5. Suppose F is a filtered prefactorization algebra satisfying

graded admissible Weiss-locality. Then, it is a factorization algebra.

PROOF: Let {Uk}k∈I be an admissible Weiss cover of admissi-

ble open U . To show that hocolimUk
F(Uk) → F(U) is a weak equivalence,

we note that this is asking hocolimUk
(colimiFi(Uk)) → colimiFi(U) to be
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a weak equivalence. However, since the filtrations define projectively cofi-

brant diagrams, these colimits represent homotopy colimits, and we can just

show that hocolimUk
(hocolimiFi(Uk))→ hocolimiFi(U) is a weak equivalence.

But, since all maps F(Uk) → F(U) respect the degrees of the filtration, this

amounts to showing that hocolimi(hocolimUk
Fi(Uk)) → hocolimi(Fi(U)) is a

weak equivalence. This can be demonstrated after assuming that we have pro-

jectively cofibrant representatives for the sequential diagrams whose homotopy

colimits are being taken (that is, referred to by the hocolimi), so let us assume

this. We are left with demonstrating that the natural maps

hocolimUk
Fi(Uk)/hocolimUk

Fi−1(Uk)→ Fi(U)/Fi−1(U)

are weak equivalences. Note that all these cofibers are homotopy cofibers

(due to the projective cofibrance assumption). Thus, it is enough to show the

natural

hocolimUk
(Fi(Uk)/Fi−1(Uk))→ Fi(Uk)/Fi−1(U)

are weak equivalences. However, this is just graded admissible Weiss

locality, so we are done.

Remark 4.0.2. The relation to the more classical proof for factorization alge-

bras associated to Lie-structured cosheaves is that we found a projectively cofi-

brant representative there for the sequence given by the hocolimUk
(Fi−1(Uk))→
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hocolimUk
Fi(Uk) by simply filtering the total complex of the Čech complex by

degrees (all objects are cofibrant, and the degree-wise inclusions are of course

cofibrations).
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Chapter 5

Nonarchimedean Factorization Theorems

This section is concerned with providing a version of constructions due

to Dwyer-Stolz-Teichner relating functorial field theories and factorization al-

gebras on manifolds with very general geometric structure. They prove a

version of the excision theorem often proved for locally constant factoriza-

tion algebras by associating dg-categories to factorization algebras and slightly

thickened compact (d-1)-manifolds and bimodules over these dg-categories to

d-manifolds with boundary.

Let us fix some helpful terminology for convenience.

Remark 5.0.1. When not otherwise specified, in this section, a closed sub-

annulus of an annulus defined informally by inequalities r ≤ |T | ≤ s, (where

T is a coordinate - for instance, if talking of subannuli of the unit disk, T

would correspond to the variable of the one-variable Tate algebra) refers to

an admissible open defined by r ≤ r′ ≤ |T | ≤ s′ ≤ s. An open sub-annulus

and semiopen sub-annulus are defined similarly, and we can also talk of sub-

annuli of other annuli, like wide open/semiopen annuli. Such a sub-annulus

will be called a boundary annulus if either s′ = s or r′ = r. Further, if either

the inner or outer r or s is marked left or right (see below), we can talk
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correspondingly of left and right (boundary) subannuli in the obvious way (for

instance, if the inner one is marked left, say for a wide open annulus of inner

radius r and outer radius s, a left boundary semiopen annulus would be one

of form given by r < |T | ≤ r′ < s). An interior circle of either a closed

or (semi)open annulus of inner radius r and outer radius s is one defined by

inequalities r < |T | = c < s. Further, we will denote a closed annulus of

inner radius r and outer radius s by A[r, s], an open annulus of the analogous

radii by A(r, s), and a semiopen annulus of form r < |T | ≤ s by A(r, s], and

one of form r ≤ T < s by A[r, s). We will also often refer to the analogous

notions for annuli that are isomorphic to any of the ones given above, and the

analogous notions (subannuli, boundary annuli, and so on) are defined using

the isomorphism. When a marked structure (as below) is involved, we will fix

a specific isomorphism.

Definition 5.0.1. Define a marked open annulus to be a rigid analytic space

Ann with a fixed isomorphism to some A(r, s) as above, with one of r, s marked

left, and the other marked right.

Definition 5.0.2. Similarly, define a marked semiopen annulus to be a rigid

space S with a fixed isomorphism to either some A(r, s] or some A[r, s), again

with a marking of left or right for each of r, s.

We will frequently take it for granted that we can refer to things like

the inner/outer radii or the left and right markings of a marked annulus (and

analogously with other structures with markings) via the appropriate isomor-

phisms defining the marked structure.
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Using our notion of subannuli of annuli described above, let us make

the following definition, which plays a key role in our constructions.

Definition 5.0.3. Let Ann be a marked open annulus of form A(r, s), and

assume r is marked left and s marked right. A marked left semiopen suban-

nulus S is a marked semiopen subannulus of form r < |T | ≤ s′ < s (in the

terminology established earlier, a left boundary subannulus), with r marked

left and s′ marked right. We could make the analogous definition for the case

where s is marked left in A(r, s), and here, the marked semiopen subannulus

would be of form r′ ≤ |T | < s, and here, s would be marked left and r′ would

be marked right. Also, let us call the circle corresponding to the right-marked

circle of a marked left semiopen subannulus the right boundary and denote it

by ∂RS. In this definition, we are considering Ann to be endowed with a fixed

isomorphism (giving its marked structure) to A(r, s), so all of the above is to

be understood in terms of this isomorphism.

We will now attach a dg-category to a marked open annulus.

Definition 5.0.4. Let Ann be a marked open annulus as above, and suppose

F is a unital, multiplicative prefactorization algebra. We construct/define the

dg-category attached to these data, called AF(Ann) or A(Ann) for short (if

the prefactorization algebra is understood) as follows. The objects are marked

left semiopen subannuli of Ann. The maps attached to two such objects S1, S2

are given by F(S2 \ {S1 ∪ ∂RS2}) whenever S1 ⊂ S2, and zero otherwise. That

is, we are evaluating our prefactorization algebra on the space between the
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right boundaries. The composition for S1 ⊂ S2 ⊂ S3, namely when it is

not forced trivially to be the zero map, as happens if Si ⊂ Si+1 is false, is a

map A(Ann)(S1, S2)⊗A(Ann)(S2, S3)→ A(Ann)(S1, S3) that is derived from

noting that S2\{S1 ∪ ∂RS2} , S3\{S2 ∪ ∂RS3} constitute an admissible covering

of the disjoint union (by applying a standard fact from BGR regarding finite

unions involving certain strict inequalities). Thus, we can simply define this

composition map to arise from the structure maps of the factorization algebra

F(S2 \ {S1 ∪ ∂RS2}) ⊗ F(S3 \ {S2 ∪ ∂RS3}) → F(S3 \ {S1 ∪ ∂RS3}). Last, we

have a unital structure 1 → A(Ann)(S, S) arising from the unital structure

1 → F(∅) of our prefactorization algebra. That this defines a dg-category (in

other words, the natural compatibilities that composition must satisfy, and so

on) follows from the multiplicative, unital prefactorization algebra structure

of F.

We now construct bimodule categories over the above dg-categories

associated to a suitable notion of rigid analytic curve with boundary annuli.

Definition 5.0.5. Let A,B be dg-categories. An A − B-bimodule is a dg-

functor M : Aop ⊗B→ dgV ect. This is given by maps Aop(a, a′)⊗B(b, b′)→

[M(a, b),M(a′, b′)], or equivalently, using adjunctions, action maps A(a′, a) ⊗

M(a, b)⊗B(b, b′)→M(a′, b′) satisfying the natural compatibilities.

Remark 5.0.2. The basic example to keep in mind is that, given a dg-category

A, we can think of A(−,−) : Aop ⊗ A → dgV ect, the bimodule given by the

hom-spaces. This lets us think of any dg-category A as a A − A-bimodule.
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Here, the action maps from above are just given by composition in the dg-

category.

Definition 5.0.6. Let W be a smooth, one-dimensional rigid analytic curve,

and let X ⊂ W be an open affinoid. We define an isomorphism of pairs of

form (W,X) (say (W1, X1), (W2, X2)) to be an isomorphism W1 → W2 such

that X1 is sent isomorphically onto X2.

Definition 5.0.7. Consider a pair Σ = (W,X) given by, for C a smooth, com-

plete rigid analytic curve, (C \ {X1 ∪ · · · ∪Xk} , C \ {D1 ∪ · · · ∪Dk}), where

the Di are the wide open interiors of non-overlapping affinoid disks D′i in C,

and Xi is an affinoid disk contained in Di. We call a wide open pair in Cole-

man’s sense simple if it is endowed with an isomorphism of pairs to some

(W,X) as above. We will refer to the complements D′i \Di as boundary circles

of X. We note that each Xi ⊂ Di defines a wide open annulus in C given

by Di \Xi, and we can call these boundary annuli of our wide open pair.We

will assume for the rest of this chapter that all wide open pairs considered are

simple. We use the term simple, because these simply arise via data of disks

in a smooth, complete curve.

Definition 5.0.8. Now, define a marked wide open pair to be a wide open

pair endowed with a fixed isomorphism to one of the above standard simple

ones of form (C \∪iXi, C \∪iDi) with some collection of Di, Xi (and thus the

wide open annuli in C that they define) marked as left, with the rest marked

as right. We endow the corresponding wide open annuli (called boundary
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annuli for obvious reasons) with marked structures: the left-marked ones get

their inner radii marked left via an isomorphism to an annulus of form A(r, s)

with r marked left, s marked right, and the right-marked ones analogously get

their inner radii marked right, each via an isomorphism to an annulus of form

A(r, s) with r marked right, and s marked left.

Remark 5.0.3. We will refer to a (marked) basic wide open pair in this chapter:

this simply means a (marked) wide open pair as above which is in addition

basic in the sense of Coleman/etc, given in the appendix.

Definition 5.0.9. Consider a marked wide open pair Σ = (W,X) with one

left boundary annulus and one right boundary annulus (call the first Y1 and

the second Y2). Given a factorization algebra F valued in dg vector spaces, we

produce M(Σ), a A(Y1)−A(Y2)-bimodule. This is a functor A(Y1)op⊗A(Y2)→

dgV ect given by sending a pair of marked left semiopen subannuli of the Yi,

denoted (S1, S2), to the dg vector space given by evaluating our factorization

algebra on the space between the right boundaries of Si. More precisely, setting

W ′ equal to the wide open annulus given by deleting the right boundary of

S2, we evaluate F on the the following space: W \ (S1 ∪ (Y2 \W ′)). There

are action maps given as follows: for S0 ⊂ S1 in Y1, we define the action

A(Y1)(S0, S1) ⊗M(Σ)(S1, S2) → M(Σ)(S0, S2) by the structure maps of the

factorization algebra F(S1 \ {S0 ∪ ∂RS1})⊗F(W \ (S1 ∪ (Y2 \W ′)))→ F(W \

(S0∪ (Y2 \W ′))). The right action of A(Y2) is constructed exactly analogously.

Note in our definition that we only need to evaluate our factorization

algebra (to construct the mapping spaces) on admissible opens. One way to

74



see this is to note that our wide open W can be gotten by deleting two affinoid

disks from a proper curve, and the space we evaluate our factorization algebra

can thus be gotten by deleting two larger affinoid disks (here, we appeal to

the fact that deleting a compact from a quasi-separated rigid space yields an

admissible open). The disjoint unions considered to define the action maps

yield admissible coverings of the given union, and this is not hard to see, but

we record an explanation in a lemma briefly.

Lemma 5.0.1. The disjoint unions involved in defining the action maps above

are all admissibly covered by the involved disjoint admissible opens.

PROOF: In the end, this reduces to the BGR fact we consid-

ered with regard to the analogous disjoint unions involved in defining the

dg category attached to a wide open annulus. We will give the details,

for illustration, regarding the disjoint union corresponding to an action map

A(a3, a2)⊗A(a2, a1)⊗M(a1, b1)⊗B(b1, b2)→M(a3, b2). This involves consid-

ering three semiopen annuli corresponding to objects of A(Y1), call these S0 ⊂

S1 ⊂ S2 where the containment is proper, and considering some semiopens

T ⊂ T ′ ⊂ Y2 corresponding to objects of A(Y2). We will show that the union

of S2 \ (S1 ∪ ∂RS2), S1 \ (S0 ∪ ∂RS1), T ′ \ (T ∪ ∂RT ′) and the space in between

the right boundaries of S2 and T is an admissible disjoint union. To do so,

we will proceed by producing an admissible covering by open affinoids of the

space between the right boundaries of S0 and T ′ and intersecting it with our

disjoint union. Then, we will show that the intersection of each element of our
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disjoint union with each of these open affinoids yields an admissible covering

of the corresponding disjoint union contained in the given affinoid.

Here is how we produce the affinoid covering described above. Pick

an affinoid subannulus of Y1 having ∂RS1 as an interior circle, but contained

between the right boundaries of S0 and S2. Pick another such affinoid sub-

annulus of Y1 having ∂RS2 as an interior circle, not overlapping the earlier

subannulus, and contained in Y1 \ S1. Finally, pick an affinoid subannulus of

Y2 having ∂RT as an interior circle and contained in T ′ \ ∂RT ′. Now, let us

suppose that Y1 has marked structure given by an isomorphism to A(r, s), and

Y2 has marked structure given by an isomorphism to A(r′, s′). We will suppose

the right boundaries of S0, S1, S2 correspond to radii r < r0 < r1 < r2 < s,

and suppose also that the right boundaries of T, T ′ correspond to radii of form

s′ > sT > sT ′ > r′. We will include in our affinoid covering the underlying

affinoid X ⊂ W , and also several sequences of subannuli of Y1, Y2 that will

now be specified. Let us suppose the first subannulus we chose corresponds

to A[c0, c1] ⊂ A(r, s). Then, we include in our desired affinoid covering a se-

quence of affinoid subannuli of Y1 of form A[c0,1, c0], A[c0,2, c0,1], ..., where the

c0,k approach r0 but remain strictly larger. Further, we include the subannuli

of Y1 of form A[c1, c1,0], A[c1,0, c1,1], A[c1,1, c1,2], ..., where the c1,k → r1 while

remaining strictly smaller. Also, if the affinoid subannulus that we picked

out containing ∂RS2 as an interior circle is of form A[d1, d2], let us consider

subannuli of Y1 of form A[d2, d2,0], A[d2,0, d2,1], ... where d2,k → s while re-

maining strictly smaller. Similarly denoting the affinoid subannulus of Y2 we
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chose containing ∂RT as an interior circle, supposing this subannulus is of

form A[e1, e2], we can consider sequences of affinoid subannuli of Y2 of form

A[e2, e2,0], A[e2,0, e2,1], ... where e2,k → s′ while remaining strictly smaller, as

well as a sequence A[e1,0, e1], A[e1,1, e1,0], .. where e1,k approaches q, where q is

the radius of the boundary circle of T ′ under the isomorphism Y2
∼= A(r′, s′).

Here, e1,k remains strictly bigger than q.

It now follows from elementary facts about admissible coverings of an-

nuli in rigid geometry that the union of X and all the affinoid subannuli we

considered above actually is an admissible covering of the space between the

right boundaries of S0 and T ′.

We now check that intersection of our original disjoint union, namely

the space between the right boundaries of S0, S1, the analogous space for S1, S2,

and the ones for S2, T and T, T ′, with each element of our affinoid cover-

ing above yields an admissible covering of the given union. For the affinoid

containing the right boundary of S1 as an interior circle, the intersection of

our finite disjoint union with this affinoid simply yields a covering of form

A[c0, a), A(a, c1]. This is admissible, because of a standard BGR fact. Similar

remarks apply to all the other affinoid subannuli we chose containing given

interior circles. Notice that each of the other affinoid subannuli we consider is

contained in some element of our finite disjoint union, so the intersection of

that finite disjoint union with it simply yields the same affinoid subannulus,

whence the resulting covering is clearly admissible. The underlying affinoid

X ⊂ W is also contained completely between the right boundaries of S2 and
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T , whence the intersection of our finite disjoint union with X simply yields

the one-element covering of X. This completes our proof. The reader should

note that the analogous argument works for all the possible disjoint unions we

ever consider in our definition of M(Σ).

Definition 5.0.10. Given a A − B-bimodule M and a B − C-bimodule N,

we now recall the definition of the bar construction, which will compute

their derived tensor product (and be denoted accordingly). This can be

formed as follows. Consider the simplicial object in A−C-bimodules given by

[n] 7→ ⊕b0,...,bn(M(−, b0) ⊗ B(b0, b1) ⊗ · · · ⊗ B(bn−1, bn) ⊗ N(bn,−)), with the

simplicial face and degeneracies given by composition and action maps. This

is the simplicial bar construction associated to the two bimodules. The bar

construction, denoted M ⊗L
B N, is given by taking the geometric realization

of the simplicial bar construction. (The mapping space associated to a pair

(a, c) ∈ Aop⊗C is given by the geometric realization of the simplicial diagram

determined by the above by evaluating at the pair.)

To continue on to the nonarchimedean gluing factorization theorem that

is the main attraction of the section, we will now need to spell out a version of

the notion of semistable covering that takes into account the marked structure

that our constructions appeal to.

Definition 5.0.11. A marked semistable covering of a marked wide open pair

(W,X) (for simplicity assumed to have just two boundary annuli A,B, one

marked left, and the other marked right) is a semistable covering involving
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precisely two basic wide open pairs Σ1 = (W1, X1),Σ2 = (W2, X2), each also

with precisely two boundary annuli, overlapping at precisely one wide open

annulus Ann ∼= A(1, s). The boundary annuli of the first will be denoted A

and, of course, Ann, and those of the second are Ann, as well as another called

B. In addition, each basic wide open pair has a marked structure, and the

overlap is between the right boundary annulus of W1 and the left one of W2.

There is also a requirement of compatibility of the marked structures on the

annulus of overlap: the left and right markings must coincide.

Now, we consider a marked semistable covering exactly as defined

above. Denote the underlying affinoids of Σi by Xi and the corresponding

larger affinoids containing Xi in the definition of wide open by Yi, and define

X and Y similarly for the case of Σ. Now, let F be a rigid factorization algebra

on W , and regard its restrictions to the admissible opens of W1 and W2 as

factorization algebras F1,F2. Denote by M(Σ1) the A(A)−A(Ann)-bimodule

associated to the factorization algebra F1, and similarly denote by M(Σ2) the

A(Ann)−A(B)-bimodule associated to the factorization algebra F2. Finally,

denote by M(Σ) the A(A)−A(B)-bimodule associated to F.

Theorem 5.0.2. Notation as above, the natural map M(Σ1)⊗L
A(Ann)M(Σ2)→

M(Σ) is a weak equivalence.

PROOF: The natural map from the derived tensor product to M(Σ)

is induced from a map from the simplicial bar construction to the constant
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simplicial A(A)−A(B)-bimodule M(Σ). This map can be defined by evaluat-

ing on pairs of objects of A(A) and A(B) by realizing the associated simplicial

object in dgV ect is weakly equivalent to the simplicial Čech complex associ-

ated to a certain covering of the space in Σ between the right boundaries of

the objects in the given pair, and considering the composition of this weak

equivalence with the natural map from this simplicial Čech complex to F eval-

uated on this space between boundaries (as in the definition of locality for

factorization algebras).

To get that the map M(Σ1)⊗L
A(Ann) M(Σ2)→M(Σ) is a weak equiva-

lence, we can thus simply show that the factorization algebra F satisfies locality

with respect to the coverings mentioned above. That is, we simply must have

that each covering referenced above is admissible Weiss.

Let us now demonstrate this. Let U be the admissible open given

informally (see earlier for the precise definition) by the space in between the

right boundaries of S1, S2, corresponding to objects of A(A) and A(B). This

can be gotten by deleting closed affinoid disks from a proper curve arising

by gluing disks onto the boundary annuli of Σ, just as Σ itself is gotten by

deleting (smaller) such affinoid disks from the same proper curve. Hence, U

is admissible open in Σ. An element of the covering of U is given by taking

a semiopen annulus corresponding to an object of Ann, and examining the

complement of the right boundary in U . Note that U is separated, since it

corresponds to an open subspace of a proper curve. Therefore, taking the

complement of something compact (like a circle, as we are doing) yields an
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admissible open, so the elements of our covering are all admissible open. Doing

this for all the semiopen annuli corresponding to objects of A(Ann) yields all

of the covering (that it covers is obvious). Denote our constructed cover by

{Ui}i∈I . We now describe somewhat more explicitly the maps M(Σ1)⊗L
A(Ann)

M(Σ2)(S1, S2) → M(Σ)(S1, S2), once again induced from a map of simplicial

A(A)−A(B)-bimodules. Denote the component of Ui containing A by UL
i , and

likewise denote the component of Ui containing B by UR
i . In the lowest degree,

the simplicial diagram in dg vector spaces that the left side is the geometric

realization of is given by ⊕iF(UL
i )⊗F(UR

i ). This naturally maps to ⊕iF (Ui),

yielding a weak equivalence due to multiplicativity. We then have a map

⊕iF(Ui)→ F(U), and the composition ⊕iF(UL
i )⊗F(UR

i )→ ⊕iF(Ui)→ F(U)

now yields the lowest degree part of the map of simplicial diagrams inducing

our desired map M(Σ1)⊗L
A(Ann) M(Σ2)(S1, S2)→M(Σ)(S1, S2). All the other

degrees are constructed analogously, using multiplicativity and the usual maps

involved in checking locality.

We now note that {Ui}i∈I is a Weiss cover (any finite collection of points

is contained in some element), so the only question is if it is an admissible

Weiss cover. To conclude this is admissible Weiss, we can simply use the

criterion established earlier involving n-Weiss coverings of compact subspaces

of U by other such compact subspaces. In particular, we can demonstrate

what we need by showing that our covering is admissible and that, for each

positive integer n ≥ 2, for a given compact subspace K ⊂ U , there exists a

finite refinement of the original covering by the Ui, call it {Kj}j∈J , so that
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the intersection of
{
Kn
j

}
j∈J with Kn constitutes a covering of Kn. In fact,

we will just give the argument for the latter point, as the fact that our cover

is admissible follows by an analogous argument (since it just corresponds to

demonstrating an analogous claim when n = 1).

To produce this refinement, we proceed in a couple steps. First, we

note that
{
Uk
i

}
i∈I does indeed cover Uk, but actually has a subcover given by

finitely many Ui. This is seen by noting that the Ui form a k-Weiss covering

(any collection of k points is contained in some element of the cover) because

at worst, each point in a given collection of k points lies in a distinct circle

deleted to produce a given Ui. This shows that there is a subcover {Uj}j∈J of

{Ui}i∈I with J a finite set of size k + 1, so that
{
Uk
j

}
j∈J covers Uk.

We now define Kj ⊂ Uj compact as follows. It is given by considering

the circle Cj deleted from Ann to produce Uj and instead considering Annj

some open subannulus of Ann containing Cj as an interior circle. In addition,

the Annj for all j are required to be pairwise disjoint. Further, let us pick a

right semiopen subannulus A′ ⊂ A and a left semiopen subannulus B′ ⊂ B so

that K ∩ A ⊂ A′, K ∩ B ⊂ B′. Then, X1 ∪X2 ∪ Ann \ Annj ∪ A′ ∪ B′ := Kj

produces the desired refinement of {Uj}j∈J of compacts.

Remark 5.0.4. Let C be a smooth, complete rigid analytic curve with a semistable

model C over RK having reduction with just two irreducible components meet-

ing at a single double point singularity (with no other singularities). Denoting

these components Γ1,Γ2, and putting Σi = Red−1(Γi) for i = 1, 2, we have

that these are part of a semistable covering consisting of two basic wide opens
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overlapping in a single wide open annulus Ann. If we have a marked semistable

covering arising in this fashion, we can think of the result above as related to/a

nonarchimedean version of the factorization theorems traditionally proved in

an algebro-geometric context.
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Chapter 6

Sketch of Relation to Vertex Algebras Theory

We sketch here, without promise of completeness or rigor, an expected

analogue of the result of Costello-Gwilliam stating that the pushforward of the

cohomology of their Kac-Moody factorization algebra on C to R≥0 under z 7→

|z| admits a dense approximation by a suitable locally constant prefactorization

algebra, roughly given by the Kac-Moody vertex algebra vector space on open

disks and by U(g[t, t−1]) on open annuli.

Consider a locally constant prefactorization algebra V associated to the

(we only consider level 0 here) Kac-Moody factorization algebra for a Lie al-

gebra g, situated on R≥0, as follows: send opens of form [0, a) to U(t−1g[t−1]).

Send (a, b) 7→ U(g[t, t−1]). Send disjoint unions to tensor products (for ex-

ample, send [0, a)
∐

(x, y) where a < x to U(t−1g[t−1]) ⊗ U(g[t, t−1]). The

structure maps are given by the action maps of U(g[t, t−1]) on U(t−1g[t−1])

and the multiplication of the former (since it has the structure of an associa-

tive algebra).

Similarly, there should be a prefactorization algebra valued in vector

spaces given as follows. Let F denote the factorization algebra on rigid analytic

A1 associated to g. Send [0, a) to H∗(F(D(0, a))), where D(0, a) denotes the
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wide open disk of radius a centered at zero. Send (a, b) to H∗(F(A(a, b)). Call

this the cohomology prefactorization algebra on rigid analytic A1 associated to

g, and denote it by H∗(F).

There should be a map from V to H∗(F) as prefactorization algebras

valued in vector spaces, which can be built from an explicit understanding of

the latter’s values on opens of form [0, a) and (a, b) that should yield a dense

inclusion of subspaces on such opens when the sections of H∗(F) are appropri-

ately topologized and/or bornologized. There is a nice Serre duality for rigid

analytic spaces that justifies why we might expect such a dense inclusion (ba-

sically, due to sections supported at a point densely approximating compactly

supported sections).

Remark 6.0.1. To justify the title of the section briefly, note that U(t−1(g[t−1])

is precisely the vector space of the level zero vacuum module for the Kac-

Moody Lie algebra, which identifies it as the vector space of the corresponding

vertex algebra.
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Appendix A

Appendix on Homotopical Matters

A.0.1 Homotopy (Co)limits

We review the relation between homotopy (co)limits and∞-(co)limits,

showing they correspond to each other nicely in the settings of fibrant simpli-

cial categories and combinatorial model categories.

The first is Higher Topos Theory Proposition 4.2.4.4.

Proposition A.0.1. Let S be a small simplicial set, C a small simplicial

category, and u : C[S] → C an equivalence. Suppose A is a combinatorial

simplicial model category. Then we have a categorical equivalence of simplicial

sets

N(AC◦) ∼= Fun(S,N(A◦))

This leads to Higher Topos Theory Corollary 4.2.4.7, which tells us

how to get a pre(co)sheaf of simplicial categories with an associated functor

of ∞-categories of choice.

Corollary A.0.2. Let J be a fibrant simplicial category, S a simplicial set,

and p : N(J)→ S be a map. We can then find the following:
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(1) A fibrant simplicial category C

(2) A simplicial functor P : J→ C

(3) A categorical equivalence of simplicial sets j : S → N(C)

(4) An equivalence beween j ◦ p and N(P ) as objects of the ∞-category

Fun(N(J), N(C)).

This then naturally leads to the following result, relating homotopy

colimits (and the same for homotopy limits) and ∞-(co)limits.

Theorem A.0.3. Let C and J be fibrant simplicial categories, and F : J→ C

be a simplicial functor. Suppose we are given C ∈ C and a compatible family

of maps {ηI : F (I)→ C}I∈J. The following conditions are then equivalent:

(1) The map ηI exhibits C as the homotopy colimit of the diagram F .

(2) Consider the extension of N(F ) as a functor N(J). → N(C) deter-

mined by ηI . This extension is a colimit of N(F ).

This now yields the following result for combinatorial model categories

[HA] Proposition 1.3.4.23, and similarly for colimits:

Proposition A.0.4. Let A be a cominatorial model category, and let J be a

small category. Let F : J→ Ac be a functor, and let α : X → lim←,i∈JF (i) be

a map in Ac. The following are equivalent: (1) The map α exhibits X as the

homotopy limit of F ; (2) The induced map N(J)/ → N(Ac) → N(Ac)[W−1]

is a limit diagram.
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For our purposes, the most important application of the above concerns

the relation between homotopy (co)sheaves and∞-categorical (co)sheaves. We

will give a review of the theory of (co)sheaves first in the specific context we

are concerned. We focus on cosheaves, and leave the sheaf case to the reader.

Definition A.0.1. Let X be a (separated, as always) rigid analytic space,

and denote by U(X) the poset of admissible opens in X. The covering sieves

in Lurie’s sense associated to the G-topology on X are given for a specific

admissible open U by full subcategories of N(U(X))/U of the following form:

the objects must consist of all admissible opens contained in a given admissi-

ble open occurring in an admissible covering W of U . (Note that this auto-

matically means the admissible opens occurring in this full subcategory must

be, as a collection, closed under finite intersection.) We say that a functor

G : N(U(X)) → C is a cosheaf if, for any covering sieve W′, the natural map

colimUi∈W′G(Ui)→ G(U) is an equivalence.

We will record a helpful, basic proposition that we did not know where

to find to cite, about how we can see the above codescent condition.

Proposition A.0.5. A functor G : N(U(X)) → C is a cosheaf if and only

if, for any W an admissible covering of U closed under finite intersection, the

natural map colimUi∈WG(Ui)→ G(U) is an equivalence.

PROOF: Clearly, any functor G satisfying the codescent condition

with respect to all W as above must in particular satisfy the analogous one
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with respect to covering sieves. So, it remains to see the other direction. Let us

assume G is a cosheaf, and suppose W is an admissible covering of admissible

open U) closed under finite intersection. We form a covering sieve W′ given

by all admissible opens contained in some element of W′. To see codescent

is satisfied with respect to W′, let us note that N(W) ⊂ N(W′) is a cofinal

inclusion. This is by the standard application of Higher Topos Theory, 4.1.3.1.

Notice that any element of W′ is contained in one of W, and by assumption, the

elements of W containing a given one of W′ are closed under finite intersection.

The proof is now finished. We are now ready to spell out the relation

between homotopy cosheaves and cosheaves in the above ∞-categorical sense.

Suppose that F is a functor U(X) → dgV ectK . We can associate to it an

∞-categorical functor N(U(X))→ N(dgV ectK)[W−1].

Proposition A.0.6. F is a homotopy cosheaf if and only if the associated

∞-functor defines a cosheaf.

PROOF: Let us note that to be a homotopy cosheaf is precisely to

satisfiy that, for any admissible cover W of arbitrary admissible open U , the

natural map hocolimUi∈WF(Ui)→ F(U) is a weak equivalence. However, this

is true if and only if the induced map

N(W). → N(dgV ectK)→ N(dgV ectK)[W−1]

defines a colimit diagram. Notice that the first map here is given by
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the family of maps from the F(Ui) into F(U), and the second is localization.

Note that this composition can be rewritten as

N(W). → N(U(X))→ N(dgV ectK)→ N(dgV ectK)[W−1].

For such diagrams to always be colimit diagrams is exactly the defini-

tion of the ∞-functor associated to F being a cosheaf.

Now, let us additionally note that, by the equivalence of ∞-categories

N(dgV ect
U(X)
K ) ∼= Fun(N(U(X)), N(dgV ectK)[W−1]),

we can always, by invoking the above discussion, produce a homotopy

cosheaf whose associated ∞-functor is equivalent to the functor underlying a

given∞-cosheaf. Also, the associated∞-functor of some homotopy cosheaf is

automatically an ∞-cosheaf.

We now justify a remark made in the main body of the paper that,

given an∞-categorical precosheaf of dg Lie algebras L that is a cosheaf at the

level of underlying dg vector spaces, there is a Lie-structured cosheaf whose

associated ∞-functor yields the stated ∞-categorical precosheaf. Assume, as

we were at the relevant time, that our base K contains the rationals and appeal

to the model categorical structure on dg Lie algebras over K considered by

Wallbridge’s work referenced in the bibliography.
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First, we can certainly produce a precosheaf of cofibrant dg Lie algebras

(call this L : U(X) → dgLiecK with U(X) denoting the poset category of

admissible opens) that has associated infinity-categorical functor the above L.

We just claim this is the desired Lie-structured cosheaf. To see this, we need

precisely that, after composing L with the forgetful functor to dg vector spaces,

we get a homotopy cosheaf. However, we know from the above that this can be

verified by verifying that the associated infinity-categorical functor valued in

dg vector spaces is itself a cosheaf. Since dgLiecK → dgV ectcK preserves weak

equivalences, because in particular, a weak equivalence of dg Lie algebras

is precisely one that is so at the level of underlying dg vector spaces, the

associated infinity-functor for U(X)→ dgLiecK → dgV ectcK (the first arrow is

given by L) is equivalent to N(U(X)) → N(dgLiecK) → N(dgLiecK)[W−1] →

N(dgV ectK)[W−1]. But this is the∞-functor gotten by composing L with the

forgetful functor to dg vector spaces, and is a cosheaf by assumption.

A.0.2 Functor Tensor Products and Bar Constructions

In this subsection, we review the theory of bar constructions and de-

rived tensor products of functors to the extent needed for our discussion of

the nonarchimedean factorization formulas, which utilize the theory of dg-

categories, bimodules over them, and tensor products of these bimodules. The

main references for this are Shulman’s work on bar constructions/colimits in

enriched homotopy theory (see bibliography) and Emily Riehl’s book on cate-

gorical homotopy theory (and some shorter articles on homotopy colimits and
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weighted colimits).

The basic idea is (denoting by V the category of dg vector spaces) that

we consider tensor products of bimodules A⊗Bop → V with ones B⊗Cop → V

over the dg-category B, and think of these in terms of bar constructions. This

subsection collects a little background relevant to such discussion.

Recall that the bar constructions in such situations are defined using

geometric realizations of simplicial bar constructions. Recall that, for a V-

enriched category U, tensored and cotensored over V, we can make sense of

geometric realizations of simplicial objects in U if V is equipped with a a

functor ∆. : ∆→ V used to define geometric realizations of simplicial objects

X : ∆→ V of V. We recall this definition:

Definition A.0.2. Let U be V-enriched and tensored over V, and suppose

∆. : ∆ → V is as above. Let X : ∆ → U be a simplicial object. Then, define

the geometric realization by |X| := X ⊗∆ ∆..

Remark A.0.1. Recall that the tensor structure on a V-enriched functor cate-

gory [J,V], where V is enriched over itself, is given pointwise.

This justifies the notion of geometric realization used earlier in discus-

sion of nonarchimedean factorization rules. We note that there are techni-

calities in the construction of derived enriched functor tensor products. We

refer the reader to Shulman’s detailed article for details, and will present a

high-level, vaguer summary of this aspect of his work.
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Definition A.0.3. Let us define a small V-enriched category D to be good

if the bar construction preserves weak equivalences in both factors between

objectwise cofibrant diagrams, and if it preserves appropriate cofibrance con-

ditions.

For us, at least, goodness is just a way of knowing that bar constructions

correctly compute the derived tensor product of left and right modules over

some dg-category. A main result on goodness to keep in mind is that, if the

Homs of D are cofibrant, and the maps 1V → HomD(d1, d2) are all cofibrations,

then D is good.

94



Appendix B

Appendix on Rigid Geometry

B.0.1 Fundamentals

Here, we review the basic definitions of rigid analytic geometry. A rela-

tively detailed survey is Brian Conrad’s Several Approaches to Nonarchimedean

Geometry. A standard textbook presentation of the foundations is in Fresnel

and van der Put’s Rigid Geometry and its Applications. Last, there is the

encyclopedic preprint called Foundations of Rigid Geometry by Fujiwara and

Kato, which takes the Raynaud formal models approach to nonarchimedean

geometry as fundamental.

Here, we mainly review the classical theory of rigid geometry, since it

really is all we need. We begin by noting the basic building blocks of rigid

geometry called affinoids.

Definition B.0.1. Let n be a natural number satisfying n ≥ 1. The n-variable

Tate algebra over K is given by

Tn = {
∑
ajX

j : |aj| → 0} ,

where aj ∈ K.

We then define affinoid algebras as quotients of these Tate algebras.

These are topologized in a natural way, induced from a norm on the Tate
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algebras (we will not recall these details here), and maps of affinoid algebras

are maps continuous with respect to the topologies.

Definition B.0.2. A K-affinoid algebra A is a K-algebra admitting an iso-

morphism Tn/I ∼= A for some ideal I ⊂ Tn. The set MaxSpec(A) of maximal

ideals of A is denoted by M(A).

We now build up the basic ingredients of a Grothendieck topology (a

simple sort called a G-topology) associated to M(A).

Definition B.0.3. Let A be an affinoid algebra over K. A subset U ⊂M(A)

is said to be an affinoid subdomain if there exists a map i : A → A′ of K-

affinoids, so that M(i) : M(A′) → M(A) lands in U , and is universal for this

condition in the following sense: a map φ : A→ B factors through A′ precisely

if M(φ) carries M(B) into U , in which case the factorization is unique.

We now define the Tate G-topology on M(A).

Definition B.0.4. A subset U ⊂ M(A) is admissible open if there exists

a covering by {Ui} where each Ui is an affinoid subdomain, so that for any

affinoid B, with φ : A→ B a map, the pullback of the Ui under M(φ) admits

a refinement by a covering via finitely many affinoid subdomains.

We say that a covering {Ui} of its union U is itself an admissible cov-

ering, if for φ : A → B as above, the pullback of the cover under M(φ) has

the property given above. This forces U to be admissible open.
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Remark B.0.1. A covering of an admissible open is an admissible covering if

and only if it has an admissible refinement.

Definition B.0.5. The Tate G-topology has as objects the admissible opens

and coverings the admissible coverings.

Remark B.0.2. A result called the Tate acyclicity theorem allows us to con-

struct a structure sheaf OA with respect to the G-topology on M(A).

Definition B.0.6. We define an affinoid space to be the locally ringed G-

topologized space (M(A),OA). This is denoted Sp(A).

We can now globalize.

Definition B.0.7. A rigid analytic space overK is a locally ringed G-topologized

space (X,OX), along with an admissible (with respect to the G-topology)

covering {Ui} of X and isomorphisms (Ui,OXUi
) ∼= Sp(Ai) where each Ai is

affinoid over K.

B.0.2 Wide Opens

For the purposes of this section, we say that K as in the introduction

satisfies Hypothesis B if RK contains a bald subring with the same residue field.

This hypothesis is stated for completeness, but the interested reader should

examine, for example, Bosch’s Lectures on Formal Geometry for a precise

definition of baldness. For our purposes, we note (as Coleman-McMurdy do)

that K satisfies Hypothesis B if, for instance, it is discretely valued with perfect

residue field. These cases suffice for our purposes.
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Definition B.0.8. Let K be a complete discretely valued field with nontrivial

valuation. A wide open rigid curve overK is a smooth rigidK-curve containing

affinoid subdomains X and Y so that W \X is a disjoint union of open annuli,

X is relatively compact in Y , and for every component V of W \X, Y ∩ V is

a semiopen annulus. We call X an underlying affinoid of W .

For X a rigid space over K, and f ∈ OX(X) = A(X), let |f |sup denote

the supremum of |f(x)| over all x ∈ X(C), where C is the completion of an

algebraic closure of K. Denote by FK the residue field of K. We make the

definition A◦(X) := {f ∈ A(X) : |f |sup ≤ 1}.

Definition B.0.9. A basic wide open pair is a pair (W,X) where W is a

connected wide open, and X is an underlying affinoid, so that W \ X is a

disjoint union of wide open annuli of form A(1, s). In addition, we require

that X has reduction with at worst double points as singularities, and that

A◦(X)⊗RK
FK is reduced.

Definition B.0.10. A semistable covering of a rigid curve X consists of a

finite admissible covering {U}U∈U where each U comes from a basic wide open

pair (U,Uu). The intersection of any two distinct U, V must consist of a

disjoint union of connected components of U \Uu, by definition annuli of form

A(1, s). Last, triple intersections are required to be empty.

The following are two important results proved in Coleman and Mc-

Murdy’s work. Here is Stable Reduction of X0(p3), Theorem 2.18:
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Theorem B.0.1. Let W be a wide open over K with underlying affinoid X.

Then W can be completed into a proper, algebraic curve C over K by gluing

open disks onto the connected components of W \X.

Here is Stable Reduction of X0(p3), Theorem 2.36(i), stated slightly

differently for some additional specificity.

Theorem B.0.2. Let C be a smooth, complete curve over a stable field K,

satisfying Hypothesis B. If C has a semistable model RK whose reduction has

at least two components, then C has an associated semistable covering over

K given as follows. Let C be the given semistable model. Let IC be the

set of irreducible components in the reduction of C . For every Γ ∈ IC , let

Γ◦ = Γ \ ∪Γ′∈IC ,Γ′ 6=ΓΓ′. If Γ ∈ IC , put WΓ = Red−1Γ and XΓ = Red−1Γ◦.

Then, {(WΓ, XΓ) : Γ ∈ IC } is a semistable covering.

B.0.3 Analytic Points on Rigid Analytic Varieties

This subsection recalls the basic notions of Peter Schneider’s article

Points on Rigid Analytic Varieties, which builds a version of the underlying

topological space of a Berkovich space using the notion of analytic points of

a rigid analytic variety. The notation K is used as it has always been in the

body of the paper.

Definition B.0.11. A complete extension field F of K is an extension field

of it equipped with an absolute value | − |F that restricts to the one on K, so

that F is complete with respect to it.
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Throughout this section, X = Sp(A) is an affinoid over K.

Definition B.0.12. An analytic point x of X is a continuous K-algebra map

A→ F , where F is a complete extension field of K. Here, F is called the field

of values of K, and x is said to be F -valued.

Remark B.0.3. For any maximal ideal mx of A, A/mx is a finite extension

of K and defines a complete extension field of it in a natural way. The map

A → A/mx defines an analytic point corresponding to one of the ordinary

points of X.

We now define the notion of a neighborhood of an analytic point, which

is central to defining the topology on M(X), Schneider’s version of the under-

lying topological space of the Berkovich space associated to X.

Definition B.0.13. Let Sp(B) ⊂ X be an affinoid subdomain. It is said to

be an affinoid neighborhood of analytic point x : A → F of X if there is a

continuous K-algebra map B → F so that there is a factorization A → F =

A→ B → F . An admissible open U ⊂ X is said to be a neighborhood of x if

it contains an affinoid subdomain which is a neighborhood of x.

Remark B.0.4. The map B → F above is unique, and will be denoted x by

abuse of notation.

Definition B.0.14. Let U ⊂ X be a neighborhood of x. We call x inner in

U and say that U is a wide neighborhood of x if U contains an affinoid Sp(B)

so that there is an affinoid generating system f1, ..., fn of B over A so that

|x(fi)|F < 1 for each i = 1, ..., n.
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Definition B.0.15. Let V ⊂ U ⊂ X be admissible opens. We call V inner in

U , or U a wide neighborhood of V if any analytic point of X of which V is a

neighborhood is inner in U .

Definition B.0.16. We say two analytic points x, x′ : A → F are congruent

if |x(−)F | = |x′(−)|F . Define M(X) to consist of the set of all congruence

classes of analytic points of X, and endow it with the coarsest topology so

that all maps M(X) → R given by (x : A → F ) 7→ |x(f)|F for f ∈ A are

continuous.

We can regard subsets of X as subsets of M(X) using a natural map

X →M(X) which induces a homeomorphism if X is endowed with the canon-

ical topology. Further, there are certain distinguished subsets of M(X) at-

tached to admissible opens of X. To make sense of the definition below, note

that two congruent analytic points share the same system of neighborhoods,

so it makes sense to talk of the neighborhood of a point of M(X) without

distinguishing between analytic points and their congruence classes.

Definition B.0.17. Let U ⊂ X be admissible open. Define M(U) to consist

of the set of x ∈M(X) so that U is a neighborhood of x.

We now define the important notion of a wide open of X.

Definition B.0.18. An admissible open U ⊂ X is a wide open of X if it is a

wide neighborhood of any of its analytic points.
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There are lots of nice properties of the assignment M(−) which we will

record below.

(1) Let U ⊂ X be admissible open. Then, it is wide open in X if and

only if M(U) is an open of X.

(2) The assignment M(−) preserves finite unions and intersections of

compact subspaces of X. Further, for any compact subspace K ⊂ X, X \K

is wide open in X, and M(X \K) = M(X) \M(K).

(3) M preserves inclusions of all admissible opens of X. If U ⊂ X is

admissible open, M(U) ∩X = U .

(4) Let {Ωi}i∈I be a covering by wide opens of some wide open Ω. It is

an admissible covering if and only if the M(Ωi) cover M(Ω). Also, intersections

of finitely many wide opens are wide open, and the collection of all M(Ω) with

Ω wide open in X form a basis for the topology on M(X).

(5) Let C ⊂ M(X) be compact. The collection of all M(K) ⊂ M(X)

so K ⊂ X is compact with it being a wide neighborhood of every analytic

point of C is a fundamental system of compact neighborhoods of C. For fixed

compact K, the collection of all M(K ′) so that K ⊂⊂ K ′ are compact wide

neighborhoods of K is a fundamental system of compact neighborhoods of

M(K).

(6) Let C ⊂M(X) be compact. The collection of all M(W ) so that W

is a wide open of X and C ⊂M(W ) is a fundamental system of neighborhoods

of C in M(X).
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B.0.4 Serre Duality in Rigid Geometry

There is a nice Serre Duality theory for rigid geometry of smooth Stein

spaces and smooth, projective curves (basically, smooth rigid geometric objects

without boundary), which we recall here, as it plays a key role in our examples.

As with the other appendices, unless stated otherwise, there is no claim to

originality in this section. The main reference for this section is Serre Duality

for Rigid Analytic Spaces by van der Put, but also Peter Beyer’s On Serre

Duality for Coherent Sheaves on Rigid Analytic Spaces. We are not extensively

detailed in this section, and only give the flavor, and refer the reader seeking

specifics to these two works.

Definition B.0.19. Let X be a separated rigid analytic space, and K ⊂ X

compact. For F an abelian sheaf on X, define H0
K(X,F) = ker(H0(X,F) →

H0(X \K,F)). This has derived functors H i
K , being left-exact.

Proposition B.0.3. The above fit into a long exact sequence of form

0→ H0
K(X,F)→ H0(X,F)→ H0(X\K,F)→ H1

K(X,F)→ H1(X,F)→ H1(X\K,F)

This will be useful in characterizing what certain compactly supported

cohomology groups look like. There is some subtlety in thinking about how to

define compactly supported cohomology, however: as discussed earlier in our

Verdier duality chapter, extension by zero is problematic for our G-topology, so

authors such as van der Put do not define compactly supported cohomology in
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terms of all compact subspaces contained in the given rigid space, but roughly

only consider ones contained in wide opens.

Definition B.0.20. We now make the definition of cohomology with compact

support: let c be the family of compactK ⊂ X. The cohomology with compact

support is given by H i
c(U,F) := colimK∈cH

i
K(X,F).

Remark B.0.5. Notice that compactly supported cohomology coincides with

ordinary cohomology for proper curves and affinoids. There will be no useful

Serre duality theory for affinoids, but there will be for proper curves, and also

for smooth Stein domains.

Remark B.0.6. We did not place restrictions on the compact subspaces consid-

ered, unlike van der Put, because in the end, he only considers special spaces

without boundary like Stein spaces and proper spaces. For the former, any

affinoid is relatively compact in some other affinoid. For the latter, compactly

supported cohomology corresponds to ordinary cohomology.

Remark B.0.7. There is a useful explicit characterization of compactly sup-

ported cohomology of a wide open disk of radius one over K. Every cohomol-

ogy class is represented by a Laurent series Σα<0aαX
α, so that there exists

0 < ε < 1 in |K∗| so that limα|aα|/εα = 0.

Let us now summarize van der Put’s discussion on the topologies on

cohomology groups. First, finitely generated O(Z)-modules for Z affinoid have

a canonical Banach space structure. An arbitrary O(Y )-module is a strict
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limit of Banach spaces given by the finitely generated submodules, hence has

a locally convex structure.

Now, let F be a coherent sheaf on a rigid space of countable type. Its

global sections can be given a Fréchet space structure using the sheaf axiom

for an admissible, countable affinoid covering, by noting that the product of

sections over affinoids has such a structure, plus that the global sections are

a closed subspace of that product. Compactly supported cohomology has a

direct limit locally convex topology induced from the Fréchet space structure

on sections with support.

This summary underway, let us now recollect the definition of Stein

space in rigid geometry.

Definition B.0.21. A Stein space X/K is a separated rigid analytic K-

space such that there is an admissible affinoid covering {Ui} so that there are

topological generators of O(Un)/K call them h1(n), ..., hrn(n) and constants

an ∈
√
|K∗| with 0 < an < 1 so Un−1 = (u ∈ Un|hi(n)(u) ≤ an∀i = 1, ..., r(n))

There is always a closed immersion of a Stein space into some affine

space.

We now formulate Serre duality. Fix the following notation. Let X/K

be a smooth, separated rigid analtic space of dimension n. Put ω for the nth

exterior power of Ω1
X/K . If X is either Stein or proper, there is a residue map

ResX : Hn
c (ω)→ K. This is continuous and K-linear. Let F denote a coherent

sheaf on X. There are two maps induced from considering Yoneda pairings: (i)
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Extn−ic (F, ω)→ HomK(H i(F), K) and (ii) Extn−i(F, ω)→ HomK(H i
c(F), K).

The right-hand sides refer to K-linear maps. The results of Serre duality are

that, for a smooth Stein space, we have the following:

(a) The map (i) induces an isomorphism Extn−ic (F, ω) → HomK −

cont(H i(F), K), where the right side consists of continuous K-linear maps.

(b) The map (ii) induces an isomorphism similarly Extn−i(F, ω) → HomK −

cont(H i
c(F), K).

For X smooth and proper, we get for i = n that Extn−i(F, ω) →

HomK(H i(F), K) is an isomorphism, with the cases of the other i following if

all Extj(H i(F), K) vanish for all i and nonzero j.
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