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Due to aggressive scaling in semiconductor industry, the traditional op-

tical lithography system is facing great challenges printing 32nm and below

circuit layouts. Various promising nanolithography techniques have been de-

veloped as alternative solutions for patterning sub-32nm feature size. This

dissertation studies physical design related optimization problem for these

emerging methodologies, mainly focusing on double patterning and electronic

beam lithography.

Double Patterning Lithography (DPL) decomposes a single layout into

two masks, and patterns the chip in two exposure steps. As a benefit, the pitch

size is doubled, which enhances the resolution. However, the decomposition

process is not a trivial task. Conflict and stitch are its two main manufacturing

challenges.
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First of all, a post-routing layout decomposer has been developed to

perform simultaneous conflict and stitch minimization, making use of the inte-

ger linear programming and efficient graph reduction techniques. Compared to

the previous work which optimizes conflict and stitch separately, the proposed

method produces significantly better result.

Redundant via insertion, another key yield improvement technique,

may increase the complexity in DPL-compliance. It could easily introduce

unmanufacturable conflict, while not carefully planned and inserted. Two algo-

rithms have been developed to take care of this redundant via DPL-compliance

problem in the design side.

If design itself is not DPL-friendly, post-routing decomposition may not

achieve satisfactory solution quality. An efficient framework has been further

proposed to perform wire spreading for better conflict and stitch elimination.

The solution quality has been improved significantly, with small layout per-

turbations.

As another promising solution for sub-22nm, Electronic Beam Lithog-

raphy (EBL) is a maskless technology which shoots desired patterns directly

into a silicon wafer, with charged particle beams. EBL overcomes the diffrac-

tion limit of light in current optical lithography system, however, the low

throughput becomes its key technical hurdle. The last work of this dissertation

formulates and investigates a bin-packing problem for reducing the processing

time of EBL.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Optical Lithography

Optical lithography technology [7–10] has been widely adopted in semi-

conductor industry for printing circuit patterns. Fig. 1.1 illustrates a typical

optical lithography system for VLSI manufacturing. The mask contains the

desired chip layouts, and is projected into the wafers through a couple of high-

precision lens. In single exposure infrastructure, as Rayleigh criterion [11–15]

describes, hp = k1 ∗ λ/NA, the minimum printable half pitch hp depends on

three parameters. k1 is the process difficulty factor, NA is numerical aperture

and λ is the light wavelength.

As technology scales, the lithography technology [16] has been facing

its limit in printing smaller feature sizes in 32nm/22nm. Currently, keeping

pitch scaled becomes extremely difficult, even with all of advanced techniques:

immersion lithography [17, 18], resolution enhancement techniques [19–22], re-

strictive design rules [23], and so on. Conventionally, the feature size is scaled

down with help of smaller wavelength λ. However, the immaturity of EUV [24–

27] makes the 193nm wavelength remaining the main stream lithography in

1



λ
Mask Wafer

Projection System (      )K

Projection Lens (       )NA

Illumination System

Figure 1.1: A typical optical system for circuit manufacturing.

the product line. On the other side, k1 has been pushed into its lower bound,

and the high NA (1.35) is also challenged by the practical processing.

1.1.2 Double Patterning Lithography

Double patterning lithography (DPL)[28–34] emerges as one of the most

promising alternative for 32nm/22nm nodes and it is already used for NAND-

flash production. In DPL, a single layout is decomposed into two masks and

manufactured through two exposure/etching steps. As a benefit, the pitch size

is doubled, which enhances the resolution as illustrated in Fig. 1. Although

DPL requires two masks and increases the design cost, it is widely considered

as a most likely solution for 32nm, 22nm and even 16nm.

2



Mask 2 

Mask 1 

Figure 1.2: One single design is decomposed into two masks and the pitch size
is increased effectively in DPL.

There are two critical issues with DPL: coloring conflict and splitting

stitch.

Coloring Conflict: If the distance between two separate features is

less than minimum coloring spacingmincs, they should be assigned to different

masks (colors). Otherwise, there will be a coloring conflict.

Fig. 1.3 (a) shows a layout with three features, and any two of them are

required to have different colors because of the insufficient spacing. A coloring

conflict will be unavoidable as in Fig. 1.3 (b). Sometimes, such a violation can

be eliminated by appropriately splitting the features like Fig. 1.3 (c). There are

also unresolvable conflicts, as Fig. 1.3 (d) indicates, which requires modifying

the design.

Splitting Stitch: The stitch exists when two touched features are

assigned to different masks. The stitch can be inserted to split some features

3



to resolve the conflict as shown in Fig 1.3 (c). However, stitch insertion can

have negative effects on yield due to overlay error between the two masks as

Fig. 1.4 (a) illustrates. In addition, the line-end will cause pattern degradation.

mincs

(a)

mincs

(b)

mincs

stitch

(c)

conflict

mincs

(d)

Figure 1.3: The concept of conflict.

There are several practical guidelines for splitting. As Fig. 1.4 (b)

shows, in order to control the overlay, there is a minimum overlap length minol

4



requirement for stitch insertion. The segments h1 and h2 on different masks

should be overlapped to certain amount ensuring better manufacturability.

Moreover, we do not want to have any minimum width minwi rule violation

during splitting, as marked by the circle Fig. 1.4 (b).

Overlay

(a)

minol

h2

h1 minwi

(b)

Figure 1.4: The concept of stitch

In this dissertation, this dissertation addresses on different phases of

VLSI physical design for achieving good decomposition resolution, with as less

as possible conflicts and stitches. First of all, a high-quality post-routing layout

decomposition algorithm [35] has been developed for minimizing conflict and

stitch simultaneously. Then, from the design side, a DPL-friendly routing is

proposed framework [36] to take into account redundant via DPL-compliance

problem. The third work is about wire spreading algorithm for conflict and

stitch elimination [37].
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1.1.3 Electronic Beam Lithography

Electronic Beam Lithography [38–43] is a maskless technology which

shoots desired patterns directly into a silicon wafer, with charged particle

beam. The primary advantage is that it is one of the ways to beat the diffrac-

tion limit of light of current well-adopted optical lithography [44]. However,

the key limitation of electron beam lithography is low throughput.

The conventional type of EBL system is Variable Shaped Beam (VSB).

In VSB, the layout is usually decomposed into a set of rectangles, and each one

would be shot into resist by dose of electron sequentially. As Fig. 1.5 (a) shows,

the pattern of “EHE” is divided into eleven rectangles and needs total eleven

shots. The whole processing time of this technique increases with number

of beam shots. This makes its throughput very low for modern complicated

design, which is commonly composed of significant number of small rectangles.

The Character Projection (CP) technology [41–43] has been invented

for improving the throughput of VSB methods. The key idea is to print some

complex shapes in one electronic beam shot, rather than writing multiple

small rectangles. This reduces manufacturing time significantly. In detail,

as the projection system of CP in Fig. 1.5 (b) illustrates, a library of layout

configurations, called Characters, or Templates, are prepared on a stencil

first. During manufacturing, if any character exists in the targeted design,

it will be chosen in the system and projected into the wafer. To print the

example of Fig. 1.5 (a), suppose two characters “E” and “H” are pre designed

for the stencil. By adjusting the shaping aperture, we can print the patterns
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(a) VSB
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Wafer

Stencil

Shaping aperture

Character

(b) CP

Figure 1.5: Electron Beam Lithography.

of “E”, “H”, “E” in sequential manner, as Fig. 1.6 (a)-(c) shows. Totally, it

only takes three shots.

Due to less beam shots for the same layout, CP system is much faster

than VSB. However, the number of characters is limited due to the area con-

straint of the stencil. As in the example of Fig. 1.5 (d), there are only maximum

⌊W/w⌋⌊H/h⌋ characters. For modern design, it is not practical to fully make

use of CP, due to numerous distinct circuit patterns. Those patterns, which

do not match any character, are still required to be written by VSB.

This dissertation works on planning and optimization of electronic

beam lithography stencil for throughput improvement, which aims to mini-

mizes total projection time of both CP and VSB.
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Wafer
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(b) Second shot of CP

Electron Gun

Wafer

Stencil

Shaping aperture

(c) Third shot of CP

Character

W

H
w h

(d) Typical Stencil for CP

Figure 1.6: The details of Character Projection electronic beam lithography

1.2 Overview and Contributions of This Dissertation

This dissertation investigates four related topics in physical design au-

tomation for emerging lithographes. The first three research topics, on double

patterning lithography, come from the point view of post-routing decomposi-

tion, routing, and wire spreading, respectively. The last topic studies a bin

packing problem to improve overall throughput for electronic beam lithogra-

phy. The main contributions of this dissertation are stated as follows:
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Double Patterning Layout Decomposition for Simultaneous

Conflict and Stitch Minimization: In Chapter 2, we propose an algorithm

to minimize the number of conflicts and stitches simultaneously. In DPL, color-

ing conflict and splitting stitch are two major challenges and highly correlated

with each other. While previous layout decomposition approaches perform

coloring and splitting separately, their results could easily get stuck in the

local optima. Our simultaneous optimization enables larger search space and

produces higher quality solutions, based on grid layout model and integer lin-

ear programming. Three techniques, grid mergence, independent component

computation and layout partition, are proposed to reduce runtime of proposed

algorithm.

Double Patterning Friendly Detailed Routing with Redundant

Via Consideration: In Chapter 3, we present the first work of consider-

ing double patterning lithography and redundant via insertion together. The

metal, which is used to cover the via and its redundant via in both layers,

could complicate DPL-compliant and introduce many additional conflicts and

stitches. Two algorithms are proposed to perform DPL and redundant via

co-optimization in post-routing and during-routing stages respectively.

Wire Spreading Enhanced Double Patterning Mask of Decom-

position: Post-routing mask decomposition algorithms may not be enough to

achieve high quality solution for DPL-unfriendly designs, due to complex metal

patterns. In Chapter 4, an efficient framework of WISDOM has been proposed

to perform wire spreading and mask assignment simultaneously for enhanced
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decomposability. A set of Wire Spreading Candidates (WSC) are identified to

eliminate coloring constraints or create additional splitting locations. Based

on these candidates, an Integer Linear Programming (ILP) formulation is pro-

posed to simultaneously minimize the number of conflicts and stitches, while

introducing as less layout perturbation as possible. To improve scalability,

three acceleration techniques are also proposed without loss of solution qual-

ity: odd-cycle union optimization, coloring-independent group computing, and

suboptimal solution pruning.

Electronic Beam Lithography Stencil Planning and Optimiza-

tion: Chapter 5 formulates and discusses a bin packing problem for through-

put improvement of electronic beam lithography. To reduce the processing

time, conventionally, some complex shapes, characters, are usually pre de-

signed in a stencil. However, only limited number of characters can be em-

ployed, due to the area constraint of the stencil. In Chapter 5, a new problem

of electronic beam lithography stencil design with overlapped characters is in-

vestigated. The blanking space of adjacent characters are allowed to be shared,

which enables more characters to be put on the stencil, and helps increasing

overall throughput. Different from previous works, besides selecting appro-

priate characters, their placements on the stencil are also optimized in our

framework. Two algorithms are proposed to handle one and two dimensional

stencil design problem, respectively.
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Chapter 2

Double Patterning Layout Decomposition

2.1 Introduction

Double patterning layout decomposition[1, 2, 45–49] is a process that

assigns two features within the given minimum coloring space to different

masks. As mentioned in Section 1.1.2, conflict and stitch are its two major

challenges.

If the spacing between two features (polygons) is less than certain min-

imum coloring distance, they have to be assigned opposite colors. However, a

layout may contain a pattern which is unable to assign a color. In this case,

a feature may be split into two parts and colored differently to resolve the

conflict, which generates stitches. Stitches will cause yield loss and increase

manufacturing cost due to overlay errors, which is 5 or 6nm under current

32nm double patterning lithography. Some mask misalignment direction [50]

could be actually beneficial for printability. However, on the presence of var-

ious process uncertainties, such as dose, focus and mask errors, the printed

stitch width could be easily smaller than 25nm and result in design failure.

Pushing overlay below 3nm [51] is very challenging. Moreover, the additional

line-ends may cause more pattern degradation and reduce yield in case of defo-
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cus and dose variation. After splitting, a few unresolved or even unresolvable

conflicts may remain and will be corrected by time consuming layout redesign.

Therefore, it is important to produce high quality decomposition solution with

less conflicts and stitches.

Without altering layout in the scope, the general objective of layout

decomposition can be stated as minimizing the unresolved conflicts by in-

troducing as few as possible stitches. There are a few works focusing on

stand-alone layout decomposition. A heuristic approach is proposed in [2] to

cut troublesome patterns after finding the coloring conflicts. The patterns

are pre-fragmented into smaller pieces in [1] to perform coloring. All these

works do not have a systematical way to minimize the number of conflicts and

stitches. Coloring and splitting are considered in separate steps while they

are highly correlated tasks. Pattern matching technique is proposed in [52]

to decompose the layout. However, it might not be able to work on large

scale problem, hence limits the solution quality. Recently, a practical layout

decomposition flow is proposed in [53] to address design needs for double pat-

terning. They first detect the features associated with unresolvable conflict

cycles for layout modification. The remaining design is then decomposed to

minimize the number of stitches based on an ILP formulation. However, in

their work, the number of unresolvable conflict cycles and splitting stitches are

not optimized together, and conflict elimination technique is quite greedy.

In this chapter, we propose an algorithm to decompose layout for min-

imizing conflicts and stitches simultaneously. The proposed approach reduces
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the conflicts by 87.6% with 33% less stitches than a greedy two phase decom-

position flow. When compared to the state of art methodology [53], we are also

able to achieve averagely 87.2% and 10% reduction on conflicts and stitches,

respectively. Although our approach is comparatively slower, we can obtain

coloring solutions for all the test cases within a few minutes. The runtime

shows linear complexity with respect to problem size.

The main contributions of this chapter are as follows:

1. We propose a new grid model to enable bigger solution space than pre-

vious works [1, 2] and perform simultaneous conflict and stitch optimiza-

tion.

2. We develop an ILP algorithm to minimize the number of conflicts and

stitches for a high quality solution.

3. We propose three speed-up techniques (grid merging, independent com-

ponent computing and layout partition) to improve the runtime and

scalability of our algorithm. For layout partition, we identify and solve a

coloring flip optimization problem to minimize the conflicts and stitches

across the boundary of different partitions.

4. We discuss how to extend our proposed grid model to handle various

splitting rules and design patterns in practice.

The rest of the chapter is organized as follows. Section 2.2 provides

the preliminaries and motivates. In Section 2.3, we discuss the problem for-
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mulation with related model and definitions. The basic ILP formulation is

described in Section 2.4 with three speed-up techniques. The extensive dis-

cussion on grid model for practical design issues is presented in Section 2.5.

Section 2.6 presents the experiment results and Section 2.7 concludes this

chapter.

2.2 Motivation

The previous works insert stitches after coloring to resolve conflicts.

Without planning possible splitting during coloring, it is hard to eliminate the

conflict. Considering a layout in Fig. 2.1 (a), we have a coloring solution in

Fig. 2.1 (b). During the splitting, the U feature should be cut into two parts

to remove the conflict but we have to further check whether the splitting will

result in another conflict like Fig. 2.1 (c). In such case, the coloring of the

neighborhood features needs to be reconsidered to avoid unnecessary stitches

like Fig. 2.1 (d) and enable optimal solution in Fig. 2.1 (e) or (f). This is a

simple example, but as we can see, given the complexity of modern design, the

two phase approach will have extreme difficulty handling the exploding consid-

eration and producing high quality solution . This motivates us simultaneous

conflict and stitch minimization during layout decomposition.

2.3 Problem Formulation

In this section, we will first motivate and introduce our grid model in

Section 2.3.1. The basic terms will be defined in the following Section 2.3.2.
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(a)

conflict

(b)

conflict

(c) (d)

(e) (f)

Figure 2.1: The shortcoming of two phase layout decomposition flow in pre-
vious works [1, 2]. An unplanned coloring will need much extra effort during
splitting.

The formal problem definition will be described in the end.
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Figure 2.2: Different stitch candidates can lead to different solution qualities.

2.3.1 Grid Layout Model

Considering splitting during coloring is a challenging problem. First

of all, the stitch configurations are highly correlated and all the potential

locations need to be considered for global optimality. Fig. 2.2 (a) is a case

with two conflicts. As we can see, two possible splitting choices on feature
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Figure 2.3: The difficulty of predicting where the splitting is needed

A lead to two different solutions, Fig. 2.2 (b) and (c). The first one has two

stitches, where the latter one associates with only one. Moreover, we can even

hardly predict where we could have a splitting due to some chain effect. For
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example, the right most feature D is not expected to be cut in Fig. 2.3 (a)

because it is only adjacent to one single feature A. However, given a coloring

assignment as shown in Fig. 2.3 (b), feature A will be split to resolve the

conflict between A and B like Fig. 2.3 (c). As a result, feature D also needs to

be broken into two segments as shown in Fig. 2.3 (d).

In order to overcome these issues, we will map the whole layout into

grids with its size to be half the pitch of the original design. Each grid is either

empty or fully occupied by the pattern, and each occupied grid will be assigned

one color. Therefore, any boundary between grids is a potential splitting

location. This is shown in the Fig. 2.4. Essentially, we provide fine resolution

for splitting options. This model is able to offer sufficient stitch candidates for

all the features across the design in practice and the solution space is much

bigger than previous works [1, 2]. The discretization is reasonable because a

design follows underlying regular pitches in modern layout. Minimum coloring

spacing mincs is taken as two-grid size to double the spacing for each mask in

this chapter and also subject to change according to given mincs.

2.3.2 Terms and Problem Formulation

Before formulating our problem, we will first define the terms in the

grid layout model.

Definition 1. occupied grid OG: The grid filled by the layout.

The OG must be assigned one of the two colors: GRAY and BLACK.
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mincs mincs

Figure 2.4: The proposed grid layout model.

Definition 2. blocking path BP: Given two occupied grids OG1 and OG2, a

blocking path is a path when

1. It is fully composed of OGs and connects OG1 and OG2.

2. OG1 and OG2 are touching its two ending grids respectively but not

belonging to this path.

3. This path is within the bounding box of OG1 and OG2.

The main usage of blocking path is to identify neighboring but locally

isolated layout grids. These grids, even belonging to the same connection, need

to be considered as different features, which could form a coloring conflict.
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As shown in Fig. 2.5 (a), C-D is a blocking path for grid A and B. In

another example Fig. 2.5 (b), C-F is not a BP for A-B, because not all of them

are in the bounding box of A-B as the third rule defines. Some part of it (C-E)

is beyond the box, and hence locally A-B can be considered as isolated.

A

B

C D

(a)

A
B

C D E

F

(b)

Figure 2.5: The concept of blocking path. The solid rectangle marks the
bounding box.

Definition 3. potential conflict grid pair PCGP and potential stitch grid

pair PSGP: Given two occupied grids OG1 and OG2,

1. If the distance between OG1 and OG2 is less than mincs and the two

grids are not touching, they form a potential conflict grid pair.

2. If OG1 and OG2 are touching, they form a potential stitch grid pair.

The distance between a pair of OGs is the minimum distance between

any two points from the OGs. For example in Fig. 2.5 (b), the distance for
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untouched B and C is
√
2 grid size due to two closest corners, which is smaller

than mincs. Therefore, they form a PCGP.

Definition 4. stitch grid pair SGP: If the grids of a PSGP are assigned

different colors, it is a stitch grid pair.

Definition 5. conflict grid pair CGP: If a PCGP is in the identical color,

and there is no blocking path connecting them in the same mask, it is a conflict

grid pair.

The definition of SGP is straightforward as grids A and B shown in

Fig. 2.6 (a). Fig. 2.6 (b) shows the normal CGP cases, where a PCGP is

colored identically and unconnected. B-F and A are within the minimum

coloring spacing. There are even no paths connecting them, not to mention

blocking path. The rule one of Definition 2 is violated. As a result, any of B-F

and A are a CGP.

There are also some special CGP cases that we need to further consider

blocking path in order to avoid false recognition of lithography friendly pattern.

If two non-touching grids are electrically connected through a blocking path,

we should not consider them belonging to different features. The printability

will not be an issue. As shown in Fig. 2.6 (c), grid A and B have a BP C-D

in the same mask between them, so they do not form a CGP. It is indeed a

normal jog, and can be printed well. In contrast, although there is a path

C-F connecting A and B in Fig. 2.6 (d), C-E is out of their bounding box. In

consequence, the path is not a blocking path. This violates the third rule of
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Figure 2.6: Stitch grid pair and conflict grid pair. The dash box in (c) and
(d) is the bounding box of A and B.

Definition 2, so grid A and B form a CGP. In this case, A and B are in fact

locally isolated but neighboring within the bounding box. This configuration

is a typical U shape pattern, and would have weak printability.
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2.3.3 Problem Description

In our work, we use the number of SGPs and CGPs as the cost,

which assigns higher weight to the grids that are associated with more con-

flicts/stitches. Formally, we formulate the layout decomposition optimization

problem as follows:

Problem Formulation : Given a grid layout, color it into two parts

(GRAY and BLACK). The primary objective is to minimize the number of

CGPs and the second objective is to minimize the number of SGPs.

We prefer a solution with less CGPs than one with smaller number of

SGPs but more CGPs, because a layout with non zero CGPs is essentially

not manufacturable and a solution with less CGPs reduces expensive redesign

effort.

2.4 Algorithm

In this section, we will present our ILP based layout decomposition al-

gorithm. The entire flow is shown in Figure 2.7. After mapping the design to

grid model, we will process the grids and formulate the basic ILP formulation.

Since the timing complexity for ILP is very high, we will then propose three

speed-up techniques by either eliminating unnecessary variables or divided the

whole problem into several smaller ones. Finally, the layout decomposition for

the entire design can be obtained by merging the subproblem solutions. For

better solution reunion, we formulate a problem of coloring flipping optimiza-
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Layout Mapping
(Grid  Model)

ILP Formulation
(Grid Merging)

(Independent Component Computation)
(Layout Partition)

ILP Solving

Solution Merging
(Coloring Flip Optimization)

Figure 2.7: The overall layout decomposition flow.

tion through ILP.

2.4.1 Basic ILP Formulation

To better present our method, we first describe the notation in Table

4.1. The simultaneous coloring and splitting optimization can be formulated

as follows:

min(
∑

sij,mn∈SP

sij,mn + α
∑

cpq,uv∈CP

cpq,uv) (2.1)
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Table 2.1: Notation for basic ILP formulation

ogi,j occupied grid which i and j are its coordinates.
xi,j binary variable that denotes the color of ogi,j.

xi,j = 1 if the color is GRAY, otherwise, it is BLACK.
sij,mn binary variable sij,mn = 1 if ogi,j and

ogm,n is a SGP.
cpq,uv binary variable cpq,uv = 1 if ogp,q and ogu,v

is a CGP.
SP the set of PSGPs.
CP the set of PCGPs.
Ppq,uv the set of BPs connecting ogp,q and ogu,v.
pkpq,uv the kth BP connecting ogp,q and ogu,v.

nk
pq,uv the number of grids in pkpq,uv.

gkpq,uv binary variable gpq,uv = 1 if pkpq,uv
is a GRAY BP.

bkpq,uv binary variable bpq,uv = 1 if pkpq,uv
is a BLACK BP.

subject to

xi,j + (1− xm,n) ≤ 1 + sij,mn ∀sij,mn ∈ SP (2.2)

(1− xi,j) + xm,n ≤ 1 + sij,mn ∀sij,mn ∈ SP (2.3)∑
xe,f∈pkpq,uv

xe,f ≤ (nk
pq,uv − 1) + gkpq,uv ∀pkpq,uv ∈ Ppq,uv (2.4)

∑
xe,f∈pkpq,uv

(1− xe,f ) ≤ nk
pq,uv(1− gkpq,uv) ∀pkpq,uv ∈ Ppq,uv (2.5)

∑
xe,f∈pkpq,uv

(1− xe,f ) ≤ (nk
pq,uv − 1) + bkpq,uv ∀pkpq,uv ∈ Ppq,uv (2.6)

∑
xe,f∈pkpq,uv

xe,f ≤ nk
pq,uv(1− bkpq,uv) ∀pkpq,uv ∈ Ppq,uv (2.7)
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xp,q + xu,v ≤ 1 + cpq,uv +
∑
k

gkpq,uv ∀cpq,uv ∈ CP (2.8)

(1− xp,q) + (1− xu,v) ≤ 1 + cpq,uv +
∑
k

bkpq,uv ∀cpq,uv ∈ CP (2.9)

The objective function (3.1) is to minimize the weighted summation of

SGPs and CGPs. Parameter α is used to tune the relative importance between

SGP and CGP and can be set to ensure the priority of CGP elimination. All

the PCGPs and PSGPs are pre-determined by examining the neighboring grids

for each OG.

Constraints (4.6) and (4.7) are used to identify SGP from PSGP. Ac-

cording to the definition of SGP, we need to know whether the PSGP grids

have opposite colors. Whenever xi,j and xm,n have opposite values, the left

hand side of one of the constraints will be two. As a result, sij,mn must be

assigned one to satisfy the constraints, which detects a SGP.

The usage of Constraints (4.2)-(2.9) is to determine whether a PCGP

forms a CGP. Identifying CGP takes more effort. Besides checking the colors

of PCGP, we need to know whether there is a blocking path in the same mask.

All the possible BPs Ppq,uv can be easily enumerated by depth first search on

the occupied grids within the bounding box. We can investigate their coloring

using Constraints (4.2)-(4.5). The corresponding binary variable gkpq,uv/b
k
pq,uv

will be true only if the grids of some blocking path are in the same mask.

Constraints (2.8) and (2.9) evaluate the conditions for CGP. A conflict will

be reported only if PCGP grids are assigned same color and the possible BPs

gkpq,uv/b
k
pq,uv do not exist.

26



Let nog be the number of occupied grids, the basic formulation con-

tains at most O(nog) variables. The constraints are specified for detecting

either PSGPs or PCGPs. Suppose there are nsp PSGPs and ncp PCGPs, the

complexity of nsp is O(nog). ncp is linearly related to nog, but quadratically

proportional to mincs. The complexity of constraints due to PSGPs is O(nsp).

The constraint number for PCGPs is linear proportional to ncp. It is also ex-

ponentially related to mincs, which results from the enumeration of blocking

paths. Although this formulation shows exponential complexity in terms of

mincs, when we fix the value of mincs as the pre-setting for layout decompo-

sition, the number of variables and constraints is quadratic with respect to

nog.

The proposed integer linear formulation can minimize the number of

conflicts and stitches simultaneously. However, because ILP is NP-complete,

it is not affordable to directly apply a basic ILP formulation for large modern

designs.

2.4.2 Speed-Up Techniques

In this section, we will discuss three speed-up techniques. The cluster-

ing methodology is applied in grid merging to reduce the number of variables

and constraints. In contrast, the key idea of the other two techniques is to use

a divide and conquer algorithm to convert the problem into smaller subprob-

lems.
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2.4.2.1 Grid Merging

In the proposed grid model, we aim to provide very fine resolution for

stitch candidates. This may be over skilled under certain situations.

Consider the layout segment L in Fig. 2.8 (a) with unit grids A-B-C-D.

Only the two ending points A and D may have coloring interaction with other

layout objects besides L. B and C can be considered as isolated to some extent.

Because there are no occupied grids outside A-B-C-D which are touching them

or within mincs of their boundary. Therefore, it is not possible for B or C to

form a stitch or conflict with other layout apart from the grids of segment L.

We can make advantage of above property to reduce problem size by

combining this type of connected grids into a big super grid. As graphically

shown in Fig. 2.8 (b), B and C can be treated as a united grid T. This is

equivalent to enforce B and C the same color. It will not deteriorate the

conflict and stitch optimization. For this super grid, it does not have any

chance to form a conflict or stitch with surrounding grids other than its two

adjacent grids A and D.

The elimination of internal splitting candidates is not a problem for

solution quality. For any optimized solution obtained under original grid model

with internal stitches, it can be mapped to one solution in the merged model

with the stitch propagated to its ending grids, such as from Figure. 2.8 (c) to

Figure. 2.8 (d).

28



A
B
C
D

L

(a)

A

T

D

(b)

A

C
D

B

(c)

A

C
D

B

(d)

Figure 2.8: The main idea of grid merging.

2.4.2.2 Independent Component Computation

We propose independent component computation for reducing the ILP

problem size without losing optimality. In real layout, we observe many iso-

lated occupied grid clusters, i.e. there are no PSGPs or PCGPs formed between
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them. Therefore, we can break down the whole design into several indepen-

dent components as shown in Fig. 2.9, and apply a basic ILP formulation for

each one. The overall solution can be taken as the union of all the components

without affecting the global optimality. The runtime of ILP formulation scales

down dramatically with the reduction of the variables and constraint.

Our independent component finding algorithm is given in Algorithm 1.

The timing complexity of this algorithm is O(V + E), which V is the total

number of the OGs and E is the total number of PSGPs and PCGPs.

(a) (b)

Figure 2.9: An example of breaking big layout into two independent compo-
nents, having no interacted PSGPs/PCGPs and marked by the dash circle
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Algorithm 1 Independent Components Finding

Require: The grid layout
Ensure: The independent components, having no PSGPs/PCGPs between

any pair of components
1: Build a graph G(V,E), V ∈ ϕ,E ∈ ϕ.
2: for each OG ogi,j do
3: Create one graph node vi,j.
4: end for
5: for each PSGP/PCGP (ogi,j, ogm,n) do
6: Create one edge between vi,j and vm,n.
7: end for
8: Perform the depth first search on the graph G to find the independent

components.
9: Map the graph nodes in each component back to OGs ogi,j and return.

(a) (b)

Figure 2.10: An example of layout partition. The dotted line cuts the layout
into two parts while the dash circle marks PCGP and PSGP locations across
the boundary of the two partitions
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2.4.2.3 Layout Partition

Some components may still have prohibitive problem size even after

independent component computation. Our heuristic is to divide a big compo-

nent into several small connected partitions and perform an ILP approach for

each one, indicated in Fig. 2.10. Different from the independent component

computation, there will be some PSGPs/PCGPs between different partitions.

Although we solve each partition by ILP, the united solution does not guar-

antee to be optimal for the whole component in terms of ILP objective since

the partition boundaries are not considered in the optimization.

In order to minimize the loss of global optimality, we need to partition

the circuit with as few as possible cuts while ensuring that each partition can

be efficiently solved by ILP. Balanced min-cut partition method is applied in

our work. We first construct a graph G which is the same as in independent

component computing. For each vertex (OG), we assign a weight as its edge

degree plus one, taking into account the number of both variables and con-

straints it associates with. A threshold Wt is pre-defined for the maximum

node weight summation we allow for each partition. The number of partitions

can be calculated as ⌈W
Wt

⌉, where W is the total vertex weight of G. Suppose

W is 10000 and Wt is 3000, the component will be partitioned into 4 parts.

2.4.3 Solution Merging

After solving the solution for each component/partition, we need to

merge the coloring assignment as a whole. While it is trivial to combine
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Figure 2.11: The “internal” and “external” concepts. The wide solid line is
the boundary of different partitions.

the solutions for smaller independent components, there comes a coloring flip

optimization problem when we try to merge the solutions of all the partitions

for the bigger components with partitioning applied.

In layout partition, the PSGPs and PCGPs for each partition can

be divided into two disjoint subsets. The internal stitch/conflict grid pairs
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PSGP is/PCGP is, and external ones PSGP es/PCGP es. If the associated

grids, which are needed for identifying whether a PSGP/PCGP is a SGP/CGP ,

are all within the same partition, this PSGP/PCGP belongs to PSGP is/PCGP is,

otherwise, it is considered as a PSGP e/PCGP e. Similarly, during the unitiza-

tion, the SGPs and CGPs for each partition can be categorized as SGP is/CGP is

and SGP es/CGP es. SGP is/CGP is are from PSGP is/PCGP is, and SGP es/CGP es

are from PSGP es/PCGP es.

As illustrated in Fig. 2.11 (a), there are two partitions A and B. Suppose

we are considering two PCGP s, (G1, G2) and (G1, G3), (A1, A2) and (C1, C2)

are their additional associated grids respectively for correctly identifying a

CGP , indicated by Fig. 2.11 (b). (G1, G2) is a PCGP i because the grids which

are related to (G1, G2, A1, A2) are all in partition A. In contrast, (G1, G3) is a

PCGP e while (G1, A3) belongs to partition A and (G3, B1) is in partition B.

Similarly, in one possible coloring configuration in Fig. 2.11 (c), (G1, G2) is a

CGP i and (G1, G3) is a CGP e.

During the solution union, it is possible to reduce the number of SGP es/CGP es

by flipping the coloring of some partition. More importantly, such flipping will

not change the status of SGP is/CGP is. In detail, it will not introduce new

SGP is/CGP is, and any existing SGP i/CGP i will not go away as well. Based

on the above definition, the related grids for identifying a SGP i/CGP i are in

a single partition. Their coloring will be either flipped or not simultaneously.

The conclusion of whether the respective PSGP i/PCGP i is a SGP i/CGP i

will not be changed.
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Figure 2.12: Different coloring flips have distinct numbers of SGPs/CGPs
across the boundaries, marked by the dot lines.

The effect of coloring optimization is illustrated in Fig. 2.12, which has

three partitions. The coloring merging in Fig. 2.12(a) produces one SGP and

one CGP across the boundaries. If we flip the coloring of partition C from the

BLACK to GRAY, it becomes a SGP/CGP free assignment in Fig. 2.12(b). To

optimize the flipping scheme, we define coloring flip optimization as follows.

Coloring Flip Optimization: Given a number of partitions and their

coloring solutions for one independent component, choose the best flipping

scheme to minimize total cost of SGP e and CGP e, which cross the bound-

aries among all the partitions.

Because the number of partitions is usually not large, we also use an

ILP formulation to solve this problem. The relevant notation can be found in
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Table 2.2.

Table 2.2: The notation for coloring flipping problem

fi binary variable fi = 1 if partition i flips its coloring.
f 0
i,j binary variable f 0

i,j = 1 if both partitions flip
or do not flip the coloring.

f 1
i,j binary variable f 1

i,j = 1 if only one partition
between i and j flips its coloring.

se0i,j the number of stitches between partition i and j
if both flip or do not flip the coloring.

ce0i,j the number of conflicts between partition i and j
if both flip or do not flip the coloring.

se1i,j the number of stitches between partition i and j
if only one partition flips its coloring.

ce1i,j the number of conflicts between partition i and j
if only one partition flips its coloring.

The formulation is as follows:

min
∑

(f0
i,j(s

e0
i,j + αce0i,j) + f1

i,j(s
e1
i,j + αce1i,j)) ∀i, j (2.10)

subject to
fi + fj ≤ 1 + f0

i,j (2.11)

(1− fi) + (1− fj) ≤ 1 + f0
i,j (2.12)

fi + (1− fj) ≤ 1 + f1
i,j (2.13)

fj + (1− fi) ≤ 1 + f1
i,j (2.14)

f0
i,j + f1

i,j = 1 (2.15)

Our objective function (2.10) is to minimize the number of SGP e and CGP e.

The same α as basic ILP formulation in Section. 2.4.1 is used for balancing

the cost. For each pair of partitions, there are two cases: (1) only one of them
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is flipped; (2) flipping both or none of them. We can easily pre compute the

cost for each case, stored as (se0i,j + αce0i,j) or (s
e1
i,j + αce1i,j).

Constraints (2.11) and (2.12) specify the case if both or neither of the

partitions flip their coloring. Constraints (2.13) and (2.14) specify the case

if only one of two partitions flip the coloring. Only one case can happen and

this is formulated as Constraint (2.15).

It should be noted that, in our implementation, we do not explicitly

impose Constraint (2.15). Instead, we substitute f 1
ij by (1 − f 0

ij) in (2.10)-

(2.14) based on (2.15). This helps further reduce the number of variables and

constraints.

2.5 Grid model for practical design issues

In this section, we will present how our proposed grid model can handle

various splitting rules and design patterns in Section 2.5.1 and Section 2.5.2

respectively.

2.5.1 Practical Splitting Rules

Various manufacturability issues could impose many practical constraints

on the locations of the stitches. Our grid model can be extended to satisfy

these requirements. In the following, we will mainly focus on two major DPL-

related guidelines, minimum width and minimum overlapping requirements.
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Figure 2.13: The grid model can handle minimum width requirement.
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2.5.1.1 minimum width violation

The minwi violation can be resulted from careless splittings as Fig. 2.13

shows. It could be located in the ending parts of polygons like Fig. 2.13 (a)

and (d), or created by two close stitches as Fig. 2.13 (b) and (e) show.

In most process technology, minwi is smaller than or equal to the half

pitch, 0.5mincs, which is illustrated in Fig. 2.13 (a) and (b). Our grid model

can successfully avoid these extra constraints implicitly. By only allowing split-

ting on the boundary of the grids as shown in Fig. 2.13 (c), the resulting small

layout segments from splitting will be bounded from lower side by one grid

size, i.e. 0.5mincs. The minimum width rule will be automatically satisfied,

and there will be no pitfalls when we work on grids.

For the technology which has larger than one grid width minwi, ad-

ditional constraints can be augmented into our ILP formulation to ensure

minimum width rule. We assume minwi is still less than two-grid width here

just for illustration purpose, and similar ideas can be applied for even larger

minwi requirement. For the example in Fig. 2.13 (d), we can enforce the color-

ing of grid A and B identical to avoid minimum width violation. We are also

able to specify constraints to eliminate the situation resulting from adjacent

stitches as Fig. 2.13 (e) indicates. A pair of stitches, S1 and S2, within one

grid distance will be forbidden to exist simultaneously.
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Figure 2.14: The grid model can handle minimum overlap requirement.

2.5.1.2 minimum overlapping margin

The possible minol violation comes from the extra extension over the

splitting locations, which may result in additional coloring conflict, such as the

case from Fig 2.14 (a) to Fig 2.14 (b). A and B initially do not form a PCGP

based on the definition in Section 2.3.2, although they are in the same color.

On the existence of some possible splitting, the extended metal could bring

them into a distance smaller than mincs, which causes a coloring conflict.

This issue does exist in the process with 5-6nm overlay error. To en-

counter this problem, when we are extracting PCGPs, the extra extension

needs to be included for calculating distance between two grids. As the exam-

ple in Fig 2.14, when A and C or B and D have different colors, the overlay

error should be considered.
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On the other side, benefiting from possible further improvement on

optical engineering, the overlap margin may not be a problem for our grid

model in most cases. Remind that we are performing optimization based on

the grids. For any pair of grids which do not form a PCGP, at least one of x

and y dimensional distance will be two grid size, mincs. As the research works

show [51], minol will be possibly controlled below 3nm. With such a small

overlap margin, the diagonal distance between A and B will still be larger

than mincs.

2.5.2 Non-grid-mappable Layout

The grid model not only works on regular designs, it can also be ex-

tended to handle non-grid-mappable layout.

2.5.2.1 Off-grid Layout

In deep sub-micro technology, although on-grid patterns are commonly

favorable, there still exist off-track wires on lower layer metals, as illustrated

by Fig. 2.15. (a). Pattern A is not aligned with the grid lines. Under such

case, we are not able to apply our grid-based formulation directly.

To resolve this issue, if a point has any layout object, we will assign

a binary grid variable for it. This is denoted as “relaxed grid mapping”. As

the example Fig. 2.15. (b) shows, grids A1 and A2 will both be considered

occupied. Moreover, to exclude false detection, additional consideration will

be required when we formulate our mathematical programming,
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First of all, we need to pay extra effort to check whether a pair of grids

are within mincs or connected, which is one crucial factor for determining

PCGP or PSGP. Instead of using the grid number based measurement as in

Section. 2.3.2, we have to work on the distance or connection information of

the underlying physical layouts.

A

(a)

A1

A2

B1

(b)

A1

A2

B1

B2

> mincs

(c)

A1

A2

B1

C1

C2

(d)

Figure 2.15: The grid model can handle off-grid layout.

Fig. 2.15. (b) and (c) show the need for checking mincs condition for

42



PCGP by distance, not the number of grids. In Fig. 2.15. (b), the distance

between grids A2 and B1 is one grid unit, smaller than two-grid unit threshold.

This is consistent with the fact that the distance between related patterns is

smaller thanmincs. They indeed form a PCGP. On the other side, in Fig. 2.15.

(c), although grids A2 and B1 are away from each other by one grid, the

distance of underlying design objects is no less than mincs. They are not a

PCGP. If determining the distance only by grid based unit, we will draw false

conclusion. Similarly, it is the right way to determine whether two grids are

linked by checking the layouts instead of grid occupancy status. Fig. 2.15. (d)

shows an example where A1 and B1 are actually not connected. Grid based

judgment will falsely consider they are linked together because A1, B1, C1

and C2 are all occupied grids.

Moreover, we also need to exclude the unfeasible stitch locations result-

ing from “relaxed grid mapping”. For the stitch candidate between A1 and

A2 in Fig. 2.15. (b), since the splitting will cause minimum width violation,

it should be forbidden.

2.5.2.2 Fat Wire

When dealing with fat wires, we can map them into multiple grids.

Although this will increase the complexity of the ILP formulation because

of the dense clustering of occupied grids. However, we can apply previously

proposed grid merging technique to reduce the problem size. Practically, a

great portion of grids inside the wide wire can be merged.
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2.6 Experimental Results

In our benchmarks, eight industrial designs are scaled down to 32nm.

The metal1 for each test case is used for the experiments, which is one of

the most troublesome layers in terms of double patterning lithography. The

detailed information is shown in Table 5.1. The first column “ckt” denotes

the circuit name, “area” is the chip area in terms of um2, “grid array size”

shows the number of rows by the number of columns in our layout grid array.

“#OG”, “#PCGP” and “#PSGP” give the number of OGs, PCGPs and

PSGPs respectively.

We implement our algorithm in C++ and test on Intel Core 3.0GHz

Linux machine with 32G RAM. Moreover, we use glpk [54] as our ILP solver

and hMetis [55] for min cut partition. The threshold Wg for each partition is

1500. We study different α settings in the ILP objective function. As shown

in Fig. 2.16, when we start to increase α with higher penalty on conflict, the

number of CGPs/SGPs drops/climbs obviously. After certain value, it has

little effect, because the ILP formulation has reached its best point to reduce

conflicts. In our work, we set α as 10 for all the benchmarks.

2.6.1 Result Comparison

We implement two different layout decomposition algorithms for com-

parison. To be fair, the same conflict interpretation defined in Section 2.3.2

will be applied in our experiments. In detail, although two features belong to

the same net, as long as they are locally isolated, they could still result in a
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Table 2.3: The test cases.

ckt area grid array size #OG #PCGP #PSGP
C1 89 294x294 6670 21215 5926
C2 160 395x395 15710 48007 14143
C3 207 450x450 20496 63403 18461
C4 292 534x534 33497 105641 30314
C5 422 642x642 53998 172826 49167
C6 540 726x726 68820 214527 62387
C7 747 854x854 101431 323890 92493
C8 1028 1002x1002 142535 447441 129172
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Figure 2.16: The performance of our algorithm with different α values.
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conflict.

We first prepare a greedy two-phase layout decomposition flow for com-

parative study, which adopts construct-and-fix methodology as in the previous

works [1, 2]. We first color all the layout features sequentially. Each feature

will be assigned to a color which can minimize the current number of conflicts.

In the second phase, the violations are detected and corrected by inserting

stitches. This is done by flipping the coloring of conflict segments, which ba-

sically splits certain features. Finally, the decomposition solution is mapped

back to grids for comparison.

As the second comparative method, we also implement a design method-

ology based on the previous ILP-based work [53]. The conflict cycle will be

removed iteratively first, followed by an ILP formulation to minimize the num-

ber of stitches. We are not able to compare with [53] directly because some of

our main objectives are different. In their work, the unresolved conflict cycle

is used for judging the indecomposable patterns, while we apply much finer

metric, conflict pair grid. To resolve the issue, as the last step, we perform an

additional grid based greedy coloring run for the detected unresolved conflict

cycles. The decomposition results will be mapped into grids in the end.

The detailed comparison is shown in Table 2.7. Under “Two phase

approach”, “1CGP” is the number of CGPs after the first step coloring and

“uCGP” is the number of unresolved CGPs after inserting stitches. “CGP”

under “Previous ILP-based work” and “Our algorithm” shows the final un-

resolved CGPs. We also list the results of “Previous ILP-based work” when
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the conflict cycle removal iteration is set as 1 and 5, which are reported in

columns with postfix name “Ite. 1” and “Ite. 5” respectively. For all the

three approaches, “SGP” is the final number of stitch grid pairs and “CPU”

is the runtime by second. “total” is the total number of all the testcases, and

“ratio” is the average of their individual ratios.

Although “Two phase approach” is much faster, our algorithm signif-

icantly outperforms its results in terms of quality. “Two phase approach”

can indeed eliminate the number of CGPs by averagely 52% after inserting

stitches. However, lack of the careful planning, their coloring in the first step

produces very poor starting solution, and there are a big amount of unresolved

conflicts left after possible splitting. In contrast, our simultaneous method can

averagely reduce the number of unresolved conflict grid pairs by about 87.6%

with 33% less stitch grid pairs.

When compared to the previous ILP-based work[53], we can also achieve

averagely 87.2% conflict and 10% stitch reduction. “Previous ILP-based work”

only greedily eliminates the troublesome conflict cycle without global picture

in mind. Although a little better than “Two phase approach”, their approach

generates much degraded results than our algorithm in terms of conflict. On

the other side, because it applies ILP to optimize the stitch number, their

splitting decision is close to our simultaneous optimization result. However,

because “Previous ILP-based work” also considers coloring and splitting sepa-

rately, its stitch number is still 10% more than ours. Also, from the breakdown

of the solutions by different number iterations, we can see that iterative con-
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flict removal can help improve results but still not enough due to the lack of

global view.

In DPL, zero CGPs is desired in final tape out but the high complex-

ity of modern designs makes it almost a must to go though tedious design-

decomposition-redesign iterations. Our simultaneous flow with much higher

quality solution can reduce expensive redesign effort as well as the number of

iterations, which may eventually converge to a clean design much more quickly.

Runtime for layout decomposition is not an issue as long as it is affordable.

2.6.2 Efficiency

The naive implementation of basic ILP formulation has prohibitive

problem size, and it is not able to finish any benchmark in one day. Com-

paratively, our algorithm effectively reduces the runtime. In Table 2.7, the

column “CPU” under “Our algorithm” shows that we can obtain the solution

in a few seconds. For the biggest benchmark, it takes a little more than one

minute. Fig. 2.17 also shows the scalability of our algorithm, and the runtime

grows linearly with the number of occupied grids in the design. Moreover, our

acceleration techniques sacrifice little optimality.

Next, we will show the effectiveness of our grid merging technique. We

achieve the same number of conflict and stitch number for all the testcases with

and without this option while independent component computing and layout

partition are still applied. Fig. 2.18 also illustrates the runtime comparison.

The number on the bar is the exact CPU time in terms of second. As it is
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Figure 2.17: The runtime of our algorithm vs. number of occupied grids.

indicated, we can achieve approximately 19% speed-up. This mainly comes

from the reduction of variables and constants in the mathematical formulation.

Table 2.4 lists the statistics on the independent components. “#InComp”

is the total number of independent components. “#w/o partition” and “%w/o

partition” respectively show the number and ratio of independent components,

which are under partition threshold value Wt. As we can see, most compo-

nents can be directly handled by ILP without performing layout partition and

losing any optimality.
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Table 2.4: Statistics on the independent components

ckt #InComp #w/o partition %w/o partition
C1 181 178 98.3%
C2 362 357 98.6%
C3 688 681 99.0%
C4 838 824 98.3%
C5 1088 1070 98.3%
C6 1442 1420 98.5%
C7 1977 1951 98.7%
C8 3179 3147 99.0%
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Table 2.5: ILP formulation statistics

reduced problem size coloring flipping
ckt #maxv #maxc #maxcl

v #maxcl
c

C1 804 1333 2 4
C2 867 1445 2 4
C3 873 1435 2 4
C4 904 1469 3 12
C5 911 1499 2 4
C6 902 1478 3 8
C7 921 1511 3 12
C8 923 1522 4 20

Table 2.6: Results on coloring flip optimization

Without coloring flip With coloring flip
ckt CGPlp SGPlp CGP e

lp SGP e
lp CGPlp SGPlp CGP e

lp SGP e
lp

C1 28 21 1 5 27 20 0 4
C2 18 22 9 4 12 20 3 2
C3 16 22 2 5 14 19 0 2
C4 37 70 10 11 31 66 4 7
C5 121 172 105 22 36 171 20 21
C6 65 98 13 20 55 90 3 12
C7 79 105 33 23 55 92 17 10
C8 108 142 79 28 88 127 59 13

total 472 652 252 118 318 605 106 71
ratio 1 1 1 1 0.75 0.92 0.30 0.60

Table 2.5 further shows the statistics on our ILP problem size. “#maxv”

and “#maxc” respectively give the maximum number of variables and con-

straints of the basic formulation with three proposed reduction techniques

applied. Moreover, “#maxcl
v ” and “#maxcl

c ” list the maximum number of

variables and constraints respectively of ILP formulation, which is applied in
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the coloring flip optimization.

As we can see from Table 2.5, the maximum ILP size is well controlled

by the layout partition through the tuning threshold parameter Wg. Wg ex-

plicitly sets the upper bound for total number of grids, SGPs and CGPs within

each sub problem. Therefore, the number of variables and constraints can be

implicitly ensured in a reasonable range. Moreover, Table 2.5 indicates the

coloring flip optimization has relatively very small problem size, and hence

can be handled with little effort.

2.6.3 Coloring Flip Optimization

Table 4.3 shows the improvement when coloring flip is applied to merge

solutions. This optimization will only be applied to relative bigger indepen-

dent components, which require proposed layout partition technique to fur-

ther reduce problem size. Therefore, in Table 4.3, we only list the statistics

for these bigger components in the respective benchmarks. The conflict and

stitch number from smaller components without layout partitioning applied

are not included.

In Table 4.3, “CGPlp” and “SGPlp” denote the total number of CGPs

and SGPs for the independent components which adopt layout partition. The

percentage of this type of components is very small, as shown in Table 2.4.

However, their conflict and stitch number have relatively much bigger por-

tion when compared to the respective data under column “Our algorithm” in

Table 2.7.
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“CGP e
lp” and “SGP e

lp” are the number of corresponding external con-

flict and stitch grid pairs. The results show that there are outstanding “CGP e
lp”

and “SGP e
lp” for further optimization. “with coloring flip” can reduce CGP e

lp

and SGP e
lp by 70% and 40%, about 25% and 8% for total CGPs and SGPs.

This experiment demonstrates the necessity of coloring flip optimization and

the effectiveness of our ILP based approach. The CPU time difference between

“Without coloring flip” and “With coloring flip” is very tiny and not listed.

2.7 Summary

In this chapter, we have developed a double patterning aware layout

decomposition flow for simultaneous conflict and stitch minimization. Our

approach is featured by grid layout model and integer linear programming.

We also propose three speed-up techniques: grid mergence, independent com-

ponent computation and layout partition. We can successfully handle the

piratical guidelines for layout splitting.
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Chapter 3

Double Patterning Friendly Routing with

Redundant Via Consideration

3.1 Introduction

Double patterning lithography [29] is considered as a most likely solu-

tion for 32nm/22nm technology. In DPL, the original layout is decomposed

into two masks (colors), e.g., BLACK and GRAY. However, this introduces

the challenges of minimizing conflict and stitch. Most researches [53] [35] fo-

cus on post layout decomposition but it may be not enough for poor designs,

especially due to complex 2D patterns in lower metal layers. DPL-friendliness

is needed from design side. Recently, Cho et al [4] proposed the first DPL-

friendly detailed routing for highly decomposable routing.

Another key yield improvement technique is the redundant via inser-

tion [56, 57]. As VLSI technology scales, the design complexity increases dra-

matically with six or more metal layers. The number of vias, which are used to

connect the routes from adjacent layers, has been increasing at a tremendous

place. A via may have open failure due to various reasons such as random

defects, electromigration, cut misalignment, and/or thermal stress induced

voiding effects. Figure 3.1 shows an electromigration-induced earlier failure
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with void in via. While a completely failed via could leave nets open in circuit

and result in wrong functionality, partial failure can introduce unexpected de-

lay due to the increase of the via resistance. This significantly degrades chip

performance and reduces the manufacturing yield.

Figure 3.1: A SEM cross section of a failed open via [3].

Redundant via [56, 58–63] (double via) has been widely applied in major

foundries [64] to reduce the negative impacts due to via failure. The essen-

tial idea is to enhance a single via manufactuability/reliability by adding an

additional via adjacently as a fault-tolerant backup, while the minimum spac-

ing rules are still obeyed. Redundant vias can typically lead to 10-100x lower

failure rate [57] than single via, and 6% increase in good wafer yield [56].

This insertion of redundant via could introduce complexity in DPL

compliance. The challenge comes from the metal which is used to cover the via

and the redundant via in both layers. It is commonly referred as extra metal.

Besides not violating the minimum spacing minsp rule, minimum coloring
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DPL-friendly 
extension

Extra Metal

Metal2

Metal1

E1

E2

Figure 3.2: This figures illustrates the redundant via and extra metal it in-
troduces. A via or redundant via goes through the corresponding triangles
in metal1 and metal2. The star denotes the feasible redundant via candidate
without violating minsp. E1 and E2 are the extra metals, enclosed by solid
rectangles.

spacing mindp needs to be satisfied as well to avoid conflicts. Fig. 3.2 shows

a motivational example, where the top figures are metal2 and the bottoms

are for metal1. As Fig. 3.2 indicates, E1 and E2 are the extra metals. To

minimize the number of stitches, we prefer assigning them the same color as

the metal the via touches in corresponding layer, which is referred as stitch-free

extension. However, this may cause conflicts due to the coloring assignment of

existing layout. In Fig. 3.3, the stitch-free extension will introduce a conflict

in both metal1 and metal2. To resolve this issue, as Fig. 3.4 illustrates, we

can flip the coloring of the extra metal E2 by introducing an additional stitch.
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However, it is not always possible to remove the conflict, such as the one in

metal1. In such case, we need to modify the layout and move one of the three

features.

mindp

conflict

Metal2

Metal1
conflict

minsp

E2

E1

Figure 3.3: This figures illustrates redundant via DPL-compliance problem.

In this chapter, we consider DPL and redundant via insertion together.

We develop two algorithms, post-routing DPL-aware insertion andDPL-friendly

routing with redundant via consideration, to take into account redundant via

DPL-compliance. Experimental results show that, compared to a DPL-aware

optimization flow without redundant via consideration, we can improve inser-

tion rate by 43% while still achieving zero coloring conflicts. Moreover, we can

reduce the number of vias and stitches by 9% and 17% respectively.

The rest of the chapter is organized as follows. Section 3.2 introduces

58



stitch

Metal1

Metal2

Move

mindp

E2

E1

Figure 3.4: This figures illustrates that it is not easy to fix the redundant via
introduced conflict.

basic definitions and previous works. Section 3.3 and 3.4 will discuss our

two algorithms respectively. Section 3.5 presents the experiment results and

Section 3.6 concludes this chapter.

3.2 Preliminaries and Previous Work

3.2.1 Preliminaries

Our algorithm works on routing grids. The minsp and mindp for metals

and via cuts are taken as one-grid and two-grid size respectively, but they

can be easily extended to other values. Only metal1 and metal2 are in our

discussion, because the detailed routing and DPL are mainly for low metal

layers.
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A A1

C

B2
B

B1

B3

A A1

C

B2
B

B1

B3

Metal2

Metal1

Figure 3.5: This figure illustrates the basic concepts of feasible redundant via
candidate, dead and alive via. The triangle denotes via or inserted redundant
via and the star denotes the feasible redundant via candidate.

We explain some key concepts with help of Fig 3.5-3.7. If a redundant

via candidate for a via does not violate minsp in the existing layout, we refer it

as feasible. If a via does not have any feasible candidate, it is dead, otherwise
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A

C

B

A1

B2

B1

B3

A

C

B

A1

B2

B1

B3

Metal2

Metal1

Figure 3.6: This figure shows a layout coloring, which has troubling to insert
DPL-friendly redundant vias.

alive. If two feasible candidates of different vias can not be inserted at the same

time due to minsp constraints, there is an external conflict between them. As

Fig. 3.5 shows, there are three vias A, B, and C. Via C is a dead via. A and B

are alive, and their feasible candidates are A1 and B1-B3 respectively. There
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is an external conflict between A1 and B1. Instead, we can select A1 and

B2 as redundant via solutions without violating minsp. However, under DPL,

when mindp is additionally considered, the feasible candidates may result in

conflicts or extra stitches. We refer to a feasible candidate as DPL-feasible,

if its stitch-free extension configuration will not cause conflicts under the pre

determined layout and coloring. Basically, a DPL-feasible candidate has a

DPL-friendly, conflict and stitch free, redundant via solution. If a via does

not have any DPL-feasible candidate, it is DPL-dead, otherwise DPL-alive.

With the coloring assignment in Fig. 3.6, if the same solutions A1 and B2

are selected, it will produce two coloring conflicts as Fig. 3.7 illustrates when

stitch-free extension is applied. A is a DPL-dead via because its only feasible

candidate A1 is not DPL-feasible.

3.2.2 Previous work on DPL-friendly routing

To improve layout decomposability in metal layers, Cho [4] et al. pro-

posed a DPL-friendly simultaneous routing and decomposition using coloring

path and color shadow techniques. A two bit-variable is introduced for each

grid to keep track of the colorability information, which is one of the four

states {BG, BG, BG, BG}. As a preprocessing, all the routing blockages

will be colored by a layout decomposition algorithm and color shadow will be

performed to generate the starting grid state map for all the routing grids. In

color shadow, the state of surrounding grids within mindp distance from the

colored layout will be assigned. For example, grids near a GRAY grid will
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A

C

B
B2

M2 conflict

A1

A

C

B
B2

M1 conflict
A1

Metal2

Metal1

Figure 3.7: This figures illustrates the basic concepts of DPL-feasible candi-
date, DPL-dead and DPL-alive via.

have either BG or BG states.

When each net is to be routed, other than the traditional costs, they

also apply DPL awareness penalty, based on current routing solution and grid

states. As an example, Fig. 3.8 shows the existing configuration, and DPL-
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BGBG
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BG
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BG

BGBG

BG

BG

BG

Figure 3.8: This example shows the coloring configuration of existing grids,
right before routing a new net. The objects are layering in metal1 by default
if not specially notated. The checked boxes are the blockages due to minsp.
Except BG, the state is shown in the grid.

friendly routing will be performed for net S-T. Assuming the path in Fig. 3.9 is

picked due to possible conflict and stitch free wiring, the grids along the path

will be colored through coloring path according to its grid states. In coloring

path, a grid with BG and BG will be deterministically colored as BLACK and

GRAY, and there will be a grid of conflict if the state is BG. For a grid in

BG state, which has the freedom to be in either BLACK or GRAY, it will

be assigned to the nearest color along the path to minimize the number of

stitches. After coloring a path, we will apply coloring shadow for it as well.

Fig. 3.10 shows the colored new route with updated state map. These three
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S

Metal2 T

Figure 3.9: This example shows one possible DPL-friendly routing path for
net S-T, which is conflict and stitch free.

steps, DPL-friendly routing, coloring path, and coloring shadow, repeat for all

the nets.

However, the work [4] did not handle redundant via DPL compliance.

As an example, Fig. 3.11 shows the routing result for new net S-T in Fig. 3.10

plus detailed metal2 information. Suppose via C has a single feasible redun-

dant candidate C1, and A1-A2 and B1-B2 are the feasible ones for A and B

respectively. Under the existing coloring assignment, as Fig. 3.12 illustrates,

A2/B2 is not DPL-feasible because of the BG grid locations in metal1. A1 and

C1 will also be in trouble as Fig. 3.12 shows. C1 is not DPL-feasible due to the

coloring of M2 in the new S-T path. On the other side, A1 will have conflict
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Figure 3.10: This example illustrates the step of coloring shadow in [4].

with the existing layout in metal2 if its configuration is stitch-free extension.

In this case, both A and C are DPL-dead. If we simply flip the coloring of

the entire M2 in the S-T routing path to save DPL-feasible candidates A1 and

C1, it will make B DPL-dead in turn. As another solution, M2 might be split

to make all vias DPL-alive but at a cost of an extra stitch. This example

illustrates the fact that, their algorithm has difficulty producing high quality

solution for both redundant via insertion and DPL.
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T
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T

A1

C1

C

A

B1BA2/B2

Metal 2

Metal 1

A1

C

A

BA2/B2

C1

B1

M2

Figure 3.11: This example shows one layout, which the previous work [4] has
difficulty handling redundant via DPL-compliance.

3.3 Post Routing DPL-Aware Redundant Via Insertion

In this section, we will first handle the redundant via DPL-compliance

in post routing insertion stage. The layout and coloring will not be modified
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conflict

M2

Metal 2

Metal 1

A1
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C

A

B1B

Figure 3.12: This figures shows the conflicts introduced by redundant via
insertion, based on the previous work of [4]

to honor the existing optimization result, but the stitch will be applied to

resolve coloring conflicts. We do not allow any coloring conflict resulting from

insertion because it is not manufacturable. The formal problem statement is

as follows.
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Definition 6. post-routing DPL-aware redundant via insertion: Without mod-

ifying the existing layout and coloring assignment, maximize the redundant via

insertion rate while introducing as few as possible stitches and zero coloring

conflicts.

Inspired by the work [56], we formulate an integer linear programming

algorithm to perform insertion and coloring at the same time. To enable

simultaneous optimization, for each feasible redundant via candidate of the

via shown in Fig. 3.13 (a), we first define four types of potential configurations

depending on the coloring of the extra metal. Fig. 3.13 (b)-(e) show the

examples for the feasible candidate on the right side, where (b) is the stitch-

free extension case while the other three all result in stitches by flipping extra

metal colors in one or both layers. We disable the configuration that flips the

coloring of existing routing wires to honor pre determined solution. That is

to say, the configuration similar to Fig. 3.13 (f) will be forbidden because the

coloring of existing metal2 is flipped. In our redundant via solutions, only the

above four potential configurations are included for maintaining the uniformity

of extra metal coloring. Other configurations with some stitches inserted in

the middle of the extra metal can be easily extended.

Our post-routing DPL aware redundant via insertion algorithm is based

on integer linear programming, which is inspired by the work [56]. The nota-

tions are listed in Table 4.1. The formulation is as follows:
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metal2
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Figure 3.13: This example illustrates the potential configurations for redundant
via insertion in DPL.
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Table 3.1: Notation

vi the ith via with at least one feasible redundant via
locations

V the set of all vi
fij the jth feasible redundant via location of vi
F the set of all fij
rij binary variable. rij = 1 if fij is chosen
R the set of all rij

(fij, fmn) fij, fmn are a pair of feasible redundant candidates
for different vias vi and vm (i ̸= m), which can not be

inserted simultaneously due to external conflict
EF the set of all (fij, fmn)
pkij the kth potential configuration of fij
P the set of all pkij
skij number of stitches pkij will introduce

okij binary variable. okij = 1 if pkij is chosen

(pkij, p
l
mn) a pair of pkij, p

l
mn for different vias vi and vm

(i ̸= m) will cause coloring conflicts to each other
ECP the set of all (pkij, p

l
mn)

CP the set of all pkij, which will cause coloring
conflict with existing layout and coloring assignment

Bij the set of best potential configurations for fij
which have minimum number of stitches and do not cause

coloring conflict with existing layout and
coloring assignment

NFP the set of all fij whose pkij is NOT involved in any ECP

maximize : ∑
∀rij∈R

rij − λ
∑

∀pkij∈P

skij · okij (3.1)

where ∑
fijofvi

rij ≤ 1 ∀vi ∈ V (3.2)

rij + rmn ≤ 1 ∀(fij, fmn) ∈ EF (3.3)
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∑
pkijoffij

okij = rij ∀fij ∈ F (3.4)

okij = 0 ∀pkij ∈ CP (3.5)

okij + olmn ≤ 1 ∀(pkij, plmn) ∈ ECP (3.6)

okij = 0 ∀pkij ̸∈ Bij ∪ CP, ∀fij ∈ NFP (3.7)

The objective function (3.1) is to maximize the insertion rate while

minimizing the number of stitches the potentical configuration introduces. λ is

used to tune the relative importance between stitches with respect to insertion

rate.

Constraint (3.2) implies that at most one feasible candidate will be

picked for each via. The external conflict is avoided by applying Constraint (3.3).

Constraint (3.4) guarantees only one potential configuration will be selected

for each inserted redundant via location. Constraint (3.5) and (3.6) are used to

prevent the coloring conflict due to insertion. Constraint (3.5) disables the po-

tential configuration which will cause coloring conflict with the existing layout,

and Constraints (3.6) is used to avoid the situation when a pair of redundant

vias cause coloring conflict between each other. Constraint (3.7) prunes the

sub optimal potential configurations of certain feasible candidates. If a can-

didate can not have conflict with existing layout or other redundant vias, we

will not pick its potential configurations which do not have minimum number

of stitches. We also adopt speed-up techniques similar to the work [56].
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3.4 DPL-friendly Detailed Routing with Redundant Via
Consideration

The post-routing DPL-aware redundant via insertion may not be enough

for DPL-unfriendly designs. If we only do DPL-friendly routing as [4], we

might end up with a lot of DPL-dead vias, which do not have conflict and

stitch free redundant via solutions. Therefore, it is in high demand to con-

sider redundant via and DPL together during routing. Our formal problem

statement is as follows.

Definition 7. DPL-friendly Detailed Routing with Redundant Via Consid-

eration: Given an input netlist, perform simultaneous routing and coloring to

minimize the number of DPL-dead vias while maintaining highly decomposable

wiring path and other design objectives.

In our algorithm, we will first present via color shadow in Section 3.4.1

to remove DPL-dead via during routing. Moreover, for larger optimization

space and better solution quality, we propose an equivalent transformation in

Section 3.4.2. Finally, the entire detailed routing algorithm will be presented

in Section 3.4.3.

3.4.1 Via Color Shadow

Eliminating DPL-dead vias during routing is much more difficult than

dealing with dead ones as in [65]. Besides minsp, the coloring of the layout

has to be taken into account as well. A via could have DPL-feasible redundant
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candidate in one coloring assignment but is DPL-dead in another. Therefore,

we need to have different costs to predict and penalize the DPL-dead vias,

according to various coloring configurations. Meanwhile, similar to removing

dead via, when routing a new net, we should prevent aDPL-alive via of existing

nets from becoming DPL-dead as well as avoiding generating DPL-dead via

in itself. In this subsection, we will propose via color shadow to resolve above

issues and enable during-routing DPL-dead vias elimination.

Algorithm 2 via color shadow

Require: a colored path p
Ensure: DPL-dead via avoidance cost assignment
1: for each DPL-alive via v in p do
2: for each DPL-feasible candidate rvc of v do
3: for each g ∈ Gt, which Gt denotes all the available nearby routing

grids within mindp from rV c do
4: if when g is BLACK, it will have conflict with the stitch-free ex-

tension of rvc then
5: g.V cost(B) += f1
6: end if
7: Similar when g is GRAY
8: end for
9: end for
10: end for
11: for each v ∈ V , which V denotes all the available via locations within

mindp from p do
12: if v will be DPL-dead when the coloring of its up and down grids (v.ch,

v.cl) is (BLACK,BLACK) then
13: v.V cost(B,B) += C2

14: end if
15: Similar when (v.ch, v.cl) has other coloring configurations in Fig. 3.14
16: end for
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v.h

v.l

v.Vcost(B,B)
(b)

v.h
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v.Vcost(G,G)
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Figure 3.14: This example illustrates the four coloring configurations of via v
and its costs v.V cost(v.ch, v.cl). v.h and v.l denote the up and down grids v
links to respectively.

Our algorithm is presented in Algorithm 3. First of all, we should avoid

hurting the DPL-alive vias in the existing layout when routing and coloring

the new nets. We propose a penalty pair (g.V cost(B), g.V cost(G)) for each
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grid g in line 1-10. The value of the pair reflects the cost of coloring the grid as

BLACK and GRAY respectively. The cost will be higher if more DPL-feasible

candidates of the existing vias will be killed due to the grid state. Meanwhile

in line 11-16 , we would like to avoid generating a DPL-dead via when routing

a new net. To determine whether a potential via v is DPL-dead, we need to

know the coloring of the grids it links in both layers. Suppose the higher and

the lower grids which v links are v.h and v.l respectively, and their colors are

v.ch and v.cl, we introduce four costs v.V cost(v.ch, v.cl) for each possible via

v in the routing graph. These are to account for the potential DPL-dead cases,

when ch and cl can be either BLACK(B) or GRAY(G).

Our algorithm is presented in Algorithm 3. First of all, we should avoid

hurting the DPL-alive vias in existing layout when routing and coloring the

new nets. We propose a penalty pair (g.V cost(B), g.V cost(G)) for each grid

g. The value of the pair reflects the cost of coloring the grid as BLACK and

GRAY respectively. The cost will be higher if more DPL-feasible candidates

of existing vias will be killed due to the grid state. In line 1-9, after we find a

path and assign its coloring, we will update g.V cost(B)/g.V cost(G) of related

grids as described. The cost function f1 is defined as C1

n
where n is the number

of DPL-feasible candidates each DPL-alive via has and C1 is a constant. The

reason we do not explicitly modify the state of the grid is that, killing a DPL-

feasible candidate does not necessarily result in a DPL-dead via, there could be

other candidates available. Alternating the grid state results in overwhelming

constraints and decreases the routing flexibility.
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Algorithm 3 via color shadow

Require: a colored path p
Ensure: DPL-dead via avoidance cost assignment
1: for each DPL-alive via v in p do
2: for each DPL-feasible candidate rvc of v do
3: for each g ∈ Gt, which Gt denotes all the available routing grids

within mindp from rvc do
4: if when g is BLACK, it will have conflict with the stitch-free ex-

tension of rvc then
5: g.V cost(B) += f1
6: end if
7: Similar when g is GRAY
8: end for
9: end for
10: end for
11: for each v ∈ V , which V denotes all the available via locations within

mindp from p do
12: if v will be DPL-dead when the coloring (v.ch, v.cl) of its up and down

grids is (BLACK,BLACK) then
13: v.V cost(B,B) += C2

14: end if
15: Similar when (v.ch, v.cl) has other coloring configurations
16: end for

Meanwhile, we would like to avoid generating a DPL-dead via when

routing a new net. To determine whether a potential via v is DPL-dead,

we need to know the coloring for the grids it links in both layers. Suppose

the higher and lower grids which v links to are v.h and v.l respectively as

in Fig 3.14(a), and their colors are v.ch and v.cl. We introduce four costs

v.V cost(v.ch, v.cl) for each possible via v in the routing grid. These are

to account for the potential DPL-dead cases, when ch and cl can be either

BLACK(B) or GRAY(G), as Fig 3.14(b)-(e) indicates. In line 10-14 of Al-
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gorithm 3, we update v.V cost(v.ch, v.cl) of any possible via location within

mindp from this path. If its certain configuration in Fig 3.14 is DPL-dead, the

corresponding cost will be increased by a constant value C2.

The proposed DPL-dead via avoidance costs can be penalized as in

Algorithm 4. The penalty g.V cost(B)/g.V cost(G) will be applied to the grids

with a state except BG in a straightforward way as described in Line 1-3.

BG/BG grid will be punished by g.V cost(B)/g.V cost(G), while BG’s cost

is the summation of g.V cost(B) and g.V cost(G) to completely keep away

the redundant via from coloring conflicts. Similarly, when routing through

one via v, we can penalize v.V cost(v.ch, v.cl) according to the states of its

v.h and v.l grids as shown in Line 4-12. However, it is tricky to deal with

these costs for BG grid because of a chicken and egg problem. BG can be

assigned either BLACK or GRAY. If we do not consider its exact coloring

during routing as in [4], we have no idea which one out of these proposed costs

should be penalized. We can certainly apply some estimated cost for BG grid

but the solution quality will be deteriorated. This motivates us to perform

simultaneous coloring and routing for BG grids.

3.4.2 Equivalent Transformation

In the previous work [4], when a grid is BG, its exact coloring will not

be considered during routing. It will be picked as either BLACK or GRAY

greedily after the path is determined. This narrows the optimization space.

Moreover, as discussed above, we also need detailed coloring information for

78



Algorithm 4 penalize DPL-dead via avoidance cost

Require: the current grid x along with its adjacent grid d in the searching
direction, and routing cost cost

1: if d.state == BG or BG or BG then
2: cost += d.V cost(B) or d.V cost(G)

or (d.V cost(B)+d.V cost(G))
3: end if
4: if x and d are not in the same layer, which forms a via v then
5: identify higher and lower grids v.h and v.l from x and d
6: if (v.h).state == BG/BG and (v.l).state == BG/BG then
7: cost+=v.V cost((v.h).state, (v.l).state)
8: end if
9: if (v.h).state == BG or (v.l).state == BG then
10: cost+=(v.V cost(B,B)+v.V cost(B,G)

+v.V cost(G,B)+v.V cost(B,B))
11: end if
12: end if

BG grid on the fly to better eliminate DPL-dead vias. Therefore, we would

like to have certain look ahead capability to distinguish different situations,

when the BG grid is in BLACK or GRAY.

Our idea is to replace each BG grid with two equivalent grids, as

Fig. 3.15 illustrates, which are brothers to each other. These grids have the

state of BG and BG respectively, and are used to track the different cases

when this original BG is colored as BLACK/GRAY. During routing, we will

apply penalty on the equivalent grids rather than the original BG grid.

The underlying routing graph is changed accordingly as well, as shown

in Fig. 3.15 (b). Both the new grids link to the grids the BG one connects.

Because the two equivalent grids are physically same, in any found path, only
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one of them should be there. To ensure this, first of all, in the updated routing

graph, there should be no routing edge between the equivalent grids.

BG

(a)

BG

BG

(b)

Figure 3.15: This example illustrates equivalent transformation. The solid line
means there is a routing edge available between two grids.

Our idea is to replace each BG grid with two equivalent grids, as

Fig. 3.15 illustrates, which are brothers to each other. These two grids have

the state of BG and BG, and are used to track the different cases when this

original BG is colored as BLACK and GRAY respectively. During routing, we

will apply penalty on the equivalent grids rather than the original BG grid.

The underlying routing graph is changed accordingly as well, as shown

in Fig. 3.15 (b). Both the new grids link to the grids the BG one connects.

Because the two equivalent grids are physically same, in any found path, only
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one of them should be there. To ensure this, first of all, in the updated routing

graph, there should be no routing edge between the equivalent grids.

costu

dcost

UP

DN

cost costd u>

(a)

G

(b)

BG

BG

(c)

Figure 3.16: This example illustrate the illegal loop problem. The bold dash
line cycle is the path going through a set of grids.

However, there will be an illegal loop problem coming from above equiv-

alent transformation. During the path propagation we may still generate a
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route linking the equivalent grids through a set of other grids as Fig. 3.16 (c).

This configuration is illegal because the selection of BG and BG is exclusive

as we just discuss. Unfortunately, this situation does happen in our routing

algorithm. First, as Fig. 3.16 (a) indicates, because the penalty for each rout-

ing edge is positive in our case, for any wiring path, costd associated with

downstream grid DN must be higher than costu of its upstream grid UP . For

normal grid, the self loop Fig. 3.16 (b) can be avoided. The reason is that

suppose this happens, some grid G must be the downstream grid of itself. It is

a contradiction that the cost of G is higher than the cost of itself, according to

above discussion. However, in Fig. 3.16 (c), the illegal loop occurs in proposed

transformation because the equivalent grids account for different coloring cases

and their costs do not have to be the same value. Suppose the current cost

in BG is much higher than BG, without taking care of it, the maze routing

could produce a path with strictly increasing cost from BG to BG.

Our solution for this problem is simple but effective. Whenever we

would like to update a cost of an equivalent grid during routing, we will trace

back to see whether its ancestors contain the brother one. If so, it returns true

and this updating request will not be executed.

3.4.3 Detailed Routing

Based on the two techniques discussed above, we will present our DPL-

friendly detailed routing with redundant via consideration. The algorithm is

shown in Algorithm 5. When we start to route a net, the equivalent transfor-
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Algorithm 5 DPL-Friendly Detailed Routing with Redundant Via Consider-
ation
Require: current state map and unrouted net n with source s and target t
1: perform equivalent transformation for s and t if applicable
2: a priority queue Q = s or its equivalent grids
3: while Q is not empty do
4: x = dequeue from Q
5: if if x == t or its equivalent grids then
6: break
7: end if
8: perform equivalent transformation for adjacent grids for x if applicable
9: for each adjacent grid d of x do
10: cost = (x.cost+1+Acost)//wirelength and A* search cost
11: if (d.state, x.state) == (BG, BG) or (BG, BG) then
12: cost += α // to discourage a stitch on routing
13: end if
14: if d.state == BG then
15: cost += β // to discourage decomposition failures
16: end if
17: if x and d not on the same layer then
18: cost += γ// to discourage the via
19: end if
20: penalize DPL-dead via avoidance cost
21: if d.cost > cost and illegal loop checking returns false then
22: d.cost = cost; d.prev = x
23: end if
24: end for
25: end while
26: coloring path for found route p
27: reverse transformation
28: coloring shadow and via cost shadow

mation is first performed if the state of source/target grid is BG, as in line

1. In line 8, during maze routing, we will also perform equivalent transfor-

mation if any adjacent grid of current grid x has BG state. Therefore, the
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grid can only possibly be either BG, BG and BG in path propagation phase.

The following lines 10-19 are the DPL-aware cost and other objectives as in

previous work [4]. In line 20, we will apply the DPL-dead via avoidance cost

as described in Algorithm 4. In line 21, when we try to update the cost of a

grid, we have to make sure illegal loop problem will not happen, as discussed

in 3.4.2. Line 26 is the coloring path, same as [4] but the coloring of every

grid can be deterministically assigned because no BG grid is here. Line 27 is

used to clear up the transformation and restore the original routing graph. If

neither of the equivalent grids is on the found path, we will simply map back

from Fig. 3.15 (b) to Fig. 3.15 (a). Otherwise, the one the routing passes will

be kept, and the brother grid along with its connecting routing edge will be

released. Coloring shadow and via cost shadow are performed next in Line 28

to update the grid states and DPL-dead via avoidance cost.

3.5 Experimental Result

In our benchmarks, four 65nm ASIC designs are scaled down to the

32nm technology node for experiments. The detailed information for each test

case is shown in Table 5.1. The first column denotes the circuit name. “nets”

shows the number of nets and “area” is the chip area in terms of um2. “grid

size” shows the number of rows by the number of columns in terms of routing

grid.

We implement our algorithm in C++ and test on Intel Core 3.0GHz

Linux machine with 32G RAM. Glpk [54] is applied as the solver for inte-
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Table 3.2: The test cases.
ckt nets area grid size
C1 200 0.37k 600*600
C2 500 1.02k 1000*1000
C3 1000 2.01k 1400*1400
C4 2000 4.10k 2000*2000

ger linear programming. Our post-routing DPL-aware insertion is denoted as

POSTDPL. We study the different λ settings in ILP formulation shown in

Fig 3.17. As λ is decreased, we are able to achieve higher insertion rate by

allowing more stitches. After certain value, it has little effect. In our work,

we set λ as 0.4. On the other side, our DPL-friendly routing with redundant

via consideration is referred as DPRRV. The parameters α, β and γ are set

as the same as the previous work [4]. α and γ are 9 and 6 respectively while

β >>10. For C1 and C2 in via cost shadow, we also conduct similar parameter

study as shown in Fig 3.18. Increasing both parameters can effectively reduce

the number of DPL-dead vias until reaching certain saturating values. We set

both as 100.

For comparative reason, we also implement a DPL-aware optimization

flow without considering redundant via compliance DPR+POST. In DPR,

DPL-friendly routing [4] is first performed. For fair comparison, we also apply

the techniques in [65] to reduce the number of dead vias. The reason is that

in our routing algorithm DPRRV, via cost shadow can eliminate dead vias

as a side effect. The DPL-dead via it primarily removes is a super set of dead
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Figure 3.17: The performance of our algorithm with different λ values.

via. In the following post-routing via insertion POST, we first apply [56] to

maximize the redundant via insertion rate. For each inserted one, we will then

try to select the best potential configuration to eliminate the resulting coloring

conflict with minimum stitches introduced. After this, if there are still coloring

conflicts due to insertion, we will remove the corresponding redundant vias.

Table 3.3-5.3 presents our experiment results. For all the tables, “WL”

is the total wirelength of metal1 and metal2 with the unit um. “CPU” is

the total runtime by second. “via” and “DPDV” are the number of vias

and DPL-dead vias respectively, and “DPDV%” is the ratio of “DPDV’ over

“via”. “ST(v)” is the number of additional stitches caused by post-routing via
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Figure 3.18: The performance of our algorithm with different C1 and C2 values.

insertion. “ST(t)” is the total number of stitches in the final layout, including

both routing wires and redundant vias. “rv” shows the number of inserted

redundant vias without causing any coloring conflict. “rv%” is the insertion

rate, which is the ratio of “rv” over “via”. The “total” row shows the sum

or average for all four test cases. “ratio” row is calculated with respect to

corresponding “total” item in Table 3.3. All of our experiments achieve 100%

routability and zero coloring conflicts.

3.5.1 The importance of redundant via consideration in DPL

Table 3.3 shows the result of DPL-aware optimization flow without

considering redundant via compliance, DPR+POST. DPR only focuses on

obtaining zero coloring conflicts and minimizing the number of stitches for
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routing wires. However, as we find out, it produces many DPL-dead vias, i.e,

there are a large portion of vias, averagely 6.9%, which do not have conflict

and stitch free redundant via solutions. Therefore, if we simply apply POST

to insert redundant vias, our insertion rate is only 69.4% averagely when no

resulting coloring conflict is allowed. These experimental results demonstrate

the strong demand for considering redundant via insertion and DPL together.

Table 3.3: DPR+POST: The DPL flow without considering redundant via

ckt WL CPU via DPDV DPDV% ST(v) ST(t) rv rv%
C1 0.67 12 313 26 8.3 4 41 209 66.8
C2 1.67 64 757 74 9.8 3 86 519 68.6
C3 4.06 184 1004 64 6.3 13 293 696 69.3
C4 8.95 680 2062 123 6.0 21 565 1447 70.2

total 15.35 940 4136 287 6.9 41 985 2871 69.4
ratio 1 1 1 1 1 1 1 1 1

3.5.2 Post-routing DPL-aware redundant via insertion

To find better DPL-friendly redundant via solution, we first replace

POST by our approach POSTDPL in post-routing phase after applying

DPR. This is denoted as DPR+ POSTDPL and the results are shown in

Table 5.2. By performing simultaneous insertion and coloring, POSTDPL

can increase the insertion rate to 94.1% averagely without causing any color-

ing conflict. Compared to DPR+POST, although we introduce a few more

stitches due to insertion, the number is relative small compared to the total
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number of stitches in the final layout. Moreover, the runtime overhead is very

little. On the other side, because we also apply DPR without redundant via

DPL-compliance in this experiment, a significant number of DPL-dead vias are

still there. This implies a noticeable improvement space. It is highly desirable

to eliminate these unfriendly vias from design side.

Table 3.4: DPR+POSTDPL: Result for post-routing DPL-awareness inser-
tion

ckt WL CPU via DPDV DPDV% ST(v) ST(t) rv rv%
C1 0.67 12 313 26 8.3 3 40 288 92.0
C2 1.67 66 757 74 9.8 9 92 691 91.3
C3 4.06 188 1004 64 6.3 19 299 950 94.6
C4 8.95 683 2062 123 6.0 29 573 1962 95.2

total 15.35 949 4136 287 6.9 60 1004 3891 94.1
ratio 1 1.01 1 1 1 1.46 1.02 1.36 1.36

3.5.3 DPL-friendly routing with redundant via consideration

To eliminate those vias which do not have DPL-feasible redundant via

solution during design, we will further replace DPR by DPRRV before ap-

plying POSTDPL. This is referred as DPRRV+POSTDPL. As expected,

our approach achieves averagely 89% less DPL-dead vias. The insertion rate

is improved to 99.3% averagely, with zero conflicts and 73% less stitches intro-

duced. Moreover, we are able to reduce the number of total stitches in final

layout by 17%, including both routing wires and redundant vias. The reason

is that by doing equivalent transformation, the coloring of BG grid is planned

during our detailed routing. It has higher possibility to conduct global opti-
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mization. Because of the same reason, we are also able to reduce the number

of vias by 9%, while DPR has to use more vias to resolve potential coloring

conflicts. As the last mention, all these improvements in our approach are

obtained with little overhead on wirelength and runtime.

Table 3.5: DPRRV+POSTDPL: Result for DPL-friendly Post-Routing and
detailed routing with redundant via consideration

ckt WL CPU via DPDV DPDV% ST(v) ST(t) rv rv%
C1 0.67 17 283 6 2.1 2 34 279 98.6
C2 1.68 90 654 13 2.0 4 61 640 97.9
C3 4.10 277 930 3 0.3 2 240 928 99.8
C4 9.03 750 1915 9 0.5 3 482 1908 99.6

total 15.48 1134 3782 31 0.8 11 817 3755 99.3
ratio 1.008 1.21 0.91 0.11 0.12 0.27 0.83 NA 1.43

3.6 Summary

In this chapter, I propose the first work to consider DPL and redun-

dant via together. To make design manufacturable in DPL, we should not

insert a redundant via if it will cause a coloring conflict. I have developed

two algorithms, post-routing DPL-aware insertion and DPL-friendly routing

with redundant via consideration to taken into account redundant via DPL-

compliance in a construct-by-correction and correct-by-construction manner

respectively. Experimental results show that, compared to a DPL-aware op-

timization without redundant via consideration, redundant via insertion rate

is improved by 43% while still achieving zero coloring conflicts. Moreover, we

can even reduce the number of vias and stitches by 8% and 17% respectively.
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Chapter 4

Wire Spreading Enhanced Double Patterning

4.1 Introduction

In Double Patterning Lithography (DPL), conflict and stitch minimiza-

tion are two main challenges. Many researches focus on post-routing mask

decomposition. A novel flow is proposed in [53] to optimize splitting locations

with ILP. Xu et al. [66] present an efficient graph reduction based algorithm

for stitch minimization, and Yang et al. [67] propose a fast partition-based

approach. In these works, conflicts are eliminated in a greedy way. To en-

able simultaneous conflict and stitch minimization, ILP is adopted in [35, 68]

with different feature pre-slicing techniques. Xu et al. [69] propose a matching

based decomposer that handles the same optimization problem as [35, 68].

There are also several DPL-aware optimization works from design side.

Cho et al. [4] propose a correct-by-construction DPL-friendly routing with

built-in layout decomposer. The idea is extended by [70] with enhancement of

lazy evaluation and with-in net optimization. In [36], the DPL awareness and

redundant via insertion are considered together during routing. Hsu at al. [71]

propose a simultaneous layout migration and decomposition for standard cell

design, which aims to minimize stitch number and layout area together. Be-
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cause the spacing between the features are considered dynamically during col-

oring, their approach suffers from run time overhead, which is not suitable for

large-scale layout modification.

In this chapter, we present WIre Spreading enhanced Decomposition of

Masks in double patterning lithography(WISDOM). The chip area is fixed in

our work. After initial Decomposition Graph (DG) construction, we create a

set of wire spreading candidates. The DG is updated then to model layout de-

composition problem together with these potential WSCs. Our main technical

contributions are as follows:

1. We develop an integer linear programming formulation from DG to si-

multaneously minimize the number of conflicts, stitches and amount of

layout perturbation.

2. We prove that ILP formulae only needs to be conducted on a subgraph

of DG, which is the union of all the odd-cycles. We also develop an

efficient algorithm to calculate such subgraph in a polynomial time.

3. We propose coloring-independent group computing to reduce ILP prob-

lem size without losing optimality. We also develop suboptimal solution

punning technique to simplify each coloring-independent group by pre

computing optimal solutions for underlying substructures.

The rest of the chapter is organized as follows. Section 4.2 provides the

preliminaries and problem formulation. The detailed algorithm is described
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in Section 4.3, and the speed-up techniques are discussed in Section 4.4. Sec-

tion 4.5 presents the experiment results and Section 4.6 concludes this chapter.

4.2 Preliminary and Formulation

4.2.1 Wire Spreading for Decomposability

Our key idea of performing wire spreading for decomposition of masks

is to push layout segments away for more flexible coloring. This helps reducing

the number of conflicts and stitches.

Given a routed design, wire spreading can be used for eliminating unre-

solvable coloring conflicts. Fig. 4.1 (a) shows a three-way conflict cycle between

features A-B-C, where any two of them are within minimum coloring space.

Moreover, no stitches can be inserted while satisfying minimum overlapping

margin requirement. In consequence, there is no way to produce conflict-free

solution by mask decomposition algorithm alone. However, if part of feature

C is spread to break the coloring constraint between A and C as Fig. 4.1 (b),

we can easily resolve this problem. For more restricted situation, as Fig. 4.1

(c) illustrates, it is not possible to completely push C away from feature A or

B beyond mincs, due to surrounding fixed layout objects. In such case, we

could still spread polygon C for creating a legal splitting location, as indicated

by Fig. 4.1 (d).

It is also possible to spread wire to reduce the number of stitches. For

the example in Fig. 4.2 (a), initially, feature C is not splittable, and two stitches

are required on A and D for resolving conflicts. If we spread the route C as
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Figure 4.1: Wire spreading to eliminate conflict. Assume only feature C can
be moved.

Fig. 4.2 (b), only one stitch is needed.

As it can be seen from Section 4.2.1, with help of wire spreading, the
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Figure 4.2: Wire spreading to reduce stitch. Assume only feature C can be
moved.

solution space of DPL decomposition can be extraordinarily high. On the other

hand, as nanometer designs are mostly grid-based, that restricts wire spreading

to its nearby discrete routing grids. Therefore, we will preprocess the initial

decomposition graph and generate a library of Wire Spreading Candidates

(WSC)s to improve decomposability (more detailed description to be presented

in Section 3.2). Mask assignment is performed together with these candidates

as options. As examples, Fig. 4.1 (b)/(d) and Fig. 4.2 (a) are simple WSCs

for Fig. 4.1 (a)/(c) and Fig. 4.2 (f), respectively.

With this library of WSCs, our optimization problem is formally defined

as follows:

Problem Formulation: Given a layout, perform mask decomposition
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with pre-computed WSCs as design modification options. The goal is to min-

imize the number of conflicts and stitches, while introducing as less layout

perturbation as possible.

ILP Formulation
(Odd-Cycle Union Optimization)

Coloring-Independent 
Group Computing

(Suboptimal Solution Pruning)

Decomposition Graph Initialization

Wire Spreading Candidate 
Generation and Modeling 
in Decomposition Graph

Figure 4.3: The overview of WISDOM

4.3 Basic Algorithms for WISDOM

In following two sections, we will present our WISDOM algorithm. The

entire flow is shown in Figure 4.3. First, the input mask will be processed to

construct an initial Decomposition Graph (DG). Next, we will generate a set of

WSCs, which are expected to improve design decomposability. The DG will
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be updated to take into account these potential configurations. To achieve

high quality decomposition result as well as low amount of wire distortion, an

integer linear programming algorithm is proposed to consider layout coloring

and wire spreading candidates simultaneously. Since ILP is NP-Complete

and its complexity grows exponentially with respect to problem size, we then

propose three speed-up techniques to improve the efficiency of the basic ILP

formulation in Section 4.3.3.

4.3.1 Decomposition Graph Initialization

For simplification purpose, we adopt a flow similar to [68] to construct

an initial DG for modeling mask decomposition problem. Other approaches as

in [35, 66] are also flexible to apply. There are two kinds of edges: Conflict Edge

(CE) and Stitch Edge (SE). If and only if two nodes(polygons) are connected

by CE/SE and in same/different masks, it results in a conflict/stitch.

The key steps of our construction method are briefly reviewed with

the help of Fig. 4.4. Fig. 4.4 (a) shows the irregular polygons for original

layout. If two polygons are within mincs, there is a CE between them, marked

by a dash line in Fig. 4.4 (b). The node projection, proposed in [53], is then

performed, where projected segments are highlighted by bold curves of Fig. 4.4

(c). Based on projection result, all the legal splitting locations are computed

next. The corresponding rectangles are split with SE added, which updates

DG as Fig. 4.4 (d).
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conflict edge stitch edge

Figure 4.4: Initial decomposition graph construction

4.3.2 WSC Generation and Modeling

As the next step, we will generate a set of DPL-friendly WSCs, and

model them in initial DG. There are two new types of edges introduced in

the decomposition graph : Conflict Elimination Edge (CEE) and Splitting

Creation Edge (SCE).
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Each desired layout modification corresponds to a WSC, which will be

constructed sequentially and independently based on original design. A search

region is defined to avoid changing design too much. All the moved segments

must be completely within their corresponding search regions, and the connec-

tivity should be maintained. We also allow ripple movement of multiple wires.

No design rules should be violated, and timing critical nets/vias are fixed. If

the distance of two features in the original layout is larger than mincs, this

relationship should also hold after certain WSC is applied. This ensures no

new coloring constraints are introduced in terms of double patterning lithog-

raphy. It should be noted that, other user-defined conditions can be easily

incorporated.

In the following, we present the key steps for WSC generation and

modeling.

4.3.2.1 Spreading to Eliminate Conflict Edges

First, for each CE, we try to find a WSC, moving apart associated

polygons beyond mincs. This relaxes layout coloring constraints, since these

two features can be assigned to the same mask consequently.

If such a WSC is available, we will change the status of the correspond-

ing conflict edge to Conflict Elimination Edge (CEE). For the original layout

in Fig. 4.5 (a), suppose there is a WSC like Fig. 4.5 (b) eliminating its conflict

edge i-k, the DG is transformed to Fig. 4.5 (c).

During decomposition, if two nodes are connected by a conflict elimina-
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tion edge and assigned into same masks, there is a conflict. However, different

from conflict edge, if the corresponding WSC of this CEE is applied, this

conflict can be removed.
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Figure 4.5: Wire spreading candidate modeling and decomposition graph up-
dating.
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4.3.2.2 Spreading to Create Splitting Locations

Then, we also detect these WSCs, which can create new potential stitch

locations on initially unsplittable polygons. This provides larger solution space

for double patterning mask decomposition.

As illustrated by the same example of Fig. 4.5 (a), suppose a new

splitting location can be created on k by modifying layout as Fig. 4.5 (d).

To model this WSC, polygon k is first split into two touching features ki and

kj. An Splitting Creation Edge (SCE) is then added between ki and kj to

indicate that this new potential stitch location results from wire spreading.

The conflict edges between (i, k) and (j, k) are replaced by (i, ki) and (j, kj)

respectively. Other edges connecting to k will be directed to either ki or kj,

such as o-kj in Fig. 4.5 (e).

During coloring, the two nodes linked by splitting creating edge should

be in same color by default. Only if its corresponding WSC is applied, a stitch

can be introduced and they can be assigned into different masks.

4.3.2.3 Non-compatible WSCs

Since we generate each WSC independently, they may not be applied in

the same time. Two WSCs are non-compatible, if resulting in any of following

problems:

1. Design rule violation or new conflict edge is introduced.

2. The same polygon is modified in distinct way.

101



Fig. 4.5 (f) illustrates the second case, with both WSCs in Fig. 4.5 (b)

and (d) modeled. Obviously, these WSCs change polygon k differently, and

hence only one can be picked.

After finding out all the WSCs, we will create a list of non-compatible

WSC pairs based on above definitions.

4.3.3 ILP Formulation

To achieve good trade-off among conflict, stitch and layout perturbation

minimization, in this section, we will formulate an integer linear programming

to perform simultaneous mask decomposition and modification. The set of

pre defined WSCs are the only available design pertubation configurations.

Our ILP is different from [35, 53], because their formulations are not consid-

ering layout modification for decomposability improvement and simultaneous

optimization. To better present, some notations are first listed in Table 4.1.

The co-optimization problem can be formulated as follows:

min(α
∑
eij∈E

cij + ϵ
∑
tij∈T

sij +
∑

eij∈Ecee

mcee
ij pceeij +

∑
eij∈Esce

msce
ij psceij ) (4.1)

subject to

xi + xj <= 1 + cij ∀eij ∈ Ece (4.2)

(1− xi) + (1− xj) <= 1 + cij ∀eij ∈ Ece (4.3)

xi + xj <= 1 + cij +mcee
ij ∀eij ∈ Ecee (4.4)
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Table 4.1: Notation

ri The ith layout polygons
xi binary variable denoting the coloring of ri

xi = 0 if the color is GRAY, otherwise it is BLACK
eij a conflict edge, a conflict elimination edge

or a splitting creation edge between ri and rj
tij ri and rj are touching each other,

connected by a stitch edge or splitting creating edge
Ece the set of conflict edges
Ecee the set of conflict elimination edges
Esce the set of splitting creation edges
E the set of eij
T the set of tij
cij binary variable cij =1 when there is

a conflict between ri and rj
sij binary variable sij =1 when there is

a stitch between ri and rj
mcee

ij binary variable mcee
ij = 1 if and only if WSC

for eij ∈ Ecee is applied
msce

ij binary variable msce
ij = 1 if and only if WSC

for eij ∈ Esce is applied
pceeij layout modification cost, when mcee

ij =1

psceij layout modification cost, when msce
ij =1

yccij,mn (i, j) ̸= (m,n). WSCs for eij ∈ Ecee and
emn ∈ Ecee are not compatible.

Y cc the set of yccij,mn

yssij,mn (i, j) ̸= (m,n). WSCs for eij ∈ Esce and
emn ∈ Esce are not compatible.

Y ss the set of yssij,mn

ycsij,mn (i, j) ̸= (m,n). WSCs for eij ∈ Ecee and
emn ∈ Esce are not compatible.

Y cs the set of ycsij,mn
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(1− xi) + (1− xj) <= 1 + cij +mcee
ij ∀eij ∈ Ecee (4.5)

xi + (1− xj) <= 1 + sij ∀tij ∈ T (4.6)

(1− xi) + xj <= 1 + sij ∀tij ∈ T (4.7)

msce
ij = sij ∀eij ∈ Esce (4.8)

mcee
ij +mcee

mn <= 1 ∀yccij,mn ∈ Y cc (4.9)

msce
ij +msce

mn <= 1 ∀yssij,mn ∈ Y ss (4.10)

mcee
ij +msce

mn <= 1 ∀ycsij,mn ∈ Y cs (4.11)

The objective function (4.1) is to minimize the weighted summation of

conflicts and stitches as well as layout perturbation. The weights of α and ϵ

are user-defined parameters, for assigning relative importance between these

matrices. The layout penalty costs pceeij and psceij are associated with respective

conflict elimination and splitting creation edge.

Constraints (4.2)-(4.3) identify a conflict if two features connected by

a conflict edge are in the same color. Constraints (4.4)-(4.5) are applied for

conflict elimination edge. If mcee
ij is one, the corresponding WSC is applied. As

a result, the two polygons connected by eij are moved beyond mincs, and they

can be in the same mask without introducing conflicts. In such case, variable

cij is always zero forced by the objective function. On the other side, when

mcee
ij is zero, its corresponding WSC is not used. Conflict will be detected based

on the same logistic for the case of conflict edge as Constraints (4.2)-(4.3).
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Constraints (4.6)-(4.7) are used to identify a stitch if two touching

rectangles are colored differently. Constraint (4.8) follows the fact that any

splitting creation edge esceij connects two touching rectangles tij. If and only

if the stitch sij for tij is one, the corresponding wire spreading candidate is

applied. Constraints (4.9)-(4.11) serve for the same purpose. If two WSCs are

not compatible, at most one will be picked.

4.4 WISDOM Speedup Techniques

Since the time complexity of solving ILP is quite high in general, in this

section, we propose three reduction techniques to simplify the decomposition

graph without losing optimality.

Definition 8. odd/even cycle (OC/EC): a cycle, whose total number of con-

flict edges and conflict elimination edges is odd/even.

4.4.1 Odd-Cycle Union Optimization

Naively, ILP formulation would be performed on the entire decompo-

sition graph. In this section, we will show that, it is sufficient to conduct ILP

only on a subgraph of the DG, which is the union of all the odd-cycles. It will

not lose optimality.

The overall flow is shown in Fig. 4.6. Since we are working on a much

smaller graph, the CPU time of ILP solving is well reduced. Moreover, it

only takes polynomial time to perform preprocessing and postprocessing steps,

which details are discussed in Section 4.4.1.1 and 4.4.1.2 respectively. There-
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fore, by taking the flow of Fig. 4.6, the coloring assignment can be effectively

accelerated.

Coloring the union of all the odd-
cycle by ILP

Input Decomposition Graph (DG)

Compute the union of 
all odd-cycles

Construct optimal solution for 
initial DG

Figure 4.6: The flow of odd-cycle union optimization

4.4.1.1 Computing the union of all the odd-cycles

The naive calculation is to enumerate all the odd cycles and then find

their union. This would be expensive since the number of OCs grows expo-

nentially with respect to the size of DG. Our key idea is to make use of the

concept of cycle basis and compute this union in a polynomial time. We do

not have to dig out each individual OC.

Definition 9. cycle basis and base cycle: Given a Decomposition Graph (DG),
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Figure 4.7: The concept of cycle basis

a subset of its cycles are called cycle basis, with each one called base cycle, if

any cycle in DG can be generated by performing XOR operation on the cycles

in this subset.

Definition 10. XOR (⊕) operation on two graphs is denoted as (G1 ⊕ G2),

which is the union of these graphs, minus their common edges. XOR (⊕)

operation on more than two graphs is computed as (((G1 ⊕G2)⊕G3)...⊕Gi).

As Fig. 4.7 (a) illustrates, there are three cycles. A-B-C-A and D-B-C-

D could be a cycle basis, since the third loop A-B-D-C-A can be obtained by

taking ⊕ on their edges.
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Algorithm 6

Require: A decomposition graph, DG
Ensure: the union of all the odd-cycles: ODG
1: OCB = ∅
2: use depth-first search to calculate a cycle basis of DG: CB

//Line 3-11 compute one cycle basis for ODG.
3: move all the odd base cycles in CB into OCB

// now all the base cycles in CB are even cycles.
4: while OCB and CB share some common edges do
5: Make these common edges as COMMON
6: for any even base cycle EC in CB do
7: if EC have contain at least one COMMON edges then
8: move this EC from CB to OCB
9: end if
10: end for
11: end while

// OCB now is one cycle basis of the union of all the odd-cycles.
12: output the union of all the base cycles in OCB as ODG

Our efficient computation for odd-cycle union is given in Algorithm 6,

with timing complexity of O(N3) time. Due to page limit, the detailed proof

and analysis are skipped here.

4.4.1.2 Optimal solution construction for decomposition graph

After solving the union of all the odd-cycles by integer linear program-

ming, one optimal coloring assignment needs to be constructed for original

decomposition graph. Strictly speaking, this constructed solution should have

the same cost as the ILP assignment of DG, weighted by Objective (1). The de-

tailed steps are shown in Procedure 1, whose complexity is linear proportional

to the size of graph. Its validity will be demonstrated when Theorem 4.4.1 is
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Figure 4.8: The procedure of solution construction for original decomposition
graph. The symbol v inside each node denotes the state of visited. Blue, Red,
Green are odd-cycle edges, spanning edges, and non-spanning edges respec-
tively.

proven.

Procedure 1:

Step1: As Fig. 4.8 (a) illustrates, given a DG, assume we have obtained

109



a solution for the union of its odd-cycles C0-C4 by ILP, while other part of DG

remains uncolored. All the edges in this union are marked as Odd-Cycle-

Edges (OCE).

Step2: Compute connected components for this odd-cycle union by

depth first search, where no edge or vertices shared between different clusters.

For example, there are two such components in Fig. 4.8 (a): (C0, C1, C2) and

(C3, C4).

Step3: Randomly pick one connected component, as (C0, C1, C2) in

Fig. 4.8 (a), and mark its nodes as visited sources. Then, start from these

initial sources to traversal DG in a depth-first manner for exploring and

colorings unvisited vertices. Each search phase consists in two steps: Step4

and Step5.

Step4: Given a current already-visited node s, we will explore its neigh-

bors. If one of its edges leads to unvisited vertex t, we will mark edge s-t as

Spanning Edges(SPE). The mask of t will be assigned based on following

coloring propagation rules:

coloring propagation rule: if the type of edge s-t is a conflict edge or

conflict elimination edge, we will assign the opposite color of s to t; otherwise,

s and t will be on the same mask.

This rule ensures neither conflict/stitch nor layout modification will be

introduced when a non-visited node is reached and colored through a SPE. As

shown in Figure. 4.8 (b), the coloring of A can be determined as BLACK by
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propagating the coloring of feature S through a stitch edge.

Step5: We will further check whether t is contained by some unvisited

connected component, computed in Step2. If so, we will further assign the

coloring of this entire component in one time, using its existing ILP solution.

However, there might be a coloring inconsistence problem. As illustrated by

Figure. 4.8 (b), after we propagate the solution of A, the color of E would be

GRAY. However, E also belongs to a unvisited connected component (C3, C4),

and it is assigned BLACK by ILP. Under such case, we can simply flip the

existing ILP solution of this entire component (C3, C4) for maintaining coher-

ence, shown by Figure. 4.8 (c).

Step6: The newly found t and CC will be marked as visited, and Step

4&5 will be recursively called on these nodes.

Above steps can be repeated until all the nodes have been visited, as

Figure. 4.8 (d) shows. All the OCEs and SPEs form a depth first forest.

The edges which are in DG but not belonging to this forest are called Non-

Spanning Edges (NSE). When we explore the neighbors of an visited node s,

these NSEs connect to other already-visited vertices. Edge C-S is an example

of NSE. When we find node S from C, S has already been processed and

colored.

Theorem 4.4.1. The solution generated by Procedure 1 is an optimal solution

to the ILP formulation in (1) for the original decomposition graph .

Proof: Assume both original decomposition graph and its subgraph
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of odd-cycle union are solved optimally by ILP, and their objective costs are

ILPDG and ILPOC respectively. It is not difficult to see that ILPDG should

be no less than ILPOC . Therefore, if the solution, constructed by Procedure

1, has the same cost as ILPOC , weighted by Objective (1), it is actually an

optimal coloring assignment for the original decomposition graph.

As described in Procedure 1, there are three types of edges: OCE,

SPE, and NSE in the decomposition graph. First of all, it is easy to see, for all

the OCEs, we preserve the same cost as their ILP solutions. In other words,

these edges contribute a total penalty of ILPOC . Secondly, for SPEs, since we

follow coloring propagation rules, there will be no extra conflicts, stitches or

wire spreading involved, and the additional cost is zero. Therefore, in order to

prove Theorem 4.4.1, we only need to show that NSEs will not introduce new

penalty.

Without loss of generality, suppose NSE X-Y introduces a conflict on a

conflict edge as in Fig. 4.9 (a), where its two connected nodes are in the same

mask. In following few paragraphs, we will show that this configuration will

never happen.

First of all, as Fig. 4.9 (a) illustrates, there must be a even cycle L

formed by X-Y, and some edges in the depth-first forest of DG. From its

definition in Section 4.4.1.2, this forest should be a connected component of

DG and covers all the vertices, including X and Y. In consequence, there must

be a path X ↔ Y from X to Y in the depth-first forest, fully composed of

OCEs and SPEs. This implies path X ↔ Y and NSE X-Y form a loop L. This
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Figure 4.9: This figure explains no additional cost is introduced by non-
spanning edge.

loop itself must be an even cycle, because it contains NSE X-Y which does not

belong to any odd-cycle by definition.

Moreover, L and any OC can not have more than one common vertices.

As Fig. 4.9 (b) illustrates, suppose L and one odd-cycle Cv
j share multiple

common nodes, then these vertices divide L into several partial circular arcs.

113



Assume LL is the arc which contains edge X-Y and ends with two of common

nodes, W and Z. Then, shown by Fig. 4.9 (c), Cv
j is also divided into two

circular arcs OB and OT by W and Z. In consequence, it is not difficult to see

that both W-LL-Z-OT-W and W-LL-Z-OB-W are loops. The total number of

CEs and CEEs in these two cycles must have opposite parity, since the union

of OT and OB is an OC Cv
j . As a result, one of W-LL-Z-OT-W and W-LL-

Z-OB-W must be an OC. This implies, the edge X-Y belongs to an OC, and

hence is a edge of OCE. This contradicts the fact that X-Y is a NSE.

Therefore, any OC and even cycle L share at most one vertex. In other

words, any edge of L does not belong to any odd-cycle, and hence must be

either a SPE or NSE. In consequence, partial arcs of L, path X ↔ Y in Fig. 4.9

(a), should solely be composed by SPEs, given the truth that this path is part

of depth-first forest. This implies, the mask assignments of all the nodes along

the edges of X ↔ Y follow coloring propagation rules. Combined with the

fact that L is an even cycle, it is not difficult to derive that X and Y must be

in the different masks. As a result, the conflict shown in Fig. 4.9 (a) can not

exist.

Similarly, we can show that NSEs do not introduce any additional stitch

and layout modification. In summary, Theorem 4.4.1 is proven.

4.4.2 Coloring-Independent Groups

After finding the union of all the odd-cycles, we compute graphically-

disjointed connected components as [35, 53, 68] for improving scalability. Fur-
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Figure 4.10: Figures (a) and (b) explain the concept of coloring-independent
groups. Figures (c) and (d) explain how to handle wire spreading candidate.

thermore, we observe that, in terms of mask decomposition problem, each

connected component may still be divided into several coloring-independent

groups. This reduces ILP problem size to a greater extent.

Fig. 4.10 (a) shows a simple motivational example, which is a connected

component. We observe that, node A is the only common vertex between

group one and two, and these two groups can still be solved by ILP individ-
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ually while maintaining optimality. The reason is that, after their respective

optimal solutions are obtained, if the coloring of feature A from both groups

are different, we could simply flip the solutions of one group without effecting

overall solution quality.

In graph theory, such node as A is called cut vertex or articulation

point, whose removal creates disconnected components. Generally, if there

are multiple cut vertices, the initial graph can be decomposed into a chain of

coloring-independent groups linked by these articulation points. As Fig. 4.10

(b) illustrates, four groups 1-2-3-4 are connected sequentially with cut ver-

tices A-C as boundary nodes. Similar to the simple case of Fig. 4.10 (a),

we can solve each group individually without losing optimality. Their solu-

tions can be merged by appropriately flipping the coloring of certain groups.

The detailed algorithm for finding all the cut vertices and related coloring-

independent groups can be done in a polynomial time by depth-first search

according to the work of [72].

4.4.3 Suboptimal Solution Pruning

Given any coloring-independent group, we can further simplify it by

performing solution pruning for underlying substructures, sequential path, de-

fined as follows:

Definition 11. sequential path (SP): an acyclic linked list of nodes is a se-

quential path, if

• Except two ending features, all the nodes must have a degree of two.
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• Any WSC associated with this list and any other WSC outside are com-

patible.

• This list can not be totally included in another list which satisfy first

two conditions.
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Figure 4.11: Suboptimal Solution pruning.

Based on the above definition, in Fig 4.11 (a), Path P is a sequential

path with node A and B as ending features. It is composed of two CEs c1-c2,

one SE s1, one SCE sc1 and two CEEs ce1-ce2. Ending node A can not be

extended to E or F, because in that case, A becomes a internal vertex but

has a degree of three. This violates condition 1. Edge B-C can not be further

included in this SP as well since it is not compatible with splitting creating

edge B1-C1, which is outside of path P. Condition 2 does not hold, then.

117



The nice property of SP is that, besides two ending nodes, each se-

quential path will not have coloring or design modification interaction with

other parts of this graph. In other words, given coloring configurations of two

ending nodes, the best decomposition of a SP can be uniquely determined.

There are only two possible configurations for each SP, depending on

whether head and tail features have same color or not. As Fig 4.11 (b) shows,

since there are four CEs/CEEs, when A and B are assigned into same mask,

no stitches or layout modifications are needed for zero conflict solution. As a

result, the best ILP penalty Cs
ost for path P is zero. On the other hand, if A

and B are assigned into different masks, one of s1, sc1 and ce1-ce2 should be

applied to resolve potential conflict. Assume the cost of s1 is the smallest, we

pick it as a local optima Cd
ost.

Therefore, graphically, we can replace this whole SP by a bioption edge,

which only stores possible optimal costs, Cs
ost and Cd

ost. While formulating ILP

problem, we simply apply following four equations to check whether node A

and B are in same/different masks, where binary variable dij is zero/one.

xA + (1− xB) <= 1 + dij ∀ebij bioption edge (4.12)

(1− xA) + xB <= 1 + dij ∀ebij (4.13)

xA + xB <= 2− dij ∀ebij (4.14)

(1− xA) + (1− xB) <= 2− dij ∀ebij (4.15)
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A expression of Cs
ost(1 − di,j) + Cd

ostdi,j will be added into Objective (4.1)

to take into account corresponding optimal ILP penalty for the represented

sequential path. Comparatively, in original ILP, for sequential path P, we need

to introduce one additional binary variable for each internal vertex. Moreover,

for every edge, at least two constraints out of Constraints(2)-(8) should be

specified. As a result, by conducting suboptimal solution pruning, it reduces

number of variables and constraints.

4.5 Experimental Results

We implement our algorithm in C++ and test on Intel Core 3.0GHz

Linux machine with 32G RAM. OpenAcess2.2 [73] is used for interfacing with

GDSII directly. Moreover, we choose glpk [54] as our solver for integer linear

programming. ISCAS-85&89 benchmarks are scaled down and modified as our

test cases. The metal one layer is used for experimental purpose, because it is

one of the most trouble some layers in terms of double patterning lithography.

The minimum width and spacing become 40nm. The minimum coloring space

for double patterning is set as 65nm, and minimum overlapping margin for

stitch insertion is 10nm.

The penalty pceij and pscij due to wire spreading are set proportional to

the increased wirelength and number of jobs in their respective WSCs. Then

we calculate the weight summation of all the WSCs, and set the parameter ϵ a

bigger value than that weight. This ensures the priority of stitch minimization

over design modification. Similarly, suppose there are at most n possible
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stitches, we set parameter α larger than n times ϵ, which guarantees conflict

elimination weights more than stitch reduction.

4.5.1 Statistics on Decomposition Graph

The detailed statistics of constructed decomposition graphs are shown

in Table 5.1. The first column denotes circuit name. Columns “#ce” and

“#se” under “initial DG” are the total number of conflict edges and stitch

edges in initial decomposition graph. Columns “#cee” and “#sce” under

“updated DG” show the respective number of conflict elimination and split-

ting creation edges, added in WSC generation and modeling step. “#cee”

plus “#sce” equal to the total number of WSCs “#WSC”. “total” is the sum-

mation number of all the test cases, and “ratio” is computed percentage of

corresponding metrics.

From Table 5.1, we have WSCs which can eliminate 8% conflict edge

and create 9% more stitch candidates. Although these percentages seem rel-

atively small, however, since DPL layout decomposition has a ripple effect, it

could remove more than one conflicts or stitches by just applying one WSC.

On the other side, the increased graph size due to “#cee” and “#sce” would

degrade the performance of ILP. As we show later, with proposed graph re-

duction techniques, this side effect is well encountered.
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Table 4.2: Statistics on decomposition graph.

circuit initial DG updated DG
#ce #se #cee #sce #WSC

C432 1063 964 36 14 50
C499 2428 1437 78 88 166
C880 2464 2439 177 196 373
C1355 3101 3768 74 104 178
C1908 5109 5648 262 96 358
C2670 8750 8655 596 420 1016
C3540 10896 10864 850 768 1618
C5315 16049 15654 1112 670 1782
C6288 13389 11014 264 530 794
C7552 22516 23525 1453 1122 2575
S1488 5273 4284 499 428 927
S38417 69270 57204 6302 2908 9210
S35932 86540 58661 8553 7634 16187
S38584 170079 7140 14191 7764 21955
S15850 169147 124969 12422 8920 21342
total 586074 336226 46869 31662 78531
avg 1 1 0.08 0.09 -

4.5.2 Result Comparison

For comparison, we implement a post-routing mask decomposition al-

gorithm [68], which is the extension of [53]. The metric unresolvable conflict

edge they applied is actually consistent with our definition of conflict, which

is described from another point of view. This algorithm is performed directly

on the initial DG, which is obtained in the first step of our flow.

We can not compare the work of [35, 69] directly. In [35], they work

on extremely fine metrics, conflict grid. In [69], their algorithm is designed
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Table 4.3: Result Comparison

[68] WISDOM
circuit cflt stitchWL(e5) CPU cflt stitchWL(e5)CPU
C432 55 11 2.781 0.27 48 14 2.784 0.09
C499 258 11 5.792 0.74 214 11 5.809 0.27
C880 125 105 2.920 0.62 32 83 2.925 0.2
C1355 82 89 86.790 0.66 31 102 86.810 0.32
C1908 99 346 14.440 1.91 55 343 14.462 0.4
C2670 254 749 23.730 3.13 49 655 23.857 1.08
C3540 472 643 30.162 3.38 67 619 30.350 0.73
C5315 413 1234 43.700 3.6 89 949 43.967 1.1
C6288 912 331 35.240 5.78 663 340 35.340 0.76
C7552 708 1544 62.300 4.5 166 1338 62.303 1.6
S1488 274 316 14.300 2.01 60 134 14.372 0.44
S38417 3866 868 184.000 24.88 2518 471 184.552 5.51
S35932 11731 1383 407.400 203.24 7006 875 409.240 14.22
S38584 11254 948 443.000 127.75 6635 1139 444.580 11.67
S15850 11579 3392 431.200 66.15 7198 2103 433.780 12.26

total 42082 11970 1787 448.62 24831 9176 1795 50.6
ratio 1 1 1 1 0.59 0.77 1.004 0.11

planar graph only, while our decomposition graph is not. We are also not

able to compare with another DPL-driven post-routing layout modification

work [71], because our targeted problem is different. In [71], they focus on

technology migration for stand-cell library only, and area minimization is one

of their objectives. We work on full-chip design perturbation, and the chip

size is fixed.

Table 4.3 lists the comparison of decomposition results, where “cflt”

and “stitch” are the number of conflicts and stitches in the colored layout.

The column “WL” shows the wire length in terms of “nm”. CPU is the
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computational time in terms of “second”, including both graph construction

and ILP solving steps.

As we can see, our algorithm significantly outperforms [68] in terms of

quality, which generates a solution with 41% and 23% reduction on conflict

and stitch number respectively. The layout perturbation ratio is only 0.4%.

With respect to runtime, we achieve 9X speed-up. For some benchmark, such

as c432, WISDOM does produce more stitches. The reason is that in our

experimental setting, conflict elimination is set as higher priority job over

splitting reduction. The number of stitches could increase comparatively, to

better remove the conflicts.

Although after WISDOM, there are several conflicts and stitches re-

maining in the design, we observe they are mainly resulting from the pins/vias

in standard cells and highly-congested routing paths. While we search WSCs,

most of these features are set as fixed for avoiding modifying design and timing

too much. Thus, our WISDOM can be used in combination with high-level

DPL-friendly design methodologies [4, 36, 70, 71].

4.5.3 Efficiency

We further study the effectiveness of various acceleration techniques

in Table 4.4. “CPU(base)” shows the runtime of our algorithm without pro-

posed speed-up approaches, in terms of “seconds”. For fair comparison, the

layout partition technique in [68] is applied in this baseline. Then, we add

in each acceleration technique incrementally. In all the columns, “w/o” and
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“w” show the respective data without and with certain method, and “CPU” is

the resulting runtime after it is adopted. We double check simulation results,

and ensure that no solution quality is lost by applying these graph reduction

approaches.

The columns under “odd-cycle union optimization” show the graph

statistics of initial DG and its odd-cycle union. The number of nodes and

edges are reduced by 61% and 40% respectively in average. This reduction

is significant in terms of ILP solving, which has exponential complexity with

respective to problem size. As seen from Table 4.4, we achieve 2.7x speed-up.

The effectiveness of coloring-dependent group computing is investigated

then with results listed under “+c-independent”. “#CC” is the number of

connected components, computed by the layout partition technique in [68].

By using cut vertex, we further divide each component to multiple coloring-

independent groups, which can also be solved by ILP individually. The total

number of such groups is shown in “#CG”, which is averagely 20% more than

“#CC”. With this technique, the ILP problem size becomes smaller, and the

runtime is further reduced by 37%.

Last, we apply the technique of suboptimal solution pruning, where the

results are listed under “+suboptimal solution pruning”. “#var” and “#con”

are the total number of variables and constraints in the ILP formulations.

As we can see, solution pruning technique can reduce their number by 61%

and 53%, respectively. Therefore, the coloring assignment can be effectively

accelerated by another 2.4X.

124



4.6 Summary

In this chapter, we have developed a wire spreading enhanced decom-

position of masks algorithm for double patterning lithography. Our approach

is featured by integer linear programming and efficient graph reduction tech-

niques. The experimental results show 41% and 23% reduction on the number

of conflicts and stitches respectively with 9x speed-up.
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Chapter 5

Electronic Beam Stencil Design with

Overlapped Characters

5.1 Introduction

Electronic Beam Lithography (EBL) is one of promising emerging tech-

nologies in sub-22nm regime. In EBL, the desired circuit patterns are directly

shot into wafer, which overcomes the diffraction limit of light in current optical

lithography system. However, the low throughput becomes its key technical

hurdle. In conventional EBL system, Variable Shaped Beam (VSB), the lay-

out is decomposed into a large number of rectangles, and each rectangle will

be projected by one electronic shot. This would be extremely slow. As an

improved EBL technology, Character Projection (CP) shoots complex shapes,

characters, in one time, by putting them into a pre-designed stencil. How-

ever, only limited number of characters can be employed, due to the area

constraint of the stencil. Those patterns, not contained by any character, are

still required to be written by VSB.

Many methodologies have been proposed to design and select group of

circuit patterns as characters of stencil for minimizing total projection time of

both CP and VSB. In [74], frequently-used standard cells are greedily chosen
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as characters, processed by CP technology. M.Sugihara at el. [75–78] employ

integer linear programming to optimize the throughput, given a set of character

candidates. Recently, EDA vendor D2S Inc [43] proposes improving stencil

design from a new point of view, but with no detailed algorithm presented.

They show that, in practice, when individual character/template is designed,

blanking area is usually reserved around its boundaries. By sharing blanks

between adjacent templates, more characters can be placed on the stencil

than the regular design of Fig. 1.6 (d), better improving the throughput.

The work of [43] implies that, to fully minimize the total projection

time of EBL, besides selecting appropriate characters as [74–78], their relative

locations on the stencil should also be taken into account in the same time

due to possible overlapping.

In the chapter, we will investigate on this new problem of electronic

beam lithography stencil design with overlapped characters. One/two di-

mensional problem is researched separately, depending on whether the avail-

able overlapping space of characters is non-uniform in either/both horizontal

and/or vertical directions. The main contributions of our work are stated as

follows.

1. We co optimize the selection process of characters and their physical

placements on stencil for effective EBL throughput improvement.

2. We propose a four-phase iterative refinement process to conduct one-

dimensional stencil design optimization. A Hamilton-path based ap-
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proach has been developed to solve single-row reordering optimally.

3. We develop a Sequential Pair (SP) based simulated annealing framework

to optimize general two-dimensional stencil design. Two SP-related tech-

niques have been proposed to ensure correct and fast character placement

evaluation, and two specialized perturbation methods have been devel-

oped for robust solution improvement of simulated annealing process.

The rest of the chapter is organized as follows. Section 5.2 provides the

preliminaries and problem formulation. The detailed algorithm is described in

Section 5.3 and 5.4. Section 5.5 presents the experiment results and Section 5.6

concludes this chapter.

5.2 Preliminary and Problem Formulation

5.2.1 Overlapped Character

Various investigation [75–78] have been conducted on the optimization

of character selection for EPL technology, where no intersection is allowed

between templates on the stencil, as shown by Fig. 1.6 (d). Recently, the work

of [43] shows that the design of stencil can be further improved by overlapping

adjacent characters, which allows more templates to be put and increases the

throughput.

As pointed out by [43], when individual character is designed, blanking

space is usually reserved around its enclosed rectangular circuit pattern, shown

by Fig. 5.1 (a). The reason is that, when the electron beam is scatted from the
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Figure 5.1: Overlapped characters for improving the stencil densities.

shaping aperture of Fig. 1.5 (b), it could span larger area on the stencil than

the layout to be printed. In order to avoid projecting any unwanted image, the

white space should be preserved. These blanking areas offer great opportunity

for character sharing.

Suppose the required white space around layout A and B are BlankA

and BlankB respectively, in Fig. 5.1 (a). If the characters are conventionally

aligned by edge as Fig. 5.1 (b), it results in a waste of area. The space between

layout A and B is actually BlankA+BlankB, which is more than required for
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both patterns. By contrast, we would greatly reduce the total area of character

A and B by sharing an amount of min(BlankA,BlankB) space. In this case,

max(BlankA,BlankB) white width is still reserved between layout A and B,

which is sufficient for ensuring correct printing image.

5.2.2 Stencil Design Challenge

A B C

(a) (b)

A B C
Out of
Stencil

(c)

ABC

(d)

Figure 5.2: The main difficulty of stencil design with overlapped characters

The main challenge of stencil design with overlapped characters comes

from the fact that, for each character, the amount of required blanking space

is not uniform, strongly depending on its enclosed layout patterns. In conse-

quence, for different placements of characters, the area reduction from tem-

plate overlapping may vary a lot. Therefore, unlike the traditional design of

Fig. 1.6 (d), the number of maximum allowable characters in the stencil is

not fixed. To achieve high quality solution, the detailed physical placement
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information of all the characters must be taken into account. This makes

the problem of stencil design with overlapped characters not only different

from but also more difficult than conventional non-overlapping one, addressed

in [75–78].

As the example of Fig. 5.2 (a) illustrates, suppose there are three char-

acter candidates A-C, and we would like to pack them into a simple stencil of

Fig. 5.2 (b) for minimum projection time. As easily seen, their blanking spaces

are quite different. In conventional design where overlapping is not considered,

at most two of them can fit. On the other side, when the blanking space is

shared by adjacent characters, the result is correlated with the detailed phys-

ical implementation of stencil, and could be different from traditional design.

If these three candidates are tried out by the order of A-B-C like Fig. 5.2 (c),

only A and B can be put in. Pattern C is out of bound and has to be processed

by VSB technique. This does not lead to higher throughput than conventional

non-overlapped methodology. In contrast, if rearranged as C-B-A as Fig. 5.2

(d), all of these three patterns can be used as CP characters. Obviously, it is

a better stencil optimization.

5.2.3 Problem Formulation

In this subsection, we will formulate the problem of EBL stencil design

with overlapped characters.

Similar to previous work [75–78], we assume a set of character candi-

dates have already been given. To model overlapping information, as Fig. 5.3
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(a) illustrates, assume the blanking spaces of each candidate ci, from left, right,

top and bottom boundaries, are li, ri, ti and bi, respectively. The orientation

of these candidates are not allowed to be flipped, since it actually becomes a

different template, as explained in [76]. When two candidates ci and cj are put

adjacent to each other horizontally, their maximum allowed overlap is set as

oHij , which is min(ri, lj) as shown by Fig. 5.3 (b). Similarly, Fig. 5.3 (c) defines

the maximum vertical overlapping margin oVij . oHij and oVij vary for different i

and j.
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it
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Figure 5.3: The dimensional variable of character candidates

Moreover, since the manufacturing time of EBL is dominantly deter-

mined by electronic beam shooting, in our work, we make use of total number

of shots as the measurement of projection time. Suppose each candidate ci

is referred Ri times in the chip. For each of its appearance, the candidate ci

will be projected by either CP or VSB method, with a number of shots nCP
i
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and nV SB
i . The total processing time (number of shots) of the entire circuit is

computed by following equation.

∑
ci∈CCP

Rin
CP
i +

∑
ci∈(CC\CCP )

Rin
V SB
i (5.1)

CC is the set of all the character candidates. CCP is the union of

selected candidates processed by CP method, which is a subset of CC.

In our work, for simplification purpose, we only design and optimize

the stencil for single design. The general case of multiple chips can be easily

extended, where the characters would be reused by different designs. Based

on above description, our optimization problem can be stated as below:

Problem Formulation: Given a design and its set of character candi-

date CC , select a subset CCP out of CC as characters, and place them on the

stencil S. The objective is to minimize the total projection time (number of

shots) of this design expressed by Equation (1), while the placement of CCP

is bounded by the outline of S. The width and height of stencil is W and

H, respectively, and all the candidates have unique width w and height h.

The maximum horizontal and vertical overlapping margins between adjacent

characters are given by oHij and oVij , respectively.

In this chapter, we will first investigate on the special case of one di-

mensional stencil design in Section 5.3, where the amount of blanking spaces

differs only in either horizontal or vertical direction. Then, in Section 5.4, the
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algorithm, for generalized two dimensional problem, will be developed.

5.3 One Dimensional Stencil Design

Normally, each template implements one standard cell. That is to say,

the enclosed circuit patterns of all the characters have the same height, and

their layouts near top and bottom boundary edges are mostly regular power

rails. As a result, illustrated by Fig. 5.4 (a), the required blanking spaces on

the top t and bottom b are nearly identical for these candidates.

i j
ib

it

jb

jt=

=

(a)

1
1r

2
1r

3
1r

1
2r

3
2r

3
2r

h

oh

(b)

oh h−

W

H

(c)

Figure 5.4: One-dimensional Stencil Design.

Therefore, in such case, characters are usually be placed on the sten-

cil in a row-based manner, shown by Fig. 5.4 (b). All rows have a unique
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height h. The overlapped blanking margin ho between adjacent rows are also

the same, which is min(ti, bi). In consequence, as Fig. 5.4 (c) shows, the

overlapping-aware stencil design becomes a one-dimensional problem. The

number of character rows can be pre determined as ⌊H/(h− ho)⌋). The can-

didates would be packed into these rows with maximum width W .

One-Dimensional Bin Packing

Multi Row Swapping

Inter-Stencil Turning

Single Row Reordering

Result Improved
Yes

End
No

Figure 5.5: The overview of one dimensional stencil design with overlapped
characters.

The overview of our four-phase iterative refinement algorithm for this

special one-dimension problem is given in Fig. 5.5, and the details will be

discussed in following subsections.
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5.3.1 Greedy One Dimensional Bin Packing

To construct a reasonable good starting point, we adopt a descending

best-fit bin packing algorithm to push the character candidates into stencil,

until there is no enough capacity.

Note that the overall projection time (number of shots) of Objective

(5.1) can also be represented as

∑
ci∈CC

Rin
V SB
i −

∑
ci∈CCP

Ri(n
V SB
i − nCP

i ) (5.2)

where the first part is independent with stencil design. To reduce the

processing time, during greedy bin-packing,
∑

ci∈CCP Ri(n
V SB
i − nCP

i ) should

be made as large as possible.

Therefore, as preprocessing, we first assign each candidate ci a profit

value pi, Ri(n
V SB
i − nCP

i ). The bigger pi is, the larger amount of projection

efforts can be reduced by printing ci using CP than VSB method. For getting

good greedy optimization result, the ci with larger profit should be given higher

priority to be placed on the stencil. Guided by this heuristic, in the second

step, the character candidates, which have not been on the stencil yet, will be

sorted decreasingly based on their profits and packed in a sequential manner.

Next, these sorted candidates will be pushed into stencil by a best-fit

packing strategy. When ci is to be packed, the row, which has the least amount

of capacities left after accommodating ci, will be picked. The possible shared

space between adjacent objects must also be taken into account, when we are
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Figure 5.6: This figure illustrates the procedure of best-fit bin packing with
overlapping awareness.

computing the remaining room in each row. As Fig. 5.7 (a) illustrates, suppose

only two rows are available and candidate C is to be packed next. It appears

that row R1 has more capacity left. However, as Fig. 5.7 (b) illustrates, when

we try out C in both rows, it is R2 which has larger remaining room. As a

result, candidate C is packed into R2, shown by Fig. 5.7 (c).
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5.3.2 Single Row Reordering

After greedy bin packing, there is no room left to accommodate more

candidates. However, as motivated by Fig. 5.2, we can adjust the relative

locations of already-placed characters in each row to shrink its occupied width

and increase remaining capacity. This allows pushing in more candidates,

which further reduces the overall projection time. Therefore, in this phase, our

goal is to minimize the total width of its characters in each row for maximizing

remaining capacity.

Suppose row r contains a set of cr0 .... crn characters from left to right,

its total occupied width can be computed as
∑n

i=0w −
∑n−1

i=0 oHi,i+1. It is not

difficult to see that
∑n

i=0w is a constant as long as the number of characters

is not changed. Therefore, to minimize the total occupied width, the overall

overlapped blanking margin
∑n−1

i=0 oHi,i+1 should be maximized.

To compute optimal character permutation for maximum amount of

shared blanking width, we formulate a minimum cost Hamiltonian path prob-

lem. First of all, a graph G is constructed as follows: Each cri is represented

by a vertex vri . For each pair of vri and vrj , we add two directed edges eij and

eji. The associated costs are oHbig − oHij and oHbig − oHji , respectively. oHij /o
H
ji is

the shared space when ci is put left/right adjacent to cj, and oHbig is a con-

stant value, bigger than any of oHij . To maximize
∑n−1

i=0 oHi,i+1, it suffice to find

a path visiting each node of G exactly once such that the total edge weighs

(
∑

e∈Path(o
H
big − oHij )) along this path is minimized. As Fig. 5.7 (a) illustrates,

a graph for three character placement (A,B,C) is given. Suppose the mini-
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mum cost Hamiltonian path is found as Fig. 5.7 (b), Fig. 5.7 (c) shows its

corresponding character placement.

r
Av r

Bv

r
Cv

H H
big jio o−
H H
big ijo o−

(a)

r
Av r

Bv

r
Cv

(b)

A B C

(c)

Figure 5.7: This figure shows how to optimize the occupied-width of each row
as min-cost Hamiltonian path problem

Practically, since the problem of minimum cost Hamiltonian path is

NP-hard, when a row has too many characters, it may be expensive to solve

it in one time. In that case, our heuristic is to partition the row into multiple

overlapped smaller segments, and solve each segment by Hamiltonian path

based method.
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5.3.3 Multiple Row Swapping

After single row reordering, the character permutation within each row

has been extensively optimized. However, it is still possible to increase their

remaining capacities, by swapping characters from different rows. As Fig 5.8

illustrates, by swapping r21 and r22, both characters find “better” neighbors

with more overlapped blanking space. For row R1 and R2, their remaining

rooms are both increased.

1
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3
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3
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(a)

1
1r

2
1r

3
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1
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2
2r

3
2r Bigger

R1

R2

(b)

Figure 5.8: This figure explains the motivation of multi-row swapping.

The algorithm is briefly explained as follows. We test every pair of

characters from different rows. Only when the remaining capacities of both

rows are increased after swapping, it is considered as a reasonable swap. This

ensures, the modified placement is definitely better than original one. The

reason is that, after swapping, if one row gains more room but another has

less, it is possible that the following optimization is hurt by the row with

shrunk capacity.

After all the reasonable swap pairs are found, they are sorted increas-

141



ingly by capacity gains, and performed one by one. When certain swap is

done, the associated characters and their neighbors are locked. Any swap in

the later trials is not allowed to move these locked characters as well as their

neighbors. This honors previous optimization result.

5.3.4 Inter Stencil Tuning

The previous single and multiple row optimization are conducted based

on the initial solution of bin-packing algorithm in Section 5.3.1. This may

limit the optimization space. To get out of local optima, as the last step of ech

iteration, we would like to exchange the placed characters with those which

have not been selected.

Our approach is to randomly pick and exchange two character candi-

dates, where one is from the stencil and another is not. The swapping will be

accepted, only if the overall projection time, number of shots Objective (1), is

reduced and the remaining capacity of any row is not shrunk.

5.4 Two Dimensional Stencil Design

In this section, we investigate on the general case of EBL stencil design

with overlapped characters. The blanking spaces of templates are non-uniform

along both horizontal and vertical directions. Due to NP-completeness of this

problem, we adopt a simulated-annealing based heuristic approach to perform

a robust iterative improvement.
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5.4.1 Sequential Pair Representation

To represent the character placement solution, we make use of sequen-

tial pair (SP) proposed in [5].

Given a set of character candidates CC , its SP consists in two permu-

tations X&Y of these templates (c0, c1...cn), which specifies their geometry

relationships as below.

(X :< .., ci..cj .. >, Y :< ...ci...cj ... >) : ci is left to cj (5.3)

(X :< .., cj ..ci.. >, Y :< ...ci...cj ... >) : ci is below cj (5.4)

Based these constraints, we can map any SP into a solution of character

placement as following procedure:

Procedure 1:

Step1: Compute a minimum area packing of CC , following similar

methods of [5, 6]. The detailed consideration will be described in Section 5.4.1.1

and 5.4.1.2.

Step2: Assuming the left-bottom coordinates of packing results and

stencil are the same, the candidates, which are located completely within the

outline of stencil, are considered as selected characters.

The first step of minimum area packing is the critical one in above

transformation. Due to specific properties of our problem, its implementation

actually differs from the conventional approaches of [5, 6], explained as follows.
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5.4.1.1 Correct Packing Algorithm

The key step of packing solution evaluation from SP is to determine the

physical coordinates of each block. This problem has been well investigated,

when overlapping is not considered between adjacent blocks. The original

algorithm is proposed in [5], and improved by [6] with new solution pruning

technique. The work of [5] is extensible for our overlapping-enabled character

placement problem. However, the key speed-up idea in [6] does not apply,

although it is much faster.

The method of [5] is based on longest path algorithm, and starts from

constraint graph construction. Given a SP, a H/V graph is built first to capture

the horizontal/vertical relationship between different blocks. Assume there are

totally CC candidates, the H/V graph has |CC |+2 vertexes, one vi for each

candidate ci plus a source s and sink t. If cj is (left adjacent to)/(below) ck,

a directed edge ejk is added from vj to vk. The weight of ejk is the minimum

possible horizontal/vertical distance between the centers of cj and ck. Beside

these, there is a zero-weight edge from source to every vi, and a zero-weight

edge from every vi to sink. For the example of Figure 5.9 (a), Figure 5.9 (b)

and (c) show the resulting H and V constraint graphes, respectively.

After that, the x/y coordinates of these candidates can be obtained

by finding its weighted longest path algorithm from source. As easy to see,

this methodology is also applicable for our problem, where overlapped space

is allowed between adjacent vertexes. The only difference is that, when the

weights of edge are assigned, the amount of shared blanking space must be
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Figure 5.9: This figure explains packing evaluation of [5] based on sequential
pair
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considered, as highlighted by the red cycles in Figure 5.9 (b) and (c).

On the other side, the work of [6] does not explicitly build the con-

straints graphs but depends on the longest common subsequence computa-

tions. They evaluate the placement of character candidates much faster than [5],

depending on the following property.

A

B

C

B CX X=
BX

CX

(a) non-overlapping

A

B

C

B CX X>
BX

CX

(b) overlapping

: (    )    (    )  SP X D A C B Y A B D C= =

Figure 5.10: This figure illustrates the key idea of of [6]

Property 5.4.1. Given two blocks B and C, if we put them (right adja-

cent)/up to a common component A, then the x/y coordinates of these two

blocks should be same.

The correctness of this property can be easily seen for the conventional

packing, as shown by Figure 5.10 (a), while overlapping is not considered.
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However, it does not hold true, when the sharing of characters becomes pos-

sible. As Figure 5.10 (b) illustrates, due to different overlapping margins, the

coordinates of B and C are not the same.

5.4.1.2 Fast Packing Evaluation

After evaluating packing solution, in the step2 of Procedure 1, the

candidates outside the outline of stencil will not be taken as characters. This

implies, the detailed locations of these candidates are not important, and do

not have to be computed in the step1. Great speedup can be achieved by

making use of this property.

In detail, in the implementation of SP-based minimum area packing, we

stop placement evaluation as soon as the contour of already-packed character

candidates is completely outside the outline of stencil by at least a margin of

omax, given that omax is the maximum value of oHij and oVij .

This strategy will not effect the solution of character placement. For

any of unpacked candidates by the stopping time, it can not be totally fit into

the stencil no matter how to push it around the boundaries of already-packed

character clusters.

5.4.2 Simulated Annealing

During simulated annealing, we continuously make small modification

on sequential pair, and evaluate the resulting stencil design. The new SP/solution

will be for sure adopted if reducing the total time of Objective (5.1). While it
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is actually a worse character placement, this non-improving result is accepted

with probability decreasing over time.

In this subsection, we present two effective SP perturbation methods

for better local search towards higher throughput: timing-driven swapping and

slack-based insertion.

5.4.2.1 Timing-driven Swapping

The first type of perturbation we perform is timing-driven swapping.

The basic idea is to try reducing overall projection time by swapping the

positions of two candidates in the X&Y SP. This is equivalent to exchange

their relative locations in the packing solution.

Fig. 5.11 illustrates a motivational example, which has five blocks A-E

to be packed. The required number of shots, to project any of these candi-

dates once, are assumed as 1 and 10 for CP (nCP
i )and VSB (nV SB

i ) methods

respectively. The digit in the parentheses denotes how many times Ri of each

component will be used and printed in the design.

Fig. 5.11 (a) gives a SP representation and its corresponding stencil

design, based on the Procedure 1 in Section 5.4.1. Following the definition of

Objective 5.1, the total processing time (number of shots) are 3 + 2 + 1+ 2+

10× 2 = 28, since A-D are selected as characters while E is not. If swapping

the locations of C and E in SP as Fig. 5.11 (b), we would end up with a better

stencil design with less amount processing time. It only takes a number of 19

shots, which is computed as 3 + 2 + 10 + 2 + 2 = 19, in this case.
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Figure 5.11: The figure illustrates timing-driven swapping.
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In the detailed implementation, we enforce two heuristic swapping con-

straints, to enable efficient and effective shot number reduction.

First of all, given a SP, out of the pair of elements to be changed, we

require that one candidate cs, should have been selected as characters by its

corresponding stencil packing, while the other one, co is not. For the example

of Fig. 5.11 (a), we only allow the exchange of the positions between E and any

of A-D. The swapping among any two of A-D is not enabled. The reason is

that if the two candidates to be swapped are both in or out of stencil already,

most likely the new SP generates a stencil solution with same set of selected

characters and just different geometrical ordering. As an example, if we swap

candidate B and D which are both already in the stencil, like from Fig. 5.11

(a) to Fig. 5.11 (c), the resulting packing result also selects A-D as characters,

still requiring 28 shots totally.

Secondly, after randomly picking in-stencil candidate cs and out-of-

stencil one co for swapping, to decide whether this swapping would be tried

on. The profit po/ps is defined as same as Ri(n
V SB
i − nCP

i ) in Section 5.3.1,

which reflects the reduction of the shoot number by printing this candidate by

CP rather than VSB. If we swap the locations of cs and co, it is highly like that

cs will be pushed out of stencil but the co would be selected as character in

turn. Assuming all the other candidates stay either in or outside the stencil, as

the state before the swapping, the total shot reduction by this exchange can be

approximated as po-ps. Therefore, if the difference po-ps is smaller than zero,

it is in high possibility that the swapping under consideration will not lead to
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better packing result. For the example of Fig. 5.11 (a), suppose cs and co are A

and E, respectively, it turns out po-ps is -9. In this case, and the corresponding

stencil design indeed becomes worse, taking 35 shots as Fig. 5.11 (d) shows.

5.4.2.2 Slack-based insertion

Given a SP and its corresponding character solution, our purpose of

slack-based insertion is to add-in a new candidate, which currently is not serv-

ing as character, into the stencil. To ensure robust throughput improvement,

we would like to find a good strategy to insert such extra candidate, so that all

the previously already-placed characters are still kept on the stencil in most

trials. This equals to increase the number of usable templates. In this sub-

section, we make use of the concept of slack, applied in [79], to search such a

good insertion location.

Given a character cs on the stencil, its x/y slack is defined as the allowed

movement range of x/y coordinates of cs, under the constraint that none of all

the other already-placed characters would be pushed outside the stencil after

such move. Fig. 5.12 (a)-(b) illustrate a simple example, with four characters

A-D. Their leftmost and rightmost packing solutions are shown by Fig. 5.12

(a) and (b), respectively. Based on this two extreme cases, the x slack of C,

for example, can be computed as Xright
c −X left

c .

Once slacks are known, we randomly pick a base character cb, which has

large slacks in both x and y directions, and insert a new candidate cnew before

it. The reason is that the location of such base can be moved in relatively big
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amount to make space for additional character. In terms of SP operation, this

can be done by simply changing the position of cnew right before cb in X and

Y permutations. As illustrated by Fig. 5.12 (c), suppose the cb and cnew are

candidate C and E, respectively. The resulting new SP is obtained by insert

E right in front of the position of C, as shown by Fig. 5.12 (d) .

A B
A

B

left
CX right

CX

slack right left
C C CX X X= −(a) (b)

DD
C C

(d)

A
B

D
C

(      )   

 (      )  

X E C A D B

Y A E C B D

=

=

E

A B

C

(c)

(     )   

 (     )  

X C A D B E

Y A C B D E

=

=

E
D

Figure 5.12: The simple example of slack-based insertion.
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5.5 Experimental Results

We implement our algorithm in C++ and test on Intel Core 3.0GHz

Linux machine with 32G RAM. LKH [80] is chosen as the solver for min-cost

Hamilton path. Moreover, Parquet [79] is adopted as our simulated annealing

framework.

To test the efficiency of proposed methods, we randomly generate eight

benchmarks. The size of stencil is set as 100um x 100um, and a total number

of 1000 character candidates with unique size are generated. The sharable

blanking area within each candidate is randomly decided. For the special case

of one dimensional problem, the blanking space along vertical direction is set

as a constant value. Moreover, for each candidate ci, we randomly assign a

triple of value (Ri, n
V SB
i , nCP

i ) as its referred time in chip, and respective

number of shots by VSB and CP. nV SB
i is made 5-10x larger than nCP

i .

The detailed statistical data for individual testcase is shown in Ta-

ble 5.1. The first column denotes the name of benchmarks, which “1D-x”

and “2D-x” are applied for one and two dimensional problem, respectively.

“csize” is the size of each character candidate, formatted by “um x um”. The

units of all the other columns are “1e4um2”. “total area” shows the total area

of all the character candidates, and “total blanks” is the summation of their

sharable blanking space. “optimal area” is computed as “total area” minus

“total blanks”, typically larger than the area of given stencil. This matches

the fact that even under best possible case of stencil design, where all the

blanking area are indeed shared by adjacent characters, the entire set of the
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candidates can not be fully pushed into the stencil.

Table 5.1: Statistics on testcases.

ckts csize total area total blanks optimal area
1D-1 3.8x3.8 1.444 0.416 1.028
1D-2 4.0x4.0 1.6 0.479 1.121
1D-3 4.2x4.2 1.764 0.514 1.25
1D-4 4.4x4.4 1.936 0.569 1.367
2D-1 3.8x3.8 1.444 0.414 1.03
2D-2 4.0x4.0 1.6 0.529 1.071
2D-3 4.2x4.2 1.764 0.662 1.102
2D-4 4.4x4.4 1.936 0.774 1.162

For comparative reason, we implement two different stencil design ap-

proaches. The first one NO-OVERLAP is based on the work of [78], where

no overlapped characters is allowed. A little difference is that, in its implemen-

tation, only one stencil with unique character size is considered. Moreover, for

our problem, their algorithm is somewhat degenerated into a method of select-

ing the most profitable candidates, which profit is judged by Ri(n
CP
i −nV SB

i ).

In the second comparative approach GREEDY, possible sharing is taken into

account, but a greedy methodology is applied to chose character candidates.

In 1D problem, only the first phase of heuristic Descending Best-Fit (DBF)

packing in Section 5.3.1 is performed. For two-dimensional problem, 2D DBF

packing is conducted.

5.5.1 One-dimensional Stencil Design

Table 5.2 lists the comparison of stencil design in one-dimensional case.

“#shot” shows the total processing time (number of shots) of the circuit by
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using corresponding stencil design methodologies, which is computed by the

equation of Objective 5.1. “#char” is the number of characters that fits into

stencils, and “#CPU” tells the runtime of these stencil optimization methods,

in terms of seconds.

As we can see, compared to NO-OVERLAP, we are able to aver-

agely put 42% more characters on the stencil, and reduce the total projection

time (number of shots) by 51%. With respect toGREEDY algorithm, our ap-

proach still achieves averagely 14% more projection time reduction, by allowing

7% more characters placed. The CPU time of our approach is relatively large

but its absolute value is only around 20s. These results show the effectiveness

and efficiency of our proposed four-phase iterative refinement algorithm.

For this special one-dimension problem, GREEDY looks also quite

useful. The reason is that the vertical blanking spaces of these candidates are

uniform in this case, and have been fully shared during the stencil design.

Table 5.2: Result Comparison for 1D problem

NO-OVERLAP GREEDY our approach
ckts #shot #charCPU(s)#shot#charCPU #shot#charCPU
1D-1 28654 676 1.2 13528 901 2.2 10083 951 22.3
1D-2 41727 625 1.1 17929 836 2.1 14921 880 21.8
1D-3 38460 529 0.9 25155 727 1.9 22503 768 20.6
1D-4 41260 484 0.8 29462 665 1.8 26756 702 20.1

total 150101 2314 4 86074 3129 8 74263 3301 84.8
ratio 2.0 1 0.05 1.16 1.35 0.10 1 1.42 1
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5.5.2 Two-dimensional Stencil Design

Table 5.3 lists the comparison of stencil design in general two-dimensional

case. The meaning of labels are the same as Table 5.2. Compared to NO-

OVERLAP and GREEDY methods, in average, our proposed SP-based al-

gorithm places 28% and 24% more characters on stencil, which reduces the pro-

jection time (number of shots) by 31% and 25%, respectively. The GREEDY

algorithm does not work that well in this 2D problem, because the blanking

area varies in both horizontal and vertical directions and the native first-bin-

best-fit packing very easily get stuck in local optima.

Due to two-dimensional optimization, the runtime of our approach is

much longer than 1D problem, comparatively. It takes a few hundred seconds,

but is still satisfactory. The design of stencil is only a one-time job before

projecting large volume of chips by EBL. Several minutes preprocessing time

is relatively very tiny in the whole manufacturing procedure.

Table 5.3: Result Comparison for 2D problem

NO-OVERLAP GREEDY our approach
ckts #shot #char CPU #shot #char CPU #shot#charCPU
2D-1 23319 676 1.3 26832 625 2.3 16877 803 466
2D-2 29368 576 1 25977 642 2.6 20141 750 447
2D-3 32399 526 0.9 30411 558 2.5 23850 688 424
2D-4 35410 474 0.8 31930 531 2.7 25278 660 416

total 120496 2252 4 115150 2356 10.1 86146 2901 1755
ratio 1.40 1 0.002 1.33 1.05 0.006 1 1.30 1
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5.6 Summary

In this chapter, we have developed two algorithms for overlapping aware

stencil design in electronic beam lithography. The experimental results show

51% reduction on the total projection time, compared to the conventional

design when the characters are not overlapped.
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Chapter 6

Conclusion

This dissertation investigates on physical design automation problems

for double patterning and electronic beam lithography, which are summarized

as follows:

• We develop a high quality post-routing layout decomposer for double

patterning lithography. Our key feature is simultaneous optimization of

conflict and stitch minimization, powered by practical grid model and in-

teger linear programming. This delivers much better global solution than

dealing with conflict and stitch in separate phases as previous works do.

To improve the scalability, three speed-up techniques are also proposed.

• We next study double patterning friendly detailed routing algorithm with

redundant via consideration in the first time. If not carefully planned

and optimized, the additional metal, the double via introduces, could

result in native conflicts or stitches. To encounter this problem, during

detailed routing, double patterning related cost are enforced in maze

searching for avoiding the generation of DPL-unfriendly redundant via

candidates.
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• We further make use of wire spreading technique to enhance the decom-

posability of double patterning mask assignment. A set of wire spread-

ing candidates are pre identified to help eliminating conflicts or reducing

stitches, and then modeled into a decomposition graph. An integer lin-

ear programming formulation is proposed next to perform coloring and

layout modification together. Efficient graph reduction techniques are

developed as well for reducing the runtime.

• We develop a stencil planning and optimization framework for improv-

ing the throughput of electronic beam lithography. The key idea is to

increase the number of characters available in the stencil, by allowing

overlapping the blanking space between adjacent characters. A Hamilton

path-based flow has been proposed for specific one-dimensional packing

problem, and a simulated annealing framework is developed for two-

dimensional fixed-outline floorplanning.

Some of the further working directions could be:

• There are two major types of double patterning lithography: Lith-Etch-

Lith-Etch (LELE) [81, 82] and Self-Aligned (SA) [83, 84] technologies.

All the three DPL-related works in this dissertation focus on LELE.

Future research could be investigated on self-aligned double patterning

layout decomposition problem. Different from LELE, in SA double pat-

terning, there are totally three masks, not two. Moreover, no stitches

can be introduced due to its process constraints, putting less control on
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overlay control than LELE [85–91]. It is also a good direction to inves-

tigate earlier stage placement and standard cell design [92] to produce

DPL-friendly layout for SA double patterning.

• The framework of my electronic beam lithography stencil optimization

can be extended for more generalized cases. Multiple-stencil multiple-

design co-optimization would be further investigated. Moreover, the

characters in the stencil do not have to be regular rectangles.

• Physical design related optimization are also needed to be studied for

other emerging nanolithography systems, such as extreme ultra-violet [93,

94], nanoimprint lithography [95–101], and triple patterning techniques [102].
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