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Abstract — Interference is fundamental to wireless networks. It isdhar
achieve good performance when design routing metrics arighgns without tak-
ing it into account. We study interference in wireless nekgdhrough empirical
experiments and simulations. We find out that current rgupirotocols face diffi-
culties in effectively managing it, which can lead to seam@blems. For instance,
a simple network of two links with one flow is vulnerable to sey performance
degradation if interference is not properly accountedNtwtivated by these obser-
vations, we develop a simple and effective model to capttieets of interference
in a wireless network. Different from the existing integace models, our model
captures IEEE 802.11 DCF under both homogeneous and heterogs traffic and
link characteristics, and is simple enough to be directigduas a basic building
block for wireless performance optimization. Based onrimislel, we develop opti-
mization algorithms for several objectives, such as ndttlmoughput and fairness.

Given traffic demands as input, these algorithms compués etwhich individual

Vi



flows must send to achieve these objectives. We implemesethlgorithms in
Qualnet simulations and 19-node testbed. Our experimeahsanulation results
show that our methods can systematically account for anttadnterference to
achieve good performance. More specifically, when optingZairness, our meth-
ods can achieve almost perfect fairness; when optimizitgaer& throughput, they

can lead to 100-200% improvement for UDP traffic and 10-5084 foP traffic.
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Chapter 1

Introduction

Multi-hop wireless networks are becoming increasinglyquittious in the
form of city-wide mesh networks [37, 36]. These networksehaitnessed signif-
icant research and deployment activities recently. Masgaechers have focused

on improving their throughput through better routing [448, 32].

However, the performance of these networks today leave$ naube de-
sired [33, 35, 34]. Users of almost all existing deploymérage been complaining
about poor performance. In many cases, complaints occewea when the users
are close to the BSs, which suggests that the routing batktrawed by the BSs

might be a major contributor [33].

A fundamental property that distinguishes wireless netwand wired net-
works is the presence of interference. Most routing prdsfos wireless mesh net-
works pay little attention to directly managing interfecen Early protocols such
as AODV [26], DSDV [25] and DSR [14] ignore interference archgly imple-
ment shortest hop-count routing. The next generation dbpods such as ETX [4]
, ETT [5] and WCETT [5] route based on measured link qualitiie Guality of a
link can capture some interference effects, such as pacéhkitson or even hidden

terminal, but it cannot systematically capture all integfece effects.



We start our work from studying ill-effects of interferenae behaviors of
wireless networks through simulations and testbed exerisa We uncover two
problems which lead us to understand interference belawabwireless nodes.
The first problem is that not controlling how much nodes seardseverely degrade
network throughput if they send more than what a path can@tipphis occurs
because, due to interference, any additional traffic onkeclam reduce the capacity
of other links. We show how the degradation can be sharp ev@simple setting of
a single flow traversing two links. We also show that end#id-eongestion control

(e.g., using TCP) is not sufficient by itself to prevent théhavior.

The second problem is that current protocols are unabledorately esti-
mate link and path quality for purposes of path selectiore ihderlying issue is
that quality is measured by sending probes, without consigeénterference. The
probes measure quality under current routing patternsologt to interference, the
guality can change arbitrarily with any change in the rogipattern. As such, these
measurements have limited predictive values because #meyot tell whether re-
routing existing flows would result in better network thrbpat or which path is

best for a new flow.

Due to these problems, we find out that extracting predietpbtformance
from or managing these networks today is notoriously hardsingle new flow
can lead to a disproportionate decline in network perfomeanAnd attempts to
increase network performance, for instance by adding netades to shorten link
distances, can end up reducing performance. This is in starprast to wireline

network management, where network operators have marstigéfdechniques to



predict and improve performance.

We seek to develop analogous techniques for multi-hop eseehetworks.
As motivating examples, we focus on three basic capalsiliiat are not available

today.

e Network operators should be able to tell if the network cgypsut the current
or a planned traffic demand.
e They should be able to perform “what if” analyses to evalulagimpact of

configuration changes such as addition of new flows or routiragnges.

e They should be able to determine safe sending rates of wafiows based

on policy and path capacity.

In order to achieve these capabilities, we need an accuraile gimple
model. However, despite much work on interference and MAGQeting, none of
the existing models for multi-hop networks fulfill our neelllany existing mod-
els make simplifying assumptions about signal propagdfi@h traffic [10, 31, 9],
topology [2, 17, 9, 10], or the MAC [13]. These assumptiortemido not hold for
real networks [16]. Other models are too complex to be usestilly for optimiza-

tion because they require enumeration of all possible mita@nfigurations [27].

We develop a new model that captures the complex interfereamd MAC-
induced dependencies in a network. These dependenciesdedying causes of

unpredictable behaviors.

The model that we develop strikes a balance between sintyicd realism.

It targets the widely used CSMA/CA-based 802.11 MAC. Basedasily collected



measurements from a network itself, it characterizes thefséeasible network
configurations and traffic assignments using a small set dtcaints. Despite its
simplicity, our model can handle real-world complexitiesls as hidden terminals,

non-uniform traffic, and non-binary interference.

We then develop optimization algorithms to compute ratats for flows
according to a specified performance objective. These itthgas take flow de-
mands as input and use our model as a basic building block p&rformance ob-
jectives that we consider in our work are maximizing faisyasd maximizing total
network throughput. To our knowledge, such goal-driven jgrettise optimization

for multi-hop wireless networks was not possible before.

We evaluate our model and optimization algorithms using Hirhap wire-
less testbed and simulation experiments. The results shaiour methods are
highly effective. Across a range of topology and traffic cgafations, they are
able to accurately approximate the throughput that a n&twetds. They rarely
under-predicts, and for 80% of the cases, their estimatiomsvithin 20% of actual
throughputs. When maximizing fairness using our methodsaehieve close to
perfect fairness amongst flows for both UDP and TCP traffic.eVimaximizing
throughput, we find that our methods can improve networkutinput by more
than 100% for UDP-based traffic and 25% for TCP-based trdffterestingly, we
find that in our experiments the exact of choice of routinggeol is not important
to achieve good performance for objectives we study, sutbtalsthroughput, and
fairness. What matters instead is that flows be rate-linpterdthe desired perfor-

mance goal.



Chapter 2

Related Work

2.1 Wireless Mesh Networks

Wireless mesh networks seek to build a resilient and higfepaance in-
frastructure to provide users pervasive Internet accassa rhesh network, each
clientaccesses alocal high-speed access point (HAP), atighla stationary HAPs
communicate with one another over a wireless channel amd &multihop, wire-
less backbone for data delivery. This backbone eventualydrds users’ traffic to

a few gateway APs (GAPSs) that additionally connect to wirgernet.

Compared to ad-hoc wireless networks, mesh networks ar@ased of
static wireless nodes that have ample energy supply. Eadiess node can be
equipped with multiple radios and each radio can be conftjtora different chan-

nel to enhance network capacity.

2.2 Routing Metrics
2.2.1 HOP

Many traditional routing protocols, such as DSDV, AODV an8mR use
hop count as the routing metric. Hop count reflects the effetpath length on the

performance of flows, however, it does not consider the miffee of transmission



rates and packet loss ratios among different wireless lakg also interference in
a wireless network. This can result in some poor performgratks which have

high loss ratio.

2.2.2 Expected Transmission Count ETX

ETX is defined as the expected number of MAC layer transmissieeded
for successfully delivering a packet through a wirelesk. lifhe weight of a path is
defined as the summation of ETXs of all links along the patre EfX of a link is
calculated using the forward and reverse delivery ratiabefink . Letp; denote
the measured probability that a data packet successfuilyearat the recipient; Let
pr denote the probability that the ACK packet is successfidyeived. Then the

expected transmission count

ETX= ! (2.2)
Pf X Pr

ETX can capture link quality, but it does not include integigce or the fact that

different links may have different transmission rates.

2.2.3 Expected Transmission Time ETT

To improve ETX, Draves et al. propose ETT [5] metric, whicmsiolers
difference in link transmission rates. The ETT of a link idided as the expected
MAC layer duration of a successful transmission of a packethis link. The

relationship between the ETT of a link | and its ETX can be esped as

ETX xs

EThH=——7"—

(2.2)

6



whereby is the transmission rate of link | and s is the packet size. &l@y ETT

does not consider flow interference either.

2.2.4 Weighted Cumulative Expected Transmission Time WCET

To reduce intra-flow interference, Draves et al [5] propoSeBVT, which
reduces the number of nodes on the path of a flow that transrttiecsame channel.

The WCETT metric of a path p is defined as follows:

WCETL=(1- ETT Xj 2.
CETH=( a)xiezp .+a><lrgné>r<<, (2.3)

WhereX| is the summation of ETT of the links in path p operating on cien
J; k is the number of orthogonal channels available and @ < 1 is a tunable
parameter. The first component in the WCETT metric helps iditign path with
links having less ETT. The second component improves theregialiversity and
helps in finding paths with less intra-flow interference. WIGEloes not explicitly
consider the effects of inter-flow interference, althougkaes heuristic way to
reduce intra-flow interference. Therefore, WCETT may rdlaes to dense areas

where congestion is more likely.

2.2.5 Metric of Interference and Channel Switching MIC

MIC [40] considers inter-flow interference. MIC for a pathgpdefined as

follows:

1 IRU, + CSG (2.4)

MIC(p) = .
(p) N x mm(ETT) IinkZep node iep



where N is the total number of nodes in the network and min(&g3 The small-
est ETT in the network. The two components of MIC, IRU (Inteeihce-aware
Resource Usage) and CSC (Channel Switching Cost), are defs®llows:

IRU =ETT xN, (2.5)

csG {wl, ?fCH(prev(?));«éCH(.i) 2.6)
wp, if CH(prev(i)) = CH(i)

0< Wy < Wo (2.7)

WhereN, is the set of neighbors that interfere with the transmissadink |. CH(i)
represents the channel assigned for node i's transmissprav(i) represents the
previous hop of node i along the path p. MIC incorporatesrifitev interference
by scaling up the ETT of a link by the number of neighbors ife@ng with the
transmission on that link. However, the degree of interfeeecaused by each in-
terfering node on a link is not the same. And also interfeeas@lso depends on
how active the interfering node, that is to say, it dependsalffic generated by the

node. MIC fails to capture these characteristics of interfee.

2.2.6 Per-hop Round Trip Time RTT

RTT [1] is based on one-hop round trip time between a pair ctho
determine the quality of links between those hosts. A linlaioongested region
or a lossy link usually has a large RTT, so RTT can help to akatly loaded or
lossy links. But as it is a load-dependent metric, it is itedvlie that RTT can lead

to route instability.



2.2.7 IAWARE

IAWARE [32] is an interference aware routing metric. It usNR and
SINR of a node to estimate the interference observed by a Mddee specifically,

it defines interference ratid;(u), (0 < IR;(u) < 1), for a nodeuin alinki = (u,v)

as follows:
.y _ SINR(u)
IRi(u) = SNR(U) (2.8)
And then iAware define the metric of a link j as follows:
IAWARE = EILT‘ (2.9)
j

wherelR; = min(IR;j(u), IR;j(v))

Intuitively, the higherR;, the less the link is interfered. IAWARE captures
the receiver-side interference, but it does not fully ceppthe sender-side interfer-

ence.

2.3 Wireless Routing Protocols

A lot of protocols has been proposed to solve multihop raupiroblems in

wireless networks.

2.3.1 Destination-sequenced Distance Vector DSDV

DSDV uses the distance vector shortest path algorithm tcsal single
path to a destination. Every node maintains a routing tdiae lists all available

destinations, the number of hops to reach a destination a&bjaence number



assigned by the destination node. The sequence numbedisaudistinguish stale
routes from new ones. Each node periodically transmits tbating tables to their
immediate neighbors. DSDV is suitable for creating ad hdevaeks with small

number of nodes.

2.3.2 Ad hoc On-demand Distance Vector Routing AODV

AODV is an improvement on the DSDV. Each node finds routes $bii-
tions on-demand as opposed to DSDV that maintains the lat odutes. A source
nodes broadcasts a route request message to initializéaligabvery process if
it does not have a valid route to a destination. Its neighbmmsard the request
to their neighbors until either the destination or an intedimte node with a fresh
enough route to the destination. During the process of fafing, intermediate
nodes record the address of the neighbor from which the tgst of the broadcast
is received in their route tables. By this way, intermediaeles can establish a

reverse path for the route reply message to reach the soodee n

2.3.3 Dynamic Source Routing DSR

DSR is an on-demand routing protocol that is based on thesgiod source
routing. Each node maintains route caches that contairceauutes of which
this node is aware. The protocol consists of two major phasmge discovery
and route maintenance. When a node has a packet to send todestiretion,
it first consults its route cache to determine whether itaalyehas a route to the

destination. If it has an unexpired route to the destinaiiomses it. otherwise, it

10



initiates route discover by broadcasting a route requesigia Each intermediate
node checks whether it knows of a route to the destinatiahddfes not, it forwards
the packet to its neighbors. A route reply is generated witeerethe destination
or an intermediate node with current information about thstidation receives the

route request packet.

2.3.4 Link Quality Source Routing LQSR

LQSR [30] is a link-state routing protocol which uses a costplview of
the network topology to compute shortest paths. Each nogedieally broadcasts
its link-state advertisements. In addition, it also usesude discovery procedure
as in DSR to reduce broadcasting overhead. During routevksg, LQSR obtains
up-to-date link state information of the traversed linkQ3R uses WCETT as the

routing metric to define the best path from a source to a c&stim

2.4 Interference Modeling

There is a rich body of work on modeling wireless interfeenc

In [2], Bianchi presents a simple analytical model to corepilie satura-
tion throughput performance of the 802.11 Distributed @owtion Function. The
model assumes a finite number of nodes and ideal channeltioorsdi It also as-
sumes all nodes can carrier sense each other and each nosigturase demand.
The work provides a fundamental model on a wireless netwdwk it only consid-

ers single cell WLANs and has specific traffic demands.

In [12],Gupta and Kumar study the capacity of wireless nekaainder

11



models of interference: a protocol model that assumesfanarce to be an all-or-
nothing phenomenon and a physical model that considersrpadt of interfer-
ing transmissions on the signal-to-noise ratio. They shwat in a network com-

prising of n identical nodes, each of which is communicatiith another node,

1
sqrt(n«(logn))

G(W%(n)) assuming optimal node placement and communication pattern

the throughput per node B ) assuming random node placement and

The work of [13] defines a conflict graph, F, whose verticesespond to
the links in the connectivity graph. There is an edge betwherverticed;j and
Ipq in F if the linksljj andlpq can not be active simultaneously, andlyq cannot
be active at the same time if any of the following is trug.andlpq have a node
in common; nodea can carrier sensp; node p can carrier sensg nodei is in
the interference range of nodgeor nodel is in the interference range of node
The work assumes optimal scheduling, which is hard to aehieweal wireless

network.

The work of [20] presents models for the physical layer bedrawof packet
reception and carrier sense with interference in a statieless network. They use
measurement of a real network as input, and aim to modefénégrce in a general
network topology where not all nodes are within communaratange. Their work

models two competing broadcast senders.

The work of [27] provides a general wireless model to estantlatoughput
and goodput in the presence of interference. Their modedsed on interference
measurement in an N-node network, which is more accurateahstract models

of RF propagation such as those based on distance. They thedelore common

12



case of unicast and heterogeneous nodes with differefittl@imands and different

radio characteristics. Their work targets on one-hop deman

2.5 Rate Control

The importance of rate control and scheduling has been wetignized.
The work of [19] presents a framework for joint optimizatiofhrate control and
scheduling in multihop wireless networks. They proposea dpproach through
which the rate control problem and the scheduling problem & decomposed.
But their work is not based on 802.11 MAC scheduling and haathieve in a real
wireless network.

IFRC [29] enables fair rate control for sensor networks inahtall nodes
send traffic towards one or more sinks. Nodes detect coogdsyimeasuring their
average queue length, and adapt their rates according tt\ih éontrol law. Their

work is specific to tree topologies and sensor network wardkso

13
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Chapter 3

Pathologies Caused by Interference

In this section, we use simulations and testbed experinmergsow prob-

lems with current routing protocols for wireless mesh nekso

3.1 Sensitivity of Wireless Network Throughput to Bottlenek
Link Location

Current routing protocols provide no feedback as to how ntiadfic a node
can send. In this section, we show that lack of rate feedbaokle€ad to severe
performance degradation and even congestion collapse.oBgestion collapse,
we refer to a situation in which the goodput of the networkrdases sharply when

the load is increased beyond a certain point.
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Figure 3.2: Throughput as a function of loss rate wBeends as fast as possible

We illustrate our point using the two simple topologies igie 3.1. Both
have one reliable (*good”) link and one lossy (“bad”) linktltbe order of the two
links is different. Using QualNet [28], we simulated theea$S sending 512-byte
UDP packets td as fast as possible. Unless otherwise specified, our el@iuat

uses 802.11a and 6Mbps MAC data rate.

Figure 3.2 shows that the throughput of the two topologies famction of
loss rate on the bad link are very different. At a loss rate.bf the throughput of

the good-bad topology is less than half of the bad-good tapol

The reason for this disparity is the following. For a suct@sgception in
the good-bad topologys needs to transmit a packet Bbonly once, bulR has to

transmit toD more than once. Sinde sees more packet loss due to the lossy link
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betweerR andD, R has a larger expected contention window tisawhich makes

R has smaller probability to access the medium to transmitchgta As a result,

the 802.11 MAC allocates more air time $dhanR under saturated demands. So
the incoming traffic aR is more than the outgoing traffic and many packets sent by
Sare eventually dropped & due to queue overflow. These wasted transmissions
of S compete withR for air time and reduce the throughput of the good-bad topol-
ogy. Such wastage does not exist in the bad-good topologyuiseR can send all
incoming traffic. To our knowledge, this sensitivity of wliges network throughput

to bottleneck link location has not been reported previpusl

This problem cannot be solved by RTS/CTS because both titassican
hear each other and there is no hidden terminal. Moreovaplgichanging the
MAC allocation policy will not fix the problem in the generahse because the

bottleneck can be multiple hops away from the source.

The wastage in a good-bad topology can lead to a very suddsimelén
throughput as the sending rate is increased. Figure 3.8 filetthroughput of the
two topologies asS increases its sending rate. The loss rate of the bad link is
configured to 0.5. In the good-bad topology, increasing dralsg rate beyond a
threshold sharply degrades throughput. This thresholeesepts the sending rate
of Sat whichR receives enough air time to relay all received packets. BeéypR
cannot keep up as it receives less air time and the mediunarisasingly occupied
by the transmissions frof@that are eventually dropped. The throughput stabilizes

when the air time utilization oR decreases to half.

The graph also shows that the two topologies have the samienmiaixca-
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Figure 3.3: Throughput as a function of the sending rate vtheross rate of the
bad link is 0.50

pacity, but in the good-bad case, it can be achieved only tim Sto the thresh-
old sending rate. However, none of the current routing matogive rate feedback.
Moreover they cannot even distinguish between these twwspdthe path quality

as measured by current protocols will be the same for botbldges.

This sharp decline in throughput is reminiscent of congestollapse in the
Internet. But it is unique in that it can be caused by a single tiver a very simple
topology. Known examples of congestion collapse in wiretivoeks [7] involve
more flows and complex topologies. A key difference is thatc¢hpacity of the
bottleneck link in a wired network is not impacted by othak, but in wireless

networks interference reduces bottleneck capacity wheer dinks are active.

Figure 3.4 confirms that the effect above is present in theemealistic

testbed setting as well. We emulate different loss ratekart@stbed by changing
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Figure 3.4: Testbed experiments confirm the importanceteffeeedback.
the distance between the machines and varying layers sfdodund the wireless
cards. Figure 3.4(a) shows that the two topologies perfofferently whenSsends
as fast as possible. Figure 3.4(b) shows the sudden thratigkpline in the good-

bad topology when the bad link has roughly 50% loss. ¥ais in this graph
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denotes the fraction of the fastest possible sending eage $ending rate factos 1
indicates that the source sends packets back-to-back)cdrre is not as smooth
because the loss rate in the testbed cannot be preciselplbedt Overall, these

results confirm the ill-effects of not providing rate feedka

We further study the effect of bottleneck location in diéfet topologies or
traffic patterns. Our results show that congestion collapsearise in diverse set of

scenarios.

3.1.1 Scenario 1: Linear Topology

Bottleneck link| throughput (Mbps
1-2 1.013
2-3 0.403
3-4 0.245
4-5 0.798
5-6 0.789

Table 3.1: Throughput of a CBR flow under a varying bottlerieclation in a linear
chain topology 1-2-3-4-5-6, where node 1 sends to node 6thentdottleneck link
has 50% loss rate and the other links are reliable and onjgsiub collision losses.

We study the effect of bottleneck location in 5-hop netwangdiogy. Ta-
ble 3.1 shows that the bottleneck location significantlget network performance
in a more general linear-chain topology. The performanasamwt monotonically
decrease as the bottleneck moves closer to the destindinsis because on one
hard, an earlier bottleneck limits the wasteful transnoissj on the other hand, an
earlier bottleneck has more packets going through it andéére total number of
packets dropped is also higher. Nevertheless applyindinaitscan result in higher

throughput when the bottleneck location is anywhere bufitsehop. When the
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bottleneck is at the first hop, effectively it does rate limit

3.1.2 Scenario 2: Star Topology

We first show how the structure of the topology itself can lEacbngestion
collapse. Consider the star topology shown on the left infg@.5. All sourcesy)
and the relay can carrier sense each other, and each sogerding traffic to its
corresponding destination. Every link is reliable and hais eapacity when active
by itself. SinceR can either send or receive at any given instant, the maximum

capacity of this network is 1/2.

As sources slowly increase their sending rate to a point @Res receiv-
ing half of the time, the network throughput reaches its ceapaBeyond that it
declines sharply. With sources sending as fast as postiel@etwork throughput
is 1/4, which isR’s share of the medium. Thus, without rate-limiting, thedlmgy

experiences an efficiency loss of a factor of two. When thebermof flows sharing
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arelay increases, the loss in efficiency is higher. If N flohare the same relay and
the sources send as fast as possible, the relay nodﬁﬂbfm‘ the airtime which is
also the total throughput. But if each flow is rate Iimitedfjﬁp the relay node can
get% of the airtime which is also the total throughput. The thimpigt degradation

without rate-limiting is, thus[\‘gl. Because this factor increases WiNhin theory,

the benefit of rate-limiting can be arbitrarily large. Byeadimiting each source to
1/6, we can achieve the maximum capacity. Simulations aurtfiis effect. With-
out rate limit, the network throughput with UDP flows is 1.2%p&. With rate
limit, it is 2.16 Mbps, an improvement of 73%. The improvemianslightly less
than a factor of 2 because in simulati@manages to get 29% of the airtime which

is slightly higher than its fair share of 25%.

Such bottlenecks can be either present in the topology tsalreated by
the routing protocol, if it tries to route many flows throughkiagle relay. The ETX
and ETT metric of each path that usess 2. Suppose there were an alternate
path in this topology that did not go throudgh These protocols will continue
usingR unless the alternate path had a lower metric. But taking ad&oview of
topology, using a path with a higher metric may sometimesrbéepable because

of the effects shown above.

TCP traffic ~ Similar problems occur with TCP as well because TCP’s bnitate
control and congestion response are not well-suited fomiheless environment.
Consider a star topology shown in Figure 3.7, where all lenesreliable. There are
two competing TCP flows 3 5 and 2— 4. We find performance degradation due

to overload when the central node cannot relay all the traffitt by its neighbors.
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Figure 3.6: The topologies for the TCP case. The TCP flow gaes 1 to 4. The
UDP flow goes fromA to B.
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Figure 3.7: The topology for the TCP example.

With 1024-byte packets, in the absence of additional rangifig, the two flows
get 0.805 Mbps and 0.740 Mbps, respectively. In comparigong limit their

application-layer sending rates using our optimizatiamfework and constrain the
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burstiness of TCP by limiting the TCP sender buffer to 2 ptgkie two flows

get 1.066 Mbps and 1.064 Mbps, respectively, which traeslad 37.9% increase
in total throughput. With 512-byte packets, rate limitimgults in 20.8% increase
in total throughput. This example demonstrates that TClable to appropriately
set its rate to where it can maximize throughput. This islyikeecause TCP’s
aggressive bandwidth probing makes the flows stabilize assate higher than

the loss rate under maximum throughput [8].

Mixed traffic We now show that similar problems occur when both TCP and
UDP traffics exist. Consider the topologies in Figure 3.5eyrare similar to those

in Figure 3.1 except that instead of loss we create the Ibeitlkeby sending traffic
on the linkX-Y. This “background” traffic is a 1.37 Mbps CBR source. In the
bad-good case&s andR can carrier sens¥ andY, and in the good-bad cage and

D can carrier sens¥ andY. Simulations over this topology reveal effects similar
to those with UDP. The throughput of the TCP flow fr@&to D is 1.25 Mbps for
the bad-good case but only 0.27 Mbps for the good-bad casebdtkground flow
obtains similar throughput in both cases. We also find a aimsibngestion collapse
vulnerability in the good-bad case as the maximum allowéel odthe TCP flow

(controlled using receiver window) increases.

Thus, TCP is unable to appropriately set its rate to wherantrmaximize
throughput, even though we use a single, long-running TG®Pifiahis experiment.
Since BSs will typically aggregate traffic from multiple usethey will likely relay

multiple TCP flows of variable lengths. Such traffic will beeeMess responsive.

TCP’s response to congestion does not prevent the anontadbasior be-
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Figure 3.8: A three-node topology in which the two-hop isatelle and the one-hop
path is lossy.

cause it reacts to losses that it is able to observe. But tresmission mechanism
of 802.11 is able to hide many layer 2 losses — up to 6 per patketr configura-
tion which is similar to the default in many wireless NICs.uBhTCP does not react
even though medium resources are being wastefully utilited to highlight this
effect that we use cross-traffic to create bottlenecks. §€maffic creates capacity
differential between the two links that stems from reducedime rather than a

heavy loss rate, which reduces the number of losses expoJ«tR)

3.2 Inability to Differentiate between Routing Options

We now demonstrate how existing routing protocols fail ta fgood paths.
Because they do not properly account for interferencer, theility metric does not

always reflect which paths are better.

3.2.1 Scenario 1: Triangle Topology

As our first scenario, consider the simple, triangular togglshown in Fig-
ure 3.8. There are two paths between the source and destinBith links on the

two-hop path are reliable but the one-hop path is lossy. Thptg 3.9 plots the
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Figure 3.9: Throughputs of the one-hop path, the two-hop patl ETX routing as
a function of loss rate.

throughput of this topology as we vary the loss rate on thetmpepath. It also
plots the throughput of the two paths. The source is sendinfgst as possible.
We see that there is a significant range of loss rate in whigthtoughput of ETX
is lower than that of the best available path. In the regioenatthe ETX curve
hugs the one-hop curve, ETX is consistently picking the lboppath even when it
is worse. In the region where the ETX curve is between the tinerccurves, the

route is flapping between the two paths.

The reason for flapping is ETX’s inability to decide which Ipas better.
Once ETX starts using a path, it begins to appear worse. E&X slvitches to the

other path, and the cycle repeats itself.
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Figure 3.10: Example topologies where current protocolkenmoor routing path
choices. Left: A grid. Right: A chain with interfering sende

3.2.2 Scenario 2: Grid Topology

As our second example, consider the topology on the leftgare 3.10. In
this topology, adjacent nodes interfere with each otheerdfare two flows, one
from A2 to D2 and another fromA3 to D3. ETX picks the shortest patd@-B2-C2-

D2 andA3-B3-C3-D3, for a total throughput of 1.3 Mbps equally divided among
the two flows. But we find that a better routing pattern is usanglightly longer
path for the top flowA2-A1-B1-C1-D1-D2, while keeping the same shortest path
for the bottom flow. The total throughput then is 1.9 Mbps \hiepresents an
improvement of 46%. The flows improve individually as wely, 80% and 62%,

respectively.
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The reason ETX is not able to find the better routing patterbeisause
its link quality measurements only consider loss. In thisecthe interferers are
close enough to coordinate their transmissions, and ernte that stops a node
from sending is not reflected in the metric. Similar limitetialso exists in MIC
and iIAWARE routing metrics. To find high-throughput path® touting protocol
must capture not only receiver-side interference thatealoss but also sender-side

interference that stops nodes from transmitting.

3.3 Unfairness and Starvation

Another category of shortcoming of current routing protedbat we dis-
cuss is their unfairness. That routing over multi-hop véssinetworks can be unfair
towards flows that traverse longer distances is alreadykmeilvn [11, 38], and we
do not repeat those observations here. We show another founfairness which

is not due to the effects of multi-hop.

Consider the topology in Figure 3.11. Each sougces sending traffic to
its respective destinatiob;. The default simulated throughputs of the three flows
when they are sending as fast as possible is shown in the g tdhe middle
flow is starved becaus® is exposed to interference from both other sources. In
such cases, rate-limiting sources in advantageous positiay be desirable. The
bottom table shows the throughputs when source is rateelinta half of maxi-
mum sending rate. As this example shows, boosting fairnegssometimes come
at the cost of total throughput. While the middle flow sigrafidy improves, the

total throughput decreases because the middle flow subtracighput from both
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1 S1-D1 | 3.55 Mbps
$-D2 | 0.04 Mbps
S3-D3 | 3.55 Mbps
Total | 7.14 Mbps

(o

S1-D1 | 1.96 Mbps
-D2 | 2.22 Mbps
S3-D3 | 2.07 Mbps
3 Total | 6.18 Mbps

Figure 3.11: An example topology that exhibits starvatiofop table: Default
throughputs. Bottom table: Throughputs when the top antbboflows are rate
limited.

sources. Nevertheless, we believe that it is importantdating protocols to con-

sider both throughput and fairness concerns and at the gasy &ddress complete

starvation.

3.4 Exponential Backoff

A node’s contention window increases exponentially whebgerves some
packets loss. The effect of backoff can be significant whek llbss rate is high,

especially when the size of a packet is small and the datasratgh.

3.4.1 Short Lossy Paths vs. Long Reliable Paths

ETX uses the total number of transmissions to unify the gohlsoth fa-
voring short paths and favoring reliable paths. An intengstjuestion is whether

two paths with the same ETX yield similar performance, everugh one is long
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(in terms of hop count) and reliable and the other is shortdims of hop count)

and lossy. That is, are all transmission counts equal?

100% 100%
D OO E ©

Figure 3.12: Link’s throughput vs. loss rate

We compare the two network paths shown in Figure 3.12, wheeepath
has one hop with delivery rate @f and the other path consists offLhops with
100% delivery rate on each hop and all links on the path ieter§ with each other.
Since hop count is an integer, we only use the valygwhen 1/ pis an integer. The
ETX metrics of the two paths are the same. Figure 3.13 corsphesthroughput
of short and long paths. As we can see, even though both patlesthe same
ETX, their throughput is quite different. The reliable awthd paths significantly

out-perform those shorter and lossy paths.

There are two main reasons for long and reliable paths t@erform short

and lossy paths.

First, when all links on both short and long paths interféoag reliable
paths yield higher throughput than short lossy paths dubdaeffect of backoff.
More specifically, Figure 3.14 shows throughput over a oo {ath with loss rate
varying from 0 to 0.9. As we can see, the throughput decreases faster than
increase in loss rate. For example, when link loss rate is,58hroughput is
only 261 packets/second, which is only 0.31 of the througlopar a reliable link
(i.e., 842 packets/second over a reliable one-hop pathgh 8uarge decrease in

throughput is because when loss rate is 50%, the time to ssfttly transmit the
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Figure 3.13: Throughput of short and long paths.
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Figure 3.14: Throughput over a one-hop link with varyingsloate.

packet more than doubles as a result of exponential badkoffomparison, trans-
mitting over two reliable hops yields 471 packets/seconucivis 80% more than

the one-hop path with the same ETX. Moreover, as shown inr€igul3, the dif-
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ference further increases as ETX values increase. For dgathp throughput of
a 4-hops path is 245 pkts/sec, which is 210% more than thénopgxath with the
same ETX.

3.5 Inaccurate Estimation of Path Quality

An important requirement for a routing protocol is to faete the selection
of good routing paths. In this section, we show how curreméhss routing proto-
cols are ineffective at this function because their measafdéink quality may not
reflect actual quality. We first show problems with basic kiplality measurements
and then with path quality measurements. We use ETX [4] asdpeesentative
of current protocols. Other protocols [5, 40, 32] also suffem the pathologies

described below, because they are based on ETX.

Measured ETX values may not reflect actual link quality thatiadraffic
will experience when using that link. We demonstrate thdjam with a concrete
example. Figure 3.15 shows that the ETX values of all links4x4 grid in absence
of any traffic. Every link has good quality, with an ETX valdese to 1. Figure 3.16
shows the snapshot of ETX values after a UDP flow is introddcad node 2 to
3. ETX values of links close to Link 2-3 increase because tbbgs on these links

collide with data traffic on Link 2-3.
Do these ETX values reflect link quality that data traffic wbekperience?

To answer this question, we focus on Links 3-4, 4-8, 6-7, ai&d ®\e
retain the flow on Link 2-3 and inject traffic with a varying eabn one of the

other links. Figure 3.18 shows the throughput of the dafidraComparing with
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Figure 3.15: Measured ETX values under no traffic

Figure 3.16, we observe that the measured ETX values areipdicator of the
actual performance experienced by data traffic. For exarimdETX value of Link
3-4 is 16.67, which is much higher than that of Link 6-7; hoasethe throughput
of the two links are similar across all sending rates. Sinyil&ven though Links
7-8 and 4-8 have higher ETX values than Link 6-7, they havalainor higher

throughput than Link 6-7.

The discrepancy between measured ETX and actual traffionpesihce
arises from two factors. First, the ETX metric is determibggacket loss rates at
receivers, so it only captures receiver-side interferdnadails to capture sender-

side interference that stops nodes from transmitting. THigh-throughput paths,
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Figure 3.16: Measured ETX values under one UDP flow from note3?

the routing protocol must capture both receiver-side andeseside interference.

Second, the characteristics of probing traffic and datfdredn be quite dif-
ferent in terms of, for instance, volume, packet sizes ame:iggion pattern, which
makes the two observe different loss rates. For exampler&ig.17 shows that as
Link 7-8 carries more traffic, its loss rate decreases duestwedsing competing
background traffic. The loss rate of data traffic can be highéower than that of
probe traffic depending on volume. Different packet sizas$ generation pattern
of DATA/ACK and probe packets also contribute to the disergyy. For example,
Link 3-4 has ETX value of 16.67 in Figure 3.16 because the @tadiffic on Link
4-3 collides heavily with data traffic on Link 2-3 due to theldéen terminal prob-
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Figure 3.17: Measured ETX of data traffic under two UDP flowse(on Link 2-3
and one on the link in the legends.
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Figure 3.18: Throughput of a link when sending data traffieravwhile keeping
the same UDP flow from node 2 to 3 as competing traffic.

lem. However, as shown in Figure 3.17, the data traffic on Birkhas low ETX,

because ACKs on Link 4-3 seldom collide with data traffic onkd_2-3. This col-
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lision rate is low because the ACKs have a smaller packetasizieare generated
immediately after the DATA packets on Link 3-4, during whiotme Node 2 often
defers to them based on the NAV reservation in the DATA packet

3.6 Discussion

We showed two problems that stem from not providing rate lael to
traffic sources in the face of wireless interference. The Was vulnerability of
the network to congestion collapse in which increasing dla€el beyond a threshold
may lead to a sharp decline in network throughput. The see@wstarvation of
certain flows. These problems arise in range of scenariakrata-limiting traffic
sources helps solve both. We also showed a third problensthais from current
protocols not accounting for sender-side interference.pfdblems we discuss in
this chapter show it is necessary to take into account erentce when manage
wireless network. However, since the medium is open, antiaddi traffic can
effect the capacity on other links. It is difficult to handfetinterference accurately

without a systematical approach.
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Chapter 4

Modeling Interference

In this chapter, we develop an interference model to cafiahaviors of
802.11 DCF in a real wireless network. We first revisit thekgaound on 802.11.
Then we list modeling requirements which need to be takem actount in our

model. Finally, we describe the interference model.

4.1 Background on 802.11

The IEEE 802.11 standard [23] specifies two types of cootdindunc-
tions for station to access the wireless medium: distribet@ordination function
(DCF) and point coordination function (PCF). Our work foaus DCF. DCF is
based on carrier sense multiple access with collision avaed (CSMA/CA), which
is a random access scheme with carrier sense and collistetieance through ran-
dom backoff.The basic CSMA/CA mechanism is shown in FigulieAtnode de-
termines the medium to be idle when the total energy receitem node is less
than the CCA(clear-channel assessment) threshold. t§ stansmission using the

following rules.

If the medium is sensed idle for at least the duration of DEr8ode starts

transmissionimmediately. If the medium is busy, nodes bavait for the duration
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Figure 4.1: IEEE 802.11 DCF

of DIFS, entering a contention phase afterwards. Each nodechooses a random
backoff time within a contention window and additionallylaes medium access
for this random amount of time. As soon as a node senses tmmehi&s busy,
it freezes its counter. The node has to wait until the medisineal again for at
least DIFS. When the randomized additional waiting timesfaonde is over and the
medium is still idle, the node can access the medium immelgiat he additional
waiting time is measured in multiples of slots. The numbeslofs is a random
number uniformly chosen betweé¢® CW|, where CW is the contention window.
In the case of broadcast\W is always the minimum contention windo@Whin.

In the case of unicast, if the receiver successfully recetlie packet, it waits for a
short interframe spacing time(SIFS) and then transmits@iK fkame. If the sender
does not receive an ACK, it doubles its contention windovetiuce its access rate.
When the contention window reaches its maximum value, yisséd that value until

a transmission succeeds, in which case the contention wirgleset taCWhin.
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4.2 Modeling Requirements

Many existing models make simplifying assumptions abayriai propaga-
tion [12], traffic [10, 31, 9, 27], topology [2, 17, 9, 10], dng MAC layer [13].
These assumptions often do not hold for real networks [18}.r@odel satisfies the

following requirements:

Instead of assuming saturated traffic demands, our modeldmheteroge-

neous traffic demands. It can handle both TCP and UDP traffic.

e Instead of assuming binary loss and symmetric communitatiar model
considers the reality that loss rates on the two directidadiak can be quite

different.

¢ Instead of assuming sender side symmetric interferenaemodel handles
asymmetric interference. That is to say, even two nodes aaiec sense
each other, they may have different defer probability wheth lof them are

active.
e Our model can handle the impact of the hidden terminal prable

e Our mode can handle both broadcast and unicast traffic.

Section 4.2.1 shows our measurement study on a wirelesoretvOur study
shows that asymmetric loss and interference are quite camma wireless net-
work. It is necessary to capture such network charactesigitive want to have an
accurate model. Section 4.2.2 describes an example of doemiterminal prob-

lem.
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4.2.1 Measurement Study on a Wireless Testbed

In order to capture characteristics of a real wireless nétwsuch as link
loss and interference, we conduct measurement study onetessrtestbed. The
testbed we use is a controlled testbed which includes 19essenodes located
inside an office building and a controller. Each wirelessenaghs Linux and is
equipped with a NetGear WAG511 NIC. We run 802.11a with a fisidate of 6
Mbps. We are not aware of other 802.11a users in our buildiferh node also
equipped with an Ethernet connection. The controller useset Ethernet connec-
tions to send demands and collect measurement results frertestbed. Figure
4.2 shows the structure of our testbed. The controller comeates with other
mesh nodes through wireline communication. It uses ssh agrwation to send

commands and receives measurement results from these odsh n

We conduct the following measurement to study the inteniegeand link
inherent loss. We use the approach outlined by Padhgk[24] due to its simplic-
ity. In our measurement, we use probing packets with paysiexl1024 bytes. We
let one node, say, floods using broadcast packets for 1 minute. All other nodes
listen to the transmission and record packets they canvecéiet SLa denoteA
broadcast rate when it broadcasts alone. Rl denoteC receiving rate whei\
broadcasts alone. Then we let two nodes, AandB, flood simultaneously for
1 minute. All other nodes listen to the transmission and neé@ackets they can
receive.SZﬁB denotedA’s broadcast rate whelhandB are simultaneously sending.
Let R22B denotes receiving rate & from A as bothA andB are active simulta-

neously. After we gefSl 2 R1 R2, we can computer link inherent loss rate and
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Figure 4.2: A controlled testbed

estimate interference.

Figure 4.3 shows CDF of link inherent loss rate in our testb&é prune
links exceeding 90% loss rates and finally there are 80 liAksund 65% links have
almost zero loss rate. We compare two direction loss rateadt link. Figure 4.4
shows loss rate difference of two directions. In our testbess than 50% of links
have symmetric loss rates. More than 40% of links have lattgger 10% loss rate

difference on two directions.
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Figure 4.3: CDF of link loss rate in our testbed.

In our measurement, we find out that asymmetric interferénaéso com-
mon in our testbed. Table 4.1 shows the active probabilitpred node when
another node is active simultaneously. Each eAfiiyj) in the table is computed

as following

(4.2)

whereS2(i, j) is the sending rate of nodevhen both andj are active, an®l(i) is
the sending rate dfwhen onlyi is active.A(i, j) shows the probability afto take

the channel to send packets when interfered by rjode

From this table, we find out that 55% of node pairs have symmigier-

ference, while more than 45% node pairs have asymmetridenéace.
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Figure 4.4: Two direction loss rate difference

4.2.2 The Hidden Terminal Problem

In wireless networks, interference is location based. Thasidden termi-
nal problem may happen frequently [6]. In order to captureabers of hidden
terminal, our model needs to capture asynchronous lossnchsgnous loss hap-
pens when two links’ transmissions are overlap; at leastliohés transmission
interfere the transmission of the other link; and two sesdannot carrier sense

each other.

Figure 4.5 shows a scenario with four nodes. There are thie ranges
. transmission rangeR(y), carrier sensing rangdi{s) and interference rang&).

Transmission RangB{x) represents the range within which a packet is successfully
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Figure 4.5: A hidden terminal case

received if there is no interference from other radios. $naission range is mainly
determined by transmission power and radio propagatiopepties, such as atten-
uation. Carrier Sensing Rangg.{) is the range within which a transmitter triggers
carrier sense detection. This is usually determined by thenaa sensitivity. In
IEEE 8021.11 MAC, a transmitter only starts a transmissitrenvit senses the
medium is free, which means the energy it senses is belovecaanse threshold.
Interference RangeR) is the range within which stations in receiving mode will

be “interfered with” by an unrelated transmitter and thu$eswa loss.

The hidden terminal problem in this network happens wherethee two

flows AB and CD. As node A cannot carrier sense node C, node Chidden

43



node. C’s transmissions can cause packets corrupted ateeBe Therefore, the
hidden terminal problem happens. Although in this scen&iS/CTS can avoid
data received at node B to be corrupted by node C, the RTS gentrfode A
almost fail due to the collision caused by node C. Thus if fldisaturates the link
CD, the flow AB gets starved as no RTS sent from A can be succéssfgkived
by B. We have to limit traffic from C to D if we want the traffic tamdrom A to
B. This scenario shows an ideal case. However, in realityhake ranges may
not be circular. They are not even contiguous sometime. tmoadel, we infer
interference and condition loss rates caused by hiddensnibdeugh interference

measurement.

4.3 Basic Interference Model

Based on our measurement study, it shows that in order to Insock=al
wireless networks, we not only need to model standard 802hawor, but also
need to take into account asymmetric interference, asynuoniik loss rate and
heterogeneous demand. The following part of the chaptenshow we model a

wireless network.

We first develop a basic model of 802.11 DCF for the base casdich
all flows are one-hop UDP flows and RTS/CTS is disabled. We &hend the
model to support RTS/CTS, multi-hop flows, and different$ort protocols in
Section 4.4.
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4.3.1 Assumptions

Our model makes two key assumptions:

Al. It assumes pairwise interference,., the interference relationship between
two links is independent of activities on other links. Poas works show

that pairwise interference is good approximation in revioeks [24, 21].

A2. Itassumes that different types of losgy, collision loss and inherent wireless

medium loss) are independent.

While these assumptions do not always hold in practice, éineya reason-
able approximation to the reality. Under these assumptia@sdo not need to
model intricate interactions among different linksg, links A andB interfere only
when linksC andD are active. As a result, our model becomes significantly Bimp
fied — it hasO(n?) complexity and onlyO(n) constraints, whera is the number
of active links. In our analysis, we use the normalized sydteroughput, defined
as the fraction of time the channel is used to successfahsmit payload bits. We

are able to express the normalized throughput as the ratio

E[payload information transmitted in a slot tifne

normalized throughput E[length of a slot time

(4.2)
In Section 6.2, we use simulations and testbed experimestsaw that our model

is quite accurate despite these simplifications.
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4.3.2 Constraints

we follow Bianchi’s approach [2] to divide time inteariable-length slots

(VLS)for each link.

e When the link senses a clear channel and either has no dastmdoos its
backoff counter has not yet reached 0, the current VLS lasts fegular slot

t|me Ts|0t.

e When the link senses a clear channel, has data to send, dadkisff counter
is 0, it sends a packet and the current VLS lasts for the ep#ioket trans-

mission.

e When the link senses a busy channel, the current VLS lasighmthannel

is clear for a DIFS duration.

Our model consists of four types of constraints that capgheénter-dependency
between throughput, transmission probability, packet lase, and VLS duration
of different links. We describe these constraints belowbl&&.2 summarizes the
notations, where constants are in upper case and variatdes bower case. To
ensure consistency, we use slot timag; as the common unit for the calculation of

time in our model.

Throughput constraint ~ The throughput constraint relates throughput to trans-
mission probability, packet loss rate, and VLS durationt t;ée the probability
for Link i to start a packet transmission during a VLS. pebe the loss probability

for such a packet transmission. Ligtbe the expected duration of a VLS at Link
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Let ER be the expected payload transmission time at LLinkhen, the throughput
for Link i, denoted byg;, is simply the fraction of time that it spends on successful

payload transmissions:
_ERxTix(1-m)
1

(4.3)

VLS duration constraint  The VLS duration constraint relates the expected VLS

durationy; to transmission probability;:
Mi = Tslot+ z [(Vvlj — Tslot) X Tj] (4.4)
]

whereW; (j # i) is the expected amount of time for Linko wait due to carrier-
sense for Linkj to complete a transmission, awj is the expected amount of time

for Link i to complete a transmission.

We estimatéMj andWj as follows. LetL‘J?Iat be the inherent DATA loss
rate on Linkj. Let DisjIrC and Dﬂst be the probabilities for Link to carrier sense
Link j's source and destination, respectively. [[ﬁ-‘:’t"‘t be the expected duration of
DATA transmission on Link, which consists of a DIFS duration, a MAC preamble
duration, the transmission time for the payload and packatlars. Lefl jac" be
the expected duration of ACK transmission on Lifjkwhich consists of a SIFS
duration, a MAC preamble duration, and the transmissior tiar an ACK. We

then estimat&j andW as:

d d k d
VV” — DiSjI’CX -I-J at+ DijSt>< Tjac % (1_ Ljat>

VV|i — -|-idat+-|-iackx (1_ Lijat)
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We have made two simplifications above. We ignore the effecolision
loss on VLS duration and use only the inherent DATA loss t#?éto estimate the
probability for a DATA transmission to succeed. This sirfipéition turnsw and
W, into constants instead of variables at the expense of klighierestimating the
expected VLS duration. We also ignore the effect of NAVWR, i.e., we assume
that Link i waits for Link j’s ACK only if it is transmitted. In reality, if Linki
successfully receives LinKs DATA, it would wait even if no ACK is transmitted
because of the NAV value embedded in Lifik DATA. The latter simplification
may result in slight underestimation of the expected VLSatlan, but the effect is

small because ACK is typically much shorter than DATA.

Loss rate constraint  The loss rate constraint relates packet loss rate to trgasmi
sion probability. To compute packet loss rgte we model both inherent medium
loss and collision loss. Following [27], we further distingh between two types
of collision loss: (i) synchronous loss that occurs whentth®senders can carrier
sense each other; and (ii) asynchronous loss that occuns atHeast one sender

cannot carrier sense the other.

Assuming independence among different types of loss caogelifferent

links, the packet success probability of Linis

1 pr= (1 L) (1 L% [ [ 679 x (1 £257]
J#1

sync

whereL%'andL2* are the inherent loss rate of DATA and ACK on Link;; "~ and

¢;" are synchronous and asynchronous collision loss on Laglused by Linkj,
which can be modeled as follows.
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e The synchronous collision loss rate is given&}yJ" = Sjt;, wheret; cap-
tures the probability for Link to start transmitting at the same time as Link
andS; is the probability for a packet on Liriko get lost due to collision with
a packet on Linkj conditioned on the fact that the two packet transmissions
start at the same time. Note that a packet is lost when et BATA or ACK

is lost. S0S; combines the conditional loss rates of DATA and ACK.

e The asynchronous collision loss rate is givert§yf"= 1— (1—6;)"i, where
0 = L—i is the probability for Linkj to start transmitting at a random time
instant. Itis obtained by normalizirng by the expected VLS duratiqn. Aj;
is the asynchronous collision loss exponent defined as

Aj = TTHHCij (x)dx,

whereT,, is the maximum duration of a packet transmiss@g(x) is the con-
ditional probability for a packet on Linkto get lost due to collision with a
packet on Linkj when the start times of the two packet transmissions differ
by offsetx. Thus,Cij(0) = S;. To understand the intuition behind the def-
inition of Ajj, imagine that we divide time into bins of fixed widfix. For

a given time bin at offsex, the probability for Link|j to start a transmis-
sion in it is6;Ax. Similar to the analysis of synchronous collision loss, the
probability for Link j’s packet to cause collision loss in Linlks packet at
offsetx is given byCj; (x)0;Ax. The probability for Linki’s packet to suc-
ceed despite collision with Link's packet can therefore be approximated as

1—Gij(x)8jAx ~ (1— 6)%i M2 Assuming independent collision loss for
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different offsets, the total asynchronous collision lossbability for Link i
can therefore be approximated by
1_ |—| (1— ej)Cij(X)AX —1-(1— ej)er[frpﬁTp]Cii ()Ax
X€ [Ty, Tyl
i S G (x)dx }
whose limit becomes 4 (1—8;)" ™™ =1-—(1-6;)N asAxtends to

0.

Putting it all together, we can model packet loss ngtas a function of

transmission probability; andd; = L—i

pi = 1 — (1—L8%% x (1—L3%)x

7é[l SiT) x (1-8)M | (4.5)
|

Feasibility Constraint ~ With 802.11 DCF, the transmission probabilityis fea-
sible if and only if it is bounded by a function of the packetdoatep;. Specifically,
we have [2, 27]

T < m, (4.6)

where CW(p;j) = CWhin + pi X (14 CWhin) X Zk 0 1(2pi)k is the expected con-

tention window size under packet loss ragge CWhin is the minimum contention

window size in slots. For 802.11@Win=15,M = log, (%Wma:ﬁ) , andCWna,=1023.

4.4 Extensions to the Basic Model

We now extend the basic model above to support RTS/CTS, mayitilows,
and TCP traffic.
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RTS/CTS  To support RTS/CTS, we make two modifications. First, in th&V
constraint (Eq. 4.4), constar\tg; andW; are updated to account for the additional
delay introduced by RTS and CTS. Second, the loss rate ems{Eq. 4.5) is
extended to incorporate the inherent RTS and CTS loss igtgandL’'s, and the

additional collision losses involving RTS and CTS.

Multi-hop Flows Given routing information, we can convert multi-hop UDP
flows into one-hop UDP flows. Specifically, let= (X4)mx1 be the vector of end-
to-end flow rates. LeR = [Rig]nxm be then x m routing matrix, whereRq is the
fraction of Flowd that traverses Link Letg = (gi)nx1 be the vector of link loads.
Then, we have

g=R-x (4.7)

Note that the conversion above applies only when the erehtbflow rates
arefeasible If the end-to-end flow rates are infeasible, a multi-hop floay re-
sult in more traffic on hops near the origin, which cannot beied forward by
the subsequent hops. Restricting to only feasible flow rate®t a problem for
model-driven optimization because we only need to condaiesible flow rate as-

signments.

TCP Traffic Finally, when TCP is used as the transport layer protocol, we
also need to take into account the TCP acknowledgment traificonvert multi-
hop TCP demands into one-hop link demands, we replace thagomnatrix R

in Eq. 4.7 with a new routing matriRtcp that combines the forward and reverse

direction of TCP connections. Specifically, R{,q andRe, be the routing matrix
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for the forward and reverse direction of TCP connectiorspeetively. We define

Rrcp = Riwg -+ 0 X Rrev, (4.8)

where the coefficientt reflects the size and frequency of TCP acknowledgments.
Assuming that TCP acknowledgments contain no payload,owttiCP delayed
acknowledgments, we simply set= %,, whereH is the total size of IP and TCP
headers, anB P is the expected payload size. With TCP delayed acknowledtgme

H
enabled, we sat = 0.5 x H+EP"

4.5 Model Initialization

To apply our model, we need to initialize the following cards through

interference measuremesit, 2, R1, andR2.

e inherent loss rate of a link
e defer probability between a pair of senders

e conditional loss probability

Infer Raw Loss Rate of a Link  We estimate the raw loss rate of a liafrom
nodeA to nodeB as following. Assume the sending rate of node A is S(A), the

receiving rate of linke is R(e) andLe is the raw loss rate of this link. We have

_,_RE
Le=1- g (4.9)

Infer Defer Probability for a Pair of Senders  Given a pair senders i and j, we

need to estimate the following conditional probability .

Dij = Pr{iis not active j is active} (4.10)
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We call Dj; the probability thai defers toj. Let S2(i, j) be the broadcast
sending rate of node i when both i and j are broadcastimg: the probability of a
node to broadcast a packétjcastbe expected duration of a broadcasting transmis-
sion; EP be expected payload transmission time. The pridtyatfi a slot is idle
observed by nodeis wheni is not active and is not carrier sensed as active. So
this probability is

(1—1) % (1—Djj*7) (4.11)
Then we have

E[payload information transmitted in a slot time

E[length of a slot time
T+xEP
slot+ (Tspcast— Slot) * (1 — (1 —1) * (1 —Djj * 1))
T+xEP
slot+ (Tspcast— Slot) * (T+ Djj * T)

(i, §) =

Q

Then we can derive
EP slot

D — i) T
! Tsbcast— Slot

(4.12)

Infer Conditional Broadcast Loss Probability =~ AssumeR2(e, j) as the broad-
cast receiving rate of link e when j is active. Define condi(esg as the following

conditional loss probability

condLosse, j) = Pr{ a packet on e is lostj is active} (4.13)

We have

R2(e j) =S2(i, j) x (L—rawLosge)) = (1—olapj*condLosge, j)) (4.14)
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Whereolap;j is defined as

Prob{a packet from i overlaps with a packet frorh.j (4.15)

In order to derive condLoss(e,j) from this equation, we needstimate
olap;j first. To estimatelapij, we treat the traffic from j as the background traf-
fic. We assume the background traffic as ON/OFF process wigbreentially dis-
tributed ON and OFF periods. L&} denotes average duration that j transmits
packets;To+ denote average duration that j is idle. We define a randonalvari
T as the exponential variable with averag¢. Tj andToff can be computed as

following:

Totr = 1-T;

The CDF of random variable T is defined as follows.

F(t)=P{T <t} =1—elr; (4.16)

We consider the following four cases based on different doation of Dj;

andDj;.
e Djj =1 andDj =1 (i can carrier sense j and j can carrier sense i)

olap; = TAU (4.17)
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e Case Dj; =1 andDj; = 0 (i can carrier sense j while j cannot carrier sense
i)
The probability that the OFF period is longer then t is

;t
P{T>t}=1-F(t) =em'; (4.18)
As i can carrier sense j, i overlaps j's transmission happéren j's idle time

is less than i's transmission time, whichlig,cass Then we have

—Tsbeast

olapj =1—P{T > Tspcast =1—€ °ff ; (4.19)

e Case IDj; =0 andDj = 1 (i cannot carrier sense j while j can carrier sense
i)
As j can carrier sense i, the OFF period is always longer tearansmission

period. So the overlap probability is the probability thit active. Therefore
{]

olapj = ; (4.20)

— sbcast

ti+e ©off x(1—tj)

e Case 4Djj = 0 andDji = 0, (i and j cannot carrier sense each other)

I's transmission does not overlap j's transmission onlyif pot active and

the OFF period is longer thaRpcast

So the overlap probability is

—Thcast

olapj =1—(1—tj) x e 'ff (4.21)

After we getolapj, we can compute condLoss(e, j) as follows.

R2(e )
(i, ])x (1—-rawLosse))

olap;

condLosgg, j) = (4.22)
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1.00
0.56
0.83
0.56
1.00
1.00
0.76
0.71
0.56
0.62
1.00
1.00
0.95
0.36
1.00
1.00
0.02
1.00
0.54

0.55
1.00
0.57
0.56
1.00
0.92
0.63
0.44
0.53
0.56
0.56
1.00
0.20
0.65
0.32
0.61
0.67
1.00
1.00

0.77
0.54
1.00
0.87
1.00
0.56
0.56
0.45
1.00
0.67
0.40
0.52
0.48
1.00
0.55
0.06
0.66
1.00
1.00

0.55
0.56
0.95
1.00
1.00
1.00
0.75
0.44
0.61
0.56
0.93
1.00
0.78
0.04
1.00
0.22
0.56
1.00
1.00

1.00
1.00
1.00
1.00
1.00
0.85
1.00
0.43
1.00
1.00
0.41
1.00
0.05
1.00
1.00
1.00
1.00
1.00
1.00

Table 4.1: Asymmetric interference

1.00
0.78
0.56
1.00
0.44
1.00
0.64
0.56
0.99
0.46
0.56
0.41
0.57
1.00
0.56
1.00
0.59
0.69
1.00

1.00
0.48
0.56
0.35
1.00
0.46
1.00
0.49
1.00
0.56
0.53
0.75
0.58
0.11
0.55
0.20
0.56
1.00
1.00

1.00
1.00
1.00
1.00
1.00
0.56
1.00
1.00
1.00
1.00
0.54
0.56
0.57
1.00
0.56
1.00
0.64
0.56
1.00

0.55
0.58
1.00
0.51
1.00
1.00
1.00
1.00
1.00
0.53
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
0.56

0.49
0.56
0.43
0.56
1.00
0.91
0.56
1.00
0.65
1.00
1.00
1.00
1.00
0.97
0.40
1.00
0.56
1.00
1.00

1.00
1.00
1.00
1.00
1.00
0.56
1.00
0.56
1.00
1.00
1.00
0.51
0.41
1.00
0.55
1.00
1.00
1.00
1.00

1.000
1.000
1.000
1.000
1.000
1.006
1.000
0.556
1.000
1.000
0.608
1.008
0.520
0.570
0.446
0.550
1.008
0.566
1.000

11000
10045
11000
11000
11000
01500
11000
01500
11000
10082
01900
00655
11000
11000
01500
10056
01500
01500
11000

0.61
0.77
0.56
0.68
1.00
0.56
0.56
0.56
1.00
0.70
0.56
0.66
0.56
0.72
1.00
0.67
0.02
0.92
1.00

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
0.55
1.00
0.56
1.00
1.00
1.00
0.99
1.00

1.00
0.44
0.45
0.56
1.00
0.52
0.56
0.48
1.00
0.56
1.00
1.00
0.55
1.00
1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00
1.00
1.00
0.55
1.00
1.00
1.00
0.56
0.55
0.95
0.10
1.00
1.00
1.00
1.00
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1.00
1.00
1.00
1.00
1.00
1.00
1.00
0.56
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
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ER | expected payload transmission time for linfin slots)

TS | expected duration of transmission stor link i (in slots)

ES | inherent loss rate for links transmission step

$jt synchronized collision loss probability for liriks transmission step
caused by linkj's transmission step

st | expected size of the collision region fps transmission stepto cause
asynchronous collision loss ifs transmission step

D? | probability fori to sensgj’s transmission step

W; | expected waiting time for link when j is transmitting (becausecan
carrier sensg or hearj’s CTS). We havéij ~ 5 5(Df} + T+ neta-
ED)

Ti | probability for linki to transmit in a randomariable-length slot (VLS)
8t | collision loss rate foii’s transmission step due to j’s transmissio
stept

£ | collision loss rate of link for transmission steg £/ =3 5 £

pi | packet loss rate of link We havep; = 1— (1— 3¢6) [s(1— E?)

W | expected VLS duration of link We havey; = 145 ; (W #Tj)

gi | throughput of linki. We haveg; = ERxtix(1-p)

8; | probability fori to start sending at a random time instaft= & =

i
ER*(1-pi)

Table 4.2: Model constants (upper case) and variables.
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Chapter 5

Model-Driven Optimization

In this chapter, we apply our model to optimize wireless genfance. Our
overall optimization strategy is to compute sending rabeall flows based on their
demands, the network topology, and the optimization objectWe first describe an
algorithm to test whether a given flow rate assignment iseaettile in Section 5.1.
We then consider maximizing fairness in Section 5.2 and meping total through-

put in Section 5.3. Table 4.2 shows constants that are usad imodel.

5.1 Flow Throughput Feasibility Testing

Our goal is to test whether a given set of link throughgistis achievable.

The main challenge is that there is strong inter-dependbatyeen the transmis-
sion probability and the loss rate of different links. Thangmission probability
of a Link i, tj, depends on the transmission probability of the other |imitgch in

turn depends om;,. To address the inter-dependency, we use an iterative guioee
to jointly estimate the transmission probabilities andslogtes. We initialize the
collision loss and transmission probabilities at all linede 0. We then iteratively
update link transmission probabilities and loss ratesdasdhe other links’ trans-

mission probabilities and loss rates derived in the previberation. Figure 5.1
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> Input: a vector of link throughpufg;); > Output: whethekg;) is feasible

1.| initialization : feasible=0,1,=0,pi=0(=1,2,...,n)
/I iterative model evaluation (MaxIter 20 by default)

2.| for iter = 1to Maxlter

3. ei:m i=12...,n

4, (Ti) = estimate_tau_from_theta((6;))

5. (pi) = compute_packet_loss_rates((Ti), (6)) I according to Eq. 4.5

6. if any i whose (tj > 2++w<pi) )

7. feasible= 0; break /I early stop: infeasible

8. end if

0. gl,: TiX<1*Pi)><ER i

Tstot+3 j (W —Tslot) XTj]

10. if (max{|gi—g{|} <TOL) // convergence test (T Ok 0.01 by default)
11. feasible= 1; break I/ early stop: feasible
12. end if
13.| end for

14, return feasible

Figure 5.1: Link throughput feasibility testing.

outlines the algorithm.

To estimate(t;) given (6;) (Line 4 in Figure 5.1), we note th& = & =

Therefore, we can estimatg) by solving the following sys-

T
Tslot+2j [(Wj —Tslot) XT]] )
tem of linear equations

{Tslot+ Z [(V\/” — Tslot) X Tj}} x0 =1, 1=12...,n (5.1)
J

The iterative procedure continues until the number of fiens reaches a
threshold, or the throughput values no longer change signifiy, or a feasibility
constraint (Eq. 4.6) is violated. We bound the number oétiens to twenty, which

works well in our experiments.

5.2 Fair Rate Allocation

Given the feasibility test for link throughput, we use it alsasic block for

achieving weighted max-min fair rate allocation. This edtion takes routing and
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> Input: routing matrixR = [Rg]nxm, €nd-to-end demand" = (xj) (d|€ [1,m])
> Output: weighted max-min fair rate allocation:= (xg)
initialization : unsatSet= {1,...,m}, x4 =0
while (unsatSet£ 0)

/I try to scale up the unsaturated demand®as much as possjible

4 if d € unsatSet

3 x= X(()j otherwise (d=1....m
I/ find largest scales [0, 1] for R(x + scalex x5 to remain feasible
4. scale= get_max_scaling_factor(Rx""S3 Rx)
5 z = x+ scalex xunsat
/1 find the set of demands that become saturated

N

6. if (scale>1—¢) Il € =104 by default
7. X = z; break /I all unsaturated demands can be satisfied
8. end if
9. for eachd € unsatSet
10. Yy=2Yd=(1+€) x4
11. feasible= test_link_throughput_feasibility (Ry)
12. if (not feasiblg
13. Xd = Zg; unsatSet= unsatSet- {d} // d has become sdturated
14. end if
15. end for
16. end while

17, return X = (Xq)

Figure 5.2: Algorithm for fair rate allocation

traffic demand matrices as input.

Figure 5.2 outlines the algorithm, which is effectively édson iterative
water-filling. Letx* = (xj) be the end-to-end demand. LRt= [Rg]nxm be the
routing matrix, wherdRq is the fraction of Flowd that traverses Link The vector
of link loads is given byR- x. Initially, the algorithm marks all demands as unsatu-
rated. In each iteration, the algorithm tries to scale uph&llunsaturated demands
as much as possible until at least one unsaturated flow isasadij.e., it cannot be
scaled up further without violating a feasibility consirai The maximum scaling
factorscalec [0, 1] is found efficiently through bisection search in the subraut
get_max_scaling_factor(g'"3 g% (Line 4 in Figure 5.2). The iteration continues

to scale up the remaining unsaturated demands until all désnare saturated.
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1.| initialization: xfjo) = O,Ifo) =0, forvdvi
2.| for k=1to KMAX
3. letx°P' andt°P! be the optimal solution to the linear program ({|P
4]  x(® = xort
5. repeat // ensure solution feasibility
6. X<k) = x(kfl) +0ax (x(k) — X(kfl))
7. feasible= test_link_throughput_feasibility (Rx))
8. until (feasible= true)
9l xM=099xxM
10.| end for
11 return x ¥

Figure 5.3: Algorithm for maximizing total throughput.

5.3 Total Throughput Maximization

We optimize the network for maximum total throughput by fotating a
non-linear optimization problem. This problem is solvedlimgarizing the non-

linear constraints and solving a series of linear programs.

As before, leix* = (x) be the end-to-end demand aRd= [Rg]nxm be the
routing matrix. LetR; be thei-th row vector ofR. The problem of maximizing
total end-to-end throughput can be cast into the followiag-finear optimization

problem (NLP).

maximize ZXd
Rx<F(t) Vi
. G(1)<0 Vi
subject to 0<xg<x; Vd (NLP)
0<Ti<1 Vi
whereF (1) ERXTX(1-P) _ andGi(T) = Tj — 52— Therefore, constraints

- Tslot+3 | (Wij —Tsiot) X T
R x < F(1) encode the linear relationship between end-to-end thioutghand

2+CW(pi)"

link throughput; constraint§;(1) < 0 encode the feasibility constraint (Eq. 4.6).

We solve the NLP above through iterative linear programmasgshown in
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Figure 5.3. In each iteration, we linearize the non-linearstraints in the NLP us-
ing their first-order approximation. Specifically, }¢¢~ 1 andtk-1 be the estimate
of xandt initeration(k—1). LetF*(t) andG; (1) be the first-order approximations

of F(1) andG;(T1), respectivelyF*(1) andG; (1) are then:

_ 0
Fr(1) =Rt ¢ ;(n — 1) a_r,-':'(T(kl)) (5.2)
X _ _ 0 _
G (1) = Gi(tk 1>>+§<r,-—r§k Y) g, G ) (5.3)

How to compute all the partial derivatives are shown in Agjend.

SubstitutingF (1) andG(1) with F*(t) andG*(t1) in (NLP), we obtain the

following linear program:

maximize gxd
Rx<F*(1) Vi

subject to (()3|<(Tx)d§<0x§ :Id (LPy)
0<T<1 Vi

We then derivex¥) andt¥ by solving the linear program (L& The op-
timal solution to (LR), however, cannot be directly used because the LP is only
an approximation to the original NLP. The resulting solntimay not satisfy the
constraints in the original NLP. To ensw®) satisfies NLP, we apply a simple line
search to find a point on the line betwedl V) andx(¥) that is feasible. During the
line search, the distance betwedl andx*—1 shrinks exponentially fast. Since
we guarantee the feasibility o, we can quickly find a feasible solution. In

our evaluation, we set the shrinkage raticote= 0.5. Finally, to better deal with
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numerical imprecision in our feasibility test, we scale dotf) by 1% at the end

of each iteration (Line 9 in Figure 5.3).

Since our problem is NLP, we cannot guarantee a global opsoiation.
To improve the quality of the final solution, we use multiplering points. We al-
ways include an all-zero starting pointse(, all flows are inactive). To favor flows
that are more likely to achieve higher throughput, we alsd @d.; — 1) start-
ing points, each with only a single active flow. Specificalbr, eachd = 1,...,n,
we find the largesti™ < x such that it is feasible for flowl to send at rate|"
while all other flows are inactive. This can be done efficigning the subroutine
get_max_scaling_factor (see Section 5.2). We then select thig,{ — 1) flows with
the Iargest("d““, reduce their rates by a constant factor (2 by default) sitiey are
not too close to the boundary of the feasible solution spaoejnclude the resulted
traffic assignments as our starting points. In our experimeve use\j,i; = 4 start-
ing points. However, our experience suggests that evenghesall-zero starting

point often yields good performance.

5.4 Discussion

We now discuss certain practical aspects of our optiminagtcategy. Our
algorithms can be implemented at a central location, suah Bssseract [39], or in
a fully distributed manner. The distribution is similar tat in link-state protocols
such as OSPF, in which all nodes implement the same algqribhrar the same
data, and thus arrive at consistent solutions. Apart frgoltgy information, dis-

tributing our algorithms also needs demand estimates faows flows.
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Actual Traffic
---- EWMA Estimate

Figure 5.4: The amount of traffic sent to an AP in 10-seconervatls. Top: At a
WiFi hotspot. Bottom: At SIGCOMM 2004.

Another aspect that is related distributed implementaisotine computa-
tional requirements of our approach. An exact quantificaBa subject of ongoing
work, but in our experiments we have not found it to be a pnoblén our unopti-
mized implementation, rate computations are practicabfine optimization. For
instance, in our experiments, it takes roughly three sextmdptimize ten flows in

25-node topologies.

Finally, our methods use flow demands as inputs for optinumatVe pro-
pose that nodes base their estimates on recent history. éSsichtegy is effective
only if there is temporal stability in flow demands. While aless meshes are not
significantly deployed yet to settle this question with agrty, we gain insight into
this issue by studying wireless usage in two different emuments — at a WiFi
hotspot in Seattle and at the SIGCOMM 2004 conference [2[QJurE 5.4 shows
for 10-second windows, the actual traffic sent to an AP andrdfic predicted by
EWMA (a=0.5) over history. We see that traffic exhibits a high degifdemporal
stability and EWMA predicts future traffic fairly accurageMWhat visually appears
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as sharp peaks and valleys in traffic are in fact composed tifpleLtime intervals,
compressed so that we can show a two-hour period. The aveedfie volume is
723.5 Kbps for the hotspot trace and 43.77 Kbps for the SIGGDOké&ce. The
mean absolute error (MAE), defined eeari|Estimated- Actual), is 200 Kbps
for the hotspot trace and 15 Kbps for the SIGCOMM trace. Ow-lianiting would
actually even out those spikes if there is not enough caparcthe network. Sup-
pose the APs that we measure were nodes in a city-wide waerelesh, aggregating
traffic from similar clients and sending it to a nearby gatgwathe multi-hop mesh
backhaul. Then, by extrapolating from these environmevegudge that the nodes

would be able to obtain reasonable estimates of their desnand
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Chapter 6

Evaluation

We evaluate the accuracy of our approach using extensiteetéand sim-
ulation experiments. The former provides a setting with-veald complexities.
The latter lets us conduct a broader range of experiments pasily and also lets

us vary parameters such as topology that we cannot varyddetitbed.

6.1 Evaluation Methodology
6.1.1 Strawman: Conflict Graph Model

We compare our approach to one based on the conflict graph rt©ag|
of interference[13]. We note that the use of CG model has aehlproposed in
practical settings, but it provides an interesting congmaripoint in our evaluation.
CG models interference but abstracts away the details dfith@. The comparison

lends insight into the importance of modeling the MAC.

The CG-based model assumes that packet transmission$vadirad nodes
can be finely controlled. It represents wireless links adlmbwertices and draws a
conflict edge between two conflict vertices if and only if tieeresponding wireless
links interfere. Based on the definition, it is clear thak$rorresponding to conflict

vertices in a clique in the conflict graph cannot be activeuiameously. Therefore,
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an upper bound of optimal wireless throughput can be condayesolving a linear
program (LP) which specifies the goal of maximizing the tatatfic delivered to

the destination while satisfying flow conservation andwfigonstraints.

We apply this formulation to derive the rate limits that nmakie the total
throughput. When applied to different route selection soé® we enforce traffic
to follow the selected routes by adding the following lineanstraints. For each
demandl and each linke, Ty e < Capeze, WhereTq ¢ is the amount of traffic routed
for demandd on link e, Cap. is the capacity of linke, andzg ¢ = 1 if eis used to

route demand and O otherwise.

To maximize fairness, we use a similar formulation. The naffference is
that we change the objective to maximize the sum of the tbtalighput of all the
flows and the portions of their demands that are achieved dan be expressed as
>d Y r(e)=destd) Td,e +A0Xq, Wherer (e) is the receiver of linke, des{d) is destina-
tion of demandl, x4 is traffic demandg is the minimum proportion of its demand
that can be achieved, andcontrols the relative importance of these two objectives.
Our evaluation uses = 100 to significantly favor the solution with high fairness

when maximizing fairness.

6.1.2 Qualnet Simulation

Our simulations are based on Qualnet v3.9.5. We use 802.ithafixed
bit rate of 6 Mbps and free-space model of signal propagatidrnch provides a
communication range of 230 meters. The interference rahgg3meters. We add

following additional functions in existing QualNet.
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1. Artificial Loss

In order to simulate different wireless environments, we afunction which
can set MAC layer loss to a link. rflWe assume bits loss arepetsident. So

the inherent loss rate of a link is given as following:

Lossj = (1—sizes) x x(1—sizes ) 6.1)

2. Rate limiting

In order to compare different routing schemes with and witlmate limiting,

we add application rate limiting functions into Qualnet.

3. Routing Package

This package is implemented in python. The input of this pgekare wire-
less link information, such as link source, destination enérent loss rate.
It constructs a graph based on the information. The packaigenk weight
according to different routing schemes and then apply skbpiath algo-
rithms to find routes. The output of it are static routes foflavs, which are

installed into Qualnet simulation.

We generate traffic using both TCP and UDP and consider twestyb
application demandsi) for saturated demandsources always have traffic to send;
and (ii) for random demandgshe demand of a source is picked randomly from a
uniform distributed between 0 and the maximum link load. \&g/\the number of

flows from 1 through 20 where each flow is between a unique serdeiver pair.
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We consider two kinds of topologies in this paper: 5x5 grigdiogies and
25-node random topologies. Both occupy a 900x88@rea. We also study other
network densities and find that the results are qualitatisiehilar. So we omit them

from this paper in the interest of brevity.

For each scenario, we conduct 10 random trials. In each fioal sources
and destinations are picked randomly. For random trafficadels and random

topologies, each trial also randomly generates the deneamithe topology.

We evaluate the performance with and without RTS/CTS. WHER/RTS
is enabled, we set RTS threshold to 100 bytes so that (sm@P ACKs do not
incur RTS/CTS overhead. In order for TCP to be robust to higklbss rates, we
use TCP NewReno and set the MAC-level short and long retrptsaio 16. This
is the largest maximum retry count allowed in madwifi-oldsdri which we use in

our testbed.

Since several routing metrics.@, ETX [4] and MIC [40]) are designed for
wireless networks with lossy links, we extend Qualnet satarito generate direc-
tional inherent packet losses. In our evaluation, we rang@assign bit-error-rate
(BER) of links such that the data packet loss rates are unlfodistributed between
0 and 80%. As wireless link loss rates depend on frame sizeg\valuation con-
siders both small and large frames. They have respectiMeappn payload sizes
of 106 bytes and 1024 bytes. The broadcast probes used toradiag quality for

routing are also 106 bytes, as in [4].
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6.1.3 Testbed Experiment

In our testbed experiments, we use the lowest transmissiaepfor our
nodes to increase network diameter. In this setting, we aredghe diameter to be

7 hops, though routing paths may be longer.

We implement routing protocols using click [3]. Click is atseare archi-
tecture for building flexible and configurable routers. Adklrouter is assembled
from packet processing modules called elements. Individiganents implement
simple router functions link packet classification, quegeischeduling, and inter-

facing with network devices. Click defines a declarativeylzage to make configu-

rations.
Applications
KernelTun }_
{ SetSourceRoute } SRFEorwarder }
{ ToDevice { FromDevice }

Figure 6.1: Click configuration

70



Figure 6.1 shows the configuration of the Click router in axperiments.
When an application sends out a packet, the packet goeggthikéernelTap, and
then the Click router handles the packet. The Click routseiits source routes
into the packet’s header based on the destination of theep&ekore it sends it
out through ToDevice. When an incoming packet is receivethbynetwork card,
it first goes through the Click router. The Click router chetke destination of
this packet, if the destination is itself, it hands the pat¢&ehe ordinary kernel IP
process code, and then the corresponding application aaufiehd; otherwise, it

forwards the packet by sending it out of the network card.

We usenuttcp[22] to generate and measure UDP and TCP throughput. To
rate limit flows, we lehuttcpto generate application traffic at the rates derived from

the models.

Figure 6.2 shows process of our simulations and experimémtQualnet
Simulation, the first step is to generates a topology, lirds Iaates and traffic de-
mands; the second step is to generate conflict graph baskd topblogy, and then
infer S1, 2, R1, R2; the third step is to feefll, S2, R1 andR2 into our model; the
fourth step is to compute routes , and estimate flow ratedijrtbkestep is to install

computed routes and flow rates in Qualnet to measuremerrperhce.

In Testbed Experiments, the first step is to conduct interfee measure-
ment to collectS1, 2, R1, R2. The rest steps are similar to simulations except that
the final step is to install computed routes and flow rateserteéstbed to measure-

ment performance.
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Qualnt simulation Testbed experiment

Conduct interference

Generate topolo link loss
pology, measurement

rates and traffic demand

Infer S1, S2, R1, R2 Measure S1, S2, R1, R2

***********

Feed S1, S2, R1, R2 into our
model, compute link demand

Compute route. Estimate
safe rate that can be |
supported |

|

Install static route and rate

Install static route and in Testbed

rate in Qualnet

Figure 6.2: Process of Simulation and Experiment
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6.2 Model Validation

Below we show that our model is accurate in a range of settings

A good interference model should closely approximate aeltile through-
put given traffic demands as input, which implies that: (§ throughput estimate
should be achievable in the network, i.e., the model shoatidver-predict through-
put; and (ii) the network should not be capable of delivenngre throughput,
I.e., the model should not under-predict. It is straightfard to evaluate for over-
prediction — instantiate the estimated throughput to thtevoi and check if the

actual throughput comes close.

Evaluating under-prediction is more tricky. We would likeibcrease the
load on the network beyond what the model estimates and dmaekoften that
leads to higher network throughput. However, given mudtijdws, there are nu-
merous ways to increase network load. Our experiments usa@esuniform
scaling approach that increases each flow throughput byatime $actor. We use
scaling factors of 1.1, 1.2, and 1.5, which correspond toemsing load by 10%,

20%, and 50%.

Figure 6.3 shows the format in which we present results mghction. To
evaluate under-prediction, the left graph shows a scdtteopactual and estimated
throughput. The two lines on the scatter plot correspong-toandy=0.8x. They
help judge the accuracy of the model visually. There will bepoints above/=x
as the network can never achieve more throughput than wirastentiated. The

points belowy=0.8x correspond to instances where the actual throughput ithass
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80% of what is predicted by our model. The right graph is a CDEe ratio of
actual and estimated throughput, before and after scalihgy-value of the point
where a scaled curve reachesl represents the fraction of cases where our model
under-predicted by at least the scaling factor. The figugesemate results across
all flow counts that we generate. These counts vary betwezhith-simulations

and 1-16 in our testbed experiments.

In the experiments below, we use a data packet payload of hp24 and
use ETX to select routes. We find qualitatively similar restdr smaller payloads

(not shown) and other routing schemes (Section 6.4).

6.2.1 Simulation Experiments

Figure 6.3 shows the accuracy of predicting the throughpatgrid topol-
ogy with saturated UDP demands and without RTS/CTS. We cafrem the scat-
ter plot that the vast majority of the points lie between thed, which implies that
we over-predict network throughput by more than 20% in vesy tases. From
the scale=1 CDF on the right, we can see that there are feaerlho such cases.
Meanwhile, the worst-case overestimate is under 50%. A mngase for these
over-predictions is that our model assumes pairwise iaterice. The model over-
predicts when neither two senders interfere with a link aelbat their total noise

collectively interferes with the link.

The scaled CDFs show that our model does not under-pretheren this
configuration. In almost all cases, the network is unablectoeve demands that

have been scaled by even 10%.
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Figure 6.3: Throughput prediction accuracy in simulatiéroor model for grid
topologies, saturated UDP traffic, and RTS/CTS = OFF.

For the same configuration, Figure 6.4 shows the accurat¢yed®G-based
model. Clearly, this model vastly over-predicts what thewaek can achieve, be-
cause of the assumptions it makes about the ability of thestmifinely coordinate
their transmissions. From the CDFs, we can see the netwbik\as less than half
of the predicted throughput in half of the cases. Thus, nmiode02.11 DCF, as

our model does, is key to accurate predictions of networdutihput. Interestingly,
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Figure 6.4: Throughput prediction accuracy in simulatiothe CG-based model
for grid topologies, saturated UDP demands, and without/RTS.

the inaccuracy of the CG-based model also hints at the pedioce cost of the

CSMA-based 802.11 MAC under heavy load.

Figure 6.5 shows that our model is robust across a wide rafr@géer simu-
lated configurations. For TCP traffic, it overestimatesuigtgput by more than 20%
in fewer than 20% of the cases. This accuracy is less tharfah&tDP because

TCP creates bursty traffic and losses, which we do not cuyremddel. However,
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Figure 6.5: Throughput prediction aczaracy in simulatibowr model for various
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Figure 6.6: Throughput prediction accuracy of our model ur destbed.

RTS/CTS=0OFF.
as for UDP, we never under-predict the network’s TCP througleven by 10%.

The remaining graphs in the figure show that the accuracy oivmdel
is high even when we switch from grid to random topologiesfrom saturated

demands to randomly assigned demands, or from not usingdRTESI0 using it.
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Figure 6.7: Throughput prediction accuracy in our testbshgi CG-model for
saturated demands and RTS/CTS = OFF.

6.2.2 Testbed Experiments

Figure 6.6 shows that our model is fairly accurate in the nreadistic
testbed setting as well. For UDP, only in 10% of the cases we-pkedict through-
put by more than 20%. For TCP, this over-prediction occur2@6 of the cases,
which is similar to that in simulation. The worst-case opegdiction is less than
40% for both TCP and UDP. Meanwhile, as in simulation, our etatbes not
under-predict either. For both TCP and UDP, the network a&bisto achieve de-

mands that have been scaled by even 10%.

Figure 6.7 shows the throughput prediction accuracy usi@Gentddel. We
see that, as in simulation, the CG-model consistently egémates the achievable
rates. Almost all the points are outside the cone formeg byx andy = 0.8x,
which indicates that in most cases its estimated demandsaiechievable within

80%.
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Figure 6.8: Fairness comparison in our testbed. RTS/CT$=0OF

6.3 Performance Optimization

Can the accuracy of our model in predicting the throughoppstied by the
network be harnessed to improve performance, using theadethe outlined ear-
lier? We answer this question in this section by first comagdefairness maximiza-
tion and then throughput maximization. We compare resulis mo rate-limiting,

as it happens today, and with rate-limiting using the condiraph (CG) model.

6.3.1 Maximizing Fairness

Figure 6.8 shows the fairness index for TCP and UDP trafficuintestbed.
We see that the fairness index with our algorithm is remdykelbose to 1 for both
kinds of traffic and across all offered loads. Without rameting as well as with

the CG-based rate limiting, fairness degrades quickly ag iocreases.

Figure 6.9 shows the fairness provided by our model-driygr@ach holds
in a range of simulated configurations, for both TCP and URfi¢;, including grid

and random topologies, with and without RTS/CTS, and withrsaed or random
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Figure 6.10: UDP throughput improvement in our testbed watb-limiting.

demand models.

6.3.2 Maximizing Total Throughput

We consider the performance objective of maximizing tdtedtighput.

Figure 6.10(a) shows that the benefits of rate limiting faussted UDP

traffic in our testbed are significant. The graph on the leftgthe average to-

tal throughput, and the graph on the right plots the averagmalized throughput

(i.e., the throughput under rate limit normalized by the throughmder no rate
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limit). In terms of absolute throughput, UDP traffic expekes over 200% im-
provement; in terms of normalized throughput, the averaggrovement ranges
from 200% to 1700%. The larger improvement in the latter sstgythat rate lim-
iting is especially beneficial to the flows that experienae tbroughput under no
rate limiting. Unlike the task of increasing fairness, th&-8ased model helps
boost network throughput. Like our model, itis able to idignnterference-related
bottlenecks and impose rate limits. However, because th&&¥8d model signif-
icantly over-predicts throughput (Section 6.2), the I@ds in the network is much
higher and the throughput is consistently lower. Figur®@)lshows the benefit of

rate limiting extends to random UDP demands.

Figure 6.11 shows that the gain from rate-limiting satutaded random
TCP flows is a more modest 10-40%. This lower improvement 0P Ts expected
given that we experiment with infinitely long flows that reaetll to congestion,
thus minimizing interference-related losses. Howeverbeleeve that rate-limiting
will provide substantial benefits when TCP traffic is commgbsEmany short trans-
fers, as is common for Web transactions, because an aggrefgstiort TCP flows

is significantly less responsive to losses than long TCP flows

Figure 6.12 shows the network throughput improvement foioua simu-
lated configurations with UDP traffic. The error bars dentdedard deviation. We
see results consistent with the testbed across all confignsaexcept that the CG-
based model does as well as our model only in random topaogikis is likely
because there are a small number of bottleneck links in tidora topologies and

CG also tries to avoid them.
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Figure 6.11: TCP Throughput improvement in our testbed vath-limiting.
Figure 6.13 shows the effectiveness of rate limiting for TiG#ic in sim-
ulated configurations with and without RTS/CTS. We see, dB thie testbed, the
benefit of rate-limiting tends to increase with more flows benefit increases to
20-40% when the number of flows reaches 20. In general, irateAg helps TCP

traffic less than UDP traffic.
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6.4 The Role of Routing

In this section, we show that, surprisingly, the choice ef éixact routing protocol
makes little difference in our experiments. We study thriseioprotocols and find

that all four behave similarly. What seems to matter mostistiver flows are being

Total throughput (Mbps)
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# Flows

(b) RTS/CTS=ON

All the results above are based on routing paths chosen IiyTtReorotocol.

rate-limited.

The three other protocols that we study are the following.

e HOP selects a path with minimum hop-count.

e MIC [40] scales ETX values of a link by multiplying it by the sum tbie

neighbors of the two end points. It then selects a path wighnimimum

scaled ETX value.

e CGselects the routes by casting the routing problem to a maxiffaw prob-

lem augmented with interference constraints derived byndlicograph [13].
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Figure 6.14: Throughput in our testbed of the four routinghods with and with-
out rate-limiting. The top four lines in each graph are far tase of rate-limiting
and the bottom four are for non-rate-limiting.

These routes are close to optimal if nodes can finely coatelinr@nsmissions.

We consider only the goal of maximizing throughput in thip@a but we

obtain similar results for maximizing fairness.

Figure 6.14 shows UDP and TCP performance under differemitrgschemes.
The bottom four curves are the performance of differentinguschemes under no
rate limiting, and the top four curves show the results usatg limiting based on
our model, with the objective of maximizing total througlpwe see that the rout-
ing schemes are almost indistinguishable. Rate-limitiogsdmatter, however. For
each scheme, rate-limiting using our model provides 504 @@ain for UDP and

10-45% for TCP.

In Figure 6.15, we can see the same effect in other simulateftbtirations.
Routing does not seem to matter whether we have TCP or UDR tisdturated or

random demands, big or small payloads. To rule out diffexenc probe packet
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size and payload size, which may cause ETX to select the wpatly we also
considered probe-sized payload packets. As Figure 6.Bb(@)s, that does not

make a significant difference either.

These routing protocols differ in how they account for ifeegnce, but they
all have their shortcomings on that front (see our previoagkvj18] for more de-
tails). For example, the ETX metric is determined by packss Irates at receivers,
so it only captures receiver-side interference but failsapture sender-side inter-
ference that stops nodes from transmitting. Moreover, bagacteristics of prob-
ing traffic and data traffic can be quite different in termsfof,instance, volume,
packet sizes and generation pattern, which makes the twenabslifferent loss
rates. Therefore, the ETX metric does not accurately préuicactual performance
experienced by data traffic. The MIC metric is based on ETXt bas similar is-
sues. The CG-based routing assumes perfect schedulingaslto select longer

detours, which perform well under perfect scheduling batumaler 802.11.

What we show is that once we have properly managed intedergmough
rate-limiting, the small variations in routing paths prodd by these protocols have
relatively low impact on total network throughput. We alspeat that our methods
for rate-limiting are agnostic to the choice of the undextyrouting protocol. They
can thus work with whichever routing method that providesdsgerformance in

the given setting.
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Chapter 7

Conclusions and Future Work

In this section, we summarize our contributions, and paihdirections for

future research.

7.1 Conclusions

We study interference in wireless networks through emglixperiments
and simulations. We find out that current routing protocalsefdifficulties in ef-
fectively managing it. For instance, Wireless network tlyloput is sensitive to
bottleneck link location; existing routing metrics, suchEar X, does not always re-
flect which paths are better; the effect of backoff can beiggmt when loss rate is

high; exiting routing metrics measures of link quality map reflect actual quality.

As interference depends on many factors, such as locatiMiroement,
and traffics. It is inevitable to consider interference irystematic way. Our work
demonstrates the feasibility of predictable performangngzation for wireless
networks, thus making the task of managing and optimizimgnttas predictable
as that for wired networks. The foundation of our approach rew model that
captures interference, traffic, and MAC-induced depenigenin the network using

only a small set of constraints. Our model is realistic efoteghandle real-world
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complexities such as hidden terminals, non-uniform dermaadd non-binary in-

terference, and yet it is lightweight enough to drive netnaptimization.

Evaluations of our methodology using a testbed and sinmrdatshowed
that it is very effective. Across a range of topology andfitafonfigurations, it was
able to accurately approximate the throughput that the oritwielded. It rarely
under-predicted, and for 80% of the cases, it estimatedini2% of the actual
throughput. When maximizing fairness using our methodsaelgeved close to
perfect fairness amongst flows for both UDP and TCP traffic.edvimaximizing
throughput, we found that our methods can improve netwargutighput by 100-
200% for UDP-based traffic and 10-50% for TCP-based traffic.

7.2 Future Work

We plan to address several practical issues in order to apelgpproach to

operational wireless networks.

e we plan to develop novel measurement techniques to paganelaccurately

estimate interference and seed our model.

e we plan to evaluate our approach under realistic traffic aelmshat change

with time.

e we plan to improve the efficiency of disseminating the ingot®ur algo-
rithms by adapting the update frequency based on the ratbasfge and
applying delta encoding.
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Appendix 1

Derivatives of F and G

In this appendix, we compute the derivatives of F and G.

(1) = ER xTi x (1—pi) (L.1)
Tslot+ 3 | [(VVI] — Tslot) ¥ Tj]
G'(T)—T'—# (1.2)
ny 2+CW(p)) )
_ T i
Let6 = Toor 5 [ Taod <)) We can rewrite Eq. 1.1 as
F(t) =ER x6; x (1—pj) (1.3)
Do derivatives, then we have
0 0 0
a—TiHZEHXa—TieiX(l_pi)—EPlXa—Tipixei (1.4)
) 2 dCW(p) 0
—Gi=1 —pi 1.
oT; Gi=1+ 2rCW(p))2 ~  dp  om B (1.5)
In order to compute Eq. 1.4 and 1.5, we need to comgh, ;2-pi, and
dCW(pi)
dp
o Ti [Wk—Tslot] k |
ie _ {TsloﬁLZj[(Wj*Tslot)XTj]}z 7& , (1 6)
0Tk 1 Ti X (Wi —Tsiot) K—i. '

Tsloﬁ‘Zj [(WJ —Tslot) XTj] B {TsIOH‘Zj [(W] —Tslot)XTj] }2
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We have

P =1 (1 L#®) x (1 L8 x [ [ (1 Syrj) x (1 -8

J#

Let §= [ |1~ Sj1) x (1-8)™ |
I

Therefore

InS = ;In(l—SjTj)-l-;Aij'n(l—ei)

9 9.
—InS _ =Sk j

Z L
0Tk 1— Stk Z Jl—ej

0 _ aTk J
ot Pi = C.XSX[l Ska+Z~A|J ]

WhereC; = (1— Lﬁ'af)(l _ L?ck>

M-1
CW(pi) = CWhin+ pix (1+CWhnin) x 3 (2pi)

1_— 2D M
= CWhin+ pi x (14+CWhin) x 1£72pp?
. o \MEL
= CWhin+ 1+C;\Nmn X 2pi 15253_
dCW(pi) (1 CWoin) 1_(M+1)(2pi)M+2pi—(2pi)M+1
dp - n 1—2p, (1-2p)?
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1-2p— (M+1)(1—2p)(2p)M +2p; — (2p)M*?
(1-2p)?
1+ (2p)M [M2pi — (M +1)]
(1-2p;)2

= (1 + CWnin)

= (1+CWhin) (1.12)

We can plug in Eq. 1.6, 1.11 into Egq. 1.4 to compute the deveaif
F(t)and Eq. 1.11, 1.12into Eq. 1.5 to compute the derivats; ().
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