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This dissertation provides a new theoretical scheme of signal processing:

cross time-frequency analysis. The proposed cross time-frequency analysis is

applied to various types of real-world signals and systems in order to verify the

feasibility and applicability of the proposed theory. The application of time-

frequency analysis is focused on electric power and other physical systems.

Unfortunately, classical Fourier-based methodologies and power qual-

ity indices are not directly applicable for the assessment and localization of

transient power quality phenomena. Hence, in this dissertation, application

of time-frequency analysis is discussed for the assessment and localization of

transient power quality events. Through the use of joint time and frequency

localized “energy” distributions, a set of time-frequency based transient power

quality indices are presented and applied to real-world disturbance signals.

Also, a solution for the spatial localization of transient disturbances is pre-

sented. It rests upon calculating a time and frequency localized “phase dif-

ference” via cross time-frequency analysis. By evaluating the phase difference
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of voltage and current at the time and frequency of interest and at different

spatial points, one can identify the direction of transient disturbance energy

flow in order to pinpoint the location of the transient disturbance source.

In addition, applications of time-frequency theory have been extended

to various types of real-world physical signals and systems. A new reflec-

tometry methodology, time-frequency domain reflectometry, is proposed and

demonstrated with experimental results. Also, cross time-frequency analysis

has been utilized for the characterization of ocean wave group propagation,

and applied to transient postural sway signals to identify the effects of aging

and sensory systems on human postural control systems.
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Chapter 1

Introduction

For the analysis of nonstationary signals, classical Fourier analysis can-

not provide time-localized information of the time-varying signatures of the

signals. Recent research in signal processing is focusing on the analysis of non-

stationary signals and nonlinear systems, classes that most real-world physical

signals and systems belong to. Time-frequency analysis started from the short

time Fourier transform and the Wigner-Ville distribution in 1932, both of

which have contributed to various application fields of engineering and science

with aid of advances in digital computing technology. Time-frequency analysis

is based on a philosophy that represents a nonstationary signal in terms of a

time and frequency localized energy-like density function in a joint manner.

Time-frequency analysis has been well defined in a mathematical sense

by L. Cohen via the generalization of a variety of types of time-frequency dis-

tribution in terms of kernels, which is called Cohen’s class. The biggest short

coming of the time-frequency distribution for the application to real-world

signals involves cross terms or interference effects, which are associated with

multiple signal components. W.J. Williams has contributed a great deal to

the development of high resolution time-frequency kernels which overcome the

limits of the interference effects including the Choi-William distribution, and

the reduced interference distribution. Hence, time-frequency analysis provides

a strong tool for the analysis of transient or nonstationary signals in a quanti-
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tative way. Many fields of application have been investigated and interpreted

with the aid of time-frequency analysis.

However, another important factor for the representation of a signal,

namely, phase, cannot be treated in a proper manner via the classical definition

of the time-frequency distribution. An investigation of the phase difference for

an input and output signal pair will often reveal valuable information aiding

the interpretation of the associated system of interest. If the input and output

signal pair is transient or nonstationary, it is necessary to investigate time

and frequency localized phase difference. Hence, in this dissertation, a new

theory of signal processing, cross time-frequency analysis, is proposed for the

determination of the time and frequency localized phase difference.

In this chapter, we briefly review the fundamental concepts on time-

frequency analysis with an emphasis on its history. The spectrogram, Wigner-

Ville distribution, Choi-Williams, and RID, all members of Cohen’s class, will

be introduced. The properties of time-frequency distributions associated with

various kernels will be treated. At the end of the chapter, the structure and

organization of the dissertation will be introduced.

1.1 Time-Frequency Analysis: Cohen’s Class

Time-frequency analysis was motivated by the need to analyze nonsta-

tionary signals whose spectral characteristics change in time [1]. The first trial

in time-frequency analysis was the short-time Fourier transform (STFT): take

the Fourier transform of the nonstationary signal for a short time duration

specified by a time localization window. The absolute value squared STFT is

called the spectrogram. When the signal is x(t), and its localization window

is h(t), then the definition of the spectrogram, SPx(t, ω), is as follows [2]:
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SPx(t, ω) = |Sx(t, ω)|2 = | 1√
2π

∫ ∞

−∞
x(τ)h(τ − t)e−jωτdτ |2 (1.1)

However, the uncertainty principle [3] inhibits the use of the STFT, and indeed

all types of time-frequency distributions. The uncertainty principle is defined

by product of time resolution, ∆t, and frequency resolution, ∆ω, as follows:

∆t∆ω ≥ 1

2
(1.2)

The inequality implies that the product of time resolution and frequency res-

olution has a lower bound: therefore we cannot achieve arbitrarily high reso-

lution simultaneously in both time and frequency. In other words, there exists

a trade-off relation between time resolution and frequency resolution. The

equality holds for a Gaussian whose Fourier transform is another Gaussian.

In 1932, Wigner proposed an instantaneous auto-correlation based dis-

tribution in an application to quantum mechanics, then in 1948, Ville derived

the distribution [4]. Therefore, the distribution is called the Wigner-Ville dis-

tribution. The definition of the Wigner-Ville distribution, WVx(t, ω), is as

follows:

WVx(t, ω) =
1

2π

∫ ∞

−∞
x∗H(t− τ

2
)xH(t +

τ

2
)e−jτωdτ (1.3)

Strictly speaking, xH(t) in (1.3) is the analytic signal representation associated

with real signal x(t) as follows:

xH(t) = x(t) + jx̂(t) (1.4)

where x̂(t) is the Hilbert transform of the signal x(t). The Hilbert transform

is defined as follows:

x̂(t) = x(t)⊗ 1

πt

=
1

π

∫ ∞

−∞

x(τ)

t− τ
dτ (1.5)
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The purpose of the Hilbert transform and analytic signal representation is to

consider positive frequency parts in the time-frequency distribution. In the

remaining of this dissertation, for convenience, x(t) implies the analytic signal

representation of real signal via the Hilbert transform.

However, the Wigner-Ville distribution suffers from severe interference

effects for multi-component signals, even though it was the first time-frequency

distribution to provide localized information of signals such as the instanta-

neous frequency, and group delay etc.[1] The application of the Wigner-Ville

distribution is quite restricted by interference effects.

Consider a signal x(t) as a sum of two sinusoids,

x(t) = A1e
jω1t + A2e

jω2t (1.6)

Then the Wigner-Ville distribution of the signal x(t), WVx(t, ω) is [1]

WVx(t, ω) = A2
1δ(ω−ω1)+A2

2δ(ω−ω2)+2A1A2δ(ω− 1

2
(ω1 +ω2)) cos(ω2−ω1)t

(1.7)

Note that the last term on the RHS is an interference term that is actually

does not exist in the original signal, but is produced by the interference of

the two different frequencies. For more realistic signals containing many fre-

quency components, the interference terms make it difficult to interpret the

time-frequency distribution function.

In the 1990’s, Choi and Williams suggested the Choi-Williams distribu-

tion [5], and Jeoung and Williams provided the reduced interference distribu-

tion (RID) [6] to mitigate the problems of interference effects. The definition

of the Choi-Williams distribution, CWx(t, ω : σ), is as follows:

CWx(t, ω : σ) =
1

4π3/2

∫ ∞

−∞

∫ ∞

−∞

1√
τ 2/σ

x∗(u− τ

2
)x(u+

τ

2
)e−σ(u−t)2/τ2−jτωdudτ

(1.8)
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Compared with the Wigner-Ville distribution, WVx(t, ω), we find that the

Choi-Williams distribution added a Gaussian window. The objective of the

Choi-Williams distribution is to suppress the interference terms in the Wigner-

Ville distribution. For example, take a signal composed of two sinusoids,

x(t) = A1e
jω1t + A2e

jω2t (1.9)

then, the Choi-Williams distribution of the signal is

CWx(t, ω : σ) = A2
1δ(ω−ω1)+A2

2δ(ω−ω2)+2A1A2 cos[(ω2−ω1)t]η(ω, ω1, ω2, σ)

(1.10)

where η(ω, ω1, ω2, σ) is

η(ω, ω1, ω2, σ) =

√
1

4π(ω1 − ω2)2/σ
exp[−(ω − 1

2
(ω1 + ω2))

2

4(ω1 − ω2)2/σ
] (1.11)

We find that the interference term can be suppressed dramatically with a small

value of σ, even though the interference term cannot be eliminated completely.

If we take a very large value of σ, the interference term will converge to

lim
σ→∞

η(ω, ω1, ω2, σ) = δ(ω − 1

2
(ω1 + ω2)) (1.12)

Therefore, the Choi-Williams distribution converges to Wigner-Ville distribu-

tion.

Besides the Choi-Williams distribution, a variety of different types of

time-frequency distributions have been suggested for various applications. L.

Cohen [2] generalized various types of time-frequency distribution, Cx(t, ω; φ)

in terms of a kernel as follows:

Cx(t, ω; φ) =
1

4π2

∫ ∫ ∫
x∗(u− τ

2
)x(u+

τ

2
)φ(θ, τ)e−jθt−jτω+jθudθdτdu (1.13)
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Table 1.1: Kernels of Cohen’s class

Name Kernel φ(θ, τ)

Wigner-Ville 1

Spectrogram
∫

h∗(u− τ
2
)h(u + τ

2
)e−jθudu

Choi-Williams e−
θ2τ2

σ

RID 2D Symmetric Low pass filter

where φ(θ, τ) is the kernel of the time-frequency distribution, x(t) is the sig-

nal to be analyzed, and θ and τ are frequency and time dummy variables of

integration. The definition of the spectrogram in (1.1) and the Wigner-Ville

distribution in (1.3) are also the member of the Cohen’s class that can be ex-

pressed in terms of equation (1.13) with their own definition of kernel. Some

representative examples of kernels of Cohen’s class are provided in Table 1.1.

All the various trials in time-frequency distribution functions are ex-

plained within the context of Cohen’s class and the definition of the kernels.

By this bilinear transformation, a nonstationary time series may be expressed

as a distribution function of time, frequency and kernel. The kernel of the

time-frequency distribution plays an important role in the characteristics of

the corresponding distribution.

Cohen’s class can be expressed from another point of view, i.e., in

terms of a generalized ambiguity function [1]:

Cx(t, ω; φ) =
1

2π

∫ ∫ ∫
AG

x (θ, τ)e−j(ωτ+θt)dτdθ (1.14)

where AG
x (θ, τ) is called a generalized ambiguity function and equals the prod-

uct of the kernel and the ambiguity function Ax(θ, τ) of the signal x(t) [4]:

AG
x (θ, τ) = φ(θ, τ)Ax(θ, τ) (1.15)
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where Ax(θ, τ) is given by [7]

Ax(θ, τ) =
1

2π

∫
x(u +

τ

2
)x∗(u− τ

2
)ejθudu (1.16)

In addition, the instantaneous autocorrelation is defined as follows [6]:

Rx(t, τ) = x(u +
τ

2
)x∗(u− τ

2
) (1.17)

Therefore, the phase information of the signal will be removed by the conju-

gation operation in the instantaneous autocorrelation in (1.17).

1.2 Reduced Interference Distribution

In this section we will discuss the reduced interference distribution pro-

posed by Jeong and Williams [6]. The reduced interference distribution often

exhibits the “best” performance compared with other distributions in terms of

time-frequency resolution. In later chapters, the applications will utilize the

reduced interference distribution. However, remember that even the reduced

interference distribution is a member of Cohen’s class.

Cohen’s definition can be rewritten in terms of the instantaneous au-

tocorrelation function as follows:

Cx(t, ω; ψ) =
1

2π

∫ ∞

−∞
RG

x (t, τ)e−jωτdτ (1.18)

where the definition of RG
x (t, τ) is,

RG
x (t, τ) =

1

2π

∫ ∞

−∞
ψ(t− t′, τ)Rx(t

′, τ)dt′ (1.19)

where ψ(t, τ) is the Fourier transform of the kernel, φ(θ, τ)

ψ(t, τ) =

∫
φ(θ, τ)e−jθtdθ (1.20)
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Jeoung and Williams suggested time-frequency distribution function in dis-

crete domain without aliasing (AF-GDTFD: Alias-Free Generalized Discrete-

Time TFD) to eliminate periodicity caused by sampling:

GDTFDx(n, ω; ψ) =
∑
m

RG
x (n,m)e−jmω for n ∈ Z (1.21)

where

RG
x (n, m) =

∑

(l,m)∈S

ψ(n− l,m)Rx(l,m) for n, m ∈ Z (1.22)

and

S = {(n,m) : n +
m

2
∈ Z, n− m

2
∈ Z} (1.23)

is the non-rectangular support of Rx(n,m) = x(n+ m
2
)x∗(n−m

2
), and Rx(n,m)

is the discrete instantaneous autocorrelation of x(n) which is a sampled signal

of x(t).

As indicated in Table 1.1, the kernel of the reduced interference distri-

bution is defined by a 2D lowpass filter. However, the original kernel of the

reduced interference distribution was the binomial kernel as follows:

ψ(n, m) =
1

2|m|

|m|∑

k=0

(|m|
k

)
δ(n +

|m|
2
− k) (1.24)

Note that the expression of Cohen’s class is based on the analog integration,

however, the real calculation of the time-frequency distribution is based on

digital signal processing routines, especially, the FFT for digitized time series.

The reduced interference distribution is not a panacea for all the cases

of nonstationary signal analysis. For example, for a chirp signal whose “single”

frequency changes linearly over a wide bandwidth, the Wigner-Ville distribu-

tion will have better performance. However, the reduced interference distribu-

tion appears to be best for the analysis of multi-component signals in terms of
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mitigating interference effects in time-frequency analysis. In addition, the re-

duced interference distribution shows desirable properties to extract parameter

information from the time-frequency distribution. Details of such properties

will be discussed in the next section in terms of the kernels.

1.3 Distribution Properties and Associated Kernel Re-
quirements

In this section, we discuss desirable properties of the time-frequency

distribution such as nonnegativity, realness, time-shift, frequency-shift, time

marginal, frequency marginal, instantaneous frequency, and group delay etc.

Those properties are very important information available from the time-

frequency analysis. These properties are closely connected to the definitions

of the kernels [2], [6]. In this section, we will discuss standard properties of

time-frequency distribution which is associated with the kernel requirements.

In each description of the item, “P” stands for “Property” of time-frequency

distribution and “Q” stands for “Requirement” of kernel in Cohen’s class.

1. Nonnegativity

P1. Cx(t, ω; φ) ≥ 0,∀t, ω

Q1. φ(θ, τ) is the ambiguity function of some function

The nonnegativity properties are desirable for physical interpretation, however,

except for the spectrogram, all of the Cohen’s class definition of kernels do not

strictly meet this requirement. This phenomenon comes from the interference

phenomenon of multi-component signals that can produce cross negative terms

in the time-frequency distribution.

2. Realness
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P2. Cx(t, ω; φ) ∈ R

Q2. φ(θ, τ) = φ∗(−θ,−τ)

The realness of the distribution is guaranteed with real and symmetric ker-

nels, because Cohen’s bilinear definition is based on the instantaneous auto-

correlation function. This property is the main difference between the cross

time-frequency distribution discussed in the next section.

3. Time shift

P3. y(t) = x(t− t0) → Cy(t, ω; φ) = Cx(t− t0, ω; φ)

Q3. φ(θ, τ) does not depend on t

4. Frequency modulation

P4. y(t) = x(t)ejω0t → Cy(t, ω; φ) = Cx(t, ω − ω0; φ)

Q4. φ(θ, τ) does not depend on ω

If the kernel is independent of a signal in time variable t and frequency vari-

able ω, the time shift and frequency shift are reflected on the time-frequency

distribution.

5. Time marginal

P5.
1

2π

∫
Cx(t, ω; φ)dω = x(t)x∗(t)

Q5. φ(θ, 0) = 1,∀θ

6. Frequency marginal

10



P6.
1

2π

∫
Cx(t, ω; φ)dt = X(ω)X∗(ω)

Q6. φ(0, τ) = 1,∀τ

Time marginal and frequency marginal properties are desirable: the projection

of time-frequency distribution function on the time axis generates conjugated

pair product of time function, and the projection on the frequency axis gener-

ates conjugated pair product of its Fourier transform. The time and frequency

marginal properties confirm the physical validity of time-frequency based anal-

ysis of transient phenomena.

Although the spectrogram, based on the short-time Fourier transform,

provides useful time-frequency distributions, it does not exhibit the useful

marginal properties of Cohen’s class as pointed out in [2]. Consider the time

marginal properties for the spectrogram. If the spectrogram satisfies the time

marginal property, we have

∫
SPx(t, ω)dω =

∫
|x(τ)|2 · |h(τ − t)|2dτ = |x(t)|2 (1.25)

On the other hand, if the spectrogram satisfies frequency marginal property,

we have

∫
SPx(t, ω)dt =

∫
|X(ω′)|2 · |H(ω′ − ω)|2dω = |X(ω)|2 (1.26)

where X(ω) and H(ω) are the Fourier transform of the time domain signal x(t)

and window h(t). One cannot find a localization window h(τ) that satisfies

both (1.25) and (1.26) simultaneously [2]. Therefore, theoretically the spec-

trogram cannot satisfy the marginal properties [2]. This is one of the principal

drawbacks of the spectogram approach.

7. Time support
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P7. x(t) = 0, ∀t /∈ [T1, T2] → Cx(t, ω, φ) = 0,∀t /∈ [T1, T2]

Q7.

∫
φ(θ, τ)e−jθtdθ = 0 for |τ | ≤ 2|t|

8. Frequency support

P8. X(ω) = 0,∀ω /∈ [Ω1, Ω2] → Cx(t, ω, φ) = 0,∀ω /∈ [Ω1, Ω2]

Q8.

∫
φ(θ, τ)e−jτωdτ = 0 for |θ| ≤ 2|ω|

Time and frequency support properties allow one to properly map the time

series into the time and frequency domain via the bilinear transformation.

The Choi-Williams distribution [5] does not satisfy the time and frequency

support properties so that a “synchronization effect” is observed in the time

and frequency domain when the signal elements share a time or frequency of

interest.

9. Group delay

P9.

∫
tCx(t, ω; φ)dt∫
Cx(t, ω; φ)dt

= −tf (ω)

Q9. Q3 & Q5 and
∂φ(θ, τ)

∂θ
|θ=0 = 0,∀τ

10. Instantaneous frequency

P10.

∫
ωCx(t, ω; φ)dω∫
Cx(t, ω; φ)dω

= ωf (t)

Q10. Q4 & Q6 and
∂φ(θ, τ)

∂τ
|τ=0 = 0,∀θ,

Some important quantities that can be extracted from the time-frequency

distribution for wave analysis are the instantaneous frequency and group de-

lay. The instantaneous frequency can be calculated as the normalized first
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frequency moment of the time-frequency distribution function, and corre-

sponds to the “average” frequency at particular time t, where each frequency

is weighted by the relative amount of energy associated with that frequency.

The group delay can be calculated as the normalized first time moment

of the time-frequency distribution function. Physically, the group delay means

the mean arrival time of the specific frequency components. Therefore, we

can estimate arrival time of a specific frequency components. The instanta-

neous frequency and group delay are symmetrically related as a duality. In

addition, the instantaneous frequency and group delay are determined by the

characteristics of the signal x(t), however, for a proper measurement via the

time-frequency distribution requires the corresponding conditions of the ker-

nel. In later chapters of this dissertation the instantaneous frequency will

be utilized for electric power quality assessment, and the group delay estima-

tion will play important role in the analysis of the dispersive wave propagation.

1.4 Organization of Dissertation

There are many fields of research in engineering and science that require

a quantitative analysis of transient or nonstatinoary signals. As an extension

and generalization of existing theories of classical time-frequency analysis, this

dissertation provides a new theoretical scheme of signal processing, cross time-

frequency analysis. In addition, the proposed cross time-frequency analysis is

applied to various types of real-world signals and systems in order to verify

the feasibility and applicability of the proposed theory.

In Fig. 1.1, a schematic description of the structure and organization

of this dissertation is provided. This dissertation is divided into theory and
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applications of time-frequency analysis as shown in Fig. 1.1. The applica-

tion of time-frequency analysis is focused on electric power and physical sys-

tems. Classical time-frequency analysis covered in Chapter 1 and cross time-

frequency analysis discussed in Chapter 2 are the primary tools for the analysis

of transient phenomena in this dissertation. The classical time-frequency anal-

ysis will be applied to the transient “energy” associated phenomena (Power

Quality Assessment in Chapter 3, Best Wavelet Search Algorithm in Chapter

5 and Time-Frequency Domain Reflectometry in Chapter 6) and are indicated

with light shading in Fig. 1.1. Cross time-frequency analysis will be applied

to the transient “phase difference” associated phenomena (Transient Distur-

bance Localization in Chapter 4, Dispersion Analysis in Wave Propagation in

Chapter 7 and Postural Control System Analysis in Chapter 8) as indicated

with dark shading in Fig. 1.1. However, note that the classical time-frequency

analysis and the proposed cross time-frequency analysis are complimentary to

each other by dealing with time and frequency localized “energy” and “phase

difference”, respectively.

The first part of the application of time-frequency theory is electric

power systems. In electric power systems, transient disturbance phenomena

are a subject of significant research, called power quality. Power quality is a

quality of service (QoS) issue for both customers and electric power service

providers and it covers a variety of “transient” electromagnetic phenomena

in electric power distribution systems requiring assessment, localization and

detection.

Hence, classical time-frequency analysis will be utilized for the assess-

ment of the transient power quality problems by developing new definitions of

transient power quality indices in Chapter 3. The cross time-frequency anal-

ysis of Chapter 2 will be utilized for the localization of the transient capaci-
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Figure 1.1: Structure and organization of dissertation

tor switching disturbance in Chapter 4. Detection of disturbances, especially

voltage sags in power transmission systems, is another power system issue for

which the wavelet transform is frequently employed. By exploring the time

and frequency localized characteristics of signal and wavelet basis, a solution

for determining the “best” wavelet basis for detection is discussed in Chapter

5.

The applications of time-frequency theory have been extended to var-

ious types of real-world physical systems by several interdisciplinary research

activities. The second application of time-frequency theory is “transient” wave

propagation phenomena and postural control systems. In Chapter 6, a new

scheme of reflectometry, called time-frequency domain reflectometry (TFDR)

is discussed. By considering time and frequency domain simultaneously, a new

scheme for designing a reference signal is described. This approach appears to

lead to a more sensitive detection and more accurate localization of faults on
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coaxial cables.

In Chapter 7, cross time-frequency analysis has been utilized for the

analysis of dispersive ocean wave propagation. In order to identify the dis-

persive wave propagation characteristics in ocean waves, the phase and group

velocities of the wave propagation is measured via the time and frequency

localized phase difference information, and the result has been confirmed by

theory and compared with other approaches. In addition, in Chapter 8, cross

time-frequency analysis has been applied to transient postural sway signals

to identify the effects of aging and sensory systems on human postural con-

trol systems. The time and frequency localized phase difference of the postural

sway signals allows one to quantitatively distinguish the contributions of aging

and sensory systems using real-world experimental data sets.
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Chapter 2

Theory of Cross Time-Frequency Distribution

Functions

2.1 Introduction

Time-frequency analysis provides a powerful tool for the analysis of non-

stationary signals. The well-defined Cohen’s class generalizes various types of

time-frequency distributions in terms of a kernel [1]. The main objectives

of the various types of time-frequency distribution functions are to obtain a

better resolution time-varying spectral density function, and to overcome in-

terference effects [6]. However, the traditional definition of time-frequency

distribution within Cohen’s class [2] concerns a single signal and is based on

the instantaneous autocorrelation to generate the time-varying spectrum. As

a result, another critical feature of the signal, the phase, is not available in

the real-valued time-frequency distribution function. This lack of phase infor-

mation is also noted in some references [6], [8] as a limitation of traditional

time-frequency analysis.

Using Rényi information measure of time-frequency analysis, phase dif-

ference between closely related signal components has been shown to be sensi-

tive to the time-frequency information [9]. The need for cross time-frequency

distributions has been suggested by Williams [8] via the Hilbert cross time-

frequency distribution, and by Boashash [10], [11] regarding the application

of cross Wigner distribution. Note that the cross time-frequency distribution
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should not be confused with “cross terms”, which are regarded as undesirable

parts of the time-frequency distribution [5], [12], [13]. In this chapter, we focus

on the phase difference preserving aspects of the cross time-frequency distri-

bution function: if one can provide a joint distribution of signals, say, x1(t)

and x2(t) as a function of time and frequency, one can determine the localized

information of two signals for a given time and frequency. If the phase differ-

ence information between the signals can be reflected in the distribution, then

the cross time-frequency distribution is very useful to deal with wave propa-

gation and other physical phenomena dependent on phase differences. This is

the motivation and objective of the cross time-frequency distribution, and the

definition will be discussed in this chapter.

2.2 Motivation

To begin with, let us define a pair of complex sinusoids with different

Gaussian envelopes, with different time group delays (t1 and t2), frequencies

(ω1 and ω2), and phases (ϕ1 and ϕ2) as follows:

s1(t) = (
α1

π
)

1
4 e−α1(t−t1)2/2+j[ω1(t−t1)+ϕ1] (2.1)

s2(t) = (
α2

π
)

1
4 e−α2(t−t2)2/2+j[ω2(t−t2)+ϕ2] (2.2)

such that the means of the time and frequency of signal x1(t) are ω̄x1 = ω1 and

t̄x1 = t1 and for x2(t), the means are ω̄x2 = ω2 and t̄x2 = t2 [2]. This set of test-

ing signals will be continuously employed in this chapter to provide an example

of the concepts. The time-domain representations of the signals in equation

(2.1) and (2.2) and schematic plots of the time-frequency distributions for each

individual signal are provided in Fig. 2.1. On each time-frequency distribu-

tion plot, the first moments in time and frequency are plotted as dashed lines.
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TFDx2(t,f)

Figure 2.1: Time-frequency phase spectrum and corresponding parameters

The overlapping area of the time-frequency distributions is shaded. We choose

the parameters such that the signal x2(t) is close to the signal x1(t), however,

the signal x2(t) suffers some amount of time delay, and frequency shift. In

addition, the two signals have different phases, ϕ1 and ϕ2 respectively.

How can we deal with signals, s1(t) and s2(t) in equations (2.1) and

(2.2)? First of all, consider the Wigner distribution of the individual signals.

With simple calculation, the Wigner distribution of each signal is as follows:

Ws1(t, ω) =
1

π
e−α1(t−t1)2−(ω−ω1)2/α1 (2.3)

Ws2(t, ω) =
1

π
e−α2(t−t2)2−(ω−ω2)2/α2 (2.4)

In (2.3) and (2.4), the Wigner distribution represents time-frequency distribu-

tion of the individual signals, but the phase information of the signals (ϕ1,ϕ2)

is not reflected in the distributions in (2.3) and (2.4).
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The motivation for cross time-frequency comes from Moyal’s formula

[4], [12]. Moyal’s formula is defined as follows:

|
∫

x1(t)x
∗
2(t)dt|2 = 2π

∫ ∫
Wx1(t, ω)Wx2(t, ω)dtdω (2.5)

where x1(t) and x2(t) are a pair of signals, and Wx1(t, ω) and Wx2(t, ω) are

the corresponding Wigner distribution of signals, x1(t) and x2(t) respectively.

For simplicity of calculation, let α1 = α2 = α for the signals in (2.1) and (2.2),

and then substitute the resulting Wigner distributions into Moyal’s formula

[4], [12]; then we get the following result:

|
∫

s1(t)s
∗
2(t)dt|2 = e−α(t1−t2)2/2e−(ω1−ω2)2/2α (2.6)

The corresponding amount of overlapping area is equal to the result in (2.6)

and is indicated in Fig. 2.1 by the dark shading. The discrepancy of time

and frequency of the pair of signals is reflected in the calculation result for

the Moyal’s formula, but still the phase difference information is not available.

Therefore, the cross time-frequency distribution is to be featured by local-

ized mutual information between x1(t) and x2(t) as a function of time and

frequency. To describe two signals, x1(t) and x2(t), the time and frequency

localized phase difference will play a key role. This is the motivation and

objective of the cross time-frequency distribution, and the definition will be

discussed in next section.

2.3 Definition and Derivation of Cross Time-Frequency
Distribution

As Cohen’s definition for time-frequency definition is based on the in-

stantaneous autocorrelation function, the cross time-frequency starts with the
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instantaneous cross correlation function. For a pair of complex analytic signals

x1(t) and x2(t), we define the instantaneous cross correlation as follows:

Rx1x2(t, τ) = x1(t + τ/2)x∗2(t− τ/2) (2.7)

In the frequency domain, if we assign X1(ω) as a Fourier transform of x1(t) and

X2(ω) as a Fourier transform of x2(t) respectively, then the “instantaneous”

spectral crosscorrelation is defined as follows:

RX1X2(ω, θ) = X1(ω + θ/2)X∗
2 (ω − θ/2) (2.8)

Either Rx2x1(t, τ) or RX2X1(ω, θ) function can be transformed in terms of vari-

ables θ and τ with ambiguity functions as follows:

Ax1x2(θ, τ) =
1

2π

∫
Rx1x2(t, τ)ejθtdt (2.9)

AX1X2(τ, θ) =
1

2π

∫
RX1X2(ω, θ)ejωτdω (2.10)

For the ambiguity function based on the “instantaneous” crosscorrelation func-

tion, the subscripts must be treated carefully:

Ax1x2(θ, τ) =
1

2π

∫
x1(t + τ/2)x∗2(t− τ/2)ejθtdt (2.11)

Therefore,

Ax1x2(−θ, τ) = A∗
x2x1

(θ,−τ) (2.12)

This relation also holds for the frequency domain as follows:

AX1X2(τ,−θ) = A∗
X2X1

(−τ, θ) (2.13)

The ambiguity function in the time and frequency domain are related as fol-

lows:

AX1X2(τ, θ) = 2πAx1x2(−θ, τ) (2.14)
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Therefore, with a derivation in either the time domain or the frequency do-

main for cross time-frequency distribution, the derivation in the other domain

can be derived based on the relation in (2.14).

Once the ambiguity function and instantaneous cross correlation are

determined, one can employ the relation between ambiguity function, instan-

taneous correlation function and Wigner distribution as follows:

Wf (t, ω) =

∫ ∫
Af (θ, τ)e−j(tθ+ωτ)dθdτ

=
1

2π

∫
Rf (t, τ)e−jωτdτ (2.15)

where Rf (t, τ) is the instantaneous autocorrelation function, Af (θ, τ) is the

ambiguity function of an analytic signal f(t). Therefore, the cross Wigner

distribution is derived as follows:

Wx1x2(t, ω) =

∫ ∫
Ax1x2(θ, τ)e−j(tθ+ωτ)dθdτ

=
1

2π

∫
Rx1x2(t, τ)e−jωτdτ

=
1

2π

∫
x1(t + τ/2)x∗2(t− τ/2)e−jωτdτ (2.16)

This definition of cross Wigner distribution corresponds to that of Boashash

[10], [11] and Williams [8]. From the cross Wigner distribution, other types of

generalized cross time-frequency distribution functions, Jx1x2(t, ω; Φ), can be

obtained in terms of a kernel as follows:

Jx1x2(t, ω; Φ) =
1

4π2

∫ ∫
Wx1x2(u, ξ)Φ(t− u, ω − ξ)dudξ (2.17)

where Φ(t, ω) is the 2-D Fourier transform of the kernel φ(θ, τ). i.e.

Φ(t, ω) =

∫ ∫
φ(θ, τ)e−j(θt+τω)dθdτ (2.18)
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In other words, the following definitions of the cross time-frequency distribu-

tion are obtained:

Jx1x2(t, ω; φ) =
1

2π

∫ ∫
Ax1x2(θ, τ)φ(θ, τ)e−j(θt+τω)dτdθ

=
1

(2π)

∫ ∫
1

(2π)
AX1X2(τ,−θ)φ(θ, τ)e−j(θt+τω)dτdθ

=
1

4π2

∫ ∫ ∫
x1(u +

τ

2
)x∗2(u−

τ

2
)φ(θ, τ)e−jθt−jτω+jθudθdτdu

=
1

4π2

∫ ∫ ∫
X1(ν − θ

2
)X∗

2 (ν +
θ

2
)φ(θ, τ)e−jθt−jτω+jτνdθdτdν

(2.19)

As one can see by comparing (1.13) and (2.19), the definition of the cross time-

frequency distribution simply replaces the conjugated signal x∗(t) in (1.13)

with x∗2(t) in (2.19). In this chapter, the cross time-frequency distribution of

x1(t) and x2(t) under the kernel φ(θ, τ) is denoted as Jx1x2(t, ω; φ), while the

time-frequency distribution of an individual signal is denoted as Cx1(t, ω; φ),

and Cx2(t, ω; φ), respectively. To facilitate comparison with Cohen’s class

of distributions, the definitions of the kernels is the same as Cohen’s fam-

ily. Therefore, changing the kernel of the cross time-frequency distribution

in (2.19) will generate many types of cross time-frequency distribution func-

tions: cross Wigner distribution, cross Choi-Williams distribution, cross RID

etc. Instead of investigating many individual cross time-frequency distribu-

tions with various kernels, we investigate the properties and corresponding

kernel requirements for cross time-frequency distribution functions.
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Table 2.1: Properties of cross time-frequency distribution and associated kernel
requirements

Complex P1 Jx1x2(t, ω; φ) ∈ C, and Jx1x2(t, ω; φ) = J∗x2x1
(t, ω; φ)

distribution Q1 φ(θ, τ) = φ∗(−θ,−τ)
time P2 If xa(t) = x1(t− t0), and xb(t) = x2(t− t0)

domain Then Jxaxb
(t, ω; φ)=Jx1x2(t− t0, ω; φ)

shift Q2 φ(θ, τ) does not depend on t
frequency P3 If xa(t) = ejω0tx1(t), and xb(t) = ejω0tx2(t)
domain Then Jxaxb

(t, ω; φ)=Jx1x2(t, ω − ω0; φ)
shift Q3 φ(θ, τ) does not depend on ω

time P4
1

2π

∫
Jx1x2(t, ω; φ)dω = x1(t)x

∗
2(t)

marginal Q4 φ(θ, 0) = 1,∀θ
frequency P5

∫
Jx2x1(t, ω; φ)dt = X1(ω)X∗

2 (ω)

marginal Q5 φ(0, τ) = 1,∀τ

joint frequency P6 Re{

∫
ωJx1x2(t, ω; φ)dω

∫
Jx1x2(t, ω; φ)dω

} = ωx1x2(t)

moment Q6 Q4 and ∂φ(θ,τ)
∂τ

|τ=0 = 0,∀θ

joint time P7 Re{

∫
tJx1x2(t, ω; φ)dt

∫
Jx1x2(t, ω; φ)dt

} = −tx1x2(ω)

moment Q7 Q5 and ∂φ(θ,τ)
∂θ

|θ=0 = 0,∀τ
Moyal’s P8 |

∫ ∫
Jx1x2(t, ω; φ)dtdω|2

= (2π)2

∫ ∫
C̃x1(t, ω; φ)C̃x2(t, ω; φ)dtdω

formula Q8 φ(θ, τ) 6= 0, ∀τ, θ
Time-Frequency P9 Θx1x2(t, ω; φ) = tan−1[

Im(Jx1x2(t, ω; φ)

Re(Jx1x2(t, ω; φ)
]

phase spectrum Q9 Q1-Q8
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2.4 Properties of Cross Time-Frequency Distribution

2.4.1 Properties of Cross Time-Frequency Distribution

The properties of various types of time-frequency distribution in Co-

hen’s class are determined by the kernels. This is also the case for the cross

time-frequency distribution. Some desirable properties and corresponding ker-

nel requirements [12] for time-frequency distribution are suggested for the de-

sign of the reduced interference distribution [6], [14]. Corresponding desirable

properties (P) and kernel requirements (Q) for the cross time-frequency dis-

tribution are summarized in Table 2.1. P2-P9, and Q2-Q9, are close or easy

to follow to those of Cohen’s class. P1 (Complex distribution), P10 (Moyal’s

formula), and P11 (Time-frequency phase spectrum) are notable exceptions

for the cross time-frequency distributions.

The kernel requirements Q1 determines the conjugate relation between

Jx1x2(t, ω; φ) and Jx2x1(t, ω; φ) such that Jx1x2(t, ω; φ) = J∗x2x1
(t, ω; φ), while

the reality of the classical time-frequency distribution is determined by the

same condition, Q1. Time and frequency shift properties (P2, P3) are hold

time t and frequency ω independence of the kernel (Q2, Q3). The kernel re-

quirements for the marginal properties (Q4, Q5) are the same as the classical

time-frequency distribution, however, the proper marginal of the cross time-

frequency yields a product of signal and conjugation of reference signal in the

time domain (P4) or product of spectrum and conjugation of the reference

spectrum in the frequency domain (P5). Because the cross time-frequency

distribution is a time-frequency localized mutual information of the signals,

the normalized time and frequency moments are obtained by a joint moment

(P6, P7). A detailed discussion of the joint time and frequency moments will

be presented in the next subsection. As we are dealing with two different sig-
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nals, strong finite support for time and frequency (P8, P9) is more reasonable

than weak support. The proof of the strong support and corresponding kernel

requirements (Q8, Q9) are directly applicable to the definition of the cross

time-frequency distribution [15].

Based on the cross time-frequency distribution function, the expres-

sion for Moyal’s formula can be generalized. Using the marginal properties of

cross time-frequency distribution (P4,P5), alternative expressions for Moyal’s

formula can be obtained by the following sequence: the left side of Moyal’s

equation (2.5) can be modified in terms of the cross time-frequency distribution

function, Jx1x2(t, ω; φ),

|
∫

x1(t)x
∗
2(t)dt|2 = |

∫
{ 1

2π

∫
Jx1x2(t, ω; φ)dω}dt|2

=
1

4π2
|
∫ ∫

Jx1x2(t, ω; φ)dtdω|2

(2.20)

Note that this relation holds only for the kernels that satisfy the requirements

for time marginal property (P4). Then the right hand side of Moyal’s formula

(2.5), the product of Wigner distributions can be transformed to the other

types of distribution function by manipulation of the moment functions [16]
∫ ∫

Wx1(t, ω)Wx2(t, ω)dtdω =

∫ ∫
C̃x1(t, ω; φ)C̃x2(t, ω; φ)dtdω (2.21)

where C̃x1(t, ω; φ) and C̃x2(t, ω; φ) are the transforms of the Wigner distribu-

tions Wx1(t, ω) and Wx2(t, ω)into the Cohen’s class distribution with corre-

sponding kernel φ(θ, τ). In other words,

Wx1(t, ω) =

∫ ∫
g(t′ − t, ω′ − ω)Cx1(t

′, ω′)dt′dω′ = C̃x1(t, ω; φ) (2.22)

where

g(t, ω) =
1

4π2

∫ ∫
1

φ(θ, τ)
ejθt+jτωdθdτ (2.23)
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Therefore, we can obtain an alternative expression for Moyal’s formula as

follows:

|
∫ ∫

Jx1x2(t, ω; φ)dtdω|2 = (2π)2

∫ ∫
C̃x1(t, ω; φ)C̃x2(t, ω; φ)dtdω (2.24)

Equation (2.24) shows the relation between the cross time-frequency distri-

bution function and Cohen’s class distribution function. In addition, we can

clarify the meaning of the cross time-frequency distribution : the cross time-

frequency distribution contains the mutual time-frequency information of the

signals where the time-frequency distribution is overlapped. The phase infor-

mation is included in the cross time-frequency distribution function, which is

not available from the classical version of Cohen’s class due to the conjugation

operation.

The cross time-frequency distribution is a complex distribution and,

thus, provides phase difference information. To obtain the phase difference in-

formation between two signals, it is recommended that the time-frequency ker-

nel satisfy the kernel requirements Q1-Q10. In general, a cross time-frequency

distribution can be rewritten in following polar format:

Jx1x2(t, ω; φ) = |Jx1x2(t, ω; φ)|ejΘx1x2 (t,ω;φ) (2.25)

where Θx1x2(t, ω; φ) is the phase difference spectrum of the signal x1 and x2.

Θx1x2(t, ω; φ) = tan−1[
Im(Jx1x2(t, ω; φ))

Re(Jx1x2(t, ω; φ))
] (2.26)

Therefore, the cross time-frequency distribution reveals the phase difference

between two signals as a function of time and frequency. Reflecting on the

properties and corresponding kernel requirements in Table 2.1, the Wigner and

RID kernels are good candidates to obtain reasonable time-frequency phase
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difference spectra, because, the desirable kernel requirements in Table 2.1,

and characteristics of various kernels in [6], indicate that the Wigner and RID

kernels satisfy all the kernel requirements for proper cross time-frequency dis-

tribution function. Detailed utilization of the time-frequency phase spectrum

with choice of kernels will be treated in the next section along with a numerical

example.

2.4.2 Gabor Logon Example of the Cross Time-Frequency Distri-
bution

The individual properties in Table 2.1 are defined in terms of the kernel,

and we will provide examples of the corresponding properties with the pair of

signal sets in (2.1) and (2.2). Applying α1 = α2 = α to (2.1) and (2.2) for

simplicity, we have,

s1(t) = (
α

π
)

1
4 e−α(t−t1)2/2+j[ω1(t−t1)+ϕ1] (2.27)

s2(t) = (
α

π
)

1
4 e−α(t−t2)2/2+j[ω2(t−t2)+ϕ2] (2.28)

To further simplify the expression, we arrange the variables of time delay and

frequency shift as follows:

t0 = (t1 + t2)/2, t2 − t1 = ∆t
ω0 = (ω1 + ω2)/2, ω2 − ω1 = ∆ω

(2.29)

Concerning the signal sets s1(t) and s2(t) in (2.27) and (2.28), the cross time-

frequency distribution is calculated as follows:

Js1s2(t, ω; φ(θ, τ) = 1) =
1

2π

∫
s1(t + τ/2)s∗2(t− τ/2)e−jωτdτ

= e−α(t−t0)2−(ω−ω0)2/α ·
ej[∆t(ω−ω0)−∆ω(t−t0)+(ϕ1−ϕ2)] (2.30)
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Figure 2.2: Relation between cross time-frequency distribution and Cohen’s
class (Numbers in the braces of the diagram correspond to the reference num-
bers of equation in this chapter.)

In the envelope part of the distribution, the joint distribution of signal x1(t)

and x2(t) is provided. The phase part of the distribution is a function of the

time deviation (∆t), frequency deviation (∆ω), and phase difference (ϕ1−ϕ2)

between the signals.

Using the time and frequency domain marginal properties, we consider

the joint frequency moment at t0,

∫
ωJs1s2(t, ω; φ(θ, τ) = 1)dω

∫
Js1s2(t, ω; φ(θ, τ) = 1)dω

|t=t0 = ω0 + j
α∆t

2
(2.31)
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Figure 2.3: Time-frequency phase spectrum and corresponding parameters

Similarly, the joint time moment at ω0 is,
∫

tJs1s2(t, ω; φ(θ, τ) = 1)dω
∫

Js1s2(t, ω; φ(θ, τ) = 1)dω

|ω=ω0 = t0 − j
∆ω

2α
(2.32)

If we take the real part of the normalized first moment in the time and fre-

quency domain, we can obtain the mean of the instantaneous frequency and

mean of the group delay for the signals. This is a unique feature of the cross

time-frequency distribution function, because, one can estimate mutual infor-

mation of two different signals.

In Fig. 2.3, a conceptual time-frequency phase spectrum Θx1x2(t, ω)is

plotted. At the time and frequency of interest (t0, ω0), the corresponding phase

difference can be estimated from the phase spectrum. Besides the phase differ-

ence, the partial derivatives of time and frequency variables includes transient
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frequency deviation and group delay at (t0, ω0).

Consider the time-frequency phase spectrum of s1(t) and s2(t). Us-

ing the definition of the time-frequency phase spectrum and the cross time-

frequency distribution, we have

Θs1s2(t, ω; φ = 1) = ∆t(ω − ω0)−∆ω(t− t0) + (ϕ1 − ϕ2) (2.33)

At (t0, ω0), the exact phase difference ϕ1 − ϕ2 is obtained from the time-

frequency phase spectrum. Besides, at t = t0, the slope in frequency domain

corresponds to the group delay, ∆t, as indicated in Fig. 2.3 such that

Θs1s2(t = t0, ω; φ = 1) = ∆t(ω − ω0) + (ϕ1 − ϕ2) (2.34)

Similarly, at ω = ω0, the slope in time domain corresponds to the frequency

deviation between the signals such that

Θs1s2(t, ω; φ = 1) = −∆ω(t− t0) + (ϕ1 − ϕ2) (2.35)

From the time-frequency phase spectrum, one can provide time-frequency de-

pendent phase difference information for two signals. The information is de-

livered by phase (ϕ1 − ϕ2), group delay (∆t), and frequency difference (∆ω).

2.4.3 Relation between Cohen’s Class and Cross Time-Frequency
Analysis

We have discussed the cross time-frequency distribution and its prop-

erties. Next we need to summarize the cross time-frequency and establish the

relation between cross time-frequency and Cohen’s class. Fig. 2.2 shows the

relation between Cohen’s class definition of signal x1(t) and x2(t) and its cross

time-frequency distribution Jx1x2(t, ω; φ). The upper part of the diagram is
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for the time-domain, while the lower part of the diagram is for the frequency-

domain. Individual terms are connected to related terms. The number beside

the arrow indicates the corresponding transform equation numbers provided

in this chapter.

The left and right hand side outside the dashed line indicates Cohen’s

class domain for individual signals x1(t) and x2(t), respectively. Each item

in Fig. 2.2 is related to corresponding items via arrows where the relations

are indicated by the equation numbers provided in this chapter. The prime

of a number indicates an inverse relation not provided in this chapter, but

can be obtained by the inverse transformation of corresponding numbered re-

lations. As shown in Fig. 2.2, the derivation of the cross time-frequency

distribution is close to that of the Cohen’s class time-frequency distribution

functions in terms of time/frequency correlation and time/frequency ambigu-

ity functions. However, note that while time, frequency-varying “amplitude”

of individual signals is treated in Cohen’s domain, time, frequency-varying

“phase difference” between two signals is treated in the cross time-frequency

domain in terms of complex distribution Jx1x2(t, ω; φ). Between Cohen’s class

distribution functions Cx1(t, ω; φ) and Cx2(t, ω; φ) are connected to the cross

time-frequency distribution function Jx1x2(t, ω; φ) via Moyal’s formula. Based

on the definition of the cross time-frequency distribution, Moyal’s formula can

be interpreted as a deterministic correlation function for a pair of nonstation-

ary signals that measures the closeness of signals in the time-frequency plane.

The cross time-frequency distribution allows one to determine a phase differ-

ence in time and frequency for two different signals whose individual phases

are not available in Cohen’s class time-frequency distributions.

32



2.5 Numerical Example

When dealing with cross time-frequency distributions, one will face

the following fundamental questions: 1) How is the phase difference informa-

tion via cross time-frequency distribution different from classical Fourier-based

cross power spectrum? 2) How does the choice of kernel effect the estimate

of a time-frequency phase spectrum? It is clear that classical Fourier anal-

ysis cannot provide time resolution, while the cross time-frequency provides

time and frequency dependent phase information. It is important to identify

the pros and cons of time-frequency localized phase difference information. In

addition, we have provided time-frequency kernel requirements in Table 2.1,

however, most of the explanation in previous sections actually deals with the

cross Wigner distribution due to the simplicity of calculation. In this section,

we will consider a numerical example in order to compare classical Fourier

analysis and cross time-frequency analysis. In addition, the results are com-

pared with different kernels, i.e. Wigner and binomial reduced interference

distribution kernels to demonstrate the validity of the kernel requirements in

Table 2.1. Consider the following numerical example,

x(t) = e−(t−2.45)2/1+j[2π(10+0.3)(t−2.45)] + n1(t) (2.36)

y(t) = e−(t−2.55)2+j[2π(10−0.3)(t−2.55)−1.0] + n2(t) (2.37)

where n1(t) and n2(t) are independent additive zero mean white Gaussian

noise. For both x(t) and y(t), the SNR is -5.946 dB. The corresponding wave-

forms are plotted in (a) and (b) in Fig. 2.5. In this setup of the testing signals,

the signal envelope of y(t) is slightly time shifted from x(t) by 0.1 sec., and it

suffers a frequency shift of 0.6 Hz. In addition, the phase of y(t) is shifted by

-1.0 (rad.) in comparison with x(t). Using the variable notations in (2.29), the
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Figure 2.4: Normalized cross power spectrum of signal x(t) and y(t) in (a) and
phase spectrum in (b)

signal pairs can be summarized as follows: t0=2.5 sec., ω0 = 2π× 10 rad./sec.,

∆t=0.1 sec., and ∆ω=-2π×0.6 rad./sec. The objective of the testing signal

pair is to realize the situation depicted in Fig. 2.1.

The classical Fourier-based cross power spectrum and its phase spec-

trum are provided in Fig. 2.4. The cross power spectrum in Fig. 2.4-(a) is

normalized by the unit area and it shows a peak amplitude at 10 Hz, the center

frequency (ω0). The phase difference at 10 Hz is 1.27 rad. whose discrepancy

is 0.27 rad. (27% error) from the theoretical value, 1.0 rad. Note that the

classical cross power spectral analysis utilizes the entire time series which has

low SNR in this example.

Based on the definition of the cross time-frequency spectrum in (2.26),

the time-frequency phase difference spectrum can be obtained. In Fig. 2.5-(a),

(b), the time series of the testing signals in (2.36) and (2.37) are provided. As

shown in Fig. 2.3, one can obtain time-varying phase difference spectrum for
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a given frequency of interest by taking a cross section of the time-frequency

phase difference spectrum Θxy(t, ω; φ); in this example, ω0/2π=10Hz. In Fig.

2.5-(c), (d), the cross section of the time-frequency phase difference spectrum

using Wigner kernel and RID kernel respectively at 10 Hz are provided. At

2.5 sec., the cross Wigner distribution shows 1.06 rad. (6.0% error) while

the cross RID shows 1.02 rad. (2.0% error). In addition, the slope of the

phase difference, which corresponds to the frequency deviation ∆ω in (2.34),

is estimated to be 3.66 (rad./sec.) via the cross Wigner distribution and 3.65

(rad./sec.) via cross RID. The result is quite close to the theoretical value, 3.76

(rad./sec.). Comparing the Wigner and RID kernel results in Fig. 2.5-(c), (d),

both of the kernels shows consistent results. Within the time interval where

the signal is dominant, say 2-3 sec., there is no significant difference between

the kernel results.

Similarly, the frequency-domain cross section of the time-frequency

phase difference spectrum is provided in Fig. 2.6. Note that the plots in

Fig. 2.6 corresponds to a perpendicular cross section to Fig. 2.5 at 2.5 sec.

in the cross time-frequency phase spectrum as shown in Fig. 2.3. Therefore,

the phase difference values at 10 Hz in Fig. 2.6-(a),(b) are the same as the

values in Fig. 2.5-(c),(d) at 2.5 sec. In the frequency domain cross section,

one can obtain group delay deviation (∆t). The slope of the phase difference,

which corresponds to group delay deviation ∆t in (2.35), are estimated to be

0.098(sec.) via cross Wigner distribution and 0.098(sec.) via cross RID. The

result is quite close to the theoretical value, 0.1. No significant difference in

dominant frequency bandwidth, within 9.7 and 10.3 Hz, are found for Wigner

kernel and binomial RID kernel for cross time-frequency phase spectrum.

In Table 2.2, the phase difference estimation results via Fourier cross-

power analysis, cross Wigner distribution and cross RID are provided in terms
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Table 2.2: Comparisons of phase difference estimation with Fourier analysis,
cross Wigner distribution, cross RID

Method Phase difference ∆t ∆ω
difference

theoretical 1.0 0.1 3.76
value (rad.) (sec.) (rad./sec.)

Fourier 1.27 N/A N/A
analysis (rad.)

cross Wigner 1.06 0.098 3.66
distribution (rad.) (sec.) (rad./sec.)
cross RID 1.02 0.098 3.65

(rad.) (sec.) (rad./sec.)

of phase difference, group delay difference (∆t) and frequency deviation (∆ω).

Cross time-frequency analysis either by Wigner or RID kernel show results

close to the theoretical values. This can be interpreted in terms of the time-

frequency localization of phase information: the cross time-frequency analysis

takes localized signal information, so the effect of the additive Gaussian noise

is less severe than cross power spectral analysis that utilizes the entire time

series. As the given signal is transient with short time interval, cross time-

frequency analysis shows better estimation of the phase difference.

In addition, between two signals, “exact” frequency deviation and group

delay difference are also available using cross time-frequency phase spectrum.

However, note that the cross time-frequency phase difference estimation re-

quires time and frequency of interest which will be more critical for signal

pairs with large deviations in time (∆t) and frequency (∆ω). The devia-

tions in time (∆t) and frequency (∆ω) for a signal pair can be quantified by

the deterministic correlation function, modified Moyal’s formula in Table 2.1.
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In other words, Moyal’s formula via cross time-frequency distribution reveals

how “close” signals are in time and frequency such that it determines the cross

time-frequency phase spectrum.

The effect of kernels, especially Wigner and RID, on cross time-frequency

distribution has been shown with the testing signals. Using these relatively

narrowband test signals, we find no significant difference between the kernels

is observed. However, if the signals have a larger frequency bandwidth or the

signal is composed of multi-components, we expect that the RID kernel will be

more effective. Note that the autocorrelation based classical RID suppresses

the cross terms, however, the phase difference information is still available by

the definition of the cross time-frequency distribution function.

2.6 Conclusion

In this chapter, the cross time-frequency distribution is derived and

its properties are investigated. It is shown that the cross time-frequency dis-

tribution preserves time-frequency localized phase difference information for

a transient signal pair. The relation between the classical Cohen’s class and

cross time-frequency distribution are provided by generalization of Moyal’s

formula. Using numerical simulation example with low SNR signals, we show

that the cross time-frequency exhibits more robustness than the classical cross

power spectral analysis by time-frequency localization. The Wigner and RID

kernels are shown to be a desirable kernels to obtain adequate time-frequency

localized time-frequency phase difference information.

The main advantage of the cross time-frequency distribution can be

characterized by time-frequency localized phase difference information. Phase

difference information is very critical to analyze physical wave propagation
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phenomena in dispersive media. More investigation on the cross time-frequency

distribution and application of cross time-frequency distribution to real-world

signals will expand the territory of time-frequency analysis.
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Chapter 3

Power Quality Indices for Transient

Disturbances

3.1 Introduction

Power quality is a quality of service (QoS) issue for customer and elec-

tric power service providers and it covers a variety of transient electromagnetic

phenomena in electric power distribution systems [17]. Recently, the increas-

ing number of nonlinear loads and power electronic devices for utility and

customers are becoming sources of electric power quality degradation via the

generation of disturbances, e.g., impulsive transients, transient oscillations,

interruptions, sag, harmonic distortion, interharmonics, etc. [18], [19]. The

disturbances corrupt the power system waveforms, which are to be maintained

at a fixed amplitude, frequency and sinusoidal shape. Hence, definitions, stan-

dards and evaluations are required for power quality issues. The ITIC standard

[20] and IEEE 519 [21] are examples of transient power quality treatment and

practice.

For assessment purposes, power quality indices are utilized to represent

the degree of the quality degradation in a quantitative manner. Hence, various

types of power quality indices are defined, either in the time domain or the

frequency domain depending on the purpose of the application. In the time do-

main, the crest factor, peak and RMS values are defined, while total harmonic

distortion (THD), distortion index (DIN), K-factor and telephone influence
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factor (TIF), etc. are defined in the frequency domain in terms of the Fourier

series coefficients [22]. Note that Fourier series coefficients are evaluated from

a disturbance waveform under the assumption of periodicity. Consequently,

the classical power quality indices based on Fourier series coefficients are not

appropriate for transient disturbances [22]. For example, a traditional power

quality index, total harmonic distortion (THD) is the most common and rea-

sonable power quality index for a periodic disturbance. However, THD is not

a suitable power quality index for transient disturbances where the frequency

content involves a continuous spectrum which varies in time. The problem of

applying various power quality indices based on the periodicity of disturbance

to transient power quality phenomena has been carefully addressed in [22] and

[23], which provide a strong motivation for this chapter. Hence, it is necessary

to devise a measure of power quality to capture the “transient” and “interhar-

monic” characteristics of disturbance signals in power systems.

In order to analyze the transient and time varying nature of the dis-

turbance signals in power systems, signal processing techniques have been em-

ployed for the assessment, detection, localization and classification purposes

[24], [25], [26] and [27]. Recently, the wavelet transform [28], [29] and the

short-time Fourier transform [30] have been frequently utilized in the study

of power quality, which are characterized by the “time & scale” and “time &

frequency” localization of the transient signals, respectively. Hence one can ob-

tain “time”-localized information of the transient disturbance waveform for the

detection, assessment, localization and classification via wavelet or short-time

Fourier transform, whereas the “time”-localized information is not available

from the classical Fourier series expansion or Fourier transform.

One of the most interesting applications is the assessment of power

quality by re-defining the power quality indices for transient events using sig-
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nal processing techniques. G. Heydt et. al. recognized the limitations of the

traditional power quality indices [22], [23] and suggested a new definition and

application of power quality indices based on the short-time Fourier transform

for aperiodic signals [31]. However, as discussed in [32], the short-time Fourier

transform requires a time localization window with time duration ∆T which

prohibits a more general application of the power quality indices to “nonsta-

tionary” signals [33]. In addition, the potential applicability of time-frequency

analysis to transient power quality is mentioned in [32]. In this chapter, we

utilize “time-frequency analysis”, which encompasses short-time Fourier trans-

form as a special case, to provide a unified definition of various power quality

indices and their application to the transient and interharmonic disturbance

signals.

Time-frequency analysis [2], [4] provides a time-frequency localized en-

ergy distribution with high resolution for transient disturbance signals in power

systems [34], [35]. The mathematically well-defined time-frequency distribu-

tion satisfies time and frequency marginal properties (such properties will be

discussed in this chapter later), which enable one to obtain reasonable moment

functions in the time and frequency domain. This feature of time-frequency

analysis is suitable for development of power quality indices for transient dis-

turbance.

3.2 Time-Frequency Based Power Quality Indices

In this section, we discuss the algorithm, definition and evaluation of the

various time-frequency based power quality indices. The approach is composed

of following steps:

1. Step 1: Generation of the time-frequency distribution
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2. Step 2: Separation of the fundamental and disturbance wave-

forms

3. Step 3: Frequency weighting of the time-frequency distribution

4. Step 4: Calculation of the principal average of transient power

quality indices

A flowchart of the algorithm for time-frequency based power quality indices is

provided in Fig. 3.1. Each step will be discussed in detail in this section. For

the discussion of the transient power quality assessment, the time-frequency

based transient power quality indices are defined in Step 3. In Step 4, the

principal average is introduced to quantify the time-varying transient power

quality indices.

1. Generation of the time-frequency distribution

Based on the definition of the time-frequency distribution provided in

(1.13), the first step starts with generation of the time-frequency distribution.

In Fig. 3.2, a reduced interference distribution of a capacitor switching is

provided. The time series data and time-frequency distribution are provided

in Fig. 3.2. The capacitor switching introduces an abrupt interruption of

the signal and significant frequency changes. The time-frequency distribution

shows that the frequency rapidly increases from 60 Hz to 3.5 kHz in the begin-

ning, and linearly decreases in frequency at the end of the capacitor switching.

Within one cycle of 60 Hz, all frequency components above 1 kHz begin and

end. The time-frequency distribution of the normal state is composed of a

stripe in the 60 Hz band, whereas the time-frequency distribution of the dis-

turbance is spread over higher frequency bands within the time interval of the

disturbance. Fig. 3.2 illustrates that time-frequency analysis clearly indicates
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Figure 3.1: Algorithm process of the time-frequency based transient power
quality assessment

how the transient energy is jointly distributed over time and frequency.

However, the dominance of the 60 Hz component impedes the high-

resolution observation of the time-frequency distribution of the disturbance

due to a limited dynamic range available for the disturbance component of

the signal. Hence, in the next section we will introduce a set of power quality

assessment evaluation algorithms to represent the time-frequency distribution

of the transient disturbance by first isolating the disturbance signal from the

fundamental frequency component. Furthermore, one can detect the existence
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Figure 3.2: Reduced interference distribution (on bottom) of a capacitor
switching disturbance (on top)

of the transient disturbance via the time-frequency based power quality indices

as discussed in next section.

2. Separation of the fundamental and disturbance waveforms

Assign the fundamental frequency component of signal as F (t) and dis-

turbance signal as D(t) such that the original waveform of the signal S(t) =

F (t)+D(t). As the fundamental frequency (ω0/2π) in power systems is fixed at

60 Hz or 50 Hz, one can estimate the disturbance waveform D̂(t) by subtract-

ing an estimate of the fundamental waveform F̂ (t) from the original waveform

S(t) as follows:

D̂(t) = S(t)− F̂ (t) (3.1)
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where F̂ (t; A, θ) = A0 · cos(ω0t + θ). The amplitude of the fundamental fre-

quency components is evaluated from the time-frequency distribution at the

fundamental frequency, TFD(t, ω0), and the phase θ0 of the fundamental fre-

quency is obtained by a curve fitting routine as follows:

{θ0} = argθ min |S(t)− F̂ (t)|2 (3.2)

The isolation of the disturbance signal, D(t), enables one to obtain greater res-

olution for the disturbance signal by eliminating the dominant fundamental

frequency component in the time-frequency distribution. After the separation

of the fundamental frequency component F̂ (t) and the disturbance signal D̂(t),

one can generate the time-frequency distributions of the individual signals

from (1.13) as depicted in Fig. 3.1. We denote the time-frequency distribu-

tion of disturbance as TFDD(t, ω; φ) and that of the fundamental component

as TFDF (t, ω; φ).

3. Frequency weighting and calculation of the time-frequency

based power quality index

After obtaining the time-frequency distributions of the fundamental

TFDF (t, ω; φ) and disturbance TFDD(t, ω; φ), one can define the time-frequency

based power quality indices in a unified manner. There exist various ways of

defining the power quality indices, however, the object of this chapter is to

modify the classical power quality indices defined in terms of Fourier coeffi-

cients so that the transient power quality is to be assessed as a function of

time. Therefore, we define “transient” power quality indices in terms of time-

frequency distributions which collapse to the definitions of the classical power

quality indices if the disturbance is periodic. In this chapter, we postulate the

following four time-frequency based power quality indices: instantaneous dis-

tortion energy ratio (IDE(t)), normalized instantaneous distortion energy ra-
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tio (NIDE(t)), instantaneous frequency (IF (t)), and instantaneous K-factor

(IK(t)).

1. Instantaneous Distortion Energy Ratio

The instantaneous distortion energy ratio (IDE(t)) is defined as follows in

terms of time-frequency distributions of the disturbance TFDD(t, ω; φ) and

fundamental frequency components TFDF (t, ω; φ):

IDE(t) = {

∫
TFDD(t, ω; φ)dω

∫
TFDF (t, ω; φ)dω

}1/2 × 100% (3.3)

The definition of the IDE(t) can be interpreted as a “time-varying”

power quality assessment determined by the time-frequency localized energy

ratio of the disturbance events to the fundamental frequency energy. In other

words, IDE(t) is the transient version of the total harmonic distortion (THD).

Note that in IDE(t), the energy of the disturbance is calculated not just

from the harmonics but from all continuous frequencies. Therefore, we do not

have to confine the disturbance energy to harmonics, and it is the reason why

the index is named “instantaneous distortion energy ratio,” not “harmonic”

factor. Furthermore, interharmonics, which cannot be properly dealt with

Fourier series coefficients that assume periodicity of disturbance signal can be

quantified using IDE(t).

2. Normalized Instantaneous Distortion Energy Ratio

Instead of the total harmonic distortion (THD), the power contribution of

a periodic disturbance may be represented by the distortion index (DIN),

alternatively. The concept of the distortion index (DIN) is very close to that of

the total harmonic distortion (THD); however, the distortion index is defined

in terms of the harmonic power divided by the total power in the waveform

47



itself.

DINv =

√√√√
k=∞∑

k=2

|vk|2
√√√√

k=∞∑

k=1

|vk|2
(3.4)

This feature is an advantageous aspect of the distortion index (DIN) over

the total harmonic distortion (THD) where the absence of the fundamental

frequency components causes the evaluation of the index to fail [31]. Hence,

the transient disturbance energy TFDD(t, ω; φ) can be normalized by the sum

of the transient disturbance itself and fundamental energy TFDF (t, ω; φ) as

follows:

NIDE(t) = {

∫
TFDD(t, ω; φ)dω

∫
TFDD(t, ω; φ)dω +

∫
TFDF (t, ω; φ)dω

}1/2 × 100% (3.5)

Therefore, the normalized time-varying instantaneous disturbance energy ra-

tio corresponds to the transient version of DINv defined by the Fourier co-

efficients. Note that the NIDE(t) increases with the transient disturbance

energy, however, it cannot exceed a maximum value of 100 %. The relation

between the THD and DIN still holds true for NIDE(t) and IDE(t), as indi-

cated in the following:

NIDE2(t) =
1

1 +

∫
TFDF (t, ω; φ)dω

∫
TFDD(t, ω; φ)dω

=
IDE2(t)

1 + IDE2(t)

NIDE(t) = IDE(t) ·
√

1

1 + IDE2(t)
(3.6)
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A large amplitude transient disturbance may result in a large value of

IDE(t), however, for NIDE(t), the maximum value is bounded by 100% so

that the variations of this transient power quality index is limited. Due to

the relation between the NIDE(t) and IDE(t) shown in (3.6), for a rela-

tively small disturbance, e.g., less than 30%, IDE(t) will have a value close to

NIDE(t). We recognize that IDE(t) and NIDE(t) correspond to the square

root of an appropriate energy ratio; however, to avoid awkward phraseology,

we will simply use the term “energy ratio” throughout this chapter.

3. Instantaneous Frequency

The time-frequency based transient power quality indices discussed above in-

terpret the effects of the disturbance in terms of transient energy. However, the

same transient disturbance energy might have different effects on the power

system depending on the local frequency content. By exploring the frequency

localization via the time-frequency distribution, one can define a measure of

the severity of the transient disturbance in terms of frequency deviation.

The instantaneous frequency is calculated from the time-frequency dis-

tribution as follows [2]:

IF (t) =

∫
ω · TFDS(t, ω; φ)dω

∫
TFDS(t, ω; φ)dω

(3.7)

Therefore, the instantaneous frequency is a first-order moment, where each

frequency component in S(t) is weighted by the energy associated with that

component at the time of interest. Consequently, a disturbance with higher

frequency content will result in higher value of instantaneous frequency than a

disturbance with lower frequency content. Hence, the instantaneous frequency

is very sensitive to the onset of a transient event, which is usually composed
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of high frequency components. This sensitive feature of the instantaneous fre-

quency allows one to utilize it for the detection of the onset of a variety of

transient disturbance events.

4. Instantaneous K-Factor

The K-factor is a measure of the harmonic content generation of a load, es-

pecially for transformer rating [22]. To generalize the K-factor to a transient

disturbance, the square (2nd order) of the normalized frequency is weighted

by the relative amount of energy associated with that frequency at the time of

interest. Hence, one can define the instantaneous K-factor IK(t) as follows:

IK(t) =

∫
ωN

2 · TFDS(t, ω; φ)dω
∫

TFDD(t, ω; φ)dω +

∫
TFDF (t, ω; φ)dω

(3.8)

where the normalized angular frequency ωN is,

ωN =
1

2π
· ω

60 Hz
(3.9)

Based on the definition of the instantaneous K-factor IK(t) provided

in (3.8), the value of IK(t) under the normal steady state conditions, will

remain 1. The value of the IK(t) is more sensitive to any transient variation

of the waveform compared to the instantaneous frequency provided in (3.7),

because, IK(t) has a squared frequency, ω2, dependence, while IF (t) has just

a linear frequency, ω, dependence.

4. Calculation of the principal average of transient power

quality indices

The transient power quality indices provide useful information about

the time-varying signature of the transient disturbance for assessment pur-

poses. However, if the time-varying signature can be quantified as a single
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number, it would be more informative and convenient for an assessment and

comparison of transient power quality. Therefore, we define a “principal aver-

age” of the transient power quality indices, TFPQ as an average of the time-

frequency based power quality index function TFPQ(t) over a fundamental

period T0 as follows:

TFPQ =
1

T0

∫ t0+T0/2

t0−T0/2

TFPQ(t)dt, where t0 = arg max
t
{TFPQ(t)}

(3.10)

The selection of the time interval center for the evaluation of the principal

average TFPQ is determined by the time index of the local peak value of the

TFPQ(t), t0. Consequently, the principal average of transient power quality

indices is the local average over a T0 sec. duration which is centered at the

local peak value of the TFPQ(t).

Based on the definitions of the transient power quality indices, one can

assess the time-varying signatures of transient disturbances. However, it is

necessary to clarify the relation between the time-frequency based transient

power quality indices and classical Fourier-based power quality indices. Con-

sider an IDE(t) of a periodic disturbance signal with fundamental period

T0 = 2π/ω0 such that D(t) = D(t + T0). If a signal is periodic, one can obtain

its Fourier series expansion as follows:

D(t) =
n=∞∑

n=−∞
dn · ejnω0t (3.11)
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If the time-frequency distribution of the disturbance TFDD(t, ω) sat-

isfies the time marginal property, one can obtain the following relations:

∫
TFDD(t, ω)dω = |D(t)|2

=
n=∞∑

n=−∞
dn · ejnω0t ·

m=∞∑
m=−∞

d∗m · e−jmω0t

=
n=∞∑

n=−∞

m=∞∑
m=−∞

dn · d∗mej(n−m)ω0t (3.12)

Consider the average of the IDE(t) over a fundamental period T0 as follows:

1

T0

∫ T0/2

−T0/2

∫
TFDD(t, ω)dωdt =

n=∞∑
n=−∞

m=∞∑
m=−∞

dn · d∗m · {
1

T0

∫ T0/2

−T0/2

ej(n−m)ω0tdt}

=
n=∞∑

n=−∞

m=∞∑
m=−∞

dn · d∗m · δ(n−m)

=
n=∞∑

n=−∞
|dn|2 (3.13)

where d±1 = 0, since we are considering just the disturbance. The result corre-

sponds to the power of the disturbance in harmonics while the total harmonic

distortion indicates that it is a power ratio of disturbance to the fundamen-

tal frequency. Therefore, if a disturbance is periodic, then the average of the

IDE(t) over the fundamental period is equal to the total harmonic distortion.

This result is not limited to the IDE(t). The other types of time-frequency

based power quality indices discussed in this chapter, reduce to the correspond-

ing Fourier coefficient based power quality indices if the definition is proper

and frequency marginal property is satisfied.
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3.2.1 Transient Interharmonics

In this section, we will discuss applications of time-frequency based

transient power quality indices, discussed in the previous subsection, to the

interharmonic disturbance problem. Due to the aperiodic characteristics of

interharmonics with respect to the fundamental frequency, the problem of

measurement and assessment of interharmonics has drawn the attention to the

power quality research community. The existence of frequencies other than the

harmonics with respect to the sampling period result in the errors due to the

end-effect in the evaluation and measurement of the Fourier coefficient based

power quality indices. The major sources of the interharmonic disturbances are

associated with the use of the power electronic devices (frequency converters,

sub-synchronous converter cascades, induction motors, arc furnaces), which

result in undesirable heating, light flicker, and peak value variation problems

in power systems.

For a verification of the application of time-frequency based transient

power quality indices to interharmonics, consider an example of a simulated

transient interharmonic disturbance s(t) as follows:

s(t) =

{
A · sin(2πf0 · t) + 0.25 · A · sin(2π

√
20 · f0 · t) (25ms. < t < 75 ms.)

A · sin(2πf0 · t) (elsewhere)

(3.14)

where f0 is the fundamental frequency, 60 Hz. Employing the example of

the simulated transient interharmonic disturbance, the procedures of time-

frequency based transient power quality evaluation discussed in previous sub-

section will be discussed. At the top of Fig. 3.3, a time series of the transient

interharmonic disturbance signal is presented. Note that between 25 ms. and

75 ms., an interharmonic disturbance with 25% amplitude (with respect to

53



-1

-0.5

0

0.5

1

Signal in time

0510

x 10
5

Linear scale

E
n

e
rg

y
 s

p
e

c
tr

a
l 
d

e
n

s
it
y

Time [ms]

F
re

q
u

e
n

c
y
 [

k
H

z
]

10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.3: Reduced interference distribution (bottom) of a transient interhar-
monics waveform (top) and its energy spectrum (bottom left)

fundamental frequency component) and at 268.33 Hz (=
√

20× 60) is present.

The amplitude and frequency of the interharmonic can be also found in the

energy spectral density located on left side of Fig. 3.3. Due to the relatively

small amplitude and duration of the interharmonics, it is difficult to observe

the existence of the interharmonic component at 268.33 Hz in the energy spec-

tral density. However, note that the time-frequency distribution provided in

Fig. 3.3 clearly displays the presence of the transient interharmonic distur-

bance jointly in both the time and frequency domain. As shown in Fig. 3.3

one can confirm the existence of the interharmonics in time (between 25 and

75 ms.) and frequency (268.33 Hz =
√

20× 60) simultaneously.

Based on the time-frequency distribution of the transient interharmonic
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disturbance provided in Fig. 3.3, one can one can successfully assess interhar-

monic problems by exploring the advantages of time-frequency analysis. In

Fig. 3.4, various time-frequency based transient power quality indices of the

transient interharmonics are provided in terms of the instantaneous distor-

tion energy ratio (IDE(t)), normalized instantaneous distortion energy ra-

tio (NIDE(t)), instantaneous frequency (IF (t)), and instantaneous K-factor

(IK(t)). The instantaneous distortion energy ratio (IDE(t)) in Fig. 3.4-(b)

55



and normalized instantaneous distortion energy ratio (NIDE(t)) Fig. 3.4-(c)

show similar value of 25% from 25 ms. to 75 ms. The beginning and end of the

transient interharmonic are also detectable via a sudden increase and decrease

of the time-varying power quality indices. The instantaneous frequency IF (t)

in Fig. 3.4-(d) depicts the existence of the interharmonic components in terms

of frequency from 25 ms. to 75 ms., while the instantaneous frequency IF (t)

remains at 60 Hz before and after the transient interharmonic occurence. The

instantaneous frequency with the transient interharmonic oscillates from 0 Hz

to 100 Hz with the interharmonic cycle, whose pattern is determined by the

phase difference relation between the fundamental component and the inter-

harmonic components. Note that the instantaneous frequency is periodic with

the interharmonic frequency (268.33 Hz =
√

20× 60) whose RMS value 72.25

Hz corresponds to definition of the instantaneous frequency provided in (3.7)

as follows:
∫

ω · TFDS(t, ω; φ)dω
∫

TFDS(t, ω; φ)dω

=
60× (1)2 + 60

√
20× (0.25)2

(1)2 + (0.25)2

= 72.25Hz (3.15)

Hence, we conclude that the time-frequency based power quality in-

dices provide a proper methodology to with which to assess interharmonic

disturbances. In addition, the time-localization characteristics of the time-

frequency based power quality indices allows one to detect the existence of

transient interharmonics, which is not available via classical Fourier coefficient

based power quality indices.

56



3.3 Application Examples

In this section, we will consider three real-world samples of disturbance

waveforms to illustrate the time-frequency based power quality indices de-

fined in the previous section. The first two samples are fast and slow capacitor

switching disturbances. Then, a sub-transient disturbance, voltage sag is char-

acterized by the time-frequency based power quality indices. In the following

subsections, each disturbance example will be discussed individually. The real-

world disturbance waveform data illustrated in this section was provided by

courtesy of EPRI (Electric Power Research Institute).

3.3.1 Transient Capacitor Switching Disturbances

In Fig. 3.5, a fast capacitor switching disturbance is provided with

the time-frequency distribution and the corresponding transient power quality

indices are shown in Fig. 3.6. The waveform at the top of Fig. 3.5 is the orig-

inal waveform and the waveform in the middle is the extracted disturbance

waveform obtained by the Eq. (3.1). The time-frequency distribution of the

fast capacitor switching disturbance is provided in the bottom of Fig. 3.5.

The fast capacitor switching is caused by a restrike on opening; if a contactor

does not successfully open during the deenegizing process, an arc is generated

by re-energizing the capacitor. It is known that the disturbance generated by

the capacitor switching restrike on opening exhibits transient oscillation with

natural frequency determined by the capacitance and inductance of the sys-

tem. Therefore, the disturbance signal is more transient and oscillatory than

normal capacitor energizing, which will be considered next.

The time-frequency distribution in Fig. 3.5 shows that the transient

energy of the disturbance occupies approximately 500 Hz to 1000 Hz dur-
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Figure 3.5: Time-frequency distribution of a fast capacitor switching distur-
bance

ing 32-33 ms. The instantaneous disturbance energy ratio IDE(t) in Fig.

3.6-(c) shows a peak value 231.9 % at 32.04 ms while the peak of the normal-

ized instantaneous disturbance energy ratio NIDE(t) in Fig. 3.6-(d) shows a

peak value 91.83% at the same time. The principal averages for IDE(t) and

NIDE(t) are 17.64% and 13.56%, respectively. The instantaneous frequency

shows a peak value of 2.695 kHz at 32.09 ms. and the principal average of the

instantaneous frequency IF (t) is 115.65 Hz. The instantaneous K-factor shows

peak value 10.14 at 32.24 ms. and the principal average of the instantaneous

K-factor IK(t) is 1.65.

In Fig. 3.7, a slow capacitor switching disturbance is considered

with the corresponding time-frequency distribution and corresponding tran-

sient power quality indices in Fig. 3.8. The slow capacitor switching provided

in Fig. 3.7 comes from a normal capacitor switching for the correction of

power factor. Hence, the disturbance caused by the slow capacitor switching
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Figure 3.6: Time-frequency based transient power quality indices of the fast
capacitor switching: (a) Disturbance waveform, (b) Separated disturbance
waveform, (c) Instantaneous disturbance energy ratio (IDE(t)), (d) Normal-
ized instantaneous distortion energy ratio (NIDE(t)), (e) Instantaneous fre-
quency (IF (t)) and (f) Instantaneous K-factor (IK(t))

is intuitively expected to be less significant than the fast capacitor switching

disturbance discussed before.

The time-frequency distribution in Fig. 3.7 shows that the transient

energy of the disturbance occupies between 200 Hz and 600 Hz during 12-15

ms. The instantaneous disturbance energy ratio IDE(t) in Fig. 3.8-(3) shows

a peak value 33.67 % at 13.00 ms, while the peak of the normalized instan-

taneous disturbance energy ratio NIDE(t) shows a peak value 31.91%. The

principal average of the IDE(t) and NIDE(t) are 6.26% and 6.19%, respec-
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Figure 3.7: Time-frequency distribution of a slow capacitor switching distur-
bance

tively. The instantaneous frequency shows peak value 253.1 Hz at 12.87 ms.

and the principal average of the instantaneous frequency IF (t) is 64.35 Hz.

The instantaneous K-factor shows a peak value 1.73 at 13.92 ms. and the

principal average of the instantaneous K-factor IK(t) is 1.11.

The transient power quality index peak values indicate that the fast

capacitor switching is a more severe transient event than the slow capacitor

switching in terms of IDE(t), NIDE(t), IF (t) and IK(t). This result can be

confirmed by the shorter time duration and higher frequency content of the

disturbance observed in the time-frequency distributions in Figs. 3.5 and 3.7.

The ratio of the instantaneous peak values between the fast to the slow capac-

itor switch vary depending on the power quality indices : approximately 11

(2695/253.1=10.65) times higher peak IF (t) and 3 (91.83/31.91=2.88) times

higher peak NIDE(t). However, in terms of principal average values, the fast

capacitor switching disturbance has, approximately, 2 times higher values than
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Figure 3.8: Time-frequency based transient power quality indices of the slow
capacitor switching: (a) Disturbance waveform, (b) Separated disturbance
waveform, (c) Instantaneous disturbance energy ratio (IDE(t)), (d) Normal-
ized instantaneous distortion energy ratio (NIDE(t)), (e) Instantaneous fre-
quency (IF (t)) and (f) Instantaneous K-factor (IK(t))

the slow capacitor switching case.

3.3.2 Sub-transient Disturbance: Voltage Sag

The application of the time-frequency based transient power quality

indices are not only limited to purely transient disturbances. A sub-transient

voltage sag disturbance caused by a motor starting is provided with the corre-

sponding time-frequency distribution in Fig. 3.9 and corresponding transient

power quality indices in Fig. 3.10. The waveform at the top of Fig. 3.9 is the
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original waveform and the waveform in the middle is the extracted disturbance

waveform. Voltage sag is an event that exhibits a transient decrease of RMS

value of the waveform which is very critical for adjustable speed drive (ASD),

programmable logic controllers, microprocessors, etc.

The pattern of the time-frequency distribution is somewhat different

compared with the previous two transient disturbance examples; the time-

frequency distribution shows that the disturbance energy occurs at the fun-

damental frequency 60 Hz from 30 ms. onwards, with the amplitude slowly

decreasing with time. The instantaneous disturbance energy ratio IDE(t)

shows an abrupt increasing peak value 21.70 % at 38.94 ms while the peak

of the normalized instantaneous disturbance energy ratio NIDE(t) shows a

peak value 21.21% at the same time. The peak value of the IDE(t) is associ-

ated with the depth of the sag; 80% of the nominal amplitude results in the

value of approximately 20% instantaneous disturbance energy ratio. The slow

recovery of the voltage sag is observed by the decreasing values of the IDE(t)

and NIDE(t) in Fig 3.10. The principal average values of the IDE(t) and

NIDE(t) are 18.42% and 18.10%, respectively.

The instantaneous frequency exhibits a peak value 155.3 Hz at 30.81

ms., which is the exact time of the start of the voltage sag. The value of in-

stantaneous frequency and its time index demonstrates that the instantaneous

frequency is a powerful tool for accurate detection of the voltage sag initiation,

which has been traditionally treated by RMS values or wavelet transforms.

The principal average of the instantaneous frequency is very close to 60 Hz,

i.e., IF (t) is 59.76 Hz. The instantaneous K-factor shows peak value 2.04 at

22.05 ms. The principal average of the instantaneous K-factor IK(t) is 1.07,

which implies very small variation of the frequency content as is true for the

case of voltage sag.
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Figure 3.9: Time-frequency distribution of a voltage sag disturbance

In terms of the principal averages of the instantaneous frequency and

instantaneous K-factor, the voltage sag does not affect the frequency very much

which remains very close to the fundamental frequency and its normalized

value of 1. However, the variations of the amplitude are reflected in the values

of the disturbance energy ratio. In the case of voltage sag, a sub-transient

disturbance, the peak values are relatively smaller than the transient distur-

bances; moreover, the differences between the peak value and principal average

values of energy are relatively smaller compared to the transient cases due to

the slower variations of the voltage sag. This example of transient power qual-

ity assessment for voltage sag confirms the fact that the time-frequency based

power quality indices, IDE(t) and NIDE(t), are very informative regarding

to the sub-transient disturbances. Moreover, the instantaneous frequency and

instantaneous K-factor provide accurate and sensitive detection of the time of

occurrence of the voltage sag as shown in Fig. 3.10.

In Table 3.1, a summary of the various power quality indices is provided
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Figure 3.10: Time-frequency based transient power quality indices of voltage
sag: (a) Disturbance waveform, (b) Separated disturbance waveform, (c) In-
stantaneous disturbance energy ratio (IDE(t)), (d) Normalized instantaneous
distortion energy ratio (NIDE(t)), (e) Instantaneous frequency (IF (t)) and
(f) Instantaneous K-factor (IK(t))

for the four examples discussed in this chapter. Comparing the disturbance

examples in terms of their respective time-frequency based transient power

quality indices, one can determine and compare the transient power quality

in a quantitative way. It is difficult to tell which is the “best” power qual-

ity index, because they have different parameter dimensions; Hz (or equiv-

alently rad./sec. for angular frequency notation) for IF (t), dimensionless

energy percentage for IDE(t) and NIDE(t), and dimensionless frequency

squared for IK(t). However, if one determines a dimension or purpose of the
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Table 3.1: Summary of transient power quality indices for the examples
Fast cap. Slow cap. Motor
switching switching starting

Type of disturbance Transient Transient Sub-transient

peak time (ms.) 32.04 13.00 38.94
IDE peak value (%) 231.92 33.67 21.70

principal average 17.64 6.26 18.42

peak time (ms.) 32.04 13.00 38.94
NIDE peak value (%) 91.83 31.91 21.21

principal average 13.56 6.19 18.10

peak time (ms.) 32.09 12.87 30.81
IF peak value (Hz) 2695 253.1 155.3

principal average 115.65 64.35 59.76

peak time (ms.) 32.24 13.92 22.05
IK peak value 10.14 1.73 2.04

principal average 1.65 1.11 1.07

transient power quality index, one can select an appropriate corresponding

time-frequency based transient power quality index. If one needs an assess-

ment of transient power quality in terms of energy, one can choose IDE(t) or

NIDE(t). If one needs an assessment of transient power quality in terms of

frequency, one can choose IF (t) or IK(t). If one needs an assessment of tran-

sient power quality in terms of a specific frequency spectrum (for example, tele-

phone interference factor), one can customize time-frequency based transient

power quality indices once one has calculated TFDD(t, ω) and TFDF (t, ω).

Note that irrespective of power quality index selection, the time-frequency

based power quality indices provide time-varying frequency signatures of the

transient disturbance.
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3.4 Conclusion

In this chapter, power quality assessment for transient disturbance sig-

nals has been carefully treated by time-frequency analysis. The limitations of

the traditional Fourier series coefficient based power quality indices, which in-

herently require periodicity of the disturbance signal, has been resolved by use

of the time-frequency analysis. Utilizing the time and frequency localization

of the time-frequency distribution, the following time-frequency based power

quality indices are proposed: the instantaneous disturbance energy ratio, nor-

malized instantaneous disturbance energy ratio, instantaneous frequency, and

instantaneous K-factor. The first two power quality indices characterize the

disturbance in terms of energy, while the latter two power quality indices char-

acterize the disturbance in terms of frequency deviation. Furthermore, the

application of the time-frequency based power quality indices can be extended

to the assessment and detection of sub-transient and periodic disturbances.

In this chapter, the efficacy of the time-frequency based power quality indices

has been demonstrated by the use of real-world disturbance examples.
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Chapter 4

Time-Frequency Domain Solution for a

Direction Finder of Transient Power Quality

Disturbances

4.1 Introduction

Power quality has been an important issue in power systems engineering

with the increased number of power electronic devices and sensitive electronic

loads. Capacitor banks are placed in power distribution systems to provide

voltage support and correct displacement power factor. However, the capacitor

switching in power distribution system results in a transient over-voltage with

oscillation, which is one of the most common and critical power quality events

followed by voltage sags. The impact of capacitor switching on customer sys-

tems has been recognized in the early 90’s [36]. For a more fair management

of power quality in the near future, the responsible parties are expected to be

penalized for the degradation of power quality.

Unfortunately, although the capacitor switching disturbance is one of

the most common disturbances in power distribution systems, the abilities and

methodologies to locate the capacitor switching is limited. Capacitor switch-

ing localization was proposed by the identification of a transient parameter

[37], which requires the knowledge of system parameters, capacitor size and

configuration. Hence, as an alternative, waveform based solutions have been

proposed. An empirical approach has been proposed in terms of instantaneous

67



power and disturbance power [38] and signature analysis has been proposed in

order to track the capacitor switching performance [39]. In order to provide

an analytic solution of the capacitor switching localization, a time-domain

Kalman filter based solution has been proposed [40].

Irrespective of the different approaches to capacitor switching localiza-

tion, the difficulties of the problem are caused by the “transient” and “oscil-

latory” nature of the disturbance event. For steady state power systems, the

direction of power flow is determined by the phase angles between voltage and

current, which correspond to the power factor at the fundamental frequency.

However, for transient events it is necessary to investigate the phase difference

relations of the transient disturbance waveforms in both a “time” and “fre-

quency” domain localized manner. In this chapter, we propose an advanced

signal processing, i.e., cross time-frequency analysis, based analytic solution

to the localization of transient capacitor switching. The time-frequency based

analytic solution provides determination of the transient power flow direction

in terms of time and frequency localized phase difference.

4.2 Transient Circuit Analysis of Capacitor Switching

In this section, we will investigate a fundamental, but simple, structure

of an electric power network with its analytic transient response solutions.

Consider a simplified RLC transient resonant electric circuit diagram in Fig.

4.1. The circuit diagram provided in Fig. 4.1 depicts a set of capacitor switch-

ing scenarios at different spatial locations: with respect to the observation

points (dashed box in Fig. 4.1) capacitor A is located upstream, capacitor B

is located in the middle and capacitor C is located downstream, respectively.

Based on the observed voltage (v1(t), v2(t)) and current (i1(t), i2(t)) waveforms
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Figure 4.1: A simplified RLC transient resonant electric circuit diagram

the phase difference angles of the transient disturbance are to be determined.

Consider the transient solutions of the capacitor B switching first, then the

solutions of the others will follow. The differential equations for the capacitor

B switching can be written as follows in terms of voltage and current:

−vs(t) + RA · i1(t) + LA
di1(t)

dt
+ vB(t) = 0

−vB(t) + LB
di2(t)

dt
+ (RB + RL) · i2(t) = 0

i1(t)− i2(t)− CB
dvB(t)

dt
= 0 (4.1)

where RA = RA1 +RA2 +RA3 , LA = LA1 +LA2 +LA3 , RB = RB1 +RB2 +RB3 ,

and LB = LB1 + LB2 + LB3 . The initial conditions of the system are:

vB(t = t+0 ) = 0, v
′
B(t = t+0 ) = 0 (4.2)

where t0 is the arbitrary time instance of the capacitor switching. The solution

of (4.1) is stable and underdamped, which is characterized by a decay factor

α and resonance frequency ωf . (Note that ω0 stands for the fundamental

frequency of the power system.) By solving the equations above, one can
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obtain a solution of the reference voltage vB(t) as follows:

vB(t) = VB · sin(ω0(t− t0) + θ0) +
ω0

ωf

· VB · e−α(t−t0) sin ωf (t− t0)

− σ

σ2 + 1
· α · VB · e−σ(t−t0)

∼= VB · sin(ω0(t− t0) + θ0) +
ω0

ωf

· VB · e−α(t−t0) sin ωf (t− t0)

(α >0, ωf >0, σ À 0, t ≥ t0)

where tan θ0 =
α · σ

σ2(α− 1)− 1
(4.3)

VB represents the nominal amplitude value of the voltage source Vs(t) = Vs ·
sin(ω0t) in the steady-state. The value of σ is typically large enough, thus

e−σ(t−t0) can be reasonably approximated to be zero. Based on the solution of

vB(t) in (4.3), the transient components of the currents i1(t) and i2(t), which

we denote by ĩ1(t) and ĩ2(t), associated with the disturbance at frequency ωf ,

are obtained as follows:

ĩ1(t) = I1 · e−α(t−t0) sin(ωf (t− t0)− θ1),

where tan θ1 =
LA · ωf

RA − α · LA

, (0 < θ1 < π) (4.4)

ĩ2(t) = I2 · e−α(t−t0) sin(ωf (t− t0)− θ2),

where tan θ2 = − LB · ωf

(RB + RL)− α · LB

, (−π < θ2 < 0) (4.5)

where I1 and I2 are the amplitude of the transient oscillation determined by

the system parameter and initial conditions. Note to the phases of the current

in (4.4) and (4.5). The solutions of the current, ĩ1(t) and ĩ2(t), allow one to

obtain solutions of the voltage at the observation points, v1(t) and v2(t) as
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follows:

v1(t) = vB(t) + RA3 · i1(t) + LA3 ·
i1(t)

dt

= (VB + δVB1) · {sin(ω0t− δ1) + e−α(t−t0) sin(ωf (t− t0)− δ
′
1)},

where (VB À δVB1 , δ1 ≈ 0)

v2(t) = vB(t)−RB1 · i2(t)− LB1 ·
i2(t)

dt

= (VB − δVB2) · {sin(ω0t + δ2) + e−α(t−t0) sin(ωf (t− t0) + δ
′
2)},

where (VB À δVB2 , δ2 ≈ 0) (4.6)

The additional variables are introduced for voltage, (δVB1 , δVB2), and phase,

(δ1, δ
′
1, δ2, δ

′
2), respectively. However, the variations in amplitude and phase

are relatively small and the exact values can be evaluated, if needed, with

knowledge of the distribution line characteristics, i.e., R1, R2, L1, and L2.

Comparing the transient solutions of the current waveforms, (ĩ1(t),

ĩ2(t)) and voltage waveforms (v1(t), v2(t)), one can find that the direction of

the transient power flow due to the capacitor switching is determined by the

phase difference between voltage and current at the time of capacitor switch-

ing and frequency of transient oscillation. If the phase angle of current leads

that of voltage (θ1 > δ
′
1), the switched capacitor is located at the downstream

direction while the phase angle of current lags that of voltage (θ2 < δ
′
2), the

switched capacitor is located at the upstream direction.

Based on the solutions of the circuit, the transient voltage and current

waveforms can be obtained so that the phase relation can be extended to ca-

pacitor A switching (upstream) and capacitor C switching (downstream). In

the case of capacitor A switching (upstream direction), the current ĩ1(t) and

ĩ2(t) correspond to the transient solution provided in (4.4) and (4.5) (of course

with small degree of phase difference caused by the lines) phase difference so
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that the phase angles of the currents I1 and I2 lags the phase angles of the

voltage V1 and V2. Likewise, the capacitor C switching (downstream direction)

will result in leading phase of currents with respect to the voltages.

The voltage and current phase relations discussed above is summarized

by a set of phase angle relations in Fig. 4.2. Based on the phase relation

discussed above, the capacitor switching in the middle (CB) will result in the

leading phase for current I1 with the lagging phase for current I2. The ca-

pacitor switching at the upstream results in the lagging phase angle of both

currents with respect to the voltage as depicted in Fig. 4.2-(a). Likewise, the

capacitor switching at the downstream results in the leading phase angle of

both currents with respect to the voltage as depicted in Fig. 4.2-(c). Note

that in each figure, the leading or lagging phase relation between voltage and

current associated with flow of energy provided in Fig. 4.2 corresponds to

classical notations of power flow in the steady state.

From the viewpoint of measurement, the phase itself is meaningless;

the phase relation can be obtained by the measurement of phase “difference”.

Hence, the phase relation in Fig. 4.2 is represented in terms of following factors

of phase difference between voltage (V1, V2) and current (I1, I2):

1. ΘV1V2 : Phase difference of voltages, V1 with respect to V2.

2. ΘI1I2 : Phase difference of currents, I1 with respect to I2.

3. ΘV1I1 : Phase difference of voltage (V1) with respect to current (I1) at

observation point 1

4. ΘV2I2 : Phase difference of voltage (V2) with respect to current (I2) at

observation point 2
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Figure 4.2: Phase angle relation for Case A, B and C
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Hence, via the measurement of time and frequency localized phase differences

listed above, one can construct the phase relation diagram to determine the

location of the transient capacitor switching as depicted in Fig. 4.2.

4.3 Time-Frequency Localized Phase Difference Evalu-
ation

The direction of real and reactive power flow in the steady state can be

identified by comparing power factor. The power factor is determined by the

phase difference between voltage and current at the fundamental frequency.

However, in the case of a transient, it is not a simple task to determine the

phase difference between voltage and current to identify the direction of real

and reactive power flow. Especially in case of capacitor switching, the dis-

turbance is localized over a short time duration with a transient resonance

frequency, ωf , which is clearly different from the fundamental frequency, ω0.

In this chapter, we will provide a methodology to obtain time- and frequency-

localized phase difference so that one can determine the direction of transient

disturbance flow in terms of phase difference.

In order to obtain time- and frequency-localized phase difference in-

formation for transient disturbance voltage and current waveform pairs, it is

necessary to utilize a new state-of-the-art method, cross time-frequency anal-

ysis discussed in Chapter 2. The cross time-frequency distribution Svi(t, ω; φ)

of voltage v(t) and current i(t) is defined as follows:

Svi(t, ω; φ) =
1

4π2

∫ ∫ ∫
v(u+

τ

2
) ·i∗(u− τ

2
)φ(θ, τ)e−jθt−jτω+jθudθdτdu (4.7)

where φ(θ, τ) is the kernel of the cross time-frequency distribution, and v(t)

and i(t) are now analytic signal representations of the voltage and current
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waveforms. Thus, one can define “time-frequency complex power” as follows:

Svi(t, ω) = |Svi(t, ω)|ejΘvi(t,ω) (4.8)

where the time-frequency phase difference spectrum Θvi(t, ω) corresponds the

time-frequency phase difference angle between voltage and current by following

relation:

Θvi(t, ω) = Θv(t, ω)−Θi(t, ω) (4.9)

Note that the time-frequency phase difference above corresponds to the classi-

cal notation of power angle. Conceptually, it is equivalent to the classical power

angle, however, the phase difference between voltage and current is defined in

terms of “time” and “frequency” simultaneously. In addition, the cross time-

frequency distribution satisfies time and frequency marginal properties such

that:
∫

Svi(t, ω)dω = v(t) · i∗(t) : Time Marginal
∫

Svi(t, ω)dt = V (ω) · I∗(ω) : Frequency Marginal

(4.10)

Hence, the time and frequency marginal properties guarantee that the analysis

based on cross time-frequency distribution collapses to the classical notations

of power in the time domain or frequency domain for the steady state. Thus,

based on the time and frequency marginal properties, the instantaneous real

power P (t) and reactive power Q(t) can be defined in terms of time and fre-

quency simultaneously as follows:

P (t) = <{
∫

Svi(t, ω)dω} :Instantaneous Real Power

Q(t) = ={
∫

Svi(t, ω)dω} :Instantaneous Reactive Power

(4.11)
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Figure 4.3: Time-frequency distribution of the capacitor switching disturbance
in current (Capacitor B)

Therefore, from the complex cross time-frequency distribution, one can obtain

time-frequency phase difference spectrum as follows:

Θvi(t, ω; φ) = tan−1{={Svi(t, ω; φ)}
<{Svi(t, ω; φ)}}

where < and = denote the real and imaginary parts, respectively. Note that

in order to obtain a reasonable measure of time- and frequency-localized phase

difference, knowledge of the proper time and frequency locations on which to

focus is required [41] . This time and frequency localization information is

obtained from the classical time-frequency distribution. Based on the tran-

sient solution of the voltage in (4.6), v1(t) = (VB + δVB1) · e−αt sin(ωf t − δ1),

and current in (4.4), i1(t) = I1(0
+) · e−αt sin(ωf t − θ1), waveforms caused by

the capacitor switching, consider the cross time-frequency distribution with
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Wigner kernel, (for a simple calculation), i.e., φ(θ, τ) = 1, as follows:

Svi(t, ω; φ = 1) =
1

4π2

∫ ∫ ∫
v(u +

τ

2
) · i∗(u− τ

2
)e−jθt−jτω+jθudθdτdu

=
1

2π

∫
v(t + τ/2) · i∗(t− τ/2)e−jωτdτ

∼= (VB + δVB1) · I1(0
+) · e−2α(t−t0) · δ(ω − ωf ) · ej(θ1−δ1)

(4.12)

The approximation in the last step to ideal delta function in (4.12) owes to the

properties of Hilbert transform. Because of the fast exponential decay of the

envelope, the actual time-frequency distribution will spread and be centered at

the transient resonance frequency ωf . The interpretation of the (4.12) should

be focused on the localized phase difference at time t0 and frequency ωf of

interest. Hence, from the cross time-frequency distribution in (4.12), one can

obtain time-frequency phase difference spectrum:

ΘV1I1(t0, ωf ) = (θ1 − δ1) (4.13)

where t0 denotes the time of capacitor switching to be determined below via

the time-frequency distribution.

From (4.13), one can find that it is necessary to determine the frequency

of interest, i.e., the transient resonance frequency ωf for a proper estimation

of the time-frequency localized phase difference. The determination of the

time and frequency of interest can be achieved by the classical time-frequency

distribution where the “energy” of a signal is represented in terms of time and

frequency simultaneously while the cross time-frequency distribution represent

the “phase difference” in terms of time and frequency. Wigner distribution is

defined as follows:

Ws(t, ω) =
1

2π

∫
s(t− 1

2
τ)s∗(t +

1

2
τ)e−jτωdτ (4.14)
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For this analysis, plug in transient disturbance current waveform s(t) = i1(t) =

I1(0
+) · e−α(t−t0) sin(ωf t − θ1), then the Wigner distribution of the transient

disturbance current is,

TFDs(t, ω) ∼= I2
c (0+) · e−2α(t−t0)δ(ω − ωf ) (4.15)

The basis for the approximation in (4.15) is the same with the approxima-

tion discussed in (4.13). (The numerical calculations of the time-frequency

distribution of the signal will be discussed in later.) Hence, the time and fre-

quency localization of the time-frequency phase difference can be determined

as follows:

{t0, ωf} = arg max
t,ω 6=ω0

{TFDs(t, ω)} (4.16)

In order to illustrate the time and frequency localization, consider a

time-frequency distribution of a transient capacitor switching disturbance pro-

vided in Fig. 4.3. The time series provided in the top of Fig. 4.3 is a capacitor

switching disturbance (the description of the waveform will be discussed in

detail in the next section). The time-frequency distribution of the disturbance

is provided in the bottom right of Fig. 4.3 with the frequency domain en-

ergy spectrum in the bottom left of Fig. 4.3. On the frequency domain energy

spectrum, the fundamental frequency component located at 60 Hz is dominant

while the transient oscillation component located around 1 kHz is relatively

small in magnitude. However, the time-frequency distribution in Fig. 4.3 rep-

resent the transient signature of the capacitor switching disturbance. There-

fore, applying the formula provided in (4.16) to the time-frequency distribution

in Fig. 4.3 allows one to determine the time (18.78 ms.) and frequency (953.7

Hz) of interest for the capacitor switching disturbance.

Based on the discussion of the time-frequency phase difference
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spectrum in this section, a flowchart to determine the location of capacitor

switching is provided in Fig. 4.4. The algorithmic process is based on the

transient disturbance voltage (v1(t), v2(t)) and current (i1(t), i2(t)) waveform

observation. The voltage and current waveform pairs will be utilized for the

calculation of the cross time-frequency distribution provided in (4.7). Using

the definition provided in (4.8), the cross time-frequency can be utilized to

calculate the time-frequency phase difference spectrum. However, in order to

evaluate the instantaneous phase difference spectrum at the time of switching

and at the frequency of transient oscillation, it is necessary to evaluate the

time and frequency of interest provided in (4.16) via the time-frequency distri-

bution provided in (4.14). Therefore, we will utilize the current waveform of

the disturbance to evaluate the time and frequency of interest {t0, ωf} at the

observation points as illustrated in Fig. 4.4. Then the measurement of time-

frequency localized phase difference allows one to map the phase relation into

one of types depicted in Fig. 4.2 so that one can determine the relative loca-

tion of capacitor switching. For a pinpoint location of the capacitor switching,

this process can be continues to find the capacitor switching located in the

middle of the observation points. The sequence of determining the location

of the capacitor switching can be repeated by moving the nodes of interest in

order to pinpoint the source of capacitor switching disturbance as indicated in

Fig. 4.4.

4.4 EMTP Simulation and Analysis

In this section, we will demonstrate the application of time-frequency

analysis for the relative localization of the capacitor switching. For the veri-

fication of the theoretical derivation discussed in the previous section, we will
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employ an EMTP simulation of the network as provided in Fig. 4.5.

In Fig. 4.5, a schematic description of the power distribution feeder at

8kV with 4 distributed capacitors is provided. Each capacitor bank consists of

300 kVAR capacitors. Each power distribution line segment consists of a resis-

tance (0.25 Ω) and inductance (1.57 mH). The voltage and current transient

disturbance waveforms are monitored and recorded at the PQN1 (v1(t), i1(t))

and PQN2 (v2(t), i2(t)), respectively. With respect to the location of the obser-

vation points (PQN1 and PQN2), the capacitor A is located at the upstream

direction, the capacitor B is located in the middle, the capacitor C is located

at the downstream direction, respectively. The configuration provided in Fig.

4.5 corresponds to the circuit diagram provided in Fig. 4.1 for transient analy-

sis. Based on the observed voltage and current waveforms, the location of the

swtiched capacitor will be identified by the time-frequency based methodology

discussed in the previous section.

In Fig. 4.6, a set of transient disturbance voltage and current waveform

caused by capacitor A, B, and C switching are provided. Each subfigure con-

sists of the transient disturbance voltage waveforms (v1(t), v2(t)) on top and

current waveforms (i1(t), i2(t)) on bottom. Each capacitor switching distur-

bance event occurs at 18 ms. as shown in Fig. 4.6. At the instance of capacitor

switching, the node voltages (v1(t) and v2(t)) drop, then the transient decay

oscillation continues for less than a fundamental cycle. At the instance of the

capacitor switching, the disturbance current shows abrupt decrease (i1(t), i2(t)

in Fig. 4.6-(a)) or increase (i1(t), i2(t) in Fig. 4.6-(c)) depending on the lo-

cation of the capacitor switching. When the switched capacitor is located

between node 1 and 2, i1(t) initially increase while i2(t) decreases showin in

Fig. 4.6-(b).

Comparing the sets of disturbance waveforms in time domain in differ-
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ent scenario of capacitor switching provided in Fig. 4.6-(a) (c), one can quan-

titatively observe the variations of transient resonat frequency. Depending on

the configuration of the distribution system and size of the switched capacitor,

the transiet resonant frequency varies. One can observe that the transient res-

onant frequency decreases from capacitor A through B and C in time domain.

However, it is necessary to extract the quantitative phase difference relation

between the transient disturbance voltage and current waveforms in order to

distinguish the relative location of the capacitor switching. In addition, the

transient resonant frequency is to be estimated via the transient disturbance

waveform so that the solution of the transient phase difference can be applied

to any distribution system without circuit analysis. The cross time-frequency

distribution provides time and frequency localized phase difference relation

between voltage and current, while the time-frequency distribution provides

information for the time and frequency localization of interest in (4.16).

The result of the time-frequency domain solution is illustrated by Figs

4.7-4.8 and Table 4.1. In Fig. 4.7, the time-frequency localized phase difference

spectra are provided for 3 different locations of capacitor switching. In each

figure, the phase differences are evaluated in terms of ΘV1V2 , ΘI1I2 , ΘV1I1 and

ΘV2I2 . In order to provide quantitative information for Fig. 4.7, the phase dif-

ferences at the frequencies of interest are summarized in Table 4.1. Note that

depending on the location of the switched capacitor, the transient resonance

frequency will change, because the solution of the characteristic equation is

affected by the location of the capacitor. However, using the time-frequency

distribution of the transient capacitor switching, one can accurately determine

the time and frequency of interest for all cases as illustrated with Fig. 4.3 and

(4.16). The frequency of transient oscillation caused by the capacitor switch-

ing is indicated by the vertical dashed lines in each cases. (The exact values
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of the frequency of interest is tabluated in Table 4.1.)

Utilizing the time-frequency localized phase differences provided in Fig.

4.7, one can map the phase relations into a diagram as illustrated in Fig. 4.2.

In Fig. 4.2, the reference of the phase angle is the phase of vB(t), which is

not directly available from the observed waveforms. In this simulation, as

RA3 = RB1 and LA3 = LB1 , one can take the mean of the phase difference

of ΘV1V2 ; however, it can be properly calibrated, if needed, with knowledge of

the line characteristics between V1 and V2. In Fig. 4.8, the time-frequency

localized phase differences in Fig. 4.7 for Cases A, B and C are provided in

terms of phase difference angles of voltages (V1, and V2) and currents (I1, and

I2). It is more informative to represent the phase difference relation as shown

in Fig. 4.8 to distinguish relative location of the capacitor switching. Now

consider each capacitor switching disturbance by interpreting Figs 4.7-4.8 and

Table 4.1.

1. Capacitor A switching (upstream direction)

In Fig. 4.7-(a) the time-localized phase difference spectrum of the capacitor

switching A (upstream direction) is provided. By applying the formula pro-

vided in (4.16) to the time-frequency distribution one can obtain time (18.78

ms.) and frequency of interest (1.073 kHz) of the capacitor A switching dis-

turbance is indicated in Fig. 4.7-(a) by a vertical dashed line. Note that the

vertical scale of the Fig. 4.7-(a) is smaller than the other plots in Fig. 4.7. Re-

sorting to the time domain waveform in Fig. 4.6-(a), it is reasonable, because

all the waveforms are closely in-phase. However, the time-frequency localized

phase difference in Fig. 4.7-(a) and corresponding Fig. 4.8(a) shows that the

both of the currents lag the voltage phase to a small degree, i.e., ΘV1I1=0.0782

rad. and ΘV2I2=0.0460 rad.

2. Capacitor B switching
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In Fig. 4.7-(b) the time-localized phase difference spectrum of the capacitor

switching B is provided. The frequency of interst for the capacitor B switching

is estimated to be 0.9537 kHz. The time-frequency distribution in Fig. 4.3

is the current disturbance waveform i1(t) of the capacitor B switching event.

The phase angle of the current I1 leads the phase angle of the voltage V1 by

1.5886 rad., while the phase angle of the current I2 lags the phase angle of the

voltage V2 by 0.0432 rad. Hence, the corresponding phase relation is presented

as in Fig. 4.8-(b), which is close to the phase relation schematic provided in

Fig. 4.2-(b).

The phase relation diagram in Fig. 4.8-(b) allows one to quantitatively

interpret the time domain disturbance waveform provided in Fig. 4.6-(b) in

terms of phase difference. The pair of voltages, V1 and V2, are closely in phase

(ΘV1V2=0.0779 rad.). Also the voltage and current pair at node 2, V2 and I2

are closely in phase (ΘV2I2=0.0432 rad.). However, the current I1 is out-of-

phase with other waveforms, due to the instantaneous inrush current to the

capacitor and B exhibits approximately π/2 rad. phase difference with respect

to the current I2 (ΘI1I2=1.6747 rad.) and voltage V1 (ΘV1I1=-1.5886 rad.).

3. Capacitor C switching (downstream direction)

As indicated in Fig. 4.8-(c), for capacitor C switching, the currents I1 and I2

are nearly in phase (ΘI1I2=-0.1041 rad.), however, out of phase with respect

to the voltages V1 and V2, which are in turn closely in phase (ΘV1V2=-0.1091

rad.). Hence, both of the phase angles of the currents I1 and I2 lead thoes of

the voltage V1 and V2 as illustrated in Fig. 4.8-(c). Also note to the decrease

of the frequency of interest for the capacitor C switching (0.6198 kHz). The

reduced frequency of interest of capacitor C switching is associated with the

large value of the load resistance.
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Table 4.1: Time-frequency localized phase difference between voltage and cur-
rent for different location of capacitor switching

Location Capacitor A Capacitor B Capacitor C
(downstream) (middle) (upstream)

ΘV1V2 (rad.) 0.0719 0.0779 -0.1091
ΘI1I2 (rad.) 0.0397 1.6747 -0.1041
ΘV1I1 (rad.) 0.0782 -1.5886 -1.7625
ΘV2I2 (rad.) 0.0460 0.0432 -1.8160

ωf/2π (kHz) 1.073 0.9537 0.6198

4.5 Conclusion

This chapter provides a signal processing based general solution to lo-

cate transient capacitor switching disturbances. The flow of transient distur-

bance energy caused by the transient capacitor switching is determined by

the time and frequency localized phase difference, which is obtained from the

disturbance waveforms only. The key contribution of this study owes to the

applications of the cross time-frequency analysis, which provides the required

time and frequency localized phase differences, which in turn are used to de-

termine the location of the capacitor switching.

The application and results of the time-frequency localized phase differ-

ence approach to the EMTP simulation discussed in this chapter confirms the

feasibility of the proposed time-frequency domain methodology. If recording

devices for the transient disturbance waveforms are available when applied at

several spatial points, the proposed scheme will provide automated and ac-

curate localization of capacitor switching in power distribution systems. The

determination of the time and frequency of interest is a strong advantage of

the proposed methods, which allows one to identify the location of capacitor

switching disturbance, irrespective of location and size of the switching capac-

88



itor. In this chapter, the discussion and application of the the time-frequency

based solution for the location of the transient disturbance is limited to the

capacitor switching events only, however, other types of transient disturbance

deserve to be investigated by the proposed methodology.
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Chapter 5

An Optimal Wavelet Basis Search Algorithm

for the Detection of Voltage Sags in Electric

Power Systems

5.1 Introduction

The most common type of power quality disturbances at the distri-

bution level is voltage sag [42–44]. In particular, such power system distur-

bances have a greater impact on customers than ever before, because of the

increased use of sensitive electronic equipment [42]. As a result, monitoring

and assessment of the power system performance both at the transmission and

distribution levels are becoming increasingly important. Moreover, voltage sag

analysis is a very complex one, since it is closely related with a large variety

of random factors such as types of short-circuits, location of faults, protective

system performance, atmospheric discharges, motor starting, etc.[44]. Tra-

ditionally, the RMS value and the disturbance duration have been used to

characterize the voltage sag waveforms. For some types of equipment, how-

ever, more quantitative information on such power quality disturbances may

be required to properly assess their impact on the power system performance.

In such cases, some additional indices related with the point-on-wave of fault

initiation and recovery, unbalance, distortion, and the phase angle shift should

be also estimated along with the standard depth and duration values. Thus, to

accurately estimate such additional parameters, and to extract some features
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necessary to locate the sources of the sag disturbances, an efficient detection

scheme for more accurately localizing the source of the sag disturbances is

called for.

Recently, as an alternative to the conventional RMS value detection

method, wavelet analysis has been utilized for the detection of power quality

disturbances including voltage sags [28, 29, 38, 45, 46]. However, the choice of

the wavelet basis has a great effect on the end result and the interpretation

of the analysis. The precise end of the sag is hard to define, but the recov-

ery phase is usually marked by discernible discrete wavelet transform (DWT)

activity. Furthermore, the proper choice of the wavelet basis is key to good

performance in detecting the beginning and ending time. This result arises

from the well-known fact that trade-offs between time resolution and frequency

resolution exists in wavelet analysis.

5.2 Wavelet Analysis and the Uncertainty Principle

Fourier analysis is based on a harmonic basis whose length is infinity.

Therefore, Fourier analysis cannot provide time localized information of the

signal. However, the wavelet basis produces localized time, and frequency

(scale) information. Consider a signal x(t) defined in L2(R) space which is

absolutely integrable, then the continuous wavelet transform (CWT ) of x(t)

is defined as follows:

CWTψx(a, b) =

∫ ∞

−∞
x(t)ψ∗a,b(t)dt, (5.1)

where

ψa,b(t) = |a|− 1
2 ψ(

t− b

a
) (5.2)
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ψ is the basis function wavelet. Restrict the variables such that a, b ∈ R, and

a 6= 0. The parameter, a, is a dilation or scale parameter, and b is a translation

parameter, respectively. Note that the wavelet transform is function of dila-

tion, and translation, whereas the Fourier transform is function of frequency

only.

The discrete wavelet transform is defined by samples of parameters a

and b such that a = am
0 and b = nb0a

m
0 , where a0 and b0 are fixed constants

under the condition that a0 > 1, b0 > 0, and m,n ∈ Z. The discrete wavelet

transform (DWT ) is defined as follows:

DWTψx(m,n) =

∫ ∞

−∞
x(t)ψ∗m,n(t)dt (5.3)

where the basis function is expressed with discrete variables,

ψm,n(t) = a
−m/2
0 ψ(

t− nb0a
m
0

am
0

) (5.4)

The orthonormal wavelet basis ψ(t) function determines the resolution of the

coefficients in the time and frequency domain.

Various classes of wavelet basis functions such as Haar, Sinc, Daubechies,

Spline, Battle-Lemarie and Meyer are generally used. Each of the wavelet ba-

sis functions satisfies conditions for perfect reconstruction, supportness, etc.

Several Daubechies’ wavelet basis waveforms are provided in Fig. 5.1.

Note that the Daubechies’ wavelet with an assigned length 1 is equivalent

to the Harr wavelet basis. The time and frequency resolution properties of

each wavelet basis changes with different choices of the length; as a result,

the wavelet transform of the signal will change depending upon the choice of

the wavelet length. However, in many wavelet applications using Daubechies’

wavelets, the choice of the Daubechies’ wavelet basis is not specified or if it is
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Figure 5.1: Haar wavelet basis and Daubechies’ wavelet bases (2 through 8)
with different length

provided, the procedure is quite empirical [38]. In this chapter, we will focus

on the optimal choice of Daubechies’ wavelet for detecting voltage sag signals,

as will be described in next section, in terms of time and frequency resolution.

When we deal with time and frequency (or scale) together for localized

analysis, the resolution in the time and frequency domains is not arbitrarily

available. The trade-off relation between time resolution and frequency reso-

lution is contained in the uncertainty principle [47].

Define a signal with localization window h(t), such that x(t) = s(τ)h(τ−
t), then we can define frequency localization characteristic parameters, the

center frequency fm and the frequency bandwidth F , as follows [48]:

fm =
1

Ex

∫ ∞

−∞
ν|X(ν)|2dν (5.5)
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F = 2

√
π

Ex

∫ ∞

−∞
(ν − fm)2|X(ν)|2dν (5.6)

where X(ν) is the Fourier transform of the localized signal x(t). Similarly,

the time localization parameters are defined by a mean time tm and a time

duration T , as follows:

tm =
1

Ex

∫ ∞

−∞
t|x(t)|2dt (5.7)

T = 2

√
π

Ex

∫ ∞

−∞
(t− tm)2|x(t)|2dt (5.8)

where Ex is the energy of the signal. Then the uncertainty principle boundary

constant will be changed to the following inequality.

F · T ≥ 1 (5.9)

In this chapter, we will use the notations in equations (5.6) and (5.8) for

convenience. Therefore, the time duration (T ) specifies the characteristics of

time localization, and the frequency bandwidth (F ) specifies the characteristics

of frequency localization.

5.3 Voltage Sag Detection in Power Transmission and
Distribution

Voltage sag occurs at both the transmission and distribution levels in

power systems. The voltage level, which is supposed to be maintained con-

stant, and the frequency, which is supposed to be maintained at 60Hz, change.

The detection of the sag and estimation of the voltage sag starting time is

especially important. Three sets of real world voltage sag waveforms on a high

voltage transmission line provided by the Electric Power Research Institute

(EPRI) are shown in Fig. 5.2. The full data set consists of 25 typical voltage
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sag signals whose sampling rate is 6 kHz which is also a typical sampling rate

for monitoring. In the rest of the chapter, we assume the sampling rate 6 kHz

and 60 Hz for fundamental frequency.

Wavelet analysis has shown excellent potential in detecting the voltage

sag in power systems [49]. Concerning the wavelet basis, the optimal wavelet

packet searching algorithm based on the concept of entropy is provided in [50].

However, for a specified scale, the optimal length of wavelet basis is not yet

specified. Among the many samples of the voltage sag time series, we choose

a typical voltage sag waveform, label with data 109, and its wavelet transform

with different Daubechies’ wavelet bases (2-8) are shown in Fig. 5.3. In this

chapter, the scale is set equal to 1 that covers the highest frequency range. It

is reasonable to set the scale equal to 1, if we are focusing on the detection

of sag, because the beginning of the sag will involve higher frequency compo-

nents. In this chapter, we will utilize sag data 109 for explaining the detailed

procedures, however, the results based on exactly the same procedures will be

provided at the end of the chapter for 22 more real world data sets including

data 101, and data 102 shown in Fig. 5.2.

From Fig. 5.3, our mission concerning the optimal wavelet basis

search is clarified. The correspondences of the uncertainty principle relation

are vivid in Fig. 5.3. The wavelet bases with short length (DB 2 and DB 3)

show good time resolution. However, due to the corresponding poor frequency

resolution of the short length (DB 2 and DB 3) wavelet bases, the amplitude

of coefficients are often not high enough for detection. As the length of the

Daubechies’ wavelet increases, the frequency resolution increases, but the poor

time resolution degrades the temporal resolution of the coefficients.

The optimal wavelet basis for voltage sag detection should provide

the highest signal-to-noise ratio within a short time frame for more accurate
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Figure 5.2: Voltage sag time series data (Data 101, Data 102, Data 109)
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Figure 5.3: Voltage sag time series data (Data 109) and its discrete Daubechies
wavelet transforms for DB 2 through DB 7
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detection. Reflecting on this fact, from the several results in Fig. 5.3, one

might intuitively choose a desirable wavelet basis like DB3, DB4 or DB5, by

inspection. However, this is a quite difficult decision, because, one must deal

with time resolution and frequency resolution together within the uncertainty

principle constraints. We will provide a systemetic and quantitative measure of

the relation between the wavelet basis and voltage sag signals in the following

sections.

5.4 Measure of Similarity for Signal and Basis : Instan-
taneous Signal-to-Noise Ratio (SNR)

In this section, we will discuss how one can measure the “goodness”

of a basis function for a given signal to be detected. Before we expand our

discussion on wavelet basis and voltage sag signals, let us consider a simple

but general case of basis function and signal. The “goodness” of the basis

can be explained by the degree to which the basis and the signals are highly

correlated for a short time period.

In Fig.5.4, a set of basis functions are presented in (a) and their corre-

lation with signal S1 is provided in (b). Assume that signal is S1 (indicated in

dotted line) rectangular waveform whose duration is τs=100. Different basis

functions are also indicated Bi(τs − τbi
) in Fig. 5.4-(a), where τs and τbi

are

the duration of the signal s and basis bi. Note that the set of basis functions

are all designed to be centered at zero, have a rectangular shape and contain

the same energy. The cross correlation results are provided in Fig. 5.4-(b).

The cross correlation plotted in Fig. 5.4-(b) can be expressed as follows:

c(t) =

∫ ∞

−∞
s1(τ)Bi(t + τ)dτ (5.10)
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Figure 5.4: A set of basis functions (a) and corresponding correlation function
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In Fig. 5.4-(b), the basis B3(0) which is identical with the signal is indicated

by the dotted line. The cross correlation function of B3 provided in Fig. 5.4-

(b) shows a sharp peak at the center of the signal which corresponds to the

matched filter theory.

These set of cross correlation results can be explained by frequency

bandwidth (F ) and time duration (T ), defined in (5.6) and (5.8), respectively.

Based on the uncertainty principle in (5.9), the equality is satisfied when the

signal is Gaussian. Therefore, for a given F and T , we will approximate the

individual time-frequency signal elements as a two-dimensional Gaussian dis-

tribution on the time-frequency plane. Then the trace of the signal elements on

the time-frequency plane will be a elliptic curve whose semimajor and semimi-

nor are also determined by F and T . This approximation is adopted from

[51] where the time and frequency characteristics are treated together on the
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Figure 5.5: FT characteristics of basis (B1, B2, B3 and B4) and signal (S1)

time-frequency plane.

The F and T characteristics of various basis functions and the B3 sig-

nal are provided in Fig. 5.5. The main pattern of the F and T characteristics

is as follows: the shorter basis has smaller time duration, but larger frequency

bandwidth. The longer basis has larger time duration, but smaller frequency

bandwidth.

How can one quantitatively express the relation between signal and

basis? In Fig. 5.6, an example of a pair of F and T characteristics is provided.

The equations of the curves are as follows: rs(θ) =
√

T 2
s cos2 θ + B2

s sin2 θ for

signal characteristics and rb(θ) =
√

T 2
b cos2 θ + B2

b sin2 θ for basis characteris-

tics. Then, the common area determined by the two ellipses corresponds to

the similarity between the signal and basis in the sense of time and frequency.

The discrepancy area corresponds to the mismatch between the signals which

is also reflected on the cross correlation but which is undesirable for higher
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Figure 5.6: Signal (solid line) and noise (dashed line) determination from FT
characteristics

resolution results. Then one can define signal (SB) and noise (NB) between

signal and basis as follows:

SB =

∫ θ=π/2

θ=0

∫ r=min(rb,rs)

r=0

rdrdθ (5.11)

NB = NB1 + NB2 =

∫ θ=π/2

θ=0

∫ r=max(rb,rs)

r=min(rb,rs)

rdrdθ (5.12)

Note that the resolution index in this chapter is to provide transient

time-frequency resolution of the basis against a given signal. Therefore, the

measure of resolution (SNR) is to be confined within the time frame of the basis

which is determined by the time duration of the basis TB. Considering all the

aspects of the basis and signal discussed above, we postulate the the following

transient resolution index named “instantaneous SNR” whose dimension is

dB/sec.:

dB/sec. =
1

TB

10 log10(
SB

NB

) (5.13)
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This index provides a measurement of similarity and mismatch between the

signal and basis within the time frame of the basis function.

The set of simulations discussed in Sec. 5.4 can be re-interpreted in

terms of the index provided in (5.13). In Fig. 5.7, the variations of SB,

NB and TB with the duration of the basis (τBi
) are provided in (a) and the

corresponding instantaneous SNR is provided in (b). Both of the figures are a

function of the differences of the time duration, τ = τs − τbi
. As we assumed

identical waveform and duration, SB is maximum and NB is minimum at the

center, while SB drops and NB increases as the duration difference increases.

Note that the calculation is based on the F and T characteristics and (5.11),

(5.12). Reflecting on the definition of index in (5.13), the higher index indicates

higher local resolution. This implication is clearly shown in Fig. 5.7. At the

identical basis the index approaches infinity while the index drops down as the

discrepancy increases.

In this section, an important local resolution index is defined and also

explained by a simple set of signal simulations. The interpretation of the index

and its applicability is clarified. In the following sections, a similar systemetic

approach will focus on real voltage sag signals and various wavelet bases to

answer which wavelet basis provides the highest local resolution.

5.5 Uncertainty Analysis for Voltage Sags and Daubechies’
Wavelet Bases

We have discussed the general aspects of signals’ similarity and we de-

rived an important parameter (instantaneous SNR) to measure the similarity

between a signal and a basis function. We will now expand the general discus-

sion to the voltage sag signal sets and the Daubechies’ wavelet basis family.

101



-100 -50 0 50 100
0

2

4

6

8

10

12

14

16

-100 -50 0 50 100
-2

-1.5

-1

0.5

0

0.5

1

1.5

d
B

/s
e

c

TB( )

SB( )

NB( )

s- bi

(a)

s- bi

(b)

Figure 5.7: Parameters (signal and noise) for instantaneous SNR in (a) and
its instantaneous SNR in (b)

The ultimate goal of this chapter and section is to provide a quantitative rec-

ommendation for optimal Daubechies’ wavelet basis for detection of voltage

sags.

We consider data sample 109 to illustrate the approach. First of all,

the localizing characteristics of the wavelet basis can be described by the time

duration (T ) and frequency bandwidth (F ) of the Daubechies’ wavelets. One

can calculate the local time-frequency properties of the voltage sag signal in

the neighborhood of the sag starting point. For the portion of the starting of

the sag, the localized time-frequency properties of data 109 are provided in

Fig. 5.8. This enables us to compare the localized properties of the wavelet

basis and the voltage sag on the uncertainty plane together. The number N

stands for the degree of the localization of the voltage sag. That implies we

want to localize the voltage sag to within N samples. The rectangular win-
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dow length N is applied to get localized information of the voltage sag in this

application.

In Fig. 5.8, the FT characteristics of the wavelet basis and volt-

age sag are provided, however, we cannot describe an exact relation between

wavelet basis and voltage sag. It is necessary for us to provide a quantitative

measure to compare the FT relation of the wavelet basis and the voltage sag.

For the window length, we choose N = 3 which is nearest to the FT clusters

of the basis.

For the voltage sag event 109 with N = 3 and Daubechies’ wavelet ba-

sis family, FT elliptical approximations of the signal elements are provided in

Fig. 5.9. The solid line traces are the FT time-frequency characteristics of the

wavelet bases with different length (DB2-DB7) where the dashed line traces

are that of the localized voltage sag signal. In Fig. 5.9, one can intuitively
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observe that the FT characteristics are becoming better matched for DB4 and

DB5.

Using the definition of the instantaneous SNR in (5.13), one can obtain

a quantitative relation between the various bases functions and signal to be

detected. The instantaneous SNR for the wavelet bases and voltage sag signal

is provided in Fig. 5.10. By comparing Fig. 5.10 and Fig. 5.9, one can confirm

how the instantaneous SNR describes the degree of match between the various

bases and the signal to be detected. For the case of Sag 109, the optimal

wavelet basis is DB4, which shows the highest instantaneous SNR among the

bases functions. Even further, by comparing Fig. 5.9 and Fig. 5.3, one can

find the implication of the instantaneous SNR: DB3 and DB4 show clear high

peaks for detection. Therefore we can recommend that DB4 is the best basis

for the detection of the voltage sag event 109 on a quantitative basis.
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We can extend the discussion of the basis function to other voltage sag

event. The instantaneous SNR of the 3 voltage sag events shown in Fig. 5.2

are provided in Fig. 5.11. The values of peak instantaneous SNR are slightly

different depending on the events, however, the main pattern of the instanta-

neous SNR is similar- peak instantaneous SNR for DB4 and the instantaneous

SNR decreases as length of the bases increase or decrease.

Including the 3 examples shown in Fig. 5.11, the average instantaneous

SNR of 25 typical samples of voltage sag is provided in Fig. 5.12. Now we

can recommend DB4 as a best basis for detection of the voltage sag. However,

note that DB 3 and DB 5 bases are also good candidate for detection of the

sag in quantitative basis. This procedure and algorithm can be extended to

different applications of the signal detection in order to identify the best basis

on a “quantitative” basis in terms of the instantaneous SNR.
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5.6 Conclusion

We have provided a methodology to find an optimal Daubechies’ wavelet

basis for voltage sag signals. The parameters for the algorithm are based on

the second order statistics from the time-frequency analysis, the time duration

(T ) and frequency bandwidth (F ). Our index, instantaneous SNR, to describe

the relation between the wavelet basis function and the voltage sag signal pro-

vides a quantitative measure for the time, frequency resolution mechanism

within the uncertainty principle. For a typical case of voltage sag, the optimal

Daubechies wavelet basis turns out to be Daubechies 4, although Daubechies

3 or 5 will work almost as well. This algorithm is not restricted to voltage

sag detection cases and Daubechies’ wavelet basis. The objective signal can be

any type of disturbance signal to be detected, and other types of wavelet bases

such as Battle-Lemarie, spline, etc. can be considered with this algorithm.
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Chapter 6

Application of Time-Frequency Domain

Reflectometry for Detection and Localization

of a Fault on a Coaxial Cable

6.1 Introduction

The importance of aging electrical wiring and associated faults in air-

craft has been highlighted in [52]. This problem is not limited to aircraft only

but also includes systems where complicated wiring is involved and high safety

is required such as the space shuttle, nuclear power plants and very tall build-

ings [53]. Thus, the detection and localization of faults with high accuracy

is required for diagnosis and maintenance of wiring systems. In addition, the

detection of faults and imperfections in wiring and cables used in communica-

tion systems is also of importance.

The state-of-art for wiring/cable fault detection can be categorized by

time domain analysis and frequency domain analysis. In time domain analy-

sis, time domain reflectometry (TDR) [54] is used, whereas in frequency do-

main analysis, frequency domain reflectometry (FDR) [55] and standing wave

reflectometry (SWR) [56] are utilized. Each methodology is based on the ap-

propriate analysis of the reference signal and reflected signal either in the time

or frequency domain only. However, in this chapter, detection and location of

coaxial cable faults by the use of joint time-frequency analysis is discussed.

Time domain reflectometry (TDR) [57] and frequency domain reflec-
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tometry (FDR) are well-known, conventional methods which have been ap-

plied to various types of applications including the cable test [58], network

analyzer [59] and measurement of characteristic impedance [60], [61], etc. Re-

cently, modern TDR instruments have been used for failure analysis and signal

integrity characterization of high speed circuit boards [62], wiring packages,

sockets, connectors, cable interconnects and even power electronic devices [63],

etc. However, the resolution and accuracy of the TDR and FDR are limited

by the rise/fall time and frequency sweep bandwidth, respectively. To en-

hance the resolution of TDR, a time-to-digital conversion technique has been

introduced for application to coaxial cables [64]. To enhance the accuracy in

reflectometry, digital signal processing techniques, e.g., the “cepstrum”, has

been suggested for TDR [65] and “cisoids” have been applied to FDR [66]. Re-

cently, the problem of TDR waveform distortion has been investigated by the

approximation of the skin effect to enhance accurate localization of a fault in

cables [67]. However, the distortion of the TDR pulse is an inherent problem

in TDR for accurate detection and localization of a fault.

In TDR a step pulse is applied to the wire/cable under test, which is

then reflected by any faults present. The time it takes for the reflected signal

to make a round trip can then be converted to distance from the knowledge

of the velocity of propagation. Since the energy of the pulse is spread over

a broad frequency range, TDR is usually not suitable for investigating the

RF properties of a cable, which is important, for example, when dealing with

wires/cables used for communication purposes. On the other hand, FDR of-

ten uses a swept frequency signal which allows one to place the energy of the

reference or probing signal in the RF band of interest.

In this chapter we introduce a joint time-frequency domain reflectom-

etry (TFDR) technique which captures many of the advantages of TDR and
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FDR mentioned previously. The reference signal is a ( linear with time ) chirp

signal which allows one to apply the RF power in the band of interest. To

provide time localization, the chirp signal is multiplied by a Gaussian enve-

lope in the time domain. The time-frequency distributions [1] of the reference

signal and the reflected signals are calculated. Then these two time-frequency

distributions are cross-correlated in the time-frequency domain. The peak in

the time-frequency cross correlation function allows one to estimate an accu-

rate round-trip propagation time and, hence, distance, as in classical TDR.

Yet, the experiment is carried in an RF band of interest which is relevant

for the particular wire/cable under test, as in FDR. If frequency-dependent

phenomena, such as dispersion, lead to substantial distortion of the reflected

signal, these effects can be mitigated by reducing the frequency bandwidth of

the reference signal.

6.2 Time-Frequency Domain Reflectometry

In this section, the basic idea of time-frequency domain reflectome-

try (TFDR) is presented. To begin with, let us compare this new reflec-

tometry methodology with traditional reflectometry methodologies. Fig. 6.1

schematically depicts reference signals for time domain reflectometry (TDR),

frequency domain reflectometry (FDR) and time-frequency domain reflectom-

etry (TFDR) on a time-frequency plane. As suggested in Fig. 6.1, TDR uses a

pulse with fixed time duration and compares the reference and reflected signals

in the time domain only. Therefore, TDR can not analyze the signal in the

frequency domain because an ideal step pulse has its energy spread over a wide

range of frequencies at the time instance of the step. On the other hand, FDR

uses a set of sinusoidal signals with fixed frequency bandwidth and analyzes
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Figure 6.1: Schematic comparison of time domain reflectometry (TDR), fre-
quency domain reflectometry (FDR) and time-frequency domain reflectometry
(TFDR).

the change of the signal in the frequency domain only. As a result, it is difficult

to analyze the signal in time domain by FDR because a pure sinusoidal signal,

which is a reference signal in FDR, has, in principle, infinite time duration.

Therefore, instead of traditional TDR and FDR, we propose a new

type of reflectometry, time-frequency domain reflectometry. TFDR uses a lin-

early modulated chirp signal with a Gaussian envelope. The proposed reference

signal is written as follows:

s(t) = (α/π)1/4e−α(t−t0)2/2+jβ(t−t0)2/2+jω0(t−t0) (6.1)

where α, β, t0 and ω0 determine the time duration, frequency sweep rate, time

center and frequency center, respectively. The Gaussian envelope localizes the

reference signal in the time and frequency domain while the instantaneous fre-

quency of the signal increases with time in a linear manner as depicted in Fig.

111



6.1.

In other aspects, the time-frequency domain reflectometry can be re-

garded as a generalized reflectometry methodology. Refer to Fig. 6.1: time-

frequency domain reflectometry can be characterized by time and frequency

localization as a mixture of time domain reflectometry and frequency domain

reflectometry. For example, under the conditions β = ω0 = 0 and α is very

large for the chirp signal in (6.1), the reference signal of the time-frequency do-

main reflectometry takes on a pulse-like character reminiscent of the reference

signal of TDR. Similarly, for α very small, the reference signal of the time-

frequency domain reflectometry corresponds to the swept sinusoidal reference

signal of FDR. Therefore, the time-frequency domain reflectometry scheme

provides flexible application depending on the physical characteristics of the

wire or cable under test.

The appropriate determination of the four signal parameters for a spe-

cific application is very important in TFDR. The design of the reference signal

that fits the physical characteristics of the RG type coaxial cable used in the

experiments and post processing of the reflected signal for detection and lo-

calization will be addressed in the next subsections.

6.2.1 Design of Reference Signal

The central idea of time-frequency domain reflectometry is to design

a reference signal that “fits” the physical characteristics of the target wire

or cable in the time and frequency domain. Consider the proposed reference

signal in (6.1). In Eqs. (6.2)-(6.6) we describe several properties of this signal

given in [1]. For this signal, one can evaluate the time center (ts) and the time
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duration (Ts) as follows:

ts =

∫
t|s(t)|2dt = t0,

T 2
s =

∫
(t− ts)

2|s(t)|2dt =
1

2α
(6.2)

The Fourier transform of the chirp signal in (6.1) is obtained as follows:

S(ω) =

√ √
α√

π(α− jβ)
e−(ω−ω0)2/2(α−jβ) (6.3)

Similarly, the frequency center (ωs) and bandwidth (Bs) can be evaluated in

terms of S(ω) as follows:

ωs =

∫
ω|S(ω)|2dω = ω0,

B2
s =

∫
(ω − ωs)

2|S(ω)|2dω =
α2 + β2

2α
(6.4)

Consider the Wigner time-frequency distribution of the time signal s(t)

obtained by following transformation:

W (t, ω) =
1

2π

∫
s∗(t− 1

2
τ)s(t +

1

2
τ)e−jτωdτ (6.5)

Then the Wigner distribution of the reference signal Ws(t, ω) is

Ws(t, ω) =
1

π
e−α(t−t0)2−(ω−β(t−t0)−ω0)2/α (6.6)

Equation (6.6) indicates how the energy in the reference signal is distributed

over the time and frequency plane as indicated schematically in Fig. 6.1.

In order to apply the reference signal to the coaxial cables used in the

experiment, the parameters of the signal are to be selected with consideration

of the attenuation characteristics of the coaxial cables. The selection of the

parameters take the following order:
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• Step 1. Determine center frequency : (ω0)

• Step 2. Determine frequency bandwidth : (Bs)

• Step 3. Determine time duration : (Ts)

Step 1. Center Frequency : The center frequency of the reference signal

determines the degree of attenuation of the reference signal through the cable,

since attenuation increases with frequency. Thus, one must consider a trade

off, since higher frequencies allow higher spatial resolution with shorter wave-

lengths, but suffer more severe attenuation. Considering the noise sensitivity

of the experimental setup, we find we can tolerate a round-trip attenuation of

24dB. The maximum fault distance in this set of experiments is 40 m, so the

maximum signal attenuation is 24dB/40 m or 30 dB/100m. From Fig. 6.2, we
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see that the horizontal line of 30 dB/100m intersects the attenuation curves at

approximately, 450 MHz, which we then select as our center frequency of the

reference signal. Obviously, in the general case, the procedure used to select

the center frequency will depend upon the the attenuation characteristics of

the system under test, or possibly other RF characteristics of interest.

The selection of the center frequency for the reference signal also can

be interpreted in terms of energy. Assign Prec as the signal power of the re-

flected signal and Ptran as the signal power of the transmitted, i.e., reference

signal. Then the ratio of the Prec to Ptran can be defined by the attenuation

characteristics of the cable per unit length A(ω) such that

Prec = Ptran/A(ω) (6.7)

In dB scale calculation,

[Prec] = [Ptran]− [ A(ω) ], (6.8)

Normalize the power of the reference signal such that [Ptran]=0dB. Then, the

power of the received signal is,

[Prec] = [Ptran]− [ A(ω) ],

= −[ A(ω) ]

= −[A(ω)/2d]× 2d (6.9)

where d is the maximum length of cable under test. Assume that the minimum

required power of the reflected signal at the terminal is -24dB,

[Prec] = −[A(ω)/2d]× 2d ≥ −24dB (6.10)

where the maximum length of cable under test is 40 m in this experiment.

Hence,

[A(ω)/2d] ≤ 24dB

80m
= 30dB/100m (6.11)
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Referring the frequency dependent attenuation characteristics provided in Fig.

6.2 for 30dB/100m, the center frequency of the reference signal f0 should be

selected such that

f0 ≤ 450MHz (6.12)

Step 2. Frequency Bandwidth : The experimental frequency band-

width of the chirp signal generation is limited to the performance of the signal

generator and circulator (100 MHz in experiment described this chapter) which

isolates the signal reflected from the fault. As a result, the frequency band-

width of the chirp signal is limited by 100 MHz so that the frequency range of

interest is selected as 400 MHz ∼ 500 MHz as indicated in Fig. 6.2.

Step 3. Time Duration : The performance of the signal generator

in terms of rise/fall time and frequency sweep capacity limit is 25 ns. in this

chapter. In order to meet the selected parameters (center frequency and fre-

quency bandwidth) selected above, the time duration of the reference signal is

selected to be 50ns. We note that in time-frequency analysis the uncertainty

principle places a constraint on the best time and frequency localization that

can be achieved simultaneously. Observe that the product of frequency band-

width Bs and time duration Ts in this experiment is equal to 10π and therefore

does not violate the uncertainty principle stated in (1.2).

In a summary, the following parameters of the chirp signal (6.1) will be

applied to the coaxial cable as a reference signal.

• Center Frequency : ω0/2π=450 MHz

• Time Duration of Chirp : 50 ns.

• Frequency Bandwidth : 100 MHz (400MHz ∼ 500MHz)

116



Figure 6.3: Time-frequency distribution of the designed reference signal for
RG type coaxial cables. The top plot is the reference signal time waveform,
and the left hand plot is its corresponding energy spectrum.

• Frequency Sweep Rate: Linear increasing (β/2π =
100MHz

50ns
)

In Fig. 6.3, the designed time-frequency distribution of the experimental ref-

erence signal for RG type coaxial cable is provided. Also shown at the top

is the time waveform of the Gaussian chirp signal and on the left its energy

spectrum. As shown in Fig. 6.3, the reference signal provides time localization

within 50 ns while the frequency is also localized between 400 MHz and 500

MHz.

In this chapter, the design of the reference signal is customized for RG

type coaxial cables up to 40 meters in length, however, for longer distance

testing, the time duration of the signal is to be increased while the center fre-

quency is to be decreased so that the reference signal suffers less attenuation

by the wire or cable under test. If a longer testing distance is required, one

can design the reference signal in the time-frequency domain by following the
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reference signal design procedures. The flexibility in designing reference signal

in TFDR also allows one to minimize frequency-dependent distortion of the

reflected signal by assigning a relatively narrower frequency bandwidth.

6.2.2 Detection and Localization by Time-Frequency Cross Corre-
lation Function

For a successful detection and localization of a fault in RG type coaxial

cable, it is necessary to model the propagation of the reference signal in the

media which allows one to determine the properties of the signal reflected from

the fault in the coaxial cable.

Consider the spatial propagation and reflection of the time-frequency

domain reference signal. As the signal propagates along the media with spatial

variable x, the waveform will be changed by the transfer function of the media

H(ω, x). For convenience of calculation, let the time center of the reference

signal be t0 = 0 without loss of generality. Let u(x, t) be a waveform that is

observed at a distance, x, for a given initial condition, u(x = 0, t) = s(t), then,

the general solution of the u(x, t) is,

u(x, t) =
1√
2π

∫
S(ω, x)e−jωtdω (6.13)

where

S(ω, x) = S(ω, x = 0) ·H(ω, x) = S(ω, x = 0)e−(α(ω)−jk(ω))x (6.14)

and where H(ω, x) is the transfer function of the medium which is charac-

terized by the frequency-dependent attenuation α(ω) and wave number k(ω)

[68]. Note that the frequency-dependent attenuation α(ω) is not to be confused

with the parameter α in (6.1). In the following we assume linear frequency-

dependent attenuation, α(ω) ' Aω, and dispersion, k(ω) ' Kω. For the latter
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case, note that both the phase (ω/k) and group (∂ω/∂k) velocities are both

equal to 1/K and will, henceforth, be simply denoted by v, the velocity of

propagation. The assumption of a dispersionless media is particularly suitable

for the coaxial cable experiments considered later in this chapter.

Consider, the time center (tu(x)) and frequency center (ωu(x)) of the

signal u(x, t) with the assumptions that α(ω) ' Aω and k(ω) ' Kω. First of

all, evaluate frequency center (ωu(x)) of the signal u(x, t) with the propagation

distance x,

ωu(x) =

∫
ω|S(x, ω)|2dω

=

∫
ω|S(ω, 0)|2|H(ω, x)|2dω

=

√
α

π(α2 + β2)
C2

∫
ωe

−α
(ω−ω0)2

(α2+β2)
−2Aωx

dω

=
1

√
2π

√
α2+β2

2α

2

∫
ωe

− [ω−(ω0−α2+β2

α Ax)]2

2[

r
α2+β2

2α ]2 dω

(where C2 = e2ω0Ax−α2+β2

α
A2x2

)

= ω0 − α2 + β2

α
Ax

= ω0 − δω (6.15)

The frequency offset δω is proportional to the frequency bandwidth of the

reference signal, attenuation function and propagation distance. Therefore,

the estimated frequency center will be deviated from the center frequency of

the reference signal. In other words, the estimated frequency offset δω from the

reflected signal can be utilized for finding the propagation distance x. However,

measuring the center frequency of the signal ωu(x) accurately is not a simple

task; because the attenuation which is linearly increasing with frequency will
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result in decrease in SNR of the received signal. Similarly, the time center

(tu(x)) of the signal u(x, t) with the propagation distance x can be evaluated

as shown as follows:

tu(x) =

∫
t|u(x, t)|2dt

= Re{
∫

S∗(ω, x)(−1

j

∂

∂ω
S(ω, x))dω}

= Re{
∫

S∗(ω, x)(j
∂

∂ω
S(ω, x))dω}

= Re[

∫
S∗(ω, 0)H∗(ω, x)(j

∂

∂ω
S(ω, 0)H(ω, x) + jS(ω, 0)

∂

∂ω
H(ω, x))dω]

= Re[j

∫
S∗(ω, 0)S ′(ω, 0)H∗(ω, x)H(ω, x)dω +

j

∫
S∗(ω, 0)S(ω, 0)H∗(ω, x)H ′(ω, x)dω]

= Re[j

∫
S∗(ω, 0)S(ω, 0)H∗(ω, x)H(ω, x)

α + jβ(ω − ω0)

α2 + β2
dω

+j

∫
S∗(ω, 0)S(ω, 0)H∗(ω, x)H(ω, x)(−α′(ω) + jk′(ω))xdω]

= − βC2

α2 + β2

∫
(ω − ω0) exp

(
−α

(ω − ω0)
2

(α2+β2)
+ 2Aωx

)
dω

+Kx · C2

√
α

π(α2 + β2)

∫
exp

(
−α

(ω − ω0)
2

(α2+β2)
+ 2Aωx

)
dω

= − β

α2 + β2

[ ∫
ω

1
√

2π
(√

α2+β2

2α

)2 exp


−

(
ω − (ω0 + α2+β2

α
Ax)

)2

2
(√

α2+β2

2α

)2


 dω

−ω0 · β

α2 + β2

∫
1

√
2π

(√
α2+β2

2α

)2 exp


−

(
ω − (ω0 + α2+β2

α
Ax)

)2

2
(√

α2+β2

2α

)2


 dω

]

+Kx

∫
1

√
2π

(√
α2+β2

2α

)2 exp


−

(
ω − (ω0 + α2+β2

α
Ax)

)2

2
(√

α2+β2

2α

)2


 dω
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= − β

α2 + β2

(
ω0 +

α2 + β2

α
Ax− ω0

)
+ Kx

(because C2 = e2ω0Ax−α2+β2

α
A2x2

)

= − β

α2 + β2
· δω + Kx (6.16)

Therefore, the estimated time center tu(x) is the propagation delay of the fre-

quency center ωu(x). For an accurate measure of the propagation delay, the

actual estimation of the delay of the waveform is to be compensated by δt

which is determined by chirp rate parameter β and frequency deviation δω

such that:

tdelay = tu(x) − ts +
δω

β
= ∆t + δt (6.17)

where ts is the time center of u(x = 0). Then the actual propagation dis-

tance can be evaluated with knowledge of the velocity of propagation, v. Now

consider the classical cross correlation to resolve the fault location problem.

For the detection of the fault, the correlation of the time-frequency distribu-

tion of the the reference signal and reflected signal is utilized. Denote the

reflected signal as r(t) and its Wigner distribution as Wr(t, ω), and Ws(t, ω)

as the Wigner distribution of the reference signal s(t). Then one can evaluate

a time-frequency cross correlation function Csr(t) as follows:

Csr(t) =
2π

EsEr

∫ ∫
Wr(t

′, ω)Ws(t
′ − t, ω)dωdt′ (6.18)

where

Er =

∫ ∫
Wr(t

′, ω)dωdt′

Es =

∫ ∫
Ws(t, ω)dtdω

where the time integrals are carried out over the duration of the reference

signal or reflected signal, as appropriate. The denominators Er and Es play
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the role of normalization factors so that the time-frequency cross correlation

function is bounded between 0 and 1.

Considering the transfer function of the coaxial cable, the time-frequency

distribution of the reference signal is given by (6.6) and that of the reflected

signal Wr(t, ω) can be obtained as follows:

Wr(t, ω) =
1

π
e−α(t−x/v)2−(ω−β(t−x/v)−ω0)2/α · e−2Axω (6.19)

The last term of the equation, e−2Axω, is the time-frequency distribution of

the transfer function of the coaxial cable. Also, assign the time index, tMx , of

the local maximum of Csr(t) at distance x, such that

Csr(t) =
2π

Er(t)Es

∫ t′=t+Ts

t′=t−Ts

∫ ∞

−∞
Wr(t

′, w)Ws(t
′ − t, ω)dωdt′

=
2π

Er(t)Es

∫ t′=t+Ts

t′=t−Ts

∫ ∞

−∞

(
e−2Axω 1

π
e−α(t′−kx)2−(ω−β(t′−kx)−ω0)2/α

)

·( 1

π
e−α(t′−t)2−(w−β(t′−t)−w0)2/α

)
dwdt′ (6.20)

where

Er(t) =

∫ t′=t+Ts

t′=t−Ts

∫ ∞

−∞
Ws∗h(t′, ω)dωdt′

=

∫ t′=t+Ts

t′=t−Ts

∫ ∞

−∞
(e−2Axω 1

π
e−α(t′−kx)2−(ω−β(t′−kx)−ω0)2/α)dωdt′

=
1

π

∫ t′=t+Ts

t′=t−Ts

e−α(t′−kx)2
∫ ∞

−∞
e−(ω−β(t′−kx)−ω0)2/α−2Axωdωdt′

= e
(α2+β2)

α
A2x2−2Axω0

= e−2Ax(ω0−δω/2) (6.21)
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Es =

∫ ∞

−∞

∫ ∞

−∞
Ws(t, ω)dωdt

=

∫ ∞

−∞

∫ ∞

−∞
(
1

π
e−αt2−(ω−βt−ω0)2/α)dωdt

=
1

π

∫ ∞

−∞
e−αt2

∫ ∞

−∞
(e−(ω−βt−ω0)2/α)dωdt

=

√
α

π

∫ ∞

−∞
e−αt2dt

= 1 (6.22)

Csr(t) =
2π

e
(α2+β2)

α
A2x2−2Axω0

1

π2

∫ t′=t+Ts

t′=t−Ts

e−α[(t′−kx)2+(t′−t)2]

·
∫ ∞

−∞
e−[(ω−β(t′−kx)−ω0)2+(ω−β(t′−t)−ω0)2]/α−2Axωdωdt′

=
2π

e
(α2+β2)

α
A2x2−2Axω0

1

π2

∫ t′=t+Ts

t′=t−Ts

e−α[(t′−kx)2+(t′−t)2]

·
(√

απ

2
e−

β2(t−kx)2

2α e
αA2x2

2 eAx(β(2t′−kx−t)+2ω0)
)
dt′

= 2πe−
(α2+β2)

α
A2x2+2Axω0

1

π2

(√
απ

2
e−

β2(t−kx)2

2α e
αA2x2

2 e−2Axω0

)

·
∫ ∞

−∞
e−α[(t′−kx)2+(t′−t)2]−Axβ(2t′−kx−t)dt′

= 2πe−
(α2+β2)

α
A2x2+2Axω0

1

π2

(√
απ

2
e−

β2(t−kx)2

2α e
αA2x2

2 e−2Axω0

)

·
(√

π

2α
e

A2x2β2

2α e−
α(t−kx)2

2

)

= e−
(α2+β2)(A2x2+(t−kx)2)

2α

= e−
α2+β2

2α
(t−kx)2−Ax(α2+β2

2α
Ax)

= e−Ax·δω · e−α2+β2

2α
(t−Kx)2 (6.23)
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Then the time-frequency cross correlation function of the reflected signal Csr(t)

is,

Csr(t) = e−
α2+β2

2α
(Ax)2 · e−α2+β2

2α
(t−x/v)2 (6.24)

Therefore, the existence of the reflected signal is to be detected by a quantita-

tive number between 0 and 1. From examination of the time-frequency cross

correlation function Csr(t) in (6.24), it is clear that it will be a maximum (lo-

cal peak time) at t = x/v, as expected. The first term on the RHS decreases

because, as the reflected signal travels farther, its high frequency content will

be attenuated more, and thus the reflected signal will be less correlated with

the reference signal.

In later sections, the local peak time of the time-frequency cross corre-

lation function will be utilized to accurately measure the propagation delay of

the reflected signal, which is then to be converted into the fault location with

knowledge of the velocity of propagation.

6.3 Experimental Setup

To demonstrate the ability of TFDR to detect and locate various types

of faults in RG 142 and RG 400 type coaxial cables, an experimental TFDR

system is organized as shown in Fig. 6.4. The system consists of a circulator,

an arbitrary waveform generator (Tektronix, AWG610) and an oscilloscope

(Agilent Infinium) which are connected to a computer with GPIB cable for

automatic control of the instruments. The computer controls the arbitrary

waveform generator (AWG) to produce the Gaussian envelope chirp signal

which propagates into the target cable via the circulator. This reference signal

is reflected at the fault location and back to the circulator. The circulator

redirects the reflected signal to the digital oscilloscope. The computer controls
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Figure 6.4: Experimental setup for time-frequency domain reflectometry.

and synchronizes the arbitrary waveform generator and digital oscilloscope,

calculates the time-frequency distribution of the reference signal and reflected

signals, and executes the time-frequency cross correlation algorithm.

The purpose of the experiment is to verify the feasibility of time-

frequency domain reflectometry. Furthermore, the performance is to be com-

pared with a commercial TDR. The experiment is carried out for two types

of coaxial cables, i.e., RG 142 and RG 400 types. Various distances and types

of faults are considered. The actual location of the faults varies from 10m,

20m, 30m and 40m while the types of faults are classified as “open”, “short”

and “damage”. The “damage” of the coaxial cable is emulated by a failure

of the external shields so that the internal dielectric material is exposed over

1cm. Thus a total of 24 experiments (2 types of cables × 4 fault distances ×
3 types of faults) are carried out. To evaluate the performance of TFDR in

fault detection and localization, the same 24 experiments are repeated using

a commercial TDR system which has a rise time of 300ps.
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Figure 6.5: Time series of the reflected signal in (a) and corresponding time-
frequency cross correlation function for detection and estimation of the “dam-
age” fault in (b) for a fault at 10m in RG 142 type coaxial cable. (The first
peak of correlation is at 96.5 ns. and the second one is at 191.0 ns.)

6.4 Result and Analysis

We have carried out several experiments in which we compare the abil-

ity of TFDR and TDR to locate various types of faults at various distances in

coaxial cable. For a fair comparison between TFDR and TDR, we use the same

velocity of propagation, v=2.10×108 m/sec., which was obtained experimen-

tally for both types of cables. Also note that the sampling rates for reflected

signal acquisition of the TFDR is 4GHz while that of the TDR is 12 GHz in

this experiment.

6.4.1 Experimental Result

In Fig. 6.5, we consider the case of RG 142 type coaxial cable which

has a damage-type fault located 10 meters away from the source of the ref-
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erence signal. Fig 6.5-(a) is the acquired time series of the reflected signal

at a 4 GHz sampling rate while Fig. 6.5-(b) is the time-frequency cross cor-

relation between the time-frequency distributions of the reference signal and

the reflected signal. In Fig. 6.5-(a) and (b), the reference signal and the first

reflected signal from the fault are observed around 100 ns. and 190 ns, respec-

tively. The remaining peaks in the time-frequency cross correlation are caused

by multiple reflections. Note, however, as shown in Fig. 6.5, the waveform

caused by multiple reflections can be accurately detected and localized by the

time-frequency cross correlation function, while such multiple reflections are

a potential problem in TDR. The time-frequency cross correlation provided

in Fig. 6.5-(b) can be interpreted via (6.24): with increasing propagation

distance x, the peak value of the time-frequency correlation function exponen-

tially decays for the reason described previously, while the time spread of the

time-frequency correlation function is inversely proportional to the frequency

bandwidth squared of the reference signal as indicated in (6.4) and (6.24). The

second local peak of the time-frequency cross correlation function indicates the

presence of the reflected signal which enables one to determine the round-trip

propagation time. The estimated time of the first peak, which is the reference

signal itself is 96.5 ns, while the estimated time of the second peak is 191.0

ns. With the obtained v of the RG 142 coaxial cable (2.10× 108 m/sec.), the

location of the fault can be estimated to be 9.92 m.

The example provided in Fig. 6.6 presents a sample case for RG 400

type coaxial cable which has a damage-type fault located 30 meters away from

the source of the reference signal. In Fig. 6.6-(a), the signal that occupies the

time duration between 50ns and 150ns is the reference signal, and the signal

component located in the time interval between 350ns and 400ns (which is

difficult to see in the time domain) is the reflected signal from the damage
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(a)

(b)

Figure 6.6: Time series of the reflected signal in (a) and corresponding time-
frequency cross correlation function for detection and estimation of the “dam-
age” fault in (b) for a fault at 30m in RG 400 type coaxial cable. (The first
peak of correlation is at 96.3 ns. and the second one is at 379.7 ns.)

to the cable. Fig. 6.6-(b) is the time-frequency cross correlation between the

reference signal and the reflected signal time-frequency distributions: the first

peak (estimated time : 96.3 ns) of the correlation function in Fig. 6.6-(b)

reveals the existence of the reference signal itself, and the second peak (esti-

mated time : 379.7 ns.) indicates the presence of a fault. The location of the

fault is evaluated to be 29.76 m.

In order to compare the performance in accuracy between TDR and

TFDR, the same coaxial cable with the same fault is tested using a commercial

TDR instrument. Fig. 6.7 is acquired by the TDR instrument under the same

conditions as the experiment corresponding to Fig. 6.6. TDR detects the fault

through a step change of the reflected signal, and estimates the time of arrival

from the time the step-change occurs. However, as shown in Fig. 6.7, the ideal
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Figure 6.7: A screen snapshot of the TDR for the detection and estimation of
the fault location for a fault at 30m in RG 400 type coaxial cable. (The first
marker is at 23.5 ns. and the second one is at 304.5 ns.)

step of the reference signal is smeared in the reflected signal so that it is not

always easy to measure accurately the arrival time of the reflected step. The

location of the fault is measured to be 29.51 m.

6.4.2 Analysis and Discussion of Results

To compare the fault location accuracy of TFDR and TDR, the loca-

tion of the faults vary from 10m, 20m, 30m to 40m. In each location, three

types of faults are considered: “open”, “short” and “damage” as described in

Sec. 8.3. The overall experimental results are summarized in Table 6.1 and

Table 6.2 for the RG 142 and RG 400 type coaxial cables, respectively. Note

that the experimental results provided in the tables are obtained from several

trials for each case. The TFDR experimental determination of propagation

time was repeatable within to ± 2 sample periods, which corresponds to ±
0.105 m. As one can see in Table 6.1 and Table 6.2, TFDR yields a smaller

error than TDR for all types and locations of the faults. The errors for TDR

vary from 0.31 m to 0.74 m while the errors of TFDR range from 0.08 m to
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RG142 Error RG142 Error
(TFDR) (m) (TDR) (m)

damage 39.80 0.20 39.61 0.39
40m open 39.78 0.22 39.47 0.53

short 39.77 0.23 39.47 0.53
damage 29.80 0.20 29.55 0.45

30m open 29.78 0.22 29.55 0.45
short 29.78 0.22 29.32 0.68

damage 19.84 0.16 19.27 0.73
20m open 19.84 0.16 19.56 0.44

short 19.86 0.14 19.56 0.44
damage 9.92 0.08 9.69 0.31

10m open 9.88 0.12 9.67 0.33
short 9.89 0.11 9.67 0.33

Table 6.1: Comparison of TDR and TFDR estimates of fault location for four
fault locations, and three types of faults for RG 142 Type Coaxial Cable

0.28m, for all cases. Note that in TFDR, the detection and localization process

is completely automated based on identifying the peaks of the time-frequency

correlation function; however, the operation of the TDR involves adjusting

markers on the smeared edges in the reflected signal as shown in Fig. 6.7, and

is thus subject to human judgement.

For a more graphical comparison of the results, the corresponding

percentage error for each cable type is evaluated and plotted in Figs. 6.8 and

6.9. As one can see in these figures, TFDR yields a smaller percentage error

than TDR for all locations of the fault: the errors for TDR are between 0.3%

and 0.8% while the errors of TFDR are under 0.4% for all cases. Both TDR

and TFDR show a tendency for the error rate to increase with distance. As

the length of the cable increases, the energy of the reflected signal will de-

crease exponentially, which results in a lower SNR for both TDR and TFDR.
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RG400 Error RG400 Error
(TFDR) (m) (TDR) (m)

damage 39.74 0.26 39.37 0.63
40m open 39.64 0.26 39.26 0.74

short 39.85 0.15 39.37 0.63
damage 29.76 0.24 29.51 0.49

30m open 29.72 0.28 29.41 0.59
short 29.77 0.23 29.48 0.52

damage 19.90 0.10 19.58 0.42
20m open 19.87 0.13 19.47 0.53

short 19.87 0.13 19.58 0.42
damage 9.91 0.09 9.51 0.49

10m open 9.89 0.11 9.62 0.38
short 9.90 0.10 9.62 0.38

Table 6.2: Comparison of TDR and TFDR estimates of fault location for four
fault locations, and three types of faults for RG 400 Type Coaxial Cable

In Fig. 6.10, a time-frequency distribution of the reflected signal from

the “damage” fault located at 30 m in a RG 400 type coaxial cable is provided

along with its time series and frequency spectrum. The reflected signal in Fig.

6.10 is the same as the barely visible reflected signal at 379.7 ns. in Fig. 6.6-

(a). Due to the low energy level of the reflected signal, it is difficult to detect

and localize the reflected signal in the time domain as shown in the top of

Fig. 6.10. In the frequency domain, the reflected signal has suffered relatively

severe distortion, as shown in the left side of Fig. 6.10, in comparison with

the frequency spectrum of the reference signal provided in Fig. 6.3. However,

in the time-frequency domain, the time-frequency localization of the reference

signal is still vivid so that the existence of the signal and the location of the

fault can be evaluated accurately by the time-frequency cross correlation func-

tion provided in Fig. 6.6-(a). Therefore, one can obtain accurate localization
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Figure 6.8: Comparison of the fault location percentage error for TFDR and
TDR for RG-142 coaxial cable for four different fault locations. (10, 20, 30,
and 40m) and for three different faults (damage, open, and short)

of the fault by use of TFDR reference signal and the associated time-frequency

cross correlation function in relatively low signal-to-noise ratio conditions.

The experimental results suggest that time-frequency domain reflec-

tometry is capable of fault detection with a performance comparable to that

of TDR. Yet the ability to design the reference signal for a particular cable

or system being tested is a powerful advantage. To put it another way, time-

frequency domain reflectometry possesses many of the advantages of TDR,

while at the same time permitting one to consider the frequency-domain prop-

erties of the system under test. Thus, one possibility is to consider TFDR

as being complementary to TDR in that TFDR is relatively easy to imple-

ment by adding an arbitrary waveform generator and digital signal processing

unit to calculate the time-frequency cross correlation function of the sampled

reference and reflected waveforms.
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Figure 6.9: Comparison of the fault location percentage error for TFDR and
TDR for RG-400 coaxial cable for four different fault locations (10, 20, 30,
and 40m) and for three different faults (damage, open, and short).

6.5 Conclusion

In this chapter, we introduce joint time-frequency domain reflectome-

try which incorporates may of the advantages of time domain and frequency

domain reflectometry. Faults on wires and cables are located from knowledge

of the propagation time and velocity of propagation as in TDR. However, the

use of a chirp signal with a Gaussian envelope enables one to effectively use a

swept frequency reference signal as in FDR. This later capability is very im-

portant when testing wires/cables used for communication purposes. The use

of time-frequency cross correlation function of the respective time-frequency

distributions of the reference and reflected signals has proven to be a sensitive

detector of weak reflected signals (see Fig. 6.6, for example). The experi-

mental work involving two types of coaxial cable, three types of faults, and

four fault lengths, indicates that the new time-frequency domain reflectom-

etry locates faults with an accuracy comparable (actually, slightly better in

our experiments) to TDR and, therefore, suggests that joint time-frequency
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Figure 6.10: Zoomed time-frequency distribution for the reflected signal in
Fig. 6.6-(a) at 379.7 ns. (Note the time origin has been translated for this
magnified illustration.)

domain reflectometry offers much promise as a new wire and cable diagnostic

tool, especially in the communications area.

The contribution of the TFDR to the existing reflectometry field can

be summarized as follows:

1. Accurate and sensitive detection and localization of the reflected signal

via time-frequency cross correlation.

2. Flexibility of reference signal design depending on the physical charac-

teristics of system under test. For example, one can place the RF energy

in the frequency band of interest.

3. Successful detection and localization of multiple reflections, even very

weak reflections.
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4. Minimization of the distortion of the reference signal by limiting the

frequency bandwidth, where necessary.

Clearly, additional work must be done to explore the promise of TFDR in-

cluding: application of TFDR to faults in wiring other than coaxial cable;

consideration of noise, particularly in the case of very weak reflected signals;

consideration of the effects of dispersion where appropriate; the identification

of those factors affecting the accuracy of fault location; and a detailed com-

parison of TFDR with TDR, FDR and SWR in order to fully elucidate the

advantages and limitations of TFDR.
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Chapter 7

Application of Cross Time-Frequency Analysis

to Dispersive Wave Propagation

7.1 Introduction

Classical Fourier-based cross-power spectra analysis [69] has been suc-

cessfully utilized to estimate dispersion relations [70] in terms of phase and

group velocities. The general approach is to monitor the wave field in the

direction of propagation with two probes spaced a fraction of a wavelength

apart. The phase of the cross-power spectrum measures the phase shift (i.e.,

the phase difference) that each spectral component undergoes in traveling from

the first to the second probe. Since this phase shift is equal to product of the

wave number times the distance of separation, the wave number as a function

of frequency can be estimated by dividing the phase shift by the distance of

separation.

On the other hand, time-frequency distributions provide simultaneous

time and frequency information, in that they indicate how the “power” of a

signal is distributed over time and frequency [1]. Due to the advantageous ca-

pability of signal’s localization, it has also been applied to the fields of ocean

engineering where the observed signal’s time-frequency localization is required

in various applications : underwater acoustics [71], signal localization [72] [73]

and analysis [74] [75] etc.

Specifically, time-frequency analysis contributes to some application
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fields like quantum electronics where the transient wave information is required

[76] [77]. This raises the question (which is also the objective of this chapter) as

to whether such distributions might be able to provide time-localized measure-

ments of phase and group velocity for dispersive ocean wave propagation, given

the same type of two wave time series used in the Fourier approach. There have

been interesting application trials of wavelets [78] [79] [80] for dispersion analy-

sis of ultrasonic signals [81] in order to calculate localized frequency-dependent

phase and group velocity. Then, alternatively, time-frequency analysis also can

be a good methodology to deal with dispersion analysis. However, unfortu-

nately, the common class of time-frequency distributions known as Cohen’s

class [2] [34] apply to only a single time series (not two) and, furthermore, no

phase information is preserved [4]. This is similar to the Fourier-based auto-

power spectrum where no phase information is available.

To address the phase issue, we propose a new type of time-frequency

distribution, “cross time-frequency distribution”. This distribution is complex,

and is calculated using two time series of the wave field measured at two

spatial points in the direction of wave propagation. The phase of the cross

time-frequency distribution is equal to the phase shift between the two signals

as a function of frequency and time [41]. Once this time-localized phase shift

is obtained, time-localized measurements of the phase and group velocities can

be made in principle [82].

In this chapter, we discuss the application of the cross time-frequency

analysis for the time-localized analysis of the dispersive wave propagation.

For the localized analysis, selection of time and frequency is a key problem

to obtain reasonable estimation of phase and group velocities. Utilizing the

advantageous aspects of the cross time-frequency analysis (e.g., phase differ-

ence spectrum and instantaneous joint frequency, etc.), a careful treatment of
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real-world data will be demonstrated in this chapter. The numerical features

of the localized analysis will be compared to other classical methodologies like

Fourier analysis and wave theory in order to verify and compare the validity

of the new techniques.

7.2 Experimental Setup

The experimental random wave data were collected at the Offshore

Technology Research Center’s Model Basin located at Texas A&M University.

A schematic diagram is shown in Fig. 7.1. The basin is 30.5 meters wide, 45.7

meters long, and 5.8 meters deep. Both uni-directional and multi-directional

waves may be generated by an array of 48 hinged wave boards at one end of

the basin. At the opposite end, the waves are absorbed by a series of expanded

metal screens of decreasing porosity. Typical reflection coefficients are of the

order of a few (say, 2-5) percent.

The input to the wave maker corresponds to a JONSWAP spectrum.

The model scale is 1:54.5. The unidirectional random wave elevation is mea-

sured with an array of capacitive probes. In this chapter we are concerned

with the output of only two probes in the array as indicated in Fig. 7.1. Note

the two probes are separated by 1.0 meter in the direction of wave propaga-

tion, with the first probe located 12.8 meters from the wave maker. The wave

data was originally sampled at 40Hz, but was subsampled, to yield an effective

sampling rate of 4Hz.

The wave elevation time series measured at probes 1 and 2 are shown

(a) and (b) in Fig. 7.2, respectively. From a qualitative point of view, ex-

amination of Fig. 7.2 suggest the presence of some amplitude modulation,

associated with wave groups, and possible frequency modulation, although
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Figure 7.1: Schematic of wave basin

the latter is difficult to discern with any certainty. However, this and other

time-frequency properties will become clear in the next section.

7.3 Localized Time-Frequency Information of The Waves

In this section, we employ the real-world data set described in Sec. 7.2

to demonstrate the application of the cross time-frequency distribution. The

main objective of the application is to estimate localized phase and group ve-

locities from the two propagating wave time series provided in Fig. 7.2.

In Fig. 7.4, the Fourier power spectrum of the same data is provided.

The Fourier power spectrum can be regarded as the frequency marginal den-

sity of the time-frequency distribution provided in Fig. 7.3. As we can see in

Fig. 7.4, the main energy of the wave time series is concentrated in neighbor-

hood of 0.5 Hz. To begin with, the time-frequency distribution, specifically

the reduced interference distribution, of the time series in Fig. 7.2-(b) is pro-

vided in Fig. 7.3. The RID contour plot in Fig. 7.3 shows time-varying

spectral characteristics of the time series. The contour plot of the RID dis-
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Figure 7.4: Power spectrum of the wave time series in Fig. 7.2-(b)

tribution clearly shows the amplitude modulation and frequency modulation

associated with the “groups” or “packets” of the large amplitude waves. Six

major wave groups are observed, roughly speaking, around 60 sec., 75 sec.,

130 sec., 155 sec., 180 sec., and 210 sec. At the time of passage of these large-

amplitude groups, the time-frequency distribution takes on an approximate

U-shape, indicating that the frequency drops then rises. Note also that when

the largest amplitude wave occurs at 180 sec. in the group, there is a ver-

tical peak in the time-frequency distribution indicating the presence of high

frequency components necessary to synthesize the rather sudden jump in wave

elevation. However, unfortunately, the phase information of the time-series is

lost in the RID in Fig. 7.3. In addition, it is difficult to find a way to relate

two individual time-frequency distribution functions for two individual time

series provided in Fig. 7.2-(a) and (b).

To treat the two time series together, let us employ the cross time-
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frequency distribution in (2.19). The cross time-frequency distribution can

be characterized by the time-frequency phase difference spectrum which is not

available via classical instantaneous auto-correlation based time-frequency dis-

tributions. Fortunately, for a given cross time-frequency distribution Jx1x2(t, ω; φ),

the instantaneous frequency and group delay can be treated as a joint mo-

ment. Therefore, the joint instantaneous frequency provides local joint mean

frequency for two time series for a given time instant t.

As the cross time-frequency distribution is complex, we can rewrite

the distribution the time-frequency phase spectrum Θx1x2(t, ω; φ) is defined as

follows:

Θx1x2(t, ω; φ) = tan−1[
Im{Jx1x2(t, ω; φ)}
Re{Jx1x2(t, ω; φ)} ] (7.1)

The time-frequency phase spectrum will provide the phase difference infor-

mation between a pair of signals as a function of time and frequency. For
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the proper application of the time-frequency phase difference spectrum, it is

very important to choose reasonable time or frequency index. For example, in

order to obtain time-varying phase difference spectrum, one can define “instan-

taneous phase difference”, Θx1x2(t; φ), by using joint instantaneous frequency

ωx1x2(t)

Θx1x2(t; φ) = Θx1x2(t, ω = ωx1x2(t); φ) (7.2)

As shown in Fig. 7.5, the instantaneous phase difference (Θx1x2(t; φ)) is ob-

tained by the tracking the time-frequency phase difference spectrum (Θx1x2(t, ω; φ))

with the joint instantaneous frequency (ωx1x2(t)). Therefore, the instantaneous

phase difference is a reasonable estimate of transient phase difference informa-

tion. In Fig. 7.6, the time series from the wave basin probes are shown in

(a) and (b), and the joint instantaneous frequency ωx1x2(t), defined in P6 of

Chapter. 2, of the two time series is presented in Fig. 7.2-(c). The joint
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instantaneous frequency plot in Fig. 7.6-(c) can be regarded as an average of

the instantaneous frequency for individual time series in Fig. 7.6-(a),(b). The

joint instantaneous frequency deviates from a center frequency of around 0.5

Hz as time goes on; some extreme peaks of the joint instantaneous frequency

are observed at the points of abrupt phase change at 80 sec., 90 sec., 138 sec.,

and 170 sec. etc. Joint instantaneous frequency plot is a good manifestation

of the non-stationary, time-varying spectral characteristics of the wave time

series.

In Fig. 7.7, the time series in (a) and (b), and instantaneous phase dif-

ference phase spectrum is provided in (c). Note that the time-varying phase

difference spectrum in Fig. 7.7-(c) is a cross section of the time-frequency

phase difference spectrum in (2.26) by joint instantaneous frequency in Fig.

7.6-(c).
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In Fig. 7.6-(c), some time intervals show coherent phase difference,

while the other portions are rapidly varying. Each coherent phase time inter-

val has been matched to the time series in Fig. 7.6-(a),(b). Each time interval

is assigned as G1 ∼ G6, which corresponds to the wave groups. Note the fact

that the phase coherent time interval is coincident with the dominant energy

wave groups observed in the reduced interference distribution in Fig. 7.3. It

shows that the dominant wave group is characterized by not only high ampli-

tude, but also by a coherent phase difference.

Consider the calculation of the phase velocity vph by phase difference

Θ(t, ω; φ). If a specific wave group is selected (say Gi) with local frequency

ωi, then we can determine the wave number of wave group of Gi by ki(ω),

from ki(ω) = ΘGi
(ω; φ)/∆z, where ∆z is fixed geometric separation between

the probes. Therefore, the phase velocity for a specific wave group Gi can be

calculated as follows:

vph|i =
ω

ki(ω)
|ω=ωi

=
ωi

ΘGi
(ωi; φ)

·∆z (7.3)

Similarly, the group velocity also can be derived in terms of the phase difference

ΘGi
(ω) as follows:

vg|i =
∂ω

∂ki(ω)
|ω=ωi

=
∂ωi

∂ΘGi
(ωi; φ)

·∆z (7.4)

As one can see in (7.3) and (7.4), the selection of time and frequency is im-

portant for localized analysis. Note that the selection of time interval is based

on the instantaneous phase difference spectrum in Fig. 7.7 while the local

frequency selection is based on the joint instantaneous frequency in Fig. 7.6,

which is reasonable and consistent.

Depending on the local phase difference spectrum as shown in Fig.
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Figure 7.8: Time-localized phase difference spectrum of each wave group:(a)-
G1, (b)-G2 (c)-G3, (d)-G4, (e)-G5 and (f)-G6

Table 7.1: Comparison of the estimation of phase velocity and group velocity
for individual wave groups

G1 G2 G3 G4 G5 G6 Mean

phase
velocity 3.25 3.04 2.68 3.10 3.22 3.46 3.12
(m/sec.)
group

velocity 1.05 1.62 1.79 1.88 0.94 1.28 1.32
(m/sec.)

local
frequency 0.508 0.524 0.556 0.464 0.492 0.496 0.503

(Hz)

fraction
of energy 12.80 9.18 15.0 13.8 35.2 6.86 92.8

(%)
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7.8, each wave group shows somewhat different phase velocity, group velocity,

and local frequency. In Table 7.1, estimated phase velocity, group velocity, lo-

cal frequency and fraction of energy are provided for individual wave groups.

Among the wave groups, G5 which is called “extreme-like” wave shows great-

est fraction of energy and it is the focus for the localized analysis. The fraction

of energy is the ratio of energy of a specific wave group to the energy of whole

time series. The wave group, G5 shows slightly lower (than average) local fre-

quency, but higher (than average) phase velocity. In addition, the difference

between the phase and group velocity is the largest, which implies dispersive

wave propagation. Therefore, based on the cross time-frequency distribution

and with corresponding localization techniques, one can obtain localized in-

formation of individual wave groups. However, it is necessary for one to verify

the validity of the localized parameter estimations described in this section.

Therefore, with exactly same data, we will compare and analyze the obtained

result with other types of techniques in Sec. 7.4.

7.4 Other Methodologies for the Analysis of Dispersion
Effect

In this section, we will discuss alternative methodologies to calculate

phase and group velocities to validate the estimations discussed in Sec. 7.3.

First of all, we employ classical Cohen’s class time-frequency distribution for an

individual wave group analysis. In addition, classical Fourier based cross power

spectrum and wave equations are employed to verify the result. However,

note that the analysis discussed in Sec. 7.3 is localized analysis, while the

traditional methodologies like classical Fourier based cross power spectrum

and wave equations are not. Therefore, in a strict sense, it might not be a fair
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comparison. However, if the weighted average value of the localized analysis

is somewhat close to the traditional methodologies, it is a valuable verification

for the cross time-frequency based analysis.

7.4.1 Classical Time-Frequency Analysis (RID)

The physical meaning of group velocity is the velocity with which the

energy or information of a signal propagates [83]. The group delay of signal im-

plies mean arrival time of a specific frequency component that conveys energy

or information. Group delay of a signal is defined in terms of time-frequency

distribution as follows [2]:

{

∫
tCx(t, ω; φ)dt

∫
Cx(t, ω; φ)dt

} = −tx(ω) (7.5)

On the basis of this relationship, we develop an approach to estimate group

velocity from estimates of group delay at two spatial points in the direction of

wave propagation. Note that the reduced interference distribution that we are

using in this chapter has been shown to yield reasonable estimates of group

delay [6].

In signal processing, if a phase of envelope is provided as Θ(ω), the

group delay is defined as follows [84]:

tg(ω) = −dΘ(ω)

dω
(7.6)

Define the phase of the envelope at z = z1 and z = z2 as Θz1(ω) and Θz2(ω),

respectively, where

Θz1(ω) = t∆ω − z1∆k (7.7)

Θz2(ω) = t∆ω − z2∆k (7.8)
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Taking the derivative with respect to ω and following the definition of group

delay in Eq. (7.6), we get

tg|z1 = −dΘz1(ω)

dω
∼= −t +

∆k

∆ω
z1 (7.9)

tg|z2 = −dΘz2(ω)

dω
∼= −t +

∆k

∆ω
z2 (7.10)

Subtracting the Eqs. (7.9) and (7.10) yields,

tg|z2 − tg|z1 =
∆k

∆ω
z2 − ∆k

∆ω
z1 (7.11)

Therefore, the group velocity is expressed in terms of spatial separation and

difference of group delay as follows:

vg =
∆ω

∆k
=

z2 − z1

tg|z2 − tg|z1

=
∆z

∆tg
(7.12)

In other words, if observations of wave elevation at two spatially sep-

arated points are available, the estimation of the difference of group delay

allows one to estimate the group velocity. However, in the case of real wave

signals, the presence of time-varying frequency and time-varying amplitude

makes the problem more difficult. However, time-frequency analysis enables

one to calculate reasonable estimates of group delay, and thus group velocity

for a non-stationary wave group.

We are especially interested in the “extreme wave” group G5 that

occurs around 180 sec. in Fig. 7.2 and 7.7. In addition, because that wave

group is characterized by the highest energy fraction, the calculation is more

reliable than other wave groups. Therefore, we localize the wave group around

180 sec., to calculate group velocity. The group delay difference is plotted in

Fig. 7.9. Before we discuss the result of group delay difference, we must recall

that the local joint instantaneous frequency of the wave group is 0.492 Hz. To
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Figure 7.10: Localized group velocity estimation via RID
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estimate the group velocity, we utilize Eq. (7.12), where ∆z = 1 meter, and

∆tg is plotted in Fig 7.9. The resultant group velocity is shown in Fig. 7.10.

Note that group velocity at 0.492 Hz is 1.03 (m/sec.) which is entered into

Table 7.2.

7.4.2 Fourier Analysis

In this section we will employ classical Fourier analysis to calculate

phase and group velocities based on the cross power spectrum of the ocean

wave time series provided in Fig. 7.2. The frequency of interest can be obtained

by the power spectrum of the time series provided in Fig. 7.4 such that

ω = 2π× 0.5 Hz. Recall that the phase of the cross power spectrum preserves

phase information in the form of phase difference [69]. If the phase difference is

denoted by φ(ω), then we can determine the wave number k(ω), from k(ω) =

φ(ω)/∆z. The dispersion relation is provided in Fig. 7.11, we find that the

phase and group velocity estimates are given by:

vph =
ω

k
=

3.14(rad./sec.)

1(rad./m)
= 3.14(meter/sec.) (7.13)

vg =
∂ω

∂k
=

4.46(rad./sec.)

3(rad./m)
= 1.48(m/sec.) (7.14)

In calculating the Fourier-based cross-power spectrum, we utilize the entire

time series records shown in Fig. 7.2. The Fourier-based results for phase and

group velocity are tabulated in Table 7.2, which will be discussed later.

7.4.3 Wave Theory

In addition to using the Fourier based approach to check our time-

frequency estimates of phase and group velocity [85], we calculate phase and
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Figure 7.11: Phase difference of two wave time series by Fourier cross power
transform

group velocities from wave theory [86]. For a deep water model, the following

approximation of the wave length is defined:

λ =
gT 2

2π
tanh(kh) (7.15)

In this expression, h is the depth of the water, and g is the gravitational

acceralation constant and T is the wave period. In our case, k ∼= 1 at 0.5 Hz,

h =5.8 meters, and tanh(kh) =0.999. Thus,

λ ∼= g
T 2

2π
= 9.80(m/sec.2) · 22(sec.2)

2π
= 6.24(m) (7.16)

In our analysis, 0.5Hz is the peak frequency component, T = 2(sec.). There-

fore, the corresponding wave number is

k =
2π

λ
= 1.01(rad./m) (7.17)
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Table 7.2: Comparison of the estimation of phase velocity and group velocity
with different methods

Localized Entire
analysis(G5) time series

method RID Cross Fourier Wave Weighted average
TFD analysis theory Cross TFD

phase N/A 3.22 3.14 3.11 3.12
velocity (m/sec.) (m/sec.) (m/sec.) (m/sec.) (m/sec.)
group 1.03 0.94 1.48 1.55 1.32

velocity (m/sec.) (m/sec.) (m/sec.) (m/sec.) (m/sec.)

The phase velocity is determined from

vph = [
g

k
tanh(kh)]

1
2 ∼= [

g

k
]
1
2 (7.18)

vph ≈ [
9.8 (m/sec.2)

1.01 (rad./m)
]
1
2 = 3.11(m/sec.) (7.19)

The group velocity is defined as follows:

vg =
1

2
vph[1 +

2k · h
sinh(2k · h)

] ' 1

2
vph = 1.55(m/sec.) (7.20)

7.4.4 Summary and Comparison

In Table 7.2, results of phase and group velocity calculations with dif-

ferent techniques discussed in previous sections are provided. By and large,

the techniques are divided into localized analysis and entire time series anal-

ysis. The objective of comparing the classical RID and cross time-frequency

distribution is to find consistency in time-frequency techniques for localized

analysis. Even though phase velocity is not available via RID, the results for

group velocity by cross time-frequency (0.94 m/sec.) and by RID (1.03 m/sec.)

are reasonably close. This implies that the group delay of a non-stationary
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signal can be alternatively obtained from the cross time-frequency distribu-

tion, if the signal pair is available. Note that for the localized wave group G5,

we applied the same local frequency of 0.492 Hz and RID kernel for both the

auto and cross time-frequency distribution.

To compare the results from Fourier analysis and wave theory, it is

not reasonable to select a specific wave group result. Instead, the weighted

average values of phase and group velocities by energy fraction in Table 7.1

are used in Table 7.2. The Fourier analysis and wave theory results are based

on different approaches, however, they show fairly close values. In addition,

those results are also close to the result of weighted average. Reflecting on

the marginal properties of time-frequency distributions, we conclude that the

consistency is reasonable. The analysis of dispersive wave propagation via

cross time-frequency distribution discussed in Sec. 7.4 shows consistent result

with traditional time-frequency distributions and also with traditional Fourier-

based cross-power analysis and wave theory when we take a weighted average

using local energy fraction.

7.5 Conclusion

The goal of this chapter is to investigate the feasibility of using cross

time-frequency techniques to make time-localized measurements of phase and

group velocities. A most encouraging result, in our opinion, is the cross

time-frequency distribution which we presented in Sec. 7.3. The cross time-

frequency distribution is capable of preserving phase difference information as

a function of frequency and time. Using time localization via the instantaneous

phase difference, the local phase difference spectrum is obtained, then the local
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frequency is utilized to calculate phase and group velocities for that frequency.

The local analysis shows results consistent with classical time-frequency distri-

bution that utilizes group delay estimation. In addition, the weighted average

of the localized analysis also shows consistency with classical Fourier analysis

and wave theory. These consistencies between the cross time-frequency anal-

ysis and other alternatives indicates that the localized dispersion analysis via

cross time-frequency analysis is a reasonable treatment. Therefore, cross time-

frequency analysis can be utilized for the transient phase difference estimation

for non-stationary signals. It is clear that time-frequency dependent phase

difference information is advantageous aspect, however, as shown in Sec. 7.4,

the selection of the proper time and frequency for the evaluation is critical.

In conclusion, we have presented what we believe to be the first at-

tempt to utilize time-frequency techniques to estimate time-localized phase

and group velocities. We introduced the new cross time-frequency distribution

whose phase and group velocity results, although not in “perfect” agreement

with Fourier-based and theoretical values, are sufficiently encouraging to war-

rant further investigation.

155



Chapter 8

Application of Cross Time-Frequency Analysis

to Postural Sway Behavior: the Effects of

Aging and Visual Systems

8.1 Introduction

Posture control is an essential part of life which is associated with all

aspects of daily activities. Malfunction of postural control can cause many

problems and accidents such as falls. The rate of accidents or mortality from

traumatic falls is a manifestation of such problems. Statistical evidence in-

dicates that a third of elderly Americans over 65 years old experience injury

from falls annually, while 32% of aged Americans over 85 years old die from

traumatic falls [87][88]. Annual health care costs related to falls are about

$37 billion, which is somewhat close to the $47 billion cost of motor vehicle

injuries [89]. So there is a need to investigate and quantify elderly postural

control to find early indicators of these deficits; hence, various work is ongoing

relating to modelling of posture control and developing appropriate analysis

techniques for postural sway [90].

The effects of aging and the feedback from sensory systems can be mod-

elled with control system and signal processing techniques. In order to describe

and represent the human postural sway control mechanism as a control sys-

tem, various types of modelling have been carried out using feedback control

systems models [91], stochastic models [92] and biomechanical models [93]. It
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is not a simple task to characterize postural sway signals in either the time

domain or frequency domain due to the fact that the postural sway signals

are highly transient and non–stationary. Therefore, time-frequency analysis

has recently been utilized to analyze postural sway [94]-[95]. The classical

time-frequency distribution can successfully provide time- and frequency- lo-

calized information of postural sway signals [96]-[95]; however, the classical

time-frequency distribution is usually limited to a single nonstationary time

series of interest so that it cannot analyze multiple related signals in terms of

phase difference, for example.

Therefore, the purpose of this chapter is to investigate the effects of

visual feedback and aging on postural sway systems and signals by analyzing

the transient phase difference between “input” and “output” which correspond

to center of pressure (COP) and center of mass (COM), respectively. In this

chapter, the investigation of postural sway signals mainly relies upon a rel-

atively new cross time-frequency analysis technique that provides time- and

frequency-localized phase difference information [41]. The localized (in time

and frequency) phase difference patterns of postural sway signals are compared

in the experiments under different aging and sensory conditions.

8.2 System Modelling of Postural Sway and Sensory
Feedback

Consider a block diagram model of the sensory feedback system for

postural coordination provided in Fig. 8.1. This is a modified version of

Nashner’s Model of postural control [97]. Unlike his model, we have added a

divided response system to central nervous system (CNS) activation. The pos-

tural sway control process is represented in terms of input (an ankle moment
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u) and output (COM) between a posture dynamic system with a compensator.

The dashed portion of the block diagram is not directly accessible to obtain

time series data, however, it determines the control process of posture.

The input of the posture dynamic system is COP and the output Θ,

the sway angle of the body. The sway angle of the body, Θ, yields the COM

signal as an output of the body system. The posture dynamic system is fre-

quently modelled as an inverted pendulum [91] which is unstable in nature.

For the stabilization of the posture dynamic system, a posture controller is re-

quired [98]. The muscles play a role as a compensator to stabilize the posture

dynamic system by a command from CNS. Note that the parameters of the

posture controller adaptively change depending on the command from CNS

for stabilization. In addition, as depicted in Fig. 8.1, the input to the posture

dynamic system COP is determined by the ankle moment u and command

from CNS, which is affected by the sensory system. Comparing the instanta-

neous COM and the desired position (equilibrium state in this chapter), the

sensory system affects the command from CNS. Note that the operation of the

CNS commands is to stabilize the posture dynamic systems by minimizing the

displacement of position, i.e., COM.

For the stabilization of the posture dynamic system, various sensory

systems are activated. It is known that visual, somatosensory and vestibular

sensory components are the influencing factors in the stabilization process or

for the control of balance. We suggest that the existence of a posture con-

troller which can be interpreted as a lead compensator; a lead compensator

model has been employed in the modelling of the human postural dynamics

[91], [99]. Based on the fundamental feedback system design theory, a lead

compensator provides an enhanced transient damping in the time domain and

increased phase margin in the frequency domain so that the closed-loop feed-
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Figure 8.1: Simplified proposed model of the sensory feedback system for
postural coordination.

back system’s transient response is stabilized [100], [101]. In addition, a lead

compensator results in an increased frequency bandwidth compared to the in-

ertial responses of the body to gravity, i.e., COM, which gives rise to faster

response times. Therefore, the status of the feedback posture control process

is well reflected by the COP and COM signals.

However, the postural signals are highly transient, hence the investiga-

tion of the phase difference via classical Fourier-based analysis is not appro-

priate. Fourier-based spectral analysis has been frequently used for analyzing

postural sway signals or systems, because Fourier-based spectral analysis is suf-

ficient to describe most dynamic systems in the frequency domain. However,

this analysis technique has not always proven acceptable because it assumes

that the postural signals are stationary. Thus in the next section, we will

overview classical time-frequency analysis which will be later used to identify

the principal time interval and frequency ranges of interest. Next we will in-

troduce our new analysis approach using cross time-frequency distributions

which will be used later to determine the estimates of phase difference.
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8.3 Experimental Setup and Data Measurement

In this section, the physical experimental setup to investigate the ef-

fects of aging and sensory (especially visual) conditions on the postural sway

feedback control systems is described. Previous work by others [102]-[103] an-

alyzed COP signals via random-walk analysis for the effects of age and visual

sensory system, while our study differs in that it investigates the input-output

relation by measuring time-localized phase difference between COP and COM

via cross time-frequency analysis.

Two groups of 15 volunteer participants per group are used for the ex-

periments: 15 elderly individuals (65–75 years old) and 15 young individuals

(20–30 years old). The postural sway data are collected for the following four

experimental conditions:

• Case 1: Young person with eyes open,

• Case 2: Young person with eyes closed,

• Case 3: Elderly person with eyes open,

• Case 4: Elderly person with eyes closed.

The standard of analysis used biomechanical constructs such as COP and

COM to describe the oscillations or postural sway of the body over its base of

support. COP is the kinetic summary of all ground reaction forces of the feet

in contact with the support surface while COM is the kinematic summary of all

the body mass in response to gravity. It is well established that postural sway

can be represented using a summary pressure point for the ground reaction

forces on a force platform [87] [88]. While each participant stood on a split
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Figure 8.2: Laboratory setup of postural sway data acquisition (Aerial View).

force platform, the COP was used to represent the body’s sway. In addition,

a reflective marker on the sacral region of the back was used as a kinematic

summary point representing the movement of the body in 3–D Cartesian space

and was used to calculate movement patterns of the COM.

Fig.8.2 describes the experimental setup for the postural signal acqui-

sitions. COP and COM signals were collected using two AMTI force platforms

and a 3-D video motion analysis system with a 5-camera setup [93], respec-

tively. The left force platform measured left COP (COPL), the right force

platform measured right COP (COPR), while the COM is calculated with the

use of a seven segment anthropometric model. The 5-camera system was set

up at visual angles so that the location of 12 passive markers could be easily

tracked over time. The COM was calculated from these spatial coordinates.

These data were collected for 60 second trials with a sampling rate of 60Hz.
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The collected data time series was down sampled during post-processing to 30

samples/sec. Data from only 1 sec. to 59 sec. was used in this experiment to

reduce the noise artifacts from data initiation and cessation.

Either COPL or COPR could be investigated with the COM because

COPL and COPR have out-of-phase characteristics with respect to each other.

Research indicates that the COPL and COPR behave in anti-phase patterns

representing a postural strategy of “load-unload” on each lower limb. Accord-

ing to Winter [104] this strategy provides a timed, equal and opposite acti-

vation of motor systems in response to the body’s reaction to medial-lateral

sway. The degree to which the COPL and COPR behave in relationship to each

other can indicate changes in motor responses due to factors such as aging or

available sensory feedback such as vision. For the purpose of this chapter, we

took the combined movement of COP, i.e., the differential COP to compare

with COM movement to represent control of posture during quiet standing.

Therefore, we define a differential COP, COPd as follows:

COPd = (COPR − COPL)/2 (8.1)

So COPd is used in this chapter to minimize the error or any bias in the data.

8.4 Results

In this section, the effects of aging and available visual sensory feed-

back are demonstrated using the transient phase difference spectrum which is

obtained using cross time–frequency analysis. Therefore, we will first discuss

time-frequency localization via classical time-frequency distribution.
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8.4.1 Time and Frequency Localization of the Postural Signals via
Reduced Interference Distribution (RID)

In this section, classical time-frequency distributions of the postural

sway signals are discussed. Among the various types of time-frequency dis-

tributions in Cohen’s class, the reduced interference distribution (RID) [6],

which is used in this chapter, achieves high-resolution with highly reduced

cross terms or interference activity, and preserves many desirable properties of

the time–frequency distribution function. This is the reason why RID is fre-

quently employed in the application to and interpretation of biological signals

[105]. In Figs.8.3–8.6, the RID time-frequency distributions (TFDs) of COPd

and COM for the most typical representative samples from the experiments

discussed in Sec. 8.3 are provided.

Fig.8.3(a) and Fig.8.3(b) show COPd and COM of a young person with

eyes open (Case 1). The figures indicate that the energy density of COPd and

COM is clustered at around 10 sec. in time and below 0.2Hz. Fig.8.4(a) and

Fig.8.4(b) illustrate the COPd and COM of a typical young person with eyes

closed (Case 2). The figures show the local energy density is concentrated at

around 16 sec. for COPd and at around 10 sec. for COM in time, and below

0.07 Hz in frequency. Comparing the TFDs in Fig. 8.3 and Fig. 8.4, one can

observe significant difference of patterns in the time-frequency plane: more

higher frequency components are observed in Fig. 8.3 than Fig. 8.4. In addi-

tion, the TFDs of COPd and COM in Fig. 8.3 exhibit good pattern agreement

on time-frequency plane, however, this is not the case for the TFD’s in Fig.

8.4.

Fig.8.5(a) and Fig.8.5(b) show the TFDs of COPd and COM of a typ-

ical elderly person subject sample with eyes open (Case 3). The maximum

local energy densities are located at around 11 sec. in time and below about
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0.1 Hz in frequency. Fig.8.6(a) and Fig.8.6(b) illustrate the time-frequency

distributions of COPd and COM, respectively, of a typical elderly person with

eyes closed (Case 4). The TFDs in Fig.8.6 show that the local energy density

of COPd and COM is concentrated at around 10 sec. in time and below 0.10

Hz in frequency. The TFDs in Fig. 8.5 show slightly more time-frequency

components than the TFDs in Fig. 8.6, however, the dominant patterns lo-

cated at approximately 10 sec. on the time-frequency plane are quite similar.

Table 8.1 provides the RMS value of displacement and localized

characteristics of the postural sway signals in terms of the time center, time

duration, frequency center and frequency bandwidth from the TFDs provided

in Figs.8.3–8.6. The time center and time duration are obtained from the

first and second order moments of the time-frequency distribution in time

domain, respectively. Likewise, the frequency center and bandwidth are ob-

tained from first and second order moments of the time-frequency distribution

in the frequency domain [2]. The ability to calculate various moments and

conditional moments from knowledge of the TFD is an important advantage

of time-frequency analysis. The time and frequency parameters provided in

Table 8.1 are calculated using standard equations in [96], [2]. Observation of

the TFDs in Fig.8.3–Fig.8.6, irrespective of the different cases, reveals the fact

that the postural sway signals are highly transient and thus non-stationary

and have a low-frequency dominance.

The RMS value of displacement provided in Table 8.1 shows a clear dis-

tinction between young and elderly participant samples. The RMS values of

displacement for the young participant are approximately 3-5 times less than

those of the elderly participant. In addition, open eye conditions for both

young and elderly samples exhibit smaller RMS values of displacement.

On the other hand, frequency center and frequency bandwidth show
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Figure 8.3: Young person with eyes open (Case 1), time series and time-
frequency distribution for (a) COPd, and (b) COM.

165



   -1

0

   1

Signal in time

Time [s]

F
re

q
u

e
n

c
y
 [

H
z
]

5 10 15 20 25 30 35 40 45 50 55
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

[cm]

(a) Center of pressure

-0.2

0

0.2

0.4

0.6

0.8

Signal in time

Time [s]

F
re

q
u

e
n

c
y
 [

H
z
]

5 10 15 20 25 30 35 40 45 50 55
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

[cm]

(b) Center of mass

Figure 8.4: Young person with eyes closed (Case 2), time series and time-
frequency distribution for (a) COPd, and (b) COM.
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Figure 8.5: Elderly person with eyes open (Case 3), time series and time-
frequency distribution for (a) COPd, and (b) COM.
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Figure 8.6: Elderly person with eyes closed (Case 4), time series and time-
frequency distribution for (a) COPd, and (b) COM.
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Table 8.1: Sample participant data indicating RMS displacement character-
istics for COP and COM signals and localized time center, time duration,
frequency center and frequency bandwidth of the time-frequency distributions
provided in Fig.8.3 – Fig.8.6 (Dimensions of displacement, time and frequency
are cm., sec., and Hz., respectively.)
Experiment Young Participants Elderly Participants
Condition Open Eyes Closed Eyes Open Eyes Closed Eyes

COPd COM COPd COM COPd COM COPd COM

RMS Dis- 0.53 0.09 0.76 0.36 2.3466 0.47 4.26 0.81
placement

Time 10.41 9.55 15.77 9.60 10.83 10.98 9.40 9.54
Center
Time 1.96 2.08 2.76 2.65 2.67 2.76 2.14 2.15

Duration
Freq. 0.18 0.13 0.06 0.02 0.06 0.04 0.08 0.06

Center
Freq. 0.14 0.14 0.08 0.06 0.06 0.04 0.08 0.06
B.W

an opposite pattern: the young participant with open eye sample has higher

center frequency and frequency bandwidth than the elderly participant with

open eye sample. The pattern does not directly hold for the closed eyes sam-

ples of young and elderly participant, since both of them have very small and

somewhat comparable values of center frequency and frequency bandwidth.

Typically, the localized time duration of a signal is inversely proportional to

the localized frequency bandwidth. Hence, a distinctively smallest localized

time duration is obtained for young participant sample with open eyes com-

pared to all the other samples.

The information provided in Table 8.1 provides a good synopsis of

the features of the transient nature of postural signals. Also the quantitative

pattern of RMS values, time duration, center frequency and frequency band-
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width show distinctive differences between young vs. elderly, and open eyes vs.

closed eyes. However, the analysis based on classical time-frequency analysis

is not enough to analyze the internal postural sway control process discussed

in Sec. 8.2 in terms of COM and COPd in an associated manner. Therefore,

we will discuss the time-frequency localized phase difference relation between

the COPd and COM via cross time-frequency analysis in next section. Note

that the time and frequency localization discussed in this section is a basis for

the localized phase difference discussed in next section.

8.4.2 Calculation Process for Time-Frequency Localized Phase Dif-
ference

In this section, the calculation process for the time-frequency localized

phase difference is discussed. In Fig. 8.7, an algorithmic flow chart of the cal-

culation process of the time-frequency localized phase difference is provided.

The process depicted in Fig. 8.7 is divided into the (auto) time-frequency

analysis depicted on the left side of Fig. 8.7 and cross time-frequency analysis

depicted on the right side of Fig. 8.7. The parameters obtained by the (auto)

time-frequency analysis determine the time and frequency localization of the

time-frequency phase difference. In Fig. 8.7, the COPd signal corresponds to

the signal x1 in Eq. (2.19) while the COM signal corresponds to the signal x2

as indicated in Fig. 8.7. In order to relate COPd and COM signals, refer to the

cross time-frequency distribution in Eq. (2.19) and its time-frequency phase

difference spectrum, which measures phase difference between the COPd and

COM as a function of time and frequency. As discussed in Sec. 8.2, the phase

difference is important information since it provides insight into the charac-

teristics of the feedback control process in postural sway.

However, as the time-frequency phase difference spectrum, Θx1x2(t, ω; φ)
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is function of time and frequency simultaneously, it is necessary to localize the

time and frequency of interest. For the time and frequency localization, the

classical time-frequency distributions of COPd and COM signals are calcu-

lated, as depicted on the LHS of Fig. 8.7. For the time localization, a specific

time interval of interest, denoted as ([t0 − T0/2, t0 + T0/2]), is selected con-

sidering the time localized energy with fixed duration T0, in which the local

energy of the signal is maximum such that:

t0 = arg max
t∈[0,T ]

{
∫ t+T0/2

t−T0/2

∫
Cx(t, ω)dωdt} (8.2)

Strictly speaking, t0 is different from the time center provided in Table 8.1;

however, numerically the values are quite close. Note that the fixed duration

T0 is selected as 10 sec. to accommodate the localized time durations of the

COM and COPd signals. Also, the selection of t0 is determined by the COPd

signal which corresponds to the input to the postural sway control process in

Fig. 8.1.

Then, the extracted time–localized average phase difference is obtained

as a function of frequency over the specific time-interval of interest, (t0 −
T0/2, t0 + T0/2),

ϕx1x2(ω) =
1

T0

∫ t0+T0/2

t0−T0/2

Θx1x2(t, ω; φ) dt (8.3)

where t0 is from (8.2) and T0 is 10 secs. As each experimental condition has 15

individuals, the mean and standard deviation of the phase difference spectrum

is evaluated at each frequency of interest. After determining the time instance

of interest t0, one can similarly evaluate the frequency center ωx1 of interest

171



Time-Frequency




Distribution










Cross Time-



Frequency



  Distribution 





Time-Frequency



Phase Difference



 Spectrum 




Spectrum Average










Time Localization










Frequency


Localization










Time-Frequency



Localized Phase



 Difference





COPd










COM









 


Figure 8.7: An algorithmic flow chart of time-frequency localized phase differ-
ence evaluation

at this time as follows:

ωx1 =

∫
ωCx1(t0, ω)dω

∫
Cx1(t0, ω)dω

(8.4)

The frequencies of interest are evaluated for the COM and COPd signals indi-

vidually for the localization of the time-frequency phase difference spectrum.

Finally, the time-frequency localized phase difference can be evaluated for the

frequency of interest. The calculation process described in this section will be

applied to the four different cases in next section.
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8.4.3 Results and Discussion of the Time-Frequency Localized Phase
difference

In this section, we discuss the time and frequency localized phase differ-

ence of the postural sway experiments. Figs. 8.8 –8.10 show the mean values

(for 15 subjects) and the standard deviation of the time-localized phase differ-

ence spectrum obtained by Eq. (8.3) from 15 individual subjects for Cases 1 -

4. In each figure, the center frequency of COPd and COM are indicated where

the indicated center frequency corresponds to the mean value corresponding

to the fifteen subjects. Consider the time-localized phase difference for Case

1 (young persons with eyes open) in Fig. 8.8. The mean values for the cen-

ter frequency are 0.1844 Hz for COPd, and 0.1368 Hz for COM, respectively.

(These and other values for subsequent cases are tabulated in Table 8.2 for

convenience and later discussion.) The values for the phase difference at the

center frequency of COM and COPd are 1.7436 rad., 1.2708 rad., respectively.

In order to see the effects of visual feedback on the postural sway control pro-

cess, compare the localized phase difference spectrum of Case 1 in Fig. 8.8

with Case 2 in Fig. 8.9. In Fig. 8.9, the time-localized phase difference for

Case 2 (young persons with eyes closed) is provided. The mean values for

the center frequency COM and COPd show comparatively larger discrepancy

(0.1298 Hz for COPd and 0.0552 Hz for COM) than Case 1. The average phase

difference for the frequency range from 0 Hz to 0.5 Hz shows a random-like

pattern with a large standard deviation. All the estimated phase differences

at the center frequencies of COM and COPd are close to zero, -0.2275, 0.0350

radians, respectively. Comparisons of the phase difference spectra in Figs. 8.8

and 8.9 indicates that the influence of visual feedback (Case 1) results in a

larger value of phase difference than without vision available (Case 2).
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Figure 8.8: Mean and standard deviation of time-localized phase difference for
Case 1 (young persons with eyes open).
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Figure 8.9: Mean and standard deviation of time-localized phase difference for
Case 2 (young persons with eyes closed).
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Figure 8.10: Mean and standard deviation of time-localized phase difference
for Case 3 (elderly persons with eyes open).
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Figure 8.11: Mean and standard deviation of time-localized phase difference
for Case 4 (elderly persons with eyes closed).
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The different patterns for the phase difference spectra between Fig. 8.8

and Fig. 8.9 can be interpreted by the operation of the feedback control pro-

cess discussed in Sec. 8.2: a proper sensory (vision in this chapter) feedback

process for postural sway results in a time delay which results in an increased

phase difference with a lead compensator [99]. As discussed in Sec. 8.2, the

role of the lead compensator is to improve damping of the transients by in-

creasing the phase margin. It is a notable fact that the frequency range of

operations of the of visual sensory system is known to be 0.1-0.2 Hz where the

center frequency of COM, COPd are located, as indicated in Fig. 8.8.

Another distinctive different pattern for the phase difference spectra

between Fig. 8.8 and Fig. 8.9 is the random-like phase difference with a large

standard deviation in Fig. 8.9. Refer to the representative example of the

RID time-frequency distributions of COPd and COM for Case 2, provided in

Fig. 8.4 and the corresponding parameters provided in Table 8.1; the time-

frequency distributions of COPd and COM are not matched in comparison

with the other Cases 1,3 and 4. The time and frequency index of the peak

value of the time-frequency distributions in COP and COM are different. Com-

paring the time-frequency distributions of COPd and COM in Fig. 8.4, one

immediately observes that the TFDs are quite different and thus there is little

common signal at any given time and frequency point. Thus, the calculation

of the phase difference at each time-frequency point exhibits a large variance

as shown in Fig. 8.8.

Now, consider the effects of visual sensory feedback in elderly partic-

ipants, i.e., Cases 3 and 4. In Fig. 8.10, the time-localized phase difference

for Case 3 (elderly persons with eyes open) is provided. The phase differ-

ence shows relatively small values below 0.1 Hz; moreover, the value of phase

difference decays to zero above 0.1 Hz with very small standard deviations.
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The phase differences at the center frequency of COM (0.0623 Hz) and COPd

(0.0845 Hz) are 0.5132 radian and 0.4178 radian, respectively. In Fig. 8.11, the

time-localized phase difference for Case 4 (elderly persons with eyes closed)

is provided. The plotted phase difference is very close to zero with a very

small standard deviation over the entire frequency range. The phase differ-

ences at the center frequency of COM (0.0773 Hz) and COPd (0.0889 Hz) are

very close to zero (-0.0554 radian and -0.0486 radian, respectively). Both of

the phase difference spectra of elderly participants with and without visual

sensory provided in Fig. 8.10 and Fig. 8.11, respectively, exhibit very small

values compared to the young participants. The existence of the visual sen-

sory in Fig. 8.10 results in a comparatively larger phase difference values than

without the visual sensory in Fig. 8.11. This pattern also corresponds to the

observations of the localized phase difference in young participants (Case 1

and Case 2).

In the case of elderly individuals in this experiment, both Case 3 and

Case 4 show a week feedback control process with the measured phase differ-

ences with open eyes (Case 3) being slightly higher than those with closed eyes

(Case 4). These small values of phase difference indicate that there exists no

significant time delay in Case 4. This can be interpreted as a “drifting” state

or constant slow movement from an initial position, which implies decreased

use of feedback control process. Persons with decreased feedback control of

the postural system are more susceptible to external forces (gravity, stiffness

of system, etc.) due to limited resources (sensory information, strength etc.).

These individuals produce less of a counteracting, correcting force to control

posture and are, therefore, less variable and more in-phase in all inertial bio-

logical behaviors in response to gravity.

In order to compare the effects of aging and visual sensory on postural
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Figure 8.12: Amplitude and phase difference analysis for case 1,2,3 and 4 with
mean: (a) RMS values of COPd data, (b)RMS values of COM data, (c) Center
frequency of COPd, (d) Center frequency of COM, (e) Frequency bandwidth
of COPd, (f) Frequency bandwidth of COM and (g) Phase difference measured
at COPd and COM

sway control, a summary analysis is provided in in Table 8.2. The experi-

mental results in Table 8.2 are assorted in terms of amplitude, frequency and

phase difference for the four different conditions (Case 1- 4) of aging and visual

sensory. Note that the numbers in Table 8.2 are the group mean and standard

deviations for 15 young and 15 elderly subjects, while the numbers in Table 8.1

are the values for single representative participant. In order to visualize the

patterns of the items in Table 8.2 and their dependence on the experimental

conditions, a set of bar graphs is provided in Fig. 8.12.

The RMS values for both COPd and COM signals in Table 8.2 and
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Table 8.2: Group mean values and standard deviations for case 1,2,3 and 4
with regard to amplitude, frequency and phase difference analysis

Experimental condition Amplitude Frequency Phase

Age Eyes Signal Mean Std. Center Freq. Phase
RMS Dev. Freq. B.W. (radian)

Open COPd 0.49 0.02 0.18 0.22 1.27
Young (Case 1) COM 0.11 0.04 0.13 0.13 1.74

Closed COPd 0.63 0.01 0.12 0.12 0.03
(N=15) (Case 2) COM 0.28 0.01 0.05 0.08 -0.22

Open COPd 2.34 0.07 0.08 0.04 0.41
Elderly (Case 3) COM 0.40 0.02 0.06 0.03 0.51

Closed COPd 5.52 0.04 0.08 0.03 -0.04
(N=15) (Case 4) COM 1.04 0.09 0.07 0.03 -0.05

Fig. 8.12-(a), (b) show a clear distinction depending on age, i.e. smaller RMS

value of displacement for young (Case 1 and 2) than elderly cases (Case 3

and 4). The RMS values of displacement are a strong indicator of stability

in postural sway which is to be minimized as much as possible via the op-

erational commands from CNS. In accordance with this concept, the young

group (Case 1 and 2) demonstrated a more stabilized postural sway than the

elderly group (Case 3 and 4). Also, the patterns of center frequency and fre-

quency bandwidth in Table 8.2 and Fig. 8.12-(c) ∼ (f) show another clear

distinction depending on age in terms of frequency. Larger center frequencies

and frequency bandwidths are obtained for young (Case 1 and 2) than elderly

cases (Case 3 and 4). Younger persons were able to monitor posture more fre-

quently (with higher frequency and with higher frequency bandwidth) while

the elderly participants make less frequent postural adjustments with a lower

center frequency and smaller frequency bandwidth.

The effects of visual feedback is more distinctive in the phase difference

results in Table 8.2 and Fig. 8.12-(g). The existence of visual sensory (Case
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1 and Case 3) results in relatively high phase difference (a significant faction

of a radian) while the phase difference without visual sensory (Case 2 and

Case 4) are small (except for COM in Case 2, which is characterized by a very

high variance and a negative value.) Therefore, the young subjects with visual

sensory aids show the most stable postural control with the highest positive

phase difference. It is thought that younger persons use more of an anti-phase

behavior in postural control to provide a timely equal and opposite force to

counteract the body’s sway. Elderly persons and those with balance prob-

lems are less able to counteract postural sway forces and therefore are more

in-phase with the sway behavior. Postural control mechanisms are more sta-

ble with visual feedback because control mechanisms interact earlier to adjust

the body before it deviates far from a state of equilibrium. The enhancement

of postural control via visual sensory feedback, which manifests in itself an

increased phase difference between COPd and COM signals, is quite clear for

both the young and elderly cases.

However, it is ambiguous to interpret the result for the young group

under the closed eyes condition (Case 2) which shows small RMS displace-

ment with a small phase difference. It is assumed that when visual feedback is

absent, that the somatosensory and vestibular systems dominate [106]. With

the control model from Figure 1 in mind, the experimental results suggests

that when visual feedback is absent there is less available information about

the state of posture therefore there is a greater need for frequent adjustments

using feedback from the other two systems (vestibular and somatosensory sys-

tems). Vestibular control is optimal at 0.3 Hz while somatosensory control is

in the higher ranges of 0.6Hz. Younger persons may alternate more between

these two systems than elders because they have more information available.

Elders (depending on age) have less reliable information from both systems
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therefore may rely more on one system instead of alternating as much [103].

The values for time-frequency localized phase difference provide addi-

tional information to distinguish experimental conditions of aging and sensory

systems on postural sway control. The existence of feedback control and its

operational status are reflected in the both the time-frequency localized phase

difference spectra and the corresponding phase difference values, all of which

clearly indicate the status of the postural sway feedback control system. These

demonstrated results have been made evident using the higher resolution pos-

sible with the cross time-frequency analysis techniques which enable one to

reveal the time-frequency localized phase difference information for the paired

transient postural sway signals such as COPd and COM.

8.5 Conclusion

We applied time-frequency analysis to differentiate COPd data and

COM displacement data postural sway signals and to suggest a possible con-

trol model used by the postural control system. The differential COP data

and COM displacement data are employed to investigate postural sway under

different conditions of aging and visual systems. The time-localized average

phase difference spectrum produced in our analysis distinguished the effects of

both aging and visual sensory feedback on the stability of postural sway con-

trol. The investigation of the time-localized phase difference indicated that

the visual sensory feedback could be likened to a lead compensator provided

in Fig. 8.1 which stabilizes the transient damping in the postural sway. The

experimental results for phase difference values revealed that the use of visual

feedback dominates postural control more in the young participants than in

the elderly participants. Therefore, the time-localized phase difference values
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with corresponding frequencies of interests can be utilized to characterize the

parameters of the posture controller in Fig. 8.1 for elderly/young and eyes

open/closed conditions.

As shown and discussed in this chapter, the phase difference spectrum

provides useful information about the postural control system in terms of

stability. The analytical analysis of stability is not covered in this chapter,

however, it is a potential extension of this work. For a given model of the

postural control feedback system with knowledge of the gain characteristics in

the frequency domain, the transient phase difference information obtained by

cross time-frequency analysis can be utilized to ascertain the phase margin and

thus assess the degree of stability. The application of the cross time-frequency

analysis can be extended to other types of problems in biomedical engineering

where time-localized phase difference information would prove helpful.

An attractive idea, within the paradigms of motor control, is the con-

cept of identifying the level at which the postural control systems participate

with control of the body during various sensory conditions. The results of this

project indicate the frequency at which elders monitor posture (perhaps at a

slower rate) is sometimes insufficient to correct posture when it deviates from

equilibrium. The control model provides a possible systematic view of postural

control indicating possible points of intervention for rehabilitation programs.

Theoretical aspects of system comparison or system response to specific stimuli

as suggested by the model could aid in understanding how clinical programs

might augment aging postural control to delay the onset of decreased balance

skills or functional frailty.

The use of the cross time-frequency analysis resulted in new time-

frequency insights into the postural sway behavior. For this reason, it has

great potential as a diagnostic clinical tool for balance assessments. Of course,
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the caution for rehabilitation specialists is that if elders are already delayed

in monitoring posture, when sensory systems are further altered by pathology,

the elderly are even at greater risk of maintaining a stable postural control

system. Perhaps if we further investigate the control of posture at this level

of analysis using advanced time-frequency analysis we might also address the

question as to whether we might be able to detect and perhaps modify deficits

in postural monitoring by the elderly. Current methods rely primarily on sub-

jective or observational clinical measurements of balance or postural control.

These methods challenge clinicians in trying to document early deterioration

of balance in high risk populations such as the frail elderly or during early

stages a specific disease processes i.e., Alzheimer’s disease, Parkinson’s disease

or even transient ischemic attacks or “mini-strokes”. All continue as clinical

challenges due sub-clinical changes with obscure changes in postural control.

Better measurement of postural control would be helpful to assist in struc-

turing rehabilitation programs or in providing modifications to a patient’s

environment to ensure safety during activities of daily living. In addition, a

more sensitive measure of deteriorations in balance skills or responses to reha-

bilitative efforts could facilitate earlier implementation of preventive measures

prior to traumatic falls.
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Chapter 9

Conclusion

This dissertation is devoted to the development of a new theoretical

scheme of signal processing, cross time-frequency analysis. The feasibility and

applicability of the proposed theory have been verified by applications to var-

ious types of real-world signals and systems. The assessment and localization

of transient disturbances in electric power systems have been investigated by

use of classical and cross time-frequency analysis.

In this dissertation, a new definition of cross time-frequency distribu-

tion and its properties are investigated. Compared with the traditional Co-

hen’s class, the cross time-frequency distribution enables one to consider phase

difference information for a pair of signals. In addition, the properties of the

cross time-frequency distribution and corresponding kernel requirements are

compared with the traditional Cohen’s class. The relation between Cohen’s

distributions and cross time-frequency distributions is clarified by modification

of Moyal’s formula. Based on numerical simulations, the cross time-frequency

phase spectrum provides a more robust estimate of the phase difference than

classical cross power spectral analysis, under transient conditions.

Based on the time-frequency distribution of a transient disturbance, a

set of time-frequency based power quality indices are developed; the instanta-

neous disturbance energy ratio, normalized instantaneous disturbance energy

ratio, instantaneous frequency, and instantaneous K-factor are suggested for
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transient power quality assessment. The limitations of the traditional Fourier

series coefficient based power quality indices, which inherently require peri-

odicity of the disturbance signal, has been resolved by use of time-frequency

analysis. Also, interharmonic disturbances are investigated by use of time-

frequency based power quality indices.

As an application of cross time-frequency analysis to power systems, an

analytic solution to locate transient capacitor switching disturbance has been

discussed. The flow of transient disturbance energy caused by the capacitor

switching is determined by the time and frequency localized phase difference.

The cross time-frequency analysis provides time and frequency localized phase

difference between transient voltage and current which determine the direction

of transient disturbance flow. The time and frequency localization properties

of the proposed scheme allows one to expand the application to complicated

power distribution systems without knowledge of system parameters, capaci-

tor size and configuration. In this dissertation, the discussion and application

of the the time-frequency based solution for the direction of the transient

disturbance energy flow is limited to the capacitor switching events only; how-

ever, the localization of the other types of transient disturbances in power

distribution systems and faults in power transmission systems deserves to be

investigated by the proposed methodology.

In this dissertation, a practical and systematic procedure for determin-

ing the optimal wavelet basis has been investigated by employing the concept

of an instantaneous SNR (i.e., a transient resolution index (dB/sec)) under the

constraint of the uncertainty principle. Two parameter values (i.e., time du-

ration T and frequency bandwidth F ) are estimated along with their product

(i.e., TF product) from the local properties of a wavelet basis and a voltage sag

signal, and, then, a transient resolution index (dB/sec), named the “instan-
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taneous SNR”, is proposed to quantitatively measure the degree of similarity

and mismatch between the signal and the wavelet basis within the time frame

of the basis function. For a typical case of voltage sag, the optimal Daubechies

wavelet basis turns out to be Daubechies 4, although Daubechies 5 will work

almost as well. This algorithm is not restricted to voltage sag detection cases

and Daubechies’ wavelet basis, i.e., it may be applied to other transient dis-

turbances and other wavelet bases.

In this dissertation, a new high-resolution reflectometry technique has

been proposed. which operates simultaneously in both the time and frequency

domains. The approach rests upon time-frequency signal analysis and utilizes

a chirp signal multiplied by a Gaussian time envelope. The Gaussian enve-

lope provides time localization, while the chirp allows one to excite the system

under test with a swept sinusoid covering a frequency band of interest. Sen-

sitivity in detecting the reflected signal is provided by a time-frequency cross

correlation function. The use of time-frequency cross correlation function of

the respective time-frequency distributions of the reference and reflected sig-

nals has proven to be a sensitive detector of weak reflected signals in RG 142

and RG 400 coaxial cables. The experimental work involving two types of

coaxial cable, three types of faults, and four fault lengths, indicates that the

new time-frequency domain reflectometry locates faults with an accuracy com-

parable to TDR.

The feasibility of cross time-frequency distributions has been investi-

gated in order to measure time-localized phase and group velocities given wave

elevation time series measured at two points spatially separated in the direction

of wave propagation. The cross time-frequency analysis and its time-frequency

phase difference spectrum has been utilized for the measurement of the local-

ized phase difference spectrum. The results based on the cross time-frequency
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analysis are compared to those obtained experimentally from classical Fourier-

based cross-power spectra, which of course provide no time localization, and to

theoretical estimates of phase and group velocity. It is found that the weighted

average of the local phase and group velocities closely collapse to those mea-

sured using classical Fourier-based methods and those predicted by ocean wave

theory.

The effects of visual feedback and aging on postural sway systems and

signals can be investigated by analyzing the transient phase difference between

“input” and “output” which correspond to center of pressure (COP) and cen-

ter of mass (COM), respectively. The feedback control process in the postural

sway is interpreted in terms of a feedback compensator which is characterized

in terms of a phase difference. Using the experimental results of the tran-

sient phase difference obtained from the cross time-frequency distribution, it

is demonstrated that the postural control of young persons are more stable and

rely more on visual sensory feedback to stabilize postural control compared to

that of the elderly persons.

In the future, a set of customized power quality indices can be devel-

oped for the power quality assessment of SiC based next-generation power

electronic devices. Also, the joint time-frequency domain reflectometry offers

much promise as a new wire and cable diagnostic tool, especially in the com-

munications and power engineering area.

The theory and applications of cross time-frequency analysis presented

in this dissertation are expected to be useful for the analysis of the nonsta-

tionary signals and physical systems.
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