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Currently, there are no treatments available for mitigating the neuro-

logical effects of Alzheimer’s disease. All clinical trials of disease-modifying

treatments, which showed promise in animal models, have failed to show a

significant treatment effect in human trials. The lack of a sensitive outcome

measure and the focus on the dementia stage for investigating treatments

are believed to be the primary reasons behind the failure of all clinical tri-

als till date. The currently used outcome measure, the Alzheimer’s Disease

Assessment Scale-Cognitive subscale (ADAS-Cog), suffers from low sensitiv-

ity in tracking progression of cognitive impairment in clinical trials. A shift

in the focus to the prodromal mild cognitive impairment (MCI) stage may

help improve the efficiency of clinical trials. However, even lower sensitivity of

the ADAS-Cog and an inability to specifically select progressive MCI patients

limit the efficiency of clinical trials in the MCI stage.
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Cerebral atrophy measured on structural magnetic resonance (MR)

imaging is highly promising for tracking disease progression in clinical trials.

However, cerebral atrophy has not been yet approved as a valid biomarker

due to the lack of an understanding behind its relationship with cognitive im-

pairment. The focus of this dissertation spans across the two research areas

of (i) developing automatic algorithms for analysis of patients’ brain MR vol-

umes, and (ii) improving the efficiency of clinical trials of disease-modifying

treatments. This dissertation presents a novel knowledge-driven decision the-

ory approach for automatic tissue segmentation of brain MR volumes, which

shows better segmentation performance than the existing approaches.

The remaining dissertation contributions focus at improving the effi-

ciency of clinical trials of disease-modifying treatments. An improved scoring

methodology is presented for the ADAS-Cog outcome measure, which mea-

sures cognitive impairment with better accuracy and significantly improves

the sensitivity of the ADAS-Cog in the mild-to-moderate Alzheimer’s disease

stage. However, the ADAS-Cog continues to suffers from low sensitivity in

the MCI stage due to inherent limitations of its items. For improving the effi-

ciency of clinical trials in the MCI stage, a biomarker has been developed that

combines the ADAS-Cog with cerebral atrophy for more accurate tracking of

Alzheimer’s progression and facilitating selection of MCI patients in clinical

trials.
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Chapter 1

Introduction

1.1 Background & Significance

Alzheimer’s disease is the most common form of age-related dementia

and is estimated to affect nearly 5.3 million elderly people in United States

in 2015 [72, 1]. The prevalence in the US is expected to dramatically in-

crease (∼13.8 million by 2050) as advances in medicine improve life expectancy

and the “baby boomer” generation enters the age range most susceptible to

Alzheimer’s disease [72]. Alzheimer’s disease has significant implications on

patients’ quality of life and survival. The patients’ quality of life is severely

degraded due to the neuropsychiatric symptoms (such as depression, apathy,

anxiety and agitation) and an inability to independently execute basic daily

activities [155]. Alzheimer’s disease is eventually fatal and reported to be the

sixth leading cause of death in US [1]. Besides affecting patients’ survival

and quality of life, Alzheimer’s disease also poses a tremendous public health

burden in terms of patient care, healthcare costs (an estimated $226 billion in

2015 [1]), and caregivers’ responsibilities.

There are no treatments currently available for mitigating the neuro-
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logical effects of Alzheimer’s disease. The routine clinical care of Alzheimer’s

disease patients involves symptomatic therapies (such as acetylcholinesterase

inhibitors), which temporarily improve symptoms of Alzheimer’s disease. How-

ever, effective strategies for the prevention and treatment of Alzheimer’s dis-

ease are still lacking. All clinical trials of disease-modifying treatments, which

showed promise in slowing down neurodegeneration in animal models, have

failed in human trials [38]. There are two primary reasons believed to be

behind the failure of all clinical trials till date. First, the primary outcome

measure used in clinical trials suffers from low sensitivity in detecting treat-

ment effects in clinical trials [27, 131, 55, 147]. The regulatory agencies re-

quire the primary end points in clinical trials to be characteristic symptoms of

Alzheimer’s disease, mainly cognitive and functional impairment [56]. A neu-

ropsychological rating scale called the Alzheimer’s Disease Assessment Scale-

Cognitive subscale (ADAS-Cog) is currently used as the primary outcome

measure in clinical trials to measure cognitive impairment of patients. How-

ever, the ADAS-Cog suffers from low sensitivity in measuring progression of

cognitive impairment over short durations that are typically considered in

clinical trials [27, 131, 75, 74]. This translates to low sensitivity in detecting

treatment effects since treatments are evaluated based on their ability to slow

down progression of cognitive impairment in Alzheimer’s disease patients.

The second reason behind the failure of all trials is considered to be the

advanced disease stage, where clinical trials have traditionally focused. Clin-

ical diagnosis of probable Alzheimer’s disease using the traditional criteria is

2



possible only at the dementia phase [107]. As a result, clinical trials have tra-

ditionally focused on mild-to-moderate Alzheimer’s disease patients for eval-

uating disease-modifying treatments. However, substantial brain damage has

already occurred by the time patients are diagnosed with Alzheimer’s disease.

Previous studies in animal models have suggested that disease-modifying treat-

ments would be most effective in the early stages of Alzheimer’s disease, when

patients’ brains have not yet undergone severe pathology and neurodegener-

ation [63, 40]. Alzheimer’s disease is preceded by a prodromal stage of mild

cognitive impairment (MCI) when the patients experience mild but noticeable

changes in cognitive abilities but their ability to independently function in

daily life activities is not affected [123]. Since MCI is the earliest stage when

patients with Alzheimer’s disease can be currently identified, a paradigm shift

in the focus of clinical trials towards the MCI stage is underway. However,

the population of MCI patients is highly heterogeneous in nature. While all

Alzheimer’s disease patients go through the prodromal MCI stage, only a small

fraction (∼10-15%) of MCI patients progress to Alzheimer’s disease annually

[123]. In fact, most MCI patients do not progress to dementia even after 10

years of follow-up [111]. Moreover, MCI is not specific to Alzheimer’s disease

and is also caused by other dementia types such as dementia with Lewy bod-

ies. The currently employed clinical rating scales for MCI diagnosis are unable

to rule out non-progressive MCI, let alone other pathologies, such as vascular

and non-Alzheimer neurodegeneration [123]. The low specificity in early de-

tection of Alzheimer’s disease poses a big challenge for clinical trials focused in

3



the MCI stage. Besides patient selection, another challenge for clinical trials

focused in the MCI stage is the lack of a sensitive outcome measure. The

prodromal MCI stage is characterized by the lack of functional impairment in

patients [123] and, therefore, cognitive impairment is the only possible primary

end point in clinical trials based on the guidelines laid down by the regulatory

agencies [56]. However, the sensitivity of the ADAS-Cog is even lower in the

MCI stage as compared to the mild-to-moderate Alzheimer’s disease stage.

Due to these reasons, clinical trials of disease-modifying treatments suf-

fer from low efficacy both in the mild-to-moderate Alzheimer’s disease and the

MCI stages. If a treatment effect did exist, large sample sizes and long follow-

up durations are required for detecting it using the ADAS-Cog as an outcome

measure [55, 125]. This further exacerbates in the MCI stage, where a frac-

tion of MCI patients may never develop Alzheimer’s disease and, therefore,

may not show any positive treatment effect. This has motivated the develop-

ment of biomarkers, which can characterize the severity of Alzheimer’s disease

in patients. Such biomarkers would play an important role both as outcome

measures and as inclusion criteria in clinical trials of disease-modifying treat-

ments. Biomarkers would also be crucial in early detection of Alzheimer’s dis-

ease and facilitating timely intervention using disease-modifying treatments,

as they become available. Noting their high significance, academia, industry,

and regulatory agencies have prescribed that a valid biomarker should be (a)

measured using reliable and validated methods, (b) sensitive and specific as

a diagnostic marker, (c) sensitive in measuring effects of treatments on dis-
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ease progression, and (d) predictive of clinical outcomes, such as cognitive and

functional impairment [59, 60, 69]. Several different classes of biomarkers are

under investigation for Alzheimer’s disease [82, 81, 83]. In this dissertation, we

focus specifically on structural imaging biomarkers, which are highly promising

for tracking progression of Alzheimer’s disease.

1.2 Cerebral Atrophy due to Alzheimer’s Disease

Pathologically, Alzheimer’s disease is believed to be caused by pro-

gressive deposition of amyloid plaques and neurofibrillary tangles in patients’

brains, which eventually leads to neuronal loss and cognitive decline. The

current hypothesis of Alzheimer’s disease pathological cascade (figure 1.1) is a

two-stage process, where deposition of amyloid plaques and neuronal damage

happen sequentially rather than simultaneously [82, 81, 83, 113]. Biomarkers

that measure concentration of abnormal proteins (CSF Aβ42, CSF tau and

amyloid PET in figure 1.1) show abnormality during the asymptomatic stage

of Alzheimer’s disease, which can be as long as decades before the onset of

symptoms [83, 113]. However, these biomarkers have almost plateaued by the

time patients start to manifest any symptoms in the MCI stage [81]. There-

fore, while protein-based biomarkers may be useful for patient screening, their

potential as outcome measures in clinical trials is limited.

On the other hand, biomarkers that measure the extent of neuronal

damage in patients’ brains (MRI and FDG-PET in figure 1.1) are sensitive to
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Figure 1.1: Hypothesized pathological cascade of Alzheimer’s disease [81]:
Illustration showing temporal ordering of the following biomarkers: amy-
loid plaques measured in CSF (CSFAB42), amyloid deposition observed on
positron emission tomography (Amyloid PET), hyperphosphorylated tau lev-
els in CSF (CSF tau), cerebral atrophy on magnetic resonance imaging (MRI),
metabolism on PET (FDGPET), and cognitive impairment in patients. Since
patients show significant variability in progression rates of cognitive impair-
ment, cognitive impairment is depicted as a band with the two edges repre-
senting low-risk and high-risk patients.

disease progression in the MCI and the mild-to-moderate Alzheimer’s disease

stages. Neuronal and synaptic losses in patients’ brains manifest macroscopi-

cally as cerebral atrophy [18], which can be measured on structural magnetic

resonance (MR) imaging volumes of patients (figure 1.2). Structural MR imag-

ing is routinely employed in clinical trials of disease-modifying treatments for

excluding patients with other dementia types and evaluating safety of inves-
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(a) (b)

Figure 1.2: Cerebral atrophy due to Alzheimer’s disease: Matched MR slices
showing significantly reduced brain tissue and enlarged ventricles in (a) an
Alzheimer’s disease patient as compared to (b) an age matched normal control.

tigative treatments. The high sensitivity and ease of implementation makes

cerebral atrophy a highly promising biomarker for Alzheimer’s disease in clini-

cal trials. The validity of cerebral atrophy as a biomarker is further justified by

the fact that cerebral atrophy maps accurately upstream to the Braak stages

of pathology deposition at autopsy [192, 176] and downstream to cognitive

impairment in patients [42, 167, 169, 178].

1.3 Dissertation Contributions

The promise of cerebral atrophy as a biomarker for Alzheimer’s dis-

ease has led to significant efforts in two primary research areas. The first

research area is concerned with the development of automatic algorithms for

analyzing brain MR volumes and quantifying cerebral atrophy. This includes
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a wide variety of image analysis tasks such as skull extraction [160], artifact

removal [179, 132, 157], tissue segmentation [183, 182, 39, 50], brain cortical

parcellation [53, 44, 54], and cortical thickness measurement [90, 145, 70, 134],

which are typically involved in any image analysis pipeline for measurement

of cerebral atrophy in Alzheimer’s disease patients. The second research area

involves the development of strategies for improving efficiency of clinical trials

of Alzheimer’s disease-modifying treatments. This has primarily involved im-

proving the currently used tools and integrating them with cerebral atrophy

measurements for better efficiency of clinical trials.

The contributions of this dissertation fall under both these areas of re-

search. As part of the first research area, the contribution of this dissertation

is a knowledge-driven decision theory (KDT) approach for segmentation of

brain MR volumes (chapter 3). Automatic segmentation of brain MR volumes

into tissue classes of white matter, gray matter, and cerebrospinal fluid is a

prerequisite step for measuring cerebral atrophy in patients. While easy for

humans, automatic tissue segmentation is a complicated task due to significant

amounts of image corruptions that are typically present in MR volumes. The

proposed KDT approach is motivated from an observation that relative extents

of intensity overlap between tissue class pairs stay roughly consistent across

MR volumes. We investigated whether the incorporation of prior knowledge

on intensity overlaps can improve classification of voxels residing in the inten-

sity overlap spectrum. The segmentation performance of the proposed KDT

approach was evaluated on two standardized MR segmentation data sets and
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compared against the performance of existing segmentation approaches.

The other contributions of this dissertation fall under the second re-

search area of improving the efficiency of clinical trials of Alzheimer’s disease-

modifying treatments. The first contribution is an improved ADAS-Cog scor-

ing methodology for measuring cognitive impairment in Alzheimer’s disease

patients (chapter 5). As discussed earlier, the ADAS-Cog is the standard

primary outcome measured used in clinical trials involving mild-to-moderate

Alzheimer’s disease patients. However, the ADAS-Cog suffers from low sensi-

tivity in measuring progression of cognitive impairment. We identified that a

major reason behind the low sensitivity of the ADAS-Cog is its sub-optimal

scoring methodology, which is used to score cognitive impairment in patients.

We developed a new scoring methodology for the ADAS-Cog based on a com-

prehensive psychometric analysis using item response theory (ADAS-CogIRT),

which addresses several major limitations associated with the current scoring

methodology. The sensitivity of the ADAS-CogIRT methodology was eval-

uated and compared against the current scoring methodology using simu-

lated clinical trials and a real clinical trial, which had shown an evidence

of a treatment effect in the original negative trial. The ADAS-CogIRT scor-

ing methodology significantly improves the sensitivity of the ADAS-Cog in

detecting treatment effects in clinical trials focused in the mild-to-moderate

Alzheimer’s disease stage. It also allows separate evaluation of treatment ef-

fects in the cognitive domains of memory, language, and praxis, which is not

possible using the current scoring methodology.
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While the ADAS-CogIRT scoring methodology improves the sensitiv-

ity of the ADAS-Cog, it is unable to overcome the inherent limitations of the

ADAS-Cog items. As a result, the ADAS-CogIRT suffers from low sensitivity

in the MCI stage. The final contribution of this dissertation is a biomarker

that combines the ADAS-Cog with cerebral atrophy for even more accurate

tracking of progression in clinical trials (chapter 7). Despite its promise, cere-

bral atrophy is not approved as a valid biomarker of Alzheimer’s disease due

to the lack of an understanding of the relationship between cerebral atrophy

and cognitive impairment. As part of this contribution, we investigated this

relationship and found that the spatio-temporal pattern of cerebral atrophy is

closely related with progression of cognitive impairment in Alzheimer’s disease

patients. We developed a biomarker that combines the ADAS-Cog responses

of patients with cerebral atrophy on MR imaging (ADAS-CogMRI) for track-

ing cognitive impairment in clinical trials. We evaluated the ADAS-CogMRI

biomarker and compared it against the sole use of the ADAS-Cog and cerebral

atrophy in simulated clinical trials focused in the mild-to-moderate Alzheimer’s

disease and the MCI stages. We validated the simulation results in a real world

problem posed as a clinical trial of a disease-modifying treatment, which is hy-

pothesized to prevent conversion of MCI patients to Alzheimer’s disease. The

ADAS-CogMRI biomarker significantly improves the efficacy of clinical trials

focused in the MCI stage and shows good accuracy in predicting MCI patients

that will convert to Alzheimer’s disease in future.
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1.4 Dissertation Outline

The remainder of this dissertation is organized as follows. Chapter 2

provides a brief background on brain MR tissue segmentation and reviews

existing segmentation approaches. In chapter 3, we describe the knowledge-

driven decision theory segmentation approach, evaluate its performance, and

compare against the existing segmentation approaches. Chapter 4 briefly de-

scribes the ADAS-Cog assessment and discusses the limitations associated

with its current scoring methodology in clinical trials. Chapter 5 presents

the new ADAS-CogIRT scoring methodology for the ADAS-Cog, evaluates its

performance in clinical trials, and compares against the currently used scoring

methodology. Chapter 6 discusses the relationship between cerebral atrophy

and cognitive impairment, and the promise of combining them into a biomarker

of Alzheimer’s disease. In chapter 7, we investigate the relationship between

brain-wide cerebral atrophy and cognitive impairment, develop a biomarker

based on this relationship, evaluate the performance of the biomarker, and

compare it against the sole use of the ADAS-Cog and cerebral atrophy in

clinical trials. In chapter 8, we conclude this dissertation discussing the sig-

nificance of its contributions and some pointers for future research work.
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Chapter 2

Volumetric Brain MR Segmentation

2.1 Introduction

Magnetic resonance (MR) imaging is routinely used to obtain detailed

anatomical information about patients’ brains. Structural changes observed

on MR imaging are clinically significant for diagnostic and treatment planning

purposes for several neurological diseases [23, 62, 64]. However, due to the large

amount of data collected in MR imaging, manual structural measurements

(such as cortical thickness) are tedious and time intensive. This has motivated

the development of computer-based tools to quantify structural changes on MR

volumes that are caused by neurological disorders such as Alzheimer’s disease.

MR tissue segmentation is an important, and often prerequisite, com-

ponent of any comprehensive MR image analysis. This involves classifying

brain MR voxels into four classes: white matter (WM), gray matter (GM),

cerebrospinal fluid (CSF), and background (BG) as shown in figure 2.1. How-

ever, automatic tissue segmentation in brain MR volumes is difficult, due to

the presence of image corruptions such as partial volume effects and intensity

inhomogeneities (or bias field). Accurate segmentation of MR volumes requires
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White Matter (WM) 

Gray Matter (GM) 

Cerebrospinal Fluid 
(CSF) (a) (b) 

Figure 2.1: Brain MR tissue segmentation: Figure showing a (a) sample slice
from a MR volume with intensity inhomogeneities, and (b) labeled tissue
classes of white matter, gray matter, and cerebrospinal fluid in the MR slice.
The intensity inhomogeneity in the MR slice is seen as a smoothly varying
shading artifact such that the upper portion of the slice appears darker than
the bottom portion.

incorporating the contributions from such image corruptions while classifying

MR voxels into the four classes.

The most common segmentation methods are probabilistic formula-

tions that represent an MR volume with a parametric model such as finite

mixture model (FMM) with four Gaussian components [104, 142, 174, 195].

Thereafter, a classification rule attributes class labels to every voxel in the

MR volume. However, the presence of image corruptions greatly skews the

distribution of voxel intensities in MR volumes. As a result, tissue classes

have arbitrarily shaped and variable density functions of intensities in MR

volumes, which are difficult to represent using an a priori assumed parametric

model. To overcome this, the use of more flexible parametric models has been

suggested [36, 49, 67, 80, 135]. While flexible modeling of intensity density
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functions yields improved segmentation performance [36, 67, 98], such meth-

ods still suffer from the specification bias of the assumed parametric models

[91]. Most of the modeling errors are concentrated along the tails of the inten-

sity distributions, which are the regions of intensity overlap between the tissue

classes. Therefore, the specification bias of the assumed parametric models

directly translates to errors in voxel classification. Several non-parametric

approaches (such as kernel density estimation) have also been employed for

modeling tissue intensity distributions in MR volumes [4, 100, 136]. They pro-

vide better flexibility in modeling arbitrary intensity distributions and show

improved tissue segmentation performance [4, 100, 136].

Besides producing arbitrarily shaped intensity density functions, the

presence of intensity inhomogeneities (figure 2.1) also results in significant

overlap between the intensity density functions of tissue classes. Most seg-

mentation errors are the result of inaccurate classification of MR voxels that

reside in this spectrum of intensity overlap and produce similar likelihoods of

membership to multiple tissue classes. To minimize such errors, preprocess-

ing methods are typically employed to reduce the effect of intensity inhomo-

geneities in MR volumes [132, 157]. However, the performance of subsequent

tissue segmentation becomes sensitive to the accuracy of the preprocessing

methods used to remove intensity inhomogeneities from MR volumes. More-

over, the computation complexity associated with such methods is generally

very high.
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2.2 Relevant Work

In this section, we review existing tissue segmentation approaches and

their methods for voxel classification, modeling tissue classes, prior specifica-

tion, and energy minimization. Most existing methods have used a Bayesian

maximum a-posteriori (MAP) formulation for tissue segmentation and min-

imized it using the expectation maximization (EM) algorithm. Wells et al.

[187] proposed an adaptive MAP method for simultaneous MR tissue segmen-

tation and intensity inhomogeneity estimation. Leemput et al. [174] extended

this approach by using probabilistic atlases for automatic modeling of tissue

classes. Marroquin et al. [104] also presented a Bayesian MAP formulation for

tissue segmentation along with a variant of the EM algorithm for more effi-

cient energy minimization. Adaptive pixon represented segmentation (APRS)

method by Lin et al. [100] used a MAP formulation but their formulation

involved clusters of connected pixels (pixons) rather than individual pixels.

Several other well-known segmentation approaches have also used a MAP for-

mulation for driving tissue segmentation [135, 67, 126].

Most of the MAP formulations of tissue segmentation have assumed a

parametric Gaussian distribution of intensities within each tissue class [174,

187, 135, 100]. As discussed earlier and also noted by Prastawa et al. [126],

intensity distributions of tissue classes show significant overlap and modeling

with Gaussian distributions results in degenerate decision boundaries. As a

result, some segmentation approaches have considered use of alternate para-
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metric models for tissue intensities. Marroquin et al. [104] assumed a paramet-

ric model of spline models with a Gibbsian prior for modeling tissue classes.

The constrained Gaussian mixture model (CGMM) framework by Greenspan

et al. [67] utilized a mixture of large number of Gaussian components to

represent individual tissue classes. However, the intensity parameters of all

Gaussian components representing each tissue class were constrained to be

equal, which limits the ability of CGMM method to model arbitrary intensity

distributions of tissue classes. Kernel density estimation (KDE) or parzen-

window estimation has also been previously used in segmentation approaches

to model arbitrary intensity distributions inside tissue classes [11, 126, 105, 86].

Awate et al.[11] developed an unsupervised tissue segmentation method that

adaptively learns image-neighborhood Markov statistics and entails estima-

tion of intensity distributions using parzen-window estimation. KDE has also

been utilized in two mean shift inspired approaches of the adaptive mean-shift

(AMS) method by Mayer et al. [105] and the mean shift method with edge

confidence maps (MSECM) by Jimenez-Alaniz et al. [86].

MRF based contextual priors and probabilistic tissue atlases are often

used for defining prior anatomical information and guide tissue segmentation

[24]. Leemput et al. [173] proposed an approach (KVL) that combined tissue

atlases with MRF priors to define tissue priors and illustrated significant im-

provement in segmentation performance. A similar approach was also followed

by the MPM-MAP [104] and APRS [100] segmentation methods for defining

tissue class priors. Rivera et al. [135] used a modified MRF methodology
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involving quadratic potentials, which allowed for computation of probability

estimates for voxels belonging to all tissue classes. The segmentation approach

by Awate et al. [11] used tissue atlases only for initialization purposes. How-

ever, since their segmentation framework implicitly incorporated MRF based

smoothness constraints, their approach also utilizes atlases and MRF contex-

tual priors for guiding tissue segmentation. The sub-volume probabilistic atlas

segmentation (SVPASEG) method by Tohka et al. [170] also utilized a MRF

based framework with tissue atlases used for dividing MR volumes into dif-

ferent domains. KDT uses a similar approach as the ones utilized in KVL,

MPM-MAP, and APRS for defining tissue priors.

While level set-based approach for energy minimization has been exten-

sively used for segmentation of natural scene images [35, 28], its application in

MR tissue segmentation has been relatively scarce. Level set-based approach is

highly flexible and enables representation of energy functions containing wide

varieties of energy terms (such as local region, smoothness and area terms).

The ease of implementation also makes it an attractive framework for repre-

senting brain MRI tissue segmentation models. Some level set-based methods

have been developed for brain tissue segmentation that illustrated impressive

results [184, 96, 98, 95]. However, the relative value of level sets in comparison

to alternate energy minimization strategies is difficult to appreciate due to

poor documentation of level set-based methods on well-established segmenta-

tion datasets.
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Chapter 3

Knowledge-driven Decision Theory for

Volumetric Brain MR Segmentation

3.1 Introduction

Accurate MR tissue segmentation requires precise modeling of tissue

classes and a classification rule that takes into account the effects from image

corruptions. In this chapter, we present a new 3D knowledge-driven decision

theory (KDT) approach towards handling the intensity overlap across tissue

classesa,b. The approach is motivated by an observation that tissue class pairs

have different relative extents of intensity overlap in MR volumes. In the pres-

ence of image corruptions (such as bias field), the intensity overlap between

tissue classes increases; however, the relative proportions stay approximately

the same across different MR volumes. The incorporation of intensity overlap

knowledge in the segmentation model enables more accurate classification of

aN. Verma, G. S. Muralidhar, A. C. Bovik, M. C. Cowperthwaite, M. G. Burnett, M. K.
Markey, “Three-dimensional brain magnetic resonance imaging segmentation via knowledge-
driven decision theory”, Journal of Medical Imaging, 1(3):034001-034015, 2014.

bN. Verma, G. S. Muralidhar, A. C. Bovik, M. C. Cowperthwaite, M. K. Markey, “Model-
driven probabilistic level set based segmentation of magnetic resonance images of the brain”,
In Proc. Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, p. 2821-2824, 2011.
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voxels residing in the intensity overlap spectrum. In KDT, a decision the-

ory based objective function is minimized using a variational level set-based

approach.

Variational segmentation methods have gained popularity for brain MR

segmentation [98, 136]; however, their performance on well-known datasets is

poorly documented. This makes it difficult to establish their potential in com-

parison to other energy minimization strategies (such as graph cuts). We

evaluate our approach using two well-established datasets from the Internet

Brain Segmentation Repository and compare against segmentation methods

that used different energy minimization techniques. The segmentation ap-

proach described in this chapter was published in the SPIE Journal of Medical

Imaging in 2014 [182]a. A preliminary version of this study was also presented

and published in the proceedings of the 33rd Annual International Conference

of the IEEE Engineering in Medicine & Biology Society in 2011 [183]b. In both

these works, N. Verma developed the methods, performed the analysis, and

prepared the manuscripts. G. S. Muralidhar contributed towards the develop-

ment of the methods, study designs, and preparation of the manuscripts. The

rest of the co-authors helped with the study designs and preparation of the

manuscripts.

The chapter is organized as follows: Section 3.2 describes the proposed

KDT algorithm for tissue segmentation and provides details on its numerical

implementation. Section 3.5 evaluates the segmentation performance of KDT,
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compares performance with existing methods, illustrates the significance of

KDT’s individual components, and performs computational complexity anal-

ysis. Finally, Section 3.6 summarizes the technical contributions of this study

and discusses the advantages and limitations of KDT.

3.2 Mathematical Notations

We define some notations that are frequently used in this chapter.

Given an MR volume V defined as a function V : Ω → R on a continuous

3D domain Ω, the goal of tissue segmentation is to partition Ω into four dis-

joint classes C ∈ {WM,GM,CSF,BG}. Any MR voxel is hence defined by

its spatial location (or coordinates) x ∈ Ω and associated MR signal/intensity

value V (x). Besides the spatial image domain, we also interpret KDT in

the intensity range domain. The intensity range domain for a given MR vol-

ume V is defined by the space of all possible voxel intensities I ∈ I, where

I =
[
min
x∈Ω

[V (x)],max
x∈Ω

[V (x)]
]
.

3.3 Motivation

The motivation behind our approach is the observation that the relative

extents of intensity overlap between different tissue class pairs are not equal

and follow a consistent trend across MR volumes. We illustrate this fact by

calculating the intensity overlap areas between all tissue class pairs k, j ∈
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Figure 3.1: Relative intensity overlap between the tissue classes: Schematic il-
lustration showing the partial intensity overlap areas Area A =

∫
Rj
P (I, Ck)dI

and Area B =
∫
Rk
P (I, Cj)dI.

{WM,GM,CSF} using the expert ground truth segmentations. Intensity

overlap area Overlap(Ck, Cj) between tissue classes Ck and Cj is defined as

Overlap(Ck, Cj) =

∫
Rk

P (I, Cj)dI +

∫
Rj

P (I, Ck)dI (3.1)

where I denotes the voxel intensities in the MR volume; P (I, C) denotes the

likelihood of voxel intensity I belonging to class C; and Rk and Rj represent

the intensity ranges defined as Rk = {I : P (I, Ck) > P (I, Cj), I ∈ I} and

Rj = {I : P (I, Cj) > P (I, Ck), I ∈ I}, respectively (as illustrated in figure

3.1). Figure 3.2a shows the overlap areas between tissue pairs WM & GM

and GM & CSF relative to the overlap areas between WM & CSF . The

scatterplot is generated using expert ground truth segmentations of 18 real

MR volumes from the Internet Brain Segmentation Repository.

The consistent pattern across MR volumes suggests that the extents of
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Figure 3.2: Relative intensity overlap between tissue classes: (a) scatterplot
of overlap areas Overlap(WM,GM) and Overlap(GM,CSF ) across MR vol-
umes relative to Overlap(WM,CSF ), and (b) scatterplot comparing the ag-
gregate misclassification probabilities between WM & GM and GM & CSF
across MR volumes (same as in (a)) relative to the total misclassification
probabilities between WM & CSF . The aggregate misclassification prob-
ability between two classes Cj and Ck is defined as: MissProb(Cj, Ck) =∫
x∈Cj

P (x,Ck)dx+
∫
x∈Ck

P (x,Cj)dx.

intensity overlap are different among tissue class pairs. In terms of magnitude,

the overlap area between WM & GM is higher than the overlap area between

GM & CSF and betweenWM & CSF . Some of the MR volumes in figure 3.2a

contain high levels of intensity inhomogeneities, which show increased overlap

areas between the tissue class pairs (such as MR volumes 3 and 10). While we

have simply combined the partial overlap areas between tissue classes (areas

A and B in figure 3.1) for illustrating that the intensity overlap areas are not

equal, asymmetry may exist between the partial overlap areas and has been

considered for investigation in our experiments. The relative magnitudes of
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overlap areas in MR volumes is a combined effect of several factors such as the

lengths of boundaries between tissue types, extent of intensity inhomogeneities,

partial volume effects and contrast between the tissue types.

3.4 Knowledge-driven Decision Theory (KDT)

Noting this observation, we now formally present the knowledge-driven

decision theory (KDT) algorithm for MR tissue segmentation. We use a

Bayesian decision theory framework for integrating knowledge of the relative

extents of intensity overlap between tissue class pairs. A loss matrix L is de-

fined, where each element Lk,j represents the loss incurred if a voxel from tissue

class Ck is classified as belonging to class Cj. Therefore, the total expected

loss E due to classification of voxels x ∈ Ω can be defined as

E =
∑
k

∑
j

∫
x∈Cj

Lk,j × P (x,Ck)dx (3.2)

where P (x,Ck) denotes the joint likelihood of voxel x belonging to class Ck.

Decision theory has been traditionally used to determine optimum decision

boundaries incurring the least expected loss in the class likelihood space based

on the loss values (Lk,j and Lj,k) and the overlap between the distributions

P (x,Ck) and P (x,Cj) [16]. Since the class distributions P (x,C) for MR vol-

umes are unknown a priori, decision theory has been rarely applied for MR

tissue segmentation [127].

We utilize the expected loss E to iteratively influence the decision
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boundaries such that the final voxel classification produces an intensity over-

lap similar to figure 3.2a. The energy function (3.2) can be interpreted as a

weighted sum of the intensity overlap areas between the tissue class pairs. To

understand this, it is important to note the relationship between the two terms:

(i)
∫
x∈Cj

P (x,Ck)dx in (3.2) measuring the aggregate probability of misclassi-

fication of voxels belonging to class Ck into class Cj , and (ii)
∫
I∈Rj

P (I, Ck)dI

in (3.1) measuring the partial overlap area (in likelihood space) between classes

Ck and Cj in the intensity range of Cj. While the aggregate probability term

is calculated over the image region Cj and the partial overlap term is cal-

culated over the intensity range Rj, they both intrinsically measure the same

underlying effect. The aggregate probability term is simply the value of partial

intensity overlap area scaled with the number of voxels belonging in the over-

lap area. This relationship can be observed in the scatterplot (figure 3.2b) that

shows the aggregate misclassification probabilities between class pairs WM &

GM and GM & CSF relative to the aggregate misclassification probabilities

between WM & CSF for the same 18 MR volumes. A comparison with the

relative intensity overlaps (in figure 3.2a) shows that the relative misclassifi-

cation probabilities follow a very similar trend across all MR volumes.

MR tissue segmentation based solely on intensity overlaps is sensitive to

the presence of image corruptions (such as MR noise). Therefore, in KDT, we

define the joint voxel likelihoods P (x,Ck) using a intensity term P (V (x)|Ck)

24



and a spatial prior term PCk
(x),

E =
∑
k

∑
j

∫
x∈Cj

Lk,j × P (V (x)|Ck)× PCk
(x)dx (3.3)

where V (x) denotes the intensity value of the MR volume at voxel location

x ∈ Ω; P (V (x)|Ck) is the likelihood of MR intensity value V (x) belonging to

class Ck; and PCk
(x) denotes the prior probability of class Ck at a location x

in the MR volume. In (3.3), tissue segmentation is primarily driven by the in-

tensity term P (V (x)|Ck) that controls the relative extents of intensity overlap

between tissue class pairs. The spatial priors help identify the tissue types and

reduce KDT’s sensitivity to image corruptions. The following sections provide

detailed descriptions of the likelihood P (V (x)|Ck) and the prior PCk
(x) terms.

3.4.1 Modeling Arbitrary Tissue Intensity Distributions

P (V (x)|C) is estimated by modeling the arbitrarily shaped density

functions of intensities inside the classes C ∈ {WM,GM,CSF,BG}. As-

suming parametric models for intensities results in inaccurate modeling of the

tissue classes. The estimation errors are mostly concentrated along the tails

of the intensity density functions, which are the major regions of intensity

overlaps between the classes. Therefore, accurate modeling of the arbitrarily

intensity density functions inside tissue classes is essential for KDT. We use a

nonparametric method of adaptive kernel density estimation (KDE) based on

linear diffusion processes [20] to model the intensity distributions inside the

tissue classes. Adaptive KDE is specifically selected over other KDE methods
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because adaptive KDE has better local adaptivity, lower sensitivity to outliers,

lower boundary bias, and can handle data that are not normally distributed

[103, 120, 166, 20]. These properties become significant in MR volumes due to

the non-negative nature of intensity data, presence of outliers (such as noise

and artifacts), and intensity distributions that are not normally distributed.

3.4.2 Adaptive Tissue Class Priors

A combination of probabilistic atlas maps and Markov random field

(MRF) based contextual priors is used for defining tissue class priors PC(x)

in KDT. Such tissue class priors are commonly employed to guide MR tissue

segmentation and reduce sensitivity to image corruptions [174, 104]. In KDT,

we use adaptive class priors that are initialized with atlas maps and iteratively

superimposed with MRF contextual priors:

PC(x, n+ 1) = (1− w)× PC(x, n) + w × PMRF
C (x, n) (3.4)

where PMRF
C (x, n) denote the MRF contextual priors computed at iteration n

and w is an adaptive weight that controls the contribution of PMRF
C (x, n) in

class priors PC(x) at iteration n + 1. The MRF contextual priors are charac-

terized using Potts model [10, 17, 21]:

PMRF
C (x) = exp(−

∑
p∈P

δ(C,C(p)))/Z (3.5)

where Z is a normalizing constant; p ∈ P represent all possible cliques (set of

voxels) of size two in a six-neighborhood system (in 3D) around voxel location
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x; δ(.) represents the Dirac delta function; and C(p) denote the classes of

voxels contained in clique p. The adaptive class priors are initialized with

tissue atlas maps PC(x, n = 0) = PAtlas
C (x) spatially aligned with the MR

volume using affine registration.

The expected loss function E in (3.3) is minimized iteratively by draw-

ing decision boundaries in the likelihood space based on the loss matrix values

and the tissue class distributions P (x,C). Any perturbations in the decision

boundaries change the voxel classification, which in turn, change the tissue

class distributions. The loss matrix is determined such that the final segmen-

tation produces an intensity overlap profile as observed in figure 3.2b. We

can relate the energy function in (3.3) with the maximum a posteriori (MAP)

classification, which is often used for MR segmentation. In MAP, the objective

function is minimized by choosing the tissue classes with maximum posterior

probabilities for MR voxels. This decision rule is equivalent to minimizing E

in (3.3) when same loss values are considered for all tissue misclassifications:

Li,j = k (constant) ∀i, j 6= i and Li,i = 0. The equal misclassification loss

values imply that all overlap areas are penalized equally, which would result

in equal overlap areas between all tissue class pairs. In Section 3.5.6.2, we

quantitatively evaluate the effect of unequal loss values by comparing against

MAP for voxel classification.
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3.4.3 Energy Minimization using Level Sets Framework

The energy function in (3.2) is difficult to minimize in terms of the

evolving image regions Cj ∈ {WM,GM,CSF,BG}. A level set formulation

enables representation of the regions Cj in terms of higher dimensional level set

functions Φ : Ω→ R. Each level set Φ partitions the image domain Ω into two

disjoint sub-domains Ω1 = {x ∈ Ω : Φ(x) > 0} and Ω2 = {x ∈ Ω : Φ(x) < 0}.

Therefore, two level sets Φ1,Φ2 can be simultaneously used to represent the

four classes:

Ω =


C1(WM) Φ1 > 0,Φ2 > 0

C2(GM) Φ1 < 0,Φ2 > 0

C3(CSF ) Φ1 > 0,Φ2 < 0

C4(BG) Φ1 < 0,Φ2 < 0.

The energy function 3.2 for the 4 classes can be written as

E =
4∑
j=1

∫
x∈Cj

( 4∑
k=1

Lk,j × P (V (x)|Ck)× PCk
(x)
)
dx (3.6)

For notational simplicity, we represent the total expected loss due to classifi-

cation of voxels into class Cj by Ej =
∑4

k=1 Lk,j×P (V (x)|Ck)×PCk
(x). Using

the Heaviside function H(Φ) and the Dirac delta function δ(Φ),

H(Φ) =

{
1 if Φ ≥ 0

0 if Φ < 0
, δ(Φ) =

d

dΦ
H(Φ)

the energy function in (3.6) can be represented as:

E(Φ1,Φ2) =

∫
x∈Ω

[
E1H(Φ1)H(Φ2) + E2H(−Φ1)H(Φ2)

+E3H(Φ1)H(−Φ2) + E4H(−Φ1)H(−Φ2)
]
dx
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E(Φ1,Φ2) is used as the data term in the level set energy functional

F(Φ1,Φ2) = E(Φ1,Φ2)+µ×R(Φ1,Φ2), where R(Φ1,Φ2) is a regularization term

with weight µ on the evolving level set functions Φ1(x) and Φ2(x). R(Φ1,Φ2)

ensures smoothness of the level set functions Φ1 and Φ2 by penalizing the arc

length of their zero level contours (tissue boundaries):

R(Φ1,Φ2) =

∫
x∈Ω

δ(Φ1)|∇Φ1|dx+

∫
x∈Ω

δ(Φ2)|∇Φ2|dx

The energy functional F(Φ1,Φ2) can hence be represented

F(Φ1,Φ2) =

∫
x∈Ω

[
E1H(Φ1)H(Φ2) + E2H(−Φ1)H(Φ2)

+E3H(Φ1)H(−Φ2) + E4H(−Φ1)H(−Φ2)

+µ× δ(Φ1)|∇Φ1|+ µ× δ(Φ2)|∇Φ2|
]
dx (3.7)

In MR volumes, the image domain Ω is a 3D Cartesian grid where

any location x ∈ Ω is defined by coordinates x = {x1, x2, x3} along the three

orthogonal axes. The energy functional (3.7) can be rewritten as

F(Φ1,Φ2) =

∫
x∈Ω

G(Φ1,Φ2,Φ1,1,Φ2,1,Φ1,2,Φ2,2,Φ1,3,Φ2,3)dx1dx2dx3 (3.8)

where G is a real-valued function of level sets Φ1,Φ2 and their derivatives.

The partial derivative of Φi with respect to xj is denoted as Φi,j in the above

equation.

G =E1H(Φ1)H(Φ2) + E2H(−Φ1)H(Φ2) + E3H(Φ1)H(−Φ2)+

E4H(−Φ1)H(−Φ2) + µ× δ(Φ1)|∇Φ1|+ µ× δ(Φ2)|∇Φ2|
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The energy functional F is minimized using a gradient descent method with t

as an artificial time parameter:

∂Φi

∂t
= −∇Φi

F(Φ1,Φ2), i = 1, 2 (3.9)

The partial derivatives of energy functional F(Φ1,Φ2) with respect to level sets

Ω1,Ω2 are obtained by writing the Euler-Lagrange equations of (3.8):

∇Φ1F(Φ1,Φ2) =
∂G

∂Φ1

− ∂

∂x1

(
∂G

∂Φ1,1

)
− ∂

∂x2

(
∂G

∂Φ1,2

)
− ∂

∂x3

(
∂G

∂Φ1,3

)
= δ(Φ1)× [E1H(Φ2)− E2H(Φ2) + E3H(−Φ2)− E4H(−Φ2)]

−

(
∂

∂x1

[
Φ1,1(

Φ2
1,1 + Φ2

1,2 + Φ2
1,3

)1/2

]

+
∂

∂x2

[
Φ1,2(

Φ2
1,1 + Φ2

1,2 + Φ2
1,3

)1/2

]

+
∂

∂x3

[
Φ1,1(

Φ2
1,1 + Φ2

1,2 + Φ2
1,3

)1/2

])
× µ× δ(Φ1)

= δ(Φ1)×

[
(E1 − E2)×H(Φ2) + (E3 − E4)×H(−Φ2)

− µ× div
(
∇Φ1

|∇Φ1|

)]
Similarly for the level set function Φ2,

∇Φ2F(Φ1,Φ2) =
∂G

∂Φ2

− ∂

∂x1

(
∂G

∂Φ2,1

)
− ∂

∂x2

(
∂G

∂Φ2,2

)
− ∂

∂x3

(
∂G

∂Φ2,3

)
= δ(Φ2)×

[
(E1 − E3)×H(Φ1) + (E2 − E4)×H(−Φ1)

− µ× div
(
∇Φ2

|∇Φ2|

)]
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Using these partial derivatives in (3.9) gives the following update equa-

tions of level set functions Φ1(x), Φ2(x) in the steepest gradient descent direc-

tion:

∂Φ1

∂t
= δ(Φ1)

[
µ× div

( ∇Φ1

|∇Φ1|

)
+ (E2 − E1)×H(Φ2)

+ (E4 − E3)×H(−Φ2)
]

(3.10)

∂Φ2

∂t
= δ(Φ2)

[
µ× div

( ∇Φ2

|∇Φ2|

)
+ (E3 − E1)×H(Φ1)

+ (E4 − E2)×H(−Φ1)
]

(3.11)

where ∇ and div are the gradient and divergent operators, respectively.

To summarize, the energy function (3.3) is minimized iteratively. At

every iteration, the arbitrary intensity density functions of tissue classes are

modeled using KDE and tissue priors are updated by the MRF spatial contex-

tual prior calculated on the previous iteration’s segmentation. The flowchart in

figure 3.3 summarizes these main steps of KDT for energy minimization. Ad-

ditionally, an example of updating intensity density functions of tissue classes

is shown in figure 3.4 at different iterations to ultimately produce an overlap

profile similar to the one observed in figure 3.2a.

3.4.4 Numerical Implementation

For the numerical implementation of level sets, we use C∞(Ω̄) regu-

larized versions of the Heaviside function and the Dirac delta function, de-

noted Hε and δε, respectively [28]: Hε(Φ) = 1/2 + 1/πtan
−1(Φ/ε), δε(Φ) =
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Figure 3.3: KDT segmentation summary: Flowchart summarizing the main
steps of KDT tissue segmentation algorithm.

∂Hε(Φ)/∂Φ = ε/π(ε2 + Φ2). This regularization has the tendency to compute

a global minimizer without being affected by the initialization of level sets

[28]. An implicit finite difference scheme is used to discretize and linearize

the update equations (3.10) and (3.11)[28, 97]. As frequently recommended

in previous level set implementations [28, 175], the space step in the finite

difference scheme is chosen as h = 1 and ε = 1 is used to obtain the reg-

ularized functions Hε and δε. Similar to previous level set implementations,
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Figure 3.4: KDT segmentation summary: An illustration on the update of
class intensity density functions (2nd row) and corresponding tissue segmenta-
tions (1st row) at iterations n = 0, n = 25, and n = 56 (convergence). The
red and blue outlines show the zero contours of the level set functions Φ1 and
Φ2, respectively (as described in Section 3.4.3).

the regularization weight µ is set to the standard value of 0.1× 2552 [28, 97].

Since adaptive tissue priors iteratively superimpose MRF contextual prior on

the atlas maps, the performance of adaptive priors is expected to be partially

dependent on the time step ∆t used in equations (3.10) and (3.11). Therefore,

besides optimizing MRF weight w, we also consider optimization of the time

step ∆t to obtain the optimum adaptive prior performance (Section 3.5.4).

The initial level set functions Φ0
1(x),Φ0

2(x) were defined as the signed distance
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transforms of two intersecting spherical surfaces randomly selected on the im-

age domain Ω. The diameter of the spherical surfaces was defined to be 1/8th

of the smallest dimension in the image domain Ω. As recommended [29], the

criteria for convergence of level set evolution is set as |∆C(x)|/∆n < τ , where

|∆C(x)| denotes the number of voxels where the class labels change during a

span of ∆n iterations. In our implementation, we use the threshold τ = 1 and

iteration span ∆n = 15.

3.5 Experiments and Results

3.5.1 Data

We consider two real brain MR datasets obtained from the Internet

Brain Segmentation Repository (IBSR) to evaluate the segmentation perfor-

mance of KDT. The first dataset (IBSR-20) contains MR volumes from 20 nor-

mal subjects along with expert ground truth tissue segmentations. The data

were collected using 1.5 Tesla T1-weighted spoiled gradient echo MR scans on

two different imaging systems with a slice thickness of 3.1mm. The second

dataset (IBSR-18) contains MR volumes from 18 normal subjects under IBSR

V2.0. The data have higher spatial resolution in comparison to IBSR-20 and

were collected using 3 Tesla T1-weighted MR scans with a slice thickness of

1.5mm. These datasets are established references for brain segmentation algo-

rithm evaluation because they contain images with varying levels of difficulty

(such as low contrast and high intensity inhomogeneity) to comprehensively
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evaluate automatic segmentation methods. We only consider real datasets in

this study because simulated datasets often implicitly assume a normal dis-

tribution of tissue intensities and, therefore, exclude any analysis on intensity

overlaps due to arbitrary intensity density functions.

As a preprocessing step, all MR volumes in IBSR-20 and IBSR-18

datasets underwent automatic skull stripping using the brain extraction tool

(BET) [160]. The outputs from skull stripping were visually inspected and any

skull stripping errors were manually corrected before tissue segmentation using

KDT. For adaptive tissue class priors, we used the International Consortium

for Brain Mapping atlas maps provided by the Laboratory of Neuroimaging,

University of California at Los Angeles [106]. The spatial alignment of atlas

maps with subject MR data was performed using the linear registration tool

(FLIRT) [85].

3.5.2 Evaluation Metrics

We quantify the segmentation accuracy of KDT by comparing against

the expert ground truth segmentations. The Dice similarity coefficientD(A,B)

and the Jaccard index J(A,B) are the two most commonly reported metrics

in the literature for calculating the overlap between an obtained segmentation

and the ground-truth of each class. However, these metrics are inter-related as

J = D/(2−D). Therefore, we only use the Jaccard index J(A,B) to assess per-

formance in this study as it is more intuitive for both quantitative evaluation
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and comparison purposes. The indices are given by J(A,B) = |A∩B|/|A∪B|

and D(A,B) = 2|A∩B|/(|A|+ |B|), where A and B are the sets of voxels la-

beled as tissue class in KDT and the ground truth segmentations, respectively.

|.| represents the cardinality of the voxel sets. The results from studies report-

ing only Dice coefficients were converted to their equivalent Jaccard indices to

equitably compare the performances of the methods. We use a second-order

Taylor expansion to approximate the mean and standard deviation of J(A,B),

µJ(A,B) ≈
µD(A,B)

2− µD(A,B)

+
2σ2

D(A,B)

(2− µD(A,B))3

σJ(A,B) ≈
2σD(A,B)

(2− µD(A,B))2

3.5.3 Statistical Comparisons

We statistically compare the segmentation performance of KDT with

other competitive methods that reported accuracies on IBSR-20 and IBSR-18

datasets. Due to the paired nature of segmentation accuracies, we perform a

two-sided Wilcoxon signed rank test with methods that reported the subject-

wise segmentation accuracies. While such a comparison would be ideal, most

of the studies did not report the subject-wise accuracies and only reported

the summary statistics (mean and standard deviation) of the overlap metric,

which excludes any paired statistical comparisons.
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3.5.4 Parameter Optimization

The parameters that need to be optimized are the loss matrix L, the

adaptive class prior weight w and the time step ∆t in the level set imple-

mentation. We randomly select a set of 3 MR volumes each from IBSR-18

and IBSR-20 datasets to find the optimum parameter values. We consider a

range of possible values for each parameter and select the values that produce

the best segmentation performance. The following ranges for the parameters

are considered: {0-10} for every Li,j in the loss matrix L (with a step size

of 1), {0, 0.05, 0.1, 0.2, 0.4, 0.5, 0.7, 1} for w and {0-1} for time step ∆t

(with a step size of 0.1). To measure the segmentation performance across

all tissue classes simultaneously, we use voxel misclassification rate (VMR)

defined as VMR =
∑

i

∑
j,j 6=i |Gi ∩ Sj|/|Gi| where Gi denotes the set of

ground truth voxels for the ith class, Sj denotes the set of voxels classified

by KDT as belonging to the jth class, |.| denotes the cardinality of the set,

and i, j ∈ {WM,GM,CSF}.

The effects of prior weight w and time step ∆t values on the segmen-

tation performance are expected to be interdependent while the loss matrix is

expected to be independent from the other two variables. The independence

assumption is justified because the loss matrix values in theory should be solely

determined by the relative extents of intensity overlap between tissue classes.

While the inclusion of spatial information using adaptive priors helps improve

segmentation accuracy, its omission should not affect the loss matrix values.
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Figure 3.5: Parameter optimization: Plots showing the dynamics of segmenta-
tion performance against different values of (a) time step ∆t (using w = 0.05),
and (b) adaptive tissue prior weighting w (using ∆t = 0.2). For clarity, we
have only shown the results on 3 out of the 6 MR volumes considered for
optimization.

The loss matrix elements are optimized first using a small time step

∆t = 0.1 and w = 0.2. The cost of classification into the correct class is

considered as zero (Li,i = 0) and the cost of misclassification into background

(BG) is set to 20 (very high loss since the background has already been re-

moved using BET). While figure 3.2b simply combined the partial overlap

areas between any two tissue classes into a single overlap area value, we con-

sider asymmetric loss matrix to investigate any differences in partial intensity

overlap areas. For optimizing the loss matrix, one of the elements (LWM,GM) is

set to 1 and others are estimated relative to this value. We further assume that

LWM,CSF , LCSF,WM > LGM,CSF , LCSF,GM > LGM,WM based on the pattern of

intensity overlap areas observed in figure 3.2b. We find that the following
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asymmetric loss matrix produces the best segmentation performance:

L =



WM GM CSF

WM 0 1 10

GM 1 0 6

CSF 10 9 0


While GM and CSF show differences between their partial overlap areas

(GM → CSF overlap > CSF → GM overlap), the overlap distributions

corresponding to WM −GM and WM − CSF tissue pairs are symmetric.

The prior weight w and time step ∆t are optimized simultaneously by

considering all possible combinations. We find that a combination of w = 0.05

and ∆t = 0.2 produces the best segmentation performance across all tissue

classes. Figure 3.5 shows the dynamics of VMR for different values of ∆t and

w around the optimum combination of w = 0.05 and ∆t = 0.2. To test the

validity of independence assumption, a subset of the loss matrix elements are

again optimized using w = 0.05 and ∆t = 0.2. No changes in the optimum loss

matrix elements are observed which confirms that the loss matrix optimization

is independent of other parameters in KDT.

3.5.5 Segmentation Performance on IBSR Datasets

3.5.5.1 IBSR-20 Dataset

Table 3.1 compares the overlap metrics between KDT and other meth-

ods that have reported segmentation results using IBSR-20 dataset. Some
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Table 3.1: Segmentation performance on the IBSR-20 dataset: Table com-
paring tissue segmentation accuracy (in terms of Jaccard index) of KDT with
other existing approaches using MR volumes of the IBSR-20 dataset.

Table 3.1-A: Segmentation into WM , GM , CSF
Method JWM JGM JCSF

KDT 76.98±3.44 83.68±2.58 72.94±2.17
APRS [100] 74.10±2.92 82.60±2.53 70.80±5.65

SPM [9]a 71.50±3.75 79.80±4.10 70.50±4.32
DMC-EM [188] 69.00±12.00 71.00±8.00 71.00±7.00

Rueda et al. [143] 70.10±4.20 70.80±4.50 -
Zheng et al. [196] 70.79 65.02 5.10
Dual-Front [98] 67.00 73.90 -

MPM-MAP [104] 68.30 66.20 22.70
Akselrod-Ballin et al. [5] 66.85±5.56 75.65±6.16 28.13±9.74

AMS [105] 69.10±4.20 68.30±3.50 -
SVPASEG [170] 68.50 69.80 -

CGMM [67] 66.00±6.00 68.00±4.00 -
MSECM [86]b 62.80 59.40 21.0

a Reported by Lin et al. [100]
b Mean shift with edge confidence map method by Jimenez-Alaniz et al.

[86]

Table 3.1-B: Segmentation into WM , GM + CSF
Method JWM JGM+CSF

KDT 76.98±3.44 85.86±2.12
Rivera et al. [135] 74.20±3.90 81.90±2.80
Ibrahim et al. [80] 66.83 77.43

studies combined GM and CSF into a single class GM +CSF and evaluated

their segmentation algorithms using overlap metrics of WM and GM +CSF

classes. For a fair comparison, we compare KDT with methods belonging

to both the categories: segmentation into WM , GM , CSF (Table 3.1-A)

and segmentation into WM , GM +CSF (Table 3.1-B). Besides Rivera et al.
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[135], none of the other studies reported the subject-wise accuracies which

excludes any pairwise statistical comparisons. From comparing summary

overlap statistics among existing methods, Rivera et al. [135] produces bet-

ter WM segmentation accuracy (74.20 ± 3.90) than all other existing meth-

ods [5, 9, 67, 80, 98, 100, 104, 143, 188, 196, 86, 170, 105]. KDT pro-

duces statistically significant improvements in WM and GM + CSF seg-

mentation accuracies over Rivera et al. [135] (p = 2.19 × 10−4 for WM

and p = 8.9 × 10−5 for GM + CSF ) and, therefore, has better WM ac-

curacy than other competitive methods as well. KDT also produces signifi-

cantly better GM segmentation accuracy than most of the existing methods

[9, 67, 98, 104, 143, 188, 196, 86, 170, 105]. The methods by Akselrod-Ballin

et al. [5] and Lin et al. [100] produce similar GM segmentation accuracy;

however, KDT produces significantly better WM and CSF segmentation ac-

curacies. When compared for CSF segmentation, KDT performs significantly

better than all existing methods. If the 3 MR volumes selected for parameter

optimization are excluded, the WM, GM and CSF segmentation accuracies on

the remaining 17 MR volumes are 76.75±3.44, 83.66±2.78, and 72.54±1.14,

respectively. The negligible differences in the summary segmentation accura-

cies after removal of the 3 MR volumes suggest that the parameter values are

not biased towards the volumes suggested for parameter optimization.
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Table 3.2: Segmentation performance on the IBSR-18 dataset: Table com-
paring tissue segmentation accuracy (in terms of Jaccard index) of KDT with
other existing approaches using MR volumes of the IBSR-18 dataset.

Table 3.2-A: Segmentation into WM, GM, CSF
Method JWM JGM JCSF

KDT 79.93±2.58 88.62±1.32 74.55±5.86
Akselrod et al. [4] 76.99 75.44 70.94

DCM-EM [188] 77.00±6.00 73.00±13.00 62.00±11.00
Local-Linear [136] 79.53 84.84 20.77

RCM++[136] 77.62 81.82 17.37
KVPASEG [170] 80.31±2.14 71.92±3.15 -
Awate et al. [11] 79.71±2.89 67.91±5.99 -

CGMM [67] 73.71±6.62 65.56±8.18 12.65±6.31
KVL [174]c 75.04±3.21 65.02±6.79 9.05±3.56

c Reported by Greenspan et al. [67]

Table 3.2-B: Segmentation into WM, GM+CSF
Method JWM JGM+CSF

KDT 79.93±2.58 89.71±1.74
Rivera et al. [135] 78.82±2.83 86.17±2.30

FAST [195]d 76.77±1.64 86.43±1.89
RiCE [142] 76.28±2.62 88.09±1.36

SURFER-FCM [39]d 76.40±2.35 87.63±1.34
SPM [9]d 74.90±4.32 84.08±3.67

d Reported by Roy et al. [142]

3.5.5.2 IBSR-18 Dataset

Table 3.2 shows the segmentation performance of KDT on the IBSR-

18 dataset. Similar to IBSR-20, we report segmentation results for both the

cases when brain tissue is segmented into all three tissue types WM , GM ,

CSF (Table 3.2-A) and when CSF and GM classes are combined into one

class GM + CSF (Table 3.2-B). KDT produces better GM and CSF seg-
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mentation accuracies than all other methods in Table 3.2-A. Besides three

methods (Local-Linear, KVPASEG, and Awate et al. [11]), Rivera et al. [135]

produces better WM segmentation accuracy (78.82 ± 2.83) than all other

existing methods [4, 9, 39, 67, 142, 174, 188, 195]. KDT produces statis-

tically significant improvements in the segmentation accuracies of WM and

GM + CSF over Rivera et al. [135] (p = 0.02 for WM and p = 2× 10−4 for

GM + CSF ) and, therefore, has better WM segmentation performance than

the rest of the methods. While the Local-Linear [136], KVPASEG [170] and

Awate et al. [11] methods produce similar WM segmentation, KDT produces

much better average GM and CSF segmentation accuracies. When com-

pared to methods that combined GM and CSF (Table 3.2-B), KDT produces

better average GM + CSF segmentation accuracy than all other methods

[9, 39, 135, 142, 195]. The summary WM, GM and CSF segmentation accu-

racies are 79.72±2.78, 88.59±1.23, and 74.39±6.43 when the 3 MR volumes

used for parameter optimization are removed, which suggests that there is no

significant bias of the selected parameter values on the segmentation results.

3.5.5.3 Performance Comparison between IBSR Datasets

In comparison to IBSR-20, KDT produces better segmentation accu-

racies for IBSR-18 MR volumes. This is due to the higher resolution of MR

volumes in IBSR-18 (less slice thickness and higher magnetic field strength)

with less partial volume effects than in IBSR-20. Figure 3.6 shows variations in

JWM , JGM , and JCSF across subjects in IBSR-20 and IBSR-18 datasets. Some
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Figure 3.6: Variation in KDT’s segmentation performance: Plots showing the
variations in JWM , JGM , and JCSF across subjects in (a) IBSR-20, and (b)
IBSR-18 datasets.

MR volumes in IBSR-18 dataset (such as subjects 15 and 16) have significantly

fewer CSF voxels (smaller ventricles), which results in relatively lower JCSF

for those volumes (same number of misclassified voxels produce much higher

reduction in Jaccard overlap values). As a result, we observe higher variabil-

ity of JCSF in IBSR-18 dataset as compared to IBSR-20 dataset. While KDT

produces consistent segmentations in both datasets with small variations, the

segmentation performance slightly declines in MR volumes that contain high

levels of intensity inhomogeneities (such as subjects 2, 3 in IBSR-20 and sub-

jects 11, 13 in IBSR-18). This suggests that while KDT may have better

ability in handling intensity overlaps between tissue classes, it is still sensitive

to the presence of high levels of intensity inhomogeneities.
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3.5.6 Significance of Individual Components

In this section, we evaluate the significance of individual components

in KDT by comparing against the most commonly used alternatives. Besides

the component being evaluated, all other aspects of KDT are kept exactly the

same to ensure that the results truly reflect the significance of that particular

component.

3.5.6.1 Significance of Modeling Arbitrarily Shaped Intensity Dis-
tributions

We illustrate the significance of modeling arbitrarily shaped intensity

density functions by comparing with the case when the most common para-

metric assumption of normal distribution of intensities is assumed inside each

class. Table 3.3 and Table 3.4 show comparisons between the overlap scores,

sensitivity, and specificity when modeling arbitrary distributions (1st row) and

assuming normal distribution (2nd row). The tissue segmentation accuracies

Table 3.3: Significance of individual components: Table comparing tissue seg-
mentation accuracy (using Jaccard index) of KDT against its variants, where
individual components are replaced with their most commonly used alterna-
tives.

Method JWM JGM JCSF

KDT 79.93±2.58 88.62±1.32 74.55±5.86
Normal Dist. 75.11±5.19 82.67±2.64 69.06±7.31

MAP 79.70±4.08 86.88±1.82 59.34±7.74
Atlas 74.48±5.02 83.71±2.43 59.43±8.55
MRF 77.72±4.80 86.82±2.74 72.34±7.15
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Table 3.4: Significance of individual components: Table comparing sensitivity
(SN) and specificity (SC) in tissue segmentation of KDT against its variants,
where individual components are replaced with their most commonly used
alternatives.

Table 3.4-A: Sensitivity
Method SNWM SNGM SNCSF

KDT 89.6±2.3 92.0±2.5 72.5±5.9
Normal Dist. 95.0±1.4 83.5±2.8 68.5±5.5

MAP 89.7±2.4 91.6±2.7 62.2±5.5
Atlas 89.6±2.3 86.2±3.4 64.3±4.8
MRF 89.7±3.5 89.9±3.9 77.7±7.3

Table 3.4-B: Specificity
Method SCWM SCGM SCCSF

KDT 92.2±2.5 89.3±2.3 99.98±0.0
Normal Dist. 83.9±2.7 94.2±1.3 99.90±0.1

MAP 91.9±2.6 88.7±2.5 99.84±0.1
Atlas 86.6±3.3 89.1±2.4 99.79±0.2
MRF 90.1±3.9 89.9±3.4 99.84±0.1

are significantly higher when arbitrary distributions inside tissue classes are

modeled (p = 1.53×10−5 for WM , p = 1.53×10−5 for GM , and p < 7.63×10−6

for CSF ). In normal distribution case, we observe an improvement in SNWM ;

however, both SCWM and JWM decrease. On the other hand, SNGM and JGM

decrease while SCGM improves. This indicates over-classification of voxels as

WM and, therefore, an improvement in sensitivity is produced although the

overlap score and specificity suffers. Over-classification of voxels as WM is

due to the inaccurate estimation of intensity distributions of the tissue classes,

which is crucial for the analysis of overlap areas. Figure 3.7 visually illustrates

over-classification of voxels as WM using normal distribution (4th column)
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when compared to segmentation results from KDT (3rd column) and ground

truth segmentations (2nd column).

3.5.6.2 Significance of Incorporating Intensity Overlap Knowledge

We illustrate the significance of incorporating knowledge of the rela-

tive extents of intensity overlap between tissue class pairs (loss matrix) by

comparing with the case when equal loss values are considered for all tissue

misclassifications (equivalent to the MAP model). Table 3.3 compares the per-

formance between using optimum loss matrix (1st row) and the MAP model

(3rd row). While similar JWM is observed, JGM and JCSF of MAP are signifi-

cantly lower than KDT (p = 3× 10−3 for GM , and p < 7.63× 10−6 for CSF ).

MAP penalizes the overlap areas between tissue class pairs with equal costs

and results in voxel misclassification between GM and CSF . Figure 3.7 vi-

sually illustrates the GM −CSF voxel misclassification in MAP (5th column)

in comparison to segmentations produced by using optimum loss matrix (3rd

column). This illustrates the importance of incorporating knowledge regarding

the relative extents of intensity overlap between tissue class pairs.

3.5.6.3 Significance of Adaptive Class Priors

Adaptive class priors combine atlas maps with MRF contextual infor-

mation to incorporate spatial information in voxel classification. First, we

illustrate the significance of MRF contextual information in class priors by
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Ground Truth KDT Result Normal Dist. MAP MR Volume 

Figure 3.7: Significance of individual components: Visual comparisons be-
tween ground truths (2nd column), KDT segmentations (3rd column), seg-
mentations obtained from assuming normal distribution for tissue classes (4th

column), and maximum a-posteriori classification (5th column).

comparing with the case when atlas maps are solely utilized as class priors

(4th row). The atlas maps are aligned to the MR volumes using the 3D non-

rigid demon registration method [121, 168]. The sole use of atlas maps re-

sults in significantly lower WM , GM , and CSF segmentation performance

(p < 7.63 × 10−6 for WM , GM , and CSF ) than using adaptive class priors.

This reduction in segmentation performance is due to errors in alignment,

which directly translate to segmentation errors. The inclusion of MRF con-

textual information helps reduce the impact of errors made during the align-

ment of atlas maps with the MR volumes. In adaptive class priors, the atlas
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maps are aligned with the MR volumes using simple linear registration [85].

The application of non-rigid registration methods did not produce any sta-

tistically significant differences in the final segmentation performance. This

further illustrates the significance of MRF contextual information in the class

priors.

In KDT, the methodology for combining MRF contextual priors with

atlas maps is slightly different from the traditional way of defining MRF class

priors [104, 174]. Traditional methodology combined atlas maps and MRF

contextual priors with fixed weightings throughout the segmentation process.

As a result, accurate alignment of atlas maps with the MR volumes is es-

sential for obtaining good tissue segmentation performance. Any alignment

errors between atlas maps and MR volumes directly translate to errors in tissue

segmentation. On the other hand, the methodology used in KDT initializes

tissue priors with atlas maps and keeps superimposing MRF contextual pri-

ors at every iteration on the tissue priors. As a result, the contribution of

atlas maps reduces over the course of the segmentation iterations. Therefore,

while tissue atlases still provide important prior anatomical information in the

early stages of segmentation, any alignment errors do not result in final seg-

mentation errors. In proposed decision theory framework, we found that the

modified methodology is more efficient in incorporating spatial information

and produces better segmentation results. We illustrate this by comparing

the segmentation performance obtained using adaptive class priors with the

traditional MRF class priors (5th row in Tables 3.3 and 3.4 ). The atlas maps
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in the case of traditional MRF class priors were spatially aligned with the MR

volumes using 3D non-rigid demon registration method [121, 168]. The use of

adaptive tissue class priors produces significantly better WM and GM seg-

mentation performance than the traditional MRF class priors (p = 1.39×10−2

for WM and p = 2.68 × 10−2 for GM). These differences in WM and GM

segmentation performances are due to errors made during the alignment of

atlas maps with the MR volumes, which persist throughout the segmenta-

tion. No significant difference in CSF segmentation performance is observed

between traditional MRF priors and adaptive class priors. This is because of

the significantly higher contrast between CSF and other tissues, which results

in good segmentation performance even if the priors are inaccurately defined.

3.5.6.4 Impact of Loss Matrix Elements on Segmentation

In comparison to equal loss values for all tissue pairs (MAP model),

we illustrated that the optimum loss matrix produces significantly better seg-

mentation performance across all tissue classes (section 3.5.6.2). Based on the

relative loss values assigned to different tissue misclassification types, deci-

sions are taken for voxels that have similar posterior probability of belonging

to multiple classes. However, certain applications require higher sensitivity in

segmentation of specific tissue types. Here, we take the example of computer-

based support systems for diseases such as Multiple Sclerosis, which require

high sensitivity in WM segmentation. As shown in figure 3.8, significant im-

provement in SNWM can be obtained by simply increasing the relative loss
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Figure 3.8: Significance of individual components: Plot showing the effect on
SNWM when the relative loss values associated with WM misclassification are
increased.

values associated with WM misclassification.

3.5.7 Robustness to Initialization of Level Set Functions

The level set framework for energy minimization is robust to the ini-

tialization of functions Φ1,Φ2. To illustrate this, we evaluated the variation in

KDT’s segmentation performance across all tissue classes (using VMR) on a

MR volume for 20 random initializations (as discussed in Section 3.4.4). We

observe the mean and standard deviation of VMR to be 0.3748 and 0.021,

respectively. The small variation in misclassification rate (∼0.7% per brain

tissue) shows that the level set framework is robust to the initialization of
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level set functions Φ1,Φ2. Similar results have also been reported by previous

level-set based segmentation methods [28, 98, 136].

3.5.8 Computational Complexity

We analyze the computational complexity of KDT and compare it with

other segmentation methods. Adaptive kernel density estimation [20] involves

use of fast Fourier transform (FFT) for calculation of cosine and inverse cosine

transforms on MR voxel intensities. Therefore, modeling class distribution has

a complexity of O(KlogK) where K denotes the number of MR voxels in the

tissue class. In practice, K < N/2, where N are the total number of voxels

in a MR volume. MRF calculation using the standard belief propagation for

a clique size of 2 has a complexity of O(NL2), where L is the number of class

labels (L=4). The level set evolution using equations (7), (8) has a linear

complexity O(N). Therefore, the overall complexity of KDT is O(N logN).

The number of iterations required for convergence in our numerical imple-

mentation on the IBSR data are typically around T ∼ 50 − 60. The average

physical run time for segmenting a MR volume from IBSR-20 dataset (typical

size 256×256×60) on a Intel Core 2.7Ghz desktop machine was 4.72 minutes.

On IBSR-18, the average running time per volume increased to 9.27 minutes

due to the higher resolution MR data (typical size 256× 256× 120).

Among other segmentation methods that performed complexity analy-

sis, KDT is one of the least computationally intensive. Local-Linear method
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[136] has a complexity of O(nM2S) for 2D segmentation framework, where

M ∼ 71− 91 is the window size, n ∼ 256× 256 the number of voxels per MR

slice and S ∼ 60− 120 is the number of slices in a MR volume. This results in

physical run times of 30 minutes per MR volume in IBSR-18 using a Intel Core

2 Ghz machine. Ibrahim et al. [80] also reported a complexity of O(N2GL),

where G is the number of Gaussian components and L is the sequence length.

Rivera et al. [135] did not perform complexity analysis but reported physical

running times of 3.2 hours per MR volume for 2D framework and 4.1 hours per

MR volume for their 3D framework on a 3Ghz machine. We also compared

the physical run times of KDT with the state of the art segmentation method

FAST [195] included in the FMRIB Software Library (FSL). The physical run

times of FAST were 7.11 minutes and 12.38 minutes for IBSR-20 and IBSR-18

volumes respectively, using the same desktop machine used for all experiments

in this study. Therefore, both KDT and FAST have comparable physical run

times; however, KDT produces significantly better segmentation results (Table

3.2-B).

3.6 Conclusion

MR tissue segmentation is a difficult task due to significant overlaps

in the intensity distributions of the tissue classes. Most of the voxel classi-

fication errors occur in these regions of intensity overlap where voxels have

similar likelihoods of belonging to multiple tissue classes. To address this,

53



the most common approach has been to correct for image corruptions that

reduce the intensity overlap between tissue classes prior to tissue segmenta-

tion [132, 157]. In this study, we proposed a new strategy to better deal with

intensity overlaps between tissue classes without separately accounting for im-

age corruptions. We illustrated that such a strategy produce more accurate

classification of voxels belonging to intensity overlap regions in comparison to

existing methods, several of which employed methods for correction of image

corruptions.

There are four main technical contributions of this study. First, we

demonstrated that the relative extents of intensity overlap between tissue

classes are different. The incorporation of this knowledge of the relative inten-

sity overlaps significantly improves the tissue segmentation performance. We

illustrated this (Section 3.5.6.2) by comparing the tissue segmentation perfor-

mance of KDT (with optimal loss matrix) against the segmentation perfor-

mance obtained using MAP, which is a specific case of KDT when all intensity

overlaps are penalized with the same cost. Second, we presented a Bayesian

decision theory framework (KDT) to incorporate the knowledge on relative in-

tensity overlaps between tissue classes in tissue segmentation. Decision theory

has been traditionally utilized to make decisions on new observations, once

the class likelihood distributions are known. Since tissue distributions are

unknown prior to segmentation, we utilize the Bayesian decision theory in a

different manner. We exploit its ability to draw decision boundaries iteratively

such that the final location of decision boundaries produces class distributions
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that conform to the overlap profile as observed in figure 3.2b.

Third, we presented a modified approach of adaptive MRF class pri-

ors for tissue segmentation. The adaptive MRF priors show better adaptivity

than the traditional MRF class priors [104, 174]. Adaptive MRF priors also

have lower computational complexity because they do not require the use of

time consuming non-rigid image registration methods for aligning patient MR

volumes with the atlas maps (Section 3.5.6.3). We illustrated these benefits by

comparing the tissue segmentation performances obtained using adaptive MRF

priors and traditional MRF class priors, while keeping all other components

of the segmentation framework the same. While adaptive class priors show

significant improvements in WM and GM segmentation performances, these

improvements might be specific only for the proposed decision theory frame-

work. Therefore, further investigation of adaptive class priors incorporated in

different segmentation frameworks is required to establish their significance in

MR tissue segmentation.

Fourth, we illustrated that the level set approach for energy minimiza-

tion is highy promising for MR segmentation. While level set-based methods

have become popular in computer vision, their application in MR tissue seg-

mentation still remains to be validated owing to lack of evaluation on stan-

dardized datasets. We evaluated the performance of KDT on two very popular

datasets of real MR volumes, which have been extensively utilized for evalu-

ating tissue segmentation methods. In comparison to methods that employed

55



other energy minimization techniques (such as expectation maximization and

graph cuts), our method using a level-set framework produced significantly

better segmentation results. This demonstrates that the level set-based frame-

work is quite promising as a tool for minimizing complicated energy functions.

KDT performs better than most existing segmentation methods for si-

multaneously segmenting brain MR images into WM , GM , and CSF [4, 9, 39,

67, 80, 104, 135, 142, 174, 195, 196, 170, 11]. Some methods report similar seg-

mentation performance on certain tissue types; however, they fail to perform

as well on other brain tissue types [5, 100, 136, 170, 11]. KDT also performs

better than the popular segmentation method FAST, which is widely used by

the neuroimaging community [195]. Several of these methods involve mini-

mizing image corruptions as part of their segmentation framework. Therefore,

KDT illustrates better ability in handling intensity overlaps between tissue

classes without the use of any pre-processing method to reduce MR corrup-

tions. Besides improved segmentation performance, KDT also has one of the

best computational complexities O(N logN) in comparison to other segmenta-

tion methods. For applications that require higher sensitivity in segmentation

of specific tissue types, KDT also provides a very convenient framework for

adapting the segmentation method by simply increasing the relative values of

loss matrix elements.

Besides illustrating advantages, KDT also suffers from certain limita-

tions. While KDT better handles intensity overlaps between the tissue classes,
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it is still affected by the presence of high levels of intensity inhomogeneities.

This can be observed in figure 3.5, where the segmentation performance of

KDT declines in MR volumes that suffer from high levels of intensity inho-

mogeneities. Another associated limitation of KDT is its sensitivity to the

presence of partial volume effects in MR volumes. This is the reason behind

the lower segmentation performance of KDT on MR volumes of IBSR-20 as

compared to MR volumes of IBSR-18. The use of pre-processing steps for re-

ducing the effects of intensity inhomogeneities and partial volume effects can

help improve the segmentation performance in MR volumes that contain high

levels of MR artifacts. However, inclusion of pre-processing steps will increase

the overall computational complexity of tissue segmentation task. Moreover,

KDT’s segmentation performance will become highly sensitive to the perfor-

mance of pre-processing steps. The need for skull and background extraction

in MR volumes prior to segmentation is another limitation of KDT. The skull

and other background structures often present with very similar intensity dis-

tributions as the brain tissues, which results in erroneous segmentations using

KDT.

This study is limited by its strategy for comparing segmentation ac-

curacy of KDT against the segmentation accuracies of existing segmentation

methods. Since IBSR datasets were developed to contain MR volumes with

varying level of difficulties, a paired statistical test is ideal for comparing per-

formance between segmentation methods. However, most studies only re-

ported the summary statistics of overlap metrics, which makes it impossible
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Table 3.5: IBSR-20 and IBSR-18 subject-wise tissue segmentation accuracy:
Table showing subject-wise tissue segmentation accuracies (in terms of Jaccard
index) for the MR volumes in the IBSR-20 and the IBSR-18 datasets.

IBSR-20 JWM JGM JCSF IBSR-18 JWM JGM JCSF

Volumes Volumes
5 8 77.12 83.61 72.13 01 79.62 87.44 83.21
4 8 70.02 79.81 70.83 02 80.26 89.30 76.21
2 4 68.17 76.23 72.71 03 76.49 87.64 68.11
6 10 74.01 82.34 74.26 04 77.01 88.56 71.92
15 3 72.89 80.67 73.53 05 80.27 87.94 72.71
16 3 76.92 81.93 71.13 06 80.62 89.86 79.62
17 3 77.05 82.89 70.91 07 81.46 86.51 74.12
8 4 79.34 84.55 80.63 08 82.22 85.85 73.83
7 8 81.92 85.13 73.29 09 81.28 87.16 76.45

110 3 81.54 84.43 70.71 10 82.68 88.17 76.81
111 2 77.74 83.01 73.43 11 84.13 89.18 71.91
112 2 76.91 83.72 73.61 12 81.23 90.50 75.67
100 23 76.98 85.39 73.58 13 74.94 90.39 71.34
202 3 79.89 85.79 71.13 14 83.49 89.25 81.77
191 3 76.27 83.93 72.84 15 79.89 88.51 61.36
12 3 78.35 85.31 71.91 16 77.85 89.59 65.76
13 3 78.18 86.64 72.68 17 78.96 89.76 84.15
1 24 78.34 86.74 71.48 18 76.32 89.50 76.96
205 3 78.76 84.98 74.41
11 3 79.21 86.44 73.67

to perform statistical comparisons with existing methods. Noting this limi-

tation, we provide the subject-wise segmentation accuracies for IBSR-20 and

IBSR-18 datasets in Table 3.5 to facilitate paired statistical comparisons in

future studies.
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3.7 Summary

In this chapter, we presented a new knowledge-driven decision theory

(KDT) approach for MR tissue segmentation, which embeds prior knowledge

on relative extents of intensity overlaps between the tissue classes in the seg-

mentation framework. KDT illustrates good segmentation performance and

outperforms other segmentation approaches evaluated on two standardized

datasets. In the future, KDT can be incorporated in the established MR anal-

ysis pipelines, which are routinely used by the neuroimaging research com-

munity. While this chapter presented the contribution of this dissertation in

the area of brain MR image analysis, the next several chapters (chapters 4-7)

focus specifically on the problem of improving the efficiency of clinical trials of

Alzheimer’s disease-modifying treatments. In the next chapter, we introduce

the currently used outcome measure and discuss limitations associated with

its application in clinical trials. Henceforth, in chapter 5, we develop a new

methodology for its application, which significantly improves the efficiency of

clinical trials focused in the mild-to-moderate Alzheimer’s disease stage.
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Chapter 4

Clinical Trials of Disease-Modifying

Treatments

4.1 Alzheimer’s Disease Assessment Scale-Cognitive sub-
scale

The Alzheimer’s Disease Assessment Scale’s cognitive subscale (ADAS-

Cog) is the standard primary cognitive outcome measure for evaluating treat-

ments in clinical trials of mild-to-moderate Alzheimer’s disease. In patients,

the ADAS-Cog measures impairment across several cognitive domains that

are considered to be affected early and characteristically in Alzheimer’s dis-

ease [140]. However, several concerns have been raised recently regarding its

sensitivity in measuring progression of cognitive impairment in clinical trials

[27, 131, 75, 74]. The low sensitivity of the ADAS-Cog has been suggested as

a possible reason behind the failure of all clinical trials to date of Alzheimer’s

disease treatments [27, 131, 55, 147].

The low sensitivity of the ADAS-Cog is primarily due to most of its

items suffering from either floor or ceiling effects in different stages of Alzheimer’s

disease [27, 75, 74, 2]. As a result, the ADAS-Cog is limited in measuring pro-
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gression of cognitive impairment over the course of disease progression. Noting

this limitation, research efforts are underway towards modifying the ADAS-

Cog and developing new cognitive assessments with better sensitivity [158, 71].

While the importance of developing better assessments cannot be overstated,

their in-depth evaluation and eventual utilization in clinical trials is expected

to take a significant amount of time. This opens up a parallel research avenue

towards improving the application of the ADAS-Cog in clinical trials, which

could help make trials more efficient until a better tool is available.

4.2 Limitations of the Current Scoring Methodology

Another major reason behind the low sensitivity of the ADAS-Cog is its

suboptimal scoring methodology, which lacks precision in measuring cognitive

impairment. Currently, cognitive impairment is estimated by simply summing

scores across the ADAS-Cog items. This methodology suffers from several

limitations. Firstly, psychometric analysis of the ADAS-Cog indicates that

its items measure impairment in multiple cognitive domains [164, 117, 89].

The current scoring methodology is equivalent to a weighted summation of

impairment in the cognitive domains measured by the ADAS-Cog. In studies

of treatments that improve only a subset of cognitive domains, such as im-

provement in memory but not language or praxis, the current methodology

obscures the detection of treatment effects [186].

Secondly, the current scoring methodology loses precision in measuring
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cognitive impairment by ignoring the pattern of item-wise scores [12]. The

difficulty levels of the ADAS-Cog items are not uniform [27, 131, 75] and,

therefore, most of the total ADAS-Cog scores can be achieved by different

patterns of scores across the ADAS-Cog items [12]. Moreover, since the ADAS-

Cog items vary in their ability to measure the underlying cognitive domains

[27, 131, 75, 164, 117, 89, 186], an item-level analysis is expected to yield

better precision in measuring cognitive impairment. An item-level analysis is

also significant for addressing psychometric problems of the ADAS-cog (such

as measurement bias), which were not detected at the time of its design [34].

A similar bias concern is raised in clinical trials involving patients undergo-

ing symptomatic therapy using acetylcholinesterase inhibitor (AChEI) drugs,

which provide short term improvements on the memory-related ADAS-Cog

items [122]. The current scoring methodology does not allow adjustments for

such item-level biases, which lead to unaccounted inter-patient variability and

further complicates the detection of treatment effects in clinical trials.

Thirdly, the current scoring methodology violates core assumptions of

the statistical methods typically employed in clinical trials. The primary ef-

ficacy analysis of treatments typically involves linear modeling of serial de-

terminations of the total ADAS-Cog scores of patients using an analysis-of-

covariance (ANCOVA) framework [130, 129, 165, 3, 150]. It is reasonable

to assume that a patient’s true underlying cognitive impairment progresses

linearly over short trial durations. However, when cognitive impairment is

estimated using the total ADAS-Cog scores, linear modeling using ANCOVA
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results in correlated errors due to the categorical nature of the ADAS-Cog

items [149, 148]. ANCOVA assumes errors to be independent and normally

distributed, which is violated when the total ADAS-Cog scores are used and

results in biased efficacy analysis in trials.

Fourthly, the current scoring methodology lacks a proper definition for

the measurement scale, which makes comparison and interpretation of cog-

nitive impairment across patients challenging when different variants of the

ADAS-Cog are used. In theory, the administration of additional items should

only improve measurement precision. However, the current scoring methodol-

ogy also changes the scale of measurement, with a wider range of scores possible

when additional items are administered. The current scoring methodology is

also sensitive to missing item responses, scoring errors and variability in the

administration of the ADAS-Cog, which are common in clinical trials [151, 33].

In combination, these limitations associated with the current scoring

methodology result in low sensitivity of the ADAS-Cog in measuring progres-

sion of cognitive impairment in clinical trials. In the next chapter, we develop

a new scoring methodology for the ADAS-Cog and investigate the hypothesis

that addressing the limitations associated with the current scoring methodol-

ogy would improve the sensitivity of the ADAS-Cog in clinical trials.
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Chapter 5

Improved Scoring Methodology for the

ADAS-Cog in Clinical Trials

5.1 Introduction

In this chapter, we present a new scoring methodology for the ADAS-

Cog based on psychometric modeling using item response theory (ADAS-

CogIRT). Some prior studies have investigated the potential of item response

theory for scoring the ADAS-Cog and reported very promising preliminary

results [12, 172]. The ADAS-CogIRT methodology is based on extending their

prior work, addressing their limitations, and developing a clinically meaning-

ful scale to measure cognitive impairment. We evaluated the sensitivity of

the ADAS-CogIRT methodology and compared it with the current scoring

methodology for detecting treatment effects in clinical trials using simulation

experiments and data from a real negative clinical trial [130]. A preliminary

version of this study was presented at the 36th Annual International Confer-

ence of the IEEE Engineering in Medicine & Biology Society [180]c and the

cN. Verma, M. K. Markey, “Item response analysis of Alzheimer’s disease assessment
scale”, In Proc. Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, p. 2476-2479, 2014.
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Annual Meeting of the Biomedical Engineering Society in 2014 [181]. This

work is currently under review for publication in a peer-reviewed journal. In

these works, N. Verma developed the methods, performed the analysis, and

prepared the manuscripts. M. Markey helped with the study designs and

manuscript revisions.

The chapter is organized as follows. Section 5.2 provides details on

data description (section 5.2.1), data preprocessing (section 5.2.2), psychome-

tric analysis of the ADAS-cog (section 5.2.3), the proposed ADAS-CogIRT

scoring methodology (section 5.2.4), and application of the ADAS-CogIRT

methodology in clinical trials (section 5.2.5). Section 5.3 presents the results

of psychometric analysis of the ADAS-Cog (section 5.3.1), evaluation of the

ADAS-CogIRT scoring methodology in measuring cognitive impairment (sec-

tion 5.3.3), and evaluation of the ADAS-CogIRT methodology in clinical trials

(section 5.3.4). Finally, section 5.4 discusses the significance of this study, the

advantages, and the limitations of the ADAS-CogIRT scoring methodology.

5.2 Materials & Methods

5.2.1 Data

The data for this study were assembled from three public cohorts to en-

sure that the developed scoring methodology is robust against heterogeneity

in patients and study designs. The three cohorts are the Alzheimer’s Dis-

ease Neuroimaging Initiative (ADNI), the Coalition Against Major Diseases
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(CAMD), and the Alzheimer’s Disease Cooperative Study (ADCS). A brief

description of the ADNI, CAMD, and ADCS cohorts is as follows:

1. ADNI: The ADNI was launched in 2003 as a collaboration between sev-

eral private and public institutions including the National Institute on

Aging (NIA), the National Institute of Biomedical Imaging and Bioengi-

neering (NIBIB), and the Food and Drug Administration (FDA). The

primary goal of ADNI has been to test whether medical imaging, bio-

logical markers, clinical and neuropsychological assessments can be com-

bined to measure the progression of mild cognitive impairment (MCI)

and early Alzheimer’s disease (AD). The subjects in ADNI have been

recruited from over 50 sites across the U.S. and Canada.

2. CAMD: The Critical Path Institute, in collaboration with the Engel-

berg Center for Health Care Reform at the Brookings Institution, formed

the Coalition Against Major Diseases (CAMD) in 2008. The Coalition

brings together patient groups, biopharmaceutical companies, and sci-

entists from academia, FDA, the European Medicines Agency (EMA),

the National Institute of Neurological Disorders and Stroke (NINDS),

and NIA. The data available in the CAMD database were volunteered

by CAMD member companies and non-member organizations. CAMD

database contains de-identified control arm data on AD patients from 24

clinical trials of disease-modifying treatments.
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3. ADCS: The ADCS is a major initiative for Alzheimer’s disease clinical

studies, developed as a cooperative agreement between the NIA and

the University of California, San Diego in 1991. The goal of ADCS

is to facilitate discovery, development and testing of new treatments

for Alzheimer’s disease. Since 1991, ADCS has initiated 30 research

studies (23 drug studies and 7 instrumental development protocols) over

20 Alzheimer’s disease research centers.

We obtained data from 1275 Alzheimer’s patients in ADNI, 1828 pa-

tients in the placebo arms of 6 clinical trials in CAMD, and 2496 patients

in the placebo and treatment arms of 6 clinical trials in ADCS. The data

consist of longitudinal ADAS-Cog responses over the duration of trial, basic

demographics, Apolipoprotein-E (APOE) genotype, and status of concomi-

tant AChEI therapy of patients. The most common version of the ADAS-Cog,

which contains a ‘delayed word recall’ item in addition to the original 11 items,

was used in this study [140, 112]. Table 5.1 summarizes the data from ADNI

and the 12 clinical trials of the CAMD and ADCS databases. The data were

divided into two subsets. The first subset was used for psychometric analysis

of the ADAS-Cog and contained data from ADNI and the placebo arms of all

clinical trials except the trial of huperzine A [130]. For psychometric analy-

sis, data from a single visit of every patient was randomly selected to avoid

correlated ADAS-Cog responses. The second subset was used to evaluate the

scoring methodology we describe in this chapter and contained data from the
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Table 5.1: Data description: Summary of patient characteristics from ADNI
and clinical trials of CAMD and ADCS databases.

Study Sample Gender APOE ADAS-Cog Study

Size (% Females) (% ε4) (µ± σ)† duration

ADNI 1275 41.7 58.7 14.2±8.5 8 years

CAMD-1105 325 51.0 - 25.2±12.2 20 months

CAMD-1131 57 59.6 - 20.5±3.6 24 weeks

CAMD-1132 412 43.4 38.0 19.1±3.1 51 weeks

CAMD-1140 137 42.3 - 19.1±3.4 24 weeks

CAMD-1141 492 55.3 - 9.9±6.0 23 months

CAMD-1142 405 56.0 64.1 25.3±10.4 18 months

ADCS-HU [130] 210 64.4 65.2 27.1±10.8 24 months

ADCS-DHA [129] 402 52.5 57.7 23.9±9.0 18 months

ADCS-VN [165] 300 63.1 71.3 30.1±9.8 24 months

ADCS-HC [3] 409 53.9 70.0 22.6±8.6 18 months

ADCS-LL [150] 406 59.9 55.3 23.9±10.5 18 months

ADCS-MCI [124] 769 47.0 53.0 11.03±4.2 26 months

† µ: mean score, σ: standard deviation of scores

treatment arms of 11 clinical trials. In addition, the clinical trial of huperzine

A, which detected a marginally significant treatment effect [130], was used

separately to evaluate the sensitivity of the new scoring methodology in a real

clinical trial scenario.

5.2.2 ADAS-Cog Summary & Preprocessing

Out of the twelve items, five items (‘Naming objects and fingers’, ‘Com-

mands’, ‘Constructional praxis’, ‘Ideational praxis’, and ‘Orientation’) contain
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several subitems such as ‘Draw a cube’. Instead of combining the subitem

scores, we analyzed these five items at their subitem-level as dichotomous

items. The remaining ADAS-Cog items have ordinal responses and were con-

sidered as polytomous items for item response theory modeling.

Several items in the ADAS-Cog suffer from severe floor and ceiling

effects, which are difficult to model using item response theory. Therefore, as

part of the preprocessing step, items with <5% incorrect response rate from

mild-to-moderate Alzheimer’s patients were either combined with other similar

items or removed from the analysis. In the ‘Naming objects and fingers’ item,

all the high frequency objects (‘Flower’, ‘Bed’, ‘Whistle’, and ‘Pencil’) were

combined into a single subitem called the ‘High frequency objects’. While

the ‘Wallet’ object is listed as a low frequency object, its incorrect response

rate matched with the rates of the medium frequency objects. Therefore, the

objects ‘Scissors’, ‘Comb’, and ‘Wallet’ were combined into a single subitem

called the ‘Medium frequency objects’. The subitem requiring patients to name

the finger ‘Thumb’ was removed from the analysis due to very low incorrect

response rate.

In the ‘Commands’ item, the subitems ‘Point to the ceiling, then to the

floor’ and ‘Put the pencil on top of the card, then put it back’ were combined

into a ‘Easy commands’ subitem. Similarly, in the ‘Constructional praxis’

item, the subitems requiring patients to draw a ‘Circle’ and ‘Two overlapping

rectangles’ were combined into a ‘Easy constructional praxis’ subitem. The
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subitems ‘Fold a letter’, ‘Put letter in envelope’, and ‘Seal envelope’ have

low incorrect response rates and, therefore, were combined into a single ‘Easy

ideational praxis’ subitem. The subitem asking patients to recall their ‘Full

name’ has very low incorrect response rate and, therefore, was removed from

the analysis. For the ordinal items ‘Language’, ‘Comprehension of spoken

language’, ‘Word finding difficulty’, and ‘Remembering test instructions’, the

‘Severe’ response category was merged with the ‘Moderately severe’ response

category.

5.2.3 Psychometric Analysis of the ADAS-Cog

Patients’ responses to the ADAS-Cog items were probabilistically mod-

eled by defining ADAS-Cog item characteristic functions, which specify rela-

tionships between the characteristics of the ADAS-Cog items (slope and inter-

cept) and characteristics of the patients (cognitive impairment). For the sake

of understanding the underlying motivation behind defining item characteristic

functions, lets consider the case of a dichotomous item with possible responses

as either a correct response or an incorrect response. The level of cognitive

impairment in a patient can be considered as a continuous measure such that

as the underlying cognitive impairment progresses, the patient’s probability to

answer an item incorrectly increases. The rate of increase in probability of an

incorrect response with progression in cognitive impairment can be considered

as a characteristic (slope) of the item. Another characteristic of the item can

be a threshold value of cognitive impairment (or difficulty) such that patients
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with more pronounced cognitive impairment have higher chances of answering

the item incorrectly than answering it correctly and vice versa. By using these

two characteristics of the item, a relationship (item characteristic function)

can be defined between a patient’s cognitive impairment and probability of an

incorrect response to the item.

Mathematically, for a dichotomous ADAS-Cog item j with response

categories as x.j ∈ {0, 1}, the item characteristic function relating the proba-

bility of an incorrect response xij = 1 by patient i with cognitive impairment

θi was defined as:

P (xij = 1|θi,αj , dj, gj) = gj +
(1− gj)

1 + exp[−(αTj θi + dj)]
(5.1)

where, θi = (θi1, . . . , θim) denotes a vector of impairment in the m cognitive

domains that are assessed by the ADAS-Cog, αj = (αj1, . . . , αjm) are the item

slope components associated with impairment in the m cognitive domains, and

dj is the item intercept. The item intercept dj represents the relative difficulty

level of the item j in comparison to rest of the ADAS-Cog items. The lower

asymptotes gj were included to account for really difficult items, which are

answered incorrectly even by cognitively normal individuals.

The definition of item characteristic function for the dichotomous ADAS-

Cog items in equation (5.1) was extended to the polytomous ADAS-Cog items

with Cj ≥ 2 response categories x.j ∈ {0, . . . , Cj − 1} by modeling the bound-
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aries between the response categories as

P (xij ≥ 0|θi,αj ,dj) = 1,

P (xij ≥ 1|θi,αj ,dj) =
1

1 + exp[−(αTj θi + dj1)]
,

P (xij ≥ 2|θi,αj ,dj) =
1

1 + exp[−(αTj θi + dj2)]
,

...

P (xij ≥ Cj|θi,αj ,dj) = 0

where, dj = (dj1, . . . , dj(Cj−1)) are the intercepts corresponding to the bound-

aries between the response categories of item j. The item characteristic func-

tions for individual response categories xij = k of the ADAS-Cog polytomous

items were obtained as

P (xij = k|θi,αj ,dj) = P (xij ≥ k|θi,αj ,dj)−

P (xij ≥ k + 1|θi,αj ,dj) (5.2)

IRT assumes a multivariate normal distribution g(θ) over the latent

traits θi = (θi1, . . . , θim) and integrates them out of the likelihood func-

tion. Therefore, the marginal likelihood of the observed response data X =

(x1, . . . ,xN ) becomes

L(X|Ψ) =
N∏
i=1

[∫ ∞
−∞

. . .

∫ ∞
−∞

P (xi|Ψ,θ)g(θ)dθ

]
(5.3)

where Ψ is the set of all ADAS-Cog item parameters and xi = (xi1, . . . , xin)

represents the ADAS-Cog item responses by ith patient. Metropolis-Hastings
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Robbins-Monro (MHRM) algorithm [25] was used for estimating the ADAS-

Cog item parameters Ψ = {αj ,dj ; j = 1, . . . , n} as it is more computationally

efficient than the traditional expectation maximization algorithm [19] for es-

timating multidimensional item response theory models.

5.2.3.1 Cognitive Domains Assessed by the ADAS-Cog

The evaluation of the cognitive domains assessed by the ADAS-Cog

in Alzheimer’s patients is important not only for its associated clinical signif-

icance but also for ensuring the validity of IRT analysis. The estimation of

parameters Ψ in IRT assumes local item independence, i.e., patients’ responses

to the ADAS-Cog items are determined only by their underlying cognitive im-

pairment. The use of an inappropriate set of latent traits θi = (θi1, . . . , θim)

violates this key assumption, which severely compromises the validity of in-

ferences and estimates of cognitive impairment from IRT analysis [193]. This

was the primary reason behind the use of a single visit data from every patient

to avoid correlated item responses in estimation of IRT parameters.

We performed a parallel analysis on pair-wise polychoric correlations

between the ADAS-Cog item responses [77, 73] to determine the number of

cognitive domains assessed by the ADAS-Cog. However, parallel analysis typ-

ically overestimates the number of latent traits and, therefore, the estimate

from parallel analysis was only used as an upper limit on the number of latent

traits to be considered for a more in-depth evaluation. Exploratory IRT mod-
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els were developed for all possible latent trait structures and were compared

using the following criteria:

1. Model fit : The latent trait structure should have good global and item-

level fits to the ADAS-Cog responses. Global fit was assessed using

the two standard statistics of root mean squared error of approxima-

tion (RMSEA) [31] and Tucker Lewis index (TLI) [171]. The criteria of

RMSEA ≤ 0.05 and TLI ≥ 0.95 are required for a good global fit [78].

Item-level fit was assessed using the recommended S-X2 statistic, which

effectively controls type-I error rates for dichotomous and polytomous

items [118, 119, 194, 88].

2. Local item independence: The local item independence assumption was

tested using the recommended G2 statistic, which has high sensitivity in

detecting local item dependence [30].

3. Clinical relevance: The individual latent traits should be clinically mean-

ingful constructs.

During the exploratory analysis, no restrictions on item-trait loadings

were imposed and latent traits were allowed to be correlated with each other.

After determining the most appropriate latent trait structure based on the

above criteria, a confirmatory IRT model was estimated and used for sub-

sequent psychometric analysis of the ADAS-Cog. Cross-loading of items on

multiple latent traits were allowed if it significantly improved item-level fit and
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reduced local item dependence with other items. The global and item-level

fits of the confirmatory IRT model were evaluated using the RMSEA, TLI,

and S-X2 statistics.

5.2.3.2 Measurement Invariance of the ADAS-Cog Items

The ADAS-Cog items should show measurement invariance across pa-

tients, despite their characteristics. We performed differential item function-

ing (DIF) [76] analyses to investigate measurement bias in the ADAS-Cog

items due to patient-level factors of gender (men/women), education level

(less/greater than 13 years), APOE genotype (presence/absence of an ε4 al-

lele), and status of concomitant AChEI therapy (yes/no). The ADNI, CAMD,

and ADCS cohorts contain predominantly non-Hispanic Caucasian patients,

which did not allow DIF analysis due to racial and ethnic factors. All patients

undergoing any of the AChEI medications (donepezil, rivastigmine, and galan-

tamine) were labeled as positive for concomitant AChEI therapy. For every

DIF factor, ADAS-Cog item characteristic functions were estimated separately

inside each patient group and parameter estimates Ψ were compared using the

Wald chi-square test with false discovery rate correction [101]. Before com-

parison, parameter estimates of patients groups were linearly transformed to a

common scale by equating the means and variances of item difficulties across

all the groups. If parameter estimates of certain ADAS-Cog items were found

to be significantly different between patient groups, those items were flagged as

potentially suffering from measurement bias. The ADAS-Cog items that did
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not show any significant differences in parameter estimates were anchored by

constraining their estimates to be equal across the patient groups. After item

anchoring, parameters were re-estimated for all the ADAS-Cog items flagged

as potentially suffering from measurement bias to validate if significant differ-

ences in parameters still exist between the patient groups. For DIF analysis,

the sample size was kept similar across patient groups by randomly selecting

patients from bigger patient groups.

Longitudinal invariance of item characteristic functions across different

disease stages was investigated by comparing item parameters estimated using

baseline responses of patients versus using their responses at 24-months visit,

when the disease has significantly progressed. We additionally investigated

the extent of sample bias and variance in the ADAS-Cog item characteristic

functions due to different patient samples considered for estimation. Sample

bias was assessed as the goodness-of-fit of item characteristic functions to re-

sponse data from the treatment arms of ADCS studies, which were not used

for parameter estimation. Sample variance of the ADAS-Cog item charac-

teristic functions was estimated by conducting 1000 bootstrap replications of

estimation of item parameters Ψ with sample replacement. The large sample

of patients considered in this study with diverse demographic and clinical char-

acteristics provides a good representation of the overall variability in mild-to-

moderate Alzheimer’s patient population. Therefore, bootstrapping provides

a rough estimate on the expected variability in the ADAS-Cog item charac-

teristic functions if different samples of Alzheimer’s patients are considered for
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IRT model estimation.

5.2.4 Measurement of Cognitive Impairment

5.2.4.1 ADAS-Cog Scoring Methodology based on IRT Modeling
(ADAS-CogIRT)

We propose a new ADAS-Cog scoring methodology based on psycho-

metric modeling using IRT (ADAS-CogIRT) for more accurate measurement

of cognitive impairment. The ADAS-CogIRT scoring methodology uses the

ADAS-Cog item characteristic functions to measure cognitive impairment in

patients based on their ADAS-Cog item response patterns. Given a patient’s

responses to the ADAS-Cog items xi = (xi1, . . . , xin), cognitive impairment is

measured as the values of the latent traits θi that have the maximum likelihood

of observing the ADAS-Cog item responses xi = (xi1, . . . , xin):

L(xi|θi) =
n∑
j=1

log(P (xij|θi,Ψ))

θ̂i = arg max
θ

L(θi) (5.4)

where, L(xi|θi) denotes the log-likelihood of observing the ADAS-Cog item

responses xi in a patient with cognitive impairment θi. Ψ denotes the pa-

rameters of the ADAS-Cog item characteristic functions after adjusting for

measurement bias of the ADAS-Cog items due to patient-level factors. Af-

ter DIF analysis, the updated ADAS-Cog item characteristic functions with
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adjustments for patient-level factors were defined as:

P (xij = 1|θi,Ψ) = gj +
(1− gj)

1 + exp[−(αTj θi +W T
i τ

T
j θi + dj +Ziδj)]

(5.5)

where the fixed effects τj and δj denote adjustments in the ADAS-Cog item

slopes and intercepts to account for measurement bias due to patient-level

factors with Wi and Zi as the associated design matrices, respectively. In

order to define an appropriate measurement scale for cognitive impairment,

we considered the criteria that the scores of cognitive impairment in mild-to-

moderate Alzheimer’s patients should be non-negative and can be rounded off

to the nearest integers without loss of precision.

5.2.4.2 Accuracy of the ADAS-CogIRT Scoring Methodology

Since the ground truth cognitive impairment is unknown, the accuracy

of the ADAS-CogIRT methodology for measuring cognitive impairment cannot

be directly evaluated. Therefore, we indirectly evaluated the ADAS-CogIRT

methodology by assessing its accuracy to predict future ADAS-Cog responses

of patients based on their responses in a few initial visits. The ADAS-CogIRT

methodology in (5.4) was used to separately estimate cognitive impairment in

patients at the baseline, 6 months, and 12 months visits using their ADAS-

Cog responses. Assuming linear progression, cognitive impairment at the 24-

months visit was estimated for every patient by fitting a linear regression line

to the estimates of cognitive impairment from the earlier visits. The estimated

cognitive impairment at the 24-months visit was used to predict the ADAS-
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Cog item responses of patients as:

x̂ij = E [xij] =

Cj−1∑
k=0

k × P (xij = k|θ̂i,Ψ) (5.6)

where k = {0, . . . , Cj − 1} are the response categories of the ADAS-Cog item

j and θ̂i represents the estimated cognitive impairment in patient i at the

24-months visit. P (xij = k|θ̂i,Ψ) was calculated for every patient using the

ADAS-Cog item characteristic functions in equation (5.2).

The current scoring methodology measures cognitive impairment in pa-

tients by adding scores across the ADAS-Cog items. Therefore, using the cur-

rent scoring methodology, the total ADAS-Cog scores at the 24-months visit

can be predicted by simply fitting a linear regression line to the total ADAS-

Cog scores of patients from the earlier visits. The prediction accuracy of the

ADAS-CogIRT methodology was calculated using the root mean squared er-

ror (RMSEADAS) between the observed total ADAS-Cog scores
∑

j xij and the

predicted total ADAS-Cog scores
∑

j x̂ij at the 24-months visit:

RMSEADAS =

√∑
i(
∑

j xij −
∑

j x̂ij)
2

NT

(5.7)

where NT represents the number of patients belonging to the treatment arms of

the five ADCS clinical trials. The RMSEADAS of the ADAS-CogIRT method-

ology was compared to the RMSEADAS achieved by using the total ADAS-Cog

scores as estimates of cognitive impairment in the initial visits.
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5.2.4.3 Precision of the ADAS-CogIRT Scoring Methodology

The precision of the ADAS-CogIRT methodology is dependent on the

ability of the ADAS-Cog items to measure different levels of cognitive im-

pairment. The precision of the ADAS-CogIRT methodology was evaluated by

calculating the item information functions of the ADAS-Cog items [41]:

Ij(θ) =

Cj−1∑
k=0

1

Pjk(θ)

(
dPjk(θ)

dθ

)2

(5.8)

where Pjk(θ) represents the probability of kth response by a patient with cog-

nitive impairment θ to the jth ADAS-Cog item, as defined in equation (5.5).

A high value for the item information at a given level of cognitive impairment

implies that the item measures that level of cognitive impairment with high

precision and vice-versa. The cumulative information across all the ADAS-

Cog items was used to estimate the expected standard error of measurement

of different levels of cognitive impairment using the ADAS-CogIRT methodol-

ogy.

5.2.5 Improving the Sensitivity of the ADAS-Cog

5.2.5.1 Application of the ADAS-CogIRT Methodology in Clinical
Trials

We propose a generalized mixed-effects approach for using the ADAS-

CogIRT methodology in clinical trials. Besides estimating baseline cognitive

impairment, this approach also estimates the rates of progression in cognitive
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impairment based on patients’ longitudinal ADAS-Cog responses. In longi-

tudinal settings, the ADAS-Cog item characteristic functions are represented

as

P (xtij = 1|θti ,Ψ) = gj +
(1− gj)

1 + exp[−(αTj θ
t
i +W T

i τ
T
j θ

t
i + dj +Ziδj)]

(5.9)

where xtij and θti represent the ADAS-Cog item responses and cognitive im-

pairment of patients at time t. We assumed linear progression of cognitive

impairment in patients because the duration of clinical trials are typically too

short (∼2-3 years) to observe any complex patterns of disease progression.

θti = θ0i + ri × t (5.10)

where θ0i and ri represent baseline cognitive impairment and progression rates

in patients. Significant inter-patient variability in baseline cognitive impair-

ment and progression rates is typically observed in clinical trials. While some

variability is systematic due to patient-level factors (such as APOE genotype)

and treatment effects, random variability across patients is also substantial.

Therefore, we modeled baseline cognitive impairment θ0i and progression rates

ri as mixed-effects in the model to ensure validity of the key assumptions of

efficacy analysis.

θ0i = µθ + βArm × (Armi) + βPatient × (Pi) + εi,θ

ri = µr + γArm × (Armi) + γPatient × (Pi) + εi,r(
εi,θ
εi,r

)
∼ N

(
0,

[
Σθ,θ Σθ,r

Σθ,r Σr,r

] )
(5.11)
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where, µθ and µr represent the average levels of baseline cognitive impair-

ment and progression rates across patients in the placebo arm. The trial

arm information of patients is included in the form of a categorical covariate

Armi such that Armi =

{
0 if placebo arm

1 if treatment arm
. The fixed effects βArm and

γArm measure differences in the average levels of baseline cognitive impair-

ment and progression rates of patients between the placebo and treatment

arms. Patient-level covariates Pi are included to model systematic variabil-

ity in baseline cognitive impairment and progression rates with βPatient and

γPatient representing the associated fixed effects. Random effects εi,θ and εi,r

are included to model random variations in baseline cognitive impairment and

progression rates across patients. The cognitive impairment and progression

rates in Alzheimer’s patients are inter-correlated and, therefore, the random

effects εi,θ and εi,r are allowed to covary. The parameters of the proposed

methodology are estimated using maximum likelihood estimation with adap-

tive Gauss-Hermite quadrature.

We evaluated the sensitivity of the ADAS-CogIRT methodology for

detecting treatment effects in clinical trials using simulation experiments and

a real clinical trial, which had been reported as negative but which showed

some evidence of a treatment effect [130].
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5.2.5.2 Sensitivity Analysis using Simulated Clinical Trials

Clinical trials were simulated to mimic the complexity of real-world clin-

ical trials by including unbalanced patient samples, systematic and random

inter-patient variability in cognitive impairment and progression rates, and

dropout of patients from clinical trials. The parameters for simulating these

characteristics were obtained by analyzing the longitudinal ADAS-Cog data of

mild-to-moderate Alzheimer’s patients (total ADAS-Cog scores of 25±10) in

the placebo arms of ADCS and CAMD trials using a generalized mixed-effects

model approach similar to (5.11). Besides the patient-level random effects,

nested study-level random effects were also included to model variability in

disease stages, where these clinical trials were focused. The parameters esti-

mated for simulating clinical trials were average baseline cognitive impairment

and progression rates (µθ, µr), random inter-patient variability in baseline

cognitive impairment and progression rates (Σθ,θ, Σr,r, Σθ,r), and system-

atic variability in baseline cognitive impairment and progression rates due to

patient-factors (βPatient, γPatient). A Cox proportional hazards model was

used for modeling hazard of patient dropout with baseline cognitive impair-

ment, progression rates, and patient-level factors as covariates.

The statistical power of the newly proposed (ADAS-CogIRT) and the

standard ADAS-Cog methodologies for detecting treatment effects was evalu-

ated through two simulation experiments. In the first experiment, their power

was evaluated for different sample sizes of 200, 400, 600, 800, and 1000 pa-
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tients considered in clinical trials of fixed 24 months duration. For the second

experiment, the sample size was fixed as 400 patients and the statistical power

was evaluated for different durations of 12, 24, 36, and 48 months. These

fixed values were selected based on the average characteristics of past clinical

trials. Both experiments were repeated for four hypothetical treatment effects

of Cohen’s d = 0 (no effect), 0.2 (mild effect), 0.5 (moderate effect), and 0.8

(large effect) simulated in treatment arms of clinical trials [32]. The case of

no treatment effect evaluated the type-I error rates of the proposed scoring

methodology. The follow-up visits in both experiments were considered to be

biannual during the duration of each trial. In both experiments, 500 clini-

cal trials were simulated for every possible combination of treatment effect,

sample size, and trial duration.

For simulating a clinical trial, a large sample of 10000 patients was

simulated with normally distributed levels of baseline cognitive impairment

and progression rates (using µθ, µr, Σθ,θ, Σr,r and Σθ,r) to represent the

population of mild-to-moderate Alzheimer’s patients. Based on the sample

characteristics of previous trials, 58.5% patients were randomly labeled as

APOE-ε4 positive, 52.8% were randomly labeled as women, and patient ages

were simulated as normally distributed with mean of 74.7 years and standard

deviation of 8.54 years. The systematic effects of patient-level factors were

simulated in the patient sample using the estimated βPatient and γPatient

fixed effects. For each simulated clinical trial, S patients were selected at ran-

dom from this population and randomly distributed between the placebo and
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treatment arms. A hypothetical treatment effect of effect size d (in terms of

Cohen’s d = γArm/
√

Σr,r) was introduced in the progression rates of impair-

ment in randomly chosen subset of cognitive domains of patients belonging to

the treatment arm. The dropout of patients from clinical trials was simulated

by using the estimated Cox proportional hazards model. The baseline cogni-

tive impairment and progression rates of patients were used to calculate their

longitudinal levels of cognitive impairment at each visit until the duration of

the trial. The longitudinal ADAS-Cog responses of patients were simulated

using the ADAS-Cog item characteristic functions.

The simulated ADAS-Cog responses were analyzed using the proposed

ADAS-CogIRT methodology, single latent trait variant of the ADAS-CogIRT

methodology, and the currently employed analysis-of-covariance (ANCOVA)

methodologies. The statistical significance of the treatment effect in both

methodologies was assessed using z-statistic with correction for multiple com-

parisons. The statistical power was evaluated as the proportion of clinical

trials wherein a statistically significant treatment effect on patients’ progres-

sion rates was detected.

5.2.5.3 Sensitivity Analysis using Huperzine A Clinical Trial

Besides simulations, we additionally evaluated the sensitivity of the

ADAS-CogIRT methodology in a real clinical trial study of huperzine A [130].

In the original negative trial, the higher dose level of 400µg had a marginal
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effect (p-value = 0.07) on patients’ cognitive functioning after 16 weeks [130].

Given this trend from the original ANCOVA analysis, we were interested in

determining whether a more sensitive methodology would change the signif-

icance of the treatment effect on progression rates of cognitive impairment.

Therefore, we re-analyzed the data from the placebo and 400µg huperzine A

arms using the ADAS-CogIRT methodology. The sample size was 141 patients

across the two arms in the 16 weeks long trial. Besides statistical significance,

we also calculated the size of treatment effects estimated by the ANCOVA and

the ADAS-CogIRT methodologies for comparison of sensitivities.

All data analyses in this study were performed using the R software

version 3.0.2 environment for statistical computing. The main R scripts for

the implementation and evaluation of the ADAS-CogIRT scoring methodology

are available at the following repository: https://github.com/nishant3115/

ADAS-CogIRT-Scoring-Methodology.

5.3 Results

5.3.1 Psychometric Analysis of the ADAS-Cog

5.3.1.1 Cognitive Domains Assessed by the ADAS-Cog

Parallel analysis estimated the number of latent traits as m = 7, where

only 5 traits were associated with eigenvalues ≥ 1. This suggested that the

parallel analysis overestimated the number of latent traits by even accounting
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Figure 5.1: Goodness-of-model fit to the ADAS-Cog response data: Figure
comparing (a) global fit and (b) item-level fit of the seven latent trait struc-
tures to the ADAS-Cog response data. The black dashed line in subfigure (a)
represents the typical cut-off of RMSEA = 0.05 and TLI = 0.95 for a good
model fit. The item-level fit in subfigure (b) did not improve after m ≥ 3
latent traits and, therefore, the cases of m ≥ 6 have not been included for
clarity of presentation.

for weak traits measured by small subsets of the ADAS-Cog items. Therefore,

the m = 7 estimate from the parallel analysis was used only as an upper

limit on the number of latent traits to be considered for a more comprehensive

psychometric evaluation. Exploratory IRT models were developed with the

number of latent traits ranging from m = 1 to 7.

By comparing the latent trait structures for up to seven latent traits

using the criteria defined in Section 5.2.3.1, the three-dimensional latent trait

structure was found to be the most appropriate one. All latent trait structures

with the number of latent traits m ≥ 3 showed good global fit to the ADAS-
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Cog response data with RMSEA≤0.05 and TLI≥0.95 (figure 5.1a). While

the unidimensional IRT model showed an acceptable value for RMSEA∼0.05,

it failed to illustrate an acceptable global fit with TLI∼0.89. This misfit is

evident from an item-level assessment of model fit, where the unidimensional

structure illustrates poor fit to the response data of all the memory-related

ADAS-Cog items (figure 5.1b). While the inclusion of additional latent traits

improved the model fit of memory items, the item-level fit did not show any

significant improvements after the inclusion of 3 latent traits (figure 5.1b).

Local item dependence (LID) between a set of items typically indicates that the

item set measures additional latent traits besides the traits already considered

in the model. The three-dimensional trait structure had LID only between a

few subitems, which belong to the same ADAS-Cog items. Since most ADAS-

Cog items have item-specific contexts, such LID is expected. To eliminate

all LID, seven traits were required. However, the item parameter estimates

of IRT models with three and seven latent traits were very similar, which

means that LID in the three-dimensional model is negligible and does not

affect item parameter estimates. The three-dimensional trait structure also

provides a clinically meaningful interpretation. The pattern of dominant item-

trait loadings suggests that the three traits basically represent impairment in

the memory, language, and praxis cognitive domains (figure 5.2).

We verified the findings of the exploratory IRT analysis by perform-

ing a confirmatory IRT analysis on an independent sample of the ADAS-Cog

response data. A three-dimensional confirmatory IRT model was developed
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Figure 5.2: Cognitive domains assessed by the ADAS-Cog: Figure showing the
item-trait loading structure for the three-dimensional latent trait structure.

using the ADAS-Cog response data from the treatment arms of ADCS clinical

trials. The confirmatory IRT model showed good global fit (RMSEA = 0.039

and TLI = 0.95), good item-level fit (S-X2 insignificant), and low levels of local

item dependence between subitems that belong to the same ADAS-Cog items.

5.3.2 Measurement Invariance of the ADAS-Cog Items

Table 5.2 lists the ADAS-Cog items that have measurement bias due to

patient-level factors and the directions of those biases. Four ADAS-Cog items

have measurement bias due to gender because of different item difficulty for

men and women. While naming the object ‘rattle’ is easier for women, they are

less likely to correctly name ‘harmonica’ and have more difficulty in drawing
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Table 5.2: Differential item functioning: Measurement bias of ADAS-Cog
items with respect to gender (men/women) and status of concomitant AChEI
symptomatic therapy (yes/no)

DIF factor ADAS-Cog item Bias type p-value

Gender Naming objects & fingers: Rattle dMen < dWomen 4.82× 10−8

Gender Naming objects & fingers: Harmonica dMen > dWomen 3.76× 10−5

Gender Constructional praxis: Cube dMen > dWomen 2.78× 10−5

Gender Remembering test instructions dMen > dWomen 3.90× 10−9

AChEI Word recall aY es < aNo 5.40× 10−10

AChEI Word recognition aY es < aNo 1.06× 10−11

AChEI Delayed word recall aY es < aNo < 10−16

* AChEI: acetylcholinesterase inhibitors; d: item intercept/difficulty; a: item slope

a cube. A strong measurement bias due to gender was also observed for the

item ‘Remembering test instruction’, where women are more likely to forget

test instructions during administration of the ADAS-Cog. No measurement

bias was observed due to education level and APOE genotype. However, the

status of AChEI therapy was associated with strong measurement bias for

word recall, delayed word recall, and word recognition items. The patients

undergoing AChEI therapy had much slower deterioration in their ability to

recall and recognize words. However, other memory-related items were not

affected by the use of AChEI therapy.

The ADAS-Cog item parameters estimated using baseline data and

the 24-months visit data did not show any statistically significant differences,

which suggests that the ADAS-Cog item characteristic functions are longitudi-

nally invariant. The item characteristic functions also illustrated little sample

bias, with good global (RMSEA = 0.039 and TLI = 0.95) and item-level fit
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(S-X2 was not statistically significant) to response data from the treatment

arms of ADCS clinical trials. The item characteristics functions also showed

little variance across different patient samples with a tight agreement observed

across 1000 bootstrap replicates (figures 5.3, 5.4, and 5.5).

Figure 5.3: Item characteristic functions of memory items: Plots showing
item characteristic functions (solid lines) of the ADAS-Cog items that measure
memory impairment. The faint lines show variability in the item character-
istic functions from 1000 bootstrap replications of parameter estimation with
sample replacement.
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Figure 5.4: Item characteristic functions of language items: Plots showing item
characteristic functions (solid lines) of the ADAS-Cog items that measure lan-
guage impairment. The faint lines show variability in the item characteristic
functions from 1000 bootstrap replications of parameter estimation with sam-
ple replacement.
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Figure 5.5: Item characteristic functions of praxis items: Plots showing item
characteristic functions (solid lines) of the ADAS-Cog items that measure
praxis impairment. The faint lines show variability in the item character-
istic functions from 1000 bootstrap replications of parameter estimation with
sample replacement.

5.3.3 Measurement of Cognitive Impairment

The item parameters were linearly scaled to define measurement scales

for memory, language, and praxis impairments such that mild-to-moderate
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Alzheimer’s patients have non-negative scores in the range of 0 to 100 points

and standard errors in estimation of cognitive impairment have magnitudes

∼1 point.

5.3.3.1 Accuracy of the ADAS-CogIRT Scoring Methodology

The ADAS-CogIRT methodology illustrated good accuracy in predict-

ing total ADAS-Cog scores at the 24-months visit with RMSEADAS = 1.82

points. In comparison, the current scoring methodology resulted in an error of

RMSEADAS = 6.05 points, which is similar in magnitude to the annual change

of 5-10 points in total ADAS-Cog scores of mild-to-moderate Alzheimer’s pa-

tients [13, 153]. Figure 5.6 qualitatively compares the predictive accuracies of

the ADAS-CogIRT and the current scoring methodologies.

5.3.3.2 Precision of the ADAS-CogIRT Scoring Methodology

While the memory items of the ADAS-Cog are informative over the

whole range of memory impairment, language and praxis items hold informa-

tion only for pronounced levels of language and praxis impairment (figures

5.7a-c). The ADAS-CogIRT methodology shows good precision for almost the

whole range of memory impairment. However, due to the inherent limita-

tion of the ADAS-Cog items, the precision of the ADAS-CogIRT methodology

in measuring language and praxis impairments is good only when a patients

performance is quite poor (figure 5.7d).
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(a) (b) 

Figure 5.6: Accuracy of the ADAS-CogIRT methodology: Scatterplots show-
ing agreement between the observed total ADAS-Cog scores and the predicted
total ADAS-Cog scores at the 24-months visit using (a) the proposed ADAS-
CogIRT methodology and (b) the standard scoring methodology.

5.3.4 Improving the Sensitivity of the ADAS-Cog

5.3.4.1 Sensitivity Analysis using Simulated Clinical Trials

The average baseline memory, language, and praxis impairment in mild-

to-moderate Alzheimer’s patients were estimated as 56.50, 57.83, and 60.27

points. The random inter-patient variability (standard deviation) in base-

line memory, language, and praxis impairment were estimated to be 6.31,

7.91, and 8.47 points, respectively. The annual rates of progression in mem-

ory, language, and praxis impairment had averages of 2.61, 3.03, and 2.10

points and inter-patient variability of 3.83, 5.56, and 5.04 points, respec-
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(a) 
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(b) 

Figure 5.7: Precision of the ADAS-CogIRT methodology: Figure showing
item-wise and cumulative Fisher information associated with estimation of (a)
memory impairments, (b) language impairments, and (c) praxis impairments.
The plot in (d) shows the expected estimation errors associated with different
levels of memory, language, and praxis impairments.

tively. Patient age was associated with more pronounced baseline cogni-

tive impairment (βAge,Mem = 0.19, βAge,Lang = 0.10); however, the progres-

sion rates decreased with patient age (γAge,Mem = −0.08, γAge,Lang = −0.09,

γAge,Prax = −0.16). APOE-ε4 genotype was associated with higher baseline
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memory impairment (βAPOE,Mem = 2.83); however, the progression rates of

impairment in all the cognitive domains increased with the presence of an ε4

allele (γAPOE,Mem = 0.97, γAPOE,Lang = 1.92, γAPOE,Prax = 1.17). In the Cox

proportional hazards model for patient dropout, the progression rates in var-

ious cognitive domains were found to increase the hazard by factors of 2.77

(memory), 1.42 (language), and 2.92 (praxis), while age increased the dropout

hazard by a factor of 1.02.

In detecting simulated treatment effects, the ADAS-CogIRT method-

ology provides significant improvements in statistical power over the currently

used ANCOVA methodology (figures 5.8b-d and 5.9b-d). For a mild treatment

effect (figures 5.8b and 5.9b), both methodologies have low power and are un-

able to attain the 80% power cut-off even with large sample sizes and long trial

durations. This is due to large inter-patient variability in progression rates

within each trial arm, which obscures the presence of a mild treatment effect.

However, in comparison to the ANCOVA methodology, the ADAS-CogIRT

methodology shows better improvements in statistical power as sample size

and trial duration are increased (figures 5.8b and 5.9b). In the case of a mod-

erate treatment effect, the ADAS-CogIRT methodology shows significantly

better statistical power than the ANCOVA methodology. The ADAS-CogIRT

methodology attains the 80% power threshold in trials with much smaller

sample size (∼300 patients) and shorter trial duration (∼18 months) than the

ANCOVA methodology, which requires ∼1000 patients in a 24 months trial

to achieve 80% power (figure 5.8c). With a sample size of 400 patients, the
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ANCOVA methodology never achieves 80% power even if the trial duration

is increased to over 4 years (figure 5.9c). However, the performance of the

ANCOVA methodology improves for a large treatment effect (figures 5.8d and

5.9d). While the ADAS-CogIRT methodology achieves ∼100% power for all

sample sizes and trial durations, the ANCOVA methodology also shows good

sensitivity reaching 80% power with ∼450 patients in a 24 months trial. The

improvement in statistical power of both methodologies with an increase in

trial duration was less than that observed with an increase in sample size.

Both methodologies have acceptable type-1 error rates of ∼5% for different

sample sizes and trial durations (figure 5.8a and 5.9a).

5.3.4.2 Sensitivity Analysis using Huperzine A Clinical Trial

The analysis of the huperzine A trial data using the ADAS-CogIRT

methodology revealed that 400µg huperzine A reduces the annual progression

rate of praxis impairment by 14.75 points (p-value = 0.0066). The effects of

huperzine A on progression rates of memory and language impairment were not

statistically significant. The size of the treatment effect detected by the ADAS-

CogIRT methodology (d = 1.97) was significantly higher than that detected

by the ANCOVA methodology (d = 0.35). Since praxis items contribute the

least to the total ADAS-Cog scores (15/70 points), the ANCOVA methodology

detects a much smaller treatment effect in comparison to the ADAS-CogIRT

methodology.
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Figure 5.8: Statistical power against sample size: Plots showing the relation-
ship between the statistical power of the ADAS-CogIRT, single latent trait
variant of the ADAS-CogIRT and ANCOVA methodologies and sample size
for hypothetical treatment levels of (a) d = 0, (b) d = 0.2, (c) d = 0.5, and
(d) d = 0.8. The trial duration was fixed at 24 months.
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Figure 5.9: Statistical power against trial duration: Plots showing the rela-
tionship between the statistical power of the ADAS-CogIRT, single latent trait
variant of the ADAS-CogIRT and ANCOVA methodologies and duration of
clinical trials for hypothetical treatment levels of (a) d = 0, (b) d = 0.2, (c)
d = 0.5, and (d) d = 0.8. The sample size was fixed at 400 patients.
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5.4 Conclusion

The proposed ADAS-CogIRT scoring methodology addresses several

limitations associated with the current scoring methodology. An in-depth psy-

chometric analysis showed that the ADAS-Cog measures impairment in three

distinct cognitive domains of memory, language, and praxis in patients. This

is in agreement with the design of items in the original ADAS-Cog study [140]

and findings of several other factor analysis studies [164, 117, 89, 180]. While

memory loss has been long considered characteristic of Alzheimer’s disease,

its classic neuropathology can also be associated with important language and

praxis impairment in patients with predominant posterior perisylvian damage

[191]. Similar to AChEI drugs, which specifically target memory mechanisms,

and to the effect we detected in the huperzine A trial, investigative treatments

in the future may also have non-uniform effects across cognitive domains. The

current scoring methodology cannot detect non-uniform effects across cogni-

tive domains. In contrast, the ADAS-CogIRT methodology allows for separate

evaluation of treatment effects on the memory, language, and praxis domains.

The ADAS-CogIRT methodology estimates cognitive impairment based

on patients response patterns across the ADAS-Cog items. Such an item-level

analysis also allows adjustment for measurement bias of the ADAS-Cog items

due to gender and status of AChEI therapy. Gender differences in item diffi-

culty are likely due to socio-cultural factors that expose one gender to certain

objects and tasks more often than the other gender experiences them. The
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status of AChEI therapy strongly affects slopes of word recall and recogni-

tion items. Since these items contribute heavily to the total ADAS-Cog scores

(32/80 points), this may be the reason behind the slower cognitive deteri-

oration observed in patients undergoing AChEI therapy, as assessed by the

current methodology [141, 138].

Inspired by the application of IRT in educational testing, we defined

a clinically meaningful scale to measure cognitive impairment. In mild-to-

moderate patients, the scale allows estimates to be rounded off to the nearest

integers without loss of precision. The scale also facilitates a fractional in-

terpretation of cognitive impairment in study patients, relative to severely

impaired patients, who have a cognitive impairment score of 100 points. The

parameters of the ADAS-CogIRT methodology are scale independent. There-

fore, items can be easily added or removed from the ADAS-CogIRT method-

ology without having to re-estimate parameters or redefine properties (such

as range) of the measurement scale. This is relevant because active research

towards improving the ADAS-Cog items is already underway [158]. Since

the ADAS-CogIRT methodology pools information across items for estimating

cognitive impairment, it is less sensitive to scoring errors in individual items as

compared to the current scoring methodology, which is linearly affected. For

patients with missing responses to certain items, the ADAS-CogIRT method-

ology does not require data imputation and estimates cognitive impairment

using the set of items answered by the patients. However, measurement pre-

cision is lower for patients with missing responses, as would be expected from
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psychometric theory.

By addressing limitations of the current scoring methodology, the ADAS-

CogIRT methodology measures cognitive impairment more accurately (figure

5.6) and makes clinical trials more efficient by reducing the sample size and

follow-up duration required to investigate treatments (figures 5.8 and 5.9).

More importantly, it allows for the detection of treatment effects that may

have been missed by using the current scoring methodology. This was vali-

dated in the huperzine A clinical trial, where the ADAS-CogIRT methodol-

ogy detected a significant improvement in the praxis domain, that had been

overlooked by the traditional ANCOVA methodology. In agreement with our

findings, a positive effect of huperzine A on praxis abilities of patients has

been found using the activities of daily living scale [185, 99].

Prior work on the application of IRT to the ADAS-Cog mostly focused

on evaluating its measurement properties [75, 180, 14]. A few studies addition-

ally investigated IRT for measuring cognitive impairment [12, 172]; however,

they assumed that the ADAS-Cog measures a single trait in patients. While a

single trait is easy to interpret and model using IRT, it does not adequately fit

patient response data (figure 5.1) and severely violates the core IRT assump-

tion of local item independence, which has severe effects on trait estimates

[193]. Similar to the total ADAS-Cog scores, the single trait also measures a

weighted average of impairment across multiple cognitive domains. Memory

items, which have the highest weights, show the poorest fit to the ADAS-Cog
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response data (figure 5.1). As a result, measurement of cognitive impairment

from a single latent trait IRT model suffers from low precision and reliability.

Despite these shortcomings, a single trait IRT model has been demonstrated to

significantly improve the sensitivity of the ADAS-Cog in clinical trial simula-

tions [172]. However, those reported results may be overly optimistic because

several of the trial characteristics simulated in the analysis [172] are atypical

for real clinical trials, such as frequent follow-ups, no patient dropouts, and

no heterogeneity due to patient-level factors. Therefore, for a proper compar-

ison, we additionally evaluated the single trait version of the ADAS-CogIRT

methodology in more realistic clinical trial simulations and found it to illus-

trate significantly lower power than the proposed ADAS-CogIRT methodology

(figures 5.8 and 5.9). Since prior studies were primarily focused on evaluating

the potential of IRT in this application domain, they did not define a measure-

ment scale [12, 172], resulting in counterintuitive negative scores of cognitive

impairment in study patients. As also noted by the authors [12, 172], they

were additionally limited by ignoring measurement bias and heterogeneity in

disease severity of patients.

While this study addressed several limitations of the current scoring

methodology, it also suffers from certain limitations. Firstly, we could not in-

vestigate measurement invariance of the proposed scoring methodology across

all patient-level factors (such as race and ethnicity) due to a lack of hetero-

geneity in the data. This limitation should be noted in future work, in order

to avoid biased estimates of cognitive impairment using the ADAS-CogIRT
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methodology with patient groups not included in this study. Secondly, when

compared to the current scoring methodology, the ADAS-CogIRT methodol-

ogy is a bit more cumbersome and requires the use of a computer or a hand-

held device for measuring cognitive impairment in patients. However, this

limitation is less relevant for clinical trials than for routine practice because

computing is already required for efficacy analysis of investigative treatments.

For routine practice, a specialized application could be developed for making

the use of the ADAS-CogIRT methodology straightforward. Thirdly, the pre-

cision of the ADAS-CogIRT methodology for measuring language and praxis

impairment gets affected due to the inherent limitations of the ADAS-Cog

items (figure 5.7). As a result, the improvement in sensitivity afforded by

the ADAS-CogIRT methodology will decrease for clinical trials focusing on

milder stages of Alzheimer’s disease. In those disease stages, it may be better

to use this tool only for investigating treatment effects on memory impair-

ment. However, this approach would not be applicable to mild Alzheimer’s

disease patients who have predominant involvement of the parietal lobe [191].

The inclusion of more difficult items probing subtle levels of language and

praxis impairment would improve its measurement precision in milder stages

of Alzheimer’s disease.

Despite these limitations, the ADAS-CogIRT methodology holds great

significance for clinical trials of Alzheimer’s treatments. A significant pro-

portion of clinical trials still focus on mild-to-moderate disease stages due to

the inability to early detect Alzheimer’s disease with high specificity. The
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proposed scoring methodology significantly improves the efficiency of clinical

trials focused in the mild-to-moderate stages of Alzheimer’s disease. Such an

improvement in efficiency of clinical trials is highly desirable for rapid testing of

future treatments in the critical quest for a disease-modifying treatment. The

ADAS-CogIRT methodology also allows separate evaluation of treatment ef-

fects in the memory, language, and praxis domains, which can potentially pro-

vide additional information on the pharmacological properties of treatments

and facilitate development of improved therapies. Future clinical trials of

Alzheimer’s treatments should consider the proposed ADAS-CogIRT scoring

methodology as part of their secondary efficacy analysis to further evaluate

and establish the significance of the proposed methodology in comparison to

the current scoring methodology.

5.5 Summary

The sensitivity of the Alzheimer’s Disease Assessment Scale-Cognitive

subscale (ADAS-Cog) in its current form can be significantly improved by

addressing limitations associated with its scoring methodology. In this chap-

ter, we described a new scoring methodology for the ADAS-Cog, calling it

as the ADAS-CogIRT scoring methodology. The ADAS-CogIRT methodology

addresses several major limitations of the current scoring methodology and sig-

nificantly improves the sensitivity of the ADAS-Cog in clinical trials focused

in the mild-to-moderate Alzheimer’s disease stage. However, the precision of
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the ADAS-CogIRT scoring methodology in measuring language and praxis im-

pairment is poor in the mild cognitive impairment (MCI) stage of Alzheimer’s

disease, where a significant proportion of clinical trials have started to focus.

Cerebral atrophy is closely related with cognitive impairment and, therefore,

can potentially be used as a surrogate measure of cognitive impairment in clin-

ical trials. We build upon this concept in the next two chapters (chapters 6-7)

with an attempt towards improving the efficiency of clinical trials in the MCI

stage. In chapter 6, we review the relationship between cerebral atrophy and

cognitive impairment, and the promise of combining them into a biomarker

of Alzheimer’s disease. In chapter 7, we employ a latent variable modeling

framework similar to the one used in this chapter to investigate the relation-

ship between brain-wide cerebral atrophy and cognitive impairment. Based

on the relationship, we develop a biomarker and evaluate its performance in

clinical trials focused in the MCI stage.
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Chapter 6

Cerebral Atrophy and Cognitive Impairment

in Alzheimer’s Disease

6.1 Introduction

A comprehensive psychometric analysis of the ADAS-Cog in chapter 5

showed that several items in the ADAS-Cog, especially the items that assess

language and praxis impairment, suffer from floor effects. While the improved

ADAS-CogIRT scoring methodology addresses several limitations associated

with the current scoring methodology, it is not able to address the inherent

limitations of the ADAS-Cog items. The floor effects of the ADAS-Cog items

are even more severe in the mild cognitive impairment (MCI) stage, where

an increasing number of clinical trials have started to concentrate. This tran-

sition in disease stage for clinical trials is motivated from an understanding

that disease-modifying treatments would be more effective in the MCI stage as

compared to the mild-to-moderate AD stage [63, 40]. However, the lack of a

sensitive outcome measure and an inability to specifically select MCI patients

that will convert to AD against other dementia types severely affects the effi-

cacy of clinical trials conducted in the MCI stage. As a result, all clinical trials
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of disease-modifying treatments in the MCI stage have failed to show a signif-

icant treatment effect, including treatments that show significant effects even

in the mild-to-moderate AD stage [146, 102, 48]. Besides cognitive impair-

ment, the regulatory agencies also allow functional impairment as a possible

primary end-point; however, AD patients in the MCI stage do not show any

deficits in executive functioning [83]. Therefore, there is a critical need for

an outcome measure that can track progression of cognitive impairment with

good sensitivity in the MCI stage.

While the underlying pathology of AD is believed to be amyloid plaques

and neurofibrillary tangles, their deposition is not directly related to cognitive

impairment in patients [83, 113, 66]. The current hypothesis of the AD patho-

logical cascade considers amyloidosis, tau pathology, and neuronal injury as

sequential rather than simultaneous processes [83, 82]. In fact, cognitive im-

pairment is more closely related to the extent of neuronal and synaptic loss

than any other pathological process [42, 167]. Since cerebral atrophy is a

manifestation of regional neuronal loss at a macroscopic scale, atrophy is also

closely related with cognitive impairment [62, 58]. Advances in medical image

analysis have enabled measurement of cerebral atrophy on structural magnetic

resonance (MR) images with good accuracy and reliability across scanner man-

ufactures and field strengths [65, 47, 139, 90, 145, 70, 134]. Therefore, if the

relationship between cerebral atrophy and cognitive impairment can be accu-

rately established, cerebral atrophy can potentially serve as a surrogate out-

come measure or be used in conjunction with the ADAS-Cog for more sensitive
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tracking of progression of cognitive impairment in clinical trials.

The promise of cerebral atrophy as a sensitive AD biomarker has led to

several small and large-scale investigations. The medial temporal lobe, which

is affected characteristically in AD, has been the most widely studied brain

region [62, 177]. Previous studies have measured cerebral atrophy on MR vol-

umes using a variety of approaches including visual assessment, measurement

based on manual tracing of brain regions, and the use of semi/fully automatic

techniques, and voxel-based methods [62, 177]. These prior studies have re-

ported significant improvements in clinical trials using cerebral atrophy as an

outcome measure [115, 79]. However, cerebral atrophy is still not approved

as a valid biomarker due to a limited understanding of the relationship be-

tween cerebral atrophy and clinically relevant outcomes such as cognitive and

functional impairment.

In the next chapter, the relationship between brain-wide cerebral at-

rophy measured on MR volumes and cognitive impairment assessed using the

ADAS-Cog is investigated. A biomarker is developed based on the relationship

between cerebral atrophy and cognitive impairment, which uses cerebral atro-

phy as a surrogate marker of cognitive impairment in the MCI stage, where the

ADAS-Cog shows low sensitivity in tracking cognitive impairment of patients.
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Chapter 7

Biomarker for Tracking Alzheimer’s Disease

Progression in Clinical Trials

7.1 Introduction

Since both cerebral atrophy and patients’ responses to the ADAS-Cog

items are related to underlying cognitive impairment, we performed a com-

bined latent variable analysis to investigate this relationship. We extended

the latent variable modeling framework to develop a biomarker that combines

the ADAS-Cog responses of patients with cerebral atrophy on MR imaging

(ADAS-CogMRI) for more accurate measurement of progression of cognitive

impairment in clinical trials. The sensitivity of the proposed ADAS-CogMRI

biomarker was evaluated and compared with the ADAS-Cog using simulated

clinical trials. We additionally evaluated the ADAS-CogMRI and the ADAS-

Cog in a real world problem, posed as a clinical trial of a treatment hypoth-

esized to prevent disease progression to dementia. Currently, the primary

efficacy analysis of treatments in clinical trials typically involves linear mod-

eling of serial determinations of the total ADAS-Cog scores of patients using

an analysis-of-covariance (ANCOVA) framework [146, 102, 48]. In chapter 5,
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we developed an improved scoring methodology for the ADAS-Cog using item

response theory (ADAS-CogIRT), which addresses several major limitations

of the current scoring methodology and significantly improves the sensitivity

of the ADAS-Cog in clinical trials. Therefore, we considered the use of both

the current and the ADAS-CogIRT scoring methodologies in evaluating the

sensitivity of the ADAS-Cog. A manuscript on the work presented in this

chapter is currently under preparation for a peer-reviewed journal.

7.2 Materials & Methods

7.2.1 Data

The data used in this study were collected from the Alzheimer’s Dis-

ease Neuroimaging Initiative (ADNI) cohort (adni.loni.usc.edu). We collected

structural magnetic resonance (MR) imaging data, clinical, demographic and

ADAS-Cog response data from 437 patients diagnosed with amnestic MCI

based on the revised MCI criteria [123] and 122 patients diagnosed with prob-

able Alzheimer’s disease at baseline. These patients formed only a subset of

the ADNI data that were used in chapter 5, which had structural MR volumes

available. The patients underwent follow-up visits roughly every 6 months until

an average duration of 1.92 years. During follow-up, 172 MCI patients pro-

gressed to meet the clinical criteria for probable Alzheimer’s disease while 265

MCI patients stayed stable or reverted back to normal cognitive functioning.

For the rest of this chapter, the MCI patients that progressed to Alzheimer’s
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disease will be referred to as MCI-Converters (MCI-C) and patients that did

not progress to Alzheimer’s disease as MCI-Nonconverters (MCI-NC). A sum-

mary of characteristics of the Alzheimer’s disease, MCI-Converters, and MCI-

Nonconverters patients is provided in table 7.1.

Table 7.1: Patient summary: Summary of the characteristics of Alzheimer’s
disease (AD), MCI-Converters (MCI-C), and MCI-Nonconverters (MCI-NC)
patients considered in this study.

AD MCI-C MCI-NC

Sample Size 122 172 265

Age 86.9 (7.8) 86.7 (7.4) 82.8 (8.8)

Gender (% Female) 46.3% 44.8% 40.0%

APOE (% ε4 positive) 67.5% 66.3% 38.6%

Total ADAS-Cog 15.3 (5.1) 11.1 (4.4) 10.8 (3.7)

The data were divided into training and validation sets. The training

set comprised of data from randomly selected 61 Alzheimer’s disease, 132 MCI-

NC, and 86 MCI-C patients. The training set was used for exploratory latent

variable analysis and obtaining parameters for design of clinical trial simula-

tions in the MCI stage. Due to the small number of Alzheimer’s patients in

the training set, data from all the 122 patients was used for designing trial

simulations in the mild-to-moderate Alzheimer’s disease stage. The validation

set contained data from the remaining 61 Alzheimer’s patients, 86 MCI-C pa-

tients and 133 MCI-NC patients, and was used for confirmatory latent variable

analysis and evaluating the performance of the developed biomarker.
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7.2.2 Structural MR Analysis

The structural MR volumes of patients were analyzed using the FreeSurfer

image analysis suite (http://surfer.nmr.mgh.harvard.edu). The longitudinal

stream of the FreeSurfer was used to create unbiased within-patient templates

using a robust inverse registration method [133, 134]. All MR volumes un-

derwent processing steps of motion correction and averaging, removal of non-

brain tissue, spatial and intensity normalization, segmentation of subcortical

white matter and gray matter structures [51, 52], and delineation of bound-

aries between white matter, gray matter and cerebrospinal fluid [39, 50]. The

cerebral cortices were parcellated into 34 gyral structures using deformation

procedures [53, 44, 54] and cortical thickness measurements were obtained by

calculating the closest distances between the gray matter/white matter and

gray matter/cerebrospinal fluid boundaries at each vertex of the cortical sur-

faces. The accuracy of cortical thickness measurement in FreeSurfer has been

validated against histological [139] and manual measurements from MR imag-

ing [90, 145] with good test-retest reliability across scanner manufactures and

field strengths [70, 134]. The use of the within-patient templates in the lon-

gitudinal stream significantly improves the reliability and statistical power of

structural measurements obtained from MR volumes [134].

Cortical thickness measurements have been reported to be better pre-

dictors of cognitive impairment [128, 92] . Therefore, mean cortical thickness

measurements inside the 34 gyral structures were used in this study. Addition-
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ally, volume measurements of the hippocampus and amygdala were included,

which have been repeatedly validated as promising biomarkers for tracking

Alzheimer’s disease progression [177, 154, 152, 84]. For all the brain regions,

structural measurements in the two hemispheres were added together. As rec-

ommended [189], the volume measurements were normalized with patients’

intracranial volumes to account for random inter-patient differences in brain

sizes while the cortical thickness measurements were used without any nor-

malization.

7.2.3 Latent Variable Analysis of Atrophy and the ADAS-Cog

Since both cerebral atrophy and responses to the ADAS-Cog items are

closely related to underlying cognitive impairment, we conducted a combined

latent variable analysis of the structural MR measurements and the ADAS-

Cog responses to investigate the relationship between cerebral atrophy and

cognitive impairment. The continuous MR measurements were analyzed us-

ing latent factor analysis where the kth MR measurement in ith patient was

modeled as:

yik = dik +αTk θi + εik (7.1)

where, θi = (θi1, . . . , θim) denote m latent traits underlying the MR measure-

ments with associated slopes as αk = (αk1, . . . , αkm), dik represents patient-

specific intercept of kth brain measurement, and εik is the associated zero-mean

residual error term. Factor analysis estimates underlying latent traits by an-
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alyzing covariances between the MR measurements yik. However, besides the

systematic component of covariances related to cognitive impairment, the MR

measurements also have a random component of covariances due to variability

in patients’ brain sizes. Therefore, the intercept dik = dk + δik was split into a

population-level intercept dk and a patient-level random effect δik to account

for random covariances between the MR measurements. If the random covari-

ance is not accounted in the model, the estimated latent traits are biased and

additionally measure variability in brain sizes, which are not representative of

cognitive impairment in Alzheimer’s disease patients.

The categorical ADAS-Cog responses were probabilistically modeled

using item response theory (IRT) where the probability of an incorrect response

xij = 1 by ith patient to a dichotomous item j with response categories x.j ∈

{0, 1} was modeled as

P (xij = 1|θi,αj , dj, gj) = gj +
(1− gj)

1 + exp[−(αTj θi + dj)]
(7.2)

where, αj and dj represent slope and intercept of the jth ADAS-cog item. The

lower asymptotes gj were included to account for difficult ADAS-cog items,

which are answered incorrectly even by cognitively normal individuals. The

relationship in (7.2) was extended to polytomous items with Cj ≥ 2 response

categories k = {0, . . . , Cj − 1} by modeling boundaries between the response

categories.
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7.2.3.1 Latent Traits Underlying Atrophy and the ADAS-Cog

The structure of latent traits underlying the MR measurements and

the ADAS-Cog responses of patients was investigated using a combination of

the following criteria:

• Traditional techniques : A combination of traditional techniques of Kaiser’s

rule (number of eigenvalues ≥ 1) [87], scree plot, and parallel analysis

[77, 73] were used for estimating the number of latent traits.

• Model fit : The latent trait structure should illustrate good global and

item-level fit to the MR measurements and the ADAS-Cog responses.

The global-level fit was assessed using root mean squared error of approx-

imation (RMSEA) [31], Tucker Lewis index (TLI) [171], and comparative

fit index (CFI) statistics. The criteria of RMSEA≤0.05, TLI≥0.95 and

CFI≥0.95 indicates a good global fit. The item-level fit was assessed

using the S-X2 statistic [119, 194] for the ADAS-Cog items and the co-

efficient of determination (R2) statistic for the continuous MR measure-

ments. A good item-level fit required S-X2 statistic to be insignificant

for all the ADAS-Cog items and R2 ≥ 0.70 for all the MR measurements.

• Clinical relevance: The latent traits should be clinically relevant.

The structure of latent traits and the loading parameters were validated by

evaluating model fit on the validation set as part of the confirmatory latent

variable analysis.
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7.2.3.2 Measurement Invariance of the Latent Variable Models

The latent variable models of the MR measurements and the ADAS-

Cog items were tested for measurement invariance across disease stages and

patient characteristics. Some prior studies have reported nonlinear profiles

of cerebral atrophy in brain regions [144, 93]. Therefore, we investigated the

significance of higher order polynomial terms in the latent variable models of

the structural MR measurements. We also investigated the effects of patient-

level factors of gender (men/women), APOE genotype (presence/absence of

an ε4 allele), age, and education level (less/greater than 13 years) on the latent

variable models of the MR measurements and the ADAS-Cog items. For every

patient-level factor, the parameters of the latent variable models of the MR

measurements and the ADAS-Cog items were estimated separately for patient

groups and compared using the Wald chi-square test with false discovery rate

correction [101].

7.2.4 Biomarker for Tracking Alzheimer’s Disease Progression

A biomarker based on combined latent variable modeling of the ADAS-

Cog responses and cerebral atrophy on MR imaging (ADAS-CogMRI) was

developed for more accurate measurement of cognitive impairment and pro-

gression rate in patients. The latent variable models of the MR measurements
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(7.1) and the ADAS-Cog items (7.2) were extended to longitudinal settings:

ytik = dik +Ziδk +αTk θ
t
i +Wiτ

T
k θ

t
i + εikt (7.3)

P (xtij = 1|θti ,αj , dj, gj) = gj +
(1− gj)

1 + exp[−(αTj θ
t
i +Wiτ

T
j θ

t
i + dj +Ziδj)]

where xtij, y
t
ik, θ

t
i represent the jth ADAS-Cog item response, the kth MR mea-

surement, and cognitive impairment of ith patient at time t. The fixed effects

τ and δ denote adjustments in slopes and intercepts of the MR measurements

and the ADAS-Cog items to account for measurement bias due to patient-level

factors with Wi and Zi as the associated design matrices. Since follow-up du-

rations of patients are typically too short (∼2-3 years) to observe any complex

patterns of progression, a linear progression of cognitive impairment was as-

sumed:

θti = θ0i + ri × t (7.4)

where θti and θ0i denote cognitive impairment in ith patient at follow-up time

t and baseline visit, and ri denotes the rate of progression of cognitive im-

pairment in ith patient. Given ith patient’s longitudinal ADAS-Cog responses

xti = (xti1, . . . , x
t
iJ) and MR measurements yti = (yti1, . . . , x

t
iK) at follow-up

times t = (T1, . . . , Ti), the proposed ADAS-CogMRI biomarker estimates base-

line cognitive impairment θ0i and progression rate ri of the patient by the
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maximum likelihood estimates for observing the data:

L(Xi,Yi|θ0i , ri) =

Ti∑
t=Ti

J∑
j=1

log(P (xtij|θ0i , ri,Ψ))+

Ti∑
t=Ti

K∑
k=1

log(P (ytik|θ0i , ri,Ψ))

{θ̂0i , r̂i} = arg max
θ,r

L(Xi,Yi|θ0i , ri) (7.5)

where L(Xi,Yi|θ0i , ri) denotes the log-likelihood of observing the longitudi-

nal ADAS-Cog item responses Xi = (xT1
i , . . . ,x

Ti
i ) and MR measurements

Yi = (yT1
i , . . . ,y

Ti
i ) in a patient with baseline cognitive impairment θ0i and

progression rate ri. Ψ denotes the set of parameters of the ADAS-Cog item

characteristic functions and latent variable models of MR measurements.

7.2.5 Application of the Biomarker in Clinical Trials

Significant inter-patient variability in baseline cognitive impairment

and progression rates is typically observed in clinical trials. While some vari-

ability is systematic due to patient-level factors and treatment effects, ran-

dom variability across patients is also substantial. Therefore, we developed

a generalized mixed-effects approach for using the proposed ADAS-CogMRI

biomarker in clinical trials, where the baseline cognitive impairment θt0i , pro-

gression rates ri, and baseline MR measurements di = {di1, . . . , diK} of pa-
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tients are modeled as mixed effects.

θ0i = µθ + βArm × (Armi) + βPatient × Pi + εi,θ

ri = µr + γArm × (Armi) + γPatient × Pi + εi,r

di = µd + χPatient × Pi + εi,d (7.6)

where, µθ, µr, and µd denote the average values of baseline cognitive im-

pairment, progression rates, and baseline MR measurements across patients.

The categorical covariate Armi encodes information on the trial arm of ith

patient as Armi =

{
0 if placebo
1 if treatment

. While βArm controls for differences

in average baseline cognitive impairment between placebo and treatment arm

patients, γArm measures the effect of treatment on progression rates. Patient-

level covariates Pi were included to model systematic variability in base-

line cognitive impairment, progression rates, and baseline MR measurements

with βPatient, γPatient, and χPatient representing the associated fixed ef-

fects. Random effects εi,θ, εi,r, and εi,d were included in the model to ac-

count for random inter-patient variations in baseline cognitive impairment,

progression rates and baseline MR measurements. The baseline cognitive

impairment and progression rates in Alzheimer’s disease patients are inter-

correlated and, therefore, the random effects εi,θ and εi,r were allowed to

covary

(
εi,θ
εi,r

)
∼ N

(
0,

[
Σθ Σθ,r

Σθ,r Σr

] )
. Similarly, since differences in brain sizes

affect brain regions similarly, the random effects of baseline MR measurements

εi,d were also allowed to covary.
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7.2.5.1 Sensitivity Analysis using Simulated Clinical Trials

We evaluated and compared the sensitivities of the ADAS-CogMRI

biomarker and the ADAS-Cog scored using the ADAS-CogIRT and the AN-

COVA methodologies by simulating clinical trials focused in the MCI stage

(total ADAS-Cog scores: 10±5) and the mild-to-moderate Alzheimer’s disease

stage (total ADAS-Cog scores: 25±10). The clinical trials were simulated to

mimic the complexity of real-world clinical trials by considering unbalanced

patient samples in trial arms, systematic and random inter-patient variability

in baseline cognitive impairment, progression rates and baseline structural MR

measurements, errors in structural MR measurements and dropout of patients

during the trials. The parameters for simulating these characteristics were ob-

tained by analyzing longitudinal MR measurements and ADAS-Cog responses

of patients using the developed generalized mixed-effects model approach in

(7.6). A Cox proportional hazards model was developed for modeling hazard

of patient dropout with baseline cognitive impairment, progression rates, and

patient-level factors as potential covariates.

In each of the MCI and the mild-to-moderate Alzheimer’s disease stages,

we performed two simulation experiments to evaluate the sensitivities of the

ADAS-CogMRI biomarker, the ADAS-CogIRT, and the ANCOVA method-

ologies. In the first experiment, the statistical power of the methodologies was

evaluated for different sample sizes of 200, 400, 600, 800, and 1000 patients

considered in clinical trials of fixed 24-months long duration. For the second
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experiment, the sample size was fixed as 400 patients and statistical power of

the methodologies was evaluated for different trial durations of 12, 24, 36, and

48 months. These fixed values were selected based on the characteristics of the

clinical trial conducted in the past. Both experiments were repeated for four

hypothetical treatment effects of Cohen’s d = 0 (no effect), 0.2 (mild effect),

0.5 (moderate effect), and 0.8 (large effect) simulated in treatment arms of

clinical trials [32]. The case of no treatment effect (Cohen’s d = 0) evaluated

the type-I error rates of the methodologies. In both the experiments, patients

were followed up biannually until the duration of each trial. The longitudinal

ADAS-Cog responses and the MR measurements of patients were simulated

using the estimated latent variable models.

In each trial, the simulated data were analyzed using the ADAS-CogMRI

biomarker, the ADAS-CogIRT and the ANCOVA methodologies. The statis-

tical significance of the treatment effect was assessed using z-statistic with

correction for multiple comparisons. In each simulation experiment, 300 clin-

ical trials were simulated for every possible combination of treatment effect,

sample size, and trial duration. The statistical power was evaluated as the

proportion of clinical trials wherein a statistically significant treatment effect

on patients’ progression rates was detected.
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7.2.5.2 Sensitivity Analysis in Detecting Differences between Pro-
gression Rates of MCI-C and MCI-NC Patients

None of the previous clinical trials that involved MR imaging showed

any evidence of a treatment effect, which did not allow validation of the simu-

lation results in a real clinical trial study. Instead, we considered a real world

problem of detecting differences between progression rates of MCI-C and MCI-

NC patients as a sample clinical trial. The progression rates of MCI-C patients

are higher than the progression rates of MCI-NC patients [161, 8, 61, 46, 94].

We posed this problem similar to a real clinical trial, where the MCI-C and

MCI-NC patients were assigned to the control and the treatment arms, respec-

tively. This mimics clinical trial of a disease-modifying treatment hypothesized

to prevent progression of MCI patients to Alzheimer’s disease. We considered

only those MCI-NC patients that did not show an evidence of conversion for at

least 3 years of follow-up after baseline. Similar to the simulated clinical trials,

the statistical power of the ADAS-CogMRI biomarker, and the ADAS-CogIRT

and the ANCOVA methodologies were evaluated in detecting differences be-

tween progression rates of MCI-C and MCI-NC patients using different sample

sizes of 50, 100, 150, 200, and 300 patients and trial durations of 6, 12, 18, and

24 months. The smaller sample sizes and trial durations were considered due

to the large treatment effect size involved in this problem. For each possible

combination of trial duration and sample size, 300 repetitions were performed

with patients selected randomly using bootstrapping with replacement. The

statistical power was evaluated as the proportion of repetitions wherein a sta-
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tistically significant difference in progression rates of MCI-C and MCI-NC was

observed.

7.2.5.3 Enrichment of Clinical Trials in the MCI Stage

Clinical trials in the MCI stage would benefit from sample enrich-

ment by specifically including MCI patients that would convert to Alzheimer’s

disease in near future. We evaluated the abilities of the ADAS-CogMRI

biomarker, the ADAS-CogIRT methodology, and the sole use of cerebral at-

rophy in predicting MCI patients that would convert to Alzheimer’s disease

based on patients’ MR measurements and ADAS-Cog responses at baseline.

In the sole use of cerebral atrophy, dimensionality reduction in the MR mea-

surements was conducted using factor analysis, as described in [43]. Using the

training set, Cox-proportional hazard models were developed to test whether

baseline cognitive impairment estimated by the methods and patient-level fac-

tors are associated with time to conversion. The covariates that were not

found to be significant predictors were removed from the model and the haz-

ard models were re-estimated. The re-estimated hazard models were used for

estimating survival likelihoods for all patients in the validation set by the end

of 3 years of patient follow-up and used for generating the receiver operating

characteristic curves. The performance of the three methods in predicting

MCI patients that will convert to Alzheimer’s disease was calculated in terms

of area under the ROC curve (AUC), sensitivity, and specificity.
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All data analyses in this study were conducted using the Mplus v6.12

and R software version 3.0.2 environment for statistical computing. The

main R scripts for the implementation and evaluation of the ADAS-CogMRI

biomarker are available at the following repository: https://github.com/

nishant3115/ADAS-CogMRI-Biomarker.

7.3 Results

7.3.1 Latent Variable Analysis of Atrophy and the ADAS-Cog

7.3.1.1 Latent Traits Underlying Atrophy and the ADAS-Cog

All the traditional techniques of Kaiser’s rule, scree plot, and parallel

analysis suggested m = 4 latent traits underlying the MR measurements and

the ADAS-Cog responses. The ADAS-Cog items loaded only on three out of

the four latent traits. The fourth latent trait was determined by the caudal an-

terior, rostral anterior, posterior, and isthmus portions of the cingulate gyrus,

which are associated with executive functioning [163]. The lack of items prob-

ing executive functioning in patients is a commonly discussed limitation of the

ADAS-Cog [137]. Since none of the ADAS-Cog items loaded on the fourth

trait, the trait and the corresponding four MR measurements loading on that

trait (thickness measurements of cingulate gyrus) were dropped from further

analysis. The three latent traits illustrated acceptable global fit (RMSEA =

0.028, TLI = 0.937, and CFI = 0.930) and good item level fits to the ADAS-

Cog items (S-X2 not significant) and the MR measurements (R2 values≥0.70
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for all brain regions except cuneus, frontal pole, lingual gyrus, and parahip-

pocampal gyrus, which had R2 values 0.60≤R2≤0.70). MR measurements

show significant random inter-patient variability, which cannot be explained

using cognitive impairment. Therefore, the observed global and item-level fits

were considered as acceptable and the latent variable models were used for

subsequent analysis.

Based on the nature of the ADAS-Cog items and functions of the brain

regions loading on the traits (figure 7.1), the three traits were clinically inter-

preted as measuring cognitive impairment in the memory, language, and praxis

domains. The first trait is determined by the memory-related ADAS-Cog items

(word recall, delayed word recall, word recognition, and orientation) and corti-

cal thickness measurements in regions of temporal lobe (entorhinal cortex, hip-

pocampus, amygdala, temporal pole, parahippocampal gyrus, fusiform gyrus,

and regions of temporal gyrus), which play important roles in learning and

memory [162]. Since most of the ADAS-Cog items probing memory impair-

ment are based on word recall and recognition, lingual gyrus was also associ-

ated with the first trait, which is primarily concerned with identification and

recognition of words [109].

The language-related ADAS-Cog items and cortical thickness measure-

ments in regions of inferior frontal gyrus (pars opercularis, pars triangularis,

and pars orbitalis) dominantly loaded on the second trait. Pars triangularis

and pars opercularis are important for speech-language production and dam-
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(a) (b) 

(c) (d) 

Figure 7.1: Latent traits loading on cerebral atrophy and the ADAS-Cog items:
A sample patient’s brain showing (a) lateral and (b) medial views of right
hemisphere, and (c) inferior view with brain regions color coded as red, green,
and blue, based on their loadings on the three traits, which represent cognitive
impairment in the memory, language, and praxis domains. The brain regions
that cross-load across multiple traits are color coded as cyan (cross-loading
on language and praxis factors) and yellow (cross-loading on memory and
language factors). The gray and black colors represent regions that are either
not brain tissue or were dropped from analysis. Subfigure (d) shows the ADAS-
Cog items that load on the three latent traits.
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age in these regions has been associated with aphasia [57, 114]. Other brain

regions that loaded on the second latent trait included regions in frontal lobe

[26, 7], insula [45, 156], and medial temporal lobe [68, 159], which have func-

tions in language comprehension and expression. The third trait was primarily

loaded by the praxis-related ADAS-Cog items and regions in the parietal lobe

(precuneus cortex, inferior and superior parietal cortices, postcentral gyrus,

supramarginal gyrus) and occipital lobe (pericalcarine cortex, cuneus cortex,

lateral occipital cortex), which play important roles in motor control and sen-

sory skills [15, 37, 190]. In particular, constructional apraxia in patients has

been associated with pathology in occipital cortex [116].

When evaluated on validation set as part of the confirmatory factor

analysis, the factor loading structure in figure 7.1 illustrated an acceptable

global (RMSEA = 0.032, CFI = 0.921, and TLI = 0.917) and item-level fit to

the ADAS-Cog items (S-X2 not significant) and the MR measurements (similar

R2 values as in the training set).

7.3.1.2 Measurement Invariance of the Latent Variable Models

Several brain regions associated with memory, language, and praxis im-

pairment showed evidence of nonlinear profiles of cerebral atrophy. While tis-

sue loss accelerates in fusiform gyrus, supramarginal gyrus and insula gyrus, it

decelerates in lingual gyrus, amygdala, hippocampus, and pericalcarine gyrus

with progression of cognitive impairment. Similar nonlinear patterns of cere-

129



bral atrophy have been reported in previous studies [144, 93]. Among patient-

level factors, presence of an APOE-ε4 allele and aging are associated with

reduced baseline structural measurements in every brain region. Gender was

also found to affect baseline structural measurements in certain brain regions.

While men have thicker cuneus and larger amygdala, they have thinner frontal

pole, pars orbitalis, and smaller hippocampus. Education level was not found

to be associated with variations in the MR measurements. As found earlier

in chapter 5, several items on the ADAS-Cog illustrate measurement bias due

to patient-level factors. While naming the object ‘rattle’ is easier for women,

they are less likely to correctly name ‘harmonica’ and have more difficulty in

drawing a cube. A strong measurement bias due to gender was also observed

for the item ‘Remembering test instructions’, where women are more likely to

forget test instructions during administration of the ADAS-Cog. No measure-

ment bias in the ADAS-Cog items was observed due to education level and

APOE-εgenotype.

7.3.2 Application of the Biomarker in Clinical Trials

The ADAS-CogMRI biomarker provides significant improvement in sta-

tistical power to detect treatment effects in clinical trials over the ADAS-Cog

scored using the ADAS-CogIRT and the ANCOVA methodologies (figures 7.2–

7.5) while maintaining a type-I error rate of ∼5% (not shown).
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(a) (b) (c) 

Figure 7.2: Statistical power against sample size in the MCI stage: Plots
showing statistical power of the ADAS-CogMRI, the ADAS-CogIRT, and the
ANCOVA methodologies in detecting (a) mild (d = 0.2), (b) moderate (d =
0.5), and (c) large (d = 0.8) treatment effects for different sample sizes of 200,
400, 600, and 800 patients considered in simulated clinical trials of 24-months
duration.

7.3.2.1 Simulated Clinical Trials in the MCI Stage

For detecting a mild treatment effect, all the three methodologies suffer

from low power (figures 7.2-7.3a) due to large inter-patient variability in pro-

gression rates, which confounds the detection of a mild treatment effect. How-

ever, with an increase in sample size, the performance of the ADAS-CogMRI

biomarker improves much more quickly than the ADAS-Cog and achieves the

desirable power threshold of 80% with ∼900 patients (figure 7.2a). On the

other hand, the ADAS-Cog scored using either the ADAS-CogIRT or the AN-

COVA methodologies is unable to achieve 80% power even with large sample

size of 1000 patients. When the trial duration is increased, little improvements

in statistical power of the methodologies is observed for all the methodologies
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(a) (b) (c) 

Figure 7.3: Statistical power against trial duration in the MCI stage: Plots
showing statistical power of the ADAS-CogMRI, the ADAS-CogIRT, and the
ANCOVA methodologies in detecting (a) mild (d = 0.2), (b) moderate (d =
0.5), and (c) large (d = 0.8) treatment effects for different trial durations of
12, 24, 36, and 48 months considered in simulated clinical trials involving 400
patients.

(figure 7.2b). This is because a mild treatment effect is difficult to detect in

presence of large inter-patient variability in progression rates even if the mea-

surement accuracy of progression rates is improved by measuring at several

follow-up visits.

For a moderate treatment effect, the ADAS-CogMRI methodology il-

lustrates ≥80% power for all sample sizes and trial durations (figures 7.2-7.3b).

The ADAS-CogIRT methodology also achieves 80% power with a sample size

of ∼600 patients (figure 7.2b) in a 24-months long trial or 400 patients in a

∼36-months long trial. However, the ANCOVA methodology never achieves

80% power even with large sample size of 1000 patients and long trial duration

of 4 years. The performance of the ADAS-CogIRT and the ANCOVA method-
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ologies significantly improves in detecting a large treatment effect. However,

the ADAS-CogIRT methodology requires a minimum longitudinal follow-up of

at least ∼24 months in a clinical trial (figure 7.3c) because the ADAS-Cog item

scores do not sufficiently change in the MCI stage over short durations. This

limitation is also shared in the cases of mild and moderate treatment effects,

where the power of the ADAS-CogIRT methodology improves significantly as

the trial duration is increased to 24 months (figures 7.3a-b). The power of

the ANCOVA methodology also approaches 80% with a large sample size of

1000 patients in a 24-months long trial; however, with a small sample size of

400 patients, the ANCOVA methodology is unable to achieve 80% power even

with 4-year long trials.

7.3.2.2 Simulated Clinical Trials in the Mild-to-moderate Alzheimer’s
Disease Stage

Similar to the MCI stage, all the three methodologies show low power in

detecting a mild treatment effect (figures 7.4-7.5a). While the ADAS-CogMRI

methodology is able to achieve 80% power with a sample size of ∼800 pa-

tients, the ADAS-CogIRT and the ANCOVA methodologies are unable to do

so even with large sample sizes (figure 7.4a) and trial durations (figure 7.5a).

The ADAS-CogMRI biomarker shows ∼100% power in detecting a moderate

treatment effect. The ADAS-CogIRT methodology also shows good perfor-

mance and achieves 80% statistical power in detecting a moderate treatment

effect with a small sample size of ∼300 patients in a 24-months long trial
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(a) (b) (c) 

Figure 7.4: Statistical power against sample size in the mild-to-moderate
Alzheimer’s disease stage: Plots showing statistical power of the ADAS-
CogMRI, the ADAS-CogIRT, and the ANCOVA methodologies in detecting
(a) mild (d = 0.2), (b) moderate (d = 0.5), and (c) large (d = 0.8) treatment
effects for different sample sizes of 200, 400, 600, and 800 patients considered
in simulated clinical trials of 24-months long duration.

(a) (b) (c) 

Figure 7.5: Statistical power against trial duration in the mild-to-moderate
Alzheimer’s disease stage: Plots showing statistical power of the ADAS-
CogMRI, the ADAS-CogIRT, and the ANCOVA methodologies in detecting
(a) mild (d = 0.2), (b) moderate (d = 0.5), and (c) large (d = 0.8) treatment
effects for different trial durations of 12, 24, 36, and 48 months considered in
simulated clinical trials involving 400 patients.
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(figure 7.4b) or with 400 patients in a ∼15-months long trial (figure 7.5b).

The ANCOVA methodology also achieves 80% power in detecting a moderate

treatment effect with ∼800 patients in a 24-months trial; however, its perfor-

mance is low with small sample size even after the trial duration is increased

to 4 years (figure 7.5b). For a large treatment effect, both the ADAS-CogMRI

biomarker and the ADAS-CogIRT methodology show ∼100% power for all

sample sizes and trial durations (figures 7.4-7.5c). The statistical power of

the ANCOVA methodology also significantly improves and reaches 80% power

with a sample size of ∼500 patients in a 24-months long trial or with 400

patients in a ∼36-months long trial.

7.3.2.3 Sensitivity Comparison in the MCI and the Mild-to-moderate
Alzheimer’s Disease Stages

When compared to the mild-to-moderate Alzheimer’s disease stage, the

statistical power of the ADAS-CogIRT and ANCOVA methodologies decrease

significantly in the MCI stage due to the language and praxis-related ADAS-

Cog items suffering from severe floor effects. In contrast, the performance of

the ADAS-CogMRI biomarker stays approximately consistent across the two

disease stages, which is a desirable property for an outcome measure in clin-

ical trials. Moreover, while the ADAS-CogIRT and ANCOVA methodologies

require at least 24 months of longitudinal follow-up in order to detect pro-

gression in language and praxis impairment (figure 7.3a-c) in the MCI stage,

the ADAS-CogMRI biomarker measures progression in cognitive impairment
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(a) (b) (c) 

Figure 7.6: Statistical power in detecting differences between MCI-C and
MCI-NC patients: Plots showing statistical power of the ADAS-CogMRI, the
MRI-FA, the ADAS-CogIRT, and the ANCOVA methodologies in detecting
differences between progression rates of MCI-C and MCI-NC patients for vary-
ing sample sizes and longitudinal follow-up durations of (a) 6 months, (b) 12
months, and (c) 24 months.

much more consistently. This is also evident from the little improvement in

statistical power of the ADAS-CogMRI as the trial duration is increased in

the MCI stage (figure 7.3a-c).

7.3.2.4 Sensitivity Analysis in Detecting Differences in Progression
Rates between MCI-C and MCI-NC Patients

When validated on detecting differences between progression rates of

MCI-C and MCI-NC patients, the ADAS-CogMRI biomarker illustrated bet-

ter statistical power than the ADAS-CogIRT and the ANCOVA methodologies

(figure 7.6). The effect sizes corresponding to differences between progression

rates of MCI-C and MCI-NC patients were d = 0.92 in the memory, d = 0.37
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in the language, and d = 0.28 in the praxis domains. Due to the large ef-

fect size in the memory domain, all the methodologies showed good statistical

power in detecting differences between progression rates of MCI-NC and MCI-

C patients in a 24-months long study with 200 patients (figure 7.6c). However,

when the follow-up duration and sample size are reduced, the statistical powers

of the methodologies show a similar pattern as observed in simulation exper-

iments in the MCI stage (figure 7.2a). For a short follow-up duration of 6

months, the ANCOVA and the ADAS-CogIRT methodologies show poor sta-

tistical power due to little change in the ADAS-Cog scores in the MCI stage

(figure 7.6a). However, the ADAS-CogMRI biomarker shows much better sta-

tistical power and is able to achieve 80% power with ∼300 patients. For a

follow-up duration of 12 months, the performance of the ADAS-CogIRT and

the ANCOVA methodologies improve. While the ADAS-CogMRI biomarker

achieves 80% power with ∼100 patients, the ADAS-CogIRT and the ANCOVA

methodologies also achieve the threshold with ∼150 patients and ∼250 pa-

tients, respectively (figure 7.6b).

7.3.2.5 Enrichment of Clinical Trials in the MCI Stage

Among patient-level factors, APOE genotype is significant in predicting

conversion of MCI patients to Alzheimer’s disease. The baseline memory (haz-

ards ratio = 3.37, 95% CI: 2.46-4.61, p-value < 10−13) and language impair-

ment (hazards ratio = 1.40, 95% CI: 1.037-1.896, p-value = 0.002) calculated

using the ADAS-CogMRI biomarker were found to be significant predictors
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of conversion to Alzheimer’s disease. Baseline memory impairment was found

to be a significant predictor also when calculated using the ADAS-CogIRT

methodology (hazards ratio = 3.14, 95% CI: 2.37-4.16, p-value < 10−13) and

the sole use of cerebral atrophy (hazards ratio = 2.31, 95% CI: 1.83-2.90, p-

value < 10−11). However, baseline impairment in the language domain was not

found to be significant using the ADAS-CogIRT methodology and the sole use

of cerebral atrophy. Table 7.2 compares the accuracies of the ADAS-CogMRI

biomarker, the ADAS-Cog scored using the ADAS-CogIRT methodology, and

the sole use of cerebral atrophy in predicting MCI patients that will convert to

Alzheimer’s disease within 3 years of longitudinal follow-up. The AUC values

of the ADAS-CogMRI were significantly better than the AUC values of the

ADAS-CogIRT methodology (training p-value = 0.0046, test p-value = 0.01)

and the sole use of cerebral atrophy (training p-value = 0.02, test p-value =

0.0044).

7.4 Conclusion

The patients diagnosed with amnestic MCI do not show any noticeable

impairment in language and praxis domains [6]. However, as MCI patients

progress to Alzheimer’s disease, language and praxis abilities of patients de-

teriorate to an extent that decreases patients’ abilities to independently func-

tion [108]. Since disease-modifying treatments in the MCI stage aim towards

slowing progression to Alzheimer’s disease, clinical trials should additionally
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Table 7.2: Performance comparison: Table comparing the accuracies of the
ADAS-CogMRI biomarker, the ADAS-CogIRT scoring methodology, and the
sole use of cerebral atrophy (Atrophy) in predicting MCI patients that will
convert to Alzheimer’s disease.

Training Set

Method AUC Sensitivity Specificity

ADAS-CogMRI 0.869 84.04% 76.02%

ADAS-CogIRT 0.832 77.65% 78.76%

Atrophy 0.829 81.91% 75.34%

Validation Set

ADAS-CogMRI 0.868 83.87% 76.71%

ADAS-CogIRT 0.839 73.11% 80.13%

Atrophy 0.801 78.49% 73.97%

evaluate the effects of treatments in the language and praxis domains. How-

ever, the ADAS-Cog outcome measure does not allow evaluation of treatment

effects in the language and praxis domains due to the inherent limitations of

its items.

Cerebral atrophy is closely related to cognitive impairment and, there-

fore, can serve as a substrate for tracking progression of cognitive impairment

in the MCI stage. A latent variable analysis revealed four latent traits un-

derlying cerebral atrophy due to Alzheimer’s disease. These four traits are

consistent with the factor analysis results from previous studies [43] and the

hierarchical pattern of neurodegeneration observed in Alzheimer’s disease [22].

The ADAS-Cog items loaded on three out of the four traits with the same

loading structure as observed in an independent psychometric analysis of the

ADAS-Cog [180, 164, 117, 89]. The good model fit of the consistent load-
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ing structure to the ADAS-Cog items validates the close relationship between

cerebral atrophy and cognitive impairment in Alzheimer’s disease patients.

We extended the latent variable modeling framework to utilize this relation-

ship and developed the proposed ADAS-CogMRI biomarker for more accurate

measurement of progression of cognitive impairment in the MCI stage.

When compared with the sole use of the ADAS-Cog, the ADAS-CogMRI

biomarker significantly improves the efficacy of clinical trials focused in the

MCI stage by reducing sample size and trial duration required for detecting

treatment effects (figures 7.2-7.3). Similar improvements were also observed

in detecting differences in progression rates between MCI-C and MCI-NC pa-

tients (figure 7.6), which validated the results from the simulation experiments.

While the use of the ADAS-CogMRI biomarker provides clear benefits over

the ADAS-Cog in the MCI stage, the improvement in statistical power in the

mild-to-moderate Alzheimer’s disease stage is not significant. The ADAS-Cog

items that assess language and praxis domains become sensitive in the mild-

to-moderate Alzheimer’s disease stage and, therefore, the ADAS-Cog scored

using the ADAS-CogIRT methodology shows comparable performance as the

ADAS-CogMRI biomarker. However, the ADAS-CogMRI methodology may

still provide some improvement in statistical power for the case of mild treat-

ment effects in the mild-to-moderate Alzheimer’s disease stage.

While not presented here, we also compared the sensitivity of the

ADAS-CogMRI biomarker with the sole use of cerebral atrophy in clinical
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trials. As described in [43], the structural MR measurements were reduced in

dimensionality using factor analysis and the resulting latent traits were used

as neuroanatomical scores for patients. The sole use of cerebral atrophy illus-

trated similar statistical power as the ADAS-CogMRI biomarker in simulated

clinical trials and in detecting differences in progression rates between MCI-

C and MCI-NC patients. However, the neuroanatomical scores are biased

representatives of underlying cognitive impairment in patients. As we briefly

discussed in Section 7.2.3, significant random variability exists in the baseline

MR measurements after accounting for the systematic variability that is re-

lated to disease processes and cognitive impairment. If not accounted in the

factor analysis model, the latent traits get biased due to the random inter-

patient variability such that the latent traits are smaller in a patient with

larger baseline MR measurements than a patient with smaller baseline MR

measurements, even if the underlying impairment were the same. This bias

in the latent traits is the primary reason behind the lower accuracy of cere-

bral atrophy in predicting MCI-C patients as compared to the ADAS-CogMRI

biomarker (table 7.2). However, this bias is eliminated in longitudinal studies

when patients are used as their own controls in clinical trials. Therefore, the

sole use of cerebral atrophy results in similar statistical power as the ADAS-

CogMRI biomarker in clinical trials.

The combined latent variable modeling of the ADAS-Cog and cerebral

atrophy in the ADAS-CogMRI biomarker allows separating the systemic com-

ponent of covariance due to cognitive impairment from the random component

141



due to inter-patient variability in baseline MR measurements. Therefore, the

ADAS-Cog and cerebral atrophy address each others’ limitations. While cere-

bral atrophy improves measurement of progression of cognitive impairment

in the MCI stage, the ADAS-Cog helps in controlling random inter-patient

variability in the baseline MR measurements. The proposed ADAS-CogMRI

biomarker fulfills all the four requirements of an Alzheimer’s disease biomarker

laid down by the regulatory agencies [69]. Firstly, the automated image anal-

ysis and statistical techniques enable an accurate and reliable measurement

of cognitive impairment in Alzheimer’s patients [65, 47, 139, 90, 145, 70, 134,

177]. Secondly, the ADAS-CogMRI biomarker shows an acceptable sensitivity

(∼84%) and specificity (∼76%) in diagnosing MCI patients that will convert

to Alzheimer’s disease in future. Thirdly, the ADAS-CogMRI biomarker also

shows good sensitivity in detecting treatment effects in clinical trials. More-

over, it allows evaluation of treatment effects in the language and praxis do-

mains, which is not possible using the ADAS-Cog in the MCI stage. Fourthly,

the ADAS-CogMRI biomarker measures the extent of cognitive impairment in

Alzheimer’s patients, which is a clinically important outcome. Besides these

properties, the ADAS-CogMRI biomarker is easy to implement since both MR

imaging and the ADAS-Cog are already utilized in clinical trials. MR imag-

ing is routinely used in clinical trials for patient screening at baseline, and

evaluating safety of treatment during the study.

The ADAS-CogMRI biomarker and this study suffer from several lim-

itations. Firstly, the ADNI data used in this study contains strictly screened
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MCI patients, which do not represent the heterogeneity typically encountered

in clinical trials such as the presence of multiple pathologies. As a consequence,

when evaluated in a real clinical trial, the statistical powers of the proposed

ADAS-CogMRI biomarker and the ADAS-Cog are expected to be lower than

reported in this study. Secondly, reduction in inflammation from treatments

may result in overestimation of progression rates using the ADAS-CogMRI

biomarker and confound detection of treatment effects, a limitation shared

by all imaging biomarkers. The treatments that focus at removing amyloid

plaques may reduce inflammation in patients’ brains in a region-specific or

widespread manner, resulting in increased atrophy rates at the start of trials.

If the inflammation reduction is regional, the effect on the ADAS-CogMRI

biomarker will be little because the ADAS-CogMRI biomarker combines in-

formation from several brain regions to estimate progression rates within each

cognitive domain. However, if the effect is widespread, additional strategies

(such as modeling inflammation reduction or analyzing data from initial phase

of trial separately) may be required to separate the overlapping effects of in-

flammation reduction and neurodegeneration. Thirdly, due to the lack of the

ADAS-Cog items probing executive functioning in patients, we dropped the

fourth latent trait from subsequent analysis since it was biased due to ran-

dom inter-patient variability in baseline measurements. However, as executive

functioning items are developed and added in the ADAS-Cog [158], the fourth

latent trait may be included in the ADAS-CogMRI biomarker because cin-

gulate cortex has been reported to be involved in early stages of Alzheimer’s
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disease [110].

Despite these limitations, the proposed ADAS-CogMRI biomarker is

highly significant for improving efficacy of clinical trials in the MCI stage. The

ADAS-CogMRI biomarker has significantly better sensitivity than the ADAS-

Cog in the MCI stage and allows evaluation of treatment effects in the language

and praxis cognitive domains. Since both the ADAS-Cog and structural MR

imaging are routinely utilized, future clinical trials should consider the use

of the proposed ADAS-CogMRI biomarker as part of the secondary efficacy

analysis to establish the improvement in statistical power obtained over the

use of the ADAS-Cog.
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Chapter 8

Conclusion and Future Work

This dissertation attempts to advance two active area of research in

Alzheimer’s disease. The first research area deals with the development of

automatic algorithms for analysis of brain MR volumes. The measurement of

cerebral atrophy on brain MR volumes requires a sequence of low-level image

analysis tasks as prerequisite steps. As a result, performance of any atro-

phy based biomarker is directly impacted by the accuracy achieved in these

low-level image analysis tasks. MR tissue segmentation is one such low-level

task, which is required for the measurement of cerebral atrophy within sub-

cortical and cortical brain structures. The measurement of cortical thickness

across the brain mantle also requires MR tissue segmentation for delineating

the boundary between white matter and gray matter and the boundary be-

tween gray matter and cerebrospinal fluid. While an easy task for humans,

the presence of image corruptions in MR volumes makes automatic MR tissue

segmentation a difficult task due to significant intensity overlap between the

tissue classes. In this dissertation, we present a new knowledge-driven deci-

sion theory (KDT) approach for MR tissue segmentation, which embeds prior

knowledge on relative extents of intensity overlaps between the tissue classes
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in the segmentation framework. When evaluated and compared with existing

segmentation approaches, the strategy of incorporating prior intensity overlap

knowledge is found to be promising in correctly classifying voxels that belong

in the intensity overlap spectrum without needing a preprocessing step for

removal of intensity inhomogeneities.

The second area of Alzheimer’s disease research and the main focus of

this dissertation pertains to improving the efficiency of clinical trials of disease-

modifying treatments. The currently utilized ADAS-Cog outcome measure has

inadequate sensitivity in measuring progression of cognitive impairment, which

severely affects the efficiency of clinical trials [27, 131, 75, 74]. The 99.6% fail-

ure rate in over 400 clinical trials conducted during the last decade is highest

among any therapeutic area and provides a testament to the low efficiency

of Alzheimer’s clinical trials [38]. While none of the disease-modifying treat-

ments were successful in the last decade, the only drug that got approved is a

symptomatic cognitive enhancer. The limitations associated with the current

ADAS-Cog scoring methodology is one of the primary reasons behind the low

sensitivity of the ADAS-Cog. One of the contributions of this dissertation

is an improved ADAS-CogIRT scoring methodology for the ADAS-Cog. The

ADAS-CogIRT scoring methodology measures cognitive impairment more ac-

curately in Alzheimer’s disease patients and makes clinical trials more efficient

by reducing the sample size and follow-up duration required for investigat-

ing treatments. More importantly, as validated in the huperzine A trial, the

ADAS-CogIRT scoring methodology allows for the detection of treatment ef-
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fects that may be missed by using the current scoring methodology. With

an increasing prevalence of Alzheimer’s disease and the lack of a treatment,

such a boost in the efficiency of clinical trials is highly desirable. It would

enable rapid testing of future treatments, while making the clinical trials more

cost-effective. An improvement in clinical trial efficiency may also provide a

boost to the development of new disease-modifying treatments. The failure

of all treatments investigated till date and the high cost of clinical trials has

significantly impacted industry-led research efforts towards developing novel

treatments for Alzheimer’s disease.

Addressing the other primary reason behind the low sensitivity of the

ADAS-Cog requires modification of its existing items and/or addition of new

items to the ADAS-Cog, which probe more subtle levels of cognitive impair-

ment. It is worthwhile to note that addressing the floor effects of the ADAS-

Cog items does not reduce the significance associated with using the ADAS-

CogIRT scoring methodology. Even if more sensitive items are included in

the ADAS-Cog, the limitations of the current scoring methodology would still

persist. Therefore, the use of the ADAS-CogIRT scoring methodology would

still provide improvements in the sensitivity of the ADAS-Cog in clinical trials.

In fact, due to the scale-independent property of its parameters, the ADAS-

CogIRT methodology provides a convenient framework for easily adding or

removing items from the ADAS-Cog without the need for re-estimation of

parameters or measurement scale properties.
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Besides the limitations of the ADAS-Cog, another reason behind the

low efficiency of clinical trials is the advanced stage of Alzheimer’s disease,

where clinical trials have traditionally focused. The scope for improvement in

clinical performance of dementia patients is low due to the significant amount

of neurodegeneration that has already occurred in their brains. Noting this

limitation, clinical trials have started to shift their focus towards the prodro-

mal MCI stage of Alzheimer’s disease. However, clinical trials in the MCI

stage also suffer from several limitations. The sensitivity of the ADAS-Cog is

even lower in the MCI stage as compared to the mild-to-moderate Alzheimer’s

disease stage. Moreover, the inability to specifically select MCI patients that

will convert to Alzheimer’s disease in future further impacts the efficiency of

clinical trials in the MCI stage. Towards this end, the last contribution of this

dissertation presents a biomarker, which uses cerebral atrophy as a proxy mea-

sure of cognitive impairment in clinical trials. The ADAS-CogMRI biomarker

is designed based on a combined latent variable analysis of the ADAS-Cog and

cerebral atrophy, which revealed that the spatio-temporal patterns of brain-

wide atrophy are closely related with cognitive impairment assessed on the

ADAS-Cog. When compared with the sole use of the ADAS-Cog, the pro-

posed biomarker provides significant improvements in efficiency of clinical tri-

als focused in the MCI stage. The ADAS-CogMRI biomarker also improves

efficiency of clinical trials by facilitating early detection of MCI patients that

will convert to Alzheimer’s disease in future with an acceptable sensitivity of

∼84% and specificity of ∼76%.
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The work in this dissertation sets up a number of research questions,

which should be considered as part of the future work. While the developed

KDT segmentation approach shows better ability in handling intensity over-

laps between the tissue classes, some sensitivity to the presence of high levels of

intensity inhomogeneities was observed. As part of the future work, simultane-

ous correction of intensity inhomogeneities in MR volumes can be investigated

by including additional terms in the energy function. Tissue segmentation and

correction of intensity inhomogeneities are interdependent tasks and, therefore,

tissue segmentation is expected to benefit from the simultaneous correction

of intensity inhomogeneities. Since the relative extents of intensity overlap

between the tissue classes stay consistent across different levels of intensity

inhomogeneities, simultaneous correction should not impact the Bayesian de-

cision theory energy function that drives tissue segmentation. Intensity inho-

mogeneities are smoothly varying in nature and, therefore, regularizing terms

imposing smoothness constraints on the estimated inhomogeneities should be

included. A related idea of simultaneously correcting for intensity inhomo-

geneities in a level set framework has been investigated in a prior work from

our group [179].

Our research work towards improving the efficacy of clinical trials of

disease-modifying treatments also opens several avenues of future research.

In the development of the ADAS-CogIRT scoring methodology, we could not

investigate measurement invariance of the ADAS-Cog across patient-level fac-

tors of race and ethnicity due to the lack of patient heterogeneity. Race and
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ethnicity are common considerations in any medical problem as diversity with

respect to these factors is typically a norm rather than an exception. If not

investigated as part of the future work, the ADAS-CogIRT scoring method-

ology may produce biased measurements of cognitive impairment in patient

groups found to respond to the ADAS-Cog items differently than the patient

population considered in this dissertation. While addressing this would likely

involve data collection by the researchers as most public datasets contain pre-

dominantly non-Hispanic Caucasian patients, it is a key research consideration

before the ADAS-CogIRT scoring methodology can be utilized for any clini-

cal purposes. Another area of future research can be to investigate nonlinear

trends in progression in clinical trials. While we assumed a linear profile based

on support from the existing literature, the developed generalized mixed-effects

model framework does provide the flexibility for investigating more complex

progression trends in clinical trials. The use of nonlinear progression profiles

in clinical trials has been argued in literature and, therefore, the flexibility of

the ADAS-CogIRT scoring methodology may be significant, specially for long

term studies.

Most of the disease-modifying treatments target amyloid plaque de-

positions in patients’ brains. The removal of amyloid plaques is sometimes

associated with a side-effect of reduction in brain inflammation resulting in

a region-specific or brain-wide shrinkage of brain tissue. While inflammation

reduction is desirable and an early indicator of the disease-modifying effects of

the treatments, the associated shrinkage in brain tissue confounds with pro-
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gressive atrophy due to Alzheimer’s disease. If an atrophy based biomarker

does not include the effects of inflammation reduction, it may overestimate

progression rates in the treatment arm during the initial phase of the trial.

This may give an indication about the treatment either not working or even

worsening neurodegeneration due to Alzheimer’s disease, resulting in with-

drawal of the treatment from clinical trial. On the other hand, clinical rating

scales are not affected by inflammation reduction in patients’ brains. This

further supports the combined utilization of cerebral atrophy and the ADAS-

Cog as it reduces the sensitivity of a cerebral atrophy based outcome measure

to effects of inflammation reduction in clinical trials. As part of the future

work, dynamics of brain tissue shrinkage from inflammation reduction can be

studied through statistical modeling of data from clinical trials of amyloid tar-

geting treatments. Such models of brain tissue shrinkage would be clinically

significant as they can be incorporated in the design of any atrophy based

biomarker (such as the ADAS-CogMRI biomarker) to account for the effects

of inflammation reduction in future clinical trials. While data from clinical tri-

als of disease-modifying treatments is not yet available, the expanding ADCS

cohort is likely to include data from such clinical trials in future. In the ab-

sence of inflammation reduction models, an alternative strategy could be to

only consider the ADAS-Cog responses and drop cerebral atrophy measure-

ments from the initial part of clinical trials. However, inflammation reduction

still needs to be better understood in order to determine the initial period

of the clinical trials, where cerebral atrophy should not be included to study
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treatment effects.

Another possible future research direction is to extend the ADAS-

CogMRI biomarker to additionally measure impairment in executive function-

ing in Alzheimer’s disease patients. We considered the most commonly em-

ployed version of the ADAS-Cog for developing the ADAS-CogMRI biomarker,

which does not contain any items that probe executive functioning in patients.

Even though a latent trait measuring executive functioning was identified in

our analysis, we dropped the trait in order to avoid the bias introduced from

the sole use of cerebral atrophy. A prior work has proposed additional items

for the ADAS-Cog (such as the maze task), which specifically assess executive

functioning [158]. As part of the future work, these items can be included to

define the fourth latent trait in the ADAS-CogMRI biomarker for assessing

impairment in executive functioning in patients. The response data for these

new items already exists for a fraction of patients in the ADNI cohort. The

brain regions associated with executive functioning have been reported to be

early sites of neurodegeneration and, therefore, the inclusion of executive func-

tioning in the ADAS-CogMRI biomarker is expected to improve not only its

sensitivity in clinical trials but also its ability to early detecting MCI patients

that will convert to Alzheimer’s disease in near future.
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