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The dissertation contains two major research projects. In the first

project, we first study a multi-period inventory planning problem. In each

period, the firm under consideration can source from two possibly unreliable

suppliers for a price-dependent demand. Our analysis suggests that the opti-

mal procurement policy is neither a simple reorder-point policy nor a complex

one without any structure, as previous studies suggest. Instead, we prove the

existence of a reorder point for each supplier. No order is placed to that sup-

plier for any inventory level above the reorder point and a positive order is

issued to that supplier for almost every inventory level below the reorder point.

We characterize conditions under which the optimal policy reveals monotone

response to changes in the inventory level. Furthermore, two special cases of

our model are examined in detail to demonstrate how our analysis generalizes

a number of well-known results in the literature.
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In the second project, we study a long-run inventory planning problem

in which the retailer can replenish inventory and change price adjustment. We

establish that it is optimal to change the price from low to high in each replen-

ishment cycle, the optimal order-up-to level may decrease when the ordering

cost increases, and fewer customers are served when the unit cost of procure-

ment increases. Additionally, we provide efficient algorithms to compute the

optimal stocking and pricing policies.
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Chapter 1

Introduction

We move to an age which is full of uncertainties and changes. Retailers

have to adjust their sales policies based on inventory levels, demand uncertain-

ties, competitors’ strategies etc. On the other hand, customers’ choices not

only depend on prices of retailers but also rely on their trust on the retailers.

This dissertation tries to answer a few issues in such complicated context.

In the first project, we study a multi-period inventory planning prob-

lem. Multi-souring can hedge against risk of supply unreliability. However, it

is unclear what procurement policy the firm should follow when the demand of

the product is also price-dependent. We formulate a multi-period procurement

problem and developed a new procurement policy, named “near re-order point

policy”. It is neither a simple reorder-point policy nor a complex one without

any structure, as previous studies suggest. Instead, we prove the existence of

a reorder point for each supplier. No order is placed to that supplier for any

inventory level above the reorder point and a positive order is issued to that

supplier for almost every inventory level below the reorder point. We charac-

terize conditions under which the optimal policy reveals monotone response

to changes in the inventory level. Furthermore, two special cases of our model
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are examined in detail to demonstrate how our analysis generalizes a number

of well-known results in the literature.

In the second project we study a long-run inventory planning problem

in which the retailer can replenish inventory and change price dynamically.

The study answers the following three questions: 1) How frequently should a

retailers change prices? 2) When to change prices if the retail can only adjust

price limited times? 3) How to change prices? Our analysis discovers that the

frequency of price change is related to the adjustment cost. In the extreme

case, the retailer will change price every time the inventory level changes. The

retailer prefers to change price less frequently if the adjustment cost is higher.

We also investigate the pattern of the optimal sales strategy. We show that it

is optimal to change the price from low to high in each replenishment cycle,

the optimal order-up-to level may decrease when the ordering cost increases,

and fewer customers are served when the unit cost of procurement increases.
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Chapter 2

Sourcing from Suppliers with Random Yield

for Price-Dependent Demand

2.1 Introduction

1 Supply as well as demand uncertainties are commonly present in prac-

tice. They impose different types of challenges in procurement planning. For

example, firms have realized the importance of mitigating supply risk via mul-

tiple sourcing whereas chosen to shape demand via dynamic pricing to miti-

gate the risk of under- or over-stocking. In this study, we combine these two

approaches into a problem of jointly pricing and multiple sourcing in a multi-

period, single-product revenue maximization setting. We study the problem of

an inventory manager who can replenish from two sources with random yields

and price the product based on the stock level in each period over a finite

planning horizon.

We show that the optimal procurement policy is neither a simple reorder-

point policy nor a complex one without any structure. Instead, we prove the

existence of a reorder point for each supplier. No order is placed to that sup-

plier for any inventory level above the reorder point and a positive order is

1The project is a joint work with Professor Feng Qi and Professor Sridhar Seshadri.
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issued to that supplier for almost every inventory level below the reorder point.

We label such a policy as a “near reorder-point policy” because the optimal

order quantity may equal zero at countable points below the reorder level. We

also characterize conditions under which the optimal policy reveals monotone

response to changes in the inventory level.

Two important special cases of this problem have been widely discussed

in the literature. The first is the problem of supply diversification under ex-

ogenous price. This line of work was initiated by Anupindi and Akella [5]

with further development by Dada et al. [27], Burke et al. [14], Federgruen

and Yang [31], Federgruen and Yang [30], among others. For multi-period

problems, it is known that under the assumption of a continuous demand dis-

tribution, the optimal policy is a reorder-point policy for each supplier. That

is, a strictly positive order is placed when the inventory level is less than the

reorder point for that supplier. In contrast, we establish that for discrete

demand distribution the policy is in general a near reorder-point policy.

The second special case of our problem is when only a single unreliable

supplier is involved and the demand is price dependent. For this model, Li and

Zheng [48] prove that the optimal order quantity and price are nonincreasing

in the inventory level when the demand has only an additive noise component.

They also conjecture that the optimal policy is complex when a multiplicative

demand noise is introduced. In this case, they suggest that there can be

several strictly positive alternating ordering and no-ordering intervals of the

inventory level. In contrast, we show that such positive no-ordering intervals
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cannot exist because the policy is a near reorder-point policy.

We consider two suppliers but our results extend to n suppliers. We

allow for both additive and multiplicative demand uncertainty. We also discuss

how the sequence of knowing the uncertainty and making the decisions impacts

the policy behavior. Specifically, there are thirty-two potential cases. The

manager can know the price uncertainty before or after the price decision and

he also can know uncertainty regarding yields from suppliers before or after

placing the order. There can be multiple suppliers or just a single supplier.

The demand uncertainty can be additive or multiplicative. The distribution

of the demand can be continuous or discrete. We provide results for all these

cases.

The remainder of this chapter is organized as follows. In §2.2, we lay

out the model and derive our main result—the optimality of a near reorder-

point policy. In §2.3, we revisit two important special cases of our model to

demonstrate that our policy characterization is exact. We also derive con-

ditions under which the optimal price and order quantity decisions become

monotone with respect to the inventory level, which allows us to generalize

a number of previous results. In §2.4, we examine the case when either the

supply yields are perfectly correlated or the supply and demand are perfectly

correlated. Section 2.5 concludes the study.
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2.2 Problem Formulation and the Near Reorder-point
Policy

This section presents the general model. The problem is formulated in

§2.2.1 and the main result is derived in §2.2.2.

2.2.1 Model Development

The manager faces a T -period planning problem. To simplify the no-

tation, we consider a system with stationary parameters over time. At the

beginning of period t, the (net) inventory level It is reviewed. The manager

needs to replenish inventory for fulfilling an uncertain demand D(pt), where

pt is the unit selling price that has to be determined. There are two potential

suppliers, indexed by i = 1, 2, whose output yields may be uncertain. Specifi-

cally, if an order of qt,i is placed, the actual amount delivered from supplier i

is uiqt,i, where ui ∈ [0, 1] is the random yield rate with Eui = ūi > 0. Both the

price pt and orders (qt,1, qt,2) must be determined before demand and supply

uncertainties are resolved. The unmet demand is backordered and the leftover

inventory is carried over to the next period.

The manager pays ci dollars for each unit delivered from supplier i.

In other words, he pays an average of c̄i = ūici for each unit ordered from

supplier i. Without loss of generality, we assume c1 ≤ c2. The manager also

pays a surplus/shortage cost H(·) upon the demand realization. We assume

that H(·) ≥ 0 is continuous and convex. Also, H(0) = 0, |H(x1) −H(x2)| ≤

cH |x1 − x2| for some positive and finite cH , and limx→±∞H(x) = ∞.
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The customer pays the current price pt upon the realization of demand

in period t. This price may not be the same as the price quoted at the time

when he actually obtains the product if the demand is backordered. In other

words, the delay in filling the order does not affect the price charged directly.

Instead, the manager pays a penalty cost for the backorder via H(·), which

includes the loss of goodwill or compensation to the customer. Such a pricing

scheme is widely used in examining joint pricing and replenishment decisions.

The demand in period t is given by

D(pt) = εD(pt) + ω, pt ∈ [p, p], (2.1)

where ε and ω are, respective, the multiplicative and additive demand noise

terms. We assume that ω has mean zero and support [ω, ω], and ε has mean

one and support [ε, ε]. Moreover, ω and ε are independent. For any feasible

choice of pt ∈ [p, p], the demand is nonnegative with probability one and the

average demand D(pt) is finite. The average demand D(pt) ≥ 0, pt ∈ [p, p], has

an inverse p(d) that is decreasing over [d, d], where d = D(p) and d = D(p).

2 Thus, choosing an average demand d is equivalent to charging a price p(d).

We shall assume that p = p(d) > c1 so that it is profitable to procure and

sell the product for some feasible selling price. We also require the revenue

R(d) = dp(d) to be finite and concave for d ∈ [d, d]. The pricing scheme and the

demand model stated above have been commonly assumed in the literature

(see, e.g., [48],[22], [18]). We do not restrict the demand D(pt) to follow a

2Increasing and decreasing are in the weak sense unless otherwise specified.
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continuous distribution. In reality, discreteness of demand distribution may

arise due to several reasons, such as sales restrictions (e.g., bulky quantities

required by wholesalers).

Now we can write the inventory dynamics for our problem as follows

[15]:

It+1 = It + u1q1 + u2q2 − εd− ω. (2.2)

Let Vt(I) be the optimal profit function in period t when the inventory level

is I. We assume that VT+1(I) = 0 for all I. Then, the optimality equation is

given by

[G] Vt(I) = max
q1≥0,q2≥0,

d≤d≤d

Jt(I, q1, q2, d), (2.3)

where

Jt(I, q1, q2, d) = R(d)− c̄1q1 − c̄2q2 + ELt(I + u1q1 + u2q2 − εd), (2.4)

Lt(y) = −EH(y − ω) + αEVt+1(y − ω), (2.5)

and α ∈ [0, 1] is the discount factor. We denote q∗t,i(I), i = 1, 2 and d∗t (I) to

be, respectively, the optimal order quantities and average demand3 in period

t.

3If multiple optimal solution exists, we always choose the one with the smallest q∗t,1(I). If
there are multiple optimal solutions containing the smallest q∗t,1(I), we choose the one with
the smallest q∗t,2(I) and then the one with the smallest d∗t (I). Under such solution selection
criterion, the optimal q∗t,1(I), q

∗
t,2(I) and d∗t (I) are continuous in I; see Lemma A.0.1 in the

appendix.
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For ease of exposition, we have assumed that the random yields and

the demand noise terms each form an independent sequence of independent

and identically distributed random variables. However, all the results derived

carry through when each of the processes are Markov-modulated or when they

are correlated. Moreover, all of our results hold when considering more than

two suppliers.

2.2.2 A Near Reorder-point Policy

In this section, we prove that the optimal ordering policy for the model

developed in the previous section is a near reorder-point policy. Under this

policy, as stated in Theorem 2.2.1 below, there is a threshold I∗t,i for supplier

i, i = 1, 2, in period t. No order is issued to supplier i if the inventory level is

above I∗t,i. If, however, the inventory level is below I∗t,i, a positive order is placed

to supplier i almost everywhere—there cannot be a non-degenerate interval

below I∗t,i within which no order is issued. Later in §2.3, we will demonstrate

that the policy characterized in Theorem 2.2.1 is exact. In other words, the

optimal ordering decision is neither a simple threshold policy nor a complex

one involving alternating ordering and no-ordering intervals as previous studies

may suggest [48].

Theorem 2.2.1. (The Near Reorder-Point Policy) There exists a finite

optimal reorder point I∗t,i < +∞, i = 1, 2, such that

q∗t,i(I)

{
= 0 I ∈ [I∗t,i,+∞)

∪
Xi

> 0 otherwise.

where Xi is a countable set and thus has Lebesgue measure of zero.
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We prove the theorem by establishing Lemmas 2.2.1 through 2.2.6 be-

low, which also allow us to obtain insights into the problem. The idea is to

define a benchmark problem, model B, and compare its solution with that of

our general model. In particular, the benchmark problem assumes the sup-

plier 1’s yield rate in period t is a deterministic value, ū1, and the yields in

any future periods stay at u1. Therefore, the only difference between model B

defined below and model G lies in the calculation immediate profit in period t.

Specifically, the objective function for the benchmark problem can be stated

as

[B] V B
t (I) = max

q1≥0,q2≥0,

d≤d≤d

JB
t (I, q1, q2, d),

JB
t (I, q1, q2, d) = R(d)− c̄1q1 − c̄2q2 + ELt(I + ū1q1 + u2q2 − εd).

Let qBt,1(I) , q
B
t,2(I) and dBt (I) denote the optimal decisions of the above prob-

lem. We term this benchmark problem as model B, whereas the general prob-

lem defined in (2.3)-(2.5) as model G.

The first observation, articulated in the next lemma, is that the cost

functions involved in both problems are well-behaved.

Lemma 2.2.1. The functions Lt, Jt, J
B
t , and Vt are concave. Both JB

t (I, q1, q2, d)

and Jt(I, q1, q2, d) are submodular in (I, qi) and supermodular in (qi, d) and

(I, d), i = 1, 2.

Lemma 2.2.1 suggests that the cost functions in both models are con-

cave, which is a direct consequence of concavity of one-period costs. The con-

cavity results allow for further exploration of the optimal policy analytically.

10



Moreover, the submodularity and supermodularity of the objective functions

suggest that inventory and the order quantities are substitutes, whereas they

are complements of the average demand. Intuitively, these relations may sug-

gest smaller order quantities and a larger average demand when the inventory

level is higher. However, as we show in §2.3, the optimal decisions may not

be monotone with respect to the inventory level even in special cases of our

model.

The next result indicates a simple strategy to order from supplier 1,

who has a deterministic yield, in the benchmark problem B.

Lemma 2.2.2. There exists a ȳBt,1 such that qBt,1(I) = max{(ȳBt,1 − I)/ū1, 0}.

Moreover, there exist q̄Bt,2 and d̄Bt , such that qBt,2(I) = q̄Bt,2 and dBt (I) = d̄Bt for

I ≤ ȳBt,1.

Because the yield rate of supplier 1 is deterministic in problem B, de-

termining the order quantity qBt,1 for a given I is equivalent to determining the

post-order inventory position yBt,1 = I+ū1q
B
t,1. Given (I, qBt,1), the optimal order

from supplier 2 and the optimal average demand depend on (I, qBt,1) only via

yBt,1. These observations allows us to compute the optimal ȳBt,1 as the base-stock

level for supplier 1, which is independent of the inventory level I. Whenever,

the inventory level I is below the base-stock level ȳBt,1, an order is issued to

supplier 1 to bring the stock level up to ȳBt,1. Correspondingly, a fixed order

of q̄Bt,2 is placed to supplier 2 and a fixed price of p(d̄Bt ) is charged. When

I > ȳBt,1, however, no order is issued to supplier 1. In this case, the optimal

11



order quantity from supplier 2 and the optimal average demand depend on

the inventory level in a nonlinear manner in general, as implied from our later

analysis in §2.3.2.

Compared to the benchmark model B, our model G is less likely to

order from supplier 1 as stated in the lemma below.

Lemma 2.2.3. If qBt,1(I) = 0, then q∗t,1(I) = 0.

The intuition of Lemma 2.2.3 is as follows. When a positive order

is placed to the supplier with random yield in model G there is a risk in the

associated delivery quantity. This risk makes it even more undesirable to order

in model G given that no order was placed with the supplier in model B.

It is interesting to contrast this result to Theorem 4.4 in [48]. They

prove that qBt,1(I) = 0 implies q∗t,1(I) = 0 and qBt,1(I) > 0 implies q∗t,1(I) > 0 for

the special case of our models with a single supplier (i.e., ū2 = 0) and without a

multiplicative demand noise (i.e., ε = 1). In other words, the optimal policies

call for either ordering from supplier 1 in both models, or not ordering from

supplier 1 in both. The comparison in Lemma 2.2.3 allows for the possibility

of ordering in model B (i.e., qBt,1(I) > 0), but not in model G (i.e., q∗t,1(I) = 0).

Such a possibility, as shown in our subsequent analysis, can indeed happen in

our models.

Our next result further states that whether or not to place a positive

order has a direct implication on the marginal value of the inventory.

12



Lemma 2.2.4. Let q̃t,i(I) be the smallest unconstrained maximizer of Jt(I, qt,1, qt,2, dt)

with dt = d∗t (I) and qt,j = q∗t,j(I), j ̸= i.

i) If q̃t,i(I) < 0, then there exists a δ > 0 such that Vt(I)−Vt(I−δ)
δ

≤ ci.

ii) If q̃t,i(I) > 0, then there exists a δ > 0 such that Vt(I+δ)−Vt(I)
δ

≥ ci.

By definition, we must have q∗t,i(I) = 0 when q̃t,i(I) < 0 and q∗t,i(I) =

q̃t,i(I) = 0 when q̃t,i(I) > 0. According to Lemma 2.2.4 ii), the marginal value

of inventory must exceeds the unit ordering of the supplier whenever a positive

order is issued to that supplier. Because the marginal value of inventory is

decreasing (as Vt(I) is concave), this observation indicates a reorder point for

the supplier, which is bounded from the above.

Lemma 2.2.5. There exists an I∗t,i < +∞, such that q∗t,i(I) = 0 for I ≥ I∗t,i.

i = 1, 2.

With Lemmas 2.2.3–2.2.5 in hand, we can derive the following result

which directly leads to Theorem 2.2.1.

Lemma 2.2.6. Suppose that there exists an Ī such that q∗t,1(Ī) = 0 and q∗t,1(Ī+

δ) > 0 for any δ ∈ [0, γ+) and some γ+ > 0. Then, there exists a γ− > 0 such

that q∗t,1(Ī − δ) > 0 for any δ ∈ (0, γ−).

According to Lemma 2.2.6, given that no order should be placed at the

inventory level Ī and that a positive order is placed at Ī + δ, then a positive

order must be placed around the neighborhood of Ī. In other words, there

13



cannot be a non-degenerate interval containing Ī such that no order is placed

in this interval. The next lemma further ensures that there can be at most

countable number of such Ī.

Lemma 2.2.7. Let X1 be the set of Ī that satisfies the conditions in Lemma 2.2.6.

Then X1 is countable.

To see how Lemmas 2.2.6–2.2.7 lead to Theorem 2.2.1, define I∗t,1 to be

the largest I such that q∗t,1(I − δ) > 0 for arbitrarily small positive δ. Note

from Lemma 2.2.5 that I∗t,1 is finite. Thus, q
∗
t,1(I) = 0 for any I ≥ I∗t,1. Then Ī

described in Lemma 2.2.6, if it exists, must be lower than I∗t,1. Therefore, for

I < I∗t,1, we must have q∗t,1(I) > 0 almost everywhere—leading to the result

for supplier 1 in Theorem 2.2.1. The result for supplier 2 can be obtained

similarly.

Remark 2.2.1. Theorem 2.2.1 can be extended to n-supplier settings. All

one needs to do is to repeat the argument in the proof of Lemma 2.2.6 with

qt,i = q∗t,i(I) for i = {2, · · · , n}.

In our model, we have assumed that the manager makes the pricing

decision before observing the yield realization. This fits the situation when

the manager does not have the flexibility of real-time price adjustment based

on current sales. Such a situation may arise, for example, when the price

change requires a certain approval procedure within the firm that takes time

or when the sales process is not instantaneously visible to the manager. If,

14



however, the manager is free to quickly adjust the price based on the demand,

there can be two variations of our model, as stated in the remarks below.

Remark 2.2.2. If the price decision is made before observing the yields and

after observing the demand noise, then the optimal price decision is decreasing

in the inventory level and the optimal order decisions follow a near reorder-

point policy. See Lemma A.0.2 in the Appendix.

Remark 2.2.3. If both the price and ordering decisions are made after ob-

serving yields, then the optimal policy is a base stock list price policy [29].

The policy described in Theorem 2.2.1 can be complex and reveal non-

monotone behavior with respect to the inventory level. Before ending this

section, we characterize sufficient conditions under which the optimal policy

has simple structural properties.

Theorem 2.2.2. (Conditions for Simple Policy Structure)

i) If the demand εd + ω has a continuous distribution for each d ∈ [d, d],

then the optimal order quantities follow a strict reorder-point policy, i.e.,

q∗t,i(I) > 0 for I < I∗t,i and q∗t,i(I) = 0 for I ≥ I∗t,i, i = 1, 2.

ii) If the demand has only an additive noise, i.e., ε = 1, the following results

hold.

a. When the inventory level increases, the optimal average demand in-

creases but the increase is smaller than the change in the inventory

level. That is, for a small enough δ > 0, 0 ≤ d∗t (I + δ)− d∗t (I) ≤ δ.
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b. If the yields are of the all-or-nothing type, i.e., ui ∈ {0, ui}, i = 1, 2,

then the optimal order quantity q∗t,i(I) is decreasing in I, i = 1, 2.

Moreover, i) and ii-a) can be extended to general multiple-supplier settings,

while ii-b) holds only for the two-supplier case.

Part i) suggests that when the demand has a continuous distribution,

the policy characterized in Theorem 2.2.1 becomes a strict reorder-point policy.

In this case, the reorder point I∗t,i clearly divides the space of the inventory

level I into an ordering region I < I∗t,i and a nonordering region I ≥ I∗t,i. This

represents a generalization of the results obtained by Anupindi and Akella [5]

and Federgruen and Yang [30], who prove the optimality of strict reorder-point

policies for the special case when price is exogenous.

With only an additive noise in demand, Li and Zheng [48] show that

the optimal price is decreasing in the inventory level when there is only one

supplier. Part ii-a) extends this observation to the case of multiple suppliers.

Moreover, if the suppliers’ yields are of the all-or-nothing type, the optimal

order quantities are decreasing in the inventory level as indicated by part ii-b).

This result generalizes a similar one in [5] for the model with exogenous price.

2.3 Two Special Cases and Exact Examples

In this section, we revisit two special cases of our model that have

been analyzed in the literature and demonstrate how earlier results might

not hold when the demand distribution is discrete or the demand noise is
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multiplicative. The first special case discussed in §2.3.1 involves two suppliers

with random yields and exogenous price. The second special case treated in

§2.3.2 assumes one supplier with random yield and endogenously determined

price. In each case, we present an exact example for the near reorder-point

policy characterized in the previous section.

2.3.1 A Model with Two Suppliers and Exogenous Price

In this case, the price is exogenously given and thus d = d = d.

Anupindi and Akella [5] and Federgruen and Yang [30] analyze a version of

this problem with continuous demand distribution and derive a strict reorder-

point policy (recall Theorem 2.2.2(i)). Our analysis, however, suggests that

such a policy is suboptimal in general when allowing for discrete demand dis-

tributions. Example 1 below shows that the optimal policy is exactly a near

reorder-point policy:

Example 1: c1 = 5, c2 = 6 , H(x) = 0.5max{x, 0}+ 15max{−x, 0}, d = 10,

Pr{u1 = 0} = Pr{u1 = 1} = 0.5, Pr{u2 = 0.2} = Pr{u2 = 1} = 0.5,

Pr{ε = 0.5} = Pr{ε = 1.5} = 0.5 and ω = 0. The solution of this problem

with T = 1 is given by

I q∗1(I) q∗2(I)
(−∞,−15

2
) 4− 4

5
I 5− I

[−15
2
, 5
2
) 5

2
− I 25

2

[5
2
, 5) −10 + 4I 25− 5I

[5, 15) 15− I 0
[15,∞) 0 0
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Figure 2.1: The optimal ordering decisions for Example 1.

The optimal policy for Example 1, depicted in Figure 2.1, is the near

reorder-point policy characterized in Theorem 2.2.1. Example 1 also suggests

that the monotone property derived in Theorem 2.2.2 ii-b) (with the all-or-

nothing type yield) does not extend to the case when one suppliers’ minimum

yield is positive. In this example, the optimal order quantity from supplier 1

is zero when I = 5/2, while it is strictly positive around the neighborhood of

5/2. When the inventory level is relatively low, i.e., I ∈ [−15/2, 5/2), supply

uncertainties induce a high risk of stockout. In this case, the optimal policy

tends to order more from supplier 2, who is more reliable but more expensive

than supplier 1. As the inventory level increases within this range, the order

quantity from supplier 2 is fixed at 25/2, while that from supplier 1 reduces

linearly. In contrast, when the inventory level is relatively high, i.e., I ∈

(5/2, 5), it is undesired to place a single large order from one supplier because

now the concern is mainly on overstock. As the inventory level increases within
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this range, the order quantity from supplier 2 decreases dramatically. Instead,

the optimal policy tends to allocate more quantity to supplier 1 to leverage its

lower ordering cost.

In general, the optimal order quantities from both suppliers may in-

crease or decrease with the inventory level. It is, however, impossible that

both order quantities increase at the same inventory level, as stated in the

next theorem.

Theorem 2.3.1. When d = d = d, the optimal order quantities cannot be

strictly increasing in the inventory level at the same time. That is, for any

Ia < Ib, q∗t,i(I
a) < q∗t,i(I

b) implies q∗t,j(I
a) > q∗t,j(I

b) for i, j ∈ {1, 2} and i ̸= j.

2.3.2 A Model with One Supplier and Endogenous Price

Li and Zheng [48] discuss the case with one supplier and endogenous

price which corresponds to u2 = 0. They derive a strict reorder-point policy

under the assumption that the demand uncertainty is additive. They present

a counter example to demonstrate that the optimal policy in the case with the

multiplicative demand uncertainty is complex. In their example, it is optimal

to order nothing over a strictly positive interval and order a strictly positive

quantity for some inventory level above that interval. We know from Theo-

rem 2.2.1 that a solution with a strictly positive no-order interval below the

reorder point is suboptimal and the optimal policy should be a near reorder-

point policy. In fact, a strictly threshold policy is optimal in their example as
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we show in Appendix. 4

The optimal policy for the case with the multiplicative demand uncer-

tainty can be illustrated using Example 2 below. This example suggests the

optimal policy in general is neither a complex one without any structure nor

a strict reorder-point policy:

Example 2: T = 1, c1 = 12.8, H(x) = 0.5max{x, 0} + 25max{−x, 0},

p(d) = 20− 0.5d, Pr{u1 = 0.1} = Pr{u1 = 0.4} = 0.5, u2 = 0, Pr{ε = 0.5} =

Pr{ε = 1.5} = 0.5 and ω = 0. The solution of this problem with T = 1 is

given by

I q∗1(I) d∗(I) E[I + uq∗1(I)− εd∗(I)]
(−∞, 0) −5

2
I 0 3

8
I

[0, 1
12
) 20I 6I 0

[ 1
12
, 1
4
) 5

2
− 10I 1

2
1
8
− 2

3
I

[1
4
, 3
4
) 0 2I −I

[3
4
, 9
4
) 0 3

2
−3

2
+ I

[9
4
, 60) 0 2

3
I 1

3
I

[60,∞) 0 40 −40 + I

In general, both the optimal order quantity and price may not be mono-

tone with respect to the inventory level. However, at least one of them is

decreasing as the inventory level increases, as stated in the next theorem.

Theorem 2.3.2. When u2 = 0, the optimal order quantity q∗1(I) and the

optimal price cannot be strictly increasing in the inventory level at the same

4We replicate their example and find such a complex structure goes away when the
computational accuracy is high enough.
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Figure 2.2: The optimal ordering and pricing decisions for Example 2.

time. That is, for any Ia < Ib, q∗t,1(I
a) < q∗t,1(I

b) implies d∗t (I
a) < d∗t (I

b) and

d∗t (I
a) > d∗t (I

b) implies q∗t,1(I
a) > q∗t,1(I

b).

2.4 Effect of Correlation on the Optimal Policy

The complex policy behavior in our model is due to the direct inter-

actions between the decisions and the various source of uncertainties via the

terms u1q1, u2q2, and εd in the state dynamics (2.2). As pointed out in Theo-

rem 2.2.2 and Remarks 2.2.2-2.2.3, the optimal decisions may become mono-

tone with respect to the inventory level when some of such interactions are

removed from the model. Our analysis so far has assumed that the random

terms involved are independent. Intuitively, the source of uncertainties can

be reduced when some of the random terms become perfectly correlated. The

question is: will the optimal policy reveal monotone property when some of

the random terms {u1, u2, ε} become perfectly correlated? The answer, as
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we demonstrate below, depends on the sign of correlation— it is true under

negative correlation but not under positive correlation. In §2.4.1, we study

correlated yields with two suppliers and exogenously determined price. We

also analyze the case when the yield of one supplier and the demand noise are

correlated in §2.4.2.

2.4.1 Two Perfectly Correlated Suppliers and Exogenous Price

The yields from two different suppliers can correlated for various rea-

sons. For example, the suppliers might procure components from a single

source [54]. One such famous case was a small fire at a microchip plant owned

by Philips in 2000. The plant supplied chips to both Ericsson and Nokia.

Both Ericsson and Nokia had low yield due to the accident. When suppli-

ers are in one region, their yields can be positively correlated. All Taiwanese

LCD suppliers are exposed to the same natural disaster and the same political

instability. If, however, the two sources of supplies are both internal manu-

facturing facilities, the firm may have limited engineering expertise or quality

investment budget to allocate between these facilities [46]. In this case, the

yields can be negatively correlated. To model these situations, we assume the

yield of supplier 1 has a linear relation with the yield of supplier 2:

u1 = au2 + b, (2.6)

where a and b are constants.

Theorem 2.4.1 characterizes the monotone properties of the optimal

decisions which are also summarized in Table 2.1.
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Theorem 2.4.1. (Perfect Correlated Supply Yields) When d = d = d,

the following results hold.

i) When b ≥ 0, q∗t,1(I) is decreasing in I.

ii) When ab ≤ 0, q∗t,2(I) is decreasing in I.

iii) Suppose c1 ≤ c2. For b = 0 and a > 0, there exists an optimal solution

in which q∗t,1(I) is decreasing in I and q∗t,2(I) = 0. For b = −au2 and

a < 0, there exists q̄t,2 such that q∗t,1(I) is deceasing in I and q∗t,2(I) =

max{q̄t,2 − I
u2+u

2

, 0}.

We interpret Theorem 2.4.1 with the help of Table 2.1, in which we clas-

sify the policy according to the stochastic relation between the yields and their

correlation. The conditions inside the parentheses give rise to the correspond-

ing sign of correlation and stochastic relation between the yields. We observe

from the second row of Table 2.1 that both order quantities are decreasing

in the inventory level when the yields are perfectly negatively correlated. (In

this case, the orders to the suppliers might be complementary and thus reduce

the supply risks.) If, however, the yields are positively correlated, the order to

the supplier with the stochastically larger yield is decreasing in the inventory

level, while the other order may increase or decrease with the inventory level.

Thus, the more reliable supplier is used to hedge with inventory and the less

reliable to miligate the increase in variance of ordering more from the other

supplier.
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Table 2.1: Interpretation of Theorem 2.4.1.

u1 ≤st u2 u1 ≥st u2

Positive corr. (0 < a < 1, −u
2
< b < 0) (a > 1, b ≥ 0)

a > 0 q∗t,1(I) ↑↓, q∗t,2(I) ↓ q∗t,1(I) ↓, q∗t,2(I) ↑↓

Negative corr.
a < 0 q∗t,1(I) ↓, q∗t,2(I) ↓ q∗t,1(I) ↓, q∗t,2(I) ↓

2.4.2 One Supplier and Endogenous Price with Perfect Correlation

In practice, the yield and demand can be correlated for various reasons.

For example, the yield rate is decided by the technique and the equipment [6].

When a supplier realizes that the incoming demand is high, he might prefer

to adopt a more reliable (high-tech) production line. In this case, the yield

and the demand uncertainty are positively correlated. However, if the supplier

is a small company, then a booming market might make the small company

experience shortage of raw materials. In this case, the yield is negatively

correlated with demand. To address the effect of the correlation, we focus on a

single supplier (u2 = 0) and assume that the price is endogenously determined.

We assume that the yield rate u1 and the multiplicative demand uncertainty

ε are correlated as follows:

u1 = aε+ b (2.7)

for some constants a and b.

Theorem 2.4.2 characterizes the monotone properties of the optimal

decisions which are also summarized in Table 2.2.
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Theorem 2.4.2. (Perfectly Correlated Yield and Demand) When u2 =

0, the following results hold.

i) d∗t (I) is increasing in I when ab ≤ 0. In particular, if b = 0 (then we

must have a ≥ 0), d∗t (I) = argmax
d∈[d,d]{R(d)+ (c̄1/a)d} is constant for

I ≤ I∗t,1 and d∗t (I) is increasing in I for I > I∗t,1.

ii) q∗t,1(I) is decreasing in I when b ≥ 0.

Table 2.2: Interpretation of Theorem 2.4.2.
u1

ū1
≤st ε u1

ū1
≥st ε

Positive corr. (0 < a < ū1, −εū1 < b < 0) (a > ū1, b ≥ 0)

a > 0 q∗t,1(I) ↑↓, p∗t (I) ↓ q∗t,1(I) ↓, p∗t (I) ↑↓

Negative corr.
a < 0 q∗t,1(I) ↓, p∗t (I) ↓ q∗t,1(I) ↓, p∗t (I) ↓

We interpret Theorem 2.4.2 with the help of Table 2.2, in which we

classify the policy according to the stochastic relation between the yield and

the demand and their correlation. The conditions inside the parentheses give

rise to the corresponding sign of correlation and stochastic relation between

the yield and the demand. We observe from the second row of Table 2.2 that

both the order quantity and the optimal price are decreasing in the inventory

level when u1 and ε are perfectly negatively correlated. This is similar to the

previous example in which the two risks affect one another. If, however, u1 and

ε are positively correlated, either price or the order quantity response might
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not be monotone. Specifically, when the price has a stochastic larger noise,

the price is still decreasing in the inventory level, while the order quantity may

increase or decrease with the inventory level.

2.5 Concluding Remarks

In the chapter, the price is decided before observing yield and demand.

Our results can be extended to the case of pricing after observing demand and

the case of placing the orders after observing the yield. Combining these, we

summarize all cases in which there is a simple structure to the optimal policy

in Table 2.3. For example, we can see that a strictly reorder-point policy

is obtained when the demand has a continuous distribution. However, if the

demand has a discrete distribution, the optimal order quantity in general is

a near reorder-point policy. We can also see that both the order quantity

and price are monotone in the case of a single supplier and additive demand

uncertainty. However, the optimal order quantity follows a near reorder-point

policy when the demand has multiplicative uncertainty or when there are

multiple suppliers.

There are several dimensions along which our work could be extended.

The chapter focuses on the finite horizon. The characterization of the optimal

policy for the infinite horizon case would be interesting. In the chapter, we

assume that suppliers do not carry inventory and are not strategic on their

decisions. A possible extension is to consider suppliers’ behavior under com-

petition.
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Table 2.3: Summary

• Observing one supplier’s yield before ordering, or
Monotone Order Quantity • a single supplier and additive demand uncertainty, or

• two all-or-nothing suppliers and additive demand uncertainty
• Observing yields of two suppliers before pricing, or
• deterministic yields, or

Monotone Price • additive demand uncertainty, or
• multiplicative demand uncertainty and deterministic yield
• Continuous demand distribution, or

Reorder-point policy • a single supplier and additive demand uncertainty
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Chapter 3

Inventory-based dynamic pricing with costly

price adjustment

3.1 Introduction

Rapid advances in technology have created many new opportunities for

firms to change price and replenish inventory frequently. Firms realize that

pricing and inventory decisions are interdependent in influencing the dynamics

of demand and supply. A low price in the case of overstock typically allows

for faster inventory turnover and reduced holding costs, and a high price in

the case of stockout often alleviates the pressure of backlogging. Coordinating

pricing and inventory decisions has become a major strategy for many firms

[28][17]. In the meanwhile, price revision may be associated with significant

cost (e.g. LevyBergen and DuttaVenable (1997) [47], Aguirregabiria(1999) [4],

Chen and Hu(2012) [20]) that cannot be overlooked in evaluating the benefit

of implementing an inventory-based pricing strategy. Moreover, firms must

understand the effect of price revision cost on the design of combined inventory

and pricing policy.

In this paper we study how a firm’s ability to change prices frequently

and efficiently may create additional revenue opportunities. We model a
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continuous-review stochastic control problem to make the pricing and inven-

tory decisions. The customer arrives according to a Poisson process with a

price-dependent arrival rate. A replenishment order is associated with a fixed

ordering cost and a variable ordering cost. During each inventory replenish-

ment cycle, the firm decides the amount of stock to order as well as how to

adjust the price as customer demand arrives. Every time the price is revised,

the firm pays a fixed adjustment cost. The goal is to find a combined pricing

and ordering policy that yields a high profitability.

In our model, if the inverse demand arrive rate is linear or convex in the

average interarrival time over a certain range, then the optimal price must be at

one of the two ends of this range. This result suggests that we can replace any

inverse demand rate function by its concave envelope. The resulting problem

has the same optimal solution as the original problem. In other words, our

formulation is general enough to allow for any price-demand relations, which

represents a generalization of related studies in the literature. Moreover, our

analysis holds for any monotone inventory holding cost functions, which need

not be concave or convex.

We show that the optimal prices are always higher than the myopic

price which maximizes the instantaneous gross (of any fixed costs) profit rate.

Within an order cycle, the optimal price increases and the time-average gross

profit rate increases as the inventory level drops. In general, the optimal order-

up-to level increases when the variable ordering cost increases, the inventory

holding cost increase and the demand increases. Interestingly, the optimal
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order-up-to level may not be monotone in the fixed ordering cost. This is

due to the presence of a fixed price adjustment cost, which requires a careful

coordination between price adjustment and inventory replenishment. We show

that the scale economy in ordering is reflected in the replenishment cycle—A

larger fixed ordering cost induces a longer average order cycle length.

When price adjustment is not costly, the optimal profit rate can be

represented by the difference of the marginal price and inventory holding cost

within each price segment, i.e., the range of stock level within which a single

price is charged. In this case, the optimal pricing and ordering decisions can

be computed easily. With costly price adjustment, however, the problem can

be computationally challenging, because the profit function is not unimodal

in the order quantity. We drive bounds on the optimal order quantity, which

allows for narrowing down the search of the optimal solution. To allow for fur-

ther computational tractability for problems with strong economies of scale in

ordering, we consider a relaxation of the model in which we allow the inventory

level to take continuous values. Under this relaxation, we uncover an inter-

esting trade off between the fixed costs and the inventory holding cost that

is analogous to the classical EOQ model. In particular, when the inventory

holding cost is linear (convex, concave) in the stock level, the total of fixed

ordering cost and price adjustment cost is equal to (greater than, less than)

the total inventory holding cost within a replenishment cycle. We further show

that by properly accounting the inventory holding cost, the optimal solution

yields a same time-average profit for all price segments. This observation al-
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lows us to identify an efficient way to compute the optimal solution for the

relaxed problem.

Through a numerical study, we demonstrate that the inventory-based

price adjustment can yield significant profit improvement compared to the

optimal static pricing policy. This is particularly the case when the fixed

ordering cost is high, the variable ordering cost is high, the inventory holding

cost is high, the demand is high, and the price adjustment cost is low. We also

find that limited price adjustment can yield a benefit that is close to unlimited

price adjustment.

The remainder of the paper is organized as follows. Section 3.2 reviews

related literatures. We lay out the model in §3.3 and analyze the optimal

policy in §3.4. In §3.5, we discussed a relaxed problem of our model. Section

3.6 concludes the study.

3.2 Literature Review

In practice, varying prices is often a natural mechanism for revenue

management [38]. In most retail and industrial trade settings, firms use various

forms of dynamic pricing such as promotion [7], auction [58], end-of-season sale

[33], clearance price [55], personalized service [53], and price negotiations [43]

to respond to market fluctuations and uncertainty in demand. Most of the

studies in this area focus on understanding the firm’s optimal selling strategy

and do not consider inventory replenishment.
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In many production and supply-chain management contexts, inventory

can be replenished at a cost. In such cases, both pricing and inventory deci-

sions need to be made. Pricing decisions are used to control demand, while

replenishment decisions are used to control supply. The central problem is to

optimally coordinate these demand and supply decisions. The study on com-

bined pricing and inventory decisions dates back to Whitin(1955)[59], with

further development along various dimensions including seasonal demand [39],

fixed ordering cost [21][22], unreliable supply [51] [48] [32] and risk aversion [3]

[24]. Excellent surveys are provided by Elmaghraby and Keskinocak(2003)[28],

Yano and Gilbert(2003)[60], and ChenSimchi-Levi(2012) [23].

In a study similar to ours, Rajan, Rakesh and Steinberg(1992) [52]

consider the relationship between pricing and ordering decisions for a monop-

olistic seller firm facing deterministic demand. Their paper provides guidance

in determining when price changes during the cycle are worthwhile due to

product aging, how often such changes should be made and how such changes

affect ordering frequency and quantities. We consider uncertain demand ar-

rival process and costly price adjustment. Consequently, the price revision in

our model is based on the different inventory level, which is closer to practice.

Chen, Wu and Yao(2010) [19] study a similar model in which the demand

process is a price dependent Brownian motion. They consider three forms of

demand-price relation, namely, linear, exponential and power functions. They

also assume that the inventory holding cost is linear in the stock level. In

contrast their study, our model allows for a general monotone price-demand
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function and a general monotone inventory holding cost function. Moreover,

the consideration of costly price adjustment makes our problem much more

challenging.

There are several papers model costly price adjustment in dynamic

pricing. Celik, Muharremoglu and Savin(2009) [16] analyze the problem of

selling a fixed stock of product over a finite horizon. They demonstrate the

complexity of the optimal policy in the presence of price adjustment cost.

Aguirregabiria(1999) [4] considers a periodic inventory replenishment system

in which price adjustment is associated with a fixed cost. They demonstrate

a cyclical price behavior in the optimal policy. Chen and Hu(2012) [20] ex-

tend this study by allowing different costs for markup and markdown. Under

the assumption that the demand is deterministic, they design a polynomial

time algorithms to maximize the total profit. Chen, Zhou and Chen(2011)

[25] consider a more complex price adjustment cost which consists of a fixed

component and a variable component. They derive solutions for two special

cases of the problem, one without fixed price adjustment cost and one without

inventory carryover. For the general model, they demonstrate the complexity

of the optimal policy and propose a heuristic solution. Unlike the aforemen-

tioned studies, which assumes a linear price-demand relation, our model allows

for any monotone demand function that need not be concave or convex.
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3.3 The Model

The firm faces an infinite-horizon planning problem. The goal is to

maximize the long-run average profit by appropriately adjusting the inventory

level and the product price over time.

Customer demand arrives according to a Poisson process, whose rate

λ(p) depends on the price p currently chosen by the manager. We assume that

the set of feasible prices P is bounded with p = minP and p = maxP. Also,

λ(p) > 0 for p ∈ P and λ(p) strictly decreasing. Then the expected interarrival

time of the demand, τ(p) = 1/λ(p) is strictly increasing in p, and its inverse

p(τ) is increasing over T = {τ : p(τ) ∈ P}. We also define τ = τ(p) and

τ = τ(p). Therefore, charging a price p(τ) is equivalent to setting an expected

interarrival time τ . Whenever he adjusts the price, the manager incurs a fixed

cost A ≥ 0.

The manager can pay a fixed cost K and a variable cost c to replenish

inventory with a negligible delivery leadtime. The manager also incurs an

inventory cost rate of h(i) per unit time when the inventory level is i. We

assume that h(i) is strictly increasing in i with h(0) = 0 and h(i) > 0 for

i > 0. Demand backlogging is not allowed.

In theory, the manager may adjust the price p at any time but at a cost

A. However, because the demand process is Poisson, it is straightforward to

see that we only need to restrict to policies that change price and inventory at a

demand arrival epoch. Now consider the situation where a demand arrival just
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occurs and the current inventory level becomes i. Suppose that the average

time until the next arrival is τi. Then the expected gross profit during τi can

be computed as

π(i, τi) = p(τi)− h(i)τi − c. (3.1)

We shall assume that π(1, τ) > 0 to rule out the trivial case where it is never

optimal to order and sell any positive quantity. We further note that because

holding inventory is costly (i.e., h > 0) and backlogging is not allowed, the

manager should always replenish whenever the inventory level drops to zero.

Then the manager’s problem is to choose an order-up-to level S and a set

of expected interarrival times τ⃗ ≡ {τ1, · · · , τS} that maximizes his long-run

average profit expressed as

V (S, τ⃗) =

∑S
i=1 π(i, τi)− A

∑S−1
i=1 1{τi ̸=τi+1} −K∑S

i=1 τi
, (3.2)

where 1X is the indicator function for event X. Note that in computing the

above profit function, we have assumed a stationary policy (S, τ⃗) and applied

the renewal reward theorem. For our subsequent analysis, we use (S∗, τ⃗ ∗) to

denote the optimal decisions and V ∗ to denote the optimal average profit. We

also define ⃗̂τ(S) to be the vector of optimal expected interarrival times and

V̂ (S) = V (S, ⃗̂τ(S))

to be the corresponding average profit when the order-up-to level is fixed at

S. In the case when multiple optimal solutions exist, we always choose the

one with the smallest S∗.
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3.4 Analysis of the Optimal Policy

In this section, we analyze the properties of the profit function and

derive the optimal policy. In §§3.4.1, we characterize the optimal solution

under several special cases, which allows us to rule out these cases in our

analysis of the general model. In §§3.4.2, we specify the properties of the

optimal policy and demonstrate the complexity of solving the problem. In

§§3.4.3, we analyze how the optimal policy responds to the changes of the

model parameters to obtain insights into the policy behaviors.

3.4.1 Preliminaries

In our model, we do not impose any condition on the price-demand rela-

tion. Our first result stated below suggests that it is without loss of generality

to restrict to a concave p(τ).

Lemma 3.4.1. Suppose

p(τ b) ≤ τ c − τ b

τ c − τa
p(τa) +

τ b − τa

τ c − τa
p(τ c)

for some feasible τa, τ b, τ c ∈ T with τa < τ b < τ c, then τ̂i(S) ̸= τ b for any

1 ≤ i ≤ S and any S.

To understand Lemma 3.4.1, we first consider the case where the fea-

sible set of expected interarrival times is a compact interval, i.e., T = [τ , τ ]. If

p(τ) is convex or linear over some interval [τa, τ c] ⊂ [τ , τ ], then Lemma 3.4.1

states that the optimal τi(S) cannot be an interior point of this interval. With
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this result, we can replace p(τ) by its concave envelope p̄(τ) defined by the

following procedure. For each interval [τa, τ c] over which p(τ) is convex, define

a pair {τ 1, τ 2} with τ 1 ≤ τa < τ c ≤ τ 2 such that{
τ 1 = min{τA : p(τ) ≤ τ2−τ

τ2−τA
p(τA) + τ−τ1

τ2−τA
p(τ 2) for any τA ≤ τ ≤ τ 2},

τ 2 = max{τC : p(τ) ≤ τC−τ
τC−τ1

p(τ 1) + τ−τ1

τC−τ1
p(τC) for any τ 1 ≤ τ ≤ τC}.

We replace the segment of p(τ) over [τ 1, τ 2] by a linear segment defined as

p̄(τ) = τ2−τ
τ2−τ1

p(τ 1) + τ−τ1

τ2−τ1
p(τ 2) and keep p̄(τ) = p(τ) otherwise. Then it is

easy to see that p̄(τ) is concave. Moreover, based on Lemma 3.4.1, the optimal

solution for the problem with the inverse demand p̄(τ) coincides with that for

our original problem.

Now consider the case where the feasible set of the expected interarrival

times is discrete, i.e., T = {τ 1, τ 2, · · · }. Then one can perform the test with all

τa, τ b, τ c ∈ T and exclude the points τ b satisfying the condition in Lemma 3.4.1.

This leads to a new feasible set over which p(τ) is concave.

The next lemma further provides a lower bound on the optimal ex-

pected interarrival time that can be easily computed.

Lemma 3.4.2. τ ∗i ≥ τM = argmaxτ∈T{[p(τ) − c]/τ}1 for all 1 ≤ i ≤ S∗.

Moreover, if p(τ) is concave, [p(τ)− c]/τ is unimodal in τ .

We note from (3.1) that τM also maximizes π(i, τ)/τ = [p(τ)−c]/τ−ih.

In other words, τM is the myopic optimal expected interarrival time when we

1We always choose the smallest maximizer if multiple ones exist.
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ignore the fixed cost of ordering K and the fixed cost of price adjustment

A. Lemma 3.4.2 indicates that the presence of fixed costs induces a longer

expected interarrival time, or alternatively a higher product price. We remark

that τM is determined myopically because it does not take into account its

impact on the future inventory level and inventory cost.

Lemma 3.4.3. If A ≥ K, then τ ∗i = τ ∗1 for all 1 ≤ i ≤ S∗.

Lemma 3.4.3 suggest that price adjustment is never optimal if the as-

sociated fixed cost is higher than that of ordering. Based on Lemmas 3.4.1,

3.4.2, and 3.4.3, it is without loss of generality that we assume a concave p(·),

τ = τM , and A < K in our subsequent analysis.

3.4.2 Structure of the Optimal Solutions

Within each order cycle, the inventory level drops from the order-up-to

level S to zero as the demand arrives. Intuitively, the manager should charge

a higher price at a lower inventory level. This is formally established in the

next lemma.

Proposition 3.4.1. The following results hold:

i) τ̂i(S) is weakly decreasing in i for any S > 1.

ii) [p(τ ∗i )− c]/τ ∗i is weakly decreasing in i.

iii) π(S∗ + 1, τ ∗S∗)/τ ∗S∗ ≤ V ∗ < π(S∗, τ ∗S∗)/τ ∗S∗.
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Proposition 3.4.1(i) states that the expected interarrival time and thus

the price is weakly increasing as the inventory level decreases. This is because

at the beginning of the order cycle, the inventory holding cost is high due to the

high inventory level. Speeding up the demand arrival by charging a low price

helps to reduce inventory. Toward the end of the order cycle, the inventory level

and thus the inventory holding cost becomes low. Slowing down the demand

arrival by posting a high price allows the manager to improve his profit. Such

a policy leads to an increased time-average profit at each replenishment cycle,

as Proposition 3.4.1(ii) further suggests. In particular, the time-average profit

from selling the first unit, i.e., π(S∗, τ ∗S∗)/τ ∗S∗ , is lower than that of selling the

subsequent units. This is mainly because a lower price is charged at a higher

inventory level. Moreover, the time-average profit of selling any item should

be no lower than the optimal profit rate V ∗ because of the fixed costs involved

in the latter.

Proposition 3.4.2. The function V (S) satisfies the following:
V̂ (S) < ωM(S + 1) if S < S∗,

ωMA(S + 1) ≤ V̂ (S) < ωM(S) if S = S∗,

V̂ (S) ≥ ωMA(S) if S > S∗,

(3.3)

where ωM(i) = π(i,τM )
τM

, ωMA(i) = π(i,τMA)−A
τMA , and τMA = argmaxτ∈T

p(τ)−c−A
τ

.

By definition, ωM(i) is the gross profit rate (excluding all fixed costs)

of selling the ith unit, and ωMA(i) adjusts ωM(i) by including a fixed price

adjustment cost for each unit. Clearly, ωM(i) ≥ ωMA(i) and both can be

computed easily. When it is not costly to adjust price, i.e, A = 0, ωM(i) =
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Notes. K = 10, c = 0.2, h(i) = 0.074h2, A = 2.15, τ ∈ {0.4, 0.8, 1.2}, p(0.4) =
5, p(0.8) = 8 and p(1.2) = 10. The optimal solution is S∗ = 8 and (τ∗1 , · · · , τ∗7 ) =
(0.8, 0.8, 0.8, 0.4, 0.4, 0.4, 0.4, 0.4).

Figure 3.1: The long-run profit function as characterized in Proposition 3.4.2

ωMA(i). In this case, Proposition 3.4.2 suggests a simple way to search for the

optimal order-up-to level.

When A > 0, the long-run profit function V̂ (S) is not unimodal in S,

as demonstrated in Figure 3.1. Proposition 3.4.2 suggests how to narrow down

the range to search for an optimal S∗ over the curve V̂ (S). The first relation

in (3.3) implies S∗ ≥ 8 and the last relation in (3.3) suggests S∗ ≥ 4. The

optimal order-up-to level is S∗ = 8 and the optimal policy calls for changing

the price after selling 3 units during an replenishment cycle.

Lemma 3.4.4. The function V̂ (S) satisfies the following conditions.

i) If S ≤ S∗, then V̂ (S)− V̂ (S1) > −δω for all S1 < S,

ii) If S > S∗, then V̂ (S)− V̂ (S2) > −δω for all S < S2,

where δω ≡ ωM(i)− ωMA(i) is independent of i.
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In general, Lemma 3.4.4 further suggests the direction to search for the

optimal order-up-to level. If we find S1 < S satisfying V̂ (S)− V̂ (S1) > −δω,

then the optimal order-up-to level is bigger than S. If we find S2 > S satisfying

V̂ (S) − V̂ (S2) > −δω, then the optimal order-up to level is less than S. We

note that when there is not cost for price adjustment, i.e., A = 0, we have

ω = 0 and thus Lemma 3.4.4 implies that V̂ (S) is unimodal.

Lemma 3.4.5. S∗ ∈ [S, S), where

S ≡ inf

{
n : τM

n∑
i=1

[h(n)− h(i)] ≥ K

}
,

S ≡ sup

{
n :

n∑
i=1

[A+ τh(n)− τh(i)] < K

}
.

Lemma 3.4.5 specifies the upper and the lower bounds of the optimal

order-up-to level S∗. Note that when the inventory holding cost is linear, i.e.,

h(i) = hi, then

S =

⌊√
2K

h(2τ − τ)
+ [

2A− τh

2h(2τ − τ)
]2 +

2A− τh

2h(2τ − τ)

⌋
,

S =

⌈√
2K

τMh
+

1

4
+

1

2

⌉
.

The bounds S and S increases when the set-up cost K increases and decreases

when h increases. Also, S decreases when the adjustment cost A increases, and

S decreases when the myopic optimal expected interarrival time τM increases.

3.4.3 Comparative Statics

In the section, we analyze how the optimal policy depend on the model

parameters.
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Proposition 3.4.3 (The Optimal Order-up-to Level). Consider two otherwise

identical systems with

i) variable ordering costs ca > cb,

ii) inventory holding costs ha(i) ≥ hb(i) satisfying ha(i)−hb(i) being weakly

increasing in i,

iii) fixed ordering costs Ka < Kb and A = 0, or

iv) inverse demand functions pi(τ) = p̃(γi, τ), i = 1, 2, being submodular in

(γi, τ) and increasing in γi, and γa < γb.

Then Sa∗ ≤ Sb∗.

According to Proposition 3.4.3, a lower unit ordering cost, a higher

inventory cost,2 or a lower demand rate leads to a higher order-up-to level,

which confirms with one’s intuition. One may also expect that a higher fixed

ordering cost would also induce a higher order-up-to level. Although this

is true when there is no fixed cost of price adjustment, it is generally not

the case otherwise. The left panel of Figure 3.2 provides a counterexample.

We observe that with a positive price adjusting cost, it may become optimal

to order less as the fixed cost becomes larger. With less units of items to

2Note that the condition that ha(i) − hb(i) is weakly increasing is realistic and not
restrictive. It simply says that the incremental cost of having one additional unit of inventory
in system a should be no lower than that in system b. This is what one would expect if
holding inventory is more costly in system a than in system b.
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sell in a cycle, the optimal policy can potentially reduce the number of price

changes and thus save on the price adjusting cost. This implies an interesting

coordination problem between ordering and pricing strategies. As a result of

such coordination, the optimal order-up-to level is not monotone with respect

to the fixed ordering cost as well as the price adjustment cost, as demonstrated

in Figure 3.2.

Notes. c = 0.55, h(i) = 0.3i, K = 2.5, A = 0.2, τ ∈ [0.4, 4], p(τ) = ln(8.3τ),
τ ∈ {0.4, 2.2., 4}.

Figure 3.2: The optimal order-up-to level as a function of model parameters

Proposition 3.4.4 (The Average Cycle Time). Consider two otherwise iden-

tical systems with fixed ordering costs Ka > Kb. Then
∑Sa∗

i=1 τ
a∗ ≥

∑Sb∗

i=1 τ
b∗.

Proposition 3.4.4 suggests that as a result of the coordination between

price and order, the average cycle length reduces as the fixed ordering cost de-

creases. Compared with Proposition 3.4.3, the economies of scale in ordering

is reflected in time rather than in quantity. Figure 3.3 demonstrate that the

average cycle length is generally not monotone with respect to the price ad-

justment cost or the variable ordering cost, even though the order-up-to level

43



is.

Notes. c = 0.6, h(i) = 0.05i2, K = 3, A = 0, τ ∈ {0.4, 0.8, 1.2}, p(0.4) = 1.8, p(0.8) = 2.5 and
p(1.2) = 3.0.

Figure 3.3: The optimal average cycle length as a function of model parameters

Proposition 3.4.5 (The Average Selling Speed). Consider two otherwise

identical systems with variable ordering costs ca > cb. Then
∑Sa∗

i=1 τ
∗
i /S

a∗ ≥∑Sb∗

i=1 τ
∗
i /S

b∗.

Notes. c = 0.7, h(i) = 0.07i2, K = 1.5, A = 0, τ ∈ {0.3, 0.8, 1.6}, p(0.3) = 1.4, p(0.8) = 2.2 and
p(1.6) = 3.1.

Figure 3.4: The optimal average time to sell a unit as a function of model
parameters
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Proposition 3.4.6 (The Frequency of Price Adjustment). Consider two oth-

erwise identical systems with fixed price adjustment costs Aa > Ab. Then,∑Sa∗−1
i=1 1{τa∗i ̸=τa∗i+1}∑Sa∗

i=1 τ
a∗
i

≤
∑Sb∗−1

i=1 1{τb∗i ̸=τb∗i+1}∑Sb∗

i=1 τ
b∗
i

.

Proposition 3.4.6 states that the frequency of changing price decreases

as the adjustment cost increases.

3.5 Continuous Relaxation

As we have shown in §§3.4.2, the profit function V̂ (S) may have a

complex structure. In the presence of price adjustment cost, i.e., A > 0,

V̂ (S) is not unimodal. This imposes a challenge in solving the problem for

systems exhibiting strong economies of scale in ordering (i.e., requiring a high

order-up-to level). In this section, we consider a relaxation of the problem

by allowing the inventory level to be continuous. When p(τ) is differentiable,

one can evaluate the derivative of the profit function using this relaxation.

In §§3.5.1, we first show that when price adjustment is not costly, one can

easily obtain the exact optimal solution when p(τ) is differentiable. In §§3.5.2,

we introduce the concept of price segment and reformulate the problem with

continuous relaxation. In §§3.5.3, we analyze the structural properties of the

relaxed problem.
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3.5.1 The Special Case without Price Adjustment Cost

Proposition 3.5.1. If A = 0 and price function p(τ) is differentiable, then

V̂ (S) = p′(τ̂i(S))− h(i), ∀i. (3.4)

From Proposition 3.5.1, we also can compute the optimal solution for

different price functions as shown in Table 3.1. This proposition also reveals

that the value function at a given inventory level can be regarded as a rate

of profit. We shall see that the optimal solution has the property that the

optimal profit rate is maintained constant if the inventory cost is accounted

for properly!

The result in Proposition 3.5.1 allows for easy computation of the opti-

mal solution. In Table 3.1 we provide solutions for three examples of commonly

used demand functions when the inventory cost is linear, i.e., h(i) = hi. The

detailed derivation of the solutions can be found in the appendix. We shall

note that this table provides a simple guideline for changing prices when the

cost of changing them is extremely small.

3.5.2 Definition of Price Segment

To treat the general model with A ≥ 0, we introduce the notion of

price segment. From Proposition 3.4.1, the price changes from high to low as

the inventory level goes down. Denote N =
∑S−1

i=1 1{τi ̸=τi+1} as the number of

price adjustment in one replenishment cycle. For each feasible solution (S, τ⃗),

we can define two vectors x⃗ = {x0, x1, · · · , xN+1} and ι⃗ = {ι0, ι1, · · · , ιN+1} as
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Table 3.1: Examples of the optimal solution for the case without adjustment
cost

Demand Function (S̃, Ṽ ) is the solution of S∗ τ ∗i
Linear

√
Sh+ V = (α−c)

2
√
β

p(τ) = α− β
τ

S(α− c)−K = 4
√
β

3h
[( (α−c)

2
√
β
)3 − (h+ V )3/2] [S̃]

√
β

ih+Ṽ

Exponential 1 + ln(Sh+ V ) = ln(αβ)− c
α

p(τ) = α ln(βτ) S[α ln(αβ)− c]−K − α [S̃]
√

α
ih+Ṽ

(βτ > e) = α
h
[(Sh+ V ) ln(Sh+ V )− (h+ V ) ln(h+ V )]

Isoelastic (Sh+ V )
β

1−β = α
1

1−β (β
β

1−β −β
1

1−β )
c

p(τ) = ατβ (Sc+K)
h(1− β

1−β
)

α
1

1−β (β
β

1−β −β
1

1−β )

[S̃] 1−β

√
αβ

ih+Ṽ

(β < 1, 0 < τ < 1) = (Sh+ V )
1−2β
1−β − (h+ V )

1−2β
1−β

follows.

x0 = 0, xN+1 = S,

xj = min{l|τxl+1 ̸= τxl
; τk = τxl−1+1, xl−1 ≤ k ≤ xl}, 1 ≤ j ≤ N,

ιj = τxj
, 1 ≤ j ≤ N + 1.

When the inventory level falls in (xj−1, xj], items will be sold at the price p(ιj).

We call the interval (xj−1, xj] the jth price segment. At each replenishment

cycle, the inventory level changes from the (N + 1)st price segment, to the

Nth price segment, · · · , until the first price segment as the inventory level

decreases. Denote H(xj−1, xj) as the average inventory holding cost per unit

time when inventory level is in the interval (xj−1, xj]. That is,

H(xj−1, xj) =

∑xj

i=xj−1+1 h(i)

xj − xj−1

.

Then, we can rewrite the long-run average profit V (S, τ̂) as

V (S, τ̂) = V ♭(N, ι⃗, x⃗) =

∑N+1
j=1

[
(xj − xj−1)

[
p(ιj)− ιjH(xj−1, xj)

]]
− cxN+1 −K −NA∑N+1

j=1 [(xj − xj−1)ιj]
.
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For our subsequent analysis, we use (N∗, ι⃗∗, x⃗∗) to denote the optimal decisions

that yields the optimal profit V ∗ to denote the optimal average profit. We

also define (⃗ι̂(N), ⃗̂x(N)) to be the optimal decision when the number of price

adjustment is equal to N .

Proposition 3.5.2. If the price function p(ι) is differentiable, then

V ∗ = p′(ι∗j)−H(x∗
j−1, x

∗
j), for all 0 ≤ j ≤ N∗ + 1.

Proposition 3.5.2 shows that the long-run average profit equals the

difference between the marginal price and average inventory holding cost over

a price segment. In other words, the average profit rate for each price segment

remains constant. This result is a generalization of Proposition 3.5.1. Note

that when A = 0, it is optimal to adjust price whenever the inventory level

changes. In this case, a price segment is defined as (i−1, i] for each 1 ≤ i ≤ S.

The simple equation stated in Proposition 3.5.2 can be used to verify whether

a pricing strategy is a candidate for being optimal.

3.5.3 Continuous Approximation

The problem as described above is very hard to solve when N is large.

In this section, we explore the property of the approximate problem in which

we assume that inventory level changes as a continuous variable and obtain a

feasible solution by using a continuous approximation to the inventory level.

Specifically, the average profit can be approximated as follows

W (N, ι⃗, x⃗) =

∑N+1
j=1

[
p(ιj)(xj − xj−1)− ιj

∫ xj

xj−1
h(x)dx

]
− cxN+1 −K −NA∑N+1

j=1 [(xj − xj−1)ιj]
(3.5)
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Note that in the above expression we have replaced the summation by the

integration in computing the inventory holding cost. In other words, this

approximation assumes that the demand arrives continuously at a price de-

pendent rate.

For our subsequent analysis, we use (N∗, ι⃗∗, x⃗∗) to denote the optimal

decisions for the approximated problem and W ∗ to denote the optimal average

profit. We also define (⃗ι̂(N), ⃗̂x(N)) to be the optimal solution and Ŵ (N) to

be the corresponding average profit when the number of price adjustment is

N .

Proposition 3.5.3. The equation h(z)[z − y] −
∫ z

y
h(x) = A

ιM
, z ∈ (y,+∞),

has a unique solution z(y), where ιM = argmaxι{[p(ι)− c]/ι}.

(i) If Ŵ (N) + h(z(x̂N+1(N))) < [p(ιM)− c]/ιM then Ŵ (N) < Ŵ (N + 1).

(ii) If Ŵ (N + 1) + h(z(x̂N+1(N + 1))) > [p(ιM) − c]/ιM then Ŵ (N) ≥

Ŵ (N + 1).

Proposition 3.5.3 strengthens the results in Proposition 3.4.2 and Lemma 3.4.4

with the continuous relaxation of the problem. In the original model with a

discrete inventory level, one searches for the optimal policy by changing the

inventory one unit at a time. In the continuous relaxation, this is done by

including or excluding a price segment.

Proposition 3.5.4. Suppose that p(·) is differentiable. If h(·) is strictly con-

cave (linear, strictly convex), then
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K +NA < (=, >)
N+1∑
j=1

[
ι̂j(N)

∫ x̂j(N)

x̂j−1(N)

h(x)dx

]
. (3.6)

In the classical EOQ model, the fundamental trade off is to keep a

balance between the fixed ordering cost and the inventory holding cost. As

a result of this trade off, the optimal economical order quantity should lead

to the set-up cost equal to the inventory holding cost within each order cy-

cle. Proposition 3.5.4 suggest that a similar trade off in our model when the

inventory holding cost is linear. The key difference in our model is the consid-

eration of price adjustment. Therefore, in the left-hand side of (3.6), we shall

also account for the price adjustment cost as a part of the fixed cost. The

expression of inventory holding cost on the right-hand side is more complex

than in the classical EOQ model. This is due to the fact that the rate of

selling the product changes with the price. In general, the equality between

the fixed cost and the inventory holding cost does not hold in our model, when

the inventory holding cost is not linear. According to Proposition 3.5.4, the

fixed cost is smaller (larger) than the inventory holding cost in an optimal so-

lution when the inventory holding cost is concave (convex) in the stock level.

Proposition 3.5.5 further discovers the impact of inventory holding cost on the

optimal solution.

Proposition 3.5.5. If the price function p(ι) is differentiable, then for all

j ≤ N + 1,

Ŵ (N) = πE
j (N, x̂j−1(N), x̂j(N), ι̂j(N))−

HE
j (N,⃗̂ι(N), ⃗̂x(N))

[x̂j(N)− x̂j−1(N)]ι̂j(N)
, (3.7)
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where

πE
j (N, xj−1, xj, ιj) =

p(ιj)− c

ιj
−

∫ xj

xj−1
h(x)dx

xj − xj−1

HE
j (N, ι⃗, x⃗) = ιj

[
(xj − xj−1)h(xj)−

∫ xj

xj−1

h(x)dx

]
,

+(xj − xj−1)
N+1∑

m=j+1

[
ιm

(
h(xm)− h(xm−1)

)]
.

The segment holding cost HE
j accounts the total inventory holding cost

paid for the items sold in the jth price segment, which is computed in a

way analogous to the concept of echelon holding cost. The first term of HE
j

corresponds to the holding cost during the jthe price segment as these items

are sold and the second term calculates the cost of holding these items in

previous price segments. The segment gross profit rate πE
j is the time-average

gross profit rate over the jth price segment. Therefore, Proposition 3.5.5

suggests a relation among the optimal profit, the segment gross profit rate and

the time-average segment holding cost. This relation says that the difference

of the last remains unchanged across different price segments and it equals

the optimal profit. This observation provides the following insight to the

seller firm: given the current inventory position, the firm should set the price

based on the segment inventory cost instead of the inventory cost at paid

during the current price segment. Using this idea, we allocate the fixed cost to

price segment j proportionately according to the segment holding cost. The

allocation provides a method for solving the continuous approximation in a

nice and understandable way (see the details in the appendix).
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Also notice that the proof of Proposition 3.5.5 only uses the first-order

condition for optimality with respect to xj. Hence, more can be asserted about

the profit rates as stated below.

Corollary 3.5.1. Given ι⃗, if x⃗ are determined optimally and the fixed costs are

allocated proportional to the segment holding cost, then the profit rate across

the segments are equal.

3.5.4 Numerical Study: The Value of Price Adjustment

In this section, we examine the effect of each parameter in the model

on the value gained from changing prices within ordering cycles. In most retail

practice, the number of different prices is usually very limited in view of various

implementation considerations. In the subsequent analysis, we focus on how to

obtain the optimal price segments and optimal selling prices for a given upper

bound N on the number of price adjustment. We use the method developed in

§3.5 to compute the optimal policy for the problem with continuous relaxation

and compare the results with the static pricing model Ŵ (0), in which a fixed

optimal price p̂(0) is maintained throughout the replenishment cycle.

In Table 3.2, we analyze the effect of different model parameters. We

observe that when it becomes more costly to change price (i.e., when A in-

creases), the number of price points in a cycle reduces. However, the cycle

length CT ∗, the average selling speed τ̄ ∗ and the average price p̄∗ may in-

crease or decrease in A. These observations are consistent with our discussion

in §§3.4.3. Compared with the case of static pricing, allowing for changing
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price can lead to more profit improvement when the cost of price adjustment

is lower, as shown in the last column of the table.

Table 3.2: Effect of model parameters on the value of price adjustment

Parameter (ι∗N∗+1, · · · , ι∗1) CT ∗ ῑ∗ p̄∗ W ∗ p̂(0) Ŵ (0)
∣∣W ∗−Ŵ (0)

Ŵ (0)

∣∣× 100%

A = 0
(1.5, 1.65, 1.81, 2.00, 2.21,

2.45, 2.71, 3.05, 3.44, 3.88, 4.42)
38.47 2.22 8.47 0.8413 8.51 0.7109 18.34%

0.15 (1.50, 1.88, 2.39, 3.11, 4.13) 38.80 2.22 8.47 0.8423 8.51 0.7109 15.76%
0.30 (1.50, 2.62, 3.64) 38.31 2.19 8.41 0.8155 8.51 0.7109 14.70%
0.60 (1.50, 2.28, 3.69) 38.78 2.20 8.43 0.7999 8.51 0.7109 12.51%
1.5 (1.53, 3.12) 37.91 2.14 8.34 0.7726 8.51 0.7109 8.67%

K = 20 (1.55, 3.21) 27.91 1.93 7.97 1.2534 7.81 1.2348 1.51%
30 (1.50, 2.07, 2.97) 31.14 1.98 8.13 1.0874 8.05 1.0409 4.47%
40 (1.50, 2.28, 3.69) 38.78 2.20 8.43 0.7999 8.51 0.7109 12.51%
45 (1.50, 2.39, 4.13) 42.82 2.32 8.58 0.6772 8.74 0.5679 19.26%

c = 0.5 (1.50) 28.28 1.50 7.17 1.62 7.17 1.6162 0.00%
1.0 (1.50, 2.32) 32.25 1.74 7.67 1.32 7.17 1.2829 3.23%
1.5 (1.50, 2.64) 34.41 1.89 7.94 1.0477 7.17 0.9496 10.33%
2.0 (1.50, 2.28, 3.69) 38.78 2.20 8.43 0.7999 8.51 0.7109 12.51%

h = 0.01 (1.50) 109.54 1.50 7.17 2.7144 7.17 2.7144 0.00%
0.05 (1.50, 1.92) 53.04 1.64 7.49 1.8234 7.24 1.8120 0.62%
0.15 (1.50, 2.28, 3.69) 38.78 2.20 8.43 0.7999 8.51 0.7109 12.51%
0.20 (1.50, 2.58, 5.00) 37.68 2.55 8.82 0.4892 9.13 0.3545 37.99%

α = 3.5 (1.53, 2.61, 5.00) 44.83 2.71 7.93 0.3521 8.36 0.2357 49.38%
4.0 (1.50, 2.28, 3.69) 38.78 2.20 8.43 0.7999 8.51 0.7109 12.51%
4.5 (1.50, 2.49) 33.89 1.86 8.89 1.3093 8.80 1.2424 5.38%
5.0 (1.50, 2.17) 31.88 1.72 9.56 1.8541 9.17 1.8130 2.27%

β = 3.0 (1.84, 2.91, 5.00) 46.85 3.10 8.58 0.3608 9.13 0.2658 36.69%
3.5 (1.60, 2.62, 4.71) 43.33 2.62 8.49 0.5755 8.77 0.4799 19.92%
4.0 (1.50, 2.28, 3.69) 38.78 2.20 8.43 0.7999 8.51 0.7109 12.51%
4.5 (1.50, 2.65) 34.55 1.90 8.43 1.0325 8.31 0.9556 8.04%

Basic Setting: p(ι) = α ln(βι) for ι ∈ [1.5, 5], α = β = 4, K = 40, c = 2, A = 0.6,

h(i) = 0.15i, and N̄ = 10. CT ∗ =
∑N∗

i=0[(x
∗
j+1 − x∗

j )ι
∗
j ], ῑ∗ =

∑N∗
i=0[(x

∗
j+1−x∗

j )ι
∗
j ]

x∗
N∗+1

and

p̄∗ =

∑N∗
i=0[(x

∗
j+1−x∗

j )p(ι
∗
j )]

x∗
N∗+1

.

When the fixed ordering cost K, the variable ordering cost c, or the

unit inventory holding cost h becomes higher, inventory based price adjust-

ment yields a larger value. Moreover, the difference among price points also

becomes larger, as implied in the second column of Table 3.2. Even though the
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response of the optimal policy to these three cost parameters is very similar,

the explanation is very different. An increased K implies a strong scale econ-

omy in ordering and an extended cycle length. In this case, it is desirable to

further reduced the price at the beginning of the cycle to speed up the selling

and reduce inventory. When it is close to the end of the cycle, a much higher

price is charged to ensure profitability when inventory level is lower. Conse-

quently, price adjustment becomes more useful when K is large. An increased

c is immediately translated to a reduced gross margin, which induces the firm

to increase the price. However, in view of the inventory holding cost, it is

not economical to uniformly reduce the product price over the replenishment

cycle. Instead, the firm should keep the low price at the beginning of the cycle

and only increase the price toward to end to compensate for the increased unit

cost. Therefore, the firm’s ability to change price becomes important when c

is high. Intuitively, a larger h may induce the firm to charge a lower price at

the beginning of the cycle to speed up the selling process. However, this is

not always true. From Table 3.2, we observe that the firm would rather make

up the increased holding cost by further increasing the price toward the end

of the cycle.

The profit improvement from changing price decreases as α or β in-

creases. From the second column of Table 3.2, we observe that the difference

of price points becomes smaller as α or β increases. This is because the speed

of selling the product (i.e., 1/ι) becomes less sensitive to the price. Interesting

α and β has a different effect on the average selling price—The firm can sells
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at a higher average price when α increases or β decreases.

In Table 3.3, we compute the percentage gap between the optimal profit

rate and that under limited number of price adjustments. Recall our discussion

for Proposition 3.4.6. The optimal policy calls for more frequent price change

when the adjustment cost is low. Therefore, it makes sense for us to focus on

the case when A = 0 such that it is optimal to revise the price frequently.

Table 3.3: Effect of Upper bound N for Different Adjustment Cost

Parameter Ŵ (0)

Ŵ (100)
× 100% Ŵ (1)

Ŵ (100)
× 100% Ŵ (2)

Ŵ (100)
× 100% Ŵ (3)

Ŵ (100)
× 100%

A = 0 84.46% 96.56% 98.75% 99.32%
0.15 86.20% 98.06% 99.83% 100.00%
0.30 87.18% 98.67% 100.00% 100.00%
0.60 88.88% 99.58% 100.00% 100.00%
1.5 92.02% 100.00% 100.00% 100.00%

K = 20 96.49% 99.48% 99.81% 99.90%
30 91.89% 98.47% 99.44% 99.72%
40 84.45% 96.56% 98.75% 99.32%
45 79.04% 95.12% 98.20% 99.09%

c = 1.0 94.90% 99.35% 99.76% 99.88%
1.5 89.80% 98.41% 99.42% 99.70%
2.0 84.45% 96.56% 98.75% 99.32%
2.5 78.08% 94.33% 97.63% 98.81%

h = 0.01 100.00% 100.00% 100.00% 100.00%
0.05 98.60% 99.83% 99.92% 99.93%
0.15 84.45% 96.56% 98.75% 99.32%
0.20 66.14% 92.04% 97.28% 98.78%

α = 3.5 60.20% 90.74% 96.83% 98.58%
4.0 84.45% 96.56% 98.75% 99.32%
4.5 92.47% 98.78% 99.56% 99.78%
5.0 96.34% 99.53% 99.83% 99.92%

β = 3.0 67.05% 93.21% 97.50% 98.73%
3.5 77.60% 94.21% 97.59% 98.80%
4.0 84.45% 96.56% 98.75% 99.32%
4.5 89.50% 98.34% 99.40% 99.70%

Basic Setting: p(ι) = α ln(βι) for ι ∈ [1.5, 5], α = β = 4, K = 40,
c = 2, A = 0, and h(i) = 0.15i.

As a general observation from Table 3.3, price adjustment is subject

to rapid diminishing returns—The additional value obtained from allowing for
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one more price revision within an ordering cycle decreases rapidly with the

maximum number of price adjustments N̄ . In all instances reported in the

table, almost 99% of the optimal profit can be achieved by allowing when

N = 4. Note that in computing the results in Table 3.3, we have set A = 0

in our basic setting. From the first part of the table that the number of price

adjustment needed to obtain almost 100% optimal profit rate reduces as the

price adjustment cost increases. In other words, when price adjustment is

costly, even less number of price revisions are needed to achieve a high profit.

This is consistent with most retail practice that a very limited number of price

points are observed for a certain product.

The result in Table 3.3 further suggests that one can find a close-to-

optimal solution for our problem by testing limited number of price points

using the continuous relaxation of the model. This allows for dramatically

reduction of the problem size.

3.6 Concluding Remarks

Many firms now have the flexibility to change price, order products or

do both at any time. However, the flexibility on pricing poses challenges for

making the optimal pricing and replenishment decisions. Our paper explores

this question and provides general instructions for making these decisions. Our

study shows that the optimal pricing strategy is to charge a low price at the

beginning and change to high price later. We also see the effect of the cost

of changing prices. The total replenishment cycle increases as the setup cost
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increases. The average inter-arrival time increases as the unit cost increases.

To investigate more, we discuss two special cases. One is without ad-

justment cost. We find the firm prefers changing price at each inventory level.

The optimal solution has the property that the rate of profit is maintained

constant if the inventory cost is accounted for properly. We provide the ex-

pression of the optimal order-up-to level and the optimal long-run average

profit for different price functions.

For the general case, we provide the continuous approximation solution.

We show that in the optimal solution the fixed cost may be larger or small

than the holding cost within a replenishment cycle, depending on the inventory

holding cost function. We investigate the profit rate at each price segment and

discover that in the optimal solution the difference between the profit rate of

each price segment and the optimal long-run average profit equals the echelon

inventory cost of each price segment. We proved a formulation which can be

easily solved using standard package.

It would be interesting to see whether changing prices within a cycle

is as effective when there is positive leadtime. Leadtime equals zero in our

paper. As we know, involvement of leadtime would make the problem much

more difficult. It is due to the fact that the long-run average problem can

not directly be reduced to one replenishment cycle any longer. The general

method is to design a heuristic pricing replenishment policy and compare it

with the optimal pricing and replenishment policy. We hope to do so on future

work.
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The restriction on the arrival process creates the benefit of simplifying

the problem from changing price anytime to changing price based on the in-

ventory level. If demand does not follow a Poisson Process, we can not make

such simplification. However, if firms change the price based on their current

inventory level, then our results can be extended to any arrival process.

Our results also lend themselves to empirical testing regarding the op-

timality of the pricing and stocking policies. Firms can use data about the

inventory position to calculate echelon inventory cost. Further, they can test

whether their marginal profit of each price segment minus the long-run average

profit equals echelon inventory cost. If not, then firms can get more profit by

adjusting the price at the corresponding price segments.
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Chapter 4

Conclusion

Two parts of dissertation discuss how to adjust price in different envi-

ronments.

The first project discusses a periodic review inventory model. The

retailer can replenish inventory and change price at each period. We demon-

strate that the optimal order policy is a near-reorder point policy. On the

other hand, the optimal price may increase as the inventory decreases. We

also summarize optimal policies under different supplier uncertainties and de-

mand uncertainties.

The second project discusses the optimal sale strategy during the re-

plenishment cycle. The retailer can adjust price at any time. When demand

follows Poisson distribution, it is equivalent to adjust price at each inventory

level. We find that under the optimal policy, the retailer prefers to adjust

price at each inventory level when the adjustment cost is zero. However, the

retailer only needs to adjust price at limited times when the adjustment cost

is strictly positive. It is interesting to find that the optimal profit rate will

improve largely even when the price is only adjusted once.

When a customer was cheated, he may not visit the retailer any longer.
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Appendix A

Appendix for Chapter 2

Proof of Lemma 2.2.1. When t = T , we have VT+1(I) = 0 and

JT (I, q1, q2, d) = R(d)− c1q1 − c2q2 − EH(I + u1q1 + u2q2 − εd− ω)

is concave. Because concavity is preserved under maximization, VT (I) is con-

cave. Now suppose that Vt+1(I) is concave. It follows immediately that

Jt(I, q1, q2, d) is concave and thus Vt(I) is concave. It then follows that Lt(y)

is concave and thus JB
t (I, q1, q2, d) is jointly concave.

Since Lt in (2.4) is concave, Lt(I + u1q1 + u2q2 − εd) is submodular in

(I, qi) and supermodular in (qi, d) and (I, d), i = 1, 2. Hence, Jt and JB
t are

submodular in (I, qi) and supermodular in (qi, d) and (I, d).

Lemma A.0.1. Suppose that F (I, q1, q2, d) is jointly concave in (I, q1, q2, d).

Let

Θ =

{
(I, q̃1, q̃2, d̃)|F (I, q̃1, q̃2, d̃) = max

q1≥0,q2≥0,d≤d≤d

F (I, q1, q2, d)

}
,

q∗1(I) = inf
q̃1

{
q̃1|(I, q̃1, q̃2, d̃) ∈ Θ

}
,

q∗2(I) = inf
q̃2

{
q̃2|(I, q̃1, q̃2, d̃) ∈ Θ, q̃1 = q∗1(I)

}
,

d∗(I) = inf
d̃

{
d̃|(I, q̃1, q̃2, d̃) ∈ Θ, q̃1 = q∗1(I), q̃2 = q∗2(I)

}
.
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Then q∗1(I), q
∗
2(I), and d∗(I) are continuous in I.

Proof By definition, (q∗1(I), q
∗
2(I), d

∗(I)) is a maximizer of F (I, q1, q2, d).

Because F (I, q1, q2, d) is jointly concave in (I, q1, q2, d), Θ is a convex set [11].

Therefore, q∗1(I) = minq̃1

{
q̃1|(I, q̃1, q̃2, d̃) ∈ Θ

}
is continuous in I.

Now we note that F (I, q∗1(I), q2, d) is jointly concave in (I, q2, d). Let

Θ1 =

{
(I, q̃2, d̃)|F (I, q∗1(I), q̃2, d̃) = max

q2≥0,d≤d≤d

F (I, q1, q2, d)

}
.

Then Θ1 is a convex set and q∗2(I) = min{q̃2|(I, q̃2, d̃) ∈ Θ1} is continuous in

I.

Finally, we have F (I, q∗1(I), q
∗
2(I), d) being jointly concave in (I, d). Let

Θ2 =

{
d̃|F (I, q∗1(I), q

∗
2(I), d̃) = max

d≤d≤d

F (I, q1, q2, d)

}
.

Then Θ2 is a convex set and d∗(I) = min{d̃|(I, d̃) ∈ Θ2} is continuous in I.

Proof of Lemma 2.2.2. Define y1 = I + ū1q1 and

Φt(y1, q2, d) = JB
t (I, (y1 − I)/ū1, q2, d)− c̄1I

= R(d)− c̄1y1 − c̄2q2 + ELt(y1 + u2q2 − εd). (A.1)

We observe that the right-hand side does not depend on I and is concave in

(y1, q2, d). Let d̃(y1) and q̃2(y1) denote the maximizer of Φt for a given y1. It

follows that Φt(y1, q̃2(y1), d̃(y1)) is concave in y1 and has a maximizer, which

we denote by ȳBt,1. We also denote q̄Bt,2 = q̃B2 (ȳ
B
t,1) and d̄Bt = d̃(ȳBt,1). Thus,

the optimal ordering decision for supplier 1 follows a base-stock policy, i.e.,

62



qBt,1(I) = (ȳBt,1− I)+/ū1. Moreover, when I ≤ ȳBt,1, we must have I + ū1q
B
1 (I) =

ȳBt,1, which implies qBt,2(I) = q̃B2 (ȳ
B
t,1) = q̄Bt,2 and dBt (I) = d̃(ȳBt,1) = d̄Bt .

Proof of Lemma 2.2.3. We suppose q∗t,1(I) > 0 and qBt,1(I) = 0.

Then, we must have

JB
t (0, q

B
t,2(I), d

B
t (I))

= R(dBt (I))− c̄2q
B
t,2(I) + ELt(I + u2q

B
t,2(I)− εdBt (I))

= Jt(0, q
B
t,2(I), d

B
t (I))

≤ Jt(q
∗
t,1(I), q

∗
t,2(I), d

∗
t (I))

= R(d∗t (I))− c̄1q
∗
t,1(I)− c̄2q

∗
t,2(I) + ELt(I + u1q

∗
t,1(I) + u2q

∗
t,2(I)− εd∗t (I))

≤ R(d∗t (I))− c̄1q
∗
t,1(I)− c̄2q

∗
t,2(I) + ELt(I + ū1q

∗
t,1(I) + u2q

∗
t,2(I)− εd∗t (I)).

The first inequality follows from the facts that for model G, (0, qBt,2(I), d
B
t (I))

is a feasible solution and (q∗t,1(I), q
∗
t,2(I), d

∗
t (I)) is the optimal solution. The

second inequality follows from the concavity of Lt and Jensen’s inequality.

If the inequality is strict, then the above relation suggests that in model B,

(q∗t,1(I), q
∗
t,2(I), d

∗
t (I)) yields a higher profit than (0, qBt,2(I), d

B
t (I)). This con-

tradicts the optimality of (0, qBt,2(I), d
B
t (I)). If equality holds in the above

relation, then q∗t,1(I) = 0 is also an optimal solution. Therefore, we conclude

the proof.

Proof of Lemma 2.2.4. We prove the result for supplier 1 and that

for supplier 2 follows in a similar way. To see i), we note that q̃t,1(I) < 0
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implies, for a small enough δ,

0 ≥ Jt(I, 0, q
∗
t,2(I), d

∗
t (I))− Jt(I,−δ/ū1, q

∗
t,2(I), d

∗
t (I))

= Vt(I)− [R(d∗t (I))− c̄1(−δ/ū1)− c̄2q
∗
t,2(I)

+ELt(I + u1(−δ/ū1) + u2q
∗
t,2(I)− εd∗t (I))]

= −c1δ + Vt(I)− [R(d∗t (I))− c̄2q
∗
t,2(I) + ELt(I − u1δ/ū1 + u2q

∗
t,2(I)− εd∗t (I))]

≥ −c1δ + Vt(I)− [R(d∗t (I))− c̄2q
∗
t,2(I) + ELt(I − ū1δ/ū1 + u2q

∗
t,2(I)− εd∗t (I))

= −c1δ + Vt(I)− [R(d∗t (I))− c̄2q
∗
t,2(I) + ELt(I − δ + u2q

∗
t,2(I)− εd∗t (I))]

≥ −c1δ + Vt(I)− Vt(I − δ).

The second inequality follows from Jensen’ inequality. The last inequality

follows from the maximality of Vt(I − δ). Hence, we obtain part i).

We show part ii) by contradiction. There does not exists a δ > 0

satisfying Vt(I+δ)−Vt(I)
δ

≥ c1. We must have Vt(I+δ)−Vt(I)
δ

< c1 for any δ ≥ 0 and

thus for any δ ∈ [0, q∗t,1(I)u1)]. It follows, for each realization of u1 = ǔ1 ̸= 0,

c1ǔ1q
∗
t,1(I) > Vt(I + ǔ1q

∗
t,1(I))− Vt(I)

≥ Jt(I + ǔ1q
∗
t,1(I), 0, q

∗
t,2(I), d

∗
t (I))− Jt(I, q

∗
t,1(I), q

∗
t,2(I), d

∗
t (I)))

= c̄1q
∗
t,1(I) + ELt(I + ǔ1q

∗
t,1(I) + u2q

∗
t,2(I)− εd∗t (I))

−ELt(I + u1q
∗
t,1(I) + u2q

∗
t,2(I)− εd∗t (I)). (A.2)

The second inequality follows from the maximality of Vt. Taking expectation
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over ǔ1, we obtain

c1ū1q
∗
t,1(I) ≥ c̄1q

∗
t,1(I) + ELt(I + u1q

∗
t,1(I) + u2q

∗
t,2(I)− εd∗t (I))

−ELt(I + u1q
∗
t,1(I) + u2q

∗
t,2(I)− εd∗t (I))

= c̄1q
∗
t,1(I) = c1ū1q

∗
t,1(I).

Since equality holds in the above relation, we must have equality in (A.2) for

each ǔ1. It follows that Vt(I + δ) − Vt(I) = c1δ for δ ∈ [0, q∗t,1(I)u1)]. This

leads to a contradiction.

Proof of Lemma 2.2.5. The result would follow if there exists an IUB
t

such that q∗i,t(I) = 0, i = 1, 2, for any I ≥ IUB
t . Note from Lemma 2.2.4(ii) and

the concavity of Vt(I), q
∗
i,t(I) = 0 if Vt(I+δ)−Vt(I)

δ
≤ min{c1, c2} = c1 for any δ >

0. We show that there exists an IUB
t such that Vt(I+δ)−Vt(I)

δ
≤ min{c1, c2} = c1

for I ≥ IUB
t and any δ > 0. This is clearly true for period T +1. Suppose it is

true for period t + 1. Note that H(I+ν)−H(I)
ν

≥ 0 for I ≥ 0 and ν > 0. Hence,

there exists an IUB
t such that

E[Lt(I
UB
t + δ − εd)− Lt(I

UB
t − εd)]

δ
≤ 0 + αc1 ≤ c1.
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This implies

Vt(I
UB
t + δ)− Vt(I

UB
t )

= max
q1,q2≥0, d≤d≤d

Jt(I
UB
t + δ, q1, q2, d)− max

q1,q2≥0, d≤d≤d

Jt(I
UB
t , q1, q2, d)

≤ max
q1,q2≥0, d≤d≤d

[
Jt(I

UB
t + δ, q1, q2, d)− Jt(I

UB
t , q1, q2, d)

]
= max

q1,q2≥0, d≤d≤d

E

[
Lt(I

UB
t + δ + u1q1 + u2q2 − εd)− Lt(I

UB
t + u1q1 + u2q2 − εd)

]
≤ E

[
Lt(I

UB
t + δ − εd)− Lt(I

UB
t − εd)

]
≤ c1δ.

Hence, we conclude the proof.

Proof of Lemma 2.2.6. We prove the result by contradiction. Sup-

pose that the result is not true. Then by the continuity of q∗1,t(I) established in

Lemma A.0.1, there exists a γ− such that q∗t,1(Ī − δ1) = 0 for any δ1 ∈ (0, γ−).

Now choose a δ1 ∈ [δ, δ] ∈ (0, γ−) satisfying δ < δ. Because q∗t,1(Ī − δ1) = 0,

we must have

Vt(Ī − δ1) = R(d∗t (Ī − δ1))− c̄2q
∗
t,2(Ī − δ1)

+ELt(Ī − δ1 + u2q
∗
t,2(Ī − δ1)− εd∗t (Ī − δ1))

= JB
t (Ī − δ1, 0, q

∗
t,2(Ī − δ1), d

∗
t (Ī − δ1))

≤ max
q2≥0,d≤d≤d

JB
t (Ī − δ1, 0, q2, d).

Because q∗t,1(Ī + δ) > 0, we have from Lemma 2.2.3, qBt,1(Ī + δ) > 0 and thus

qBt,1(Ī − δ1) > 0. Moreover, from Lemma 2.2.2, we must have the base-stock
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level ȳBt,1 > Ī, and qBt,1(I) = (ȳBt,1 − I)/ū1 for I ≤ Ī. Now define J̃B
t (I, q1) =

max
q2≥0,d≤d≤d

JB
t (I, q1, q2, d). Then J̃B

t (I, q1) is jointly concave in (I, q1) and

the smallest maximizer of J̃B
t (Ī − δ1, q1) is q

B
t,1(Ī − δ1) = (ȳBt,1 − Ī + δ1)/ū1 >

δ1/ū1. Therefore,

Vt(Ī − δ1) ≤ J̃B
t (Ī − δ1, 0) ≤ J̃B

t (Ī − δ1, δ1/ū1)− κ

= max
q2≥0,d≤d≤d

{R(d)− c̄1δ1/ū1 − c̄2q2 + ELt(Ī + u2q2 − εd)} − κ

≤ Vt(Ī)− c1δ1 − κ, (A.3)

where κ = J̃B
t (Ī , 0) − J̃B

t (Ī ,−δ/ū1) > 0 as the base-stock level ȳBt,1 > Ī. To

see the second equality, we note that κ = J̃B
t (Ī − δ1, δ1/ū1)− J̃B

t (Ī − δ1, (δ1 −

δ)/ū1) ≤ J̃B
t (Ī − δ1, δ1/ū1)− J̃B

t (Ī − δ1, 0). Therefore, (A.3) implies

Vt(Ī)− Vt(Ī − δ1) > c1δ1. (A.4)

Let q̃t,1(I) be the smallest unconstrained maximizer of Jt(I, q1, q
∗
t,2(I), d

∗
t (I)).

Because q∗t,1(Ī− δ1) = 0, we must have q̃t,1(Ī− δ1) ≤ 0. Now if q̃t,1(Ī− δ1) < 0,

then from Lemma 2.2.4 and the concavity of Vt(I), we have Vt(Ī)−Vt(Ī−δ1) ≤

c1δ1, which contradicts (A.4). Hence, we obtain q̃t,1(Ī − δ1) = 0 for δ1 ∈ [δ, δ].

Now we note that Vt is concave so that there can be at most countable

points at which Vt is not differentiable [10]. For a differentiable point I ∈

[Ī − δ, Ī − δ], we have

V ′
t (I) =

∂

∂I
ELt(I + u1q

∗
t,1(I) + u2q

∗
t,2(I)− εd∗t (I))

=
∂

∂I
ELt(I + u2q

∗
t,2(I)− εd∗t (I))
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is well defined. Because q̃t,1(I) = 0, we derive by the envelope theorem

∂Jt(I, q, q
∗
t,2(I), d

∗
t (I))

∂q

∣∣∣∣
q=0

= −c̄1 +
∂

∂I
Eu1Lt(I + u2q

∗
t,2(I)− εd∗t (I))

= −c̄1 + ū1
∂

∂I
ELt(I + u2q

∗
t,2(I)− εd∗t (I)) = 0.

This implies that V ′
t (I) = c̄1/ū1 = c1. This contradicts (A.4).

Proof of Lemma 2.2.7. Because Vt(I) is concave, it can have at

most countable number of non-differentiable points. Let N denote the set of

non-differentiable points. We show that X1 ⊂ N . Suppose this is not true.

Then there exist an Ī with V ′
t (I) well-defined over the neighborhood of Ī such

that Ī satisfies the conditions in Lemma 2.2.6. In other words, q∗t,1(Ī) = 0

and q∗t,1(Ī + δ) > 0 for any arbitrarily small δ. From the proof of Lemma

A.0.1, q̃1,t(I) is continuous. Hence, we must have q̃t,1(Ī) = q∗t,1(Ī) = 0. By the

envelope theorem, we have

V ′
t (Ī) =

∂ELt(Ī + u2q
∗
t,2(Ī)− εd∗t (Ī))

∂Ī
.

Hence, the right-hand side of the above is well defined. The first-order condi-

tion of q̃t,1(Ī) = 0 leads to

−c̄1 + ū1

∂ELt(Ī + u2q
∗
t,2(Ī)− εd∗t (Ī))

∂Ī
= 0.

Now consider the benchmark problem B. The above relation implies that

∂JB
t (Ī , q1, q

∗
t,2(Ī), d

∗
t (Ī))

∂q1

∣∣∣∣
q1=0

= −c̄1 + ū1

∂ELt(Ī + u2q
∗
t,2(Ī)− εd∗t (Ī))

∂Ī
= 0.

It is also clear that

JB
t (Ī , 0, q

∗
t,2(Ī), d

∗
t (Ī)) = max

q2≥0,d≤d≤d

JB
t (Ī , 0, q2, d).
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Therefore, qBt,1(Ī) = 0, qBt,2(Ī) = q∗t,2(Ī) and dBt (Ī) = d∗t (Ī). By Lemma 2.2.2,

we must have qBt,1(I) = 0 for any I ≥ Ī. Moreover, by Lemma 2.2.3, we deduce

that q∗t,1(I) = 0 for any I ≥ Ī. This leads to a contradiction.

Lemma A.0.2. If the pricing decision is made before observing (u1, u2) and

after observing (ε, ω), then the optimal price is decreasing in the inventory

level and the optimal orders follow a near reorder-point policy.

Proof of Lemma A.0.2. Let Ṽt(I) be the optimal profit function in

period t when the inventory level is I. The optimality equation is given by

Ṽt(I) = max
q1≥0,q2≥0

W̃t(I, q1, q2)

W̃t(I, q1, q2) = Eε,ω[ max
d≤d≤d

J̃t(I, q1, q2, d)]

J̃t(I, q1, q2, d) = R(d)− c̄1q1 − c̄2q2 − Eu1,u2H(I + u1q1 + u2q2 − εd− ω)

+αEu1,u2Ṽt+1(I + u1q1 + u2q2 − εd− ω)

Note that J̃t(I, q1, q2, d) is supermodular in (I, d). Hence, the optimal price

is increasing in I. Finally, the optimal ordering decisions can be derived in a

way similar to that of Theorem 2.2.1.

Proof of Theorem 2.2.2. To see part i), we note that the optimal

profit function Vt(I) is differentiable in I when εd+ω has a continuous distri-

bution. The result follows immediately from the proof of Lemma 2.2.7.

For part ii-a), we first show that d∗t (I) is increasing in I. We have

Vt(I) = max
d∈[d,d]

{R(d) +Gt(I − d)}, (A.5)
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where

Gt(z) = max
q1≥0,q2≥0

{−c̄1q1 − c̄2q2 + ELt(z + u1q1 + u2q2)}.

Since Lt is concave, it is clear that Gt(z) is concave in z and thus Gt(I − d) is

supermodular. We deduce that R(d) + Gt(I, d) is supermodular, which leads

to the desired result.

Next we prove that the change in d∗t (I) is less than the corresponding

change in I. We can write (A.5) as

Vt(I) = max
z∈[I−d,I−d]

R(I − z) +Gt(z).

Since R and Gt are concave, R(I − z) + Gt(z) is supermodular in (I, z). It

follows that the maximizer z∗t (I) = I − d∗t (I) is increasing in I. Hence, we

obtain the desired result.

To prove part ii-b), let θi = Pr{ui = ui}, i = 1, 2, and z = I − d. We

have

Jt(I, q1, q2, I − z) = R(I − z) + (1− θ1)(1− θ2)Lt(z) +Gt(z, q1, q2),

where

Gt(z, q1, q2) = −c1θ1u1q1 − c2θ2u2q2 + θ1(1− θ2)Lt(z + u1q1)

+(1− θ1)θ2Lt(z + u2q2) + θ1θ2Lt(z + u1q1 + u2q2).

Note that for fixed (I, d), the optimal (q1, q2) maximizes Gt(z, q1, q2) and de-
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pends on (I, d) only via z = I − d. Now define y1 = z + u1q1. Then,

max
q1≥0,q2≥0

Gt(z, q1, q2)

= max
y1≥z,q2≥0

Gt(z, (y1 − z)/u1, q2)

= max
q2≥0

{c1θ1z − c2θ2u2q2 + (1− θ1)θ2Lt(z + u2q2) +Q(z, q2)},

(A.6)

where

Q(z, q2) = max
y1≥z

−c1θ1y1 + θ1(1− θ2)Lt(y1) + θ1θ2Lt(y1 + u2q2).

Let ȳ1(q2) denote the unconstrained maximizer of Q(y1, q2). Then, for given

(z, q2) the optimal y1 is max{ȳ1(q2), z}. It is easily seen that Q(y1, q2) is

jointly concave and thus Q(z, q2) is concave. If ȳ1(q2) ≥ z), then Q(z, q2)

submodular in (z, q2) because Lt is concave. If, however, ȳ1(q2) < z, then then

Q(z, q2) is concave in q2 and constant in z. In either case, the function inside

the maximum of (A.6) is submodular in (q2, z) and thus the optimal q2(z) is

decreasing in z. We further recall part i) that the optimal z∗t (I) = I − d∗t (I) is

increasing in I. We deduce that q∗2,t(I) = q2(z
∗
t (I) is decreasing in I. Now note

that q∗1,t(I) = max{ȳ1(q2(z∗t (I))) − z∗1(I), 0}/u1. Since q∗1,t = 0 when I ≥ I∗t,1,

we focus on the case I < I∗t,1. Let y2 = z + u2q2. For I < I∗t,1,

max
q1≥0,q2≥0

Gt(z, q1, q2) (A.7)

= max
y2≥z

{c1θ1z − c2θ2(y2 − z) + (1− θ1)θ2Lt(y2) + Q̃((y2 − z)/u2)}

where

Q̃(q2) = max
y1

{−c1θ1q1 + θ1(1− θ2)Lt(y1) + θ1θ2Lt(y1 + u2q2)}.
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Because Lt is concave, Q̃ is concave. It follows that the function inside the

maximum of (A.7) is supermodular in (y2, z) and thus the optimal y2(z) is

increasing in z. We further recall part i) that the optimal z∗t (I) = I − d∗t (I) is

increasing in I. We deduce that z∗t (I) + u2q
∗
2,t(I) is increasing in I. Also, we

can rewrite Q̃ as follows,

Q̃(q2) = max
q1

{−c1θ1q1 + θ1(1− θ2)Lt(z + u1q1) + θ1θ2Lt(z + u2q2 + u1q1)}.

(A.8)

The function inside the maximum of (A.8) is submodular in (z, q1) and (z +

u2q2, q1). Because both z∗t (I)+u2q
∗
2,t(I) and z∗t (I) increase in I, q∗1,t(I) decrease

in I. We conclude the proof.

Proof of Theorem 2.3.1. We prove the result using contradiction by

assuming that q∗t,2(I
a) ≤ q∗t,2(I

b). We must have

0 < Jt(I
b, q∗t,1(I

b), q∗t,2(I
b), dt)− Jt(I

b, q∗t,1(I
a), q∗t,2(I

b), dt)

= −c1(q
∗
t,1(I

b)− q∗t,1(I
a)) + ELt(I

b + u1q
∗
t,1(I

b) + u2q
∗
t,2(I

b)− εdt)

−ELt(I
b + u1q

∗
t,1(I

a) + u2q
∗
t,2(I

b)− εdt)

≤ −c1(q
∗
t,1(I

b)− q∗t,1(I
a))

+ELt

[
Ib + u1q

∗
t,1(I

b) + u2q
∗
t,2(I

b)− εdt −
(
Ib − Ia + u2

(
q∗t,2(I

b)− q∗t,2(I
a)
))]

−ELt

[
Ib + u1q

∗
t,1(I

a) + u2q
∗
t,2(I

b)− εdt −
(
Ib − Ia + u2

(
q∗t,2(I

b)− q∗t,2(I
a)
))]

= −c1(q
∗
t,1(I

b)− q∗t,1(I
a)) + ELt

(
Ia + u1q

∗
t,1(I

b) + u2q
∗
t,2(I

a)− εdt
)

−ELt

(
Ia + u1q

∗
t,1(I

a) + u2q
∗
t,2(I

a)− εdt
)

= Jt(I
a, q∗t,1(I

b), q∗t,2(I
a), dt)− Jt(I

a, q∗t,1(I
a), q∗t,2(I

a), dt) ≤ 0.
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The first inequality follow from the optimality of (q∗t,1(I
b), q∗t,2(I

b)) for Jt(I
b, qt,1, qt,2, dt).

The second inequality follows from the concavity of Lt. The third equality

comes from the optimality of (q∗t,1(I
a), q∗t,2(I

a)) for Jt(I
a, qt,1, qt,2, dt).

Moreover, in the view of above proof, we can obtain that the results of

i and ii-a hold for multiple suppliers and the result of ii-b only holds for two

suppliers. We conclude the proof.

Proof of Theorem 2.3.2. Suppose that d∗t (I
a) ≥ d∗t (I

b) and q∗t,1(I
a) <

q∗t,1(I
b) for Ia < Ib. Then we must have

0 < Jt(I
b, q∗t,1(I

b), 0, d∗t (I
b))− Jt(I

b, q∗t,1(I
a), 0, d∗t (I

b))

= −c1(q
∗
t,1(I

b)− q∗t,1(I
a)) + ELt(I

b + u1q
∗
t,1(I

b)− εd∗t (I
b))

−ELt(I
b + u1q

∗
t,1(I

a)− εd∗t (I
b))

≤ −c1(q
∗
t,1(I

b)− q∗t,1(I
a))

+ELt

[
Ib + u1q

∗
t,1(I

b)− εd∗t (I
b)−

(
Ib − Ia + ε

(
d∗t (I

a)− d∗t (I
b)
))]

−ELt

[
Ib + u1q

∗
t,1(I

a)− εd∗t (I
b)−

(
Ib − Ia + ε

(
d∗t (I

a)− d∗t (I
b)
))]

= −c1(q
∗
t,1(I

b)− q∗t,1(I
a)) + ELt

(
Ia + u1q

∗
t,1(I

b)− εd∗t (I
a)
)

−ELt

(
Ia + u1q

∗
t,1(I

a)− εd∗t (I
a)
)

= Jt(I
a, q∗t,1(I

b), 0, d∗t (I
a))− Jt(I

a, q∗t,1(I
a), 0, d∗t (I

a)) ≤ 0.

The first inequality follow from the optimality of (q∗t,1(I
b), d∗t (I

b)) for Jt(I
b, qt,1, 0, dt).

The second inequality follows from the concavity of Lt. The third equality

comes from the optimality of (q∗t,1(I
a), d∗t (I

a)) for Jt(I
a, qt,1, 0, dt). We reach a

contradiction. We conclude the proof.
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Proof of Theorem 2.4.1. If a = 0, then u1 = b is deterministic.

From Lemma 2.2.2, we know q∗t,1(I) follows a base-stock policy and is thus

decreasing in I. Now note that for I ≤ ȳBt,1, q
∗
t,2(I) = q̄Bt,2 is constant in I.

For I > ȳBt,1, we have q∗t,1(I) = 0 and Jt(I, 0, q2, d) is submodular in (I, q2) by

Lemma 2.2.1. Hence, q∗t,2(I) is decreasing in I. In particular, if a = b = 0,

then u1 = 0. In this case, the problem reduces to one with only supplier 2 and

thus q∗t,2(I) is decreasing in I as pointed out by Henig and Gerchak [41].

Now we examine the case when a ̸= 0. To see part i), we first note that

q∗t,2(I) = 0 for I ≥ I∗t,2. In this case, q∗t,1(I) is decreasing in I since Jt(I, q1, 0, d)

is submodular in (I, q1) by Lemma 2.2.1. If I < I∗t,2, then q∗t,2(I) = q̃t,2(I) where

q̃t,2(I) is defined in Lemma 2.2.4. Now define x ≡ aq1 + q2 (or q2 = x − aq1)

and Jt(I, q1, x) = Jt(I, q1, x − aq1, d). Also let Wt(I, q1) = maxx Jt(I, q1, x)

with x̃(I, q1) denoting the corresponding maximizer. It is easily seen that Jt

is concave and thus Wt is concave. The result would follow provided that

Wt(I, q1) is submodular in (I, q1), i.e. for any Ia ≤ Ib and qa1 ≤ qb1,

Wt(I
a, qa1) +Wt(I

b, qb1) ≤ Wt(I
a, qb1) +Wt(I

b, qa1). (A.9)

It is clear that (A.9) holds when Ia = Ib. Therefore, we focus on the case
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when Ia < Ib. Define xa = x̃(Ia, qa1) and xb = x̃(Ib, qb1). We deduce

Wt(I
a, qa1) +Wt(I

b, qb1)− 2R(d)

= −(c̄1 + ac̄2)q
a
1 − c̄2x

a + ELt(I
a + bqa1 + u2x

a − εd)

−(c̄1 + ac̄2)q
b
1 − c̄2x

b + ELt(I
b + bqb1 + u2x

b − εd)

= −(c̄1 + ac̄2)q
b
1 − c̄2x

a + ELt(I
a − b(qb1 − qa1) + bqb1 + u2x

a − εd)

−(c̄1 + ac̄2)q
a
1 − c̄2x

b + ELt(I
b + b(qb1 − qa1) + bqa1 + u2x

b − εd)

≤ Wt(I
a − b(qb1 − qa1), q

b
1) +Wt(I

b + b(qb1 − qa1), q
a
1)− 2R(d). (A.10)

The inequality follows from the maximality of Wt.

Moreover, by the concavity of Wt(I, q), we obtain

Wt(I
b, qb1)−Wt(I

a − b(qb1 − qa1), q
b
1)

Ib − Ia + b(qb1 − qa1)
≥ Wt(I

b, qb1)−Wt(I
a, qb1)

Ib − Ia
,(A.11)

Wt(I
b + b(qb1 − qa1), q

a
1)−Wt(I

a, qa1)

Ib − Ia + b(qb1 − qa1)
≤ Wt(I

b, qa1)−Wt(I
a, qa1)

Ib − Ia
.(A.12)

Relations in (A.10), (A.11) and (A.12) imply

Wt(I
b, qb1)−Wt(I

a, qb1)

Ib − Ia
≤ Wt(I

b, qa1)−Wt(I
a, qa1)

Ib − Ia
,

which leads to (A.9).

To see part ii), we note that u2 = − 1
a
u1− b

a
. Hence, a similar argument

as that in part i) yields the result.

To see parts iii), we note that u1 = au2 when b = 0. We have

Jt(I, q1, x) = R(d)− c1aū2q1 − c2ū2(x− aq1)

+ELt(I + au2q1 + u2(x− aq1)− εd)

= R(d) + aū2(c2 − c1)q1 − c̄2x+ ELt(I + u2x− εd).
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The right-hand side is separable in q1 and x. Hence, the optimal x∗
t (I) maxi-

mizes the last two terms for x ≥ 0. Since Lt is concave, it is clear that x
∗
t (I)

is decreasing in I. Also q∗t,1(I) maximize aū2(c2 − c1)q1 over q1 ∈ [0, x∗
t (I)/a].

If c2 ≥ c1, we must have q∗t,1(I) = x∗
t (I)/a is decreasing in I, which, in turn,

implies q∗t,2(I) = x∗
t (I) − aq∗t,1(I) = 0. If, however, c2 < c1, then q∗t,I = 0 and

q∗t,2(I) = x∗
t (I) is decreasing in I.

For b = −a(u2 + u
2
) and a < 0, we have q∗t,1(I) is decreasing in I from

the part i. From the Theorem 2.2.1, Lemma 2.2.4 and the fact c1 ≤ c2, we

know that q̃t,1(I) ≥ 0 and q̃t,2(I) ≥ 0 when I ≤ I∗t,2. From the continuity of

q∗t,2(I), we only need to prove that there exists q̄t,2 and an optimal solution

satisfying that q∗t,2(I) = q̄t,2− I
u2+u

2

when I ≤ I∗t,2. Define y1 = I−a(u2+u
2
)q1

and

Φt(y1, x) = Jt(I, q1, x)−
[
(c2 − c1)

ū2

u2 + u
2

+ c1
]
I

= R(d)− c1(aū2 − a(u2 + u
2
))q1

−c2ū2(x− aq1)−
[
(c2 − c1)

ū2

u2 + u
2

+ c1
]
I

+ELt[I + (au2 − a(u2 + u
2
))q1 + u2(x− aq1)− εd]

= R(d)−
[
(c2 − c1)

ū2

u2 + u
2

+ c1
]
(I − a(u2 + u

2
)q1)− c2ū2x

+ELt[I − a(u2 + u
2
)q1 + u2x− εd]

= R(d)−
[
(c2 − c1)

ū2

u2 + u
2

+ c1
]
y1 − c2ū2x+ ELt[y1 + u2x− εd].

We observe that the right-hand side does not depend on I and is concave in

(y1, x). Let (ȳ1, x̄) to denote the maximizer of Φt. We must exist an optimal
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solution satisfying I−a(u2+u
2
)q∗1(I) = ȳ1 and aq∗1(I)+q∗2(I) = x̄ when I ≤ I∗t,2.

Define q̄t,2 = x̄ + ȳ1
u2+u

2

. Thus, q∗2(I) = x̄− aq∗1(I) = x̄ − I−ȳ1
u2+u

2

= q̄t,2 − I
u2+u

2

.

We conclude the proof.

Proof of Theorem 2.4.2. The proof is similar to the one for Theo-

rem 2.4.1. The added complexity here is that we have to consider the decision

dt(I) which is bounded from above.

Example 3 Li and Zheng [48]: T = 1, c1 = 1, H(x) = h(max{x, 0})2 +

s(max{−x, 0})2 with h = 2, s = 9, p(d) = 20 − d, Pr{u2 = 0} = 1, Pr{ε =

0} = Pr{ε = 2} = 0.5 and ω = 0. The yield rate u1 is uniform(0,0.5).

Figure A.1: The example provided in Li and Zheng [48].
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Appendix B

Appendix for Chapter 3

Lemma B.0.1. If A1/B1 < A2/B2 with B1 ≥ 0 and B2 ≥ 0, then the following

results hold:

i) A1/B1 < (A1 + A2)/(B1 +B2) < A2/B2.

ii) If B2 > B1, then (A2 − A1)/(B2 − B1) > A2/B2 > A1/B1. If B1 > B2,

then (A1 − A2)/(B1 −B2) < A2/B2.

iii) g(n) = A1+nA2

B1+nB2
is increasing in n.

Proof. The proof for part (i) is straightforward. Part (ii) follows because

g′(n) =
A2(B1 + nB2)−B2(A1 + nA2)

(B1 + nB2)2
=

A2B1 − A1B2

(B1 + nB2)2
> 0.

Derivations for the solutions presented in Table 3.1.

Linear demand function p(τ) = α − β
τ
. We have p′(τ) = β

τ2
. From (3.4), we
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have τi =
√

β
ih+V

. Hence, given S, we have

V =
S(α− c)−K −

√
β
∑S

i=1(
√
ih+ V + ih√

ih+V
)

√
β
∑S

i=1
1√
h+V

S(α− c)−K =
√

β

S∑
i=1

(
√
ih+ V +

ih+ V√
ih+ V

)

S(α− c)−K = 2
√
β

S∑
i=1

√
ih+ V

If S is a large number, we can use an integral to approximate the right-hand

side. That is to say

S(α− c)−K
.
= 2

√
β
∫ S

1

√
xh+ V dx

S(α− c)−K
.
= 4

√
β

3h
[(Sh+ V )3/2 − (h+ V )3/2]

Take the derivative of both sides with respect to S, we have

α− c =
4
√
β

3h
[(Sh+ V )1/2(h+

dV

dS
)− (h+ V )1/2

dV

dS
]

dV

dS
=

1√
SH + V −

√
S + V

[
(α− c)h

2
√
β

− h
√
Sh+ V ].

We obtain that dV
dS

> 0, when
√
Sh+ V < (α−c)h

2
√
β
; dV

dS
= 0, when

√
Sh+ V =

(α−c)h

2
√
β
; dV

dS
< 0, when

√
Sh+ V > (α−c)h

2
√
β
.

Therefore (S∗, V ∗) are a solution of the following equation system

√
Sh+ V = (α−c)

2
√
β

(B.1)

S(α− c)−K = 4
√
β

3h
[( (α−c)

2
√
β
)3 − (h+ V )3/2] (B.2)

The optimal expected interarrival time can be obtained by τ ∗i =
√

β
ih+V ∗ .
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Exponential demand function p(τ) = α ln(βτ), (βτ > e). We have p′(τ) = α
τ
.

From (3.4), we have τi =
√

α
ih+V

. Hence, given S, we have

V =
−Sc−K + α

∑S
i=1[ln(

αβ
ih+V

)− ih
ih+V

]

α
∑S

i=1
1

ih+V

Sc+K = α[
S∑

i=1

ln(
αβ

ih+ V
)]− α[

S∑
i=1

ih+ V

ih+ V
)]

S(c+ α) +K = α[
S∑

i=1

ln(
αβ

ih+ V
)]

S[α(ln(αβ)− 1)− c]−K = α[
S∑

i=1

ln(ih+ V )]

If S is a large number, we can use an integral to approximate the right-

hand side. That is to say

S[α(ln(αβ)− 1)− c]−K = α[
∫ S

i=1
ln(ih+ V )]dx

S[α(ln(αβ)− 1)− c]−K = α
h
{(Sh+ V )[ln(Sh+ V )− 1]− (h+ V )[ln(h+ V )− 1]}

S[α(ln(αβ)− 1)− c]−K + α(S − 1) = α
h
[(Sh+ V ) ln(Sh+ V )− (h+ V ) ln(h+ V )]

S[α ln(αβ)− c]−K − α = α
h
[(Sh+ V ) ln(Sh+ V )− (h+ V ) ln(h+ V )]

Take the derivative of both sides with respect to S, we have

α ln(αβ)− c =
α

h
[(ln(Sh+ V ) + 1)(h+

dV

dS
)− (ln(h+ V ) + 1)

dV

dS
]

dV

ds

1

h
ln(

Sh+ V

h+ V
) = ln(αβ)− c

α
− [ln(Sh+ V ) + 1]

We obtain that dV
dS

> 0, when 1 + ln(Sh + V ) < ln(αβ) − c
α
; dV

dS
= 0, when

1 + ln(Sh+ V ) < ln(αβ)− c
α
; dV

dS
< 0, when 1 + ln(Sh+ V ) > ln(αβ)− c

α
.
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Therefore (S∗, V ∗) are a solution of the following equation system

1 + ln(Sh+ V ) = ln(αβ)− c
α

(B.3)

S[α ln(αβ)− c]−K − α = α
h
[(Sh+ V ) ln(Sh+ V )− (h+ V ) ln(h+ V )](B.4)

The optimal expected interarrival time can be obtained by τ ∗i =
√

α
ih+V ∗ .

Isoelastic demand function p(τ) = ατβ, (β < 1, 0 < τ < 1). We have

p′(τ) = αβ
(τ)1−β . From (3.4), we have τi =

1−β

√
αβ

ih+V
. Hence, given S, we have

V =
−Sc−K +

∑S
i=1[α(

αβ
ih+V

)β/(1−β) − ih 1−β

√
αβ

ih+V
]∑S

i=1
1−β

√
αβ

ih+V

Sc+K =
S∑

i=1

[α(
αβ

ih+ V
)β/(1−β)]− (αβ)1/(1−β)

S∑
i=1

[
ih+ V

1−β
√
ih+ V

]

Sc+K =
S∑

i=1

[α(
αβ

ih+ V
)β/(1−β)]− (αβ)1/(1−β)

S∑
i=1

[
1

ih+ V
]β/(1−β)

Sc+K = α
1

1−β (β
β

1−β − β
1

1−β )
S∑

i=1

(ih+ V )−
1

1−β

If S is a large number, we can use an integral to approximate the right-

hand side. That is,

Sc+K = α
1

1−β (β
β

1−β − β
1

1−β )
∫ S

i=1
(xh+ V )−

β
1−β dx

Sc+K = α
1

1−β (β
β

1−β −β
1

1−β )

h(1− β
1−β

)
[(Sh+ V )

1−2β
1−β − (h+ V )

1−2β
1−β ]

Take the derivative of both sides with respect to S, we have

c =
α

1
1−β (β

β
1−β − β

1
1−β )

h
[(Sh+ V )−

β
1−β (h+

dV

dS
)− (h+ V )−

β
1−β

dV

dS
]

dV

dS

1

h
[(h+ V )−

β
1−β − (Sh+ V )−

β
1−β ] =

1

(Sh+ V )
β

1−β

− c

α
1

1−β (β
β

1−β − β
1

1−β )
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We obtain that dV
dS

> 0, when (Sh + V )
β

1−β < α
1

1−β (β
β

1−β −β
1

1−β )
c

; dV
dS

= 0, when

(Sh+V )
β

1−β = α
1

1−β (β
β

1−β −β
1

1−β )
c

; dV
dS

< 0, when (Sh+V )
β

1−β > α
1

1−β (β
β

1−β −β
1

1−β )
c

.

Therefore (S∗, V ∗) are a solution of the following equation system

(Sh+ V )
β

1−β = α
1

1−β (β
β

1−β −β
1

1−β )
c

(B.5)

Sc+K = α
1

1−β (β
β

1−β −β
1

1−β )

h(1− β
1−β

)
[(Sh+ V )

1−2β
1−β − (h+ V )

1−2β
1−β ] (B.6)

The optimal expected interarrival time can be obtained by τ ∗i = 1−β

√
αβ

ih+V ∗ .

Computation of the Optimal Solution for the Continuous Relaxation

Let ωj be the ratio of the length of the jth price segment to the length

of the replenishment cycle. To find the optimal selling price, we can write the

problem as follows.

(MP) max
xj ;ωj ;ιj ;ζj

W =

N+1∑
j=1

{
ωj

[
p(ιj)− c

ιj
−

∫ xj

xj−1
h(x)dx

xj − xj−1
− ζj

(xj − xj−1)ιj

]}

s.t.

N+1∑
j=1

ζj = K +NA,

ωj =
(xj − xj−1)ιj∑N+1

m=1[(xm − xm−1)ιm]
, ∀j

xj > xj−1, ∀j

Here, ζj can be represent as a method to allocate the fixed cost (K +

NA) to N + 1 price segments.
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We can use BARON to obtain optimal solutions for MP. In all the

examples reported in §3.5.4, the optimal solution of MP can be obtained in

no more than 10 seconds.

Proof of Lemma 3.4.1. Suppose that the result is not true. Then we must

have τ̂j(S) = τ b for some j. Let i1 = min{i : τ̂i = τ b} and i2 = max{i : τ̂i =

τ b}. We can find τ̂i = τa for 1 ≤ i ≤ i1 − 1 and τ̂i = τ c for i2 + 1 ≤ i ≤ S.

Now define two vectors as follows:

τAi =

{
τa for i1 ≤ i ≤ i2
τ̂i(S) otherwise,

and τCi =

{
τ c for i1 ≤ i ≤ i2
τ̂i(S) otherwise.

Denote λ = τc−τb

τc−τa
. Then τ̂i(S) = λτAi + (1 − λ)τCi and p(τ̂i(S)) ≤ λp(τAi ) +

(1− λ)p(τCi ) for i ≤ i ≤ S. We have

π(i, τ̂i(S)) ≤ λπ(i, τAi ) + (1− λ)π(i, τCi ).

By the optimality of τ̂i(S), we have for I = A,C,

V̂ (S) ≥ V (S, τ⃗ IS) ≥
∑S

i=1 π(i, τ
I
i )− A

∑S
i=2 1τ̂i(S) ̸=τ̂i−1(S) −K − cS∑S
i=1 τ

I
i

.

Note that the second inequality follows because
∑S

i=2 1τ̂i(S) ̸=τ̂i−1(S) ≤
∑S

i=2 1τIi ̸=τIi−1
.
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Moreover, strictly inequality holds for I = A. We derive

V̂ (S) ≥ max

{
λ
[∑S

i=1 π(i, τ
A
i )− A

∑S
i=2 1τ̂i(S)̸=τ̂i−1(S) −K − cS

]
λ
∑S

i=1 τ
A
i

,

(1− λ)
[∑S

i=1 π(i, τ
C
i )− A

∑S
i=2 1τ̂i(S)̸=τ̂i−1(S) −K − cS

]
(1− λ)

∑S
i=1 τ

C
i

}
>

λ
[∑S

i=1 π(i, τ
A
i )− A

∑S
i=2 1τ̂i(S)̸=τ̂i−1(S) −K − cS

]
λ
∑S

i=1 τ
A
i + (1− λ)

∑S
i=1 τ

C
i

+
(1− λ)

[∑S
i=1 π(i, τ

C
i )− A

∑S
i=2 1τ̂i(S)̸=τ̂i−1(S) −K − cS

]
λ
∑S

i=1 τ
A
i + (1− λ)

∑S
i=1 τ

C
i

≥
[
∑S

i=1 π(i, τ̂i(S))− A
∑S

i=2 1τ̂i(S)̸=τ̂i−1(S) −K − cS
]∑S

i=1 τ̂i(S)
= V̂ (S).

This is impossible and hence we conclude the proof.

Proof of Lemma 3.4.2. We prove the result using contradiction. Suppose

that the result is not true. Then j = min{i|τ ∗i < τM , 0 ≤ i ≤ S∗} is well

defined. Let l = max{i|τ ∗j+i−1 = τ ∗j , 1 ≤ i ≤ S∗ − j + 1}. We consider two

cases.

Case 1: l = S. In this case, we must have j = 1 and thus τ ∗i = τ ∗1 < τM .

We derive

V ∗ =
p(τ ∗1 )− c

τ ∗1
−

∑S∗

i=1 h(i)

S∗ − K

τ ∗1S
∗

<
p(τM)− c

τM
−

∑S∗

i=1 h(i)

S∗ − K

τMS∗ = V (S∗, τM , · · · , τM).

The inequality follows from the maximality of τM and τ ∗1 < τM . The above

relation contradicts the optimality of V ∗. Hence, this case is not possible.
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Case 2: 1 ≤ l < S. Consider any X ⊂ {1, · · · , S∗}. We can partition

X into at most s ≤ S number of sets {x1, · · · , xs} such that τ ∗i = τ ∗k1 , where

k1 = min{xk} for k = 1, 2, · · · , s. Then,

∑
i∈X π(i, τ ∗i )∑

i∈X τ ∗i
=

∑s
k=1

[
τ ∗k1

∑
i∈xk

π(i,τ∗k1
)

τ∗k1

]
∑

i∈X τ ∗i
≤

∑s
k=1

[
τ ∗k1

∑
i∈xk

π(i,τM )
τM

]
∑

i∈X τ ∗i
=

π(i, τM)

τM
.

Now define I = {i : 1 ≤ i ≤ j − 1 or j + l ≤ i ≤ S} and NA =∑S−1
i=1 1{τ∗i ̸=τ∗i+1}. We derive

V (S∗, τ ∗1 , · · · , τ ∗j−1, τ
M , · · · , τM , τ ∗j+l+1, · · · , τ ∗S∗)

=

∑
i∈I π(i, τ

∗
i ) +

∑
i/∈I π(i, τ

M)∑
i∈I τ

∗
i + lτM

− ANA +K∑
i∈I τ

∗
i + lτM

>

∑
i∈I π(i, τ

∗
i )/τ

M +
∑

i/∈I π(i, τ
∗
j )/τ

∗
j∑

i∈I τ
∗
i /τ

M + l
− ANA +K∑

i∈I τ
∗
i + lτ ∗j

=

∑
i∈I π(i, τ

∗
i ) + (τM/τ ∗j )

∑
i/∈I π(i, τ

∗
j )∑

i∈I τ
∗
i + (τM/τ ∗j )lτ

∗
j

− ANA +K∑
i∈I τ

∗
i + lτ ∗j

≥
∑S∗

i=1 π(i, τ
∗
i )∑S∗

i=1 τ
∗
i

− ANA +K∑S∗

i=1 τ
∗
i

= V ∗

The first inequality follows from τ ∗j < τM and the second equality is obtained

by applying Lemma B.0.1(iii). The above relation contradicts the optimality

of V ∗.

Finally, the unimodality of [p(τ)− c]/τ in τ can be easily verified for a

concave p(τ). Hence, we conclude the proof.

Proof of Lemma 3.4.3. We prove the result by contradiction. SupposeNA =∑S∗−1
i=1 1τ∗i ̸=τ∗i+1

> 1. Then we can define a sequence of indices {l0, · · · , lNA+1}
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with 1 = l0 < · · · < lNA+1 = S∗ + 1 such that τ ∗i = τ ∗lk−1 for lk−1 ≤ τ ≤ lk − 1

and 1 ≤ k ≤ NA + 1. Define

ĵ = arg max
0≤j≤NA

∑lj+1−1
i=lj

π(i, τ ∗lj)− A

(lj+1 − lj)τ ∗lj
.

Then,

V (lĵ+1 − lĵ, τ
∗
ĵ
, · · · , τ ∗

ĵ
) =

∑lĵ+1−lĵ
i=1 π(i, τ ∗

ĵ
)−K

(lĵ+1 − lĵ)τ
∗
ĵ

≥

∑lĵ+1−1

i=lĵ
π(i, τ ∗

ĵ
)− A+ (A−K)

(lĵ+1 − lĵ)τ
∗
ĵ

≥
∑NA

k=0

[∑lk+1−1
i=lk

π(i, τ ∗lk)− A
]∑NA

k=0(lk+1 − lk)τ ∗lk

+
A−K

(lĵ+1 − lĵ)τ
∗
ĵ

≥
∑NA

k=0

[∑lk+1−1
i=lk

π(i, τ ∗lk)− A
]
+ (A−K)∑NA

k=0(lk+1 − lk)τ ∗lk

= V ∗.

The first inequality follows because π(i, τ) is weakly decreasing in i, the second

inequality from Lemma B.0.1, and the third inequality form A > K. The above

relation contradicts the optimality of V ∗. Hence, we conclude the proof.

Proof of Proposition 3.4.1. Suppose the result in part (i) is not true. Then

there exists some inventory level j, 1 < j ≤ S, such that τ̂j(S) > τ̂j−1(S). Note

that we can always choose j to be the maximum of such inventory levels, i.e.,

j = max{i : τ̂i(S) > τ̂i−1(S)}. Define l1 = min{i : τ̂i(S) = τ̂j−1(S), 1 ≤ i ≤

j − 1} and l2 = max{i : τ̂i(S) = τ̂j(S), j ≤ i ≤ S}. Now we construct another

vector (τ̌1, · · · , τ̌S) as follows:

τ̌i =


τ̂j−1(S) if l1 + l2 − j + 1 ≤ i ≤ l2,
τ̂j(S) if l1 ≤ i ≤ l1 + l2 − j,
τ̂i(S) if 1 ≤ i < l1 or l2 < i ≤ S.

By construction we have
∑S

i=1 τ̂i(S) =
∑S

i=1 τ̌i and thus
∑S

i=1 p(τ̂i(S)) =∑S
i=1 p(τ̌i). Because h(i) is strictly increase, we have

∑S
i=1 h(i)τ̂i(S) >

∑S
i=1 h(i)τ̌i.
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Also, by maximality of j, we deduce
∑S−1

i=1 1{τ̂i(S)̸=τ̂i+1(S)} ≥
∑S−1

i=1 1{τ̌i ̸=τ̌i+1}.

Therefore,

V (S, ⃗̂τ(S)) =

∑S
i=1(p(τ̂i(S))− h(i)τ̂i(S))− A

∑S−1
i=1 1{τ̂i(S)̸=τ̂i+1(S)} −K − cS∑S

i=1 τ̂i(S)

<

∑S
i=1(p(τ̌i)− h(i)τ̌i)− A

∑S−1
i=1 1{τ̌i ̸=τ̌i+1} −K − cS∑S

i=1 τ̌i

= V (S, ⃗̌τ).

It contradicts with the optimality of ⃗̂τ(S). Thus, we obtain part (i).

Part (ii) follows immediately because τM < τ ∗1 ≤ · · · ≤ τ ∗S∗ and [p(τ)−

c]/τ is unimodal in τ with the maximizer τM .

Part (iii) can be obtained by contradiction. If V ∗ ≥ S∗,π(S∗,τ∗
S∗ )

τ∗
S∗

, then

from Lemma B.0.1, we have

V̂ (S∗ − 1) ≥ V (S∗ − 1, τ ∗1 , · · · , τ ∗S∗−1)−
A1{τ̂∗

S∗−1
̸=τ̂(S

∗)∗}∑S∗−1
i=1 τ ∗i

≥ V ∗

It contradicts with the optimality of V ∗.

Next we show π(S∗+1, τ ∗S∗)/τ ∗S∗ ≤ V ∗. We assume π(S∗+1, τ ∗S∗)/τ ∗S∗ >

V ∗. From Lemma B.0.1(ii),

V̂ (S + 1) ≥ V (S + 1, τ ∗1 , · · · , τ ∗S∗ , τ ∗S∗) > V ∗.

It contradicts with the optimality of V ∗. We conclude the proof.

Proof of Proposition 3.4.2. We first show V ∗ < ωM(S∗). Suppose V ∗ ≥
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ωM(S∗). We have

V (S∗ − 1, τ ∗1 , · · · , τ ∗S∗−1) =

∑S∗−1
i=1 π(i, τ ∗i )−K − A

∑S∗−2
i=1 1{τ∗i ̸=τ∗i+1}∑S∗−1

i=1 τ ∗i

≥
∑S∗−1

i=1 π(i, τ ∗i )−K − A
∑S∗−2

i=1 1{τ∗i ̸=τ∗i+1} + π(i, τ ∗S∗)− A1{τ∗
S∗−1

̸=τ∗
S∗}∑S∗−1

i=1 τ ∗i + τ ∗S∗

= V ∗.

The inequality follows from Lemma B.0.1(ii) and the fact that V ∗ ≥ ωM(S∗) >
π(S∗,τ∗

S∗ )−A1{τ∗
S∗−1

̸=τ∗
S∗}

τ∗
S∗

. The above relation contradicts the fact that S∗ is the

smallest maximizer. Hence, we must have ωM(S∗) > V ∗.

Next we prove ωMA(S∗ + 1) ≤ V ∗. Suppose ωMA(S∗ + 1) > V ∗. Then,

V (S∗ + 1, τ ∗1 , · · · , τ ∗S∗ , τMA)

≥
∑S∗

i=1 π(i, τ
∗
i )−K − A

∑S∗−1
i=1 1{τ∗i ̸=τ∗i+1} + π(S∗ + 1, τMA)− A∑S∗

i=1 τ
∗
i + τMA

>

∑S∗

i=1 π(i, τ
∗
i )−K − A

∑S∗−1
i=1 1{τ∗i ̸=τ∗i+1}∑S∗

i=1 τ
∗
i

= V ∗.

The first equality follows from 1{τ∗
S∗ ̸=τMA} ≤ 1. The second inequality fol-

lows from Lemma B.0.1(i) and the observation that V ∗ < ωMA(S∗ + 1) =

π(S∗+1,τMA)−c−A
τMA . The above relation contradicts the optimality of V ∗ and thus

ωMA(S∗ + 1) ≤ V ∗.

Now we show that V̂ (S) ≥ ωMA(S) for S > S∗.

V̂ (S∗ + 1) ≥ V (S∗ + 1, τ ∗1 , · · · , τ ∗S∗ , τMA)

≥
∑S∗

i=1 π(i, τ
∗
i )−K − A

∑S∗−1
i=1 1{τ∗i ̸=τ∗i+1} + π(S∗ + 1, τMA)− A∑S∗

i=1 τ
∗
i + τMA

≥ π(S∗ + 1, τMA)− A

τMA
= ωMA(S∗ + 1).
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The first inequality follows from the optimality of V̂ (S∗ + 1). The second

inequality follows from 1{τ∗
S∗ ̸=τMA} ≤ 1. The last inequality follows from

Lemma B.0.1(ii) V̂ (S∗) ≥ ωMA(S∗ + 1) = π(S∗+1,τ̌MA)−A
τ̌MA . Note that ωMA(i) >

ωMA(i + 1). Thus, we can repeat the same argument to show V̂ (i) ≥ ωMA(i)

for all i ≥ S∗ + 1.

Finally, we note for S < S∗, V̂ (S) < V̂ (S∗) < ωM(S∗) ≤ ωM(S + 1).

Hence, we conclude the proof.

Proof of Lemma 3.4.4. To see part (i), let S♮ = max{i|V̂ (i) < ωMA(i)}.

In view of the proof of Proposition 3.4.2, we have V (S♮ − 1) < V (S♮) <

ωMA(S♮) < ωMA(S♮ − 1). By induction, we have for all S1 < S ≤ S♮,

V (S1) < V (S) ≤ V (S♮) < ωMA(S♮) ≤ ωMA(S) < ωMA(S1)

Next we consider the case S1 < S and S♮ < S ≤ S∗. Using Proposition 3.4.2,

we have ωMA(S) ≤ V̂ (S) < ωM(S) for all S♮ < S ≤ S∗ and V̂ (S1) < V̂ (S∗) <

ωM(S∗). Hence,

V (S)− V (S1) > ωMA(S)− ωM(S∗)

= ωMA(S)− ωMA(S∗)− (ωM(S∗)− ωMA(S∗))

≥ 0− δω = −δω

The first inequality comes from ωMA(S) ≥ V̂ (S) and V̂ (S1) < ωM(S∗). The

second inequality comes from that S ≤ S∗ and ωMA(.) is a strictly decreasing

function.
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To see the part (ii), from Proposition 3.4.2, we have V̂ (S) ≥ ωMA(S)

when S > S∗. Hence, V̂ (S) + δω ≥ ωM(S) > ωM(i) for all i > S. Hence,

V̂ (S) + δω

> max
S+1≤j≤S2

{V (S, τ̂1(S2), · · · , τ̂S(S2)),
π(j, τ̂j(S2))− A1τ̂j−1(S2 )̸=τ̂j(S2)

τ̂j(S2)
}

= max
S+1≤j≤S2

{∑S
i=1 π(i, τ̂i(S2))−K − A

∑S−1
i=1 1τ̂i(S2 )̸=τ̂i+1(S2)∑S

i=1 τ̂i(S2)
,

π(j, τ̂j(S2))− A1τ̂j−1(S2 )̸=τ̂j(S2)

τ̂j(S2)

}
≥

∑S
i=1 π(i, τ̂i(S2))∑S

i=1 τ̂i(S2) +
∑S2

j=S+1 τ̂j(S2)
−K − A

S−1∑
i=1

1τ̂i(S2 )̸=τ̂i+1(S2)

+

S2∑
j=S+1

[π(j, τ̂j(S2))− A1τ̂j−1(S2 )̸=τ̂j(S2)]

]
= V̂ (S2).

We conclude the proof of the part (ii).

Proof of Lemma 3.4.5. Suppose there is a finite S̄ such that τM
∑S̄

i=1[h(S̄)−

h(i)] ≥ K,

V (S̄, τM , · · · , τM) =
S̄(p(τM)− c)−K −

∑S̄
i=1 h(i)

S̄τM
≥ S̄(p(τM)− c)− S̄h(S̄)τM

S̄τM
= ωM(S̄)

Therefore, V̂ (S̄) ≥ ωM(S̄). From Proposition 2, we have S∗ < S̄.

Suppose there is a finite S such that
∑S

i=1[A + τh(S) − τh(i)] < K.
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Combining with A ≥ 0 and the optimality of ωMA(S), we have

V̂ (S) ≤
∑S

i=1[p(τ̂i(S))− c− A]∑S
i=1 τ̂i(S)

− K − SA+
∑S

i=1[h(i)τ̂i(S)]∑S
i=1 τ̂i(S)

≤ ωMA(S) + h(S)− K − SA+ [
∑S

i=1 h(i)]τ

Sτ

= ωMA(S)− K −
∑S

i=1[h(S)τ − h(i)τ + A]

Sτ
< ωMA(S)

Therefore, V̂ (S) < ωMA(S). From Proposition 2, we have S∗ ≥ S.

Proof Proposition 3.4.3. By Lemma 3.4.1, we only need to treat the case

when τ is over a compact interval. To see part (i), we note that τM continues

and weakly increases in c. Therefore, if ca − cb is sufficiently small, we have

τMb ≤ τMa ≤
∑Sb∗

i=1 τ
b∗
i /Sb∗+ϵ1{τb∗1 =τMb} for any ϵ > 0. We consider two cases:

Case 1: If τ b∗1 = τMb, then τ b∗i = τMb for all 1 ≤ i ≤ Sb∗ by Lemma

3.4.2. Also

V̂ a(Sb∗)− ωMa(Sb∗ + 1) ≥ V a(Sb∗, τMa, · · · , τMa)− ωMa(Sb∗ + 1)

= − K

SτMa
−

∑Sb∗

i=1 h(i)

Sb∗ + h(Sb∗ + 1)

≥ − K

SτMb
−

∑Sb∗

i=1 h(i)

Sb∗ + h(Sb∗ + 1)

= V b(Sb∗, τMb, · · · , τMb)− ωMb(Sb∗ + 1)

= V b∗ − πb(Sb∗ + 1, τMb)

τMb
≥ 0

The first inequality comes from the optimality of V̂ a(Sb∗), the second from

τMa ≥ τMb, and the third from Proposition 3.4.1. Together with Proposi-

tion 3.4.2 (i), we obtain Sa∗ ≤ Sb∗.
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Case 2: If τ b∗1 > τMb, then
∑Sb∗

i=1 τ
b∗
i /Sb∗ ≥ max{τMa, τ b∗

Sb∗}. Suppose

Sa∗ > Sb∗. We claim τa∗Sa∗ ≥ τ b∗
Sb∗ . To see that, suppose τa∗Sa∗ < τ b∗

Sb∗ . Let la =

max{i : τa∗i > τ a∗Sa∗ , 1 ≤ i ≤ Sa∗}. Because V a∗ ≥ V a(Sa∗, τa∗1 , · · · , τa∗la , τ
b∗

Sb∗ , · · · , τ b
∗

Sb∗),

we derive from Lemma B.0.1(ii)

V a∗ ≥

[∑Sb∗

i=la+1 π
b(i, τ b∗

Sb∗) + A1{τa∗la =τb
∗

Sb∗}
]
−

∑Sb∗

i=la+1 π
a(i, τa∗Sa∗)

(Sa∗ − la)τ b∗
Sb∗ − (Sa∗ − la)τa∗Sa∗

≥
p(τ b∗

Sb∗)− p(τa∗Sa∗)

τ b∗
Sb∗ − τa∗Sa∗

.

Likewise, we can derive V b∗ <
p(τb∗

Sb∗ )−p(τa∗
Sa∗ )

τb∗
Sb∗−τa∗

Sa∗
. These relations imply V b∗ < V a∗,

which contradicts the fact that ca > cb. Thus, we must have τa∗Sa∗ ≥ τ b∗
Sb∗ .

Now note from Proposition 3.4.1, V b∗ ≥ πb(Sb∗+1, τ b∗
Sb∗ )/τ

b∗
Sb∗ and V a∗ <

πb̃(S b̃∗, τ a∗Sa∗)/τa∗Sa∗ . Then,

V b∗ − V a∗ >
πb(Sb∗ + 1, τ b∗

Sb∗ )

τ b∗
Sb∗

− πa(Sa∗, τa∗Sa∗)

τa∗Sa∗

=
p(τ b∗

Sb∗ )− cb

τ b∗
Sb∗

− p(τa∗Sa∗)− ca

τa∗Sa∗
− h(Sb∗ + 1) + h(Sa∗)

≥
p(τ b∗

Sb∗ )− cb

τ b∗
Sb∗

− p(τa∗Sa∗)− ca

τa∗Sa∗
≥ ca − cb

max{τMa, τ b∗
Sb∗}

.

The first inequality follows from the assumption Sa∗ > Sb∗. To see the second

inequality, we consider two cases: (a) If τ b∗
Sb∗ ≥ τMa, then τMa ≤ τ b∗

Sb∗ ≤ τa∗
Sa∗ .

It follows that [p(τ b∗
Sb∗ ) − cb]/τ b∗

sb∗ − (ca − cb)/τ b∗
sb∗ ≥ [p(τa∗

Sa∗ ) − ca]/τa∗sa∗ . (b)

If τ b∗
Sb∗ < τMa, then τMb ≤ τ b∗S∗

b
< τMa. It follows that [p(τ b∗

Sb∗ ) − cb]/τ b∗
sb∗ ≥

[p(τMa)− ca]/τMa + (ca − cb)/τMa ≥ [p(τa∗
Sa∗ )− ca]/τa∗sa∗ + (ca − cb)/τMa.

However,

V b∗ − V b̃∗ < V b∗ − V b̃(Sb∗, τ b∗1 , · · · , τ b∗Sb∗) =
(ca − cb)Sb∗∑Sb∗

i=1 τ
b∗
i

≤ ca − cb

max{τMa, τ b∗
Sb∗}

,(B.7)
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which leads to a contradiction. Therefore, Sa∗ ≤ Sb∗ and obtain part (i).

To see part (ii), suppose Sa∗ > Sb∗. We claim τa∗Sa∗ ≥ τ b∗
Sb∗ . To see that,

suppose τa∗Sa∗ < τ b∗
Sb∗ . Let la = min{i : τa∗i = τa∗Sa∗ , 1 ≤ i ≤ Sa∗}. Because

V a∗ ≥ V a(Sa∗, τa∗1 , · · · , τa∗la , τ
b∗
Sb∗ , · · · , τ b∗Sb∗), we derive from Lemma B.0.1(ii)

V a∗ ≥
[
∑Sb∗

i=la π
b(i, τ b∗

Sb∗) + A1τa∗la−1=τb∗
Sb∗

]−
∑Sa∗

i=la π
a(i, τa∗Sa∗)

(Sa∗ − la + 1)τ b∗
Sb∗ − (Sa∗ − la + 1)τa∗Sa∗

≥
p(τ b∗

Sb∗)− p(τa∗Sa∗)

τ b∗
Sb∗ − τa∗Sa∗

.

Likewise, we can derive V b∗ <
p(τb∗

Sb∗ )−p(τa∗
Sa∗ )

τb∗
Sb∗−τa∗

Sa∗
. These relations imply V a∗ > V b∗,

which contradicts the fact that ha(i) ≥ hb(i) for all i > 0. Thus, we must have

τa∗Sa∗ ≥ τ b∗
Sb∗ .

We further note

V b∗ − V a∗ >
πb(Sb∗ + 1, τ b∗

Sb∗)

τ b∗
Sb∗

− πa(Sa∗, τa∗Sa∗)

τa∗Sa∗

=
p(τ b∗

Sb∗)− c

τ b∗
Sb∗

− p(τa∗Sa∗)− c

τa∗Sa∗
+ ha(Sa∗)− hb(Sb∗ + 1)

≥ ha(Sa∗)− hb(Sb∗ + 1) ≥ ha(Sb∗ + 1)− hb(Sb∗ + 1).

The first inequality comes from Proposition 3.4.1(iii) and the second from

Lemma 3.4.2 and τa∗Sa∗ ≥ τ b∗
Sb∗ ≥ τM . However,

V b∗ − V a∗ < V b∗ − V a(Sb∗, τ b∗1 , · · · , τ b∗Sb∗)

=

∑Sb∗

1 [ha(i)− hb(i)]τ b∗i∑Sb∗

1 τ b∗i
≤ ha(Sb∗ + 1)− hb(Sb∗ + 1).

The last two relations contradicts each other. Hence, we conclude part (ii).

To see part (iii), we note that V̂ b(S) < V̂ a(S) for any S ≥ 1 and

V b∗ < V a∗. Suppose Sb∗ < Sa∗, then from the proof of part (i), we have

V̂ a(Sb∗) > V̂ b(Sb∗) ≥ ωM(Sb∗ + 1) ≥ ωM(Sa∗) > V̂ a(Sa∗) ≥ V̂ a(Sb∗).
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This leads to a contradiction, and thus we must have Sb∗ ≥ Sa∗.

Finally, we show part (iv). Without loss of generality, suppose p̃(τ) is

continuous in τ . First, we will show that τM decreases in γ. For every γc > γd

and τ c > τ d, we have

p̃(γc, τ c)

τ c
− p̃(γd, τ c)

τ c
=

p̃(γc, τ c)− p̃(γd, τ c)

τ c

<
p̃(γc, τ d)− p̃(γd, τ d)

τ c
≤ p̃(γc, τ d)− p̃(γd, τ d)

τ d
=

p̃(γc, τ d)

τ d
− p̃(γd, τ d)

τ d
.

The first inequality comes from the submodularity of p̃(γ, τ), the second in-

equality from τ c ≥ τ d. Hence, p̃(γ,τ)
τ

/τ is submodular in (γ, τ). Thus, (p̃(γ, τ)−

c)/τ is also submodular on (γ, τ). Therefore, τM decreases in γ.

Without loss of generality, we assume γb − γa > 0 is small enough

satisfying that

τMb ≤ τMa < min{τ θ}1τb∗1 >τMb + ϵ1τb∗1 =τMb ,

where τ θ = min{τ : p̃(τ)−c
τ

=
∑Sb∗

i=1 [p̃(τ
b∗
i )−c]∑Sb∗

i=1 τb∗i
, τ ≥ τMb} and ϵ > 0. To show that

Sa∗ ≤ Sb∗, we analyze two cases: Case 1, τ b∗1 = τMb and Case 2, τ b∗1 > τMb.

Case 1: τ b∗1 = τMb. From Proposition 3.4.1, we have τ b∗i = τMb for all

1 ≤ i ≤ Sb∗. We also have

V̂ a(Sb∗)− ωMa(Sb∗ + 1)

≥ V a(Sb∗, τMa, · · · , τMa)− ωMa(Sb∗ + 1) = − K

SτMa
−

∑Sb∗

i=1 h(i)

Sb∗ + h(Sb∗ + 1)

≥ − K

SτMb
−

∑Sb∗

i=1 h(i)

Sb∗ + h(Sb∗ + 1) = V b(Sb∗, τMb, · · · , τMb)− ωMb(Sb∗ + 1)

= V b∗ − πb(Sb∗ + 1, τMb)

τMb
≥ 0.
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The first inequality comes from the optimality of V̂ a(Sb∗). The second in-

equality comes from τMa ≥ τMb. The third inequality comes from Proposition

3.4.1. Combing V̂ a(Sb∗) > ωMa(Sb∗ + 1) with Proposition 3.4.2 (i), we have

that Sa∗ ≤ Sb∗.

Case 2: τ b∗1 > τMb. Suppose Sa∗ > Sb∗. Let la = min{i : τa∗i =

τa∗Sa∗ , 1 ≤ i ≤ Sa∗}. First, we show τa∗Sa∗ ≥ τ b∗
Sb∗ . Suppose τa∗Sa∗ < τ b∗

Sb∗ . Because

V a∗ ≥ V a(Sa∗, τa∗1 , · · · , τa∗la , τ b∗Sb∗ , · · · , τ b∗Sb∗), we derive from Lemma B.0.1(ii)

V a∗ ≥

[∑Sb∗

i=la π
a(i, τ b∗

Sb∗) + A1{τa∗la =τb∗
Sb∗}

]
−

∑Sb∗

i=la π
a(i, τa∗Sa∗)

(Sa∗ − la + 1)τ b∗
Sb∗ − (Sa∗ − la + 1)τa∗Sa∗

≥
p̃(γa, τ b∗

Sb∗)− p̃(γa, τa∗Sa∗)

τ b∗
Sb∗ − τa∗Sa∗

.

Likewise, we can derive V b∗ <
p̃(γb,τb∗

Sb∗ )−p̃(γb,τa∗
Sa∗ )

τb∗
Sb∗−τa∗

Sa∗
. Because p̃(γ, τ) is sub-

modular, we have p̃(γa, τ b∗
Sb∗) − p̃(γa, τa∗Sa∗) ≥ p̃(γb, τ b∗

Sb∗) − p̃(γb, τa∗Sa∗) and thus

V a∗ ≥ V b∗. This is impossible as pb(τ) > pa(τ). Therefore, we must have

τa∗Sa∗ ≥ τ b∗
Sb∗ .

Also from Proposition 3.4.1, V b∗ ≥ πb(Sb∗ + 1, τ b∗
Sb∗)/τ

b∗
Sb∗ and V a∗ <

πa(Sa∗, τ a∗Sa∗)/τa∗Sa∗ ≤ ωMa. We have

V b∗ − V a∗ >
πb(Sb∗ + 1, τ b∗

Sb∗)

τ b∗
Sb∗

− πa(Sa∗, τa∗Sa∗)

τa∗Sa∗

=
p̃(γb, τ b∗

Sb∗)− c

τ b∗
Sb∗

− p̃(γa, τ a∗Sa∗)− c

τa∗Sa∗
− h(Sb∗ + 1) + h(Sa∗)

≥
p̃(γb, τ b∗

Sb∗)− c

τ b∗
Sb∗

− p̃(γa, τ a∗Sa∗)− c

τa∗Sa∗

≥
p̃(γb, τ b∗

Sb∗)− p̃(γa, τ b∗
Sb∗)

τ b∗
Sb∗

.

The second inequality follows from the relation h(Sa∗) ≥ h(Sb∗ + 1) as Sa∗ >

Sb∗. To see the third inequality, we consider two cases. (a) If τ b∗
Sb∗ ≥ τMa, then

95



τa∗Sa∗ ≥ τ b∗
Sb∗ ≥ τMa. It follows

p̃(γa,τb∗
Sb∗ )−c

τb∗
Sb∗

≥ p̃(γa,τa∗
Sa∗ )−c

τa∗
Sa∗

. (b) If τ b∗
Sb∗ < τMa, then

τMa > τ b∗
Sb∗ ≥ τMb . By Lemma 3.4.2, we obtain

p̃(γb,τb∗
Sb∗ )−c

τb∗
Sb∗

≥ p̃(γb,τMa)−c
τMa .

We further note

V b∗ − V a∗ < V b∗ − V a(Sb∗, τ b∗1 , · · · , τ b∗Sb∗) =

∑Sb∗

i=1[p̃(γ
b, τ b∗i )− p̃(γa, τ b∗i )]∑Sb∗

i=1 τ
b∗
i

≤
p̃(γb, τ b∗

Sb∗)− p̃(γa, τ b∗
Sb∗)

τ b∗
Sb∗

(B.8)

We reach a contradiction and thus we obtain part (iv).

Proof of Proposition 3.4.4. From Proposition 3.4.3, we have Sa∗ ≥ Sb∗.

Suppose
∑Sb∗

i=1 τ
b∗ >

∑Sa∗

i=1 τ
a∗. Because V b∗ ≥ V b(Sa∗, τ a∗1 , ·, τa∗

Sa∗ ), we derive

from Lemma B.0.1(ii).

V b∗ <

∑Sb∗

i=1 π(i, τ
b∗
i )− A

∑Sb∗−1
i=1 1{τb∗i ̸=τb∗i+1} −

[∑Sa∗

i=1 π(i, τ
a∗
i )− A

∑Sa∗−1
i=1 1{τa∗i ̸=τa∗i+1}

]
∑Sb∗

i=1 τ
b∗
i −

∑Sa∗

i=1 τ
a∗
i

.

Also, because V a∗ ≥ V (Sb∗, τ b∗1 , · · · , τ b∗
Sb∗), we derive from Lemma B.0.1(ii).

V a∗ >

∑Sb∗

i=1 π(i, τ
b∗
i )− A

∑Sb∗−1
i=1 1{τb∗i ̸=τb∗i+1} −

[∑Sa∗

i=1 π(i, τ
a∗
i )− A

∑Sa∗−1
i=1 1{τa∗i ̸=τa∗i+1}

]
∑Sb∗

i=1 τ
b∗
i −

∑Sa∗

i=1 τ
a∗
i

.

The two relations above imply V a∗ > V b∗, which leads to a contradiction.

Hence, we must have
∑Sb∗

i=1 τ
b∗ ≤

∑Sa∗

i=1 τ
a∗.
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Proof of Proposition 3.4.5. We have

0 ≤ V a∗ − V a(Sb∗, τ b∗1 , · · · , τ b∗Sb∗) + V b∗ − V b(Sa∗, τa∗1 , · · · , τa∗Sa∗)

= V a∗ − V b(Sa∗, τa∗1 , · · · , τa∗Sa∗) + V b∗ − V a(Sb∗, τ b∗1 , · · · , τ b∗Sb∗)

= ca

[
Sb∗∑Sb∗

i=1 τ
b∗
i

− Sa∗∑Sa∗

i=1 τ
a∗
i

]
+ cb

[
Sa∗∑Sa∗

i=1 τ
a∗
i

− Sb∗∑Sb∗

i=1 τ
b∗
i

]

= (ca − cb)

[
Sb∗∑Sb∗

i=1 τ
b∗
i

− Sa∗∑Sa∗

i=1 τ
a∗
i

]

Hence,
∑Sa∗

i=1 τa∗i

Sa∗ ≥
∑Sb∗

i=1 τb∗i
Sb∗ .

Proof of Proposition 3.4.6. The result follows directly from the relation

V a∗ + V b∗ ≥ V a(Sb∗, τ b∗1 , · · · , τ b∗Sb∗) + V b(Sa∗, τa∗1 , · · · , τa∗Sa∗).

Since the argument is similar to that of Proposition 3.4.4, we omit the details.

Proof of Proposition 3.5.1. Differentiating the objective function (3.2)

with respect to τi, (1 ≤ i ≤ S), we have

p′(τi)− h(i)∑S
l=1 τl

− V
1∑S
l=1 τl

= 0,

which leads to V = p′(τi)− h(i), ∀i.

Proof of Proposition 3.5.2. Differentiating the objective function V ♭ with

respect to ι, we obtain

[p′(ιj)−H(xj−1, xj)dx](xj − xj−1)∑N+1
l=1 [(xl − xl−1)ιl]

− (xj − xj−1)V∑N+1
l=1 [(xl − xl−1)ιl]

= 0,
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which lead to V = p′(ιj)−H(xj−1, xj).

Proof of Proposition 3.5.3. Let G(z, y) = h(z)(z − y)−
∫ z

y
h(x)dx. Then,

G′
1(z, y) = (z−y)h′(z)+h(z)−h(z) = (z−y)h′(z) > 0 and limz→y G(z, y) = 0.

Hence, for a fixed y, there exists an unique solution z(y) of G(z, y) = A/ιM ,

z > y.

Next, we claim

A
ιM

+
∫ z

y
h(x)dx

z − y
≥

A
ιM

+
∫ z(y)

y
h(x)dx

z(y)− y
, ∀z > y. (B.9)

To see that, we note

∂

∂z

( A
ιM

+
∫ z

y
h(x)dx

z − y

)
=

(z − y)h(z)− A
ιM

−
∫ z

y
h(x)dx

(z − y)2
(z − y)2 =

G(z, y)− A
ιM

(z − y)2
.

Also, G(z, y) − A/ιM < 0 when z ∈ (y, z(y)) and G(z, y) − A/ιM > 0 when

z ∈ (z(y),+∞).

To prove part (i), we denote y1 = x̂N+1(N). Then

Ŵ (N) <
p(ιM)− c

ιM
− h(z(y1))

=
p(ιM)− c

ιM
−

A
ιM

+
∫ y1
z(y1)

h(x)dx

z(y1)− y1

=
[p(ιM)− c](z(y1)− y1)− ιM

∫ z(y1)

y1
h(x)dx− A

[z(y1)− y1]ιM

Applying Lemma B.0.1, we obtain

Ŵ (N) < W (N + 1, ι̂0(N), · · · , ι̂N+1(N), ιM , x̂1(N), · · · , x̂N+1(N), z(x̂N+1(N))) ≤ Ŵ (N + 1),

leading to part (i).

98



To prove part (ii), we assume that W (N) < Ŵ (N +1) holds. We have

Ŵ (N + 1) > W (N, ι̂1(N + 1), · · · , ι̂N+1(N + 1), x̂1(N + 1), · · · , x̂N+1(N + 1)).

Let y2 = x̂N+1(N + 1). Applying Lemma B.0.1, we deduce

Ŵ (N + 1) <
(x̂N+2(N + 1)− y2)

[
p(ι̂N+2(N + 1))− c]− ι̂N+2(N + 1)

∫ x̂N+2(N+1)

y2
h(x)dx− A

[x̂N+2(N + 1)− y2]ι̂N+2(N + 1)

=
p(ι̂N+2(N + 1))− c

ι̂N+2(N + 1)
−

∫ x̂N+2(N+1)

y2
h(x)dx+ A

ι̂N+2(N+1)

x̂N+2(N + 1)− y2

≤ p(ιM)− c

ιM
−

∫ x̂N+2(N+1)

y2
h(x)dx+ A

ι̂N+2(N+1)

x̂N+2(N + 1)− y2

≤ p(ιM)− c

ιM
−

∫ z(y2)

y2
h(x)dx+ A

ι̂N+2(N+1)

z(y2)− y2

=
p(ιM)− c

ιM
− h(z(y2)).

This leads to a contradiction and thus we obtain part (ii).

Proof of Proposition 3.5.4. Let G(y) =
∫ y

0
h(x)dx− yh(y)

2
. We have

G′(y) = h(y)− h(y) + yh′(y)

2
=

h(y)− h(0)− (y − 0)h′(y)

2
.

It is easy to see that G′(y) > (=, <)0 when h(x) is strictly concave (linear,

strictly concave).

The first order condition of xj yields

p(ιN+1)− ιN+1h(xN+1)− c∑N+1
i=1 [(xj − xj−1)ιj]

− ιN+1W∑N+1
i=1 [(xj − xj−1)ιj]

= 0,

p(ιj)− p(ιj+1)− h(xj)(ιj − ιj+1)∑N+1
i=1 [(xj − xj−1)ιj]

− (ιj − ιj+1)W∑N+1
i=1 [(xj − xj−1)ιj]

= 0, ∀j ≤ N.
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We deduce

p(ιN+1)− c

ιN+1

= h(xN+1) +W, (B.10)

p(ιj)− p(ιj+1)

ιj − ιj+1

= h(xj) +W, ∀j ≤ N. (B.11)

In view of (3.5), we have

W [xN+1ιN+1 +
N∑
i=1

xj(ιj − ιj+1)] = W
N+1∑
i=1

[(xj − xj−1)ιj]

= [p(ιN+1)− c]xN+1 +
N∑
i=1

xj[p(ιj − p(ιj+1)]−
N+1∑
j=1

[
ιj

∫ xj

xj−1

h(x)dx
]
− [K +NA]

= [W + h(xN+1)]xN+1ιN+1 +
N∑
i=1

[
[W + h(xj)]xj(ιj − ιj+1)

]
−

N+1∑
j=1

[
ιj

∫ xj

xj−1

h(x)dx
]
− [K +NA].

Simplifying the equation above, we obtain

K +NA−
N+1∑
j=1

[
ιj

∫ xj

xj−1

h(x)dx
]
= 2

N+1∑
j=1

[
ιj
[
G(xj−1)−G(xj)]

]
. (B.12)

Hence the result follows.

Proof of Proposition 3.5.5. The first-order condition of xj, 1 ≤ i ≤ N +1,

yields

p(ιN+1)− c

ιN+1

−W = h(xN+1),

p(ιj)− p(ιj+1)

ιj − ιj+1

−W = h(xj), j ≤ N.
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Hence,

p(ιN+1)− c−WιN+1 = ιN+1h(xN+1),

p(ιj)− p(ιj+1)−W (ιj − ιj+1) = (ιj − ιj+1)h(xj), j ≤ N.

For all 1 ≤ j ≤ N + 1, summing up the first (N + 2− j) equations leads to

p(ιj)− c−Wιj = ιN+1h(xN+1) +
N∑

m=j

[
(ιm − ιm+1)h(xm)

]
.

Hence

(p(ιj)− c−Wιj)(xj − xj−1)− ιj

∫ xj

xj−1

h(x)dx

= ιj

[
(xj − xj−1)h(xj)−

∫ xj

xj−1

h(x)dx

]
+ (xj − xj−1)

N∑
m=j+1

[
ιm+1(h(xm+1)− h(xm))

]
.

[
p(ιj)− c

ιj
−

∫ xj

xj−1
h(x)dx

xj − xj−1

−W

]
(xj − xj−1)ιj

= ιj

[
(xj − xj−1)h(xj)−

∫ xj

xj−1

h(x)dx

]
+ (xj − xj−1)

N+1∑
m=j

[
ιm(h(xm)− h(xm−1))

]
.

we conclude the proof.
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