
Copyright

by

Shant Harutunian

2007

The Dissertation Committee for Shant Harutunian
certifies that this is the approved version of the following dissertation:

Formal Verification of Computer Controlled Systems

Committee:

Warren A. Hunt, Jr., Supervisor

Jacob A. Abraham

Adnan Aziz

Craig M. Chase

Raul G. Longoria

Formal Verification of Computer Controlled Systems

by

Shant Harutunian, B.S.; M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2007

Dedicated to the Harutunian family.

Formal Verification of Computer Controlled Systems

Publication No.

Shant Harutunian, Ph.D.

The University of Texas at Austin, 2007

Supervisor: Warren A. Hunt, Jr.

This dissertation discusses the application of formal verification meth-

ods to reasoning about the correctness of computer controlled systems. Due

to the switching that is introduced by the computer controller, the differential

equations associated with such systems may consist of discontinuous vector

fields. The physical system may also experience switching due to physical in-

teraction, such as impact. Such system models may exhibit an infinite number

of switches in finite time. For example, using rigid body modeling assump-

tions, a bouncing ball may have infinitely many elastic impacts, but come to

rest in finite time. Using nonstandard analysis, we present a model for com-

puter controlled systems which accommodates discontinuous vector fields as

well as infinite switches in finite time. This model includes both the semantics

of the computer program as well as the ordinary differential equations govern-

ing the physical system behavior. We develop a nonstandard definition of a

solution for such a model and formally prove that the solution exists.

v

Using this nonstandard definition of solution, we develop proof proce-

dures whereby one may reason about safety and progress properties of the

system. The soundness of these proof procedures is formally shown. We con-

clude with the presentation of a simple example computer controlled system

using the presented model, for which safety and progress properties are shown

using the respective proof procedures.

vi

Table of Contents

Abstract v

List of Tables xii

List of Figures xiii

Chapter 1. Introduction 1

1.1 Interest and Scope . 1

1.2 Motivation of this Work . 2

1.3 Objectives of this Work . 3

1.4 Limitations of Existing Methods 4

1.5 Outline of Dissertation . 4

Chapter 2. Existing Research in Formal Verification of Control
Systems 7

2.1 Verification of Control Systems in Industry 8

2.2 Existing Research in Formal Verification of Control Systems . 9

2.3 Introduction to Existing Methods 9

2.4 Propositional Temporal Logics 13

2.5 Quantitative Temporal Reasoning 14

2.6 Timed Automata . 15

2.7 Hybrid Automata . 16

2.8 Theorem Proving . 18

2.9 Nonstandard Analysis . 18

2.10 Other Research . 19

2.11 Summary of Existing Research in Formal Verification of Control
Systems . 20

vii

Chapter 3. Background on Notation and Mathematical Models
Used in this Work 23

3.1 Notation . 23

3.2 Model of the Physical System 25

3.3 Stability of a Physical System 27

3.4 Lyapunov Stability Method . 28

3.5 Model of the Computer System 29

3.6 Ordinals . 31

3.7 Formal Definition of a Limit 32

3.8 Nonstandard Analysis . 33

3.8.1 The Principles of Internal Set Theory 34

3.8.1.1 Transfer Principle 35

3.8.1.2 Idealization Principle 35

3.8.1.3 Standardization Principle 37

3.8.2 Nonstandard Analysis Definitions and Theorems 38

3.8.3 Proof Strategy Using the Standardization and Transfer
Principles . 40

3.8.4 Example Application of Nonstandard Analysis 42

3.8.5 Definition of a Continuous Function 43

3.8.6 Definition of Open and Closed Sets 45

3.8.7 Extending Definitions to Vectors 46

3.9 Solutions to Differential Equations 47

3.9.1 Hybrid Automata . 47

3.9.2 Carathéodory Solutions 51

3.9.3 Filippov Solution . 52

Chapter 4. Nonstandard Proof of the Existence and Uniqueness
Theorem of Differential Equations 57

4.1 Proof of Existence . 58

4.2 Proof of Independence of φ from ε 62

4.3 The Proposed Function φ is A Newtonian Solution 67

4.4 Mechanical Proof Using ACL2r 70

4.5 Summary . 78

viii

Chapter 5. A Hybrid System Model and a Nonstandard Defi-
nition of its Solution 79

5.1 A Definition of a Hybrid System Model 80

5.2 A Sample System: Bouncing Ball 84

5.3 Nonstandard Definition of Solution 87

5.4 The Switch Predictor Function 90

5.5 Existence of a Solution . 91

5.6 Uniqueness of the Solution . 97

5.7 Continuity of the Solution . 100

5.8 Solution Time . 101

5.9 An Alternative Solution Definition 102

5.10 Comparing the Nonstandard Definition of Solution with Other
Definitions . 104

5.11 Satisfying the Assignment Function Requirements 105

5.12 Summary . 108

Chapter 6. Reasoning About Safety and Progress 110

6.1 Reasoning About Safety . 110

6.2 A Safety Property Proof Procedure 112

6.3 Soundness of the Safety Property Proof Procedure 113

6.4 Safety Proof Method For Predicates On Non-Time Varying Func-
tions . 119

6.5 A Safety Proof of a Sample System 122

6.6 Reasoning About Progress . 123

6.7 A Progress Property Proof Procedure 125

6.8 Soundness of the Progress Property Proof Procedure 128

6.8.1 Soundness of Progress Proof Procedure:
System Without Assignments 130

6.8.2 Soundness of Progress Proof Procedure:
System With Assignments 132

6.9 A Progress Proof of a Sample System 134

6.10 Asymptotic Stability . 136

6.11 A Modified Lyapunov Stability Method 138

6.11.1 Applying Lyapunov: Progress 138

ix

6.11.2 Applying Lyapunov: Safety 142

6.11.3 Lemmas Needed for Showing Modified Lyapunov Stability 144

6.12 Showing Asymptotic Approach using Lyapunov 147

6.13 Lyapunov Method and Nonstandard Analysis 148

6.14 Reasoning About Open Predicates 149

6.15 Measure Structures . 149

6.16 Extending Measure Structures with Standard Part 152

6.17 Hybrid Measure Structures . 153

6.18 Summary . 156

Chapter 7. Formal Reasoning About an Example Hybrid Sys-
tem 157

7.1 System Description . 158

7.2 Safety and Progress Properties About the Sample
System . 163

7.3 Observations about the Measure Function 170

7.4 The Measure Function and Control Algorithms 171

7.5 Summary . 172

Chapter 8. Summary and Future Work 173

8.1 Future Work . 174

Appendices 176

Appendix A. Mechanical Proof of Existence and Uniqueness 177

A.1 Arithmetic Theorems . 180

A.2 Theorems About Absolute Value 188

A.3 Some Theorems About Time 192

A.4 Exponent Function . 200

A.5 Nonstandard Analysis Theorems 203

A.6 Computed Hints . 208

A.7 The Solution φ Exists . 212

A.8 Properties of the Solution . 224

A.9 The Solution φ is Unique . 251

x

Appendix B. Mechanical Proof of Example 263

B.1 Measure Structure Definitions 264

B.2 Example Problem . 268

Bibliography 278

Vita 289

xi

List of Tables

2.1 Features of Formal Methods Used to Reason About Control
Systems . 10

2.2 Methods of Modeling Discrete Transitions 11

2.3 Methods of Modeling Continuous Transitions 12

3.1 Some Definitions and Theorems based on Nonstandard Analysis 39

xii

List of Figures

3.1 Hybrid Automata. Diagram demonstrates key components in
the definition of a hybrid automata. 49

3.2 An Example Hybrid Automata 50

3.3 A Possible Solution for the Example Hybrid Automata 51

3.4 An Example Two Dimensional Space Divided Into Two Regions 54

5.1 Graph of velocity and position trajectories for bouncing ball
system with α = 0.8 . 86

5.2 Graph of γε(0, t) for Example System Described by Equation
5.16 . 91

5.3 Possible trajectories of an example system with a Filippov so-
lution not modeled by the definition 5.3.2. The dot denotes the
initial value for each trajectory. 99

xiii

Chapter 1

Introduction

This dissertation addresses the application of formal verification meth-

ods to reason about the correctness of computer controlled systems. A com-

puter controlled system may be regarded as consisting of a computer with

several input/output signals connected to sensors and actuators in a physical

system which the computer is to monitor and control. Example applications

include control systems for automobiles, air crafts, food manufacturing facil-

ities, and chemical plants. In each of these applications, a computer is used

to sense signals from the associated process and send back signals to achieve

some desired process behavior.

1.1 Interest and Scope

Our research interest is to model and formally reason about the cor-

rectness of properties of computer controlled systems. A property is some

behavior that the control system is to exhibit. In linear control system anal-

ysis, Bounded Input Bounded Output (BIBO) stability is an example system

property [47]. This property states that, for zero initial conditions, if the in-

put signal to the control system is bounded, then the output signal is bounded

1

as well.

For a computer controlled system, we assume that the physical system

dynamics is expressed as a system of ordinary differential equations. Due to

events which occur in the system, the physical system model may change from

one set of differential equations to another. In particular, in this work, we

are interested in the case when such changes in the physical system model are

dictated by the output of some computer which is said to be the controller of

the system. It is ideal to use a method for reasoning about the semantics of

the computer program as well as the behavior of the dynamic system. This

dissertation shows how a proof method used for reasoning about computer

programs can be extended to reason about continuous dynamic systems with

the aid of nonstandard analysis.

1.2 Motivation of this Work

The composition of some discrete subsystem, such as a computer, with

a physical system is referred to as a hybrid system. In this dissertation, we are

interested in the case where the discrete subsystem is a computer. Modeling

a hybrid system requires a model of the physical system as well as the com-

puter and the semantics of the program executing on the computer. Physical

systems are typically modeled by ordinary differential equations. However,

the equations associated with such systems may be discontinuous. While the

observed behavior of some variable of the system, for example the position of

an object in space, may be continuous, the first derivative (velocity) or second

2

derivative (acceleration) may not be. Furthermore, it is possible that switch-

ing or assignment to the system variables may occur. Such activity may be

a consequence of the physical system model, for example rigid body impact,

or by the action of a computer controller. Hence, the model should take into

account this switching and variable assignment. Due to its real valued and real

time nature, a mathematical model of a physical system may exhibit infinitely

many switches in finite time.

1.3 Objectives of this Work

Our objective for this work is to provide a model of a hybrid system

that 1) models the computer and the semantics of its program, 2) models

the ordinary differential equations of the physical system, 3) models physical

systems with discontinuous vector fields, and 4) models events that occur over

time, even if they should occur infinitely often over finite time.

In addition to providing a mathematic model for a hybrid system, we

wish to provide a formal definition of its behavior over time, or its solution. We

wish to show that this solution exists and to systematically prove properties

about it. For example, we wish to prove if the value of a system variable

remains within some bound, a safety property [48, 53], or to show that the

solution reaches a particular state, a progress property [52].

3

1.4 Limitations of Existing Methods

Extensive research has been done in the area of modeling and formal

reasoning about hybrid systems. Such models, however, typically regard the

controller as a finite state machine. Each state of the finite state machine, or

mode, has an associated physical system model, such as an ordinary differen-

tial equation or differential inclusion, governing the behavior of the physical

system. Models and methods are also developed for switching systems. How-

ever, such models do not model the semantics of a computer program. In

particular, should the program consist of arithmetic operations, as computer

controllers typically do, such operations would be difficult to model as a finite

state machine. Furthermore, switching may occur between physical system

differential equations due to the change in output of the computer, or due to

switching that inherently exists in the physical system models, for example

due to impact [69]. In addition, the physical system model may consist of

infinitely many switches over finite time. For example, a rigid body model

of a ball bouncing with a coefficient of restitution less than 1, will have in-

finitely many impacts in finite time. Tools, such as hybrid automata, allow for

modeling finite impacts in finite time only.

1.5 Outline of Dissertation

In chapter 2, we provide a brief survey of existing research in the area

of hybrid systems. In chapter 3, we provide an extended background section

that covers notation to be used in the dissertation, an introduction to ordi-

4

nals, an introduction to nonstandard analysis, and an introduction to existing

definitions of differential equation solutions. In particular, we clarify that the

logic we will be using is based on the axiomatization of nonstandard analysis,

by Edward Nelson, referred to as internal set theory [59].

In chapter 4, we apply nonstandard analysis in the modeling and rea-

soning about differential equations. We present a nonstandard proof of the

existence and uniqueness theorem of differential equations. This chapter es-

tablishes a simple model and lemmas which we extend to a more general system

model that we formally define for modeling hybrid systems in the succeeding

chapters. We have mechanically proved the theorems and lemmas presented

in this chapter using the ACL2r theorem prover [1, 29].

In chapter 5, we present a formal nonstandard model of a hybrid sys-

tem. Section 5.1 presents the first contribution of this work which is a formal

model of both the semantics of the computer program as well as the ordinary

differential equations governing the behavior of the physical system. Section

5.1 also presents the second contribution of this research which is the modeling

of physical systems with discontinuous vector fields. Section 5.3 presents the

third contribution of this research which is the definition of a system solution

for such a model. Section 5.5 presents a proof for the existence of such a

solution.

In chapter 6, we present the fourth contribution of this research. The

chapter presents formal methods whereby one may reason about safety and

progress properties of the solution of the system model presented in chapter

5

5. Section 6.1 presents the proof procedure for proving safety properties and

section 6.4 presents the soundness of this safety proof procedure. Section 6.5

presents the proof procedure for proving progress properties and section 6.8

presents the soundness of this progress proof procedure.

In chapter 7, we present a sample system consisting of a computer and

a simple model of a physical system. We use the hybrid system model defined

in chapter 5 to present a model of the sample system. We then use the proof

procedures defined in chapter 6 to show both safety and progress properties

about this sample system.

In chapter 8, we conclude with remarks about our work to date and

provide direction by which it may be extended.

6

Chapter 2

Existing Research in Formal Verification of

Control Systems

In some special cases, a discrete time version of the linear control theory

may hold for a subclass of computer programs [47]. However, in the general

case, a computer controlled system may not be modeled by the state equations

for linear systems. Researchers have modeled computer controlled systems as

a transition system whose state variables are Boolean and real valued [35]. It

is also useful to describe the computer controlled system as a composition of

transition systems, namely the transition system(s) modeling the computer

program(s), and transition system(s) that model the physical equipment in

the process environment that the computer is interfacing with.

Since, in general, a computer controlled system may not be modeled

by the state equations for linear systems, well established methods of stability

for linear control systems cannot be applied. The computer also introduces

switching of the system dynamics of the physical system; the differential equa-

tions used to describe the system change as the computer outputs change [12].

If one were to study the differential equations associated with each mode of

the physical system, they may each be unstable. However, it is possible that

7

the computer switches the modes of the physical system such that the overall

system behavior is stable.

2.1 Verification of Control Systems in Industry

In industry, computer controlled systems are often analyzed and their

correctness established through computer simulation of both the physical sys-

tem and the computer program. Such simulation programs approximate the

non-linear behavior exhibited by the equations associated with the physical

equipment by using a Newton-Raphson approximation technique, for example.

The computer programs also simulate the behavior of the system as dictated

by the differential equations by running the system for a δ time step, where δ is

small enough to capture, within some error, the next state of the system [60].

Such numerical techniques have been extremely useful in modeling the system

prior to its construction. However, a key drawback in simulating computer

controlled systems is that all execution paths of the computer algorithm may

not be explored. While simulation is powerful in prototyping the equipment,

the execution of a simulation is often time consuming; repeating the simulation

for every execution path of the computer algorithm may be impractical.

When using simulation to verify system correctness, the model is exe-

cuted on a given input and the output is observed. This procedure is repeated

for each input to be tested. However, it may be impractical to run a simulation

for all possible inputs to the system.

8

2.2 Existing Research in Formal Verification of Control
Systems

Some methods have evolved in the research community of program ver-

ification that may help address the verification of control systems without the

simulation of every execution path and every possible input. Rather than

explicitly executing the system model for each input, researchers have devel-

oped methods whereby one uses logic to prove that the system does satisfy a

property for all possible inputs.

2.3 Introduction to Existing Methods

Table 2.1 on the following page presents various verification methods.

For digital hardware systems, a finite state transition system is used to model

state machines. Temporal logics and model checking techniques have been

used to prove properties about such systems. This research has been extended

to include quantitative temporal reasoning, where the time duration between

events is a discrete quantity: the number of transition steps between those

events. In the research of timed automata, non-negative real valued variables,

called clocks, are used to model time durations between events. In the research

of hybrid automata, timed automata are extended to include real valued, time

varying variables that are useful in representing physical quantities, such as

temperature, pressure, or flow. The table shows the methods as supporting

the boolean type. It should be noted that the methods do not exclusively

support boolean variables, but support n nodes in their graph representation,

9

where each node represents a value of the discrete state space. Since n nodes

may be encoded with dlog2(n)e boolean variables, and since it is common

in propositional temporal model checking to represent the next state function

using boolean functions, the convention of using boolean variables to represent

the discrete space is adopted for this presentation.

Table 2.1: Features of Formal Methods Used to Reason About Control Systems

Formal Method
Variable Modeling of Terminates Example
Types Time for All Cases Tool

Propositional
Boolean Untimed Yes SMV

Temporal Logics
Quantitative

Boolean Discrete Yes Verus
Temporal Reasoning

Timed Automata
Boolean

Real Yes Kronos
and Clocks

Hybrid Automata
Boolean

Real No -
and Real

Linear Boolean
Real No Hytech

Hybrid Automata and Real

A computer controlled system is often modeled to consist of discrete

and continuous transitions. A discrete transition is associated with a time

varying variable, but the variable is only modeled to change at discrete points

in time. For a discrete transition system, it may be the case that two dis-

crete transitions occur one after the other, at times t1 and t2, where t1 < t2,

and there is no intervening discrete transition that occurs at time t, where

t1 < t < t2. A discrete transition is usually associated with the change of a

variable of the computer program. We denote the non-negative reals as R≥0.

A continuous time varying variable may be regarded as a function mapping

10

R≥0 to the power set of the domain of the variable. A continuous transition

is associated with the change of such a variable. For any times t1 and t2, if

a continuous transition occurs at t1, and another at t2, where t1 < t2, then

there is a continuous transition that occurs at time t, where t1 < t < t2. A

continuous transition is usually associated with the change of a physical sys-

tem variable, such as temperature, pressure or flow. Each of the discussed

formal methods have different approaches of modeling discrete and continuous

transitions. Tables 2.2 and 2.3 present the transition types modeled by the

various existing methods.

Table 2.2: Methods of Modeling Discrete Transitions

Formal Method Discrete Transition

Propositional Boolean Function (BDD)
Temporal Logics Relating Current and Next State

Quantitative Boolean Function (BDD)
Temporal Reasoning Relating Current and Next State

Timed Automata
Graph Edge Relation and
zero or more Clocks Reset
Graph Edge Relation and

Hybrid Automata
boolean combination of

equations/inequations which
constrain the next state variables X′

based on the current state variables X
Graph Edge Relation and

Linear Hybrid Automata
a conjunction of linear

equations/inequations which
constrain the next state variables X′

based on the current state variables X

In these tables, X denotes the finite set of continuous time varying

11

Table 2.3: Methods of Modeling Continuous Transitions

Formal Method Continuous Transition

Propositional
None

Temporal Logics
Quantitative

None
Temporal Reasoning

Timed Automata For a clock x, ẋ = 1

A boolean combination of

Hybrid Automata
equations/inequations whose

variables are in X ∪ Ẋ
A conjunction of

Linear Hybrid Automata
linear equations/inequations whose

variables are only in Ẋ

variables . If the cardinality of X is n, then V = Rn. The set Ẋ represents the

set of first derivatives (with respect to time) of all the variables in X. That is,

if we let X = {x1, x2, x3, . . . , xn}, then Ẋ = {ẋ1, ẋ2, ẋ3, . . . , ẋn}. For x ∈ X,

x′ represents the value of x after the discrete transition is taken. We let X′ =

{x′1, x′2, x′3, . . . , x′n}. Propositional temporal logic and quantitative temporal

reasoning both have “None” under the Continuous Transition column heading.

The system models associated with these methods do not have a representation

for non-negative, real valued time and, hence, cannot represent continuous

transitions.

For timed and hybrid automata, the decision procedures represent the

automata as a graph. The edges of this graph represent the discrete transi-

tions of the system. The discrete transitions occur when the boolean variables

12

change value. In addition, for timed automata, a discrete transition also occurs

when zero or more clock variables are reset. For hybrid automata, the effect of

a discrete transition on the real valued variables is characterized by predicates

over the current state and next state variables, as discussed in tables 2.2 and

2.3.

The following sections discuss these methods and their application to

computer controlled system verification in further detail.

2.4 Propositional Temporal Logics

Much work has been done in the formal verification and reasoning about

transition systems. The transition system is effectively a graph where each

node represents the state in the system and an edge represents a possible

transition from one state to the next. Propositional temporal logics are used

to state properties about such transition structures. Examples of propositional

temporal logics include Computation Tree Logic (CTL), CTL*, CTL+, and

PLTL [23]. Associated with these logics are algorithms whereby one can de-

termine whether a given transition structure satisfies the property stated by

a formula from the logic. This technique is referred to as model checking.

Such logics have been useful in reasoning about the correctness of transition

systems without having to execute every computable path in the system. Such

logics assume that each computable path is infinite. That is, when reasoning

about the correctness of the system, the system is observed from time t = 0

(initial state), to t = ∞. Indeed, such a computable path cannot be simulated,

13

since it would require infinite time. Furthermore, even if one were to choose a

reasonable time limit for simulation, the number of paths to be explored may

be too large for simulation within reasonable time.

However, such propositional temporal logics assume that the transi-

tion system is a graph, where the nodes in the graph represent the possible

values of the state variables of the system. For large systems, a computer

implementation of the model checking decision procedure of the logic may

result in too many nodes in the graph of the transition system, exhausting

the computer memory resources available. Researchers have developed com-

puter implementations of the propositional temporal model checking decision

procedures whereby the transition system is represented symbolically in the

memory of the computer, as apposed to explicitly as a graph [15, 16]. Such

symbolic methods have attained reasonable success in reasoning about Boolean

valued transition systems. These methods use, for example, Binary Decision

Diagrams to represent the Boolean valued functions of the system [13, 14]. Al-

ternatively, some propositional temporal logic decision procedures make use of

Boolean satisfiability checkers [8, 22].

2.5 Quantitative Temporal Reasoning

The previously discussed propositional temporal logics do not model

time. However, when reasoning about computer controlled systems, reason-

ing about time is required. Some extensions to propositional temporal logics

have been proposed whereby time is modeled implicitly, namely as the num-

14

ber of steps taken in the state transition system. This method is commonly

referred to as quantitative temporal reasoning [17–20, 26]. Using this method,

one may state properties regarding the duration of time (number of steps)

between events in the system. Since it reasons about time durations in terms

of transition steps, this method uses a discrete time model.

2.6 Timed Automata

Other researchers have addressed the matter of modeling time by propos-

ing a new theory of modeling timed systems, called timed automata [3, 4]. The

model of this type of transition system includes Boolean valued functions for

input, output, and state variables, as well as a representation of clock variables.

Clock variables assume non-negative, real values. For a given system, all clock

variables increase at the same fixed, non-negative rate. The system can reset a

clock variable to zero, but it cannot write non-zero values to a clock variable.

Due to the introduction of real valued variables for representing clocks,

the explicit representation of the reachable states from the initial state requires

a graph with an infinite number of nodes. Unlike boolean variables, clock vari-

ables assume values from the set of non-negative real numbers and, if not reset,

increase uniformly. A significant contribution of timed automata is a method

of abstracting this infinite graph representation of the transition system to a

finite graph representation. Symbolic methods have been applied to real time

automata as well [7, 39, 54]. However, in general, the timed automata decision

procedures have not enjoyed the utility and much of the success of the un-

15

timed, propositional temporal logic decision procedures. The timed automata

graph representation, even when symbolic, results in memory exhaustion in the

implementation of the model checking procedure, even for moderately simple

systems [24]. Nonetheless, the research in timed automata has been valuable

in presenting methods for reasoning about infinite state systems.

2.7 Hybrid Automata

Hybrid automata extends the ideas from timed automata [4, 34, 36, 37,

40–42]. While the timed automata model uses non-negative real valued vari-

ables called clocks to represent time, the hybrid automata model allows the

real valued variables to represent time as well as the input, output, and state

variables of the control system. This is a significant contribution in the mod-

eling of control systems. This model allows for the representation of physical

system quantities, such as temperature, pressure, or flow. However, unlike its

real time version, the general hybrid automata decision procedure is not guar-

anteed to terminate. That is, given the initial state(s), if the transition system

is symbolically executed, the decision procedure may not reach a fixed point;

it may proceed interminably. This limitation is usually overcome, similar to

the approach in system simulation, by assuming an upper bound on the time

variable t.

A subset of hybrid automata theory called linear hybrid automata is

used to implement a decision procedure for hybrid systems [30, 35]. Linear

hybrid automata has an associated decision procedure whereby the transition

16

system is represented as linear polynomial inequalities with existential and

universal quantification. The software tool which implements this decision

procedure is named Hytech [35, 67]. To allow for linear arithmetic reasoning,

the input language for Hytech has restrictions on the defined transition system;

the differential equations are posed as the first derivative of a state variable set

equal to (or less than, or some other inequality operator) a linear polynomial

only in terms of constants and the first derivatives of state variables. It should

be noted that the first derivative of a variable is not allowed to be expressed

directly in terms of the state variables of the system. That is, dx/dt = x is not

allowed. An interesting consequence of this representation is that systems may

be described by differential equations as well as inequations. The approach

also allows the logical conjunction of one or more such differential inequation.

This allows the approximation of the physical equation of the system. For

example, if dx/dt is a complicated equation, but dx/dt is upper and lower

bounded by constants, then the system may be conservatively approximated

by dx/dt > L ∧ dx/dt < U , where L and U are the constants for the lower

and upper bounds, respectively.

At first, such approximations may seem crude. However, such approx-

imations are accepted to allow for reasoning about the system for arbitrary

values of the input variables. While a computer simulation of the actual dif-

ferential equation would yield a more accurate behavior over time, one would

have to repeat the simulation for each of the execution paths of the computer

program. The theory of hybrid automata provides a framework within which

17

to use logic and arithmetic to reason about the behavior of the system for a

large number of values for the inputs (in some cases infinite values), without

requiring repetition of simulations.

2.8 Theorem Proving

Theorem proving tools have been used to reason about correctness prop-

erties of real time and hybrid systems. In the work of Boyer and Moore, a

model of a vehicle autopilot control program is described and stability prop-

erties are proved about it [11]. In the work of Shankar, a real time logic is

formalized using the PVS theorem prover [49, 66]. The theorem prover is used

to model a rail road crossing problem and Fischer’s mutual exclusion proto-

col. The PVS theorem prover is also used by Mader, Wupper, and Bauerto

to verify some properties about portions of a batch plant [50], based on the

Verification of Hybrid System (VHS) Case Study 1 [71].

2.9 Nonstandard Analysis

In the work of Heinrich Rust, a nonstandard analysis approach is taken

to discretize the real line in representing time [62–64]. This approach extends

existing logics used for reasoning about real time systems by including the

notion of an infinitesimal time step. In the work of Krob and Bliudze, models

are introduced of discrete and continuous systems using nonstandard analysis

[46]. In the work by Nakamura and Fusaoka, nonstandard analysis is applied

to hybrid automata to allow for modeling of infinitely many switches in finite

18

time [58]. In the work of Iwasaki and others, nonstandard analysis models are

introduced and methods are developed for reasoning about such nonstandard

hybrid systems [44].

2.10 Other Research

There has been other research in the area of formal verification of con-

trol systems. Alur [5] proposes a method whereby a hybrid automaton is

abstracted using predicate abstraction techniques. In this approach, predi-

cates about the infinite state space are proposed, and a conservative, finite

abstraction of the transition system is derived, where the abstract state space

is the values of the predicates for all possible values of the original state space.

The paper by Alur also discusses heuristics whereby new predicates may be

derived to further refine the state space based on examples of failed properties

of the current abstraction. This approach effectively converts a hybrid au-

tomata into a transition structure that consists of booleans only, allowing the

methods of propositional temporal logic or quantitative temporal reasoning to

be used to reason about properties of the abstracted system. Another method

of abstraction is based on numerical methods to simulate the system and using

flow pipe approximations, as developed by Chutinan [21]. Other techniques

regarding approximation and abstraction are discussed in [25, 55, 70].

In the work of Branicky [12], stability of dynamic systems is discussed.

The paper is primarily concerned with switched systems where the system

dynamics switch from one set of equations to another. The paper does not ad-

19

dress the computer program or control system that initiates the switching, but

assumes that the system switches finitely many times within a finite time pe-

riod. The paper proposes the extension of Lyapunov stability to such switched

systems.

In the work of Adams et al., the PVS theorem prover is extended with

the Maple computer algebra system [2]. This extension allows reasoning about

such functions as exponent, sine, and other transcendentals. The system also

provides tools for checking continuity of functions. A similar approach is taken

with the HOL theorem prover [32].

2.11 Summary of Existing Research in Formal Verifica-
tion of Control Systems

While it is ideal to reason about computer controlled systems using

the linear system theory briefly summarized earlier, it is unrealistic. Practical

computer controlled systems do not exhibit linear system behavior and cannot

be modeled as such. The current research methods provide some tools of rea-

soning about nonlinear control systems. These approaches are advantageous

in providing automated decision procedures that show correctness of proper-

ties for a system. However, for some systems, these approaches cannot be used

because state space explosion is encountered.

For the propositional temporal logic approach and the quantitative rea-

soning approach, Binary Decision Diagrams (BDD’s) are used to represent

boolean functions. However, BDD’s do not encode multiplication very well;

20

the number of nodes required is exponential in the number of Boolean vari-

ables required to encode the multiplication (independent of the BDD variable

ordering) [13]. In control systems, multiplication is used in the definition of

systems. Even if a system is defined using a linear next state function, it is

often the case that a state variable y has a next state equation of the form

y′ = y + x, where the variable x is not time varying, and y′ is the value of y in

the next state. Assuming y=0 at the initial state, after n cycles, the variable

y would be encoded as xn, which requires multiplication to represent.

The approaches of timed automata and hybrid automata use nodes in

a graph to represent the discrete states of the system. Hence, this graph would

have to represent the discrete state space and arithmetic associated with the

program’s next state function. The explicit representation of the reachable

discrete space as nodes in a graph is very inefficient, and can easily result in

state explosion, since the number of discrete nodes may equal to the product

of the size of the domain of each discrete program variable. A new verification

method is required to allow for multiplication within the system model and

allow for reasoning about correctness without incurring state space explosion.

The theorem proving approaches also have short comings. The work

of Shankar formalizes a Real Time logic and is used to prove properties about

timed models, however, these models do not include hybrid systems; further

theory development is required for hybrid systems. In the work of Mader,

Wupper and Bauer [50] concerning the batch plant, the verification group ini-

tially chose the theorem proving approach since they felt that model checking

21

may result in a state explosion. However, theorem proving became an un-

manageable task, requiring several proof obligations. The problem definition

which the group attempted to formally model and verify consisted of several

boolean valued variables, which resulted in many case splits in the proof pro-

cess. The group points out that they were able to verify properties about the

system by using a propositional temporal logic model checker named Spin,

after performing some abstraction of the system model.

Application of nonstandard analysis to hybrid systems comprises a

smaller body of research than that of the other areas presented. Research ef-

forts in this area include development of new models of hybrid systems whereby

the real line is discretized into infinitely many time steps, where each time step

is of positive, infinitesimal duration [46, 62–64]. Some efforts go further by ex-

tending existing logics to formally reason about such models [64]. While these

approaches provide models for describing hybrid systems, they do not address

the modeling of differential equations with discontinuous vector fields. With

the exception of the work on transfinite automata [58], these efforts also do

not address physical system models which result in infinitely many switches

in finite time. As with standard hybrid automata, the transfinite automata

method represents the reachable discrete state space as nodes in a graph, which

can result in state explosion.

22

Chapter 3

Background on Notation and Mathematical

Models Used in this Work

In this chapter, we provide some background on the notation to be used

in the remaining chapters as well as an introduction to mathematical models

of physical systems and computer systems. We provide a brief introduction to

nonstandard analysis and internal set theory. This theory shall form the basis

of our work in reasoning about hybrid systems. We also provide a background

about the ordinal numbers, which we will use later to establish decreasing

measure functions in proving progress properties. Lastly, we present a brief

introduction to some existing definitions of differential equation solutions, with

attention to the case where the vector field is discontinuous.

3.1 Notation

We denote the set of integers as Z , the set of non-negative integers

(natural numbers) as N, and the set of real numbers as R. We also make use

of the notation R≥0 to represent the set of non-negative real numbers, and the

notation R>0 to represent the set of positive real numbers. We denote the floor

of a real number x as bxc. For any real x, bxc is an integer and satisfies the

23

property x − 1 < bxc ≤ x. The notation V̇ (x) denotes the first derivative of

the function V with respect to time.

We assume a vector takes on values in Rn, where n is a positive integer.

We represent a vector with its constituent elements as, x = (x1, x2, . . . , xn), in

tuple form, or as

x =

x1

x2

. . .
xn

 ,

in matrix form. The special symbol 0 denotes the constant vector all whose

components are 0.

For a given vector x ∈ Rn, we denote its norm as ‖x‖. The norm

function is the usual Euclidean norm where, for a vector x of n components,

its norm is defined as:

‖x‖=
√

x2
1 + x2

2 + · · ·+ x2
n.

The norm function always returns a non-negative value. For two vectors x and

y in Rn, the norm function satisfies the triangle inequality:

‖x + y‖ ≤ ‖x‖ + ‖y‖ .

The dot product of two vectors, x and y in Rn, is represented as x • y and

defined as follows:

x • y =
n∑

i=1

xi yi.

We will use the logical operators ∧, ∨, ¬. The operator ∧ denotes

“logical AND” or conjunction. The operator ∨ denotes “logical OR” or dis-

24

junction. The operator ¬ denotes negation. The formula P → Q is read “P

implies Q” and is logically equal to ¬P ∨Q. The formula ∀xP (x) is read “for

all x” the predicate P(x) holds. The formula ∃xP (x) is read “there exists an

x” for which the predicate P(x) holds. In the event that the quantification is

over sets, then the variable is upper case. For example, ∀XP (X) is read as

“for all sets X” the predicate P(X) holds.

For sets U and V , their union is represented as U ∪V , their intersection

as U ∩ V , and the subtraction of V from U as U\V .

For reals a and b, we represent intervals over the real line as follows:

[a, b] iff {x ∈ R : a ≤ x ≤ b},
(a, b] iff {x ∈ R : a < x ≤ b},
[a, b) iff {x ∈ R : a ≤ x < b}, and

(a, b) iff {x ∈ R : a < x < b},

(3.1)

where a and b are defined such that the corresponding set is nonempty.

For integers a and b such that a ≤ b, we represent intervals over the

integers as follows:

[a..b] iff {x ∈ Z : a ≤ x ≤ b}. (3.2)

3.2 Model of the Physical System

We model a physical system of n variables as a system of n ordinary,

autonomous, first order differential equations:

dxi/dt = fxi
(x1, . . . , xn), (3.3)

25

where xi is a real valued system variable, and i is an integer ranging from 1

to n, for n a standard positive integer. For each xi, we define a function fxi

which is the derivative of xi with respect to time. We denote the system state

as the vector x, where the ith component of x is xi. We refer to the collection

of functions fxi
as the vector field and represent them as the vector valued

function f : Rn 7→ Rn, where the ith component of f(x) is fxi
(x).

A function f is said to be Lipschitz continuous if there exists a finite,

real valued constant L, referred to as the Lipschitz constant, such that for any

two points x and y in Rn, the following condition holds:

‖f(x)− f(y)‖≤ L ‖x− y‖ . (3.4)

Given the initial condition x0, we denote the solution of the system of

differential equations as a function φ : R 7→ Rn, where φ(t) returns the state

at time t ∈ R≥0 and φ(0) = x0. Since the solution φ satisfies the differential

equation, then its derivative exists with respect to time and is continuous with

respect to time. Sometimes we will use the notation φ(x0, t) to denote the

solution at non-negative time t with the solution satisfying the initial condition

φ(x0, 0) = x0.

A system of differential equations has a unique solution in some domain

D if the vector field is Lipschitz continuous over points in D. Under this Lip-

schitz continuity criteria, the unique solution is guaranteed to exist only if the

initial state is in D and the system state remains in D up to time t. That is,

the unique solution is guaranteed to exist only for time t where for all t′, such

26

that 0 ≤ t′ ≤ t, φ(t′) ∈ D. We should note that the Lipschitz continuity crite-

ria is a sufficient, but not necessary, condition for existence and uniqueness of

a solution. In practice, the solution function φ of a system of differential equa-

tions represents the behavior of the physical system. Specifically, it represents

the values of the system variables given some time t ≥ 0. Throughout this

dissertation, the properties of the physical system are assumed to be those as

represented by the mathematical model of the system [6].

3.3 Stability of a Physical System

For an autonomous system ẋ = f(x), we say that a point q is a critical

point if f(q) = 0. The point q is a stable critical if it is a critical point and, for

all solutions of the system that start sufficiently close to q, stay close to q [9].

Specifically, for every α > 0, there exists a δ > 0 where at least one solution

φ(t) satisfying

‖ φ(0)− q ‖< δ (3.5)

exists and every such solution φ(t) also satisfies, for all t ≥ 0,

‖ φ(t)− q ‖< α. (3.6)

The point q is an asymptotically stable critical point if it is a stable critical

point and, for 0 < δ′ < δ, if

‖ φ(0)− q ‖< δ′ (3.7)

27

exists then every such solution φ(t) also satisfies

lim
t→∞

φ(t) = q. (3.8)

3.4 Lyapunov Stability Method

Methods are available for reasoning about the solution of a system

without determining the solution itself. Among these, the most notable in

control systems is the Lyapunov stability method. Using this method, one

generates a Lyapunov function V : Rn 7→ R. If the Lyapunov function V has

a continuous first partial derivative and satisfies the following properties:

V (x) = 0, for x = 0

V (x) > 0, for x 6= 0

V̇ (x) = 0, for x = 0

V̇ (x) < 0, for x 6= 0,

then the solution φ will asymptotically approach 0 as t increases [9]. We note

that the function V̇ may be derived by use of the chain rule for multivariable

functions as follows:

V̇ (x) = ∇V • f(x).

That is, the derivate of the proposed Lyapunov function V with respect to time

may be expressed as the vector dot product of the gradient of V (represented

as ∇V) and the vector field f . The gradient of V is the vector of partial

derivatives of V with respect to each system variable xi:

∇V =

(
∂V

∂x1

, . . . ,
∂V

∂xn

)T

.

28

The interesting result from this approach is that a characterization of the

system solution is achieved, namely asymptotic approach to 0, without de-

termining the solution itself. This approach is widely used in the research

community, along with semi-definite programming, for the case where the sys-

tem of differential equations is linear [10, 45]. These semi-definite programming

techniques are successful in determining asymptotic stability of linear systems

in thousands of variables. An area of active research is the use of non-convex

programming techniques to reason about stability of non-linear systems.

Other variations based on Lyapunov functions are used to determine

system instability, where the solution grows without bound as time increases

[9].

3.5 Model of the Computer System

Theoretically, a computer system with a program is modeled as a Turing

machine with a tape of instructions. The behavior of this Turing Machine is

what we would like to reason about. Mathematically, the semantics of this

Turing Machine may be modeled as a partial function whose domain and range

are the Natural numbers: k : N 7→ N. Specifically, given the initial state x of

the Turing Machine, the function returns the state after the machine halts (or

terminates). Since the function k is partial, it is not required that the machine

halt for every input. If the machine does terminate for every input, then the

corresponding function is said to be total.

In this dissertation, we will be concerned only with those computer

29

programs whose mathematical models are total functions. Specifically, we

model a computer program as a recursive function defined as follows:

run(x, n) =

{
x, for n = 0
run(step(x), n− 1), for n > 0,

where n is assumed to be a Natural number. The function step is assumed

to be a total function which, given the current computer state x, returns the

computer state after one step of execution.

In computer verification, two types of properties may be shown about a

computer program: Safety and Progress [48, 52, 53]. A safety property is true

for the initial state of the program, and remains true after executing each step.

A sufficient method by which to show a safety property P holds for our model

of a computer program is to show that if a state x satisfies P , then step(x)

also satisfies P .

A progress property, informally, implies the computer program will

eventually do something useful. Formally, a progress property states that

some state y is reachable from the initial program state x. In our model, we

may show a progress property Q holds by defining a measure function m which

returns a Natural number and has the following properties:

m(x) = 0, when Q(x) is true
m(step(x)) < m(x) otherwise,

where x is the initial computer state. This method may be generalized by

allowing the measure function m to evaluate to an ordinal, up to ε0, rather

than a Natural number.

30

3.6 Ordinals

The ordinals can be considered as an extension of the natural numbers.

We regard each element in the set of natural numbers as a finite ordinal.

We add a new element denoted as ω to this set such that ω is larger than

any natural number. We call ω a transfinite ordinal. We can add another

transfinite ordinal denoted ω + 1 such that ω < ω + 1, where < is the well

founded relation on the ordinals. We can continue this process of adding

successively larger transfinite ordinals.

The ordinals are well founded. That is, they are totally ordered and

there exists no infinitely decreasing sequence of ordinals. There are finite or-

dinals and transfinite ordinals. A transfinite ordinal is larger than any finite

ordinal. The smallest ordinal is 0. The smallest transfinite ordinal is denoted

as ω. We caution the reader that, although the ordinals extend the natural

numbers, ordinal arithmetic should not be confused with arithmetic on nat-

ural numbers. For example, according to ordinal arithmetic, 1 + ω = ω, but

ω < ω + 1.

So far, we have extended the natural numbers with the transfinite ordi-

nal ω and the larger transfinite ordinal ω +1. The set can be further extended

with larger ordinals:

ω + 2, ω + 3, ω + 4, . . . , ω + ω, (3.9)

shown in ascending order. The transfinite ordinal ω + ω is denoted as ω2. We

can continue to construct larger transfinite ordinals and add them to the set.

31

The following illustrates transfinite ordinals, in ascending order, that may be

added:

ω2, ω3, ω4, . . . , ω2, ω3, ω4, . . . , ωω, ωωω

, ωωωω

, . . . , ε0, (3.10)

with ε0 the largest ordinal shown. While the smallest ordinal is 0, there is

no largest ordinal. We will only consider the ordinals up to ε0. Further in-

formation regarding ordinals may be found in [51] or in a text on set theory

[31].

We will make use of the fact, for non-zero finite ordinals p, q, non-zero

ordinals α2, β2, and for ordinals α1, β1 such that α1 < ωα2 and β1 < ωβ2 , that:

(ωα2p + α1) < (ωβ2q + β1) iff

α2 < β2, or
α2 = β2 ∧ p < q, or
α2 = β2 ∧ p = q ∧ α1 < β1.

(3.11)

3.7 Formal Definition of a Limit

For a real valued function f : R 7→ R, and x, a, l ∈ R, a formula consist-

ing of a limit may be defined as follows:

lim
x→a

f(x) = l. (3.12)

Weierstrass provided a formal definition for such a formula using first order

logic:

∀ε>0∃δ>0 |x− a| < δ → |f(x)− l| < ε, (3.13)

where ε and δ are real.

32

3.8 Nonstandard Analysis

Nonstandard analysis, developed by Robinson [61], is based on a for-

malism whereby mathematical objects may be regarded as standard or non-

standard. In particular, we are interested in the set of real numbers, R. In

an effort to axiomatize nonstandard analysis, Nelson developed Internal Set

Theory [59]. Internal set theory contains all the axioms and definitions of set

theory, as well as the added formal predicate standard, and three axioms: the

transfer principle, the idealization principle, and the standardization principle.

Internal set theory does not add any object to set theory, but only the predi-

cate standard. Any formula which does not contain the predicate standard, is

called internal. If a formula is not internal, then it is external. In particular,

for the set of real numbers R, we regard some of the elements in R as standard,

and others as not standard, or nonstandard. Any object that we can uniquely

define in mathematics, without the use of the predicate standard, is consid-

ered standard. Some examples of standard objects are the natural numbers,

ordinals, π, e,
√

2, and the set of real numbers.

We are careful to point out that, while we use the term nonstandard to

describe a function or mathematical object whose definition depends on the

predicate standard, we use the term external to describe a formula or predicate

that depends on the predicate standard.

With the aid of the predicate standard, we may define other predicates.

For example, we define an infinitesimal as a real number whose absolute value

is less than the absolute value of every non-zero standard number. There are

33

infinitely many such infinitesimals in R. Division by an infinitesimal results in

a nonstandard number whose magnitude is larger than any standard number.

We call such a number large. If a number is not large, then it is limited.

We should note an important distinction in notation between that of

Robinson and Nelson. In the work by Robinson, the set denoted by the symbol

R consists of only the standard real numbers, and the set denoted by the

symbol ∗R is an enlargement of R, and consists of both the standard and

nonstandard numbers. In some literature, the set ∗R is referred to as the set

of hyperreals [33].

In this dissertation, we will adopt the convention introduced by Nelson

[59] where the set R, although it consists of nonstandard elements, is the usual

set of real numbers. The predicate standard simply allows one to distinguish

some reals as standard, and others as nonstandard.

3.8.1 The Principles of Internal Set Theory

In addition to the axioms and definitions of set theory, internal set

theory contains the formal predicate standard, and three axioms: the transfer

principle, the idealization principle, and the standardization principle. Using

these added principles and the predicate standard, one may formally reason

about the standard and nonstandard mathematical objects.

34

3.8.1.1 Transfer Principle

We will use the notation by Nelson [59], where ∀ stx is to be interpreted

as “for all standard x”, and ∃ stx is to be interpreted as “there exists a standard

x”. For an internal predicate P , the transfer principle states:

∀ st
t (∀ st

x P (t, x) iff ∀xP (t, x)).

Hence, for an internal predicate P , if we show P is true for all standard x

and t, we may conclude that P holds for all x, standard and nonstandard.

The variable t may be regarded as a parameter. As shown in [59], since

¬∀¬P (x) iff ∃P (x),

∀ st
t (∃ st

x P (t, x) iff ∃xP (t, x)).

The above is referred to as the dual form of the transfer principle [59].

The dual form of the transfer principle is useful in showing that an

object x is standard. We begin by constructing an internal predicate P which

uniquely recognizes x; that is, P (x) holds and P (y) → (y = x). By the dual

form of the transfer principle, if P is true for some object, then it must be

true for a standard object. But since P uniquely recognizes x, then x must

be standard. Therefore, if one can produce an internal predicate P which

uniquely recognizes an object x, then x is standard.

3.8.1.2 Idealization Principle

The second principle of internal set theory is idealization. We will adopt

the notation that ∀finst is to be interpreted as “for all finite, standard sets.”

35

For an internal predicate P , the idealization principle states:

∀finst
X ∃y∀x∈XP (x, y) iff ∃y∀ st

x P (x, y). (3.14)

The idealization principle allows one to show the existence of nonstandard

objects. Intuitively, the idealization principle states that we can “fix” only a

finite number of objects at a time. If we assume that x takes on values from

some standard set Y , 3.14 states that showing ∃yP (x, y) for all standard x ∈ Y

is the same as showing ∃yP (x, y) for all standard x ∈ X, for any standard finite

set X such that X ⊆ Y .

For example, suppose we define P (x, y) as x 6= y. Assume that x and

y range over the set R. For every finite standard set S ⊆ R of real numbers,

there is a y ∈ R, where ∀x∈Sx 6= y. By the idealization principle, there must

exist a y, not necessarily standard, where for every standard x ∈ R, y 6= x.

Hence, y is not standard, since it is not equal to any of the standard elements

in R.

Due to the idealization and transfer principles, the following theorem

may be derived:

Theorem 3.8.1. A standard set R is finite iff every element of R is standard.

This theorem is proved in [59]. By this theorem, one may also conclude

that any infinite standard set must consist of nonstandard elements. For exam-

ple, the set R is a set that consists of infinite standard elements, since each such

element may be uniquely defined without using the predicate standard. But

36

since R is a standard set which consists of infinitely many standard elements,

then, in internal set theory, it must also consist of nonstandard elements.

Theorem 3.8.2. A non-empty standard set has at least one standard element.

Proof. Let R be a non-empty standard set. The predicate ∃x ∈ R is an

internal predicate which is true. By the dual form of the transfer principle,

there exists a standard x such that x ∈ R. Therefore, R has at least one

standard element.

3.8.1.3 Standardization Principle

The third principle of internal set theory is standardization. The stan-

dardization principle states, for sets X and Y :

∀ stX∃ stY ∀ stx(x ∈ Y iff x ∈ X ∧ P (x)), (3.15)

where the predicate P may be internal or external. Intuitively, this principle

allows one to define a standard set Y , such that Y ⊆ X, by way of a non-

standard predicate P . Suppose there exists another standard set G which also

satisfies the predicate P for every standard element in X. Then G and Y have

the same standard elements. From internal mathematics, we know that two

sets G and Y are equal iff they have the same elements:

∀x∈(G∪Y) x ∈ G iff x ∈ Y. (3.16)

By the transfer principle, two standard sets G and Y are equal iff they have

the same standard elements:

∀ st
x∈(G∪Y) x ∈ G iff x ∈ Y. (3.17)

37

Therefore, for a given set X and predicate P , the set Y is unique. We will

use the standardization principle extensively throughout our presentation. In

Nelson’s notation, [59], the set Y is represented as S{x ∈ X : P (x)}. This may

be read as “The standard set Y whose every standard element is a standard

element in X that satisfies P [59].” By applying the standardization principle,

we may define some standard set Y . However, if this standard set Y is infinite,

then by theorem 3.8.1, it must consist of nonstandard elements. In particular,

if x is standard, then we know that x ∈ Y iff P (x); but if x is not standard, it

may be that P (x) does not hold, but x ∈ Y .

We should point out that if P is an internal predicate, then there is

no need to apply the standardization principle to show that a standard set Y

exists. We already know, by the subset axiom of set theory, that there exists

Y ⊆ X, denoted Y = {x : x ∈ X ∧ P (x)}, such that x ∈ Y iff x ∈ X ∧ P (x).

Since such a set Y is defined without the use of the predicate standard, then

it is standard.

3.8.2 Nonstandard Analysis Definitions and Theorems

In table 3.8.2, we present some useful definitions and theorems based

on nonstandard analysis which we will be using in this dissertation. In the

formulas of the table, x and y are assumed to be real. We denote the predicate

infinitesimal as infsml , and the predicate limited as limtd . In DEF1, the use

of the predicate standard is explicit in the definition of infinitesimal. All the

definitions directly, or indirectly, make use of the predicate standard and are

38

therefore external. The items labeled TH1 through TH11 are theorems which

can be derived based on the definitions DEF1 through DEF4, the definition of

the function st, the principles of internal set theory, and internal mathematics.

Table 3.1: Some Definitions and Theorems based on Nonstandard Analysis

DEF1 infsml(x)
def.= for all standard y > 0, |x| ≤ y

DEF2 large(x)
def.= x 6= 0 ∧ infsml(1/x)

DEF3 limtd(x)
def.= ¬ large(x)

DEF4 x ' y
def.= infsml(x− y)

TH1 standard(x) → st(x) = x ∧ limtd(x)

TH2 st(−x) = −st(x)

TH3 st(x + y) = st(x) + st(y)

TH4 limtd(x) ∧ limtd(y) → st(x y) = st(x) st(y)

TH5 standard(x) ∧ standard(y) → standard(x + y) ∧ standard(x− y)

TH6 standard(x) ∧ standard(y) → standard(xy) ∧
(y 6= 0 → standard(x/y))

TH7 x ≤ y → st(x) ≤ st(y)

TH8 infsml(x) iff st(x) = 0

TH9 st(st(x)) = st(x)

TH10 x ∈ Z → (limtd(x) iff standard(x))

TH11 limtd(x) → standard(st(x))

(3.18)

The function st denotes standard part and is one which we will use

extensively. Intuitively, for a limited number x ∈ R, this function returns that

39

standard number which is infinitesimally close to x. We may define such a

function as shown in [59].

3.8.3 Proof Strategy Using the Standardization and Transfer
Principles

The standardization and transfer principles may be used in a proof

strategy whereby, if some external predicate Pext(x) is shown to be true for

standard x, then we may conclude that there exists an internal predicate

Pint(x) which is true for all x. Suppose we can show that an external predicate

Pext is true for all standard objects. It is tempting to use the transfer princi-

ple to conclude that Pext is true for all nonstandard objects, but the transfer

principle can only be applied to internal predicates. By standardization, we

know that there exists a standard set Y whose standard elements satisfy Pext.

Since Y is a standard set, there exists an internal predicate Pint which is true

only for elements in Y . Furthermore, the predicate Pint has the same truth

value as Pext for all standard objects. If we have shown that Pext is true for

all standard objects, then Pint is true for all standard objects; but the formula

“Pint is true for all standard objects” is not internal, since it uses the predicate

standard. We apply the transfer principle to conclude that Pint is true for all

objects.

40

Alternatively, we may use such a proof strategy to model a nonstan-

dard function Fns with a standard function Fstd, where Fns and Fstd have the

same standard domain D and standard range Ω, and Fns(x) = Fstd(x) for

standard x.

Theorem 3.8.3. For Fns : D 7→ Ω a nonstandard function, suppose we have

shown that for every standard x ∈ D, Fns(x) exists and is standard. We may

then conclude that there exists a unique standard function Fstd which is a total

mapping and for standard x ∈ D, Fns(x) = Fstd(x).

Proof. Let the predicate Pext

def.= y = Fns(x). Let X = D × Ω. We let ν be

a tuple (x, y), with x ∈ D and y ∈ Ω. A standard element ν = (x, y) is one

where x is a standard element of D and y is a standard element of Ω. We

may use the standardization principle to show that a standard set Y ⊆ D×Ω

exists:

Y = S{ν : ν ∈ X ∧ Pext(ν)}. (3.19)

Furthermore, since Y is standard and since for every standard (x, y1) ∈ Y and

standard (x, y2) ∈ Y we have that y1 = Fns(x) = y2, then by the transfer

principle, for every (x, y1) ∈ Y and every (x, y2) ∈ Y , y1 = y2. Since for every

standard x ∈ D, there exists a y, namely y = Fns(x), where (x, y) ∈ Y , then,

by transfer, for every x ∈ D, there exists a y where (x, y) ∈ Y . Therefore,

for every x ∈ D, there is only one y ∈ Ω such that (x, y) ∈ Y . Since Y

is standard, we can symbolically represent it as the standard mapping Fstd.

Since Y is unique for the given Fns, Fstd is unique for the given Fns.

41

By theorem 3.8.3, it is shown that the standardization principle extends

to showing the existence of standard functions. Therefore, throughout the

dissertation, we will use the standardization principle to show the existence of

standard functions.

3.8.4 Example Application of Nonstandard Analysis

To explore the use of nonstandard analysis, we present an example.

Suppose we want to take the derivative of f(x) = x2. We know that the

derivative of x2 is 2x, a standard function. Let us derive this result using

nonstandard analysis. By the definition of the derivative, we have:

g(x) =
df

dx
= lim

ε→0

f(x + ε)− f(x)

ε
. (3.20)

In using nonstandard analysis, we may interpret ε → 0 as a non-zero infinites-

imal, or ε 6= 0 ∧ st(ε) = 0. By the definition of f , and assuming non-zero

infinitesimal ε, we have

ε 6= 0 ∧ st(ε) = 0 → g = st

(
(x2 + 2xε + ε2)− x2

ε

)
, (3.21)

where g is the value of the limit in 3.20, as ε approaches 0 from any direction.

Using the fact that ε is infinitesimal, by TH3, and by algebra, we may reduce

3.21 to

g = st(2x). (3.22)

However, we would like for the derivative to be a standard function, not a

nonstandard one in terms of the predicate standard, which is implied by the

function st in 3.22.

42

By theorem 3.8.3, if we can show that st(2x) is standard for standard

x, then there exists a standard function, say g, such that:

∀ st
x g(x) = st(2x). (3.23)

Assuming x is standard, by theorems TH1 and TH4, st(2x) = 2x. Since 2 is

standard and x is standard then, by TH6, 2x is standard. This satisfies the

requirement of theorem 3.8.3. Furthermore, we may rewrite 3.23:

∀ st
x g(x) = 2x. (3.24)

By the transfer principle, we have:

∀xg(x) = 2x. (3.25)

Hence, g(x) = 2x may be regarded as the standard function representing the

derivative of x2.

To demonstrate the ease of use of nonstandard analysis, the reader

should compare the formal method used in this nonstandard proof with that

based on the formal definition of a limit defined in section 3.7.

3.8.5 Definition of a Continuous Function

Using Nonstandard Analysis, we make precise the definition of a con-

tinuous function.

Definition 3.8.1. For a standard real valued function f :D 7→ R, where D ⊆ R,

a standard real number x1 ∈ D, and any real number x2 ∈ D, f is continuous

at x1 iff x1 ' x2 → f(x1) ' f(x2).

43

For example, the function f(x) = x + 1 is standard. Suppose x1 is

standard, and x2 ' x1. We want to show f(x1) ' f(x2). This requires we

show, by DEF4 and the definition of f ,

infsml((x1 + 1)− (x2 + 1)),

or, by arithmetic, infsml(x1 − x2). But this is equivalent to x1 ' x2, which is

the hypothesis we started with. Hence, f is continuous.

Using some properties about limited real numbers, we will derive a

theorem about continuity for standard functions. First, we need a lemma.

Lemma 3.8.4. For x, y ∈ R, x ' y iff st(x) = st(y).

Proof. If x ' y, then, by TH8, st(x− y) = 0, by TH3 and TH2, st(x− y) =

st(x)− st(y) = 0, and so st(x) = st(y).

Theorem 3.8.5. For a standard real valued function f : R 7→ R, standard real

number x1, and any real number x2, f is continuous at x1 iff x1 = st(x2) →

f(x1) = st(f(x2)).

Proof. We note that for a standard function f , if x is standard then f(x) is

standard. By TH1, if x is standard, then st(f(x)) = f(x). Using this observa-

tion, and lemma 3.8.4, we may conclude x1 = st(x2) → f(x1) = st(f(x2)).

Theorem 3.8.6. For a standard real valued function f : R 7→ R, f is contin-

uous at x iff limtd(x) → st(f(x)) = f(st(x)).

44

Proof. By TH11, the standard part of a limited real number is standard and

is in R. For a limited real x, and substituting st(x) for x1, and x for x2 in

theorem 3.8.5, we have f(st(x)) = st(f(x)).

3.8.6 Definition of Open and Closed Sets

In general topology, sets of real numbers may be classified as open

or closed. We will say an internal predicate P is open (closed) if the set

{x∈R | P (x)} is open (closed).

Definition 3.8.2. For an internal predicate P , whose domain is the set of real

numbers R, and x is any real number:

P is open
def.= P (st(x)) → P (x)

P is closed
def.= P (x) → P (st(x)) (3.26)

An example of an open predicate is x < 5. We may formally show that

it is open using the definition for open in 3.26.

st(x) < 5
iff st(x) < st(5) since 5 is standard, 5 = st(5),
→ x < 5 by the contrapositive of TH7.

We note that the predicates true and false are each open and closed.

If an internal predicate is not identically true or false, then it can be open or

closed, but not both. It is also possible for an internal predicate to be neither

open nor closed, for example: 4 < x ≤ 5.

45

3.8.7 Extending Definitions to Vectors

Much of the definitions regarding continuity and open and closed sets

can be extended to Rn, for a standard integer n ≥ 1. For a vector x, we

define st(x) as the vector whose components are the standard-part of the

corresponding components of the vector x:

st(x) = st

x1

x2
...

xn

 =

st(x1)
st(x2)

...
st(xn)

 (3.27)

We say a vector x is limited if each of its components is limited.

Definition 3.8.3. For a function f : Rn 7→ Rn, f is continuous at x ∈ Rn iff

limtd(x) → st(f(x)) = f(st(x)).

The definitions for open and closed predicates apply for the vector case,

with the assumption that x ∈ Rn.

46

3.9 Solutions to Differential Equations

The definition of a solution is critical in the analysis of differential

equations. For ordinary differential equations, we seek a function x, where x :

I 7→ Rn. The set I denotes an interval of the real line. We say that the function

x is a solution to the differential equation if x is everywhere differentiable over

the interval I and its derivative at every point in I satisfies the differential

equation. This definition of a solution is referred to as the Newtonian solution.

When dealing with differential equations with discontinuous vector fields, it

is possible that no Newtonian solution exists for a particular initial condition.

The presence of discontinuous vector fields is certainly applicable in the case

of analyzing computer controlled systems.

The literature consists of several definitions for differential equation

solutions. Many of these definitions loosen the requirements of a function

required to be considered a solution. In this subsection, we will review some

of the more popular definitions. We will discuss the definition of solution based

on the semantics of a hybrid automata. We will also discuss definitions of a

Carathéodory solution and Filippov solution.

3.9.1 Hybrid Automata

In hybrid automata, a system is defined with a finite graph. Each

vertex in the graph is referred to as a mode. Associated with each mode is a

differential equation (or inclusion) and a predicate referred to as the invariant.

Associated with each arc leaving the mode is a predicate referred to as a guard

47

and an assignment statement.

Each mode represents, effectively, the mode in which the physical sys-

tem is governed by some differential equation. It is assumed that the differen-

tial equation has a Newtonian solution for the duration in which the value of

the solution satisfies the invariant predicate; that is, the solution is continuous

and everywhere differentiable with a derivative satisfying the differential equa-

tion, and a value satisfying the invariant predicate over some interval I ⊆ R. If

the mode consists of a differential inclusion, then the solution, again, is Newto-

nian, with the requirement that its derivative satisfy the differential inclusion.

The guard predicate, informally, is the mechanism whereby switching may be

modeled by the automata. If the solution evolves to a state where the guard

predicate is satisfied (and the invariant is satisfied), then the system may jump

out of this mode and enter a different mode. It is crucial to note that, for a

particular run, the jump out of a mode is not mandatory as soon as the guard

evaluates to true, but may occur at any time that the guard and invariant

predicates hold, or may not occur at all. If the Newtonian solution exists only

up to a finite time tf , then a guard must evaluate to true at, and the invariant

must hold up to some time t ≤ tf , otherwise the present run of the automata

is finite and dismissed by the analysis. Similarly, a guard must evaluate to

true before the invariant predicate becomes false, otherwise the present run of

the automata is considered finite and dismissed. Figure 3.1 shows a diagram

of a Hybrid Automata mode, with the key components in the definition of the

automata pointed out.

48

I

x=f(x)
.

Invariant Predicate

Differential Equation
or Inclusion

G , x:=1

AssignmentGuard Predicate

Figure 3.1: Hybrid Automata. Diagram demonstrates key components in the
definition of a hybrid automata.

It is possible that two or more guard predicates, associated with the

arcs exiting a mode, may evaluate to true. In this case, the system chooses,

non-deterministically, a guard predicate and jumps to the corresponding mode.

After a jump occurs, it is possible that the state variables may be (instanta-

neously) assigned arbitrary values, and a (possibly) new mode entered. The

idea of an assignment on mode change is crucial in modeling such phenomena

as impact, for rigid body dynamics, or digital system output change, for hybrid

systems. Clearly, the assignments must be such that the state variables satisfy

the invariant predicate of the mode being entered. When a mode is entered,

the Newtonian solution associated with that mode evolves based on the new

differential equation or inclusion of that mode, starting from an initial condi-

tion based on the values of the system variables after assignment. The process

repeats as the system jumps from mode to mode. Therefore, the solution of a

system defined by a hybrid automata may be regarded as a concatenation of

49

one or more Newtonian solutions. The resulting solution may not be continu-

ous. Since the time at which a jump is taken while a guard evaluates to true is

arbitrary, and since a guard is chosen non-deterministically whenever two or

more guards simultaneously hold, it is possible that infinitely many solutions

exist for a particular hybrid automata. The multiplicity of solutions, however,

is of no concern since the hybrid automata is not intended to be used for sim-

ulation, but for formal reasoning about reachability and safety properties of

the modeled system.

Figure 3.2 shows an example hybrid automata. We note that the guard

predicate may hold true at any time that the system variable x is above 4,

at which point a jump may be taken, but not required. Figure 3.3 shows a

possible solution of the example automata.

3≤ x ≤ 5
x = 1
.

x ≥ 4 , x:=5

3≤ x ≤ 5
x = -1
.

x ≤ 4 , x:=3

Figure 3.2: An Example Hybrid Automata

50

3
4
5

2
x0

t

x

Figure 3.3: A Possible Solution for the Example Hybrid Automata

3.9.2 Carathéodory Solutions

While a Newtonian solution is useful for continuous vector fields, such

a solution is strict for discontinuous vector fields. We consider, for example,

the following differential equation:

ẋ =

−1 , x > 0
0 , x = 0
1 , x < 0.

(3.28)

If we assume an initial condition of zero, the above differential equation

has the solution x(t) = 0 for all t ≥ 0. If we assume a positive initial condition

x0, the above equation has a Newtonian solution x(t) = x0 − t, for t in the

interval [0, x0). For t ≥ x0, the solution x does not satisfy the above equation.

We propose a function x over the interval [0,∞),

x(t) =

{
x0 − t , t ∈ [0, x0]

0 , t > x0.
(3.29)

51

However, this function is not a Newtonian solution since it is not differentiable

at t = x0.

Unlike the Newtonian solution, a Carathéodory solution requires that

the solution satisfy the differential equation at almost every point [27, 68].

Formally, a Carathéodory solution is an absolutely continuous function whose

derivative satisfies the differential equation almost everywhere over the speci-

fied interval. A Carathéodory solution may also be characterized as follows:

x(t) = x(t0) +

∫ t

t0

f(x(s))ds, (3.30)

where the integral is a Lebesgue integral [68]. Therefore, our proposed solution

3.29 for a positive initial condition is a Carathéodory solution of 3.28.

3.9.3 Filippov Solution

While the Carathéodory definition of solution admits some solutions to

discontinuous vector fields, there are still some discontinuous vector fields for

which no Carathéodory solution exists. Consider the vector field:

f(x) =

3 , x < 0
1 , x = 0
−1 , x > 0.

(3.31)

For x < 0, the solution has the form 3t + k1. For x > 0, the solution has the

form −t + k2. Hence, in either case, x(t) approaches zero as t increases. Upon

approaching zero, the solution remains there, whereby ẋ = 0. However, at

x = 0, the differential equation requires ẋ = 1, a contradiction. Therefore, for

an interval I ⊆ R where t ∈ I is such that x(t) approaches zero, the differential

equation 3.31 does not have a Carathéodory solution.

52

For a given solution x, suppose that the vector field is discontinuous at

x(t). Filippov [27] observes that if the vector field f approaches the disconti-

nuity at x(t−) and x(t+), where t− and t+ approach t from below and above,

respectively, then the solution is not necessarily defined at this discontinuity

and may not exist using the classical Carathéodory notion of a solution.

Filippov observed that while a solution may be defined in the classical

sense where the vector field is continuous over regions Gi ⊆ Rn for positive

integer i, it is the discontinuity in the vector field at boundaries between

regions Gi that resulted in the difficulty in defining a solution. When the vector

field experiences a discontinuity along some boundary b, it is possible that the

solution itself may take on values in this boundary b for some positive duration

of time; that is, x(t) ∈ b for t ∈ [t1, t2] for reals t1 < t2. Since the vector field

is discontinuous along b, the strict notion of a differential equation solution in

the Newtonian or Carathéodory sense may not define a differential equation

for which a solution exists in this interval [t1, t2]. Figure 3.4 shows an example

two dimensional space divided into two regions, G1 and G2, with a boundary

b separating the regions. We assume vector field functions are defined for each

region and the boundary. The arrows in figure 3.4 represent the vector field

directions in G1 and G2. If the solution should reach the boundary, it is not

possible for it to move away, since the vector field from either side would push

it back. This results in the solution residing along boundary points for some

positive duration of time. Hence, a solution in the Newtonian or Carathéodory

sense is difficult, since there may not exist a function whose derivative matches

53

the vector field for points along the boundary as well as those points in regions

G1 and G2 close to the boundary.

b

G1

G2

Figure 3.4: An Example Two Dimensional Space Divided Into Two Regions

Rather than using the classical notion of a differential equation, Filip-

pov turned to differential inclusions at those boundaries at which the vector

field is discontinuous.

54

Definition 3.9.1. For a vector field f : Rn 7→ Rn and an interval [t0, tf], the

Filippov solution x : [t0, tf] 7→ Rn is an absolutely continuous function which

satisfies the following:

ẋ(t) ∈ Ff(x(t)) , for almost all t ∈ [t0, tf], (3.32)

where F is defined as

Ff(x) =
⋂
δ>0

⋂
µ(x+δ B1) 6=0

cof(x + δ B1), (3.33)

where B1 is the unit Ball in Rn centered at the origin, µ is a Lebesgue volume

measure on Rn, and co(Z) is the closed convex hull of Z ⊆ Rn [27, 68].

The operator F is a set valued function, formally a measure function.

Informally, the operator F returns the smallest convex set which contains

the derivative of the solution x when it is near the boundary at which f

is discontinuous. For the example 3.31 presented earlier, the boundary over

which the vector field is discontinuous is the point x = 0. The Filippov solution

for this example must satisfy ẋ ∈ {3} for x < 0, ẋ ∈ {−1} for x > 0, and

ẋ ∈ [−1, 3] for x = 0. It can be verified that the following function is a Filippov

solution:

x(t) =

3t + k1 , x < 0
−t + k2 , x > 0

0 , x = 0.
(3.34)

In particular, we note that the proposed solution 3.34 is such that ẋ = 0

for almost all t where x(t) = 0, satisfying the Filippov differential inclusion

requirement. It is interesting to note that the Filippov definition of solution

55

reduces to the Newtonian definition for regions over which the vector field is

continuous. In this case, the operator F returns a singleton set. It is not until

a discontinuity is encountered in f that the benefit of the Filippov solution is

noted, wherein a non-singleton convex set characterizes the possible values of

a solution’s derivative at this discontinuity.

56

Chapter 4

Nonstandard Proof of the Existence and

Uniqueness Theorem of Differential Equations

In this chapter, we will use nonstandard methods to prove the exis-

tence and uniqueness theorem of ordinary differential equations. The proof

demonstrates how nonstandard analysis may be applied to reasoning about

differential equations and introduces lemmas that will be used later in reason-

ing about a nonstandard definition of a solution to a hybrid system model.

Suppose we are given an initial value problem:

ẋ = f(x), (4.1)

where x(0) = x0. The existence and uniqueness theorem states that the so-

lution for this initial value problem exists and is unique if the vector field f

is Lipschitz continuous with Lipschitz constant L over some domain D ⊆ Rn,

for n a positive integer. It is assumed that L is a standard real constant and

f is a standard function. We will focus only on the autonomous vector field

case and assume that the domain D = Rn. We note that these assumptions

are not severe limitations in exploring existence and uniqueness. For the au-

tonomous assumption, we can model dependence on t by adding a variable z

with derivative 1 and initial condition 0. Although, we should point out, the

57

theorem requires continuity of f with respect to t, not Lipschitz continuity.

For an arbitrary domain D ⊆ Rn, we require that the vector field is Lipschitz

continuous over D, that the initial condition x0 ∈ D, and that the solution x

exists for time t, 0 ≤ t < tf , where tf > 0 is such that ∀0≤t<tf x(t) ∈ D.

The proof is divided into three parts: in the first, we show existence

of a standard function φ, whose definition depends on a positive constant

infinitesimal ε; in the second, we show that, for given x0 and t, φ(x0, t) is

independent of which positive infinitesimal ε is chosen; in the third, we show

that φ is a Newtonian solution of the differential equation with initial condition

x0 and is the only solution. Throughout the proof, we will assume that the

solution is to be evaluated for non-negative time t.

4.1 Proof of Existence

We assume that the vector field is a standard function; that is, it is a

function that is defined without the predicate standard. Given the vector field

f , we propose a function ρε based on the Euler approximation of the solution:

ρε(x, t) =

{
x t < ε

ρε(x + f(x)ε, t− ε) t ≥ ε.
(4.2)

where ε > 0.

As an aside on notation, the superscript ε of the function symbol ρε

designates that the function is dependent on ε in its definition. We may choose

an alternate symbol, say δ substituted for ε in the definition, in which case we

58

would denote the function as ρδ.

By the standardization principle, if we show that the nonstandard func-

tion st(ρε(x0, t)) has a standard value for all standard arguments, then there

exists a standard function φ which is equal to st(ρε(x0, t)) for all standard

arguments. Recall that for a limited real number r, st(r) exists and is stan-

dard. Therefore, to show st(ρε(x0, t)) has a standard value for all standard

arguments we only need to show that ρε(x0, t) is limited for standard x0 and

standard t. Before proceeding, we state a lemma which we need in our proof.

Lemma 4.1.1. For a standard vector field f which is Lipschitz continuous

with constant L over some non-empty standard set D ⊆ Rn, f(x) is limited

for any limited x ∈ D.

Proof. Since D is a non-empty standard set, it consists of at least one standard

real point z. Since f is standard and defined over all of D, then f(z) is

standard, hence limited. By the Lipschitz property of f , for any x ∈ D,

‖ f(x)− f(z) ‖ ≤ L ‖x− z ‖. Therefore, since x and z are limited, then

‖x− z‖ is limited, implying ‖f(x)− f(z)‖ is limited. Since f(z) is limited,

then f(x) is limited.

We now point out some useful properties about ρε. The value at time

t ≥ ε of the Euler approximation ρε may be related with that of the previous

time step by the following equation:

ρε(x0, t) = ρε(x0, t− ε) + f(ρε(x0, t− ε))ε. (4.3)

59

The Euler approximation ρε may be described using the following summation:

ρε(x0, t) = x0 +

bt/εc∑
i=1

f(ρε(x0, t− εi))ε. (4.4)

Both the above properties may be proved by induction. For a given non-

negative t, positive constant ε, x0 ∈ Rn, and function ρε, the induction is

performed using a well founded structure 〈S,≺〉:

S = {t− εi : i ∈ N ∧ 0 ≤ i ≤ bt/εc}, (4.5)

where, for t1, t2 ∈ S, t1 ≺ t2 iff t1 < t2. Using these properties, we proceed to

find an upper bound for ‖f(ρε(x0, t))‖. We begin by noting:

‖f(ρε(x0, t))‖=‖f(ρε(x0, t))− f(ρε(x0, t− ε)) + f(ρε(x0, t− ε))‖ . (4.6)

By the triangle inequality,

‖f(ρε(x0, t))‖ ≤ ‖f(ρε(x0, t))− f(ρε(x0, t− ε))‖ + ‖f(ρε(x0, t− ε))‖ . (4.7)

By the Lipschitz property of f ,

‖f(ρε(x0, t))‖ ≤ L ‖ρε(x0, t))− ρε(x0, t− ε)‖ + ‖f(ρε(x0, t− ε))‖ . (4.8)

By the property 4.3,

‖f(ρε(x0, t))‖ ≤ Lε ‖f(ρε(x0, t− ε))‖ + ‖f(ρε(x0, t− ε))‖ . (4.9)

By algebra,

‖f(ρε(x0, t))‖ ≤ (1 + Lε) ‖f(ρε(x0, t− ε))‖ . (4.10)

60

Using the summation 4.4 and repeatedly applying the triangle inequality to

the summation, we have:

‖ρε(x0, t)‖ ≤ ‖x0‖ +

bt/εc∑
i=1

‖f(ρε(x0, t− εi))‖ ε. (4.11)

By repeatedly applying the inequality from 4.10, we note that, for non-negative

integer i ≤ bt/εc:

‖f(ρε(x0, t− εi))‖ ≤ (1 + εL)(bt/εc−i) ‖f(x0)‖ . (4.12)

This allows us to conclude the following from 4.11:

‖ρε(x0, t)‖ ≤ ‖x0‖ +

bt/εc∑
i=1

(1 + εL)(bt/εc−i) ‖f(x0)‖ ε. (4.13)

For positive εL, we use the property (1 + εL)i ≤ eiεL, which can be verified

by the Taylor expansion of eεL. We apply this property to 4.13 to derive the

following:

‖ρε(x0, t)‖ ≤ ‖x0‖ +

bt/εc∑
i=1

e(bt/εc−i)εL ‖f(x0)‖ ε. (4.14)

Since, for non-negative i, e(bt/εc−i)εL ≤ ebt/εcεL,

‖ρε(x0, t)‖ ≤ ‖x0‖ +

bt/εc∑
i=1

ebt/εcεL ‖f(x0)‖ ε. (4.15)

By algebra,

‖ρε(x0, t)‖ ≤ ‖x0‖ + ‖f(x0)‖ bt/εc ε ebt/εcεL. (4.16)

Since, for positive ε and t, bt/εc ε ≤ t,

‖ρε(x0, t)‖ ≤ ‖x0‖ + ‖f(x0)‖ t etL. (4.17)

61

We should note that the property 4.17 holds for arbitrary ε > 0, not necessarily

infinitesimal. Hence, by the transfer principle, the property holds for infinites-

imal ε as well. We note that the right hand side of 4.17, by lemma 4.1.1, is

limited for limited t and x0. Therefore, ρε(x0, t) is limited for limited t and x0.

By the standardization principle, this allows us to define a standard function

φ(x0, t) whose value is equal to st(ρε(x0, t)) for standard x0 and standard t,

where we choose ε to be some arbitrary positive infinitesimal constant.

At this point, we have shown that this function φ exists, we will show

later that this function is indeed the Newtonian solution.

4.2 Proof of Independence of φ from ε

We note that, for a given x0 and t, the value of ρε varies with ε. We

wish to show that φ(x0, t)
std
= st(ρε(x0, t)) does not depend on the particular

positive ε chosen; formally, we want to show:

st(ρε1(x0, t)) = st(ρε2(x0, t)), (4.18)

for positive infinitesimals ε1 and ε2. Before proving the above property, we

first prove some properties about φ.

Lemma 4.2.1. For non-negative reals t1, t2, with t2 ≥ t1, and x0 ∈ Rn, the

function φ satisfies the following property:

‖φ(x0, t1)− φ(x0, t2)‖ ≤ (t2 − t1) et2L ‖f(x0)‖ . (4.19)

62

Proof. By use of the summation 4.4 and definition of ρε, one may show:

ρε(x0, t2)− ρε(x0, t1) =

bt2/εc−bt1/εc∑
i=1

f(ρε(x0, ε bt1/εc+ εi− 1))ε, (4.20)

for t2 ≥ t1 ≥ 0. By use of 4.20, one may prove:

‖ρε(x0, t2)− ρε(x0, t1)‖ ≤ ε(bt2/εc − bt1/εc) et2L ‖f(x0)‖, (4.21)

for t2 ≥ t1 ≥ 0. By TH7 which states:

x ≤ y → st(x) ≤ st(y), (4.22)

we may apply standard part to both sides of 4.21:

st(‖ρε(x0, t1)− ρε(x0, t2)‖) ≤ st(ε(bt2/εc − bt1/εc) et2L ‖f(x0)‖). (4.23)

By properties of norm and standard part, we have:

‖st(ρε(x0, t1))− st(ρε(x0, t2))‖ ≤ st(ε(bt2/εc − bt1/εc) et2L ‖f(x0)‖). (4.24)

The formula 4.24 holds for its variables taking on both standard and nonstan-

dard values. We will assume, for now, that the variables t1, t2, and x0 in 4.24

are standard and ε is infinitesimal. By properties of standard part and floor

and 4.24, we have the following:

‖st(ρε(x0, t1))− st(ρε(x0, t2))‖ ≤ (t2 − t1) et2L ‖f(x0)‖ . (4.25)

By the standardization principle, where for standard x0 and t, we have φ(x0, t) =

st(ρε(x0, t)), we may conclude from 4.25:

‖φ(x0, t1)− φ(x0, t2)‖ ≤ (t2 − t1) et2L ‖f(x0)‖ . (4.26)

63

We have been assuming that t1, t2, and x0 are standard. Since 4.26 is an

internal formula, by the transfer principle, it may be concluded that it holds

for all real t1, t2, and x0 ∈ Rn, such that t2 ≥ t1.

Lemma 4.2.2. For non-negative real t and x0 ∈ Rn, φ(x0, t) is continuous

with respect to t and x0.

Proof. For showing continuity with respect to t, we make use of lemma 4.2.1.

We note that as t2−t1 becomes infinitesimal, the right hand side of the inequal-

ity 4.19 becomes infinitesimal for limited x0 and standard positive constant L.

Hence, by applying standard part to both sides of 4.19, for standard x0 and

t1, t2 ≥ t1, and t2 ' t1:

st(‖φ(x0, t1)− φ(x0, t2)‖) ≤ st((t2 − t1) et2L ‖f(x0)‖) = 0, (4.27)

since t2 is limited and x0 is limited. Therefore, st(φ(x0, t1)) = st(φ(x0, t2)),

implying that φ is continuous with respect to t. A similar proof may be carried

out for the case t1 ≥ t2.

For showing continuity with respect to x0, the following inequality may

be used:

‖ρε(x1, t)− ρε(x2, t)‖ ≤ ‖x1 − x2‖ etL. (4.28)

The property 4.28 may be proved by induction using the well founded structure

4.5. A proof similar to that for lemma 4.2.1 may be used to show:

‖φ(x1, t)− φ(x2, t)‖ ≤ ‖x1 − x2‖ etL. (4.29)

64

We note that as ‖x2 − x1‖ becomes infinitesimal, the right hand side of the

inequality 4.28 becomes infinitesimal for limited t and standard positive con-

stant L. In a manner similar to that for showing continuity with respect to

t, the inequality 4.29 may be used to show φ is continuous with respect to

x0.

Lemma 4.2.3. For non-negative reals t1, t2, and x0 ∈ Rn, the function φ has

the property:

φ(x0, t1 + t2) = φ(φ(x0, t1), t2). (4.30)

The above property is referred to as time invariance, since the system

solution depends only on the value of the initial condition and not the par-

ticular time at which it occurs (a characteristic of autonomous systems [9]).

Proof. To show time invariance of φ, we use a property of ρε:

ρε(x0, t1 + t2) = ρε(ρε(x0, t1), t2), (4.31)

for non-negative reals t1, t2, and where t2 is an integer multiple of ε. This

can be proved by induction, based on a well founded structure similar to 4.5.

Using the properties of ρε from 4.21 and 4.28, we may then show:

st(ρε(x0, t1 + t2)) = st(ρε(st(ρε(x0, t1)), t2)). (4.32)

Since φ(x0, t) = st(ρε(x0, t)) for standard x0 and t, by the standardization and

transfer principles, we have:

φ(x0, t1 + t2) = φ(φ(x0, t1), t2). (4.33)

65

Using the time invariance property, we may define φ̂ as:

φ̂(x0, t) =

{
x0 t < δ

φ̂(φ(x0, δ), t− δ) t ≥ δ.
(4.34)

where δ is a positive real number. The function φ̂(x0, t) takes advantage of time

invariance by composing φ onto itself for bt/δc steps, where at each step, φ is

evaluated for a duration δ. Hence, φ̂(x0, m δ) = φ(x0, m δ), for non-negative

integer m. By use of induction, it can be shown that:

‖ρδ(x0, mδ)− φ̂(x0, mδ)‖≤ δ2mL ‖f(x0)‖ emδL. (4.35)

If we let m = bt/δc, we note that if t is limited, then mδ = bt/δc δ ≤ t

is limited. Therefore, for limited x0, limited t, and infinitesimal δ, the right

hand side of 4.35 is infinitesimal. From the above, it can be shown that:

st(ρδ(x0, bt/δc δ)) = st(φ̂(x0, bt/δc δ)) = st(φ(x0, t)), (4.36)

for any arbitrary positive infinitesimal δ. It can be shown, for arbitrary positive

real δ, that:

ρδ(x0, bt/δc δ) = ρδ(x0, t). (4.37)

By applying standard part to both sides of the equality:

st(ρδ(x0, bt/δc δ)) = st(ρδ(x0, t)). (4.38)

By 4.36 and 4.38, we conclude:

st(ρδ(x0, t)) = st(φ(x0, t)), (4.39)

66

for any arbitrary positive infinitesimal δ. Using 4.39 and substituting ε1 for δ

in one instance, and ε2 for δ in another, we can show:

st(ρε1(x0, t)) = st(φ(x0, t)) = st(ρε2(x0, t)), (4.40)

which is what we set out to prove.

We should note that ρε is defined such that the same value for ε is

used in each iteration. It is possible to define ρ such that for the ith iteration

εi is chosen as the time step, where
∑

εi = t for a solution evaluated at t.

However, our reasoning is about the bound on the solution which is based on

t and the maximum value for ‖f(x)‖ for the given initial condition and time.

Consequently, the bound function would remain in a form similar to what

has been demonstrated, with the exception that intermediate steps in our

proof would replace the floor function by some integer valued function g(h(t))

representing the number of iterations, where h(t) represents the sequence of

values to be used for ε in each iteration, such that
∑g(h(t))

i=1 εi = t. Furthermore,

our reasoning about the properties of the solution has been based on its bound,

as shown in the continuity, existence, and independence of ε proofs. Therefore,

as the results would not differ, we assume the same value for ε in each iteration

of ρε.

4.3 The Proposed Function φ is A Newtonian Solution

At this point, we have shown that φ exists and that it is independent of

the positive constant ε chosen. However, we have not shown that φ is in fact

67

a solution. We will suppose an alternative function, say φ2, is a Newtonian

solution. For φ2 to be Newtonian solution, its derivative must exist and satisfy

dφ2(t)/dt = f(φ2(t)). Using nonstandard notation, we may state this as:

st

(
φ2(t + ε)− φ2(t)

ε

)
= f(φ2(t)), (4.41)

where t is assumed to be a standard real number, and ε is some non-zero

infinitesimal. Since φ2 is differentiable, by a vector mean value theorem [28, 65],

we have:

φ2(t + δ) = φ2(t) + f(φ2(ζ))δ, (4.42)

where t ≤ ζ ≤ (t + δ). By rewriting, we have:

φ2(t + δ)− φ2(t)

δ
= f(φ2(ζ)). (4.43)

If we let δ be a non-zero infinitesimal then, using the Lipschitz continuity of

f and applying standard part to both sides, we may conclude from 4.43:

st

(
φ2(t + δ)− φ2(t)

δ

)
= st (f(φ2(t))) , (4.44)

for any limited real t, not necessarily standard.

For the remainder of this proof, we will make use of a residual function,

R, defined as follows:

R(t, ε) = φ2(t + ε)− φ2(t)− f(φ2(t))ε. (4.45)

The residual may be regarded as the error in approximating φ2(t + ε) by

φ2(t)+f(φ2(t))ε. For a given non-negative integer m, we define the maximum

68

residual, denoted Rmax(m, ε), as the maximum of ‖R(iε, ε)‖, for i taking on

integer values in [0, m]. By the definition of R and Rmax, we have:

‖x + f(x)ε− φ2(mε)‖
= ‖x + f(x)ε− φ2(mε) + φ2(mε− ε)

−φ2(mε− ε) + f(φ2(mε− ε))ε− f(φ2(mε− ε))ε‖
= ‖x− φ2(mε− ε) + f(x)ε− f(φ2(mε− ε))ε−R(mε− ε, ε)‖
≤ (1 + εL) ‖x− φ2(mε− ε)‖ +Rmax(m, ε).

(4.46)

Using this property and induction over m, it can be shown that:

‖ρε(φ2(0), mε)− φ2(mε)‖ ≤ mRmax(m, ε) emε. (4.47)

By the definition of the residual function and 4.44, we have:

st(R(mε, ε)/ε)

= st

(
φ2(mε + ε)− φ2(mε)− f(φ2(mε))ε

ε

)
= st

(
φ2(mε + ε)− φ2(mε)

ε

)
− st (f(φ2(mε)))

= 0.

(4.48)

The above property may be used to show that st(Rmax(m, ε)/ε) = 0. Mul-

tiplying the right hand side of 4.47 by ε/ε and taking standard part of both

sides, and assuming mε is limited, one can derive:

st(‖ρε(φ2(0), mε)− φ2(mε)‖) ≤ st

(
mε

Rmax(m, ε)

ε
emε

)
= 0. (4.49)

By 4.49, the continuity of ρε with respect to t, the continuity of φ2 with respect

to t, assuming t limited, letting m = bt/εc, noting that bt/εc ε is limited for t

limited, we have:

st(ρε(φ2(0), t)) = st(φ2(t)). (4.50)

69

We recall, by the standardization principle, φ(x0, t) has the same value as

st(ρε(x0, t)), for standard t and x0. Therefore, by 4.50, the standardization

and transfer principles, we may conclude:

φ(φ2(0), t) = φ2(t). (4.51)

Since φ2 is a solution, then by 4.51, φ is a solution for the vector field f , with

initial condition x0 = φ2(0). Since we have shown any solution φ2 satisfies

4.51, and that φ(x0, t) is independent of the choice of positive infinitesimal ε,

then the solution φ is unique for a particular initial condition.

We should point out that, throughout the proof, we assumed positive

infinitesimal ε and positive time t. A similar proof may be carried out for the

negative ε and negative t case.

4.4 Mechanical Proof Using ACL2r

We have proved the theorems and lemmas presented in this chapter

using the mechanical theorem prover ACL2r [1, 29] which is an extension of

the theorem prover ACL2 [43, 56, 57]. The theorem prover ACL2r is based on

internal set theory [59]. In our mechanical proofs, we have assumed a real,

scalar value for the physical system variable x.

For brevity, this chapter has defined ρε explicitly in terms of t. In

defining ρε in ACL2r, however, we use a positive integer n. We then substitute

bt/εc for n in the proof process to show theorems in terms of t.

70

The definition of ρε as defined in this chapter is shown, followed by its

definition in ACL2r.

ρε(x0, t) =

{
x0 t < ε

ρε(x0 + f(x0)ε, t− ε) t ≥ ε.

(defun step1 (x eps)

(+ x (* (f x) eps)))

(defun run (x n eps)

(cond

((zp n) x)

(t (run (step1 x eps) (- n 1) eps))))

71

The following is a theorem in ACL2r stating that, for standard x, the

standard part of the function run is standard.

(defthm run-standard-thm

(implies

(and

(realp x)

(realp eps)

(< 0 eps)

(integerp n)

(<= 0 n)

(i-limited (* eps n))

(standard-numberp x))

(standard-numberp (standard-part (run x n eps)))))

72

The following is the ACL2r theorem stating that the function run is

bounded.

(defun run-n-limit (x n eps)

(+ (abs x)

(* (eexp (* (L) n eps)) (abs (f x)) n eps)))

(defthm run-limit-eexpt-thm

(implies

(and

(realp eps)

(< 0 eps)

(realp x)

(integerp n)

(<= 0 n))

(<= (abs (run x n eps))

(run-n-limit x n eps))))

73

The following is the application of the standardization principle whereby

we show there exists a standard function, phi, which is equal to the standard

part of run, for standard x. The value of ε is replaced by the value of an

infinitesimal constant represented by (/ (i-large-integer)), the reciprocal

of a positive integer constant which is not limited. The variable tm represents

time.

(defun-std phi (x tm)

(cond

((not (and

(realp x)

(realp tm))) 0)

(t (standard-part (run x

(floor1 (* tm (i-large-integer)))

(/ (i-large-integer)))))))

74

The following is a theorem in ACL2r stating that the function ρε, as

represented by run, is time invariant.

(defthm run-plus-thm

(implies

(and

(integerp m)

(integerp n)

(<= 0 m)

(<= 0 n))

(equal (run (run x n eps) m eps)

(run x (+ m n) eps))))

The following is a theorem in ACL2r stating that the proposed solution,

φ, is time invariant.

(defthm-std phi-plus-thm

(implies

(and

(realp x)

(realp tm1)

(realp tm2)

(<= 0 tm1)

(<= 0 tm2))

(equal (phi (phi x tm1) tm2)

(phi x (+ tm1 tm2)))))

75

The following is a theorem in ACL2r stating that the standard part of

the function run is independent of the value of positive eps used.

(defthm run-any-small-eps-thm

(implies

(and

(realp x)

(realp tm)

(standard-numberp x)

(standard-numberp tm)

(realp eps)

(<= 0 tm)

(< 0 eps)

(i-small eps))

(equal (standard-part (run x

(floor1 (* tm (i-large-integer)))

(/ (i-large-integer))))

(standard-part (run x

(floor1 (/ tm eps))

eps)))))

76

The following axiom states that the standard part of the derivative of

the function (phi2 tm) is equal to the standard part of (f (phi2 tm)), for

limited tm. We state this as an axiom since there is no function phi2 defined.

Rather, we simply add the function signature (phi2 tm) to the environment

and inform the prover, through this axiom, of the property which this function

is to satisfy.

(defaxiom phi2-deriv

(implies

(and

(realp tm)

(i-limited tm)

(realp eps)

(not (equal eps 0))

(i-small eps))

(equal (standard-part (/ (- (phi2 (+ tm eps))

(phi2 tm)) eps))

(standard-part (f (phi2 tm))))))

77

The following theorem states that the function which we have defined,

phi, is equal to the function phi2 under the conditions shown. This shows

that phi is a function whose derivative is f, since it is equal to the function

phi2, whose derivative is assumed to be f.

(defthm-std phi2-st-run-eq-std-thm

(implies

(and

(realp tm)

(<= 0 tm))

(equal (phi2 tm)

(phi (phi2 0) tm))))

4.5 Summary

We have shown, through the use of a nonstandard proof, that an initial

value problem with Lipschitz continuous vector field does have a solution.

Furthermore, this solution is unique. In the development of this proof, we have

shown that existence of a solution, in nonstandard analysis, reduces to showing

that the proposed solution is limited for limited time t and initial condition x0.

We have also shown that the solution is time invariant, as well as continuous

with respect to time and the initial condition. We also made extensive use

of the standardization and transfer principles in showing properties about the

solution φ by way of its approximation ρε. Many of these properties and proof

methods will be used again in the proofs of the coming chapters.

78

Chapter 5

A Hybrid System Model and a Nonstandard

Definition of its Solution

In this chapter, we propose a formal model of a hybrid system and a

definition of its solution based on nonstandard constructs. As we noted in the

case of hybrid automata in section 3.9.1, an essential characteristic of modeling

hybrid systems is assignment to the system variables. While Carathéodory

and Filippov solutions address the discontinuity in a differential equation, the

resulting solution is itself continuous. With the possibility of assignment to

system variables in a hybrid system, the solution may not be continuous,

but may contain sudden jumps, as presented in the example solution 3.3. We

address assignment to system variables as well as discontinuous vector fields in

our presentation of a nonstandard definition of a solution to a hybrid system

model. The chapter commences by discussing the definition of the hybrid

system model which we intend to find a solution for. Thereafter, we present

the formal definition for a solution of such a model.

79

5.1 A Definition of a Hybrid System Model

We assume the differential equation:

ẋ = F (x), (5.1)

where the vector field F may be discontinuous in x. We assume the vector

field F has the following form:

F (x) =

f1(x) x ∈ G1

f2(x) x ∈ G2

. . .
fm(x) x ∈ Gm,

(5.2)

where m is a positive standard integer. It is assumed that F satisfies the

following:

F1. Each component vector field fi is Lipschitz continuous, with Lipschitz

constant L, over an open neighborhood of the closure of Gi, for integer

i, 1 ≤ i ≤ m:

‖fi(x1)− fi(x2)‖ ≤ L ‖x1 − x2‖, (5.3)

for x1, x2 ∈ H, where H is an open neighborhood of the closure of Gi.

F2. Each component vector field fi is a standard function.

80

For integer i, 1 ≤ i ≤ m, each region Gi is assumed to satisfy the

following criteria:

G1. ∅ ⊂ Gi ⊆ Rn,

G2. The regions are disjoint; that is, Gi ∩Gj = ∅, for positive integers i 6= j,

G3.
⋃

i∈[1,m] Gi = Rn,

G4. Each region Gi can be described by an internal predicate.

For a particular system, it is possible that the solution resides within

some domain D, where D ⊂ Rn. In this case, we may have
⋃

i∈[1,m−1] Gi = D,

and for x 6∈ D, fm(x) = 0, which results in a vector field in the form 5.2. A

region Gi can be described by an internal predicate if there exists an internal

predicate P (x) whose free variables are components of the vector x and x ∈

Gi iff P (x). Henceforth, we will say that a vector field is in the form of 5.2,

with the understanding that F satisfies the criteria F1 and F2 and that the

regions Gi satisfy the criteria G1 through G4.

To describe a Hybrid system, we define a vector field F as in 5.2, as well

as an assignment function Y and assignment predicate BY . The assignment

function Y : Rn 7→ Rn maps the values of the system variables to the new

values the variables are to be assigned. The assignment is performed when the

system reaches a state satisfying the predicate BY . The assignment function

is assumed to be standard and the assignment predicate is assumed to be

81

internal. For a given vector field F in the form 5.2, the following are the

requirements of the assignment function and predicate:

A1. Once the state x satisfies the assignment predicate BY , application of

the assignment function results in a new state which does not satisfy BY :

BY (x) → ¬BY (Y (x)). (5.4)

A2. For a solution evaluated up to time t, the norm of the difference in

variable value between successive assignments, which occur prior to time

t, is upper bound by K(x0, t) times the time duration between successive

assignments:

‖xi − xi−1‖≤ K(x0, t) ∆i, (5.5)

where K(x0, t) is a positive, monotone increasing, standard function for a

solution with initial condition x0 evaluated up to time t and xi represents,

for positive integer i, the value of x immediately after the ith assignment,

with x0 being the initial value of x. K(x0, t) should be limited for limited

x0 and t. For i > 1, ∆i is the time duration between the ith assignment

and its immediately preceding assignment. The duration ∆1 is defined

to be 1.

We should point out that ∆1 is not defined as the time at which the first

assignment occurs, since, for ε infinitesimal, the first assignment may occur at

infinitesimal time t.

82

Definition 5.1.1. A well formed hybrid system H = (Rn, F, BY , Y, G1, . . . , Gm),

where

• Rn represents the state space of the system for n a standard positive

integer,

• F is a vector field which satisfies the form 5.2 and, for integer i, where

0 < i ≤ m, each component vector field, fi, satisfies requirements F1

and F2,

• BY : Rn 7→ {true, false} is the assignment predicate and satisfies re-

quirement A1,

• Y : Rn 7→ Rn is the assignment function and satisfies requirement A2,

and

• Gi is a region in Rn such that, for integer i such that 0 < i ≤ m, each

region Gi satisfies requirements G1 through G4.

In the case of a computer controlled system, the function Y models the

semantics of the computer program, the analog to digital conversion, the real

time behavior of the computer, and auxiliary real valued variables that may

be required to prove properties about the system. The vector argument to

the function Y includes components representing signals which the controller

senses from the physical system. The vector value of the function Y includes

components representing the output of the controller to the physical system.

83

It is possible that the computer only senses signals from the physical system

and generates no output. In this case, the assignment function is the iden-

tity function. One may also assign a vector of system variables y ∈ Rk, for

0 < k < n, where y is modified only by the assignment function Y .

5.2 A Sample System: Bouncing Ball

We may use our requirements for a definition of a hybrid system to

describe a system consisting of a rigid body, represented by a ball, accelerating

due to gravity and impacting the ground. A rigid body is a representation of

a physical object which does not bend or deform upon collision and its impact

with other rigid bodies is assumed to have an instantaneous duration of time.

Actual physical bodies are not perfectly rigid. They do have some degree

of deformation, and their impact lasts for some positive duration of time.

However, modeling them requires more complex partial differential equations

which are difficult to model and analytically represent [69]. Therefore, rigid

bodies are used by modelers in such areas as robotics and manufacturing [69].

For our sample system, we will assume a rigid body, a ball, accelerates

due to gravity and elastically impacts the ground, rebounding with a coefficient

of restitution α, where 0 < α ≤ 1. The coefficient of restitution is a ratio of

the velocity of the rigid body after impact to that prior to impact.

84

The following is the definition for such a system:

v̇ = −g

ẋ = v

BY

def.= v < 0 ∧ x ≤ 0

Y (v) = −αv,

where g is the acceleration due to gravity, 9.8 m/s, x is the distance between

the ball and the ground, and v is the velocity of the ball, where a positive

value of v denotes the ball is moving away from the ground. We observe that

the component vector fields associated with this system satisfy the vector field

requirements. Since the region is R2, the region requirements are trivially met.

Since BY is true only if v < 0, and the assignment function Y changes the

sign of v, it may be verified that the assignment predicate BY satisfies A1. In

addition, the above equations do satisfy the assignment requirement A2, since

we have, for i > 1:

‖vi−1 − vi‖=‖vi−1 − α vi−1‖= (1− α) ‖vi−1‖, (5.6)

∆i =
2 ‖vi−1‖

g
. (5.7)

Therefore,

‖vi−1 − vi‖
∆i

=
(1− α) ‖vi−1‖

2 ‖vi−1‖ /g
=

g(1− α)

2
. (5.8)

For i = 1, v1 = −α(v0 − g t), then ‖v1 − v0‖ ≤‖(1 + α)v0 − α g t‖, where t is

the time at which the first assignment occurs. Therefore, to satisfy A2, we let

K(x0, T) = 2 ‖v0‖ +gT + g(1− α)/2, for the solution evaluated at t ≤ T .

85

Figure 5.1 shows a sample graph of the velocity v and position x of

the ball over time, for an initial velocity v0 = 10 m/s and position x0 = 0 m

with a coefficient of restitution α = 0.8. This graph is based on a computer

simulation of the system.

-15

-10

-5

0

5

10

15

0 1 2 3 4 5 6 7 8

Velocity
Position

t

Figure 5.1: Graph of velocity and position trajectories for bouncing ball system
with α = 0.8

This graph displays the imprecision of computer simulation of physical

systems. We note that the graph shows the velocity of the ball initially being 10

m/s. Upon the ball reaching the ground at approximately 2.2 s, the magnitude

of the velocity is slightly greater than 10 m/s, which is inaccurate, as the

magnitude should be no greater than 10 m/s.

The bouncing ball system has many interesting features. First, the so-

lution for the velocity of the ball is discontinuous in time. We observe from the

86

graph in Figure 5.1 that the velocity instantaneously changes sign at certain

points in time; specifically, when BY evaluates to true. The solution is not

Newtonian, Carathéodory, or Filippov, since the velocity is not continuous.

The solution cannot be modeled by a hybrid automata, since the hybrid au-

tomata requires the non-Zeno condition where the infinite series, represented

as the sum of the durations between succeeding impacts, does not uniformly

converge to some finite number. We note that for the bouncing ball, the sum

of all the durations between succeeding impacts does uniformly converge to a

finite number, resulting in infinitely many impacts in finite time.

While the bouncing ball system is not computer controlled, it does have

a feature which resembles that of a hybrid system: the instantaneous change

in the velocity solution. For this physical system, the instantaneous change is

due to impact; for hybrid systems, an instantaneous change may occur due to

the discrete system’s change in output.

5.3 Nonstandard Definition of Solution

In this section, we will attempt to formally define a solution of a well

formed hybrid system. We observe that, since each function fi in 5.2 is Lip-

schitz continuous, then a Newtonian solution exists over some time duration

for the given initial condition.

87

For every vector field fi with initial condition x0, we define a function

ρε
i(x0, t):

ρε
i(x, t) =

{
x t < ε

ρε
i(x + fi(x)ε, t− ε) t ≥ ε.

(5.9)

The function ρε
i(x0, t) may be regarded as the Euler approximation of the

Newtonian solution associated with the vector field fi with initial condition

x0.

We associate with each region Gi a switch predictor function denoted

swpε
i with mapping:

swpε
i : Rn × R 7→ R. (5.10)

Definition 5.3.1. For a well formed hybrid system with vector field F in the

form 5.2, assignment predicate BY , and ε a positive real, the switch predictor

function swpε
i is defined as follows:

swpε
i(x, t) =

{
0 x 6∈ Gi ∨ BY (x) ∨ t < ε

ε + swpε
i(x + fi(x)ε, t− ε) otherwise.

(5.11)

Informally, if a point x0 is in region Gi, for some positive ε, swpε
i(x0, t)

evaluates, within ε, to the minimum of the following:

1. The least time, if it exists, at which ρε
i leaves Gi; that is,

∀0≤u≤swpε
i(x0,t)−ε ρε

i(x0, u) ∈ Gi ∧ ρε
i(x0, swpε

i(x0, t)) 6∈ Gi, (5.12)

2. The least time, if it exists, at which ρε
i satisfies BY ; that is,

∀0≤u≤swpε
i(x0,t)−ε¬BY (ρε

i(x0, u)) ∧ BY (ρε
i(x0, swpε

i(x0, t))), or (5.13)

88

3. The time t.

Definition 5.3.2. Given a well formed hybrid system with vector field F in

the form 5.2, assignment function Y , and assignment predicate BY , we define

the system solution φ at non-negative time t with initial condition x0 as follows:

φ(x0, t)
std
= st(γε(x0, t)), where (5.14)

γε(x, t) =

x t < ε

γε(Y (x), t− ε) BY (x)

γε(ρε
1(x, swpε

1(x, t)), t− swpε
1(x, t)) x ∈ G1

γε(ρε
2(x, swpε

2(x, t)), t− swpε
2(x, t)) x ∈ G2

.
γε(ρε

m(x, swpε
m(x, t)), t− swpε

m(x, t)) x ∈ Gm,

(5.15)

where the predicates in the conditional assignments are evaluated from top to

bottom. It is also required that γε(x0, t) be limited for limited x0, limited t,

and positive infinitesimal ε.

Since we require that γε(x0, t) be limited for limited x0, limited t, and positive

infinitesimal ε, and since standard part of a limited point is standard, then for

any standard x0 and t, st(γε(x0, t)) is standard. Therefore, by the standard-

ization principle, there exists a standard function φ such that φ(x0, t) is equal

to st(γε(x0, t)) for standard x0 and t. We use the operator
std
= to denote that

φ(x0, t) is equal to st(γε(x0, t)) for standard x0 and t.

89

5.4 The Switch Predictor Function

The definition 5.3.2 depends on each switch predictor function swpε
i .

Let us assume that swpε
i evaluates to non-negative standard numbers only.

If we assume that swpε
i evaluates to zero, then the time variable t remains

unchanged in each recursive call, whereby the state variable value does not

change. If we assume swpε
i evaluates to a positive standard number, then it

may not accurately depict the time required for the solution to leave a closed

region.

We demonstrate with an example. Suppose we are given a vector field

F defined as follows:

F (x) =

{
−1 x > 0

1 x ≤ 0.
(5.16)

We assume that no assignments exist in the system; that is, BY is identically

false. If x = 0, then the solution moves in the positive direction. If x > 0, the

solution should move in the negative direction. This results in an oscillation

along x = 0, as depicted in figure 5.2.

Assuming that x0 = 0, the switch predictor function cannot return

zero, as this results in the fixed point discussed earlier. If it returns some

positive standard number, this implies the solution is moving with a positive

derivative for some positive (standard) duration in the x > 0 region, which

contradicts the system definition in Equation 5.16.

Therefore, in choosing a standard swpε
i , the solution may become im-

precise. We need some notion of depicting a value of swpε
i which is greater

90

2ε
3ε
4ε

ε t

x

0

Figure 5.2: Graph of γε(0, t) for Example System Described by Equation 5.16

than zero, but less than any positive standard number. This is precisely the

definition of a positive infinitesimal. By allowing ε, and hence swpε
i , to have

a positive infinitesimal value, the resulting oscillations depicted in Figure 5.2

would have an infinitesimal magnitude. By the definition of solution 5.3.2, for

any given standard t, the solution φ(0, t) = st(ε), for some positive infinitesi-

mal ε. Since the standard part of an infinitesimal is zero, then the solution is

φ(0, t) = 0. We note that this is also a Filippov solution for such a system.

5.5 Existence of a Solution

In this section, we will prove the existence of a solution to a well formed

hybrid system. We will first show that the recursion γε does terminate, hence

91

implying that γε is a total function. We will then show that a solution does

exist in the case of a system defined with no assignments. Finally, we will

show that a solution exists for a system with assignments.

Lemma 5.5.1. The definition of γε(x, t) in 5.15 is that of a total function,

assuming x ∈ Rn, real t ≥ 0, and ε a positive real number.

Proof. Assuming ε > 0, we may show that γε is a total function by showing

that the recursion γε does terminate for any x ∈ Rn and real t ≥ 0. For t ≥ ε

and x0 ∈ Gi, it can be shown that swpε
i(x0, t) ≥ ε. Since ε > 0, then for t ≥ ε,

the variable t decreases by at least ε in each recursive call. This assures that t

eventually decreases to where t < ε and the recursion terminates. We observe

that the function results in at most bt/εc recursive calls.

Lemma 5.5.2. Given a vector field F in the form 5.2, then for any x ∈ Rn,

‖F (x)‖≤ L ‖x‖ +N , where N is a positive real constant.

Proof. Since, by criteria G1 each region is not empty and since each region

can be described by a standard predicate, there is at least one point, y, in

Gi which is standard. Since, by criteria F2, each fi is standard, then f(y) is

standard.

Given a component vector field fi of F , its norm may be written as

follows:

‖fi(x)‖=‖fi(x)− fi(y) + fi(y)‖, (5.17)

92

for x ∈ Gi. By the triangle inequality and since fi is Lipschitz continuous with

constant L, we have:

‖fi(x)‖≤ L ‖x− y‖ + ‖fi(y)‖ . (5.18)

Applying the triangle inequality again, we may conclude from 5.18:

‖fi(x)‖≤ L ‖x‖ +L ‖y‖ + ‖fi(y)‖ . (5.19)

Since ‖y‖ and ‖f(y)‖ are positive real constants, we let N equal the maximum

value of L ‖y‖ + ‖fi(y)‖ ranging over integer i ∈ [1, m]. Therefore, we have:

‖fi(x)‖≤ L ‖x‖ +N, (5.20)

for x ∈ Gi. We extend this result from each component vector field fi to F :

‖F (x)‖≤ L ‖x‖ +N, (5.21)

for x ∈ Rn.

Lemma 5.5.3. For a differential equation with initial condition x0 ∈ Rn,

vector field in the form 5.2, and assignment predicate BY that is identically

false, a solution φ(x0, t) does exist in the form 5.3.2 for real time t ≥ 0 and

x0 ∈ Rn, assuming ε > 0.

Proof. It can be shown that the function γε satisfies the following property:

γε(x0, t) = γε(x0, t− ε) + F (γε(x0, t− ε))ε. (5.22)

93

Way may apply the norm operator to both sides of the equality in 5.22:

‖γε(x0, t)‖=‖γε(x0, t− ε) + F (γε(x0, t− ε))ε‖ . (5.23)

By the triangle inequality,

‖γε(x0, t)‖≤‖γε(x0, t− ε)‖ + ‖F (γε(x0, t− ε))ε‖ . (5.24)

By the lemma 5.5.2,

‖γε(x0, t)‖≤ (1 + εL) ‖γε(x0, t− ε)‖ +Nε. (5.25)

The above relates γε at time t with that at time t−ε. We may use this relation

to derive an upper bound on γε(x0, t):

‖γε(x0, t)‖≤ (1 + εL)bt/εc ‖x0‖ +

bt/εc−1∑
j=0

(1 + εL)jNε. (5.26)

We use the property (1 + w) ≤ ew, for w ≥ 0, to derive:

‖γε(x0, t)‖≤ eLεbt/εc ‖x0‖ +

bt/εc−1∑
j=0

eLεjNε. (5.27)

For non-negative t and positive ε, we use the properties ε bt/εc ≤ t and, for

0 ≤ j ≤ bt/εc, eLεj ≤ eLt to derive:

‖γε(x0, t)‖≤ (Nt+ ‖x0‖)etL. (5.28)

Since N and L are standard positive real constants, if x0 and t are limited,

then the bound on ‖γε(x0, t)‖ is limited, implying that γε(x0, t) is limited.

Hence, for any standard x0 and t, and by Lemma 5.5.1, st(γε(x0, t)) is defined

94

and is standard. By the standardization principle, we may conclude that a

standard function φ exists for any real t ≥ 0 and x0 ∈ Rn, where φ(x0, t) is

equal to st(γε(x0, t)) for standard x0 and t.

We now address the more general case of existence of a solution for a

hybrid system definition with assignments.

Theorem 5.5.4. For a well formed hybrid system with vector field F , assign-

ment function Y , and assignment predicate BY , there exists a solution in the

form 5.3.2 for standard initial condition x0 ∈ Rn and standard non-negative

real time t.

Proof. By showing that the function γε(x0, t) is limited for positive real ε and

limited x0 and t, we may conclude that st(γε(x0, t)) is defined. Thereafter,

we may use the standardization principle to show that a standard function,

φ, exists where φ(x0, t) = st(γε(x0, t)) for standard x0 and t. Therefore, the

existence of the solution φ reduces to showing that γε(x0, t) is limited for

limited initial condition x0, limited t, and positive real number ε.

For a given t, x0, and ε > 0, there exists some j ≥ 0 such that t− εj is

the time at which the last assignment occurs up to time t. We let tp = t− εj.

By the requirement of the assignment function, 5.5, it can be shown that γε is

bounded at time tp:

‖γε(x0, tp)‖ ≤ tpK(x0, tp). (5.29)

95

Since tp and K(x0, tp) are limited, then γε(x0, tp) is limited. By the time

invariance property of γε, which is shown later in lemma 5.5.5:

γε(x0, t) = γε(γε(x0, tp), t− tp), (5.30)

where t − tp is an integer multiple of ε. Since there are no assignments after

tp, and since γε(x0, tp) and t− tp are limited, then by lemma 5.5.3, γε(x0, t) is

limited. Since γε(x0, t) is limited for limited x0 and t, by the standardization

principle, there exists standard function φ such that φ(x0, t) = st(γε(x0, t)) for

standard x0 and t and some infinitesimal positive constant ε.

In the previous proof, we made use of the time invariance property of

γε. We will formally state this property and give its proof.

Lemma 5.5.5. For x0 ∈ Rn, non-negative reals t1 and t2, and t2 an integer

multiple of ε, and ε > 0:

γε(x0, t1 + t2) = γε(γε(x0, t1), t2). (5.31)

Proof. The proof is by induction over the well founded structure 〈S,≺〉:

S = {t2 − jε : j ∈ N ∧ 0 ≤ j ≤ bt2/εc}, (5.32)

where, for ta, tb ∈ S, ta ≺ tb iff ta < tb.

96

5.6 Uniqueness of the Solution

While a solution with the nonstandard definition 5.3.2 does exist, it

may not necessarily be unique. We construct a vector field F that shows this:

F (x) =

−1 x > 0
0 x = 0
−1 x < 0.

(5.33)

Suppose the solution has the initial value 5. For an arbitrary positive infinites-

imal ε:

swpε(5, t) =

{
5 ε

⌊
5
ε

⌋
= 5

ε
⌊

5
ε

⌋
+ ε otherwise,

(5.34)

for 5 ≤ t < 5+ ε. We choose a nonstandard large, prime, positive integer, Z∞.

If we let ε = 5/Z∞, then by 5.34, swpε(5, t) = 5. Therefore, with this value of

ε, the solution reaches zero. However, if we let ε = 6/Z∞, then:

swpε(5, 0) =
6

Z∞

⌊
5Z∞

6

⌋
+

6

Z∞
. (5.35)

We should note that 5Z∞/6 is not an integer, since Z∞ is prime. Hence, for

this value of ε, swpε is a number slightly larger than 5, and γε(5, swpε(5, t)) is

slightly less than zero, and its derivate remains −1. Consequently, depending

on the value of ε chosen, the solution may reach zero and remain there, or

continually descend with slope −1.

Therefore, it is possible that multiple solutions exist for a particular

system, depending on the value of ε chosen. We should also point out, in

our definition 5.3.2, the same value of ε is assumed in all recursive calls of γε.

We construct an alternative example which may not consist of all expected

97

solutions. Consider the vector field F :

F (x) =

ẋ = 1 ∧ ẏ = 1 x 6= 0 ∧ y 6=

√
2

ẋ = 0 ∧ ẏ = 1 x = 0 ∧ y 6=
√

2

ẋ = 1 ∧ ẏ = 0 x 6= 0 ∧ y =
√

2

ẋ = 0 ∧ ẏ = 0 x = 0 ∧ y =
√

2.

(5.36)

The graph in figure 5.3 shows some Filippov solutions for this system. The

solution labeled A cannot be achieved using the definition of solution in 5.3.2.

Suppose the initial value is x = −1, y = −1. For the solution A to exist, we

must find an ε such that k1ε = 1 and k2ε = 1+
√

2, for positive integers k1 and

k2. We rewrite the first equation as ε = 1/k1 and substitute into the second.

This results in k2/k1 = 1 +
√

2. However, it is impossible to find two integers

whose ratio satisfies this equation, since 1 +
√

2 is irrational.

One method which overcomes this limitation is the redefinition of the

solution 5.3.2 where a new infinitesimal is chosen with each recursive call of

γε. Another approach is to widen some of the regions. We note, for example,

the region x = 0 ∧ y >
√

2 requires that the solution x be precisely zero.

We may select a positive standard real number α and redefine the region to

be |x| < α ∧ y >
√

2. This approach may be acceptable, depending on the

concessions the designer wishes to make in the mathematical modeling of the

system. Widening these regions also results in one unique solution for this

example. This may be the desired affect intended by the system modeler; that

is, the modeler may not desire the additional solutions labeled B through D

in figure 5.3.

As an aside, it should be noted that nonstandard prime integers do

98

y

x

√2

A B C D

Figure 5.3: Possible trajectories of an example system with a Filippov solution
not modeled by the definition 5.3.2. The dot denotes the initial value for each
trajectory.

99

exist. Define an internal predicate P (x) to be:

∃y(y ≥ x ∧ y ∈ Z) → prime(y). (5.37)

The predicate P (x) is true for all standard real numbers x. By the transfer

principle, it is true for all real numbers, including nonstandard ones.

5.7 Continuity of the Solution

In the case where the well formed hybrid system consists of assignments,

the solution is discontinuous in t. However, in the case where no assignments

occur (the assignment predicate BY is identically false) the solution is con-

tinuous.

Lemma 5.7.1. For a well formed hybrid system without assignments (BY =

false), limited x0 ∈ Rn and non-negative standard t, the solution φ(x0, t),

defined in definition 5.3.2, is continuous with respect to t.

Proof. To show continuity of φ with respect to t, for a standard real t1 and

t2 ' t1, we need to show that:

st(φ(x0, t1)) = st(φ(x0, t2)). (5.38)

For the case in which no assignments occur in the system, we have already

shown in the proof of lemma 5.5.3, that γε is bounded:

‖γε(x0, t)‖≤ (Nt+ ‖x0‖)etL. (5.39)

100

By the bound on F as shown in lemma 5.5.2, and by the bound on γε in 5.39,

in a proof similar to that of lemma 4.2.1, it may be shown that:

‖φ(x0, t1)− φ(x0, t2)‖≤ (t2 − t1)(N + NLt2e
Lt2 + LeLt2 ‖x0‖), (5.40)

for t2 ≥ t1. By TH7, we may apply standard part to both sides of 5.40:

st(‖φ(x0, t1)− φ(x0, t2)‖) ≤ st((t2 − t1)(N + NLt2e
Lt2 + LeLt2 ‖x0‖)), (5.41)

Since t1 ' t2, st(t2−t1) = 0. Also, since N and L are standard constants, they

are limited. Since x0 and t2 are limited, the formula 5.41 may be rewritten to:

st(‖φ(x0, t1)− φ(x0, t2)‖) ≤ 0. (5.42)

By properties of standard part and norm,

st(φ(x0, t1)) = st(φ(x0, t2)). (5.43)

A similar proof may be carried out for the case t1 ≥ t2.

5.8 Solution Time

In the definition of the solution 5.3.2, each recursive call causes the

solution time to be decremented by a time duration ε. Furthermore, it is

possible that the assignment function may be executed for up to half of this

solution time duration. If the physical system is defined with some variable

tmr that has a constant derivative of one, with initial condition of 0, then the

variable tmr would be approximately half of the solution time. Specifically, if

101

the duration of the solution time is nε, then a time duration up to dn/2eε may

be due to the assignment function and a duration of bn/2c ε may be due to the

updating of physical system variables by the respective vector field function.

Therefore, we require that all properties defined for the system, which reason

about time, should refer to a physical system variable which tracks time, such

as the example variable tmr we have described.

It is possible to associate with the assignment function a duration ε2,

resulting in the standard part of the solution time being equal to the standard

part of the time as tracked by the physical system variable. However, this is

an unnecessary complication of the system’s formal model, as properties about

the system time can be stated by using the physical system variables.

5.9 An Alternative Solution Definition

The definition of solution 5.3.2 requires that the assignment function

Y be evaluated at most every other time step. This requirement is instated

so as to allow for the evaluation of the vector field functions at least every

other time step. An alternative solution definition may be pursued that would

102

remove this requirement. The alternative solution definition is as follows:

φ(x0, t)
std
= st(γε(x0, t)), where (5.44)

γε(x, t) =

x t < ε

γε(ρ̂ε
1(x, swpε

1(x, t)), t− swpε
1(x, t)) x ∈ G1

γε(ρ̂ε
2(x, swpε

2(x, t)), t− swpε
2(x, t)) x ∈ G2

.
γε(ρ̂ε

m(x, swpε
m(x, t)), t− swpε

m(x, t)) x ∈ Gm,

(5.45)

where each function ρ̂ε
i, is defined as follows:

ρ̂ε
i(x, t) =

{
x t < ε

ρ̂ε
i(Ŷ (x + fi(x)ε), t− ε) t ≥ ε,

(5.46)

where Ŷ is defined in terms of the original assignment function Y and assign-

ment predicate BY :

Ŷ (x) =

{
Y (x) BY (x)

x otherwise.
(5.47)

This alternative definition is such that the vector field function is evaluated

every time step. However, this alternative definition of solution is not consis-

tent with our original definition. We demonstrate with an example. Suppose

we have the following system definition:

x0 = 5,

dx

dt
= −1,

BY

def.= x ≥ 5,

Y (x) = 8.

(5.48)

In our original solution definition 5.3.2, since x0 = 5, then the initial state

satisfies the assignment predicate BY , resulting in an assignment where the

value of x becomes 8.

103

In the alternative solution 5.45, since a vector field is evaluated prior to

performing an assignment, the assignment predicate BY is not checked for the

initial condition. Rather, the vector field is evaluated, resulting in a new value

for the solution: x = 5 − ε, for ε > 0, which does not satisfy the assignment

predicate in this step nor in succeeding steps.

Therefore, while the alternative solution method does eliminate the

requirement for checking that an assignment occurs at most every other time

step, it introduces the possibility that an assignment is not taken when the

solution reaches a state satisfying the assignment predicate.

5.10 Comparing the Nonstandard Definition of Solu-
tion with Other Definitions

In dealing with discontinuous vector fields, Filippov presented the defi-

nition of a solution whose derivative satisfies a differential inclusion at discon-

tinuities in the vector field, as shown in 3.32. In general, there does not exist,

for each point in Ff(x), a corresponding solution with a derivative equal to

that point. The solution definition merely states that the solution’s derivative,

if it exists, satisfies the differential inclusion. This is a definition which admits

a greater number of solutions than the Newtonian approach.

For our definition of solution, in the case that the well formed hybrid

system is described by a Lipschitz continuous vector field, as shown in chapter

4, the solution is unique and satisfies the Newtonian definition. In the case of a

well formed hybrid system without assignments, our system definition reduces

104

to the vector field F shown in 5.2, which is defined in terms of m Lipschitz

continuous functions. In the work by Stewart [68], a vector field function

F similar to 5.2 is proposed, with the exception that the boundary between

regions is piece-wise smooth and each region Gi is assumed to be open, where

Rn\
⋃

i∈[1..m]

Gi is a null set, or a set with a Lebesgue measure of zero. For our

system, we may assume Stewart’s model as a special case of the vector field F

in 5.2 where the regions Gi are such that 1) the boundaries between regions

are piece-wise smooth and 2) the value of F at each point p on a boundary is

such that F (p) ∈ co {fi(p) : p ∈ Ḡi}, where co is the convex hull, and Ḡi is

the closure of Gi. For this special case, the Filippov differential inclusion 3.32

is reduced to the following:

ẋ(t) ∈ co{fi(x) : i ∈ I}, (5.49)

where I is the set consisting of the index i of each region Gi near the solution

[68]. Stewart also identifies methods whereby one may determine whether

such a differential equation has a unique solution for given initial conditions.

In general, the solution is not unique.

5.11 Satisfying the Assignment Function Requirements

The assignment function requirement A2 in the definition 5.1.1 requires

that the solution satisfy the inequality:

‖xi − xi−1‖≤ K(x0, t) ∆i, (5.50)

105

where xi denotes the value of x immediately after the ith assignment. In

general, satisfying this requirement is difficult since it requires knowledge of the

system solution. In the special case where the duration between assignments

is known to be limited and not infinitesimal, an alternate criteria may be used.

Theorem 5.11.1. Given an assignment function Y satisfying:

limtd(x) ∧By(x) → limtd(Y (x)), (5.51)

where x ∈ Rn and the duration between assignments ∆ is know to be a positive

limited real number which is not infinitesimal, then requirement A2 is satisfied.

Proof. We will assume that the value of the state immediately prior to the ith

assignment is x−i . Since the duration between the assignments ∆i is known to

be not infinitesimal, then A2 may be restated as:

‖Y (x−i)− Y (x−i−1)‖
∆i

≤ K(x0, t). (5.52)

Since Y is being applied, then it must be the case that x−i and x−i−1 each satisfy

BY . By the assumption 5.51 regarding Y , we may conclude that Y (x−i) and

Y (x−i−1) are limited. Since ∆i is limited and not infintesimal, then the ratio

‖Y (x−i)− Y (x−i−1)‖
∆i

(5.53)

exists and is limited. In particular, for a solution evaluated up to limited t,

there exists a limited number of assignments. We let K(x0, t) be the maximum

ratio 5.53 which occurs up to time t, satisfying requirement A2.

106

In modeling computer controlled systems, we model the computer as

exchanging input/output signals with the physical system at regular intervals,

with a cycle time period that is limited and not infinitesimal. Therefore, in

such cases, we may apply theorem 5.11.1.

If theorem 5.11.1 is not applicable, another possibility is to assure that

Y is continuous. In this case, one can use the continuous time solutions to

meet requirement A2. In the example bouncing ball problem in section 5.2,

the continuous equations for velocity and position were used.

Theorem 5.11.2. If the assignment function Y of a proposed hybrid system

definition is continuous, where Y satisfies the property

limtd(x) ∧ BY (x) → limtd(Y (x)), (5.54)

then a standard function K based on the closed form solutions and system time

between assignments may be used to meet the requirments of A2.

Proof. In this case, we have:

‖Y (φ(x0, t2))− Y (φ(x0, t1))‖
(t2 − t1)

≤ K(x0, t), (5.55)

where x ∈ Rn and non-negative t, t1, t2 ∈ R, such that t ≥ t2 > t1. The

formula is true for all standard and non-standard values. We will assume

standard values for x0, t, t1, and t2. Since t1 and t2 are standard real numbers

and t2 > t1, then t2 − t1 is a positive standard real and not infinitesimal.

Applying TH7:

st

(
‖Y (φ(x0, t2))− Y (φ(x0, t1))‖

(t2 − t1)

)
≤ st(K(x0, t)). (5.56)

107

Since the numerator and denominator are limited, and since Y is continuous

and limited:

‖Y (st(φ(x0, t2)))− Y (st(φ(x0, t1)))‖
(t2 − t1)

≤ st(K(x0, t)). (5.57)

By the standardization principle and the definition of φ:

‖Y (st(γε(x0, t2)))− Y (st(γε(x0, t1)))‖
(t2 − t1)

≤ st(K(x0, t)). (5.58)

By properties of standard part and continuity of Y :

st

(
‖Y (γε(x0, t2))− Y (γε(x0, t1))‖

(t2 − t1)

)
≤ st(K(x0, t)). (5.59)

By algebra:

st

(
‖Y (γε(x0, t2))− Y (γε(x0, t1))‖

(t2 − t1)

)
< st(K(x0, t) + 1). (5.60)

Finally, applying the contrapositive of TH7:

‖Y (γε(x0, t2))− Y (γε(x0, t1))‖
(t2 − t1)

< K(x0, t) + 1. (5.61)

5.12 Summary

In this chapter, we formally defined a well formed hybrid system and

proposed a new, nonstandard definition of a solution for such a system. The

system definition admits discontinuous vector fields as well as an assignment

function. Both the vector field discontinuity and the assignment function are

108

essential features in modeling a hybrid system due to the possible switching in

the vector field, hence discontinuity, and possible change in computer system

output, which can be modeled by the assignment function. In the event that

the vector field is discontinuous, it is possible for the solution to switch between

regions infinitely many times in finite time. Intuitively, the solution resides in

a region for an infinitesimal duration of time before switching to a different

region, tracing an infinitesimal oscillatory path along the boundaries of these

regions.

We also showed that, while the definition of the solution itself is non-

standard due to its dependence on the predicate standard, there does exist a

standard function which is equal to the nonstandard definition for standard

time t and initial condition x0. While a solution does exist, it is not guaran-

teed to be unique. In particular, the solution may depend on the choice of

infinitesimal ε used in its definition.

109

Chapter 6

Reasoning About Safety and Progress

Having established requirements for the definition of a Hybrid system

and definition of its solution, we would like to reason about correctness prop-

erties of such a system. Our objective is to use methods employed in the

computer science community in reasoning about correctness of programs, and

extending them to reason about correctness of the solutions of a well formed

hybrid system. In particular, we would like to reason about two classes of

properties: safety and progress. We will formally define these properties and

provide proof procedures whereby one may reason about their correctness for

a given well formed hybrid system.

6.1 Reasoning About Safety

A safety property holds for the initial state of the system and for all

ensuing states. Formally, for a safety property P , we require:

P (x0) → ∀t≥0 P (φ(x0, t)), (6.1)

where P is internal and φ is the system solution of a well formed hybrid system,

as defined in 5.3.2.

110

We limit the predicate P to the following grammar:

true | false | (θ1 ∧ θ2) | Pd(x) | (θ1 ∨ θ2) | g(x) = 0 | g(x) ∼ 0, (6.2)

where θ1, θ2 are formula which satisfy the grammar, and g is any real val-

ued, continuous, standard function over x ∈ Rn. The symbol ∼ denotes any

inequality operator in the set {≤,≥}.

A predicate Pd is referred to as a discrete predicate and is evaluated

on the state space x of the system. The predicate must be internal and must

satisfy the following requirement:

limtd(x) → (Pd(x) iff Pd(st(x))). (6.3)

The intuition behind the discrete predicate Pd is that it describes some prop-

erty about the integer valued variables of the computer program of the system.

The requirement 6.3 would be difficult to establish for reals in general, since

it requires for a predicate to be both open and closed. Alternatively, for a

limited integer z, by TH1 and TH10, st(z) = z. Therefore, for predicate Pd

evaluated over standard integers only, the requirement 6.3 is met.

We shall refer to each formula in 6.2 of the form true, false, g(x) = 0

or g(x) ∼ 0 as an atomic formula of a predicate P . We shall refer to each

formula of the form g(x) = 0 or g(x) ∼ 0 as an inequality of a predicate P .

We note that the grammar 6.2 does not allow strict inequalities. One

may conservatively approximate a strict inequality by choosing a positive con-

111

stant α sufficiently close to zero and using the properties:

g(x) ≤ −α → g(x) < 0 and

g(x) ≥ α → g(x) > 0.
(6.4)

For example, to conservatively approximate x < 5, one may use x ≤ 5−1/100.

Definition 6.1.1. For a predicate P satisfying grammar 6.2, the ε-transform

modifies each inequality within P as follows:

g(x) = 0
ε

=⇒ |g(x)| ≤ h(x, ε), where h(x, ε) ≥ 0,

g(x) ≤ 0
ε

=⇒ g(x) ≤ h(x, ε), where h(x, ε) ≥ 0,

g(x) ≥ 0
ε

=⇒ g(x) ≥ h(x, ε), where h(x, ε) ≤ 0.

(6.5)

The function h(x, ε) is any standard real valued function which is infinitesimal

for ε infinitesimal. The transform modifies only the inequalities in P ; the

logical operators, the predicate Pd, and the constants true and false in P

remain unchanged.

We refer to the transforms in 6.5 as ε-transforms. For example, if P

is the predicate x ≤ 5, after applying the ε-transform with h(x, ε) = ε, the

predicate is transformed to x ≤ 5 + ε. It is permissible to use a different

definition of the function h with each application of an ε-transform, so long as

h(x, ε) satisfies the requirements in 6.5 and is infinitesimal for ε infinitesimal.

We denote the transformed version of P as P ′.

6.2 A Safety Property Proof Procedure

For a predicate satisfying the grammar 6.2, we have developed a proof

procedure for showing that P is a safety property of a well formed hybrid

112

system. The procedure proceeds as follows:

1. Transform the predicate P to a new predicate P ′ under an ε-transformation.

2. Assuming the internal predicate Uε(x0, ε) holds, where any positive in-

finitesimal ε satisfies the internal predicate Uε(x0, ε) for limited x0, prove

the following formula holds:

Uε(x0, ε) ∧ P ′(x0) →
{

P ′(Y (x0)) BY (x0)
P ′(x0 + fi(x0)ε) x0 ∈ Gi ∧ ¬BY (x0),

(6.6)

If the proof obligation in step 2 is fulfilled, then we may conclude that

P is a safety property of the given well formed hybrid system; that is:

P (x0) → ∀t≥0 P (φ(x0, t)), (6.7)

6.3 Soundness of the Safety Property Proof Procedure

In this section, we will show that, for a given well formed hybrid system,

if we have relieved the proof obligation in step 2 of the safety proof procedure

for a safety property, then the safety property holds.

Lemma 6.3.1. Assuming the internal predicate Uε(x0, ε) holds, where any

positive infinitesimal ε satisfies the internal predicate Uε(x0, ε) for limited x0,

if the formula 6.6 in step 2 of the safety proof procedure is shown to be true,

then ∀t≥0 P ′(x0) → P ′(γε(x0, t)), where γε is as defined in 5.3.2 for a well

formed hybrid system.

113

Proof. The proof is by definition of γε and induction over the well founded

structure 〈S,≺〉:

S = {t− jε : j ∈ N ∧ 0 ≤ j ≤ bt/εc}, (6.8)

where, for ta, tb ∈ S, ta ≺ tb iff ta < tb.

We should point out that the proof does not make use of the predicate

standard since Uε is an internal predicate.

Theorem 6.3.2. For a given internal predicate P satisfying grammar 6.2, and

P ′ the ε-transform of P , if the proof obligation in step 2 of the safety proof

procedure is fulfilled, then ∀t≥0 P (x0) → P (φ(x0, t)), for any x0 ∈ Rn.

Proof. If P ′(x) satisfies 6.6, assuming internal predicate Uε(x0, ε) holds, then

by lemma 6.3.1, we can show that ∀t≥0 P ′(x0) → P ′(γε(x0, t)). This holds for

standard and nonstandard values for x0 and t. We will assume that x0 and t

take on standard values only. For standard x0 and t, γε(x0, t) is limited. By

letting ε be a positive infinitesimal constant, by lemma 6.3.3, we have:

P ′(x0) → P ′(γε(x0, t)) → P (st(γε(x0, t))) (6.9)

By the standardization principle, st(γε(x0, t)) is equal to the standard function

φ(x0, t) for all standard x0 and t:

P ′(x0) → P ′(γε(x0, t)) → P (φ(x0, t)) (6.10)

114

By lemma 6.3.4, we have P ′(x0) iff P (x0) since we are assuming standard x0,

allowing us to rewrite 6.10:

P (x0) → P (φ(x0, t)). (6.11)

Since Uε(x0, ε) holds for limited x0 and positive infinitesimal ε, and since ε is

assumed to be a positive infinitesimal, x0 is standard, then the assumption

Uε may be removed. Since 6.11 is internal, then by the transfer principle, we

conclude it holds for all t ≥ 0 and x0 ∈ Rn. We make the universal quantifier

over non-negative t explicit:

P (x0) → ∀t≥0 P (φ(x0, t)). (6.12)

In the previous proof, we made use of lemmas which we will now for-

mally state and prove.

Lemma 6.3.3. For a predicate P satisfying grammar 6.2, P ′ the ε-transform

of P , limited x ∈ Rn, and ε an infinitesimal, the following holds:

P ′(x) → P (st(x)). (6.13)

Proof. For a predicate P that satisfies the grammar 6.2, we can model its

syntactic structure as a list, where each item in the list is a parenthesis, logical

operator, a discrete predicate Pd, or atomic formula which appears in the list

in the same order, when read left to right, as it does in P . We will call this

115

the syntax list of a predicate. We observe that the syntax list of P varies form

that of P ′ only in the inequalities; the remaining items are the same. Each

inequality in the syntax list of P ′ is in one of the following forms:

|g(x)| ≤ h(x, ε),

g(x) ∼ h(x, ε).
(6.14)

By TH7, we may apply standard part to both sides of each inequality in P ′(x).

After applying standard part, we derive a new formula P
′′
(x), each of whose

inequalities is in one of the following forms:

st(|g(x)|) ≤ st(h(x, ε)),

st(g(x)) ∼ st(h(x, ε)).
(6.15)

We observe, by propositional logic, that:

P ′(x) → P
′′
(x). (6.16)

Since we are assuming that ε is infinitesimal, and since it is required by the

ε-transform definition 6.1.1 that h(x, ε) be infinitesimal for ε infinitesimal, then

st(h(x, ε)) = 0. We observe that, for any real r,

st(|r|) ≤ 0 iff |st(r)| = 0 iff st(r) = 0. (6.17)

Using these observations, we may rewrite each inequality 6.15 to the following:

st(g(x)) = 0,

st(g(x)) ∼ 0.
(6.18)

Recall, by the grammar 6.2, each function g is continuous, or st(g(x)) =

g(st(x)) for x limited. Since we are assuming x is limited, we may rewrite

each inequality 6.18 as follows:

g(st(x)) = 0,

g(st(x)) ∼ 0.
(6.19)

116

By the requirement of the discrete predicate 6.3, and since x is limited, we

note that every discrete predicate Pd(x) in P ′′ can be rewritten to Pd(st(x)).

We observe that every item in the syntax list of P
′′
(x) is logically equal to the

corresponding item in the syntax list of P (st(x)), whereby we may conclude:

P
′′
(x) iff P (st(x)). (6.20)

Therefore, by 6.16, we have:

P ′(x) → P (st(x)). (6.21)

Lemma 6.3.4. For an internal predicate P satisfying the grammar 6.2, and

P ′ the ε-transform of P , P (x) iff P ′(x) for standard x and infinitesimal ε.

Proof. For a transform that yields an inequality of the form:

|g(x)| = h(x, ε), (6.22)

we have:

|g(x)| ≤ h(x, ε)

→ st(|g(x)|) ≤ st(h(x, ε)) By TH7.

iff st(|g(x)|) ≤ 0 h(x, ε) is infinitesimal
for infinitesimal ε.

iff |st(g(x))| ≤ 0 Property of standard part
of absolute value function.

iff st(g(x)) = 0 Property of absolute value
function.

iff g(x) = 0 Since x is standard and g is
standard.

117

For the opposite direction, since by the definition of the transforms 6.5, it

is required that h(x, ε) > 0 for the case g(x) = 0, then |g(x)| ≤ h(x, ε).

Therefore, for standard x, we have g(x) = 0 iff |g(x)| ≤ h(x, ε).

For a transform that yields an inequality of the form:

|g(x)| ∼ h(x, ε), (6.23)

for a symbol ∼ denoting an inequality operator in the set {≤,≥}, we have:

g(x) ∼ h(x, ε)

→ st(g(x)) ∼ st(h(x, ε)) By TH7.

iff st(g(x)) ∼ 0 h(x, ε) is infinitesimal
for infinitesimal ε.

iff g(x) ∼ 0 Since x is standard and g is
standard.

For the opposite direction, for the case g(x) ≤ 0, since by the definition of the

transforms 6.5, it is required that h(x, ε) > 0, so g(x) ≤ h(x, ε). Therefore, we

have g(x) ≤ h(x, ε) iff g(x) ≤ 0. By a similar proof for the case g(x) ≥ 0, we

may conclude that g(x) ≥ h(x, ε) iff g(x) ≥ 0.

Since applying the ε-transform to P modifies only the inequalities in

P , and since, for standard x, each inequality in P is logically equal to its

ε-transform, then P (x) iff P ′(x).

118

6.4 Safety Proof Method For Predicates On Non-Time
Varying Functions

In this section, we will consider the case where the internal safety pred-

icate P is in terms of some function g:

P (g(x)), (6.24)

where g : Rn 7→ R is a standard continuous function in x. For this case, an

alternative safety proof method may be carried out to that presented in section

6.2. To prove safety in this case, one need only show:

st

(
g(x)− g(σ(x, ε))

ε

)
= 0, (6.25)

where:

σ(x0) =

Y (x0) BY (x0)
x0 + f1(x0)ε x0 ∈ G1

x0 + f2(x0)ε x0 ∈ G2

.
x0 + fm(x0)ε x0 ∈ Gm

(6.26)

A function satisfying 6.26 does not change with time, and hence called non-

time varying.

Theorem 6.4.1. For a well formed hybrid system and a property of the form

P (g(x)), where P is an internal predicate, g : Rn 7→ R is a standard function

and is continuous in x, the property P (g(x)) is a safety property if the formula

6.25 holds for positive infinitesimal ε and standard x.

We should point out that P may be any predicate, not necessarily one

satisfying 6.2.

119

Proof. Suppose we have that:

‖g(x)− g(σ(x, ε))‖≤ ε |δ|, (6.27)

for some positive ε and real |δ|. By induction on γε(x0, t), it may be shown

that:

‖g(x0)− g(γε(x0, t))‖≤ bt/εc ε |δ|. (6.28)

Intuitively, this is the case since a change of ε δ occurs in each step and the

function γε iterates for bt/εc steps. Since bt/εc ε ≤ t, and since we derived

this result from 6.27:

‖g(x)− g(σ(x, ε))‖≤ ε |δ| → ‖g(x0)− g(γε(x0, t))‖≤ t |δ|. (6.29)

By the stated assumption, we have that:

st

(
g(x)− g(σ(x, ε))

ε

)
= 0. (6.30)

We may conclude that, for some infinitesimal ε2:

‖g(x)− g(σ(x, ε))

ε
‖ ≤ |ε2|, (6.31)

By algebra:

‖g(x)− g(σ(x, ε))‖≤ ε |ε2|, (6.32)

The formula 6.29 holds for standard and nonstandard values. We will assume

x0 and t are standard in 6.29, and substitute ε2 for δ:

‖g(x0)− g(γε(x0, t))‖≤ t |ε2|. (6.33)

120

By TH7, we apply standard part to both sides of 6.33:

st(‖g(x0)− g(γε(x0, t))‖) ≤ st(t |ε2|). (6.34)

Since t is limited, ε2 is infinitesimal, by the continuity of g, and the standard-

ization principle:

‖g(x0)− g(φ(x0, t))‖≤ 0. (6.35)

By algebra:

g(x0) = g(φ(x0, t)). (6.36)

The above is true for standard x0 and t. By the transfer principle, it is true

for all x0 ∈ Rn and real t ≥ 0. Since g(x) does not change with time, then

g(x) = a, where a is a real constant for all non-negative time for the given

initial condition. Therefore, for any predicate P :

P (g(x0)) → ∀t≥0 P (g(φ(x0, t))). (6.37)

The above method is useful in showing that equations with continuous

terms, such as energy equations, do not change for a given system. For exam-

ple, suppose the energy equation is E(x) = a, we may apply the proof method

outlined in this section to show that it is a safety property.

The above method may be generalized to multiple continuous functions

for a predicate Q of the form:

Q(g1(x), g2(x), . . . , gk(x)), (6.38)

121

where each such function gj, for j ∈ [1..k], is a standard, continuous function

which satisfies the property 6.25, with gj substituted for g.

6.5 A Safety Proof of a Sample System

We demonstrate the proof of a safety property on a sample system.

The vector field of the system is defined as follows:

F (x) =

{
0 x ≥ 4
1 x < 4

(6.39)

We assume that the system consists of no assignments; that is, BY = false.

We wish to prove the following safety property:

x ≤ 4. (6.40)

The above predicate does satisfy the grammar 6.2. We choose

Uε(x0, ε)
def.= 0 < ε ≤ 1. (6.41)

We choose an ε-transform with h(x, ε) = ε and apply it to the safety property

6.40:

x ≤ 4 + ε. (6.42)

Now, we attempt to prove the formula 6.6:

P ′(x0) →
{

P ′(x0) x0 ≥ 4
P ′(x0 + ε) x0 < 4,

(6.43)

for 0 < ε ≤ 1. We substitute the transformed predicate 6.42 for P ′ in 6.43:

x0 ≤ 4 + ε →
{

x0 ≤ 4 + ε x0 ≥ 4
x0 + ε ≤ 4 + ε x0 < 4

(6.44)

122

This results in two cases, depending on x0. The case x0 ≥ 4 is trivially satisfied.

The case x0 < 4, results in the formula:

(x0 < 4) ∧ (x0 ≤ 4 + ε) ∧ (0 < ε ≤ 1) → x0 + ε ≤ 4 + ε. (6.45)

The above formula is true for all x0 and ε. Therefore, by theorem 6.3.2:

∀t≥0 x0 ≤ 4 → φ(x0, t) ≤ 4, (6.46)

where φ is the solution defined in accordance to 5.3.2 for the system with

vector field 6.39.

We should note that the ε-transform was essential in the success of this

proof. If we substitute the original predicate P , x < 4, for P ′ in 6.43, we

would attain the following case:

(x0 < 4) ∧ (x0 ≤ 4) ∧ (0 < ε ≤ 1) → x0 + ε ≤ 4, (6.47)

which is not true for all x0 and ε.

6.6 Reasoning About Progress

While a safety property states that some predicate P remains true for

all ensuing states of a system, a progress property states that the system will

eventually reach a state satisfying some predicate Q. Formally, for a system

solution φ, we define a progress property as follows:

P (x0) → ∃t≥0 Q(φ(x0, t)), (6.48)

123

where P and Q are assumed to be internal. The formula 6.48 informally states

that, starting from a state satisfying P , there exists a time t ≥ 0 at which the

predicate Q holds for the system solution φ. In the case where P = true, the

formula 6.48 may be simplified to:

∃t≥0 Q(φ(x0, t)). (6.49)

As we did in the case of reasoning about safety, we will assume that

the predicates P and Q satisfy the grammar 6.2.

Definition 6.6.1. For a progress property 6.48, we let P ′ and Q′ be the ε-

transforms of the predicates P and Q, respectively. For a system solution

defined as in 5.3.2, we define a progress counter clkε using the predicates P ′

and Q′ as follows:

clkε(x0) =

0 Q′(x0) ∨ ¬P ′(x0)
clkε(Y (x0)) BY (x0)
ε + clkε(x0 + f1(x0)ε) x0 ∈ G1

ε + clkε(x0 + f2(x0)ε) x0 ∈ G2

.
ε + clkε(x0 + fm(x0)ε) x0 ∈ Gm,

(6.50)

where the conditionals are evaluated from top to bottom.

Informally, for a given positive real ε, the progress counter clkε deter-

mines the time, in integer multiples of ε, at which γε, defined in definition

5.3.2, reaches a state satisfying Q′(x0) ∨ ¬P ′(x0). However, if we show, using

the safety property proof procedure, that P ′(γε(x0, t)) holds for all t ≥ 0, then

clkε determines the time, in integer multiples of ε, at which γε reaches a state

124

satisfying Q′(x0). If γε satisfies P ′ for all states but does not reach a state

satisfying Q′, then clkε is undefined.

We define a function σ which relates the current state with the state

reached within a time duration ε:

σ(x0) =

Y (x0) BY (x0)
x0 + f1(x0)ε x0 ∈ G1

x0 + f2(x0)ε x0 ∈ G2

.
x0 + fm(x0)ε x0 ∈ Gm,

(6.51)

with the conditionals being evaluated from top to bottom.

6.7 A Progress Property Proof Procedure

As we did for a safety property, we will outline a proof procedure for

showing some progress property is true for a well formed hybrid system. We

assume that the property to be shown is in the form 6.48. The steps for the

proof procedure are as follows:

1. Apply the ε-transform to internal predicates P and Q to yield predicates

P ′ and Q′, respectively.

2. Generate an internal predicate R. Apply the ε-transform to R to yield

R′. Show that the following holds:

∃t>0∀0≤t′≤tR
′(x) → Q′(γε(x, t′)), (6.52)

such that st(t) > 0.

125

3. Show that P ′ is a safety property for the given well formed system.

4. Let S be the set of ordinals less than the ordinal ε0. Assuming an internal

predicate Uε(x0, ε) holds, where any positive infinitesimal ε satisfies the

internal predicate Uε(x0, ε) for limited x0, generate a standard measure

function M : Rn × R 7→ S and show that the following are true:

a. ¬P ′(x0) ∨R′(x0) → M(x0, ε) = 0,

b. For x0 satisfying P ′(x0) ∧ ¬R′(x0), the following holds:

M(σ(x0), ε) < M(x0, ε). (6.53)

c. The measure M is such that, for limited x0, and positive infinitesi-

mal ε, M(x0, ε)ε is limited.

If the proof obligations outlined in the proof procedure are fulfilled, then we

may conclude:

P (x0) → ∃t≥0 Q(φ(x0, t)). (6.54)

In step 4, the standard measure function M(x0, ε) evaluates to an or-

dinal. Since ε is a real number, we define what we mean by M(x0, ε)ε being

limited.

126

Definition 6.7.1. Given an ordinal β less than ε0, we represent β as

β = (ωα2x + α1). (6.55)

We define the dimension of the ordinal recursively as 1 plus the sum of the

dimension of α1 and the dimension of α2. A finite ordinal, or a natural number,

is assumed to have dimension 1.

Definition 6.7.2. Let β be an ordinal where β = M(x, ε), for a standard

measure function M , M : Rn × R 7→ S and S the set of ordinals less than ε0.

We represent β as:

β = (ωα2x + α1), (6.56)

where α1 and α2 are themselves ordinals and x is a finite ordinal. We say that

β ε is limited iff the dimension of β is standard, x ε is limited and, recursively,

α1 ε and α2ε are limited. If β is a finite ordinal n, then βε is limited iff nε is

limited.

We apply this definition to determine if M(x0, ε)ε is limited to example

definitions of M . Suppose M(x0, ε) = b5/ε2c. Then M(x0, ε)ε = b5/ε2c ε,

which is not limited for ε infinitesimal. As another example, consider:

M(x0, ε)ε = (ωb3/εc + b4/εc)ε. (6.57)

Since ε, b3/εc ε, and b4/εc ε are limited for positive ε, then 6.57 is limited.

127

6.8 Soundness of the Progress Property Proof Proce-
dure

In proving the soundness of the proof procedure, we will consider to

types of well formed hybrid systems 1) a system without assignments (BY is

identically false) and 2) a system with assignments.

For the system without assignments, we will show that the proof pro-

cedure may be simplified by choosing a predicate R which is logically equal

to Q, thereby eliminating step 2 of the progress proof procedure. Such a

simplification is possible since, in this case, the solution is continuous.

For the case with assignments, step 2 is required and a separate proof

is shown for soundness of this case.

First, we state a lemma that will be used in the proofs of the progress

property proof procedure.

Lemma 6.8.1. For a progress property:

P (x0) → ∃t≥0 Q(φ(x0, t)), (6.58)

let P ′ and Q′ be the ε-transforms of P and Q, respectively. Let S be the set

of ordinals less than ε0. Suppose that P ′ satisfies 6.6. Suppose also there

exists an internal predicate Uε(x0, ε) that is satisfied for limited x0 and positive

infinitesimal ε, and a measure function M : Rn×R 7→ S such that the following

are true:

1. Uε(x0, ε) ∧ (¬P ′(x0) ∨Q′(x0)) → M(x0, ε) = 0,

128

2. For x0 and ε satisfying Uε(x0, ε)∧ P ′(x0)∧¬Q′(x0), the following holds:

M(σ(x0), ε) < M(x0, ε) (6.59)

We may conclude that:

P ′(x0) → ∃t Q′(γε(x0, t)). (6.60)

Proof. Due to the requirement 6.59, the measure M decreases for each re-

cursive call in clkε. Also, when ¬P ′(x0) ∨ Q′(x0), the measure M is zero.

Therefore, M may be used to show that the recursion defining clkε termi-

nates. This implies the function clkε exists and is total. Since clkε terminates,

it can be shown that:

P ′(x0) → ¬P ′(γε(x0, clk
ε(x0))) ∨Q′(γε(x0, clk

ε(x0))). (6.61)

For a given positive real ε and x0 ∈ Rn, the property 6.61 can be shown by the

definition of clkε, γε, and induction on a well founded structure
〈
S ′,≺ε

γ

〉
:

S ′ = {γε(x0, εj) : j ∈ N ∧ 0 ≤ j ≤ bclkε(x0)/εc}, (6.62)

where xa ≺ε
γ xb iff M(xa, ε) < M(xb, ε). Since P ′ is a safety property, then if

the system starts with x0 satisfying P ′, for all t ≥ 0, P ′(γε(x0, t)). Therefore,

6.61 reduces to:

P ′(x0) → Q′(γε(x0, clk
ε(x0))). (6.63)

We can rewrite 6.63 as,

P ′(x0) → ∃t Q′(γε(x0, t)), (6.64)

since we know 6.64 holds for t = clkε(x0).

129

By lemma 6.8.1, we have shown that, if P is a safety property, then for

x0 that satisfies P , there exists a time clkε(x0) at which the solution satisfies

Q′. However, this time clkε(x0) is not necessarily standard.

6.8.1 Soundness of Progress Proof Procedure:
System Without Assignments

In this section, we will show that, for a given well formed hybrid system,

if we have relieved the proof obligations of the the progress proof procedure

for a progress property of the form 6.48, then the progress property holds.

Theorem 6.8.2. Given a well formed hybrid system without assignments (BY

is identically false), for internal predicates P , Q, and R satisfying 6.2, where

Q iff R, if we fulfill the proof obligations of steps 3 and 4 of the progress proof

procedure, then the progress property 6.48 holds.

Proof. By applying the ε-transform to P and Q, we attain P ′ and Q′, respec-

tively. If we have fulfilled the proof obligation of step 3, then P is a safety

property; that is:

P (x0) → ∀t P (φ(x0, t)). (6.65)

The measure M used in step 4 assures that the function clkε does terminate. In

addition, the measure M(x0, ε) decreases by at least one in each recursive call of

clkε. Therefore, bclkε(x0)/εc < M(x0, ε)ε or bclkε(x0)/εc = M(x0, ε)ε. Since,

by step 4, it is required that M(x0, ε)ε be limited, then clkε(x0) is limited.

Hence, by the standardization principle, there exists a standard function clk

such that for standard x0, clk(x0) = st(clkε(x0)).

130

If we have fulfilled the proof obligation in step 4, then, by lemma 6.8.1,

we have that:

P ′(x0) → Q′(γε(x0, clk
ε(x0))). (6.66)

The formula 6.66 is true for all values of x0. We will assume x0 takes on

standard values only. Since ε is a positive infinitesimal and P satisfies grammar

6.2, then by lemma 6.3.4, we have that:

P ′(x0) iff P (x0). (6.67)

By lemma 6.3.3, since Q satisfies grammar 6.2, we have that

Q′(γε(x0, clk
ε(x0))) → Q(st(γε(x0, clk

ε(x0)))) (6.68)

Since no assignments occur in the system, the function γε is such that:

‖γε(x0, t1)− γε(x0, t2)‖≤ (t2 − ε bt1/εc)(N + NLt2e
Lt2 + LeLt2 ‖x0‖), (6.69)

where t2 ≥ t1 and N , L are standard constants. For t2 limited, t1 ' t2, and

since x0 is standard, by 6.69 we have that:

st(γε(x0, t1)) = st(γε(x0, t2)). (6.70)

Therefore, by the standardization principle, we may conclude that:

st(γε(x0, clk
ε(x0))) = st(γε(x0, st(clk

ε(x0)))) = φ(x0, clk(x0)). (6.71)

By 6.68, we have:

Q′(γε(x0, clk
ε(x0))) → Q(st(γε(x0, clk

ε(x0)))) = Q(φ(x0, clk(x0))). (6.72)

131

By 6.66, 6.67, and 6.72, we have that:

P (x0) → Q(φ(x0, clk(x0))). (6.73)

Since Uε(x0, ε) holds for limited x0 and positive infinitesimal ε, and since ε is

assumed to be a positive infinitesimal and x0 is standard, then the assumption

Uε may be removed. The formula 6.73 holds for standard x0 and, since it is

internal, by the transfer principle, holds for all x0 ∈ Rn. Since Q holds at

clk(x0), we may write:

P (x0) → ∃tQ(φ(x0, t)). (6.74)

6.8.2 Soundness of Progress Proof Procedure:
System With Assignments

In this section, we will consider a well formed hybrid system with as-

signments (BY is not identically false). This is similar to the proof presented

in the previous subsection, with the exception that we cannot assume that the

solution is continuous with respect to time.

Theorem 6.8.3. Given a well formed hybrid system, for internal predicates

P , Q, and R satisfying 6.2, if we fulfill the proof obligations of steps 2, 3, and

4 of the progress proof procedure, then the progress property 6.48 holds for the

solution of the well formed hybrid system.

Proof. By applying the ε-transform to P , Q, and R, we attain P ′, Q′, and R′,

respectively. If we have fulfilled the proof obligation of step 3, then P is a

132

safety property; that is:

P (x0) → ∀t P (φ(x0, t)). (6.75)

If we have fulfilled the proof obligation in step 4, then, by lemma 6.8.1, we

have that:

P ′(x0) → R′(γε(x0, clk
ε(x0))). (6.76)

The measure M used in step 4 assures that the function clkε does terminate.

In addition, the measure M(x0, ε) decreases by at least one in each recursive

call of clkε. Therefore, bclkε(x0)/εc < M(x0, ε)ε or bclkε(x0)/εc = M(x0, ε)ε.

Since, by step 4, it is required that M(x0, ε)ε be limited, then clkε(x0) is

limited. By fulfilling the proof obligation of step 2, there must exist some

standard time t such that clkε(x0) ≤ t and such that:

R′(γε(x0, clk
ε(x0))) → ∃st

t Q′(γε(x0, t)). (6.77)

The formula 6.77 is true for all values of x0. We will assume x0 takes on

standard values only. Since ε is a positive infinitesimal, P satisfies grammar

6.2, then by lemma 6.3.4, we have that:

P ′(x0) iff P (x0). (6.78)

By lemma 6.3.3, since Q satisfies grammar 6.2, we have that

Q′(γε(x0, t)) → Q(st(γε(x0, t))) (6.79)

Since x0 is standard, by the standardization principle and definition of the

function φ, we have that:

∃st
t Q(st(γε(x0, t))) = ∃st

t Q(φ(x0, t)). (6.80)

133

By 6.76 through 6.80:

P (x0) → ∃st
t Q(φ(x0, t)). (6.81)

Since Q is internal and φ is standard, by the dual form of the transfer principle,

P (x0) → ∃tQ(φ(x0, t)). (6.82)

Since Uε(x0, ε) holds for limited x0 and positive infinitesimal ε, and since ε is

assumed to be a positive infinitesimal and x0 is standard, then the assumption

Uε may be removed.

6.9 A Progress Proof of a Sample System

We demonstrate the proof of a progress property on a sample system.

The vector field of the system is defined as follows:

F (x) =

−1 x > 0
0 x = 0
1 x < 0

(6.83)

We assume that the system consists of no assignments; that is, BY = false.

We wish to prove the following progress property:

∃t x(t) = 0. (6.84)

In carrying out the steps of the proof procedure, we will assume that 1) the

predicate P for this example is identically true, 2) Q iff R, and 3) Q′ iff R′.

We propose the progress measure:

M(x, ε) =

 0 |x| ≤ ε⌊
|x|
ε

⌋
otherwise.

(6.85)

134

For step 1 of the progress proof procedure, we take the ε-transform of Q to

attain Q′:

|x| ≤ ε. (6.86)

For step 2 of the progress proof procedure, since Q′ iff R′, then if we show that

Q′ is a safety property for γε, the proof obligation for this step is satisfied. For

step 3 of the progress proof procedure, since P is identically true, then P is a

safety property. For step 4, of the proof procedure, we note that, since P is

true, and by the definition of Q′ and M :

|x| ≤ ε → M(x, ε) = 0. (6.87)

Satisfying step 4.a. For step 4.b, we must show that M decreases for |x| > ε.

We choose Uε(x0, ε)
def.= 0 < ε ≤ 1.

0 < ε ≤ 1 ∧ |x| > ε → M(σε(x), ε) < M(x, ε). (6.88)

The proof obligation results in several case splits depending on the value of x

and σε(x). We show some of these cases here. We consider the case x > 0,

|x| > ε, |x− ε| > ε:

0 < ε ≤ 1 ∧ |x| > ε →
⌊
|x− ε|

ε

⌋
<

⌊
|x|
ε

⌋
. (6.89)

By algebra, this reduces to

0 < ε ≤ 1 ∧ |x| > ε →
⌊
|x|
ε
− 1

⌋
<

⌊
|x|
ε

⌋
, (6.90)

which is true.

135

6.10 Asymptotic Stability

A control system is said to be asymptotically stable if, as time t in-

creases, the solution approaches the origin and remains near the origin.

Definition 6.10.1. For a well formed hybrid system, the solution is asymp-

totically stable if, for any real positive number α, the following criteria are

satisfied:

1. ∃t ‖φ(x0, t)‖≤ α,

2. ‖x0‖≤ α → ∀t ‖φ(x0, t)‖≤ α.

Therefore, as can be ascertained by its definition, the proof of asymp-

totic stability may be decomposed into a progress proof and stability proof.

We should point out that, due to the introduction of the variable α, we would

add the predicate α > 0 conjuncted with zero or more instances of predicates

of the form α > h(x, ε), where h(x, ε) is derived from the proof context and

is infinitesimal for x limited, and ε infinitesimal. This conjunct is added to

the hypothesis of every proof obligation in the stability and progress proof

procedures.

We note that the properties in definition 6.10.1 are internal and true

for any α > 0. We choose a positive infinitesimal α. We modify the progress

property, applying TH7 and assuming α is a positive infinitesimal:

∃t st(‖φ(x0, t)‖) ≤ st(α). (6.91)

136

Hence,

∃t st(φ(x0, t)) = 0. (6.92)

We note that the new property has a standard part applied to the solution.

Hence, it is external. It is possible that the property holds for nonstandard,

infinitely large t only. Even then, while the standard part of the solution will

reach zero, the solution itself may never reach zero.

We should point out that applying the transfer principle, or the dual

form of transfer, would not be useful for the existentially quantified progress

formula. If we assume that x0 and α are universally quantified, then applying

the dual form of transfer would require that both α and x0 be standard, since

they both occur in the existentially quantified formula. However, the require-

ment that α be standard would defeat our effort of assigning it an infinitesimal

value.

For the safety property, we will similarly assume that α is positive

infinitesimal. The safety property holds for all x and α. We will restrict

ourselves to standard x and positive infinitesimal α, and assume the universal

quantifier ranges over standard numbers only. Hence, we modify the safety

property as follows:

‖x0‖≤ α → ∀ st
t ‖φ(x0, t)‖≤ α. (6.93)

For standard y and infinitesimal α, the following property holds:

‖y‖≤ α iff y = 0. (6.94)

137

Applying the property in 6.94 to 6.93, and noting that φ is a standard function:

x0 = 0 → ∀ st
t φ(x0, t) = 0. (6.95)

Applying transfer, as the formula is internal:

x0 = 0 → ∀tφ(x0, t) = 0. (6.96)

6.11 A Modified Lyapunov Stability Method

The Lyapunov method of determining the asymptotic stability of a

Newtonian solution to a differential equation is discussed in section 3.4. We

slightly modify the definition of a required Lyapunov function to show stability

for a system. Whereas the Lyapunov method shows asymptotic approach, this

modified method shows progress, within limited time t, to some state x where

‖x‖≤ α > 0.

6.11.1 Applying Lyapunov: Progress

For a well formed hybrid system where the vector field is Lipschitz

continuous and the assignment predicate BY is identically false, we may use

the modified Lyapunov function in our progress proof procedure to show that

the solution reaches, within some limited time t, a state x where ‖x‖≤ α > 0.

138

Definition 6.11.1. A modified Lyapunov function V is a standard function

which has continuous first partial derivatives and is such that there exist stan-

dard real values α > 0 and γ > 0 where:

γ < V (x) for ‖x‖> α,

0 < V (x) ≤ γ for 0 < ‖x‖≤ α, and

V (x) = 0 otherwise.

Based on the definition 6.11.1, every modified Lyapunov function is a

Lyapunov function, but the converse is not true. For the modified Lyapunov

stability method, we require that the modified Lyapunov function satisfy the

following derivative with respect to the defined system, for some standard real

β < 0:
V̇ (x) < β for ‖x‖> α,

V̇ (x) < 0 for 0 < ‖x‖≤ α, and

V̇ (x) = 0 otherwise.

(6.97)

We use the modified Lyapunov function V to formulate a measure M :

M(x, ε) =

0 ‖x‖≤ α⌊

2V (x)

|β| γ ε

⌋
otherwise.

(6.98)

Theorem 6.11.1. Given a modified Lyapunov function V satisfying definition

6.11.1 and meeting the requirements in 6.97, then the measure M in 6.98 is

decreasing for ‖x‖> α.

139

Proof. For this proof, we will assume that the predicate Uε(x0, ε) is defined as

follows:

Uε(x0, ε)
def.= ∀

x∈{γε(x0,u):0≤u≤ 2V (x0)
|β| γ

} ∀ζx1
. . . ∀ζxn

(0 < ε < 1)∧

(∧i∈[1..n](‖x− ζxi
‖≤‖f(x)‖ ε) ∧ ‖x‖> α →

∑n
i=1

∂V
∂xi

(ζxi
) fxi

(x) < β
2
) ∧

(∧i∈[1..n](‖x− ζxi
‖≤‖f(x)‖ ε) ∧ 0≤‖x‖≤α →

∑n
i=1

∂V
∂xi

(ζxi
) fxi

(x) < 1).

(6.99)

We should point out, as required by the proof procedures, Uε(x0, ε) must hold

for limited x0 and positive infinitesimal ε. This is shown in lemma 6.11.3. We

assume that |β| < 1, and |γ| < 1. If they are not so, we may adjust their

values without violating the required inequalities β < 0 and γ > 0. We first

consider the case where ‖σ(x, ε)‖> α. In this case, by the definition of M , we

have to show that: ⌊
2V (σ(x, ε))

|β| γ ε

⌋
<

⌊
2V (x)

|β| γ ε

⌋
. (6.100)

For reals a and b, it may be shown that the floor function has the following

property:

a ≤ b− 1 → bac < bbc (6.101)

Using the property of floor 6.101, we focus on proving:

2V (σ(x, ε))

|β| γ ε
≤ 2V (x)

|β| γ ε
− 1. (6.102)

By the definition of σ, we have:

2V (x + f(x)ε)

|β| γ ε
− 2V (x)

|β| γ ε
≤ −1. (6.103)

140

By algebra:

2V (x + f(x)ε)− 2V (x)

|β| γ ε
≤ −1. (6.104)

By a vector form of the mean value theorem shown later in lemma 6.11.2, we

can show that:

V (x + f(x)ε)− V (x) =
n∑

i=1

∂V

∂xi

(ζxi
)fxi

(x)ε, (6.105)

where the ith component, c, of each vector ζxi
satisfies:

xi ≤ c ≤ xi + fxi
(x)ε for fxi

(x)ε ≥ 0, and

xi ≥ c ≥ xi + fxi
(x)ε otherwise,

(6.106)

where xi and fxi
are the ith components of x and f , respectively. Using this

mean value theorem result, we rewrite 6.104:

2
∑n

i=1
∂V
∂xi

(ζxi
)fxi

(x)ε

|β| γ ε
≤ −1. (6.107)

By 6.106, every vector ζxi
satisfies ‖x− ζxi

‖≤‖f(x)‖ ε. By the definition of Uε,

and since by the proof procedure we assume that Uε holds, we may conclude

that:
n∑

i=1

∂V

∂xi

(ζxi
)fxi

(x) <
β

2
. (6.108)

Since 0 < |γ| < 1, and β < 0, then, by 6.108, the formula 6.107 holds. This

completes the proof for the case ‖σ(x, ε)‖> α. We now consider the case

where ‖σ(x, ε)‖≤ α. By the definition of M and a property of floor 6.101, this

reduces to:

1 ≤ 2V (x)

|β| γ ε
. (6.109)

Since 0 < γ < V (x), 0 < |β| < 1, and 0 < ε < 1, then the above holds.

141

6.11.2 Applying Lyapunov: Safety

To show stability, we must show a progress property as well as a safety

property. We have demonstrated a decreasing measure to be used for the

progress property. Now we state a safety property whereby the solution re-

mains bounded. We require that, upon reaching a state x satisfying ‖x‖≤ α,

all ensuing states must satisfy ‖x‖≤ α.

By definition 6.11.1 of the modified Lyapunov function, it may be shown

that:

V (x) ≤ γ iff ‖x‖≤ α. (6.110)

By the safety property proof procedure, we attempt to show that the following

holds:

V (x) ≤ γ → V (σ(x, ε)) ≤ γ. (6.111)

Proof. We reuse the predicate Uε(x0, ε) presented in formula 6.99. By the

definition of σ and using the vector form of the mean value theorem as shown

in lemma 6.11.2, we have:

V (σ(x, ε)) = V (x) +
n∑

i=1

∂V

∂xi

(ζxi
) fxi

(x)ε. (6.112)

We will apply the ε-transform and show that V (x) ≤ γ + ε. We will split the

proof into two cases based on the value of V (x):

0 ≤ V (x) ≤ γ and γ < V (x) ≤ γ + ε.

142

For the case 0 ≤ V (x) ≤ γ, by the definition of Uε, assuming 0 ≤‖x‖≤ α, and

6.110, we have that:
n∑

i=1

∂V

∂xi

(ζxi
) fxi

(x) < 1. (6.113)

By 6.113, 0 < ε, the assumption that V (x) ≤ γ and algebra:

V (x) +
n∑

i=1

∂V

∂xi

(ζxi
) fxi

(x)ε ≤ γ + ε. (6.114)

By 6.112 and 6.114:

V (σ(x, ε)) ≤ γ + ε. (6.115)

For the case γ < V (x) ≤ γ + ε, then by 6.110, we have α <‖x‖. By the

definition of Uε, we have that:

n∑
i=1

∂V

∂xi

(ζxi
) fxi

(x) <
β

2
. (6.116)

Since β < 0,

V (x) +
n∑

i=1

∂V

∂xi

(ζxi
) fxi

(x)ε ≤ γ + ε. (6.117)

From which we conclude:

V (σ(x, ε)) ≤ γ + ε. (6.118)

By 6.110, we may conclude that ‖x‖≤ α is also a safety property of the

system.

143

6.11.3 Lemmas Needed for Showing Modified Lyapunov Stability

In the proof of the decreasing modified Lyapunov measure theorem

6.11.1, we made use of lemmas which we state and prove here. We begin with

the following lemma which extends the mean value theorem to a vector case.

Lemma 6.11.2. For a function V : Rn 7→ R, and for x, δ, and ζ in Rn:

V (x + δ)− V (x) =
n∑

i=1

∂V

∂xi

(ζxi
)δi, (6.119)

where the ith component, c, of each vector ζxi
satisfies:

xi ≤ c ≤ xi + δi for δi ≥ 0, and

xi ≥ c ≥ xi + δi otherwise,
(6.120)

where xi and δi are the ith components of x and δ, respectively.

Proof. We observe that if we vary only one variable, xi, in the vector x, the

following holds by the single variable version of the mean value theorem:

V (x1, x2, . . . , xi + δi, . . . , xn−1, xn) −
V (x1, x2, . . . , xi, . . . , xn−1, xn) = ∂V

∂xi
(ζ)δi,

(6.121)

where all components of ζ equal to the corresponding components of x, with

exception to ζi, where xi ≤ ζi ≤ xi + δi for δi ≥ 0, and xi ≥ ζi ≥ xi + δi

otherwise. We shall denote ζxi
as the vector yielded by the mean value theorem

when varying xi.

144

By repeatedly applying 6.121, we have, by adding and subtracting like

terms:

V (x1 + δ1, x2 + δ2, . . . , xn + δn)− V (x1, x2, . . . , xn) =

V (x1 + δ1, x2, . . . , xn)− V (x1, x2, . . . , xn)+

V (x1 + δ1, x2 + δ2, . . . , xn)− V (x1 + δ1, x2, . . . , xn) + · · ·+
V (x1 + δ1, x2 + δ2, . . . , xn + δn)− V (x1 + δ1, x2 + δ2, . . . , xn−1 + δn−1, xn) =

∂V
∂x1

(ζx1)δ1 + ∂V
∂x2

(ζx2)δ2 + · · ·+ ∂V
∂xn

(ζxn)δn =
∑n

i=1
∂V
∂xi

(ζxi
)δi.

(6.122)

The following lemma states that the definition of Uε in 6.99 defined

for the modified Lyapunov method is such that Uε holds for limited x0 and

positive infinitesimal ε.

Lemma 6.11.3. For Uε(x0, ε) defined in 6.99, and for a modified Lyapunov

function V satisfying 6.97:

limtd(x0) ∧ st(ε) = 0 ∧ ε > 0 → Uε(x0, ε). (6.123)

Proof. For the case where the implications in the definition of Uε are true, then

any infinitesimal ε satisfies Uε. Now we show that each implication is true for

ε infinitesimal and x0 limited. For 0 ≤ u ≤ 2V (x0)
|β| γ }, then u is limited, since V

is standard and continuous, x0 is limited, |β| and γ are standard and positive.

Since γε(x0, u) is limited for x0 and u limited, and since x = γε(x0, u), then

x is limited. For the case where ‖x‖> α, we note that, for limited x ∈ Rn,

145

y ∈ Rn, and infinitesimal ε, we have by TH7:

‖x− y‖≤ f(x)ε → st(‖x− y‖) ≤ st(f(x)ε) iff st(x) = st(y). (6.124)

By the definition of V , we have that:

V̇ (x) < β, (6.125)

By the chain rule of multivariable calculus:

∇V (x) • f(x) < β. (6.126)

By applying TH7 and by the definition of the gradient:

st

(
n∑

i=1

∂V

∂xi

(x) fxi
(x)

)
≤ st(β). (6.127)

Since x is limited, by the continuity of f and since ∇V is continuous by

the requirement that a Lyapunov function V have continuous first partial

derivatives:
n∑

i=1

∂V

∂xi

(st(x)) fxi
(st(x)) ≤ st(β) <

β

2
. (6.128)

Applying the contrapositive of TH7 to 6.128 and by 6.124, we may conclude

that st(x) = st(ζxi
) for ‖x− ζxi

‖≤‖f(x)‖ ε, and since β is standard:

n∑
i=1

∂V

∂xi

(ζxi
) fxi

(x) <
β

2
. (6.129)

A similar proof may be carried out for the case 0 ≤‖x‖≤ α. Therefore, Uε(x0, ε)

does hold for limited x0 and infinitesimal ε.

146

6.12 Showing Asymptotic Approach using Lyapunov

In the previous section, we showed that, using a modified Lyapunov

function in the definition of a measure of the progress proof procedure, we

may show that the solution does reach a stated x whereby ‖x‖≤ α > 0. In

this section, we will extend the approach by showing asymptotic approach to

zero.

We start by formally stating the findings from the previous section

regarding the modified Lyapunov method:

∀x

 (γ < V (x) ∧ V̇ (x) < β ∧ ‖x‖> α) ∨
(0<V (x) ≤γ ∧ V̇ (x) <0 ∧ 0<‖x‖≤α) ∨
(V (x) = 0 ∧ V̇ (x) = 0 ∧ ‖x‖= 0)

 → ∃t ‖φ(x0, t)‖≤ α.

(6.130)

We note that, if x is a standard real vector, y is any real vector, and

α, β, and γ are infinitesimal real numbers, we can show:

V (x) > γ iff V (x) > 0,

0 <‖x‖≤ α iff false,

V̇ (x) < β iff V̇ (x) < 0,

‖x‖> α iff ‖x‖> 0

‖y‖≤ α → st(y) = 0.

(6.131)

By the transfer principle applied only to the hypothesis of 6.130, and applying

the properties shown in 6.131 to 6.130, we have, for x0 ∈ Rn:

∀ st
x

(
(V (x) > 0 ∧ V̇ (x) < 0 ∧ ‖x‖> 0) ∨
(V (x) = 0 ∧ V̇ (x) = 0 ∧ x = 0)

)
→ ∃tst(φ(x0, t)) = 0.

(6.132)

147

Again applying the transfer principle only to the hypothesis of 6.132, we have

for x0 ∈ Rn:

∀x

(
(V (x) > 0 ∧ V̇ (x) < 0 ∧ ‖x‖> 0) ∨
(V (x) = 0 ∧ V̇ (x) = 0 ∧ x = 0)

)
→ ∃tst(φ(x0, t)) = 0.

(6.133)

We note that by the result in 6.133, the solution φ may never reach

0, but its standard part will, thereby capturing the notion of asymptotic ap-

proach. It can also be shown, based on the modified Lyapunov safety property,

that once st(φ(x0, t)) = 0, then for all real u ≥ t, st(φ(x0, u)) = 0.

6.13 Lyapunov Method and Nonstandard Analysis

The result of using the Lyapunov function directly to show asymptotic

stability and the modified Lyapunov function for reasoning about progress

demonstrates how theory already established for internal arithmetic may be

used to reason about models defined using nonstandard analysis. In a similar

fashion, theory developed for digital systems, for example from model checking

or theorem proving approaches, may also be used in establishing the proof

obligations of the safety and progress proof procedures. This is a powerful

attribute of nonstandard analysis allowing the verifier to reason using those

applicable theories, discrete or continuous, in fulfilling the proof obligations.

148

6.14 Reasoning About Open Predicates

The grammar 6.2 which we have defined disallows the use of open pred-

icates in the definition of safety and progress properties. Intuitively, this is a

result of the fact that there does not exist any least or greatest element which

satisfies an open predicate. For example, for the open predicate x > 5, there

is no least number greater than 5. Hence, we require the user to define some

notion of “close enough” by converting the predicate into a closed predicate,

such as x ≥ 5 + 10−10. An alternative approach is to use a variable, α, rep-

resenting some positive real value, as was done in the case of reasoning about

stability. This variable α would then be used in converting open predicates

into closed predicates. For example, the open predicate x > 5 can be con-

verted to the closed predicate x ≥ 5 + α. The proof procedure would proceed

as defined. After the completion of the proof procedure, the resulting prop-

erty is entirely internal and assumes α is some positive real number. We can

apply this property under the special case where α is a positive infinitesimal,

while all other variables are standard, and, after some additional proof steps,

convert the closed predicate consisting of α back to the initial open predicate.

6.15 Measure Structures

We have observed that ordinals are valuable as well-founded sets in

proving program termination. We would like to use such structures in reason-

ing about stability of hybrid systems. However, real numbers cannot be used

directly to show a decreasing measure. Rather, some transformation must be

149

presented whereby the real numbers are mapped to a well founded set, such

as the ordinals up to ωω.

In this section we define a structure we call the measure structure, or

m-structure. We also define a function m-floor, represented as bbxcc, which

transforms an m-structure x to an ordinal. The goal is to compare two m-

structures x and y using the relational operator ≺ such that if we show x ≺ y,

then bbxcc < bbycc. The definition of an m-structure follows.

A non-negative real number is a finite m-structure. For a real x ≥ 1,

or 0 ≺ x, we call x a finite, non-zero m-structure. We designate the symbol

Γ as an m-structure. If x is a finite, non-zero m-structure, Γx is also an m-

structure. Γx is defined to be a transfinite m-structure. For a finite, non-zero

m-structure x, Γx is an m-structure.

The relation operator ≺ compares m-structures. For finite m-structures

x and y, x ≺ y iff x ≤ y − 1. For all finite m-structures x, x ≺ Γ. Any m-

structure consisting of one or more instances of Γ, with non-zero m-structures

for its coefficient and exponent, is a transfinite m-structure. For any transfinite

m-structure α and finite m-structure x, x ≺ α. Assuming finite non-zero m-

structures x and y, non-zero m-structures α2 and β2, and m-structures α1 and

β1, the operator ≺ is defined over transfinite m-structures as follows:

(Γα2x + α1) ≺ (Γβ2y + β1)
def.=

α2 ≺ β2 ∨
α2 = β2 ∧ x ≤ y − 1 ∨
α2 = β2 ∧ x = y ∧ α1 ≺ β1.

(6.134)

We say that an m-structure is well formed if it is either a finite m-structure or

an m-structure of the form Γα2x+α1, where x is a non-zero finite m-structure,

150

α2 is a well formed non-zero m-structure, and α1 is a well formed m-structure,

where α1 ≺ Γα2 . Henceforth, we will assume all m-structures are well formed.

The function m-floor applied to α, represented as bbαcc, maps an m-

structure α to an ordinal. For a finite m-structure x, bbxcc = bxc. For non-zero

m-structures α1, α2, and x, where x is finite, and Γα2 ≺ α1:

bbΓα2x + α1cc = ωbbα2ccbxc+ bbα1cc. (6.135)

Therefore, the m-floor function recurses an m-structure, taking the floor of

constituent finite m-structures, and substituting every instance of the symbol

Γ with ω.

Theorem 6.15.1. For m-structures α and β, and letting < represent the usual

ordinal relational operator:

α ≺ β → bbαcc < bbβcc. (6.136)

Proof. The proof may be performed by induction over an m-structure, and

the fact that every finite m-structure is a non-negative real, and x ≤ y − 1 →

bxc < byc.

151

6.16 Extending Measure Structures with Standard Part

As we did for ordinals, we define the dimension of a measure structure.

Definition 6.16.1. Given an m-structure β , we represent β as

β = (Γα2x + α1). (6.137)

We define the dimension of the structure recursively as 1 plus the sum of the

dimension of α1 and the dimension of α2. A finite m-structure, or a non-

negative real number, is assumed to have dimension 1.

We define an equivalence relation using standard part on m-structures

with standard dimension. Assuming non-zero finite m-structures x, y, non-

zero m-structures α2, β2, and for m-structures α1 ≺ Γα2 , and β1 ≺ Γβ2 , we

define the new equivalence relation =st on transfinite m-structures as follows:

(Γα2x + α1) =st (Γβ2y + β1)
def.=

α2 =st β2 ∧
st(x− y) = 0 ∧
α1 =st β1.

(6.138)

For m-structures x and y which are non-negative real numbers, we have that

x=st y
def.= st(x− y)=0. For finite m-structure x and transfinite m-structure

α, then x =st α and α =st x are defined to be false.

152

As an alternative to 6.134, we may define the relational operator on

transfinite m-structures of standard dimension with the use of the function

standard part and the equivalence relation defined in 6.138:

(Γα2x+α1) ≺st (Γβ2y +β1)
def.=

α2 ≺st β2 ∨
α2 =st β2 ∧ st(x− y) ≤ −1 ∨
α2 =st β2 ∧ st(x− y) = 0 ∧ α1 ≺st β1.

(6.139)

For m-structures x and y which are non-negative real numbers, we have that

x≺st y
def.= st(x−y) ≤ −1. For finite m-structure x and transfinite m-structure

α, x ≺st α is defined to be true and α ≺st x is defined to be false.

6.17 Hybrid Measure Structures

An important result of the modified Lyapunov method is that given

some positive valued, differentiable function v, if it can be shown v̇ ≤ β < 0, for

some standard real constant β, then we can assure that the measure is strictly

decreasing, as shown for the ordinal valued measure function 6.98. Rather

than producing an ordinal, we will assume that when reasoning about positive

valued, continuous measure functions g(x), we require that ġ(x) ≤ β < 0,

for some standard real constant β, to assure a decreasing measure. When

reasoning about discrete values, we assume the associated measure for showing

progress is ordinal valued, and require that the ordinal decrease by at least

one in each step.

153

Consequently, one can construct an m-structure with standard dimen-

sion consisting of finite m-structures which are measure functions that are of

two forms:

g(x)

ε
, where g is non-negative real and continuous, and

w(x), where w takes on Natural number values.

(6.140)

We assume both g and w are standard functions. We consider such an m-

structure a hybrid m-structure which is intended to show progress for both the

discrete and continuous portions of the system. The ordinal valued functions

may be used to show progress for the discrete portion, while the continuous

functions are used to show progress for the continuous portion. For example,

one may construct the following hybrid m-structure:

Γ3 w2(x) + Γ2 w1(x) + Γ
g2(x)

ε
+

g1(x)

ε
. (6.141)

In the example 6.141, measure functions w1 and w2 can measure the discrete

portion of the system, while the measure functions g1 and g2 measure the

continuous portion of the system.

However, in showing a decreasing measure for this hybrid m-structure,

we assume the relational operator ≺st and equivalence relation =st, defined in

the previous section.

We conjecture that we may show progress toward some predicate Q if

we can generate a measure function m whose value is a hybrid m-structure

such that:
¬Q(x) → m(x, σ(x, ε), ε) ≺st m(x, ε), and

Q(x) → m(x, ε) = 0.
(6.142)

154

We note that in the case of a particular continuous measure function g defined

as part of a hybrid m-structure, and assuming ¬Q(x), the requirement in 6.142

reduces to showing one of the following for this particular function g:

P1(x, ε) → st

(
g(σ(x, ε))

ε

)
− st

(
g(x)

ε

)
≤ −1, (6.143)

or

P2(x, ε) → st

(
g(σ(x, ε))

ε

)
− st

(
g(x)

ε

)
= 0. (6.144)

The predicates P1 and P2 represent the conditions under which the inequalities

6.143 and 6.144, respectively, are required to hold to show a decreasing mea-

sure. Both of these inequalities may be rewritten, by properties of standard

part:

P1(x, ε) → st

(
g(σ(x, ε))− g(x)

ε

)
≤ −1, (6.145)

P2(x, ε) → st

(
g(σ(x, ε))− g(x)

ε

)
= 0. (6.146)

In a proof similar to that for the modified Lyapunov function, it may be

shown that, in some cases, the requirement in 6.145 can be reduced to showing

ġ(x) ≤ −1, for P1(x, ε). A case where the derivative is not applicable is when

g(σ(x, ε)) − g(x) is a nonzero standard number. However, in this case, the

measure may still be shown to decrease if g(σ(x, ε))−g(x) is negative. It should

be noted that if one can generate a function g such that P1(x, ε) → ġ(x) ≤ β,

for a constant negative standard real β, then one can generate a function

g2(x) = g(x)/|β|, where P1(x, ε) → ġ2(x) ≤ −1. Similarly, it may be shown

that 6.146 can be reduced to ġ(x) = 0, for P2(x, ε).

155

6.18 Summary

In this chapter we presented formal methods whereby one can show

safety and progress properties about the solution of a well formed hybrid model

as described in 5.1.1. We also presented soundness proofs for each of the

methods. In addition, we presented simple example systems for which we

applied the safety and progress proof procedure to show safety and progress

properties, respectively. We also demonstrated how a modified form of the

Lyapunov function may be used in reasoning about safety and progress using

the proof methods we have outlined.

156

Chapter 7

Formal Reasoning About an Example Hybrid

System

We will model a simple closed loop computer controlled positioning

system. The computer is to monitor the position of the physical system and

adjust this position by sending a signal to the physical system so as to adjust

it to a position as entered by the user.

The goal of this chapter is to demonstrate how to model a computer

program and the associated physical system. In modeling the physical sys-

tem the example demonstrates a discontinuous vector field. In modeling the

computer system, the example demonstrates modeling of the computer pro-

gram, modeling of the conversion of the analog signal to a discrete signal,

and modeling of the real time execution of the program at discrete intervals.

This chapter also demonstrates the use of predicates defined in 6.2 for the

generation of safety and progress properties.

The ACL2r theorem prover [1, 29] is used to define the system model.

The theorem prover is also used to fulfill the proof obligations of the safety

and progress proof procedures.

157

7.1 System Description

We propose an example computer controlled positioning system con-

sisting of a computer and a simple physical system that has three modes of

operation. The physical system is characterized by the real valued variable

pos which stands for position. The physical system also attains a signal from

its environment, the integer variable posAo. This variable is assumed to be

generated by a discrete device, such as a computer. The modes of the physical

system are determined by the relation of the variables pos and posAo.

The conditional differential equation for the physical system is:

d pos

dt
=

1 pos < posAo

−1 pos > posAo
0 pos = posAo.

(7.1)

The computer program receives a signal posAi representing the position

of the physical system. The computer program to be executed by the computer

is represented below:

IF posAi - posReq < -3 THEN

posAo := posAo + 5;

ELSE IF posAi - posReq > 2 THEN

posAo := posAo - 5;

ELSE

posAo := posAo;

END IF

Since the computer program is assumed to be integer valued, a conver-

sion is required from the real valued position signal pos to the integer variable

158

posAi used by the computer. To model this, we use the floor function:

posAi := bposc . (7.2)

We assume the computer executes the program at regular time intervals. To

represent time, we add the variable tmr to the system. This variable tmr is

assumed to increase at a constant rate. When tmr ≥ preset, we assume the

computer executes its program. Upon termination of program execution, the

computer remains idle until a time duration preset has elapsed, at which time

it executes its program again, and so on. It is assumed that the computer

executes its program instantaneously.

The variable preset is assumed to be real valued. Neither the computer

nor the physical system modifies the variable preset. The variable posReq

represents the position of the physical system desired by the user. This variable

is also not modified by the computer or the physical system. While these

variables are not modified by the system, they are still considered as part of

the state x. In summary, the system state variables are as follows: pos, posAi,

posAo, posReq, tmr, and preset. Since posAi = bposc, and posAi is not

modified by the system, we will drop the variable posAi and replace it with

bposc.

By the requirements of the system model, we define the assignment

predicate BY :

BY

def.= tmr ≥ preset (7.3)

The assignment function, Y , includes the semantics of the computer program

159

as well as a reset of the variable, tmr, to zero. Hence, by the definition of Y

and BY , the system is such that it executes the program every preset time

units. The following is the definition of the assignment function Y with respect

to the vector component posAo, which we denote as YposAo(x):

YposAo(x) =

posAo + 5 bposc − posReq < −3

posAo− 5 bposc − posReq > 2

posAo −3 ≤ (bposc − posReq) ≤ 2.

(7.4)

The following is the definition of the assignment function Y with respect

to the vector component tmr, which we denote as Ytmr(x):

Ytmr(x) = 0. (7.5)

It is assumed that Y only modifies posAo and tmr. To model the

physical system as well as the behavior of the variable tmr, we define the step

function σ as follows:

σpos(x, ε) =

pos + ε pos < posAo

pos− ε pos > posAo

pos pos = posAo.

σtmr(x, ε) = tmr + ε.

(7.6)

It is assumed that σ only modifies pos and tmr.

160

A representation of the assignment function Y in ACL2r is shown below:

(defun Y (X)

(make-state

(getPosReq x)

(getPreset x)

(getPos x)

;;posAo

(cond

((> (- (floor1 (getPos X)) (getposReq X)) 2)

(- (getposAo X) 5))

((< (- (floor1 (getPos X)) (getposReq X)) -3)

(+ (getposAo X) 5))

(t (getposAo X)))

;;tmr

0))

161

A representation of the system step function σ in ACL2r is shown below:

(defun sigma (X eps)

(make-state

(getPosReq x)

(getPreset x)

;;pos

(cond

((> (getPos X) (getPosAo X))

(- (getpos X) eps))

((< (getPos X) (getPosAo X))

(+ (getpos X) eps))

(t (getPos X)))

(getposAo X)

;;tmr

(+ (getTmr X) eps)))

The overall system function is shown below:

(defun sys-step (X eps)

(cond

((B-Y X) (Y X))

(t (sigma X eps))))

162

7.2 Safety and Progress Properties About the Sample
System

We commence by demonstrating some safety properties about the sys-

tem. We would like to show that the variables of the system stay within

a certain range and that their types are preserved. For example, the com-

puter variables should remain integer, the variable tmr should always satisfy

0 ≤ tmr ≤ preset. The ACL2r function definition for a valid state is as

follows:

(defun valid-state (X eps)

(and (realp (getPos X))

(realp (getPreset X))

(realp (getTmr X))

(integerp (getPosAo X))

(integerp (getPosReq X))

(<= 51/10 (getPreset X))

(<= 0 (getTmr x))

(<= (getTmr x) (+ (getpreset x) eps))))

The function valid-state is a conjunction of several predicates. The

inequality predicates have the ε-transform applied to them, as can be ver-

ified from the inequality (<= (getTmr x) (+ (getpreset x) eps)) which

denotes tmr ≤ preset + ε. In the above property, the predicate (integerp

(getPosAo X)), a predicate recognizing integers, is an example of a discrete

predicate, as allowed by the grammar 6.2. The predicate (realp (getPos

163

X)), a predicate recognizing real numbers, is acceptable since the variables

in our model are assumed to be real. The remaining predicates shown are

inequalities, which satisfy the requirements of 6.2. By the proof obligation

of the safety proof procedure, we must show the property is preserved over a

system step function.

This proof obligation is shown in the following ACL2r theorem defini-

tion:

(defthm valid-state-preserve

(implies

(and (valid-state x eps)

(small-realp eps))

(valid-state (sys-step x eps) eps)))

The predicate (small-realp eps) states that eps is a real number

such that 0 < eps ≤ 1/100.

The objective of the computer is to control the physical system until the

position is within some range of posReq, the position requested by the user.

Once pos reaches within some range of posReq, it should remain within this

range. Therefore, we are required to show, starting from a state as defined by

valid-state, the system will eventually reach a state where pos and posReq

are within some finite range of each other. We attempt to show this with

a progress property about the system. As required by the progress proof

procedure, we must provide a measure function which is decreasing for every

system step, until reaching the state specified by the progress property.

164

The measure function used is as follows:

m1(x, ε) =

0 |posAo− pos| <

pc(preset− tmr) + ε

1 + |posAo−pos|−(preset−tmr+ε)
ε

otherwise

m2(x, ε) =

{
0 |posAo− posReq| ≤ 3
|posAo− posReq| otherwise

m3(x, ε) =

{
0 |pos− posAo| ≤ ε
|pos−posAo|

ε
otherwise

m4(x, ε) =

{
0 preset < tmr
1 + preset−tmr

ε
otherwise

M(x, ε) =

Γ3m1(x, ε) + m4(x, ε) m1(x, ε) > 0
Γ2m2(x, ε) + Γ m2(x, ε) + m4(x, ε) m1(x, ε) = 0 ∧m2(x, ε) > 0
Γ m3(x, ε) + m4(x, ε) m1(x, ε) = 0 ∧m2(x, ε) = 0

∧m3(x, ε) > 0
0 otherwise

(7.7)

165

The function pc(x) returns 0 if x ≤ 0, and x otherwise. The ACL2r

representation of the measure functions is shown below:

(defun m1 (X eps)

(cond

((<= (abs (- (getPosAo X) (getPos X)))

(+ eps (pos-clamp (- (getPreset X)

(getTmr X)))))

0)

(t (+ 1

(/ (- (abs (- (getPosAo X) (getPos X)))

(+ (- (getPreset X) (getTmr X)) eps))

eps)))))

(defun m2 (X eps)

(declare (ignore eps))

(if (and

(<= (- (getPosAo X) (getPosReq X)) 3)

(>= (- (getPosAo X) (getPosReq X)) -3))

0

(abs (- (getPosAo X) (getPosReq X)))))

(defun m3 (X eps)

(if (<= (abs (- (getPos X) (getPosAo X))) eps)

0

(/ (abs (- (getPos X) (getPosAo X))) eps)))

166

(defun m4 (X eps)

(cond

((< (getPreset X) (getTmr X)) 0)

(t (+ 1 (/ (- (getPreset X) (getTmr X)) eps)))))

(defun m (X eps)

(cond

((and

(< (m1 x eps) 1)

(< (m2 x eps) 1)) (make-ord 1

(+ 1 (m3 x eps))

(m4 x eps)))

((< (m1 x eps) 1) (make-ord 2

(+ 1 (m2 x eps))

(make-ord 1

(+ 1 (m3 x eps))

(m4 x eps))))

(t (make-ord 3 (+ 1 (m1 x eps)) (m4 x eps)))))

167

(defun m-fix (x eps)

(cond

((not (and (valid-state x eps)

(small-realp eps)

(not (and

(< (m1 x eps) 1)

(< (m2 x eps) 1)

(<= (abs (- (getpos x)

(getPosReq x)))

(+ 3 (* 2 eps)))))))

0)

(t (o-floor1 (m x eps)))))

Since the measure functions are real valued, we apply a function m-fix

to convert the values generated by the measure functions to ordinals, using

the o-floor1 function. The function o-floor1 is the ACL2r function we

have defined to implement the operator bbxcc discussed in the previous chapter

regarding measure structures.

By showing the above measure decreases, we eventually reach a state

satisfying the progress property:

m1(x, ε) < 1 ∧ m2(x, ε) < 1 ∧ |pos− posReq| ≤ 3 + 2ε. (7.8)

168

It can be verified, and has been shown in ACL2r, that 7.8 may be rewritten

to:
|posAo− pos| ≤ pc(preset− tmr) + ε ∧
|posAo− posReq| ≤ 3 ∧
|pos− posReq| ≤ 3 + 2ε.

(7.9)

We then formally show that 7.9 is a safety property. This proof obli-

gation for the safety proof procedure is shown below in ACL2r:

(defthm safety-property-preserve

(implies

(and (valid-state x eps)

(small-realp eps)

(< (m1 x eps) 1)

(< (m2 x eps) 1)

(<= (abs (- (getpos x) (getPosReq x)))

(+ 3 (* 2 eps))))

(and

(valid-state x eps)

(< (m1 (sys-step x eps) eps) 1)

(< (m2 (sys-step x eps) eps) 1)

(<= (abs (- (getpos (sys-step x eps))

(getposReq (sys-step x eps))))

(+ 3 (* 2 eps)))))

169

Therefore, we have shown that the system reaches a state satisfy-

ing 7.9 and any states thereafter continue to satisfy 7.9. While the prop-

erty 7.9 is a conjunction of three predicates, the one of interest to us is

|pos− posReq| ≤ 3 + 2ε, which states, neglecting the ε-transform, that pos

and posReq are within 3 units of each other.

7.3 Observations about the Measure Function

The measure function 7.7 was derived by observing the system usually

approaches stability in two phases:

Ph1. Since the initial state may be any value satisfying valid-state, then

the computer’s analog output posAo and the valve position pos may not

be the same. Therefore, in phase 1, we assume the system attempts

to bring the physical system position and the computer output posAo

within preset− tmr of each. This behavior is captured by measure m1.

Once posAo and pos are within preset− tmr, m1 becomes zero, and the

system moves to phase 2.

Ph2. In phase 2, the system attempts to match posAo with posReq until they

are within 3 of each other. Measure m2 is used during this phase. It is

possible that, within a single step, the posAo does not change, and the

timer resets. To assure the measure is decreasing even in this scenario,

we added measure m3, which does decrease while the computer is idle,

but the timer tmr is resetting.

170

The measure m4 is used when the computer is idle (not executing its

program). This is important for measuring progress, since it may be, while

the computer is idle, the physical system is idle as well, resulting in a measure

which is non-decreasing. The use of a timer in the model of the computer

system allows the definition of measures which capture progress even when

the computer program is not being executed.

7.4 The Measure Function and Control Algorithms

In showing progress, as well as Lyapunov stability, the user is required

to define a measure function. Often, when designers produce a control algo-

rithm, they have an intuition of how the controller is to stabilize the system.

The progress proof procedure can make this intuition formal by defining a

measure function that is suitable for the computer system and physical sys-

tem under consideration.

There have been attempts to automate the generation of Lyapunov

functions for linear systems. However, these methods are predominately effec-

tive for linear systems [45]. Such methods can certainly be used to extend our

work, as we have shown Lyapunov functions can be used to show stability for

a system. In general, there does not exist an automatic method for showing

stability of an arbitrary control system, since reachability is undecidable for

control systems, even for very simple ones [5, 38].

171

7.5 Summary

We have demonstrated an example application of the system model

defined in Chapter 5, and the safety and progress proof procedures defined in

Chapter 6. We showed, using the progress proof procedure, that a measure

exists whereby the system reaches a state satisfying a property and, by a safety

proof, showed that the system remains in states satisfying this property.

An important observation to be made about the proof of the safety

property is that, although our desired objective is to prove some property

that involves only the two variables pos and posReq, it is necessary to state a

more complicated property, 7.9. If we attempted to prove the safety property

consisting of only pos and posReq, it would not hold, since the unrestricted

variable posAo would result in changes to pos. Therefore, generating a prop-

erty requires some degree of consideration of the system behavior and may

require inclusion of system variables in addition to those originally intended

for the property of interest.

172

Chapter 8

Summary and Future Work

In this dissertation, we have applied nonstandard analysis to formally

model and reason about hybrid systems. The first contribution of this work

is the definition of a computer controlled system model which models both

the semantics of the computer program as well as the ordinary differential

equations governing the behavior of the physical system. The model for the

computer program is a computable function, which can model the semantics

of finite state machines as well as programs consisting of integer arithmetic.

The second contribution of our work is the modeling of physical systems with

discontinuous vector fields. The proposed model allows for infinite switches

in the system in finite time. The third contribution is the formal definition

of a solution to such a model and the proof that such a solution does exist.

The fourth contribution is the development of proof procedures whereby one

may formally reason about safety and progress properties of the nonstandard

model. We have also provided formal proofs of the soundness of the proof

procedures.

173

8.1 Future Work

The model for a physical system which we have presented assumes

ordinary differential equations only. Physical systems are modeled with partial

differential equations as well. Therefore, one area of extending the system is

to allow for the modeling of partial differential equations.

We have developed criteria for the definition of a well formed hybrid

system 5.1.1. We have also developed a grammar 6.2 for predicates used in

safety and progress properties. It would be useful, in a mechanical theorem

proving environment, for the theorem prover to check the definition of a hybrid

system, or require the user to satisfy the requirement for a well formed hybrid

system, prior to admitting a hybrid system definition. Similarly, the theorem

prover can check if the predicates used to reason about safety and progress

meet the requirements of 6.2.

Determining the value of h(x, ε) for an ε-transformation may not be

readily evident. A failed proof attempt may provide the user with some guid-

ance as to the form of h(x, ε) required. Alternatively, a tool may be developed

whereby, for some restricted subclass of properties, the required function h

may be automatically generated.

In the work presented in Chapter 6 regarding hybrid m-structures, we

proposed a method by which to prove progress for such an m-structure. As

future work, one may prove the soundness of such an approach. Also, while

we have demonstrated proof methods for safety and progress properties, as

174

future work, one may investigate the formulation of a proof method for proving

infinitely often properties about the system solution we have defined.

In the example problem presented in Chapter 7, the model for the

computer is one in which the program executes instantaneously and at regular

intervals. Other models for the computer may be considered. For example,

the computer program may still be modeled to execute instantaneously, but

using data attained from the physical system during the previous cycle. Also,

the model of the computer may also be extended to include parallel computers

or distributed computers to model multiple controllers for a system.

In the process of formally demonstrating a property, we have noted that

the proof obligations reduce to several cases, where the cases are a composition

of the cases of the computer system, the physical system, and the progress or

safety property being proved. Rather than formally demonstrating a property

about a system, it may be investigated whether one may use the cases resulting

from the proof attempt for a property as a guide for generating test sets for

the simulation of the system.

175

Appendices

176

Appendix A

Mechanical Proof of Existence and Uniqueness

The following sections provide the printout of the definition files sub-

mitted to the mechanical theorem prover ACL2r in performing the mechanical

proof of the existence and uniqueness theorem for a Lipschitz continuous vec-

tor field as defined in Chapter 4. In our proofs, we have assumed a real, scalar

value for the physical system variable x.

In Chapter 4, we referred to the Euler approximation as ρ. Here, we

refer to the Euler approximation as run. Unlike the presentation in Chapter

4, the run function is defined in terms of a natural number n representing the

iteration number in implementing the Euler method. Therefore, when defining

φ in terms of run, we substitute bt/εc for n. Throughout all the subsequent

file printouts, the variable representing time t is represented as tm, since t in

ACL2r represents the constant true.

The printouts shown in the subsequent sections are of the following

files:

1. arith-nsa4.lisp Definitions of basic arithmetic theorems.

2. abs.lisp Definitions of theorems about the absolute value function.

177

3. tm-floor.lisp Definitions of functions and theorems relating time t to

bt/εc ε, as well as relating t to n ε, for natural number n.

4. eexp.lisp The exponent function, ex, and some properties about this

function used in our proofs.

5. nsa.lisp Definitions of basic nonstandard theorems about real numbers.

6. Computed-hints.lisp Definitions of computed hint functions. One

computed hint function provides automatic hints to ACL2r in opening up

function definitions. Another computed hint function applies standard

part to both sides of an inequality.

7. phi-exists.lisp Definitions to show that the solution function φ, as

described in Chapter 4, does exist. The file also includes definition of

the function run which is the ACL2r representation of the function ρε

described in Chapter 4.

8. phi-properties.lisp Definitions to show properties about the solution

functions φ and ρε. These properties include continuity with respect to

time t, continuity with respect to x, and time invariance, which are dis-

cussed in Chapter 4. This file also includes the definition of the theorem

which states that the standard part of ρε is identical to the standard part

of ρδ, for ε and δ positive infinitesimals. Hence, demonstrating that φ is

independent of the choice of positive ε.

178

9. phi-unique.lisp Definitions to show that, given an alternative function

φ2, denoted phi2 in ACL2r, which does satisfy the differential equation,

then the proposed solution φ is equal to φ2. Since φ is equal to any

function φ2 which satisfies the differential equation, then the solution to

the differential equation is unique.

179

A.1 Arithmetic Theorems

This section presents a printout of file arith-nsa4.lisp. This file

consists of definitions of some arithmetic theorems we use in our proofs.

(in-package "ACL2")

;;===================================
;;arithmetic
(defun coeff-term-order (x y)
(declare (xargs :mode :program))
(cond
((and
(eq (fn-symb x)

’binary-*)
(quotep (fargn x 1))
(eq (fn-symb y)

’binary-*)
(quotep (fargn y 1))) (term-order (fargn x 2)

(fargn y 2)))
((and
(eq (fn-symb x)

’binary-*)
(quotep (fargn x 1))) (if (equal (fargn x 2) y)

nil
(term-order (fargn x 2)

y)))
((and
(eq (fn-symb y)

’binary-*)
(quotep (fargn y 1))) (if (equal x (fargn y 2))

t
(term-order x

(fargn y 2))))
(t (term-order x y))))

(defthm +-commut-coeff-2way
(implies
(syntaxp (not (coeff-term-order y x)))
(equal (+ y x) (+ x y)))
:rule-classes ((:rewrite :loop-stopper nil)))

(defthm +-commut-coeff-3way

180

(implies
(syntaxp (not (coeff-term-order y x)))
(equal (+ y x z) (+ x y z)))
:rule-classes ((:rewrite :loop-stopper nil)))

(defthm *-commut-3way
(equal (* y x z) (* x y z))
:hints (("Goal" :use ((:instance commutativity-of-* (x y) (y (* x z)))))))

;;disable the usual commuativity of +. If not disabled, looping may occur.
(in-theory (disable commutativity-of-+))

(defthm *-zero
(equal (* 0 x) 0))

(defthm +-zero
(equal (+ 0 x) (fix x)))

(defthm uminus-is-*-neg-1
(equal (- x) (* -1 x)))

(defthm fold-consts-in-+
(implies (and (syntaxp (quotep x))

(syntaxp (quotep y)))
(equal (+ x (+ y z))

(+ (+ x y) z))))

(defthm fold-consts-in-*
(implies (and (syntaxp (quotep x))

(syntaxp (quotep y)))
(equal (* x (* y z))

(* (* x y) z))))

(defthm combine-terms-+-3way
(implies (and (syntaxp (quotep a))

(syntaxp (quotep b)))
(equal (+ (* a x) (+ (* b x) y))

(+ (* (+ a b) x) y))))

(defthm combine-terms-+-2way
(implies (and (syntaxp (quotep a))

(syntaxp (quotep b)))
(equal (+ (* a x) (* b x))

(* (+ a b) x))))

181

(defthm combine-terms-+-3way-unary
(implies (syntaxp (quotep a))

(equal (+ x (+ (* a x) y))
(+ (* (+ a 1) x) y))))

(defthm combine-terms-+-2way-unary
(implies (syntaxp (quotep a))

(equal (+ x (* a x))
(* (+ a 1) x))))

(defthm /-cancellation
(implies (and (acl2-numberp x)

(not (equal 0 x)))
(equal (* x (/ x) y)

(fix y)))
:hints (("Goal" :use ((:instance commutativity-of-*

(x y)
(y (* x (/ x))))))))

(defthm <-*-right-cancel
(implies (and (realp x)

(realp y)
(realp z))

(iff (< (* x z) (* y z))
(cond
((< 0 z)
(< x y))
((equal z 0)
nil)
(t (< y x)))))

:hints (("Goal" :use
((:instance (:theorem

(implies (and (realp a)
(< 0 a)
(realp b)
(< 0 b))

(< 0 (* a b))))
(a (abs (- y x)))
(b (abs z)))))))

(defthm <-*-left-cancel
(implies (and (realp x)

(realp y)
(realp z))

(iff (< (* z x) (* z y))

182

(cond
((< 0 z)
(< x y))
((equal z 0)
nil)
(t (< y x))))))

(defthm distrib-/-over-*
(equal (/ (* x y)) (* (/ x) (/ y)))
:hints (("Goal" :use ((:instance (:theorem

(implies
(and
(acl2-numberp y)
(acl2-numberp z)
(not (equal y 0))
(not (equal z 0)))
(equal (fix x) (* (/ y) (/ z) y z x))))

(x (/ (* x y))) (y x) (z y))
(:instance inverse-of-* (x (* x y)))))

("Subgoal 2"
:use (:instance (:theorem

(implies
(equal (* x y) 0)
(or (equal (fix x) 0)

(equal (fix y) 0))))))))

;;Generate a list of terms each of which appears as the divisor in
;; a unary-/ term in the given TERM which is assumed to be a product
;; of terms, or itself a unary-/ form.
(defun FIND-Divisors-in-times (TERM)
(cond
((eq (fn-symb term) ’binary-*)
(append (find-divisors-in-times (fargn term 1))

(find-divisors-in-times (fargn term 2))))
((eq (fn-symb term) ’unary-/)
(list (fargn term 1)))
(t nil)))

;;Generate a list of terms each of which appears as the divisor
;; in a unary-/ term in the given TERM which is assumed to be a
;; polynomial in sum of products form.
(DEFUN FIND-DIVISORS-IN-POLY (TERM)
(IF (EQ (FN-SYMB TERM) ’BINARY-+)

(append (find-divisors-in-times (FARGN TERM 1))
(find-divisors-in-poly (FARGN TERM 2)))

183

(find-divisors-in-times TERM)))

;;Find a binding to a term which appears as the divisor in a unary-/ term
;; in the given LHS or RHS polynomials.
;; Polynomials are assumed to be in sum of products form.
;; If no such term exists, return nil, if more than one exists,
;; pick the first and bind that term to x.
(DEFUN FIND-DIVISORS-BIND-TERM (LHS RHS)
(LET ((DIVISOR-LST (APPEND (find-divisors-in-poly LHS)

(find-divisors-in-poly RHS))))
(IF DIVISOR-LST

(LIST (CONS ’X (CAR DIVISOR-LST)))
NIL)))

;;If a term appears as a divisor in the LHS or RHS of an equality,
;; where LHS and RHS are assumed to be polynomials,
;; then rewrite the equality where both sides are multiplied by
;; the divisor term, resulting in cancellation of the divisor term
(defthm equal-cancel-divisors
(implies
(and
(acl2-numberp LHS)
(acl2-numberp RHS)
(BIND-FREE (FIND-divisors-bind-term LHS RHS) (X))
(acl2-numberp x)
(not (equal x 0)))

(equal (equal LHS RHS) (equal (* x LHS) (* x RHS))))
:hints (("Goal" :use ((:instance (:theorem

(implies
(equal a b)
(equal (* x a) (* x b))))

(x (/ x)) (a (* x LHS)) (b (* x RHS)))))))

;;If a term appears as a divisor in the LHS or RHS of an inequality,
;; where LHS and RHS are assumed to be polynomials,
;; then rewrite the inequality where both sides are multiplied by
;; the divisor (with the inequality operand adjusted according
;; to the sign of the divisor term), resulting in cancellation
;; of the divisor term.
(defthm <-cancel-divisors
(implies
(and
(realp LHS)
(realp RHS)
(BIND-FREE (FIND-divisors-bind-term LHS RHS) (X))

184

(realp x)
(not (equal x 0)))

(iff (< LHS RHS) (if (< 0 x)
(< (* x LHS) (* x RHS))
(> (* x LHS) (* x RHS))))))

(defthm /-self-inversion
(equal (/ (/ x)) (fix x))

:hints (("Goal" :cases ((not (equal x 0))))))

(defthm distributivity-left
(equal (* (+ x y) z)

(+ (* x z) (* y z))))

(defthm pos-*-thm
(implies
(and
(realp x)
(realp y)
(< 0 x)
(< 0 y))
(< 0 (* x y)))

:rule-classes nil)

(defthm pos-factor-<=-thm
(implies
(and
(realp x)
(realp y)
(realp a)
(<= x y)
(<= 0 a))
(<= (* a x) (* a y)))

:rule-classes nil
:hints (("Goal" :use ((:instance pos-*-thm (x (- y x)) (y a))))))

(defthm pos-factor-<-thm
(implies
(and
(realp x)
(realp y)
(realp a)
(< x y)
(< 0 a))
(< (* a x) (* a y)))

185

:rule-classes nil
:hints (("Goal" :use ((:instance pos-*-thm (x (- y x)) (y a))))))

;;end arithmatic
;;===

;;==================================
;; floor1

(defthm floor1-<
(implies
(and
(realp x)
(realp y)
(<= (+ x 1) y))

(< (floor1 x) (floor1 y))))

(defthm floor1-limits
(implies
(and
(realp x))

(and
(<= 0 (- x (floor1 x)))
(< (- x (floor1 x)) 1)))

:rule-classes nil)

(defthm floor1-+-integer
(implies
(and
(integerp i)
(realp x))

(equal (floor1 (+ i x)) (+ i (floor1 x)))))

(defthm floor1-pos
(implies
(and
(realp x)
(< 0 x))

(<= 0 (floor1 x))))

(defthm floor1-neg
(implies
(and
(realp x)
(< x 0))

186

(<= (floor1 x) 0)))

(defthm floor1-*-const
(implies
(and
(realp x)
(realp k)
(syntaxp (quotep k)))

(equal (< 0 (* k (floor1 x))) (cond
((< 0 k) (< 0 (floor1 x)))
((= 0 k) nil)
((< k 0) (< (floor1 x) 0)))))

:hints (("Goal" :use ((:instance <-*-left-cancel
(z k)
(x 0)
(y (floor1 x)))))))

;;end floor1
;;==================================

;;===
;;non-standard analysis

(defthm standard-part-*-1
(equal (standard-part (* -1 x))

(* -1 (standard-part x)))
:hints (("Goal" :use (

(:instance standard-part-of-uminus)))))

(defthm standard-part-abs
(implies
(realp x)
(equal (standard-part (abs x)) (abs (standard-part x)))))

;;end non-standard analysis
;;===

187

A.2 Theorems About Absolute Value

This section presents a printout of file abs.lisp. This file consists of

definitions of theorems about the absolute value function.

(in-package "ACL2")

(include-book "arith-nsa4")

(defthm abs-realp
(implies
(realp x)
(realp (abs x)))

:rule-classes :type-prescription)

(defthm abs-non-neg-thm
(implies
(and
(realp x)
(<= 0 x))
(equal (abs x)

x)))

(defthm abs-neg-thm
(implies
(and
(realp x)
(< x 0))
(equal (abs x)

(- x))))

(defthm abs-pos-*-left-thm
(implies
(and
(realp x)
(realp y)
(<= 0 x))
(equal (abs (* x y))

(* x (abs y)))))

(defthm abs-pos-*-right-thm
(implies
(and

188

(realp x)
(realp y)
(<= 0 x))
(equal (abs (* y x))

(* x (abs y)))))

(defthm abs-neg-*-left-thm
(implies
(and
(realp x)
(realp y)
(< x 0))
(equal (abs (* x y))

(* (- x) (abs y)))))

(defthm abs-neg-*-right-thm
(implies
(and
(realp x)
(realp y)
(< x 0))
(equal (abs (* y x))

(* (- x) (abs y)))))

(defthm abs-triangular-inequality-thm
(implies
(and
(realp x)
(realp y))
(<= (abs (+ x y))

(+ (abs x) (abs y))))
:rule-classes :linear)

(defthm abs-triangular-inequality-3way-thm
(implies
(and
(realp x)
(realp y)
(realp z))
(<= (abs (+ x y z))

(+ (abs x) (abs y) (abs z)))))

(defthm abs-is-non-neg-thm
(implies
(realp x)

189

(<= 0 (abs x)))
:rule-classes :type-prescription)

(defthm abs0-thm
(implies
(equal (abs x) 0)
(equal x 0))

:rule-classes :forward-chaining)

(defthm abs-*-thm
(implies
(and
(realp x)
(realp y))
(equal (abs (* x y)) (* (abs x) (abs y)))))

(defthm abs-<-*-thm
(Implies
(and
(realp x)
(realp y)
(realp a)
(<= (abs x) (abs y)))
(<= (abs (* a x)) (abs (* a y))))

:rule-classes :linear
:hints (("Goal" :in-theory (disable abs <-*-LEFT-CANCEL)

:use ((:instance pos-factor-<=-thm (x (abs x))
(y (abs y))
(a (abs a)))

(:instance abs-*-thm (x a) (y x))
(:instance abs-*-thm (x a) (y y))))))

(defthm abs-limited-thm
(implies
(and
(realp x)
(i-limited x))
(i-limited (abs x)))

:rule-classes ((:rewrite) (:type-prescription)))

(defthm abs-standard-numberp
(implies
(and
(realp x)

190

(standard-numberp x))
(standard-numberp (abs x))))

191

A.3 Some Theorems About Time

This section presents a printout of file tm-floor.lisp. This file con-

sists of definitions which relate time t with ε bt/εc as well as relating t with

εn, for natural n. Some of the theorems result in rewrite rules which recognize

certain terms and replace them with some specific term such as (tm-eps-fun

tm eps), which may then trigger a rewrite rule about (tm-eps-fun tm eps).

The variable time t is represented as tm, since t in ACL2r represents the

constant true.

(in-package "ACL2")

(include-book "arith-nsa4")
(include-book "nsa")
(include-book "computed-hints")

(in-theory (disable i-large))
(in-theory (disable standard-part-<=))

(defthm tm-floor-thm-hint-1
(implies
(and
(realp tm)
(realp eps)
(< 0 eps)
(i-small eps))
(equal (standard-part (* eps (floor1 (/ tm eps))))

(standard-part tm)))
:rule-classes nil
:hints ((standard-part-hint stable-under-simplificationp clause)

("Goal" :in-theory (disable <-CANCEL-DIVISORS)
:use ((:instance pos-factor-<-thm (x (- (/ tm eps) 1))

(y (floor1 (/ tm eps))) (a eps))
(:instance pos-factor-<=-thm (x (floor1 (/ tm eps)))

(y (/ tm eps)) (a eps))))))

(defthm tm-floor-thm
(implies
(and

192

(realp tm)
(standard-numberp tm))
(equal (STANDARD-PART (* (/ (I-LARGE-INTEGER))

(FLOOR1 (* (I-LARGE-INTEGER) TM))))
tm))

:hints (("Goal" :use ((:instance tm-floor-thm-hint-1
(eps (/ (i-large-integer))))))))

(defthm tm-floor-limited-thm
(implies
(and
(realp tm)
(standard-numberp tm))
(i-limited (* (/ (I-LARGE-INTEGER))

(FLOOR1 (* (I-LARGE-INTEGER) TM)))))
:hints (("Goal" :use ((:instance standard+small->i-limited

(x (standard-part
(* (/ (I-LARGE-INTEGER))

(FLOOR1 (* (I-LARGE-INTEGER) TM)))))
(eps (- (* (/ (I-LARGE-INTEGER))

(FLOOR1 (* (I-LARGE-INTEGER) TM)))
(standard-part

(* (/ (I-LARGE-INTEGER))
(FLOOR1 (* (I-LARGE-INTEGER) TM)))

))))))))

(defthm tm-floor-*a-hint-1
(implies
(and
(realp tm)
(realp a)
(i-limited a)
(standard-numberp tm))
(equal (STANDARD-PART (* a (/ (I-LARGE-INTEGER))

(FLOOR1 (* (I-LARGE-INTEGER) TM))))
(standard-part (* a tm))))

:rule-classes nil
:hints (("Goal" :in-theory (disable *-COMMUT-3WAY))))

(defthm tm-floor-*a-thm
(implies
(and
(realp tm)
(realp a)
(i-limited a)

193

(standard-numberp tm))
(equal (STANDARD-PART (* (/ (I-LARGE-INTEGER)) a

(FLOOR1 (* (I-LARGE-INTEGER) TM))))
(standard-part (* a tm))))

:hints (("Goal" :in-theory (disable i-large)
:use ((:instance tm-floor-*a-hint-1)))))

(defun tm-fun (tm)
(* (/ (I-LARGE-INTEGER))

(FLOOR1 (* (I-LARGE-INTEGER) TM))))

(defthm tm-fun-limited-thm
(implies
(and
(realp a)
(realp tm)
(standard-numberp tm))
(i-limited (tm-fun tm))))

(defthm tm-fun-standard-part-thm
(implies
(and
(realp a)
(realp tm)
(standard-numberp tm))
(equal (standard-part (tm-fun tm))

tm)))

(defthm tm-fun-rw-1-thm
(implies
(and
(realp tm)
(standard-numberp tm))
(equal (* (/ (I-LARGE-INTEGER))

(FLOOR1 (* (I-LARGE-INTEGER) TM)))
(tm-fun tm))))

(defthm tm-fun-rw-2-thm
(implies
(and
(realp a)
(realp tm)
(standard-numberp tm))
(equal (* (/ (I-LARGE-INTEGER)) a

(FLOOR1 (* (I-LARGE-INTEGER) TM)))

194

(* (tm-fun tm) a)))
:hints (("Goal" :in-theory (disable tm-fun-rw-1-thm))))

(defthm tm-fun-rw-3-thm
(implies
(and
(realp a)
(realp tm)
(standard-numberp tm))
(equal (* (/ (I-LARGE-INTEGER))

(FLOOR1 (* (I-LARGE-INTEGER) TM))
a)

(* (tm-fun tm) a)))
:hints (("Goal" :in-theory (disable tm-fun-rw-1-thm tm-fun-rw-2-thm))))

(defthm tm-fun-rw-4-thm
(implies
(and
(realp a)
(realp b)
(realp tm)
(standard-numberp tm))
(equal (* (/ (I-LARGE-INTEGER))

a
(FLOOR1 (* (I-LARGE-INTEGER) TM))
b)

(* (tm-fun tm) a b)))
:hints (("Goal" :in-theory (disable tm-fun-rw-1-thm

tm-fun-rw-2-thm
tm-fun-rw-3-thm))))

;; tm-fun should be disabled. Enabling it may result in rewrite loops.
(in-theory (disable tm-fun))

(defun eps-n-fun (eps n)
(* eps n))

(defthm eps-n-fun-type-thm
(implies
(and
(realp eps)
(realp n))
(realp (eps-n-fun eps n)))

:rule-classes :type-prescription)

195

(defthm eps-n-fun-0-thm
(equal (eps-n-fun eps 0) 0))

(defthm eps-n-fun-limited-thm
(implies
(and
(realp eps)
(integerp n)
(i-limited (* eps n)))
(i-limited (eps-n-fun eps n))))

(defthm eps-n-fun-rw-1-thm
(implies
(and
(integerp n)
(realp eps)
(syntaxp (eq eps ’eps))
(i-limited (* eps n)))
(equal (* eps n)

(eps-n-fun eps n))))

(defthm eps-n-fun-rw-2-thm
(implies
(and
(realp a)
(syntaxp (eq eps ’eps))
(integerp n)
(realp eps)
(i-limited (* eps n)))
(equal (* eps a n)

(* (eps-n-fun eps n) a)))
:hints (("Goal" :in-theory (disable eps-n-fun-rw-1-thm))))

(defthm eps-n-fun-rw-3-thm
(implies
(and
(realp a)
(syntaxp (eq eps ’eps))
(integerp n)
(realp eps)
(i-limited (* eps n)))
(equal (* eps n a)

(* (eps-n-fun eps n) a)))
:hints (("Goal" :in-theory (disable eps-n-fun-rw-1-thm

196

eps-n-fun-rw-2-thm))))

(defthm eps-n-fun-rw-4-thm
(implies
(and
(realp a)
(realp b)
(syntaxp (eq eps ’eps))
(integerp n)
(realp eps)
(i-limited (* eps n)))
(equal (* eps a n b)

(* (eps-n-fun eps n) a b)))
:hints (("Goal" :in-theory (disable eps-n-fun-rw-1-thm

eps-n-fun-rw-2-thm
eps-n-fun-rw-3-thm))))

;; eps-n-fun should be disabled. Enabling it may result in rewrite loops.
(in-theory (disable eps-n-fun))

(defun tm-eps-fun (tm eps)
(* eps

(FLOOR1 (/ TM eps))))

(defthm tm-eps-type
(implies
(realp eps)
(realp (tm-eps-fun tm eps)))

:rule-classes :type-prescription
:hints (("Goal" :in-theory (enable tm-eps-fun))))

(defthm tm-eps-pos-thm
(implies
(and
(realp tm)
(realp eps)
(<= 0 tm)
(< 0 eps))
(<= 0 (tm-eps-fun tm eps)))

:rule-classes :type-prescription
:hints (("Goal" :in-theory (enable tm-eps-fun))))

(defthm tm-eps-fun-standard-part-thm
(implies
(and

197

(realp eps)
(< 0 eps)
(i-small eps)
(realp tm)
(standard-numberp tm))
(equal (standard-part (tm-eps-fun tm eps))

tm))
:hints (("Goal" :use ((:instance tm-floor-thm-hint-1)))))

(defthm tm-eps-fun-limited-thm
(implies
(and
(realp eps)
(< 0 eps)
(i-small eps)
(realp tm)
(standard-numberp tm))
(i-limited (tm-eps-fun tm eps)))

:hints (("Goal" :in-theory (disable tm-eps-fun)
:use ((:instance standard+small->i-limited

(x (standard-part (tm-eps-fun tm eps)))
(eps (- (tm-eps-fun tm eps)

(standard-part
(tm-eps-fun tm eps)))))))))

(defthm tm-eps-fun-rw-1-thm
(implies
(and
(realp eps)
(< 0 eps)
(i-small eps)
(realp tm)
(standard-numberp tm))
(equal (* eps

(FLOOR1 (* (/ EPS) TM)))
(tm-eps-fun tm eps))))

(defthm tm-eps-fun-rw-2-thm
(implies
(and
(realp eps)
(< 0 eps)
(i-small eps)
(realp a)
(realp tm)

198

(standard-numberp tm))
(equal (* eps a

(FLOOR1 (* (/ EPS) TM)))
(* (tm-eps-fun tm eps) a)))

:hints (("Goal" :in-theory (disable tm-eps-fun-rw-1-thm))))

(defthm tm-eps-fun-rw-3-thm
(implies
(and
(realp eps)
(< 0 eps)
(i-small eps)
(realp a)
(realp tm)
(standard-numberp tm))
(equal (* eps

(FLOOR1 (* (/ EPS) TM))
a)

(* (tm-eps-fun tm eps) a)))
:hints (("Goal" :in-theory (disable tm-eps-fun-rw-1-thm

tm-eps-fun-rw-2-thm))))

(defthm tm-eps-fun-rw-4-thm
(implies
(and
(realp eps)
(< 0 eps)
(i-small eps)
(realp a)
(realp b)
(realp tm)
(standard-numberp tm))
(equal (* eps

a
(FLOOR1 (* (/ EPS) TM))
b)

(* (tm-eps-fun tm eps) a b)))
:hints (("Goal" :in-theory (disable tm-eps-fun-rw-1-thm

tm-eps-fun-rw-2-thm
tm-eps-fun-rw-3-thm))))

;; tm-eps-fun should be disabled. Enabling it may result in rewrite loops.
(in-theory (disable tm-eps-fun))

199

A.4 Exponent Function

This section presents a printout of file eexp.lisp. This file consists

of definitions for the exponent function, ex, for real x. Rather than explicitly

defining the exponent function as in [29], we add the function symbol eexp to

the ACL2r environment and define axioms about eexp which we use in our

proofs.

(in-package "ACL2")

(include-book "arith-nsa4")

(defstub eexp (x) t)

(defaxiom eexp-type
(implies
(realp x)
(and
(<= 0 (eexp x))
(realp (eexp x))))

:rule-classes :type-prescription)

(defaxiom eexp-standard-thm
(implies
(and
(realp x)
(standard-numberp x))
(standard-numberp (eexp x)))

:rule-classes :type-prescription)

(defaxiom eexp-standard-part-thm
(implies
(and
(realp x)
(i-limited x))
(equal (standard-part (eexp x))

(eexp (standard-part x)))))

(defaxiom eexp-i-limited-thm
(implies
(and

200

(realp x)
(i-limited x))
(i-limited (eexp x)))

:rule-classes ((:type-prescription) (:rewrite)))

(defaxiom eexp-0
(equal (eexp 0)

1))

(defaxiom eexp-monotone
(implies
(and
(realp x)
(realp y)
(< x y))
(< (eexp x) (eexp y))))

(defaxiom eexp-pos-arg
(implies
(and
(realp x)
(< 0 x))
(< 1 (eexp x)))

:rule-classes ((:linear) (:type-prescription)))

(defaxiom eexp-neg-arg
(implies
(and
(realp x)
(< x 0))
(< (eexp x) 1))

:rule-classes :linear)

(defaxiom 1+x-<=eexp-thm
(implies
(and
(realp x)
(<= 0 x))
(<= (+ 1 x)

(eexp x)))
:rule-classes :linear)

(defaxiom eexp-plus-thm
(implies
(and

201

(realp x)
(realp y))
(equal (* (eexp x) (eexp y))

(eexp (+ x y)))))

(defthm eexp-plus-thm-3way
(implies
(and
(realp x)
(realp y)
(realp z))
(equal (* (eexp x) (eexp y) z)

(* (eexp (+ x y)) z))))

202

A.5 Nonstandard Analysis Theorems

This section presents a printout of file nsa.lisp. This file consists of

definitions of basic nonstandard theorems about the reals which we use in our

proofs.

(in-package "ACL2")

(include-book "arith-nsa4")
(include-book "abs")

(deflabel nsa-theory-start)

(defthm standard-part-abs-0-thm
(iff (= (standard-part (abs x)) 0)

(= (standard-part x) 0)))

(defthm standard-numberp-times-type-thm
(implies
(and
(standard-numberp x)
(standard-numberp y))
(standard-numberp (* x y)))

:rule-classes ((:type-prescription)))

(defthm standard-numberp-plus-type-thm
(implies
(and
(standard-numberp x)
(standard-numberp y))
(standard-numberp (+ x y)))

:rule-classes ((:type-prescription)))

(encapsulate ()
(local (defthm arith-4

(implies
(and
(realp x)
(realp y)
(not (equal x 0))
(not (equal y 0))
(<= (abs x)

(abs y)))

203

(<= (abs (/ y))
(abs (/ x))))

:rule-classes nil))

(defthm standard-bound-x-implies-limited-x-thm
(implies
(and
(standard-numberp y)
(realp y)
(realp x)
(not (equal y 0))
(<= (abs x)

(abs y)))
(i-limited x))
:rule-classes nil
:hints (("Goal" :cases ((equal y 0) (not (equal y 0)))

:in-theory (disable abs))
("Goal’" :use ((:instance arith-4)

(:instance standard-part-<= (x (abs (/ y)))
(y (abs (/ x))))))))

(defthm limited-bound-x-implies-limited-x-thm
(implies
(and
(i-limited y)
(realp y)
(realp x)
(not (equal y 0))
(<= (abs x)

(abs y)))
(i-limited x))
:rule-classes nil
:hints (("Goal" :cases ((i-small y) (not (i-small y)))

:in-theory (disable abs))
("Subgoal 2" :use ((:instance arith-4)

(:instance standard-part-<= (x (abs (/ y)))
(y (abs (/ x))))))

("Subgoal 1" :use ((:instance arith-4)
(:instance standard-part-<= (x (abs (/ y)))

(y (abs (/ x)))))))))

(defthm plus-limited
(implies
(and
(realp x)

204

(realp y)
(i-limited x)
(i-limited y))
(i-limited (+ x y)))

:rule-classes :rewrite
:hints (("Goal" :use ((:instance standard+small->i-limited

(x (standard-part (+ x y)))
(eps (- (+ x y) (standard-part (+ x y)))))))))

(defthm times-limited
(implies
(and
(realp x)
(realp y)
(i-limited x)
(i-limited y))
(i-limited (* x y)))

:rule-classes :rewrite
:hints (("Goal" :use ((:instance standard+small->i-limited

(x (standard-part (* x y)))
(eps (- (* x y) (standard-part (* x y)))))))))

(defthm divide-limited
(implies
(and
(realp x)
(realp y)
(i-limited x)
(i-limited y)
(not (i-small y)))
(i-limited (/ x y)))

:rule-classes :rewrite
:hints (("Goal" :use ((:instance standard+small->i-limited

(x (standard-part (/ x y)))
(eps (- (/ x y) (standard-part (/ x y)))))))))

(defthm btwn-0-and-1-limited-thm
(implies
(and
(realp a)
(< 0 a)
(< a 1))
(i-limited a))

:rule-classes nil
:hints (("Goal" :cases ((i-small a) (not (i-small a))))

205

("Subgoal 1" :use ((:instance (:theorem (implies
(and
(realp x)
(realp y)
(not (equal x 0))
(not (equal y 0))
(< 0 x)
(< x 1))
(< 1 (/ x)))))

(:instance standard-part-<= (x 1)
(y (/ a)))))))

(defthm sandwich-limited-thm-hint-1
(implies
(and
(realp u)
(realp v)
(realp a)
(< 0 a)
(< a 1)
(i-limited u)
(i-limited v))
(i-limited (+ v (* a (- u v)))))

:rule-classes nil
:hints (("Goal" :use ((:instance btwn-0-and-1-limited-thm)))))

(defthm sandwich-limited-thm
(implies
(and
(realp u)
(realp v)
(realp x)
(< u x)
(< x v)
(i-limited u)
(i-limited v))
(i-limited x))

:rule-classes nil
:hints (("Goal" :in-theory (disable i-large

DISTRIBUTIVITY
distributivity-left)

:use ((:instance sandwich-limited-thm-hint-1
(a (/ (- x v) (- u v))))))))

(defthm /-large-integer-is-ismall-thm

206

(i-small (/ (i-large-integer)))
:hints (("Goal" :in-theory (disable i-large-integer-is-large)

:use ((:instance i-large-integer-is-large)))))

(deftheory nsa-theory
(set-difference-theories
(universal-theory :here)
(universal-theory ’nsa-theory-start)))

(defthm standard-part-limited-thm
(implies
(and
(realp x)
(i-limited x))

(i-limited (standard-part x)))
:hints (("Goal" :use ((:instance standards-are-limited

(x (standard-part x)))))))

(defthm /-large-integer-standard-part-thm
(equal (STANDARD-PART (/ (I-LARGE-INTEGER)))

0)
:hints (("Goal" :in-theory (disable /-LARGE-INTEGER-IS-ISMALL-THM)

:use ((:instance /-LARGE-INTEGER-IS-ISMALL-THM)))))

(defthm /-large-integer-limited-thm
(i-limited (/ (I-LARGE-INTEGER)))
:rule-classes ((:type-prescription) (:rewrite))
:hints (("Goal" :in-theory (disable /-LARGE-INTEGER-IS-ISMALL-THM)

:use ((:instance /-LARGE-INTEGER-IS-ISMALL-THM)))))

207

A.6 Computed Hints

This section presents a printout of file computed-hints.lisp. This

file consists of computed hint definitions which generate automatic hints for

the theorem prover whereby it may open function definitions when the flag

stable-under-simplificationp is true.

A computed hint is also defined for applying standard part to both

sides of an inequality.

(in-package "ACL2")

;;Apply the given list of hints in sequence on every instance
;; of stable under simplification of the current clause
;; The hint sequence made available to the subgoals
;; depends on restart-on-new-id and counter.
;; Counter indicates the current position of the
;; hint to be used from the hint-lst.
;; If restart-on-new-id is t, then start from the
;; beginning of the hint-lst for a child goal.
;; If restart-on-new-id is nil, then start from the
;; counter position in the hint-lst for a child goal.
(defun staged-hints (stable-under-simplificationp

restart-on-new-id
hint-lst
id
last-id
counter)

(let ((calc-last-id (if (equal id nil) ’id (list ’quote id))))
(cond ((and stable-under-simplificationp (not (endp hint-lst)))

(cond
((and restart-on-new-id

(not (equal id last-id)))
(append ‘(:computed-hint-replacement

((staged-hints stable-under-simplificationp
,restart-on-new-id
,(list ’quote hint-lst)
id ,calc-last-id 1)))

(nth 0 hint-lst)))
((< counter (len hint-lst))
(append ‘(:computed-hint-replacement

208

((staged-hints stable-under-simplificationp
,restart-on-new-id
,(list ’quote hint-lst)
id ,calc-last-id ,(1+ counter))))

(nth counter hint-lst)))
(t nil)))

(t nil))))

#|
;;example use of staged-hints
(set-default-hints ’((staged-hints

stable-under-simplificationp
nil ;;restart on new id
’((:in-theory (enable abs

equal-cancel-divisors
<-cancel-divisors)))

nil nil 0)))
|#

;;It is assumed that the symbol hyps represents
;; 1) a list of predicates that are conjoined in a hypothesis of
;; a goal, or 2) a list of only one predicate (not conjoined
;; with any predicate) which is the hypothesis of a goal.
;; The function scans through the list.
;; If the predicate is an inequality (< or <=), then an
;; :instance form to be used in a :use hint
;; is generated, where the :instance form is (:instance
;; standard-part-<= (x a) (y b)), where the symbols a and b
;; represent the first and second arguments, respectively,
;; of the inequality predicate.
;; If the predicate is not an inequality (< or <=), then it is ignored.
;; The function returns a list of :instance forms,
;; where each :instance form
;; corresponds to an inequality predicate in hyps. If no inequality
;; predicates (< or <=) are members of
;; hyps, then the function returns nil.
;;
;; The rewrite rule STANDARD-PART-<= should be disabled
;; so that the rewriter does not rewrite to true
;; the added hypothesis resulting from the :use hint.

(defun make-standard-part-<=-hint-from-hyps (hyps)
(cond

209

((atom hyps) nil)
((or (equal (caar hyps) ‘<=)

(equal (caar hyps) ‘<)) (append ‘((:instance standard-part-<=
(x ,(nth 1 (car hyps)))
(y ,(nth 2 (car hyps)))))

(make-standard-part-<=-hint-from-hyps
(cdr hyps))))

(t (make-standard-part-<=-hint-from-hyps (cdr hyps)))))

;;Explore the given clause, and attempt to generate a hint from it.
;; If the clause is not an implication, no hint is generated
;; (nil is returned).
;; If the hypothesis is a conjunct of predicates,
;; then a list is generated whose elements
;; are the conjuncts. This list is passed to
;; make-standard-part-<=-hint-from-hyps.
;; If the hypothesis is not a conjunct, then a list is
;; generated consisting only of this hypothesis.
;; This list is then passed to
;; make-standard-part-<=-hint-from-hyps.
;; If the results of the call to
;; make-standard-part-<=-hint-from-hyps is nil, then
;; no hint is generated and nil is returned.
;; If the results of the call to make-standard-part-<=-hint-from-hyps
;; is non-nil, then this result is used to form and return a
;; use hint of the form (:use (t1 ... tn)), where each of
;; t1...tn are of the form
;; (:instance standard-part-<= (x a) (y b)),
;; where the symbols a and b represent the first and second
;; arguments, respectively, of an inequality predicate
;; (either < or <=) which appears in the list
;; passed to make-standard-part-<=-hint-from-hyps, and n
;; represents the number of inequality predicates (either < or <=)
;; which appear in this list. One such ti, 1<=i<=n, is generated for
;; each inequality predicate (either < or <=) which appears in this list.
;; It is assumed that this function is to be called from a
;; computed hint, and that the computed hint fires only when
;; stable-under-simplificationp is true.

(defun make-standard-part-<=-hint (clause)
(cond
((and (equal (car clause) ‘implies)

(equal (caadr clause) ‘and))
(let ((hints (make-standard-part-<=-hint-from-hyps (cdadr clause))))
(if (not (equal hints nil))

210

‘(:use ,hints)
nil)))

((and (equal (car clause) ‘implies))
(let ((hints (make-standard-part-<=-hint-from-hyps

(list (cadr clause)))))
(if (not (equal hints nil))

‘(:use ,hints)
nil)))

(t nil)))

(defun standard-part-hint (stable-under-simplificationp clause)
(declare (xargs :mode :program))
(cond (stable-under-simplificationp

(make-standard-part-<=-hint (prettyify-clause clause nil nil)))
(t nil)))

211

A.7 The Solution φ Exists

This section presents a printout of file phi-exists.lisp. This file

consists of definitions which show that the standard function φ exists. In

Chapter 4, we referred to the Euler approximation as ρ. Here, we refer to the

Euler approximation as run. Unlike the presentation in Chapter 4, the run

function is defined in terms of a natural number n representing the iteration

number in implementing the Euler method. Therefore, when defining φ in

terms of run, we substitute bt/εc for n.

(in-package "ACL2")

(include-book "arith-nsa4")
(include-book "nsa")
(include-book "eexp")

(defstub f (x) t)

(defstub L () t)

(defstub h (x1 x2 eps) t)
(defaxiom L-type
(and
(realp (L))
(< 0 (L)))

:rule-classes :type-prescription)

(defaxiom L-standard-thm
(standard-numberp (L))

:rule-classes :type-prescription)

(defaxiom L-i-limited-thm
(i-limited (L))

:rule-classes ((:type-prescription) (:rewrite)))

(defaxiom f-type
(realp (f x))

:rule-classes :type-prescription)

212

(defaxiom f-standard-thm
(implies
(and
(realp x)
(standard-numberp x))
(standard-numberp (f x)))

:rule-classes :type-prescription)

(defaxiom f-i-limited-thm
(implies
(and
(realp x)
(i-limited x))
(i-limited (f x)))

:rule-classes ((:type-prescription) (:rewrite)))

(defaxiom f-lim-thm
(implies
(and
(realp x1)
(realp x2))
(and
(<= (abs (- (f x1) (f x2)))

(* (L) (abs (- x1 x2)))))))

(defun step1 (x eps)
(+ x (* (f x) eps)))

(defun run (x n eps)
(cond
((zp n) x)
(t (run (step1 x eps) (- n 1) eps))))

(defun run-limit (delta n eps)
(cond
((zp n) delta)
(t (* (+ 1 (* eps (L))) (run-limit delta (- n 1) eps)))))

(defthm run-limit-realp
(implies
(and
(realp delta)
(realp eps))
(realp (run-limit delta n eps)))

:rule-classes :type-prescription)

213

(defthm run-limit-n+1-thm
(implies
(and
(realp eps)
(realp delta)
(<= 0 delta)
(< 0 eps)
(integerp n)
(<= 0 n))

(<= (run-limit delta n eps)
(run-limit delta (+ n 1) eps)))

:hints (("Goal" :in-theory (disable distributivity-left))))

(defthm abs-step-thm
(implies
(and
(realp x1)
(realp x2)
(realp eps)
(< 0 eps))
(<= (abs (- (step1 x1 eps)

(step1 x2 eps)))
(+ (abs (- x1 x2))

(abs (* eps (- (f x1) (f x2)))))))
:rule-classes :linear)

(defthm step-1+leps-thm-1
(implies
(and
(realp x1)
(realp x2)
(realp eps)
(< 0 eps))
(<= (abs (- (step1 x1 (/ eps))

(step1 x2 (/ eps))))
(* (+ 1 (* (L) (/ eps))) (abs (- x1 x2)))))

:hints (("Goal"
:use ((:instance f-lim-thm)

(:instance abs-step-thm (eps (/ eps))))))
:rule-classes nil)

(defthm step-1+leps-thm
(implies
(and

214

(realp x1)
(realp x2)
(realp eps)
(< 0 eps))
(<= (abs (- (step1 x1 eps)

(step1 x2 eps)))
(* (+ 1 (* (L) eps)) (abs (- x1 x2)))))

:hints (("Goal"
:use ((:instance step-1+leps-thm-1 (eps (/ eps)))))))

(defthm run-realp
(implies
(and
(realp x)
(realp eps))
(realp (run x n eps)))

:rule-classes :type-prescription)

(defun n-scheme (n)
(cond
((zp n) 0)
(t (n-scheme (- n 1)))))

(defthm step-run-thm
(implies
(and
(integerp n)
(<= 0 n)
(realp x)
(realp eps))
(equal (step1 (run x n eps) eps)

(run x (+ n 1) eps))))

(defthm run-limit-thm
(implies
(and
(realp x1)
(realp x2)
(realp eps)
(< 0 eps))
(<= (abs (- (run x1 n eps) (run x2 n eps)))

(run-limit (abs (- x1 x2)) n eps)))
:hints (("Goal" :do-not ’(generalize)

:induct (n-scheme n)
:in-theory (disable abs)

215

:nonlinearp t)
("Subgoal *1/2" :in-theory (disable abs <-*-LEFT-CANCEL)

:use ((:instance run-limit-n+1-thm
(n (- n 1))
(delta (abs (- (step1 x1 eps)

(step1 x2 eps)))))
(:instance step-1+leps-thm

(x1 (run x1 (- n 1) eps))
(x2 (run x2 (- n 1) eps)))

(:instance pos-factor-<=-thm
(x (ABS (+ (RUN X1 (+ -1 N) eps)

(* -1 (RUN X2
(+ -1 N)
eps)))))

(y (RUN-LIMIT (ABS (+ X1 (* -1 X2)))
(+ -1 N) eps))

(a (+ 1 (* (L) EPS))))))))

(defthm eexp-1+epsl-thm
(implies
(and
(realp eps)
(integerp n)
(< 0 eps)
(realp delta)
(<= 0 delta)
(<= 0 n))
(<= (* delta (eexp (* (- n 1) eps (L)))

(+ 1 (* eps (L))))
(* delta (eexp (* n eps (L))))))

:hints (("Goal" :in-theory (disable 1+x-<=eexp-thm)
:use ((:instance 1+x-<=eexp-thm (x (* eps (L))))

(:instance pos-factor-<=-thm
(x (+ 1 (* eps (L))))
(y (eexp (* eps (L))))
(a (* delta

(eexp (+ (* n eps (L))
(* -1 eps (L))))))))))

:rule-classes nil)

(defthm run-limit-eexp-thm-1
(implies
(and
(realp eps)
(realp delta)

216

(<= 0 delta)
(< 0 eps)
(integerp n)
(<= 0 n))
(<= (run-limit delta n eps)

(* delta (eexp (* eps (L) n)))))
:hints (("Goal" :do-not ’(generalize))

("Subgoal *1/4" :use ((:instance pos-factor-<=-thm
(x (RUN-LIMIT DELTA (+ -1 N) eps))
(y (* DELTA

(EEXP (+ (* -1 (L) EPS)
(* (L) EPS N)))))

(a (+ 1 (* eps (L)))))
(:instance eexp-1+epsl-thm))))

:rule-classes nil)

(defthm run-diff-limit-eexp-thm
(implies
(and
(realp eps)
(< 0 eps)
(realp x1)
(realp x2)
(integerp n)
(<= 0 n))
(<= (abs (- (run x1 n eps) (run x2 n eps)))

(* (abs (- x1 x2)) (eexp (* eps (L) n)))))
:hints (("Goal" :do-not ’(generalize))

("Subgoal *1/2" :in-theory (disable abs)
:use ((:instance run-limit-thm)

(:instance run-limit-eexp-thm-1
(delta (abs (- x1 x2)))))))

:rule-classes nil)

(defthm run-plus-thm
(implies
(and
(integerp m)
(integerp n)
(<= 0 m)
(<= 0 n))
(equal (run (run x n eps) m eps)

(run x (+ m n) eps))))

(defun run-n-limit (x n eps)

217

(+ (abs x)
(* (eexp (* (L) n eps)) (abs (f x)) n eps)))

(defthm f-step-thm-hint1
(implies
(and
(realp eps)
(< 0 eps)
(realp x))
(<= (abs (f (step1 x eps)))

(+ (abs (f x)) (abs (- (f (step1 x eps)) (f x))))))
:rule-classes nil)

(defthm f-step-thm-hint2
(implies
(and
(realp eps)
(< 0 eps)
(realp x))
(<= (abs (f (step1 x eps)))

(* (eexp (* (L) eps)) (abs (f x)))))
:rule-classes nil
:hints (("Goal" :in-theory (disable abs)

:use ((:instance f-step-thm-hint1)
(:instance f-lim-thm (x1 (+ x (* (f x) eps)))

(x2 x))
(:instance 1+x-<=eexp-thm (x (* (L) eps)))
(:instance pos-factor-<=-thm (x (+ 1 (* eps (L))))

(y (eexp (* eps (L))))
(a (abs (f x))))))))

(defthm arith-3
(implies
(and
(integerp n)
(< 0 n))
(<= 0 (- n 1)))

:rule-classes :type-prescription)

(defthm f-step-thm-hint3
(implies
(and
(integerp n)
(< 0 n)
(realp x)

218

(realp eps)
(< 0 eps))
(<= 0

(* (EEXP (* -1 EPS (L)))
(EEXP (* EPS (L) N))
(+ -1 N)
EPS)))

:rule-classes nil)

(defthm step1-type-thm
(implies
(and
(realp x)
(realp eps))
(realp (step1 x eps)))

:rule-classes :type-prescription)

(defthm abs-step1-thm
(implies
(and
(realp eps)
(< 0 eps)
(realp x))
(<= (abs (step1 x eps))

(+ (abs x)
(* (abs (f x)) eps))))

:rule-classes nil)

(defthm run-limit-eexp-step-thm
(implies
(and
(realp eps)
(< 0 eps)
(integerp n)
(< 0 n)
(realp x))
(<= (run-n-limit (step1 x eps)

(- n 1)
eps)

(run-n-limit x n eps)))
:rule-classes :linear
:hints (("Goal" :in-theory (disable abs <-*-LEFT-CANCEL)

:use ((:instance abs-step1-thm)
(:instance f-step-thm-hint3)
(:instance f-step-thm-hint2)

219

(:instance pos-factor-<=-thm (x 1)
(y (eexp (* eps (L) n)))
(a (* (abs (f x)) eps)))

(:instance pos-factor-<=-thm
(x (abs (f (step1 x eps))))
(y (* (eexp (* (L) eps)) (abs (f x))))
(a (* (eexp (* -1 eps (L)))

(eexp (* eps (L) n))
(- n 1) eps)))))))

(defthm run-limit-eexpt-thm
(implies
(and
(realp eps)
(< 0 eps)
(realp x)
(integerp n)
(<= 0 n))
(<= (abs (run x n eps))

(run-n-limit x n eps)))
:rule-classes nil
:hints (("Goal" :in-theory (disable step1 run-n-limit abs))

("Subgoal *1/1" :in-theory (e/d (step1 run-n-limit) (abs)))))

(defun run-tm-limit (x tm)
(+ (abs x)

(* (eexp (* (L) tm)) (abs (f x)) tm)))

(defthm run-tm-limit-standard-thm
(implies
(and
(realp tm)
(standard-numberp tm)
(realp x)
(standard-numberp x))
(standard-numberp (run-tm-limit x tm)))

:rule-classes nil)

(defthm run-n-limit-standard-thm
(implies
(and
(realp eps)
(integerp n)
(standard-numberp (* eps n))
(realp x)

220

(standard-numberp x))
(standard-numberp (run-n-limit x n eps)))

:rule-classes nil
:hints (("Goal" :use ((:instance run-tm-limit-standard-thm

(tm (* eps n)))))))

(defthm run-tm-limit-limited-thm
(implies
(and
(realp tm)
(i-limited tm)
(realp x)
(i-limited x))
(i-limited (run-tm-limit x tm)))

:rule-classes nil
:hints (("Goal" :in-theory (disable i-large)

:use ((:instance standards-are-limited)))))

(defthm run-n-limit-limited-thm
(implies
(and
(realp eps)
(integerp n)
(i-limited (* eps n))
(realp x)
(i-limited x))
(i-limited (run-n-limit x n eps)))

:rule-classes :type-prescription
:hints (("Goal" :use ((:instance run-tm-limit-limited-thm

(tm (* eps n)))))))

(defthm run-n-limit-type-thm
(implies
(and
(realp x)
(realp eps)
(integerp n))
(realp (run-n-limit x n eps)))

:rule-classes :type-prescription)

(defthm run-standard-thm
(implies
(and
(realp x)
(realp eps)

221

(< 0 eps)
(integerp n)
(<= 0 n)
(i-limited (* eps n))
(standard-numberp x))
(standard-numberp (standard-part (run x n eps))))

:hints (("Goal" :in-theory (disable run
run-n-limit
plus-limited
times-limited
divide-limited)

:use ((:instance run-limit-eexpt-thm)
(:instance run-n-limit-limited-thm)
(:instance limited-bound-x-implies-limited-x-thm

(y (run-n-limit x n eps))
(x (run x n eps)))

(:instance standardp-standard-part
(x (run x n eps)))))))

(defthm floor-limited-thm-hint-1
(implies (and (i-small (/ (i-large-integer)))

(realp tm)
(i-limited tm))

(i-limited (+ (* -1 (/ (i-large-integer))) tm)))
:rule-classes nil
:hints (("goal" :in-theory (disable i-large

i-small
/-large-integer-is-ismall-thm))))

(defthm floor-limited-thm
(implies
(and
(realp tm)
(i-limited tm))
(i-limited (* (/ (i-large-integer)) (floor1 (* (i-large-integer) tm)))))

:hints (("goal" :in-theory (disable i-large)
:use ((:instance sandwich-limited-thm

(u (/ (- (* tm (i-large-integer)) 1)
(i-large-integer)))

(v (/ (* tm (i-large-integer))
(i-large-integer)))

(x (* (/ (i-large-integer))
(floor1 (* (i-large-integer) tm)))))))

("subgoal 2"
:use ((:instance /-large-integer-is-ismall-thm)

222

(:instance floor-limited-thm-hint-1)))))

(defthm phi-thm
(implies
(and (standard-numberp x)

(standard-numberp tm)
(realp x)
(realp tm))

(standard-numberp (standard-part (run x (floor1 (* (i-large-integer) tm))
(/ (i-large-integer))))))

:hints (("goal" :in-theory (disable i-large)
:use ((:instance run-standard-thm

(n (floor1 (* tm (i-large-integer))))
(eps (/ (i-large-integer))))

(:instance floor-limited-thm)))))

;The following is the definition of the
; standard function
(defun-std phi (x tm)
(cond
((not (and

(realp x)
(realp tm))) 0)

(t (standard-part (run x
(floor1 (* tm (i-large-integer)))
(/ (i-large-integer)))))))

223

A.8 Properties of the Solution

This section presents a printout of file phi-properties.lisp. This file

consists of definitions which show properties about run and the standard solu-

tion phi. These properties include continuity with respect to time t, continuity

with respect to x, and time invariance. This file also includes the definition

of the theorem which states that the standard part of ρε is identical to the

standard part of ρδ, for ε and δ positive infinitesimals.

(in-package "ACL2")

(include-book "arith-nsa4")
(include-book "abs")
(include-book "eexp")
(include-book "phi-exists")
(include-book "computed-hints")
(include-book "tm-floor")

(in-theory (disable i-large))
(in-theory (disable standard-part-<=))

(defun f-sum (x n eps)
(cond
((zp n) 0)
(t (+ (* eps (f (run x (- n 1) eps)))

(f-sum x (- n 1) eps)))))

(defthm run-f-sum-thm
(implies
(and
(realp x)
(realp eps)
(< 0 eps))
(equal (run x n eps)

(+ x (f-sum x n eps))))
:rule-classes nil
:hints (("Goal" :do-not ’(generalize))

("Subgoal *1/2" :in-theory (disable step-run-thm)
:use ((:instance

step-run-thm (n (- n 1)))))))

224

(defun resid (x n eps)
(- (f-sum x n eps) (* n eps (f x))))

(defthm f-sum-type
(implies
(and
(realp x)
(realp eps))
(realp (f-sum x n eps)))

:rule-classes :type-prescription)

(defthm run-type
(implies
(and
(realp x)
(realp eps))
(realp (run x n eps)))

:rule-classes :type-prescription)

(defthm run-limited-thm
(implies
(and
(realp x)
(i-limited x)
(realp eps)
(integerp n)
(< 0 eps)
(<= 0 n)
(i-limited (* eps n)))
(i-limited (run x n eps)))

:rule-classes ((:type-prescription) (:rewrite))
:hints (("Goal" :in-theory (disable abs

run
run-n-limit
i-large
plus-limited
times-limited
divide-limited)

:use ((:instance run-limit-eexpt-thm)
(:instance run-n-limit-limited-thm)
(:instance limited-bound-x-implies-limited-x-thm

(y (run-n-limit x n eps))
(x (run x n eps)))))))

225

(defthm resid-limited-thm
(implies
(and
(realp x)
(i-limited x)
(integerp n)
(<= 0 n)
(realp eps)
(< 0 eps)
(i-limited (* eps n)))
(i-limited (resid x n eps)))

:rule-classes :type-prescription
:hints (("Goal" :in-theory (disable i-large)

:use ((:instance run-f-sum-thm)
(:instance run-limited-thm)))

("Goal’’’" :use ((:instance times-limited
(x (* eps n))
(y (f x)))

(:instance plus-limited
(x (+ X (F-SUM X N EPS)))
(y (- x)))))))

(defthm resid-standard-thm
(implies
(and
(realp x)
(i-limited x)
(integerp n)
(<= 0 n)
(realp eps)
(< 0 eps)
(i-limited (* eps n)))
(standard-numberp (standard-part (resid x n eps))))

:hints (("Goal" :in-theory (disable i-large resid)
:use ((:instance resid-limited-thm)))))

(defthm resid-std-thm
(IMPLIES
(AND (STANDARD-NUMBERP X)

(STANDARD-NUMBERP TM)
(REALP X)
(REALP TM)
(<= 0 TM))

(STANDARD-NUMBERP (STANDARD-PART

226

(resid X
(FLOOR1 (* (I-LARGE-INTEGER) TM))
(/ (I-LARGE-INTEGER))))))

:hints (("Goal" :in-theory (disable i-large)
:use ((:instance resid-standard-thm

(n (floor1 (* tm (i-large-integer))))
(eps (/ (i-large-integer))))))))

(in-theory (disable resid))

(defun-std resid-tm (x tm)
(cond
((not (and (realp x)

(realp tm)
(<= 0 tm))) 0)

(t (standard-part (resid x
(floor1 (* tm (i-large-integer)))
(/ (i-large-integer)))))))

(in-theory (enable resid))

(defthm f-run-bound-hint-1
(implies
(and
(realp x)
(realp eps)
(< 0 eps))
(equal (f (step1 x eps))

(+ (f x) (- (f (step1 x eps)) (f x)))))
:rule-classes nil)

(defthm f-run-bound-hint-2
(implies
(and
(realp x)
(realp eps)
(< 0 eps))
(<= (abs (f (step1 x eps)))

(* (+ 1 (* eps (L))) (abs (f x)))))
:rule-classes nil
:hints (("Goal" :use ((:instance f-run-bound-hint-1)

(:instance abs-triangular-inequality-thm
(x (f x))
(y (- (f (step1 x eps)) (f x))))

(:instance f-lim-thm

227

(x1 (step1 x eps))
(x2 x))))))

(defthm f-run-bound-thm
(implies
(and
(realp x)
(realp eps)
(< 0 eps)
(integerp n)
(<= 0 n))
(<= (abs (f (run x n eps)))

(* (eexp (* n eps (L))) (abs (f x)))))
:hints (("Goal" :in-theory (disable abs step1)

:do-not ’(generalize))
("Subgoal *1/5" :use ((:instance pos-factor-<=-thm

(x (abs (f (step1 x eps))))
(y (* (+ 1 (* eps (L))) (abs (f x))))
(a (EEXP (+ (* -1 (L) EPS)

(* (L) EPS N)))))
(:instance pos-factor-<=-thm

(x (+ 1 (* eps (L))))
(y (eexp (* eps (L))))
(a (* (EEXP (+ (* -1 (L) EPS)

(* (L) EPS N)))
(abs (f x)))))

(:instance f-run-bound-hint-2)
(:instance 1+x-<=eexp-thm

(x (* eps (L))))))))

(defthm f-sum-exp-bound-thm
(implies
(and
(realp x)
(realp eps)
(< 0 eps)
(integerp n)
(<= 0 n))
(<= (abs (f-sum x n eps))

(* n eps (eexp (* eps n (L))) (abs (f x)))))
:rule-classes nil
:hints (("Goal" :induct (f-sum x n eps)

:do-not-induct t
:in-theory (disable abs <-*-LEFT-CANCEL)
:do-not ’(generalize))

228

("Subgoal *1/2" :use ((:instance f-run-bound-thm (n (- n 1)))
(:instance pos-factor-<=-thm

(x (abs (f (run x (- n 1) eps))))
(y (* (eexp (* (- n 1) eps (L)))

(abs (f x))))
(a eps))

(:instance abs-triangular-inequality-thm
(x (F-SUM X (+ -1 N) EPS))
(y (* EPS (F (RUN X (+ -1 N) EPS)))))

(:instance pos-factor-<=-thm
(x 1)
(y (EEXP (* (L) EPS)))
(a (* EPS N (ABS (F X))

(EEXP (+ (* -1 (L) EPS)
(* (L) EPS N)))))

)))))

(defthm f-sum-diff-thm
(implies
(and
(realp x)
(realp eps)
(< 0 eps)
(integerp n)
(integerp m)
(<= 0 n)
(<= n m))
(equal (- (f-sum x m eps)

(f-sum x n eps))
(f-sum (run x n eps) (- m n) eps))))

(defthm f-run-diff-eq-f-sum-thm
(implies
(and
(realp x)
(realp eps)
(< 0 eps)
(integerp n)
(integerp m)
(<= 0 n)
(<= n m))
(equal (- (run x m eps)

(run x n eps))
(f-sum (run x n eps) (- m n) eps)))

:hints (("Goal" :do-not-induct t

229

:use ((:instance run-f-sum-thm (n m))
(:instance run-f-sum-thm)
(:instance f-sum-diff-thm)))))

(defthm pos-*-<=-thm
(implies
(and
(realp a)
(realp b)
(realp x)
(realp y)
(<= 0 a)
(<= 0 b)
(<= a x)
(<= b y))
(<= (* a b) (* x y)))
:hints (("Goal" :use ((:instance pos-factor-<=-thm

(x a)
(y x)
(a b))

(:instance pos-factor-<=-thm
(x b)
(y y)
(a x))))))

(defthm f-run-diff-tm-thm-hint
(implies
(and
(realp eps)
(< 0 eps)
(integerp m)
(integerp n)
(<= n m))
(<= 0 (* (- m n) eps (eexp (* (- m n) (L) eps)))))

:rule-classes nil
:hints (("Goal" :in-theory (disable distributivity

distributivity-left)
:use ((:instance pos-factor-<=-thm

(x 0)
(y (- m n))
(a (* eps

(eexp (* (- m n)
(L)
eps))))

)))))

230

(defthm f-run-diff-tm-thm
(implies
(and
(realp x)
(realp eps)
(< 0 eps)
(integerp n)
(integerp m)
(<= 0 n)
(<= n m))
(<= (abs (- (run x m eps)

(run x n eps)))
(* (- m n) eps (eexp (* eps m (L))) (abs (f x)))))

:hints (("Goal" :do-not-induct t
:in-theory (disable abs)
:use ((:instance f-run-diff-tm-thm-hint)

(:instance f-run-diff-eq-f-sum-thm)
(:instance f-sum-exp-bound-thm

(x (run x n eps))
(n (- m n)))

(:instance f-run-bound-thm)
(:instance pos-factor-<=-thm

(x (abs (f (run x n eps))))
(y (* (eexp (* n eps (L))) (abs (f x))))
(a (* (- m n)

eps
(eexp (* eps

(- m n)
(L))))))))))

(defthm run-diff-tm-standard-part-thm
(implies
(and
(realp x)
(standard-numberp x)
(integerp n)
(integerp m)
(realp eps)
(< 0 eps)
(<= 0 n)
(<= 0 m)
(i-limited (* eps n))
(i-limited (* eps m))
(equal (standard-part (* m eps))

231

(standard-part (* n eps))))
(equal (- (standard-part (run x m eps))

(standard-part (run x n eps)))
0))

:hints ((standard-part-hint stable-under-simplificationp clause)
("Goal" :in-theory (disable abs)

:cases ((<= n m) (< m n))
:do-not-induct t)

("Subgoal 2" :use ((:instance f-run-diff-tm-thm)))
("Subgoal 1" :use ((:instance f-run-diff-tm-thm

(m n)
(n m))))))

(defthm floor1-large-1<=
(implies
(and
(realp x)
(< 0 x)
(standard-numberp x))

(i-large (* (i-large-integer) x)))
:hints (("Goal" :in-theory (enable i-large))))

(defthm large-gt-1
(implies
(and
(realp x)
(< 0 x)
(i-large x))
(< 1 x))

:hints ((standard-part-hint stable-under-simplificationp clause)
("Goal" :in-theory (enable i-large)

:use ((:instance standard-part-<=
(x 1)
(y (/ x)))))))

(defthm standard-diff-*-large-thm
(implies
(and
(realp x)
(realp y)
(standard-numberp x)
(standard-numberp y)
(< x y))

(<= (+ (* (i-large-integer) x) 1)

232

(* (i-large-integer) y)))
:hints (("Goal" :use ((:instance floor1-large-1<= (x (- y x)))

(:instance large-gt-1
(x (+ (* -1 (I-LARGE-INTEGER) X)

(* (I-LARGE-INTEGER) Y))))
(:instance pos-factor-<-thm

(x 0)
(y (- y x))
(a (i-large-integer)))))))

(defthm abs-standard-numberp
(implies
(and
(realp x)
(standard-numberp x))
(standard-numberp (abs x))))

(defthm-std phi-diff-tm-thm
(implies
(and
(realp x)
(realp tm1)
(realp tm2)
(<= 0 tm1)
(<= tm1 tm2))
(<= (abs (- (phi x tm2)

(phi x tm1)))
(* (- tm2 tm1) (eexp (* tm2 (L))) (abs (f x)))))

:rule-classes nil
:hints ((standard-part-hint stable-under-simplificationp clause)

("Goal" :in-theory (disable abs <-CANCEL-DIVISORS)
:use ((:instance f-run-diff-tm-thm

(eps (/ (i-large-integer)))
(n (floor1 (* tm1 (i-large-integer))))
(m (floor1 (* tm2 (i-large-integer)))))

(:instance standard-diff-*-large-thm
(x TM1)
(y TM2))))))

233

;;--
;; The following is the theorem which states
;; that phi is continuous with respect to time
;;--
(defthm phi-tm-continuous-thm
(implies
(and
(realp x)
(standard-numberp x)
(realp tm1)
(<= 0 tm1)
(i-limited tm1))
(equal (standard-part (phi x tm1))

(phi x (standard-part tm1))))
:hints ((standard-part-hint stable-under-simplificationp clause)

("Goal" :in-theory (disable abs)
:cases ((<= tm1 (standard-part tm1))

(< (standard-part tm1) tm1)))
("Subgoal 2" :use ((:instance phi-diff-tm-thm

(tm1 tm1)
(tm2 (standard-part tm1)))))

("Subgoal 1" :use ((:instance phi-diff-tm-thm
(tm2 tm1)
(tm1 (standard-part tm1)))))))

(defthm run-plus-thm
(implies
(and
(integerp m)
(integerp n)
(<= 0 m)
(<= 0 n))
(equal (run (run x n eps) m eps)

(run x (+ m n) eps))))

(defthm phi-diff-hint-1
(implies
(and
(standard-numberp x1)
(standard-numberp x2)
(standard-numberp tm)
(realp x1)
(realp x2)
(realp tm)

234

(<= 0 tm))
(equal (STANDARD-PART (* (EEXP (* (L) (/ (I-LARGE-INTEGER))

(FLOOR1 (* (I-LARGE-INTEGER) TM))))
(ABS (+ X1 (* -1 X2)))))

(* (EEXP (* (L) TM))
(ABS (+ X1 (* -1 X2))))))

:rule-classes nil
:hints (("Goal" :in-theory (disable *-commut-3way))))

(defthm-std phi-x-diff-thm
(implies
(and
(realp x1)
(realp x2)
(realp tm)
(<= 0 tm))
(<= (abs (- (phi x1 tm) (phi x2 tm)))

(* (abs (- x1 x2)) (eexp (* tm (L))))))
:rule-classes nil
:hints ((standard-part-hint stable-under-simplificationp clause)

("Goal" :in-theory (disable abs i-large)
:use ((:instance run-diff-limit-eexp-thm

(n (floor1 (* tm (i-large-integer))))
(eps (/ (i-large-integer))))

(:instance phi-diff-hint-1)))))

(defthm run-x-continuous-thm
(implies
(and
(realp eps)
(< 0 eps)
(realp x)
(i-limited x)
(integerp n)
(i-limited (* eps n))
(<= 0 n))
(equal (standard-part (run (standard-part x) n eps))

(standard-part (run x n eps))))
:hints ((standard-part-hint stable-under-simplificationp clause)

("Goal" :in-theory (disable abs)
:do-not-induct t
:use ((:instance run-diff-limit-eexp-thm

(x1 x)
(x2 (standard-part x)))))))

235

;;---
;; The following is the theorem which states
;; that phi is continuous with respect to x
;;---
(defthm phi-x-continuous-thm
(implies
(and
(realp x)
(i-limited x)
(realp tm)
(standard-numberp tm)
(<= 0 tm))
(equal (standard-part (phi x tm))

(phi (standard-part x) tm)))
:hints ((standard-part-hint stable-under-simplificationp clause)

("Goal" :in-theory (disable abs)
:use ((:instance phi-x-diff-thm

(x1 x)
(x2 (standard-part x)))))))

(defthm phi-plus-hint1
(implies
(and
(realp tm1)
(realp tm2))
(equal (standard-part (* (+ (FLOOR1 (* (I-LARGE-INTEGER) TM1))

(FLOOR1 (* (I-LARGE-INTEGER) TM2)))
(/ (I-LARGE-INTEGER))))

(standard-part (* (floor1 (* (i-large-integer) (+ tm1 tm2)))
(/ (i-large-integer))))))

:hints ((standard-part-hint stable-under-simplificationp clause)
("Goal" :in-theory (disable <-CANCEL-DIVISORS)

:use ((:instance pos-factor-<-thm
(x (+ (* (I-LARGE-INTEGER) TM1)

(* (I-LARGE-INTEGER) TM2)
-2))

(y (+ (FLOOR1 (* (I-LARGE-INTEGER) TM1))
(FLOOR1 (* (I-LARGE-INTEGER) TM2))))

(a (/ (i-large-integer))))
(:instance pos-factor-<=-thm

(x (+ (FLOOR1 (* (I-LARGE-INTEGER) TM1))
(FLOOR1 (* (I-LARGE-INTEGER) TM2))))

(y (+ (* (I-LARGE-INTEGER) TM1)
(* (I-LARGE-INTEGER) TM2)))

(a (/ (i-large-integer))))

236

(:instance pos-factor-<-thm
(x (+ (* (i-large-integer) (+ tm1 tm2)) -1))
(y (floor1 (* (i-large-integer) (+ tm1 tm2))))
(a (/ (i-large-integer))))

(:instance pos-factor-<=-thm
(x (floor1 (* (i-large-integer) (+ tm1 tm2))))
(y (* (i-large-integer) (+ tm1 tm2)))
(a (/ (i-large-integer))))))))

(defthm tm1+tm2-limited-thm
(implies
(and
(standard-numberp tm1)
(standard-numberp tm2)
(realp tm1)
(realp tm2))
(i-limited (* (/ (i-large-integer))

(floor1 (* (i-large-integer) (+ tm1 tm2))))))
:rule-classes nil
:hints (("Goal" :use ((:instance phi-plus-hint1)

(:instance standard+small->i-limited
(x (standard-part

(* (/ (i-large-integer))
(floor1 (* (i-large-integer)

(+ tm1 tm2))))))
(eps (- (* (/ (i-large-integer))

(floor1 (* (i-large-integer)
(+ tm1 tm2))))

(standard-part
(* (/ (i-large-integer))

(floor1 (* (i-large-integer)
(+ tm1 tm2)))))))

)))))

237

;;---
;; The following is the theorem which states
;; that phi is time invariant
;;---
(defthm-std phi-plus-thm
(implies
(and
(realp x)
(realp tm1)
(realp tm2)
(<= 0 tm1)
(<= 0 tm2))
(equal (phi (phi x tm1) tm2)

(phi x (+ tm1 tm2))))
:hints (("Goal" :in-theory (disable i-large run-plus-thm)

:use ((:instance phi-plus-hint1)
(:instance tm1+tm2-limited-thm)
(:instance run-plus-thm (n (floor1 (* tm1

(i-large-integer))))
(m (floor1 (* tm2

(i-large-integer))))
(eps (/ (i-large-integer))))

(:instance run-diff-tm-standard-part-thm
(eps (/ (i-large-integer)))
(m (+ (floor1 (* (i-large-integer) tm1))

(floor1 (* (i-large-integer) tm2))))
(n (floor1 (* (i-large-integer) (+ tm1 tm2)))))

(:instance phi-x-continuous-thm
(x (RUN X

(FLOOR1 (* (I-LARGE-INTEGER) TM1))
(/ (I-LARGE-INTEGER))))

(tm tm2))))))

;;For some reason, enabling the following rule as a
;; linear lemma may cause ACL2 to stall during simplification
(defthm floor1-1-thm
(implies
(and (realp x)

(<= 1 x))
(< 0 (floor1 x)))

:rule-classes nil)

;;For some reason, enabling the following rewrite rule

238

;; may cause ACL2 to stall during simplification
(defthm floor1-0-thm
(implies
(and (realp x)

(<= 0 x)
(< x 1))

(equal (floor1 x) 0))
:rule-classes nil)

(defun tm-m (tm eps)
(cond
((not (and

(realp eps)
(< 0 eps)
(realp tm)
(<= eps tm))) 0)

(t (floor1 (/ tm eps)))))

(defun phi-run (x tm eps)
(declare (xargs :measure (tm-m tm eps)

:hints (("Subgoal 1.2"
:use ((:instance floor1-1-thm

(x (* (/ eps) tm))))))))
(cond
((not (and (realp eps)

(< 0 eps)
(<= eps tm)
(realp tm))) (phi x tm))

(t (phi-run (phi x eps) (- tm eps) eps))))

(defthm phi-run-eq-phi-thm
(implies
(and
(realp x)
(realp tm)
(<= 0 tm)
(< 0 eps)
(realp eps))
(equal (phi-run x tm eps)

(phi x tm)))
:rule-classes nil)

(defthm run-equal-thm
(implies
(and

239

(realp x)
(realp eps)
(< 0 eps)
(integerp n)
(<= 0 n))
(equal (+ x (* eps n (f x)) (- (f-sum x n eps) (* n eps (f x))))

(run x n eps)))
:hints (("Goal" :use ((:instance run-f-sum-thm)))))

(defthm-std phi-equal-thm
(implies
(and
(realp x)
(realp tm)
(<= 0 tm))
(equal (+ x (* tm (f x)) (resid-tm x tm))

(phi x tm)))
:hints (("Goal" :use ((:instance run-f-sum-thm

(eps (/ (i-large-integer)))
(n (floor1 (* tm (i-large-integer))))

)))))

(defthm step-resid-thm
(implies
(and
(realp x)
(realp eps)
(< 0 eps)
(integerp n)
(<= 0 n))
(equal (+ (resid x n eps)

(- (* eps (f (run x n eps)))
(* eps (f x))))

(resid x (+ n 1) eps))))

(defthm resid-type
(implies
(and
(realp x)
(realp eps)
(integerp n))
(realp (resid x n eps)))

:rule-classes :type-prescription)

(defthm-std resid-tm-type

240

(implies
(and
(realp x)
(realp tm))
(realp (resid-tm x tm)))

:rule-classes :type-prescription)

(defthm step-resid-bound-thm
(implies
(and
(realp x)
(realp eps)
(< 0 eps)
(integerp n)
(< 0 n))
(<= (abs (resid x n eps))

(+ (abs (resid x (- n 1) eps))
(* eps eps (L) (- n 1)

(eexp (* eps (- n 1) (L)))
(abs (f x))))))

:rule-classes nil
:hints (("Goal" :in-theory (disable abs step-resid-thm resid)

:use ((:instance f-sum-exp-bound-thm (n (- n 1)))
(:instance abs-triangular-inequality-thm

(x (RESID X (+ -1 N) EPS))
(y (- (* eps (f (run x (- n 1) eps)))

(* eps (f x)))))
(:instance abs-pos-*-left-thm

(x eps)
(y (+ (* -1 (F X))

(* (F (RUN X (+ -1 N) EPS))))))
(:instance f-lim-thm (x1 (run x (- n 1) eps))

(x2 x))
(:instance pos-factor-<=-thm

(x (ABS (+ (* -1 (F X))
(* (F (RUN X (+ -1 N) EPS))))))

(y (* (L)
(ABS (+ (* -1 X)
(RUN X (+ -1 N) EPS)))))

(a eps))
(:instance run-f-sum-thm (n (- n 1)))
(:instance step-resid-thm (n (- n 1)))
(:instance pos-factor-<=-thm

(x (abs (f-sum x (- n 1) eps)))
(y (* (- n 1)

241

eps
(eexp (* eps (- n 1) (L)))
(abs (f x))))

(a (* eps (L))))))))

(defthm resid-bound-thm
(implies
(and
(realp x)
(realp eps)
(< 0 eps)
(integerp n)
(<= 0 n))
(<= (abs (resid x n eps))

(* n n eps eps (L) (eexp (* n eps (L))) (abs (f x)))))
:rule-classes nil
:hints (("Goal" :in-theory (disable abs)

:do-not ’(generalize)
:do-not-induct t
:induct (f-sum x n eps))

("Subgoal *1/2" :in-theory (disable abs resid
<-*-LEFT-CANCEL)

:use ((:instance step-resid-bound-thm)
(:instance pos-factor-<=-thm

(x 0)
(y (- n 1))
(a (* (L) eps)))

(:instance pos-factor-<=-thm
(x 1)
(y (eexp (* eps (L))))
(a (* (L) EPS EPS N N

(ABS (F X))
(EEXP (+ (* -1 (L) EPS)

(* (L) EPS N)))))
)))))

(defthm tm-fun-rw-5-thm
(implies
(and
(realp a)
(realp b)
(realp c)
(realp tm)
(standard-numberp tm))
(equal (* (/ (I-LARGE-INTEGER)) a b

242

(FLOOR1 (* (I-LARGE-INTEGER) TM)) c)
(* (tm-fun tm) a b c)))

:hints (("Goal" :in-theory (e/d (tm-fun) (tm-fun-rw-1-thm
tm-fun-rw-2-thm
tm-fun-rw-3-thm
tm-fun-rw-4-thm)))))

(defthm tm-fun-rw-6-thm
(implies
(and
(realp a)
(realp b)
(realp c)
(realp d)
(realp tm)
(standard-numberp tm))
(equal (* (/ (I-LARGE-INTEGER)) a b c

(FLOOR1 (* (I-LARGE-INTEGER) TM)) d)
(* (tm-fun tm) a b c d)))

:hints (("Goal" :in-theory (e/d (tm-fun) (tm-fun-rw-1-thm
tm-fun-rw-2-thm
tm-fun-rw-3-thm
tm-fun-rw-4-thm
tm-fun-rw-5-thm)))))

(defthm-std resid-tm-bound-thm
(implies
(and
(realp x)
(realp tm)
(<= 0 tm))
(<= (abs (resid-tm x tm))

(* tm tm (L) (eexp (* tm (L))) (abs (f x)))))
:hints ((standard-part-hint stable-under-simplificationp clause)

("Goal" :in-theory (disable abs <-CANCEL-DIVISORS)
:use ((:instance resid-bound-thm

(eps (/ (i-large-integer)))
(n (floor1 (* tm (i-large-integer)))))))))

(defthm tm-floor-0-thm
(implies
(and
(realp tm)
(realp eps)
(<= 0 tm)

243

(< 0 eps)
(< tm eps))
(equal (FLOOR1 (* (/ EPS) TM)) 0))

:hints (("Goal" :use ((:instance floor1-0-thm (x (/ tm eps)))))))

(defthm-std phi-0-thm
(implies
(realp x)
(equal (phi x 0)

x)))

(defun tm-induct (tm eps)
(declare (xargs :measure (tm-m tm eps)

:hints (("Subgoal 1.2"
:use ((:instance floor1-1-thm

(x (* (/ eps) tm))))))))
(cond
((not (and

(realp eps)
(< 0 eps)
(realp tm)
(<= eps tm))) tm)

(t (tm-induct (- tm eps)
eps))))

(defthm phi-eps-step-thm
(implies
(and
(realp x1)
(realp x2)
(realp eps)
(< 0 eps))
(<= (abs (- (phi x1 eps) (step1 x2 eps)))

(+ (* (abs (- x1 x2)) (+ 1 (* eps (L))))
(* eps eps (L) (eexp (* eps (L))) (abs (f x1))))))

:rule-classes nil
:hints (("Goal" :in-theory (disable abs)

:do-not ’(generalize)
:do-not-induct t
:use ((:instance phi-equal-thm (x x1) (tm eps))

(:instance abs-triangular-inequality-thm
(x (+ X1 (* -1 X2)))
(y (+(RESID-TM X1 EPS)

(* EPS (F X1))
(* -1 EPS (F X2)))))

244

(:instance abs-triangular-inequality-thm
(x (RESID-TM X1 EPS))
(y (+ (* EPS (F X1))

(* -1 EPS (F X2)))))
(:instance resid-tm-bound-thm

(tm eps)
(x x1))

(:instance abs-pos-*-left-thm
(x eps)
(y (- (F X1)

(F X2))))
(:instance f-lim-thm)
(:instance pos-factor-<=-thm

(x (abs (- (f x1) (f x2))))
(y (* (L) (abs (- x1 x2))))
(a eps))))))

(defthm phi-phi-run-thm
(implies
(and
(realp eps)
(realp x)
(realp tm)
(<= 0 tm)
(<= eps tm)
(< 0 eps))
(equal (phi (phi-run x

(+ (* -1 EPS)
(* EPS

(FLOOR1 (* (/ EPS) TM))))
eps)

eps)
(phi-run x (* eps (floor1 (/ tm eps))) eps)))

:hints (("Goal" :induct (phi-run x tm eps)
:do-not ’(generalize))

("Subgoal *1/4" :use ((:instance floor1-1-thm
(x (/ tm eps)))

(:instance pos-factor-<=-thm
(x 1)
(y (floor1 (/ tm eps)))
(a eps))))

("Subgoal *1/2" :use ((:instance floor1-1-thm (x (/ tm eps)))
(:instance pos-factor-<=-thm

(x 1)
(y (floor1 (/ tm eps)))

245

(a eps))))
("Subgoal *1/1" :use ((:instance tm-floor-0-thm

(tm (- tm eps)))
(:instance distributivity

(y (FLOOR1 (* (/ EPS) TM)))
(z -1)
(x eps))))))

(defthm f-standard-part-thm
(implies
(and
(realp x)
(i-limited x))
(equal (standard-part (f x))

(f (standard-part x))))
:hints ((standard-part-hint stable-under-simplificationp clause)

("Goal" :in-theory (disable abs STANDARDP-STANDARD-PART)
:use ((:instance f-lim-thm

(x1 (standard-part x))
(x2 x))

(:instance standardp-standard-part)))))

(defthm-std f-phi-bound-thm
(implies
(and
(realp x)
(realp tm)
(<= 0 tm))
(<= (abs (f (phi x tm)))

(* (eexp (* tm (L))) (abs (f x)))))
:hints ((standard-part-hint stable-under-simplificationp clause)

("Goal" :in-theory (disable abs)
:use ((:instance f-run-bound-thm

(eps (/ (i-large-integer)))
(n (floor1 (* tm (i-large-integer))))

)))))

(defthm phi-eps-arith-hint
(implies
(and
(realp tm)
(< 0 eps)
(realp eps))
(equal
(* (EEXP (* (L) EPS))

246

(FLOOR1 (* (/ EPS) TM))
(EEXP (+ (* -1 (L) EPS)

(* (L) EPS (FLOOR1 (* (/ EPS) TM))))))
(* (FLOOR1 (* (/ EPS) TM))

(EEXP (* (L) EPS (FLOOR1 (* (/ EPS) TM)))))))
:hints (("Goal" :in-theory (disable *-commut-3way)

:use ((:instance *-commut-3way
(x (EEXP (* (L) EPS)))
(y (FLOOR1 (* (/ EPS) TM)))
(z (EEXP (+ (* -1 (L) EPS)

(* (L) EPS
(FLOOR1 (* (/ EPS) TM))))))

)))))

(defthm phi-eps-thm
(implies
(and
(realp x)
(realp tm)
(realp eps)
(<= 0 tm)
(< 0 eps))
(<= (abs (- (phi-run x

(* eps (floor1 (/ tm eps)))
eps)

(run x
(floor1 (/ tm eps))
eps)))

(* eps eps
(floor1 (/ tm eps))
(L)
(abs (f x))
(eexp (* eps (floor1 (/ tm eps)) (L))))))

:rule-classes nil
:hints (("Goal" :in-theory (disable abs)

:induct (tm-induct tm eps)
:do-not ’(generalize))

("Subgoal *1/2" :in-theory (disable abs run step1)
:use ((:instance floor1-1-thm (x (/ tm eps)))

(:instance pos-factor-<=-thm
(x 1)
(y (floor1 (/ tm eps)))
(a eps))))

("Subgoal *1/2.1" :in-theory (disable abs run step1
<-*-left-cancel

247

<-cancel-divisors)
:use ((:instance phi-run-eq-phi-thm

(tm (+ (* -1 EPS)
(* EPS (FLOOR1 (* (/ EPS) TM))))))

(:instance phi-run-eq-phi-thm
(tm (* EPS (FLOOR1 (* (/ EPS) TM)))))

(:instance 1+x-<=eexp-thm (x (* eps (L))))
(:instance phi-eps-arith-hint)
(:instance pos-factor-<=-thm

(x (+ 1 (* eps (L))))
(y (eexp (* eps (L))))
(a (ABS (+ (* -1

(RUN X
(+ -1

(FLOOR1
(* (/ EPS) TM)))

EPS))
(PHI-RUN X

(+ (* -1 EPS)
(* EPS

(FLOOR1
(* (/ EPS) TM))))

EPS)))))
(:instance pos-factor-<=-thm

(x (ABS (+ (* -1
(RUN X

(+ -1 (FLOOR1
(* (/ EPS) TM)))

EPS))
(PHI-RUN X

(+ (* -1 EPS)
(* EPS
(FLOOR1
(* (/ EPS) TM))))

EPS))))
(y (+ (* -1 (L)

EPS EPS (ABS (F X))
(EEXP (+ (* -1 (L) EPS)

(* (L) EPS
(FLOOR1
(* (/ EPS) TM))))))

(* (L)
EPS EPS (ABS (F X))
(FLOOR1 (* (/ EPS) TM))
(EEXP (+ (* -1 (L) EPS)

248

(* (L)
EPS
(FLOOR1
(* (/ EPS) TM)))))

)))
(a (EEXP (* (L) EPS))))

(:instance pos-factor-<=-thm
(x (ABS (F (PHI X

(+ (* -1 EPS)
(* EPS

(FLOOR1
(* (/ EPS) TM))))

))))
(y (* (ABS (F X))

(EEXP (+ (* -1 (L) EPS)
(* (L) EPS

(FLOOR1
(* (/ EPS) TM))

)))))
(a (* (L) EPS EPS (EEXP (* (L) EPS)))))

(:instance phi-eps-step-thm
(x1 (phi-run x

(* eps
(- (floor1 (/ tm eps)) 1))

eps))
(x2 (run x (- (floor1

(/ tm eps)) 1) eps)))
(:instance f-phi-bound-thm

(tm (+ (* -1 EPS)
(* EPS (FLOOR1 (* (/ EPS) TM)))))

)))))

(defthm phi-any-small-eps-thm
(implies
(and
(realp x)
(realp tm)
(standard-numberp x)
(standard-numberp tm)
(realp eps)
(<= 0 tm)
(< 0 eps)
(i-small eps))
(equal (standard-part (phi x tm))

(standard-part (run x (floor1 (/ tm eps)) eps))))

249

:hints ((standard-part-hint stable-under-simplificationp clause)
("Goal" :in-theory (disable abs phi)

:use ((:instance small-are-limited (x eps))
(:instance phi-eps-thm)
(:instance phi-run-eq-phi-thm

(tm (* EPS (FLOOR1 (* (/ EPS) TM)))))))))

;;--
;; The following is the theorem which states
;; that run, hence phi, is independent of the
;; choice of eps.
;;--
(defthm run-any-small-eps-thm
(implies
(and
(realp x)
(realp tm)
(standard-numberp x)
(standard-numberp tm)
(realp eps)
(<= 0 tm)
(< 0 eps)
(i-small eps))
(equal (standard-part (run x

(floor1 (* tm (i-large-integer)))
(/ (i-large-integer))))

(standard-part (run x
(floor1 (/ tm eps))
eps))))

:hints (("Goal" :use ((:instance phi-any-small-eps-thm)))))

250

A.9 The Solution φ is Unique

This section presents a printout of file phi-unique.lisp. This file

consists of definitions which show that the standard function φ is a solution of

the differential equation and is unique. We show uniqueness by demonstrating

that, for any function φ2 which satisfies the differential equation, φ2 is equal

to φ.

(in-package "ACL2")

(include-book "arith-nsa4")
(include-book "abs")
(include-book "eexp")
(include-book "phi-exists")
(include-book "phi-properties")
(include-book "computed-hints")
(include-book "tm-floor")

(in-theory (disable i-large))
(in-theory (disable standard-part-<=))

(defstub phi2 (tm) t)

(defaxiom phi2-type
(implies
(and
(realp tm))
(realp (phi2 tm)))

:rule-classes :type-prescription)

(defaxiom phi2-standard-thm
(implies
(and
(realp tm)
(standard-numberp tm))
(standard-numberp (phi2 tm)))

:rule-classes ((:type-prescription) (:rewrite)))

(defun resid2-tm (tm eps)
(+ (phi2 (+ tm eps))

(- (phi2 tm))

251

(- (* eps (f (phi2 tm))))))

(defthm resid2-tm-type
(implies
(and
(realp tm)
(realp eps))
(realp (resid2-tm tm eps)))

:rule-classes :type-prescription)

(defaxiom phi2-deriv
(implies
(and
(realp tm)
(i-limited tm)
(realp eps)
(not (equal eps 0))
(i-small eps))
(equal (standard-part (/ (- (phi2 (+ tm eps)) (phi2 tm)) eps))

(standard-part (f (phi2 tm))))))

(defthm phi2-equal-thm
(implies
(and
(realp tm)
(realp eps))
(equal (+ (phi2 tm)

(* eps (f (phi2 tm)))
(resid2-tm tm eps))

(phi2 (+ tm eps)))))

(defthm resid2/eps-small-thm
(implies
(and
(realp tm)
(i-limited tm)
(realp eps)
(not (equal eps 0))
(i-small eps))
(equal (standard-part (/ (resid2-tm tm eps) eps))

0))
:hints (("Goal" :use ((:instance phi2-deriv)))))

(defthm /eps-gt-1-thm
(implies

252

(and
(realp eps)
(not (equal eps 0))
(equal (standard-part eps) 0))
(< 1 (abs (/ eps))))

:hints (("Goal" :use ((:instance standard-part-<= (y 1) (x (/ (abs eps))))
(:instance i-large (x (abs (/ eps))))))))

(defthm resid2-small-thm
(implies
(and
(realp tm)
(i-limited tm)
(realp eps)
(not (equal eps 0))
(i-small eps))
(equal (standard-part (resid2-tm tm eps))

0))
:hints ((standard-part-hint stable-under-simplificationp clause)

("Goal" :in-theory (disable abs resid2-tm abs-*-thm)
:use ((:instance resid2/eps-small-thm)

(:instance pos-factor-<-thm
(x 1)
(y (abs (/ eps)))
(a (abs (resid2-tm tm eps))))

(:instance abs-*-thm
(x (/ eps))
(y (resid2-tm tm eps)))))))

(defthm phi2-tm-continuous-thm
(implies
(and
(realp tm)
(i-limited tm))
(equal (standard-part (phi2 tm))

(phi2 (standard-part tm))))
:hints (("Goal" :in-theory (disable resid2-tm standardp-standard-part)

:cases ((equal tm (standard-part tm))
(not (equal tm (standard-part tm)))))

("Subgoal 1" :use ((:instance phi2-equal-thm
(eps (- tm (standard-part tm)))
(tm (standard-part tm)))

(:instance resid2-small-thm
(eps (- tm (standard-part tm)))
(tm (standard-part tm)))

253

(:instance standardp-standard-part
(x tm))

(:instance standards-are-limited
(x (phi2 (standard-part tm))))))

("Subgoal 2" :use ((:instance standardp-standard-part
(x tm))))))

(defthm standardp-standard-part-limited
(implies
(and
(acl2-numberp x)
(standard-numberp (standard-part x)))
(i-limited x))

:hints (("Goal" :use ((:instance standard+small->i-limited
(x (standard-part x))
(eps (- x (standard-part x))))))))

(defthm phi2-limited-thm
(implies
(and
(realp tm)
(i-limited tm))
(i-limited (phi2 tm)))

:rule-classes ((:type-prescription) (:rewrite))
:hints (("Goal" :use ((:instance standardp-standard-part-limited

(x (phi2 tm)))))))

(defthm resid2-tm-limited
(implies
(and
(realp eps)
(realp tm)
(i-limited tm)
(i-small eps))
(i-limited (resid2-tm tm eps)))

:rule-classes ((:type-prescription) (:rewrite)))

(defun max-abs-resid2-tm (n eps)
(cond
((zp n) (abs (resid2-tm 0 eps)))
(t (max (abs (resid2-tm (* n eps) eps))

(max-abs-resid2-tm (- n 1) eps)))))

(defthm max-abs-resid2-is-bound
(implies

254

(and
(realp eps)
(< 0 eps)
(integerp n)
(integerp m)
(<= 0 m)
(<= m n))
(<= (abs (resid2-tm (* eps m) eps))

(max-abs-resid2-tm n eps)))
:rule-classes nil
:hints (("Goal" :in-theory (disable abs))))

(defun find-n (n eps)
(cond
((zp n) 0)
((equal (abs (resid2-tm (* n eps) eps))

(max-abs-resid2-tm n eps)) n)
(t (find-n (- n 1) eps))))

(defthm find-n-is-max
(implies
(and
(realp eps)
(< 0 eps)
(integerp n)
(<= 0 n))
(equal (abs (resid2-tm (* eps (find-n n eps)) eps))

(max-abs-resid2-tm n eps)))
:rule-classes nil)

(defthm find-n-range
(implies
(and
(realp eps)
(< 0 eps)
(integerp n)
(<= 0 n))
(and
(<= 0 (find-n n eps))
(<= (find-n n eps) n)))

:rule-classes :linear)

(defthm find-n-limited
(implies
(and

255

(realp eps)
(< 0 eps)
(integerp n)
(<= 0 n)
(i-limited (* eps n)))
(i-limited (* eps (find-n n eps))))

:hints (("Goal" :in-theory (disable abs)
:do-not-induct t
:use ((:instance sandwich-limited-thm

(u 0)
(v (* eps n))
(x (* eps (find-n n eps))))

(:instance pos-factor-<=-thm
(x 0)
(y (find-n n eps))
(a eps))

(:instance pos-factor-<=-thm
(x (find-n n eps))
(y n)
(a eps))

(:instance find-n-range)))))

(defthm max-abs-resid2-tm-small
(implies
(and
(realp eps)
(< 0 eps)
(integerp n)
(<= 0 n)
(i-small eps)
(i-limited (* eps n)))
(equal (standard-part (* (/ eps) (max-abs-resid2-tm n eps)))

0))
:hints (("Goal" :in-theory (disable abs

resid2-tm
abs-*-thm
ABS-POS-*-LEFT-THM
<-CANCEL-DIVISORS
EQUAL-CANCEL-DIVISORS)

:do-not-induct t
:use ((:instance find-n-is-max)

(:instance abs-pos-*-left-thm
(x (/ eps))
(y (RESID2-TM

(EPS-N-FUN EPS (FIND-N N EPS))

256

EPS)))
(:instance resid2/eps-small-thm

(tm (* eps (find-n n eps)))
)))))

(defthm max-abs-resid2-tm-limited
(implies
(and
(realp eps)
(< 0 eps)
(integerp n)
(<= 0 n)
(i-small eps)
(i-limited (* eps n)))
(i-limited (* (/ eps) (max-abs-resid2-tm n eps))))

:rule-classes ((:rewrite) (:type-prescription)))

(defthm max-abs-resid2-tm-type
(implies
(and
(realp eps)
(integerp n))
(and
(realp (max-abs-resid2-tm n eps))
(<= 0 (max-abs-resid2-tm n eps))))

:rule-classes :type-prescription)

(defthm max-abs-resid2-tm-floor-small-hint
(implies
(and
(realp eps)
(< 0 eps)
(integerp n)
(<= 0 n)
(i-limited tm)
(i-small eps)
(i-limited (* eps n)))
(equal (standard-part (* tm (/ eps)

(max-abs-resid2-tm n eps)))
0))

:rule-classes nil
:hints (("Goal" :in-theory (disable abs *-commut-3way)

:do-not-induct t
:use ((:instance max-abs-resid2-tm-small)))))

257

(defthm max-abs-resid2-tm-floor-small
(implies
(and
(realp tm)
(<= 0 tm)
(i-limited tm))
(equal (standard-part (* (floor1 (* tm (i-large-integer)))

(max-abs-resid2-tm
(floor1 (* tm (i-large-integer)))
(/ (i-large-integer)))))

0))
:hints ((standard-part-hint stable-under-simplificationp clause)

("Goal" :in-theory (disable abs resid2-tm)
:do-not-induct t
:use ((:instance max-abs-resid2-tm-small

(eps (/ (i-large-integer)))
(n (floor1 (* tm (i-large-integer)))))

(:instance pos-factor-<-thm
(x (- (* tm (i-large-integer)) 1))
(y (floor1 (* tm (i-large-integer))))
(a (max-abs-resid2-tm

(floor1 (* tm (i-large-integer)))
(/ (i-large-integer)))))

(:instance pos-factor-<=-thm
(x (floor1 (* tm (i-large-integer))))
(y (* tm (i-large-integer)))
(a (max-abs-resid2-tm

(floor1 (* tm (i-large-integer)))
(/ (i-large-integer)))))))

("Subgoal 1" :in-theory (disable abs resid2-tm)
:use ((:instance max-abs-resid2-tm-floor-small-hint

(n (floor1 (* tm (i-large-integer))))
(eps (/ (i-large-integer))))))))

(defun n-induct-scheme (n)
(cond
((zp n) 0)
(t (n-induct-scheme (- n 1)))))

(defthm phi-run-step-diff
(implies
(and
(realp x)
(realp eps)
(< 0 eps)

258

(integerp n)
(< 0 n)
(integerp m)
(<= n m))
(<= (abs (- (step1 x eps)

(phi2 (* n eps))))
(+ (* (+ 1 (* eps (L))) (abs (- x (phi2 (* (- n 1) eps)))))

(max-abs-resid2-tm m eps))))
:hints (("Goal" :in-theory (disable abs resid2-tm)

:do-not ’(generalize)
:do-not-induct t
:use ((:instance f-lim-thm

(x1 x)
(x2 (phi2 (* (- n 1) eps))))

(:instance max-abs-resid2-is-bound
(m (- n 1)) (n m))

(:instance pos-factor-<=-thm
(x (abs (- (f x) (f (phi2 (* (- n 1) eps))))))
(y (* (L) (abs (- x (phi2 (* (- n 1) eps))))))
(a eps))

(:instance phi2-equal-thm
(tm (* (- n 1) eps)))

(:instance abs-pos-*-left-thm
(x eps) (y (+ (F X)
(* -1

(f (PHI2 (+ (* -1 EPS) (* EPS N))))))))
(:instance abs-triangular-inequality-3way-thm

(x (- x (phi2 (* (- n 1) eps))))
(y (- (* eps (f x))

(* eps (f (phi2 (* (- n 1) eps))))))
(z (- (resid2-tm (* (- n 1) eps) eps))))))))

(defthm eexp-unite-exponents-thm
(implies
(and
(realp x)
(realp y)
(realp z))
(equal (* (eexp x) y (eexp z))

(* y (eexp (+ x z))))))

(defthm phi2-run-eq-thm
(implies
(and
(integerp m)

259

(integerp n)
(<= 0 n)
(<= n m)
(< 0 eps)
(realp eps))
(<= (abs (- (run (phi2 0) n eps)

(phi2 (* eps n))))
(* (eexp (* eps n (L)))

n
(max-abs-resid2-tm m eps))))

:rule-classes nil
:hints (("Goal" :do-not ’(generalize)

:induct (n-induct-scheme n)
:do-not-induct t
:in-theory (disable abs step1 resid2-tm MAX-ABS-RESID2-TM))

("Subgoal *1/2" :use ((:instance phi-run-step-diff
(x (run (phi2 0) (- n 1) eps)))

(:instance pos-factor-<=-thm
(x (ABS (+ (RUN (PHI2 0) (+ -1 N) EPS)

(* -1 (PHI2 (+ (* -1 EPS)
(* EPS N)))))))

(y (+ (* -1 (MAX-ABS-RESID2-TM M EPS)
(EEXP (+ (* -1 (L) EPS)

(* (L) EPS N))))
(* N (MAX-ABS-RESID2-TM M EPS)

(EEXP (+ (* -1 (L) EPS)
(* (L) EPS N))))))

(a (eexp (* (L) eps))))
(:instance pos-factor-<=-thm

(x 1)
(y (EEXP (* (L) EPS N)))
(a (MAX-ABS-RESID2-TM M EPS)))

(:instance 1+x-<=eexp-thm
(x (* eps (L))))

(:instance pos-factor-<=-thm
(x (+ 1 (* eps (L))))
(y (eexp (* eps (L))))
(a (ABS (+ (RUN (PHI2 0) (+ -1 N) EPS)

(* -1 (PHI2 (+ (* -1 EPS)
(* EPS N)))))))))))

:otf-flg t)

(defthm phi2-st-run-eq-hint
(implies
(and

260

(realp tm)
(i-limited y)
(<= 0 tm)
(i-limited tm))
(equal (standard-part (* y

(floor1 (* tm (i-large-integer)))
(max-abs-resid2-tm

(floor1 (* tm (i-large-integer)))
(/ (i-large-integer)))))

0))
:rule-classes nil
:hints (("Goal" :in-theory (disable abs resid2-tm)

:do-not-induct t
:use ((:instance max-abs-resid2-tm-floor-small)))))

(defthm phi2-st-run-eq-thm
(implies
(and
(realp tm)
(standard-numberp tm)
(<= 0 tm))
(equal (standard-part (phi2 tm))

(standard-part (phi (phi2 0) tm))))
:rule-classes nil
:hints ((standard-part-hint stable-under-simplificationp clause)

("Goal" :in-theory (disable abs)
:use ((:instance phi2-run-eq-thm

(eps (/ (i-large-integer)))
(n (floor1 (* tm (i-large-integer))))
(m (floor1 (* tm (i-large-integer)))))

(:instance phi2-st-run-eq-hint
(y (EEXP (* (L) (TM-FUN TM)))))))))

261

;;--
;; The following is the theorem which states
;; that, for any phi2 satisfying the
;; differential equation, phi2 is equal to
;; phi evaluated at initial condition phi2(0).
;;--
(defthm-std phi2-st-run-eq-std-thm
(implies
(and
(realp tm)
(<= 0 tm))
(equal (phi2 tm)

(phi (phi2 0) tm)))
:rule-classes nil
:hints (("Goal" :in-theory (disable abs)

:use ((:instance phi2-st-run-eq-thm)))))

262

Appendix B

Mechanical Proof of Example

The following sections provide the printouts of the definition files sub-

mitted to the mechanical theorem prover ACL2r in performing the mechanical

proof of the example presented in Chapter 7.

The printouts are of the following files:

1. o-real-p.lisp: Definitions regarding the measure structure described

in Chapter 6.

2. example.lisp: The definitions of the system of the example presented in

Chapter 7, along with definitions of theorems for the safety and progress

properties of the example.

The file example.lisp depends on the files arith-nsa4, abs, nsa, and

computed-hints, whose printouts are already shown in Appendix A and will

not be shown in this appendix.

263

B.1 Measure Structure Definitions

This section presents a printout of file o-real-p.lisp. This file con-

sists of function and theorem definitions of the measure structures described

in Section 6.15.

(in-package "ACL2")

; definition of the measure structure less than operator
(defun o<-1 (x y)

(cond ((o-finp x)
(or (not (o-finp y)) (<= (+ X 1) Y)))

((o-finp y) nil)
((equal (o-first-expt x)

(o-first-expt y))
(if (equal (o-first-coeff x)

(o-first-coeff y))
(o<-1 (o-rst x) (o-rst y))
(<= (+ (o-first-coeff x) 1)

(o-first-coeff y))))
(t (o<-1 (o-first-expt x)

(o-first-expt y)))))

;The following defines a predicate which
; is true if x is a measure structure
(defun o-real-p (x)

(cond ((o-finp x) (and
(realp X)
(<= 0 x)))

((consp (car x))
(and (o-real-p (o-first-expt x))

(if (acl2-numberp (o-first-expt x))
(<= 1 (o-first-expt x))
t)

(realp (o-first-coeff x))
(<= 1 (o-first-coeff x))
(o-real-p (o-rst x))
(o<-1 (o-first-expt (o-rst x))

(o-first-expt x))))
(t nil)))

;Recursively traverse

264

; a measure structure applying floor
; to the real values in the structure
; The intent is to convert a measure structure to
; an ordinal.
(defun o-floor1 (x)

(cond ((o-finp x) (floor1 x))
((consp (car x))
(make-ord (o-floor1 (o-first-expt x))

(floor1 (o-first-coeff x))
(o-floor1 (o-rst x))))

(t nil)))

(defthm o<-1-floor1-neq-thm
(implies
(and
(o-real-p x)
(o-real-p y)
(o<-1 x y))

(not (equal (o-floor1 x) (o-floor1 y)))))

;The following theorem states that
; showing a measure structure x is less than y,
; using the o<-1 operator
; implies that the ordinals attained by
; applying o-floor1 to x and y, respectively,
; are less than each other.
; Hence, in our proof obligation, we need only
; show that (o<-1 x y), this theorem may then
; be applied to show the respective ordinals
; attained by applying o-floor1 are less
; than each other.
(defthm o<-1-floor1-o<-thm
(implies
(and
(o-real-p x)
(o-real-p y)
(o<-1 x y))

(o< (o-floor1 x) (o-floor1 y))))

(defthm floor1-posp
(implies
(and
(realp x)
(<= 1 x))

(posp (floor1 x))))

265

(defthm o-floor1-non-zero
(implies
(and
(o-real-p x)
(o-real-p y)
(o<-1 y x))

(not (equal 0 (o-floor1 x)))))

(defthm o-real-p-caadr
(implies
(and
(o-real-p x)
(consp x)
(consp (cdr x)))

(o-real-p (caadr x))))

(defthm o-real-p-caadr-2
(implies
(and
(o-real-p x)
(consp x))

(equal (caar (o-floor1 x)) (o-floor1 (caar x))))
:hints (("Goal" :do-not-induct t)))

(defthm o-floor1-consp
(implies
(and
(consp x)
(o-real-p x))

(consp (o-floor1 x))))

(defthm consp-not-zero
(implies
(consp x)
(not (equal 0 x))))

266

;The following states that if x is a measure
; structure, then (o-floor1 x) is an ordinal.
(defthm o-floor1-thm
(implies
(o-real-p x)
(o-p (o-floor1 x)))
:hints (("Goal" :do-not ’(generalize)

:induct (o-real-p x)
:do-not-induct t)))

267

B.2 Example Problem

This section presents a printout of file example.lisp. This file con-

sists of definitions of the example system presented in Chapter 7, as well as

definitions of measure functions and theorems for fulfilling proof obligations

for showing safety and progress properties for this example, based on the

proof methods presented in Chapter 6. The books arith-nsa4, abs, nsa,

and computed-hints are identical to those shown in Appendix A and are not

shown in this appendix.

(in-package "ACL2")

(include-book "arith-nsa4")
(include-book "abs")
(include-book "computed-hints")
(include-book "o-real-p")
(include-book "nsa")

;; Enable abs, <-cancel-divisors and divisor cancellation as needed.

(in-theory (disable equal-cancel-divisors <-cancel-divisors))
(set-default-hints ’((staged-hints stable-under-simplificationp

nil ;;restart on new id
’((:in-theory (enable abs
equal-cancel-divisors <-cancel-divisors)))
nil nil 0)))

;;Macro defining non-negative real
(defmacro nneg-realp (r)

‘(and (realp ,r)
(<= 0 ,r)))

;;Macro defining the constraint on the variable eps.
;; In this case, we require that 0 < eps <= 1/100.
(defmacro small-realp (eps)

‘(and (realp ,eps)
(<= , eps 1/100)
(< 0 ,eps)))

268

;;Define accessor function for accessing particular variables
;; from the state X
(defun getPosReq (X)

(nth 0 X))

(defun getPreset (X)
(nth 1 X))

(defun getPos (X)
(nth 2 X))

(defun getPosAo (X)
(nth 3 X))

(defun getTmr (X)
(nth 4 X))

;;Define a function which creates a system state, consisting
;; of the variables of the system.
(defun make-state (posReq preset pos posAo tmr)

(list posReq preset pos posAo tmr))

;;Define theorems relating the accessor function and the make
;; state functions.
(defthm state-thm

(and
(equal (getPosReq (make-state posReq preset pos posAo tmr)) posReq)
(equal (getPreset (make-state posReq preset pos posAo tmr)) preset)
(equal (getPos (make-state posReq preset pos posAo tmr)) pos)
(equal (getPosAo (make-state posReq preset pos posAo tmr)) posAo)
(equal (getTmr (make-state posReq preset pos posAo tmr)) tmr)))

;; Disable the accessor functions and make-state function and rely upon the
;; rewrite rules associated with above theorem.
(in-theory (disable getPosReq getPreset getPos getPosAo getTmr

make-state))

;; StateP is a predicate which recognizes whether some variable is a
;; state variable.
(defun statep (x)

(equal x
(make-state (getPosReq x)

(getPreset x)
(getPos x)
(getPosAo x)

269

(getTmr x))))

;; The system assignment function, Y, includes the definition of the
;; computer program,
;; the floor function representing the analog to digital conversion,
;; and the reset of the timer variable.
(defun Y (X)
(make-state

(getPosReq x)

(getPreset x)

(getPos x)

;;posAo
(cond
((> (- (floor1 (getPos X)) (getposReq X)) 2)
(- (getposAo X) 5))

((< (- (floor1 (getPos X)) (getposReq X)) -3)
(+ (getposAo X) 5))

(t (getposAo X)))

;;tmr
0))

;; The step definition of the physical system, including timer
(defun sigma (X eps)
(make-state

(getPosReq x)

(getPreset x)

;;pos
(cond

((> (getPos X) (getPosAo X))
(- (getpos X) eps))

((< (getPos X) (getPosAo X))
(+ (getpos X) eps))

(t (getPos X)))

(getposAo X)

270

;;tmr
(+ (getTmr X) eps)))

(defun B-Y (X)
(>= (getTmr X) (getPreset X)))

;; The system step function, as define by the single step function
;; sigma, the assignment function Y, and assignment predicate B-Y.
(defun sys-step (X eps)
(cond
((B-Y X) (Y X))
(t (sigma X eps))))

;; The positive clamp function "clamps" the given r to a non-negative value.
;; If the value is negative, it returns zero. Otherwise, it returns
;; the given value.
;; It should be noted that the function is continuous in r.
(defun pos-clamp (r)
(if (<= 0 r)

r
0))

;;A component function of the overall measure m.
;;Intuitively, this measure function measures that the difference
;; between pos and posAo decreases over time.
;; This measure is ’active’ when the difference between pos and
;; posAo is large.
(defun m1 (X eps)
(cond
((<= (abs (- (getPosAo X) (getPos X)))

(+ eps (pos-clamp (- (getPreset X) (getTmr X))))) 0)
(t (+ 1 (/ (- (abs (- (getPosAo X) (getPos X)))

(+ (- (getPreset X) (getTmr X)) eps))
eps)))))

;;A component function of the overall measure m.
;;Intuitively, this measure function measures that the difference
;; between posReq and posAo decreases over time.
(defun m2 (X eps)
(declare (ignore eps))
(if (and

(<= (- (getPosAo X) (getPosReq X)) 3)
(>= (- (getPosAo X) (getPosReq X)) -3))
0
(abs (- (getPosAo X) (getPosReq X)))))

271

;;A component function of the overall measure m.
;;Intuitively, this measure function measures that the difference
;; between pos and posAo decreases over time.
;; This measure is ’active’ when the difference between pos and
;; posAo is small.
(defun m3 (X eps)
(if (<= (abs (- (getPos X) (getPosAo X))) eps)

0
(/ (abs (- (getPos X) (getPosAo X))) eps)))

;;A component function of the overall measure m.
;;Intuitively, this measure function measures that the
;;timer changes in each step. This is useful for showing a
;; decreasing measure while the other system variables are unchanging.
(defun m4 (X eps)
(cond
((< (getPreset X) (getTmr X)) 0)
(t (+ 1 (/ (- (getPreset X) (getTmr X)) eps)))))

;;The overall measure function
(defun m (X eps)
(cond
((and
(< (m1 x eps) 1)
(< (m2 x eps) 1)) (make-ord 1 (+ 1 (m3 x eps))

(m4 x eps)))
((< (m1 x eps) 1) (make-ord 2 (+ 1 (m2 x eps))

(make-ord 1 (+ 1 (m3 x eps))
(m4 x eps))))

(t (make-ord 3 (+ 1 (m1 x eps)) (m4 x eps)))))

;;definition of the domain of the system variables and constants.
(defun valid-state (X eps)

(and (realp (getPos X))
(realp (getPreset X))
(realp (getTmr X))
(integerp (getPosAo X))
(integerp (getPosReq X))
(<= 51/10 (getPreset X))
(<= 0 (getTmr x))
(<= (getTmr x) (+ (getpreset x) eps))))

(set-inhibit-output-lst ’(proof-tree prove))

272

;;By requirement A1, we must show that if the assignment
;; predicate is satisfied in the current step, it is
;; not satisfied in the next step.
(defthm step-A1-thm
(implies

(and
(valid-state x eps)
(B-Y x))

(not (B-Y (Y X))))
:rule-classes nil)

;;Since the computer executes every delta time
;; period which is greater than preset, and since this
;; preset is a positive, standard number, then
;; to satisfy requirement A2, we must show that
;; the assignment function is limited if the
;; state variables are limited and satisfy B-Y.
(defthm step-A2-thm
(implies
(and

(valid-state x eps)
(B-Y x)
(i-limited (getPosAo x))
(i-limited (getTmr x))
(i-limited (getPos x))
(i-limited (getPreset x))
(i-limited (getPosReq x)))

(and
(i-limited (getPosAo (Y x)))
(i-limited (getTmr (Y x)))
(i-limited (getPos (Y x)))
(i-limited (getPreset (Y x)))
(i-limited (getPosReq (Y x)))))

:rule-classes nil
:hints (("Goal" :in-theory (disable i-large))))

;;A theorem that states the formula (< (m1 x eps) 1) is equal
;; to the corresponding safety predicate
;; Hence, we will use the shorter formula
;; (< (m1 x eps) 1) in the remainder of this session.
(defthm m1-lt-1
(implies
(and
(valid-state x eps)
(small-realp eps))

273

(iff (< (m1 x eps) 1)
(<= (abs (- (getPosAo X) (getPos X)))

(+ eps (pos-clamp (- (getPreset X) (getTmr X)))))))
:rule-classes nil)

;;A theorem that states the formula (< (m2 x eps) 1) is equal
;; to the corresponding safety predicate
;; Hence, we will use the shorter formula (< (m2 x eps) 1)
;; in the remainder of this session.
(defthm m2-lt-1
(implies
(and
(valid-state x eps)
(small-realp eps))
(iff (< (m2 x eps) 1)

(and
(<= (- (getPosAo X) (getPosReq X)) 3)
(>= (- (getPosAo X) (getPosReq X)) -3))))

:rule-classes nil)

;;check that a valid state is an ordinal real
(defthm ordinal-real-thm
(implies

(and (valid-state x eps)
(small-realp eps)
(not (and

(< (m1 x eps) 1)
(< (m2 x eps) 1)
(<= (abs (- (getpos x) (getPosReq x))) (+ 3 (* 2 eps))))))

(o-real-p (m x eps))))

;;if we start in valid state, then next state also satisfies valid state
(defthm valid-state-preserve
(implies

(and (valid-state x eps)
(small-realp eps))

(valid-state (sys-step x eps) eps)))

;;the following theorem shows that once m1 < 1, then it remains so
; similarly, once m2 < 1, it remains so. These results
;; are used to show that if m1 < 1 and m2 < 1, then
;; -3-eps <= (abs (- pos PosReq)) <= 3+eps is true
;; for all ensuing states.

(defthm m-1-preserve

274

(implies
(and (valid-state x eps)

(small-realp eps)
(< (m1 x eps) 1))

(< (m1 (sys-step x eps) eps) 1))
:rule-classes :linear)

(defthm m-2-preserve
(implies

(and (valid-state x eps)
(small-realp eps)
(< (m1 x eps) 1)
(< (m2 x eps) 1))

(< (m2 (sys-step x eps) eps) 1))
:rule-classes :linear)

(defthm pos-posReq-preserve
(implies

(and (valid-state x eps)
(small-realp eps)
(< (m1 x eps) 1)
(< (m2 x eps) 1)
(<= (abs (- (getpos x) (getPosReq x))) (+ 3 (* 2 eps))))

(<= (abs (- (getpos (sys-step x eps))
(getposReq (sys-step x eps)))) (+ 3 (* 2 eps))))

:rule-classes :linear)

(defthm safety-property-preserve
(implies

(and (valid-state x eps)
(small-realp eps)
(< (m1 x eps) 1)
(< (m2 x eps) 1)
(<= (abs (- (getpos x) (getPosReq x))) (+ 3 (* 2 eps))))

(and
(valid-state x eps)
(< (m1 (sys-step x eps) eps) 1)
(< (m2 (sys-step x eps) eps) 1)
(<= (abs (- (getpos (sys-step x eps))

(getposReq (sys-step x eps)))) (+ 3 (* 2 eps)))))
:rule-classes nil
:hints (("Goal" :in-theory (disable sys-step valid-state m1 m2))

("Subgoal 2" :use ((:instance pos-posReq-preserve)))))

;;The measure is decreasing on the real ordinals, with

275

;; comparison o<-1
(defthm m-1-decreases
(implies

(and (valid-state x eps)
(small-realp eps)
(not (< (m1 x eps) 1)))

(o<-1 (m (sys-step x eps) eps) (m x eps))))

(defthm m-2-decreases
(implies

(and (valid-state x eps)
(small-realp eps)
(< (m1 x eps) 1)
(not (< (m2 x eps) 1)))

(o<-1 (m (sys-step x eps) eps) (m x eps))))

(defthm m-decreases
(implies

(and (valid-state x eps)
(small-realp eps)
(not (and

(< (m1 x eps) 1)
(< (m2 x eps) 1)
(<= (abs (- (getpos x) (getPosReq x))) (+ 3 (* 2 eps))))))

(o<-1 (m (sys-step x eps) eps) (m x eps))))

(set-inhibit-output-lst ’(proof-tree))

(in-theory (disable o<-1 o-floor1 o-real-p sys-step valid-state m m1 m2 m3))

;;fix m so that it always returns an ordinal
(defun m-fix (x eps)
(cond
((not (and (valid-state x eps)

(small-realp eps)
(not (and

(< (m1 x eps) 1)
(< (m2 x eps) 1)
(<= (abs (- (getpos x) (getPosReq x)))

(+ 3 (* 2 eps)))))))
0)
(t (o-floor1 (m x eps)))))

;;m-fix is an ordinal
(defthm m-fix-o-p

276

(o-p (m-fix x eps)))

;;sys-step decreases, using measure m-fix
(defthm m-fix-decreases
(implies

(and (valid-state x eps)
(small-realp eps)
(not (and

(< (m1 x eps) 1)
(< (m2 x eps) 1)
(<= (abs (- (getpos x) (getPosReq x)))

(+ 3 (* 2 eps))))))
(o< (m-fix (sys-step x eps) eps) (m-fix x eps))))

277

Bibliography

[1] ACL2 home page. http://www.cs.utexas.edu/users/moore/acl2/.

[2] A. Adams, M. Dunstan, H. Gottliebsen, T. Kelsey, U. Martin, and S. Owre.

Computer algebra meets automated theorem proving: Integrating Maple

and PVS. In Richard J. Boulton and Paul B. Jackson, editors, Theorem

Proving in Higher Order Logics, TPHOLs 2001, volume 2152 of Lecture

Notes in Computer Science, pages 27–42, Edinburgh, Scotland, Septem-

ber 2001. Springer Verlag.

[3] R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking in dense real-

time. Information and Computation, 104(1):2–34, 1993.

[4] R. Alur, C. Courcoubetis, T. A. Henzinger, and Pei-Hsin Ho. Hybrid

automata: An algorithmic approach to the specification and verification

of hybrid systems. In Hybrid Systems, pages 209–229, 1992.

[5] R. Alur, T. Dang, and F. Ivancic. Reachability analysis of hybrid systems

via predicate abstraction. In HSCC, pages 35–48, 2002.

[6] J. J. Beaman and H. M. Paynter. Modeling of Physical Systems. Class

Notes. University of Texas at Austin, 1993.

278

[7] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi. UP-

PAAL - a tool suite for automatic verification of real-time systems. In

Hybrid Systems, pages 232–243, 1995.

[8] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic

model checking using SAT procedures instead of BDDs. In Design Au-

tomation Conference (DAC’99), 1999.

[9] W. E. Boyce and R. C. DiPrima. Elementary Differential Equations and

Boundary Value Problems. John Wiley and Sons, Inc., New York, fourth

edition, 1986.

[10] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Uni-

versity Press, Cambridge, 2004.

[11] R.S. Boyer, M.W. Green, and J S. Moore. The use of a formal simulator

to verify a simple real time control program. In Beauty is Our Business:

A Birthday Salute to Edsger W. Dijkstra, pages 54–66. Springer Verlag

Texts and Monographs in Computer Science, 1990.

[12] M. Branicky. Multiple lyapunov functions and other analysis tools for

switched and hybrid systems. IEEE Transactions on Automatic Control,

43:475–482, 1998.

[13] R. E. Bryant. Graph-based algorithms for Boolean function manipula-

tion. IEEE Transactions on Computers, C-35(8):677–691, August 1986.

279

[14] R. E. Bryant. Symbolic Boolean manipulation with ordered binary-

decision diagrams. ACM Computing Surveys, 24(3):293–318, 1992.

[15] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang.

Symbolic Model Checking: 1020 States and Beyond. In Fifth Annual

IEEE Symposium on Logic in Computer Science, pages 1–33, Washington,

D.C., 1990. IEEE Computer Society Press.

[16] S. Campos. Symbolic model checking in practice. In XII Symposium on

Integrated Circuits and System Design, 2000.

[17] S. Campos, E. Clarke, and M. Minea. The verus tool: A quantitative ap-

proach to the formal verification of real-time systems. In O. Grumberg,

editor, Proc. 9th International Conference on Computer Aided Verifica-

tion (CAV’97), volume 1254, pages 452–455. Springer Verlag, 1997.

[18] S. Campos, M. Teixeira, M. Minea, A. Kuehlmann, and E. Clarke. Model

checking semi-continuous time models using BDDs. In Alessandro Cimatti

and Orna Grumberg, editors, Electronic Notes in Theoretical Computer

Science, volume 23. Elsevier, 2001.

[19] S. V. A. Campos and E. Clarke. The Verus language: representing time

efficiently with BDDs. Theoretical Computer Science, 253(1):95–118,

2001.

[20] S. V. A. Campos, E. M. Clarke, W. R. Marrero, and M. Minea. Verus: A

tool for quantitative analysis of finite-state real-time systems. In Work-

280

shop on Languages, Compilers, & Tools for Real-Time Systems, pages

70–78, 1995.

[21] A. Chutinan and B. H. Krogh. Verification of polyhedral-invariant hy-

brid automata using polygonal flow pipe approximations. In Frits W.

Vaandrager and Jan H. van Schuppen, editors, Hybrid Systems: Com-

putation and Control, Second International Workshop, HSCC’99, volume

1569 of LNCS, pages 76–90, Berg en Dal, The Netherlands, March 1999.

Springer.

[22] E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking

using satisfiability solving. Formal Methods in System Design, 19(1):7–

34, 2001.

[23] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification

of finite-state concurrent systems using temporal logic specifcations. In

ACM Transactions on Programming Languages and Systems, volume 8(2),

pages 244–263, 1986.

[24] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS.

In Hybrid Systems III: Verification and Control, volume 1066, pages 208–

219, Rutgers University, New Brunswick, NJ, USA, October 1995. Springer.

[25] D. Dill and H. Wong-Toi. Verification of real-time systems by successive

over and under approximation. In P. Wolper, editor, 7th International

Conference On Computer Aided Verification, volume 939, pages 409–422,

Liege, Belgium, 1995. Springer Verlag.

281

[26] E. A. Emerson and R. Trefler. Generalized quantitative temporal reason-

ing: An automata-theoretic approach. In TAPSOFT: 7th International

Joint Conference on Theory and Practice of Software Development, 1997.

[27] A. F. Filippov. Differential Equations with Discontinuous Righthand

Sides. Kluwer Academic Publishers, Norwell, MA, 1988.

[28] M. Furi and M. Martelli. A multidimensional version of Rolle’s Theorem.

The American Mathematical Monthly, 102(3):243–249, 1995.

[29] R. A. Gamboa. Mechanically Verified Real-Valued Algorithms in ACL2.

PhD thesis, University of Texas at Austin, 1999.

[30] N. Halbwachs, Y. E. Proy, and P. Raymond. Verification of linear hybrid

systems by means of convex approximations. In International Static

Analysis Symposium, SAS’94, Namur (Belgium), September 1994.

[31] P. R. Halmos. Naive Set Theory. Van Nostrand, 1960.

[32] J. Harrison and L. Thery. Extending the HOL theorem prover with a

computer algebra system to reason about the reals. In J.J. Joyce and

C.-J.H. Seger, editors, International Workshop on Higher Order Logic

Theorem Proving and its Applications, volume 780, pages 174–185, Van-

couver, Canada, 1993. Springer Verlag, published 1994.

[33] J.M. Henle and E.M. Kleinberg. Infinitesimal Calculus. Dover Publica-

tions, Inc., Mineola, New York, 2003.

282

[34] T. A. Henzinger. The theory of hybrid automata. In 11th Annual

IEEE Symposium on Logic in Computer Science, pages 278–292. IEEE

Computer Society Press, 1996.

[35] T. A. Henzinger, P. Ho, and H. Wong-Toi. HYTECH: A model checker for

hybrid systems. International Journal on Software Tools for Technology

Transfer, 1(1–2):110–122, 1997.

[36] T. A. Henzinger and P. H. Ho. Algorithmic analysis of nonlinear hybrid

systems. In P. Wolper, editor, 7th International Conference On Computer

Aided Verification, volume 939, pages 225–238, Liege, Belgium, 1995.

Springer Verlag.

[37] T. A. Henzinger and P. W. Kopke. State equivalences for rectangular

hybrid automata. In International Conference on Concurrency Theory,

pages 530–545, 1996.

[38] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable

about hybrid automata? Proc. 27th Annual ACM Symp. on Theory of

Computing (STOC), pages 373–382, 1995.

[39] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic Model

Checking for Real-Time Systems. In 7th. Symposium of Logics in Com-

puter Science, pages 394–406, Santa-Cruz, California, 1992. IEEE Com-

puter Scienty Press.

283

[40] T. A. Henzinger and H. Wong-Toi. Linear phase-portrait approximations

for nonlinear hybrid systems. In Hybrid Systems, pages 377–388, 1995.

[41] T. A. Henzinger and H. Wong-Toi. Using hytech to synthesize control

parameters for a steam boiler. In J.-R. Abrial, E. Borger, and H. Lang-

maack, editors, Formal Methods for Industrial Applications: Specifying

and Programming the Steam Boiler Control, volume 1165 of Lecture Notes

in Computer Science, pages 265–282. Springer Verlag, 1996.

[42] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic Model

Checking for Real-Time Systems. In 7th. Symposium of Logics in Com-

puter Science, pages 394–406, Santa-Cruz, California, 1992. IEEE Com-

puter Society Press.

[43] W. A. Hunt, R. B. Krug, and J Moore. Linear and nonlinear arithmetic

in ACL2. In D. Geist, editor, CHARME 2003, volume 2860 of LNCS,

pages 319–333. Springer Verlag, 2003.

[44] Y. Iwasaki, A. Farquhar, V. A. Saraswat, D. G. Bobrow, and V. Gupta.

Modeling time in hybrid systems: How fast is ”Instantaneous”? In Pro-

ceedings of the Fourteenth International Joint Conference on Artificial

Intelligence, pages 1773–1781, 1995.

[45] M. Johansson and A. Rantzer. Computation of piecewise quadratic lya-

punov functions for hybrid systems. Dept. Automatic Control, Lund

Institute of Technology, Tech Rep. TFRT-7549, June 1996.

284

[46] D. Krob and S. Bliudze. Towards a functional formalism for modeling

complex industrial systems. In P. Bourgine, F. Kps, and M. Schoenauer,

editors, European Conference on Complex Systems (ECCS05), page (ar-

ticle 193) 20 pages, 2005.

[47] B. C. Kuo. Automatic Control Systems. Prentice Hall, Englewood Cliffs,

New York, 1991.

[48] L. Lamport. Proving the correctness of multiprocess programs. IEEE

Transactions on Software Engineering, 3(2):125–143, March 1977.

[49] M. Lawford and H. Wu. Verification of real-time control software using

PVS. In P. Ramadge and S. Verdu, editors, 2000 Conference on Informa-

tion Sciences and Systems, volume 2, pages TP1–13–TP1–17, Princeton,

NJ, March 2000. Dept. of Electrical Engineering, Princeton University.

[50] A. Mader, E. Brinksma, H. Wupper, and N. Bauer. Design of a PLC

program for VHS case study 1. European Journal of Control, 7(4):416–

439, 2001.

[51] P. Manolios, M. Kaufmann, and J S. Moore. Computer-Aided Reasoning:

An Approach. Kluwer Academic Publishers, 2000.

[52] J. Misra. A logic for concurrent programming: Progress. J. Computer

and Software Eng., 3(2):273–300, 1995.

[53] J. Misra. A logic for concurrent programming: Safety. J. Computer and

Software Eng., 3(2):239–272, 1995.

285

[54] J. Mller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard. On the sym-

bolic verification of timed systems. Technical Report IT-TR-1999-024,

Department of Information Technology, Technical University of Denmark,

February 1999.

[55] M. Oliver Möller, H. Rueß, and M. Sorea. Predicate abstraction for dense

real-time systems. Electronic Notes in Theoretical Computer Science,

65(6), 2002.

[56] J Moore and R.S. Boyer. Integrating decision procedures into heuristic

theorem provers: A case study of linear arithmetic. In Machine Intelli-

gence 11, pages 83–124. Oxford University Press, 1988.

[57] J S. Moore. Proving theorems about java-like byte code. In E.-R.

Olderog and B. Steffen, editors, Correct System Design – Recent Insights

and Advances, volume 1710 of LNCS, pages 139–162, 1999.

[58] K. Nakamura and A. Fusaoka. On transfinite hybrid automata. In Lec-

ture Notes in Computer Science, volume 3414, pages 495–510. Springer,

2005.

[59] E. Nelson. Internal Set Theory.

On Line Book: http://www.math.princeton.edu/̃ nelson/books.html.

[60] L. T. Pillage, R. A. Rohrer, and C. Visweswariah. Electronic circuit and

system simulation methods. McGraw-Hill, New York, 1995.

[61] A. Robinson. Non-Standard Analysis. Princeton University Press, 1996.

286

[62] H. Rust. A non-standard approach to operational semantics for timed

systems. In Abstract State Machines, pages 423–424, 2003.

[63] H. Rust. Modeling discretely timed systems using different magnitudes

of non-standard reals. In Abstract State Machines, pages 218–233, 2004.

[64] H. Rust. Operational Semantics for Timed Systems: A Non-standard

Approach to Uniform Modeling of Timed and Hybrid Systems, volume

3456 of Lecture Notes in Computer Science. Springer, 2005.

[65] D. E. Sanderson. A versatile vector mean value theorem. The American

Mathematical Monthly, 79(4):381–383, 1972.

[66] N. Shankar. Verification of real-time systems using PVS. In Costas

Courcoubetis, editor, Computer Aided Verification, CAV ’93, volume 697,

pages 280–291, Elounda, Greece, June 1993. Springer Verlag.

[67] T. Stauner, O. Mueller, and M. Fuchs. Using HYTECH to verify an

automotive control system. In O. Maler, editor, Hybrid and Real-Time

Systems, volume 1201 of LNCS, pages 139–153, Grenoble, France, 1997.

Springer Verlag.

[68] D. E. Stewart. A high accuracy method for solving ODE’s with discon-

tinuous right-hand side. Numer. Mathem., 58:299–328, 1990.

[69] D. E. Stewart. Rigid-body dynamics with friction and impact. SIAM

Review, 42(1):3–39, 2000.

287

[70] A. Tiwari and G. Khanna. Nonlinear systems: Approximating reach

sets. In R. Alur and G. Pappas, editors, Hybrid Systems: Computation

and Control HSCC, LNCS. Springer, March 2004.

[71] VHS project homepage. http://www-verimag.imag.fr/VHS/main.html.

288

Vita

Shant Harutunian received the Bachelor of Science degree on May 1994

and the Master of Science degree on May 1996. Both degrees were attained in

Electrical Engineering from the University of Texas at Austin. Shant Haru-

tunian is currently employed by Harutunian Engineering, Inc. and resides in

Austin, Texas.

Permanent address: P. O. Box W

Austin, Texas 78713

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special

version of Donald Knuth’s TEX Program.

289

