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Abstract 

 

ENHANCING THE MODEL OF COARSE-GRAINED BASIN FLOOR 

FANS; CHARACTERISTIC TRENDS WITHIN LOBES AND LOBE 

COMPLEXES OF THE JURASSIC LOS MOLLES FM., NEUQUEN 

BASIN, ARGENTINA 

Gabriel Giacomone, MS Geo Sci 

The University of Texas at Austin, 2019 

 

Supervisors: Ron Steel and Cornel Olariu 

 
Basin floor fans can contain a wide range of grain sizes, though the most frequently 

described fans have tended to be the fine-grained sandy and muddier ones.  A coarse-

grained category of fan has been broadly described previously, but it lacks a depositional 

and facies model. The Mid-Jurassic deep-water marine deposits of Los Molles Fm. in 

Neuquén Basin, Argentina is an example of this type of fan and it is well exposed in 

outcrop. A detailed characterization of the basin-floor fans of La Jardinera is used to build 

a coarse-grained fan model. 

We made use of a high-resolution satellite image, drone imagery and 4000 m of logs with 

detailed measurements to build isopach and net/gross (NG) maps that with facies analysis 

allowed reconstruction of the fan and its lobe complexes (LC1-5). In addition, grain size, 

facies and bed thickness trends were used to refine the interpretation at a lobe scale within 

unit LC3. Lithofacies, NG ratios and sandstone body geometry helped define six facies 

associations; hemipelagic deposits, lobe fringe, off-axis lobes, on-axis lobes, distributary 

channels and debris flows. The facies associations build lobes (<10 m thick) and these are 

grouped into lobe complexes (~20-40 m thick). The studied five lobe complexes (LC1-5) 

are separated by fine-grained intervals (~ 4 m thick in average). The fan shows paleoflow 
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trends towards the northwest at the bottom gradually changing to northeast at the top. The 

lobe complexes stack forward and backstep gently, with no major switches; they aggrade 

and shift laterally in an autocyclic manner, following topographic lows left by previous 

deposits. The maps at lobe complex scale show an overall elongated morphology and 

serrated geometries downdip, a normal response of focused sediment dispersal associated 

with channels and high-density turbidity currents. Detailed study of lobes 3 and 4 in LC3 

show that proximal to lobe axis beds are thicker (>40 cm), grain size is greater (medium 

sand to granules) and main facies are conglomerates and structureless sandstones. Off axis, 

beds are thinner (<40 cm), grain size ranges from fine to medium sand and there is an 

increase on normally graded and laminated sands. These trends are associated with the 

confinement and density of the flow. From lobe axis to off-axis, channelized elements 

disappear and the facies vary from high density to low density turbidites. 

The present work shows a coarse-grained basin floor fan system that differs from previous 

models; having a distinct elongated morphology, finger-like geometries and changes in 

facies associated with channelized features and variations on the type of flow from the axis 

to the fringes. 



 ix 

Table of Contents 

 

List of Tables ................................................................................................................ xii 

List of Figures .............................................................................................................. xiii 

1. Introduction ................................................................................................................. 1 

2. Geological Setting ....................................................................................................... 2 

3. Data and Methodology ................................................................................................ 7 

4. Results....................................................................................................................... 11 

4.1. Lithofacies and Facies association.................................................................. 11 

4. 1. 1. Facies ............................................................................................ 12 

Facies 1 (F1) Dark Mudstone............................................................ 12 

Facies 2 (F2) Interbedded silty mudstone and sandstone ................... 12 

Facies 3A (F3A) Normal-graded sandstone ...................................... 13 

Facies 3 B (F3B) Structureless sandstone.......................................... 14 

Facies 3C (F3C) laminated sandstone ............................................... 15 

Facies 3D (F3D) Ripple laminated sandstone.................................... 16 

Facies 4 (F4) Matrix supported paraconglomerate ............................ 16 

Facies 5 (F5) Normal graded Orthoconglomerate.............................. 17 

Facies 6 (F6) Hybrid beds ................................................................. 18 

4. 1. 2. Facies associations......................................................................... 23 

FA1 Hemipelagic/Pelagic deposits ................................................... 23 

FA2 Lobe fringe and distal fringe ..................................................... 24 

FA3 Lobe off-axis ............................................................................ 24 



 x 

FA4 Lobe on axis ............................................................................. 25 

FA5 Distributary channels & channel to lobe transition .................... 25 

FA6 Debris flows and Mass transport deposits (MTDs) .................... 26 

4. 2. Fan hierarchy & architecture ......................................................................... 28 

4. 2. 1. Lobe complex characterization ...................................................... 36 

Lobe complex 1 (LC1) ..................................................................... 36 

Lobe complex 2 (LC2) ..................................................................... 37 

Lobe complex 3 (LC3) ..................................................................... 37 

Lobe complex 4 (LC4) ..................................................................... 38 

4. 2. 2. Axial variability of grain size, bed thickness, net to gross and 
facies ................................................................................................... 41 

Along depositional strike trends of lobe 3 – LC3 (Fig. 17-A) ............ 41 

Along depositional strike trends of lobe 4 – LC3 (Fig. 17-B) ............ 42 

5. Discussion ................................................................................................................. 44 

5. 1. Lobe’s trends and axis versus off-axis deposition .......................................... 44 

5.2. Controls on lobe’s stacking patterns ............................................................... 45 

Examples of stacking patterns caused by lateral switch of bed-sets ... 45 

Examples of stacking patterns caused by lobe 
progradation/retrogradation ......................................................... 46 

5. 3. Stratigraphic evolution of the Lower Fan ...................................................... 47 

5. 4. Type of stacking and role of topography and confinement on the basin 
floor ................................................................................................................ 51 

5. 5. Coarse grained fan model .............................................................................. 53 

5. 6. Applications to reservoirs in the subsurface .................................................. 55 



 xi 

6. Conclusions ............................................................................................................... 57 

Bibliography ................................................................................................................. 60 



 xii 

List of Tables 

Table 1. Table showing 9 different facies described and interpreted in the Lower Fan 

of Los Molles Fm. ..................................................................................... 21 

Table 2. Table showing main interpreted facies association with their respective 

facies’ assemblage. Between brackets are secondary facies. ...................... 27 

Table 3. Table summarizing the large-scale hierarchy of the Lower Fan and its main 

characteristics............................................................................................ 29 



 xiii 

List of Figures 

Figure 1. Regional map of Neuquén basin with rift depocenters distribution and 

location of the study area. Modified from Franzese & Spalletti, 2001. ......... 3 

Figure 2. Distribution of hemigrabens and their associated faults and deposits of Cuyo 

Gr near the study area (modified from Morabito, 2010). The indicated 

seismic line is presented in Fig. 4. ............................................................... 4 

Figure 3. Stratigraphy and main tectonic events for the Jurassic of the Neuquén basin 

(Gulisano et al., 1984; Vergani et al., 1995; Paim et al., 2008; Olariu et 

al., 2019) ..................................................................................................... 5 

Figure 4. Seismic line-oriented W-E and structural interpretation. An inverted 

hemigraben is recognized, with one major fault to the west and smaller 

scale faults towards the east. Note that one of the faults is creating 

accommodation for the base of Los Molles Fm. (arrows). The high 

amplitude reflector on Los Molles Fm. colored in yellow is interpreted 

to be a sandy deposit probably associated with deep water fans. Note the 

terminations of the reflectors in Los Molles Fm. base towards relative 

highs. Courtesy of Pluspetrol S.A. ............................................................... 6 

Figure 5. A- Satellite image of La Jardinera area with the acquired data and the 

regional geological interpretation. The present work is on Lower Fan at 

the base of the succession (interpretation modified from Paim et al., 

2008). B- Zoomed in image of La Jardinera area with acquired 

paleocurrent data classified by the major hierarchy on the basin floor 

fan. .............................................................................................................. 9 



 xiv 

Figure 6. Schematic plan view of a lobe indicating the nomenclature used to describe 

different components and environments of lobe systems (modified from 

Prelat et al., 2009). .................................................................................... 10 

Figure 7. Hierarchical scheme adopted to interpret different scales of elements in the 

basin floor fan. Colors red to yellow are indicative of changes from 

channelized to unconfined elements (conglomerates to sandstone 

respectively) .............................................................................................. 10 

Figure 8. 19 

Facies described and interpreted in the Lower Fan of Los Molles Fm. A- Interbedded 

silty mud – sandstone and ripple laminated sandstone (F2 and F3D 

respectively), B- Structureless sandstone bed with fluid scape features 

(F3B), C- Structureless sandstone beds (F3B), D-  Normal graded 

sandstone with mud clasts at the top of the bed (F3A), E- Normal graded 

sandstone (F3A) to laminated sandstone (F3C), F- Structureless 

sandstone grading rapidly to muddy sandstone with high phytodetritus 

content (F6), G- Matrix supported paraconglomerate associated with 

contorted sandstone-mudstone beds (F4), H- Matrix supported 

paraconglomerate (F4), I- Normal graded  orthoconglomerate with sharp 

erosive base (F5), J- Normal graded orthoconglomerate with sharp 

erosive base with 1 m erosion relief (F5). .................................................. 20 



 xv 

Figure 9. Facies Association examples from the Lower Fan in Los Molles Fm. A- 

Lobe off-axis deposits (FA3), Hemipelagic / pelagic deposits (FA1) and 

Lobe fringe deposits (FA2). B- At the bottom, alternation of lobe off-

axis deposits (FA3) and lobe fringe deposits (FA2); at the top, lobe axis 

deposits (FA4). C- Lobe on axis deposits (FA4) partially eroded at the 

top by a distributary channel (FA5). D- Debris flows associated with 

contorted beds creating mass transport deposits (FA6). Continue next 

page. ......................................................................................................... 22 

Figure 9 continued. ........................................................................................................ 23 

Figure 10. Photomosaic and its interpretation (top and bottom). Red lines represent 

the base of amalgamated distributary channels (FA5). Blue lines on top 

represent the base of unconfined on axis lobe beds (FA4). This image 

shows a good example of the different architectural elements found on a 

lobe. See Fig. 5A for location .................................................................... 27 

Figure 11. 31 

Correlation panel 1 oriented SE to NW showing the major architectural elements and 

interpreted hierarchy of the Lower Fan (bounded by green lines) along 

an oblique / axial view. Lobe complex 5 is not interpreted due to lack of 

exposures in the rest of the panel. Grain size and bed thickness trends 

are indicated on the left side of the sections. Main paleocurrents are 

indicated to the left. ................................................................................... 32 

Figure 12. 33 



 xvi 

Correlation panel 2 oriented Se to NW showing the major architectural elements and 

interpreted hierarchy of the Lower Fan downdip from panel 1 (Fig.12) 

along an oblique / axial view. Grain size and bed thickness trends are 

indicated on the left side of the sections..................................................... 34 

Figure 13. Aerial image showing hierarchical divisions on basin-floor deposits at lobe 

– lobe complex scale. This example is from Lobe complex 4, which 

shows 6 identifiable lobes separated by thin fine-grained intervals.  See 

figure 5 for location. .................................................................................. 35 

Figure 14. Aerial image showing hierarchical divisions within a basin floor 

succession at a lobe complex scale. The lower fan is composed by 5 lobe 

complexes, 3 of which can be seen clearly on this image; only the base 

of lobe complex 4 is seen here. Fine-grained intervals separate each lobe 

complex. On dash lines the base of the lobes. See figure 5 for location ...... 35 

Figure 15. Types of stacking patterns recognized on the lower fan and examples from 

different lobes. The patterns respond to both grain size and bed 

thickness, although sometimes it is clearer on only one of the 

characteristics............................................................................................ 39 

Figure 16. 40 

Net-to-gross (NG) and thickness maps of each lobe complex on the lower fan. Cold 

colors represent low values and hot colors represent high values. 

Paleocurrents are indicated in red at the right down corner of NG maps. ... 41 

Figure 17. Facies, N/G, bed thickness, and grain size variations along strike in a 

correlated panel of Lobe Complex 3. A.  Lobe 3. B. Lobe 4. ..................... 43 



 xvii 

Figure 18. Diagram showing changes in accumulation of sand and mud on a vertical 

profile. Diagram A shows the origin of compensation patterns, note how 

thickness trends vary across the lobe. Thinning and thickening-up trends 

are observed together with regions of no thickness variation. Diagram B 

shows the thickening-up trends generated by prograding beds. Trends 

are observed through the entire lobe, and are interrupted only by 

localized erosion generated by bypass surfaces and channels. Modified 

from Macdonald et al., 2011. .................................................................... 47 

Figure 19. Paleogeographic reconstructions of the lobe complexes forming the lower 

fan. Each lobe complex is represented here with on-axis to off-axis and 

fringe deposits moving away from the main sediment entry points. Note 

that the shape of the lobe complexes is not perfectly lobated but that it 

has serrated borders (see discussion. The channels that are interpreted on 

outcrop (red line) are marked here as blue dots. A hemigraben is 

represented on the block diagrams as a possible structural setting for the 

base of Los Molles Fm. ............................................................................. 51 

Figure 20. Simplified diagram showing the stacking pattern of lobes in confined (a) 

and semi-confined (b) lobe complexes along depositional strike. The red 

arrows show the probable trajectory of the center of mass of lobe sets 

(i.e. the locus of main sand deposition). Modified from Marini et al., 

2015. No scale intended. ........................................................................... 53 



 xviii 

Figure 21. A- Depositional model for coarse-grained deep-water fans. B- Previous 

depositional model for coarse-grained systems modified from Reading 

& Richards, 1994. Main differences in new model are listed in the box. 

C- Seismic interpretation from Deptuck et. al., (2008) and schematic 

logs showing possible main facies assemblage using outcrop model from 

this study. .................................................................................................. 56 

 



1 
 

1. Introduction 

The basin floor fan deposits were thought to be dominated by muds mainly deposited as 

pelagic sediments. (Maury, 1855 apud Mutti et al., 2009) but the improved bathymetry 

techniques allowed the recognition of deposits at the base of continental slope and lead to the 

proposition of the deep-water fan model (Menard, 1955; William R. Normark (2), 1978; 

Normark et al., 1979; Mutti & Normark, 1987). Coarse-grained, deep- water fan models have 

been proposed and developed along with the turbidity current paradigm and  the development of 

sequence-stratigraphy (Mutti, 1985). However, the proposed coarse-grained deep-water model 

focuses mainly on the overall large-scale morphology of the fan (William R. Normark (2), 1978; 

Normark et al., 1979, 2006; Piper & Normark, 1983; Bowen et al., 1984; Kenyon et al., 2002; 

Pichevin et al., 2003; Gervais et al., 2004, 2006b; a; Deptuck et al., 2008). On the other hand, 

studies that focused on facies analysis were made on outcrops that are not very extensive, thus 

larger scale features might be missing  (Link & Nilsen, 1980; Cazzola et al., 1985; Sinclair, 

1994; Joseph et al., 2000; Satur et al., 2000; Camacho et al., 2002; Felletti, 2016). The 

outstanding and extensive outcrops of early-mid Jurassic Los Molles Fm. in Neuquén Basin, 

Argentina present the chance to refine the model for coarse-grained deep-water fans. 

The evolution of basin-floor fans and how they are formed in terms of their complex 

geometric assemblage from bed scale features (individual flow events) to large-scale lobe stacking 

and lobe complexes has received much attention (e.g. Prélat et al., 2009; Mulder & Etienne, 2010; 

Prélat & Hodgson, 2013, Grundvåg et al., 2014). Architectural and hierarchical analysis has been 

made mainly on fine-grained sandy and muddy deposits (e.g. Permian Karoo basin, Prélat et al., 

2009; Eocene Central Basin of Spitsbergen, Grundvåg et al., 2014), and has yet to be refined for 

coarse grained systems.  

Several authors have studied the Los Molles Fm. outcrops in Neuquén Basin. Some have 

focused on large-scale stratigraphy (Burgess et al., 2000; Paim et al., 2008, 2011; Vann et al., 

2014; Olariu et al., 2019 in press); others in gravity flow processes (Mutti et al., 2003), though 

some focused on facies variability and  local architecture within specific intervals of the basin floor 

fans (Tudor, 2014; Shin, 2015).  

In this study we (1) propose a 3D model for the coarse-grained fans by using the details of 

facies and architecture analysis of the Los Molles deposits combined with other literature 

examples, (2) increase our understanding of the Los Molles basin-floor deposits in the context of 
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the shelf-slope-basin floor clinoform physiography of the Neuquén Basin and possible topographic 

influence on the fans, and (3) provide reservoir analogs for the subsurface since Cuyo Group 

(slope-basin floor Los Molles, shelf deposits of Lajas and fluvial deposits of Challaco  Fms.) 

contain significant hydrocarbon resources. 

2. Geological Setting 

The Neuquén basin is located in central western Argentina and Eastern Chile, between 32° 

and 41° latitude (Fig. 1). It encompasses the provinces of Neuquén, Mendoza, Rio Negro and La 

Pampa. The basin has a triangular shape, covers approximately 120000 km2 (Yrigoyen, 1991) and 

comprises a record from the Late Triassic to Early Cenozoic that exceeds 7000 m of marine and 

continental stratigraphy (Ramos, 1998).  

The basin is generally divided in two main regions: Neuquén Andes to the west, and 

Neuquén embayment to the east (Howell et al., 2005). It is bordered by the Andean chain to the 

west and two cratons to the east: The Sierra Pintada system to the northeast and north Patagonian 

Massif to the southeast (Fig. 1). 

This study is located in the area called “Arroyo La Jardinera”, on the southwest margin of 

Neuquén basin, southeast to the city of Alumine (Fig. 1 and 2). The outcrops in the area show 

extensive deposits of Cuyo Group (Los Molles Fm., Lajas Fm. and Challaco Fm.) that allow great 

documentation to be obtained at different scales of work. 

The evolution and development of Neuquén Basin have been summarized in three main 

stages (Fig. 3; Gustavo D. Vergani, Anthony J. Tank, 1995; Franzese et al., 2003; Howell et al., 

2005; Olariu et al., 2019 in press). The first stage occurs from Late Triassic to Early Jurassic (Rift 

phase); the western part of Argentina and eastern Chile underwent extensional tectonic processes 

associated to an arc system along the western margin of Gondwana (Paim et al., 2008, Legarreta 

& Uliana, 1991, Gulisano and Gutierrez Pleimling 1994). This led to a series of narrow, isolated 

depressions filled with continental facies and volcanic materials with great lateral thickness 

variation known as Precuyo Group (Gulisano & Gutierrez Pleimling, 1994). The second stage 

occurs from Early Jurassic to Early Cretaceous where there was a back arc setting with regional 

subsidence, associated with the development of a steeply dipping, active subduction zone (Howell 

et al., 2005). The third and last stage spans from Late Cretaceous to Cenozoic times; the subduction 
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zone shallowed, resulting in a classic foreland basin associated with compression and flexural 

subsidence (Ramos 1998). 

 

Figure 1. Regional map of Neuquén basin with rift depocenters distribution and location of the 
study area. Modified from Franzese & Spalletti, 2001. 

The Los Molles Fm. has a variable total thickness, with maximum values of 2,000 m in the 

Huincul high area (Omil et al., 2002). The age for the entire interval is Pliensbachian – Early 

Bajocian, varying with the position within the basin (Arregui et al., 2011).   This study will focus 

on the lowermost part of this succession (Pliensbachian – Early Toarcian), represented by 
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approximately 150 - 200 m of medium to coarse-grained sandstones and conglomerates that built 

a basin floor fan that sits on top of Pleinsbachian dark shale.  

 

 

Figure 2. Distribution of hemigrabens and their associated faults and deposits of Cuyo Gr near 
the study area (modified from Morabito, 2010). The indicated seismic line is 
presented in Fig. 4. 

 
During Early Jurassic times, extensional faulting was an important control on 

sedimentation on Neuquén Basin (Fig. 1 and 2), with thick accumulations of marine strata confined 

to depocenters (hemigrabens) bounded by horst blocks (Vergani et al., 1995). 
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In La Jardinera and surrounding areas, a fault system with a northwest – southeast orientation was 

described by Morabito (2010; Fig. 2). These faults delimitate different depocenters in which the 

base of Los Molles Fm. is controlled by the geometry given by the hemigrabens, either in outcrop 

or in subsurface. According to Morabito (2010), the basal deposits Los Molles Fm. in La Jardinera 

area were deposited in a hemigraben controlled by Rahue Fault (Fig. 2 and 5). We can see on a 

seismic line proximal to La Jardinera (Fig. 4), how the base of Los Molles Fm. onlaps the small 

hemigraben geometry. The high amplitude reflectors might be indicative of sandy deposits that are 

onlapping the borders of the hemigraben.  

 

 

Figure 3. Stratigraphy and main tectonic events for the Jurassic of the Neuquén basin (Gulisano 
et al., 1984; Vergani et al., 1995; Paim et al., 2008; Olariu et al., 2019) 

 
Relative changes of sea level during the development of the stratigraphy have been 

recorded and interpreted by Legarreta & Gulisano, (1989) and Legarreta & Uliana, (1996), who 

associated the entire Cuyo Gr to a stratigraphic sequence of second order (as defined Haq et al., 

1987). They interpreted a shoreline retrogradation associated with transgression during 

Pliensbachian – Toarcian followed by large-scale progradation (regression) during Aalenian – 



6 
 

Bathonian times and lastly a sea-level fall that ended with desiccation of the basin and deposition 

of evaporites in the Callovian. 

Burgess et al. (2000) suggested that, during the Pliensbachian, the complex faulted 

topography was an important control on sediment routing in the southern areas of the basin. Their 

petrographic data indicates a dominant supply from the volcanic arc to the west, although 

paleocurrents from the same study show current-flow directions to the northwest, evidencing 

complex pathways through the fault system probably associated with relay ramps between distinct 

depocenters. 

 

Figure 4. Seismic line-oriented W-E and structural interpretation. An inverted hemigraben is 
recognized, with one major fault to the west and smaller scale faults towards the 
east. Note that one of the faults is creating accommodation for the base of Los 
Molles Fm. (arrows). The high amplitude reflector on Los Molles Fm. colored in 
yellow is interpreted to be a sandy deposit probably associated with deep water 
fans. Note the terminations of the reflectors in Los Molles Fm. base towards relative 
highs. Courtesy of Pluspetrol S.A. 
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3. Data and Methodology 

This study has made use of a high-resolution satellite image (0.5 m) with a Digital 

Elevation Model (1 m resolution) that was then interpreted to build a stratigraphic framework (Fig. 

5). Part of this work was made by previous authors (Paim et. al. 2008; Tudor, 2014; Shin, 2015); 

the intention here is to enrich the interpretation and focus on the lowermost part of the stratigraphy. 

Time-lines and large-scale architectural elements were mapped to understand the continuity and 

correlation between the measured sedimentary logs. 

Approximately 4,000 m of logs were measured in detail in 18 different locations distributed 

in the area to have a good understanding of the entire lower Fan in three dimensions. Of these 18 

measured sections, 8 were measured by Shin (2015), who worked an interval of the same basin 

floor deposits in the area (Fig. 5A). 

Description of the rocks focused on grain size, sedimentary structures, bed thickness and 

bed geometry. Grain size of each bed was measured thoroughly in order to establish within-bed 

trends and distributions as well as trends between successive beds. This was possible to do in 

outcrop due to the overall coarse-grained nature of the deposits (medium to very coarse-grained 

sandstones and conglomerates). Even though there was not a great variety of sedimentary 

structures present in the deposits, it was important to recognize them to help understand types of 

flow. Bed characteristics like thickness, geometry, degree of erosion and amalgamation are a key 

part of this study to better understand location within the depositional environment and architecture 

of the fan.  

Over sixty paleocurrent measurements mostly from erosive features at the base of the beds 

(e.g. flutes, groove casts) were used to understand paleoflow variability (Fig 5B). Main direction 

of the flow is towards NE–NNE but there is also indication of northwesterly paleoflows, which 

suggest multiple sources, or tortuous pathways to the deep-water fans (Fig. 5). 

In addition, photomosaics and large-scale drone photography were used to help correlation 

between logs and identification of large-scale channelized geometries vs poorly or non-

channelized architecture. 

All these sedimentological observations where used to characterize facies and facies 

associations. 

In the La Jardinera basin-floor setting, four main depositional environments are interpreted, 

used and being guided by published works elsewhere that focused on facies and architectural 
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elements of the basin floor (Prélat et al., 2009; Koo et al., 2016). These four are lobe axis, lobe off 

axis, lobe fringe and channels (Fig. 6). In addition, a hierarchical scheme was adopted to partition 

the elements into different scales (Fig. 7). Consequently, 5 lobe complexes were identified based 

on thick (2.5 – 7 m) shale intervals occurring between these complexes; 3 to 6 lobes are interpreted 

in each of these lobe complexes; each of the lobes is formed by stacked event beds.  

The measured outcrop logs were loaded in Petrel software as well logs. Thickness maps 

and Net to Gross maps for each lobe complex were created in Petrel software after correlation 

between all measured sections in order to provide a stronger framework of interpretation for the 

facies associations and better understand the evolution of the system. 

Facies, grain size, bed thickness and net to gross ratios constituting lobes 3 and 4 of Lobe Complex 

3 were plotted in frequency histograms to identify distribution patterns and therefore build a 

stronger interpretation of the units forming lobe complexes.  

A qualitative determination of bed thickness and grain size trends within lobes was made 

in 3D in order to interpret types of stacking and the possibility of progradation within single lobes. 
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Figure 5. A- Satellite image of La Jardinera area with the acquired data and the regional 
geological interpretation. The present work is on Lower Fan at the base of the 
succession (interpretation modified from Paim et al., 2008). B- Zoomed in image of 
La Jardinera area with acquired paleocurrent data classified by the major hierarchy 
on the basin floor fan. 
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Figure 6. Schematic plan view of a lobe indicating the nomenclature used to describe different 
components and environments of lobe systems (modified from Prelat et al., 2009). 

 
 

 

Figure 7. Hierarchical scheme adopted to interpret different scales of elements in the basin floor 
fan. Colors red to yellow are indicative of changes from channelized to unconfined 
elements (conglomerates to sandstone respectively) 
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4. Results 

4.1. LITHOFACIES AND FACIES ASSOCIATION 
Lithofacies are defined here as units with similar lithology (grain size, structures and 

fabric), bed contact, thickness and amount of mud; lithofacies’ uniformity is important, 

representing similar conditions of sedimentation. We defined 10 facies (table 1 and Fig. 8): 

Mudstone, interbedded silty mudstone and sandstone, normal graded sandstone, structureless 

sandstone, planar laminated sandstone, ripple laminated sandstone, matrix-supported 

paraconglomerate, normal graded clast-supported orthoconglomerate and hybrid beds. 

The stacking of different lithofacies and the analyses of their respective geometries portray 

relationships that lead to grouping into several facies’ association (table 2 and Fig. 9) that in this 

deep-water marine setting represent; hemipelagic deposits (FA1), fringe/distal fringe lobe deposits 

(FA2), off-axis lobe deposits (FA3), on axis lobe deposits (FA4), channel to lobe transition 

deposits (FA5) and debris flows (FA6).  

Deep-water sediment gravity flow deposits have been intensely studied in terms of 

processes and therefore, several classifications exist. One of the first classifications, from 

Middleton & Hampton (1973), classified flows in terms of sediment support mechanism, focusing 

on turbulence, upward water movement of fluidized flow, grain-to-grain dispersive stress as grain 

flow and matrix strength in debris flow. Some authors (e.g., Talling et al., 2012 and Mulder & 

Alexander, 2001) summarized many processes described and interpreted in the literature while 

building their own scheme for sediment gravity flow deposits. They have generally emphasized 

the key variables as (1) the concentration of sediment in the flow (hyperconcentrated density flows, 

concentrated density flows and purely turbidity flows, or high-versus low-density turbidity 

currents with 10% concentration as the boundary condition) and (2) percentage of mud in the flow 

(cohesive and non-cohesive flows). During the last decade, there has been a switch of interest from 

triggering mechanisms for turbidites, such as the classic slope-collapse/slumping trigger or the 

river flooding and generation of hyperpycnal flow with plume collapse (e.g. Mulder et al., 2003; 

Zavala et al., 2011), to more recent focus on processes that happen during turbidite movement 

such as hybrid or transitional aspects of the flows (Haughton et al., 2009; Sumner et al., 2009; 

Baas et al., 2011; Kane & Pontén, 2012). The latter was first described as slurry flows (Wood & 



12 
 

Smith, 1957; Hampton, 1972), with structures supporting evidence of flows going through a 

turbulent to a laminar transition. 

Talling et al., 2007, 2012 and Haughton et al., (2003), among other authors, emphasized 

the transformation some flows can suffer in time in a downdip direction. These transformations 

can be from dense to dilute flows as they decelerate and take in water (e.g. as in the classic Bouma 

turbidite), or they can be changes in the opposite way, where increasing mud content can lead to 

increasing fluid viscosity, yield strength and pore pressure and leading to debris flows. 

On this work, we will mostly use classifications of coarse grained turbidites from (Lowe, 

1982) and fine-grained turbidites by Bouma, (1962). We will mention but not discuss in detail the 

deposits of hybrid flows (Haughton et. al. 2003) and hyperpycnal flows (Mulder et. al. 2003). 

Table 1 and Fig. 8 summarizes the facies that will now be described. 

4. 1. 1. Facies 

Facies 1 (F1) Dark Mudstone 

Facies 1 consists of beds or units of finely laminated dark shales and silt, rich in organic 

content (Villar et al., 2005) and with very little bioturbation. Facies 1 intervals varies in thickness 

but can be from several meters to hundreds of meters thick, as the classic Los Molles Fm. in the 

area when no coarse-grained gravity flow deposits are present. Ammonites and bivalves, generally 

preserved in concretions, occur in Facies 1.  

Interpretation. These shale intervals generally represent suspension settling of pelagic and 

hemipelagic mud. Geochemistry analysis of these shales had been carried by different authors 

(e.g., Cruz, 2002; Villar et al., 2005), showing that TOC values can range from 2 – 3.5 % and oHI 

(original hydrogen index) values of 500 mgHc/grTOC. 

Facies 2 (F2) Interbedded silty mudstone and sandstone 
Facies 2 consists of dark laminated shale and siltstone intervals 1–20 cm thick that 

intercalate with very fine to occasionally coarse sandstones less than 1 cm to 10 cm thick (Fig. 8 

A). Units of F2 total thickness can be up to 20 m. The sandstone beds are sharp, with main sheet-

like geometry over outcrop distance (100’s m to kms) although minor scouring and fill of some 

beds lead to a lens - like geometry. The sandstone beds are structureless or normally graded and 

sometimes have a capping ripple lamination on the top of the bed, as well as sparse rip-up 
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mudclasts inside the bed. The deposits of facies 2 commonly show soft sediment deformation that 

will be described subsequently. Most of the poorly exposed and covered areas on this region 

correspond to facies 1 and 2.  

Interpretation. Facies 2 represents an alternation of muddy suspension settling and sandy 

event beds from dilute, low-density turbidity currents (Td and Te in the Bouma sequence). It is not 

the goal of this report to differentiate mud that settled out of turbulent suspension from hemipelagic 

and pelagic mud, but we recognize that both play a role. The erosive features at the base of some 

sandstone beds and the mudclasts are indicative of the turbulence of the flow that generated the 

deposits, both consistent with a low-density turbidite interpretation. 

Facies 3A (F3A) Normal-graded sandstone 

Facies 3 comprises sandstone beds of medium to very coarse grain size that grades 

normally to upper fine or medium grain size respectively (Fig. 8 D and E). Bed thickness varies 

from 10 to 70 cm (40 cm on average) in the case of medium grain size sandstones and from 40 to 

150 cm (0.80 cm on average) for coarse and very coarse-grained sandstones. These deposits are 

generally poor to moderately sorted although sometimes they are well sorted. There are two types 

of normal grading recognized; one is the classic normal grading where mode or average grain size 

fines upwards; the other is a coarse-tail grading, where mainly coarse, very coarse and granules 

clasts diminish their content towards the top of the bed. The base of the beds is sharp, planar and 

non-erosive (few or nonexistent flutes) to slightly concave up and erosive. Beds with this type of 

erosive bases are laterally amalgamated and it is sometimes difficult to differentiate different 

events. The geometry of the sandstone units is generally tabular to undulating (high width/height 

ratio), although they present wedge shapes when are erosive and could form amalgamated meters 

thick sandstone bodies (Fig. 9 B). It is common to find loading at the interface of the beds. Rip-up 

mud-clasts are another common feature on these normal graded beds; they are found mostly at the 

top of the beds since they were more buoyant or hydrodynamically light and this helps to discern 

one event from an overlying amalgamating one. The mud-clasts vary in size from 2 cm to 10 cm 

(measuring b axes), are well rounded and are mostly oriented parallel to the bedding. 

Another common feature that helps separate different event beds in amalgamated units are 

granules or pebbles concentrated at the base of each bed.  Some centimeter scale inverse grading 
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of coarse material at the base (traction carpet) can also be found. Many times, but not always, this 

facies grades into facies 3C (laminated sandstone, Fig. 8 E).  

Some of the thinner beds (10 to 20 cm) contain abundant plant phytodetritus at the top, 

closely related to facies F3C. The content and size of the detritus vary though it can be very high 

and as large as 5 mm.   

Interpretation. This facies is interpreted as a deposit related mainly to low density turbidity 

currents, but sometimes the coarser basal part of the bed can reflect an early high-density flow. As 

the turbulent flow decelerates and loses energy, the sediment settles out of suspension (Talling et 

al., 2012). The different grain sizes and therefore the density of the material, as well as the 

deceleration, is responsible for the grading, the heavier clasts being the first to deposit (Talling et 

al., 2012). It is common to find coarse grains aligned throughout the bed, and especially near the 

base of the bed; this is interpreted to form as bedload movement while the settling of the finer 

material was still ongoing. The inverse grading at the base of some beds can be explained in terms 

of dispersive stress in traction carpets, where sediment concentration at the base of the flow is very 

high, and sediment support is dominated by grain collisions, though the bulk of the overlying flow 

is supported by turbulence (Lowe, 1982; Sohn, 1997). The mudclasts are evidence of turbulence 

and erosive capacity of the flow upstream. Since most of them are found at the top of the graded 

bed this could mean that they could be maintained in suspension by the turbulence of a flow. Beds 

with a high content of plant detritus is evidence of a direct source from rivers to the basin floor, 

making it likely that the turbidity current might have been triggered as a hyperpycnal flow. 

Facies 3 B (F3B) Structureless sandstone 
Facies 3B consists of upper fine to lower coarse-grained, structureless ungraded sandstone 

beds (the mode being medium; Fig. 8 B and C) of 10 to 60 cm thickness (40 cm in average) and 

occasionally up to 80 cm, although it is possible that thick beds represent locally amalgamated 

events. These sandstone beds can be well sorted or moderately sorted, with granules and very 

coarse clasts sparse throughout the bed. The base of the beds is sharp, sometimes showing evidence 

of erosion (flutes and groove) but with no deep scours. The bed geometry is locally tabular and it 

generally forms amalgamated packages, which makes it difficult to discern different events. Soft 

sediment deformation structures such as loading and flame structures are a common feature at the 
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interface of each bed (Fig. 8 B). Rip up clasts such as the one found on F3A are also present in this 

facies, but in less abundance. Some beds present moderate to high content of phytodetritus. 

Interpretation. The structureless sandstone beds are attributed to very rapid fallout and 

accumulation of sediment, such that traction at the base of the bed is inhibited and sediment cannot 

be reworked (Middleton & Hampton, 1973; Lowe, 1982). The lack of lamination or evidence of 

basal traction, suggest deposits of the classic high-density turbidite with >10% sediment 

concentration in the flow. This rapid fallout traps high water content in the sediment and can cause 

liquefaction when another bed is swiftly deposited on top, which leads to fluid scape features and 

loading. The flute marks, though not as common as in F3A show evidence of localized erosion 

prior to deposition. Rip up mudclasts are a sign of the flow being turbulent and with erosive 

capacity upslope. The occurrence of phytodetritus is indicative of a direct linkage between the 

basin floor and the continental source (shelf-edge deltas).  

The amalgamation of these deposits makes it difficult to discern different events when 

there are no changes in grain size from one flow to the next one. 

Facies 3C (F3C) laminated sandstone 

The laminated sandstone (Facies 3C) has two sub-facies separated (F3C-a and F3C-b) 

based on the laminae thickness and grainsize. Facies 3C-a consists of upper fine to medium 

sandstone with fine scale planar lamination (<5 mm; Fig. 9 E). The beds are generally thin (5 – 15 

cm) and usually better sorted than other facies. Their base is non-erosive, sharp or transitional from 

facies F3A-B and they can be more discontinuous than the bed below. It is common that fine 

lamination associates with an alignment of small mud-clasts or phytodetritus on top of the graded 

sandstone. The lamination can be faint, making it sometimes difficult to recognize; waterscape 

features can disrupt it. Parting lineation can be sometimes present, which serves as paleoflow 

indicators. 

There is another type of lamination that could be differentiated (F3C-b) since it has coarser 

grains, thicker laminas (>5 mm) and forms thicker beds (up to 40 cm). This laminated sandstone 

does not occur at the top of F3A-B. This may be the “stepped” lamination of Talling et al. (2012). 

Interpretation. The planar lamination is associated in both cases with deceleration and 

rapid, but lamina by lamina fallout from an overlying low-density turbulent flow and the formation 

of a near-bed layer in which traction and granular interactions dominate and turbulence is damped. 
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The layers are driven by the overlying flow such that velocities are greatest in the upper part of the 

layer (Vrolijk & Southard, 1997; Sumner et al., 2008 apud Talling et al., 2012). In the case of 3C-

b, where the laminae are thicker and coarser, the lamination is possibly related to higher 

concentrated flows (high-density turbidity currents) in which the settling is hindered and there is 

no normal grading.   

Facies 3D (F3D) Ripple laminated sandstone  

Facies 3D comprises upper fine to lower medium sandstone with ripple cross lamination 

(Fig. 8 A) and climbing ripple lamination (higher aggradation). The ripples present wavelengths 

of approximately 10 cm although some are smaller (2-3 cm) and occur in beds no thicker than 5 

cm. They generally occur at the top of F3C or in F2 intervals. As well as with F3C, there are also 

coarser and thicker sandstone beds (upper medium and 10 cm thick) that exhibit ripple cross 

lamination. The base is non-erosive and the beds tend to be discontinuous. At locations where 

erosion is significant, bed amalgamation occur and facies 3D can be eroded by the next turbidite 

flow event.  

Interpretation. Fine-grained, ripple cross lamination represents deposition from a dilute 

and fully turbulent suspension, with low rates of fallout (Southard, 1991; Baas, 1994 apud Talling 

et al., 2012) in which the sediment is then transported by traction. In the case of the thicker and 

coarser grained ripples, they can be formed in areas where the flow expands and produces a 

hydraulic jump (Jobe et al., 2012). 

Facies 4 (F4) Matrix supported paraconglomerate 
Facies 4 consists of very poorly sorted, matrix-supported granule to boulder conglomerate 

with a mud rich matrix (Fig. 8G and H). Some units consist of granules only, while others comprise 

the whole spectrum mentioned before. The bed exhibits no organization at any level; no grading 

or imbrication is seen. The clasts mainly consist of lithic fragments (mud-clasts, sandstones, 

volcanic and granites). The matrix, although mud rich, has sand grain size as well (from fine to 

very coarse). Beds range from 50 cm up to 5 m, have sharp non-erosive bases, sometimes 

undulating.   
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Facies 4 beds are usually present in the muddy intervals and are generally associated with 

deformed and contorted beds below and above. They are present in many measured sections and 

can be correlated for 100’s of meters.  

Interpretation. This facies is interpreted as a classic debris flow deposit. The mud provides 

cohesiveness and matrix strength and this is the main grain support mechanism as the current flows 

downdip. The debrite forms by abrupt en masse deposition (freezing of the flow) in which larger 

and smaller grains in the matrix tend not to segregate due to the strength of the matrix (Talling et 

al., 2012). Due to the laminar behavior of the flow they tend to be non-erosive and do not 

incorporate material into the flow. Nonetheless, the strength of the mass flow (mainly due to its 

very high density and cohesiveness) can cause slumping and sliding of previously deposited 

unconsolidated material (Fig. 8G). 

Facies 5 (F5) Normal graded Orthoconglomerate 
Facies 5 consists of clast-supported to partially clast-supported conglomerate beds in a 

poorly sorted sandy matrix composed of medium to very coarse grain size clasts, grading upward 

into conglomeratic sandstone and coarse to medium sandstone at the top, where there is sometimes 

a faint lamination (Fig. 8 I and J). Beds range in thickness from 20 cm up to 1.5 m and are generally 

laterally continuous although they present great changes in thickness. The geometry is generally 

concave up in the thicker parts to tabular when thinning laterally. Most of the coarse-grained 

material is concentrated at the base of the thicker beds. The base is sharp, usually highly erosive 

(scours up to 2.5 m); flutes and groove marks are a common feature and serve as good paleoflow 

indicators. Facies 5 forms amalgamated bodies and it is sometimes difficult to discern different 

flow events. Sometimes beds can be separated when there is inverse grading at the base of beds 

prior to the normal grading.  

Interpretation. Facies 5 represents deposits from a decelerating high-density turbidity current 

(coarse-grained turbidites, Lowe, 1982; Mutti, 1992). Due to the grain size, it is more likely that 

turbulence itself did not account for the main support mechanism, but that it was accompanied by 

grain to grain interactions and dispersive flow pressure. As grains start to settle at the base of the 

flow, inverse grading can occur in response to dispersive pressure, creating traction carpets. 

Although not entirely turbulent, these flows show evidence of being highly erosive and so are not 

associated with sandy debrites. Scours can sometimes have steep almost vertical sides; it is likely 
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that they are preserved due to very rapid deposition after erosion, and this means that they were 

probably filled by the same flow that caused the erosion. Although this facies represents a small 

percentage of the total deposits (approximately 10%), it is found on most sections and they can be 

correlated between different locations. 

Facies 6 (F6) Hybrid beds 
Facies 6 is composed of structureless, fine to lower coarse sandstone that abruptly grades 

into muddy sandstone with faint lamination and occasional fluid escape features (Fig. 8 F). The 

top of the bed shows alternating sand and mud layers, with a “sheared” appearance. Mudclasts and 

laminated phytodetritus situated at the top are another common feature. Bed thickness ranges from 

20 to 40 cm; they are laterally continuous at outcrop scale with no significant change in thickness. 

The base of the bed is sharp and non-erosive. 

Interpretation. Facies 6 deposits represent sediment gravity flows that had experienced 

changes in flow behavior while material was settling. The lower sandy part of the unit represents 

rapid dumping of suspended sand from the turbulent head of the flow, while the upper part settled 

mud and sand creating a mix that continues to move downdip with a more laminar component due 

to the cohesiveness of the material and lubrication from water-scape (Haughton et al., 2009). This 

type of flow is usually recognized on distal parts of the system (Haughton et al., 2003). 
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Figure 8.  
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Facies described and interpreted in the Lower Fan of Los Molles Fm. A- Interbedded silty mud – 
sandstone and ripple laminated sandstone (F2 and F3D respectively), B- 
Structureless sandstone bed with fluid scape features (F3B), C- Structureless 
sandstone beds (F3B), D-  Normal graded sandstone with mud clasts at the top of 
the bed (F3A), E- Normal graded sandstone (F3A) to laminated sandstone (F3C), F- 
Structureless sandstone grading rapidly to muddy sandstone with high phytodetritus 
content (F6), G- Matrix supported paraconglomerate associated with contorted 
sandstone-mudstone beds (F4), H- Matrix supported paraconglomerate (F4), I- 
Normal graded  orthoconglomerate with sharp erosive base (F5), J- Normal graded 
orthoconglomerate with sharp erosive base with 1 m erosion relief (F5). 
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Table 1. Table showing 9 different facies described and interpreted in the Lower Fan of Los 
Molles Fm. 
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Figure 9. Facies Association examples from the Lower Fan in Los Molles Fm. A- Lobe off-axis 
deposits (FA3), Hemipelagic / pelagic deposits (FA1) and Lobe fringe deposits 
(FA2). B- At the bottom, alternation of lobe off-axis deposits (FA3) and lobe fringe 
deposits (FA2); at the top, lobe axis deposits (FA4). C- Lobe on axis deposits (FA4) 
partially eroded at the top by a distributary channel (FA5). D- Debris flows 
associated with contorted beds creating mass transport deposits (FA6). Continue 
next page. 
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Figure 9 continued. 

4. 1. 2. Facies associations   

The described lithofacies are grouped into 6 facies associations that characterize a 

particular depositional environment on the basin floor fan (Table 2, Fig. 9). Each of these facies’ 

associations will then be grouped in larger architectural elements following a hierarchal scheme. 

FA1 Hemipelagic/Pelagic deposits 
FA1 is represented only by F1. Facies 1 consists of finely laminated dark shales rich in 

organic content and very little bioturbation. They compose the slope and basin floor background 

for Los Molles Fm. in the area when no coarse-grained gravity flow deposits are present (Fig. 9A).  

Interpretation. These thick shale intervals represent settling out of suspension of pelagic 

and hemipelagic deposits on distal basin floor areas and in areas of the slope where no coarse 

material is carried into the deep marine environment. They represent periods of quiescence or fan 
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abandonment in the deep-water system, where sea level was high and/or sediment input locally 

low.  

FA2 Lobe fringe and distal fringe 

FA2 facies assemblage consists of F1 (dark shales) and F2 (interbedded mud/silt and 

sandstone) with infrequent F3A (normal graded sandstone) and F6 (debris flows; Fig 9 A, B and 

D). Thickness of the association varies from 0.5 m to 10 m and it presents a sheet geometry. 

Intercalation of muddy and sandy packages appears to be random; nevertheless, there are intervals 

in which the amount of mud decreases towards the top, giving way to thicker sandstone beds.  

Interpretation. This facies association represents the lateral and distal fringes of fan lobes. 

The sheet geometry of the beds, the amount of mud and the type of sandy facies that are found on 

this environment point to a dominance of unconfined dilute turbidity currents with occasional 

hybrid flows and debris flows that are being deposited on a distal position of the fan where there 

is also hemipelagic and pelagic material settling, contributing to the overall fine-grained 

appearance of the interval.  

FA3 Lobe off-axis 
A stacking of F3 (A, B, C, D) and F2 builds this facies association, not necessarily in that 

order (Fig. 9 A, B and D). They present an overall tabular arrangement and a lower N/G ratio (50 

to 60%) compared to FA4 and FA5. The most common facies are F3A (normally graded sandstone) 

and F2 (interbedded silt/mud and sandstone). The off-axis intervals are 1.5 to 5 m thick with no 

clear vertical arrangement of the beds and facies. 

The individual sandstone beds (F3 A-C) cannot be traced for long distances (10’s to 100’s 

m) and they usually pinch out laterally into previous deposits displaying a wedge geometry. 

Nonetheless, since there is more mud in these intervals it is easier to differentiate different flow 

events. 

Interpretation. The intercalation of mud between the sandy deposits, the low N/G ratio and 

the overall tabular geometry of the deposits are good evidence of an unconfined system lateral to 

the main axes of the lobe where distributary channels feed the system. The amount of mud 

increases and the grain size and thickness diminish, relative to the main axis of the lobe, showing 

a more distal environment with fewer events reaching the area. 
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Individual beds are mostly interpreted as low-density turbidity currents. It is common to 

find normal graded sandstone capped by plane laminated sandstone and mud on top, showing a 

classic deposit formed by settling of material from a turbulent flow (Fig. 8 E). The wedge geometry 

and pinching out of the beds indicate local compensational stacking. When a lobe cannot continue 

to aggrade it shifts laterally towards a lower area as an autocyclic response (Hiscott, 1981).  

FA4 Lobe on axis 

This facies association consists of the assemblage of F3 A, B, and C with minor F2 (Fig. 9 

B and C). These intervals show an undulating geometry with no large concave-up features. 

However, there is common evidence of minor erosion and scours at the base of some of the beds. 

Net to gross ratio is generally high, with values of 80 to 100%. Different event beds are stacked 

together forming highly amalgamated features; packages are 3 – 12 m thick. Three trends are 

recognized on this sub-environment; coarsening upward, thinning upward and amalgamation with 

no change in grainsize. This facies association correlates laterally to the previous one (FA3) and 

both represent most of the rock record analyzed on this work. 

Interpretation. This association of facies is interpreted as unconfined, on-axis deposits of 

a lobe. The key to identifying these units resides in the stacking of the sandy beds, with 

amalgamated bodies, and the lack of large-scale erosive features. In areas proximal to the lobe 

axis, bed thickness as well as grain size increases due to the proximity of the feeding systems 

(distributary channels). The predominance of F3B (structureless sandstone) and F3A (normal 

graded sandstone) is also indicative of proximal or axial portions of a submarine lobe (see also 

Prélat et al., 2009). The facies analysis suggests a predominance of high-density turbidity currents 

with minor participation of more dilute turbidity currents. Different stacking patterns suggest lobe 

shifting along the axis; mostly laterally with minor forward stacking components, as it will be 

discussed below.  

FA5 Distributary channels & channel to lobe transition 

The FA5 association of facies consists of F5, F3A, and F3B with occasional F3C (Fig. 9 

C). The geometry of the beds is predominantly lenticular (concave up) to undulating, with erosive 

bases that can scour down as much as 2.5 m. These erosive surfaces amalgamate laterally into 

compound surfaces (Fig. 10 and 11) and can be traced for 10´s to 100´s of meters. Net-to-gross 
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ratio is high, with essentially no shale between beds, giving a highly amalgamated bed-set. The 

association shows a fining upwards trend consisting mostly of F5 (normal graded conglomerate) 

sitting on top of an erosive surface, with F3A and F3B on top, although not always present. It is 

composed of 2 – 5 beds and the maximum thickness (measured at the major scours) varies from 1 

to 3 m for each channelized element. The lateral extension of this facies association varies from 

10´s to 100´s m and it is closely associated with FA4 (Fig. 10). 

Interpretation. This facies association is interpreted as distributary channels at a channel 

to lobe transition. The specific characteristics that support this interpretation are the scours and the 

conglomeratic units sitting on top, evidencing an important break in grain size. They are 

interpreted as channel to lobe transition due to the lateral extent that some of these amalgamated 

units have and their close relationship with unconfined deposits sitting on top (more details on 

discussion). Some of the smaller channels can be distributary, feeding lobes downstream towards 

the east. The channels might occur abruptly or transitioning from on-axis unconfined deposits 

(coarsening and thickening upward trends). Then, they grade upward to lobe deposits, showing an 

overall fining upward trend. This represents a very rapid event where the channel develops quickly, 

then the system backsteps or shifts and on-axis lobes deposit on top. 

FA6 Debris flows and Mass transport deposits (MTDs) 
FA6 is characterized by deformed masses of FA2 sandstone and mudstone, showing 

evidence of soft sediment deformation (usually contorted beds, Fig 9 D). They are always 

associated with F5 (debris flows) in fine-grained intervals. These MTDs are small considering the 

thickness these units can have on the sedimentary record; their thickness varies from 50 cm to 5 

m. In some cases they create minor positive relief (1 m) against which the sandstone beds onlap. 

Interpretation. The MTDs reported in this work are interpreted as a response of debris 

flows disrupting the underlying bed when decelerating and a decrease in hydroplaning (Mohrig et 

al., 1998). As the debris flows decelerates, it excavates into the underlying unlithified deposits and 

drags them forward, producing slumped features. Since these cohesive debris flows associated 

with slumps occur in the finer grained intervals where there has been a smaller flux of sediment 

into the basin, they are interpreted as resultant from instability on the slope during late 

transgressions and early regressions (Cronin et al., 1998) 
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Table 2. Table showing main interpreted facies association with their respective facies’ 
assemblage. Between brackets are secondary facies. 

 

 

Figure 10. Photomosaic and its interpretation (top and bottom). Red lines represent the base of 
amalgamated distributary channels (FA5). Blue lines on top represent the base of 
unconfined on axis lobe beds (FA4). This image shows a good example of the 
different architectural elements found on a lobe. See Fig. 5A for location 

 

Facies 
Association

Main Facies 
assemblage

Depositional environment

FA1 F1 Hemipelagic / pelagic deposits

FA2
F1+F2                           
(F3D)

Fringe lobe deposits

FA3
F3A + F3C + F2                       

(F3B + F3D)
Off axis lobe deposits 

FA4 F3A + F3B + F3C On axis lobe deposits 

FA5 F5 + F3A + F3C
Channel to lobe transition - 

distributary channels 

FA6 F4 Debris flows / MTDs
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4. 2. FAN HIERARCHY & ARCHITECTURE 
Having interpreted facies and facies associations, we built a hierarchical framework to 

better understand how the system evolved from single flow events (beds) to larger assemblages 

(fans). To accomplish this task, we correlated all measured logs shown in figure 5 and used 

architectural features (Fig. 6) and a hierarchical scheme (Fig. 7) based on  Prélat et al., (2009); 

Prélat & Hodgson, (2013) and Koo et al., (2016). This division begins with identification and 

correlation of significant fine–grained units between sandstone bodies. Due to lateral variation, it 

is not always an easy task to accomplish a proper hierarchical division of the different components 

in the fan; e.g. thin intervals of fine–grained units can laterally thicken; and what might have been 

interpreted as an interlobe deposit might actually be an interlobe complex.  

Table 3 summarizes the hierarchy and architecture of the Fan. Figures 11 and 12 show 2 

correlation panels with a transverse – oblique view of the interpreted fan. After a detailed 

correlation in 3 dimensions, we believe that panel 1 (Fig. 11) most clearly shows the adopted 

hierarchical scheme.  

The minor unit identified in this hierarchical scheme is the individual bed that responds to 

a single flow event. These events stack together to form lobe elements, the different architectural 

parts of any lobe. These elements can either be a series of confined beds such as described in FA5 

(small channels) or unconfined beds as in FA3 & 4 (on axis or off axis, depending on the location). 

The assemblage of stacked beds in different element architectures forms each lobe (Fig. 10). It is 

worth mentioning that the term lobe element as it is being used in this work differs from the concept 

portrayed in Prelat et. al. (2009), as we only use it to describe the architecture of the stacked beds 

and not as a hierarchical division of the lobe. 

Seventeen lobes, each 5 – 10 m thick (6 m thick in average, measured on axis), were 

identified using facies association and shale intervals. Fine-grained units described as inter-lobe 

deposits range from 50 cm to 8 m and are represented by FA1 and FA2. There are parts of the fan 

succession where lobes are amalgamated, especially when small channels erode part of the 

succession, and it is more difficult to distinguish individual lobes. Lobes are therefore easier to 

recognize off-axis (e.g. Lobe complex 3, section 8, Fig. 11), where mud deposits are thicker; or on 

axis when not many erosive features and amalgamation occurs (e.g. section 8, of lobe complex 4; 

Fig. 11 and 13). 
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Table 3. Table summarizing the large-scale hierarchy of the Lower Fan and its main 
characteristics.  
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Lobes were grouped together into 5 lobe complexes (Fig. 11, 12 and 14). Thicker mud 

units were used to differentiate this higher-order assemblage. The thickness of the interlobe 

complexes varies from 3 to 15 m, depending on the position within the fan.  

Although we recognize the importance of individual beds in the evolution of the lobes and 

ultimately to the fan, this work focuses on the large-scale assemblage and patterns at a lobe and 

lobe-complex scale. 

Nevertheless, we will briefly describe the types of vertical trends recognized within the 

interpreted lobes in terms of their grain size and bed thickness and then further discuss their 

significance in the next section. Figure 15 shows examples of the different types of stacking 

patterns observed in panel 1 (Fig. 11) and 2 (Fig. 12). Case A; there is no apparent increase or 

decrease in grain size and bed thickness or it is very subtle, and so it is considered constant 

(example from section 6, lobe 3 in lobe complex 2). Case B; a coarsening and thickening-up trend 

followed by finning and thinning up trend (example from section 6, Lobe 3 in lobe complex 2). 

Case C; there is an abrupt change in grain size from shale to very coarse sand and conglomerate 

deposits which then gradually decreases in grain size and bed thickness (example from section 8, 

lobe 1 in lobe complex 5). Case D; an increase in grain size and bed thickness to a point where 

broad erosive surfaces are observed; follows a gradual decrease to finer and thinner beds topped 

by mud.  
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Figure 11.  
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Correlation panel 1 oriented SE to NW showing the major architectural elements and interpreted 
hierarchy of the Lower Fan (bounded by green lines) along an oblique / axial view. 
Lobe complex 5 is not interpreted due to lack of exposures in the rest of the panel. 
Grain size and bed thickness trends are indicated on the left side of the sections. 
Main paleocurrents are indicated to the left. 
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Figure 12.  
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Correlation panel 2 oriented Se to NW showing the major architectural elements and interpreted 
hierarchy of the Lower Fan downdip from panel 1 (Fig.12) along an oblique / axial 
view. Grain size and bed thickness trends are indicated on the left side of the 
sections.  
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Figure 13. Aerial image showing hierarchical divisions on basin-floor deposits at lobe – lobe 
complex scale. This example is from Lobe complex 4, which shows 6 identifiable 
lobes separated by thin fine-grained intervals.  See figure 5 for location. 

 

Figure 14. Aerial image showing hierarchical divisions within a basin floor succession at a lobe 
complex scale. The lower fan is composed by 5 lobe complexes, 3 of which can be 
seen clearly on this image; only the base of lobe complex 4 is seen here. Fine-
grained intervals separate each lobe complex. On dash lines the base of the lobes. 
See figure 5 for location 
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4. 2. 1. Lobe complex characterization 
Using previous described methods, 5 lobe complexes were interpreted within the basin 

floor fan studied in the area. A description for the first four lobe complex is presented, since the 

fifth is only well exposed in one section and was not correlated laterally throughout the area. We 

will repeatedly refer to panel 1 (Fig. 11) for guidance since it is where the basin floor fan is better 

exposed and it is here the hierarchical scheme was developed and then interpolated to the rest of 

the area. In order to provide a better framework of interpretation, thickness and net-to-gross maps 

were created in Petrel using as input all the measured sections and thickness trends observed from 

satellite images (Fig. 16). We will also briefly describe the stacking patterns recognized within the 

lobes that form the complexes (Fig. 15) which will be further discussed in the next section. 

Lobe complex 1 (LC1) 
The measured paleocurrents indicate 2 different directions of transport, one from the 

southeast towards the northwest, and another from the west-southwest to the east-northeast (Fig. 

5 B). LC1 is considered the first episode of gravity flow sedimentation on the basin floor, situated 

on top of a thick succession of basin floor shales (200 to 300 m of FA1). This lobe complex is 

composed of 2 lobes with a possible third lobe poorly exposed at the base of the succession. Unlike 

lobes identified higher on the fan, these do not always show a clear subdivision, making it difficult 

to pick a clear boundary between each lobe.  

The first lobe is composed mainly of laterally and aggradationally stacked unconfined 

elements (such as in Fig. 9 B and 10), with only a few channelized features to the southeast that 

represent the most proximal setting. A muddy interval with abundant debris flows follows, mainly 

occurring towards the northwestern site on panel 1 (Fig. 11). Next, a second lobe is identified, 

composed mostly of unconfined elements, although small scale channels are recognized to the 

southeast and northwest (Fig. 11). 

The vertical pattern of sedimentation of the lobes varies laterally; there is a coarsening and 

thickening-up trend on section 8 (Fig. 11) whereas on panel 2 (Fig. 12) the pattern of sedimentation 

described above is not well observed; finer grained interval between sandy beds are more common 

and the stacking of individual beds seems more random with no clear trends. 

 Because the base of LC1 does not outcrop in the entire area, a thickness map of LC1 is not 

available; however, it is possible to build a NG map using only the LC1 thickness that is visible 
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on outcrop (Fig. 16). An irregular distribution of the sediment is visible; the southern part of the 

map shows a southeast-northwest distribution and the northernmost area a west-east distribution. 

Areas of low NG are located between these trends. 

Lobe complex 2 (LC2) 
Paleocurrents indicate a dominant direction of sediment transport towards the northeast 

(Fig. 5B). LC2 is composed of 3 lobes and it is separated from LC1 by a fine-grained interval (FA1 

& 2) of 1 m to 5 m depending on the location. These lobes are laterally correlated to fine-grained 

material to the southeast on top of LC1 (section 8, Fig. 11).  

The first lobe, although not obvious in outcrop due to its lateral extent, exhibits onlap to 

the southeast onto previous deposits of LC1. It is composed only by unconfined, poorly 

amalgamated bed-sets. The second and third lobe exhibit unconfined poorly amalgamated to 

amalgamated bed-sets with small distributary channels to the northwest (Fig. 11). 

The vertical arrangement of the beds in terms of bed thickness and grain size do not follow 

a homogenous trend in the area. Some of the lobes show a coarsening and thickening-up pattern 

on specific sections (e.g. lobe 3 in section 5, Fig. 11) that it is not shared on other locations (e.g. 

section 14, Fig. 12). 

The NG and total thickness maps of LC2 (Fig. 15) share a similar southwest-northeast 

trending distribution, with higher values at the northwest. The highest values coincide with the 

presence of the sediment entry points (channels), located near section 4. 

Lobe complex 3 (LC3) 
Paleocurrent measurements on LC3 indicate a dominant direction of sediment transport 

towards the east – northeast (Fig. 5B). LC3 is separated from LC2 by a fine-grained interval (FA1 

& 2) of 1 to 5 m thick varying with the location. It is composed of 6 lobes that can be well defined 

off-axis at a SE location on panels 1 and 2 (e.g. section 8, Fig 11 and section 15, Fig.12).  

Lobes in LC3 are mostly represented by FA4 and FA5 on panel 1 (Fig. 11), with minor 

deposits associated with FA3 towards the southeast. Lobes 1 and 6 are entirely composed by 

unconfined poorly amalgamated to amalgamated bed-sets. Lobes 2 to 5 are formed by 

amalgamated unconfined bed-sets and channelized elements to a minor extent. Lobe 3, in 

particular, presents the highest proportion of channelized features on the entire lower fan (between 
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sections 5 and 7 on panel 1, (Fig. 11).  Lobes 2 to 5 on LC3 can be identified on panel 2 (Fig. 12) 

with similar characteristics in terms of facies association to those seen in panel 1, presenting FA4 

and FA5 on sections 15, 14 and 12. The proportion of channels on LC3 diminishes in panel 2; the 

only ones that can be traced to the other side of the anticline correspond to lobe 3. Towards the 

northwest, sub-environments change from FA 4 & 5 to FA 2 & 3, moving away from the axis. 

In terms of the vertical arrangement of the beds, lobes 1, 4, 5 and 6 show diverse patterns 

throughout the area, with no clear recognizable arrangement (Fig. 11 and 12). Lobes 2 and 3 on 

the other hand, are characterized by coarsening and thickening up and then fining and thinning-up 

trends in almost all measured sections (Fig. 11 and 12). 

The NG and total thickness maps of LC3 (Fig. 16) share a similar southwest-northeast 

distribution; nevertheless, the highest thickness values are located slightly north to the highest NG 

values. The distribution of the deposits to the northeast is irregular, with finger-like geometries 

oriented towards the east-northeast and north (Fig. 16). 

Lobe complex 4 (LC4) 

Paleocurrent measurements on LC4 indicate a dominant direction of sediment transport 

towards the northeast. LC4 is separated from LC3 by a fine-grained interval (FA1 & 2) of 2 - 8 m 

depending on the location. It is composed of 6 lobes easily identifiable on panel 1 (Fig. 11 and 13), 

each one separated by <1 m to 5 m of FA2.  

Lobes are composed almost entirely of unconfined elements, with the exception of one 

channel recognized on lobe 6, measured in section 2 (Fig. 5 A). On panel 1 (Fig. 11), facies 

associations vary laterally from FA4 on sections 7 and 8 to FA3 on a northwestern direction 

(sections 5 and 6). From southeast to northwest the level of amalgamation of the bed-sets in each 

of the lobes diminishes, as finer material increases between beds. Downdip, panel 2 (Fig. 12) 

shows a decrease in amalgamation of the bed-sets and an increase of fine-grained material 

represented by FA1 and 2.  

The vertical arrangement of the beds on each lobe do now follow a uniform pattern in the 

area. While some lobes show a coarsening and thickening-up trend (e.g. lobe 3 on section 8, Fig. 

11), laterally they present a thickening and coarsening-up trend followed by thinning and finning-

up trend (section 7, Fig. 12). 
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The NG and total thickness maps of LC4 (Fig. 16) share a similar southwest-northeast 

distribution, as in the rest of the lobe complexes.  The highest values are focused on the center to 

southern region of the outcrop, proximal to section 8; away from this point values diminish to the 

west and east. The orientation of the deposits in the maps share similarities with paleocurrents, 

although the latest are slightly more eastward.  

 

Figure 15. Types of stacking patterns recognized on the lower fan and examples from different 
lobes. The patterns respond to both grain size and bed thickness, although 
sometimes it is clearer on only one of the characteristics. 
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Figure 16.  
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Net-to-gross (NG) and thickness maps of each lobe complex on the lower fan. Cold colors 
represent low values and hot colors represent high values. Paleocurrents are 
indicated in red at the right down corner of NG maps. 

 

4. 2. 2. Axial variability of grain size, bed thickness, net to gross and facies  
To provide a more solid description and visualization of the interpreted environments of 

the basin floor fan we will show how facies, grain size, bed thickness, and NG vary laterally from 

lobe axes to their fringe (Fig. 17). The aim of this type of analysis is to show that the qualitative 

interpretation made for the entire lower fan is supported by outcrop data. To focus the argument, 

only two lobes of LC3 will be used as an example of the methodology. Several authors have used 

facies and grain size distribution on deep-water settings to facilitate flow and depositional 

environment interpretations  (Piper & Normark, 1983; Carr & Gardner, 2000; Marini et al., 2011; 

Southern et al., 2017; Spychala et al., 2017; among others). Bed thickness patterns have been 

useful in the interpretation of depositional settings on deep-water settings (Walker & Mutti, 1973); 

their lateral and especially vertical arrangement had been greatly debated in the past years in 

publications such as Talling, 2001; Sinclair & Cowie, 2003; Clark & Steel, 2006; Bersezio et al., 

2009; Macdonald et al., 2011; among many others. In this case, we will show frequency 

distributions only on different lateral sections from the same lobe units. 

It is important to clarify that the measured beds on adjacent sections do not necessarily 

correspond exactly with each other; since there might be beds switching due to compensational 

stacking from one site to another. 

Along depositional strike trends of lobe 3 – LC3 (Fig. 17-A) 

Bed thickness histograms do not show much variation from S5 to S8. There is a slight increase 

from S5 to S7, with a mode increasing from 40 cm to 50 cm and a maximum value of 80 cm in 

S6. Grain size distribution decreases from S5 towards S8, with values ranging from upper medium 

– coarse sandstone in S5 to upper fine – lower medium sandstone in S8. Conglomerate beds are 

identified on S5 through S7. In terms of facies, there is a higher concentration of 

orthoconglomerates on S7 and structureless sandstones to the northwest on sections 5; these facies 

diminish their proportion with respect to normal graded sandstones and laminated sandstones to 
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the southeast. Lastly, we see NG values of 90 – 100% on sections S5 to S7 but that then diminishes 

to 70% on S8. 

Along depositional strike trends of lobe 4 – LC3 (Fig. 17-B) 

Bed thickness distribution shows a similar trend to that observed in lobe 2, with an increase in bed 

thickness from S5 to S7 and then diminishing towards S8. Bed thickness values range from 30 cm 

to 50 cm and there are fewer beds of 75 to 100 cm thickness in S5; they increase to 50-75 cm in 

S7 before dropping to 10 – 40 cm on S8. In terms of grain size, the trend is much more pronounced 

than in the previous example, with values from medium to very coarse sandstone and few 

conglomerates in S5 to lower medium and fine sandstones on S7 and S8. Facies also exhibit 

changes from northwest in S5 to southeast in S8; orthoconglomerates and structureless sandstones 

disappear, laminated coarse sandstone increase from S5 to S6 but then become replaced by fine 

laminated sandstones and normally graded sandstones. Lastly, NG does not vary much in this case, 

with values of 80% more or less constant throughout the panel. 
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Figure 17. Facies, N/G, bed thickness, and grain size variations along strike in a correlated panel 
of Lobe Complex 3. A.  Lobe 3. B. Lobe 4.  



44 
 

5. Discussion 

We will first address the trends observed at lobe scale in terms of their bed thickness, grain 

size, facies, and NG. Next, we will discuss the controls on the lobe geometries and their vertical 

trends in terms of grain size and bed thickness. We will then address how the first basin floor fan 

in La Jardinera area evolved and provide paleogeographic reconstructions for each of the five lobe 

complexes. To do so, we will use the lobe complex thickness and NG maps as a framework and 

all measured sections with their interpreted facies associations to provide more detail. Lastly, we 

will discuss the role of confinement on the geometry and architecture of the basin-floor deposits. 

5. 1. LOBE’S TRENDS AND AXIS VERSUS OFF-AXIS DEPOSITION 
The depositional environments were interpreted at lobe scale, from axis to fringe deposits 

using facies, grain size, bed thickness distributions and NG (which is also an indication of the 

degree of amalgamation of the beds).  

In lobe 3 (LC3) we interpret the axis to lie between sections 5 and 6 (Fig. 17), where we 

found a high proportion of high density turbidites expressed as orthoconglomerates, structureless 

sandstones beds and coarse grain sizes. Towards south-east, on section 8, grain size diminishes 

and facies associated with high density turbidity currents are replaced by low density turbidites. In 

terms of bed thickness, there is a very subtle decrease from section 6 towards section 8. The fact 

that NG diminishes from almost 100% to 70% at section 8 reinforces the idea that although we are 

not situated at the fringe of the lobe, we are without doubt off-axis. The type of flow responsible 

for the deposition of the beds of the lobe is controlled partly by the proximity to the source 

channels; in areas near the distributary channels the turbidity currents will have higher density and 

the amount of sediment allows higher amalgamation of the deposits resulting in high NG; the finer 

grained deposits will be dispersed laterally to more distant locations as low density turbidites (Fig. 

11).  This type of change in flow processes from high density turbidites in proximal settings 

transforming to low density turbidites away from the entry points has been registered in outcrop 

following the same event beds (Hirayama & Nakajima, 1977; Tokuhashi, 1989). Although in this 

area each individual event bed can be followed for 100’s m that might be a fraction of the total 

length of the deposits, the same principle applies. 

Lobe 4 (LC3) has a similar interpretation, although some differences arise. The axis of the 

lobe is interpreted to be in section 5 (Fig. 17), where we see coarser-grained deposits associated 
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with high density turbidites. Nevertheless, the trend in bed thickness is different than the previous 

example, with beds that thicken towards section 7 and then thin towards section 8. The reason for 

this pattern is the concentration of erosive features at sections 5 and 6, where beds were most likely 

thicker but where partially eroded by the next flow. 

It is important to clarify that there is no simple recipe in terms of interpretation of sub-

environments within a lobe using these trends, specially discussing the precise location of their 

axes. All the characteristics should be analyzed at the same time, and not follow only a single 

criterion. We have seen in lobe 4 (LC3) how a trend on its own (e.g. NG trend) can be misleading 

when interpreting on-axis and off-axis locations. 

5.2. CONTROLS ON LOBE’S STACKING PATTERNS 
For many years it has been a common assumption that coarsening and thickening-up trends 

and fining and thinning-up trends on lobes is an indication of progradation or retrogradation 

respectively (Mutti, 1974; Ricci Lucchi, 1975; Hiscott, 1981; Pickering, 1981). More recent, many 

of the data was reinterpreted and showed that progradational lobes owe their bed thickness patterns 

to 3D compensational stacking of smaller scale elements (Chen & Hiscott, 1999; Macdonald et 

al., 2011; Prélat & Hodgson, 2013). The bed thickness patterns have to be recognized in 3D; if we 

see a full range of bed thickness patterns at different positions within a single lobe that are not only 

thickening up but also thinning up or exhibiting constant thickness at different locations, then most 

likely the patterns are a response to stacking of the beds due to proximity to feeder channels and 

compensational relief (Fig. 18, Macdonald et al., 2011; Prelat and Hodgson, 2013). Macdonald et 

al., (2011) proposed that bed-set progradation in association with aggradation leads to progressive 

increase in the magnitude of the flows at all parts of the system which results in increased erosion 

and broad erosive surfaces associated with distributary channels. 

Examples of stacking patterns caused by lateral switch of bed-sets 

Most of the described vertical trends of the lobes in the lower fan exhibit spatial variation 

(change on bed thickness trends in 100’s meters), with no clear homogenous response that could 

indicate that the lobe is prograding or retrograding. If we consider for example lobe 5 in lobe 

complex 3 we can see that in panel 1 (Fig. 11) trends are fining and thinning-up in sections 5 and 

6 while constant on sections 7 and 8. Downdip on panel 2 (Fig. 12), some coarsening and 
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thickening up sequences are observed on sections 8, 10 and 15, whereas sections 12 and 14 are 

fining and thinning up. If we consider only panel 1 on locations around sections 5 and 6 we might 

erroneously interpret these trends as a retrogradational lobe; only when we see patterns laterally 

and downdip, we recognize the heterogeneity of the vertical trends. We then interpret this variation 

in bed thickness trends as successive beds shifting laterally due to compensational stacking.  

Another good example can be lobes 2 and 3 in lobe complex 2. They exhibit a coarsening 

and thickening up stacking pattern through the entire panel 1 (Fig. 11). Using only this panel one 

could argue that these trends represent a classic prograding lobe. However, on panel 2 (Fig. 12) 

we see that constant trends appear to be more common. Although at a proximal position we could 

claim a prograding stacking pattern we interpret that the lobe´s beds switch to a distal position and 

they aggrade with no evident progradation. 

Examples of stacking patterns caused by lobe progradation/retrogradation 
Lobes 2 and 3 in LC3 (Fig. 11 and 12) are the only cases in which we described coarsening 

and thickening-up or fining and thinning-up stacking patterns on all or almost all of the locations 

where sections were measured.  

Lobe 2 shows, on panel 1 and 2 (Fig. 11 and 12) coarsening and thickening-up trends 

through almost all locations with the exception of section 8, panel 1 where the top is thinning up 

and section 8, panel 2, where there is no clear trend. Since the trends are well observed across most 

of the entire area we interpret a prograding trend of the lobe. 

Lobe 3 is the most complex lobe, with multiple erosive features and several trends and 

variations in grain size and thickness. However, we identify an overall coarsening and thickening-

up followed by fining and thinning-up trend for the entire lobe both on panel 1 and 2 (Fig. 11 and 

12). The increasing number of erosive features on the vertical trend as the coarsening-up trends 

are a good indication that the lobe was formed by prograding from unconfined to channelized beds, 

which then retrograde, going back to an unconfined scenario with thinner and finer grained beds. 
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Figure 18. Diagram showing changes in accumulation of sand and mud on a vertical profile. 
Diagram A shows the origin of compensation patterns, note how thickness trends 
vary across the lobe. Thinning and thickening-up trends are observed together with 
regions of no thickness variation. Diagram B shows the thickening-up trends 
generated by prograding beds. Trends are observed through the entire lobe, and are 
interrupted only by localized erosion generated by bypass surfaces and channels. 
Modified from Macdonald et al., 2011. 

 

5. 3. STRATIGRAPHIC EVOLUTION OF THE LOWER FAN 
The exposures of Los Molles Fm. described in the La Jardinera area represent the first basin 

floor fan of a new shelf-slope-basin floor system, formed by overall aggradational lobe complexes 

that are characterized mostly by aggradational and to a lesser extent by progradational lobes. 

Although the lower fan varies spatially, its total thickness on the area is about 150–200 m; it is 

sand rich on a proximal setting (panel 1, Fig. 11) with values that range from 70 – 80% at the lobe 

complex scale. It is characterized by changes in facies architecture and depositional settings at a 

lobe scale, responding to the types of flows that run through the entry points to the basin floor. 

Although mostly unconfined geometries are recognized it is important to emphasize the presence 

of distributary channels on this basin floor setting (Fig. 9C and 10), since they are responsible for 

the lobe’s final geometry and sediment dispersal characteristics. 

Analysis of the basin geometry during late Triassic – early Jurassic times by different 

authors (e.g. Vergani et al., 1995, 2005; Morabito, 2010) have indicated that the base of  Los 

Molles Fm. was still under the influence of late-stage rifting. This resulted in thickness variations 

related to measured positions within the hemigrabens; these geometries can be observed easily on 

seismic images (Fig. 4). In la Jardinera area, the westernmost fault oriented southeast–northwest 
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called Rahue Fault (Fig. 3 and 5 A) has been described by Morabito (2010), suggesting that the 

entire area of interest sits on a hemigraben. 

The lower fan succession begins with the deposits interpreted as lobe complex 1 (LC1, 

Fig. 19-A). LC1 is the only lobe complex that exhibits 2 different paleocurrent directions, one to 

the east-northeast and another to the northwest (Fig 5B and 11). Although further analysis should 

be made regarding the geometry of the basin at this earliest stage of Los Molles Fm. in La Jardinera 

area, we interpret the paleocurrents as reflecting the heterogeneities on the basin floor at the onset 

of coarse-grained infilling. Paleocurrents towards the northwest are following the main orientation 

of Rahue fault, while paleocurrents towards the east–northeast are transversal to it (Fig 5A). This 

pattern can be observed on NG maps (Fig. 16), where deposits seem to be following a southeast – 

northwest distribution on the southern part of the map, and a west-east distribution on the northern 

part. This interpretation is in accordance with the suggestion of Burgess et al. (2000), who stated 

that the complex faulted topography during Pliensbachian-Toarcian times was an important control 

on the dispersal patterns of gravity flows into the basin. 

LC1 is composed of 2 lobes formed mainly by unconfined elements that show an 

aggradation pattern.  These lobes are separated by a fine-grained interval with a high concentration 

of debris flows with slumped features at the northwest on panel 1.  

It is difficult to discern a clear pattern of sedimentation on LC1 because paleocurrents have 

variable directions. This resulted in lack of clear trends in facies associations, with no obvious lobe 

axis and with distributary channels occurring at different positions on the lobe complex.  

Figure 19-A shows the interpreted paleogeographic reconstruction for LC1. Although 2 

systems are drawn on the figure this is only for representation of the different routing systems and 

not necessarily indicating that there are 2 recognizable systems clearly separated. 

Lobe complex 2 (LC2, Fig. 19-B) is sitting on top of LC1 with its main axis oriented 

southwest–northeast according to the NG map and total thickness map and in alliance with 

paleocurrents that have similar orientation (Fig. 16). If we consider the NG map of LC1 to 

represent not only sand distribution but local topography left by its deposits, LC2 main axis 

occupies a position that could be considered a low, with higher NG and thickness values near 

sections 4 on panel 1 (Fig. 11). Three lobes compose this lobe complex, that firstly onlaps LC1 

towards southeast (Fig. 11) and then aggrades. Although lobes 2 and 3 might show coarsening and 

thickening up trends on panel 1 they do not represent prograding lobes, since these trends are not 
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seen in downdip areas. The lobes of LC2 are mainly formed by unconfined compensationally 

stacked lobe elements and small distributary channels sitting on top. The geometry of the lobe 

complex seen on the maps is similar to what authors like Bouma & Rozman (2000), Rozman et al. 

(2000), Groenenberg et al. (2010), Spychala et al. (2017), have referred to as finger-like sandstone 

bodies. These terminations can be misleading and may be interpreted as channelized features (e.g 

van der Werff & Johnson, 2003). In this case, we interpret these geometries to be a response of 

focused sediment dispersal associated with high density turbidity currents on channel to lobe 

transitions. Flows that reached the fringe of the lobe complex had a narrow lateral extent and 

deposited stretch finger-like beds with high side relief (Groenenberg et al., 2010).  

A fine-grained interval of 1 – 5 m thick separates Lobe Complex 3 (LC3) from LC2. 

According to NG and thickness maps (Fig. 16), LC3 main axis has a similar orientation to that of 

LC2 (southwest-northeast), although the measured paleocurrents have a more eastward direction 

(Fig. 19-C). We observe a high level of aggradation from LC2 to LC3 at a lobe complex scale with 

no major changes on the location of its main axes. However, the deposits broaden and occupy a 

larger area both laterally and longitudinally. LC3 on panel 1 (Fig. 11) exhibits the highest 

proportion of proximal facies association associated with distributary channels and on-axis 

amalgamated lobe deposits. This could be interpreted as a relative progradation of the system at a 

lobe complex scale, however, the NG map shows that the amount of sand being delivered basin 

ward is not higher than in LC2 and it is focused on particular locations, exhibiting again a fingerlike 

body geometry. Contrary to LC2, this elongated features on the maps are a direct response to 

distributary channels with high proportion of conglomerates and coarse sandstone that reach the 

outer part of the lobe complex.  

LC3 is composed of 6 highly amalgamated and aggradational lobes with little change in 

the location of the lobe’s axis, as seen in sections 5 to 7 on panel 1 (Fig. 11). Lobe 1 and 6 are 

composed exclusively by unconfined elements, but lobes 2 to 5 present distributary channels on 

their axis. These channels do not remain on the same location from lobe to lobe, they shift laterally 

towards the northwest (Fig. 11), giving evidence that lobes do not only aggrade but also shift 

laterally. As we pointed out in the previous sections, most of the lobes exhibit spatially varied 

grain sizes and bed thickness trends that respond to compensational stacking of the beds and 

proximity to feeder channels. However, the few cases where lobe progradation does occur is 

interpreted to happen on lobe complex 3 (lobes 2 and 3).  
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Lobe 3 on LC3, might represent one of the best examples of channel to lobe transition on 

the area. It shows the change from unconfined beds that thicken and coarsen-up until erosive bases 

and conglomerates appear. These erosion surfaces are not as deep as those found on slope channels 

or very proximal channels on the basin floor (locally can be up to 2.5 m). The erosions are 100’s 

m wide and associated with relatively few event beds (up to 5) that can be traced laterally. These 

shallow depressions are sometimes filled by the same flow responsible for the erosion; pattern 

recognized by other authors like Cazzola et al., (1981), who studied channel to lobe transition 

zones of the Roccetta Formation on the Piedmont Basin, Italy. On top of the erosive and 

conglomeratic beds, continuous and tabular geometries are found; grain size diminishes and beds 

thin-up. Several of the channels seen on the lobes on panel 1 (Fig. 11) are represented downdip 

(panel 2, Fig. 12) by thinner, finer grained and lower NG unconfined bed-sets. The close relation 

between confined and unconfined events, the broad nature of the erosive bases and changes in 

grain size found on few meters on the vertical trend of hundreds of meters on a downdip lateral 

trend is a very good indication that the system is at a channel to lobe transition (Mutti & Normark, 

1987, 1991; Kostrewa, 2004).  

Lastly, there is a shift towards the southeast on the axis from LC3 to Lobe Complex 4 

(LC4, Fig. 19-D). NG and thickness maps indicate a distribution elongated south southwest – north 

northeast with similar paleocurrent directions. The main axes most likely shifted to the south due 

to compensational stacking; LC3 must have left a relative topographic high causing the system to 

move towards the south.  

LC4 is composed of 6 aggradational lobes that are interpreted to have the depositional axis 

on section 8, panel 1 (Fig. 11). However, and opposite to the rest of the lobes on the panels, no 

channelized features are recognized. Each lobe is composed by unconfined compensationally 

stacked bed-sets. 

As in LC2 and LC3, some fingerlike geometries are recognized on the maps, in this case 

evidenced by sand distribution on the NG map. As previously stated, these geometries are a 

response to high density narrow flows that generated elongated morphology downdip.  

The lack of distributary channels on the panels, along with lower NG and total thickness 

values downdip is an indication that the lateral shift was accompanied by a backstep of the system. 
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Figure 19. Paleogeographic reconstructions of the lobe complexes forming the lower fan. Each 
lobe complex is represented here with on-axis to off-axis and fringe deposits 
moving away from the main sediment entry points. Note that the shape of the lobe 
complexes is not perfectly lobated but that it has serrated borders (see discussion. 
The channels that are interpreted on outcrop (red line) are marked here as blue dots. 
A hemigraben is represented on the block diagrams as a possible structural setting 
for the base of Los Molles Fm. 

5. 4. TYPE OF STACKING AND ROLE OF TOPOGRAPHY AND CONFINEMENT ON THE 
BASIN FLOOR 

Many of the studies on deep-water sedimentation and the influence of topography on 

confinement vs unconfinement on their deposits were carried out on outcrops where the limits of 

the basin is well known and onlap relationship exists and can be seen between the deposits and the 

basin border (e.g., Pickering & Hiscott, 1985; Felletti, 2002; Sinclair & Tomasso, 2002; 

Cornamusini, 2004; Smith, 2004; Tinterri & Piazza, 2018). 

One of the difficulties regarding Los Molles Fm. interpretation of topography influence on 

the basin floor gravity flows is due to the fact that there are no clear large scale onlap surfaces of 

the deep-water sediments against the borders of the basin. Consequently, we cannot know for sure 

if at the time of Molles Fm. the basin was partitioned and acting as a single hemigraben depocenter, 
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or if it was connected with other parts of the basin. Confinement is a relative term, since it is 

actually dependent by the incoming flow characteristics (height, volume, concentration) and the 

recipient (basin) topography. This means that even if it was an isolated hemigraben at the time of 

deposition, the flows might not have covered the entire area and so the system was still unconfined.  

To evaluate the influence of confinement in the area, facies, thickness and stacking patterns 

need to be used and work backwards towards the flow processes. Several authors have documented 

the importance of flow confinement as a control of sediment dispersal and stacking patterns at 

different scales, from beds to lobe complexes (e.g., Pickering & Hiscott, 1985; Lomas & Joseph, 

2004; Smith, 2004; Macdonald et al., 2011; Marini et al., 2011, 2015; Southern et al., 2015). Other 

authors, like Bouma (2004), have stressed the idea that confined basins tend to be relatively coarse-

grained, with a significant amount of gravel and a low percentage of fine-grained material. 

In unconfined to semi-confined settings, the dominant manner of stacking of single beds 

and lobes is dominantly compensational (Marini et al. 2015, Fig. 20). This suggests that 

lenticularity of lobe stacks results from compensation of successive event beds. The arrangement 

of unconfined to semi-confined lobes and lobe complexes is thus reflected in lateral variations of 

net to gross, thickness and facies in response to auto-cyclical controls of depositional topography 

(Marini et al. 2015). 

On the other hand, confined lobes (as described and interpreted by Marini et al., 2011, 

2015) show an arrangement of beds that is dominantly aggradational with flat three-dimensional 

geometries in response to flow ponding. As a result, component units pile up vertically (vertical 

stacking), compensational processes are unimportant and the final architecture of confined lobes 

is sheet-like, with basin-wide extensive lobe stacks that shale out and pinch out toward basin 

margins (Fig. 20). 

 

 

 

 



53 
 

 

Figure 20. Simplified diagram showing the stacking pattern of lobes in confined (a) and semi-
confined (b) lobe complexes along depositional strike. The red arrows show the 
probable trajectory of the center of mass of lobe sets (i.e. the locus of main sand 
deposition). Modified from Marini et al., 2015. No scale intended. 

The lower fan deposits analyzed in La Jardinera area show compensational stacking 

patterns at a bed scale that is translated up to lobes and lobe complexes, where we observe that 

lobe complex or lobe axis does not remain fixed at a certain location but shifts laterally (Fig. 11). 

However, a marked amount of aggradation is observed at lobe and lobe complex scale. We 

described in previous sections how LC2 filled topographic lows left by LC1 (Fig 11 and 16). From 

LC2 to LC3 there is a high level of aggradation to a point when the fan could not continue to 

construct vertically and an auto-cyclic response shifted the feeder channels towards the south on 

LC4. LC3 also presents good evidence of lateral compensation of its lobes while aggrading, with 

the axis of the lobes migrating towards the northeast (Fig. 11). 

The above-mentioned descriptions on how deep-water sediment at different hierarchical 

scales stacked together in La Jardinera area seems to point to an unconfined setting. However, LC1 

might reflect a certain influence from inherited structures of rift. The bipartite paleocurrents 

(northwest and northeast) are parallel and transversal to the main fault of the hemigraben 

interpreted on the area (Rahue fault, Fig. 5A) and they could have acted as preferential sediment 

routes. What is more, beds on LC1 appear to be relatively continuous with couplets of sand – mud, 

possibly reflecting a response to significant confinement on the basin floor due to ponding. Future 

work could focus on an analysis of the lower-most portion of the fan to generate detailed bed 

correlations in order to test this hypothesis. 

5. 5. COARSE GRAINED FAN MODEL 
The basin floor fan of La Jardinera area has most of the general features associated with 

coarse-grained submarine fans (Reading & Richards, 1994; Bouma, 2000). Net to gross is very 
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high, almost 100% in the axes of some lobe complexes; average grain size is medium to coarse 

grained sand; they have relatively small dimensions, 8 km width on average; and they stack 

vertically, with no major lateral shifts. However, there are some characteristics that might have 

been overlooked due to the lack of laterally extensive and vertically continuous outcrops, such as 

the variation of facies laterally, the architecture of the deposits and geometries of the sandstone 

bodies downdip. On figure 21 we describe the new model for coarse-grained deep-water fans 

through comparison with one from Reading & Richards (1994); in addition we combine outcrop 

detailed facies analysis with seismic from modern coarse-grained fans (Deptuck et al., 2008) to 

understand how the basin-floor fan architecture responds to bedset-scale processes.  

Bed architecture variability that exists at a lobe scale is reflected on higher hierarchies 

within the fan. Near the apex of the lobe, grain size is greater and NG is higher, diminishing to the 

fringes. These trends are reflected in facies variation; distributary channels near the axis of the 

system, deposited high density turbidity currents that dissipated laterally into more dilute flows. 

Consequently, it is worth noticing that although sandy rich systems might be dominated by high 

density turbidity currents, changes in flow along the axis or lateral to the axis are likely to occur, 

along with variations on grain size and NG. Trends evaluated at a lobe scale can be extrapolated 

to the whole lobe complex, and eventually to the scale of the entire fan (Figs. 21 A and C). 

Lobe complex size on the fan is relatively small compared to muddy systems (Bouma, 

2000). However, the overall fan shape might not be radial but elongated (Fig. 21 A and B); see 

also the thickness maps of individual lobe complexes of figure 16. From thickness maps and 

bedding correlations, we estimate an average width of 9 km and a length of approximately 20 km 

for lobe complex scale. In addition, the geometry of the system along downdip is not lobate but it 

presents elongated features previously referred to as finger-like sandstone bodies (Fig. 21 A). 

These features are a response to channelized flows and / or to focused sediment dispersal and high 

relief unconfined deposits. 

Compensational stacking plays a major role in the vertical and lateral arrangement of the 

different elements within the coarse-grained basin-floor fan of Los Molles Fm. (Fig. 11). The 

topography inherited by previous deposits of the fan function as preferential sinks; as clearly seen 

on LC2 over LC1 (Figs. 11 & 16). In addition, progradational vs retrogradational stacking patterns 

at lobe complex scale is subtle and difficult to map. The systems aggrade and follow preferential 

routes for sediment dispersal, prograding only a minor distance. 



55 
 

Studies from the East Corsica in the Golo Fan (Deptuck, 2008) portrayed the geometry of 

a coarse-grained deep-water system at a lobe complex scale. The architecture of one of the Golo 

lobe complexes imaged on seismic resembles that of some of the lobe complexes on this outcrop 

study, showing how lobes are compensationally stacked and how new deposits follow preferential 

paths between previous lobe deposits (Fig. 21 C). While the general architecture is clearly seen on 

seismic there is still lack of data at facies detail. On figure 21 C, we combine schematic logs with 

their seismic interpretation; logs show the facies we might expect to see as recognized in the 

outcrop study. High density turbidites and channelized high-density turbidites can be expected on 

the axis of the lobes where they are thicker. To the sides, grain size diminishes, beds are thinner 

and less amalgamated, resulting on lower NG (Fig. 16). Facies are most commonly associated with 

more dilute turbidites on the margins of each of the lobes. The distribution of the channels is 

controlled mainly by the aggradation of the lobes. Bedsets aggrade to a point from which they 

cannot continue to build vertically. This promotes up-dip avulsion of the channels which will 

preferentially follow the topographic low lateral to the aggraded beds. The channel (turbidite 

flows) will then be forced to migrate laterally, cutting through previous deposits (see changes on 

individual lobe’s axis position on Fig. 21 C). 

5. 6. APPLICATIONS TO RESERVOIRS IN THE SUBSURFACE 
Cuyo Gr (in particular Los Molles Fm.) has been a reservoir/source rock of interest for 

many years since it comprises a proven petroleum system (Cruz et al., 1999; Cruz, 2002; Gómez 

Omil et al., 2002; Villar et al., 2005; Legarreta et al., 2008). However, only during the past 5 years 

has special attention been paid to the possibility of an emergent play called basin centered gas 

systems or “BCGS” (Raggio et al., 2014; Omil & Borghi, 2017). This type of play consists of 

regional accumulations that are gas saturated, abnormally pressured, commonly lack a downdip 

water contact and have low permeability reservoirs (Law, 2002). Los Molles Fm. has the potential 

to hold major gas resources in Neuquén Basin associated with low porosity-permeability 

sandstones deposited by gravity flows on basin floor fans and slope channels (Raggio et al., 2014; 

Omil & Borghi, 2017).  
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Figure 21. A- Depositional model for coarse-grained deep-water fans. B- Previous depositional 
model for coarse-grained systems modified from Reading & Richards, 1994. Main 
differences in new model are listed in the box. C- Seismic interpretation from 
Deptuck et. al., (2008) and schematic logs showing possible main facies 
assemblage using outcrop model from this study. 

The outcrops of La Jardinera area allow a 3D visualization of the potential reservoirs, 

probably the best outcrop example anywhere in the basin. Seismic analysis, along with drilling 

decisions should be accompanied by proper paleogeographic reconstructions, considering the 

lateral and vertical variations we described in previous chapters. The entire fan (which is 

approximately 150-200 m thick) should be visible on seismic; however, lobe complexes and single 
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lobes might represent sub-seismic features that cannot be detected (unless seismic data has high 

frequencies of 60-80 hz; Marini et al., 2015). Heterogeneities at this scale can be interlobe 

complexes or interlobe shales that should be identified as they can compartmentalize potential 

reservoirs. Information such as trends in NG, degree of amalgamation of single beds and lobe 

elements, bed thickness, and grain size patterns are easily obtained from wells. The distribution of 

these characteristics, such as we observe in outcrop, allows predictions to build a subsurface model 

and thus diminish risk for drilling projects. 

The analysis methodology of the basin floor fans in La Jardinera can also be applied to 

other deep-water, coarse-grained systems elsewhere. We consider that the key aspects to consider 

when evaluating this type of deposits are: 

1- Proximity to the axis of the system: at proximal to medial settings, the closer to the axis 

of the fan the higher the net to gross and the degree of amalgamation at different scales. For 

example, Lobe complex 3 defined in this study would be the ideal case with very high net to gross 

and almost complete amalgamation of its lobes on panel 1 (Fig 11).  

2- Geometry downdip: although most of the deposits are considered unconfined, classic 

lobate shapes have been proven incorrect in reality, and elongate, serrated terminations are more 

common. This means that downdip of the system, pinch outs will not occur homogenously and the 

coarse material will be focused in particular areas. 

6. Conclusions 

The aim of this study was to (1) provide an enhanced model for coarse-grained basin-floor 

fans, (2) increase the understanding of the Los Molles Fm. by delivering the first detailed 

paleogeographic reconstructions of probably the first basin floor fan in the Neuquén Basin and (3) 

to provide reservoir analogs for subsurface exploration. These goals required facies analysis, 

identification of geometries and architecture of the deposits at different hierarchical levels, 

interpretation of lateral trends in terms of facies, grain size, bed thickness and net to gross, and bed 

thickness and grain size analysis of vertically stacked successions.  

The lower Los Molles Fan is composed of 4 lobe complexes (each averaging 40 m thick) 

separated by fine grained intervals (4 m thick in average). Each lobe complex is composed of 2 to 

6 lobes (each averaging 5 m in thickness) that are formed mainly by unconfined bedsets, although 

distributary channels were identified and play and important role throughout the succession. LC1 
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exhibits 2 different paleocurrent directions and a NG distribution that might reflect basin floor 

topography imposed by syn-rift structures. LC2 is located on topographic lows remnant from LC1 

with its axis elongated southwest–northeast, with similar paleocurrent directions; it is composed 

by 3 aggrading lobes that present unconfined, compensationally stacked bed-sets and small 

distributary channels on their top. LC3 aggraded on top of LC2 with a similar northeasterly axis 

orientation, although deposits broaden and occupy a larger area. It is composed of 6 aggrading 

lobes that are highly amalgamated along the axis. These lobes also support the highest proportion 

of distributary channels. LC4 shifts towards the southeast and backsteps. It is composed of 6 

aggradational lobes with unconfined deposits.  

Vertical trends of bed thickness observed in 3D indicate that only lobes 2 and 3 from LC3 

exhibit consistent coarsening and thickening-up or fining and thinning- up stacking patterns across 

the area. The increasing number of erosive features along with the trends themselves is an 

indication of prograding and retrograding of lobes where most proximal facies are associated with 

amalgamated erosive features. 

The deposits of the lower fan show compensational stacking through the succession and 

these are likely to be autocyclic responses of the growing system in an unconfined setting. Though 

LC1 might be reflecting 2 different sediment routes that are associated with an initial complex 

geometry inherited from the rift. 

A new model for coarse-grained deep-water fans was proposed. The main characteristics 

rely on variability from the axis to the fringe of the system. On-axis, lobes are thicker, there is 

higher proportion of channels and high density turbidites, thicker beds and high NG and grain size. 

Towards the fringe, lobes are thinner, there is higher proportion of low density turbidites, thinner 

beds and lower NG and grain size. In addition, the morphology of the lobe complexes is markedly 

elongated and they present finger-like sandstone geometries downdip associated with distributary 

channels. 

Lastly, the outcrops of La Jardinera allow a good characterization of turbidite deposits that 

can be applied to reservoirs in the subsurface and give hints on how to make paleoenvironmental 

interpretations where data is scarce and widely spaced.  Particular features to consider when 

analyzing these rocks on the subsurface are: (1) the proximity to the axis of the system; this will 

give higher NG and amalgamation of lobes that translates into fewer shale heterogeneities that 
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could compartmentalize the reservoirs. (2) the geometry of the lobe complexes downdip is 

elongated and serrated, and sand pinchouts might not occur homogenously.  
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