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The work presented in this dissertation is related to several lines of re-

search in the area of Discontinuous Galerkin (DG) Methods for computational

electronic transport in semiconductor devices using Boltzmann - Poisson (BP)

models.

The first line of research is the use of EPM related energy bands in a

DG solver for BP where we consider a n+−n−n+ diode problem, in order to

increase the accuracy of the physical modeling of the energy band structure

and its derivatives, via a spherical average of the EPM band structure and

the spline interpolation of its derivatives, as these functions are involved in

the collision mechanism, such as electron - phonon scattering in silicon, and

transport via the electron group velocity. The balance of these two mechanisms
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is the core of the modeling of electron transport in semiconductors by means

of Boltzmann - Poisson. The more physically accurate values of the spherical

average EPM energy band and its derivatives interpolated by splines give a

quantitative difference in kinetic moments related to the energy band model,

such as average velocity, energy, and particularly the current given by our

numerical solver. This highlights the importance of band models and features

such as anisotropy and derivative interpolation in the BP numerical modeling

of electron transport via DG schemes.

The second line of research is related to the mathematical and numeri-

cal modeling of Reflective Boundary Conditions (BC) in 2D devices and their

implementation in DG-BP schemes. We have studied the specular, diffusive

and mixed reflection BC on the boundaries of the position domain of the de-

vice. We developed a numerical equivalent of the pointwise zero flux condition

at the position domain insulating boundaries for the case of a more general

mixed reflection with a momentum dependant specularity parameter p(~k). We

obtain this numerical zero flux condition by formulating the general mixed re-

flection BC as the solution of the problem of finding a function and parameter

that balance the incident and reflected microscopic probability flow at each

point of the insulating boundary. We compared the influence of the different

reflection BC cases in the computational prediction of moments after imple-

menting numerical BC equivalent to the respective reflective BC. There are

expected effects due to the inclusion of diffusive reflection boundary conditions

over the moments of the probability density function and over the electric field

ix



and potential, whose influence is not only restricted to the boundaries but ac-

tually to the whole domain. We observe in our simulations effects in kinetic

moments of the inclusion of diffusion in the BC, such as the increase of the

density close to the reflecting boundary, the decrease of the mean energy over

the domain and the increase of the momentum x-component over the domain.

The third line of research is related to the development of positivity pre-

serving DG schemes for BP semiconductor models. We pose the Boltzmann

Equation for electron transport in curvilinear coordinates for the momentum.

We consider the 1D diode problem with azimuthal symmetry, which is a 3D

plus time problem. We choose for this problem the spherical coordinate sys-

tem ~p(|~p|, µ = cosθ, ϕ), slightly different to the choice in previous DG solvers

for BP, because its DG formulation gives simpler integrals involving just piece-

wise polynomial functions for both transport and collision terms. Applying

the strategy of Zhang & Shu, [63], [64], Cheng, Gamba, Proft, [36], and En-

deve et al. [65], we treat the collision operator as a source term, and find

convex combinations of the transport and collision terms which guarantee the

positivity of the cell average of our numerical probability density function at

the next time step. The positivity of the numerical solution to the pdf in the

whole domain is guaranteed by applying the limiters in [63], [64] that preserve

the cell average but modify the slope of the piecewise linear solutions in order

to make the function non - negative. In addition of the proofs of positivity

preservation in the DG scheme, we prove the stability of the semi-discrete DG

scheme under an entropy norm, using the dissipative properties of our colli-
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sional operator given by its entropy inequalities. The entropy inequality we

use depends on an exponential of the Hamiltonian rather than the Maxwellian

associated just to the kinetic energy.
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Chapter 1

Introduction

1.1 Motivation

Boltzmann - Poisson (BP) is a system coupling a partial differential

integral equation such as the Boltzmann Equation with the Poisson Equation.

The Boltzmann equation models the transport and collisions of electronic par-

ticles in semiconductors by following the time evolution of the probability

density function representing the electronic charges in the respective phase

space. The Poisson Equation is necessary in the model to obtain the electric

field which is not only external, since the charges create a self consistent elec-

tric field, therefore the latter is dependent on the charge density and a fixed

doping background as well. The BP system is nonlinear due to the depen-

dance of the electric field on the charge density. It is also nonlocal due to

the collision scatterings in momentum space, which can be related to different

physical phenomena, but which scatter a momentum vector into another one

that can differ significantly.

The BP system has been traditionally used in the electrical engineering

community to model electronic transport in semiconductor devices of different

dimensionality in position space, such as diodes (1D), MOSFETs (2D), and
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FinFETs (3D). The lowest possible phase space dimensionality for the 1D

problem in position space is, under certain symmetry assumptions, 2D plus

time. For 2D problems and higher, the dimensionality of the momentum space

is 3D plus time. Therefore, the total dimensionality of the problems treated

by BP spans from 3D plus time (the lowest dimensionality in total) to 6D plus

time, for a full 3D device.

These dimensionalities explain why BP was traditionally treated nu-

merically by Monte Carlo solvers (DSMC) in the electrical engineering com-

munity. However, Monte Carlo methods have by its own nature an unavoidable

statistical noise, dependant on the number of particles used in the simulation,

and have some issues related to the treatment of boundary conditions [34].

Deterministic methods to solve the BP system do not have this kind of statis-

tical error, give a much finer resolution of the time evolution of the probability

density function and its moments from its transient state to its steady state,

and can incorporate boundary conditions in an easier fashion, for example,

using DG methods [34]. The downside of deterministic numerical methods

is, in principle, the computational cost associated to the full dimensionality

of the phase space problem plus time. The overall objective of deterministic

numerical methods for Boltzmann - Poisson, such as Discontinuous Galerkin

(DG) Finite Element Methods (FEM), is to provide accurate results of the

pdf and its moments, that agree with Monte Carlo solvers but which provide

a much higher resolution of the physical quantities, and that provide them at

a fractional computational time compared to Monte Carlo.
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DG, our particular deterministic numerical method of choice for BP,

is a finite element method that was originally motivated for the modeling of

hyperbolic transport problems such as neutron transport [1]. DG captures

in its numerics the essence of the physics of transport, by propagating the

information in the numerical domain according to the direction in which this

information is traveling, via the numerical fluxes, such as the upwind rule,

for example. It conserves mass locally, and because the transport part con-

siders the local interaction of next neighboring cells, it gives sparse systems

that are generally block diagonal that are easily invertible. The trade off is

the higher number of degrees of freedom when compared to continous finite

element methods, since DG allows discontinuous basis functions for the repre-

sentation of hyperbolic problems. DG is a method designed to represent the

physics of transport in its numerics. Therefore, the phase space advection part

of the Boltzmann Equation is perfectly captured by DG when solving our BP

system. The other main component of the Boltzmann Equation, namely the

collision term, can be incorporated as a right hand side source term in the

DG method. This collision term is also the one that is more computationally

expensive when solving BP with DG methods. Finally, the Poisson Equation

can be solved given the charge density by a method such as Local DG, which

is an adaptation of DG to solve elliptic problems, which will be described later

in this document, but which has been studied in detail in references [1], [50].
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1.2 Literature Review

The semi-classical Boltzmann description of electron transport in 3D

semiconductor devices is an equation in six dimensions plus time when the sys-

tem is not in steady state. For a 1-D device model, under azimuthal symmetry

assumptions, the phase space dimensionality can be reduced to 3D plus time,

this being the BP problem modeling transport in semiconductors with the low-

est dimensionality. The heavy computational cost is the main reason why the

Boltzmann - Poisson (BP) system had been traditionally solved numerically

by means of Direct Simulation Monte Carlo (DSMC) methods [19]. However,

after the pioneer work [20], in recent years, deterministic solvers to the BP

system were proposed in [21], [22], [23], [24], [25], [26], [27]. These meth-

ods provide accurate results which, in general, agree well with those obtained

from Monte Carlo (DSMC) simulations, often at a fractional computational

time. Moreover, these type of solvers can resolve transient details for the

electron probability density function f , which are difficult to compute with

DSMC simulators. The initial methods proposed in [23], [24], [25], [26] using

weighted essentially non-oscillatory (WENO) finite difference schemes to solve

the Boltzmann-Poisson system, had the advantage that the scheme is relatively

simple to code and very stable even on coarse meshes for solutions containing

sharp gradient regions. However, a disadvantage of the WENO methods is

that it requires smooth meshes to achieve high order accuracy, hence it is not

very flexible for adaptive meshes.

Motivated by the easy hp-adaptivity and the simple communication

4



pattern of the discontinuous Galerkin (DG) methods for macroscopic (fluid

level) models [28], [29], [30],[31], it was proposed in [32], [33] to implement

a DG solver to the full Boltzmann equation, that is capable of capturing

transients of the probability density function.

In the previous work [32], [33], the first DG solver for (2.8)-(4.17)

was proposed, and some numerical calculations were shown for one and two-

dimensional devices. In [34], the DG-LDG scheme for the Boltzmann-Poisson

system was carefully formulated, and extensive numerical studies were per-

formed to validate the calculations. Such scheme models electron transport

along the conduction band for 1D diodes and 2D double gate MOSFET de-

vices with the energy band ε(k) = ε(|k|) given by the Kane band model (valid

close to a local minimum) in which the relation between the energy ε and the

wavevector norm |k| is given by the analytic formula, referred as the Kane

Band Model,

ε (1 + αε) =
~2|k|2

2m∗
, (1.1)

where m∗ is the effective mass for the considered material, Silicon for the case

of this work, and α is a non-parabolicity constant. This band model can be

understood as a first order variation from the parabolic band model, given by

the particular case α = 0.

A DG scheme for full band BP models was proposed in [35], following

the lines of the schemes in [32], [33], [34], generalizing the solver that uses the

Kane non-parabolic band and formulating it to treat a possible full band case.

A preliminary benchmark of numerical results, using isotropic band models
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with a dependence just on the momentum norm, shows that the direct evalua-

tion of the Dirac delta function can be avoided, and so an accurate high-order

simulation with comparable computational cost to the analytic band cases is

possible. It would be more difficult or even unpractical to produce the full band

computation with other transport scheme. It is worth to notice that a high-

order positivity-preserving DG scheme for linear Vlasov-Boltzmann transport

equations, under the action of quadratically confined electrostatic potentials,

independent of the electron distribution, has been developed in [36]. The au-

thors there show that these DG schemes conserve mass and preserve the pos-

itivity of the solution without sacrificing accuracy. In addition, the standard

semi-discrete schemes were studied showing stability and error estimates.

In all of the aforementioned deterministic solvers previous to [35], the

energy-band function ε(k) is given analytically, either by the parabolic band

approximation or by the Kane non-parabolic band model. The analytical band

makes use of the explicit dependence of the carrier energy on the quasimomen-

tum, which significantly simplifies all expressions as well as implementation of

these techniques in the collision operator. However, some physical details of

the band structure are partly or totally ignored when using an analytic approx-

imation, which hinders its application to transport of hot carriers in high-field

phenomena (the so called hot electron transport) where the high anisotropy of

the real band structure far from the conduction band minimum becomes im-

portant. Full band models, on the other hand, are able to provide an accurate

physical description of the energy-band function, portraying this anisotropic

6



band structure far from a conduction band minimum.

One of the most commonly used methods to compute full bands is

the empirical pseudopotential method (EPM). Such method gives a full band

structure truncating the Fourier series in the k-space [37] for a crystal lattice

potential model given as the sum of potentials due to individual atoms and

associated electrons, with few parameters fitting empirical data such as opti-

cal gaps, absorption rates, etc, to finally compute the energy eigenvalues of

the Schrödinger equation in Fourier space. A more detailed discussion of this

method can be found in [37], [38]. While full band models, as the ones given by

EPM, have been widely used in DSMC simulators [19], their inclusion in deter-

ministic solvers for the transport Boltzmann Equation is more recent; on [40],

[41], full band models have also been combined with spherical harmonic ex-

pansion methods used to solve the Boltzmann equation numerically. However,

high order accuracy is not always achieved by spherical harmonic expansion

methods when energies vary strongly and only a few terms of the expansion

are usually employed [42]. In contrast, the simulations for the BP system de-

veloped in our line of work, as in [32], [34], do not involve any asymptotics

and so are very accurate for hot electron transport regimes.

The type of DG methods to be discussed in this work, as was done in

[34], belongs to a class of finite element methods originally devised to solve

hyperbolic conservation laws containing only first order spatial derivatives, e.g.

[43–47]. Using a piecewise polynomial space for both the test and trial func-

tions in the spatial variables, and coupled with explicit and nonlinearly stable
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high order Runge-Kutta time discretization, the DG method is a conserva-

tive scheme that has the advantage of flexibility for arbitrarily unstructured

meshes, with a compact stencil, and with the ability to easily accommodate

arbitrary hp-adaptivity. For more details about DG scheme for convection

dominated problems, we refer to the review paper [48], later generalized to the

Local DG (LDG) method to solve the convection diffusion equations [49] and

elliptic equations [50].

1.3 Main Contributions

The main contributions of this dissertation lie in the fields of computa-

tional electronic transport and Discontinuous Galerkin Methods for Boltzmann

- Poisson models. These contributions are:

• The incorporation of conduction energy band structures such as EPM

(Empirical Pseudopotential Method) in Discontinuous Galerkin Methods

for BP, via spherical averages of the EPM band structure, and spline

interpolations of its derivatives, in order to provide these methods of

a more physically accurate modeling of the electron group velocity and

collision mechanisms such as electron - phonon scattering in the case of

silicon semiconductors.

• The formulation of numerical boundary conditions modeling diffusive

and general mixed reflection with a momentum dependant specularity

probability p(~k) for Discontinuous Galerkin Methods in BP, which sat-
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isfy the numerical equivalent of a mathematical zero flux condition at an

insulating boundary, conserving the mass by balancing the incident and

reflected probability flow in momentum space pointwise at this bound-

ary. The computational implementation of these boundary conditions

for our numerical method to model devices with a 2D geometry (with a

respective 3D momentum space) such as a 2D bulk silicon diode and a

double gated MOSFET.

• The development of positivity preserving Discontinuous Galerkin schemes

for BP models of electron transport in curvilinear momentum coordi-

nates, treating in the scheme the time dependant electric field given by

the Poisson equation and the collision term related to electron - phonon

scattering. In the case of the symmetric diode problem in semiconduc-

tors, with dimensionality of 3D plus time, the coordinate system chosen

in momentum space is such that all the integrals related to the DG

formulation depend only on simple polynomial functions, which gives a

simpler description than the one related to spherical coordinate systems

for the momentum used in previous DG solvers for BP. In addition of

the proofs of preservation of positivity of the numerical solution after

each time step, we present as well a proof of the stability of the semi-

discrete DG scheme with respect to an entropy norm depending on the

Hamiltonian.
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1.4 Dissertation Outline

Chapter 2 provides an introduction to kinetic models for semiconduc-

tors such as the Boltzmann - Poisson system, and its formulation as a math-

ematical problem. We also give an overview of the mathematical properties

of the electron-phonon collision operator for silicon semiconductors, as well as

a description of the family of entropy inequalities that can be derived from

the structure of this collision operator. We include in this chapter too a brief

introduction to the physics associated to electrons in semiconductors. We fi-

nalize with a brief introduction to the Discontinuous Galerkin Finite Element

Method, giving as an example the case of a transport equation in one dimen-

sion.

Chapter 3 formulates the Boltzmann equation using spherical coordi-

nates for the electron momentum vector. It shows then the Runge-Kutta Dis-

continuous Galerkin (RK-DG) formulation of the Boltzmann - Poisson problem

in momentum spherical coordinates. It then presents the use of EPM related

energy band models, its spherical average and the spline interpolation used

to approximate its partial derivatives to obtain the respective electron group

velocity, and its computational implementation in the DG solver for BP. The

respective numerical results of the incorporation of the EPM spherical average

energy band in our DG-BP solver are presented.

Chapter 4 concerns the formulation of numerical boundary conditions

to model in a Discontinous Galerkin setting the mixing of specular and diffu-

sive reflection with a momentum dependant specularity probability p(~k) . It
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presents the mathematical formulation of the specular, diffusive, and general

mixed reflection boundary conditions, where we emphasize the role of the zero

flux condition in all of these cases by formulating these BC as the solutions

to the problem of finding functions and parameters such that a pointwise zero

flux condition is satisfied balancing the incident and reflected microscopic flow

in momentum space. We present the formulation of the numerical equivalents

of these reflection BC and the numerical equivalent of the pointwise zero flux

condition as well. In particular, we introduce the numerical formulation of the

general mixed reflection BC with momentum dependant specularity probabil-

ity p(~k), and posing it as the problem of finding a function and parameter such

that the respective reflection BC satisfies a pointwise numerical equivalent of

the zero flux condition, we find the numerical version of the general mixed

reflection BC with p(~k) under the assumption of a finite element space made

of tensor products of position and momentum functions. We present at the

end the results of numerical simulations implementing specular, diffusive, and

general mixed reflection BC for a 2D bulk diode and a double gate MOSFET.

Chapter 5 is concerned with the development of DG schemes that pre-

serve the positivity of the probability density function (which mathematically

is non negative by definition) for the Boltzmann - Poisson model of semicon-

ductor transport. We formulate the Boltzmann - Poisson system with the

momentum in curvilinear coordinates, motivated by the physics and math of

our model. We use the work of Zhang & Shu [63], [64], and Cheng, Gamba,

Proft [36] for our problem, incorporating our electron - phonon collision term
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as a source in the scheme, and considering the time and charge dependence of

the electric field. We choose a particular spherical coordinate system for the

momentum which is slightly different from the choice of previous DG deter-

ministic solvers. It is more convenient since, when applied to the symmetric

diode problem, it renders integrals related to the DG formulation which just

involve polynomial or piecewise polynomial functions, which are simpler than

for other coordinate choices for ~k in previous DG-BP schemes. We mainly

study and present our results for the symmetric diode problem, 1D in posi-

tion, 3D plus time in total. We present at the end a proof of stability of the

semi-discrete DG scheme formulated under an entropy norm dependant on

the Hamiltonian. As a corollary, for the particular case of a time independent

potential, the decay of this entropy norm follows directly.

Finally, the conclusions of this work are summarized in the last chapter.

We discuss as well our goals for future work.
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Chapter 2

Preliminaries

The presented research concerns the mathematical and computational

modelling of the physical phenomena of charge transport in semiconductor

devices, by means of the numerical method known as Discontinuous Galerkin

applied to the Boltzmann - Poisson system. Its possible applications are re-

lated to problems of computational design for the performances of nano-scale

transistors, or the modelling of electronic devices such as diodes or MOSFETS.

We present an introduction to the basics needed to understand the

physics, mathematics, and numerics related to our proposed work. We first

present to the reader a brief review of kinetic theory and the Boltzmann Equa-

tion. Then, the Boltzmann - Poisson (BP) mathematical model for transport

in semiconductors is introduced and explained, explaining in detail the mathe-

matical properties of the collision operator. We present then the fundamentals

of semiconductor physics related to electronic transport. After that, an intro-

duction to the Discontinuous Galerkin (DG) method is presented, explaining

its formulation for the basic case of a transport equation in one dimension.
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2.1 The Boltzmann-Poisson Model for Semiconductors

2.1.1 Kinetic Theory and the Boltzmann Equation

The Boltzmann Equation is a mathematical model for systems of a large

number of particles, often having an underlying Hamiltonian structure, related

to the interaction through a long range, mean force field, but also being under

the influence of short range forces, which are called collisional mechanisms.

The description of a system with such a large number of particles is described

in a more practical way by means of a particle density approach rather than

following the individual positions and velocities of each one of all the particles

of the system. We go over the concepts necessary for a description of the

physical system in terms of a density in its phase space.

Definition 2.1.1. Probability Density Function Let (x,p) ∈ Rd ×Rd, d =

1, 2, 3, be a point in the phase space for one of the particles of the system.

We define as the Probability Density Function (pdf) the function f : R ×

Rd × Rd → R+ such that f(t,x,p) dx dp is the probability of finding a par-

ticle at time t on the infinitesimal phase space element of volume dx dp cen-

tered at the point (x,p), related to position x and momentum p. That is, if

P |t {(x,p) ∈ B} is the probability at time t of a particle being in the phase-

space region B, f(t,x0,p0) is defined as

f(t,x0,p0) = lim
(∆x,∆p)→~0

P |t {(x,p) ∈ B}∫
B
dx dp

, (2.1)

B = {(x,p) : |x− x0| < ∆x , |p− p0| < ∆p} , (2.2)

P |t {(x,p) ∈ B} =

∫
B

f(t,x,p)dx dp . (2.3)
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A Vlasov model for a system of particles provides a macroscopic de-

scription of its motion assuming their interaction is driven just by long range

forces, considered in the Hamiltonian of the system, disregarding scattering of

particles generated by short range forces,

df

dt
=
∂f

∂t
+
∂f

∂x
· ẋ +

∂f

∂p
· ṗ = 0 , ẋ = v(p), ṗ = F(x, t) . (2.4)

It can be interpreted as an equation for the conservation of probability.

As stated in [17], it only represents a useful model for a collision-less system,

or for a time scale much shorter than the mean time between two consecutive

scattering events.

A Boltzmann model for a system of particles, on the other hand, con-

siders that the total rate of change of the probability density function (its total

derivative) is due to collisional mechanisms

Q(f) =
df

dt
=
∂f

∂t
+ ẋ · ∂f

∂x
+ ṗ · ∂f

∂p
, (2.5)

where the short range forces are represented in the collisional operator Q(f).

This collisional operator models instantaneous scatterings of particles from one

state to another, in such a way that their momentum vector changes extremely

fast, while the change of the position vector takes place slowly [17].

For a classical system of particles, under the Laws of Newtonian Me-

chanics, we have

ẋ = v(p), ṗ = F(x, t), (2.6)
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where the function v(p) models the velocity of the particle in terms of the

momentum, and F(x, t) gives the force over the particle on the position x at

time t. For electron transport problems, under the quasi-electrostatic approx-

imation, the force is due just to the electric field, that is, F = −qE(x, t).

We obtain then the Boltzmann Equation model for the pdf f(t,x,p)

representing our system of particles .

Definition 2.1.2. Boltzmann Equation

∂f

∂t
+
∂f

∂x
· v(p) +

∂f

∂p
· F(x, t) = Q(f). (2.7)

2.1.2 Introduction to the Boltzmann - Poisson system

The Boltzmann-Poisson (BP) system is a semi-classical model for elec-

tric charge transport in semiconductors. The BP system can be used to de-

scribe the hot electron transport in modern semiconductor devices at nano-

scales. As stated in [17], this model describes the long range interactions

over charge carriers and the statistical evolution of its states that includes

an account of the quantum scattering events. The BP system treats charge

carriers partly as classical particles by describing them by means of a time-

dependent probability density function f(t,x,k) over the phase space (x,k),

and using a Boltzmann equation to model the time evolution of the associ-

ated probability density function in the phase space. The quantum nature of

the carriers is considered in several terms of the Boltzmann equation. The

quantum crystal wave-vector k is used as the momentum phase space vari-
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able in the model. The model for the local velocity of the charge carriers is

the group velocity v(k) = 1
~∇kε(k) of its quantum mechanical wave function,

related to the electronic energy band function ε(k) of the considered semi-

conductor material. As usual, ~ is the Planck constant divided by 2π. The

collision integral operator models the quantum scattering mechanisms acting

over the charge carriers. The flow of charge carriers is induced by the force

over the electron charge −q, which is assumed to be given by a mean electric

field, F(t,x) = −qE(t,x). This effective electric field, modeled by the Poisson

Equation, takes into account long range interactions made of both internal

carrier self-consistent and external contributions, such as an applied potential

(bias). Hence, time-dependent solutions of the the BP system contain all the

information on the transient of the carrier distribution and the time evolution

of the total electric field. A phenomenological derivation of the BP model can

be found in [17].

Consequently, the semi-classical Boltzmann - Poisson (BP) system

for electron transport along an energy band is given by the system

∂f

∂t
+

1

~
∇k ε(k) · ∇xf −

q

~
E(t,x) · ∇kf = Q(f) , (2.8)

and

∇x · [εr(x)∇xV (t,x)] =
q

ε0
[ρ(t,x)−ND(x)] , E(t,x) = −∇xV (t,x) , (2.9)

where f(t,x,k) represents the probability density function (pdf ) of finding an

electron being at the physical location x with momentum wave-vector k at
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time t, V (x) is the electric potential for the total charge, the associated mean

electric field is the negative potential gradient, denoted by E(x, t), and ε(k)

is the energy band function.

The collision integral operator Q(f) describes the scattering over the

electrons, where several quantum mechanisms can be taken into account. In

the low density approximation, the collisional integral operator becomes linear

in f , having the form

Q(f) =

∫
Ωk

[S(k′,k)f(t,x,k′)− S(k,k′)f(t,x,k)] dk′, (2.10)

where S(k,k′) is the scattering kernel, representing non-local interactions of

electrons with a background density distribution.

In the case of silicon, for example, one of the most important collision

mechanisms are electron-phonon scatterings due to lattice vibrations of the

crystal, which are modeled by acoustic (assumed elastic) and optical (non-

elastic) non-polar modes, the latter with a single frequency ωp, given by

S(k,k′) = (nq + 1)K δ(ε(k′)− ε(k) + ~ωp)

+ nqK δ(ε(k′)− ε(k)− ~ωp) +K0 δ(ε(k
′)− ε(k)) , (2.11)

with K, K0 constants for silicon.

The symbol δ indicates the usual Dirac delta distribution corresponding

to the well known Fermi’s Golden Rule [18]. The constant nq is related to the

phonon occupation factor

nq =

[
exp

(
~ωp
kBTL

)
− 1

]−1

,
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where kB is the Boltzmann constant and TL = 300K is the constant lattice

temperature.

In the Poisson Eq. (4.17), the parameter ε0 is the dielectric constant in

a vacuum, εr(x) labels the relative dielectric function which depends on the

material. ρ(t,x), the electron charge density, is given by the integral over the

domain in the k-space Ωk

ρ(t,x) =

∫
Ωk

f(t,x,k) dk , (2.12)

and ND(x) is the doping profile, representing an external fixed density of

positive charge carriers.

The Boltzmann Eq. (2.8) can be generalized to more bands εi by re-

placing f with a vector array of pdf’s fi, and including the related scattering

terms in the collisional operator. The associated BP systems of pdf ’s would

have the form

∂fi
∂t

+
1

~
∇k εi · ∇xfi +

qi
~

E · ∇kfi =
∑
j

Qi,j , (2.13)

−∇x · (ε∇xV ) = qN(x) +
∑
i

qiρi, E = −∇xV . (2.14)

In this case, each fi(t,x,k) is the probability density function over the phase

space (x,k) of a carrier in the i-th energy band/valley in position x, with

crystal momentum ~k at time t. The collision operators Qi,j(fi, fj) model i-

th and j-th carrier recombinations, generation effects, or intra-band scatterings

when i = j. E(t,x) is the electric field, Ei(k) is the i-th energy band surface,
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the i-th charge density ρi(t,x) is the integral over all possible k-states of fi,

qi are their respective electric charges, and N(x) is the doping profile.

2.1.3 Mathematical Formulation of the Boltzmann-Poisson Prob-
lem

2.1.3.1 Classical Formulation of the BP IVP with BC for a single
conduction band

We consider the probability density function (pdf ) for electrons along a

single conduction band, denoting it by f(t,x,k) We denote by Ωx the physical

domain in the x-space. To solve the Boltzmann Eq. (2.8) coupled with the

Poisson Eq. (4.17) requires to assign an initial value for f and suitable bound-

ary conditions both for f and the electric potential V . Following [17], we

recall the classical (strong) formulation of the initial value problem for the BP

system with boundary conditions, for a pdf of electrons on a single conduction

band

Find f : R+×Ωx×Ωk → R, f(t,x,k) ≥ 0 and V (t,x) : R+×Ωx → R,

such that the Boltzmann equation

∂f

∂t
+

1

~
∇k ε(k) · ∇xf −

q

~
E(t,x) · ∇kf = Q(f) , (2.15)

with the linear collision operator Q(f), defined by

Q(f) =

∫
Ωk

[S(k′,k)f(t,x,k′)− S(k,k′)f(t,x,k)] dk′ ,

S(k,k′) = (nq+1)K δ(ε(k′)−ε(k)+~ωp)+nqK δ(ε(k′)−ε(k)−~ωp)+K0 δ(ε(k
′)−ε(k)) ,
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and the Poisson equation

∇x · [εr(x)∇xV (t,x)] =
q

ε0
[ρ(t,x)−ND(x)] , E(t,x) = −∇xV (t,x) ,

(2.16)

subject to the initial condition

f(0,x,k) = f0(x,k) ∀ (x,k) ∈ Ωx × Ωk, t = 0 ,

and suitable boundary conditions for f on ∂Ωx × Ωk and Ωk × ∂Ωx, and for

V on ∂Ωx are satisfied. The boundary ∂Ωx is usually split for the Poisson

Equation in Dirichlet ∂ΩD
x , Neumann ∂ΩN

x , and Interface boundaries ∂ΩI
x,

such that ∂Ωx = ∂ΩD
x ∪ ∂ΩN

x ∪ ∂ΩI
x.

Examples of boundary conditions used for the Boltzmann Equation

include [17]

• Charge neutrality [51], [26], [33], [34]

fout(t,x,k) =
ND(x) fin(t,x,k)

ρin(t,x)
t ≥ 0, x ∈ ∂ΩD

x , k ∈ Ωk . (2.17)

This condition is usually employed at the device contacts (Dirichlet

boundaries ∂ΩD
x ).

• Null x-flux

n(x) · ∇xf(t,x,k) = 0 t ≥ 0, x ∈ ∂ΩN
x , k ∈ Ωk, (2.18)

where n(x) is the normal to the surface ∂ΩN
x at the point x. This con-

dition is imposed on the part of the physical domain with an insulating

layer (Neumann boundaries ∂ΩN
x ).
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• Vanishing boundary conditions in the k-space

f(t,x,k) = 0 t ≥ 0, x ∈ Ωx, k ∈ ∂Ωk. (2.19)

These conditions correspond to negligible densities for large energy val-

ues. We use these vanishing conditions for the Boltzmann Equation in

our work. We will just mention that, if we had chosen Ωk as the first

Brillouin zone, then periodic boundary conditions in the k-space would

be the correct physical conditions. However, it is difficult to apply these

conditions on the complex shape of the boundary of a truncated octa-

hedron, which is the shape of the first Brillouin zone for Silicon and

Germanium crystals.

Boundary conditions related to the Poisson Equation could be

• Applied potential (bias)

V (t,x) = V0(t,x) t ≥ 0, x ∈ ∂ΩD
x . (2.20)

This condition is imposed where we have device contacts (Dirichlet bound-

aries).

• Neumann boundary conditions for the electric potential

n(x) · ∇xV (t,x) = 0 t ≥ 0 ,x ∈ ∂ΩN
x , (2.21)

where n(x) is the normal to the surface ∂ΩN
x at the point x. This con-

dition is imposed on the part of the physical domain with an insulating

layer, which is a Neumann boundary.
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It is important to mention that the contact boundaries ∂ΩD
x for the

Boltzmann and Poisson equations must be the same.

2.1.4 Properties of the Boltzmann Linear Collision Operator for
Electron Scattering in Silicon Semiconductors

We will study in this section the properties of the Linear Collision

Operator for our problem of hot electron transport under a low density ap-

proximation regime

Q(f) =

∫
Ωk

[S(k′,k)f(t,x,k′)− S(k,k′)f(t,x,k)] dk′ , (2.22)

S(k,k′) = (nq+1)K δ(ε(k′)−ε(k)+~ωp)+nqK δ(ε(k′)−ε(k)−~ωp)+K0 δ(ε(k
′)−ε(k)) .

As mentioned in the previous section, the scattering kernel S(k,k′)

models electron - phonon collisions in silicon, which cause energy jumps of

~ωp for optical electron-phonon scattering, and which are approximated as

elastic for acoustic electron - phonon scattering.

2.1.4.1 Mass Conservation

The integral of the collision term over the momentum space is zero∫
Ωk

Q(f)dk =

∫
Ωk

∫
Ωk

[S(k′,k)f(t,x,k′)− S(k,k′)f(t,x,k)] dk′dk = 0 .

(2.23)
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This is an important property since we can use it to derive an equation of

mass conservation. If we define the particle density ρ and the current J as

ρ(x, t) =

∫
Ωk

f(x,k, t) dk, (2.24)

J(x, t) =

∫
Ωk

f(x,k, t)
∇k ε(k)

~
dk , (2.25)

we have that

dρ

dt
=

d

dt

∫
Ωk

fdk =

∫
Ωk

df

dt
dk =

∫
Ωk

Q(f)dk,∫
Ωk

Q(f)dk =

∫
Ωk

∂f

∂t
dk +

∫
Ωk

∇k ε

~
· ∇xfdk−

∫
Ωk

q

~
E · ∇kfdk .

The last term related to the electric field will vanish due to the either peri-

odic, cut-off, or vanishing boundary conditions of f in ∂Ωk after applying the

divergence theorem. Using the fact that the integral of the collision operator

over the momentum space is zero we obtain our equation of mass conservation

dρ

dt
=

∂

∂t

∫
Ωk

fdk +∇x ·
∫

Ωk

∇k ε

~
fdk− q

~

∫
Ωk

∇k · (fE)dk =

∫
Ωk

Q(f)dk,

dρ

dt
=

∂ρ(x, t)

∂t
+∇x · J(x, t) + 0 =

∫
Ωk

Q(f)dk = 0 . (2.26)

2.1.4.2 Moments of the Boltzmann pdf

We introduce as well the following notation for the moment of the pdf

for a function g(x,k, t)

〈g〉 (x, t) =

∫
Ωk

f(x,k, t) g(x,k, t) dk = 〈f, g〉L2(Ωk) . (2.27)
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Under this definition, we have the following mass, velocity and energy

moments

〈1〉 =

∫
Ωk

f(x,k, t) · 1 dk = ρ(x, t), (2.28)

〈v〉 =

∫
Ωk

f(x,k, t)
∇k ε(k)

~
dk = J(x, t), (2.29)

〈ε〉 =

∫
Ωk

f(x,k, t) ε(k) dk = 〈f, ε〉L2(Ωk) . (2.30)

They are analogous to the zeroth, first, and second moments about

the origin, being proportional to them for the case of a parabolic band model

ε(k) = ~2k2/2m∗, for which the velocity is then v(k) = ~k/m∗.

We will omit the subscript L2(Ωk) from our notation for the inner

product. If needed, we will clarify in which space the inner product is taken

in the subsequent development of the thesis.
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2.1.4.3 Collision Operator Structure & Detailed Balance Principle

We will study in this section the structure of our linear collision operator

for electron - phonon collisions in silicon. First, we notice that

Q(f) =

∫
Ωk

[S(k′,k)f(t,x,k′)− S(k,k′)f(t,x,k)] dk′ = 〈S(k′,k), f ′〉 − 〈S(k,k′), f〉

= 〈(nq + 1)K δ(ε(k)− ε(k′) + ~ωp) + nqK δ(ε(k)− ε(k′)− ~ωp), f ′〉

− 〈(nq + 1)K δ(ε(k′)− ε(k) + ~ωp) + nqK δ(ε(k′)− ε(k)− ~ωp), f〉

+ 〈K0 δ(ε(k
′)− ε(k)), f ′ − f〉

= K 〈δ(ε(k)− ε(k′) + ~ωp), (nq + 1)f ′ − nqf〉

− K 〈δ(ε(k′)− ε(k) + ~ωp), (nq + 1)f − nqf ′〉

+ K0 〈 δ(ε(k′)− ε(k)), f ′ − f〉 .

We remember that the phonon distribution follows the Bose-Einstein

statistics, nq =
[
exp

(
~ωp
kBTL

)
− 1
]−1

, therefore we have that

nq + 1

nq
= n−1

q + 1 = exp

(
~ωp
kBTL

)
. (2.31)

The Collision Operator acting on f can be written then as

Q(f) = Knq

〈
δ(ε(k)− ε(k′) + ~ωp), e

~ωp
kBTL f ′ − f

〉
− Knq

〈
δ(ε(k′)− ε(k) + ~ωp), e

~ωp
kBTL f − f ′

〉
+ K0 〈 δ(ε(k′)− ε(k)), f ′ − f〉 .

We observe by means of this structure of the collision operator that the
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energy dependent Maxwellian

M(k) = e
− ε(k)
kBTL = M(ε(k)) (2.32)

is an equilibrium distribution in the Kernel of our collision operator, as

Q

(
e
− ε(k)
kBTL

)
= Knq

〈
δ(ε(k)− ε(k′) + ~ωp), e

~ωp
kBTL e

− ε(k′)
kBTL − e−

ε(k)
kBTL

〉
− Knq

〈
δ(ε(k′)− ε(k) + ~ωp), e

~ωp
kBTL e

− ε(k)
kBTL − e−

ε(k′)
kBTL

〉
+ K0

〈
δ(ε(k′)− ε(k)), e

− ε(k′)
kBTL − e−

ε(k)
kBTL

〉
= 0 ,

since each of these terms vanishes individually by the shift in energies due to

the Dirac deltas.

Moreover, the structure of this collision operator is related to the more

general Detailed Balance Principle. We have that

S(k,k′) = nqK

[
e

~ωp
kBTL δ(ε(k′)− ε(k) + ~ωp) + δ(ε(k′)− ε(k)− ~ωp)

]
+K0 δ(ε(k

′)−ε(k)) .

Using the formula above, we have then that

S(k,k′)e
− ε(k)
kBTL = nqK

[
e

~ωp
kBTL δ(ε(k′)− ε(k) + ~ωp) + δ(ε(k′)− ε(k)− ~ωp)

]
e
− ε(k)
kBTL

+ K0 δ(ε(k
′)− ε(k))e

− ε(k)
kBTL ,

and

S(k′,k)e
− ε(k′)
kBTL = nqK

[
e

~ωp
kBTL δ(ε(k)− ε(k′) + ~ωp) + δ(ε(k)− ε(k′)− ~ωp)

]
e
− ε(k′)
kBTL

+ K0 δ(ε(k)− ε(k′))e−
ε(k′)
kBTL .
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Therefore, we have that

S(k′,k)e
− ε(k′)
kBTL − S(k,k′)e

− ε(k)
kBTL =

Knq

[
δ(ε(k)− ε(k′) + ~ωp)

(
e

~ωp−ε(k′)
kBTL − e−

ε(k)
kBTL

)]
− Knq

[
δ(ε(k′)− ε(k) + ~ωp)

(
e

~ωp−ε(k)

kBTL − e−
ε(k′)
kBTL

)]
+ K0 δ(ε(k

′)− ε(k))

(
e
− ε(k′)
kBTL − e−

ε(k)
kBTL

)
,

and we can conclude that there is a Detailed Balance Principle satisfied by

our particular scattering, but distributionally, since〈
S(k′,k)e

− ε(k′)
kBTL − S(k,k′)e

− ε(k)
kBTL , g

〉
=〈

Knq

[
δ(ε(k)− ε(k′) + ~ωp)

(
e

~ωp−ε(k′)
kBTL − e−

ε(k)
kBTL

)]
, g

〉
−

〈
Knq

[
δ(ε(k′)− ε(k) + ~ωp)

(
e

~ωp−ε(k)

kBTL − e−
ε(k′)
kBTL

)]
, g

〉
+

〈
K0 δ(ε(k

′)− ε(k))

(
e
− ε(k′)
kBTL − e−

ε(k)
kBTL

)
, g

〉
= 0 ,

as each of the terms above vanishes individually on a distributional sense.

Therefore, the following term operates as a zero distribution,

S(k′,k)e
− ε(k′)
kBTL − S(k,k′)e

− ε(k)
kBTL = 0 . (2.33)

We obtain then a Detailed Balance Principle in a distributional sense

S(k′,k)e
− ε(k′)
kBTL = S(k,k′)e

− ε(k)
kBTL , (2.34)

which defines the following symmetric distribution σ(k′,k) below

σ(k′,k) = S(k′,k)e
− ε(k′)
kBTL = S(k,k′)e

− ε(k)
kBTL = σ(k,k′) . (2.35)
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This Detailed Balance Principle is a distributional yet local equality

showing that the energy dependent Maxwellian is in the kernel of the collision

operator. We can write the collision operator in the following way then,

Q(f) =

∫
Ωk

[
S(k′,k)e

− ε(k′)
kBTL f(t,x,k′)e

ε(k′)
kBTL − S(k,k′)e

− ε(k)
kBTL f(t,x,k)e

ε(k)
kBTL

]
dk′

=

∫
Ωk

S(k′,k)e
− ε(k′)
kBTL

(
f(t,x,k′)

e
− ε(k′)
kBTL

− f(t,x,k)

e
− ε(k)
kBTL

)
dk′ (2.36)

=

〈
σ(k′,k),

f ′

M ′ −
f

M

〉
, (2.37)

with

σ(k′,k) = σ(k,k′) = e
− ε(k′)
kBTL [K0 δ(ε(k)− ε(k′))+ (2.38)

nqK

(
e

~ωp
kBTL δ(ε(k)− ε(k′) + ~ωp) + δ(ε(k)− ε(k′)− ~ωp)

)]
.

2.1.4.4 Collision Invariants, Dissipative property, Entropy Inequal-
ities, Energy & Momentum Transfer Theorems

We obtain the following identity using symmetry arguments and the

Detailed Balance Principle∫
Ωk

Q(f)gdk =

∫
Ωk

∫
Ωk

S(k′,k)e
− ε(k′)
kBTL

(
f(t,x,k′)

e
− ε(k′)
kBTL

− f(t,x,k)

e
− ε(k)
kBTL

)
g(x,k, t)dk′dk

=

∫
Ωk

∫
Ωk

S(k,k′)e
− ε(k)
kBTL

(
f(t,x,k)

e
− ε(k)
kBTL

− f(t,x,k′)

e
− ε(k′)
kBTL

)
g(x,k′, t)dk′dk

=

∫
Ωk

∫
Ωk

S(k′,k)e
− ε(k′)
kBTL

(
f(t,x,k)

e
− ε(k)
kBTL

− f(t,x,k′)

e
− ε(k′)
kBTL

)
g(x,k′, t)dk′dk

=

∫
Ωk

∫
Ωk

σ(k′,k)

2

(
f ′

M(k′)
− f

M(k)

)
(g(x,k, t)− g(x,k′, t)) dk′dk .
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We can derive so called entropy inequalities for collision operators like

ours when considering functions g (f(x,k, t)/M(k)) that have a monotone de-

pendence on their argument. That is, since∫
Ωk

Q(f) g dk = −1

2

∫
Ωk

∫
Ωk

S(k′,k)e
− ε(k′)
kBTL

(
f ′

M ′ −
f

M

)
(g′ − g) dk′dk

= −1

2

∫
Ωk

∫
Ωk

σ(k′,k)

(
f ′

M ′ −
f

M

)
(g′ − g) dk′dk , (2.39)

and since S(k,k′) = (nq + 1)K δ(ε(k′)− ε(k) + ~ωp) + nqK δ(ε(k′)− ε(k)−

~ωp)+K0 δ(ε(k
′)−ε(k)) is a sum of positive point mass distributions, we have

that, if g
(
f
M

)
is monotone increasing ,∫

Ωk

Q(f)g

(
f

M

)
dk =

∫
Ωk

∫
Ωk

σ(k′,k)

2

(
f ′

M ′ −
f

M

)(
g

(
f

M

)
− g

(
f ′

M ′

))
dk′dk ≤ 0.

Collision Invariants are the physical observable quantities conserved by

Q(f), that is, functions g(x,k, t) such that

0 =

∫
Ωk

Q(f) g(x,k, t) dk = 〈Q(f), g〉 . (2.40)

The only family of functions that are both monotone decreasing and

monotone increasing at the same time are the family of constant functions

g = C, C ∈ R, for which

0 ≤
∫

Ωk

Q(f) · C dk = C

∫
Ωk

Q(f) dk ≤ 0 . (2.41)

The conservation of mass follows from choosing the element g = 1 in the family

of collision invariant constant functions, as

dρ

dt
=
∂ρ

∂t
+∇x · J =

∫
Ωk

Q(f) · 1 dk = 0 . (2.42)
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The energy ε(k) or the velocity ∇kε(k)/~ are not monotone functions

of the argument f/M . However, we can obtain transfer of energy & momen-

tum conservation theorems using the collision structure studied before. We

can derive the following Kinetic Energy-Work Theorem, keeping in mind that

integrals at the boundary ∂Ωk will vanish due to the boundary conditions of

f at ∂Ωk ,∫
Ωk

Q(f) ε(k)dk =

∫
Ωk

[
∂f

∂t
+∇xf ·

∇kε

~
− qE

~
· ∇kf

]
ε(k)dk∫

Ωk

Q(f) ε(k)dk =
∂

∂t

∫
Ωk

f ε(k)dk +∇x ·
∫

Ωk

f
ε(k)∇kε

~
dk + qE ·

∫
Ωk

f
∇kε

~
dk∫

Ωk

Q(f) ε(k)dk =
∂ 〈ε〉
∂t

+∇x ·
〈
ε∇kε

~

〉
+ qE · J(x, t) , (2.43)

∫
Ωk

Q(f) ε(k)dk =

∫
Ωk

∫
Ωk

S(k′,k)e
− ε(k′)
kBTL

2

(
f ′

M ′ −
f

M

)
(ε(k)− ε(k′)) dk′dk .

We can derive as well a Conservation Theorem of Momentum Transfer∫
Ωk

Q(f)
∇kε

~
dk =

∂

∂t

∫
Ωk

f
∇kε

~
dk +∇x ·

∫
Ωk

f
∇kε

~
∇kε

~
dk− q

∫
Ωk

∇kε

~
∇k · fE

~
dk∫

Ωk

Q(f)
∇kε

~
dk =

∂J

∂t
+∇x ·

〈
∇kε

~
∇kε

~

〉
+ qE

∫
Ωk

f
∇2

kε

~2
dk =

dJ

dt
(2.44)

∫
Ωk

Q(f)
∇kε

~
dk =

∫
Ωk

∫
Ωk

S(k′,k)e
− ε(k′)
kBTL

2

(
f ′

M ′ −
f

M

) (
∇kε(k)

~
− ∇k′ε(k

′)

~

)
dk′dk .

For example, in the case of a parabolic band model ε(k) = ~2k2/2m∗,

we have that
∫

Ωk
f ∇2

kε/~2 dk =
∫

Ωk
f 3/m∗ dk = 3 ρ/m∗, as this average is a

measure of the curvature of the energy band in the momentum space.
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Back to the structure of our collision operator∫
Ωk

Q(f) g dk = −
∫

Ωk

∫
Ωk

S(k′,k)e
− ε(k′)
kBTL

2

(
f ′

M ′ −
f

M

)
(g′ − g) dk′dk ,

we recognize that our collision operator has a family of entropy functionals,

associated to the family of functions g(f/M) monotone in the argument f/M ,

from which a family of entropy inequalities can be derived.

There are two monotone functions g of interest. The first one is g (f/M) =

f/M . In this case, we have∫
Ωk

Q(f)
f

M
dk = −

∫
Ωk

∫
Ωk

σ(k′,k)

2

(
f ′

M ′ −
f

M

)2

dk′dk ≤ 0. (2.45)

This entropy inequality is important because it defines a norm of f in which

our pdf is decreasing

0 ≥
∫

Ωk

Q(f)
f

M
dk =

∫
Ωk

∂f

∂t

f

M
dk +

∫
Ωk

∇xf ·
∇kε

~
f

M
dk− q

~

∫
Ωk

∇kf · E
f

M
dk

0 ≥
∫

Ωk

df

dt

f

M
dk =

1

2

[
∂

∂t

∫
Ωk

f 2

M
dk +∇x ·

∫
Ωk

f 2

M

∇kε

~
dk− q

~
E ·
∫

Ωk

∇kf
2

M
dk

]
0 ≥

∫
Ωk

df

dt

f

M
dk =

1

2

∫
Ωk

df 2

dt
M−1dk . (2.46)

This entropy inequality defines a natural Maxwellian-weighted L2-norm in k in

which f is decreasing. Therefore, we define the following Maxwellian-weighted

dot product

〈f, g〉B2(Ωk) =

∫
Ωk

f gM−1dk , (2.47)

which defines then the following Maxwellian-weighted L2-norm

‖f‖B2(Ωk) =

(∫
Ωk

f 2

M
dk

)1/2

. (2.48)
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Using this notation, we can express the previously found entropy inequality

for g = f/M as

0 ≥
〈
f,
df

dt

〉
B2(Ωk)

=
1

2

∂

∂t
‖f‖2

B2(Ωk) +
1

2
∇x ·

〈
f 2 ,
∇kε

~

〉
B2(Ωk)

− q

~
E · 〈f,∇kf〉B2(Ωk) .

The second monotone function to be considered is g (f/M) = log (f/M).

We have that∫
Ωk

Q(f) log
f

M
dk = −

∫
Ωk

∫
Ωk

σ(k′,k)

2

(
f ′

M ′ −
f

M

)(
log

f ′

M ′ − log
f

M

)
dk′dk ≤ 0 .

We can derive then the following associated entropy inequality for f

0 ≥
∫

Ωk

∂f

∂t
log

f

M
dk +

∫
Ωk

∇kε

~
· ∇xf log

f

M
dk− q

~
E ·
∫

Ωk

∇kf log
f

M
dk .

In order to express this entropy inequality in a clearer way, we notice

that

log
f

M
∂f = log f∂f − logM∂f = ∂ [f (log f − 1)] +

ε(k)

kBTL
∂f , (2.49)

so, if we define the following relative local entropy as

H = f

(
log f − 1 +

ε(k)

kBTL

)
= f (log f − 1− logM) = f log

f

Me
, (2.50)

then

∂H = log
f

M
∂f + f

∂ ε(k)

kBTL
. (2.51)

Therefore, we can express our entropy inequality as

0 ≥
∫

Ωk

∂H

∂t
dk +

∫
Ωk

∇kε

~
· ∇xH dk− q

~
E ·
∫

Ωk

(
∇kH − f

∇kε(k)

kBTL

)
dk

0 ≥ ∂

∂t

〈
log

f

Me

〉
+∇x ·

〈
v log

f

Me

〉
− q

~
E ·
∫

Ωk

∇kH dk +
q

~
E · ~ 〈v〉

kBTL
.
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We can consider a couple more monotone functions g(f/M) that let

us find stability and positivity properties of the solution f of our Boltzmann

Equation.

Consider the function g(f/M) = sgn(f/M), which is discontinuous yet

monotone increasing. We have that∫
Ωk

Q(f) sgn
f

M
dk = −

∫
Ωk

∫
Ωk

σ(k′,k)

2

(
f ′

M ′ −
f

M

)(
sgn

f ′

M ′ − sgn
f

M

)
dk′dk ≤ 0 .

Substituting the collision operator for the transport term of the Boltz-

mann Equation, we have that

0 ≥
∫

Ωk

sgn
f

M

df

dt
dk =

∫
Ωk

sgn
f

M

∂f

∂t
dk+

∫
Ωk

sgn
f

M
∇xf ·

∇kε

~
dk− q

~

∫
Ωk

sgn
f

M
∇kf ·E dk ,

and since we have as well that

sgn
f

M
∂f = sgnf ∂f = ∂G, G =

∫
sgn

f

M
∂f =

∫
sgnf ∂f = |f | , (2.52)

we can rewrite our inequality in the form

0 ≥
∫

Ωk

d|f |
dt

dk =

∫
Ωk

∂|f |
∂t

dk +

∫
Ωk

∇x|f | ·
∇kε

~
dk− q

~

∫
Ωk

∇k|f | · E dk

0 ≥ d

dt

∫
Ωk

|f |dk =
∂

∂t

∫
Ωk

|f |dk +∇x ·
∫

Ωk

|f |∇kε

~
dk− q

~
E ·
∫

Ωk

∇k|f | dk .

Therefore, we have just proved that the solution f to our Boltzmann

Equation is L1-stable, since its L1 norm decreases on time.

We can prove the positivity of f using a shifted version of the previous

monotone function. We consider now the function

g

(
f

M

)
=

(
sgn

f

M
− 1

)
= sgnf − 1, (2.53)
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which is monotone increasing too, so

0 ≥
∫

Ωk

Q(f)

(
sgn

f

M
− 1

)
dk =

∫
Ωk

df

dt
(sgnf − 1) dk , (2.54)

and, since we have that

(sgnf − 1) ∂f = ∂G, G =

∫
(sgnf − 1) ∂f = |f | − f ≥ 0 , (2.55)

we derive that

0 ≥
∫

Ωk

d(|f | − f)

dt
dk =

d

dt

∫
Ωk

(|f | − f)dk. (2.56)

Therefore, the function of time on the right hand side is decreasing, so∫
Ωk

(|f | − f)|t=0 dk ≥
∫

Ωk

(|f | − f)|t dk ≥ 0 . (2.57)

We can conclude that the solution of our Boltzmann Equation preserves

its positivity over time. If our initial condition was a non-negative function

f |t=0 ≥ 0, then at any subsequent time it holds that

0 =

∫
Ωk

(|f | − f)|t=0 dk ≥
∫

Ωk

(|f | − f)|t dk ≥ 0 .

Therefore we have that

0 =

∫
Ωk

(|f | − f)|t dk ,

and, since |f | − f ≥ 0, the only possible way this can happen is if a.e. on the

domain Ωk we have

f(x,k, t) = |f |(x,k, t) ≥ 0 , (2.58)
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for any time t ≥ 0, x ∈ Ωx.

For a general monotone increasing function g(f/M), we can try to

derive similar entropy inequalities noticing that

0 ≥
∫

Ωk

Q(f)g

(
f

M

)
dk =

∫
Ωk

g

(
f

M

)[
∂f

∂t
+∇xf ·

∇kε

~
−∇kf ·

qE

~

]
dk ,

so, provided that we are able to find a function G such that

g

(
f

M

)
∂f = ∂G, G(f,M) =

∫
g

(
f

M

)
∂f , (2.59)

for ∂ = ∂t, ∇x, ∇k, dt, we obtain the inequality

0 ≥
∫

Ωk

g

(
f

M

)
df

dt
dk =

∫
Ωk

dG

dt
dk , (2.60)

which yields

0 ≥
∫

Ωk

dG

dt
dk =

∫
Ωk

∂G

∂t
dk +

∫
Ωk

∇xG ·
∇kε

~
dk− q

~

∫
Ωk

∇kG · E dk

0 ≥ d

dt

∫
Ωk

Gdk =
∂

∂t

∫
Ωk

Gdk +∇x ·
∫

Ωk

G
∇kε

~
dk− q

~
E ·
∫

Ωk

∇kGdk .

If G(f,M) = fP (f,M), then we have that

0 ≥ d

dt

∫
Ωk

fPdk =
∂

∂t

∫
Ωk

fPdk +∇x ·
∫

Ωk

fP
∇kε

~
dk− q

~
E ·
∫

Ωk

∇k(fP ) dk

0 ≥ d

dt
〈P 〉 =

∂

∂t
〈P 〉+∇x · 〈P v〉 − q

~
E ·
〈
∇k(fP )

f

〉
,

with

P (f,M) =
G(f,M)

f
=

1

f

∫
g

(
f

M

)
∂f . (2.61)

One particular set of monotone functions of f/M is the family of poly-

nomials g(f/M) = (f/M)α, α 6= −1, which is monotone, f/M ≥ 0.
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For the polynomials (f/M)α we have that

g

(
f

M

)
=

(
f

M

)α
G(f,M) =

∫ (
f

M

)α
∂f =

f

α + 1

(
f

M

)α
−
∫

fα+1

α + 1
∂M−α

G(f,M) =
f

α + 1

(
f

M

)α
− α

α + 1

∫
f

(
f

M

)α
∂ε(k)

kBTL
, (2.62)

so the associated set of entropy equations for α ≥ 0 are of the form

0 ≥ ∂

∂t

〈(
f

M

)α〉
+∇x ·

〈(
f

M

)α
v

〉
+

qα

kBTL
E ·
〈(

f

M

)α ∇kε(k)

~

〉
,

and for the monotone decreasing functions s.t. 0 ≥ α 6= −1 we have

0 ≤ ∂

∂t

〈(
f

M

)α〉
+∇x ·

〈(
f

M

)α
v

〉
+

qα

kBTL
E ·
〈(

f

M

)α ∇kε(k)

~

〉
,

in both cases integrating by parts and using the boundary conditions of f in

∂Ωk (for the vanishing at infinity BC case, we also assume that f decays at a

Maxwellian rate f/M → O(1) ).

The case α = 0 is the monotone case that is both decreasing and

increasing, giving then an equality that is the well known mass conservation

equation

0 =
∂

∂t
〈1〉+∇x · 〈v〉 .

For the singular case α = −1 we have the decreasing function

g(f/M) =

(
f

M

)−1

=
M

f
,

G(f,M) =

∫
g(f/M)∂f =

∫
M∂f

f
= M log f −

∫
log f∂M,

G(f,M) = M log f +
1

kBTL

∫
M log f∂ε(k) ,
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with the entropy inequality

0 ≤ ∂

∂t

〈
M

f
log f

〉
+∇x ·

〈
M

f
log fv

〉
+

q

kBTL
E ·
〈
M

f
log f

∇kε(k)

~

〉
.

2.2 Physics of Electron Transport in Semiconductors

2.2.1 Semiconductor Physics: Energy Bands and Conductivity

The physical phenomena we are interested is the charge transport in

semiconductors. We proceed then to describe the physics behind why a mate-

rial is a semiconductor, as opposed to a a metal or an insulator. The difference

in conductivity between these 3 different kind of materials can be explained in

terms of the separation of their energy band gaps. The charge carriers, elec-

trons, are fermions, obeying then the Fermi Statistics in equilibrium, which

gives the occupancy probability f of finding a fermion in terms of the single

particle (assuming there is no degeneracy) energy state ε

f(ε) =
1

1 + exp((ε− εF )/KBT )
,

εF s.t. f(εF ) = 1/2

εF is called the Fermi Level. KB is the Boltzmann’s constant and T is the

temperature in Kelvins. The filling of the bands determines the conductivity

of the material, which can then be classified according to 3 different categories.

• Metals: High Conductivity Their Fermi Level εF is within one or more

energy bands. There are many occupied states above εF , and many

unoccupied states below. This results in a high conductive material.

38



Figure 2.1: Difference between Semiconductors, Metals & Insulators. Energy
Band Gaps

• Insulators: Very Low Conductivity εF is within a large band gap between

the conduction and valence bands. There are extremely few electrons and

vacancies (holes). This results in very low conductivity.

• Semiconductors: Low to Intermediate Conductivity εF lies within the

moderate size band gap between conduction and valence bands. There

are only a few electrons and vacancies (holes). This results in low to

intermediate conductivity.

As mentioned in [11], the advantage of semiconductors is that we can

control the electron and hole concentrations and thus, e.g., conductivity, via

addition of impurities, externally imposed fields, light, etc.
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2.2.2 Semiconductors with Periodic Crystal Structure

We consider in our study semiconductor materials classified as crystals,

a periodic array of atoms. This crystal structure is defined by a lattice (a

periodic array of mathematical points in space) and an atomic basis (a fixed

array of one or more atoms associated with each lattice point). The lattice

has a translational symmetry. The translation vectors T that leave the lattice

invariant under translations are given by a basis of vectors a1, a2, a3, so that

any two lattice points are connected by a translational vector of the form

T = ia1 + ja2 + ka3, where i, j, k are integers.

The lattice periodicity in the position x-space translates in an associated pe-

riodicity in the Fourier k-space. We have then a reciprocal lattice as well in

k-space. The reciprocal lattice vectors are generated by a basis b1,b2,b3,

related to the basis of the lattice vectors in x-space by the property

bi · aj = 2πδij,

where i, j are integers, and δij is the Kronecker delta.

The reciprocal lattice is invariant under translations by vectors G of

the form

G = ib1 + jb2 + kb3, where i, j, k are integers.

The vectors G are called reciprocal lattice vectors.

A cell related to the translational symmetry of the lattice is called a

unit cell. It is called a primitive unit cell when it can’t be reduced to a smaller
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cell. A Wigner - Seitz unit cell is the primitive unit cell that best displays

the symmetry of a lattice. The Brillioun Zone (BZ ) is defined then as the

Wigner-Seitz unit cell of the reciprocal lattice.

2.2.3 Quantum Mechanics: Schrodinger Equation, Energy Eigen-
values & Bloch functions

Quantum Mechanics is the physical theory that gives the energy bands

which explain the conductivity behaviour of a semiconductor material. We

obtain these energy values by solving the Eigenvalue Problem of Schrödinger

Equation

εΨ(x) =

[
−~2

2m
∇2 + V (x)

]
Ψ(x),

where ε is the energy eigenvalue associated to the eigenstate function Ψ(x),

x is the position vector, V (x) is the related atomic potential of the system,

~ is Planck’s constant, and m is the electron mass. Since our material is

periodic, we can assume that the related atomic potential V (x) is periodic as

well. Then, using the lattice vectors related to the translational symmetry of

the reciprocal lattice, we express the potential in a Fourier Series in terms of

the reciprocal lattice vectors G, in the form

V (x) =
∑
G

CG e
iG·x .

The eigenfunctions related to this problem are called Bloch functions. So, for

k in the BZ, and α being an Energy Band index, we have

Ψα,k(x) = eik·xuα,k(x), where uα,k(x) =
∑
G

aα,k+G e
iG·x.
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The energy eigenvalues εα(k) of Schrödinger Equation are given by the deter-

minant ∣∣∣(~2‖k +G‖2

2m
− εα(k)

)
δG,G′ + CG,G′

∣∣∣ = 0 .

The reciprocal lattice vectors G, G′ are used for indexing the matrix above,

understanding that they were defined before in terms of 3 integers, so G =

G(i, j, k), G = G′(i′, j′, k′). The unit matrix is then represented by δG,G′ ,

and we also define CG,G′ = CG−G′ , where CG−G′ is the Fourier expansion

coefficient of the potential V (x) corresponding to the lattice vector G − G′.

The Dispersion Relation εα(k) appearing in this Quantum Mechanical problem

is called the energy band structure.

2.2.4 Electronic Band Structure and the Empirical Pseudopoten-
tial Method (EPM)

The Empirical Pseudopotential Methods (EPM) [37] give a full elec-

tronic band structure in k-space. In these methods, the Lattice Potential

V (x) is approximated as the sum of potentials w(x) due to individual atoms

and associated electrons. For the case of Silicon, with a 2 atom basis, V can

be expressed as

V (x) =
∑
G

CG e
iG·x, CG = SGWG, where

SG = eiG·T + eiG·T = 2 cos(G · T ), T = a(x̂+ ŷ + ẑ)/8,

and WG =

∫
Ω
w(x)e−iG·xdx∫

Ωx
dx

,

where SG is called the structure factor, and WG is the form factor.
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The Pseudo-potential part of the method means that the atom po-

tential is assumed symmetric & isotropic, so WG = W (|G|). The Fourier

Expansion of V (x) is truncated

V (x) =
∑

|G|≤|G|max

SGWGe
iG·x

The energy values εα(k) are given by the determinant (in terms of the finite

set of lattice vectors s.t. |G|, |G′| ≤ |G|max)∣∣∣(~2‖k +G‖2

2m
− εα(k)

)
δG,G′ + SG−G′WG−G′

∣∣∣ = 0 .

This determinant is solved for εα(k) as a function of W (|G|). The

Empirical aspect of the method consists in choosing the W (|G|) parameters

to fit experimental data such as band types, gaps, optical absorption rates,

etc. More information about EPM can be found in [11], [38].

2.2.5 Conduction Energy Band - Carrier Velocity Models

The Quantum Mechanical Wavefunction associated to our charge trans-

port problem has the form

Ψα,k(x, t) =
∑
k,α

Ak,α

[
eik·G

∑
G

aα,k+G e
iG·x−wα(k)t

]
.

It is natural then to use as a model for the charge carrier velocity along a

desired band the group velocity of the quantum mechanical wave function

∂w

∂k
=

1

~
∂ε

∂k
(k) .
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Figure 2.2: Brillouin Zone & Electronic Energy Band structure for Silicon.
Electronic Structure and Optical Properties of Semiconductors (Cohen and
Chelikowsky [38])

Some analytic band models are commonly used to describe the electronic bands

that give as well a carrier velocity model on the conduction band. For example,

the Parabolic Band Model is a reasonable fit on conduction energy band

valleys. It is basically a 2nd order Taylor fit to a local minimum ε(k0) of the

conduction band.

ε(k) ≈
3∑
i=1

~2 (ki − k0,i)
2

2m∗i
, m∗i = ~2

(
∂2ε(k0)

∂k2
i

)−1

.

The Effective mass approximation m∗i is related to the 2nd Order Taylor Co-

efficients as above. It is commmon in the Boltzmann community to use a

Parabolic Band model in which a single effective mass parameter m∗ is the

same used for the 3 orthogonal directions. On the other hand, the Kane Band

Model [4] can be considered as a first order correction of the parabolic model,
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with a non-parabolicity factor α

ε(1 + αε) =
~2(k− k0)2

2m∗
.

The Kane Model has a validity limited up to energies of 1-2 eV [18] , which

limits is validity as well in applying it to model high-field transport.

2.3 Discontinuous Galerkin Method

2.3.1 Introduction to the DG Method - 1D Linear Hyperbolic Equa-
tion

Discontinuous Galerkin (DG) Methods are a class of finite element

methods using discontinuous basis functions, which are usually chosen as piece-

wise continuous polynomials. The DG method was first designed as an effective

numerical method for solving hyperbolic conservation laws, which may have

discontinuous solutions. It was introduced in 1973 by Reed and Hill [3] in the

framework of neutron transport, modeled by a time independent linear hyper-

bolic equation. We recommend the reference [1] for a review of the method

on a 2D case (we will follow their presentation on the next section). This

introductory session to the DG Method is based on [9].

Since the basis functions on the DG method can be discontinuous,

these methods have the flexibility which is not shared by typical finite ele-

ment methods, such as the allowance of arbitrary triangulation with hanging

nodes, complete freedom in changing the polynomial degrees in each element

independent of that in the neighbors (p adaptivity), and extremely local data

structure, (elements only communicate with immediate neighbors regardless
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of the order of accuracy of the scheme) resulting in a high parallel efficiency

(usually more that 99% for a fixed mesh, and more than 80% for a dynamic

load balancing with adaptive meshes which change often during time evolu-

tion, as commented in [1]).

In this section we will focus on the method of lines DG methods, that

is, we do not discretize the time variable. We consider then a semi-discrete

formulation of DG. To set up some basic ideas about how the Discontinu-

ous Galerkin Method works, we present as an example problem a Transport

Equation in 1D of 1st Order with constant coefficients. We have then

ut + ux = 0.

To make a weak formulation of this problem, we multiply our equation by a

test function v

utv + uxv = 0,

and we integrate over the considered cell in the domain, the interval I =

(xL, xR) ∫
I

utvdx+

∫
I

uxv = 0, on I = (xL, xR),

integrating by parts on the x-domain to pass the derivative in x from the

solution living in the trial space to the test function∫
I

utvdx−
∫
I

uvx + uv(xR)− uv(xL) = 0.
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The DG Method for solving our problem (which is a weak formulation) is

defined as follows. Find u ∈ Vh, the trial function space, such that for any

test function v in the test space Vh (in this case the test function space is the

same as the trial space), it holds that∫
I

utvdx−
∫
I

uvx + ûv−(xR)− ûv+(xL) = 0.

In this case, v−(x0) = limx→x−0
, v+(x0) = limx→x+

0
, which is a useful

notation since our functions could be discontinuous at the boundaries between

intervals (cells). û is called the numerical flux, which is a single valued function

defined at the cell boundary. It depends on the values of the numerical solution

u of the DG Method, which is discontinuous precisely on those boundaries.

There are several (function) rules to define the numerical flux û. One of them

is the upwind rule.

For example, for this particular problem, according to the upwind rule

we would have that û = u− if the direction of the transport vector (wind) is

(1, 0) and û = u+ if its direction (−1, 0).

The upwind flux rule tries to follow the physics of the transport phe-

nomena it describes by taking in the boundary the value of u ’carried’ by the

’wind direction’ associated to the hyperbolic equation, that is, the vector (1, 0),

as if this value was transported from one cell to the neighboring one by the

transport process. On the other hand, the values of the test function taken in

these boundary integrals (point evaluations for this 1D problem) are the values

of v on the interior of the cell I = (xL, XR), that is, v+(xL), v−(xR), which
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makes sense since v is a test function. After applying a semi-discrete DG for-

mulation in x, we would obtain a system of ODEs for the coefficients related

to the test function. Assuming, for example, that Vh is the space of piecewise

constant polynomials, we would then obtain the ODE duI/dt = L(uI , uI−1),

where uI is the value of the constant value inside the cell I.

To mention briefly the issue of time discretization in the DG method,

we must mention that for hyperbolic problems or convection dominated prob-

lems, a class of high order nonlinearly stable Runge-Kutta time discretizations

is often used. It is distinctive from them that they are convex combinations

of first order forward Euler steps, which makes them maintain strong stabil-

ity properties in any semi-norm (total variation semi-norm, maximum norm,

entropy condition, etc.) of the forward Euler step. It is only needed then

to prove nonlinear stability for the first order forward Euler step, which is
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relatively easy in many situations, such as the TVD schemes, and the same

strong stability property is automatically obtained for the higher order time

discretization in this class. One of the most popular schemes in this class is

the following 3rd Order Runge-Kutta method for solving ut = L(u, t), where

L(u, t) is a spatial discretization operator (it does not need to be, and it is

often not, linear)

u(1) = un + ∆tL(un, tn) ,

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1), tn + ∆t) ,

u(n+1) =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2), tn +

1

2
∆t) .

We refer to the survey paper [8] for more details.

49



Chapter 3

DG Deterministic Solvers for BP Models of

Electron Transport incorporating EPM

3.1 Boltzmann equation in spherical coordinates for the
k-vector

We show here the Boltzmann equation with the momentum k in spher-

ical coordinates presented in [35]. As opposed to the previous work in [34], the

coordinate transformation based on the Kane analytic band relation proposed

in [21] can no longer be used for an energy band that does not assume this

analytic Kane band model and that takes into account anisotropy for ε(k).

The spherical coordinate system is used in k space instead of Cartesian coor-

dinates because of the higher resolution demands near the conduction band

minimum (chosen as the origin k = 0), and large cells in k-space are sufficient

for describing the tail of the distribution function accurately.

We introduce a change of variables to obtain the dimensionless quanti-

ties

t =
t

t∗
, (~x, z) =

x

`∗
, k =

√
2m∗kBTL

~
√
r
(
µ,
√

1− µ2 cosϕ,
√

1− µ2 sinϕ
)

with r ≥ 0 , µ ∈ [−1, 1] , ϕ ∈ [−π, π].

E(r, µ, ϕ) =
1

kBTL
ε(k) ,

50



Ψ(t, x, y, z) =
V (t∗ t, `∗ x, `∗ y, `∗ z)

V∗
, E = −cv∇xV ,

with cv =
V∗
`∗E∗

and E∗ = 0.1V∗ `
−1
∗ .

where the spherical coordinate transformation maps the k-domain Ωk onto the

set Ω of the (r, µ, ϕ) space. Typical values for length, time and voltage are

given by `∗ = 10−6m, t∗ = 10−12 s and V∗ = 1 Volt, respectively.

Thus, a new unknown “weighted” pdf function Φ is obtained by mul-

tiplying the pdf f by the Jacobian of the spherical k-transformation

Φ(t, x, y, z, r, µ, ϕ) =

√
r

2
f(t, x, y, z, r, µ, ϕ) , (3.1)

which can be interpreted as the probability density function of an electron

being in the neighborhood of the phase-space state (x, y, z, r, µ, ϕ) at time t.

Hence, writing the collisional integral in spherical coordinates and mul-

tiplying the Boltzmann equation by the Jacobian associated to the k-spherical

transformation, yields the following Transformed Boltzmann Equation (TBE)

for the unknown Φ

∂Φ

∂t
+
∂

∂x
(a1 Φ)+

∂

∂y
(a2 Φ)+

∂

∂z
(a3 Φ)+

∂

∂r
(a4 Φ)+

∂

∂µ
(a5 Φ)+

∂

∂ϕ
(a6 Φ) = C(Φ) ,

(3.2)
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with the transport vector ~a = (a1, a2, a3, a4, a5, a6)T with components

a1(·) = cD

(
2
√
r µ

∂E

∂r
+

1− µ2

√
r

∂E

∂µ

)
,

a2(·) = cD

(
2
√
r
√

1− µ2 cosϕ
∂E

∂r
− µ

√
1− µ2 cosϕ√

r

∂E

∂µ
− sinϕ
√
r
√

1− µ2

∂E

∂ϕ

)
,

a3(·) = cD

(
2
√
r
√

1− µ2 sinϕ
∂E

∂r
− µ

√
1− µ2 sinϕ√

r

∂E

∂µ
+

cosϕ
√
r
√

1− µ2

∂E

∂ϕ

)
,

a4(·) = −2 cE
√
r
[
µEx(t, x, y, z) +

√
1− µ2 (cosϕEy(t, x, y, z) + sinϕEz(t, x, y, z))

]
,

a5(·) = −cE

[
1− µ2

√
r

Ex(t, x, y, z)− µ
√

1− µ2

√
r

(cosϕEy(t, x, y, z) + sinϕEz(t, x, y, z))

]
,

a6(·) = −cE
1

√
r
√

1− µ2
[− sinϕEy(t, x, y, z) + cosϕEz(t, x, y, z)] ,

and the linear collision operator

C(Φ)(t, x, y, z, r, µ, ϕ) =

√
r

2

∫
Ω

S(r′, µ′, ϕ′, r, µ, ϕ) Φ(t, x, y, z, r′, µ′, ϕ′) dr′ dµ′dϕ′

− Φ(t, x, y, z, r, µ, ϕ)

∫
Ω

S(r, µ, ϕ, r′, µ′, ϕ′)

√
r′

2
dr′ dµ′dϕ′ , (3.3)

where the scattering kernel is

S(r, µ, ϕ, r′, µ′, ϕ′) = c+ δ(E(r′, µ′, ϕ′)− E(r, µ, ϕ) + αp)

+ c− δ(E(r′, µ′, ϕ′)− E(r, µ, ϕ)− αp) + c0 δ(E(r′, µ′, ϕ′)− E(r, µ, ϕ)),

accounting for acoustic and optical electron-phonon interaction, the main scat-

tering mechanisms in silicon. The constants above are defined as

cD =
t∗
`∗

√
kBTL
2m∗

, cE =
t∗qE∗√

2m∗kBTL
, αp =

~ωp
kBTL

,

(c+, c−, c0) =
2m∗ t∗
~3

√
2m∗ kBTL [(nq + 1)K,nqK,K0] .
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The dimensionless Poisson equation is

∂

∂x

(
εr
∂Ψ

∂x

)
+

∂

∂y

(
εr
∂Ψ

∂y

)
+

∂

∂z

(
εr
∂Ψ

∂z

)
= cp [ρ(t, x, y, z, t)−ND(x, y, z)] ,

(3.4)

where

ND(x, y, z) =

(√
2m∗kBTL

~

)−3

ND(`∗x, `∗y, `∗z), cp =

(√
2m∗kBTL

~

)3
`2
∗q

ε0 V∗
,

ρ(t, x, y, z) =

∫
Ω

Φ(t, x, y, z, r′, µ′, ϕ′) dr′ dµ′dϕ′ .

3.1.1 Geometrical interpretation of the force terms in the TBE

Although the terms (a1, a2, a3) related to the transport in the x-space

due to the electron group velocity in the TBE can be easily interpreted as just

the gradient ∇kε(k) expressed in spherical coordinates, the terms (a4, a5, a6)

related to the transport in the k-space due to the electric field might be more

obscure to understand. A simple expression for them can be identified.

a4 = −2 cE
√
r
(
µ,
√

1− µ2 cosϕ,
√

1− µ2 sinϕ
)
· E = −2 cE

√
r êr · E,

(3.5)

a5 = −cE
√

1− µ2

√
r

(√
1− µ2,−µ cosϕ,−µ sinϕ

)
· E = −cE

√
1− µ2

√
r

êµ · E,

(3.6)

a6 = −cE
1

√
r
√

1− µ2
(0,− sinϕ, cosϕ) · E = −cE

1
√
r
√

1− µ2
êϕ · E.

(3.7)

These transport terms express the acceleration field induced by E in spherical

coordinates, as they are related to the negatives of the directional cosines of
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E with respect to the unit vectors êr, êµ, êϕ. Hence, the TBE (3.2) is written

in conservative, divergence form, as a flow in the k-space due to the electric

field decomposed in each of the orthogonal components of the spherical k-

coordinates. This can be easily derived from the expression for the divergence

in general curvilinear coordinates, applied to the particular case of spherical

coordinates k(r, µ, ϕ). This calculation is performed below in the following

section.

3.1.2 TBE in Divergence Form for k in Spherical Coordinates

The divergence in k in the standard spherical coordinates (|k|, θ, ϕ)

for a vector field A(x,k, t) = (A1, A2, A3) = A|k|ê|k| + Aθêθ + Aϕêϕ has the

expression

∇k · A =
1

|k|2
∂(|k|2A|k|)

∂|k|
+

1

|k| sin θ
∂ (Aθ sin θ)

∂θ
+

1

|k| sin θ
∂Aϕ
∂ϕ

. (3.8)

The divergence of A, with a respective orthogonal decomposition A = Arêr +

Aµêµ + Aϕêϕ, in terms of the modified spherical coordinates (r, µ, ϕ) used in

the TBE is obtained from (3.8) by taking into account |k|2 = (2m∗kBTL/~2)r,

µ = cos θ. Therefore
dr

d|k|
=

~√
2m∗kBTL

2
√
r ,

dµ

dθ
= −

√
1− µ2, following

that êµ = −êθ, Aµ = −Aθ, and ê|k| = êr, A|k| = Ar . We have then

∇k · A =
1

r

∂(rAr)

∂r

dr

d|k|
+

~√
2m∗kBTL

(
1√
r sin θ

∂(Aθ sin θ)

∂µ

dµ

dθ
+

1√
r sin θ

∂Aϕ
∂ϕ

)

=
~√

2m∗kBTL
· 2√

r

[
∂

∂r
(rAr) +

∂

∂µ

(
−
√

1− µ2

2
Aθ

)
+

∂

∂ϕ

(
1

2
√

1− µ2
Aϕ

)]
.

54



We obtain then the divergence in the modified spherical coordinates used in

this work, since

√
r

2
∇k·A =

(
~√

2m∗kBTL

)[
∂

∂r
(rAr) +

∂

∂µ

(√
1− µ2

2
Aµ

)
+

∂

∂ϕ

(
1

2
√

1− µ2
Aϕ

)]
.

(3.9)

So, the k-transport term in the TBE (3.2) can be expressed in the divergence

form (3.9) by using

√
r

2

(
−qE(t,x)

~
· ∇kf

)
=

√
r

2
∇k ·

(
−qE(t,x)

~
f

)
=

√
r

2
∇k · A (3.10)

for the vector field

A =
−qE(t,x)

~
f =

−qE(t,x)

~
Φ√
r/2

. (3.11)

The formula (3.9) mentioned above for A can be interpreted geometrically as

a flow of electric field in the orthogonal directions of the spherical coordinate

geometry used, since by definition,

Ar = A · êr, Aµ = A · êµ, Aϕ = A · êϕ. (3.12)

We can express the Boltzmann Equation transformed to our coordinate system

to the momentum as

∂Φ

∂t
+ cD∂(x,y,z) · (Φ~v)− cE∂(r,µ,ϕ) ·

(
M · E Φ/

√
r/2
)

= C(Φ) , (3.13)

with

cD~v = (a1, a2, a3), M(r, µ, ϕ) =

(
rêr

∣∣∣∣∣
√

1− µ2

2
êµ

∣∣∣∣∣ 1

2
√

1− µ2
êϕ

)
. (3.14)
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3.2 DG formulation for the TBE and the Poisson equa-
tion

An important point is to keep in mind that, in the DG formulation

used for the problem, a numerical flux is imposed in the surface integrals. So,

when applying the upwind rule to the TBE in the scheme, the value of the

approximated pdf must depend on the sign of terms of the form of components

êr ·E, etc. Therefore, the upwind rule to be applied is a condition that models

the physics of electron transport in the new phase space (x, y, z, r, µ, ϕ) due

to the mean electric field force acting over the charge carriers. The details of

the discussion about the scheme and numerical fluxes can be found in Section

3.2.2.

3.2.1 Domain and Finite Element Space

Let’s consider a 2D rectangular domain in the physical space and a

rectangular domain Ωk in momentum space. We use simple rectangular cells

Ωijkmn =
[
xi− 1

2
, xi+ 1

2

]
×
[
yj− 1

2
, yj+ 1

2

]
×Kkmn ,

where

Kkmn =
[
rk− 1

2
, rk+ 1

2

]
×
[
µm− 1

2
, µm+ 1

2

]
×
[
ϕn− 1

2
, ϕn+ 1

2

]
,

with

xi± 1
2

= xi ±
∆xi

2
, yj± 1

2
= yj ±

∆yj
2
, rk± 1

2
= rk ±

∆rk
2
· · · ,

and i = 1, ..., Nx, j = 1, ..., Ny, k = 1, ...Nr, m = 1, ...Nµ, n = 1, ...., Nϕ.
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The test functions ψ(x, y, r, µ, ϕ) belong to the linear function space

V 1
h =

{
v : v|Ωijkmn ∈ P 1(Ωijkmn)

}
,

where P 1(Ωijkmn) is the set of polynomials of degree at most 1 on the cell

Ωijkmn.

A set of piecewise linear basis functions for V 1
h in the open cell Ω̊ijkmn

is given by{
1, 2

(x− xi)
∆xi

, 2
(y − yj)

∆yj
, 2

(r − rk)
∆rk

, 2
(µ− µm)

∆µm
, 2

(ϕ− ϕn)

∆ϕn

}
(3.15)

Hence, in the cell Ω̊ijkmn, we approximate our weighted-pdf Φ by a

piecewise polynomial Φh of first degree in V 1
h ,

Φh(t, x, y, r, µ, ϕ) = Tijkmn(t) +Xijkmn(t)
(x− xi)
∆xi/2

+ Yijkmn(t)
(y − yj)
∆yj/2

+Rijkmn(t)
(r − rk)
∆rk/2

+Mijkmn(t)
(µ− µm)

∆µm/2
+ Pijkmn(t)

(ϕ− ϕn)

∆ϕn/2
(3.16)

The charge density on
[
xi− 1

2
, xi+ 1

2

]
×
[
yj− 1

2
, yj+ 1

2

]
under this piecewise linear

approximation is

ρh =
Nr∑
k=1

Nµ∑
m=1

Nϕ∑
n=1

[
Tijkmn(t) +Xijkmn(t)

(x− xi)
∆xi/2

+ Yijkmn(t)
(y − yj)
∆yj/2

]
∆rk∆µm ∆ϕn .

(3.17)

The problem is then reduced to find, by means of our numerical scheme, the

unknowns

Tijkmn(t), Xijkmn(t), Yijkmn(t), Rijkmn(t), Mijkmn(t), Pijkmn(t). (3.18)
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3.2.2 Discontinuous Galerkin Formulation for the TBE

The corresponding weak DG formulation and its corresponding approx-

imation consists on finding Φh ∈ V 1
h , such that for any test function vh ∈ V 1

h

and a generic cell K of the decomposition of Ωx × Ωk, solves∫
K

∂Φh

∂t
vhdσ −

∫
K

∂vh
∂x

(a1 Φh) dσ −
∫
K

∂vh
∂y

(a2 Φh) dσ − (3.19)∫
K

∂vh
∂r

(a4 Φh) dσ −
∫
K

∂vh
∂µ

(a5 Φh) dσ −
∫
K

∂vh
∂ϕ

(a6 Φh) dσ +

F+
x − F−x + F+

y − F−y + F+
r − F−r + F+

µ − F−µ + F+
ϕ − F−ϕ =

∫
K

C(Φh)vh dσ,

where vh is a test function in V 1
h , dσ = dx dy dr dµ dϕ, and where the F±’s

terms are boundary integrals over four-dimensional boundary surfaces associ-

ated to each 5-dimensional volume element Ωijkmn, that is,

F±x =

∫ y
j+ 1

2

y
j− 1

2

∫ r
k+ 1

2

r
k− 1

2

∫ µ
m+ 1

2

µ
m− 1

2

∫ ϕ
n+ 1

2

ϕ
n− 1

2

a1Φ̂hv
∓
h

∣∣∣
x
i± 1

2

dydrdµdϕ

F±y =

∫ x
i+ 1

2

x
i− 1

2

∫ r
k+ 1

2

r
k− 1

2

∫ µ
m+ 1

2

µ
m− 1

2

∫ ϕ
n+ 1

2

ϕ
n− 1

2

a2Φ̂hv
∓
h

∣∣∣
y
j± 1

2

dxdrdµdϕ

F±r =

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

∫ µ
m+ 1

2

µ
m− 1

2

∫ ϕ
n+ 1

2

ϕ
n− 1

2

a4Φ̂hv
∓
h

∣∣∣
r
k± 1

2

dxdydµdϕ

F±µ =

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

∫ r
k+ 1

2

r
k− 1

2

∫ ϕ
n+ 1

2

ϕ
n− 1

2

a5Φ̂hv
∓
h

∣∣∣
µ
m± 1

2

dxdydrdϕ

F±ϕ =

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

∫ r
k+ 1

2

r
k− 1

2

∫ µ
m+ 1

2

µ
m− 1

2

a6Φ̂hv
∓
h

∣∣∣
ϕ
n± 1

2

dxdydrdµ .

The values for v∓h are the ones for the function vh on the interior of the con-

sidered cell. The upwind numerical flux Φ̂h defines the value of Φh at the

boundary. That means Φh might be discontinuous at the boundary.

58



The collisional terms ∫
K

C(Φh)vh dσ

become a linear combination, with numerical constant coefficients, of the the

unknowns (3.18) which are precomputed and stored. The Poisson equation

can be solved by either an integral formula, projecting the solution to the

electric field into the space V 1
h , for the 1D device case, or by means of a LDG

method, for higher dimensional cases. A Runge Kutta method is applied for

the time evolution of the time dependent coefficients (3.18) for the piecewise

linear approximation Φh ∈ V 1
h .

3.2.3 Transport and Collision terms in the DG formulation

We consider now the details of the DG scheme for 5D plus time.

3.2.3.1 Collision terms

Denote by Kkmn =
[
rk− 1

2
, rk+ 1

2

]
×
[
µm− 1

2
, µm+ 1

2

]
×
[
ϕn− 1

2
, ϕn+ 1

2

]
the

rectangular cells in the spherical coordinates for k-space. Because the colli-

sional operators only perform integrations in k-space, it is convenient to write

the basis functions in (3.15) as the product of two functions ηpi,j(x, y) and

ξpk,m,n(r, µ, ϕ), which are given in Ωijkmn = ΩI by

{
ηpi,j(~x)

}
p=0,1,..,5

=

{
1, 1, 1, 1 ,

2(x− xi)
∆xi

,
2(y − yj)

∆yj

}
, (3.20)

{
ξpk,m,n(~r )

}
p=0,1,..,5

=

{
1,

2(r − rk)
∆rk

,
2(µ− µm)

∆µm
,

2(ϕ− ϕn)

∆ϕn
, 1, 1

}
,(3.21)
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where we define

~x = (x, y) , ~r = (r, µ, ϕ) , ~r ′ = (r′, µ′, ϕ′) , d ~r = dr dµ dϕ , (3.22)

I = (i, j, k,m, n) , (3.23)

χI = χI(~x,~r ) =

{
1 if (~x,~r ) ∈ Ω̊I ,
0 otherwise.

(3.24)

and

W 0
I (t) := TI(t) , W 1

I (t) := RI(t) , W 2
I (t) := MI(t) , W 3

I (t) := PI(t) ,

(3.25)

W 4
I (t) := XI(t) , W 5

I (t) := YI(t) . (3.26)

Then, in a piecewise continuous linear approximation of Φ, we have

(almost everywhere), that

Φ(t, ~x, ~r ) =
∑
I

χI(~x,~r )

[
5∑
p=0

W p
I (t) ηpi,j(~x) ξpk,m,n(~r )

]
(3.27)

Because the phonon collision scatterings only consider the Fermi Golden

Rule [18] and the spherical coordinates localize the negative part operator,

there is a natural split of the collision operator in gain and loss terms of

probability density rates.

Gain Term of the collisional operator. The gain term, when

using the piecewise linear function (3.27), becomes
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√
r

2

∫ ∞
0

∫ 1

−1

∫ π

−π
d~r ′ S(~r ′, ~r )

∑
I

χI(~x,~r
′)

5∑
p=0

W p
I (t)ηpi,j(~x)ξpk,m,n(~r ′) ≈

∑
I

√
r

2

∫
Kkmn

S(~r ′, ~r )χI(~x,~r
′)

5∑
p=0

W p
I (t) ηpi,j(~x) ξpk,m,n(~r ′)d~r ′ =

∑
I

5∑
p=0

√
r

2
χij(~x)W p

I (t) ηpi,j(~x)

∫
Kkmn

S(~r ′, ~r ) ξpk,m,n(~r ′) d~r ′ ,

with χI and W p
I from (3.24 - 3.26)

χij(~x) =

{
1 if (x, y) ∈

[
xi− 1

2
, xi+ 1

2

]
×
[
yj− 1

2
, yj+ 1

2

]
0 otherwise

.

In the weak formulation, the gain term is multiplied by the test function

ηq
ī,j̄

(~x) ξq
k̄,m̄,n̄

(~r) and an integral over the domain ΩĪ , Ī = (̄i, j̄, k̄, m̄, n̄), with

respect to (~x,~r) is performed, obtaining

∫
ΩĪ

∑
I

5∑
p=0

√
r

2
χij(~x)W p

I (t) ηpi,j(~x)

∫
Kkmn

S(~r ′, ~r ) ξpk,m,n(~r ′ )d~r ′ ηq
ī,j̄

(~x) ξq
k̄,m̄,n̄

(~r)d~x d~r ,

(3.28)
or

∑
I

5∑
p=0

W p
I (t)

∫
Kk̄m̄n̄

√
r

2

∫
Kkmn

S(~r ′, ~r )ξpk,m,n(~r ′ )d~r ′ξq
k̄,m̄,n̄

(~r)d~r

∫ x
ī+ 1

2

x
ī− 1

2

∫ y
j̄+ 1

2

y
j̄− 1

2

χij η
p
i,j(~x) ηq

ī,j̄
(~x)d~x .

(3.29)

The integration with respect to x and y gives∫ x
ī+ 1

2

x
ī− 1

2

∫ y
j̄+ 1

2

y
j̄− 1

2

χij(~x) ηpi,j(~x) ηq
ī,j̄

(~x) dx dy = δīi δjj̄ βpq ∆xī ∆yj̄ ,
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where the matrix βpq is given by

(βpq) =


1 1 1 1 0 0
1 1 1 1 0 0
1 1 1 1 0 0
1 1 1 1 0 0
0 0 0 0 1

3
0

0 0 0 0 0 1
3

 .

Then, equation (3.29) is reduced to∑
k,m,n

5∑
p=0

W p
īj̄kmn

(t)βpq∆xī∆yj̄×
∫
Kk̄m̄n̄

[√
r

2

∫
Kkmn

S(~r ′, ~r ) ξpk,m,n(~r ′) d~r ′
]
ξq
k̄,m̄,n̄

(~r)d~r.

(3.30)

Loss Term of the collisional operator. The weak formulation of
the loss term of the collisional operator gives∫

ΩĪ

Φ(t, ~x, ~r)

∫ +∞

0
dr′
∫ 1

−1
dµ′
∫ π

−π
dϕ′ S(~r, ~r ′)

√
r′

2
ηq
ī,j̄

(~x) ξq
k̄,m̄,n̄

(~r) d~xd~r ≈

∫
ΩĪ

Φ(t, ~x, ~r)

∑
k,m,n

∫
Kkmn

√
r′

2
S(~r, ~r ′)d~r ′

 ηq
ī,j̄

(~x)ξq
k̄,m̄,n̄

(~r) d~xd~r . (3.31)

Using the linear approximation of Φ given by (3.27), integral (3.31) becomes∫
ΩĪ

∑
I

χI(~x,~r)
5∑
p=0

W p
I (t) ηpi,j(~x) ξpk,m,n(~r)

∑
k,m,n

∫
Kkmn

1

2

√
r′ S(~r, ~r ′) d~r ′

 ηq
ī,j̄

(~x) ξq
k̄,m̄,n̄

(~r) d~x d~r

=

5∑
p=0

W p
Ī

(t)

∫
ΩĪ

ηp
ī,j̄

(~x)ξp
k̄,m̄,n̄

(~r)

∑
k,m,n

∫
Kkmn

√
r′

2
S(~r, ~r ′)d~r ′

 ηq
ī,j̄

(~x)ξq
k̄,m̄,n̄

(~r) d~xd~r .

Therefore, equation (3.31) reduces to

5∑
p=0

W p
Ī

(t)βpq∆xī∆yj̄
∑
k,m,n

∫
Kk̄m̄n̄

[∫
Kkmn

√
r′

2
S(~r, ~r ′) d~r ′

]
ξp
k̄,m̄,n̄

(~r) ξq
k̄,m̄,n̄

(~r) d~r .

(3.32)
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3.2.3.2 Transport terms

The following notation for boundary terms will be needed. We denote

Φ̂i± 1
2

= Φ̂(t, xi± 1
2
, y, r, µ, ϕ) , Φ̂j± 1

2
= Φ̂(t, x, yj± 1

2
, r, µ, ϕ) (3.33)

Φ̂k± 1
2

= Φ̂(t, x, y, rk± 1
2
, µ, ϕ) , Φ̂m± 1

2
= Φ̂(t, x, y, r, µm± 1

2
, ϕ) ,

Φ̂n± 1
2

= Φ̂(t, x, y, r, µ, ϕn± 1
2
) ,

ηpi±1,j|i± 1
2

= ηpi±1,j(xi± 1
2
, y) , ηpi,j|i± 1

2
= ηpi,j(xi± 1

2
, y) , (3.34)

ηpi,j±1|j± 1
2

= ηpi,j±1(x, yj± 1
2
) , ηpi,j|j± 1

2
= ηpi,j(x, yj± 1

2
) , p ∈ {0, 1, · · · , 5}.

ξpk,m,n|k± 1
2

= ξpk,m,n(rk± 1
2
, µ, ϕ) , ξpk,m,n|m± 1

2
= ξpk,m,n(r, µm± 1

2
, ϕ) ,

ξpk,m,n|n± 1
2

= ξpk,m,n(r, µ, ϕn± 1
2
)

ξpk±1,m,n|k± 1
2

= ξpk±1,m,n(rk± 1
2
, µ, ϕ) , ξpk,m±1,n|m± 1

2
= ξpk,m±1,n(r, µm± 1

2
, ϕ) ,

ξpk,m,n±1|n± 1
2

= ξpk,m,n±1(r, µ, ϕn± 1
2
) , p ∈ {0, 1, · · · , 5}. (3.35)

We consider first the weak formulation of the transport terms in space,
namely ∂

∂x
(a1Φ) and ∂

∂y
(a2Φ), related to the advection in x, where the first

cartesian component a1 of the electron group velocity is involved. Because
their discretization forms are similar we only present the one for ∂

∂x
(a1Φ).

(A1) =

∫
ΩI

∂

∂x
[a1(r, µ, ϕ) Φ(t, ~x, ~r)]ψ(~x,~r) d~x d~r =

=
1

∆xi

∫
ΩI

a1(~r)
[
Φ̂i+ 1

2
ψi+ 1

2
− Φ̂i− 1

2
ψi− 1

2

]
d~xd~r −

∫
ΩI

a1(~r)Φ(t, ~x, ~r)
∂

∂x
ψ(~x,~r)d~xd~r .

Due to the upwind flux rule, we have to consider two cases depending on the

sign of a1. In the sequel, the symbol ≈ will denote the approximation of given

integral terms.
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If a1(~r) > 0 in Kkmn, for q = 0, ..., 5, one obtains

(A1) ≈
5∑
p=0

W p
I (t)

∆xi

∫
ΩI

a1(~r)ηpi,j |i+ 1
2
ξpk,m,n(~r)ηqi,j |i+ 1

2
ξqk,m,n(~r)d~xd~r

−
5∑
p=0

W p
i−1 jkmn(t)

∆xi

∫
ΩI

a1(~r)ηpi−1,j |i− 1
2
ξpk,m,n(~r)ηqi,j |i− 1

2
ξqk,m,n(~r)d~xd~r

−
5∑
p=0

W p
I (t)

∫
ΩI

a1(~r) ηpi,j(~x) ξpk,m,n(~r)
2 δq4
∆xi

ξqk,m,n(~r) d~x d~r

=

5∑
p=0

∫ y
j+ 1

2

y
j− 1

2

ηpi,j |i+ 1
2
ηqi,j |i+ 1

2
dy ·

∫
Kkmn

a1(~r)ξpk,m,n(~r)ξqk,m,n(~r)d~r ·W p
I (t)

−
5∑
p=0

∫ y
j+ 1

2

y
j− 1

2

ηpi−1,j |i− 1
2
ηqi,j |i− 1

2
dy

∫
Kkmn

a1(~r)ξpk,m,n(~r)ξqk,m,n(~r)d~r ·W p
i−1 jkmn(t)

−
5∑
p=0

2 δq4
∆xi

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

ηpi,j(~x) d~x

[∫
Kkmn

a1(~r)ξpk,m,n(~r)ξqk,m,n(~r) d~r

]
·W p

I (t) .

If a1(~r) < 0 in Kkmn, for q = 0, ..., 5,

(A1) ≈
5∑
p=0

W p
i+1 jkmn(t)

∆xi

∫
ΩI

a1(~r)ηpi+1,j |i+ 1
2
ξpk,m,n(~r)ηqi,j |i+ 1

2
ξqk,m,n(~r) d~xd~r

− 1

∆xi

5∑
p=0

W p
I (t)

∫
ΩI

a1(~r)ηpi,j |i− 1
2
ξpk,m,n(~r)ηqi,j |i− 1

2
ξqk,m,n(~r) d~xd~r

−
5∑
p=0

W p
I (t)

∫
ΩI

a1(~r) ηpi,j(~x) ξpk,m,n(~r)
2 δq4
∆xi

ξqk,m,n(~r) d~x d~r

=
5∑
p=0

∫ y
j+ 1

2

y
j− 1

2

ηpi+1,j |i+ 1
2
ηqi,j |i+ 1

2
dy

∫
Kkmn

a1(~r)ξpk,m,n(~r)ξqk,m,n(~r)d~r W p
i+1 jkmn(t)

−
5∑
p=0

∫ y
j+ 1

2

y
j− 1

2

ηpi,j |i− 1
2
ηqi,j |i− 1

2
dy

∫
Kkmn

a1(~r)ξpk,m,n(~r)ξqk,m,n(~r)d~r W p
I (t)

−
5∑
p=0

2 δq4
∆xi

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

ηpi,j(~x) dx dy

∫
Kkmn

a1(~r) ξpk,m,n(~r) ξqk,m,n(~r) d~r W p
I (t) .
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We consider now the weak formulation for the transport terms in mo-

mentum space ∂
∂r

(a4 Φ) + ∂
∂µ

(a5 Φ) + ∂
∂ϕ

(a6 Φ) advected by the electric field.

It can be noticed in Eq. 3.2 that all the terms a4, a5, a6 are the sum of terms of

the form a∗(~r)E∗(t, ~x), where E∗(t, ~x) is a cartesian component of the electric

field.

The r-derivative including a4 can be split as a sum of terms as the

following

(A4∗) =

∫
ΩI

∂

∂r
[a∗(~r)E∗(t, ~x) Φ(t, ~x, ~r)]ψ(~x,~r) d~x d~r

=
1

∆rk

∫
ΩI

a∗|k+ 1
2
E∗(t, ~x) Φ̂k+ 1

2
ψk+ 1

2
d~x d~r − 1

∆rk

∫
ΩI

a∗|k− 1
2
E∗(t, ~x) Φ̂k− 1

2
ψk− 1

2
d~x d~r

−
∫

ΩI

a∗(~r)E∗(t, ~x) Φ(t, ~x, ~r)
∂

∂r
ψ(~x,~r) d~x d~r .

By the Upwind Flux Rule, if a∗(~r)E∗(t, ~x) > 0 in ∂±r ΩI , for q = 0, ..., 5 ,

(A4∗) ≈
5∑
p=0

W p
I

∆rk

∫
ΩI

a∗|k+ 1
2
E∗(t, ~x)ηpi,j(~x)ξpk,m,n|k+ 1

2
ηqi,j(~x)ξqk,m,n|k+ 1

2
d~xd~r

−
5∑
p=0

W p
ijk−1mn

∆rk

∫
ΩI

a∗|k− 1
2
E∗η

p
i,j(~x)ξpk−1,m,n|k− 1

2
ηqi,j(~x)ξqk,m,n|k− 1

2
d~xd~r

−
5∑
p=0

W p
I (t)

∫
ΩI

a∗(~r)E∗(t, ~x) ηpi,j(~x) ξpk,m,n(~r)
2 δq1
∆rk

ηqi,j(~x) d~x d~r

=
5∑
p=0

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

E∗(t, ~x)ηpi,j(~x)ηqi,j(~x)dxdy


∫ µ

m+ 1
2

µ
m− 1

2

∫ ϕ
n+ 1

2

ϕ
n− 1

2

a∗|k+ 1
2
ξpk,m,n|k+ 1

2
ξqk,m,n|k+ 1

2
dµdϕ

− 2 δq1
∆rk

∫
Kkmn

a∗(~r) ξ
p
k,m,n(~r) d~r

]
W p
I

−

∫ µ
m+ 1

2

µ
m− 1

2

∫ ϕ
n+ 1

2

ϕ
n− 1

2

a∗|k− 1
2
ξpk−1,m,n|k− 1

2
ξqk,m,n|k− 1

2
dµ dϕ

W p
ijk−1mn

 .
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If a∗(~r)E∗(t, ~x) < 0 in ∂±r ΩI , q = 0, ..., 5 ,

(A4∗) ≈
1

∆rk

5∑
p=0

W p
ijk+1mn(t)

∫
ΩI

a∗|k+ 1
2
E∗(t, ~x) ηpi,j(~x) ξpk+1,m,n|k+ 1

2
ηqi,j(~x) ξqk,m,n|k+ 1

2
d~x d~r

−
5∑
p=0

W p
I

∆rk

∫
ΩI

a∗|k− 1
2
E∗η

p
i,j(~x)ξpk,m,n|k− 1

2
ηqi,j(~x)ξqk,m,n|k− 1

2
d~xd~r

−
5∑
p=0

W p
I (t)

∫
ΩI

a∗(~r)E∗(t, ~x) ηpi,j(~x) ξpk,m,n(~r)
2 δq1
∆rk

ηqi,j(~x) d~x d~r

=

5∑
p=0

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

E∗(t, ~x) ηpi,j(~x) ηqi,j(~x) dx dy


×


∫ µ

m+ 1
2

µ
m− 1

2

∫ ϕ
n+ 1

2

ϕ
n− 1

2

a∗|k+ 1
2
ξpk+1,m,n|k+ 1

2
ξqk,m,n|k+ 1

2
dµ dϕ

W p
ijk+1mn(t)

−

∫ µ
m+ 1

2

µ
m− 1

2

∫ ϕ
n+ 1

2

ϕ
n− 1

2

a∗|k− 1
2
ξpk,m,n|k− 1

2
ξqk,m,n|k− 1

2
dµ dϕ

+
2 δq1
∆rk

∫
Kkmn

a∗(~r) ξ
p
k,m,n(~r) d~r

]
W p
I (t)

}
.

The weak form for the term related to ∂
∂µ

(a5Φ) is

(A5∗) =

∫
ΩI

∂

∂µ
[a∗(~r)E∗(t, ~x) Φ(t, ~x, ~r)]ψ(~x,~r) d~x d~r .

By the Upwind Flux rule, if a∗(~r)E∗(t, ~x) > 0 in ∂±µ ΩI , q = 0, ..., 5 ,

(A5∗) ≈
5∑
p=0

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

E∗(t, ~x) ηpi,j(~x) ηqi,j(~x) dx dy


×


∫ r

k+ 1
2

r
k− 1

2

∫ ϕ
n+ 1

2

ϕ
n− 1

2

a∗|m+ 1
2
ξpk,m,n|m+ 1

2
ξqk,m,n|m+ 1

2
dr dϕ

− 2 δq2
∆µm

∫
Kkmn

a∗(~r) ξ
p
k,m,n(~r) d~r

]
W p
I (t)

−

∫ r
k+ 1

2

r
k− 1

2

∫ ϕ
n+ 1

2

ϕ
n− 1

2

a∗|m− 1
2
ξpk,m−1,n|m− 1

2
ξqk,m,n|m− 1

2
dr dϕ

W p
ijkm−1n(t)

 .
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If a∗(~r)E∗(t, ~x) < 0 in ∂±µ ΩI , q = 0, ..., 5 ,

(A5∗) ≈
5∑
p=0

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

E∗(t, ~x) ηpi,j(~x) ηqi,j(~x) dx dy


×


∫ r

k+ 1
2

r
k− 1

2

∫ ϕ
n+ 1

2

ϕ
n− 1

2

a∗|m+ 1
2
ξpk,m+1,n|m+ 1

2
ξqk,m,n|m+ 1

2
dr dϕ

W p
ijkm+1n(t)

−

∫ r
k+ 1

2

r
k− 1

2

∫ ϕ
n+ 1

2

ϕ
n− 1

2

a∗|m− 1
2
ξpk,m,n|m− 1

2
ξqk,m,n|m− 1

2
dr dϕ

+
2 δq2
∆µm

∫
Kkmn

a∗(~r) ξ
p
k,m,n(~r) d~r

]
W p
I (t)

}
.

The weak form for the term related to ∂
∂ϕ

(a6Φ) is

(A6∗)

∫
ΩI

∂

∂ϕ
[a∗(~r)E∗(t, ~x) Φ(t, ~x, ~r)]ψ(~x,~r) d~x d~r (3.36)

By the Upwind Flux Rule, if a∗(~r)E∗(t, ~x) > 0 in ∂±ϕ ΩI , q = 0, ..., 5 ,

(A6∗) ≈
5∑
p=0

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

E∗(t, ~x) ηpi,j(~x) ηqi,j(~x) dx dy

×

∫ r

k+ 1
2

r
k− 1

2

∫ µ
m+ 1

2

µ
m− 1

2

a∗|n+ 1
2
ξpk,m,n|n+ 1

2
ξqk,m,n|n+ 1

2
drdµ − 2 δq3

∆ϕn

∫
Kkmn

a∗(~r)ξ
p
k,m,n(~r)d~r

]
W p
I (t)

−

∫ r
k+ 1

2

r
k− 1

2

∫ µ
m+ 1

2

µ
m− 1

2

a∗|n− 1
2
ξpk,m,n−1|n− 1

2
ξqk,m,n|n− 1

2
dr dµ

W p
ijkmn−1(t)

 .

If a∗(~r)E∗(t, ~x) < 0 in ∂±ϕ ΩI , q = 0, ..., 5 ,
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(A6∗) ≈
5∑
p=0

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

E∗(t, ~x) ηpi,j(~x) ηqi,j(~x) dx dy

×

∫ r

k+ 1
2

r
k− 1

2

∫ µ
m+ 1

2

µ
m− 1

2

a∗|n+ 1
2
ξpk,m,n+1|n+ 1

2
ξqk,m,n|n+ 1

2
dr dµ

W p
ijkmn+1(t)

−

∫ r
k+ 1

2

r
k− 1

2

∫ µ
m+ 1

2

µ
m− 1

2

a∗|n− 1
2
ξpk,m,n|n− 1

2
ξqk,m,n|n− 1

2
dr dµ

+
2 δq3
∆ϕn

∫
Kkmn

a∗(~r) ξ
p
k,m,n(~r) d~r

]
W p
I (t)

}
.

3.2.3.3 Computation of Collision Integrals for electron - phonon
scattering with radial dependance.

In the case of an energy band function with radial dependance ε(r),

S(r, r′) = c0 δ(E(r′)− E(r)) + c+ δ(E(r′)− E(r) + αp) + c− δ(E(r′)− E(r)− αp)

=
+1∑
l=−1

cl δ(E(r′)− E(r) + lαp) . (3.37)

The radial energy band function can be projected on the space of piece-

wise linear functions of r to obtain

Eh(r) =
Nr∑
k=1

χk [E(rk) + Ak(r − rk)] =
Nr∑
k=1

χk [E(rk) + ∂rE(rk) (r − rk) ] ,

(3.38)

and, after this projection, we can calculate the collision integrals involving a

delta distribution with the piecewise linear function in their argument. The
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computation of such collisional integrals are given by∫
K

C(Φh)vh dσ =
∑
k,m,n

5∑
p=0

W p
īj̄kmn

βpq∆xī∆yj̄

∫
Kk̄m̄n̄

∫
Kkmn

S(r′, r) ξpk,m,n(~r ′ ) d~r ′
√
r

2
ξq
k̄,m̄,n̄

(~r) d~r

−
5∑
p=0

W p

Ī
(t)βpq∆xī∆yj̄

∑
k,m,n

∫
Kkmn

[∫
Kk̄m̄n̄

S(r, r′) ξp
k̄,m̄,n̄

(~r) ξq
k̄,m̄,n̄

(~r) d~r

]√
r′

2
d~r ′

=
∑
k,m,n

5∑
p=0

W p
īj̄kmn

(t)βpq∆xī∆yj̄ × (3.39)

∫
Kk̄m̄n̄

[∫
Kkmn

+1∑
l=−1

cl δ(E(r)− E(r′) + lαp) ξ
p
k,m,n(~r ′ ) d~r ′

] √
r

2
ξq
k̄,m̄,n̄

(~r) d~r

−
5∑
p=0

W p

Ī
(t)βpq∆xī∆yj̄ ×

∑
k,m,n

∫
Kkmn

[∫
Kk̄m̄n̄

+1∑
l=−1

cl δ(E(r′)− E(r) + lαp) ξ
p

k̄,m̄,n̄
(~r) ξq

k̄,m̄,n̄
(~r) d~r

]√
r′

2
d~r ′.

In order to perform the integrations involving
√
r numerically by means

of Gaussian quadrature, the change of variables r = s2 is applied, so that the
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functions of s to be integrated are just polynomials,∫
K

C(Φh)vh dσ =

∑
k,m,n

5∑
p=0

W p
īj̄kmn

(t)βpq∆xī∆yj̄

∫
Kk̄m̄n̄

s

2
ξq
k̄,m̄,n̄

(s2, µ, ϕ) 2s ×[
+1∑
l=−1

cl

∫
Kkmn

δ(E(rk̄) + Ak̄(s
2 − rk̄) + lαp − E(rk)− Ak(r′ − rk)) ξpk,m,n(~r ′ ) d~r ′

]
dsdµdϕ

−
5∑
p=0

W p

Ī
(t)βpq∆xī∆yj̄

∑
k,m,n

∫
Kkmn

s′

2
2s′ ×[

+1∑
l=−1

cl

∫
Kk̄m̄n̄

δ(E(s′2) + lαp − E(rk̄)− Ak̄(r − rk̄)) ξ
p

k̄,m̄,n̄
(~r) ξq

k̄,m̄,n̄
(~r) d~r

]
ds′dµ′dϕ′

=
∑
k,m,n

5∑
p=0

W p
īj̄kmn

(t)βpq∆xī∆yj̄ × (3.40)∫
Kk̄m̄n̄

ξq
k̄,m̄,n̄

(s2, µ, ϕ) χk

(
E(rk̄) + Ak̄(s

2 − rk̄) + lαp − E(rk) + Akrk
Ak

)
s2dsdµdϕ× +1∑

l=−1

cl

∫ µ
m+ 1

2

µ
m− 1

2

∫ ϕ
n+ 1

2

ϕ
n− 1

2

ξpk,m,n

(
E(rk̄) + Ak̄(s

2 − rk̄) + lαp − E(rk) + Akrk
Ak

, µ′, ϕ′
)
dµ′dϕ′

−
5∑
p=0

W p

Ī
(t)βpq∆xī∆yj̄

∑
k,m,n

∫
Kkmn

dµ′dϕ′ s′
2
χk̄

(
E(rk) + Ak(s

′2 − rk) + lαp − E(rk̄) + Ak̄rk̄
Ak̄

)

×

 +1∑
l=−1

cl

∫ µ
m̄+ 1

2

µ
m̄− 1

2

∫ ϕ
n̄+ 1

2

ϕ
n̄− 1

2

ξp
k̄,m̄,n̄

(r(s), µ, ϕ) ξq
k̄,m̄,n̄

(r(s), µ, ϕ) dµdϕ

∣∣∣∣∣∣
r(s)

ds′ ,

with r(s) =
E(rk)+Ak(s′2−rk)+lαp−E(rk̄)+Ak̄rk̄

Ak̄
.

The integrals above involve only polynomials, which are numerically

computed by Gaussian quadrature rules.

70



3.2.4 The algorithm for time evolution

Starting with given initial and boundary conditions, the algorithm ad-

vances from tn to tn+1 in the way described below.

1. Compute the density ρ.

2. Solve the Poisson equation and find the electric field E.

3. Compute the transport terms ai’s.

4. Compute the collision part.

5. Solve the (large) system of ordinary differential equations for the coef-

ficients of the linear approximation of Φh (which are obtained from the

DG formulation), by using a TVD Runge - Kutta scheme.

6. Repeat the previous steps as needed.

3.2.5 Poisson Equation in 1D

− ∂2
xΨ =

cp
εr

[Nh(x)− ρh(t, x)] ∈ V 1
h , (3.41)

with Dirichlet BC for Ψ(x, t), to obtain E(x, t) = −cv ∂xΨ(x, t). For the 1D

case, there is an analytical solution to the Poisson Eq. BVP with Dirichlet
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BC, given by the integral formula

Ψ(x, t) = Ψ(0) +

[
Ψ(1)−Ψ(0) +

∫ 1

0

cp
εr

[Nh(x
′)− ρh(t, x′)] (1− x′)dx′

]
x

−
∫ x

0

cp
εr

[Nh(x
′)− ρh(t, x′)] (x− x′)dx′ (3.42)

=

[
V0 +

cp
εr

∫ 1

0

[Nh(x
′)− ρh(t, x′)] (1− x′)dx′

]
x︸ ︷︷ ︸

∈V 1
h

− cp
εr

∫ x

0

[Nh(x
′)− ρh(t, x′)] (x− x′)dx′︸ ︷︷ ︸

∈V 3
h

,

and

E(x, t) = −cv ∂xΨ(x, t) = (3.43)

= −cv
(

Ψ|10 +

∫ 1

0

(1− x′)cp
εr

[Nh(x
′)− ρh(t, x′)] dx′ −

∫ x

0

cp
εr

[Nh(x
′)− ρh(t, x′)] dx′

)
= −cv(V0 +

cp
εr

∫ 1

0

[Nh(x
′)− ρh(t, x′)] (1− x′)dx′︸ ︷︷ ︸
∈V 0

h

−cp
εr

∫ x

0

[Nh(x
′)− ρh(t, x′)] dx′︸ ︷︷ ︸
∈V 2

h

) .

We observe that, if −∂2
xΨ = cp

εr
[Nh(x)− ρh(t, x)] ∈ V 1

h , then the ana-

lytical solutions are such that E(x, t) = −cv ∂xΨ(x, t) ∈ V 2
h and Ψ ∈ V 3

h .

This differs from a piecewise constant density approximation for which−∂2
xΨ =

cp
εr

[Nh(x)− ρh(t, x)] ∈ V 0
h implies that E(x, t) = −cv ∂xΨ(x, t) ∈ V 1

h , Ψ ∈ V 2
h .

We must project then the analytical solution E(x, t) to our Dirichlet BVP

in the Finite Element space V 1
h to find an approximate solution Eh(x, t) that

belongs to the appropriate space for our problem, and likewise for Ψ and its

respective projection Ψh.

E(x, t)→ Eh(x, t) = Π1
hE(x, t) ∈ V 1

h . (3.44)
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Given the analytical solution of the electric field, it is clear that we only need

to project the part of E(x, t) that doesn’t belong to V 1
h , namely

F (x, t) =

∫ x

0

[Nh(x
′)− ρh(t, x′)] dx′ → Π1

h

∫ x

0

[Nh(x
′)− ρh(t, x′)] dx′. (3.45)

Let’s remeber that

[Nh(x
′)− ρh(t, x′)] |x′∈[xi−,xi+] = c0

i (t) + c1
i (t)

(x′ − xi)
∆xi/2

∈ V 1
h , (3.46)

Therefore,

F (x)|[xi0−,xi0+] =

∫ x

0

[Nh(x
′)− ρh(t, x′)] dx′ =

∫ x

0

∑
i

χi

[
c0
i (t) + c1

i (t)
(x′ − xi)
∆xi/2

]
dx′

=
∑
i<i0

∫ xi+

xi−

[
c0
i (t) + c1

i (t)
(x′ − xi)
∆xi/2

]
dx′ +

∫ x

xi0−

[
c0
i0

+ c1
i0

(x′ − xi0)

∆xi0/2

]
dx′,

F (x)|xi0−≤x≤xi0+ =
∑
i<i0

c0
i (t)∆xi + c0

i0
(t)(x− xi0−) + c1

i0
(t)

[
(x− xi0)2

∆xi0
− ∆xi0

4

]
.

The only part of F (x) that doesn’t belong to V 1
h is proportional to R(x) =

(x−xi0 )2

∆xi0
. We project this residual in V 1

h , so∫ xi0+

xi0−
1 ·R(x)dx =

∫ xi0+

xi0−

(x− xi0)2

∆xi0
dx =

∆x2
i0

12
,

∫ xi0+

xi0−

(x− xi0)

∆xi0/2
·R(x)dx =

∫ xi0+

xi0−

(x− xi0)3

∆x2
i0
/2

dx = 0 .

The projection of R(x) in V 1
h gives the piecewise constant approxima-

tion R0 =
∫ xi0+

xi0−
1 ·R(x)dx/∆xi0 =

∆xi0
12

. Projecting F → Π1
hF ∈ V 1

h ,

F (x)|[xi0−,xi0+] −→ Π1
hF (x)

∣∣
[xi0−,xi0+]

=
∑
i<i0

c0
i∆xi + c0

i0
(x−xi0−) + c1

i0

[
∆xi0
12
− ∆xi0

4

]
,
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with

F (x) =
∑
i0

χi0 F (x)|xi0−≤x≤xi0+ −→ Π1
hF (x) =

∑
i0

χi0 Π1
hF (x)

∣∣
[xi0−,xi0+]

,

Π1
h F (x, t) =

∑
i0

χi0

[∑
i<i0

c0
i (t)∆xi − c1

i0
(t)

∆xi0
6

+ c0
i0

(t)(x− xi0−)

]
. (3.47)

The projection of the electric field E(x, t) into V 1
h is then

Eh(x, t) = Π1
hE(x, t) = −cv

(
V0 +

cp
εr

∫ 1

0

[Nh(x
′)− ρh(t, x′)] (1− x′)dx′ − cp

εr
Π1
h F (x, t)

)
,

Eh(x, t) = −cv×(
V0 +

cp
εr

∫ 1

0

[Nh(x
′)− ρh(t, x′)] (1− x′)dx′ − cp

εr

∑
i0

χi0

[∑
i<i0

c0
i∆xi − c1

i0

∆xi0
6

+ c0
i0

(x− xi0−)

])
or equivalently, Eh(x, t) = − cv cp

εr
×(

εrV0

cp
+

∫ 1

0

[Nh − ρh] (1− x′)dx′ −
∑
i0

χi0

[∑
i<i0

c0
i∆xi − c1

i0

∆xi0
6

+ c0
i0

∆xi0
2

(
x− xi0

∆xi0
2

+ 1

)])
,

understanding that the coefficients cji (t), c
j
i0

(t) are time dependant. If we con-

sider in particular the projection of the electric field for x ∈ [xi0−, xi0+] we

have that

Eh(x, t)|x∈[xi0−,xi0+] = −cv cp
εr
×(

εrV0

cp
+

∫ 1

0

[Nh(x
′)− ρh(t, x′)] (1− x′)dx′

−
∑
i<i0

c0
i∆xi − c1

i0

∆xi0
6

+ c0
i0

∆xi0
2

+

(
c0
i0

∆xi0
2

)
x− xi0

∆xi0
2

)
,

where the following integral, after being calculated, is∫ 1

0

[Nh(x
′)− ρh(t, x′)] (1−x′)dx′ =

∑
i

(1−xi)c0
i (t)∆xi−

∑
i

c1
i (t)

∆x2
i

6
. (3.48)
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Therefore

Eh(x, t)|x∈[xi0−,xi0+] = −cv cp
εr
× (3.49)(

εrV0

cp
+
∑
i

(1− xi)c0
i∆xi −

∑
i

c1
i

∆x2
i

6
−
∑
i<i0

c0
i∆xi − c1

i0

∆xi0
6

+ c0
i0

∆xi0
2

+ c0
i0

∆xi0
2
· x− xi0

∆xi0
2

)
.

On the other hand, the Poisson Eq. BVP with Dirichlet BC in 1D can

also be solved approximately by numerical methods. For example, by means

of a Local DG Method, obtaining with this method Ψ ∈ V 1
h , E(x, t) ∈ V 1

h .

3.3 The n+-n-n+ silicon diode

We consider the symmetric case of a 1D n+-n-n+ diode, in which the

conduction band energy function is assumed to be of the form ε(|k|) = ε(r).

This assumption preserves azimuthal symmetry for the problem if the initial

condition is independent of the azimuthal direction ϕ. Therefore, under these

assumptions the problem has azimuthal symmetry in k for all times t ≥ 0,

so it suffices to consider k = k(r, µ), reducing then the dimensionality of the

problem to 1-D in x-space and 2-D in k = k(r, µ), then the problem reduces

to a 3-D plus time. Assuming E has null y and z components, this symmetric

case reduces the TBE to

∂Φ

∂t
+
∂

∂x
(a1 Φ) +

∂

∂r
(a4 Φ) +

∂

∂µ
(a5 Φ) = C(Φ), (3.50)

where the terms a1, a4 and a5 are now simplified.

The Poisson equation is reduced to

∂

∂x

(
εr
∂Ψ

∂x

)
= cp [ρ(t, x)−ND(x)] . (3.51)
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For this case both the potential and electric field have analytic integral solu-

tions, that are easily computed numerically for the piecewise linear approxi-

mation of the density ρh. Then, such electric field solution is projected in the

V 1
h space of piecewise linear polynomials.

3.3.1 Device specifics

We consider first a diode of 1µm length, with an n-channel of 400nm

length, doping of 5 × 1023m−3 in the n+ region and 2 × 1021m−3 in the n

region. We also consider a 0.25µm diode with a 50nm channel with n+-doping

of 5× 1024m−3, and n-doping of 1× 1021m−3.

3.3.2 Numerical simulations

The space V 1
h of piecewise linear polynomials in (x, r, µ), with time

dependent coefficients, is used as both the trial and test space in our DG

scheme. The input data of the numerical simulations is

• Computational domain: x ∈ [0, 1], r ∈ [0, rmax], µ ∈ [−1, 1], where

rmax is taken in the numerical experiments such that Φ(t, x, r, µ) ≈ 0 for

r ≈ rmax (for example, rmax = 36 for Vbias = 0.5 Volts in the 400nm

channel case).

• Initial condition: Φ(0, x, r, µ) = Πh

{
CND(x)

√
r

2
e−ε(r)

}
, where C

constant is such that ρ(x, 0) equals the doping ND(x) at t = 0. The

initial condition is projected by Πh into V 1
h .
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• Boundary conditions: Neutral charges at the endpoints x 1
2

= 0 and

xNx+ 1
2

= 1.

Φ(t, 0, r, µ) = ND(0)
Φ(t, x1, r, µ)

ρ(t, x1)
and Φ(t, 1, r, µ) = ND(1)

Φ(t, xNx , r, µ)

ρ(t, xNx)
.

Cut-off in the k-space Φ(t, x, rmax, µ) = 0.

• Applied potential - bias: Ψ(t, 0) = 0 and Ψ(t, 1) = V0.

No boundary conditions are needed on r = 0, µ = ±1. Upwind fluxes in r and

µ are analytically zero at these boundaries, since they are related to points in

k-space such as the origin and the poles, which are transformed into boundaries

when applying the spherical change of coordinates. It is very simple to verify

that a4 = 0 at r = 0, and a5 = 0 at µ = ±1.

3.4 Computation of the spherical average of a local EPM
conduction band for silicon

The motivation of this work is to incorporate numerically, in a DG

solver of the BP system electronic conduction bands whose values are obtained

by the radial averaging of the full band structure given by a local empirical

pseudopotential method (EPM) around a local minimum of the conduction

band for silicon. This is done as a midpoint between a radial and an anisotropic

full energy band models, with the goal of providing a more accurate physical

description of the electron group velocity and of the scattering mechanisms

by Fermi Golden Rule, and consequently improve the transport and electron -

phonon collision phenomena. The approximation of the electron group velocity
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is obtained from the numerical values of the derivatives of the conduction band,

which are obtained by means of a cubic spline interpolation. The numerical

values of the spherically averaged EPM band and the derivatives are obtained

as described below.

A local empirical pseudopotential method (EPM) code developed by

Chelikowsky et al. [37] is adapted to compute the conduction band structure

of silicon in its Brillouin Zone in the k-space. The local pseudopotentials are

used in this EPM code to mimic a silicon semiconductor with crystal diamond

structure [38].

A color plot of the local EPM conduction band on the first octant of

the k-space enclosing the Brillouin Zone for silicon is shown in Fig. 3.1.

The calculated EPM band structure ε(kx, ky, kz) = ε(k(r, µ, ϕ)) is then

averaged over the k-spheres rk around the local energy minimum point k0 =

(0.8562, 0, 0)2π/a (where a is the lattice constant for silicon) by means of a

10 point Gaussian quadrature on the angular space. Using the symmetry of

the silicon conduction band, the integration only needs to be performed in the

(µ, ϕ) domain [0, 1]× [0, π]

ε̃(rk) =

∫ 1

0

∫ π

0

ε(rk, µ, ϕ) dµdϕ∫ 1

0

∫ π

0

dµ dϕ

≈
10∑
m=1

10∑
n=1

ωm ωn ε(rk, µm, ϕn) . (3.52)

The values of the radius of these k-spheres are the grid points rk in the DG-

BP simulations. In this way we obtain a band model that has a dependence

on r, and at the same time it uses the information of the anisotropic energy
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Figure 3.1: Local EPM conduction energy band-structure (ε) color plot in the
k-space 1st octant enclosing the Silicon Brillouin Zone. Conduction band local
minimum: ko = (0.8562, 0, 0)(2π/a)
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band values in the angular k-domain via its numerical average. As a midpoint

between a radial band model and a full band anisotropic model, it has the de-

sired advantages of both. A cubic spline interpolation is then performed, using

the numerical values of the radial average ε̃(r) at the midpoints of the r-cells,

and the derivative of this spline interpolation is used to obtain a numerical

approximation of the derivative dε̃/dr at these r-midpoints.

The spherical averages of the EPM conduction band ε̃(r) vs r ∝ |k−k0|2

with the related spline interpolation for Si are shown in Fig. 3.2 (in red). The

parabolic (blue), which is a linear function of r, and the Kane (green) analytic

conduction band models for silicon are plotted as well.

It can be observed that there is a quantitative difference between the

different energy band models. The spherical average of the EPM band is below

the Kane band model, which is below the Parabolic band.

We show in Fig. 3.3 the relative l2 error norm of the spherical average

EPM band with respect to the local EPM data ε(r, µ, ϕ) as a function of r,

given by the formula

〈[ε− ε̃]2〉
〈ε2〉

(rk) ≈
∑10

m=1

∑10
n=1 ωmωn [ε(rk, µm, ϕn)− ε̃(rk)]2∑10

m=1

∑10
n=1 ωmωn [ε(rk, µm, ϕn)]2

.

It can be observed in Fig. 3.3 that the relative l2 error increases with r,

which indicates that far away from the local minimum k0 the anisotropy of

the conduction band becomes increasingly more important.
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3.5 Numerical results

The BP transport along the EPM spherical average energy band is

numerically simulated by means of our DG-BP solver, and compared to sim-

ulations where the values related to the analytical Parabolic and Kane band

models are implemented numerically. We compare simulations for two n+-n-

n+ silicon diodes with different characteristics. The first one has a length of

1µm, an n-channel length of 400nm, n+ doping of 5 · 1017cm−3, and n doping

of 2 · 1015cm−3. The other one has a device length of 0.25µm, an n-channel

length of 50nm, an n+ doping of 5 · 1018cm−3, and n doping of 1 · 1015cm−3.

We show simulations for a potential bias of V0 = 0.5V . For the 400 nm channel

diode, the number of cells used in the simulations for each of the variables was:

Nx = 120, Nr = 80 and Nµ = 24. The interval size for r is taken as ∆r = 0.45,

having then rmax = 36. We use a mesh as in [34] which gives better resolution

close to the first juncture at x = 0.3µm, and which also has a finer refinement

close to the pole in the direction of the electric field. It uses ∆x = 0.01 for the

first 20 cells in x-space, ∆x = 0.005 for the next 40 cells, and ∆x = 0.01 for

the last 60 cells. Regarding µ, it uses 12 cells for µ ∈ [−1, 0.7], and 12 cells

for µ ∈ [0.7, 1].

For the 50 nm channel diode, the number of cells used in the simulations

for each of the variables was: Nx = 64, Nr = 80 and Nµ = 20. The interval

size for r is taken as ∆r = 0.8, having then rmax = 64. As in [34], we use a

mesh intended to give better resolution close to the junctures at x = 0.1µm

and x = 0.15µm, and which also has a finer refinement close to the pole in the
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direction of the electric field. It uses ∆x = 0.01 for the first 9 cells in x-space,

∆x = 0.001 for the next 20 cells close to the the first juncture at x = 0.1µm,

∆x = 0.005 for 6 cells at the center of the n-channel, ∆x = 0.001 for the next

20 cells close to the second juncture at x = 0.15µm, and ∆x = 0.01 for the

last 9 cells. Regarding µ, it uses 10 cells for µ ∈ [−1, 0.7], and 10 cells for

µ ∈ [0.7, 1]. We let the solver run until t = 5.0ps, a time when the simulations

are close to a numerical stationary state.

We show plots of the average velocity, the average energy, the momen-

tum (proportional to the current), the electric field and potential, for both

the 400nm channel and 50nm channel diodes. There is a clear quantitative

difference, particularly in kinetic moments such as average velocity, average

energy, and momentum (current), whose values depend on the energy band

model used in each case then. This should be expected since these kinetic

moments are averages of quantities related to ε(k) or its partial derivatives in

k-space.
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Figure 3.4: Density (ρ, in log-scale) vs. position (x) plots for different conduc-
tion band models: parabolic, Kane, EPM average. 400nm channel. t = 5.0ps.
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tion band models: parabolic, Kane, EPM average. 50nm channel. t = 5.0ps.
0.5 Volts Bias.

85



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

<
v>

 (
10

7  c
m

/s
)

x (micro-meters) 

EPMravg
Kane

Parab

Figure 3.6: Average velocity (v) vs. position (x) plots for different conduction
band models: parabolic, Kane, EPM average. t = 5.0ps 400nm channel. 0.5
Volts Bias

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.05  0.1  0.15  0.2  0.25

<
v>

 (
10

7  c
m

/s
)

x (micro-meters) 

EPMravg
Kane

Parab
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Figure 3.11: Current (Momentum) vs. position (x) for different conduction
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Chapter 4

Reflective Boundary Conditions in DG for BP

Models of Electron Transport in

Semiconductors and Zero Flux Condition for

General Mixed Reflection

We discuss in this chapter the use of Discontinuous Galerkin (DG) Fi-

nite Element Methods to solve Boltzmann - Poisson (BP) models of electron

transport in semiconductor devices at nano scales. We consider the mathemat-

ical and numerical modeling of Reflective Boundary Conditions in 2D devices

and their implementation in DG-BP schemes. We study the specular, diffusive

and mixed reflection BC on physical boundaries of the device, comparing the

influence of these different reflection cases in the computational prediction of

moments close to the boundaries and their associated scale.

4.1 Introduction

Regarding Boundary Conditions (BC), there are several kinds of BC

for BP semiconductor models. They vary according to the considered device

and physical situation. For example, in the case of electron transport along a

single conduction band, the following BC could arise:
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Charge neutrality boundary conditions, given by [54]

fout(t, ~x,~k)
∣∣∣
Γ

= ND(~x)
fin(t, ~x,~k)

ρin(t, ~x)

∣∣∣∣∣
Γ

, Γ subset of ∂Ω~x . (4.1)

This BC is imposed in source and drain boundaries, where electric currents

enter or exit the device, to achieve neutral charges there, as ρout(~x, t)−ND(~x) =

0.

Reflective BC happen in insulating boundaries, usually defined by a

Neumann boundary ΓN , of 2D and 3D devices. In general, reflective BC can

be formulated as the values of the pdf at the inflow boundary being dependent

on the outflow boundary values

f(~x,~k, t)|ΓN− = FR
(
f |ΓN+

)
, (4.2)

where the Neumann Inflow Boundary is defined as

Γ−N = {(~x,~k) | ~x ∈ ΓN , ~k ∈ Ωk, ~v(~k) · η(~x) < 0}, (4.3)

~v(~k) =
1

~
∇~k ε(~k) , (4.4)

η(~x) outward unit normal. The Neumann Outflow Boundary is defined as

Γ+
N = {(~x,~k) | ~x ∈ ΓN , ~k ∈ Ωk, ~v(~k) · η(~x) > 0} . (4.5)

Specular Reflection BC over the Neumann Inflow Boundary is given by

f |−(~x,~k, t) = FS(f |+) = f |+(~x,~k′, t) for (~x,~k) ∈ Γ−N , t > 0, (4.6)

(~x,~k′) ∈ Γ+
N ,

~k′ s.t. ~v(~k′) = ~v(~k)− 2 η(~x) · ~v(~k) η(~x) . (4.7)
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Diffusive reflection is a known condition from kinetic theory, in which

the distribution function at the Inflow boundary is proportional to a Maxwellian

[52], [2] with T = TW = TW (~x) the temperature at the wall

f |−(~x,~k, t) = FD(f |+) = C σ {f |+} (~x, t) e−ε(
~k)/KBT , (~x,~k) ∈ Γ−N , (4.8)

σ {f |+} (~x, t) =

∫
~v(~k)·η>0

~v(~k) · η(~x)f |+(~x,~k, t)dk . (4.9)

Mixed reflection BC models the effect of a physical surface on electron

transport in metals and semiconductors, giving the reflected pdf representing

the electrons as a linear convex combination of specular and diffuse compo-

nents, as in the formula

f |−(~x,~k, t) = FM(f |+) = pFS(f |+) + (1− p)FD(f |+) (4.10)

= p f |+(~x,~k′, t) + (1− p)C ′ σ′ {f |+} (~x, t) e
− ε(~k)
KBT , (~x,~k) ∈ Γ−N .

p is sometimes called specularity parameter. It can either be constant or a

function, dependant of the momentum. For example, the work by Soffer [55]

studies a statistical model for the reflection from a rough surface in electrical

conduction. It derives a specularity parameter p(~k) which depends on the

momentum, given by

p(~k) = e−4l2r |k|2 cos2 Θ , (4.11)

where lr is the rms height of the rough interface, and ΘB is th angle between

the incident electron and the interface surface normal.

Reflection BC is a widely studied topic in the context of the kinetic

theory of gases modelled by Boltzmann Equations. However, in the context of
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kinetic models for electron transport in semiconductors, there is less extensive

previous work related to the study of the effect of reflection boundary con-

ditions such as diffusive, specular, or mixed reflection. A non-exhaustive list

of references where reflection BC are studied for Boltzmann equations in the

context of kinetic theory of gases would include the works of Cercignani [53]

and Sone [52], where the specular, diffusive, and mixed reflection BC are for-

mulated for the Boltzmann Eq. for gases. V. D. Borman, S. Yu. Krylov, A. V.

Chayanov [59] study the nonequilibrium phenomena at a gas-solid interface.

The recent paper of Brull, Charrier, Mieussens [60] studies the gas-surface

interaction at a nano-scale and the boundary conditions for the associated

Boltzmann equation. The recent work of Struchtrup [61] studies as well the

Maxwell boundary condition and velocity dependent accommodation coeffi-

cients in the context of gases mentioned. It considers the convex combination

of specular reflection, isotropic scattering, and diffusive reflection, incorporat-

ing velocity dependent coefficients into a Maxwell-type reflection kernel. It

develops a modification of Maxwell’s BC, extending the Maxwell model by al-

lowing it to incorporate velocity dependent accomodation coefficients into the

microscopic description and satisfying conditions of reciprocity and unitary

probability normalization.

Regarding reflectivity in the context of Boltzmann models of electron

transport, Fuchs [56] proposed a boundary condition for the probability density

function of free electrons incident in the material surface, which is a convex

combination of specular & diffuse reflection with a constant specularity pa-
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rameter p. Greene ([57], [58]) studied conditions for the Fuchs BC in which

the specularity parameter p(~k) is dependant on the angle of the momentum

~k, deriving a boundary condition for electron distributions at crystal surfaces

valid for metal, semimetal, & semiconductor surfaces, and showing that Fuchs

reflectivity parameter differs from the kinetic specularity parameter in physi-

cal significance and in magnitude. It considers the unperturbed electron states

of a crystal with an ideal perfectly specular surface as standing wave states,

and the diffusive reflection killing partially the incoming wave function. Soffer

[55] studies a statistical model for the electrical conduction, and derives under

certain assumptions, such as a rough surface random model with a Gaussian

probability of height above or below a horizontal plane, analytical formulas for

a momentum dependant specularity parameter p(~k) = exp(−4l2r |k|2 cos2 Θ) as-

sociated to this physical phenomena, abovementioned in (4.11). As mentioned

before, lr is the rms height of rough interface, and ΘB is th angle between the

incident electron and the interface surface normal.

The reference book of Markowich, Ringhofer, & Schmeiser [17] for semi-

conductor equations discusses the mathematical definition of boundaries ac-

cording to the physical phenomena, and defines accordingly the kind of BC

to be imposed at those boundaries: Dirichlet, Neumann, Inflow and Outflow

boundaries. A work of particular importance for us is the one by Cercig-

nani, Gamba, and Levermore [54]. They study high field approximations to

a Boltzmann-Poisson system and boundary conditions in a semiconductor.

The BP system for electrons in a semiconductor in the case of high fields
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and small devices is considered. Boundary conditions are proposed at the

kinetic level that yield charge neutrality at ohmic contacts, which are Dirich-

let boundaries, and at insulating Neumann boundaries. Both BC, either the

one yielding charge neutrality at Dirichlet boundaries, or the one rendering

zero flux of electrons at the boundary, assume that the pdf is proportional

to a ground state associated to an asymptotic expansion of a dimensionless

Boltzmann-Poisson system. Then they study closures of moment equations

and BC for both the pdf and for the moment closures. Jüngel mentions in his

semiconductors book [2] the different kinds of reflection BC common on the

kinetic theory of gases, specular, diffusive, and mixed reflection but no further

study of diffusive and mixed reflection BC in the context of semiconductors is

pursued.

We intend to present in this work a mathematical, numerical, and com-

putational study of the effect of diffusive, specular, and mixed reflection BC in

Boltzmann-Poisson models of electron transport in semiconductors, solved by

means of Discontinuous Galerkin FEM solvers. We study the mathematical

formulation of these reflection BC in the context of BP models for semiconduc-

tors, and derive equivalent numerical formulations of the diffusive and mixed

reflection BC with non-constant p(~k), such that an equivalent numerical zero

flux condition is satisfied pointwise at the insulating Neumann boundaries at

the numerical level. We present numerical simulations for a 2D silicon diode

and a 2D double gated MOSFET, comparing the effects of specular, diffusive,

and mixed reflection boundary conditions in the physical observable quantities
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obtained from the simulations.

4.2 BP system with ~k coordinate transformation assum-
ing a Kane Energy Band

The Kane Energy Band Model is a dispersion relation between the

conduction energy band ε (measured from a local minimum) and the norm of

the electron wave vector |k|, given by the analytical function (α is a constant

parameter, m∗ is the electron reduced mass for Si, and ~ is Planck’s constant)

ε(1 + αε) =
~2|k|2

2m∗
. (4.12)

For our preliminary numerical studies we will use a Boltzmann-Poisson model

as in [34] , in which the conduction energy band is assumed to be given by a

Kane model. We use the following dimensionalized variables, with the related

characteristic parameters

t = t/t∗, (x, y) = ~x/`∗, `∗ = 10−6m, t∗ = 10−12s, V∗ = 1V .

A transformed Boltzmann transport equation is used as in [34] as well, where

the coordinates used to describe ~k are: µ, the cosine of the polar angle, the

azimuthal angle ϕ, and the dimensionless Kane Energy w = ε/KBT , which is

assumed as the conduction energy band. KB is Boltzmann’s constant, T is the

wall temperature, which we will assume to be equal to the lattice temperature

TL, so TW = T = TL, and αK = αKBT . So

~k(w, µ, ϕ) =

√
2m∗kBTL

~
√
w(1 + αKw)

(
µ,
√

1− µ2 cosϕ,
√

1− µ2 sinϕ
)
.

(4.13)
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A new unknown function Φ is used in the transformed Boltzmann Eq. [34] ,

which is proportional to the Jacobian of the transformation and to the density

of states (up to a constant factor)

Φ(t, x, y, w, µ, ϕ) = s(w)f(t, ~x,~k) ,

where

s(w) =
√
w(1 + αKw)(1 + 2αKw) . (4.14)

The transformed Boltzmann transport equation for Φ used in [34] is

∂Φ

∂t
+

∂

∂x
(g1Φ) +

∂

∂y
(g2Φ) +

∂

∂w
(g3Φ) +

∂

∂µ
(g4Φ) +

∂

∂ϕ
(g5Φ) = C(Φ). (4.15)

The vector (g1, g2) represent the 2D cartesian components of the elec-

tron velocity 1
~∇~kε(~k), in the coordinate system (w, µ, ϕ). The triplet (g3, g4, g5)

represent the transport in the phase space of the new momentum coordinates

(w, µ, ϕ) due to the self consistent electric field

~E(t, x, y) = (Ex(t, x, y), Ey(t, x, y), 0) ,
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with

g1(·) = cx

√
w(1 + αKw)

1 + 2αKw
µ ,

g2(·) = cx

√
w(1 + αKw)

1 + 2αKw

√
1− µ2 cosϕ ,

g3(·) = − ck
2
√
w(1 + αKw)

1 + 2αKw

[
µEx(t, x, y) +

√
1− µ2 cosϕEy(t, x, y)

]
,

= − ck
2
√
w(1 + αKw)

1 + 2αKw
êw · ~E(t, x, y) ,

g4(·) = − ck
√

1− µ2√
w(1 + αKw)

[√
1− µ2Ex(t, x, y)− µ cosϕEy(t, x, y)

]
,

= − ck
√

1− µ2√
w(1 + αKw)

êµ · ~E(t, x, y) ,

g5(·) = −ck
− sinϕ√

w(1 + αKw)
√

1− µ2
Ey(t, x, y)

= −ck
1√

w(1 + αKw)
√

1− µ2
êϕ · ~E(t, x, y) ,

cx =
t∗
`∗

√
2 kBTL
m∗

and ck =
t∗qE∗√

2m∗kBTL
,

and êw, êµ, êϕ the orthonormal vector basis in our momentum coordinate

space.

The right hand side of (4.15) is the collision operator (having applied

the Dirac Delta’s due to electron-phonon scattering, which depend on the

energy differences between transitions)

C(Φ)(t, x, y, w, µ, ϕ) = s(w)

{
c0

∫ π

0

dϕ′
∫ 1

−1

dµ′ Φ(t, x, y, w, µ′, ϕ′)

+

∫ π

0

dϕ′
∫ 1

−1

dµ′ [c+Φ(t, x, y, w + γ, µ′, ϕ′) + c−Φ(t, x, y, w − γ, µ′, ϕ′)]
}

− Φ(t, x, y, w, µ, ϕ) 2π [c0s(w) + c+s(w − γ) + c−s(w + γ)] ,
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with the dimensionless parameters

(c0, c+, c−) =
2m∗ t∗
~3

√
2m∗ kBTL (K0, (nq + 1)K,nqK) , γ =

~ωp
kBTL

.

The electron density is

n(t∗t, `∗x, `∗y) =

∫
R3

f(t∗t, `∗x, `∗y,k) dk =

(√
2m∗kBTL

~

)3

ρ(t, x, y) ,

where

ρ(t, x, y) =

∫ +∞

0

dw

∫ 1

−1

dµ

∫ π

0

dϕ Φ(t, x, y, w, µ, ϕ) . (4.16)

Hence, the dimensionless Poisson equation is

∂

∂x

(
εr
∂Ψ

∂x

)
+

∂

∂y

(
εr
∂Ψ

∂y

)
= cp [ρ(t, x, y)−ND(x, y)] , (4.17)

with

ND(x, y) =

(√
2m∗kBTL

~

)−3

ND(`∗x, `∗y) and cp =

(√
2m∗kBTL

~

)3
`2
∗q

ε0
.

4.3 Discontinuous Galerkin Method for Transformed Boltz-
mann - Poisson System and Implementation of Bound-
ary Conditions

The domain of the devices to be considered can be represented by means

of a rectangular grid in both position and momentum space. This rectangular

grid, bidimensional in position space and tridimensional in momentum space,

is defined as

Ωijkmn =
[
xi− 1

2
, xi+ 1

2

]
×
[
yj− 1

2
, yj+ 1

2

]
×︸ ︷︷ ︸

Xij

[
wk− 1

2
, wk+ 1

2

]
×
[
µm− 1

2
, µm+ 1

2

]
×
[
ϕn− 1

2
, ϕn+ 1

2

]
︸ ︷︷ ︸

Kkmn

,
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where i = 1, . . . Nx, j = 1, . . . Ny, k = 1, . . . Nw, m = 1, . . . Nµ, n = 1, . . . Nϕ,

xi± 1
2

= xi ±
∆xi

2
, yj± 1

2
= yj ±

∆yj
2

,

wk± 1
2

= wk ±
∆wk

2
, µm± 1

2
= µm ±

∆µm
2

, ϕn± 1
2

= ϕn ±
∆ϕn

2
.

The finite dimensional space used to approximate the functions is the

space of piecewise continuous polynomials which are piecewise linear in (x, y)

and piecewise constant in (w, µ, ϕ)

Vh = {v : v|Ωijkmn ∈ Q1,0(Ωijkmn) = P 1(Xij)⊗ P 0(Kkmn)}, (4.18)

with the setQ1,0(Ωijkmn) of tensor product polynomials, linear over the element

Xij =
[
xi− 1

2
, xi+ 1

2

]
×
[
yj− 1

2
, yj+ 1

2

]
and constant over the element

Kkmn =
[
wk− 1

2
, wk+ 1

2

]
×
[
µm− 1

2
, µm+ 1

2

]
×
[
ϕn− 1

2
, ϕn+ 1

2

]
.

The function Φh will denote the piecewise polynomial approximation

of Φ over elements ΩI ,

Φh =
∑
I

χI(x, y, w, µ, ϕ)

[
TI(t) +XI(t)

(x− xi)
∆xi/2

+ YI(t)
(y − yj)
∆yj/2

]
, I = (i, j, k,m, n).

Under this approximation, the density on the cell [xi− 1
2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
] is

ρh(t, x, y) =
Nw∑
k=1

Nµ∑
m=1

Nϕ∑
n=1

[
Tijkmn +Xijkmn

(x− xi)
∆xi/2

+ Yijkmn
(y − yj)
∆yj/2

]
∆wk∆µm∆ϕn

=
Nw∑
k=1

Nµ∑
m=1

Nϕ∑
n=1

Tijkmn∆wk∆µm∆ϕn

+

(
Nw∑
k=1

Nµ∑
m=1

Nϕ∑
n=1

Xijkmn∆wk∆µm∆ϕn

)
(x− xi)
∆xi/2

+

(
Nw∑
k=1

Nµ∑
m=1

Nϕ∑
n=1

Yijkmn∆wk∆µm∆ϕn

)
(y − yj)
∆yj/2

.
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4.3.1 DG Formulation for Transformed Boltzmann Eq.

The Discontinuous Galerkin formulation for the Boltzmann equation

(4.15) is as follows. Find Φh ∈ Vh, s.t.∫
Ωijkmn

(Φh)t vh dΩ−
∫

Ωijkmn

g1Φh (vh)x dΩ−
∫

Ωijkmn

g2Φh (vh)y dΩ (4.19)

+ F+
x − F−x + F+

y − F−y + F+
w − F−w + F+

µ − F−µ + F+
ϕ − F−ϕ =

∫
Ωijkmn

C(Φh) vh dΩ.

for any test function vh ∈ Vh. In (4.19), the boundary integrals are given by

F±x =

∫ y
j+ 1

2

y
j− 1

2

∫ w
k+ 1

2

w
k− 1

2

∫ µ
m+ 1

2

µ
m− 1

2

∫ ϕ
n+ 1

2

ϕ
n− 1

2

ĝ1Φ v∓h (xi± 1
2
, y, w, µ, ϕ)dy dw dµ dϕ,

F±y =

∫ x
i+ 1

2

x
i− 1

2

∫ w
k+ 1

2

w
k− 1

2

∫ µ
m+ 1

2

µ
m− 1

2

∫ ϕ
n+ 1

2

ϕ
n− 1

2

ĝ2Φ v∓h (x, yj± 1
2
, w, µ, ϕ)dx dw dµ dϕ,

F±w =

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

∫ µ
m+ 1

2

µ
m− 1

2

∫ ϕ
n+ 1

2

ϕ
n− 1

2

ĝ3 Φ v∓h (x, y, wk± 1
2
, µ, ϕ)dx dy dµ dϕ,

F±µ =

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

∫ w
k+ 1

2

w
k− 1

2

∫ ϕ
n+ 1

2

ϕ
n− 1

2

ĝ4 Φ v∓h (x, y, w, µm± 1
2
, ϕ)dx dy dw dϕ,

F±ϕ =

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

∫ w
k+ 1

2

w
k− 1

2

∫ µ
m+ 1

2

µ
m− 1

2

ĝ5Φ v∓h (x, y, w, µ, ϕn± 1
2
)dx dy dw dµ,

where the upwind numerical fluxes ĝsΦ, s = 1, ..., 5 are defined as
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ĝ1Φ|xi±1/2
=

(
g1 + |g1|

2

)
Φh|−xi±1/2

+

(
g1 − |g1|

2

)
Φh|+xi±1/2

,

ĝ2Φ|yj±1/2
=

(
g2 + |g2|

2

)
Φh|−yj±1/2

+

(
g2 − |g2|

2

)
Φh|+yj±1/2

,

ĝ3Φ|wk±1/2
=

(
g3 + |g3|

2

)
Φh|−wk±1/2

+

(
g3 − |g3|

2

)
Φh|+wk±1/2

,

ĝ4Φ|µm±1/2
=

(
g4 + |g4|

2

)
Φh|−µm±1/2

+

(
g4 − |g4|

2

)
Φh|+µm±1/2

,

ĝ5Φ|ϕn±1/2
=

(
g5 + |g5|

2

)
Φh|−ϕn±1/2

+

(
g5 − |g5|

2

)
Φh|+ϕn±1/2

. (4.20)

4.3.2 Poisson Equation - Local Discontinuous Galerkin (LDG) Method

The Poisson equation (4.17) is solved by the LDG method as in [34] .

By means of this scheme we find a solution Ψh, qh, sh ∈ W 1
h , where (q, s) =

(∂xΨ, ∂yΨ) and W 1
h = {v : v|Xij ∈ P 1(Xij)}, P 1(Xij) the set of linear polyno-

mials on Xij. It involves rewriting the equation into the following form,
q =

∂Ψ

∂x
, s =

∂Ψ

∂y
∂

∂x
(εrq) +

∂

∂y
(εrs) = R(t, x, y) ,

(4.21)

where R(t, x, y) = cp [ρ(t, x, y)−ND(x, y)] is a known function that can be

computed at each time step once Φ is solved from (4.19), and the coeffi-

cient εr depends on x, y. The Poisson system is only on the (x, y) domain.

Hence, we use the grid Iij =
[
xi− 1

2
, xi+ 1

2

]
×
[
yj− 1

2
, yj+ 1

2

]
, with i = 1, . . . , Nx,

j = 1, . . . , Ny +My, where j = Ny + 1, . . . , Ny +My denotes the oxide-silicon

region, and the grid in j = 1, . . . , Ny is consistent with the five-dimensional
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rectangular grid for the Boltzmann equation in the silicon region. The approx-

imation space is defined as

W `
h = {v : v|Iij ∈ P `(Iij)}. (4.22)

Here P `(Iij) denotes the set of all polynomials of degree at most ` on Iij. The

LDG scheme for (4.21) is: to find qh, sh,Ψh ∈ V `
h , such that∫

Ii,j

qhvhdxdy +

∫
Ii,j

Ψh(vh)xdxdy −
∫ y

j+ 1
2

y
j− 1

2

Ψ̂hv
−
h (xi+ 1

2
, y)dy +

∫ y
j+ 1

2

y
j− 1

2

Ψ̂hv
+
h (xi− 1

2
, y)dy = 0,∫

Ii,j

shwhdxdy +

∫
Ii,j

Ψh(wh)ydxdy −
∫ x

i+ 1
2

x
i− 1

2

Ψ̃hw
−
h (x, yj+ 1

2
)dx+

∫ x
i+ 1

2

x
i− 1

2

Ψ̃hw
+
h (x, yj− 1

2
)dx = 0,

−
∫
Ii,j

εrqh(ph)xdxdy +

∫ y
j+ 1

2

y
j− 1

2

ε̂rqhp
−
h (xi+ 1

2
, y)dy −

∫ y
j+ 1

2

y
j− 1

2

ε̂rqhp
+
h (xi− 1

2
, y)dy

−
∫
Ii,j

εrsh(ph)ydxdy +

∫ x
i+ 1

2

x
i− 1

2

ε̃rshp
−
h (x, yj+ 1

2
)dx−

∫ x
i+ 1

2

x
i− 1

2

ε̃rshp
+
h (x, yj− 1

2
)dx

=

∫
Ii,j

R(t, x, y)phdxdy , (4.23)

hold true for any vh, wh, ph ∈ W `
h. In the above formulation, we choose the

flux as follows, in the x-direction, we use Ψ̂h = Ψ−h , ε̂rqh = εrq
+
h − [Ψh]. In the

y-direction, we use Ψ̃h = Ψ−h , ε̃rsh = εrs
+
h − [Ψh]. On some part of the domain

boundary, the above flux needs to be changed to accommodate various bound-

ary conditions. For example, in the case of a double gate MOSFET device,

for the boundary condition of the Poisson equation, Ψ = 0.52354 at source,

Ψ = 1.5235 at drain and Ψ = 1.06 at gate. For the rest of the boundary re-

gions, we have homogeneous Neumann boundary conditions, i.e., ∂Ψ
∂n

= 0. The

relative dielectric constant in the oxide-silicon region is εr = 3.9, in the silicon
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region is εr = 11.7. Near the drain then, we are given Dirichlet boundary con-

dition, so we need to flip the flux in x−direction: let Ψ̂h(xi+ 1
2
, y) = Ψ+

h (xi+ 1
2
, y)

and ε̂rqh(xi+ 1
2
, y) = εrq

−
h (xi+ 1

2
, y)− [Ψh](xi+ 1

2
, y), if the point (xi+ 1

2
, y) is at the

drain. For the gate, we need to flip the flux in y−direction: let Ψ̃h(x, yj+ 1
2
) =

Ψ+
h (x, yj+ 1

2
) and ε̃rsh(x, yj+ 1

2
) = εrs

−
h (x, yj+ 1

2
) − [Ψh](x, yj+ 1

2
), if the point

(x, yj+ 1
2
) is at the gate. For the bottom, we need to use the Neumann con-

dition, and flip the flux in y-direction, i.e., Ψ̃h = Ψ+
h , ε̃rsh = εrs

−
h . This

scheme described above will enforce the continuity of Ψ and εr
∂Ψ
∂n

across the

interface of silicon and oxide-silicon interface. The solution of (4.23) gives us

approximations to both the potential Ψh and the electric field (Ex)h = −cvqh,

(Ey)h = −cvsh.

4.3.3 RK-DG Algorithm for BP, from tn to tn+1

The following RK-DG algorithm for BP is a dynamic extension of the

Gummel iteration map. To evolve from time tn to time tn+1:

1. Compute the electron density ρh(x, y, t).

2. Solve Poisson Eq. for the given ρh(x, y, t) by Local DG, obtaining the

potential Ψh and the electric field Eh = −(qh, sh). Compute then the

respective transport terms gs, s = 1, ..., 5.

3. Solve by DG the advection and collision part of the Boltzmann Equation.

A Method of Lines (an ODE system) for the time dependent coefficients

of Φh (degrees of freedom) is obtained.
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4. Evolve ODE system by Runge-Kutta from tn to tn+1. (If partial time

step necessary, repeat Step 1 to 3 as needed).

4.4 Boundary Conditions Implementation for 2D-~x, 3D-
~k devices at x,w, µ, ϕ Boundaries

We will consider in this work 2D devices in position space, which need

a 3D momentum description for kinetic equations modeling semiconductors.

For example, a common device of interest is a 2D double gate MOSFET. A

schematic plot of it is given in Figure 4.1. The shadowed region denotes the

oxide-silicon region, whereas the rest is the silicon region. Potential bias are

applied at the source, drain, and gates. The problem is symmetric about the

x-axis.

Another possible 2D problem is the case of a bi-dimensional bulk silicon diode,

for which the doping is constant all over the physical domain, and which would

have just an applied potential (bias) between the source x = 0 and the drain

x = Lx (no gates), with insulating reflecting boundaries at y = 0 and y = Ly.

We consider in the following sections the different kinds of boundary

conditions for 2D devices and their numerical implementation, either at ~x-

boundaries or at ~w-boundaries.

4.4.1 Poisson Eq. Boundary Condition

The BC for Poisson Eq. are imposed over the (x, y)-domain.

For example, for the case of a 2D Double gated MOSFET, Dirichlet
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Figure 4.1: Schematic representation of a 2D double gate MOSFET device

BC would be imposed to the potential Ψ, as we have three different applied

potentials biases, Ψ = 0.5235 Volts at the source x = 0, Ψ = 1.5235 Volts at

the drain x = Lx, Ψ = 1.06 Volts at the gates. Homogeneous Neumann BC

would be imposed for the rest of the boundaries, that is, ∂n̂Ψ = 0.

For the case of a 2D bulk silicon diode, we impose Dirichlet BC for

the difference of potential Ψ between source and drain, Ψ = 0.5235 Volts

at the source x = 0, Ψ = 1.5235 Volts at the drain x = Lx. For the

boundaries y = 0, Ly we impose Homogeneous Neumann BC too, that is,

∂yΨ|y0 = 0, y0 = 0, Ly.

4.4.2 Charge Neutrality BC

As in [34], at the source and drain contacts, we implement the charge

neutrality boundary condition (4.1). Ghost cells for i = 0 and i = Nx + 1
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at the respective boundaries are used, implementing this BC numerically as

below:

Φ(i = 0) = Φ(i = 1)
ND(i = 1)

ρ(i = 1)
,

and

Φ(i = Nx + 1) = Φ(i = Nx)
ND(i = Nx)

ρ(i = Nx)
.

4.4.3 Cut - Off BC

In the (w, µ, ϕ)-space, we only need to apply a cut-off Boundary Con-

dition. At w = wmax, Φh is made machine zero,

Φh(x, y, w, µ, ϕ, t)|w=wmax = 0. (4.24)

No other boundary condition is necessary for ~w-boundaries, since analytically

we have that

• at w = 0, g3 = 0,

• at µ = ±1, g4 = 0,

• at ϕ = 0, π, g5 = 0,

so, at such regions, the numerical flux always vanishes.

4.5 Reflection BC on BP

Reflection Boundary Conditions can be expressed in the form

f(~x,~k, t)|ΓN− = FR(f |ΓN+ ) (4.25)
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such that the following pointwise zero flux condition is satisfied at reflecting

boundaries

0 = η(~x) · J(~x, t) = η(~x) ·
∫

Ω~k

~v(~k) f(~x,~k, t) d~k , (4.26)

0 =

∫
η(~x)·~v(~k)>0

η(~x) · ~v(~k) f(~x,~k, t)|ΓN+ d
~k +

∫
η(~x)·~v(~k)<0

η(~x) · ~v(~k) f(~x,~k, t)|ΓN− d~k ,

0 =

∫
~v·η>0

~v · η f |ΓN+ d
~k +

∫
~v·η<0

~v · η FR(f |ΓN+ ) d~k ,

as in Cercignani, Gamba, and Levermore, [54] where the given BC at Neumann

boundary regions at the kinetic level is such that the particle flow vanishes.

For simplicity we write ~v = ~v(~k) = ∇~kε(~k)/~. We will study three kinds

of reflective boundary conditions: specular, diffusive, and mixed reflection.

The last one is a convex combination of the previous two, but the convexity

parameter can be either constant or momentum dependant, p(~k). We go over

the mathematics and numerics related to these conditions below.

4.5.1 Specular Reflection

It is clear that, at the analytical level, the specular reflection BC (4.6)

satisfies the zero flux condition pointwise at reflecting boundaries, since∫
η·~v >0

|η(~x) · ~v(~k)| f(~x,~k, t)
∣∣∣
Γ
N+

d~k −
∫
−η·~v <0

|η(~x) · ~v(~k)| f(~x,~k′, t)
∣∣∣
Γ
N+

d~k = 0.

(4.27)

Specular reflection BC in our transformed Boltzmann Eq. for the new coordi-

nate system is mathematically formulated in our problem as

Φ|−(x, y, w, µ, ϕ, t) = Φ|+(x, y, w, µ, π − ϕ, t), (x, y, w, µ, ϕ) ∈ Γ−N . (4.28)
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To impose numerically specular reflection BC at y = 0, Ly in the DG method,

we follow the procedure of [34]. We relate the inflow values of the pdf, as-

sociated to the outer ghost cells, to the outflow values of the pdf, which are

associated to the interior cells adjacent to the boundary, as given below

Φh|−(x, y1/2, w, µ, ϕ, t) = Φh|+(x, y1/2, w, µ, π − ϕ, t), y1/2 = 0, (4.29)

Φh|−(x, yNy+ 1
2
, w, µ, ϕ, t) = Φh|+(x, yNy+ 1

2
, w, µ, π − ϕ, t), yNy+ 1

2
= Ly.

In the case of the boundary y1/2 = 0, assuming ∆y0 = ∆y1, ∆ϕn′ = ∆ϕn, with

n′ = Nϕ−n+1, if (x, y1/2−y, w, µ, ϕ) ∈ Ωi0kmn then (x, y1/2 +y, w, µ, π−ϕ) ∈

Ωi1kmn′ . The values of Φh|±y1/2
at the related inner and outer boundary cells

Ωi0kmn (j = 0) and Ωi1kmn′ (j = 1) must be equal at the boundary y1/2 = 0.

Indeed

Φh|−Ωi0kmn(x, y1/2, w, µ, ϕ, t) = Φh|+Ωi1kmn′ (x, y1/2, w, µ, π − ϕ, t) =⇒

Ti0kmn +Xi0kmn
(x− xi)
∆xi/2

+ Yi0kmn
(y1/2 − y0)

∆y0/2
=

Ti1kmn′ +Xi1kmn′
(x− xi)
∆xi/2

+ Yi1kmn′
(y1/2 − y1)

∆y1/2
.

Therefore, from the equality above we find the relation between the

coefficients of Φh at inner and outer adjacent boundary cells, given by

Ti0kmn = Ti1kmn′ , Xi0kmn = Xi1kmn′ , Yi0kmn = −Yi1kmn′ . (4.30)

Following an analogous procedure for the boundary yNy+1/2, we have

Φh|−Ωi,Ny+1,kmn
(x, yNy+ 1

2
, w, µ, ϕ, t) = Φh|+Ωi,Ny,kmn′ (x, yNy+ 1

2
, w, µ, π − ϕ, t) ,
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then

Ti,Ny+1,kmn +Xi,Ny+1,kmn
(x− xi)
∆xi/2

+ Yi,Ny+1,kmn

(yNy+ 1
2
− yNy+1)

∆yNy+1/2
=

Ti,Ny ,kmn′ +Xi,Ny ,kmn′
(x− xi)
∆xi/2

+ Yi,Ny ,kmn′
(yNy+ 1

2
− yNy)

∆yNy/2
, (4.31)

hence

Ti,Ny+1,kmn = Ti,Ny ,kmn′ , Xi,Ny+1,kmn = Xi,Ny ,kmn′ , Yi,Ny+1,kmn = −Yi,Ny ,kmn′ .

4.5.2 Diffusive Reflection

The diffusive reflection BC can be formulated in the following way

f(~x,~k, t)|− = FD(f |+) = C σ {f |+} (~x, t) e−ε(
~k)/KBTL , (~x,~k) ∈ Γ−N , (4.32)

where σ {f |+} (~x, t) = σ(~x, t) and C = C{η(~x)} are the function and param-

eter such that the zero flux condition is satisfied at each of the points of the

Neumann Boundary

0 =

∫
~v·η>0

~v · η f |ΓN+ d
~k +

∫
~v·η<0

~v · η
[
Cσ(~x, t)e−ε(

~k)/KBTL
]
d~k ,

0 =

∫
~v·η>0

~v · η f |ΓN+ d
~k − σ(~x, t) · C

∫
~v·η<0

|~v · η| e−ε(~k)/KBTL d~k .

It follows then that

σ {f |+} (~x, t) =

∫
~v(~k)·η>0

~v · η f |ΓN+ (~x,~k, t) d~k , (4.33)

C {η(~x)} =

(∫
~v·η<0

|~v · η| e−ε(~k)/KBTL d~k

)−1

, (4.34)
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f(~x,~k, t)|− =
e−ε(

~k)/KBTL
∫
~v(~k)·η>0

~v · η f |ΓN+ (~x,~k, t) d~k∫
~v·η<0

|~v · η| e−ε(~k)/KBTL d~k
. (4.35)

The diffusive reflection BC, formulated in terms of the unknown func-

tion Φ of the transformed Boltzmann Equation 4.15, is expressed as

Φ|−(x, y, w, µ, ϕ, t) = FD(Φ|+) = C σ {Φ|+} (x, y, t) e−ws(w) , (4.36)

σ(x, y, t) =

∫
(g1,g2)·η>0

η · (g1, g2)(w, µ, ϕ) Φ|+ dwdµdϕ , (4.37)

C(η) =

(∫
(g1,g2)·η<0

|(g1, g2) · η| e−ws(w) dwdµdϕ

)−1

. (4.38)

We have, over the portion of the boundary considered, that η = (0,−1, 0) for

y = 0 and η = (0, 1, 0) for y = Ly. Therefore

Φ|−(x, yb, w, t) =
e−ws(w)

∫
−g2>0

|g2|Φ|+ dwdµdϕ∫
−g2<0

|g2| e−ws(w) dwdµdϕ
, yb = 0 , (4.39)

Φ|−(x, yb, w, t) =
e−ws(w)

∫
+g2>0

|g2|Φ|+ dwdµdϕ∫
+g2<0

|g2| e−ws(w) dwdµdϕ
, yb = Ly . (4.40)

4.5.2.1 Numerical Formulation of Diffusive BC for DG

For the DG numerical method, we have to project the boundary condi-

tions to be imposed in the space Vh. Our goal is to have at the numerical level

an equivalent pointwise zero flux condition at the reflection boundary regions.

We formulate then the diffusive BC for the DG method in the following

way

Φh|−(x, yb, w, µ, ϕ, t) = Πh {FD(Φh|+)}

= Πh

{
C σh {Φh|+} (x, yb, t) e

−ws(w)
}
, yb = 0, Ly.
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where σh ∈ Vh is a function in our piecewise polynomial space for (x, y) and

C is a parameter such that the zero flux condition is satisfied numerically

0 =

∫
~g·η>0

~g · ηΦh|+d~w +

∫
~g·η<0

~g · ηΦh|−d~w

=

∫
~g·η>0

~g · ηΦh|+d~w +

∫
~g·η<0

~g · ηΠh {FD(Φh|+)} d~w (4.41)

=

∫
~g·η>0

~g · ηΦh|+d~w +

∫
~g·η<0

~g · ηΠh

{
C σh {Φh|+} (x, yb, t) e

−ws(w)
}
d~w .

In the space Vh of piecewise continuous polynomials which are tensor products

of polynomials of degree p in ~x and of degree q in ~w, the following holds

Πh {f1(~x)f2(~w)} = Πh {f1(~x)} Πh {f2(~w)} , (4.42)

Vh = {v : v|Ωijkmn ∈ Qp,q(Ωijkmn) = P p(Xij)⊗ P q(Kkmn)}.

Therefore, for our particular case we have that

Πh

{
C σh(x, yb, t) e

−ws(w)
}

= C σh(x, yb, t) Πh

{
e−ws(w)

}
, (4.43)

so for the numerical zero flux condition pointwise we have that

0 =

∫
~g·η>0

~g · ηΦh|+d~w +

∫
~g·η<0

~g · η C σh {Φh|+} (x, yb, t) Πh

{
e−ws(w)

}
d~w

0 =

∫
~g·η>0

~g · ηΦh|+d~w − σh {Φh|+} (x, yb, t)C

∫
~g·η<0

|~g · η|Πh

{
e−ws(w)

}
d~w .

We observe then that we can obtain a numerical equivalent of the point-

wise zero flux condition if we define

σh {Φh|+} (x, yb, t) =

∫
±g2=~g·η>0

~g · ηΦh|+d~w = σ {Φh|+} (x, yb, t) , yb = 0, Ly .

C {η} = C {±ŷ} =

(∫
±g2=~g·η<0

|~g · η|Πh

{
e−ws(w)

}
d~w

)−1

, η = ±ŷ .
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In our particular case, in which we have chosen our function space as

piecewise linear in (x, y) and piecewise constant in (w, µ, ϕ), the projection of

the Maxwellian is a piecewise constant approximation representing its average

value over each momentum cell , that is

Πh

{
e−ws(w)

}
=
∑
k,m,n

χkmn

∫
kmn

e−ws(w) dw dµ dϕ

∆wk∆µm∆ϕn
=
∑
k,m,n

χkmn

∫ wk+

wk−
e−ws(w) dw

∆wk
.

(4.44)

Therefore, for the particular space we have chosen, we have that

σh {Φh|+} (x, yb, t) =

∫
±g2>0

±g2 Φh|+d~w = σ {Φh|+} (x, yb, t) , (4.45)

yb = 0 = y1/2 (η = −ŷ) , or yb = Ly = yNy+1/2 (η = +ŷ) ,

C−1 =

±g2<0∑
k,m,n

1

∆wk

∫ wk+1/2

wk−1/2

e−ws(w) dw

∫
k,m,n

|g2| dw dµ dϕ, η = ±ŷ ,

Φh|−(x, yb, w, µ, ϕ, t) = C σh {Φh|+} (x, yb, t) Πh

{
e−ws(w)

}
, yb = 0, Ly,

Φh|−(x, yb, w, µ, ϕ, t) =

∫
±g2>0

|g2|Φh|+d~w ×
∑±g2<0

k,m,n χk,m,n
∫
k
e−ws(w) dw/∆wk∑±g2<0

k,m,n

∫
kmn
|g2| dw dµ dϕ

∫
k
e−ws(w) dw/∆wk

.

We notice that the polynomial approximation σh is equal to the ana-

lytical function σ operating on the polynomial approximation Φh|+. However,

the constant C needed in order to achieve the zero flux condition numerically

is not equal to the value of this parameter in the analytical solution. In this

case C is an approximation of the analytical value using a piecewise constant

approximation of the Maxwellian (its average over cells).

The approximate operator σh {Φh|+} (x, y, t) gives a piecewise linear

polynomial dependant on (x, y) with time dependent coefficients. We have
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that

Φh|+ ∈ Vh =⇒ σh {Φh|+} (x, y, t) =

∫
± cosϕ>0

|g2|Φh|+ dwdµdϕ ∈ Vh

where Φh|+ is such that, at the boundary y = yb of the cell Ωijkmn, is given by

Φh|+(t, x, y, w, µ, ϕ) = Tijkmn(t) +Xijkmn(t)
2(x− xi)

∆xi
+ Yijkmn(t)

2(y − yj)
∆yj

.

We define I = ijkmn, so in ΩI = Xij ×Kkmn. Then,

σh(x, y, t) = σ0
I (t) + σxI (t)

(x− xi)
∆xi/2

+ σyI (t)
(y − yj)
∆yj/2

. (4.46)

We summarize the main results of these calculations for σh and Φh|−, by

showing just the ones related to y = Ly (the case y = 0 is analogous). At

the boundary y = Ly, the inner cells associated to outflow have j = Ny,

adjacent to the boundary, whereas the ghost cells related to inflow have the

index j = Ny + 1. We compute the integral σh as follows

σh {Φh|+} (x, y, t) =

∫
cosϕ≥0

√
w(1 + αKw)

1 + 2αKw

√
1− µ2 cosϕ Φh|+ dwdµdϕ

=

n≤Np/2∑
k,m,n

∫
Kkmn

√
w(1 + αKw)

1 + 2αKw

√
1− µ2 cosϕΦh|+ dwdµdϕ .

Therefore, we have, with I = (i, j, k,m, n), j = Ny below, that

σ0
I =

n≤Nϕ/2∑
k,m,n

TiNykmn

∫ wk+1/2

wk−1/2

√
w(1 + αKw)

1 + 2αKw
dw

∫ µm+1/2

µm−1/2

√
1− µ2dµ

∫ ϕn+1/2

ϕn−1/2

cosϕdϕ ,

σxI =

n≤Nϕ/2∑
k,m,n

XiNykmn

∫ wk+1/2

wk−1/2

√
w(1 + αKw)

1 + 2αKw
dw

∫ µm+1/2

µm−1/2

√
1− µ2dµ

∫ ϕn+1/2

ϕn−1/2

cosϕdϕ ,
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σyI =

n≤Nϕ/2∑
k,m,n

YiNykmn

∫ wk+1/2

wk−1/2

√
w(1 + αKw)

1 + 2αKw
dw

∫ µm+1/2

µm−1/2

√
1− µ2dµ

∫ ϕn+1/2

ϕn−1/2

cosϕdϕ .

(4.47)

Once the coefficients of σh have been computed, we use them to obtain

the polynomial approximation Φh|−, with j = Ny + 1, from (4.45)

Φh|−y=Ly
=
∑
i

n≥Nϕ/2∑
k,m,n

χiNyχkmnC

[
σ0
I + σxI

(x− xi)
∆xi/2

+ σyI (+1)

] ∫
k
e−ws(w) dw

∆wk
.

(4.48)

We have at the same time, by definition, that

Φh|−y=Ly
=

n≥Nϕ/2∑
i,k,m,n

χi,Ny+1,kmn

[
Ti,Ny+1,k,m,n +Xi,Ny+1,k,m,n

(x− xi)
∆xi/2

+ Yi,Ny+1,k,m,n(−1)

]
.

Therefore, the coefficients for Φh|−y=Ly
are

Ti,Ny+1,kmn(t) = Cσ0
iNykmn(t)

∫
k
e−ws(w)dw

∆wk
, (4.49)

Xi,Ny+1,kmn(t) = CσxiNykmn(t)

∫
k
e−ws(w)dw

∆wk
, (4.50)

Yi,Ny+1,kmn(t) = (−1)CσyiNykmn(t)

∫
k
e−ws(w)dw

∆wk
, (4.51)

keeping in mind that our parameter C is given by the formula below

C−1 =

n≥Np/2∑
k,m,n

∫
k
e−ws(w)dw

∆wk

∫
k

√
w(1 + αKw)

1 + 2αKw
dw

∫
m

√
1− µ2dµ

∫
n

cosϕdϕ .

(4.52)
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4.5.3 Mixed Reflection

The mixed reflection condition is a convex combination of the specular

and diffusive reflections:

f(~x,~k, t)|− = pf |+(~x,~k′, t) + (1− p)Cσ {f |+} (~x, t)e−ε(
~k)/KBT , (~x,~k) ∈ Γ−N ,

p is the Specularity Parameter, 0 ≤ p ≤ 1. p can be either constant or

p = p(~k), a function of the wave vector momentum.

For p constant, it can be shown easily that the previous formulas ob-

tained for the specular and diffusive BC, in particular the previous formulas for

σ C(x), works also in this case to obtain a zero flux condition at the Neumann

boundaries:

η · J =

∫
~v·η>0

~v · η f |+ d~k +

∫
~v·η<0

~v · η
[
pf(~x,~k′, t)|+ + (1− p)Ce−ε(~k)/KBTLσ(~x, t)

]
d~k

=

∫
~v·η>0

~v · η f |+ d~k + p

∫
~v·η<0

~v · η f(~x,~k′, t)|+ d~k + (1− p)σC
∫
~v·η<0

~v · η e
−ε(~k)
KBTL d~k

= σ(~x, t) − pσ(~x, t) + (1− p)σ(~x, t) (−1) = 0 .

However, for p(~k) a function of the crystal momentum the same choice of

σ(~x, t) and C(x) as in the diffusive case does not necessarily guarantee that

the zero flux condition will be satisfied at Neumann boundaries. Therefore,

a new condition for C in order to satisfy this condition must be derived. We

derive it below.

The general mixed reflection BC can be formulated as

f(~x,~k, t)|− = p(~k)f |+(~x,~k′, t) + (1−p(~k))C ′σ′ {f |+} (~x, t) e−ε(
~k)/KBT , (~x,~k) ∈ Γ−N
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where σ′ {f |+} (~x, t) and C ′ are the function and parameter such that the

pointwise zero flux condition is satisfied at the Neumann boundaries

0 = η(~x) · J(~x, t)

=

∫
~v·η>0

~v · η f |+ d~k +

∫
~v·η<0

~v · η
[
p(~k)f(~x,~k′, t)|+ + (1− p(~k))C ′e

−ε(~k)
KBTL σ′(~x, t)

]
d~k .

Since

0 =

∫
~v·η>0

~v·η f |+ d~k+

∫
~v·η<0

~v·η p(~k) f(~x,~k′, t)|+ d~k−σ′(~x, t)C ′
∫
~v·η<0

(1−p(~k))|~v·η| e
−ε

KBTL d~k ,

we conclude then that

σ′ {f |+} (~x, t) =

∫
~v·η>0

~v · η f |+ d~k −
∫
~v·η<0

|~v · η| p(~k) f(~x,~k′, t)|+ d~k , (4.53)

C ′ {η(~x)} =

(∫
~v·η<0

(1− p(~k))|~v · η| e
−ε

KBTL d~k

)−1

. (4.54)

The general mixed reflection BC then has the specific form

f(~x,~k, t)|− = p(~k) f |+(~x,~k′, t)

+ (1− p(~k)) e
− ε(~k)
KBT

(∫
~v·η>0

~v · η f |+ d~k −
∫
~v·η<0

|~v · η| p(~k) f(~x,~k′, t)|+ d~k
)

∫
~v·η<0

(1− p(~k))|~v · η| e
−ε(~k)
KBTL d~k

,

with (~x,~k) ∈ Γ−N , (~x,~k′) ∈ Γ+
N s.t. ~v(~k′) = ~v(~k)− 2(~v(~k) · η)η .

Notice that the product C ′σ′(~x, t) has the form

121



C ′σ′(~x, t) =

(∫
~v·η>0

~v · η f |+ d~k −
∫
~v·η<0

|~v · η| p(~k) f(~x,~k′, t)|+ d~k
)

∫
~v·η<0

(1− p(~k))|~v · η| e
−ε(~k)
KBTL d~k

(4.55)

which for the case of p constant, it reduces to the original function

σ(~x, t) and parameter C {η(~x)}.

If p = ct,

C ′σ′(~x, t) =

(∫
~v·η>0

~v · η f |+ d~k − p
∫
~v·η<0

|~v · η| f(~x,~k′, t)|+ d~k
)

∫
~v·η<0

(1− p)|~v · η| e
−ε(~k)
KBTL d~k

=
(1− p)

∫
~v·η>0

~v · η f |+ d~k

(1− p)
∫
~v·η<0

|~v · η| e
−ε(~k)
KBTL d~k

=

∫
~v·η>0

~v · η f |+ d~k∫
~v·η<0

|~v · η| e
−ε(~k)
KBTL d~k

= C σ (~x, t) .

However, for the non-constant case p(~k) the new function and param-

eter σ′(~x, t), C ′(η) need to be used instead, as the previous σ(~x, t), C(η) will

not satisfy the zero flux condition in general for p(~k)

0 =

∫
~v·η>0

~v·η f |+ d~k+

∫
~v·η<0

~v·η p(~k) f(~x,~k′, t)|+ d~k−σ′C ′
∫
~v·η<0

(1−p(~k))|~v·η| e
−ε

KBTL d~k,

C ′σ′ =

∫
~v·η>0

~v · η f |+ d~k +
∫
~v·η<0

~v · η p(~k) f(~x,~k′, t)|+ d~k∫
~v·η<0

(1− p(~k))|~v · η| e
−ε

KBTL d~k

6=
∫
~v·η>0

~v · η f |+ d~k∫
~v·η<0

|~v · η| e
−ε(~k)
KBTL d~k

= Cσ(~x, t) in general for p(~k).
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A more general possible case of mixed reflection BC would have a spec-

ularity parameter p(~x,~k, t) dependent on position, momentum, and time. The

related reflective BC would then be

f |−(~x,~k, t) = p(~x,~k, t)f |+(~x,~k′, t) +
(

1− p(~x,~k, t)
)
C∗(~x, t)σ∗(~x, t)M(~x,~k)

(~x,~k) ∈ ΓN− , and (~x,~k′) ∈ ΓN+ , (4.56)

where M(~x,~k) is the equilibrium probability distribution (not necessarily a

Maxwellian) according to which the electrons diffusively reflect on the phys-

ical boundary. σ∗(~x, t) and C∗(~x, t) are the functions such that the zero flux

condition is satisfied pointwise at insulating boundaries

0 = η(~x) ·
∫

Ω~k

~v(~k)fd~k =

∫
~v·η>0

η(~x) · ~v(~k)f |+d~k +

∫
~v·η<0

η(~x) · ~v(~k)f |−d~k

=

∫
~v·η>0

η · ~vf |+d~k

+

∫
~v·η<0

η · ~v
[
p(~x,~k, t)f |+(~x,~k′, t) +

(
1− p(~x,~k, t)

)
C∗(~x, t)σ∗(~x, t)M(~x,~k)

]
d~k

=

∫
~v·η>0

η · ~vf |+d~k +

∫
~v·η<0

η · ~v p(~x,~k, t)f |+(~x,~k′, t)d~k

− σ∗(~x, t)C∗(~x, t)

∫
~v·η<0

|η · ~v|
(

1− p(~x,~k, t)
)
M(~x,~k)d~k .

Therefore we conclude for this reflection case that

σ∗ {f |+} (~x, t) =

∫
~v·η>0

|η · ~v|f |+d~k −
∫
~v·η<0

|η · ~v| p(~x,~k, t)f |+(~x,~k′, t)d~k ,

(4.57)

C∗(~x, t) =

(∫
~v·η<0

|η · ~v|
(

1− p(~x,~k, t)
)
M(~x,~k)d~k

)−1

, (4.58)
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and then the full BC formula for the p(~x,~k, t) reflection case is

f |−(~x,~k, t) = p(~x,~k, t)f |+(~x,~k′, t) +(
1− p(~x,~k, t)

)
M(~x,~k)

[∫
~v·η>0

|η · ~v|f |+d~k −
∫
~v·η<0

|η · ~v| p(~x,~k, t)f |+(~x,~k′, t)d~k
]

∫
~v·η<0

|η · ~v|
(

1− p(~x,~k, t)
)
M(~x,~k)d~k

.

Remark: p(~x,~k, t) can be any iid random variable in (~x,~k, t).

4.5.3.1 Numerical Implementation

The numerical implementation of the general mixed reflection with

specularity parameter p(~k) is done in such a way that a numerical equiva-

lent of the pointwise zero flux condition is achieved.

The general mixed reflection boundary condition in our DG numerical

scheme is

Φh|− = Πh

{
FM

(
Φh|+

)}
(4.59)

= Πh

{
p(~w)Φh|+(~x, ~w′, t) + (1− p(~w))C ′σ′h {Φh|+} (~x, t) e−ws(w)

}
.

We will be using the notation

~w = (w, µ, ϕ), d~w = dw dµ dϕ , ~w′ = (w, µ, π − ϕ). (4.60)

The specific form of C ′ and σ′ will be deduced from the numerical

analogous of the mixed reflection boundary condition. We want to satisfy
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numerically the zero flux condition

0 = η(~x) ·
∫

Ω~w

~v(~w) Φhd~w (4.61)

=

∫
~v·η>0

~v(~w) · ηΦh|+d~w +

∫
~v·η<0

~v(~w) · ηΦh|−d~w

=

∫
~v·η>0

~v · ηΦh|+d~w

+

∫
~v·η<0

~v · ηΠh

{
p(~w)Φh|+(~x, ~w′, t) + (1− p(~w))C ′σ′h(~x, t)e

−ws(w)
}
d~w

=

∫
~v·η>0

~v · ηΦh|+d~w −
∫
~v·η<0

|~v · η|Πh {p(~w)Φh|+(~x, ~w′, t)} d~w

+

∫
~v·η<0

~v · ηΠh

{
(1− p(~w))C ′σ′h(~x, t)e

−ws(w)
}
d~w. (4.62)

In the space Vh of piecewise continuous polynomials which are tensor

products of polynomials of degree p in ~x and of degree q in ~w, it holds that

Πh {f1(~x)f2(~w)} = Πh {f1(~x)} Πh {f2(~w)} , (4.63)

Vh = {v : v|Ωijkmn ∈ Qp,q(Ωijkmn) = P p(Xij)⊗ P q(Kkmn)}.

Therefore, we have for our particular case that

Πh

{
(1− p(~w))C ′σ′h(~x, t)e

−ws(w)
}

= C ′σ′h(~x, t)

[∑
k,m,n

χkmn

∫
Kkmn

(1− p(~w))e−ws(w)d~w∫
Kkmn

d~w

]
.

Using this, our numerical pointwise zero flux condition is
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0 =

∫
~v·η>0

~v · ηΦh|+d~w −
∫
~v·η<0

|~v · η|Πh {p(~w)Φh|+(~x, ~w′, t)} d~w

+

∫
~v·η<0

~v · η C ′σ′h(~x, t)

[∑
k,m,n

χkmn

∫
Kkmn

(1− p(~w))e−ws(w)d~w∫
Kkmn

d~w

]
d~w

=

∫
~v·η>0

~v · ηΦh|+d~w −
∫
~v·η<0

|~v · η|Πh {p(~w)Φh|+(~x, ~w′, t)} d~w

+ C ′σ′h(~x, t)

∫
~v·η<0

~v · η

[∑
k,m,n

χkmn

∫
Kkmn

(1− p(~w))e−ws(w)d~w∫
Kkmn

d~w

]
d~w

=

∫
~v·η>0

~v · ηΦh|+d~w −
∫
~v·η<0

|~v · η|Πh {p(~w)Φh|+(~x, ~w′, t)} d~w

− C ′σ′h(~x, t)
∑
k,m,n

χkmn

∫
~v·η<0

|~v · η| d~w
∫
Kkmn

(1− p(~w))e−ws(w)d~w∫
Kkmn

d~w

=

∫
~v·η>0

~v · ηΦh|+d~w −
∫
~v·η<0

|~v · η|Πh {p(~w)Φh|+(~x, ~w′, t)} d~w

− σ′h(~x, t)C
′

∑
k,m,n,~v·η<0

∫
Kkmn

|~v · η| d~w
∫
Kkmn

(1− p(~w))e−ws(w)d~w∫
Kkmn

d~w
.

We conclude then that we can achieve a numerical equivalent of the

pointwise zero flux condition by defining

σ′h {Φh|+} (~x, t) =

∫
~v·η>0

~v ·ηΦh|+d~w −
∫
~v·η<0

|~v ·η|Πh {p(~w)Φh|+(~x, ~w′, t)} d~w,

(4.64)

(C ′ {η})−1
=

∑
k,m,n,~v·η<0

∫
Kkmn

|~v · η| d~w
∫
Kkmn

(1− p(~w))e−ws(w)d~w

∆wk∆µm∆ϕn
. (4.65)

Therefore, the inflow BC in our DG numerical method is given by the
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expression

Φh|− = Πh {p(~w)Φh|+(~x, ~w′, t)}

+ Πh

{
(1− p(~w))C ′

(∫
~v·η>0

~v · ηΦh|+d~w

−
∫
~v·η<0

|~v · η|Πh {p(~w)Φh|+(~x, ~w′, t)} d~w
)
e−ws(w)

}
.

The particular form of the coefficients defining the piecewise polynomial

approximation Φh|− for the general mixed reflection BC is presented below for

the boundary y = Ly, since the calculations for the case of the boundary y = 0

are analogous.

For the boundary yNy+1/2 = Ly , η · ~v ∝ +ŷ · ~g = g2 ∝ cosϕ , which

defines the sign of g2. Outflow cells have the index j = Ny . They are cells

inside the domain adjacent to the boundary. Inflow cells have the index j =

Ny + 1. They are ghost cells adjacent to the boundary. We have in our case

that

σ′h =

∫
cosϕ>0

g2 Φh|+d~w −
∫

cosϕ<0

|g2|Πh {p(~w)Φh|+(~x, ~w′, t)} d~w

=

n≤Nϕ/2∑
k,m,n

∫
Kkmn

g2 Φh|+d~w −
n>Nϕ/2∑
k,m,n

∫
Kkmn

|g2|Πh {p(~w)Φh|+(~x, ~w′, t)} d~w .

If I = (i, Ny + 1, k,m, n) (inflow), I ′ = (i, Ny, k,m, n
′), n′ = N ′ϕ − n + 1

(outflow), the projection integrand is given by

Πh {p(~w)Φh|+(~x, ~w′, t)} =

n>Nϕ/2∑
I

χI

∫
kmn

p(~w)d~w∫
kmn

d~w

[
TI′ +XI′

(x− xi)
∆xi/2

+ YI′(+1)

]
.
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The coefficients of σ′h are given below. We have now that I = (i, Ny, k,m, n),

I ′ = (i, Ny, k,m, n
′), n′ = N ′ϕ − n + 1 , so from the previous two formulas

then

σ′
0
i,Ny =

n≤Np/2∑
k,m,n

TI(t)

∫
k

√
w(1 + αKw)

1 + 2αKw
dw

∫
m

√
1− µ2dµ

∫
n

cosϕdϕ (4.66)

−
n>Np/2∑
k,m,n

TI′(t)

∫
k

√
w(1 + αKw)

1 + 2αKw
dw

∫
m

√
1− µ2dµ

∫
n

| cosϕ|dϕ
∫
kmn

p(~w)d~w∫
kmn

d~w
,

σ′
x
i,Ny =

n≤Np/2∑
k,m,n

XI(t)

∫
k

√
w(1 + αKw)

1 + 2αKw
dw

∫
m

√
1− µ2dµ

∫
n

cosϕdϕ

−
n>Np/2∑
k,m,n

XI′(t)

∫
k

√
w(1 + αKw)

1 + 2αKw
dw

∫
m

√
1− µ2dµ

∫
n

| cosϕ|dϕ
∫
kmn

p(~w)d~w∫
kmn

d~w
,

σ′
y
i,Ny =

n≤Np/2∑
k,m,n

YI(t)

∫
k

√
w(1 + αKw)

1 + 2αKw
dw

∫
m

√
1− µ2dµ

∫
n

cosϕdϕ

−
n>Np/2∑
k,m,n

YI′(t)

∫
k

√
w(1 + αKw)

1 + 2αKw
dw

∫
m

√
1− µ2dµ

∫
n

| cosϕ|dϕ
∫
kmn

p(~w)d~w∫
kmn

d~w
.

Since on one hand we have

Φh|−Ly = Πh {p(~w)Φh|+(~x, ~w′, t)}+ Πh

{
(1− p(~w))C ′σ′h {Φh|+} (~x, t) e−ws(w)

}
=

n>Nϕ/2∑
i,k,m,n

χi,Ny+1,k,m,n

∫
kmn

p(~w)d~w∫
kmn

d~w

[
Ti,Ny ,k,m,n′ +Xi,Ny ,k,m,n′

(x− xi)
∆xi/2

+ Yi,Ny ,k,m,n′

]

+

n>Nϕ/2∑
i,k,m,n

χi,Ny+1,k,m,n

∫
kmn

(1− p(~w))e−ws(w)d~w∫
kmn

d~w
×

× C ′
[
σ′

0
i,Ny + σ′

x
i,Ny

(x− xi)
∆xi/2

+ σ′
y
i,Ny(+1)

]
,
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and on the other hand

Φh|−yNy+1/2
=

n>Nϕ/2∑
i,k,m,n

χi,Ny+1,k,m,n

[
Ti,Ny+1,k,m,n +Xi,Ny+1,k,m,n

(x− xi)
∆xi/2

+ Yi,Ny+1,k,m,n(−1)

]
,

we conclude that the coefficients for Φh|− are

Ti,Ny+1,k,m,n = TI′

∫
kmn

p(~w)d~w∫
kmn

d~w
+ C ′σ′

0
i,Ny

∫
kmn

(1− p(~w))e−ws(w)d~w∫
kmn

d~w
,

Xi,Ny+1,k,m,n = XI′

∫
kmn

p(~w)d~w∫
kmn

d~w
+ C ′σ′

x
i,Ny

∫
kmn

(1− p(~w))e−ws(w)d~w∫
kmn

d~w
,

Yi,Ny+1,k,m,n = −
(
YI′

∫
kmn

p(~w)d~w∫
kmn

d~w
+ C ′σ′

y
i,Ny

∫
kmn

(1− p(~w))e−ws(w)d~w∫
kmn

d~w

)
,

I ′ = (i, Ny, k,m, n
′), I = (i, Ny, k,m, n) . (4.67)

4.6 Numerical Results

4.6.1 2D bulk silicon

We present results of numerical simulations for the case of n 2D bulk

silicon diode with an applied bias between the boundaries x = 0, Lx, and reflec-

tion BC at the boundaries y = 0, Ly (Figs. 4.2). The required dimensionality

in momentum space is a 3D ~k(w, µ, ϕ). The specifics of our simulations are:

Initial Condition: Φ(w)|t=0 = Πh {Ne−ws(w)}. Final Time: 1.0ps

Boundary Conditions (BC):

~k-space: Cut-off - at w = wmax, Φ is machine zero.

Only needed BC in (w, µ, ϕ): transport normal to the boundary analitically

zero at ’singular points’ boundaries:

At w = 0, g3 = 0. At µ = ±1, g4 = 0. At ϕ = 0, π, g5 = 0.
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~x-space: Charge Neutrality at boundaries x = 0, x = 0.15µm.

Bias - Potential: V |x=0 = 0.5235 V, V |x=0.15µm = 1.5235 V.

Neumann BC for Potential at y = 0, Ly = 12nm: ∂yV |y=0, Ly = 0.

Reflection BC at y = 0, y = 12nm: Specular, Diffusive, Mixed Reflection with

constant specularity p = 0.5, and Mixed Reflection using a momentum depen-

dent specularity p(~k) = exp(−4η2|k|2 sin2 ϕ), the nondimensional roughness

rms height coefficient being η = 0.5.

We observe an influence of the Diffusive and Mixed Reflection in macro-

scopic observables. It is particularly noticeable in the kinetic moments. For

example, the charge density slightly increases with diffusivity close to the re-

flecting boundaries, and, due to mass conservation, alters the density profile

over the domain. Momentum & mean velocity increase with diffusive reflec-

tion over the domain, while the energy is decreased by diffusive reflection over

the domain. There is a negligible difference in the electric field x component

below its orders of magnitude for the different reflection cases.

4.6.2 2D double gated MOSFET

We present as well the results of numerical simulations for the case of

a 2D double gated MOSFET device (Figs. 4.3). On one hand, the BC for the

Poisson Eq. for this device would be the Dirichlet BC Ψ = 0.5235 Volts at the

source x = 0, Ψ = 1.5235 Volts at the drain x = Lx, and Ψ = 1.06 Volts at the

gates. On the other hand, Homogeneous Neumann BC ∂n̂Ψ = 0 are imposed

at the rest of the boundaries. Specular reflection is applied at the boundary
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y = 0 because the solution is symmetric with respect to y = 0 for our 2D

double gate MOSFET (Fig. 4.1). On the other hand, at the boundary y = Ly

we apply specular, diffusive, and mixed reflection BC, both with constant

p = 0.5, and with a momentum dependent p(~k) = exp(−4η2|k|2 sin2 ϕ) with

roughness coefficient η = 0.5. We use again the initial condition: Φ(w)|t=0 =

Πh {ND(x, y)e−ws(w)}, running the simulations up to the physical time of

1.0ps. We use again as well a cut-off BC in the boundary of the momentum

domain, so Φ is machine zero at w = wmax, and we apply charge neutrality

BC at x = 0, x = 0.15µm.

We observe a quantitative difference in the kinetic moments and other

observables between the different cases of reflective BC, with the physical quan-

tities being of the same order of magnitude. The electron density increases

close to the gates with diffusive reflection, and close to the center of the de-

vice, given by the boundary y = 0, the density profile is greater for specular

reflection. The energy moment clearly decreases with diffusive reflection over

the physical domain. The momentum x-component for specular reflection is

less than for the other reflective cases. There is a difference in the profile of

the electric field x-component between the specular reflection and the other

cases that include diffusivity, increasing it with diffusive reflection close to the

drain. The electric field y-component increases with diffusive reflection close to

the boundary y = 0 representing the center of the device. The electric poten-

tial is greater for the cases including diffusive reflection than for the perfectly

specular case.
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Density (1/m3)  vs. Position (x,y) 
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Momentum X-component (Ux: Current)  vs. Position (x,y)
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Momentum Y-component (Uy: Current)  vs. Position (x,y)
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Electric Field X-component (Ex)  vs. Position (x,y)
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Electric Field Y-component (Ey)  vs. Position (x,y)
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Electric Potential (V)  vs. Position (x,y)
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Figure 4.2: Density ρ (m−3), Mean energy e(eV ), Momentum
Ux, Uy (1028 cm−2

s
), Electric Field Components Ex and Ey, and Potential

V (V olts) vs Position (x, y) in (µm) plot for Specular, Diffusive, Mixed p = 0.5

& Mixed p(~k) = exp(−4η2|k|2 sin2 ϕ), η = 0.5 Reflection for 2D bulk silicon.
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Figure 4.3: Density ρ (m−3), Mean energy e(eV ), Momentum
Ux, Uy (1028 cm−2

s
), Electric Field Components Ex and Ey, and Potential

V (V olts) vs Position (x, y) in (µm) plot for Specular, Diffusive, Mixed p = 0.5

& Mixed p(~k) = exp(−4η2|k|2 sin2 ϕ), η = 0.5 Reflection for a 2D double gated
MOSFET.
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Chapter 5

Positivity preserving DG schemes for a

Boltzmann - Poisson model of electrons in

semiconductors in curvilinear momentum

coordinates

5.1 Introduction: Boltzmann Equation with Momen-
tum in Curvilinear Coordinates

We can write the Boltzmann - Poisson model for electron transport in

semiconductors for a more general set of collision operators as the system in

the (~x, ~p) position-momentum phase space for electrons

∂tf+∂~xf ·∂~pε+∂~pf ·q∂xV = Q(f) =

∫
Ω~p

S(~p ′ → ~p)f ′d~p ′−f
∫

Ω~p

S(~p→ ~p ′)d~p ′ ,

(5.1)

−∂~x · (ε∂~xV )(~x, t) = q

[
N(~x)−

∫
Ω~p

f(~x, ~p, t)d~p

]
, ~E(~x, t) = −∂~xV (~x, t) .

(5.2)

The momentum variable is ~p = ~~k, ~k is the crystal momentum wave vector,

ε(~p) is the conduction energy band for electrons in the semiconductor, f(~x, ~p, t)

is the probability density function (pdf) in the phase space for electrons in the

conduction band, ~v(~p) = ∂~pε(~p) is the quantum mechanical electron group

velocity, q is the positive electric charge, V (~x, t) is the electric potential (we

assume that the only force over the electrons is the self-consistent electric
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field, and that it is given by the negative gradient of the electric potential), ε

is the permittivity for the material, N(~x) is the fixed doping background in the

semiconductor material, and S(~p ′ → ~p) is the scattering kernel that defines

the gain and loss operators, whose difference give the collision integral Q(f).

For many collision mechanisms in semiconductors, the scattering kernel

S(~p ′ → ~p) depends on the difference ε(~p) − ε(~p′), as in collision operators of

the form δ(ε(~p) − ε(~p′) + l~wp) for electron - phonon collisions. This form is

related to energy conservation equations such as Planck’s law, in which the

jump in energy from one state to another is balanced with the energy of a

phonon. The mathematical consequence of this is that we can obtain much

simpler expressions for the integration of the collision operator if we express

the momentum in curvilinear coordinates that involve the energy ε(~p) as one

of the variables [21], [24], [26], [34] . The other two momentum coordinates

could be either an orthogonal system in the level set of energies, orthogonal

to the energy gradient itself, or angular coordinates which are known to be

orthogonal to the energy in the limit of low energies close to a local conduction

band minimum, such as (µ, ϕ).

This gives both physical and mathematical motivations to pose the

Boltzmann Equation for semiconductors in curvilinear coordinates for the mo-

mentum ~k(k1, k2, k3), to later on choose the particular case of curvilinear co-

ordinates such as (ε, µ, ϕ). We will assume in the rest of this chapter that our

system of curvilinear coordinates for the momentum is orthogonal, as in the

case (ε, µ, ϕ) in which ε(|~p|) is a monotone increasing function, so this set of
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coordinates is equivalent to the representation in spherical coordinates for the

momentum.

The Boltzmann Equation for semiconductors (or more general forms of

linear collisional plasma models) written in orthogonal curvilinear coordinates

~p(p1, p2, p3) for the momentum ~p = (px, py, pz) is

∂t(Jf)+∂~x·(Jf~v)+q

[
∂p1

(
Jf∂~xV · êp1

h1

)
+ ∂p2

(
Jf∂~xV · êp2

h2

)
+ ∂p3

(
Jf∂~xV · êp3

h3

)]
= C(f) = JQ(f) = J

∫
Ω~p

S(~p ′ → ~p)J ′f ′ dp′1 dp
′
2 dp

′
3− Jf

∫
Ω~p

S(~p→ ~p ′)J ′ dp′1 dp
′
2 dp

′
3 ,

with hj =
∣∣∣ ∂~p∂pj ∣∣∣ , j = 1, 2, 3, h1h2h3 = J = ∂~p

∂(p1,p2,p3)
the jacobian of the

transformation, J ′ = ∂~p ′

∂(p′1,p
′
2,p
′
3)

, and êj the unitary vectors associated to each

curvilinear coordinate pj at the point (p1, p2, p3).

We notice that we have expressed the Boltzmann Eq. in divergence

form with respect to the momentum curvilinear coordinates. We can write it

even more compactly in the form

∂t(Jf) + ∂~x · (Jf~v(~p )) +
3∑
j=1

∂pj

(
Jf

q∂~xV (~x, t) · êpj
hj

)
= C(f). (5.3)

If J ≥ 0, we can interpret Jf(~x, p1, p2, p3, t) as a probability density

function in the phase space (~x, p1, p2, p3)

This Boltzmann Eq. is a more general form for orthogonal curvilinear

coordinates, from which our previous spherical coordinate systems from Chap-

ter 3 and Chapter 4 can be derived. For the one in Chapter 3, the orthogonal

curvilinear system is (r, µ, ϕ), with r ∝ k2. The one in Chapter 4 is (w, µ, ϕ),

with w ∝ ε. assuming a Kane band energy ε.
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5.2 1Dx-2Dp Diode Symmetric Problem

As we have mentioned, for the case of a 1D silicon diode, the main

collision mechanisms are electron-phonon scatterings

S(~p ′ → ~p) =
+1∑
j=−1

cjδ(ε(~p
′)− ε(~p) + j~ω), c1 = (nph + 1)K, c−1 = nphK,

with ω the phonon frequency, assumed constant, and nph = nph(ω) the phonon

density. K, c0 are constants.

If we assume that the energy band just depends on the momentum

norm, ε(p), p = |~p|, and that the initial condition for the pdf has azimuthal

symmetry, f |t=0 = f0(x, p, µ), ∂ϕf = 0, ~p = p(µ,
√

1− µ2 cosϕ,
√

1− µ2 sinϕ),

then the dimensionality of the problem is reduced to 3D+time, 1D in x, 2D

in (p, µ), and the BP system for f(x, p, µ, t), V (x, t) is written in spherical

coordinates ~p(p, µ, ϕ) for the momentum as

∂tf + ∂x(f∂pεµ) +

[
∂p(p

2fµ)

p2
+
∂µ(f(1− µ2))

p

]
q∂xV (x, t) = Q(f) , (5.4)

−∂2
xV =

q

ε

[
N(x)− 2π

∫ +1

−1

∫ pmax

0

fp2dpdµ,

]
, V (0) = 0, V (L) = V0.

We have assumed that the permittivity ε is constant. The Poisson BVP above

can be easily solved and an analytic integral solution is easily obtained for

V (x, t) and E(x, t) = −∂xV (x, t), which later can be projected in the adequate

space for the numerical method. For this problem we only need to concern

about the Boltzmann Equation, since given the electron density we know the

solution for the potential and electric field.
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The collision operator, in this case, has the form

Q(f) = 2π

[
+1∑
j=−1

cj

∫ +1

−1

dµ′ f(x, p(ε′), µ′) p2(ε′)
dp′

dε′

∣∣∣∣
ε′=ε(p)+j~ω

χ(ε(p) + j~ω)

− f(x, p, µ, t)
+1∑
j=−1

cj 2 p2(ε′)
dp′

dε′

∣∣∣∣
ε′=ε(p)−j~ω

χ(ε(p)− j~ω)

]
,

where χ(ε) is 1 if ε ∈ [0, εmax] and 0 if ε /∈ [0, εmax], with εmax = ε(pmax). The

domain of the BP problem is x ∈ [0, L], p ∈ [0, pmax], µ ∈ [−1,+1], t > 0.

Moreover, since ε(p), then ∂~pε = dε
dp
p̂. We assume that dε

dp
> 0 is well behaved

enough such that p(ε) is a monotonic function for which dp
dε

= ( dε
dp

)−1 exists.

The collision frequency is

ν(ε(p)) =
+1∑
j=−1

cj 4π χ(ε(p)− j~ω) p2(ε′)
dp′

dε′

∣∣∣∣
ε′=ε(p)−j~ω

=
+1∑
j=−1

cjn(ε(p)− j~ω) ,

(5.5)

where

n(ε(p)− j~ω) =

∫
Ω~p

δ(ε(~p ′)− ε(~p) + j~ω) d~p ′ (5.6)

is the density of states with energy ε(p)− j~ω.

5.3 DG for Boltzmann-Poisson 1Dx-2Dp Problem

5.3.1 Weak Form of the Transformed Boltzmann Eq.

Since for f(x, p, µ), g(x, p, µ) we have that∫
Ωx

∫
Ω~p

fg d~pdx = 2π

∫
Ωx

∫
Ω(p,µ)

fg p2 dpdµdx , (5.7)

we define the inner product of two functions f and g in the (x, p, µ) space as

(f, g)X×K =

∫
X

∫
K

fg p2 dpdµdx , (5.8)
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where X ⊂ [0, L] and K ⊂ [0, pmax]× [−1,+1].

The Boltzmann Equation for our problem is written in weak form as

(∂tf, g)Ω+(∂x(f∂pεµ), g)Ω+

([
∂p(p

2fµ)

p2
+
∂µ(f(1− µ2))

p

]
q∂xV (x, t), g

)
Ω

= (Q(f), g)Ω ,

where Ω = X ×K. More specifically, we have that (∂tg = 0)

∂t

∫
Ω

f g p2 dpdµdx +

∫
Ω

∂x(f∂pεµ) g p2dpdµdx

+

∫
Ω

∂p(p
2fµ)q∂xV (x, t)g dpdµdx+

∫
Ω

∂µ(f(1− µ2))q∂xV (x, t)g p dpdµdx

=

∫
Ω

Q(f) g p2dpdµdx .

5.3.2 DG-FEM Formulation for the Transformed Boltzmann Eq.
in the (x, p, µ) domain

We will use the following mesh in the domain

Ωikm = Xi ×Kk,m = [xi− , xi+ ]× [pk− , pk+ ]× [µm− , µm+ ] , (5.9)

where

xi± = xi±1/2, pk± = pk±1/2, µm± = µm±1/2 . (5.10)

We define the notation for the internal product in our problem, using the above

mentioned mesh, as ∫
ikm

fg p2dpdµ dx = (f, g)Ωikm . (5.11)

The semi-discrete DG Formulation for our Transformed Boltzmann

Equation in curvilinear coordinates is to find fh ∈ V k
h such that ∀ gh ∈ V k

h
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and ∀Ωikm,

∂t

∫
ikm

fh gh p
2dpdµdx

−
∫
ikm

∂pε(p) fh µ ∂xgh p
2dpdµdx ±

∫
km

∂pε f̂hµ|xi± gh|∓xi± p
2dpdµ

−
∫
ikm

p2(−qE)(x, t)fhµ ∂pgh dµdx ±
∫
im

p2
k± (−qÊfhµ)|pk±gh|∓pk± dµdx

−
∫
ikm

(1− µ2)fh(−qE)(x, t) ∂µgh p dpdµdx ±
∫
ik

(1− µ2
m±)(−qÊfh)|µm± gh|∓µm± p dpdx

=

∫
ikm

Q(fh)gh p
2dpdµdx .

The Numerical Flux used is the Upwind Rule. Therefore we have that

f̂hµ|xi± =

(
µ+ |µ|

2

)
fh|−xi± +

(
µ− |µ|

2

)
fh|+xi± ,

−q̂Eµfh|pk± =

(
−qEµ+ |qEµ|

2

)
fh|−pk± +

(
−qEµ− |qEµ|

2

)
fh|+pk± ,

−q̂Efh|µm± =

(
−qE + |qE|

2

)
fh|−µm± +

(
−qE − |qE|

2

)
fh|+µm± .

Using the notation in the paper of Eindeve, Hauck, Xing, Mezzacappa

[65], the semi-discrete DG formulation is written as follows. Find fh ∈ V k
h

such that ∀ gh ∈ V k
h and ∀Ωikm

∂t

∫
Ωikm

fh gh p
2dpdµdx

−
∫

Ωikm

H(x) fh ∂xgh p
2dpdµdx ±

∫
Ω̃

(x)
km

Ĥ(x)fh|xi± gh|∓xi± p
2dpdµ

−
∫

Ωikm

p2H(p)fh ∂pgh dµdx ± p2
k±

∫
Ω̃

(p)
im

Ĥ(p)fh|pk± gh|∓pk± dµdx

−
∫

Ωikm

(1− µ2)H(µ)fh ∂µgh p dpdµdx ± (1− µ2
m±)

∫
Ω̃

(µ)
ik

Ĥ(µ)fh|µm± gh|∓µm± p dpdx

=

∫
Ωikm

Q(fh)gh p
2dpdµdx ,
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where we have defined the terms (∂pε(p) > 0)

H(x)(p, µ) = µ ∂pε(p) , Ĥ(x)f |xi± = ∂pεf̂hµ|xi± ,

H(p)(t, x, µ) = −qE(x, t)µ , Ĥ(p)f |pk± = −qÊfhµ|pk± ,

H(µ)(x, t) = −qE(x, t) , Ĥ(µ)f |µm± = −qÊfh|µm± ,

Ω̃
(x)
km = [rk−, rk+]× [µm−, µm+] = ∂xΩkm ,

Ω̃
(p)
im = [xi−, xi+]× [µm−, µm+] = ∂pΩim ,

Ω̃
(µ)
ik = [xi−, xi+]× [rk−, rk+] = ∂µΩik .

The weak form of the collisional operator in the DG scheme is, specifically,∫
Ωikm

Q(fh) gh p
2 dpdµdx =

∫
Ωikm

[G(fh)− ν(ε(p))fh] gh p
2 dpdµdx = (5.12)

2π

∫
Ωikm

(
+1∑
j=−1

cj χ(ε(p) + j~ω)

∫ +1

−1

dµ′
[
fh(x, p(ε

′), µ′) p2(ε′)
dp′

dε′

]∣∣∣∣
ε(p)+j~ω

)
gh p

2 dpdµdx

−4π

∫
Ωikm

fh(x, p, µ, t)

(
+1∑
j=−1

cj χ(ε(p)− j~ω)

[
p2(ε′)

dp′

dε′

]∣∣∣∣
ε′=ε(p)−j~ω

)
gh p

2 dpdµdx .

The cell average of fh in Ωikm is

f̄ikm =

∫
Ωikm

fh p
2 dpdµdx∫

Ωikm
p2 dpdµdx

=

∫
Ωikm

fh dV

Vikm
, (5.13)

where for our spherical curvilinear coordinates we have

Vikm =

∫
Ωikm

dV , dV = τ

3∏
d=1

zd, (z1, z2, z3) = z = (x, p, µ), τ =
√
γλ, γ = 1, λ = p2 .

(5.14)
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The time evolution of the cell average in the DG scheme is given by

∂tf̄ikm =

− 1

Vikm

[∫
∂xΩkm

Ĥ(x)fh|xi+ p2dpdµ−
∫
∂xΩkm

Ĥ(x)fh|xi− p2dpdµ

+ p2
k+

∫
∂pΩim

Ĥ(p)fh|pk+
dµdx− p2

k−

∫
∂pΩim

Ĥ(p)fh|pk− dµdx

+ (1− µ2
m+)

∫
∂µΩik

Ĥ(µ)fh|µm+ p dpdx− (1− µ2
m−)

∫
∂µΩik

Ĥ(µ)fh|µm− p dpdx

]

+

[
2π

∫
Ωikm

(
+1∑
j=−1

cj

∫ +1

−1

dµ′
[
fh(x, p(ε

′), µ′) p2(ε′)
dp′

dε′
χ(ε′)

]∣∣∣∣
ε(p)+j~ω

)
p2 dpdµdx

−4π

∫
Ωikm

fh(x, p, µ, t)

(
+1∑
j=−1

cj

[
p2(ε′)

dp′

dε′
χ(ε′)

]∣∣∣∣
ε′=ε(p)−j~ω

)
p2 dpdµdx

]
1

Vikm
.

Regarding the time discretization, we will apply a TVD RK-DG scheme.

These schemes are convex combinations of Euler methods. We consider there-

fore the time evolution of the cell average in the DG scheme using Forward

Euler: ∂tf̄ikm ≈ (f̄n+1
ikm − f̄nikm)/∆tn
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f̄n+1
ikm = f̄nikm

− ∆tn

Vikm

[∫
∂xΩkm

Ĥ(x)fh|xi+ p2dpdµ−
∫
∂xΩkm

Ĥ(x)fh|xi− p2dpdµ

+ p2
k+

∫
∂pΩim

Ĥ(p)fh|pk+
dµdx− p2

k−

∫
∂pΩim

Ĥ(p)fh|pk− dµdx

+ (1− µ2
m+)

∫
∂µΩik

Ĥ(µ)fh|µm+ p dpdx− (1− µ2
m−)

∫
∂µΩik

Ĥ(µ)fh|µm− p dpdx

]

+

[
2π

∫
Ωikm

(
+1∑
j=−1

cj

∫ +1

−1

dµ′
[
χ(ε′)fh(x, p(ε

′), µ′) p2(ε′)
dp′

dε′

]∣∣∣∣
ε′=ε(p)+j~ω

)
p2 dpdµdx

−4π

∫
Ωikm

fh(x, p, µ, t)

(
+1∑
j=−1

cj

[
p2(ε′)

dp′

dε′
χ(ε′)

]∣∣∣∣
ε′=ε(p)−j~ω

)
p2 dpdµdx

]
∆tn

Vikm
,

or, more briefly,

f̄n+1
ikm = f̄nikm + ΓT + ΓC , (5.15)

where the transport and collision terms for the cell average time evolution are

defined as

ΓT = −∆tn

Vikm

[∫
∂xΩkm

Ĥ(x)fh|xi+ p2dpdµ−
∫
∂xΩkm

Ĥ(x)fh|xi− p2dpdµ

+ p2
k+

∫
∂pΩim

Ĥ(p)fh|pk+
dµdx− p2

k−

∫
∂pΩim

Ĥ(p)fh|pk− dµdx

+ (1− µ2
m+)

∫
∂µΩik

Ĥ(µ)fh|µm+ p dpdx− (1− µ2
m−)

∫
∂µΩik

Ĥ(µ)fh|µm− p dpdx

]
,

ΓC =

[
2π

∫
Ωikm

(
+1∑
j=−1

cj

∫ +1

−1

dµ′ fh(x, p(ε
′), µ′) p2(ε′)

dp′

dε′
χ(ε′)

∣∣∣∣
ε(p)+j~ω

)
p2 dpdµdx

−4π

∫
Ωikm

fh(x, p, µ, t)

(
+1∑
j=−1

cj p
2(ε′)

dp′

dε′
χ(ε′)

∣∣∣∣
ε′=ε(p)−j~ω

)
p2 dpdµdx

]
∆tn

Vikm
.
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5.3.3 Positivity Preservation in DG Scheme for BP

We use the strategy of Zhang & Shu in [63], [64], for conservation laws,

Eindeve, Hauck, Xing, Mezzacappa [65] for conservative phase space advection

in curvilinear coordinates, and Cheng, Gamba, Proft for Vlasov-Boltzmann

with a linear non-degenerate collisional forms [36] to preserve the positivity of

our probability density function in our DG scheme treating the collision term

as a source, this being possible as our collisional form is mass preserving. We

will use a convex combination parameter α ∈ [0, 1] such that

f̄n+1
ikm = α

(
f̄nikm +

ΓT
α

)
︸ ︷︷ ︸

I

+(1− α)

(
f̄nikm +

ΓC
1− α

)
︸ ︷︷ ︸

II

, (5.16)

and we will find conditions such that I and II are positive, to guarantee the

positivity of the cell average of our numerical probability density function for

the next time step. The positivity of the numerical solution to the pdf in the

whole domain can be guaranteed just by applying the limiters in [63], [64] that

preserve the cell average but modify the slope of the piecewise linear solutions

in order to make the function non - negative.

Regarding I, the conditions for its positivity are derived below.

I = f̄nikm +
ΓT
α

=

∫
Ωikm

fh p
2 dpdµdx

Vikm

− ∆tn

αVikm

[∫
∂xΩkm

Ĥ(x)fh|xi+ p2dpdµ−
∫
∂xΩkm

Ĥ(x)fh|xi− p2dpdµ

+p2
k+

∫
∂pΩim

Ĥ(p)fh|pk+
dµdx− p2

k−

∫
∂pΩim

Ĥ(p)fh|pk− dµdx

+ (1− µ2
m+)

∫
∂µΩik

Ĥ(µ)fh|µm+ p dpdx− (1− µ2
m−)

∫
∂µΩik

Ĥ(µ)fh|µm− p dpdx

]
.
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We will split the cell average using 3 convex parameters sl ≥ 0, l = 1, 2, 3 , s.t.

s1 + s2 + s3 = 1. We have then

I =
1

Vikm

[
(s1 + s2 + s3)

∫
Ωikm

fh p
2 dpdµdx

−∆tn

α

(∫
∂xΩkm

Ĥ(x)fh|xi+ p2dpdµ−
∫
∂xΩkm

Ĥ(x)fh|xi− p2dpdµ

+p2
k+

∫
∂pΩim

Ĥ(p)fh|pk+
dµdx− p2

k−

∫
∂pΩim

Ĥ(p)fh|pk− dµdx

+ (1− µ2
m+)

∫
∂µΩik

Ĥ(µ)fh|µm+ p dpdx− (1− µ2
m−)

∫
∂µΩik

Ĥ(µ)fh|µm− p dpdx

)]

=
1

Vikm

[
s1

∫ xi+

xi−

∫
∂xΩkm

fh p
2 dpdµdx

+s2

∫ pk+

pk−

∫
∂pΩim

fh p
2 dpdµdx+ s3

∫ µm+

µm−

∫
∂µΩik

fh p
2 dpdµdx

−∆tn

α

(∫
∂xΩkm

Ĥ(x)fh|xi+ p2dpdµ−
∫
∂xΩkm

Ĥ(x)fh|xi− p2dpdµ

)
−∆tn

α

(
p2
k+

∫
∂pΩim

Ĥ(p)fh|pk+
dµdx− p2

k−

∫
∂pΩim

Ĥ(p)fh|pk− dµdx

)

−∆tn

α

(
(1− µ2

m+)

∫
∂µΩik

Ĥ(µ)fh|µm+ p dpdx− (1− µ2
m−)

∫
∂µΩik

Ĥ(µ)fh|µm− p dpdx

)]

=
1

Vikm

[∫
∂xΩkm

{
s1

∫ xi+

xi−

fh p
2 dx− ∆tn

α

(
Ĥ(x)fh|xi+ p2 − Ĥ(x)fh|xi− p2

)}
dp dµ

+

∫
∂pΩim

{
s2

∫ pk+

pk−

fh p
2 dp− ∆tn

α

(
p2
k+Ĥ(p)fh|pk+

− p2
k−Ĥ

(p)fh|pk−
)}

dµ dx

+

∫
∂µΩik

{
s3

∫ µm+

µm−

fh p
2 dµ− ∆tn

α
p
[
(1− µ2

m+)Ĥ(µ)fh|µm+ − (1− µ2
m−)Ĥ(µ)fh|µm−

]}
dpdx

]
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All the functions to be integrated are polynomials inside a given inter-

val, rectangle or element. Therefore, we can integrate them exactly using a

quadrature rule of enough degree, which could be either the usual Gaussian

quadrature or the Gauss-Lobatto, which involves the end-points of the inter-

val. We use Gauss-Lobatto quadratures for the integrals of fh p
2 over intervals,

so that the values at the endpoints can balance the flux terms of boundary

integrals, obtaining then CFL conditions.
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I =
1

Vikm

[∫
∂xΩkm

{
s1

N∑
q̂=1

ŵq̂fh|xq̂ p2 ∆xi −
∆tn

α

(
Ĥ(x)fh|xi+ p2 − Ĥ(x)fh|xi− p2

)}
dp dµ

+

∫
∂pΩim

{
s2

N∑
r̂=1

ŵr̂fh|pr̂ p2
r̂ ∆pk −

∆tn

α

(
p2
k+Ĥ(p)fh|pk+

− p2
k−Ĥ

(p)fh|pk−
)}

dµ dx

+

∫
∂µΩik

{
s3

N∑
ŝ=1

ŵŝfh|µŝ p2 ∆µm −
∆tn

α

[
p(1− µ2

m±)Ĥ(µ)fh|µm±
]}

dpdx

]

=

[∫
∂xΩkm

{
s1∆xi

(
ŵ1fh|+xi− + ŵNfh|−xi+ +

N−1∑
q̂=2

ŵq̂fh|xq̂

)
− ∆tn

α

(
Ĥ(x)fh|xi+xi−

)}
p2dpdµ

+

∫
∂pΩim

{
s2

(
ŵ1fh|+pk− p

2
k− + ŵNfh|−pk+

p2
k+ +

N−1∑
r̂=2

ŵr̂fh|pr̂ p2
r̂

)
∆pk

−∆tn

α

(
p2
k+Ĥ(p)fh|pk+

− p2
k−Ĥ

(p)fh|pk−
)}

dµ dx

+

∫
∂µΩik

{
s3

(
ŵ1fh|+µm− + ŵNfh|−µm+

+
N−1∑
ŝ=2

ŵŝfh|µŝ

)
p2 ∆µm

−∆tn

α

[
(1− µ2

m+)Ĥ(µ)fh|µm+ − (1− µ2
m−)Ĥ(µ)fh|µm−

]
p

}
dpdx

]
1

Vikm

=

[∫
∂xΩkm

s1∆xi

{
N−1∑
q̂=2

ŵq̂fh|xq̂ +
(
ŵ1fh|+xi− + ŵNfh|−xi+

)
− ∆tn

αs1∆xi

(
Ĥ(x)fh|xi+ − Ĥ(x)fh|xi−

)}
p2dpdµ

+

∫
∂pΩim

s2∆pk

{(
ŵ1fh|+pk− p

2
k− + ŵNfh|−pk+

p2
k+

)
+

N−1∑
r̂=2

ŵr̂fh|pr̂ p2
r̂

− ∆tn

αs2∆pk

(
p2
k+Ĥ(p)fh|pk+

− p2
k−Ĥ

(p)fh|pk−
)}

dµ dx

+

∫
∂µΩik

s3 p
2 ∆µm

{(
ŵ1fh|+µm− + ŵNfh|−µm+

)
+

N−1∑
ŝ=2

ŵŝfh|µŝ

− ∆tn

αs3p∆µm

[
(1− µ2

m+)Ĥ(µ)fh|µm+ − (1− µ2
m−)Ĥ(µ)fh|µm−

]}
dpdx

]
1

Vikm
.
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We reorganize the terms involving the endpoints, which are in parenthesis. So

I =
1

Vikm

[∫
∂xΩkm

s1∆xi

{(
ŵ1fh|+xi− +

∆tn

αs1∆xi
Ĥ(x)fh|xi−

)
+

(
ŵNfh|−xi+ −

∆tn

αs1∆xi
Ĥ(x)fh|xi+

)
+

N−1∑
q̂=2

ŵq̂fh|xq̂

}
p2dpdµ+

∫
∂pΩim

s2∆pk

{
N−1∑
r̂=2

ŵr̂fh|pr̂ p2
r̂ +

+ p2
k−

(
ŵ1fh|+pk− +

∆tn

αs2∆pk
Ĥ(p)fh|pk−

)
+ p2

k+

(
ŵNfh|−pk+

− ∆tn

αs2∆pk
Ĥ(p)fh|pk+

)}
dµ dx

+

∫
∂µΩik

dx dp p2 s3 ∆µm

{
N−1∑
ŝ=2

ŵŝfh|µŝ +

+

(
ŵ1fh|+µm− +

∆tn(1− µ2
m−)

αs3p∆µm
Ĥ(µ)fh|µm−

)
+

(
ŵNfh|−µm+

−
∆tn(1− µ2

m+)

αs3p∆µm
Ĥ(µ)fh|µm+

)}]
.

To guarantee the positivity of I, assuming that the terms fh|xq̂ , fh|pr̂ , fh|µŝ
are positive at time tn, we only need that the terms in parenthesis related to

interval endpoints are positive. Since ŵ1 = ŵN for Gauss-Lobatto Quadrature,

we want the non-negativity of the terms

0 ≤
(
ŵNfh|∓xi± ∓

∆tn

αs1∆xi
Ĥ(x)fh|xi±

)
,

0 ≤
(
ŵNfh|∓pk± ∓

∆tn

αs2∆pk
Ĥ(p)fh|pk±

)
, (5.17)

0 ≤
(
ŵNfh|∓µm± ∓

∆tn(1− µ2
m±)

αs3p∆µm
Ĥ(µ)fh|µm±

)
.

We remember that we have used the following notation for the numerical flux

terms, given by the upwind rule,

Ĥ(x)f |xi± = ∂pεf̂hµ|xi± = ∂pε

[(
µ+ |µ|

2

)
fh|−xi± +

(
µ− |µ|

2

)
fh|+xi±

]
,

Ĥ(p)f |pk± = −qÊfhµ|pk± = q

[(
|Eµ| − Eµ

2

)
fh|−pk± −

(
|Eµ|+ Eµ

2

)
fh|+pk±

]
,

Ĥ(µ)f |µm± = −qÊfh|µm± = q

[(
−E + |E|

2

)
fh|−µm± +

(
−E − |E|

2

)
fh|+µm±

]
.
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We have assumed that the positivity of the pdf evaluated at Gauss-

Lobatto points, which include endpoints, so we know fh|∓xi± , fh|
∓
pk±
, fh|∓µm± are

positive. The worst case scenario for positivity is having negative flux terms.

In that case,

0 ≤ ŵNfh|∓xi± −
∆tn

αs1∆xi
∂pε |µ|fh|∓xi± = fh|∓xi±

(
ŵN −

∆tn

αs1∆xi
∂pε |µ|

)
,

0 ≤ ŵNfh|∓pk± −
∆tn

αs2∆pk
q|E(x, t)µ|fh|∓pk± = fh|∓pk±

(
ŵN −

∆tn

αs2∆pk
q|E(x, t)µ|

)
,

0 ≤ ŵNfh|∓µm± −
∆tn(1− µ2

m±)

αs3p∆µm
q|E(x, t)|fh|∓µm± = fh|∓µm±

(
ŵN −

∆tn(1− µ2
m±)

αs3p∆µm
q|E(x, t)|

)
.

We need then for the worst case scenario that

ŵN ≥ ∆tn

αs1∆xi
∂pε |µ| ,

ŵN ≥ ∆tn

αs2∆pk
q|E(x, t)µ| ,

ŵN ≥
∆tn(1− µ2

m±)

αs3p∆µm
q|E(x, t)| ,

or equivalently,

ŵN
αs1∆xi
∂pε |µ|

≥ ∆tn ,

ŵN
αs2∆pk

q|E(x, t)µ|
≥ ∆tn ,

ŵN
αs3 ∆µm p

q|E(x, t)|(1− µ2
m±)

≥ ∆tn .

Therefore, the CFL conditions necessary to satisfy the positivity of the trans-
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port term I are

αs1ŵN∆xi
maxr̂ ∂pε(pr̂) · max± |µm±|

≥ ∆tn ,

αs2ŵN∆pk
qmaxq̂ |E(xq̂, t)| ·max± |µm±|

≥ ∆tn ,

αs3ŵN∆µm · pk−
qmaxq̂ |E(xq̂, t)| ·max±(1− µ2

m±)
≥ ∆tn .

Regarding II, there are several ways to guarantee its positivity. One

possible way to guarantee its positive is given below, by separating the gain

and the loss part, combining the cell average with the loss term and deriving

a CFL condition related to the collision frequency, and imposing a positivity

condition on the points where the gain term is evaluated, which differs for

inelastic scatterings from the previous Gauss-Lobatto points because of the

addition or subtraction of the phonon energy ~ω. We would need an additional

set of points in which to impose positivity in order to guarantee positivity of

II as a whole.
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II = f̄nikm +
ΓC

1− α
=

f̄nikm +

[
2π

∫
Ωikm

(
+1∑
j=−1

cj

∫ +1

−1

dµ′
[
fh(x, p(ε

′), µ′) p2(ε′)
dp′

dε′
χ(ε′)

]∣∣∣∣
ε(p)+j~ω

)
p2 dpdµdx

−
∫

Ωikm

fh(x, p, µ, t)

(
4π

+1∑
j=−1

cj

[
p2(ε′)

dp′

dε′
χ(ε′)

]∣∣∣∣
ε(p)−j~ω

)
p2 dpdµdx

]
∆tn

Vikm(1− α)
=[

2π∆tn

(1− α)

∫
Ωikm

(
+1∑
j=−1

cj

∫ +1

−1

dµ′
[
fh(x, p(ε

′), µ′) p2(ε′)
dp′

dε′
χ(ε′)

]∣∣∣∣
ε(p)+j~ω

)
p2 dpdµdx +

∫
Ωikm

fhdV −
4π∆tn

(1− α)

∫
Ωikm

fh

(
+1∑
j=−1

cj

[
p2(ε′)

dp′

dε′
χ(ε′)

]∣∣∣∣
ε(p)−j~ω

)
p2 dpdµdx

]
1

Vikm
=[

2π∆tn

(1− α)

+1∑
j=−1

cj

∫
Ωikm

∫ +1

−1

dµ′
[
fh(x, p(ε

′), µ′) p2(ε′)
dp′

dε′
χ(ε′)

]∣∣∣∣
ε(p)+j~ω

p2 dpdµdx +

∫
Ωikm

fh(x, p, µ, t)

(
1− 4π∆tn

(1− α)

+1∑
j=−1

cj

[
p2(ε′)

dp′

dε′
χ(ε′)

]∣∣∣∣
ε(p)−j~ω

)
p2 dpdµdx

]
1

Vikm
=[

2π∆tn

(1− α)

+1∑
j=−1

cj|Ωikm|
∑
s,r,q

ws,r,qfh(xs, p
′(ε(pr) + j~ω), µ′q)

[
p′2(ε′)

dp′

dε′
χ(ε′)

]∣∣∣∣
ε(pr)+j~ω

p2
r

+

∫
Ωikm

fh(x, p, µ, t)

(
1− 4π∆tn

(1− α)

+1∑
j=−1

cj

[
p2(ε′)

dp′

dε′
χ(ε′)

]∣∣∣∣
ε(p)−j~ω

)
p2 dpdµdx

]
1

Vikm
,

where the notation for the measure of the elements is

|Ωikm| = ∆xi∆pk∆µm . (5.18)

Given that the collision frequency

ν(p) = 4π
+1∑
j=−1

cj χ(ε(p)− j~ω)

[
p2(ε′)

dp′

dε′

]∣∣∣∣
ε′=ε(p)−j~ω

> 0 (5.19)
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is positive, as it is made of positive and non negative terms, we combine the

cell average with the loss term in order to derive the following CFL condition

related to the collision frequency. If

1− 4π∆tn

(1− α)

+1∑
j=−1

cj χ(ε(p)− j~ω)

[
p2(ε′)

dp′

dε′

]∣∣∣∣
ε′=ε(p)−j~ω

> 0 ,

then

∆tn <
(1− α)

4π

(
max
pk

+1∑
j=−1

cj

[
χ(ε′)p2(ε′)

dp′

dε′

]∣∣∣∣
ε(pk)−j~ω

)−1

=
(1− α)

max pk ν(pk)
,

where the maximum is taken over the Gaussian Quadrature Points pk.

To completely guarantee the positivity of II, we must impose a posi-

tivity condition on the set of points where the gain term is evaluated, which

differs for inelastic scatterings from the previous Gauss-Lobatto points because

of the addition or subtraction of the phonon energy ~ω. That is, we want

∑
s,r,q

ws,r,qfh(xs, p
′(ε(pr) + j~ω), µ′q)

[
p2(ε′)

dp′

dε′
χ(ε′)

]∣∣∣∣
ε′=ε(pr)+j~ω

p2
r ≥ 0.

So, in order to get the positivity of this term, we need that in the additional

set of points (xs, p
′(ε(pr) + j~ω), µ′q) it is satisfied that

fh(xs, p
′(ε(pr) + j~ω), µ′q) ≥ 0 .

Another possible way to guarantee positivity for II is by considering

the collision term as a whole. The difference between the gain minus the

loss integrals will give us a smaller source term overall, and therefore a more
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relaxed CFL condition for ∆tn. We have that

II = f̄nikm +
ΓC

1− α
=

∫
Ωikm

fhdV

Vikm
+

∆tn
∫

Ωikm
Q(fh)dV

(1− α)Vikm
=

1

Vikm

[∫
Ωikm

fhdV +
∆tn

(1− α)
×∫

Ωikm

(
2π

+1∑
j=−1

cj

∫ 1

−1

dµ′ fh(x, p(ε
′), µ′)p2(ε′)

dp′

dε′
χ(ε′)

∣∣∣∣
ε(p)+j~ω

− fhν(p)

)
p2dpdµdx

]
.

We will treat then the cell average of the collision term as a whole

by taking the difference of the gain minus the loss terms and considering this

difference as a source term, and we will apply the same techniques for positivity

preserving DG schemes for transport equations with source terms.

II =
1

Vikm

[∫
Ωikm

fh p
2 dpdµdx+

∆tn

(1− α)

∫
Ωikm

Q(fh) p
2 dpdµdx

]
,

Q(fh) = 2π
+1∑
j=−1

cj

∫ +1

−1

dµ′ fh(x, p(ε
′), µ′) p2(ε′)

dp′

dε′
χ(ε′)

∣∣∣∣
ε′=ε(p)+j~ω

− fhν(p) ,

ν(p) = 4π
+1∑
j=−1

cj

[
p2(ε′)

dp′

dε′
χ(ε′)

]∣∣∣∣
ε′=ε(p)−j~ω

= ν(ε(p)) . (5.20)

We want II to be positive. If the collision operator part was negative,

we choose the time step ∆tn such that II is positive on total. We will get this

way our CFL condition in order to guarantee the positivity of II. We want

II =
1

Vikm

∫
Ωikm

[
fh(x, p, µ, t) +

∆tn

(1− α)
Q(fh)(x, p, µ, t)

]
p2 dpdµdx ≥ 0 ,

II =
|Ωikm|
Vikm

∑
q,r,s

wqwrws

[
fh(xq, pr, µs, t) +

∆tn

(1− α)
Q(fh)(xq, pr, µs, t)

]
p2
r ≥ 0 .
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If 0 > Q(fh) for any of the points (xq, pr, µs) at time tn, then choose ∆tn s.t.

0 ≤ fh(xq, pr, µs, t) +
∆tn

(1− α)
Q(fh)(xq, pr, µs, t) ,

0 ≤ fh(xq, pr, µs, t) −
∆tn

(1− α)
|Q(fh)|(xq, pr, µs, t) ,

∆tn ≤ (1− α)fh(xq, pr, µs, t)

|Q(fh)|(xq, pr, µs, t)
.

Our CFL condition in this case would be then

∆tn ≤ (1− α) min
Q(fh)(xq ,pr,µs,tn)<0

{
fh(xq, pr, µs, t

n)

|Q(fh)|(xq, pr, µs, tn)

}
. (5.21)

The minimum for the CFL condition is taken over the subset of Gaus-

sian Quadrature points (xq, pr, µs) inside the cell Ωikm (whichever the chosen

quadrature rule was) over which Q(fh)(xq, pr, µs, t
n) < 0. This subset of points

might be different for each time tn then.

We have figured out the respective CFL conditions for the transport

and collision parts. Finally, we only need to choose the optimal parameter α

that gives us the most relaxed CFL condition for ∆tn such that positivity is

preserved for the cell average at the next time, f̄n+1
ikm . The positivity of the

whole numerical solution to the pdf, not just its cell average, can be guaranteed

by applying the limiters in [63], [64], which preserve the cell average but modify

the slope of the piecewise linear solutions in order to make the function non -

negative in case it was negative before.
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5.4 Stability of the scheme under an entropy norm

We can prove the stability of the scheme under the entropy norm related

to the interior product ∫
fh ghe

H p2dpdµdx , (5.22)

inspired in the strategy of Cheng, Gamba, Proft [36]. This estimates are

possible due to the dissipative property of the linear collisional operator applied

to the curvilinear representation of the momentum, with the entropy norm

related to the function eH(x,p,t) = exp (ε(p)− qV (x, t)). Assuming periodic

boundary conditions in all directions for simplicity of the stability proof, we

look for fh ∈ V k
h such that, ∀ gh ∈ V k

h and ∀Ωikm,∫
ikm

∂tfh ghe
H p2dpdµdx (5.23)

−
∫
ikm

∂pε(p) fh µ ∂x(ghe
H) p2dpdµdx ±

∫
km

∂pε f̂hµ|xi± gheH |∓xi± p
2dpdµ

−
∫
ikm

p2(−qE)(x, t)fhµ ∂p(ghe
H) dµdx ±

∫
im

p2
k± (−qÊfhµ)|pk±gheH |∓pk± dµdx

+

∫
ikm

(1− µ2)fhqE(x, t)∂µ(ghe
H)p dpdµdx ∓

∫
ik

(1− µ2
m±)qÊfh|µm±gheH |∓µm±pdpdx

=

∫
ikm

Q(fh)ghe
H p2dpdµdx ,

where we are including as a factor the inverse of a Maxwellian along the charac-

teristic flow generated by the Hamiltonian transport field (∂pε(p), q∂xV (x, t))

eH(x,p,t) = exp(ε(p)− qV (x, t)) =
(
eqV (x,t)e−ε(p)

)−1
, (5.24)

which is an exponential of the Hamiltonian energy, assuming the energy is

measured in KBT units.
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We include this modified inverse Maxwellian factor because we can

use the entropy inequalities related to the collision operator derived on the

introduction. That is, we know from (2.39) the following dissipative property∫
Ω~p

Q(f)gd~p = −1

2

∫
Ω~p

S(~p ′ → ~p)e−ε(p
′)

(
f ′

e−ε(p′)
− f

e−ε(p)

)
(g′ − g)d~p ′d~p ,

(5.25)

which can be also expressed as (multiplying and dividing by e−qV (x,t))∫
Ω~p

Q(f)gd~p = −1

2

∫
Ω~p

S(~p ′ → ~p)e−H
′
(

f ′

e−H′
− f

e−H

)
(g′ − g)d~p ′d~p . (5.26)

Therefore, if we choose a monotone increasing function g(f/e−H), namely

g = f/e−H = feH , we have an equivalent dissipative property but now with

the exponential of the full Hamiltonian,∫
Ω~p

Q(f)
f

e−H
d~p = −1

2

∫
Ω~p

S(~p ′ → ~p)e−H
′
(

f ′

e−H′
− f

e−H

)2

d~p ′d~p ≤ 0 . (5.27)

So we have found the following dissipative entropy inequality∫
Ω~p

Q(f)feHp2dpdµdϕ =

∫
Ω~p

Q(f)
f

e−H
d~p ≤ 0 . (5.28)

As a consequence of this dissipative entropy inequality we obtain the

following stability theorem of the scheme under an entropy norm.

Theorem 5.4.1. (Stability under the entropy norm
∫
fh ghe

H p2dpdµdx): Con-

sider the semi-discrete solution fh to the DG formulation in (5.23) for the BP

system in momentum curvilinear coordinates. We have then

0 ≥
∫

Ω

fh∂tfh e
H(x,p,t) p2 dpdµdx =

1

2

∫
Ω

∂tf
2
he

H(x,p,t) p2 dpdµdx . (5.29)
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Proof. Choosing gh = fh in (5.23), and considering the union of all the cells

Ωikm, which gives us the whole domain Ω = Ωx×Ωp,µ for integration, we have

0 ≥
∫

Ω

Q(fh)fhe
H p2dpdµdx =

∫
Ω

∂tfh fhe
H p2dpdµdx

−
∫

Ω

∂pε(p) fh µ ∂x(fhe
H) p2dpdµdx +

∫
∂xΩ

∂pε f̂hµ fhe
H p2dpdµ

−
∫

Ω

p2(−qE)fhµ ∂p(fhe
H) dµdx +

∫
∂pΩ

p2 (−qÊfhµ)fhe
H dµdx

−
∫

Ω

(1− µ2)fh(−qE) ∂µ(fhe
H) p dpdµdx +

∫
∂µΩ

(1− µ2)(−qÊfh) fheH p dpdx .

We can express this in the more compact form

0 ≥
∫

Ω

∂tfh fhe
H p2 dpdµdx−

∫
Ω

fhβ · ∂(fhe
H) dpdµdx +

∫
∂Ω

f̂hβ · n̂ fheH dσ ,

(5.30)

defining the transport vector β with the properties

β =
(
p2µ∂pε(p),−qE p2µ,−qEp(1− µ2)

)
, (5.31)

∂β = ∂(x,p,µ)β = (0,−2pqEµ, 2µqE) , ∂ · β = −2pqEµ+ 2pqEµ = 0,

β · ∂H =
(
p2µ∂pε(p),−qE p2µ,−qEp(1− µ2)

)
· (qE, ∂pε, 0) = 0, ∂µε = 0 .

We integrate by parts again the transport integrals, obtaining∫
Ω

fhβ · ∂(fhe
H) dpdµdx = −

∫
Ω

∂ · (fhβ)fhe
H dpdµdx +

∫
∂Ω

fhβ · n̂fheH dσ

= −
∫

Ω

(β · ∂fh)fheH dpdµdx +

∫
∂Ω

fhβ · n̂fheH dσ ,

but since

β · ∂(fhe
H) = β · eH∂fh + β · fheH∂H = eHβ · ∂fh , (5.32)
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then we have∫
Ω

fhβ · ∂(fhe
H) dpdµdx =

∫
Ω

(β · ∂fh)fheH dpdµdx =
1

2

∫
∂Ω

fhβ · n̂fheH dσ .

(5.33)

We can express our entropy inequality then as

0 ≥
∫

Ω

∂tfh fhe
H p2 dpdµdx−1

2

∫
∂Ω

fhβ·n̂fheH dσ+

∫
∂Ω

f̂hβ·n̂ fheH dσ , (5.34)

remembering that we are integrating over the whole domain by considering the

union of all the cells defining our mesh. We distinguish between the boundaries

of cells for which β · n̂ ≥ 0 and the ones for which β · n̂ ≤ 0, defining uniquely

the boundaries. Remembering that the upwind flux rule is such that f̂h = f−h ,

we have that the value of the solution inside the cells close to boundaries for

which β · n̂ ≥ 0 is f−h , and for boundaries β · n̂ ≤ 0 the value of the solution

inside the cell close to that boundary is f+
h . We have then that

0 ≥
∫

Ω

∂tfh fhe
H p2 dpdµdx− 1

2

∫
∂Ω

fhβ · n̂fheH dσ +

∫
∂Ω

f−h β · n̂ fhe
H dσ

0 ≥
∫

Ω

∂tfh fhe
H p2 dpdµdx− 1

2

∫
β·n̂≥0

f−h |β · n̂|f
−
h e

H dσ +

∫
β·n̂≥0

f−h |β · n̂| f
−
h e

H dσ

+
1

2

∫
β·n̂≤0

f+
h |β · n̂|f

+
h e

H dσ −
∫
β·n̂≤0

f−h |β · n̂| f
+
h e

H dσ ,

and using a notation eh for the boundaries that allows redundancy, balanced
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then by a factor of 1/2, we have

0 ≥
∫

Ω

∂tfh fhe
H p2 dpdµdx− 1

2

(
1

2

∫
eh

f−h |β · n̂|f
−
h e

H dσ +

∫
eh

f−h |β · n̂| f
−
h e

H dσ

+
1

2

∫
eh

f+
h |β · n̂|f

+
h e

H dσ −
∫
eh

f−h |β · n̂| f
+
h e

H dσ

)
0 ≥

∫
Ω

∂tfh fhe
H p2 dpdµdx+

1

2

(
1

2

∫
eh

f−h |β · n̂|f
−
h e

H dσ

+
1

2

∫
eh

f+
h |β · n̂|f

+
h e

H dσ −
∫
eh

f−h |β · n̂| f
+
h e

H dσ

)
0 ≥

∫
Ω

∂tfh fhe
H p2 dpdµdx

+
1

4

(∫
eh

f−h f
−
h |β · n̂|e

H dσ − 2

∫
eh

f−h f
+
h |β · n̂| e

H dσ +

∫
eh

f+
h f

+
h |β · n̂|e

H dσ

)
0 ≥

∫
Ω

∂tfh fhe
H p2 dpdµdx+

1

4

∫
eh

(f+
h − f

−
h )2|β · n̂|eH dσ . (5.35)

Since the second term is non-negative, we conclude therefore that

0 ≥
∫

Ω

fh∂tfh e
H(x,p,t) p2 dpdµdx =

1

2

∫
Ω

∂tf
2
he

H(x,p,t) p2 dpdµdx , (5.36)

and in this sense is that the numerical solution has stability with respect to

the considered entropy norm.

As a remark, we obtain the following corollary:

Corollary 5.4.2. (Stability under the entropy norm for a time independent

Hamiltonian): If V = V (x), so ∂tH = 0, the stability under our entropy norm

gives us that, for t ≥ 0,

||fh||2L2
eHp2

(t) =

∫
Ω

f 2
h(x, p, µ, t)eH(x,p) p2 dpdµdx ≤ ||fh||2L2

eHp2
(0) . (5.37)
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Proof. The corollary follows from the fact that, since ∂tH = −q∂tV = 0, we

have

0 ≥
∫

Ω

∂t
(
f 2
he

H(x,p)
)
p2 dpdµdx =

d

dt

∫
Ω

f 2
h(x, p, µ, t)eH(x,p) p2 dpdµdx (5.38)

Since the entropy norm is a decreasing function of time, our result follows

immediately.
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Chapter 6

Conclusions

The work presented in this dissertation is related to several lines of

research in the area of deterministic DG numerical methods for computational

electronic transport in semiconductor physics.

The first line of research is the use of EPM related energy bands in order

to increase the accuracy of the physical modeling of the energy band structure

and its partial derivatives, via a spherical average of an EPM band structure

and the spline interpolation of its derivatives, as these functions drive the

mechanisms of collision (electron - phonon scattering) and transport (via the

electron group velocity). The balance of these two mechanisms is the core of

the modeling of electron transport in semiconductors by means of Boltzmann -

Poisson. The values of the energy band obtained from the spherical average of

the EPM full band structure and its derivatives interpolated by splines, gives

a quantitative correction in kinetic moments (averages) related to the energy

band model, such as average velocity, energy, and particularly the momentum

(proportional to the current) given by our numerical solver. This highlights the

importance of band models and features such as anisotropy and interpolation

of their derivatives in the BP numerical modeling of electron transport via DG
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schemes. Work in progress is related to the computational implementation of

a DG scheme with the full EPM band structure and the spline interpolation of

its partial derivatives. Future work will focus on DG methods for Boltzmann

- Poisson systems with multi - bands, for the modeling of electron and hole

transport or multi-valley modeling.

We have considered in the second line of research the mathematical

and numerical modeling of Reflective Boundary Conditions in 2D devices and

their implementation in DG-BP schemes. We have studied the specular, dif-

fusive and mixed reflection BC on the boundaries of the position domain of

the device. We developed a numerical equivalent of the pointwise zero flux

condition at the position domain boundaries for the case of a more general

mixed reflection with a momentum dependant specularity parameter p(~k).

We compared the influence of these different reflection cases in the compu-

tational prediction of moments after implementing numerical BC equivalent

to the respective reflective BC, each one satisfying a mathematical zero flux

condition at insulating boundaries. There are effects due to the inclusion of

diffusive reflection boundary conditions over the moments of the probability

density function and over the electric field and potential, whose influence is not

only restricted to the boundaries but actually to the whole domain. Expected

effects of the inclusion of diffusivity in kinetic moments are the increase of

the density close to the reflecting boundary, the decrease of the mean energy

over the domain and the increase of the momentum x-component over the

domain. Future research will consider the inclusion of surface roughness scat-
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tering mechanisms in the collision operator for our diffusive reflection problem

in silicon devices, for example. Another line of work of our interest for future

research will be the more general case of a p(~x,~k) specular probability depen-

dant on momentum and position as well, considering its mathematical and

numerical aspects, and its respective computational simulations, intending to

use as input experimental values of p(~x,~k).

The third line of research is related to the development of positivity

preserving DG schemes for BP semiconductor models. Due to the physics

of energy conservation given by Planck’s law and to reduce the dimension

of the associated collision operator given its mathematical form, we pose the

Boltzmann Equation for electron transport in curvilinear coordinates for the

momentum. This is a more general form that includes the two other BP mod-

els used in the previous lines of research as particular cases. We consider the

1D diode problem with azimuthal symmetry assumptions, which give us a 3D

plus time problem. We choose for this problem the spherical coordinate system

~p(p, µ, ϕ), slightly different to the previous choices, because its DG formulation

gives simpler integrals involving just (piecewise) polynomial functions for both

transport and collision terms. Using the strategy in [63], [64], [36] we treat

the collision operator as a source term, and find convex combinations of the

transport and collision terms which guarantee the propagation of positivity of

the cell average of our numerical probability density function at the next time

step. The positivity of the numerical solution to the pdf in the whole domain

can be guaranteed just by applying the limiters in [63], [64] that preserve the
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cell average but modify the slope of the piecewise linear solutions in order to

make the function non - negative. We have been able to prove as well the

stability of the semi-discrete DG scheme formulated under an entropy norm,

assuming periodic boundary conditions for simplicity. For the simpler case of

a time dependent Hamiltonian, the decay of the entropy norm of the numer-

ical solution over time follows as a corollary. This highlights the importance

of the dissipative properties of our collisional operator given by its entropy in-

equalities. In this case, the entropy norm depends on the full time dependent

Hamiltonian rather than just the Maxwellian associated solely to the kinetic

energy.
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