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One of the important goals in petroleum exploration and production is to make 

quantitative estimates of a reservoir’s properties from all available but indirectly related 

surface data, which constitutes an inverse problem. Due to the inherent non-uniqueness of 

most inverse procedures, a deterministic solution may be impossible, and it makes more 

sense to formulate the inverse problem in a statistical Bayesian framework and to fully 

solve it by constructing the Posterior Probability Density (PPD) function using Markov 

Chain Monte Carlo (MCMC) algorithms. The derived PPD is the complete solution of an 

inverse problem and describes all the consistent models for the given data. Therefore, the 

estimated PPD not only leads to the most likely model or solution but also provides a 

theoretically correct way to quantify corresponding uncertainty. However, for many 

realistic applications, MCMC can be computationally expensive due to the strong 

nonlinearity and high dimensionality of the problem. In this research, to address the 

fundamental issues of efficiency and accuracy in parameter estimation and uncertainty 
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quantification, I have incorporated some new developments and designed a new multi-

scale MCMC algorithm. The new algorithm is justified using an analytical example, and 

its performance is evaluated using a nonlinear pre-stack seismic waveform inversion 

application. I also find that the new technique of multi-scaling is particularly attractive in 

addressing model parameterization issues especially for the seismic waveform inversion. 

To derive an accurate reservoir model and therefore to obtain a reliable reservoir 

performance prediction with as little uncertainty as possible, I propose a workflow to 

integrate 4D seismic and well production data in a Bayesian framework. This challenging 

4D seismic history matching problem is solved using the new multi-scale MCMC 

algorithm for reasonably accurate reservoir characterization and uncertainty analysis 

within an acceptable time period. To take advantage of the benefits from both the fine 

scale and the coarse scale, a 3D reservoir model is parameterized into two different 

scales. It is demonstrated that the coarse-scale model works like a regularization operator 

to make the derived fine-scale reservoir model smooth and more realistic. The derived 

best-fitting static petrophysical model is further used to image the evolution of a 

reservoir’s dynamic features such as pore pressure and fluid saturation, which provide a 

direct indication of the internal dynamic fluid flow. 
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Chapter 1 
 

Introduction 
 
 

1.1 Inverse problems in a Bayesian framework 
 

A fundamental role of exploration and production geophysics is to make 

quantitative inference of a reservoir’s interior physical properties from surface-recorded 

but indirectly related seismic data and other measurements. This task constitutes an 

inverse problem, or an inductive reasoning process in the sense of logic. Due to the 

inherent non-uniqueness, a deterministic solution of inverse problems may be impossible. 

In statistical terms, we are unable to apply deductive reasoning to prove or disprove 

models or values of model parameters.  

In order to resolve the non-uniqueness issue, different strategies have been 

employed to exploit the model space for the optimal or best-fitting model (e.g., Sen and 

Stoffa, 1991; Stoffa and Sen, 1992; Sen and Stoffa, 1996; Sen and Roy, 2003). However, 

it is better to cast the inverse problem in a statistical Bayesian framework and to fully 

solve it by stochastically exploring the model space to construct the Posterior Probability 

Density (PPD) surface as illustrated in Figure 1.1 (Tarantola, 1987). In a Bayesian 

inference framework, the PPD describes all the consistent models together with 

uncertainties in light of the current state of knowledge, which allows direct calculation of 

the probability of any particular model or the value of any particular parameter. 

“Parameter estimation” and “model selection” are the two major Bayesian inference 
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problems. The former deals with problems in which a parameterized model is assumed to 

be true and the values of model parameters and their uncertainties are estimated; the latter 

compares competing models of different parameterizations by automatically penalizing 

complicated models using the built-in “Occam’s razor” and hence determines the best 

model parameterization for the given data. 

 

 

True model m

Data dobs

p(m|dobs, I)

Forward problem

Inference problem

True model mTrue model m

Data dobsData dobs

p(m|dobs, I)p(m|dobs, I)

Forward problem

Inference problem

Forward problem

Inference problem
 

 
 

Figure 1.1: An inverse problem formulated in a Bayesian framework, which is solved by 
stochastically constructing the Posterior Probability Density (PPD) function. 

 

 

The way to mathematically formulate an inverse problem in a Bayesian 

framework is based on the Bayes theorem. According to the Bayes theorem, the state of 

our knowledge about the target model is updated by combining the independent prior 

information with the available data to construct the PPD. The PPD describes all the 

consistent models as well as the associated likelihoods. For a parameter estimation 

problem, the PPD of the model vector can be expressed as 
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( ) ( ) ( )
( )Id

ImdImIdm
obs

obs
obs |

,||,|
p

ppp ⋅
=   ,  (1.1) 

 
where m, dobs and I represent model, data vectors and independent prior information 

respectively; the conditional probability density function (pdf) ),|( Idm obsp  is the target 

PPD representing the complete solution of an inverse problem. Prior knowledge about the 

model, )|( Imp , summarizes all available information from sources independent of the 

current data, which is necessary to initiate a Bayesian inference. Likelihood function 

),|( Imdobsp , often expressed as ),|( ImdobsL , relates to the forward process and 

represents the probability of obtaining the observations for a given model and the prior 

information. Denominator )|( Idobsp , usually called marginal likelihood or evidence, is a 

normalization factor to guarantee that the sum of the PPD is unity and actually is an 

integral of the prior times the likelihood over the entire model space, as shown in 

equation (1.2). This integration poses a daunting challenge for high-dimensional inverse 

problems. In other words, it is impractical to compute this integration analytically due to 

the high-dimensionality, and as a result the PPD cannot be derived deterministically. This 

is why Markov Chain Monte Carlo (MCMC) sampling methods have been used 

extensively for PPD estimation while circumventing direct calculation of the denominator 

integration (Sen and Stoffa, 1996; Ulrych et al., 2001). Figure 1.2 schematically shows 

the relationship between prior, likelihood and posterior. Basically, a broad, rough prior is 

refined by observed data to generate a more accurate posterior and to narrow the 

knowledge about the target model. 
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Figure 1.2: Schematic representation of the relationship among prior, likelihood function 
and posterior. 
 
 

∫= mImdImId obsobs dppp ),|()|()|(    (1.2) 

 How to translate the vague prior information into a probability distribution is a 

controversial subject (Mosegaard and Tarantola, 1995; Kass and Wasserman, 1996; 

Curtis and Lomax, 2001). Unless a certain form of prior probability distribution is 

indicated by specific prior information, uniform distribution may be assumed in case 

more biased constraints are attached. This is especially common when Bayesian inversion 

is performed using stochastic sampling methods because pseudo-random, uniform 

sampling is easy to perform (Curtis and Lomax, 2001). The likelihood function 

),|( Imdobsp  is related to forward simulation and is therefore determined by the data 

error or noise, which is very difficult to characterize in terms of a single probability 

distribution. However, based on the Central Limit Theorem, it is safe to assume the most 

conservative Gaussian distribution for data error in realistic problems. The Central Limit 

Theorem is of great practical value in data analysis and provides a deep understanding of 
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why data uncertainties frequently have a Gaussian distribution. The distribution results is 

because the measured quantity is often the result of a large number of effects (Gregory, 

2005). In practical applications, uniform prior and Gaussian data errors result in a 

multivariate Gaussian posterior surface with a simple topology for linear problems. In 

contrast, a multimodal posterior surface with a complicated topology of many hills and 

valleys for nonlinear problems. 

 

1.2 Markov Chain Monte Carlo algorithms 
 

As mentioned above, for the nonlinear, high-dimensional problems that usually 

result in a very complicated PPD topology of multiple hills and valleys, Markov Chain 

Monte Carlo (MCMC) algorithms may be the only possible tool to derive the target PPD 

while circumventing the direct evaluation of the computational demanding integration in 

equation (1.2) over the entire model space (Sen and Stoffa, 1996; Brooks, 1998; Gregory 

2005).  

In probability theory, a stochastic process is said to have the Markov property if 

the conditional probability distribution of future states of the process depends only upon 

the current state but not on any past states. This process is usually called the Markov 

process. Accordingly, a Markov chain is a discrete-time stochastic process with the 

Markov property, namely, given the present state, the future states are independent of the 

past states. Formally, 

 

( ) ( )nnnrnnnr xXxXPxXxXxXxXP ======= ++ |,,,| 100111 K .                          (1.3) 
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The probabilities of going from state i to state j in single-step and n time steps are defined 

respectively as: 

 
( ) ( )iXjXPpiXjXPp nr

n
ijrij ====== 001 |;| .                                             (1.4) 

 
A Markov chain has a stationary distribution (independent of the initial state) if and only 

if it has the following two properties: 

1) Irreducibility, that is each state in a Markov chain can access every other state; 

a set of states in which all members of the set are reachable by other members is 

called an ergodic class. Irreducibility of a Markov chain implies that every state 

can be reached from every other state in a finite number of transitions with a finite 

probability. 

2) Aperiodicity, that is a state can recur at each next time step; this state has a 

period of 1 and is called aperiodic state. This property helps stop the chain from 

oscillating between different states in a regular periodic movement. 

MCMC methods (which include random Monte Carlo walks) are a class of 

algorithms for sampling from target probability distributions (the PPD) based on 

constructing a Markov chain that has the target distribution as its stationary distribution. 

The state of the chain after a large number of steps is then used as a sample from the 

desired distribution. The most common application of these algorithms is in numerical 

calculation of multi-dimensional integrals. In these methods, an ensemble of "walkers" 

moves around randomly. At each point where the walker steps, the integrand value at that 
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point is counted towards the integral. The walker then may make a number of tentative 

steps around the area, looking for a place with a reasonably high contribution to the 

integral to move into the next. A Markov chain is constructed in such a way as to have 

the integrand as its equilibrium distribution. Surprisingly, this is often easy to do. Multi-

dimensional integrals often arise in Bayesian statistics and computational physics, so 

MCMC methods are widely used in those fields. 

The commonly used random walk MCMC methods are based on the Metropolis-

Hastings algorithm (Metropolis and Ulam, 1949; Metropolis et al., 1953; Hastings, 1970), 

which generates a random walk using a proposal density and a method for rejecting 

proposed moves, and the Gibbs sampling, which requires that all the conditional 

distributions of the target distribution can be sampled exactly (see Appendix A for 

details). However, these methods move around the equilibrium distribution in relatively 

small steps, with no tendency for the steps to proceed in the same direction. Therefore, it 

unfortunately takes a long time for the walker to explore the entire space. More 

sophisticated algorithms, such as Simultaneous Over-relaxing, and Hybrid Monte Carlo, 

etc., that prevent the walker from doubling back have been developed for faster 

convergence, but they are hard to implement (Geman and Geman, 1984). Genetic 

Algorithm (GA) and Simulated Annealing (SA) have also been adapted to make MCMC 

analysis, but efficiency still remains a critical issue.  

Davis (1991) showed that GA can be viewed as a Markov chain in that the 

conditional dependence of each population on its predecessor is completely described by 

its dependence on the parent (immediate predecessor) population, which is strictly 
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consistent with the definition of equation (1.3). Further, Davis and Principe (1993) 

demonstrated that, when the mutation operator is used, the Markov chain of GA is 

irreducible and consequently has a unique stationary distribution, and the mutation is a 

control parameter analogous to temperature in SA. Based on Davis’s work, Suzuki (1998) 

made some extension and gave a more rigorous theoretical basis to the Markov chain of 

GA by additionally considering diminishing genetic operators. Suzuki (1998) proved that 

GA converges to a stationary distribution focusing on the uniform population with the 

optimal solutions, which forms a sound basis to use GA as a safe optimization method or 

sampling tool. 

Although MCMC methods have been favorably used to explore the PPD in high-

dimensional problems (Mosegaard and Tarantola, 1995; Sen and Stoffa, 1996; Brooks, 

1998; Floris et al., 1999), uncertainty quantification based on the PPD can still be 

computationally daunting, especially in problems with a time-consuming nonlinear 

forward simulator. Starting from the classical Metropolis-Hastings method and Gibbs’ 

sampler (Metropolis and Ulam, 1949; Hastings, 1970; Geman and Geman, 1984; Gelfand 

and Smith, 1990; Gelfand et al., 1992), some developments in MCMC algorithms have 

been made for better performance. The idea of a temperature ladder was introduced to 

design new MCMC methods such as Parallel Tempering, in which a sequence of 

distributions is simulated along a temperature ladder (Marinari and Parisi, 1992; Earl and 

Deem, 2005). Further, the multi-scaling technique was proposed, and the corresponding 

multi-scale coupled MCMC methods were designed. In these methods, a coarser scale is 

incorporated, although the model at the fine scale is of primary interest, and multiple 
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chains of different scales are run simultaneously. By swapping information between 

chains, the coarser scale helps speed up the forward simulation as well as facilitates better 

exploration of the posterior at the fine scale (Bouman and Liu, 1991; Yoon et. al., 1999; 

Higdon et al., 2002). In addition, Genetic Algorithms have also been proved to converge 

to a stationary distribution (Davis, 1991; Davis and Principe, 1993; Suzuki, 1998) and 

adapted as sampling tools (Holmes and Mallick, 1998; Liang and Wong, 2000, 2001). 

Liang and Wong (2000) proposed a new algorithm, the Evolutionary Monte Carlo, by 

incorporating attractive features of Genetic Algorithms and Simulated Annealing into the 

framework of the MCMC. A similar approach was reported by Stoffa and Sen (1991). 

The improvement of this new MCMC algorithm in both optimization and PPD simulation 

was demonstrated. Nevertheless, despite the developments mentioned above, 

computational efficiency and estimation accuracy still remain a critical factor for 

practical applications such as pre-stack seismic waveform inversion.  

Model parameterization focusing on the number of free parameters (unknowns) is 

another very important issue in solving inverse problems. It is difficult to define an 

appropriate parameterization before the data are inverted. Usually, over-parameterization 

results in non-uniqueness and substantially increases computational cost while under-

parameterization may be fast but can often lead to an inadequate data fit (Sen and Stoffa, 

1991). Researchers recently proposed to directly treat the number of unknowns itself as 

an unknown, which leads to a trans-dimensional inverse problem, that is, one where the 

dimension of the parameter space is a variable to be determined by the data (Malinverno, 

2000, 2002; Sambridge et al., 2006). In a Bayesian framework, this essentially is a 
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“model selection” problem and is usually solved based on the estimated PPDs of different 

parameterizations (Carlin and Chib, 1993). A particular type of MCMC algorithm and a 

quantity termed “marginal likelihood” or “evidence” were highlighted in the work of 

Sambridge et al., (2006) for sampling from the variable dimension spaces. Applications 

to both linear/linearizable problems with many unknowns and fully nonlinear problems 

with few unknowns were successfully demonstrated by Sambridge et al., (2006). A 

similar algorithm was also applied to invert the walkaway VSP (vertical seismic profile) 

data for prediction of elastic properties in a layered earth model as well as for quantifying 

the posterior uncertainty (Malinverno and Leaney, 2005), which results in a good 

agreement between independent well logs and predicted elastic properties with smaller 

uncertainty by using a far-offset walkaway VSP. Appendix B provides more descriptions 

about MCMC algorithms. 

Nevertheless, besides certain issues (e.g., model parameterizatio), accuracy of 

PPD estimation and computational efficiency still remain critical factors for practical 

applications. These problems lead to a central objective of this dissertation, which is to 

introduce a more powerful MCMC algorithm that has not yet become prominent in 

geophysics. 

 

 
1.3 Integrated 4D seismic reservoir characterization  
 

A reasonably accurate description of the reservoir model plays a very important 

role in multiple stages throughout a reservoir’s life cycle, from the early exploration stage 
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to the final field-abandonment stage. In addition, reservoir surveillance during production 

is a key means to meeting goals of reduced operating costs and maximized recovery. 

However, a reservoir is usually buried hundreds to thousands of meters in the subsurface, 

and the only place where geoscientists are able to directly access the reservoir is at the 

well sites. Besides direct measurements of the production volumes of oil, water, and gas 

and pore pressure and fluid saturation at well locations, reservoir flow simulation has also 

been commonly used to understand and predict important geological, geophysical and 

engineering reservoir properties. Differences between actual and predicted observations 

are typically used to update the geological model of the reservoir and to revise the 

production strategy. 

Better reservoir description calls for the integration of various data sources and 

expertise from different disciplines. Different data types usually provide different 

resolution; they correspond to different physics as well. To derive an accurate reservoir 

model and therefore obtain a reliable performance prediction with as little uncertainty as 

possible, the idea of dynamic data integration has evolved. History matching was 

introduced to capture a reservoir’s static and dynamic features by integrating dynamic 

production data and static geologic scenarios. Thus, the resulting petrophysical model of 

the reservoir is found so that it honors the production measurements at well locations 

throughout the entire production time. Static data summarize all available measurements 

and interpretations about the target reservoir, such as: 

• Core data: porosity, permeability, etc. 

• Well logs: lithology and fluid types around well bores 
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• Geologic outcrop analog data 

• Interpretation of sedimentation and stratigraphy 

• Interpretation of horizons and faults 

• Rock physics and PVT data 

 

This history matching scheme is expected to reduce uncertainty in reservoir 

characterization by incorporating more constraints from various data sources. However, 

as described above, evaluation of data fit is only performed at a few sparse well locations 

and therefore lacks lateral resolution of the reservoir heterogeneity. It certainly would be 

beneficial to incorporate some type of spatially dense data in this history matching 

scheme in order to assist in constraining the dynamic reservoir characterization between 

wells. From this viewpoint, seismic data is the most promising candidate because of the 

extensive spatial coverage and dense lateral sampling it entails. 

Time-lapse, or 4D, seismic monitoring is a reservoir exploitation technique based 

on successive 3D seismic surveys. In a 4D seismic study, it is assumed that the 

reservoir’s geology remains constant through time, and differences over time in seismic 

attributes are due to changes in fluid flow variables such as fluid saturation and pore 

pressure, etc. during production/injection. Studies using 4D seismic can be traced back to 

late 1980’s and early 1990’s (Wayland and Lee, 1986; Greaves and Fulp, 1987; Dunlop 

et al., 1991; Lumley et al., 1999; Behrens et al., 2002). According to Lumley and Viejo 

(2004), total time-lapse seismic expenditures in 2002-2003 were about $500 million. 4D 

seismic technique involves repeating the seismic surveys to construct and compare 
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seismic images to monitor time-varying dynamic fluid flow properties in the subsurface 

during production/injection. The difference between the seismic surveys can then be 

interpreted in terms of the production-related changes in reservoir properties. Using 4D 

seismic data h increases reserves and recovery by 

• Locating bypassed and undrained reserves 

• Optimizing infill well locations and flood patterns 

• Identifying reservoir compartmentalization and permeability pathways 

Utilizing 4D seismic data can also help decrease operating costs by 

• Reducing initial development well counts 

• Optimizing phased developments using early field-wide surveillance data 

• Reducing reservoir model uncertainty 

• Reducing dry holes and targeting optimal completions 

As a result, the time-lapse, or 4D, technique has recently been developed to derive 

the static petrophysics of a reservoir as well as to image the inside dynamic fluid flow 

over production time (Landro, 2001; Lumley et al., 2003), as the changes in static 

petrophysical properties and dynamic fluid movement can be decoupled. Accordingly, 

schemes of seismic history matching have been proposed for more accurate reservoir 

characterization (Chapin et al., 2002; Pickering et al., 2005), in which a reservoir model 

is found such that, after both flow simulation and seismic modeling, the synthetic seismic 

and production data match the recorded seismic data and production rates at the test wells. 

If the match is poor, the reservoir model will be stochastically perturbed to improve the 

data fit. Nevertheless, most existing applications using 4D seismic data have tended to be 
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qualitative rather than quantitative, and they are time-consuming iterative processes 

posing several challenges in practical applications. First, in the formulation part, how to 

integrate all available data sources corresponding to different physics and with different 

resolutions is not trivial. Second, in the algorithm part, it is difficult to design a powerful 

algorithm to solve this integrated inverse problem for relatively accurate model 

estimation within an acceptable time period. These two aspects are addressed in this 

research. 

 Seismic history matching is a process for deriving reservoir model parameters 

from surface-recorded 4D seismic and well production data, which constitutes a joint 

inverse problem. Considering the inherent non-uniqueness of the inverse problem and the 

unique feature of Bayesian inference in data integration and uncertainty analysis, it is 

superior to formulate the inverse problem in a statistical Bayesian framework and to fully 

solve it by stochastically reconstructing the PPD function using MCMC algorithms (Sen 

and Stoffa, 1996; Tarantola, 2005; Buland and Ouair, 2006). This PPD is the complete 

solution of the integrated seismic history matching problem, providing all consistent 

reservoir models. 

In this research, I have proposed a seismic history matching scheme to 

simultaneously integrate 4D seismic and well production data for quantitative reservoir 

characterization. This integrated scheme is formulated in a Bayesian framework and 

solved by PPD sampling using a new MCMC method. To integrate the time-lapse seismic 

and production data that are assumed to be conditionally independent of each other, the 

joint PPD can be described as: 
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where m is the reservoir model vector. The term ),|( obsobsp PSm  is the joint PPD of reservoir 

properties for the given time-lapse seismic and production data, which provides a 

complete solution of the joint inverse problem as well as a theoretically correct way to 

quantify corresponding uncertainties. Likelihood function )|( mSobsp  corresponds to the 

forward process of seismic modeling, which relates to modeled reservoir properties m 

through a rock physics model. Likelihood function )|( mPobsp  relates to the fluid flow 

simulation that is performed directly on the model vector m. Prior knowledge p(m) may 

come from other independent sources such as well logs and laboratory measurements. 

Denominator term of equation (1.5) is a normalization factor that is the integration of the 

numerator over the entire model space. Again, as mentioned in section 1.3, reasonably 

accurate and efficient estimation of the joint PPD in equation (1.5) calls for powerful a 

MCMC algorithm. 

 
 

1.4 Uncertainty quantification 
 

Quantitative characterization of physical properties of the earth’s interior from 

surface-recorded data and other measurements is essentially a mapping from data space 

to model space. However, this mapping is dubious because it is not a one-to-one mapping 

due to the inherent non-uniqueness, which is caused by incompleteness and inaccuracy of 

the observed data. Non-uniqueness usually leads to a range of models equally consistent 
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with the data and may preclude a deterministic solution. In statistical terminology, our 

state of knowledge about an earth model is inaccurate, incomplete and therefore 

necessarily probabilistic. Bayesian inference provides a means to handle situations in 

which information is incomplete or inaccurate and a deterministic reasoning cannot be 

made, as it constructs the probability distribution for assessing the plausibility of 

competing models and the corresponding uncertainties (Tarantola, 1987; Gregory, 2005). 

This framework is superior since it provides not only a complete range of solutions for 

given information but also a convenient way to quantify uncertainties arising from the 

inherent incompleteness and inaccuracy. Simply speaking, the most likely model 

parameter values as well as the corresponding uncertainty bound can be determined based 

on the estimated PPD coming from MCMC samples. However, it is very hard to display 

the PPD with a complicated multi-modal topology in a high-dimensional space. As a 

result, several measures of dispersion (mean, covariance, etc.) and marginal PPDs are 

often used to describe the most probable solution and to quantify uncertainty. The 

posterior mean model and posterior model covariance matrix are calculated according to 

 

∫= mIdmmm obs dp ),|( ,     (1.6) 

∫ −−= mIdmmmmmC obsM dpT ),|())(( ,  (1.7) 

∫ ∫∫∫∫ ⋅⋅⋅⋅⋅⋅= +− Miii dmpdmdmdmdmmp ),|(),|( 1121 IdmId obsobs . (1.8) 

 
The posterior correlation matrix can also be derived from the covariance matrix to 

describe the inter-dependence between different parameters. The marginal PPD is a 
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special kind of projection of the joint PPD to a particular dimension axis, and it can be 

approximated by the frequency distribution of that particular parameter. All these 

integrals fall into a general form as shown in equation (1.9), which is the integration of 

the derived PPD over the entire model space. It is not tractable in realistic high-

dimensional applications. This means that it is still not easy to quantify uncertainties even 

though the PPD was derived. Therefore, a way to derive these dispersion measurements 

while avoiding the direct integration computation is still necessary. 

 

∫=Ω mIdmm obs dpf ),|()(  .         (1.9) 

 
Uncertainty quantification is important and therefore is also specifically addressed 

in this research for two major reasons. First, in terms of an inverse problem itself, it is 

logical to derive not only the most likely model but also the corresponding uncertainty in 

order to account for the inherent non-uniqueness. By doing so, both a complete solution 

of an inverse problem and an appropriate model parameterization in some cases can be 

obtained. Second, in petroleum exploration and production, decisions of reservoir 

development and management, especially for complex deep-water reservoirs, are always 

related to risks due to uncertainties present in the process (Costa and Schiozer, 2003; 

Schiozer et al., 2004). One of the most common uncertainties comes from the geological 

models of the reservoir. Therefore, a precise risk assessment requires not only an accurate 

production prediction and model estimation but also an accurate uncertainty 

quantification. Based on the sampled PPD of reservoir properties, measures of dispersion 

in model space will be correctly quantified for uncertainty analysis, as illustrated in 
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equations (1.6), (1.7) and (1.8), which provide the necessary ingredients to facilitate an 

engineer’s risk assessment and a manager’s decision making. In this research, all these 

uncertainty measurements are estimated based on the PPD samples drawn by a new 

MCMC algorithm. 

 

1.5 Objectives and dissertation organization 
 

The central objective of this dissertation is to report on the development of new 

and powerful global optimization and MCMC sampling algorithms that make nonlinear 

high-dimensional inverse problems manageable. Specifically, better performance of the 

new algorithms is demonstrated by testing on a nonlinear pre-stack seismic waveform 

inversion problem as well as an integrated 4D seismic history matching problem for 

quantitative reservoir characterization in a Bayesian framework. I will show that the 

proposed integrated workflow in the Bayesian framework leads to an accurate static 

reservoir petrophysical model estimation and a dynamic imaging of fluid flow within the 

reservoir. Using the newly developed MCMC algorithm, the corresponding uncertainty in 

quantitative reservoir characterization can be correctly quantified, which facilitates an 

accurate risk assessment associated with reservoir decision making and management. 

In chapter 2, the conventional binary Genetic Algorithm is reviewed. I incorporate 

some new developments in the conventional GA to develop a new GA with better 

performance in terms of estimation accuracy and computational efficiency. Specifically, 

the traditional binary coding is replaced by real coding to promote better and more 

efficient exploitation of the model space for estimation of the best-fitting model. Some 
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concepts of Simulated Annealing (SA) are also incorporated to speed up convergence 

while preventing premature stagnation. This real-coded GA is further developed using a 

multi-scaling technique to take advantage of benefits from both the fine scale and the 

coarse scale. A comparison is shown between the conventional and the new GAs. The 

new real-coded multi-scale GA is also applied to a pre-stack seismic waveform inversion 

problem to derive a set of best-fitting elastic parameters. 

In chapter 3, the new real-coded multi-scale GA is further developed as a 

powerful MCMC algorithm, a multi-scale GA-based MCMC, for better exploration of the 

model space aiming to construct the target PPD surface. The applicability and usefulness 

of this new MCMC algorithm are investigated. This new multi-scale coupled MCMC is 

first justified using an analytical example, and then further applied to estimate seismic 

elastic parameters of a 1D earth model and to quantify corresponding uncertainties based 

on pre-stack seismic waveforms. It is found that multi-scaling is particularly useful in 

addressing the model parameterization issue.  

Discussions of 4D seismic, integrated seismic history matching, flow simulation, 

seismic modeling and rock physics models are presented in chapter 4. A seismic history 

matching workflow is proposed to integrate as many data sources as available for 

quantitative reservoir petrophysics and inside fluid flow imaging using a global 

optimization algorithm, which is tested on a 2D numerical example. In chapter 5, the 

integrated history matching of 4D seismic and well production data, which essentially is a 

joint inverse problem, is formulated in a Bayesian framework and is stochastically solved 

by constructing the PPD surface using the new multi-scale MCMC algorithm. The 
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estimated PPD enables the determination of the most likely reservoir model for the given 

datasets. In addition, based on the samples drawn by the MCMC method, the uncertainty 

associated with a reservoir model estimation is quantified. A synthetic application in a 3D 

reservoir is used to demonstrate how the multi-scale MCMC is applied to quantitatively 

and accurately derive the static and dynamic properties of a reservoir as well as to 

quantify uncertainties. 

Chapter 6 summarizes the research covered by this dissertation and discusses 

some potential directions for future research. 
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Chapter 2 
 

Multi-scale real-coded hybrid Genetic Algorithm 
 
 

 Inverse problems, the processes for deriving subsurface properties from observed 

data and measurements, are common in geophysics. Geophysical inverse methods have 

been a subject of active research for decades and can be broadly classified into two major 

categories: (1) direct inversion or operator-based inversion methods and (2) model-based 

inversion methods. 

 Direct inversion methods are formulated based on the physics of the forward 

problem by designing a mathematical inverse operator to the observed data in order to 

directly derive a model of interest. The best known direct inversion method in seismology 

is the so-called layer-stripping method (Singh et al., 1989; Ziolkowski et al., 1989).  

As a comparison, no attempt is made to reverse the forward operator in a model-

based inversion method. Instead, synthetic data are usually generated for an assumed 

model and compared against the observed data to evaluate the match between them. If the 

match is satisfactory, the derived model is accepted as the solution. Otherwise, the model 

is updated, and the synthetics are re-computed and re-compared against the observations, 

which is repeated until an acceptable data match is obtained. Thus, in this approach, the 

inversion is iterative and can be viewed as an optimization process. Depending on the 

search scheme applied to find the optimal solutions, model-based inversion methods can 

be classified into the following categories (Sen and Stoffa, 1995): 
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• Linear/linearized methods: These methods assume that the data are a 

linear function of the model parameters. Therefore, it is possible to design 

a matrix as the forward operator and directly apply it to the model. In this 

way, the inverse problem is formulated into a well-known linear algebra 

problem. 

• Gradient-based methods: These methods use gradient (derivative) 

information to update the current model, which is repeated until the 

updates become negligible. 

• Enumerative or grid search method: This method involves searching each 

point in the entire model space. Computation of synthetic data for a large 

model space in many applications is demanding and is usually not 

practical. 

• Monte Carlo methods: These methods involve the random sampling of 

model space with the goal of obtaining good solutions in a finite number 

of trials. This is a completely blind search, and therefore, it may be 

computationally very expensive. 

• Directed Monte Carlo methods: The global optimization methods 

Simulated Annealing (SA) and Genetic Algorithm (GA) belong to this 

category. These methods perform random sampling with some directivity 

to guide the searching. 

Compared to local optimization methods such as the gradient-based methods, 

global optimization methods have several benefits. Firstly, even for the objective function 
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with a complicated topology of multiple optima, the global optimization process 

theoretically converges to the global optimum no matter where it starts in the model 

space. Secondly, the global optimization methods do not require that a gradient and 

sometimes a curvature (second-order derivative) matrix be calculated at each point 

through iterations. These gradient calculations may be a computationally formidable task 

in many cases. In addition, they do not require calculating the inverse of a large matrix, 

which is not a trivial task. 

Since the work of Kirkpatrick et al. (1983), Simulated Annealing (SA) has been 

applied to a wide variety of problems in geophysics. Most SA algorithms are statistically 

guaranteed to attain equilibrium distribution and possibly to reach the global optimum, 

and therefore they are suitable for best-fitting model estimation. In practice, however, 

these algorithms are sometimes problematic due to inappropriate parameter selection. For 

example, it is important to choose the starting temperature and cooling schedule properly. 

Unlike SA, which is based on an analogy with a physical annealing process, 

Genetic Algorithm (GA) (Holland, 1975; Goldberg, 1989) is based on analogy with the 

process of natural biological evolution. The basic GA is quite robust and not particularly 

sensitive to the randomly selected starting models as long as a sufficient number of 

models are employed. The primary advantage of a basic GA is that it always converges 

toward models with higher fitness values. There are, however, several problems with 

using the basic GA that need to be addressed. First, there is no guarantee that the 

optimum solution will be found, although the finally derived solution may be good 

enough in many cases. The convergence of a GA can be premature if a small number of 
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models are employed. Rapid convergence to minimize computational cost may be 

undesirable since model space will not be sufficiently exploited and the population may 

become homogeneous around a local fitness maximum that is not near the global 

maximum. In contrast, convergence toward the global maximum may be slow because 

some model parameters have only minor impact on the fitness, so that extensive sampling 

of model space often results in minor improvements at significant computational cost. 

As mentioned in chapter 1, it is better to formulate an inverse problem in a 

statistical framework and fully solve it by constructing the PPD surface. However, in 

many situations, rather than the PPD surface, users may be only interested in the best-

fitting or most likely model that is the maximization of the posterior distribution. 

Therefore, the main objective of this chapter is to develop a new global optimization 

method, a multi-scale real-coded hybrid GA (Hong and Sen, 2006; Hong and Sen, 2007). 

This new GA is expected to have better performance in terms of model estimation 

accuracy and computational efficiency. Specifically, starting from a conventional binary-

coded GA, a new optimization algorithm is developed by integrating new features of real-

coding and multi-scaling techniques as well as some concepts from Simulated Annealing. 

 
 

2.1 Basic Genetic Algorithm 
 
 

Genetic Algorithm (GA) is an intelligent maximization technique for functions 

defined on high-dimensional spaces, which simulates the biological evolutionary 

processes of selection, crossover and mutation to increase the fitness toward better 

solutions. The unique feature of a GA is that it is able to work on a population of models 
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simultaneously. A typical GA requires two conditions to be defined: (1) a genetic 

representation of solutions or models, and (2) a fitness function to evaluate the goodness 

of those solutions or models. Users of GAs have had great success in search and 

optimization problems. One reason for much of their success is the ability to exploit the 

information accumulated about an initially unknown search space in order to bias 

subsequent searches into useful subspaces. Chatterjee et al. (1996) provides a good 

overview of the concepts in GA as related to statistics.  

Before introducing the new real-coded multi-scale GA that I developed, the 

conventional GA is reviewed as follows. Suppose the fitness function to be maximized 

is )(mF , where m is the model vector [ ]TLmmm ,...,, 21=m with fixed length of L (number 

of model parameters), and each generation consists of M solution models: 

Mmmm ...,,, 21 . The initial step in a conventional GA is to design a binary coding scheme 

that represents these solution models and creates an initial population of models to a 

given problem. This way, each bit corresponds to a gene, and each individual model in 

the population is described by its bit string or chromosome. Conventionally, 

chromosomes in a GA have fixed scale or length equal to the number of model 

parameters L, but M, the number of models in each generation, may be adjusted. GA 

optimization is initiated by randomly choosing a population of models from the model 

space based on the calculated values of fitness. For example, an initial population of 

models M
)0(

2
)0(

1
)0( ...,,, mmm  could be created by randomly selecting M vectors of length L 

based on certain distribution from the model space. Here, the subscript in parentheses 

denotes the iteration of generation number within the algorithm. These starting models 
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are then binary coded and progressively optimized for better estimation by repeatedly 

employing the three genetic operators (selection, mutation and crossover).  

Selection.In this step, the population of models is altered to allow better models to remain  

whereas poorer models may be removed. Selection proceeds by choosing M 

model vectors with replacement from the current population to form a new 

generation based on probabilities proportional to the corresponding fitness f(mi). 

Therefore, for one model i
t )(m , the probability of being selected is 

∑ =
M
j

j
t

i
t ff 1 )()( )(/)( mm . In this way, those models with higher fitness values are 

more likely to be selected for further operation whereas poorer models are 

potentially discarded. 

Crossover. To perform a crossover, models chosen from the selection step are paired, and  

some of their values are traded between each individual pair. It has been 

recommended that the probability of performing a trade should be between 0.6 

and 0.95 (see Back (1993) for more discussion). Several crossover mechanisms 

may be performed on a single pair to generate a new pair of models. In a one-

point crossover, a single element is randomly picked between 1 and L and all 

elements after this chosen element are traded. In a k-point crossover, k (<L) 

elements are chosen, and segments between those chosen elements alternate 

between trading and not trading. In a uniform crossover, every element has some 

finite probability of being traded. In addition, more complicated forms of 

crossover have been proposed, such as the snooker crossover discussed in Liang 

and Wong (2001). 
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Mutation. In this step, each element of each model vector in the current population is 

perturbed with a probability. Mutation helps to make the models diverse to 

prevent premature convergence, and helps to jump out of local optima. The 

mutation probability has to be very small, otherwise current good models are 

likely to be destroyed. For instance, if the mutation probability is 0.01, 

approximately 0.01xMxL elements are mutated in each optimization cycle. 

 At the end of the mutation step, the next generation of the algorithm begins. These 

three steps are repeated until some measure of convergence is satisfied. Several stopping 

criteria could be used to terminate the GA optimization process. Usually, convergence is 

considered satisfied if the algorithm does not improve the fitness of the most model 

vectors for many iterations, that is, the ratio of average fitness to maximum fitness 

exceeds some limit, or the absolute fitness of the most of model vectors exceeds some 

preset threshold. The user can also simply specify the maximum number of generations 

as the stopping criterion.  

 

2.2 Multi-scale real-coded hybrid Genetic Algorithm 
 
 
2.2.1 Combining elements of SA into GA 

 
To address the issues of premature convergence in a conventional GA, that is a 

rapid stagnation of search caused by the lack of diversity in the population, and slow 

convergence to the global maximum because some model parameters have minor impact 

on the fitness, different schemes have been introduced (Baker, 1987; Goldberg, 1989; 
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Whitley, 1989; Stoffa and Sen, 1991; Sen and Stoffa, 1992). In this section, we develop a 

hybrid GA by adopting the scheme of Stoffa and Sen (1991) to incorporate some 

concepts of Simulated Annealing (SA), such as temperature and update probability, into a 

basic GA.  

Recognizing that the stretching of the fitness employed in the GA plays the same 

role as temperature in an SA, all of the ideas related to temperature and temperature 

schedules can readily be applied to a GA. Therefore, the selection probability as 

described in section 2.1 is replaced as follows: 

 
( )

( )
∑
= ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

=
M

j
t

j
t

t

i
t

i
ts

T
f

T
f

p

1
)(

)(

)(

)(

)(

exp

exp

)(
m

m

m    , (2.1) 

where subscript )(t  is the index of current generation and T(t) is the temperature value at 

the current generation. Again, f(mi) is the fitness function on the model vector i
t )(m . After 

the adaptation mentioned above, in the selection step, model i
t )(m  is selected based on a 

probability sp  defined in equation (2.1). The temperature may follow a pre-defined 

cooling schedule. 

 The genetic operators of selection, crossover and mutation can be grouped 

together and considered as a replacement for the pure random walk in an SA. By simply 

keeping track of the previous generation’s models and their fitness values, the algorithm 

is able to form a temperature-dependent acceptance probability for all the models 

individually. Therefore, an update probability is incorporated into a GA to decide 
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whether a model from a previous generation should be used in place of a current model. 

Once a new model’s fitness has been evaluated, it is compared to the fitness of the 

corresponding model from the previous generation. If the current model’s fitness is 

greater, the current model is always kept. If it is less, the previous generation’s model 

replaces the current model with the specified update probability pu, which now plays the 

role of the acceptability as used in the classical SA. 

 As a result, the hybrid GA has the ad-hoc fitness stretching replaced by a 

temperature-dependent probability. The hybrid GA includes the update information from 

comparing a model’s current fitness to its fitness in the previous generation. 

 
 
2.2.2 Real-coded GA 
 

Fixed-length and binary-coded bit strings for the representation of model vectors 

have dominated GA research because they are shown to be the most appropriate ones and 

amenable to simple implementation (Goldberg, 1991). However, the GA’s good 

properties do not stem from the use of bit strings (Antonisse, 1989; Radcliffe, 1992). In 

addition, the binary representation encounters certain difficulties when dealing with 

continuous search spaces with large dimensions and when great numerical precision is 

required (Herrera et al., 1998). For these reasons, alternative non-binary representation 

has drawn much attention for certain application problems. One of the most important 

non-binary representations is the so-called real number representation, which seems 

particularly natural for optimization problems with variables in continuous search spaces 

(Davis, 1991; Wright, 1991; Herrera et al., 1995). In real representation, a chromosome is 
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a vector of floating point numbers with a size the same as the length of the model vector, 

which is the candidate solution to the problem, and its precision is restricted to that of the 

computer by which the algorithm is carried out. In this way, each gene represents a 

variable of the problem. The values of the genes are forced to remain in the interval 

established by the variables that they represent. 

The use of real representation makes it possible to use large domains for the 

variables, which is difficult to achieve in binary implementations where increasing the 

domain would mean sacrificing precision. Another advantage of using real coding is the 

capacity to exploit the graduality of the functions with continuous variables. Here, the 

concept of graduality refers to the fact that slight changes in variables correspond to 

slight changes in the function (Herrera et al., 1998). A comparative study conducted by 

Janikow and Michalewicz (1991) concluded that the real-coded GAs outperformed the 

binary-coded ones in many optimization problems, especially the high-dimensional 

nonlinear problems. Accordingly, different mechanisms of crossover and mutation 

operations are also tuned for using the real-floating point numbers instead of the long 

strings of zeros and ones (Wright, 1991; Ono and Kobayashi, 1997; Herrera and Lozano, 

2000; Liang and Wong, 2001).  

The hybrid GA introduced in section 2.2.1 is further developed by replacing the 

conventional binary representation to real representation in which model vectors are 

simply kept in decimal forms. Using real representation is very close to the natural 

formulation of many problems, and therefore, the coding and decoding processes in a 
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binary GA are avoided, which increases the GA’s implementation speed. The real coded 

crossover and mutation operations in this new real coded hybrid GA are described below. 

Different crossover mechanisms may be used to trade information between a pair 

of model vectors that are chosen through the selection operator, such as single-point 

crossover, multi-point crossover and uniform crossover. The uniform crossover 

mechanism is used in this research, which means that every parameter pair of the selected 

model vectors will potentially be traded, based on a probability. Once a parameter pair is 

determined for trading information, a scheme called intermediate recombination is 

performed to stochastically combine the two parent variables to generate corresponding 

two offspring variables, following the rule shown below: 

 
)12(1 parentparentalphaparentoffspring −⋅+=  

 
where alpha is a scaling factor chosen uniformly at random over an interval [-d, 1+d]. A 

recommended choice is d=0.25. In this way, each variable in the offspring is the result of 

combining the variables according to the above expression with a new alpha chosen for 

each variable. Figure 2.1 on page 44 illustrates the area of the range of offspring variable, 

which is defined by the range of parent variable with d=0.25. 

In crossover, if a single-point crossover is used, a crossover point is first 

randomly picked (e.g., position of I ). All elements of the selected and paired model 

vectors after this point are traded according to the mechanism described above, which is 

also illustrated in the following diagram. If a uniform crossover is used, every element of 

the paired model vectors will be traded individually based on an identical probability. In 
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the diagram below, the starred elements after the selected single crossover point denote 

that their values are affected by the crossover step. 

 

 

 After crossover, offspring model vectors undergo mutation. Offspring parameters 

are mutated by adding white noise based on a low probability. Many papers (Back, 1993; 

Muhlenbein and Schlierkamp-Voosen, 1993) reported on the results using the optimal 

mutation probability. Muhlenbein and Schlierkamp-Voosen (1993) concluded that a 

mutation rate of 1/n produced good results for a broad class of test functions, where n 

represents the number of parameters in the model vector. However, the mutation rate is 

independent of the population size. Similar results are also reported in Back (1993). 

Supposing that a variable has a lower and an upper bound of 8 and 28, respectively, 

Figure 2.2 shows how the mutation works on a variable with a value of 12 following the 

rule: 

 
( ) rangeranddeltaparameterparametermutated ⋅−⋅+= 5.0 , 

 
where rand stands for a random number between 0 and 1; range is determined by the 

variable’s minimum and maximum values, that is 20 in this example; delta is the size of 

the mutation step, which is usually difficult to choose. Small steps are often successful, 

although sometimes bigger steps are quicker. The optimal step size depends on the 
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problem considered and may vary during the optimization process. In this example, if 

delta is set to 0.1, the resulting mutated variable will be in the range of [11, 13], which is 

equivalent to adding a small white noise to the current value of 12. 

 After mutation, the generated new population of real-coded model vectors will be 

evaluated against the previous population for an update based on the probability in 

equation (3.1), which is immediately followed by a new genetic cycle without decoding 

and coding as needed in a binary GA. 

 
 
2.2.3 Multi-scale real-coded hybrid GA 
 
 

The study of geophysical inverse problems involves properly discretizing the 

continuous earth and then estimating the free parameters based on the observed data. 

Whether we have multi-scale data, or our primary interest is only in the fine-scale earth 

model, information from different scales are useful to facilitate exploration of the model 

space on the fine scale. Typically, a model at a fine scale may be of primary interest as it 

provides detailed information about the earth’s interior. However, when modeling with a 

fine parameterization, more free parameters will be induced into the model and therefore 

computational cost will be increased, especially when a time-consuming forward 

simulator is involved. On the other hand, modeling with a coarser parameterization 

requires fewer free parameters, which helps to speed up the convergence. However, a 

coarser scale usually leads to rough information about the model and yields inadequate 

data fit as well. In order to take advantage of the benefits of both the fine scale and the 

coarse scale, multi-scaling techniques have been performed in several fields to estimate 
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parameters simultaneously modeled at multiple resolutions in high-dimensional spaces 

(Bouman and Liu, 1991; Yoon et al., 1999). 

A GA that is able to accommodate variable model length was proposed by 

Goldberg et al. (1989). Their GA overcomes the limitation of fixed resolution and 

facilitates maximization. In this study, we also employ multi-scaling technique to extend 

the new hybrid GA described in section 2.2.2 in order to take advantage of the benefits 

from different scales to efficiently and accurately exploit the model space for the best-

fitting solution at fine scale. To accommodate multiple resolutions (e.g., total number R 

of resolution levels), the likelihood function has to be defined on different scales. For 

scale i, it may be described as ( ))()()()( ,| iiiiL Idm obs , where )(im , )(i
obsd and )(iI stand for 

the model vector, data vector and prior at scale i, respectively. If only one data vector 

exists, then obsobsobsobs dddd ==== )()2()1( ... R . This leads to the following overall joint 

likelihood function that is to be maximized 

( ) ( )∏
=

=
R

i

iiiiLL
1

)()()()( ,|,| IdmIdm obsobs   (2.2) 

In this framework, R conditionally independent likelihood functions need to be exploited. 

The multi-scale GA starts with a randomly selected population of models defined on R 

scales. Because these models are of different lengths, modifications have to be made in 

order to perform the genetic operations appropriately. Before performing selection, 

models are grouped according to the scale, that is, all models of the same scale are 

collected into one subgroup. The conditionally independent portion of the joint likelihood, 

that is ( ))()()()( ,| iiiiL Idm obs  and { }Ri ,...,2,1∈ , is used as a measure of fitness of proposed 
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solution vectors at different scales, and the corresponding selection probability is defined 

by the following equation.  
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Based on this probability, selection is then performed separately within each 

subgroup exactly as is done in a traditional GA. There should be at least two model 

vectors for each scale, and experimentation has shown that the algorithm works better 

with several solution vectors at each scale. At this point, the algorithm is ready to go 

through crossover and mutation for updates.  

Crossover of multi-scale GA differs dramatically from the traditional GA because 

it cannot be directly performed on models of varying lengths even though the entire 

population can be paired as before. To overcome this difficulty, models have to be 

decomposed appropriately so that they have one part that is of common length and 

another part that contains additional information for completely specifying the model 

parameters. The decomposed model vector can be expressed as ( ))()()()( , iiii f λφm = , 

where )(if  is a up-scaling or down-scaling operator decomposing a vector of higher 

dimension to a vector of lower dimension or composing a vector of lower dimension to a 

vector of higher dimension. It can simply be a linear operation such as averaging or 

summing over fine pixels to yield coarse pixels. Different averaging techniques can be 

performed for the linear operation such as the physics-based Backus averaging (Backus, 
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1962), which involves averaging the model parameters of a stack of thin layers into 

effective average properties similar to those of a single thick layer. For simplicity, the 

standard average is used in this paper as the linear operator. Vector )(iφ has the same 

length and physical meaning regardless of the scale i and therefore crossover is 

performed only on φ , and the λ  vector is not involved. The following diagram 

schematically illustrates a single-point crossover between two solution vectors of 

different scales. First, a crossover point is randomly picked (position of I), and all 

elements after this point and in gray areas are traded according to the mechanism 

described in section 2.2.2.  As shown, information is exchanged only between φ  parts 

that have a common length for all the scales. Starred parameters denote that their values 

are affected by the crossover operation. It is through these multi-scale crossovers that 

information is shared across scales or resolutions. In this dissertation, a uniform crossover 

mechanism is used to trade information, which is supposed to have better performance. 

As mentioned before, with a uniform crossover, all the paired model parameters are 

stochastically combined or not based on an identical probability. 

 

 

 
Mutation of this multi-scale GA remains the same as that in a conventional single-

scale GA. In this step, values of some of the parameters are perturbed following the 

scheme introduced in section 2.2.2. With real coded model vectors, random noise is 
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generally added to each component with a probability. This mutation probability has to 

be small in case that some good model vectors are destroyed. The elitist strategy has been 

proposed to save the best model vector on the scale of interest from being destroyed 

through crossover or mutation steps, which may increase the convergence speed (DeJong, 

1975). The pseudo code of this multi-scale real-coded hybrid GA is provided in Figure 

2.3. Several stopping criteria can be used to terminate the optimization process. The 

process can be stopped automatically when the maximum fitness or the ratio of average 

fitness to maximum fitness exceeds some limit. Users can also simply specify the 

maximum number of generations as the stopping criterion, as was done in our examples. 

The superior performance of this new algorithm is demonstrated in section 2.3 by using a 

1D pre-stack seismic waveform inversion example.  

 

2.3 Example: pre-stack seismic waveform inversion 
 

 One approach to solving inverse problems may be termed “exploitation of model 

space”, in which the inverse problem is cast into an optimization framework. This 

involves searching a multi-dimensional model space for an optimal set of model 

parameters that best explains the observation. As a developed global optimization 

algorithm, the multi-scale real-coded hybrid GA is applied to a pre-stack seismic 

waveform inverse problem for the best-fitting 1D earth models at different resolutions. 

Performance of this new algorithm in terms of computational efficiency, and estimation 

accuracy, as well as the capability of multi-scaling in addressing the model 
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parameterization issue, is evaluated by comparing the inversion results against those from 

a conventional single-scale GA. 

 The purpose of this application is to estimate 1D earth model parameters (P-wave 

velocity, S-wave velocity, density) from the pre-stack seismic gathers in (x,t) domain. It 

is noteworthy here that the layer thickness or two-way travel time (twt) of the 1D model 

is no longer a free parameter as in the case of using multi-scaling technique. Real well 

logs of Vp, Vs and density ρ from the Gulf of Mexico are assumed to represent the actual 

earth model and are used to calculate seismograms that are taken as observed data for 

inversion. A zero-phase Ricker wavelet with a peak frequency of 35Hz is used to 

approximate the source wavelet. Numerical simulation of pre-stack seismic data was 

performed using a reflectivity method (Kennett, 1983). This method generally computes 

the full-wave response of a stack of horizontal layers including all converted waves and 

propagation modes. More specifically, a simplified version of the reflectivity method was 

used to efficiently compute synthetic seismograms for P-primaries only in the offset-time 

domain. Considering the incidence angle or offset dependence of the reflection 

coefficients, this forward modeling problem is a nonlinear computationally intensive 

process. The measure of goodness of fit between the synthetic and observed data is 

evaluated using the following cross-correlation function 

 

( ) ( ) 2/12/1 )g()g(
)g()(

mmdd
mdm

obsobs

obs

⊗⊗
⊗

=C ,    (2.4) 
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where ⊗  represents correlation; obsd  represents observed data; g represents forward 

operator. In seismic waveform inversion, the low-frequency trends of well logs may be 

used as prior information to construct the starting models and define search bounds to 

narrow the model space. Therefore, besides the fit between synthetic and observed data, 

three normalized terms can also be incorporated into the fitness/likelihood function to 

represent additional constraints from well logs on Vp, Vs and ρ respectively as given in 

equation (3.4) 
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where ii SP ΔΔ , , and iDΔ  are search intervals for Vp, Vs, and ρ respectively; i

modΧ  and 

i
priΧ  are respectively the current model value and the prior low-frequency trend for each 

parameter. Choice of weights is a more or less subjective task. Different weights are 

assigned to the four terms to reflect different levels of confidence in them. Of course, the 

last three weights can be set to zeros if no additional smoothing terms are incorporated. In 

this study, preliminary tests with different combinations of weights were run to find the 

best set of weights. The pre-determined set of weights is then used in equation (2.5) for 

this example. 

 To utilize multi-scaling technique, the 1D model is parameterized into 4 different 

scales of 10, 20, 40 and 80 layers, respectively (Figure 2.4). The finest scale has 80 layers 

and corresponds to the full-scale parameterization relative to the true model represented 

by the well logs, i.e., it is also of 80 sample points and the layer thickness is fixed as 4ms. 
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Low frequency trends of well logs are used as prior information to define the parameter 

search bounds. Vp, Vs, and ρ are limited within skm /5.0± , skm /4.0±  and ccg /3.0±  

around the corresponding low frequency trends. The starting models are randomly chosen 

within these bounds. The multi-scale hybrid GA as outlined in Figure 2.3 can be easily 

implemented on the identical (x,t) pre-stack seismic gathers to derive the best-fitting 1D 

earth models of different scales. Each implementation of the new algorithm consists of 5 

independent runs starting with different random seeds, and each run goes through 1500 

generations of updates on a total of 28 models at 4 different scales. Thus, each scale 

consists of seven models in a population. Model parameters are mutated with a 

probability of 0.2, and the uniform crossover is performed on the paired models with a 

probability of 0.7 through the runs and generations. Of course, crossover is performed 

only on the φ  parts that are of common length. For this 1D model, multi-scaling can be 

implemented in a straightforward way. For example, if the paired two models are at 

different scales and have 20 and 40 layers respectively, then each layer on the coarse 

scale corresponds to two layers on the fine scale. When a crossover step is reached, the 

fine-scale model proposes a coarse-scale realization by taking the standard average of 

each of the two fine layers that correspond to a single coarse layer in its current 

realization. In the meantime, associated remainders between the original current average 

realizations are stored in λ  part of each of the two fine layers. Therefore, the model 

realization can be composed back by directly summing the average and the corresponding 

remainder afterward.  
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The inverted optimal Vp, Vs and density structures of the four different scales are 

respectively shown in Figure 2.5, Figure 2.6 and Figure 2.7 based on the observed gathers 

in Figure 2.8, which are compared against the true structures represented by the well logs. 

The observed data have a lateral coverage of 600 m and consist of 31 offsets with a 20 m 

interval (Figure 2.8). It is very difficult to choose an appropriate number of layers in the 

model before actually inverting the observed data. Therefore, instead of assuming a 

certain number of layers, we use multi-scaling to avoid layer definition. This optimization 

process was implemented on a PC, and the total CPU time taken through the 1500 

generations for this multi-scale case is about 23138 seconds. As shown, all the 

parameterized models of different layers basically converge to the actual structure and the 

fine scales lead to better fits. Compared to results of Vp and density, the result of Vs is 

relatively poor, which indicates that using Poisson’s ratio as an alternative model variable 

to Vs may be a better choice. Figure 2.8 also shows the computed seismograms 

corresponding to the derived optimal models at the four scales. Due to the rough 

parameterization, data fits between the observed and inverted gathers for scales 1 and 2 

are not necessarily good. In contrast, the inverted seismograms for scales 3 and 4 fit the 

observed gathers very well, fits that are confirmed by the residual seismograms shown in 

Figure 2.9. This is also consistent with the observations in the derived best fitting model 

structures. Figure 2.10 shows the histories of fitness values through 1500 generations and 

23138 seconds for all four scales. As expected, after only about 800 generations, the 

coarse scales (#1, #2) converge rapidly to relatively low fitness values of about 0.72 and 
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0.87, respectively. In contrast, the fine scales (#3, #4) both converge relatively slower but 

to a better value as high as about 0.99. 

For comparison, the conventional single-scale GA was also implemented four 

times on a PC for the four scales of 10, 20, 40 and 80 layers individually, and 1500 

generations of updates are also run on a total of 28 single-scale models for each of the 

four scales. Every implementation of the single-scale GA also consists of five different 

runs, which start with different random seeds. The total CPU times taken through the 

1500 generations are 6051, 11823, 24352 and 49113 seconds for the four scales, 

respectively. As an example, Figure 2.11 summarizes the optimization results of Vp from 

the four individual implementations of the conventional single-scale GA. This is 

separately done on the four different parameterization cases. Similarly, all the 

parameterized models finally converge to the actual model, and the finer-scale (#3, #4) 

models lead to better fits while they take longer time periods. The corresponding fitness 

histories of the four single-scale runs are illustrated in Figure 2.12. Similarly, the coarse 

scales (#1, #2) converge to relatively lower fitness values of  about 0.73 and 0.85, 

respectively, while the fine scales (#3, #4) arrive at better values of about 0.98 after long 

time updates. Compared to the results from the multi-scale GA, all four single-scale 

fitness values in Figure 2.12 converge much more slowly until after as long as about 1200 

generations, or even more. Additionally, in terms of the CPU cost, the finest #4 scale in 

Figure 2.12 needs at least twice the total time of the multi-scale case (Figure 2.10) in 

order to converge to the similarly good fitness value of 0.99. 
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This comparison shows that, by using multi-scaling and exchanging information 

between different scales, convergence of the fine scales is accelerated to an excellent 

fitness value of 0.99 that a conventional single-scale GA can only obtains after a much 

longer time period. Therefore, the new multi-scale hybrid GA is demonstrated to have 

better performance in terms of efficiency and accuracy compared to a single-scale stand-

alone GA, in that the additionally incorporated coarse scales of faster mixing property 

facilitate better exploitation of the model space on the fine scale, and this leads to an 

accurate parameter estimation. 

In addition, this example also shows promise of using multi-scaling to overcome 

the model parameterization problem by circumventing layer definition before the data are 

used. In other words, we do not have to identify layer boundaries before we actually 

invert seismic data. Instead, the best layer definition can be determined based on the 

multiple inverted models at different scales. For example, in this application, the final 

optimal fitness values for scale #3 and #4 are both about 0.99 (Figure 2.10), but 

according to “Occam’s razor” paraphrased as "when you have two competing theories 

which make exactly the same predictions, the one that is simpler is the better.", the 

inverted model and the corresponding parameterization for scale #3 may be preferred 

over scale #4 because scale #3 has fewer layers. In this way, both the best model 

parameterization and the corresponding best-fitting model can be evaluated  and derived 

simultaneously. Therefore, “parameter estimation” sometimes may do the job of “model 

selection” by incorporating the multi-scaling technique, at least for this nonlinear 1D pre-

stack seismic waveform inversion with 200-300 free parameters. 
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Figure 2.1: Possible area of the range of the offspring variable for the given parent model 
variables. d is set up as 0.25 for example. 
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Figure 2.2: Illustration of the mutation on a variable, which is equivalent to adding a 
white noise on the original variable. The possible area of the mutated variable is indicated 
in gray.  
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Multi-scale hybrid GA 
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6) Mixing and pairing all the selected total N models. 
7) Decompose the models of each pair into two parts: 

),( )()()()( iiii f λφm =  
8) For each pair, perform crossover on the φ  part based on a pre-specified probability. 
9) Compose the φ  and λ  parts into )(

,
i
jtm . 

10) Perform mutation on all the N models based on a pre-specified probability. 
 
Figure 2.3: Pseudo code of the multi-scale real-coded hybrid GA. 
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Figure 2.4: 1D earth model and its parameterizations in 4 different scales. The finest scale 
has 80 layers and the layer thickness is fixed as 4ms, which corresponds to the case of 
full-scale parameterization. 
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Figure 2.5: Inverted optimal Vp structures using multi-scale GA for the 4 scales, which 
are compared against well logs. As shown, over-parameterized models converge to the 
actual model and finer cases lead to better fits. This also shows the promise of multi-
scaling to overcome parameterization issue in seismic waveform inversion. 
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Figure 2.6: Inverted optimal Vs structures using multi-scale GA for the 4 scales, which 
are compared against well logs. As shown, the derived structures have relatively bigger 
uncertainties and do not fit the actual structure very well. This indicates that using 
Poisson’s ratio as an alternative unknown to Vs may be a better choice. 
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Figure 2.7: Inverted optimal density structures using multi-scale GA for the 4 scales, 
which are compared against well logs. As shown, the scale #3 leads to the best fit. 
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Figure 2.8: Comparison between true and inverted seismograms for the 4 scales, which correspond to the final optimal 
structures. Coarse scales result in bad data fits but speed up the convergence while fine scales lead to good data fits but take a 
very long time to converge. 
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Figure 2.9: Residues between the observed gather and the synthetic gathers for the four scales.. 
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Figure 2.10: Fitness histories produced by running the multi-scale GA. As shown, all of 
them converge rapidly after about 500 generations; coarse scales (#1, #2) reach fitness 
values of about 0.72 and 0.87 respectively; fine scales (#3, #4) converge to a value of 
about 0.99.  
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Figure 2.11: Inverted optimal Vp structures by running the conventional single-scale GA 
separately on each of the 4 scales, which are compared against well logs. As shown, over-
parameterized models converge to the actual model and finer cases lead to better fits after 
long time updates. 
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Figure 2.12: Fitness histories produced by running the conventional single-scale GA 
separately on each of the 4 scales. As shown, they converge slowly until after about 1200 
generations; coarse scales (#1, #2) reach fitness values of about 0.72 and 0.87 
respectively; fine scales (#3, #4) arrive at a value of about 0.99 after long time updates. 
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Chapter 3 
 

Multi-scale GA based MCMC algorithm 
 
 

 Besides the “exploitation of the model space,” another approach to inverse 

problems may be termed “exploration of the model space”, which essentially casts the 

inverse problem in a Bayesian framework as introduced in chapter 1. This involves 

applying a MCMC algorithm to reconstruct the PPD surface that describes all the likely 

models consistent with the observations as well as the corresponding likelihoods of those 

models. It therefore provides a theoretically correct way to quantify uncertainty 

associated with parameter estimation. The use of MCMC methods for exploring the 

posterior distribution has gained more popularity compared to alternative approaches 

(Floris et al., 1999). In practice, however, MCMC can be computationally expensive, 

particularly in complicated inverse problems. In addition, the use of posterior estimation 

to quantify uncertainty can still be a computationally demanding task, especially for 

problems with a time-consuming forward simulator.  

 Typically, solving inverse problems requires numerous runs of a time-consuming 

forward simulation. In many realistic applications with extensive computational demands, 

this can be an unfavorable limitation that restricts the number of forward simulations, 

which makes an MCMC-based approach difficult or even impossible. One way around 

this difficulty is to run the simulator on a coarser input model that has fewer free 

parameters, which speeds up the forward simulation but yields less accurate estimation. 
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In this chapter, the developed multi-scale hybrid GA is further adapted to facilitate 

MCMC analysis, in which multiple Markov chains of different scales are run 

simultaneously in parallel, with each chain acting analogously to a single model vector in 

a GA. At each generation, information from different chains of different 

parameterizations is exchanged according to the genetic operators by using up-scaling or 

down-scaling as appropriate to propose intelligent realizations. This exchange facilitates 

the exploration of the model space of interest (Hong and Sen, 2007; Hong and Sen, 

2008a). For every single chain, the operator of mutation is used as a within-chain update 

exactly the same way as in a basic GA. Selection and crossover are performed across a 

pair of chains to trade information and develop intelligent proposals. These proposals are 

accepted or rejected based on the Metropolis-Hastings rule.  

This new multi-scale GA-based MCMC algorithm is similar to the approaches 

proposed by other researchers (Holmes and Mallick, 1998; Liang and Wong, 2001, 

Holloman, 2002; Higdon et al., 2002). In this chapter, the feasibility of this new MCMC 

approach is first justified using an analytical example. Its performance in PPD estimation 

and uncertainty analysis is further evaluated by applying it to a nonlinear pre-stack 

seismic waveform inversion problem. In this application, multi-scaling is particularly 

attractive in addressing the model parameterization issue, especially for the seismic 

waveform inverse problem. 
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3.1 Multi-scale GA based MCMC 
 

3.1.1 Multi-scale coupled MCMC 

 For given data at a single scale or multiple scales, the PPDs can be defined at 

different resolutions corresponding to different model parameterization schemes. The 

posteriors at different scales are related but conditionally independent so that they can be 

sampled individually using separate MCMC chains. However, separate sampling does not 

allow information exchange across different resolutions for intelligent proposals. 

In order to take advantage of both the faster mixing speed of the coarse-scale 

chains and the greater detail of the fine-scale chains, information has to be traded 

between the scales. Geyer (1991) proposed a Metropolis-coupled MCMC with the idea of 

swapping information between realizations of conditionally independent posteriors to 

improve mixing at a single scale. Higdon et al. (2002) further presented a methodology of 

multi-scale coupled MCMC by additionally incorporating a coarsened version of the 

problem. Realizations from two different scales are exchanged via the swapping step. As 

in chapter 2, the model vector can be parameterized in different scales. To build multiple 

MCMC chains running at different scales, a model has to be discretized into multiple 

scales accordingly. Thus, each chain explores a portion of the overall joint posterior 

because the posteriors at different scales are conditionally independent. And as before, 

the model vector at a certain scale can be decomposed into two parts, 

( ))()()()( , iiii f λφm = , where φ  is of common length and physical interpretation across 

scales. In the Bayesian setting, the relationship between m , φ  and λ  is not necessarily 
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deterministic, and it could be probabilistic. For example, PPDs at two different scales are 

illustrated as follows where superscripts in parentheses represent different scales.  

 
fine:  )|(),|(),|( )1()1()1()1()1()1()1()1()1()1()1( ImImdIdm obsobs pLp ∝    (3.1) 

coarse:  )|(),|(),|( )2()2()2()2()2()2()2()2()2()2()2( IpLp mImdIdm obsobs ∝  (3.2) 

 
The resulting PPD for scale i is described in equation (3.3), and the overall joint 

PPD is shown in equation (3.4). 

 
)|,(),,|(),|(),|,,( )()()()()()()()()()()()()()()()()()()( iiiiiiiiiiiiiiiiiii ppLp IλφIλφmImdIdλφm obsobs ⋅⋅∝  (3.3)  

∏
=

=
R

i

iiiiiipp
1

)()()()()()( ),|,,(),|,,( IdλφmIdλφm obsobs   (3.4) 

 
Although the fine scale provides more model details and is of primary interest, 

benefits from the introduction of coarse scale are obvious. The coarse scale yields a more 

tractable PPD and a faster forward simulation, allowing more MCMC updates per unit 

time. The basic idea of this multi-scale coupled MCMC is: Instead of running two 

separate MCMC chains for two separate PPDs, one on the fine space 

),|( )1()1()1()1( Idm obsp  and the other on the coarse space ),|( )2()2()2()2( Idm obsp , run a single 

coupled chain in the product space. This coupled chain has a stationary distribution as in 

equation (3.5) so that if we take only the fine-scale realizations from this chain, the 

PPD ),|( )1()1()1()1( Idm obsp can be estimated accordingly (Higdon et al., 2002).  

 
),|(),|(),|( )2()2()2()2()1()1()1()1( IdmIdmIdm obsobsobs ppp ×=     (3.5) 
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 Periodically, the two separate MCMC chains at the two different PPDs attempt to 

fully swap information between their current realizations. To exchange information 

between the two different scales, a model vector has to be decomposed into two parts 

( ))()()()( , iiii f λφm = , and the swapping operation is only applied on the φ  parts that have 

the common length. The Markov chains consist of two types of updates: one is the 

ordinary within-chain update, and the other is the swapping update across different chains. 

Both updates are accepted or rejected according to the Metropolis-Hastings rule. A 

swapping process for two MCMC chains is schematically shown as 

 

. 

 
At time step 2, the two MCMC chains attempt to fully swap their current values of the φ  

parts. The starred realizations denote that they have different values, depending on the 

success or failure of the swap attempt. If the swap is accepted, 2
)2(

*1
)3( φφ =  and 1

)2(
*2
)3( φφ = , 

otherwise 1
)2(

*1
)3( φφ =  and 2

)2(
*2
)3( φφ = . 

 

3.1.2 Crossover swapping 

 

The full swaps trade entire φ  vectors between chains so that φ  vectors that were 

associated with one resolution of m are then associated with a different resolution of m. 

Despite the advantages offered by the full swap, parts of the space may still be left 
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unexplored due to the slow mixing of even the coarsest scale. Recently, it has been 

shown that GA can be viewed as a Markov chain as the conditional dependence of each 

population on its predecessor is completely described by its dependence on the parent 

(immediate predecessor) population (Davis, 1991). Further, Davis and Principe (1993) 

demonstrated that when the mutation operator is used, the Markov chain of GA is 

irreducible and consequently has a unique stationary distribution. Thus, the mutation is a 

control parameter analogous to temperature in SA. 

Based on the work of Davis (1991) and Davis and Principe (1993), Suzuki (1998) 

made some extension and gave a more rigorous theoretical basis on the Markov chain 

property of GA by additionally considering diminishing genetic operators. Suzuki (1998) 

also proved that the GA converges to a stationary distribution focusing on the uniform 

population of optimal solutions, which forms a sound basis to use GA as a safe sampling 

tool in addition to a maximization method. Elements of GA have been incorporated into 

the MCMC schemes, often called Evolutionary Monte Carlo, to make intelligent 

Metropolis-style proposals in high-dimensional spaces (Holmes and Mallick 1998; Liang 

and Wong 2000, 2001). The multi-scale GA introduced in chapter 2 has also been 

adapted into a new multi-scale GA-based MCMC. 

In this new algorithm, multiple MCMC chains at different scales are run in 

parallel with each chain acting analogously to a single-scale GA run. In order to gain 

benefits of both the fine scale and the coarse scale, information must be exchanged 

between different scales of the joint PPD. Instead of the full swaps of φ  vectors, another 

type swap, the crossover swap, is implemented. This is shown in the diagram below in 
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which three chains of different scales as an example are illustrated, and the first two 

chains are selected for trading. 
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As before, superscripts in the diagram index the scale, and subscripts in 

parentheses index the number of the current generation. In this scheme, the three chains 

advance using the mutation operation as the within-chain updates until reaching the 

trading point. At that point, a pair of chains are selected without replacement based on a 

probability )( )(
)(

i
tsp m  that is directly proportional to the posterior density of the current 

realization and can be defined as follows.  
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Unlike the diagram in section 3.1.1 where the full swap is attempted, current 

realizations of the selected chains are not fully swapped but are partially traded using a 

crossover mechanism such as the uniform crossover. In other words, the proposed model 

values for different scales are unique combinations of the two realizations. Starred 

realizations denote that they are affected by the crossover operation. Again, crossover is 

performed only on the φ  part. Chains of high posterior density are more likely to be 
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combined to create intelligent proposals, and these proposals may further explore 

previously unexplored regions of high density. The updated models are either accepted or 

rejected according to the Metropolis-Hastings norm at a constant temperature. 

Applications of this new MCMC to an analytical example and to a 1D pre-stack seismic 

waveform inverse problem are shown in sections 3.2 and 3.3, respectively. 

 

3.2 Analytical example 
 
 

In this application, the multi-scale GA-based MCMC is applied to sample from a 

joint PPD ( )ID,|, 21 XXp  in the model space of two parameters X1 and X2, that has a 

double peak structure. Using this two-dimensional example instead of a higher 

dimensional one provides a direct way to graphically illustrate the joint PPD and 

therefore offers a straightforward way to evaluate the performance of the new MCMC 

approach. As shown in equation (3.7), this PPD is a sum of two bivariate normal 

distributions of PDF1(X1, X2) and PDF2(X1, X2). The factor of 0.5 ensures that the 

resulting posterior is normalized to an area of one. 

 
( ) [ ]),(),(5.0|, 21221121 XXPDFXXPDFXXp +⋅=I,D   (3.7) 

 
For a bivariate normal distribution in (X1, X2) with a mean vector ( )21 ,μμ=μ  and 

a covariance matrix σ as in equation (3.8), the resulting joint pdf of X1 and X2 is described 

in equation (3.9). 
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and ρ is the correlation coefficient of X1 and  X2 as defined in equation (3.11). 

 

2211

12
21 ),(

σσ
σρ == XXcor .   (3.11) 

 
 In this example, the bivariate normal distribution PDF1(X1, X2) has a mean vector 

of ( )0,0=μ  and a covariance matrix as in equation (3.12), which indicates that X1 and X2 

are uncorrelated to each other. That is, the correlation coefficient 0=ρ ; the bivariate 

normal distribution PDF2(X1, X2) has a mean vector of ( )0,4=μ  and a covariance matrix 

as in equation (3.13), which indicates that X1 and  X2 are correlated to each other and the 

correlation coefficient 4.0=ρ . 
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 By summing the PDF1(X1, X2) and PDF2(X1, X2) as described above following the 

expression (3.7), the resulting joint PPD ( )I,D|, 21 XXp  is a bimodal surface with double 

peaks as shown in Figure 3.1. One peak is located at (0, 0) with a value of about 0.317 

and the other secondary peak is located at (4, 0) with a value of about 0.172, which 

corresponds to the modes of PDF1 and PDF2 , respectively. It is this joint probability 

distribution surface that will be estimated by using the new multi-scale GA-based MCMC 

described herein. Figure 3.2(a) is a color map of the probability distribution projected on 

the (X1, X2) plane where the locations of peak values can be easily identified. Panel (b) in 

Figure 3.2 illustrates the same distribution on the (X1, X2) plane, but it is represented in 

contours. Following equation (1.8), the true marginal PPDs for X1 and X2 are calculated 

analytically and shown on panels (c) and (d), respectively. A marginal PPD is a special 

kind of projection of the joint PPD to a particular parameter axis by integrating out all the 

other parameters. Note that the marginal PPD for X1 is a bimodal distribution, whereas it 

is a uni-variate normal distribution for X2. 

 Samples are picked randomly from the (X1, X2) space using the new multi-scale 

GA-based MCMC. These samples are accepted or rejected based on the Metropolis-

Hastings rule and with a probability that is directly proportional to the PPD values. 

Finally, 9000 samples are drawn and shown in Figure 3.3, superimposing on the true PPD 

contours as in Figure 3.2(b). Note that the samples within the burn-in period are excluded. 

Theoretically, the number of samples drawn over a small region is proportional to the 

PPD value of that region. As shown, more samples are drawn over the peak regions, and 

the distribution of sample points matches the contours of the true PPD very well. Based 
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on the 9000 sample points, the relative frequency histograms for X1 and X2 are calculated 

to approximate the marginal PPDs of X1 and X2, respectively. The histograms are 

illustrated in Figure 3.4 and compared against the true marginal PPDs. Note that the fit 

between the estimated marginal PPDs and the true PPDs is fairly good, which confirms 

that the number of samples over a small region is directly proportional to the PPD value 

of that small region. Therefore, through the approximate PPDs derived from the 9000 

sample points, we are able to correctly determine the most likely parameter values that 

correspond to the maximum PPD value. We can also estimate the corresponding 

uncertainty bounds. The most likely values determined for X1 and X2 actually correspond 

to the two peak locations that have bigger probability values.  The very good estimation 

shown in Figure 3.4 corroborates that the new multi-scale GA-based MCMC algorithm is 

a reliable sampling tool for PPD estimation and uncertainty analysis; therefore, it is safe 

to use for practical inverse problems in the Bayesian setting. 

 
 
3.3 Seismic parameter estimation and uncertainty analysis 

 

Recalling the 1D pre-stack seismic waveform inverse problem introduced in 

chapter 2, the best-fitting earth models at four different scales were obtained by applying 

the multi-scale real-coded hybrid GA. Here, we further apply the multi-scale GA based 

MCMC algorithm to fully solve this problem by estimating the posterior distributions as 

well as quantifying the uncertainties at different scales. Again, the 1D earth model is 

parameterized into four scales of 10, 20, 40 and 80 layers, respectively, exactly in the 

same manner as described in chapter 2. Multiple MCMC chains are run simultaneously to 
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sample from the overall product space, and all the realizations of a specific scale are 

archived and used to estimate the PPD of that single scale accordingly. In this new 

algorithm, GA-type mutation acts as the within-chain update, and GA-type selection and 

crossover act to trade information across a pair of models at different scales for intelligent 

proposals that are accepted or rejected based on the Metropolis-Hastings rule and with an 

SA-style update probability. 

 The choice of the likelihood function relates to the forward process and depends 

on the distribution of the noise or error in the data (Box and Tiao, 1973; Cary and 

Chapman, 1988; Sen and Stoffa, 1995). The error can be due to measurements (e.g., 

instrument errors) or to the use of inexact theory in the prediction of the data (Tarantola, 

1987). How to set the likelihood function requires prior knowledge of the error 

distribution in the data and is a very important issue because it is often very difficult to 

obtain an estimate of noise statistics.  

Based on the Central Limit Theorem (CLT) in statistics, that states “Any quantity 

that stems from a large number of sub-processes is expected to have a Gaussian 

distribution”, it is safe to assume the most conservative (i.e., greater uncertainty than one 

would get from choosing a more restricted distribution) Gaussian error distribution in 

seismic data. The CLT is both remarkable and of great practical value in data analysis. In 

frequentist statistics, there is uncertainty about the form of the sampling distribution from 

which the data are drawn. The equivalent problem in a Bayesian analysis is the choice of 

likelihood function to use. By working with the averages of data points (frequently as few 

as five points) and invoking the CLT, researchers can use a Gaussian distribution for the 
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sampling distribution or likelihood function. The CLT also provides a deep understanding 

of why measurement uncertainties frequently have a Gaussian distribution. This is 

because the measured quantity is often the result of a large number of effects, i.e., it is 

some kind of averaged resultant of these effects (random variables in a frequentist 

context). Since the distribution of the average of random variables tends to be Gaussian, 

this is often observed from seismic data, which are often the result of a large number of 

sub-processes. 

On the other hand, the Maximum Entropy Principle says that unless there is some 

additional prior information that justifies the use of some other sampling distribution, 

then a Gaussian sampling distribution should be used. It makes the fewest assumptions 

about the information and will lead to the most conservative Gaussian distribution 

(Gregory, 2005). Assuming Gaussian distribution, the likelihood function at scale i takes 

the form given in equation (3.14) below. Note that obsobsobsobs dddd ==== )()2()1( ... R  in this 

problem. 

 
))(Eexp(),|( )()()()()( iiiiiL mImd obs −∝ ,           (3.14) 

 
where E(i)(m(i)) is the error function at scale i and given as 

 

( ) ( ))(g)(g
2
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1
Dobs −−= − ,  (3.15) 

 
where g(i) is the forward modeling operator at scale i which is usually nonlinear; CD is 

called the data covariance matrix. In different cases, CD may have different forms. With 
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identical, independent Gaussians for the errors, the error function is simply the product of 

multiple Gaussians, one corresponding to each of the data points. This also leads the CD 

to be a diagonal matrix with all the diagonal elements equal to one. If the data points are 

independent of each other but have different variances, the resulting CD is still a diagonal 

matrix but the diagonal elements are not identical and have different values. In general, 

however, the errors can have different variances and could be correlated. Therefore, CD is 

usually not a diagonal matrix and the off-diagonal elements are not all zeros. 

 To initiate Bayesian inference, the prior distribution of model parameters has to 

be specified. However, in many practical inverse problems, prior information is vague 

and deciding how to encode this vague information into a probability distribution is 

controversial. Recall in chapter 2 where the multi-scale hybrid GA is applied for an 

optimization example, low frequency trends of well logs are used as prior information to 

define the search bounds. For example, Vp is limited within skm /5.0± around its low 

frequency trend. Such prior information about the search bound is often called the 

independent linear constraint on each parameter. Different distributions can be used to 

formulate this prior information; for example, the uniform and Jeffrey priors are 

discussed by Gregory (2005).  

How to translate the vague prior information into a probability distribution is 

controversial and has been a popular topic (Mosegaard and Tarantola, 1995; Kass and 

Wasserman, 1996; Curtis and Lomax, 2001). Unless a certain form of probability 

distribution is justified by some specific prior information, a uniform prior distribution 

may be chosen. This is a common choice when stochastic sampling methods are used for 
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Bayesian inference problems because pseudo-random uniform sampling is easy to 

perform. In addition, the uniform distribution helps avoid more biased constraints to be 

incorporated (Curtis and Lomax, 2001). As a result, the uniform prior distribution at scale 

i is given as 

 

∏
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where mmax

(i) and mmin
(i) are the upper and lower bounds of a specific model parameter at 

scale i; subscript j represents the jth parameter of total L parameters. 

 Using the uniform prior and Gaussian likelihood functions as described above, the 

resulting posterior distribution at a single scale i is 
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Again, the solution models at different scales are assumed to be conditionally 

independent of each other for the given data, and the overall PPD is the product of the 

PPDs for the individual scales. For a linear problem, the uniform prior and the Gaussian 

likelihood function lead to a multivariate Gaussian posterior with a simple topology. As 

compared, for a nonlinear problem, the uniform prior and the Gaussian likelihood usually 

result in a highly multi-modal posterior with a very complicated topology of many hills 

and valleys, which is common in seismic inverse problems. In order to speed up 

convergence and enhance exploration of this complicated PPD surface, models from 

different scales are combined to propose intelligent realizations by using the uniform 
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crossover scheme. Crossover operations are performed on each parameter based on a 

given probability of 0.7. The proposals are accepted or rejected according to the 

Metropolis-Hastings rule. 

 In this implementation, 5 independent runs of the multi-scale GA based MCMC 

algorithm were independently and sequentially carried out with different random seeds, 

and each run went through 1500 generations. Seven chains were run at each of the four 

scales for a total of 28 chains. All the realizations of different scales are tracked and 

stored separately through the 1500 generations. 

For example, Figure 3.5 illustrates the evolution of the realizations of parameter 

Vp for the 29th layer, which were drawn by the seven chains at scale #3. Even though 

starting at different points, all of the 7 chains finally converge to the value of about 1.82 

km/s. These stored samples are also used to approximate the marginal PPDs and the 

corresponding model covariance matrices for identification of the most likely parameter 

values as well as for characterization of the uncertainties at every single scale. 

For example, the marginal PPDs of Vp for the four scales are computed based on 

equation (1.8) and shown in Figure 3.6, in which the most likely models are indicated 

using the white dashed lines and the probabilities of the different values are represented 

by colors over the entire model space. The most likely models are the models of 

maximum probabilities, sometimes called maximum a posteriori (MAP), and actually 

correspond to the best-fitting models inferred by the optimization method as shown in 

Figure 2.5. Therefore, comparison between the MAP and true parameter values can be 

read directly from Figure 2.5. The estimated marginal PPDs for particular layers around 
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the two-way travel time of 4.10 seconds and highlighted in gray are shown in Figure 3.7 

along with the computed cumulative distribution function (CDF) for each scale. 

According to equation (1.7), the posterior model correlation matrices were also computed 

for all the four scales. As an example for the scales #2 and #3, parts of the correlation 

matrices that correspond to the TWT range of 3.98-4.05 seconds are shown in Figure 3.8 

to illustrate the inter-dependence between estimated parameters.  For scale #2, the 7-10th 

layers are shown, and each layer has only three parameters of Vp, Vs, and ρ; for scale #3, 

corresponding 13-20th layers with a total of 8 layers and 24 parameters are shown. Black 

represents a strong negative correlation whereas white represents a strong positive 

correlation between parameters. The middle gray stands for uncorrelation between 

parameters. For example, the correlation plot for scale #2, layer #9 reveals that for this 

layer, Vp is almost uncorrelated with Vs while Vp has a strong negative correlation with 

density. Strong positive correlation means if the two parameters are both either increased 

or decreased, the resulting seismogram will not change; strong negative correlation 

means if decreasing one parameter while increasing the other or vice versa, the resulting 

seismogram will not change. 
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Figure 3.1: The joint PPD surface with two free parameters X1 and X2. It has a double-
peak structure, one peak location is at (0, 0) and the other is at (4, 0). Color represents the 
PPD values. 
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Figure 3.2: (a) The true joint posterior distribution projected on the (X1, X2) plane. (b) The 
contours of the true PPD on the (X1, X2) plane. (c) Marginal PPD for parameter X1 with a 
bimodal distribution. (d) Marginal PPD for parameter X2 with a univariate Gaussian 
distribution. 
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Figure 3.3: 9000 samples drawn by the multi-scale GA based MCMC algorithm, which 
overlie the contours of the true PPD. More samples are drawn over the peak regions and 
sample density distribution matches the contours well. 
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Figure 3.4: Marginal PPDs are estimated with the relative frequency distributions of the 
9000 sample points, which are compared against the true marginal PPDs for (a) X1 and (b) 
X2. As shown, accurate estimations are obtained. 
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Figure 3.5: Samples of parameter Vp of the 29th layer, which are drawn by the 7 MCMC 
chains at scale #3. As shown, all the 7 chains converge to the same value of about 1.82 
km/s, even though they start with different seeds. 
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Figure 3.6: Inferred marginal PPDs and MAP models of Vp by the multi-scale GA-type MCMC for 4 scales. Dashed white 
lines represent the final converged MAP models as shown in Figure 2.5. Color bar represents the posterior probability. 
Marginal PPDs, together with CDFs, of the grayed layers are illustrated in Figure 3.7, which provide both the most probable 
values and uncertainty bounds. 
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Figure 3.7: CDFs and marginal PPDs of Vp of the grayed layers in Figure 3.6 for the 4 
scales, which indicates both the most probable (highest frequency) values and the 
corresponding uncertainty bounds. Similar figures can be shown on Vs and density. 
 

 
 
 
 
 
 
 
 
 
 
 
 



79 

 
 
 

 
 
 

Figure 3.8: Parts of the posterior correlation matrices for scale #2 ranging from 7th to 10 
the layer, and for scale #3 ranging from 13th to 20th layer. Black color represents strong 
negative correlation while white color represents strong positive correlation between 
parameters. The middle gray color stands for uncorrelation between parameters. 
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Chapter 4 
 

Integrated 4D seismic history matching 
 
 

 Developing accurate reservoir models is a key objective of oil production 

companies. A properly constrained reservoir model can be used to accurately evaluate the 

total volume of recoverable hydrocarbon reserves in place and to predict the dynamic 

fluid flow in a reservoir, which facilitates future drilling plans and optimization of 

production strategy. Reservoir flow simulation is often used to help understand the 

changes in reservoir conditions throughout the production history. 

Reservoir characterization is usually achieved using a combination of multiple 

datasets, such as seismic data, well production data, well logs and sometimes sensor 

measurements. Each of these datasets represents imperfect measurements having a 

different spatial and temporal resolution and also corresponding to different physics. How 

these datasets are used plays a very important role in determining the quality and 

accuracy of the final reservoir model estimation. 

 The concept of using time-lapse (4D) seismic data for reservoir delineation has 

been studied for years; the technology has had rapid acceptance as a practical reservoir 

management tool. Time-lapse 4D seismic data comprise a set of 3D seismic data volumes 

acquired at different calendar dates over the same area, with the objective of monitoring 

changes occurring in a producing hydrocarbon reservoir over time. Changes in reservoir 
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properties due to production or injection can be recorded by 4D seismic data because 

seismic velocities and impedance are affected by the changes in reservoir pore fluids, 

pressure and temperature (Nur and Simmons, 1969; Wang and Nur, 1992; Wang, 2000). 

The overall elastic moduli of a rock change with the type of fluid in the pores, the 

effective pressure acting on the rock and the temperature to which the rock is subjected. 

Due to the change in elastic moduli, the rock becomes more or less resistant to wave-

induced deformations; therefore, seismic velocities experience an increase or decrease in 

magnitude. These observations form the basis of using 4D seismic data in predicting fluid 

saturation and pore pressure changes in a reservoir. 

 Providing a spatial distribution of property changes over time in a producing 

reservoir, 4D seismic data can be treated as dynamic data, and hence can be history 

matched along with historical well production data in the reservoir modeling workflow. 

This quantitative use of seismic data leads to the so-called seismic history matching 

scheme, which calls for forward modeling the 4D seismic response and comparing it with 

the observed field observations.  

 In this chapter, a new workflow is proposed to simultaneously integrate 4D 

seismic data, well production data and sensor measurements for reservoir model 

estimation as well as the corresponding uncertainty analysis (Hong et al., 2007b; Hong 

and Sen, 2008b). In this integrated workflow, the basic steps involve running the forward 

modeling process on a starting reservoir model using a flow simulator to generate flow 

parameter distributions at multiple legacy times. These output parameter distributions are 

converted to synthetic monitor seismic surveys at the legacy times using a rock physics 
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model and a simple seismic convolution algorithm. Finally, the difference between the 

synthetic and observed 4D seismic and production data is minimized using a global 

optimization algorithm until the reservoir model converges to a good estimation. By 

repeating this workflow for multiple runs, many realizations of the reservoir model are 

obtained and can be further used for uncertainty appraisal. 

 
 
4.1 4D seismic 

 

Time-lapse seismic monitoring is an integrated reservoir exploitation technique. 

Differences over time in seismic attributes are due to changes in pore fluids and pore 

pressure during the drainage of a reservoir under production. The detection of areas with 

significant changes or with unaltered hydrocarbon-indicative attributes facilitates future 

drilling plans by helping target the hydrocarbon remaining after a certain time period of 

production.  

Time-lapse seismic usually consists of multiple seismic surveys made within the 

same area and at different times. The surveys can be 2D seismic, 3D seismic, Vertical 

Seismic Profiles (VSP) and cross-well seismic. The first survey is often called the base 

survey, and the subsequent repeated surveys are called monitor surveys. Seismic data for 

a single survey are sensitive to both static reservoir parameters, such as lithology, 

porosity, permeability and shaliness, and dynamic flow related parameters, such as fluid 

saturation, pore pressure and temperature. Compared to 3D seismic, 4D seismic data 

capture both the static and dynamic reservoir features and therefore provide a means to 
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decouple these two sources of effects. By comparing seismic data obtained from surveys 

at different times, it is possible to reduce the effects from static parameters and 

qualitatively focus on dynamic changes coming from pressure and saturation 

redistributions due to the on-going production (Landro, 2001; Chapin et al., 2002; Landro 

and Stronen, 2003; McInally et al., 2003; Gouveia et al., 2004).  

The first study of time-lapse seismic can be traced back to the late 1980’s and 

1990’s, when three different papers describing how multiple seismic surveys were used 

to monitor reservoirs under production, by comparing data recorded from different 

surveys (Dong, 2005). The first two applications were to monitor the steam movement in 

enhanced oil recovery projects (Wayland and Lee, 1986; Greaves and Fulp, 1987). A few 

years later, the first paper documenting the application of time-lapse seismic data to 

monitor fluid flow under an isothermal condition was published by Dunlop et al. (1991). 

Other applications to reservoir monitoring and management were published in the past 

decade (Ross et al., 1996; Lumley et al., 1999; Behrens et al., 2002; Waggoner et al., 

2002; Gouveia et al., 2004). According to Lumley (2001), through 2001, there have been 

75 active time-lapse seismic projects worldwide, costing on the order of (US) $50 million 

to (US) $100 million, and such seismic projects have been increasing. 

Making sure that seismic differences are related to fluid flow is critical for a 

complete time-lapse seismic study. Differences in data acquisition, survey orientation, 

processing and quality of datasets can introduce significant noise in the 4D analysis. 

Whether the time-lapse seismic data are used for reservoir monitoring or additional input 

for reservoir characterization, comparison between base survey and legacy surveys is 
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always useful, commonly subtracting one from the other. To ensure that the image 

obtained at beginning time is comparable to the subsequent images and therefore to make 

a meaningful comparison, two important issues need be addressed: 

• Signals from locations with no physical property changes should be kept 

as similar as possible in different surveys; 

• Differences related to saturation, pressure or stress should be as large as 

possible in different surveys. 

The primary factors influencing these two important issues may come from the in-situ 

conditions of the reservoir, such as reservoir depth, elastic properties of reservoir rocks 

and fluid phase changes between surveys, etc. These in-situ conditions generally 

determine whether the reservoir property changes will be large or not. Whenever possible, 

it is beneficial to apply the same geometry alignment and acquisition parameters over the 

same survey area, and to follow the same processing flows in both the base and the 

legacy surveys. In 4D seismic terminology, these are the feasibility and repeatability 

studies in the design phase and cross equalization in the processing phase. 

 

4.1.1 Feasibility study 

 

As reservoir fluids are produced or fluids are injected, the reservoir’s seismic 

properties may change. If these changes are sufficiently large, repetitive seismic surveys 

can help researchers map fluid distributions and fluid fronts and pressure and temperature 

changes that indicate that the time-lapse seismic reservoir monitoring may be successful. 
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According to Wang (1997), the feasibility of 4D seismic monitoring consists of two 

aspects: the physical and the seismic. It is obvious that not all reservoir conditions or 

recovery processes are suitable for 4D seismic analysis because the combined total effect 

of all the changes in the reservoir is not necessarily large enough to be differentiated 

seismically at a given resolution. Both Wang (1997) and Lumley et al. (1997) provide 

excellent discussions of what kind of reservoirs tend to be good candidates for a time-

lapse seismic project.  

Wang (1997) identified some critical physical factors listed in Table 4.1. These 

factors have a significant influence on the success of a time-lapse seismic project.  

• Frame elastic properties of reservoir rocks. The frame of a reservoir rock 

is defined as a rock with empty pores. Relatively low frame elastic 

properties (bulk and shear moduli) are a first-order requirement for the 

expected success. Rocks with low frame elastic properties typically 

include unconsolidated or poorly consolidated rocks, high-porosity rocks 

with open fractures, low aspect-ratio pores or many grain-to-grain contacts, 

and rocks under low net overburden (effective) pressure. 

• Contrast in pore fluid compressibility. It is assumed that lithology is not 

changed in a producing reservoir, and the main objective of time-lapse 

monitoring is to image the fluid change and other related changes such as 

pore pressure and temperature. For this purpose, a contrast in pore fluid 

compressibility is required between the original reservoir fluids and the 

subsequent reservoir fluids. High-contrast in pore fluid compressibility is 
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another first-order requirement for the expected success. Table 4.2 lists 

several cases in which high contrast in compressibility may exist. 

• Nature of recovery process. This represents the changes in reservoir 

seismic properties that are caused by the production/injection process. As 

not all recovery processes can be monitored seismically, it is extremely 

important for reservoir geophysicists to understand the nature of the 

recovery process and the changes that it may produce in the seismic 

properties of the reservoir. 

• Reservoir parameters. Changes in reservoir temperature induce changes in 

both rock frame and pore fluid properties. In seismic monitoring of water 

injection, high original reservoir temperature is always advantageous 

because of the large dependence of oil compressibility, but small 

dependence of water compressibility, on temperature. High porosity tends 

to weaken the reservoir rock, so it is a positive factor in time-lapse seismic 

monitoring. 

 

CRITICAL FACTORS IN PHYSICAL FEASIBILITY  

1) Frame elastic properties of reservoir rocks 

2) Contrast in pore fluid compressibility 

3) Nature of recovery process 

4) Reservoir parameters (depth, pressure, temperature, etc.) 
 

Table 4.1: Critical factors in the physical feasibility of time-lapse seismic reservoir 
monitoring (Wang, 1997). 
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CASES OF HIGH CONTRAST IN COMPRESSIBILITY 

Reservoir fluids From/to Reservoir fluids 

Liquid (water, oil) ↔ Gas (hydrocarbon, gas, steam) 

Oil/water ↔ CO2 (liquid or gas) 

Live oil ↔ Water/brine 

Oil (live or dead) ↔ High-salinity brine 

Live oil ↔ Dead oil 

Low-temperature oil ↔ High-temperature oil 
 

Table 4.2: Cases of possible high contrast in pore fluid compressibility (Wang, 1997). 
 

Based on the above analysis, Wang (1997) developed a list of good candidate 

reservoirs as shown in Table 4.3, which represents a qualitative or rule-of-thumb 

assessment of the physical feasibility for time-lapse seismic reservoir monitoring. In 

addition, Lumley et al. (1997) discussed the seismic feasibility and proposed some ideal 

parameters of seismic operations as in Table 4.4 that are likely to give rise to a successful 

time-lapse seismic project. 

 

GOOD CANDIDATE RESERVOIRS 

1) Reservoirs with weak rocks 

2) Reservoirs undergoing large pore fluid compressibility changes 

3) Reservoirs undergoing rock compressibility changes 

4) Reservoirs undergoing large temperature changes 
 

Table 4.3: Good candidate reservoirs for time-lapse seismic reservoir monitoring (Wang, 
1997). 
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SEISMIC IDEAL CASES 

Dominant frequency (Hz) High 

Average resolution (ft) Low 

Image quality (1- lowest; 5- highest) 5 

Fluid contact visibility (1- lowest; 5- highest) 5 

Predicted travel time changes (samples) > 4 

Predicted impedance change (%) > 4 
 

Table 4.4: Ideal parameters of time-lapse seismic operations (Lumley et al., 1997). 
 

4.1.2 Repeatability study 

 

Repeatability does not mean to make multiple seismic surveys as similar as 

possible since the very important purpose of time-lapse seismic is to highlight the 

reservoir changes over production time. Therefore, the expected success usually requires 

that differences in regions altered by production should be maximized while regions 

unaltered by production should be minimized. These differences are sensitive not only to 

changes in reservoir rock properties but also to differences in acquisition and processing. 

Some of the factors that affect repeatability include: 

• Acquisition geometry differences such as sail line orientation and heading, 

source-receiver spacing, streamer feather, and coverage due to obstruction 

• Near-surface conditions resulting in statics and receiver coupling 

variations 
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• Sea level, sea state and swell noise, water temperature and salinity 

• Residual multiple energy 

• Ambient and shot-generated noise 

• Geological factors such as shallow gas and steep geological dip 

The central point of 4D seismic acquisition and processing is to minimize 

differences in the seismic data that are unrelated to production and to preserve the 

differences that are due to production. A number of strategies have been developed to 

maximize acquisition repeatability, and the permanent monitoring systems can lead to 

high repeatability. A key to successful 4D processing is continual comparison of the base 

and legacy surveys to ensure that repeatability is not being compromised. The 4D 

processing can be described as a parallel processing of base and monitor surveys, which 

implies: 

• Controlled amplitude and phase 

• Early equalization of geometry to facilitate QC (quality control) 

comparisons 

• Application of the same algorithms and parameters as appropriate 

In many situations, the base and monitor surveys are taken from different seismic 

surveys in the same field. Thus, the acquisition systems are commonly different in 

geometrical alignment, and the data processing workflows are different in parameters. 

Since it is impractical to re-shoot the surveys, the only feasible way to reduce these 

artificial distinctions is through data re-processing by applying the so-called cross 

equalization scheme. Cross equalization is normally required when a time-lapse seismic 
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project involves legacy data, and it also helps in well design by facilitating discrepancy 

adjustment between surveys. Although specific steps may vary in cross equalization 

processing (Ross et al., 1996; Rickett and Lumley, 2001), the following three steps are 

commonly used: 

• Realignment of geometry of acquisition system 

• Time, bandwidth, and phase equalization 

• Amplitude equalization 

 

4.2 Post-stack seismic modeling and flow simulation 

 

Fluid flow simulations are routinely used as the main input to the economic 

evaluation of hydrocarbon recovery. Synthetic predictions from these simulations have 

proven to be sensitive to reservoir characterization that is usually known from geology 

and petrophysics at well locations. Because the latter is based primarily on sparsely-

spaced wells, there is considerable uncertainty in the characterization and therefore 

uncertainty in the performance prediction. 

Quantitative information contained in seismic data has been used for reservoir 

characterization (Debeye et al., 1996; Pendrel and van Riel, 1997). The seismic data 

sample the entire reservoir and thereby offer the possibility of filling the spatial gap 

between usually sparse well locations. However, without coupling with the flow 

simulation, the seismic data alone cannot be used to directly describe reservoir 

engineering features. Therefore, reservoir simulation is usually based on a reasonably 
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simplified reservoir model to approximate the flow parameter distributions, which are 

then transformed into seismic elastic parameters, such as wave velocities and density, by 

performing a certain rock physics model. 

 

4.2.1 Post-stack seismic modeling 

 

As mentioned before, 4D seismic data are generally multiple 3D seismic data 

obtained throughout the production time and over the same area. Thus, 4D seismic 

modeling is actually a series of 3D seismic modeling of the same producing reservoir that 

has changed through time due to fluid movement.  

Relationships between stress, strain and velocity of propagation lead to the 

seismic wave equations that are fundamental to understanding the behavior of earth 

materials. For an isotropic medium, the relationship can be characterized by only two 

independent elastic parameters, λ and μ, known as the Lame constants. The 

corresponding Hooke’s Law is 

( ) [ ],)( TuuIuτ ∇+∇+⋅∇= μλ                                                              (4.1) 

where I is the identity tensor; τ  and u are stress and displacement tensor, respectively. 

 Application of Newton’s second law of motion (assuming no body forces) yields: 
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 For a homogeneous, isotropic elastic medium, the above equation (4.1) may be 

expressed in another form as: 
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where u is the displacement vector, ρ is density, λ is the Lame’s constant, and μ is shear 

modulus or sometimes called rigidity. λ, μ and other seismic elastic parameters, such as 

bulk modulus or wave propagation velocities, are related to each other (Sheriff, 1984). 

 Compressional-wave (P-wave) propagation is described as a particular case of 

equation (4.3) and is obtained by taking divergence on it, that is 
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 By defining the divergence of the displacement as u⋅∇=φ , yields 
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where Vp is the compressional-wave velocity and  

ρ
μλ 2+

=pV                                (4.6) 

 Similarly, the equation of shear-wave propagation can be obtained by taking the 

curl of equation (4.3), that is 
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 Defining the curl of the displacement as a vector of uψ ×∇= , yields 
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where Vs is the shear-wave velocity and  
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Figure 4.1 graphically shows the reflection and transmission of an incident plane 

P-wave at a planar interface separating two homogeneous and isotropic media. In the 

most general case, a single incident plane wave at an interface gives rise to four types of 

wave: reflected and transmitted compressional waves, reflected and transmitted shear 

waves. Of these four waves, the primary echoes or reflections are most commonly used to 

infer features and properties of the target subsurface (Yilmaz, 2000). The ratio of the 

amplitude of a reflected wave compared to the amplitude of an incident wave is called the 

reflection coefficient. If the incidence angle is zero, i.e., the incident plane wave if 

directed normal to the planar interface, the reflected and transmitted waves do not change 

directions but do change signs. For the situation of normal incidence, the reflection 

coefficient at the planar interface is given as 

12
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ZZ

rpp +
−

==θ ,                   (4.10) 

where iZ  stands for the P-wave acoustic impedance of layer i , and the acoustic 

impedance is the product of density and P-wave velocity; subscripts 1 and 2 indicate the 

particular medium above (1) and below (2) the interface; 1
ppr  stands for the reflection 

coefficient of the first layer. For this 1D layered medium, the convolution of the time 

series of the calculated reflection coefficients with the source wavelet and this 

convolution results in a zero-offset synthetic seismogram, often called post-stack 

seismogram. Mathematical representation of this convolution is given as 
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where w(t) is the source wavelet, and delta function of )( 1tt −δ  accounts for the phase 

delay; 1t  is the two-way travel time of a specific layer. The response of a multi-layered 

model can be computed by summing the response of individual layers as computed by 

equation (4.10). This is the method that will be used in this research for the post-stack 

case.  

 This equation neglects transmission losses, internal multiples and frequency 

dispersion. In the frequency domain, the convolution equation (4.11) is equivalent to a 

product of the Fourier transforms of the two functions, namely, 

)()()( ωωω RWS =                                        (4.12) 

where ω is angular frequency, and S, W, and R stand for the Fourier transforms of the 

functions s, w and r, respectively. Compared to pre-stack seismic modeling as used in 

chapters 2 and 3, the disadvantage of such post-stack modeling is that the acoustic 

impedance does not provide independent sensitivity to the medium’s bulk density and 

compressional-wave velocity. 

 

4.2.2 Flow simulation 

 

Reservoir simulation is a tool for predicting future production rates from a given 

reservoir engineering model. The theory is based on conservation of mass and energy 

equations and the mass transport mechanism equations (Darcy’s law) in a porous medium. 
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Suppose that the reservoir under study is rectangularly shaped over a volume Ω , 

( ){ }zyx LzLyLxzyx <<<<<<=Ω 0,0,0|,,            (4.13) 

where Lx, Ly, and Lz are reservoir lengths along x, y and z directions, respectively. The 

general equation of mass conservation in equation (4.14) shows that any local change in 

the flow of mass is because of a local source/sink or a temporal change in density or 

porosity. The source/sink term q~  accounts for a local production/injection well. The 

vector v is the fluid flux, φ  is porosity and ρ  is fluid density (Ertekin et al., 2001).  

( ) ;~)( q
t

+
∂

∂
=⋅∇−

φρρv                                                                             (4.14) 

Darcy’s law is a gradient expression that relates the flux velocity to pressure and gravity, 

as shown in the following equation 

( );zgpK
∇−∇−= ρ

μ
v                                                                               (4.15) 

where K is permeability, and μ  is the viscosity. The second term on the right-hand side 

incorporates the gravitational effect. The generalized form of Darcy’s law to the flow of 

multi-phases (oil, water and gas) in a porous rock is given as 

( ) gwojzp
Kk

v jj
j

rl
j ,,=∇−∇−= γ

μ
                                             (4.16) 

where rlk  is the relative permeability of each phase, which is a function of saturation.  

 The combination of Darcy’s law with the mass conservation equation yields the 

following multi-phase fluid flow equations: 

 



96 

( )[ ] ( )

( )[ ] ( )

( ) ( )[ ] ( )
⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

++
∂

∂
=∇−∇+∇−∇∇

+
∂

∂
=∇−∇∇

+
∂

∂
=∇−∇∇

fgoS
gogoS

gggoooS

w
ww

www

o
oo

ooo

qqR
t

BBSSR
zgpzgpR

q
t

BSzgp

q
t

BSzgp

)/(

/

/

φ
ργργ

φργ

φργ

 (4.17) 

 

These equations relate differences in pressure gradient (left-hand side) to temporal 

changes in pore saturation (right-hand side), and they are usually complemented by three 

additional constraints that account for saturation of three fluids and empirical 

relationships between capillary pressure and individual saturations: 
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In equation (4.17), parameters jB  relate reservoir property values at surface condition to 

reservoir condition, and they are defined based on the PVT constant at thermodynamic 

equilibrium; SR  accounts for the mass transfer between the oil and gas phases; 

coefficients jγ  are transmissibilities and are defined as 
jj

rl
j B

Kk
μ

γ = . The derivation of 

equation (4.17) uses the black-oil model, which assumes that the only fluid phases are oil, 

gas and water, and the gas can dissolve into oil, but oil cannot be vaporized into gas, 

water; water and oil are immiscible.  
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 Since the PDEs in equation (4.17) are nonlinear, it is difficult to solve them 

analytically. When the finite difference scheme is applied to solve them, the reservoir 

volume Ω  is usually discretized into Nb grid blocks and zyxb NNNN ××= , where Nx, 

Ny, and Nz stand for the number of grid blocks along x, y, and z directions, respectively. 

For each of the Nb blocks, there exist three finite difference equations for oil, gas, and 

water. In total, there will be 3Nb equations representing the mass balance over the whole 

reservoir volume. In addition, Nw well equations will have to be added if there are Nw 

wells. Each well can have a different constraint, such as constant bottomhole pressure, 

constant oil production rate, and constant total production rate. If bottomhole pressure is 

applied as a constraint in wells, the corresponding phase production rate can be computed 

using the Peaceman equation (Peaceman, 1983). These 3Nb+Nw equations plus the 

boundary and initial conditions consist of a complete set of reservoir simulation equations. 

The solution of the system for pressure and saturation distributions of each phase in each 

gridblock at different times is the so-called reservoir simulation. The primary variables to 

be solved in each gridblock are case dependent. For example, p, So and Sg are typically 

the primary variables in a 3-phase system, but if no free gas is present, solution gas-oil 

ratio, Rs, may replace Sg as one of the primary variables. 

 The flow simulator that is used in chapter 5 is a standard IMPES (implicit in 

pressure and explicit in saturation) simulator. At each time step, the set of finite 

difference equations for the overall pressure equation are solved to obtain gridblock 

pressures, and the finite difference form of the water flow equations are solved for 
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gridblock water saturations. The pressure finite difference equations are solved using a 

sparse matrix routine. 

 

4.3 Seismic rock physics 

 

Seismic responses are affected in coupled ways by many factors, such as porosity, 

fluid type, pressure, saturation etc. Currently, seismic data collaborated with other 

measurements are commonly analyzed for reservoir monitoring, lithology discrimination, 

and hydrocarbon detection through rock physics relationships. These relationships 

transform reservoir petrophysical properties into seismic elastic attributes, which are 

further used for simulation of wave propagation (Tatham and McCormack, 1991; Batzle 

and Wang, 1992; Mavko et al., 1998). Because rock physics bridges seismic data and 

reservoir parameters, it has been instrumental in the development of technologies such as 

4D seismic reservoir monitoring, seismic lithology discrimination, and direct 

hydrocarbon detection with “bright-spot” and angle-dependent reflectivity analysis.  

Seismic compressional-wave and shear-wave velocities have been related to the 

Lame’s constants as in equations (4.6) and (4.9) respectively, and they can also be 

expressed differently as follows: 
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where Ku is the saturated (undrained) rock’s bulk modulus, uρ  is the saturated (undrained) 

rock’s shear modulus, and ρ is the saturated rock’s density. Wang and Nur (1992) 

developed a series of empirical relationships to calculate fluid seismic velocities and 

densities utilizing reservoir flow parameters. The calculated fluid seismic velocities and 

densities can be further used to derive fluid bulk modulus, and then the saturated rock 

bulk modulus (Ku) can be calculated through the fluid substitution Gassmann equation 

(Wang and Nur, 2000). The saturated rock density ( uρ ) can be calculated from the 

different fluid densities and reservoir parameters such as porosity and fluid saturation, etc. 

The Gassmann (1951) equation has been used to calculate the effect of fluid 

substitution on seismic response of low-frequency waves, while Biot’s equation (1956a, 

1956b) extends the effect to full frequency range but predicts very little velocity 

dependence on frequency for most reservoir rocks. Geertsma and Smit (1961) developed 

equations valid for the complete frequency range based on Biot’s work, and the results 

are summarized as follows. 
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where Vp is the P-wave velocity, Vs is the S-wave velocity; Ku is the bulk modulus, μ is 

the bulk shear (rigidity) modulus, Kd is the rock’s dry bulk modulus, Kf is the modulus of 

an oil-water-gas fluid mixture; φ  is the porosity and k is the mass coupling factor, which 

varies from 1 (no fluid–solid coupling) to infinity (perfect coupling); ρu is the saturated 

porous bulk density, ρf is the fluid density. 

 As discussed in Wang and Nur (2000), some basic assumptions in Gassmann’s 

equation are: (1) the porous rock is macroscopically homogeneous and isotropic; (2) all 

the pores are interconnected or communicating; (3) the pores are filled with a frictionless 

fluid (including gas); (4) the rock-fluid system under study is closed or undrained; (5) the 

relative motion between the fluid and the solid rock is negligibly small compared to the 

motion of the saturated rock itself when the rock is excited by a wave; (6) the pore fluid 

does not interact with the solid in a way that would soften or harden the frame. For heavy 

oil saturated unconsolidated sands, assumption (2) is very well satisfied, but assumption 

(3) is violated. Wang and Nur (2000) compared laboratory data with Gassmann’s 

predictions and showed that for the sands and sandstones under low effective pressure 

(10MPa), the Gassmann-predicted Vp is lower than the measured Vp by as much as 8%.  

 To calculate P- and S-wave velocities based on the Gassmann equation (4.21), ρu, 

ρf and Kf are needed. These three terms can be calculated according to equations (4.22)-

(4.24) respectively 

wwooggf SSS ρρρρ ++=                (4.22) 

φρφρρ fsu +−= )1(   .                     (4.23) 
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Here, ρo, ρg, ρw, ρs, ρu, and ρf respectively stand for the densities of oil, gas, water, solid 

grains, saturated reservoir rock, and fluid mixture at reservoir condition. Sg, So, and Sw are 

the saturations of gas, oil and water. The ρo, ρg, ρw at the reservoir condition have to be 

calculated first in order to calculate the adiabatic gas, oil, and water bulk modulus Kg, Ko, 

and Kw following the equations developed by Batzle and Wang (1992) based on the 

known reservoir pressure (P), temperature (T), gas specific gravity (G) and water salinity 

(S). 

 For gas, 

a
g ZRT

GP8.28
=ρ                             (4.24) 
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Ta is the absolute temperature and Ta=T (ºC)+273.15. The units used here are: MPa for 

pressure and bulk modulus; g/cm3 for density; m/s for velocity. 
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where the subscript T means to do partial differentiation with respect to P, and  
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 For oil, 
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ρo
St is oil density at the standard condition (15.6ºC and atmospheric pressure). Vo is oil P-

wave velocity. RG is gas-oil ratio at the standard condition. 

 For water, 

( )[ ]{ }PSPSTTPSPSSpww 4713330038024003001044.0668.0 6 +−−++−+++= −ρρ (4.28) 

where 

)002.0333.0103.1016.0

248900175.03.380(101
22352

326

TPPPTPT

TPPTTTpw

−−×−

+−++−−+=
−

−ρ
 

 

225.12

352

1820)16.010780()0476.00029.0

6.2105.8055.06.91170(

SPPSPTP

PTTTSVV pww

−+−+−−

+×−+−+= −

       (4.29) 

 



103 

Here S is water salinity (the weight fraction of sodium chloride, ppm/1000000). Vw is the 

P-wave velocity for water, and ∑ ∑
= =

=
4
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ijpw PTWV  is P-wave velocity for pure water, 
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After equations (4.24) to (4.29) are carried out, ρf can be calculated based on equation 

(4.22), and the saturated bulk density ρu can be calculated based on equation (4.23). 

 It is assumed that fluids have no effect on the estimated shear modulus, that is 

μo=μg=μw=0. Kg, Ko, and Kw can be calculated by K=Vp
2*ρ, where Vp is the P-wave 

velocity of fluids. The average fluid bulk modulus for a multiphase system depends on 

the fluid distribution. Wood’s equation as in equation (4.30) can be used to calculate the 

combined fluid bulk modulus. 
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 By this point, the only remaining unknown in Gassmann’s equation is Kd. It was 

assumed that Kd does not vary with different fluid saturation, but it is affected by 

effective pressure Pe (overburden pressure minus pore pressure) and temperature. The 

same assumption is applied to the shear modulus. Consequently, the saturated shear 

modulus μu equals the dry shear modulus μd. 
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4.4 Integrated 4D seismic history matching workflow 

  

Scientists from different disciplines usually view reservoir characterization 

differently. Geologists normally work with geologic observations, such as well logs and 

outcrop information, and mainly consider reservoir characterization from the viewpoint 

of geological stratigraphy and architecture. Geophysicists mainly work with geophysical 

data, such as seismic and electromagnetic data, and focus on reservoir shape, structure as 

well as some geophysical parameter distributions. Engineers are interested in reservoir 

rock and fluid properties, well conditions, etc., that are directly related to reservoir 

production and management. 

Different data types generally present different benefits but also have different 

inherent limitations. Geologic observations usually only provide static information about 

a reservoir but cannot give any dynamic indication inside a reservoir. Static geologic 

knowledge helps build a rough initial reservoir model and also set up a reasonably good 

reservoir model space. In contrast to geologic information, 4D seismic and well 

production data capture both the static and dynamic reservoir features. Well 

measurements usually provide a very good vertical sampling on reservoir heterogeneity, 

but they are usually performed at sparsely distributed locations and therefore have great 

constraints in lateral resolution. Although not as good as well measurement in terms of 

vertical resolution, seismic data provide invaluable information about reservoir 

characterization because of the extensive spatial coverage and dense lateral sampling. 
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Thus, the most appropriate way to quantitatively characterize a reservoir with reduced 

uncertainty is to integrate all the available data sources, such as geologic, geophysical 

and engineering data, and thereby take advantage of their different benefits. 

 

4.4.1 History matching 

  

For typical oil, gas and water flow problems, the governing PDEs are nonlinear, 

which makes it almost impossible to provide an analytical solution for the saturation and 

pressure distributions. As discussed in section 4.2.2, reservoir flow simulation is a useful 

tool for numerically estimating the distributions of oil, gas and water at the partitioned 

reservoir gridblocks. To estimating reservoir flow parameters is equivalent to deriving 

reservoir simulation model parameters by generating synthetic production histories and 

iteratively fitting them to the field well observations. This process is often called history 

matching. Because reservoirs are usually very heterogeneous, there are numerous 

gridblocks in a typical reservoir simulation system, in order to capture reservoir 

parameters with a reasonably high resolution. Manually adjusting parameters in the 

history matching procedure is unfeasible, and computers are used to automatically 

perturb the parameters. 

 Reservoir modeling normally starts by creating a high-resolution 3D geo-cellular 

model using static data. A hierarchical approach to building the 3D geo-cellular model is 

presented by Caers (2005). The major steps of this approach are sequentially shown as 

follows: 
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• Establish the architecture of the reservoir in terms of horizons and faults that are 

determined from 3D seismic data and well-markers. 

• Build a 3D stratigraphic grid from the structural framework. 

• Build a Cartesian grid from the stratigraphic grid. This grid ideally represents the 

coordinate system for the original depositional environment. A one-to-one 

relationship is established between each grid-cell in the Cartesian grid and in the 

stratigraphic grid. All data, well paths, well logs and 3D seismic data are imported 

into that Cartesian grid. 

• Populate the Cartesian grid with facies rock types. Outcrop data and sedimento-

logical models provide information on the style of facies architecture; well-log, 

core and seismic data provide local constraints on the spatial distribution of these 

facies types. 

• Populate each facies type with porosity and permeability. Porosity is assigned to 

each grid cell of the Cartesian grid based on well-log and core data; permeability 

is derived from the porosity model. Porosity is usually determined first since the 

porosity data are more reliable and abundant than permeability data. 

• Map the petrophyscial properties back into the stratigraphic grid to provide a 

high-resolution 3D geo-cellular model. 

The 3D geo-cellular model established after completing the above steps honors all 

the static data. But it does not match the historical well production data until a history 

matching procedure is applied to finally arrive at a match between the synthetic and the 

observed production data. The high-resolution geo-cellular reservoir model often consists 
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of millions of grid cells, which precludes the practical performing of flow simulation and 

history matching. To make the flow simulation applicable, the number of grid cells in a 

geo-cellular model is usually reduced by upscaling it to a manageable dimension. This 

upscaled reservoir model is the input of the flow simulation and is iteratively perturbed to 

obtain a history match. 

The history matching process can be thought of as a minimization problem, in 

which the objective is to derive a reservoir model by iteratively minimizing the mismatch 

between synthetic and observed well production histories. However, in a mathematical 

formulation, the history matching process usually results in an ill-conditioned problem. 

This means that there are not a sufficient number of observed data available to determine 

all the reservoir parameters uniquely. Estimates of reservoir properties obtained from 

production data are typically well resolved only near the wellbores. For regions far away 

from wells, model estimation is usually poorly constrained, especially when the target 

reservoir is large and the amount of production data is limited. If another type of data can 

be incorporated into the history matching scheme to help sample and account for the 

inter-well heterogeneity, then the corresponding nonuniqueness and uncertainty in 

reservoir model estimation will be reduced. Following this integrated history matching 

workflow, the derived reservoir model will simultaneously honor all the different types of 

data. 
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4.4.2 Seismic history matching 

  

The need for reservoir characterization technology within the oil and gas industry 

is mostly driven by the reality that a better defined reservoir usually leads to greater 

drilling success and lower development cost. This is because a properly constrained 

reservoir model can be used to more accurately quantify hydrocarbons in place and to 

efficiently optimize hydrocarbon production. Therefore, better reservoir characterization 

technology calls for integration of all available subsurface data. Currently, this is 

typically achieved using a combination of static geologic data, 4D seismic data and well 

production data. Each of these data corresponds to a different physics and represents a 

certain level of resolution. So the methodology used to integrate these different data 

sources and to mathematically formulate them determines the quality of the final derived 

reservoir model. 

 Technology using 4D seismic data for reservoir characterization experiences a 

fast development and ranges from purely qualitative evaluation to a quantitative 

constraint in rigorous numerical model optimization process (Wayland and Lee, 1986; 

Dunlop et al., 1991; Landa and Horne, 1997; Lumley et al., 1999; Arenas et al., 2001; 

Huang et al., 2001; Gosselin et al., 2003; Kretz et al., 2004; Mezghani et al., 2004; Dong 

and Oliver, 2005). The type of time-lapse seismic data used for reservoir property 

estimation varies among previous researches. For example, seismic attribute difference 

was used in work by Huang et al. (1997) and Arenas et al. (2001), whereas changes of 

fluid saturation and/or pore pressure were used in studies by Landa and Horne (1997), 
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Tura and Lumley (1999), Landro (2001) and Meadows (2001). In this dissertation, the 

whole waveform of any particular trace is used as the seismic constraint on the history 

matching process. In other words, not only the two-way travel time and amplitude but 

also the entire shape of any trace’s seismogram is matched to derive an optimal reservoir 

model. 

 To simultaneously match the 4D seismic and well production data, the reservoir 

model is stochastically perturbed and an objective function, also called the error function, 

is evaluated. The objective function comprises two normalized terms of the mismatches 

in production data and 4D seismic data respectively. Different weights are usually 

assigned on the two terms to reflect different confidence in them. The stochastic 

perturbation and error appraisal process is iterated using an optimization algorithm until a 

certain stopping criterion is reached. 

 Assigning weights to the two different terms is more or less subjective. When the 

weight on seismic term is 0 and the weight on the production term is 1, the resulting 

problem will be the conventional history matching process with constraint from the well 

production data only. As discussed before, the derived solution will be highly nonunique 

and will not capture the heterogeneity in the reservoir with an acceptable resolution. 

Furthermore, the estimation of residual hydrocarbon distribution and prediction of future 

fluid flow can be unreliable. If the weights are reversed, that is, weight of 1 on the 

seismic term and weight of 0 on the production term, the result will be a seismic 

matching process that ignores the production data. This is actually a quantitative 4D 

seismic inverse problem for reservoir parameters. If neither of the two weights is 0, the 
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resulting optimization process makes use of constraints from both of the two datasets to 

perform quantitative reservoir characterization. This is the so-called seismic history 

matching, in which a reservoir is derived such that, after both flow simulation and 

seismic modeling, the synthetic 4D seismic and production data match the recorded 4D 

seismic data and the well production data at the well locations. If the match is poor, the 

reservoir will be stochastically perturbed to improve the data fit. Before this matching 

process, the available static geologic scenario and well logs can be used to geostatistically 

generate the starting reservoir in order to initiate the seismic history match workflow.  

 

4.5 2D example 

  

Specialized sensors measure fluid and rock properties at a high local resolution, 

which, in conjunction with time-lapse seismic technique, possesses enormous potential to 

reduce the uncertainty in reservoir characterization and future production performance 

prediction (Klie et al., 2006). Therefore, sensor information is also incorporated in the 

proposed integrated seismic history matching workflow to provide additional constraints 

on pressure, saturation and flux velocity at some given locations. The resulting integrated 

workflow is illustrated in Figure 4.2. In this workflow, an initial reservoir model is first 

constructed based on available static information and is used to generate synthetic data 

according to different physics. The calculated data are then compared against the 

observed data to do error appraisal. If the error is acceptable, the workflow is terminated 

and a reservoir model is derived. Otherwise, the reservoir model will be stochastically 
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perturbed to improve data fit and the optimization loop is repeated until a satisfactory 

error is obtained.  

As a preliminary test of the applicability and effectiveness of this integrated 

history matching scheme, a 2D synthetic example is designed based on a 2D cross section. 

This reservoir model has a grid dimension of 20x100x1, that is, of 2000 grid blocks in 

total. The size of each grid block is 2.5x25x25 ft3. A fixed production strategy is adopted 

with one water injection well located at the leftmost side with flow rate specified and an 

oil production well at the opposite side with pressure specified as shown in Figure 4.3(a). 

In this application, permeability is taken as the primary reservoir model unknown. 

Porosity for each grid block is assumed constant at a value of 0.2 and pressure and fluid 

saturation are assumed to be independent of each other. Table 4.5 lists the flow and rock 

parameter values used in this example. Observations of time-lapse seismic data and 

production data are numerically generated at 10 legacy time steps through 1000 days. 

Specifically, a flow simulator is used on the true permeability distribution as in Figure 

4.3(a) to generate the well production data at the producing well location. Outputs of 

pressure, saturation from the flow simulator are used as the inputs of the Gassmann 

model as introduced in section 4.2.2 to calculate seismic elastic parameters and hence 

seismic P-impedance at every grid block. The calculated P-impedance distribution is used 

to generate post-stack seismograms at the specified 10 legacy time steps using a 

convolution algorithm, as described in section 4.2.1.  
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PARAMETER VALUE UNIT 

Oil pressure 1000.0 kPa 

Oil concentration 43.15 % 

Oil compressibility 4.0e-5 kPa-1 

Water compressibility 3.3e-6 kPa-1 

Oil density 847.00 Kg/m3 

Water density 1000.0 Kg/m3 

Oil viscosity 0.92 cp 

Water viscosity 1.00 cp 

Background Vp 3.5 Km/s 

Background density 2100 Kg/m3 

Oil bulk modulus 1.57e+9 Pa 

Water bulk modulus 2.25e+9 Pa 

Porosity 0.20 fraction 
 

Table 4.5: Rock and flow parameter values for the 2D seismic history matching test. 
 

In this numerical example, the integrated seismic history matching workflow 

constitutes an inverse problem. It is formulated into an optimization framework in which 

the best-fitting reservoir model is targeted by minimizing the objective function defined 

in equation (4.31) as: 

( ) ( ) ( ) ( ) ( )[ ]∑
=

−+−+−+−+−=
T

i
i

d
iiqi

d
iiui

d
iici

d
iipi

d
iisErr

1 2,2,2,2,2,),,,,( qqwuuwccwppwsswqucps
 

 where s, p, c, u represent seismic, pressure, concentration and flux velocity vectors at 

different legacy times respectively; q denotes production data at well locations. Different 

weights are put on different terms, reflecting corresponding different confidences in them. 

In this example, the seismic data used stand for the post-stack seismic waveforms; the 
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production data stand for the oil-water ratio and cumulative oil production at the 

producing well location. 

 The flow simulator used in this test is the Integrated Parallel Accurate Reservoir 

Simulator (IPARS). IPARS is a three-dimensional general subsurface simulator that uses 

a multiphysics, multiphase flow reservoir model coupled with the petrophysical model 

and can be run serially or in parallel. It currently includes multiple physical models: 

single phase, two-phase oil-water and air-water, and a reactive transport, compositional 

model as well as the black-oil model. It also contains several numerical discretizations of 

these physical models, including mixed finite elements and discontinuous Galerkin finite 

elements for two-phase flow. In addition, different time discretizations have also been 

implemented in IPARS, including implicit, semi-implicit and sequential schemes. For 

more comprehensive descriptions of IPARS, please refer to Wheeler (2002) and Minkoff 

et al. (2003). 

 The Simultaneous Perturbation Stochastic Approximation (SPSA) method is 

performed as the optimization algorithm to minimize the error function defined in 

equation (4.31). Like the global optimization methods of Simulated Annealing and 

Genetic Algorithm, SPSA is a stochastic optimization algorithm, and it uses only an 

objective function measurement of multivariate systems. This contrasts with algorithms 

requiring direct measurements of the gradient of the objective function, which are often 

difficult or impossible to obtain. Formal theoretical and numerical comparisons of SPSA 

with other state-of-the-art optimization methods have been performed and have shown 

that SPSA to be competitive (Maryak and Chin, 2001; Spall, 2003). The essential feature 
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of SPSA, which accounts for its power and relative ease of implementation, is the 

underlying gradient approximation that requires only two measurements of the objective 

function regardless of the dimension of the problem. This feature allows for a significant 

decrease in the cost of optimization, especially in problems with a large number of 

variables. 

 In this test, SPSA is applied to iteratively fit time-lapse seismic data, well 

production data and the sensor measurements through 35 iterations and following the 

workflow shown in Figure 4.2. The resulting history of error function as in equation (4.31) 

is shown in Figure 4.4. As shown, the data integration leads to a quick convergence of the 

optimization process to a fairly good estimation. The final synthetic data compared 

against the true data are illustrated in Figure 4.5 for production data and Figure 4.6 for 

seismic data. In Figure 4.5, both the derived synthetic cumulative oil production data and 

the oil-water ratio data match the observed data quite well. This is not a difficult task 

because they are only evaluated in a single location, that is the production well location 

on the rightmost side. Figure 4.6 illustrates the comparison of synthetic and observed 

time-lapse seismic data for the model cross-section after three different time steps of 100, 

500 and 1000 days. They generally match each other fairly well. It is also shown that the 

injected high-density water increases the seismic reflectivity and hence amplitude. This 

increase propagates laterally along with the injected water front over production/injection 

time.  

 In this test, multiple runs of the proposed integrated scheme are performed to 

derive multiple realizations of the reservoir model. For each run, the starting reservoir 
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model is randomly chosen within a certain bound. Figure 4.3 shows the true permeability 

distribution, the inverted mean permeability and corresponding standard deviation 

distributions based on the derived multiple reservoir model realizations. The inverted 

reservoir permeability model is clearly very close to the actual model, with only a small 

deviation. 

 As long as the reservoir permeability model is obtained as in Figure 4.8(b), it can 

be further used to run the flow simulation to image the reservoir’s dynamic evolutions of 

fluid pressure and oil concentration as they have direct relationships to the reservoir’s 

drainage and recovery strategy. As shown in Figure 4.7, the pressure is higher on the left 

side due to the water injection while it is lower on the right side due to the production. 

There exists a decreasing gradient between the injection and production wells. Evolution 

of oil concentration is illustrated in Figure 4.8 at three different legacy times. As shown, 

along with injection, the injected water moves laterally and pushes the oil rightward to 

the production well on the right side. Therefore, imaging of the water-oil contact is 

obtained, which indicates the inside dynamic fluid flow. 

 The derived dynamic distribution of fluid pressure and concentration can be 

further used as inputs to the Gassmann equation to derive the dynamic seismic features. 

Figure 4.9 shows the resulting P-impedance distributions at three different times of 100, 

500 and 1000 days. As illustrated, the injected high-density water increases the P-

impedance, and this increase propagates laterally rightward along with the water-oil front 

movement as shown in Figure 4.8. The observation of P-impedance evolution with time 
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is consistent with the inverted time-lapse seismograms at the same time steps as shown in 

Figure 4.6. 
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Figure 4.1: Graphic description of the reflection and transmission phenomenon of an 
incident plane P-wave at a planar interface (Z=0) which separates two different elastic 
media. 
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Figure 4.2: The proposed integrated workflow to simultaneously history match time-lapse 
seismic data, well production data and sensor information. 
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Figure 4.3: (a) True permeability model, (b) Inverted mean reservoir permeability model, 
and (c) Corresponding standard deviation. The well control strategy is also shown. 

 
 
 
 
 
 
 
 
 
 

(mDarcy)(mDarcy)



119 

 
 

 
 

Figure 4.4: Normalized error history through 35 iterations. Integrating time-lapse seismic, 
well production data and sensor information leads to a fast convergence to a fairly good 
reservoir model estimation. 
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Figure 4.5: Comparison of observed and synthetic data fits of well cumulative production 
(STB) and oil-water ratio measurements. 
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Figure 4.6: Comparison of (a) observed and (b) synthetic time-lapse data fits for the 
reservoir cross-section at three different legacy times.  
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Figure 4.7: Distributions of fluid pressure (kPa) at three different monitor times. As 
shown, there exists a decreasing gradient between the injection and production wells. 
 
 

 
Figure 4.8: Distributions of oil concentration (%) at three different monitor times. As 
shown, the injected water moves laterally and pushes the oil rightward to the production 
well. 
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Figure 4.9: Distributions of the resulting P-impedance (103Kg/m2sec.). The injected high-
density water increases the P-impedance and this increase propagates laterally along with 
the water-oil front movement as in Figure 4.8. 
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Chapter 5 
 

Integrated 4D seismic reservoir characterization and 
uncertainty analysis in a Bayesian framework 

 
 

 In petroleum reservoir appraisal, it is expedient to forecast future production 

performance under various recovery strategies and eventually to decide on a management 

strategy. The procedure for achieving this goal consists of two steps: first, establish a 

representation of the target reservoir characteristics based on available information, and 

second, simulate the future production evolution by running a numerical flow simulator 

on the derived reservoir characteristics. 

In chapter 4, an integrated 4D seismic history matching workflow was proposed, 

in which the purpose is to derive a best-fitting reservoir model by quantitatively and 

simultaneously matching multiple datasets such as 4D seismic data and well production 

data. This optimization process constitutes a joint inverse problem, that is, a mapping 

from the joint data space to the model space. Although the incorporation of seismic data, 

which have better spatial resolution, in addition to the well production data, which have 

better local vertical resolution, helps to provide more constraints and reduce the inherent 

nonuniqueness, the number of data is nevertheless often less than the number of model 

parameters that need be quantified. Thus, the joint inverse problem is often under-

determined and ill-posed, so it is almost impossible to deterministically solve it for a 

unique solution. From this point of view and in order to account for the uncertainty 
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associated with model estimation, a stochastic reservoir model may be defined, and the 

joint inverse problem may be formulated into a statistical framework and fully solved 

using a sampling algorithm. 

 To make the reservoir characterization and hence the future performance 

prediction as accurate as possible with reduced uncertainty, the stochastic reservoir model 

under study is often conditioned to two major types of information: (1) general reservoir 

information and (2) reservoir-specific observations (Tjelmeland, 1996; Hong et al., 2007; 

Hong and Sen, 2008b). The former consists of the static information as introduced in 

chapter 1, such as core data, well log data, geologic outcrop analog data, interpretation of 

horizons and faults, etc., which are often qualitatively used to construct a starting 

reservoir model. The latter consists of the dynamic observations on the target reservoir 

such as well production history and time-lapse seismic data, which can be quantitatively 

used to condition the starting model for an optimal estimation. However, since different 

data usually have different intrinsic resolution and correspond to different physics, the 

challenge is to integrate these dissimilar types of information, especially the diverse types 

of dynamic data sources, in an optimal manner for an accurate reservoir model 

characteristics and reliable production performance prediction. In addition, because this is 

a time-consuming iterative process, the issue of computational efficiency also needs to be 

specifically addressed. 

 Considering the unique feature of Bayesian inference in data integration and 

uncertainty handling, in this chapter, the integrated 4D seismic history matching problem 

or the joint inverse problem is formulated into a Bayesian framework and fully solved by 
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stochastically constructing the posterior distribution or PPD. The derived PPD describes 

all the consistent models along with corresponding likelihoods for the given joint datasets. 

Therefore, besides the most likely reservoir model, it also provides a convenient way to 

quantify corresponding uncertainty based on equations (1.6), (1.7) and (1.8). This 

requires that a sufficient sampling from the resulting PPD be performed, and the new 

multi-scale MCMC developed in chapter 3 is used as a sampling tool in this study. 

In this chapter, a synthetic 3D reservoir, which is parameterized into both fine and 

coarse scales for computational efficiency, is used to justify the applicability and good 

performance of the proposed integrated Bayesian inference scheme. As will be illustrated, 

this scheme leads to a reasonably accurate estimation of the static petrophysical model 

and imaging of the inside dynamic evolutions. In addition, based on the PPD samples, 

corresponding uncertainty is also quantified in a theoretically correct way. 

 

5.1 Integrated Bayesian reservoir characterization 
 

Suppose the reservoir model m under study can be modeled as a random field in 

which the model parameters, such as porosity and permeability, are all random variables. 

As mentioned above, to quantify these variables, available information consists of 

general static knowledge and reservoir-specific dynamic measurements such as time-

lapse seismic and well production data. Based on the former, a prior model can be 

constructed. This prior model is further conditioned to the seismic and production data to 

generate the posterior stochastic model and therefore to update the state of knowledge 

about the target model. In this way, the central point in the integrated seismic reservoir 
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characterization is to obtain a good description of the posterior properties, either 

analytically or using a sampling tool. 

 

5.1.1 Likelihood functions 
 

Suppose the 4D seismic data are denoted by Sobs, and well production data are 

denoted by Pobs. These observations are usually linked to the target reservoir model m 

through likelihood functions. For seismic data, the likelihood function corresponds to a 

conditional probability )|( mSobsp , which specifies the probability density function (PDF) 

of Sobs given that the reservoir model m is actually the true model. It can also be 

represented in a different form as: ss
obs g εmS += )( , where Sobs is seen as a deterministic 

function of m plus a random error εs which accounts for the fact that the recorded 

observations are contaminated by noise; gs(m) is the so-called forward operator and 

represents the expected seismic response recorded by acquisition equipments to a given 

reservoir model m, which can be derived using an appropriate seismic wave propagation 

simulator. However, as described in chapter 4, seismic modeling cannot directly work on 

reservoir model parameters, so a rock physics model has to be incorporated to transform 

the flow parameters into the seismic elastic parameters. Correspondingly, )|( mPobsp is 

the likelihood function for well production data, and pp
obs g εmP += )( . The associated 

gp(m) is defined from the mass conservation law and Darcy’s law. It represents the 

expected production measurement at well locations and can be derived using a flow 

simulator directly on the reservoir model parameters. 
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In practice, it is very difficult to represent the likelihood function in the form of a 

conditional probability as it is very difficult to know the intrinsic error distribution of the 

data. To handle this issue, an appropriate probability distribution is usually assumed for 

the data. Of course, identical distribution or different distributions may be applied to 

various data types. For example, if the observation error distribution is assumed to be 

Gaussian with zero mean, then the PDF of the error can be written as: 

,)()(
2
1exp

2
1exp)(

1

1

⎟
⎠
⎞

⎜
⎝
⎛ −−−∝

⎟
⎠
⎞

⎜
⎝
⎛−∝

−

−

obssynD
T

obssyn

D
Tp

ddCdd

εCεε
           (5.1) 

where CD is the observation error covariance matrix, which defines the correlation among 

noise. For the most general case, CD is usually not a diagonal matrix and the off-diagonal 

elements are not all zeros. dsyn is the expected response to a given model m, and it can be 

derived through the forward simulator g(m). Since the intrinsic noise is random, the 

resulting synthetic data in the model m has to be random and can be described in a form 

of PDF as: 
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 Since each type of data contains different information about the reservoir property 

and corresponds to different physics, it is reasonable to assume them to be conditionally 

independent of each other for a given reservoir model. In this way, the overall likelihood 

function incorporating both seismic and production data can be represented as: 

)|()|()|,( mPmSmPS obsobsobsobs ppp ⋅= ,                       (5.3) 
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in which the likelihood definition for different data types can be inserted. For integration 

of multiple data types that are not independent of each other, other alternative schemes 

may be used to replace equation (5.3) (Journel, 2002; Caers et al., 2006; Castro, 2007). 

 
5.1.2 Prior model 
 

Statistical solution of the ill-posed joint inverse problem usually starts with a prior 

stochastic reservoir model, which is often represented by a PDF p(m). The prior model 

summarizes all available information about the target reservoir before the reservoir-

specific seismic and production data come into play. Hence, they are based on general 

knowledge of the reservoir and its fluid flow processes. This general reservoir 

information typically comes from the static data, such as geological setting, analogue 

observations and experience from neighboring comparable reservoirs. It is crucial for the 

reservoir model derivation that p(m) gives a realistic description of the prior uncertainty 

about the model m. Although the starting reservoir model can be relatively easily 

constructed by using a hierarchical workflow such as the one in Caers (2005), it is still 

challenging to translate this qualitative information into a probability distribution.  

To date, most previous studies assume the random reservoir model to be Gaussian, 

so the PDF of the reservoir model can be written as, 
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where mprior is the estimated prior reservoir model based on the static data and following 

a hierarchical workflow; CM is the model variable covariance matrix, which is usually 

established through geostatistical tools. 

 On the other hand, if we simply know the lower and upper bounds of the model 

variables, it may be a good choice to use a uniform distribution to encode the prior 

information. The lower and upper bounds are not difficult to obtaine by satisfying certain 

physical criteria. Compared to other distributions, it is believed that the uniform 

distribution helps to avoid more biased constraints to be incorporated (Curtis and Lomax, 

2001). In this way, the prior PDF is given as: 

∏
= −

∝
N

i
ii mm

p
1

minmax

1)(m ,                  (5.5) 

where mmin and mmax are the lower and upper bounds of the ith model variable; N is the 

total number of model variables. 

 
5.1.3 Posterior model 
 

With the likelihood functions and prior model defined, the posterior distribution, 

which is the updated prior distribution conditioned to the available observations, can be 

expressed as 

)()|()|(),|( mmPmSPSm pppp obsobsobsobs ⋅⋅∝                (5.6) 

by assuming Sobs  and Pobs to be conditionally independent for the given reservoir model 

m. Analytical treatment of this posterior distribution is feasible only in very few cases. 

On the other hand, Bayesian inference approaches are frequently used in situations where 
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information is incomplete and a deterministic solution cannot be obtained (Gregory, 

2005). In a Bayesian framework, the posterior distribution of the reservoir stochastic 

model conditioned to conditionally independent datasets of seismic and production 

observations is shown in equation (1.5), where the denominator )()( obsobs pp PS ⋅  acts as 

a normalizing factor to guarantee that the derived posterior probability is between 0 and 1. 

This normalizing factor is therefore the integration of the numerator over the entire model 

space, which poses challenges in realistic applications due to high-dimensionality. For 

example, for the problem of reservoir characterization, the stochastic reservoir model m 

is of extremely high dimension because of its highly heterogeneous nature. The 

corresponding likelihood functions are normally very complex and require solving a large 

set of differential equations. Hence, reliable solutions to these equations are 

computationally expensive, and they entail tremendous computer resources.  

 Instead of struggling with deterministic approaches for the derivation of posterior 

distribution, a sampling tool may be used to sample from the posterior distribution. Tools 

such as the maximum a posterior (MAP) estimation and uncertainty quantification can be 

used to facilitate further processing. Various sampling algorithms can be used to sample 

from the posterior PDF as described in More et al. (1999). In this study, the new multi-

scale MCMC developed in chapter 3 is applied to sample from the PPD. In addition, the 

Bayesian inference approach has a unique capability in dynamic data integration. With 

another new dataset added, the derived PPD may be taken as a new prior for further 

updating and for generating a new PPD additionally conditioned to the new set of data. 

This technique is very useful in reservoir evaluation because it is a dynamic process with 
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frequent updates of the posterior stochastic model when more reservoir-specific 

measurements become available through infill drilling, additional seismic surveys and 

current well production history. Sometimes, the MAP is of primary interest, and it can be 

obtained by minimizing the derived posterior distribution. 

 From the perspective of reservoir decision making and management, determined 

values of the reservoir model variables are usually open to uncertainties considering that 

the results of the joint inverse problem are non-unique. Thus, it is also very important to 

quantify uncertainties associated with reservoir model estimation and future performance 

prediction. This can be done based on the model realizations through the procedure of 

posterior distribution sampling. Typically, these realizations are used to derive the model 

covariance CM as well as to compute the histograms of model variables of interest. These 

histograms are then taken as the estimated marginal posterior distributions for particular 

variables, which leads to the most likely model parameter values and the corresponding 

uncertainty bounds. Finally, the obtained model realizations can be fed into a reservoir 

flow simulator under a certain recovery strategy to generate realizations of future 

production observations. Based on these realizations of future production, the most 

probable performance prediction and its associated uncertainty can be derived. 

 

5.2 MCMC sampling from the PPD 
 

The posterior distribution shown in equation (1.5) is the complete solution of the 

joint inverse problem. It describes all the consistent reservoir models conditioned to data 

Sobs and Pobs. The denominator is an integration of the numerator over the entire model 
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space. For most problems of seismic reservoir characterization, this integral cannot be 

determined analytically over the multivariate, spatial random variable m. In addition, the 

likelihood functions usually are highly non-linear and iterative computation of them is 

hence extremely challenging in terms of the computational cost. Therefore, it precludes 

direct sampling from the PPD. 

Sampling from a PPD can be efficiently done whenever the PPD can be factorized 

into lower dimensional PDFs, preferable one-dimensional ones, in that some sequential 

algorithms may be performed (Gomez-Hernandez and Journel, 1993; Omre et al., 1993). 

However, this requires strong constraints and assumptions so that it is only applicable in 

very particular cases. Sampling from a complex PPD has been of intensive study in the 

statistical community for decades. MCMC techniques based on the Metropolis-Hastings 

rule have been the central topic. Although application of MCMC in seismic history 

matching is very resource demanding, sampling from the correct posterior distribution is 

ensured in the limit, and therefore calculation of normalization integration is avoided. As 

briefly described in chapter 1, all the MCMC algorithms apply an iterative process to 

draw samples. These samples are then used to approximate the target PPD, in which each 

iteration contains a proposal and an acceptance/rejection step. In this study, the developed 

new multi-scale MCMC (see chapter 4) is performed as the sampling tool to estimate the 

PPD. The resulting samples are also further analyzed for uncertainty analysis by 

estimating the marginal PDF for individual model variables. 

It is very important in an MCMC application to decide when a sufficient number 

of samples have been obtained and a sufficiently good estimation has therefore been 
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reached. One approach is to find the theoretical bounds on the number of iterations 

necessary to go through within a given distance from the specified distribution (Meyn 

and Tweedie, 1994; Rosenthal, 1994). However, thus far, no good bounds seem to exist 

for the complex models necessary in integrated reservoir characterization. An alternative 

method frequently used in complex models is output analysis. In output analysis, 

important univariate characteristics of the realizations are plotted against the number of 

iterations until they seem to have been stabilized statistically (Ripley, 1981). The latter 

approach is also used in this study, that is, the multi-scale MCMC is performed to 

continuously draw samples until the resulting marginal PPDs of certain variables do not 

change. 

 

5.3 Example: Bayesian inference of reservoir properties and 
uncertainty analysis 

 

In this section, a numerical example is presented to derive reservoir characteristics 

by integrating 4D seismic data and well production data. A stochastic 3D reservoir is 

defined and an integrated seismic history matching workflow illustrated in Figure 5.1 is 

followed for reservoir model parameter estimation and corresponding uncertainty 

quantification. In this workflow, a reservoir model is found such that, after both flow 

simulation and seismic modeling, the synthetic seismic and production data are matched 

against the recorded well data. If the match is poor, the reservoir model is stochastically 

perturbed to improve the data fit. As introduced earlier, it is very important in reservoir 

characterization to use a realistic prior description. This is usually done using a 
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hierarchical scheme, and most previous researchers assumed the random reservoir field to 

be Gaussian as the prior constraint. This is a more or less overly strong constraint and 

may give rise to artificial bias in the final model estimation. In this example, a good trial 

is that, instead of assuming a Gaussian random field, the reservoir model space is 

specified based on the roughly determined upper and lower bounds on model variables. 

Thus, the starting reservoir model is just randomly picked from the pre-defined model 

space, which relaxes the stringent constraint and does not influence the quality of the 

final model estimation as a convergence–guaranteed algorithm is used.  

The integrated objective function used to measure the mismatch between 

synthetic and observed datasets is given as 
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where obs
tS  and syn

tS  respectively represent observed and synthetic seismic data at time 

step t; obs
tP  and syn

tP  respectively represent observed and synthetic production data at 

time step t. There are T legacy time steps in total. Different weights Wseis and Wprod are 

put on the two normalized terms to reflect corresponding confidence on them. If Wseis is 

set to zero, only production data are used and this corresponds to the conventional history 

matching problems. If Wseis is set to zero, only the time-lapse seismic data are used, and 

this corresponds to a pure 4D seismic inversion problem. In the integrated 4D seismic 

history matching, neither of them is zero. As noted, an L2 norm is used to measure the 

mismatch between synthetic and observed 4D seismic data, whereas an L1 norm is used 

to measure the mismatch between synthetic and observed production data. Other 
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researchers incorporate some other terms, called “regularization terms” or “smoothing 

terms”, in the objective function to impose extra constraints in order to reduce non-

uniqueness. Nevertheless, in this study, this is not the case. Only the two terms of data fit 

are included in the objective function because it will be shown that, by using a multi-

scale MCMC algorithm, the coarse-scale model works like a smoothing operator to 

smooth the fine-scale model and make it more realistic. 

 In this study, the proposed integrated 4D seismic history matching workflow 

(Figure 5.1) is formulated into a Bayesian framework. The posterior distribution (PPD) of 

the stochastic reservoir model is estimated based on samples drawn by the new multi-

scale MCMC method.  

 

 
5.3.1 Reference model and model parameterization 

 

In this synthetic example, the 3D reservoir contains oil and water and has a 

regular grid system with a dimension of 20x20x5 over an area of 1600x1600x50 ft3 

(Figure 5.2(a)). The two phase black-oil model is used to describe the inside oil and water. 

Reservoir permeability is assumed to be a constant distribution, and porosity is taken as 

the primary unknown. Hence, each grid block contains only one stochastic variable, the 

porosity. The 3D porosity in Figure 5.3, which is shown in the representation of a 3D 

cube and slices as well, is assumed to be the actual distribution. It is used in this example 

for comparison in order to evaluate the quality of the final model estimation and to 

appraise the performance of the new multi-scale MCMC algorithm developed in chapter 
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3. The porosity value ranges between 0.05 and 0.35 through the entire reservoir. Porosity 

distributions for three of the five layers are shown in Figure 5.4, in which the white dots 

represent the five well locations. The initial water and oil saturations are assumed to be 

constant at 0.19 and 0.81, respectively. Other rock and flow parameters are also assumed 

to be constant and are shown in Table 5.1. 

 

PARAMETER VALUE UNIT 

Initial pressure 1300.0 psi 

Oil compressibility 1.0e-5 psi-1 

Water compressibility 3.2e-6 psi-1 

Oil density 52.88 lbm/ft3 

Water density 62.40 lbm/ft3 

Oil viscosity 0.92 cp 

Water viscosity 1.00 cp 

Background Vp 3.5 Km/s 

Background density 2100 Kg/m3 

Oil bulk modulus 1.57e+9 Pa 

Water bulk modulus 2.25e+9 Pa 

Radius of well 0.3 ft 

Skin factor 0.0 - 
 
Table 5.1: Rock and flow parameter values that are assumed to be constant throughout 
the production history. 

 

Figure 5.2 also shows the fixed well control strategy, that is, a water injection 

well is in the middle and four symmetrical oil production wells are around the reservoir. 

The reservoir is depleted by a constant water injection rate of 1780STB/D in a well at the 
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lateral grid (10, 10) and oil production with a constant flow rate of 400STB/D 

respectively in wells at the lateral grids (5, 16), (16, 5), (5, 5) and (16, 16). The 

production history is for 700 days, which is discretized into 7 legacy time steps at (30, 

100, 300, 400, 500, 600, 700) days. The production data used in this example represent 

the water and oil flow rates observed at the four production wells; the seismic data used 

comprise the post-stack seismic traces, which means that not only the amplitude and 

vertical two-way travel but also the entire shape of a trace seismogram is used to 

condition the reservoir model evaluation.  

To generate 4D seismic data and well production data and use them as the “true” 

observations, the reference 3D porosity model in Figure 5.3 is used as the input to initiate 

the flow simulation and hence to compute the water and oil flow rates in the four 

production wells at the seven time steps. The generated true production data are shown in 

red in Figure 5.5. Outputs of porosity, fluid saturation and pore pressure distributions are 

used as inputs to the Gassmann equation introduced in chapter 4 to derive the 

corresponding elastic parameter (acoustic impedance) distributions at the seven legacy 

time steps. The generated true post-stack seismic waveforms for a particular cross-section 

(X=10) and respectively after 30, 300 and 700 days are shown in Figure 5.6. 

 Although the observed data are only of a single scale, a coarse-scale reservoir 

model of 10x10x5 is incorporated in addition to the fine-scale model of 20x20x5 in this 

example in order to apply the multi-scale MCMC. Compared to the fine-scale setting, the 

same well control strategy is applied except that the injection well is changed to the 

lateral grid of (5, 5) and the production wells are changed to grids of (3, 8), (8, 3), (3, 3) 
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and (8, 8) (Figure 5.2(b)). In this way, for a particular layer, four neighboring fine-scale 

grid blocks correspond to a single coarse-scale block, as shown in Figure 5.2. Therefore, 

during the multi-scale MCMC sampling, if it attempts to trade information between the 

fine and coarse reservoir models, it actually attempts to exchange the parameter values of 

the single coarse block with the average parameter value of the four fine blocks. Thus, a 

single coarse block works like a regularization operator to smooth the corresponding four 

fine-scale blocks. 

 

5.3.2 Bayesian formulation 

 

To derive the PPD based on available data, a prior distribution is required. The 

most often assumed prior in reservoir characterization is Gaussian distribution, as shown 

in equation (5.4). In this example, the lower and upper bounds on the model variable, that 

is porosity, are known, and they are 0.05 and 0.35, respectively. This may be used as a 

loose constraint to narrow the model space and also to construct the prior distribution. 

Supposing that every point in the model space has an equal probability to be drawn as the 

reservoir stochastic model, the resulting uniform prior distribution is given in equation 

(5.5). 

The choice of likelihood functions relates to the forward processes and depends 

on the distributions of the noise or error in the data. Based on the Central Limit Theorem 

in statistics, it is appropriate the Gaussian error distribution in seismic data (Gregory, 

2005). As shown in the objective function in equation (5.7), an L2 norm is proposed to 
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measure the mismatch for seismic part. The correlation relationship of equation (2.4) is 

used again in here as the L2 norm to measure the fitness between synthetic and observed 

seismic data, which is described as 
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Basically, fitness is one minus error. Thus, for the multi-scale MCMC application, the 

resulting likelihood function for the seismic part is expressed as follows 
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where CsD is the seismic data error covariance matrix, and gs is the seismic forward 

simulation operator. 

 As illustrated in equation (5.7), an L1 norm is used to measure the mismatch of 

production data. Accordingly, to use the multi-scale GA based MCMC, the fitness is 

calculated based on an expression as 
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where T stands for the index of legacy time steps; N stands for the index of model grid 

block; and yi,j and xi,j represent observed and synthetic data, respectively. As L2 norm 

bears the same relationship to Gaussian distribution, L1 norm bears the same relationship 

to exponential distribution (Menke, 1984). Therefore, the resulting likelihood function by 

using equation (5.10) for production data is 

( )obs
p

obs gp PmmP −∝ )(exp)|( ,                                                                (5.11) 
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where gp is the flow forward simulation operator. 

 Using the uniform prior distribution, Gaussian distribution for seismic likelihood 

function and exponential distribution for production likelihood function, the resulting 

posterior distribution at a certain scale i is 
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Again, the solution models at different scales are assumed to be conditionally 

independent of each other for the given data. The nonlinear forward operators gs and gp 

usually lead to a highly multi-modal posterior distribution with a very complicated 

topology of many hills and valleys. This creates large challenges in applications and calls 

for a powerful MCMC method in order to sufficiently explore the posterior within an 

acceptable CPU time period. 

 

5.3.3 Static petrophysical model and uncertainty quantification 

 

In this example, the fine-scale 20x20x5 model is of primary interest because it 

provides more reliable information about the target reservoir. The main reason for 

additionally incorporating the coarse-scale 10x10x5 model is to yield a more tractable 

posterior distribution and a faster forward simulation. This allows more MCMC updates 

per unit CPU time and helps to sufficiently explore the posterior. In addition, for the 

coarse scale, stochastic update steps over the model space are usually large, which helps 
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to avoid the sampling process being trapped at a certain local optimum. In the 

implementation, 8 MCMC chains in total are run through 2500 generations, that is, four 

chains are defined at either of the two scales. By iteratively fitting the 4D seismic data 

and well production data, the multi-scale MCMC is applied to update the current models 

and propose new realizations, which are accepted or rejected based on the Metropolis-

Hastings rule until a certain stopping criterion is reached. Through the 2500 generations, 

all the obtained model realizations of different scales are tracked and stored separately for 

further analysis. 

 

5.3.3.1 Data fits 

For the fine-scale case and after 2500 generations, the resulting synthetic 

production data (in blue) are plotted and compared against the true well production data 

(in red) in Figure 5.5. Excellent match is obtained between the true and synthetic 

production data, that is, water and oil flow rates at the four production wells. This very 

good production data fit is relatively easy to obtain in a short time as they are evaluated 

only at sparse well locations. From the fine-scale model, the finally obtained synthetic 

seismic data for the same particular cross-section (X=10) and after the different time 

periods used in Figure 5.6 are shown in Figure 5.7 for evaluation. By comparing Figure 

5.6 to Figure 5.7, it is found that a reasonably good seismic data fit is also obtained. Also, 

by carefully assessing the seismic data for a particular cross-section during the reservoir 

production time, it is found that the injected high-density water increases the amplitudes 

of the seismogram. This increase propagates laterally along with the injected and laterally 
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moving water. Corresponding P-impedance (acoustic) distributions for the same cross-

section and after the same time steps are shown in Figure 5.8. The P-impedance is also 

changed by the production process, and this change directly leads to the amplitude 

changes observed in Figure 5.7. 

Figure 5.9 shows the fitness histories through the 2500 generations for the two 

different scales. Both of them increase gradually, finally arriving at a steady state. As 

expected, fitness from the coarse-scale model is necessarily low, as it starts with a value 

of about 0.54 and finally rises to a slightly better value of less than 0.60. This low fitness 

is because the coarse-scale model parameterization is relatively too rough to capture 

detailed reservoir information. In comparison, the fine-scale model leads to higher fitness 

values starting at a point around 0.70 and finally reaching a very good value of larger 

than 0.85.  

 

5.3.3.2 Porosity models 

Through the 2500 generations of sampling, many MCMC samples of reservoir 

model realizations are obtained separately for the fine scale and the coarse scale. These 

samples are used to approximate the posterior distributions for the two different scales. 

Based on the estimated posterior distributions, the most likely model, also called the 

maximum a posteriori (MAP), can be further determined. MAPs are used to represent the 

derived reservoir models. Figure 5.10 shows the finally derived fine-scale model, and 

Figure 5.11 shows the finally derived coarse-scale model. Both are shown in a 3D cube 

as well as slices. As expected, the derived coarse-scale model does not provide reliable 
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reservoir description. However, additional incorporation of the coarse scale does help to 

speed up the convergence of the fine-scale model to a reasonably good estimation. In 

addition, by applying the multi-scale MCMC algorithm and periodically exchanging 

information between the two different scales, the coarse-scale model works like a 

regularization or smoothing operator to smooth the fine-scale model and make it more 

realistic. As shown in Figure 5.10 and compared to Figure 5.3, a fairly accurate reservoir 

model is obtained without much perturbation, which is the usual phenomenon if a 

regularization or smoothing term is not included in the objective function. Figure 5.12 

shows the derived porosity distributions for three of the five layers. Although this derived 

model is not as smooth as the reference model in Figure 5.4, the distributions of high-

porosity and low-porosity zones match fairly well. Therefore, it could be said that a fairly 

accurate static petrophysical model, that is, a reservoir porosity model, has been obtained. 

To confirm the improvement in computational efficiency by using multi-scaling, 

an experiment is also done on the fine scale only, that is, all eight chains are defined on 

the scale of 20x20x5. In addition, a regularization term is incorporated in the objective 

function to do model smoothing, which is similar to the work of Li and Oldenburg (2000). 

The single-scaling result is shown in Figure 5.13. It is found that, in order to obtain the 

similarly good result of multi-scaling case as in Figure 5.12, the single-scale sampling 

takes at least twice as much total CPU time as the multi-scale sampling. This means that 

the computer resources have to be at least doubled. Hence, using multi-scaling and 

additionally incorporating the coarse scale improves the computational efficiency while 

retaining the estimation accuracy. 
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 To test the effectiveness of integrating 4D seismic data and well production data 

in improving the accuracy and hence reducing uncertainty in reservoir characterization, 

different experimental setups are also tested. First, the multi-scaling MCMC sampling 

process is applied with only production data in use. In equation (5.7), this equals to set 

the weight on the seismic part to be zero. The finally derived porosity distributions for the 

three layers are shown in Figure 5.14. Although well data have better local resolution, 

they are only from sparse wells, and the corresponding data fit evaluations are only 

performed at the four far distributed production locations. Thus, they cannot provide 

reliable constraints on the reservoir’s spatial heterogeneity. Therefore, the derived 

porosity distribution has large uncertainties and does not reliably reflect the actual 

reservoir characteristics. In addition, the case of only seismic data in use is also tested, 

which is equivalent to set the weight on the production term to be zero. The finally 

derived distributions are shown in Figure 5.15. 

Compared to Figure 5.14, this scheme results in a better global characterization by 

taking advantage of the benefits from seismic data, that is, the extensive spatial coverage 

and dense lateral sampling. Nevertheless, this result is still less accurate with more 

uncertainty compared to the result in Figure 5.12, in which the seismic data and 

production data are integrated to simultaneously condition the reservoir characterization. 

In other words, this confirms that the integration of 4D seismic data and well production 

data leads to increased accuracy and reduced uncertainty in reservoir characterization. 
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5.3.3.3 Uncertainty quantification 

Besides the mostly reservoir model, the estimated posterior distribution can also 

be used to quantify corresponding uncertainties. For this very high-dimensional problem, 

it is impossible to directly show the multivariate posterior graphically, the marginal 

posterior for particular parameters are usually computed and illustrated instead. Typically, 

the histogram of a particular parameter calculated from the obtained MCMC samples is 

used to estimate the marginal posterior for that parameter. For example, Figure 5.16 

shows the computed histograms of four particular model parameters with the grid 

coordinates of (17, 7, 5), (3, 17, 3), (5, 5, 3) and (6, 13, 2), respectively. From those 

estimated PPDs, the most likely porosity values for the four different grid blocks that 

correspond to the maximum frequency can be determined. In addition, the corresponding 

uncertainty bounds can also be estimated. If this marginal PPD is estimated for all the 

reservoir model blocks, a 3D cube of deviation may be generated. Figure 5.17 illustrates 

the relative deviation cube with respect to the derived most likely model cube in Figure 

5.10. For this estimated percentage deviation cube, three of the five layers are presented 

in Figure 5.18. As shown, although uncertainties are relatively large at some points, they 

mostly localize below 15%. 

 

5.3.4 Dynamic pore pressure and fluid saturation 

 

Reservoir pore pressure and fluid saturation changes are directly related to 

reservoir recovery process. Therefore, reliable estimation of these dynamic features 
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greatly influences reservoir decision making and management. Prediction of pore 

pressure is very important for planning and safety reasons when drilling new wells, 

particularly in deep-water reservoirs where operating costs are very high. Fluid saturation 

provides a direct indication of the inside fluid flow, so robust description of the saturation 

evolution will lead to well-founded future predictions of production performance and 

thus will increase ultimate recovery from the reservoir and reduce production costs. 

The derived porosity model (Figure 5.10) can be further used as the input to 

trigger the flow simulator in order to image the dynamic evolutions of pore pressure and 

fluid saturation in the reservoir. Figure 5.19 illustrates the dynamic pore pressure 

distributions for a particular layer (Z=3) after 30, 300 and 700 days, respectively. Figure 

5.20 shows the pore pressure distributions after the same three different time periods but 

for a particular cross-section (X=10). As shown, the overall pore pressure lowers 

gradually as the production progresses, and there are decreasing gradients between the 

water injection well and the four production wells. In addition, pore pressure around the 

producing wells is especially low due to the production but especially high around the 

injection well. The differential decreases in pore pressure for the specified layer and 

cross-section during certain production time periods are shown in Figure 5.21. Evolution 

of the water saturation for the same layer (Z=3) after 30, 300 and 700 days is also imaged 

in Figure 5.22. Corresponding evolution for a particular cross-section (X=10) is 

illustrated in Figure 5.23. As shown, the injected water basically propagates laterally, and 

the water front movement through production time is clearly imaged. Similarly, the 
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differential increases in water saturation for the specified layer and cross-section during 

certain production time periods are also shown in Figure 5.24. 
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Figure 5.1: Integrated workflow used to derive reservoir model parameters by 
simultaneously integrating 4D seismic and well production data. The idea of seismic 
history matching is applied in this workflow and the starting model is usually constructed 
based on certain general static information about the reservoir. 
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Figure 5.2: 3D reservoir model used in the study, which is parameterized into two 
different scales of 20x20x5 and 10x10x5. In this way, for each layer, four neighboring 
fine-scale blocks correspond to a single coarse-scale block. The well control strategy is 
also illustrated, that is a water injection well in middle and four production wells around. 
 
 
 
 
 
 
 
 
 
 
 



150 

 
 
 
 
 
 

 
 
 

Figure 5.3: Reference porosity model that is assumed to be the actual reservoir model that 
is taken as the target to estimate. The model is shown in a 3D cube (upper) as well as 
slices (bottom). Through the reservoir, porosity value is between 0.05 and 0.35. 
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Figure 5.4: Reference porosity distributions for three different layers that are extracted 
from the 3D reference model in Figure 5.3. Some high porosity and low porosity zones 
are clearly shown. 
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Figure 5.5: Observed (red) and synthetic (blue) well production data, that is, water (left) and oil (right) rates. As shown, an 
excellent match is obtained between the observed and synthetic data. 
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Figure 5.6: Observed time-lapse seismic data for a particular cross-section (X=10) after 
different time steps, namely, 30, 300 and 700 days.Amplitudes are changed by the 
producing process with high-density water injected in. 
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Figure 5.7: Synthetic time-lapse seismic data for a particular cross-section (X=10) after 
30, 300 and 700days respectively. Compared to Figure 5.6, a fairly good match is 
obtained and this derived result also confirms the observation of increased amplitude by 
the injected high-density water. 
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Figure 5.8: The distributions of P-impedance (acoustic) for the same cross-section and 
after the same different time periods as in Figure 5.7. As shown, P-impedance is changed 
by the production process over time, and this change directly leads to the amplitude 
changes observed in Figure 5.7. 
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Figure 5.9: Fitness histories for both the fine-scale and the coarse-scale models. By 
iteratively fitting the seismic and production data, both the fitness increase gradually and 
finally converge to better values. Compared to the coarse scale, the fine scale model leads 
to much better data fit. 
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Figure 5.10: The most likely fine-scale reservoir model that is derived based on the multi-
scale MCMC samples defined on the scale of 20x20x5. It is represented in a 3D cube and 
slices. 
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Figure 5.11: The most likely coarse-scale reservoir model that is derived based on the 
multi-scale MCMC samples defined on the scale of 10x10x5. It is represented in a 3D 
cube and slices. As expected, this coarse scale model does not provide reliable reservoir 
description. 
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Figure 5.12: The derived porosity distributions using the multi-scale MCMC and for 
three different layers that are extracted from the derived fine-scale 3D reservoir porosity 
model in Figure 5.10. Although it is not as smooth as the reference distributions in Figure 
5.4, the distributions of high and low porosity zones match to each other quite well. 
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Figure 5.13: The derived porosity distributions using the single-scale MCMC and for 
three of the five layers in the fine-scale model. Although, compared to Figure 5.12, a 
similarly accurate porosity model is obtained, the single-scale sampling algorithm calls 
for much more computer resources, namely at least twice as much the total CPU time 
than the multi-scale sampling. 
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Figure 5.14: The derived porosity distributions using the multi-scale MCMC for three of 
the five layers but with well production data in use only. Due to the sparse spatial 
distribution, well information does not provide reliable constraints on reservoir’s 
heterogeneity and hence does not result in accurate characterization. 
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Figure 5.15: The derived porosity distributions using the multi-scale MCMC for three of 
the five layers but with 4D seismic data in use only. With benefits of extensive spatial 
coverage and dense lateral sampling in seismic data, this scheme leads to a better global 
characterization compared to Figure 5.14. 
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Figure 5.16: Calculated histograms of four particular grid blocks based on the multi-scale 
MCMC samples on the fine scale, which are used as the estimated marginal PPDs to 
determine the most likely porosity values and to quantify corresponding uncertainties. 
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Figure 5.17: Derived relative porosity deviation model of scale 20x20x5 and with respect 
to the most likely porosities, which is represented in a 3D cube and slices as well.  
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Figure 5.18: Derived relative porosity deviation for three different layers extracted from 
the 3D deviation cube in Figure 5.17. As shown, although uncertainties are relatively 
large at some points, they mostly localize below 15%. 
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Figure 5.19: Distributions of the dynamic pore pressure for a particular layer (Z=3) after 
30, 300 and 700 days respectively. As shown, the overall pore pressure drops through 
production time, and there are decreasing gradients between the injection well and 
production wells. In addition, pore pressure is especially low around production wells and 
is especially high around the injection well. 
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Figure 5.20: Distributions of the dynamic pore pressure for a particular cross-section 
(X=10) after 30, 300 and 700 days respectively. The same observations are obtained as 
those from Figure 5.19. 
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Figure 5.21: Differential decreases in pore pressure for a particular layer (Z=3) and a 
particular cross-section (X=10) respectively from (a) 100 to 200 days, and (b) 500 to 600 
days. 
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Figure 5.22: Distributions of the dynamic water saturation for a particular layer (Z=3) 
after 30, 300 and 700 days respectively. The injected water propagates laterally and the 
movement of water front is imaged. 
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Figure 5.23: Distributions of the dynamic water saturation for a particular cross-section 
(X=10) after 30, 300 and 700 days respectively. The same phenomenon as that in Figure 
5.21 is observed. 
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Figure 5.24: Differential increases in water saturation for a particular layer (Z=3) and a 
particular cross-section (X=10) respectively from (a) 100 to 200 days, and (b) 500 to 600 
days. 
 
 
 



172 

 
 

Chapter 6 
 

Conclusions and future directions 
 
 
 

6.1 Conclusions 
 

6.1.1 Markov Chain Monte Carlo (MCMC) algorithm 

  

In this dissertation, some new developments are incorporated into a conventional 

Genetic Algorithm (GA) to design a new global optimization method and a new MCMC 

sampling algorithm. With a nonlinear pre-stack seismic waveform inversion problem, the 

applicability and usefulness of these new algorithms were demonstrated. In particular, a 

multi-scale hybrid GA was developed to rapidly exploit the optimal model. Although 

parallel GAs have been used to exploit the model space, application of our new multi-

scale GA to seismic waveform inversion shows better performance compared to the 

results from a standard single-scale GA: both computational efficiency and estimation 

accuracy are improved. It was found that the multi-scaling helps overcome the model 

parameterization issue, as the inferred optimal models of different parameterizations can 

be investigated to determine the best parameterization without separately solving a model 

selection problem in a Bayesian setting.  
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 Although PPD on the fine scale is our primary interest, incorporation of the 

coarser MCMC chains provides additional benefits by yielding more tractable PPDs, 

facilitating faster mixing and speeding up of the forward simulation. While inverting 

seismic data, over-parameterization results in non-uniqueness that can be addressed by 

algorithms that are computationally expensive, whereas, under-parameterization may be 

fast but can often result in an inadequate data fit. To take advantage of the benefits from 

all different scales, multiple MCMC chains of different scales are run simultaneously and 

realizations from different chains are uniquely combined to explore possibly unexplored 

portions. Although its applicability for correct PPD estimation and uncertainty analysis in 

practical problems is only demonstrated using a 1D seismic inversion example with as 

many as about 250 free parameters, it can be easily adapted to, and is equally applicable 

to, other complex 2D or 3D models. In addition, the parallelism inherent in multi-scaling 

and coupled MCMC makes our algorithms very adaptive to a parallel computing 

environment. 

 

6.1.2 Integrated seismic history matching in a Bayesian framework 

 

 Integrated history matching of 4D seismic and well production data for reservoir 

characterization usually gives rise to an ill-posed joint inverse problem. This is primarily 

caused by the high-dimensional representation of the reservoir characteristics and the 

strong non-linear nature of the forward simulation processes. In addition, the need for 

dynamic updating due to incoming observations has to be accounted for. Hence, the 
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reservoir model estimation is typically not deterministic, and stochastic representation of 

the joint inverse problem is promising. In this dissertation, an integrated history matching 

workflow has been proposed, in which 4D seismic and well production data are 

integrated to condition reservoir characterization and corresponding uncertainty 

quantification. This integrated workflow is formulated in a Bayesian framework to take 

advantage of its unique capability in data integration and uncertainty analysis. 

 Assessing the uncertainty in reservoir characterization, i.e., deriving the entire 

posterior distribution, is a very difficult and very computer-intensive task. This calls for a 

powerful MCMC algorithm that can sufficiently explore the model space for PPD 

construction within a satisfactory CPU time period. In this study, the new multi-scale 

MCMC algorithm is applied for PPD sampling. Accordingly, a 3D reservoir model is 

parameterized into a fine scale and a coarse scale as well. Although the coarse scale does 

not provide reliable information about the target reservoir, incorporation of it helps to 

speed up the convergence of the fine-scale model to a good estimation. In addition, by 

periodically exchanging information between the two different scales, the coarse-scale 

model works as a smoothing operator to make the derived fine-scale model smooth and 

more realistic. Better performance by using multi-scaling is justified compared to using 

single-scaling. 

 Based on the numerical results estimated from MCMC samples, it is confirmed 

that integrating seismic and production data leads to a reasonably accurate reservoir 

porosity model compared to using either seismic or production data alone. This is 

because that the integration of these two datasets takes advantage of the benefits from 
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both of them, that is the greater local resolution from production data and global 

extensive coverage and dense sampling from seismic data. Besides the static porosity 

model, corresponding uncertainty is also derived based on the MCMC samples. 

Uncertainty in reservoir model description is one of the most common uncertainties that 

lead to risks in reservoir development and management. Therefore, the uncertainty 

quantification as described in this study will facilitate risk assessment associated with 

reservoir decision making. In this study, the derived static reservoir petrophysical model 

is further used to run the flow simulation to image the inside dynamic evolutions. 

Dynamic pore pressure and water saturation evolutions over production time have been 

obtained, and they provide reliable description of the inside fluid flow. This is also very 

important as they lead to well-founded production prediction and optimal recovery 

strategy. 

 
 
6.2 Future directions 
 

6.2.1 MCMC algorithm 

 

As introduced, in the new multi-scale MCMC algorithm, multiple chains are run 

simultaneously, with each chain acting as a standard GA run. Therefore, one 

advantageous feature of this new MCMC algorithm is the parallelism; that is, some of the 

operations can be performed in parallel. In simplest form, a MCMC algorithm cannot be 

performed in parallel for updating because each parameter update has to be finished 
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before the next generation of the algorithm can start. In other words, the preceding step 

must be completed to determine the full conditional distribution for guidance on the next 

step. Nevertheless, in some cases of independence of model variables, parallel 

implementation is a much more efficient scheme, and the new multi-scale coupled 

MCMC algorithm can create this independence. 

The increasing ability of computers to perform large numbers of calculations in a 

limited amount of time has allowed many improvements in computer intensive problems 

such as the integrated reservoir characterization problem in a Bayesian framework. As an 

extended development, the multi-scale MCMC algorithm can be further adapted to a 

parallel implementation for even better performance. 

Finally, it is noted that the schemes of multi-scaling and coupled MCMC are 

equally adaptable to other global optimization methods such as Very Fast Simulated 

Annealing (VFSA) and other MCMC methods such as Parallel Tempering (PT). 

Therefore, applicability of multi-scale VFSA and multi-scale PT may be investigated in 

the future. 

 

6.2.2 Integrated seismic history matching in a Bayesian framework 

 

Porosity and permeability are two key petrophysical parameters. In integrated 

seismic reservoir characterization problems, modelers usually take either porosity or 

permeability as the primary model unknown and assume the other to be of a constant 

distribution through the simulation time.  Although this helps to reduce the number of 
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free parameters and hence reduce the inherent non-uniqueness, it is intuitively not 

realistic. Pape et al. (1999) presented a relationship to map the porosity to permeability 

for different geological settings, which can be summarized as 

][)10( 2102 nmcbak φφφ ⋅⋅+⋅+⋅= ,               (6.1) 
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Thus, potential future work could incorporate this model in the seismic history 

matching workflow. For example, this model may be included in the numerical example 

presented in chapter 5 to derive permeability distribution based on the derived porosity 

distribution while assuming the permeability to be variable throughout the production 

time of the target reservoir. 

 As described in chapter 4, in the seismic history matching workflow, a rock 

physics model is needed to convert the reservoir flow parameters into seismic elastic 

parameters. Empirical relationships are typically used for this purpose, in which the 

coefficients are usually pre-determined based on core measurements or laboratory 

experiments. These pre-specified empirical coefficients may give rise to another set of 

uncertainties in reservoir characterization as the reservoir’s geological properties vary 

from field to field. A better way to handle this is to take these coefficients as another set 

of model unknowns in addition to the primary reservoir variables and to integrate them 

into the Bayesian inference framework as 
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where a represents the coefficients of a rock physics model that is used to link flow 

parameters to seismic elastics parameters. In this way, the best-fitting coefficients a can 

be derived stochastically while the best-fitting reservoir model is derived. Therefore, a is 

now a data-driven unknown and does not have to be pre-determined based on laboratory 

experiments or empirical formulae. The same idea applies to the coefficients of a, b and c 

in equation (6.1). Moreover, both the coefficients of a rock physics model and the 

coefficients of the porosity-permeability relationship can also be incorporated in the 

Bayesian inference framework at the same time. 

 Integrated seismic history matching for reservoir characterization in the Bayesian 

framework is a computer-intensive problem. One of the main causes comes from the 

forward flow simulation over a multivariate reservoir model. Thus, an efficient reservoir 

characterization always calls for an efficient flow simulator, and it is a good trial to make 

use of a more efficient simulator for potentially better performance. 
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Appendix A:  Metropolis-Hastings algorithm 

  

Suppose the goal is to draw samples from a certain distribution p(m) and p(m)=f 

(m)/K, where the normalization constant K may not be known and may be very difficult 

to compute. The Metropolis algorithm (Metropolis and Ulam, 1949; Metropolis et al., 

1953) generates a sequence of draws from this distribution as follows: 

1. Start with any initial values m0 satisfying f(m0)>0. 

2. Using current m value, sample a candidate point m* from some jumping 

distribution q(m1, m2), which is the probability of returning a value of m2 

given a previous value of m1. This distribution is also referred to as the 

“proposal” or “candidate-generating distribution”. The only restriction on the 

jump density in the Metropolis algorithm is that it is symmetric, i.e., q(m1, 

m2)= q(m2, m1). 

3. Given the candidate point m*, calculate the ratio of the density at the candidate 

(m*) and the current (mt-1) point, 
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Notice that because we are considering the ratio of p(m) under two different 

values, the normalizing constant K cancels out. 

4. If the jump increases density (α>1), accept the candidate point (set mt= m*) 

and return to step 2. If the jump decreases the density (α<1), then with 

probability α accept the candidate point, or else reject it and return to step 2. 

We can summarize the Metropolis sampling as first computing 
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and then accepting a candidate point with probability α (the probability of a move). This 

generates a Markov chain (m0, m1, …, mk, …), as the transition probabilities from mt to 

mt+1 depends only on mt and not on (m0, m1, …, mt-1). Following a sufficient burn-in 

period (say, k steps), the chain approaches its stationary distribution, and samples from 

the vector (mk, mk+1, …, mk+n) are samples from p(m) (see Gregory (2005) for details). 

 Hastings (1970) generalized the Metropolis algorithm by using an arbitrary 

transition probability function q(m1, m2)=Pr(m1→m2), and setting the acceptance 

probability for a candidate point as 
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This is the Metropolis-Hastings algorithm. Assuming that the proposal distribution is 

symmetric, i.e., q(m*, mt-1)= q(mt-1, m*), it recovers the original Metropolis algorithm. 
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