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Abstract 

 

Computational Automation for Efficient Design of Acoustic 

Metamaterials 

 

Tyler James Wiest, Ph.D. 
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Co-Supervisor:   Michael R. Haberman 

 

Acoustic metamaterials (AMMs) are an exciting technology because they are 

capable of responding to vibrations in ways that are impossible to achieve with 

conventional materials. However, realization of AMMs requires engineering design to 

provide a connection between first-principles research and production of parts that perform 

as expected. Designing AMMs is a challenging endeavor because evaluating designs is 

costly and manufacturing metamaterials requires precise techniques with small minimum 

resolutions. To address these challenges, new computational tools are necessary to aid 

design. This work proposes three tasks that improve the capabilities of design for AMM 

while being extensible to other engineering design automation tasks. The first task is to 

develop a design exploration tool that improves the computational efficiency of identifying 

sets of high-performing designs in a design space that is sparse and comprises mixed 

discrete/continuous data. The second task is to develop a process for designers to evaluate 

manufacturability of difficult-to-manufacture parts and drive co-development of 

manufacturing methods and AMM. In the final task, a machine learning based method is 
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developed to efficiently model AMM with heterogeneous arrangements of their 

microstructures such that strict homogenization is infeasible. The outcomes from 

completing these tasks will provide a significant and novel improvement over existing 

methods of designing AMMs. 
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Chapter 1:  Introduction to Acoustic Metamaterial (AMM) Design 

Acoustic metamaterials (AMMs) are an exciting technology because they are 

capable of responding to vibrations in ways that are impossible to achieve with 

conventional materials. However, realization of AMMs requires engineering design to 

provide a connection between first-principles research and production of parts that perform 

as expected. Designing AMMs is a challenging endeavor because evaluating designs is 

costly and manufacturing metamaterials requires precise techniques with small minimum 

resolutions. To address these challenges, new computational tools are necessary to aid 

design. This work proposes three tasks that improve the capabilities of design for AMM 

while being extensible to other engineering design automation tasks. The first task is to 

develop a design exploration tool that improves the computational efficiency of identifying 

sets of high-performing designs in a design space that is sparse and comprises mixed 

discrete/continuous data. The second task is to develop a process for designers to evaluate 

manufacturability of difficult-to-manufacture parts and drive co-development of 

manufacturing methods and AMM. In the final task, a machine learning based method is 

developed to efficiently model AMM with heterogeneous arrangements of their 

microstructures such that strict homogenization is infeasible. The outcomes from 

completing these tasks will provide a significant and novel improvement over existing 

methods of designing AMMs. 

1.1 ACOUSTIC METAMATERIAL DEFINITION 

Metamaterials are structures, architected on the micro-scale, that achieve their 

properties not only from the choice of constituent material but also from the arrangement 

of that material to effect properties that are not achievable with conventional materials [1]. 
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Because of ongoing advancements in manufacturing such as additive manufacturing (AM), 

metamaterial designs with previously unrealizable architectures are possible or nearly 

possible to fabricate [2] [3] [4]. This technology has accelerated metamaterial research for 

numerous applications and for parts under all types of static and dynamic loads [5]. 

However, designing and building metamaterials for service in a part is much more 

complicated than using conventional materials because of the near-infinite, and ever-

increasing, potential for customizability. Rather than simple selection, creating a 

metamaterial requires an application-specific design process to meet performance 

specifications for the envisioned application. The many combinations of design feature 

settings available and the limited number of arrangements that exhibit novel, interesting, 

or useful behavior leads to many design challenges. 

One classic example of a metamaterial is the microstructured lattice. Lattices are 

used in quasi-static structural applications by providing a higher strength-to-weight ratio 

when designed with respect to the load paths in the object [6]. An example of how a lattice 

might serve in a bracket is shown in Figure 1.1. For a part like this one under relatively 

simple static loads, it is evident how that the lattice design is much more complex than a 

solid bracket. The microstructure is designed to perform its task under the geometric 

constraints and expected loading on the part. As requirements of the microstructured part 

become more complex, so does the process of designing it.  
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Figure 1.1: Lightweight bracket made with a lattice metamaterial [7]. 

The study of metamaterials subject to vibrational and acoustic loading has become 

its own research field that focuses on metamaterials exhibiting acoustic responses not 

found in nature or conventional materials. Research and development of AMMs that 

exhibit unique and interesting acoustic performance has shown great potential and a high 

likelihood of future applicability [8] [9].  Acoustic metamaterials demonstrate interesting 

response behavior based on the interaction of sub-wavelength features with incident waves. 

Dynamic interactions and wave responses at the micro-scale of AMMs lead to macro-scale 

effective properties of the medium such as negative density, 𝜌, and compressibility, 𝐶, 

which are not present in natural materials. For illustration, Figure 1.2 shows an Ashby chart 

over the effective 𝜌-𝐶 parameter space of AMMs. Conventional materials are located in 

the quadrant having both positive density and compressibility. This figure also denotes a 

few behaviors that occur when an AMM exhibits effective properties that are not present 

in conventional materials such as negative refraction and enhanced absorption. 
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Figure 1.2: Ashby chart over the 𝜌-𝐶 parameter space. Acoustic metamaterials are able 

to achieve negative effective density and/or compressibility on the macro-

scale while conventional materials are restricted to the positive 𝜌-𝐶 space. 

Some examples of achievable AMM behavior are noted [10]. 

The variety of AMM geometries and physical relationships that are used to realize these 

unconventional behaviors are abundant. The following section discusses some of the types 

of AMMs that show these behaviors and how they can be used. 

1.1.1 Types of AMMs and Motivating Applicability  

Although the scope of AMM research is very broad, at the highest level these 

advanced acoustic materials can be separated into two classes: active and passive [11]. 

Whereas active AMMs derive their unique response from external control systems [12] 

[13] or modulation [14] to affect sound propagation behavior, the response of passive 

AMMs relies solely on material composition and geometry of the structure [15] [16] [11]. 
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By designing a passive metamaterial’s micro-scale structure properly, macro-scale 

behavior of the material can vary with respect to incident wave parameters in ways that are 

unachievable in conventional materials. AMMs designed to exhibit an asymmetric [17] 

[18] or non-reciprocal [19] [20] response with respect to the direction of propagation are 

particularly interesting. These responses enable manipulation of acoustic fields such as 

non-reciprocal transmission [19], wave steering [21], selective absorption of wave energy 

[22], and cloaking [23]. Directional asymmetry can be achieved by exploiting a few 

different underlying physical phenomena such as Bragg scattering [24] [25], local 

resonances [26], and strain-momentum constitutive coupling (Willis coupling) [27]. 

Controlling sound in application is a common practice and AMMs are simply a tool 

to achieve sound control in new ways. One of the most common applications of sound 

controlling structures is a bass trap, which absorbs low-frequency waves in lecture halls 

and theatres, for example. Metamaterials could manifest themselves in many applications. 

One possibility is for sensors that allow signals to be sent and received simultaneously. 

Another is using wave steering to route vibrations around sensitive machine components. 

Cloaking AMMs have applications in stealth for military operations as well as the 

capability to reduce environmental noise. Directionally asymmetric absorbers are useful 

for reducing measurement noise in sensors that create their own signals. This work will 

focus on design efforts for two types of AMMs: strain-momentum coupled (Willis) 

metamaterials and directionally asymmetric absorbers. Chapter 2 provides greater detail 

on these two types of AMMs and the primitive geometries that motivate efficient 

computational design automation. Both of these AMMs are acoustically reciprocal 

although they exhibit scattering behavior that is directionally asymmetric. The next section 

introduces scattering and asymmetry in acoustic media. 
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1.1.2 Acoustic Wave Scattering, Asymmetry, and Reciprocity 

Acoustic waves originate from a vibrating source that displaces the matter around 

it. Outgoing waves from a source may take any number of shapes such as spherical, 

cylindrical, or planar. Regardless of the outgoing shape, wavefronts appear increasingly 

planar as the distance of an observation point increases from the source because the degree 

of curvature diminishes. Planar waves appear as parallel compressional fronts whose 

amplitude, 𝐴, can be modeled as a sinusoidal function of one variable, 𝑥, as shown in Figure 

1.3(a). Analysis of acoustic systems in the far-field may treat incident waves as planar with 

minimal error. Additionally, planar waves provide valuable simplifications of the wave 

equation. In this work, waves in the far-field are assumed to be planar. With this assumption 

we may evaluate acoustic excitation and AMM response with wave fields that vary in only 

one spatial direction. 

The plane waves scattered from an AMM can be represented using a scattering 

matrix form where the scattering matrix, [S], relates incoming (incident) waves to outgoing 

(scattered) plane waves [28], [29], [30]. When plane waves propagate along the x-direction, 

this system can be presented by a two-port system using the matrix relationship 

{
𝑝𝑜

−

𝑝𝑜
+} = [

𝑆11 𝑆12

𝑆21 𝑆22
] {

𝑝𝑖
+

𝑝𝑖
−}                       (1.1) 

where 𝑝𝑖
+ and 𝑝𝑖

− are incident pressure waves travelling in the ±x-directions, respectively. 

Likewise, 𝑝𝑜
+ and 𝑝𝑜

−  represent outgoing (scattered) plane waves in the ±x-directions, 

respectively. Assigning +𝑥 as direction 1 and −𝑥 as direction 2 the scattering for each 

incident wave direction may be written as 

{
𝑝𝑟,1

𝑝𝑡,1
} = [

𝑆11 𝑆12

𝑆21 𝑆22
] {

𝑝𝑖,1

0
}  and  {

𝑝𝑡,2

𝑝𝑟,2
} = [

𝑆11 𝑆12

𝑆21 𝑆22
] {

0
𝑝𝑖,2

}, 
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where the incoming waves for cases 1 and 2 have been identified as 𝑝𝑖,1 and 𝑝𝑖,2 

respectively, and the outgoing waves with subscripts “r” and “t” to denote reflected and 

transmitted plane waves in agreement with the notation provided in Figure 1.3(b).  

 

 

Figure 1.3: a.) Plane waves have parallel wave fronts orthogonal to the direction of 

propagation and their amplitude in space may be modeled as a sinusoid.    

b.) Scattering of planar waves is defined by the pressure fields that are 

reflected and transmitted by a medium. Transmitted and reflected 

components of a scattered field are dependent on the propagation direction 

of an incident wave. 

Analysis of scattering by an AMM is essential to evaluate its macro-scale response 

behavior such as coupling between strain and momentum. Additionally, from these 

scattering definitions it is possible to provide an expression for the absorption coefficient 

of an acoustic medium with propagation direction case 𝑛 as defined in Equations 1.2: 

𝛼𝑛(𝑥, 𝑓) =   1 − |𝑅𝑛|2 − |𝑇𝑛|2,                      (1.2a) 

𝑆 =  [
𝑅1 𝑇2

𝑇1 𝑅2
].                                    (1.2b) 
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Note that Equation 1.2(b) identifies the coefficients of the scattering matrix as the reflection 

and transmission coefficients for each case, which are defined as 𝑅1 = 𝑝𝑟,1/𝑝𝑖,1, 𝑅2 =

𝑝𝑟,2/𝑝𝑖,2, 𝑇1 = 𝑝𝑡,1/𝑝𝑖,1, and 𝑇2 = 𝑝𝑡,2/𝑝𝑖,2. 

Expressing absorption in this form assumes that both incident and scattered wave 

fields are planar. This assumption is valid in the metamaterial paradigm where 

characteristic scattering feature sizes 𝑎 and feature spacing are sub-wavelength, i.e. 𝑎 ≪ 𝜆 

and 𝑑𝑝 ≪ 𝜆, and that the scattered field is probed multiple wavelengths from the scattering 

surface such that evanescent fields are extinguished.  Absorption asymmetry can then be 

characterized with the ratio 

         𝛼̅  =  
𝛼2

𝛼1
                                           (1.3) 

which is a measure of the dependence of acoustic absorption with respect to the direction 

of incidence and serves as the performance metric for directionally asymmetric absorbers 

explored in this work. While the performance goal is application specific, one obvious goal 

would be to maximize asymmetry as a function of design features, namely the excitation 

frequency and the composition of the AMM medium. It is worth noting that asymmetry of 

absorption is not necessarily indicative of non-reciprocal behavior. Non-reciprocity in 

acoustics is defined by the breaking of transmission symmetry [31]. A non-reciprocal 

response requires that 𝑇2 ≠ 𝑇1. 

1.1.3 Manufacturability of AMMs 

Fabrication of subwavelength features for metamaterial parts may require 

manufacturing methods that can resolve very small features with complex geometries. 

Because wavelength is related to frequency and a medium’s sound speed as 𝜆 =
𝑣

𝑓
, an 

AMM’s specifications are preconditioned by the environment in which it will be used and 

the characteristics of the waves it will encounter in service. For example, a borderline 
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ultrasound signal at 20 kHz in air (𝑣 = 343 𝑚
𝑠⁄ ) has 𝜆 = 1.7𝑐𝑚 and requires features with 

characteristic sizes, 𝑎, smaller than that. At the low end of the MHz range in air, 

characteristic feature sizes must be in the hundreds of microns. Producing features this 

small is reasonably achievable for many fabrication methods but controlling the 

arrangement of features on this size scale with complex geometries is challenging. 

However, additive manufacturing (AM) methods are uniquely suited for this task [10]. As 

a result AM and metamaterial technology have developed in tandem in recent years. While 

fields of research on both AM and AMM are burgeoning, there is a considerable need to 

connect the capabilities and future needs of each field so that AMMs can harness AM 

technology and AM may focus progress toward capturing fruitful applications of their 

processes. Making the connection between these fields is an exercise in designing for 

specifications. Design of AMMs with the expectation of fabrication via AM presents many 

challenges and inspires the work of this dissertation. 

1.2 DESIGN APPROACHES AND CHALLENGES FOR AMM 

Much of the research published to date on AMMs succeeds in showing specific 

cases that lead to interesting system responses but stops short of systematically exploring 

feasible designs and mapping physical behaviors back to system features. One reason is 

that, except for the simplest of cases, it is costly to evaluate AMM designs using either 

numerical methods or experiments. Another reason is AMM design spaces commonly have 

high-dimensionality and complex topologies that make global optimization infeasible. The 

expense to acquire a sufficient set of performance data about prospective AMM designs 

presents a significant challenge for designers to effectively explore and characterize the 

space of design features. As a result, acoustic metamaterial design is often carried out by 
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heavily constraining the problem and then manually adjusting the design features [32] [33] 

[26].  

The crux of the problem is the difficulty of automating a process that tailors detailed 

architectures for specific performance criteria under the broad and varied nature of 

operating conditions in an acoustically excited environment. Because of expense and the 

very large (often infinite) number of possible designs, automating the process requires 

deliberate techniques to efficiently explore and exploit the design space. From the 

engineering design perspective, computational tools are sought that meet the demands of 

these problems using approaches such as metamodeling, optimization, statistical modeling, 

and machine learning. Although many tools exist [34], new ones are needed to match the 

ever-increasing complexity of design opportunities and minimize the cost to arrive at a 

satisfactory design. For AMM, the need for design tools is currently far from satisfied. 

Three design challenges of great importance are introduced in the following discussion.  

Challenge One 

To explore and characterize design spaces in the early stages of design, a sufficient 

number of feasible designs must be evaluated through experimentation or simulation. For 

compatibility with design and optimization conventions, design features are represented as 

dimensions of a design space, and dimensionality is often very large for acoustic 

metamaterial design problems. In addition to high dimensionality, these problems tend to 

have a variety of data types such as continuous, discrete, and categorical values for both 

design features and exogenous variables. When performance criteria are difficult to 

achieve, designing in high dimensional spaces leads to a very sparsely populated design 

space as the total hypervolume of the space grows exponentially with respect to the number 

of dimensions [35]. Consequently, the quantity of design evaluations (simulations or 
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experiments) required to characterize a design space also grows rapidly. This phenomenon 

is known as the “curse of dimensionality” [36]. The combination of mixed data types and 

high dimensionality requires design methods that can mitigate these challenges to 

efficiently explore the space and yield an accurate mapping of promising designs.  

Challenge Two 

When designing metamaterials with behavior tailored to specific acoustic loads, the 

performance of a candidate design can be especially sensitive to manufacturing variability. 

For passive metamaterials to exhibit directionally asymmetric responses, for example, the 

characteristics of the expected acoustic load dictate the metamaterial architecture. 

Depending on the sensitivity of the acoustic response to the details of the underlying 

geometry, dimensional deviations may lead to a non-functional system. Such is the case 

with frequency-dependent phenomena like local resonance and Bragg scattering [24] [26] 

[33]. To reliably and repeatably produce AMM that behave as designed, the accuracy and 

precision of the manufacturing method must be considered during the design process. AM 

has enabled the manufacturability of modern metamaterials but also presents challenges in 

bridging the gap between design and physical demonstration because of the many sources 

of variability associated with many AM processes. A computationally inexpensive 

approach is needed to support the repetitive sampling typically associated with uncertainty 

quantification, specifically with respect to the influence of manufacturing-induced 

variation on the acoustic performance of candidate metamaterials. 

Challenge Three 

Statistical and machine learning methods have been used to support exploration of 

complex design spaces, but the benefits of these methods are limited if they are unable to 
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efficiently handle the interactions between dynamic loads and spatial features and the 

influence of those interactions on metamaterial performance. Although conducting design 

exploration separately for each unique loading condition and class of candidate designs is 

common, a single method that is valid for a variety of loading conditions and classes of 

candidate designs would reduce the expense of data acquisition required to carry out a 

thorough design process. For the case of AMM, which are composed of many micro-scale 

features distributed in space, design automation is sought for a variable quantity of features 

that make up a representative system without repeating expensive sampling and 

characterization efforts each time the number or arrangement of features changes. In 

practice this characterization would be a metamodel: a cheaply query-able model that 

represents the functional relationship between inputs and outputs of a more expensive 

simulation model. By using a metamodel with these capabilities, a metamaterial design 

space with a greater variety of candidate designs and more spatial complexity (e.g. 

heterogeneous arrangement of micro-structures, functional grading, etc.) could be explored 

with manageable levels of computational expense.  

 Computational design automation such as statistical and machine learning (ML) 

can be used to address each of these challenges. However, off-the-shelf methods are largely 

insufficient when designing AMMs so new methods are required to best address the 

challenges described henceforth. Chapter 3 provides background on ML algorithms and 

considerations that must be made when implementing them in a design task.  

1.3 RESEARCH OBJECTIVES TO IMPROVE DESIGN OF AMM 

Addressing the three challenges requires completing individual tasks, but they are 

intertwined and aligned toward the general goal of efficiently automating design of AMMs. 

The central thesis of this work may be expressed as follows: 
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The characteristics of AMM production and performance evaluation demand 

design approaches that are efficient in all stages: exploration of potential designs, 

exploitation or refinement of promising candidate designs, and quality assurance. 

Computational design automation may be leveraged, but AMM design presents 

some unique challenges that motivate development of new methods to meet those 

challenges. Specification, production, and application of AMMs as effective parts 

is enabled by developing a method for each stage of the AMM design process. 

With this thesis in mind, three research tasks have been identified that improve our 

capability to design AMMs. These tasks are organized in Table 1.1 and described in the 

chapters that follow. 

 

Chapter Task 

4 

Improve sampling efficiency during design exploration in sparse design 

spaces with mixed (continuous, discrete, categorical) data types. 

5 

Evaluate the robustness of metamaterial performance to spatial variability 

induced by manufacturing processes in a computationally efficient way. 

6 

Establish an automated, simulation-based method to efficiently design 

metamaterials with a variable number of repeating features and 

functionally graded spatial properties. 

Table 1.1: Research tasks of this dissertation. 

Although motivated by, and focused on, AMM design, the computational tools developed 

for each task are also extendable to other engineering design domains. The rest of this 

dissertation is organized to present background on the topics, detail each task, and finally 

summarize and conclude the work. Chapters 2 and 3 provide background on analysis of 

AMMs and computational design methods, respectively. Chapters 4 through 6 address the 
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tasks in Table 1.1. Finally, Chapter 7 provides a discussion of the research contributions 

and suggests potential for future work. 
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Chapter 2:  Analysis of Acoustic Metamaterials 

A significant amount of acoustic analysis makes use of simplifying assumptions 

such as dimension reduction and material isotropy to minimize the number of mathematical 

expressions required to define a system and allow the wave equation to be solvable. 

Analytical solutions are developed to better understand the underlying physics and predict 

acoustic metamaterial (AMM) behaviors, but this approach is often limited to idealized 

systems of discrete elements and geometries that are mathematically well-described for 

continuum systems. Geometrically simple, passive, structural AMMs and acoustic 

metasurfaces (AMSs) that exhibit asymmetric responses can be described and analyzed in 

this manner, but opportunities for metamaterial design and optimization are limited. 

Increasing complexity of geometric and material parameters quickly leads to physical 

behavior that is impractical, if not impossible, to express with analytical continuum 

mechanics approaches. As a result, discrete numerical approaches are preferred over 

analytical approaches to acoustics problems when geometry is irregular or inhomogeneous 

and physical responses include complicated behaviors such as near-field evanescent 

effects, viscoelasticity, and multi-modal responses. 

By definition, passive AMMs contain geometric features and material interfaces 

that affect the wavefield both local to those features and beyond the AMM boundaries. In 

this paradigm, discrete numerical methods are used to maintain mass and energy continuity 

across interfaces where constitutive parameters make a step-change. A change in 

constitutive parameters may also require modifications to the underlying physics across 

interfaces between material domains with differing constitutive behaviors. For AMMs, 

common material models include fluids, linear elastic solids, and viscoelastic solids. FEA 

has been developed and demonstrated to be an effective and practical method for analyzing 

structures with these geometric and material features.  
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Although FEA can be computationally expensive for design tasks (as addressed in 

Section 1.2), using it is necessary to gather deterministic analyses to serve as ground-truth 

data for the design methods that will be developed and presented in Chapters 4-6. This 

chapter presents the physical behavior and geometry of two types of passive AMM that 

exhibit Willis coupling and asymmetric absorption in Section 2.1. Section 2.2 then explains 

how these AMMs are analyzed with FEA.  

2.1 PASSIVE AMM FOR ASYMMETRIC RESPONSES 

 The successful design of the sub-wavelength structure of an AMM leads to 

macroscopically observable behavior that is unachievable in conventional materials [15] 

[16]. Traditionally, exceptional control of acoustic wave propagation has been achieved by 

exploiting a few different underlying physical phenomena. Bragg scattering can be used to 

construct phononic crystals [24] [25], local resonances generate negative effective density, 

stiffness, and phase speed [26], direction-dependent inertia leads to the emergence of 

anisotropic dynamic density [37] [38], and elastic lattice designs lead to pentamodal 

effective properties [39] [40]. However, passive AMMs designed to exhibit an asymmetric 

scattering response [41] [42] [43] [44] with respect to the direction of propagation and 

active AMMs displaying non-reciprocal behavior [19] [45] are particularly interesting for 

applications where one desires to tune the direction-dependent acoustical response of a 

material. 

2.1.1 Willis Materials 

Direction-dependent strain-momentum coupling is referred to as Willis coupling or 

acoustic bianisotropy [46] and the metamaterials based on this physical behavior are 

broadly referred to as Willis materials. Analogous to magnetoelectric coupling in 
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electromagnetism [47], Willis materials are described with non-classical coupled 

constitutive relations for the local momentum and pressure-strain behavior, as shown in 

Equation (2.1), due to the presence of an asymmetric sub-wavelength structure. In the 

frequency domain, the coupled constitutive relations are: 

𝝁 =  𝝆 ∙ 𝒖 − 𝜼𝑝,             (2.1a) 

𝜖 = 𝜸 ∙ 𝒖 − 𝛽𝑝,             (2.1b) 

with coupling vectors 

𝜼 = 𝝌𝑜 + 𝑖𝝌𝑒,     (2.2a) 

𝜸 = 𝝌𝑜 − 𝑖𝝌𝑒,     (2.2b) 

where 

𝝁 : momentum density 

𝒖 : particle velocity 

𝜖 : volume strain 

𝑝 : acoustic pressure 

𝝆: anisotropic mass density 

𝛽 : adiabatic compressibility 

𝝌𝑜 : odd coupling 

𝝌𝑒 : even coupling. 

For reciprocal media the coupling vectors vanish, i.e. 𝜼 = 𝜸 = 0, and the constitutive 

relations are consistent with the classical relations for momentum (Equation 2.1a) and 

strain (Equation 2.1b) in an isentropic fluid. Heterogeneities with asymmetric distributions 

of density and/or stiffness embedded in a fluid background will lead to macroscopically 

observable Willis coupling due to the fact that local spatially-uniform, but time-varying 

pressure fields will simultaneously generate volume and translation of the center of 

volume. This leads to coupling between the monopole and dipole contributions to the total 
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scattered field. The seminal work by Sieck and colleagues showed that composites of this 

type can be homogenized to quantify Willis coupling on the macroscopic level [27]. The 

approach they presented motivates the designer to identify composites that exhibit non-

negligible coupling and to seek instances of strong coupling under various conditions.  

Many researchers have demonstrated systems that exhibit Willis coupling. 

Muhlestein et al. were the first to design and analyze an effective material element made 

in 1D using discrete mechanisms [41]. Experimentation on this structure succeeded in 

showing measurable Willis coupling. Li et al. demonstrated wave steering with a 

metasurface comprised of a 2D array of Helmholtz resonators [43]. Also working with an 

array of resonators, Quan et al. analytically derived the maximum achievable macro-scale 

bianisotropy for a grate-like structure of resonators with functionally graded geometries 

[44]. These approaches show viable designs made with fluid filled channels serving as 

resonators. Willis coupling was also demonstrated in multiple instances where two or more 

membranes encase a fluid by Ma et al. [48] [49].  The preceding examples are based on 

fluid systems, but analyzing Willis materials with scatterers made of continuous elastic 

material is another active research area.  

By utilizing a uniform fluid cylinder with prescribed coupling vectors Muhlestein 

et al. both analytically described and numerically calculated the scattered fields that 

indicate moderate Willis coupling [50]. Extension from fluid models to those with solid 

inclusions is ongoing. Isotropic cantilever beam resonators in a fluid have been shown to 

exhibit Willis coupling [51], for example. In pursuit of a fully elastic Willis material, 

Muhlestein and Haberman developed a homogenization method for a random distribution 

of elastic heterogeneities in an elastic medium [52]. There is a wealth of recent and ongoing 

research on Willis materials in addition to the literature cited in what follows, but a 

comprehensive review of this literature is beyond the scope of this work.  
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 As recent literature shows, a bianisotropic acoustic response is demonstrable using 

several design paradigms. In pursuit of Willis material designs that are manufacturable and 

deployable into application, scattering inclusions made of solid material provide many 

advantages. Because heterogeneities are required to be sub-wavelength, they must be 

extremely small for high frequency waves. Much of the Willis material literature uses a 

non-dimensional constraint 𝑘𝑎 ≪ 1 where 𝑎 is characteristic feature size and 𝑘 is 

wavenumber, 𝑘 = 2𝜋/𝜆 to avoid limiting the scope to specific frequencies. The 

experimental demonstration by Muhlestein et al. [41] utilizes frequencies in the 103 Hz 

order of magnitude. Working at low frequencies yields tenable size scales for fabrication 

of experimental structures such as discrete element systems.  At higher frequencies 

fabrication becomes a challenge as the required size of heterogeneities decreases. Solid, 

asymmetric inclusions become a more attractive option than fluid channel resonators in 

this case to improve manufacturability at small scales. While fluid filled inclusions and 

other resonators such as side-wall cavities and membranes [53] are still promising 

opportunities, this work focuses on continuous structural inclusions. Continuous inclusions 

are less challenging to manufacture than fluid filled inclusions. Using AM, multi-material 

inclusions can be built at small enough scales to create Willis coupling behavior for a broad 

frequency spectrum. As AM technology improves in resolution and dimensional accuracy, 

fabrication and design opportunities will continue to expand. 

 Two different geometric primitives are used in this work to demonstrate coupled 

Willis and asymmetric material response behavior. Targeted response behavior is 

demonstrable with both, but because desirable performance is narrow-band in nature and 

strongly dependent on constitutive material properties, designing them to any performance 

specification requires powerful design methods. These primitives are a starting point for 

the design processes that explores the space of features and exploits feature-to-performance 
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mappings to identify sets of satisfactory designs. Chapter 3 provides background on the 

design methods adapted for addressing the Research Tasks, and Chapters 4-6 detail how 

each task was accomplished. The following sections in this chapter detail the analysis 

methods for both types of primitive geometries using FEA.  

2.2 MULTI-MATERIAL LAYERED WILLIS MATERIALS 

2.2.1 Pseudo-1D Willis Material Model 

The simplest expression of Willis material uses inclusions made with semi-infinite 

layers of different materials. Planar layers that are normal to the direction of wave 

propagation eliminate boundary effects and transverse scattering that would exist in 

geometries with higher dimensionality. In applications, a Willis material must be fabricated 

in 3D with boundaries on each side but to simplify the analysis we can consider a 1D 

composite model ensonified with plane waves. Figure 2.1 shows the configuration of 

periodic unit cells under plane wave excitation in the +x-direction.  The configuration of 

potential unit cells is limited to one primitive design consisting of a two-layer 

inhomogeneity in a background of liquid water. The composition of the layers constituting 

the inhomogeneity is limited to common materials with well-understood bulk material 

properties. In particular, density, 𝜌, sound speed, 𝑐, and compressibility, 𝛽, in the layers 

and the background water are the important factors affecting wave propagation through the 

unit cell. By convention the properties of the background fluid are labeled 𝜌0, 𝑐0, and 𝛽0. 

Each inhomogeneity includes two layers, and each layer is assumed to have identical 

thickness because thickness has less effect on the wave propagation than the existence of 

boundaries between materials. For a unit cell of length 𝐿 and a heterogeneity of length 𝑙, 

the volume fraction is 𝑉𝐹 =  
𝑙

𝐿
.  
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Figure 2.1: Plane wave propagation along the x-axis in a 1D periodic medium composed 

of repeating multi-layer heterogeneities of length l in unit cells of length L 

with a background of liquid water with properties 𝜌0, 𝑐0, and 𝛽0. Adapted 

from [27] with permission. 

Under the assumption that Willis coupling vectors are zero, this system may be 

analyzed as a 1D scattering system as described in Equations 1.1-1.3 (scattering, reflection, 

transmission). However, when using the coupled constitutive equations (Equations 2.1 and 

2.2) this system exhibits non-zero coupling. It is possible to evaluate the Willis coupling 

terms 𝜒𝑒and 𝜒𝑜  of the unit cell response.  Plane waves are incident on the unit cell 

propagating from left-to-right and then right-to-left, and the scattered pressure field is 

calculated on both sides of the unit cell. Since the homogenization procedure is dynamic, 

the frequency of the plane waves affects the effective material behavior and therefore must 

be considered. For the homogenization, frequency is incorporated as an element of the 

wavenumber in the background material, 𝑘0, and normalized to the unit cell length. The 

non-dimensional wavenumber takes the form 

 

 𝑘0𝐿 =
2𝜋𝑓𝐿

𝑐0
      (2.3) 

in the background material and  

𝑘𝐿 =
2𝜋𝑓𝐿

𝑐
      (2.4) 

in the inclusion layer. To quantify the Willis coupling, we use the same convention to 

normalize the coupling terms as Sieck et al. [27], namely 𝑐𝑜𝜒𝑒/(𝑘0𝐿) and 𝑐𝑜𝜒𝑜/(𝑘0𝐿𝑘𝐿). 
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The normalized terms 𝑐𝑜𝜒𝑒/(𝑘0𝐿) and 𝑐𝑜𝜒𝑜/(𝑘0𝐿𝑘𝐿) are comparable for different unit 

cell designs. In addition to the coupling, the impedance ratio between the composite and 

water, Re(𝑍eff)/𝑍0, is measured, along with the effective normalized wavenumber of the 

composite, 𝑘𝐿. This analysis is carried out entirely using non-dimensionalized parameters 

so performance is measured as homogenized effective normalized couplings, 𝑐𝑜𝜒eff
e /(𝑘0𝐿) 

and 𝑐𝑜𝜒eff
o /(𝑘0𝐿𝑘𝐿), as functions of the normalized wavenumber in the background fluid, 

𝑘0𝐿.  

2.2.2 Finite Element Analysis of 1D Willis Material 

To measure bianisotropic responses of this system an FEA model was built using 

the commercial software package Comsol Multiphysics to simulate the Willis coupled 

response of individual unit cells. The physics are applied to the geometry using Comsol’s 

Pressure Acoustics, Frequency Domain module [54] which solves the Helmholtz equation,  

∇2𝑝 +
𝜔2

𝑐2 𝑝 = 0,    (2.5) 

for the time-harmonic pressure field in an isentropic fluid using the 𝑒−𝑖𝜔𝑡 time convention,  

𝑝(𝒙, 𝑡) = 𝑝(𝒙)𝑒−𝑖𝜔𝑡.     (2.6) 

Geometry and Materials 

Unit cell geometry used for simulation is shown in Figure 2.2. Model geometry is 

built in 3D with cuboids of material layered along the x-direction such that y- and z- spatial 

dimensions are equal for all layers. The inclusion is centered at 𝑥 = 0 such that the 

interface between the two inclusion materials is on the y-z plane at 𝑥 = 0. The background 

fluid serves as a waveguide on either side of the inclusion with probe planes at 𝑥 = ±𝐿/2. 

Beyond the probe planes at either end along the 𝑥-direction, Plane Wave Radiation 

conditions are placed at 𝑥 = ±𝐿. This condition models an open port for plane waves and 
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allows for no reflections when the incident plane wave is normal to the boundary. Neumann 

(sound-hard or rigid) conditions are applied on all boundary planes defined by unit normals 

in the y- and z-directions, 𝒏𝑦,𝑖 = (0,1,0) and 𝒏𝑧,𝑖 = (0,0,1) respectively. A sound-hard 

condition prescribes zero acceleration and velocity along the direction normal to it,  

−𝒏 ∙ (−
1

𝜌𝑐
∇𝑝𝑡𝑜𝑡) = 0,     (2.5) 

such that impedance goes to infinity 𝑍 → ∞. In Equation 2.5 𝜌𝑐 is constant fluid density, 

𝑝𝑡𝑜𝑡 is total pressure, and 𝒏 represents the normal vector. Because only plane waves exist 

in the domain, the wavefield has no component normal to the sound-hard boundaries and 

therefore no reflection occurs from those boundaries. To excite the model, incident waves 

are applied as a background field in all domains except the inclusion layers. This 

background field is steady-state in the time-harmonic frequency domain. 
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Figure 2.2: FEA model geometry of a scattering two-layer inclusion in background 

fluid. (a) A cross-section of the geometry is shown with constitutive 

material domains labeled and the background plane wave, 𝑝𝑖,1, indicating 

the direction of propagation in the +𝑥-direction. (b) Isometric view showing 

the location of the inclusion and probe planes where measurements of 𝑝 and 

𝑣 are taken and averaged across the surface. 

Material definitions are simplified by the 1D, planar nature of the analysis. Solid 

materials generally experience elastic waves that sustain shear forces, but under 1D planar 

radiation conditions the shear wave component approaches zero as long as each material is 

isotropic. While the individual constitutive materials are isotropic, the homogenized 

material remains anisotropic as expressed in Equation 2.1. As a result, the expression for 

longitudinal elastic waves reduces to match the expression of pressure waves in a fluid 

(Equation 2.5). This treatment reduces computational expense by reducing the complexity 

of calculating equilibrium of continuity across multi-physics boundaries. Without the 

existence of shear, the pertinent parameters of the solid inclusions are density, 𝜌, sound 

speed, 𝑐, and compressibility, 𝛽. Material selections and their associated parameters are 

discussed further as part of the design exploration methodology in Chapter 4.  

Meshing 

 Meshing the geometry for the two-layer Willis material simulation is relatively 

simple because both the waveguide and inclusion domains are regular cuboids. The 

background fluid domain is meshed separately from the inclusions, and the meshing 

function in Comsol automatically ensures node connectivity across domain boundaries.  

The mesh is generated from tetrahedrons using a Delaunay tessellation [55] and element 

size is based on bounds set by the user. Characteristic element sizes, 𝑙, are bounded as 

300 𝜇𝑚 < 𝑙 < 7𝑚𝑚 with a maximum element growth rate of 1.35 and curvature factor of 

0.3. Figure 2.3 shows the resolved mesh for the base geometry. The extruded mesh scales 
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with length of the matrix, so the element count is nearly identical for all simulations at 

approximately 6.8 × 105 elements with approximately 9.8 × 105 DOF. 

 

Figure 2.3: The meshing of the two-layer Willis material FEA model. A finer mesh 

resolution is used for the inclusion layers due to their thinness relative to the 

domain. In the background fluid the mesh resolution increases with 

proximity to the inclusion layers.  

Study and Post-processing 

The model is studied by solving Equation 2.5 for all elements in the domain and 

ensuring continuity from element to element with boundary and background conditions 

compiled. PARDISO [54] [56] is the linear numerical solver used to evaluate the system. 

Outputs are collected by averaging element values across the probe planes shown in Figure 

2.2. For this study total pressure, 𝑝tot,𝑗, and the x-component of velocity, 𝑣𝑥,𝑗, (both 

complex-valued) are the outputs gathered where index 𝑗 indicates the number of the probe. 

Simulation output results are post-processed to perform dynamic homogenization 

and yield effective macroscopic parameters of the composite. The full homogenization 

derivation and procedure and is too extensive to describe here.  Interested readers may refer 
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to Sieck, Alu, and Haberman [27] for a detailed description. For the purposes of material 

design, the homogenized coupling parameters, 𝑐𝑜𝜒eff
e /(𝑘0𝐿) and 𝑐𝑜𝜒eff

o /(𝑘0𝐿𝑘𝐿), are most 

important because they indicate the coupling performance of the metamaterial. The post-

processing that calculates these terms from 𝑝tot,1, 𝑝tot,2, 𝑣𝑥,1 and 𝑣𝑥,2 is described in the 

following paragraph.  

For a unit cell geometry described above the scattering matrix (Equation 1.XX) can 

be expressed to consider the ingoing and outgoing waves at the 𝑥 = ±𝑙/2 boundaries of 

the heterogeneity as 

[
𝑝1

𝑜𝑢𝑡

𝑝2
𝑜𝑢𝑡] = [

𝑆11 𝑆12

𝑆21 𝑆22
] [

𝑝1
𝑖𝑛

𝑝2
𝑖𝑛],     (2.6) 

𝑝1
𝑜𝑢𝑡 = 𝑆11𝑝1

𝑖𝑛 + 𝑆12𝑝2
𝑖𝑛 = 𝑝2

𝑖𝑛𝑒𝑖𝑘0𝑙 + 𝑝𝑠(−𝑙/2),   (2.7a) 

𝑝2
𝑜𝑢𝑡 = 𝑆21𝑝1

𝑖𝑛 + 𝑆12𝑝2
𝑖𝑛 = 𝑝1

𝑖𝑛𝑒𝑖𝑘0𝑙 + 𝑝𝑠(−𝑙/2),   (2.7b) 

Where 𝑝𝑠 is scattered pressure. 𝒖𝑠 ∈ ℝ3 is determined analogously. The fields 𝑝𝑙𝑜𝑐 and 

𝒗𝑙𝑜𝑐 as they would exist in a heterogeneous medium are necessary for later calculation and 

expressed as 

𝑝𝑙𝑜𝑐 = 𝑝1
𝑖𝑛𝑒𝑖𝑘0𝑙/2 + 𝑝2

𝑖𝑛𝑒𝑖𝑘0𝑙/2,     (2.8a) 

𝒗𝑙𝑜𝑐 =
𝑥̂

𝑍0
(𝑝1

𝑖𝑛𝑒𝑖𝑘0𝑙/2 − 𝑝2
𝑖𝑛𝑒𝑖𝑘0𝑙/2).    (2.8b) 

Equations 2.7 and 2.8 are used in the following Equations 2.9 and 2.10 to determine the 

monopole polarizability, 𝛼𝑚, dipole polarizability, 𝜶𝑑, and coupled polarizability, 𝜶𝑐: 
𝒅0

𝜌0
= 𝜶𝑑 ∙ 𝒖𝑙𝑜𝑐 − 𝑖𝜶𝑐

1

𝑍0
𝑝𝑙𝑜𝑐,     (2.9a)  

𝑚0

𝛽0
= −𝑖𝜶𝑐 ∙ 𝑍0𝒖𝑙𝑜𝑐 − 𝛼𝑚𝑝𝑙𝑜𝑐,    (2.9b) 

𝑖
𝑘0

𝐴
𝑒𝑖𝑘0𝑙/2 𝒅0

𝜌0
= 𝒗𝑠(𝑙/2) + 𝒗𝑠(−𝑙/2) ,    (2.10a) 

−𝑖
𝑘0

𝐴
𝑒𝑖𝑘0𝑙/2 𝑚0

𝛽0
= 𝑝𝑠(𝑙/2) + 𝑝𝑠(−𝑙/2).            (2.10b) 

The polarizabilities are then inverted to form complementary polarizabilities, 𝛼̃𝑚, 𝜶̃𝑑, and 

𝜶̃𝑐: 
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𝛼̃𝑚 = 𝛼𝑚
−1/∆𝛼,      (2.11a) 

𝜶̃𝑑 = 𝜶𝑑
−1[𝑰 + 𝜶𝑐 ⊗ 𝜶̃𝑐],     (2.11b) 

𝜶̃𝑐 = 𝜶𝑐 ∙ (𝛼𝑚𝜶𝑑)
−1

/∆𝛼,     (2.11c) 

with  

∆𝛼= 1 − 𝛂c ∙ (𝛼𝑚𝜶𝑑)
−1

∙ 𝜶𝑐.    (2.11d) 

Equations 2.6-2.11 develop all the terms necessary to calculate the effective coupling 

terms. Expression of the other effective parameters is excluded. As part of expressing the 

effective fields in terms of interaction coefficients and complementary polarizabilities, 

monopole fields, Λ𝑚, dipole fields, 𝚲𝑑, even coupled fields, 𝚲𝑐
𝑜, and odd coupled fields, 

𝚲𝑐
𝑒  are calculated by way of the following equations: 

Λ̃𝑚 = 𝑉𝛼̃𝑚 − [
𝑘0𝐿 sin(𝑘0𝐿)

2(cos(𝑘0𝐿)−cos(𝑘𝐿))
] − 𝑖

𝑘0𝐿

2
+ [

𝑘0𝐿

𝑘𝐿
]

2

− (𝑘0𝐿)2,  (2.12a) 

𝚲̃𝑑 = 𝑉𝜶̃𝑑 − [
𝑘0𝐿 sin(𝑘0𝐿)

2(cos(𝑘0𝐿)−cos(𝑘𝐿))
] − 𝑖

𝑘0𝐿

2
+ [

𝑘0𝐿

𝑘𝐿
]

2

− (𝑘0𝐿)2,  (2.12b) 

𝚲̃𝑐
𝑜 = − [

𝑘0𝐿 sin(𝑘0𝐿)

2(cos(𝑘0𝐿)−cos(𝑘𝐿))
] +

𝑘0𝐿𝑘𝐿

(𝑘𝐿)2 − (𝑘0𝐿)2,    (2.12c) 

𝚲̃𝑐
𝑒 = 𝑉𝜶̃𝑐,         (2.12d) 

and 

Λ𝑚 = Λ̃𝑚
−1/∆Λ̃,        (2.13a) 

𝚲𝑑 = 𝚲̃𝑑
−1[𝑰 + (𝚲̃𝑐

𝑜 + 𝑖𝚲̃𝑐
𝑒) ⊗ (𝚲𝑐

𝑜 − 𝒊𝚲𝑐
𝑒)],     (2.13b) 

𝚲𝑐
𝑜 = 𝚲̃𝑐

𝑜 ∙ (Λ̃𝑚𝚲̃𝑑)
−1

/∆Λ̃,       (2.13c) 

𝚲𝑐
𝑒 = 𝚲̃𝑐

𝑒 ∙ (Λ̃𝑚𝚲̃𝑑)
−1

/∆Λ̃,      (2.13d) 

with  

∆Λ̃= 1 − (𝚲̃𝑐
𝑜 − 𝑖𝚲̃𝑐

𝑒) ∙ (Λ̃𝑚𝚲̃𝑑)
−1

∙ (𝚲̃𝑐
𝑜 + 𝑖𝚲̃𝑐

𝑒 ).    (2.13e) 

Finally, effective coupling can be defined as  

𝑐0𝝌𝑒𝑓𝑓
0 = 𝚲𝑐

𝑜,      (2.14a) 

𝑐0𝝌𝑒𝑓𝑓
𝑒 = 𝚲𝑐

𝑒 .      (2.14b) 
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By calculating the macroscale effective coupling terms of the composite, strength of 

coupling is measured and used as the performance metric in material design. As discussed 

in [27], 𝝌𝑒𝑓𝑓
0 ≠ 0 if the heterogeneity is symmetric in geometry and material properties, so 

𝝌𝑒𝑓𝑓
𝑒  is the preferred performance metric for showing coupling strength. 

 Scattered wave fields are returned by the study and can be plotted in 3D throughout 

the domain. An example of the scattered field plot at a single frequency is shown for each 

direction of incident wave propagation in Figure 2.4. The background pressure wave is 1 

Pa for both directions, 𝑝𝑖𝑛 = 1𝑃𝑎. Figure 2.4a represents the case where 𝑝1
𝑖𝑛 = 1𝑃𝑎 with 

𝑝2
𝑖𝑛 = 0𝑃𝑎, and Figure 2.4b represents the case where 𝑝1

𝑖𝑛 = 0𝑃𝑎 with 𝑝2
𝑖𝑛 = 1𝑃𝑎. 

 

Figure 2.4:  Scattered pressure field results when the background wave is incident in the 

(a) +𝑥-direction, 𝑝𝑖,1, and in the (b) −𝑥-direction, 𝑝𝑖,2. 

Scattered fields are post-processed to calculate the even and odd coupling terms. 

This analysis flow is utilized to evaluate and design two-layer Willis materials over a broad 

frequency spectrum and for many combinations of materials and geometric features. 

Specific materials and geometric features explored and how this analysis is used for design 

is covered in Chapter 4. 
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2.3 MULTI-MATERIAL ELLIPSOIDAL ASYMMETRIC INCLUSIONS 

2.3.1 Ellipsoidal Asymmetric Inclusion Model 

More geometrically complex than layered models, AMMs of arranged solid 

inclusions have been shown to demonstrate Willis coupling behavior by Muhlestein and 

Haberman [52]. While the authors homogenized a structure with a random arrangement of 

elastic inclusions, positioning all inclusions along a single plane provides a structure that 

is more easily manufacturable than random arrangements. The planar layer of inclusions 

exists in 3D but this structure behaves as an AMS by definition because its thickness is 

significantly subwavelength [57]. Figure 2.5 illustrates the primitive design considered in 

this work. The AMS consists of identically oriented ellipsoidal inclusions embedded in a 

lossy elastomeric matrix. The inclusions are assumed to be fabricated using a mixture of 

two materials, one being a lossless, isotropic elastic solid, such as a metal, and the second 

a lossy isotropic material, such as a viscoelastic polymer. These heterogeneous inclusions 

are embedded in a background material (the matrix) that has good characteristic acoustic 

impedance match to the background fluid in which it operates, which is water in this work. 

The inclusions are assumed to have identical orientation with respect to the global 

coordinate system and are arranged with square periodicity in the y-z plane such that the 

AMS is orthogonal to incident waves propagating parallel to the x-axis. Figure 2.5 shows 

a general representation of heterogenous inclusions where the distribution of the two 

materials is graded in the x-direction. 
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Figure 2.5: Representative geometry of the AMS consisting of distribution of inclusions 

fabricated from two materials and embedded in a lossy matrix material to 

generate asymmetric acoustic absorption. The inclusions have non-uniform 

distribution of material properties and identical orientation in space and are 

arranged with square periodicity in the y-z plane with inter-inclusion spacing 

dp ≪  𝝀, where 𝝀 is the wavelength of propagating plane waves in the 

background material. (a) Two-dimensional cross-section in the x-y plane 

showing incident, reflected, and transmitted waves for cases of waves 

propagating in the ±x-direction. (b) Three-dimensional representation of the 

square lattice of scatterers aligned with the 𝒙 = 𝟎 plane. 

The design of an AMS displaying strongly asymmetric absorption is achieved by 

analyzing the scattering response of heterogeneous inclusions in a matrix material and 

measuring the back- and forward-scattered fields. The degree of asymmetry in absorption 

is determined by performing two numerical experiments, one with excitation via equal 

amplitude plane waves traveling in the positive x-direction and the second when the 

excitation is from the negative x-direction. The backscattered fields from both cases are 

compared for a wide range of frequencies of interest. The numerical experiments are 

denoted as case 1 and 2 for incident wave propagation directions along unit vectors 𝒏𝑥,1 =
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(1,0,0) and 𝒏𝑥,2 = (−1,0,0), respectively. The scattered pressure field is then probed on 

planes parallel to the AMS on both sides of the AMS for cases 1 and 2 to determine 

absorption from the scattered field as expressed in Equations 1.1-1.3 (scattering and 

absorption) and summarized in the following paragraph [58] [28] [29] [59]. The model is 

constructed so that the geometry of the primitive can be varied in ways typical of AM 

fabrication error to support the robust design methodology described and demonstrated in 

Chapter 5.   

 The arrangement of dissimilar materials in the inclusions that compose the AMS 

are essential to generating asymmetric acoustic absorption from the Willis scattering 

primitive design, even when the inclusions of the AMS are deeply subwavelength [41] [28] 

[29] [59]. By arranging the inclusions as shown in Figure 2.5, the input impedance of the 

AMS is very different for incident waves from either direction [41]. When one inclusion 

material is assumed to be lossy, acoustic absorption is observed to be strongly dependent 

on the direction of incidence [28] [29] [59]. Here we define the material loss of the 

inclusion materials by assuming that they are constructed from materials displaying a 

complex plane wave modulus, 𝑀 =  𝑀′(1 − 𝑖𝜂𝑠), where 𝑀′ is the storage modulus, 𝜂𝑠 is 

the isotropic viscoelastic loss factor, and we have assumed the 𝑒−𝑖𝜔𝑡 time convention. It is 

important to note that asymmetry in reflection and absorption does not violate reciprocity 

and thus transmission is symmetric, i.e. 𝑇1 = 𝑇2. The asymmetry in reflection is therefore 

solely responsible for asymmetric absorption as one would anticipate from previous work 

[45] [28] [29]. For this reason, asymmetry of reflection 𝑅2/𝑅1is also a valid performance 

metric. 

 Some initial performance and design constraints are specified a priori to eliminate 

superfluous variables. Analysis is performed on a unit cell consisting of ellipsoidal 

inclusions inside a matrix material with a cross sectional length and width of 1.2 mm. The 
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cross-sectional dimensions of the unit cell have been chosen to be much smaller than 

acoustic wavelengths in the matrix material at the frequencies of interest (< 160 kHz) in 

order to avoid Bragg scattering. The characteristic size of inclusions is necessarily 

constrained to be sub-wavelength, 𝑘𝑎 ≪ 1, to ensure that the scattered field is planar in the 

far-field and that we remain in the long-wavelength scattering limit. Exploration of the 

asymmetry with respect to 𝑘𝑎 is carried out by holding 𝑎 constant with 𝑎 = 𝑑 = 1 mm 

and varying frequency in the range of 1 to 160 kHz. For satisfactory performance from a 

design perspective, the asymmetric absorber must exhibit at least a 6 dB difference of 

reflection with respect to the direction of incident wave propagation: 20 log10(|𝑅2/𝑅1|) ≤

 −6 dB.  

2.3.2 Finite Element Analysis of Ellipsoidal Asymmetric Inclusions 

 Similar to the approach taken in Section 2.2.2, a FEA model was built using the 

commercial software package Comsol Multiphysics to simulate the asymmetric response 

of individual unit cells and supercells made of multiple unit cells arrayed in the y-z plane. 

The physics are applied to the geometry using Comsol’s Pressure Acoustics, Frequency 

Domain module for fluid domains (Equations 2.5 and 2.6) and the Solid Mechanics module 

for solid, elastic domains. For frequency domain studies, the Solid Mechanics module 

solves the equations  

𝑅𝑒(𝒖𝑒𝑖𝜔𝑡)𝜌𝜔2 = ∇ ∙ 𝑆 + 𝑭𝑣𝑒𝑖𝜙,    (2.15a) 

−𝑖𝑘 = 𝜆,      (2.15b) 

where 𝒖 is the displacement vector, 𝑭𝑣is a body force, 𝑆 is the second Piola-Kirchhoff 

stress tensor.  

Coupling between the pressure acoustics in the fluid matrix and solid mechanics of 

the inclusion is implemented with the Acoustic-Structure Boundary condition in Comsol. 
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This boundary condition couples the load on the structure to the acceleration experienced 

by the fluid matrix. At the boundaries the equations  

−𝒏 ∙ (−
1

𝜌𝑐
∇𝑝𝑡𝑜𝑡) =  −𝒏 ∙ 𝒖𝑡𝑡,     (2.16a) 

𝑭𝐴 = 𝑝𝑡𝒏,       (2.16b) 

describe the coupling where 𝑭𝐴 is force per unit area, and 𝒖𝑡𝑡 is acceleration.  

Geometry and Materials 

 The geometry for the model consists of a matrix of background material with a 

semi-infinite layer of ellipsoidal inclusions having radii 𝑟a, 𝑟b , and 𝑟c aligned with the x-, 

y-, and z-axes, respectively, and centered at (𝑥𝑎, 𝑥𝑏 , 𝑥𝑐) = (0, 0, 0) midway through the 

matrix domain with respect to the direction of incident wave propagation. Inclusions are 

arranged on the y-z plane in a square-packed lattice with center-to-center side-lengths of 

𝑑𝑝 as shown in Figure 2.5. Each inclusion includes two materials separated by—and 

bonded along—an interface defined by a 𝑦-𝑧 plane that intersects the ellipsoid at a distance 

ℎ from its center (Figure 2.6). 
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Figure 2.6: (a) A square-packed lattice of four inclusions and their arrangement shown in 

plane with the scattering layer. (b) Dimensions and material placements 

overlain on an example of ellipsoidal inclusion geometry where the center of 

the inclusion has a position defined by the triplet (xa, xb, xc). These 

dimensions are subject to variation from imperfect manufacturing. 

 To model a layer of many inclusions efficiently, a single unit cell as shown in Figure 

2.7 is treated as infinitely periodic in the 𝑥 = 0 plane. Floquet periodic boundary conditions 

[60] are used along both the 𝑦- and 𝑧- directions. Elimination of internal reflections in the 

𝑥- direction is performed with perfectly matched layers (PMLs) at either end of the matrix. 

The PMLs are domains that emulate the Sommerfeld radiation condition by progressively 

damping energy over a finite distance [54] [61] [62]. With these boundary and domain 

conditions, the simulated scattering behavior is the result of a square lattice of 

inhomogeneous inclusions, which constitutes the asymmetric absorbing AMS.  
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Figure 2.7: Example simulation geometry of a single cell of the periodic asymmetric 

absorber metamaterial. An inclusion composed of two separate materials is 

encased in a matrix. (a) Cross-section of the unit cell geometry indicating 

the constitutive material placement and perfectly matched layer (PML) 

conditions at both ends of the domain along the 𝑥-direction. (b) Isometric 

view of a single simulation with the incident plane wave, 𝑝𝑖,1, propagating 

along the +𝑥-direction. The incident wave field is shown only on the left of 

the probe plane so that internal geometry is visible. A simulation solves for 

the scattered fields at the probe planes positioned at each end. The distal 

sections are PMLs to eliminate reflections and domain boundaries. 

Unlabeled domains represent the matrix material. 

The incident wave is a planar background field that originates between the PML 

and the inclusions and propagates toward the inclusions with the matrix serving as a 

waveguide. The scattered field is measured as a steady state single-frequency result in each 

separate FE solution on both sides of the inclusion layer plane. Measurements are taken 

sufficiently distant from the inclusion layer to ensure that all evanescent fields have 

decayed such that the total scattered field is planar. Because the matrix is lossless, there is 

no loss of information by extending the distance between the inclusions and probe plane 

but for these analyses this distance is set at 3𝜆 from the 𝑥 = 0 plane. Field outputs are 

averaged across each probe plane to account for numerical noise and then post-processed 

to yield 𝑅 and 𝑇 for each simulation.  

A physical implementation of this AMS would take the form of a layer of matrix 

material containing aligned heterogeneous inclusions embedded in another material or 

fluid. Scattering from external boundaries of the matrix is application specific and outside 

the scope of this work. However, the silicone-based polymer polydimethylsiloxane 

(PDMS) is the matrix material for its excellent impedance match to water in this case. The 

range of realizable impedance for unaltered PDMS is dependent on manufacturing factors 

but falls between 1-1.1 MRayl [63] [64]. This leads to reflection coefficients of 

approximately 0.03 at a PDMS-water boundary. Additives such as ZnO and TiO2, can be 



 36 

used to adjust the density, and therefore impedance, of PDMS while minimally affecting 

the loss such that the water-PDMS interfaces reflect almost no energy [63] [64]. The PDMS 

is treated as a lossless fluid to investigate the absorptive performance of the inclusion layer 

alone. Shear deformation in the PDMS can be ignored at these frequencies since shear 

waves attenuate very rapidly at the frequencies of interest (over 100 kHz) [65] [66].  

Inclusion materials are elastic solids with the viscoelastic component dissipating 

energy by way of a non-zero isotropic structural loss parameter 𝜂𝑠 ≠ 0. Both inclusion 

materials are defined by their density, 𝜌, Young’s modulus, 𝐸, and Poisson’s ratio, 𝜈. 

Specific material selections and their corresponding constitutive parameters are discussed 

further as part of the design methodology in Chapter 5. 

Meshing 

Simulating these structures with a sub-wavelength inclusion layer and sufficient 

waveguide requires a domain that is multiple orders of magnitude larger than the smallest 

feature. Consequently, it is both unnecessary and computationally infeasible for the mesh 

to be made of uniformly sized elements throughout. Rather, mesh density must be higher 

in and around the inclusion to capture near-field effects. Mesh density is lower where the 

scattered field is approximately planar with wavelengths of the order of the incident wave. 

This mesh refinement is implemented by densely meshing the near-field region of the 

domain within ±2.5𝑟a and then extruding the mesh to the extents of the remaining domain 

with a much coarser resolution in the 𝑥-direction. The near-field region is meshed with 

quadrilaterals on the boundaries normal to y- and z- directions and tetrahedrons throughout 

the domain inside the boundaries. Mesh extrusion from the near-field region to the end of 

the waveguide domain uses the cross-section on the boundaries of the near-field region 

normal to the x-direction. Characteristic element sizes, 𝑙, within the near-field domain are 
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bounded as 
𝜆

1000
< 𝑙 <

𝜆

10
 with a maximum element growth rate of 1.3 and curvature factor 

of 0.2. Figure 2.8 shows the near-field mesh and a portion of the extruded coarse mesh. 

The extruded mesh scales with length of the matrix, so the element count is nearly identical 

for all simulations at approximately 1.9 × 105 elements with approximately 7.6 × 105 

DOF. 

 

Figure 2.8: Meshing the domain with features of greatly different scale. The inclusion 

diameter is approximately 1/50 the full length of the matrix. A fine mesh is 

used to accurately capture the behavior in and around the inclusion. The rest 

of the matrix is meshed by extruding the near-field mesh in the 𝑥-direction 

with a much coarser resolution. 

Another requirement of the mesh is to maintain accuracy along the Floquet periodic 

boundary conditions. To avoid interpolation and associated error, the meshes on each 

periodic boundary are identical by defining the mesh on one face and copying it exactly to 

the opposite face. Finding the resolution that efficiently yields accurate results for both of 

these specific mesh regions and the mesh overall is confirmed with a mesh refinement 

study before accepting results from design evaluations.  
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Study and Post-processing 

 Unlike the two-layer Willis material, no analytical homogenization is done in post-

processing. Design instances are evaluated by parameterizing all pertinent geometric 

variables, so they may be changed programmatically. The simulations are executed with 

the PARDISO solver. Scattered pressure fields are averaged across the probe planes and 

post-processed to yield reflection, 𝑅, transmission, 𝑇, and absorption, 𝛼, for both incident 

wave directions at each frequency. Given all constraints, response performance is measured 

with asymmetry of reflection in decibels, 20 log10(|𝑅2/𝑅1|), as the performance indicator. 

 Scattered wave fields are returned by the study and can be plotted in 3D throughout 

the domain. The study also solves for stress in the inclusion. Figure 2.9 shows the scattered 

field plot at a single frequency for each direction of incident wave propagation as well as 

a 2D cross-section of the inclusion with the von Mises stress field visualized. The 

background pressure wave is 1 Pa for both directions, 𝑝𝑖𝑛 = 1𝑃𝑎. Figure 2.9a&b 

represents the case where 𝑝1
𝑖𝑛 = 1𝑃𝑎 with 𝑝2

𝑖𝑛 = 0𝑃𝑎, and Figure 2.9c&d represents the 

case where 𝑝1
𝑖𝑛 = 0𝑃𝑎 with 𝑝2

𝑖𝑛 = 1𝑃𝑎.  



 39 

 

Figure 2.9: Total pressure fields for incident waves propagating along the ±𝑥-direction 

and the resultant stress field within the inclusions. (a, b) Results for the 

incident wave traveling from left to right, and (c, d) shows simulation results 

for incident wave propagating from right to left (c, d). Von Mises stresses 

are plotted on a cross section of the inclusion. 

Scattered fields are post-processed to calculate the asymmetry of reflection. This 

analysis flow is utilized to evaluate and design AMSs of this type over a broad frequency 

spectrum and for many combinations of materials and geometric features. Specific 

materials and geometric features explored and how this analysis is used for design is 

covered in Chapters 5 and 6. 

  

2.5𝑑𝑖𝑛𝑐 

2.5𝑑𝑖𝑛𝑐 

2.5𝑑𝑖𝑛𝑐 

2.5𝑑𝑖𝑛𝑐 

Pa, Mises 

1.4 

Pa, Mises 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 -1 

-0.5 

0.5 

0 

1 d.) 

-1 

-0.5 

0.5 

0 

1 b.) 

Pa 

Pa 



 40 

Chapter 3:  Computational Design of AMM 

Design engineers are often required to synthesize information, solve intertwining 

problems, and elegantly present the best designs. The nature of this design process has 

changed dramatically over the past several decades, driven largely by growth in 

computational capabilities. By harnessing computational models, an engineer can solve 

increasingly difficult problems such as design of AMMs, but designing in a computational 

landscape requires an expanded suite of tools for generating information and learning from 

it to make better design decisions. In light of this challenge, machine learning (ML) 

algorithms have emerged as a particularly useful class of tools for engineering design 

exploration and optimization.  

The commonality shared by all the challenges of designing AMMs presented in 

Section 1.2 is that evaluating an AMM’s performance requires enough computational 

expense to motivate maximizing the information gained from making each evaluation. In 

other words, a design approach is a valuable tool when it prudently uses expensive system 

evaluations while providing useful information to the designer. Iterative design is 

impractical for systems that have complex functional relationships between performance 

and design features because individual data points provide little information about the 

design space. Where exhaustive evaluation is prohibitively expensive, another method is 

necessary to characterize performance in a design space. For AMM design, 

computationally efficient prediction of a prospective design’s performance requires a 

surrogate model that is capable of creating a mapping between combinations of design 

features and performance. Supervised ML models do exactly that. They are trained on 

ground-truth data about the feature-performance relationship so that they can predict output 

performance from input features in a design space.  
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Design space mappings generated with supervised ML techniques can be used to 

inform early-stage design exploration, support optimization, provide reliability 

assessments, and aid convergence in multiobjective or multilevel problems. However, the 

accuracy of the mappings can vary based on problem factors such as the number of design 

variables, presence of discrete variables, multimodality of the underlying response 

function, and amount of training data available. Additionally, there are several useful ML 

algorithms available, and each has its own set of algorithmic hyperparameters that 

significantly affect accuracy and computational expense. This chapter explains the use of 

machine learning for engineering design exploration and optimization problems by 

describing how ML models can be used to improve design tasks. Section 3.1 discusses how 

ML is used for engineering design and specifically for AMMs. Section 3.2 and Section 3.3 

present the background on classifiers and metamodels that are implemented and adapted 

in the research tasks.  

3.1 UTILITY OF COMPUTATIONAL DESIGN METHODS 

In engineering design exploration and optimization, supervised ML techniques 

used for approximating relationships between combinations of design features and 

performance are broadly separable into metamodeling and classification algorithms. This 

approximated input/output relationship is also called a mapping of the design space. The 

difference between metamodels and classifiers is defined by the type of output response 

they provide. Metamodels map to absolute performance values while classifiers map to 

distinct groupings known as classes. Classes are problem specific but, for example, could 

consist of: plant species [67], digits [68], or spam emails [69]. Designers utilizing 

classification in engineering disciplines are interested in whether designs satisfy one or 

many performance specifications subject to design constraints. Classifiers that map the 
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feasible design space are focused on identifying combinations of design variables that 

satisfy the constraints and meet preferred thresholds for the objective functions. This task 

is an example of inverse mapping, which is different from forward mapping strategies that 

are also used pervasively in engineering design. An inverse mapping of the design space 

seeks to identify the comprehensive set of design variable values that meet a set of 

performance requirements or thresholds. Metamodeling, on the other hand, produces a 

forward mapping which accepts unique design variable values as input and predicts their 

performance.  

Selecting an algorithm depends entirely on its suitability for achieving the desired 

task. Besides creating a metamodel or identifying classes of designs, the characteristics of 

the task and data affect how suitable an approach may be. Training and testing ML models 

provides a quantitative measure of model quality, but the expanse of available approaches 

and variants precludes exhaustive trialing. Furthermore, both metamodels and classifiers 

may be suitable for a given task in engineering design since they share many aspects of 

functionality. There is no universally deterministic relationship between task 

characteristics and ML algorithm selection but broad guidance for algorithm selection is 

available. Studies and resources such as Sharpe and Wiest et al. [34], Fernandez-Delgado 

et al. [70], Borchani et al. [71], and the scikit-learn user guide [72] have compared methods 

on sets of design tasks to provide context and guidance for interested designers. Further 

adding to the extensive suite of available ML approaches, individual algorithms may be 

combined to form what are called ensemble methods [73]. The limitlessness of ML model 

architectures and datasets makes methodology selection for a given problem somewhat of 

a creative art. Human designers utilizing ML methods must learn how to identify candidate 

methods for their task and prioritize implementation trials. In practice a limited subset of 

ML techniques should be selected and then trained and tested to compare performance. 
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3.1.1 Motivation for Designers 

A design engineer may seek to map the design space directly for several reasons. 

One example is set-based design, which focuses on solving distributed design problems by 

delaying commitment to a single point solution and preserving a diversity of options for 

identifying mutually satisfactory cross-disciplinary solutions [74]. In this context, 

classifiers have been used to solve distributed, multidisciplinary design problems, which 

are decomposed into interdependent sub-problems that share coupled design variables [75]. 

A similar set-based approach may be applied to multiscale or multilevel design problems 

for which it is important to map the input design space for an upper-level sub-problem 

because it may define the performance constraints of a lower-level sub-problem. Figure 

3.1 illustrates an example of mapping a multiscale design problem with three distinct 

scales, micro-, meso-, and macro-scale. Each scale has a separate set of design variables 

and satisfactory design instances can be mapped across scales. For these applications, 

classifiers are used as a means of guiding and potentially improving the efficiency of design 

exploration. Specifically, they are used to map the boundaries of the feasible design space 

accurately and efficiently [76] [77] [78] [79]. Mapping the boundaries of the feasible 

design space accurately can be especially important for improving the efficiency of design 

exploration because it prevents potentially expensive simulation- or experiment-based 

exploration of infeasible designs [80]. For highly nonlinear, nonconvex design problems, 

these spaces can be disjoint and assume arbitrary shapes, making it difficult to capture them 

with simple techniques such as intervals [75] [77]. 

 



 44 

 

Figure 3.1: Inverse design space mappings allow design instances and regions to be 

tracked across scales of a multiscale design task whether satisfactory (green) 

or unsatisfactory (red). This mapping traverses three distinct scales referred 

to as micro, meso, and macro. 

Metamodeling methods are designed to predict outputs that are continuous in 

nature. Consequently they are not effective for mappings that have discrete outputs and 

they require algorithmic ensembles to address multilevel and multidisciplinary design 

tasks. However, metamodels are capable of mapping the feasible region of a design space 

by applying a constraint or performance threshold to a developed functional mapping. 

Because of their continuous output, metamodels are able support optimization within a 

design space [81] in many different ways: global optimization [82] [83], local optimization 

[84], and model validation optimization [85] [86] [87]. Additionally, metamodeling 

techniques have been applied to support sample generation within a space [88] [89] [90]. 
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Although output values are continuous, metamodeling methods are subdivided by whether 

or not they provide gradient information [91]. Metamodels that fit data to a functional form, 

such as linear regression, generate a polynomial response surface that can be differentiated 

analytically. On the other hand, metamodels such as decision trees, random forests, and 

neural networks do not provide differentiable analytical functions and require numerical 

techniques to obtain gradient information.  

 While there are myriad applications for metamodels and design space mappings, 

this work focuses on methods that are relevant to improving the design processes of 

AMMs. Specifically metamodel-driven sampling optimization, model validation for robust 

design, and design exploration in high-dimensional spaces. 

3.1.2 Model Training and Tuning 

Machine learning models are trained to be as accurate as possible so that they may 

provide trustworthy information to the designer or supplant a more expensive function call. 

A good fit to the response behavior of the underlying data source is essential for a model 

to be useful but the user must also be careful to avoid overfitting. Overfitting to data is a 

common pitfall that is characterized by a model that perfectly matches the training data but 

is inaccurate for data points in the design space that are not present in the training data [92]. 

Overfitting is especially problematic when the underlying data is noisy. An overfit model 

will exhibit a significant accuracy bias toward training data and points in the design space 

that are extremely close to training data points in a Euclidean sense. Conversely, an underfit 

model may exhibit very little bias of fit throughout the space but have a very large mean 

value of error. Both overfit and underfit models generalize poorly throughout the space 

[93]. For example a one-dimensional polynomial regression model,  

𝑦(𝑥, 𝒘) =  ∑ 𝑤𝑗𝑥𝑗𝑀
𝑗=0 ,     (3.1)  
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with multiple polynomial terms of order 𝑀 will over- or underfit relative to the quantity of 

data, response behavior, and highest order term 𝑀. Figure 3.2. shows models of varying 

order fit to the same data set which is a sine function with a random noise component, 𝑦 =

sin(𝑥) + 𝜖, where 𝜖 ∈ Ε ~ 𝑁(0,
1

5
).  

 

Figure 3.2: The effects of over and underfitting are shown for the polynomial regression 

on underlying noisy data (black markers) with 𝑦 = sin(𝑥) + 𝜖, where 𝜖 ∈

Ε ~ 𝑁(0,
1

5
). The blue curve is a noiseless sine function 𝑦 = sin(𝑥) and red 

curves are polynomial regressions (Equation 3.1) of order 𝑀. In this 

example the 𝑀 = 0 model underfits the data while the 𝑀 = 9 model 

overfits the data. 

This example is a simple way to visualize over- and underfitting but all ML models are 

subject to similar issues. An ML model’s fidelity to the input/output behavior is limited by 

the quality of the training data, the tuning of the model, and the method by which it is 
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trained. This issue is mitigated by tuning a model to exhibit high fidelity to the relationship 

it is trying to approximate, which requires a deliberate procedure to train, test predictive 

accuracy, and iterate if necessary. There are two steps that are necessary for any statistical 

or machine learning algorithm to achieve high fidelity: data generation and hyperparameter 

optimization.  

Data Generation 

Generating data necessary to train a ML model for simulation-based AMM design 

requires querying the FEA sufficiently throughout the design space, and there is a wealth 

of sampling strategies available. Chapter 11 of Bishop 2006 [35] introduces many sampling 

methods such as random sampling from distributions, Markov Chain Monte Carlo, Gibbs 

sampling, among others. Modern sampling techniques used in engineering design are 

space-filling methods and adaptive methods [94] [95] [96]. Space-filling samples are 

generated using quasi-random sequences that distribute samples quasi-uniformly 

throughout the space of possible feature settings. They are designed to fill a space of 

arbitrary dimensionality with low-discrepancy and gained popularity for applications 

involving numerical integration [97]. The most common space-filling sampling methods 

are Halton [98], Sobol [99], and Faure [100] sequences, as well as Latin Hypercube 

sampling [101]. The three named sequences enable any number of samples to be taken 

incrementally while continuing to fill the space with minimal discrepancy. This is an 

advantage over sampling on a grid which requires sample size to be doubled when samples 

are added in order to maintain uniformity throughout a space. The named sequences and 

Latin Hypercube perform very similarly across the range of dimensionality 1 ≤ 𝐷 ≤ 10  

[97] [102].  
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Because the named sequences are nearly interchangeable in application, the Halton 

sequence is the method used in this work to generate space-filling samples. The Halton 

sequence uses coprime numbers as its bases and can be expressed mathematically in 

multiple ways. In summary of Morokoff and Caflisch’s [97] expression of the sequence, 

(𝑛)𝑝 = 𝑎𝑘𝑎𝑘−1 … 𝑎0 is the base 𝑝 expansion of any integer 𝑛 with 0 ≤ 𝑎𝑖 < 𝑝 and  

𝑆𝑝(𝑛) =  
𝑎0

𝑝
+

𝑎1

𝑝2 + ⋯ +
𝑎𝑘

𝑝𝑘+1    (3.2) 

is a one-dimensional uniformly distributed sequence with 0 < 𝑆𝑝(𝑛) < 1 for all 𝑛. The 

Halton sequence is an 𝑠-dimensional generalization of Equation 3.2 expressed as  

𝒙𝑛 = (𝑆𝑝1
(𝑛), … , 𝑆𝑝𝑠

(𝑛))     (3.3) 

where (𝑝1, … , 𝑝𝑠) are prime integer bases. For example, consider a two-dimensional 

sequence 𝒙𝑛 = (𝑆𝑝1
(𝑛), 𝑆𝑝2

(𝑛)) ∈ [0,1] with the bases (𝑝1, 𝑝2) = (2, 3). The first seven 

terms of the Halton sequence generate as  

(
1

2
,
1

3
) , (

1

4
,
2

3
) , (

3

4
,
1

9
) , (
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,
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) , (
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9
) , (
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,
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9
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,
5

9
) , … 

The sequence continues following this same pattern. Figure 3.3 illustrates how this 

sequence of points fills a two-dimensional space. 
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Figure 3.3: Two-dimensional Halton sequence generated in a unit square domain.  

Sequences in higher dimensions fill the space in the same way. Issues such as collinearity 

may arise with certain combinations of prime bases so a practical solution is to scramble 

the sequence by permuting the coefficients or by scrambling the bases with a reverse-radix 

scheme [102]. Designs are represented with the Halton sequence by scaling the sequence-

generated data points to the range of feature settings that are considered for the design. 

Taking the inclusion geometry features presented in Section 2.2.2 and Figure 2.6 as an 

example, the Halton sequence would be transformed such that  

𝑥𝑛 ∈ [0,1] → 𝑟𝑎 ∈ [𝑟𝑎,𝑚𝑖𝑛, 𝑟𝑎,𝑚𝑎𝑥].      (3.4) 

Data scaling and transformation is important both for generating samples and for 

pre-conditioning training data for input to an ML model. Generating combinations of 

features that can be evaluated with FEA or another expensive black-box function must be 

transformed from a generic range to values that are physically meaningful such as in 
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Equation 3.4. However, ML model performance may suffer when training data is varied in 

magnitude and distribution [103] [104]. ML model accuracy improves by transforming the 

data again before training the model [103]. In this work two transformations are applied: 

min-max scaling, and standardization. Min-max scaling transforms a sample of a single 

design feature 𝒙 = [𝑥1, … , 𝑥𝑁] with length 𝑁 expressed as a vector into  

𝒙′ = 𝑎 +
(𝒙−min(𝒙))(𝑏−𝑎)

max(𝒙)−min (𝒙)
,     (3.5) 

where (𝑎, 𝑏) represent the post-transformation target minimum and maximum values, 

respectively. Standardization transforms 𝒙 → 𝒙′ so that it has zero mean, 𝜇 = 0, and unit 

variance, 𝜎2 = 1:  

𝒙′ =  
𝒙−𝒙

𝜎
.       (3.6) 

Min-max scaling is used to transform a space-filling sample for input to FEA simulation 

while both are applicable as preprocessing steps for ML model training. Which transform 

works best for preprocessing is algorithm-dependent, and in practice both are worth trying 

as part of the model tuning and validating processes. In this way, preprocessing data 

transforms are very similar to model hyperparameters, which also must be tuned to 

optimize model performance.  

Hyperparameter optimization 

The tuning process requires searching through, or optimizing, various 

hyperparameter values to determine the values that lead to the best performance for a 

specific problem. A hyperparameter of a ML model is a parameter of a model that can be 

set and affects the learning process. Hyperparameters differ from other parameters of a 

model because they are not adjusted automatically during the training process. Using 

polynomial regression (Equation 3.1) as an example, term coefficients 𝒘 are adjusted as 

the model is trained (such as by minimizing least squares) and are not hyperparameters. 
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The quantity of terms 𝑀 is a hyperparameter. All ML models have hyperparameters and 

those specific to the models used in this work are discussed in Sections 3.2 and 3.3.   

Searching for suitable hyperparameters requires retraining the model for each 

combination of hyperparameters considered, thus making the tuning effort required to 

reach acceptable performance an important factor in the overall computational expense of 

implementing an algorithm. Tuning is commonly performed using a cross-validation 

scheme [105], in which rotating subsets of the training data are excluded from the training 

set and used to evaluate the model’s performance (chapter 5 of [106] provides more in-

depth background discussion of cross-validation). The performance is then aggregated to 

find the hyperparameter values that yield the best results throughout the entire space. 

Model performance quantified by an appropriate criterion. For classification the criterion 

is the relative quantity of correct/incorrect class assignments and how incorrect 

assignments are made. For metamodeling tasks, the criterion is a measure of the deviation 

between predictions and true values. More detail on model performance metrics is include 

in Sections 3.2 and 3.3. 

Cross-validation schemes are used to prevent overfitting data on a single test set. 

Hyperparameter values can be tuned by simply testing a fixed grid of hyperparameter 

values or a random set of hyperparameter values, or by implementing sequential techniques 

such as Bayesian optimization to direct the search towards higher performing 

hyperparameter values at the expense of longer training time. A simple 𝑘-fold cross-

validation grid search approach is used in this work where 3 ≤ 𝑘 ≤ 10. Some algorithms 

are more robust to hyperparameters and offer relatively consistent performance across a 

range of settings, while others are very sensitive to parameter settings.  
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3.2 MACHINE LEARNING CLASSIFICATION 

As described in Section 3.1.2, classification can be used in engineering design 

exploration and optimization problems to map regions of the design space that satisfy 

requirements or constraints of interest. These requirements can be formulated 

mathematically as an inequality constraint as follows:   

𝐷𝑒𝑐𝑖𝑑𝑒 𝑐 = 𝑐1 𝑖𝑓 𝑓(𝑥) ≤ 𝑓𝑡ℎ𝑟𝑒𝑠ℎ ;  𝑒𝑙𝑠𝑒 𝑑𝑒𝑐𝑖𝑑𝑒 𝑐 = 𝑐2       (3.7) 

where x is a candidate design, f  is the performance function of interest, and c1 and c2 

represent two classes of interest, for example, feasible and infeasible. The true 

classification designation can be known exactly by evaluating a particular design for a 

deterministic performance function of interest such as FEA. The performance function is 

often expensive to evaluate, however, motivating a more efficient alternative for predicting 

whether a candidate design meets the desired inequality condition. Many classifiers use 

previously evaluated points to estimate the probability that a new design meets the desired 

criteria without explicitly evaluating the performance function. A typical probabilistic 

decision criterion for classification algorithms is shown in Equation 3.8, 

𝐷𝑒𝑐𝑖𝑑𝑒 𝑐 = 𝑐1 𝑖𝑓 𝑝(𝑐1|𝑥) > 𝑝(𝑐2|𝑥) ; 𝑒𝑙𝑠𝑒 𝑑𝑒𝑐𝑖𝑑𝑒 𝑐 = 𝑐2   (3.8) 

where 𝑝(𝑐|𝑥) is the conditional probability of the class given the candidate design, x.   

A number of factors should be considered when implementing a classification 

approach to support the decision criteria defined in Equations 3.7 and 3.8. The first 

consideration is the type of classifier to implement. There are two broad categories of 

classifiers: generative and discriminative [107]. Examples of generative classifiers include 

naïve Bayes classifiers and Bayesian network classifiers. Support vector machines and 

neural networks are examples of discriminative classifiers. Discriminative classifiers 

directly model the conditional probability 𝑝(𝑐|𝑥) that a data point, x, is a member of a 

specific class, c. Generative classifiers instead model the joint probability of data and class 
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𝑝(𝑐, 𝑥) which can then be transformed into the posterior probability of a class by using 

Bayes’ rule 𝑝(𝑐|𝑥) =  
𝑝(𝑥|𝑐) 𝑝(𝑐)

𝑝(𝑥)
. In many cases, the direct approach of the discriminative 

classifiers yields better classification accuracy [107], but not in all cases. The generative 

classifiers can offer different advantages, such as utilizing the joint probability provided 

by generative classifiers for sampling combinations of class and data, which may be of 

interest in sequential sampling approaches.  

Computational expense is also an important concern. The computational expense 

for training classifiers grows with the number of training points and the number of design 

variables, and the scaling of training time with respect to these factors varies for different 

algorithm types. Table 3.1 summarizes the worst case theoretical time complexity of a few 

common classification algorithms where n is the number of training points, m is the number 

of variables, t is the number of trees in a random forest, p is the number of variables 

randomly sampled at each node of the random forest decision trees, h is the number of 

neurons (assumed to be constant in each layer for simplicity), k is the number of layers in 

a neural network, and i is the number of backpropagation iterations [72] [108] [109]. The 

linear time scaling of Gaussian Naïve Bayes makes it the most efficient algorithm of this 

group to train. Random forests and support vector machines exhibit exponential scaling 

with the number of training points, causing their computational expense to increase quickly 

for large datasets. The efficiency of the fully-connected neural network depends heavily 

on the number of layers and neurons present in the network, but many modern networks 

utilize large numbers of parameters that result in computational expense significantly 

greater than the other algorithms presented here. It is important to note that the 

computational complexity in Table 3.1 refers to the cost of training the classifiers. Training 

time varies by problem, ML model, and hyperparameter optimization methods. All of these 
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classifiers require less, often trivial, computational expense for prediction relative to the 

computational cost of training them.  

 

Algorithm Computational Complexity 

Gaussian Naïve Bayes O(nm) 
SVM O(n2m) to O(n3m) 
Neural Network 

(Perceptron) 
O(nmhki) 

Random Forest O(pn2t log(n)) 

Table 3.1: Computational complexity for training classifiers 

Every classification approach expresses a set of underlying assumptions about the 

data via its mathematical form and the types of hyperparameters that help define its 

underlying model. Consequently, classifier performance can vary widely depending on the 

characteristics of the problem, including the number of variables, variable type 

(continuous, discrete), the strength of interactions between variables, and the modality of 

the design space.  

3.2.1 Classifier Scoring 

A multitude of scoring metrics have been defined to quantify classifier performance 

[110], but they all seek to express the degree of similarity between the true and predicted 

classes of each test sample. The simplest statement of the similarity between the predicted 

and true classes of a sample set is represented by a confusion matrix [106], as shown in 

Figure 3.4. P and N are the two classes:  positive and negative. The positive class is 

typically associated with feasible or promising designs in an engineering design context.  

A correctly identified member of class P is called a true positive and represented by TP. 

FP is a false positive, which corresponds to a member of class N that is incorrectly 
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identified as a member of class P. It follows that TN and FN are true negative and false 

negative predictions, respectively. 

 

  Predicted Class 
  P N 
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P TP FN 

N FP TN 

Figure 3.4: Confusion matrix for organizing classifier predictive performance 

Most metrics used to score classifiers use some combination of the entries in the confusion 

matrix. For many classification tasks, accuracy (ACC), as defined in Equation 3.9, is a 

useful starting point for evaluating overall classifier performance. 

 

𝐴𝐶𝐶 =  
𝑇𝑃+𝑇𝑁

(𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁)
      (3.9) 

There are some cases for which other classifier scoring metrics are more 

appropriate. For example, when there are many more instances of one class compared to 

the other in a data set, the classification problem is imbalanced. In these cases an accuracy 

metric can be misleading, as a classifier that blindly predicts all instances to belong to the 

majority class will show high accuracy but have limited predictive value. Specifically for 

designers, scoring metrics formulated to prioritize prediction of feasible or high-

performing solutions may be preferred at the expense of overall accuracy. One such metric 

that provides information on classification of the positive (P) class is true positive rate 

(TPR), also commonly referred to as sensitivity or recall. Maximizing TPR increases the 

likelihood of identifying a true member of the positive class of interest: 

 

𝑇𝑃𝑅 = 𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑃
=  

𝑇𝑃

(𝑇𝑃+𝐹𝑁)
.    (3.10) 
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Another metric that may be of interest is precision, or positive predictive value. The 

precision metric provides a measure of the prediction accuracy specific to the positive class 

by reporting the proportion of positive predictions that match with true class membership: 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
.     (3.11) 

The F1 score is a common scoring metric for binary classification that balances precision 

and recall using a harmonic mean. The F1 score is especially popular for assessing 

classifier performance in cases with a class imbalance or with greater importance placed 

on classifier performance for the positive class: 

 

𝐹1 =  2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
.     (3.12) 

Finally, false negative rate (FNR) can also be utilized to assess whether the classifier is 

missing potential members of positive class. Minimizing FNR allows designers to 

maximize their chances of identifying all potential designs of interest. 

 

𝐹𝑁𝑅 =  
𝐹𝑁

𝑃
=  

𝐹𝑁

(𝑇𝑃+𝐹𝑁)
= 1 − 𝑇𝑃𝑅.    (3.13) 

In combination, these metrics capture how well a classifier is identifying regions of the 

design space containing positive (typically, feasible high performance) designs.  

3.2.2 Gaussian Naïve Bayes 

Bayesian classifiers, which are based on Bayes’ theorem, have been found to 

perform well on a variety of classification problems [75] [111] [112]. The naïve Bayes 

(NB) classifier is a well-known representative of Bayesian classifiers, which assumes that 

all features are class-conditionally independent. They use Bayesian decision theory to 
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determine the probability that a design belongs to a defined class, according to the 

formulation of Bayes rule in Equation 3.14:   

 

𝑃(𝑐𝑙|𝒙) =
𝑃(𝒙|𝑐𝑙)𝑃(𝑐𝑙)

𝑃(𝒙)
=  

𝑃(𝒙|𝑐𝑙)𝑃(𝑐𝑙)

∑ 𝑃(𝒙|𝑐𝑘)𝑃(𝑐𝑘)1
𝑘=0

.    (3.14) 

This formulation is for a binary classification where the prior probability of each 

class is represented by 𝑃(𝑐𝑙), the class conditional probability for a given set of D design 

variables 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝐷] is represented by 𝑃(𝒙|𝑐𝑙), and the probability that the design 

belongs to a designated class is called the posterior probability of class membership and is 

represented by  𝑃(𝑐𝑙|𝒙). Class assignment of a given design 𝒙 is chosen based on the 

relative magnitude of each class’s posterior probability: 

𝐷𝑒𝑐𝑖𝑑𝑒 𝑐 = 𝑐0𝑖𝑓 𝑃(𝑐0|𝒙) > 𝑃(𝑐1|𝒙); 𝑒𝑙𝑠𝑒 𝑐 = 𝑐1.    (3.15) 

 

Prior probabilities, 𝑃(𝑐𝑙), can be formulated in many different ways depending on the 

expected distributions of each class, but a simple counting prior, as shown in Equation 

3.16, is often sufficient. 𝑁𝑙 represents the number of samples in class l, while 𝑁 is the total 

number of samples. 

  

𝑃(𝑐𝑙) ≅
𝑁𝑙+1

𝑁+2
      (3.16) 

To determine the class conditional probability, 𝑃(𝒙|𝑐𝑙), a kernel density estimate 

(KDE) is constructed.  Kernel functions are centered on each candidate design point, and 

those functions are aggregated into the KDE. Although many kernel functions can be used 

for constructing KDEs, the Gaussian kernel is implemented in this work.  Using a Gaussian 

KDE, the class conditional probability can be evaluated with Equation 3.17:  

𝑃(𝒙|𝑐𝑙) =
1

𝑁𝑙
∑ ∏  

1

𝜎𝑖,𝑙√2𝜋
 𝑒

 
(𝑥𝑖−𝑥̂

𝑖
𝑗

)
2

2𝜎𝑖,𝑙
2𝐷

𝑖=1
𝑁𝑙
𝑗=1     (3.17) 
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Each Gaussian kernel is assigned a D-dimensional standard deviation 𝝈. The variable 𝑥𝑖 

represents the design point in indicial notation and 𝑥̂𝑖
𝑗
 is the data point at the center of the 

𝑗𝑡ℎ kernel in the 𝑖𝑡ℎ dimension. The standard deviation sets the width of each kernel and 

assigning the value that yields the best performing KDE is the topic of much research [113] 

[114] [115] [116], but in this work, it is treated as a hyperparameter and tuned to maximize 

classification accuracy for the problem at hand. Although the variables in this discussion 

are described as continuous variables, discrete variables can be accommodated 

straightforwardly by substituting frequency-based distributions for the continuous 

distributions that define the class-conditional probabilities.  

 

3.2.3 Bayesian Network Classifiers 

Bayesian network classifiers (BNCs) are a generalization of NB where features may 

be conditionally dependent for a given class 𝑐. The word network is used because 

dependency between features, 𝑥𝑖, can be represented as a network or graph [117]. Defined 

as a graph, the features are nodes and dependency is represented with an edge. BNCs have 

been shown to be useful in design exploration because they can be used to partition a design 

space according to the ability of candidate designs to meet specified performance 

requirements [75]. Effectively, they enable inverse mappings of regions of interest in a 

design space. Furthermore, their roots in Bayesian statistics enable incorporation of prior 

expert knowledge and support for adaptive sampling [118]. 

The general BNC allows for a network structure where conditional dependencies 

between features may exist. This network structure of dependencies varies from the 

assumption that all features are dependent on one another to the assumption that no features 
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are dependent on each other (naïve). Figure 3.5 illustrates these two cases and their forms 

of class conditional probabilities.  

 

 

Figure 3.5: Fully connected BNC with feature conditional dependencies (left) and a 

naïve BNC where all features are conditionally independent (right). 

The class conditional probability for the naïve case is much easier to calculate 

mathematically and therefore incurs less computational expense when training and testing 

data that is high-dimensional. Due to computational expense, the best network is the one 

that accurately classifies with minimal conditional dependencies. Selecting a network 

structure requires information about the underlying data or an optimization process. 

Knowledge of the underlying data can be obtained by from the original function or by 

evaluating the correlation of a training data set. Assuming a black-box function, 

optimization processes are suitable ways to identify an appropriate network structure. 

Sharpe et al. [119] demonstrated this using a genetic algorithm for optimization and 

evaluating BNC performance based on speed of convergence to a minimal error with 

respect to the quantity of training data. Regardless of network structure, the generative 

nature of the BNC makes it a powerful tool that can be extended beyond discrete class 

identification.  

By applying Bayes’ rule to the class conditional probabilities, the posterior 

probability of class membership is calculated separately for each class of interest.  For 
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example, in a binary classification scheme (e.g. high-performance, 𝑐1, versus low-

performance, 𝑐0, with respect to specified requirements) a design is evaluated twice to 

determine 𝑃(𝑐0|𝒙) and 𝑃(𝑐1|𝒙), and the candidate design is assigned to be a member of 

the class with the larger posterior probability, according to Equation 3.14. In some cases a 

designer may wish to bias the assignment toward a certain class based on risk or some a 

priori knowledge. These heuristic risk factors are defined as 𝜆𝑙 ∈ [0,1] and applied as 

weights on the posterior (default 𝜆𝑙 = 1 ∀ 𝑙). The difference between the posterior 

probabilities is called the posterior class discriminant (PCD).  

 

𝑃𝐶𝐷 ∈ [−1,1] = 𝜆1𝑃(𝑐1|𝒙) − λ0𝑃(𝑐0|𝒙)       

=  
𝜆1𝑃(𝒙|𝑐1)𝑃(𝑐1)−𝜆0𝑃(𝒙|𝑐0)𝑃(𝑐0)

𝑃(𝒙|𝑐1)𝑃(𝑐1)+𝑃(𝒙|𝑐0)𝑃(𝑐0)
         (3.18) 

The D-dimensional hypersurfaces along which 𝑃𝐶𝐷 = 0 represent decision 

boundaries in the space. An example of posterior probability surfaces for a binary 

classification in 2D is shown in Figure 3.6. In the figure, green and red points represent 

instances belonging to different classes. The blue and red surfaces represent the posterior 

probability of their respective classes throughout the space. The probability of each class 

is equal (𝑃𝐶𝐷 = 0) where these surfaces intersect as represented by the black curves in 

Figure 3.6.  
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Figure 3.6: Posterior probability surfaces over an example 2D design space. Each 

surface is generated from the sample points using a kernel-based Bayesian 

network classifier (BNC) [120]. 

The hypersurfaces along which 𝑃𝐶𝐷 = 0 are particularly important for accurate 

classification because they are the decision boundaries between design space regions of 

different class membership.  When the number of training points available for one class is 

much greater than for another class, the PCD can be skewed in favor of the dominant class, 

a condition called imbalanced classification, which is addressed in Chapter 4. 

3.3 ML METAMODELING 

A metamodel approximates a function 𝑓(𝒙) with another function 𝑔(𝒙) that is 

computationally cheaper to evaluate. In ML, 𝑔(𝒙) need not be an explicit mathematical 

function. It is often an algorithm or ensemble of algorithms that work together as a 

metamodel of 𝑓(𝒙). Because the metamodel, 𝑔(𝒙), is fit to a limited sample of results from 

𝑓(𝒙), training the metamodel is an optimization problem where error, 𝜖, between the two 

functions is minimized:  

𝑓(𝒙) = 𝑔(𝒙) − 𝜖,     (3.19) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜖 = |𝑓(𝒙) − 𝑔(𝒙)|.    (3.20) 

The base of available metamodeling methods is extremely large [70]. Regression-like 

methods were used by many scientists in the 18th century and first clearly formulated by 

Legendre in 1805 using the method of least squares for linear regression [121]. Since then 

the research area and applicability of metamodeling methods has grown continuously and 

taken many forms. Metamodeling is a well-covered topic and an exhaustive review of those 

methods is outside the scope of this work. However, there are some important factors to 

consider when using metamodeling for the engineering design methods presented in 

Chapters 4 and 6.  
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 Similar to classification models, metamodels have an underlying functional form 

and parameters that are optimized so that the metamodel most accurately replicates the 

response behavior of the expensive model. Simple examples of metamodels include linear 

regression,  

𝑦(𝒙, 𝒘) =  ∑ 𝑤𝑗𝑥𝑗
𝑀−1
𝑗=1 ,     (3.21)  

and the non-linear polynomial regression in Equation 3.1. These two formulations have 

limitations for predictive accuracy because of their form. As the name implies, linear 

regression allows only linear combinations of the dependent variables, 𝒙, and the scalar 

weight terms, 𝒘, are tuned. Polynomial regression is non-linear but still restrictive to 

functions that are linear in the weight terms.  

The utility of a metamodel is greater when it can represent severely non-linear and 

multi-modal responses, so general non-linear approximation models are powerful. Once 

again there are myriad forms of non-linear approximators. A straightforward extension 

from linear regression is replacing the dependent variables with non-linear basis functions 

of those variables, 

𝑦(𝒙, 𝒘) =  ∑ 𝑤𝑗𝜙𝑗(𝒙)𝑀−1
𝑗=1 ,     (3.22)  

where 𝜙𝑗 is a basis function. Any function could be used as a basis function. In fact, the 

polynomial regression in Equation 3.1 is using a polynomial basis function, and the linear 

regression in Equation 3.21 is using a linear basis function. Basis functions are pervasive 

throughout ML and are often used in kernel functions. The most popular example is the 

radial basis function kernel [35]. Kernel functions are used in support vector regression, 

Gaussian process models, and kernel ridge regression [35] [122]. Other non-linear 

approximators that do not use basis functions exist such as the neural network, which is 

covered in greater detail in Section 3.3.2. Regardless of the underlying form, training 

metamodels requires minimizing the error, and the computational expense of training 
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increases as the number of parameters increases. Hyperparameter settings such as choice 

of basis functions, kernel functions, and other factors also affect training expense. 

3.3.1 Metamodel Scoring 

 Training is carried out by minimizing an error term. The error term may also be 

called the loss function or scoring metric. For basic least squares, the sum of squared 

residuals is minimized where the residual at any observation, 𝑖, is 𝑟𝑖 = 𝑦𝑖 − 𝑦𝑖̂ with 𝑦𝑖 being 

the observed response and 𝑦𝑖̂ being the response predicted by the metamodel:  

𝑅𝑆𝑆 = ∑ 𝑟𝑖
2𝑁

𝑖=1 .     (3.23) 

This metric is viable but because the values are an aggregated square of the error, the 

quantity may be quite large relative to the individual errors and therefore is not intuitive 

for a designer. Other scoring metrics have the advantage of better representing the error by 

more closely matching the scale of the data while remaining convex for versatility in 

optimization processes [123]. Root mean square error (RMSE) applies an inverse square 

term to regularize the error magnitude toward the error of a single data point as well as 

measuring the mean of all observations to provide an average error that would be expected 

at each one: 

𝑅𝑀𝑆𝐸 = √∑ 𝑟𝑖
2𝑁

𝑖=1

𝑁
.     (3.24) 

Mean absolute error (MAE) improves upon RSS by using an absolute value rather than a 

square and averages over the number of observations, 𝑁: 

𝑀𝐴𝐸 =
∑ |𝑟𝑖|𝑁

𝑖=1

𝑁
.     (3.25) 

Both RMSE and MAE are used in this work and either may lead to stronger model 

performance depending on the characteristics of the ground-truth data, the metamodel, and 

the optimization method that minimizes the error term. For this reason, the scoring metric 

and optimizer used in training are hyperparameters of the ML model. 
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 Optimization processes are used to minimize the loss function programmatically. 

Optimization is another area of research with a very robust history and catalog of methods 

available [124], [125]. In application to ML, iterative methods use the data available to 

search for a minimum using either gradients or finite differences to numerically 

approximate gradients. A local minimum is found where the gradient of the function is 

zero, 𝑓′(𝒙) = 0 and the surrounding function values are all larger in magnitude. Some 

examples are quasi-Newton methods [126] and gradient descent [127]. Finding global 

minima in multi-modal functions requires adaptive or stochastic methods such as stochastic 

gradient descent (SGD) [128], Adam [129], and L-BFGS [130]. These three methods are 

used as optimizers for training neural networks because they are effective for training with 

a large number of parameters. 

3.3.2 Neural Networks 

An artificial neural network (NN) is a common supervised learning method for both 

regression and classification tasks. Despite their common use as classifiers, NNs are 

metamodels that have a form more similar to regression models. They employ a network 

learning structure that consists of three types of layers: an input layer, an output layer, and 

some number of hidden layer(s) [131] [132]. This basic NN architecture is also referred to 

as a multilayer perceptron (MLP). The size of the input layer depends on the dimensions 

of the inputs for the classification or netamodeling problem, while the size of the output 

layer changes based on the number of different output values or classes of interest. The 

network architecture, including the number of nodes in each hidden layer and the number 

of hidden layers, is determined based on the complexity of the problem. A general feed-

forward MLP model is shown in Figure 3.7. The output of the 𝑘𝑡ℎ output node of the 

network can be represented as  
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   (3.26) 

where w and 𝛼 denote the weights and biases of the neural network, respectively, and 𝜙 

represents the activation function. A weight is an attribute of edges of the network while a 

bias is an attribute applied at nodes. Activation functions are task dependent and effectively 

hyperparameters of the NN which may be applied in hidden layers and the output layer. 

They are similar to basis functions by enabling a non-linear mapping between inputs and 

outputs.  

 

Figure 3.7:  A general feed-forward neural network model with a single hidden layer 

and three output variables. Weights, 𝑤, biases, 𝑎, and activation functions, 

𝜙, are attributes of the network layers. 

For regression tasks the activation function on the output layer is an identity 

function, 𝜙𝑜(𝑥) = 𝑥, that returns the input value from the previous layer, and when used 

in hidden layers, it is essentially a linear regression model defined on a graph. Non-linear 

activation functions, such as rectified linear units (ReLU) and sigmoid functions can model 

more complex mappings [133] and are especially useful in classification tasks because the 

output is thresholded to represent one of two states, on or off. On/off output states is 
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terminology specific to NNs but in translation to general classification tasks, it is analogous 

to class assignment, 𝑐0 𝑂𝑅 𝑐1. Activation functions are required to be differentiable so that 

they may be trained via backpropagation [134] of gradient information and optimized using 

the loss functions and algorithms discussed in the previous section.  

When training a neural network, the weights and biases are fit to minimize a loss 

function by using an optimization algorithm. The backpropagation neural network (BNN) 

is one type of NN that uses backpropagation as a supervised learning technique for the 

network training [134]. In the backpropagation training, the inputs are propagated to the 

output layer via the hidden layers, and the errors are backpropagated to the input layer. The 

propagation of error is called backpropagation because the network is modeled as a directed 

graph with information flowing from input to output. Errors are reduced iteratively with an 

optimizer by adjusting the weights and biases that are attributes of the graph. To query the 

BNN for classification, a new data point to be classified serves as an input to the trained 

BNN model, and the outputs of the trained BNN are the conditional probabilities of class 

membership that are interpreted according to the decision criterion of Equation 3.8 to 

produce the predicted binary class label. Various NN architectures may be trained by 

backpropagation so the term is excluded from the names of many NNs that utilize it. 

Neural networks can be structured in many ways. A fully-connected feed-forward 

MLP is utilized in Chapter 5 because it performs sufficiently for the classification task at 

hand. This model and any others with a few hidden layers are shallow NNs. Deep NNs 

[135] are those with a large number of hidden layers and, often, multiple networks 

combined with aggregation operations in an ensemble method. Deep learning has gained 

significant popularity in the last few decades as advances in computing power, such as 

massively parallel GPU architectures, and software such as TensorFlow [136], have 

enabled the training of deep neural networks to process large datasets with impressive 
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results in the machine learning [137] [138] and design communities [139] [140] [141]. 

However, training deep learning networks requires access to very large amounts of training 

data to fit thousands of associated network parameters. Deep NNs and deep learning tasks 

in general make up an entire field of research with many communities focused on the area 

[142]. A few techniques are especially noteworthy. Convolutional neural networks (CNNs) 

are network architectures that use mathematical convolutions in hidden layers as well as 

pooling/aggregation operations. They have gained popularity when working with spatially 

structured data such as images or topologies [139] [137]. Recurrent neural networks 

(RNNs) use feedback loops in the network architecture and have been used successfully 

for sequential tasks such as those with time series data [143] and text strings [144]. 

Autoencoders (AE) are designed for compression and decompression of high-dimensional 

input data for dimensionality reduction, feature extraction, and denoising and have been 

applied successfully for many other tasks as well [145]. Graph neural networks (GNNs) 

are a class of methods that work with input data that is structured on a graph itself. They 

are capable of utilizing all of the network architectures described henceforth for operating 

on the data, as well as many others [146]. In Chapter 6 a GNN architecture is used to learn 

on spatio-temporal data from an acoustic metamaterial simulation. Further description of 

that specific implementation is given in that chapter. 

 This chapter has provided background information on metamodeling and 

classification concepts that are used for design of AMM and, in particular, to address the 

research tasks. Bayesian network classifiers are used for design exploration in Chapter 4 

and ,because of the generative nature of the algorithm, provide information that is used in 

an adaptive synthetic sampling technique. Chapter 5 and 6 utilize very different NN 

architectures. An MLP classifier is employed as part of a manufacturing-aware design 
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framework in Chapter 5 while the method presented in Chapter 6 uses an ensemble of 

multiple NNs to enable design in a design space with a variable number of dimensions. 
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Chapter 4:  PCD-informed SMOTE Sampling for Design Exploration1 

Exploration of a design space is the first step in identifying sets of high-performing 

solutions to complex engineering problems. Classification algorithms are well-adapted for 

design space exploration in engineering tasks because they separate a space along 

boundaries of class membership and map regions of the space as either high- or low-

performance. Furthermore, generative classifiers provide information about class member 

regions beyond just the class assignment. Generative classifiers provide the joint 

probability distribution of each class and that distribution is essentially a continuous 

function of the design variables. Each class’s distribution may be exploited to improve a 

design space mapping such as with active learning and other adaptive sampling strategies 

[147] [78] [76] [79].  

For the purpose of exploration, Bayesian network classifiers (BNCs) have been 

shown to be effective for mapping regions of interest in the design space even when those 

regions of interest exhibit complex topologies [75]. Bayesian network classifiers are 

generative and can be tuned for classification performance by adjusting hyperparameters. 

They can use various kernels with adjustable distributions to form the joint probability 

distributions and each class’s distribution may be scaled heuristically. However, 

identifying sets of desirable solutions can be difficult with a BNC when attempting to map 

                                                 
1 The majority of the content in Chapter 4 has been previously published in [255] and the primary author of 

that paper is also the author of this dissertation. Some additional background has been added for the 

dissertation and a comparison of the methodology to other similar methods has been included in Section 

4.5.1. Carolyn Seepersad contributed to problem conception, supervised the work, and revised the 

manuscript. Caleb Sieck provided a template finite element model which was adapted by the author to 

generate data as described in Section 4.4.2. David Shahan and Clint Morris wrote the original MATLAB 

script for the Bayesian Network Classifier. The text of this chapter has been written by the author and 

edited by Carolyn Seepersad.  
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a space in which high-performance designs are spread sparsely (as described in Section 

1.2) among a disproportionately large number of low-performance designs, resulting in an 

imbalanced classifier. By adding synthetic design points into the BNC training set, a 

designer can rebalance an imbalanced classifier and improve classification accuracy 

throughout the space. Methods that oversample a less populous class with synthetic points 

often adopt the acronym SMOTE, for Synthetic Minority Oversampling TEchnique, from 

the 2002 seminal paper by Chawla et al. [148]. Moreover, because the BNC is a generative 

method, synthetic data can be added near decision boundaries in the design space or in 

other areas where deeper investigation is beneficial. 

In this chapter, a method is developed that creates a design space mapping of class 

membership probabilities for known training points and utilizes an ensemble of 

metamodels to interpolate between those points and generate synthetic high-performance 

points in a design space. For demonstration, this new synthetic oversampling approach is 

used to design the Willis material AMM with a two-layer heterogeneity detailed in Section 

2.2. Specifically, design exploration is improved in a sparse design space that has a 

combination of discrete and continuous design variables by increasing the efficiency of 

sampling to create a valuable design space mapping. The effectiveness of the new synthetic 

oversampling technique, called PCD-informed SMOTE, is compared to other leading 

SMOTE approaches in literature.  

4.1 CLASSIFICATION WITH IMBALANCED DATA 

In many cases, analysts and designers seek to predict events that occur vary rarely 

within a dataset. Classic examples include identifying patients with early-stage cancer 

indicators from imaging data [149] in the medical field, identifying oil slicks from satellite 

imagery [150] or detecting instances of credit card fraud from a large number of legitimate 
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transactions [151]. This problem is called imbalanced learning or anomaly detection in the 

machine learning community and is characterized by a significant class imbalance. An 

imbalanced learning problem may occur for any number of classes but for convenience is 

described henceforth as a binary classification in which a minority class is of particular 

interest and all other outcomes are grouped into a majority class. In the binary framework, 

a minority class instance is considered a “positive” P result and the majority class instance 

is considered a “negative” N outcome. With the classes defined in this way TP is a true 

positive result, FP is a false positive, TN is a true negative, and FN is a false negative. 

Figure 3.4 provides a two-by-two confusion matrix that further illustrates these 

classification assignments. 

These labels give insight into the classification task but more importantly serve as 

the basis for more informative evaluation metrics to make comparisons between classifiers. 

Quite a large number of evaluation metrics have been created for the purpose of comparing 

classifiers [152]. Some simple yet descriptive metrics include: true positive rate (TPR), 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑃
=  

𝑇𝑃

(𝑇𝑃+𝐹𝑁)
,     (4.1) 

false positive rate (FPR), 

𝐹𝑃𝑅 =  
𝐹𝑃

𝑃
=  

𝐹𝑃

(𝑇𝑃+𝐹𝑁)
,     (4.2) 

and accuracy (ACC),  

𝐴𝐶𝐶 =  
𝑇𝑃+𝑇𝑁

(𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁)
 .     (4.3) 

These metrics measure the performance of the classifier in different ways and are selected 

by the designer with consideration of the task at hand. More detail on these metrics is 

provided in Section 3.2.1. 

With a small number of minority class members used for training, classifiers tend 

to predict that all candidates belong to the majority class. When using a BNC, this occurs 

because the KDE for evaluating the majority class posterior probability overwhelms that 
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of the minority class, resulting in diminished minority class regions of the design space. 

Since almost all instances are members of the majority class, the ACC will be very high, 

even if every single minority class instance is misclassified [153]. For this reason, the ACC 

is insufficient for evaluation of imbalanced classification tasks because identification of 

minority class instances is very important and misclassification can be very costly. In the 

cancer detection example introduced earlier, for example, misclassification of a minority 

class instance means that a patient with cancer may not be diagnosed. In a problem of this 

nature, classifier performance is better described by its ability to identify minority class 

instances, so TPR and FPR are more meaningful scoring metrics than ACC.  

In sparse design spaces, sampling is likely to lead to very few high-performance 

designs isolated locally among an overwhelming number of low-performance designs. In 

this case, training a kernel-based classifier yields a KDE that indicates a misleadingly small 

region of the space holds high-performance (minority class) designs. Figure 4.1 shows the 

effect of a class imbalance of 50:1 in a 2D design space. In this example space, a region of 

high performance exists near the middle of the space, but due to sparsity of sampling, only 

a single high-performance instance exists in the data set. The resulting design space 

mapping fails to accurately represent the performance regions because of the imbalance. 

Predictions based on this mapping would likely misclassify any high-performing designs 

near the single high-performance training point because the posterior probability of class 

membership for the low-performance points dominates that of the high-performance 

point(s). 
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Figure 4.1: High-performance (blue) and low-performance (red) posterior probability 

surfaces over a sparse 2D design space with a class imbalance of 50:1. The 

49 low-performance points are red; the single high-performance point is 

green.  Due to imbalance, this mapping suggests that a misleadingly small 

region of the space holds high-performance designs. 

Due to the challenge of imbalanced classification and its prevalence in machine 

learning tasks [150] [154] [155] [156] [157], significant research has focused on improving 

classifier performance under these conditions [148] [153] [158] [159] [160] [161] [162]. 

The two most general approaches are to train the classifier in a cost-sensitive manner and 

to restore balance by resampling to either decrease the number of majority instances or 

increase the number of minority instances in training data [153]. Resampling the training 

data set can be done in many ways including: 

1. Gathering more real samples of the minority class, where real is defined as sampled 

directly from the underlying simulation  

2. Randomly removing majority class samples (random undersampling) 
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3. Informed undersampling of the majority class using an algorithm to remove 

samples so minimal definition of the space is lost 

4. Removing or altering overlapping instances from the two classes 

5. Generating synthetic samples to bolster the minority class 

Each method has benefits, but the generation of synthetic minority samples has been shown 

to be particularly powerful both in a static data set [148] and as an adaptive sampling tool 

[163].  

4.3 SYNTHETIC MINORITY OVERSAMPLING 

Imbalanced classification occurs in engineering design tasks when only a small 

number of high-performance designs exist within a design space that contains a 

disproportionately large number of low-performance designs. Imbalance is exacerbated in 

sparse design spaces with a mix of continuous and discrete variables that are poorly suited 

for gradient-based optimization techniques. In these cases, adapting a SMOTE approach 

adds capability to improve classifier performance and refine the exploration of sparse high-

performance regions within the design space. The motivation for generating synthetic 

samples is purely cost-driven. Evaluating an expensive model to oversample is viable but 

if the class membership can be predicted otherwise with sufficient accuracy, synthetic 

samples provide valuable data while incurring less computational expense. The original 

SMOTE by Chawla et al. [148] works by adding synthetic points, 𝒔𝑖, along D-dimensional 

lines between each minority class instance in the feature (design) space and its K nearest 

neighbors where K can be adjusted based on the desired breadth of minority oversampling. 

The synthetic sample is generated on a line by taking the vector difference between a 

minority class sample, 𝒙𝒊, and one of its nearest neighbors, 𝒙𝑘𝑖, such that the synthetic 

sample can be defined as 



 75 

𝒔𝑖 = 𝒙𝑖 + (𝒙𝑘𝑖 − 𝒙𝑖).      (4.4) 

 

By generating synthetic samples only between known minority class instances, the authors 

assume they would also be members of the minority class. Of course, validation of this 

assumption is important when testing the model.  

Adaptations of the original SMOTE are numerous [163] [164] [165] [166] [167], 

but the two most highly cited methods are borderline-SMOTE [163], and ADASYN [164]. 

Borderline-SMOTE calculates the 𝐾 nearest neighbors of all minority class points and 

creates a separate set of the nearest neighbors associated with each minority class point. 

Within each set, the number of majority class points is counted and then the sets are sorted 

according to the ratio of majority to minority class nearest neighbors, 𝐾𝑚𝑎𝑗: 𝐾𝑚𝑖𝑛. 

Synthetic samples are then generated between minority class points and their nearest 𝐾𝑚𝑖𝑛 

neighbors with preference to minority class points with a large number of neighboring 

points that belong to the majority class. Consequently, more synthetic minority class 

samples are generated near the decision boundary than not. The other popular technique, 

ADASYN, also identifies the ratio 𝐾𝑚𝑎𝑗: 𝐾𝑚𝑖𝑛 for each real sample 𝒙𝑖 and generates 

synthetic samples only between 𝒙𝑖 and minority class nearest neighbors, 𝒙𝑧𝑖. It is expressed 

as 

𝒔𝑖 = 𝒙𝑖 + (𝒙𝑧𝑖 − 𝒙𝑖)  × 𝜆     (4.5) 

where 𝜆 ∈ [0,1] is a randomly sampled number that affects the placement of 𝒔𝑖 along the 

line. Both of these methods improve upon the original SMOTE but leave opportunity for 

improving synthetic sample placement within a space. 

The following section describes a novel way to generate synthetic samples of the 

minority class and, by using them to train a BNC, improve the accuracy of the design space 

mapping. As a result, the model is improved and class prediction of candidate designs 
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becomes more accurate. This method is particularly advantageous in sparse and/or 

imbalanced design spaces where the BNC model underestimates the size of high-

performance regions in the design space. It uses class membership probability distributions 

to logically select where to add synthetic training points in a design space and improve 

definition around decision boundaries.  

4.4 PCD-INFORMED SMOTE TO IMPROVE BNC TRAINING  

The SMOTE adaptation developed here exploits a feature of the class probability 

distributions that are produced by generative classifiers. Unless a space is severely 

discontinuous, imbalance in a sparse training set suggests there is a strong likelihood that 

more high-performance designs exist near the ones identified in the initial sample. For this 

reason, it is desirable to add samples and consequently improve sample resolution near 

decision boundaries. For a BNC, the decision boundary is called the posterior class 

discriminant (PCD) and defined as 

 

𝑃𝐶𝐷 = 𝜆1𝑃(𝑐1|𝑥⃑) − λ0𝑃(𝑐0|𝑥⃑) 

=  
𝜆1𝑃(𝑥⃑|𝑐1)𝑃(𝑐1)−𝜆0𝑃(𝑥⃑|𝑐0)𝑃(𝑐0)

𝑃(𝑥⃑|𝑐1)𝑃(𝑐1)+𝑃(𝑥⃑|𝑐0)𝑃(𝑐0)
      (4.6) 

as presented in Section 3.2.3. Where 𝑃𝐶𝐷 ∈ [−1,1] and 𝑃𝐶𝐷 = 0 indicates the boundary 

between regions of differing class membership. Because the BNC is a generative classifier, 

an interval of PCD values can be specified to indicate specific regions around the decision 

boundary to add synthetic samples. The following section describes the PCD-informed 

SMOTE methodology in detail. This method improves the classifier’s ability to identify 

true positives and reduce the number of positives that are misclassified as false negatives. 

The metric for measuring success of this goal is increasing TPR while minimizing adverse 

effects such as an increase in FPR. This method is particularly advantageous in sparse 
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and/or imbalanced design spaces where the BNC model underestimates the size of high-

performance regions in the design space. 

4.4.1 PCD-informed SMOTE Algorithm 

To improve the overall classifier performance in a sparse, imbalanced design space 

we seek to add synthetic samples to the design space mapping near the decision boundaries 

(𝑃𝐶𝐷 = 0). As shown in Figure 4.2, the procedure starts with a sampling strategy and an 

initial design space mapping. Following a standard k-fold cross validation (CV) procedure, 

the BNC classifier is trained using a training set of candidate designs with known 

performance. Then, the accuracy of the BNC is evaluated with a separate set of test data 

(also with known performance evaluated from the expensive or black-box model). The 

BNC classifies the design space into high- and low-performance regions according to 

performance thresholds specified by the designer. If the high-performance designs are 

represented sparsely in the training data, and the TPR is unacceptably low, the BNC is a 

candidate for synthetic sampling. Figure 4.2a illustrates a simplified 2D design space with 

one discrete variable (𝑥2) and one continuous variable (𝑥1) and sparse representation of 

high-performance designs, shown as green points in the figure. This BNC is a candidate 

for a synthetic sampling procedure because its TPR is unacceptably low, as indicated by 

the substantial proportion of high-performance points outside of the decision boundary, 

which is represented by the solid black line in Figure 4.2a.  
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Figure 4.2: (a) A 2D design space with one discrete (𝑥2) and one continuous variable 

(𝑥1). The high-performance region is bounded by the black decision 

boundary derived from the KBN.  As shown, several high-performance 

(green) points are incorrectly classified as low-performance (outside of the 

decision boundary), contributing to an undesirably low TPR, so a PCD 

interval, indicated by the dashed lines, is generated to identify basis points 

for synthetic sampling. (b) A linear interpolation scheme is used to generate 

synthetic points for the reduced set outlined by the red box in (a). If the 

interpolation indicates that the point is high performance, it is added to the 

training set as a synthetic point, as indicated by the green stars.  Otherwise, 

it is rejected as a candidate synthetic point, as indicated by the red X.   

The PCD-informed SMOTE method operates by adding synthetic training points 

near the decision boundaries to improve the accuracy of the classifier. The procedure 

begins by identifying candidate designs near a decision boundary, where 𝑃𝐶𝐷 = 0. By 

specifying an interval of PCD values, the designer selects the design points that are suitable 

basis points for synthetic sampling. For example, the interval could be specified as 𝑃𝐶𝐷 ∈

[−0.2, 0.2] to utilize 20% of the space on either side of the decision boundary.  In Figure 

4.2a, the decision boundary is represented by the solid black line, and a small interval 

around the PCD is represented by the dotted black line. Any points within the PCD interval 

are designated as suitable basis points for synthetic sampling. The size of the PCD interval 
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is treated as a heuristic or hyperparameter and determines the extent of the design space 

that is utilized for synthetic sampling. An interval of 𝑃𝐶𝐷 ∈ [−1, 1] would encompass the 

entire space. 

With an assigned PCD interval, the next step is to interpolate between the basis 

points. In this case, one of the variables, 𝑥2, is a discrete variable, which is not amenable 

to interpolation.  Accordingly, an initial set of basis points is selected based on a common 

value for the discrete variable, 𝑥2, as indicated by the red box in Figure 4.2a. Then, 

synthetic points are generated by interpolating between the basis points to estimate the 

response of a candidate synthetic point using a regression or metamodeling technique. In 

Figure 4.2b, the performance response, 𝑓(𝑥1), is plotted as a function of the continuous 

variable, 𝑥1.  The value of the continuous variable is adjusted to generate candidate 

synthetic points. The performance, 𝑓(𝑥1), of the candidate synthetic points is evaluated by 

interpolation between the basis points of known performance. In the example case 

described here, interpolation is performed via simple linear regression between 

neighboring points, but any metamodeling method (non-linear regression, kriging, etc.) 

could be utilized to perform the interpolation. If the interpolated performance of the 

candidate synthetic point exceeds the performance threshold specified by the designer for 

the purposes of classification, it is accepted as a synthetic point to be added to the training 

set, as represented by one of the green stars in Figure 4.2b. If not, it is rejected, as 

represented by the red X in Figure 4.2b. Then, the process is repeated for all unique values 

of the discrete variable(s) until all of the basis points within the PCD interval have been 

considered. At least one continuous variable must be present in the design space.  While 

this illustrative example includes only one continuous variable, multiple continuous 

variables can be accommodated by the metamodel. 
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As shown in Figure 4.3, the synthetic training data is merged with the original 

training data to form a new training data set, and a synthetically enhanced BNC is trained. 

The accuracy of the synthetically enhanced BNC is evaluated with the same test data 

utilized to evaluate the accuracy of the original BNC. If the accuracy is still unacceptable, 

the process may be repeated iteratively. 

 

 

Figure 4.3: Flowchart outlining the strategy of PCD informed SMOTE. 

When applying this method to a design problem, it is good practice to select a subset 

of synthetic points to validate with the underlying expensive model. Although using 

metamodels to interpolate between basis points is intended to reduce computational 
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expense, validating a subset of synthetic points helps ensure the accuracy of the 

synthetically enhanced design space. The appropriate size of the validation subset primarily 

depends on the accuracy of the metamodel. For example, if a linear regression model is 

used to generate and evaluate synthetic points that exhibit a highly multimodal response 

with few basis points, the performance prediction of the synthetic design points could 

deviate significantly from the ground-truth performance gathered from the underlying 

expensive model. If that were the case, training the synthetically enhanced model with a 

CV scheme should indicate it performs poorly and would suggest that the chosen 

metamodel may not be appropriate. Regardless, validating a subset of synthetic samples 

reduces the risk of accepting an erroneous synthetically enhanced model. A validation step 

is performed in the demonstration problem in the next section. 

4.4.2 Design of Two-layer Willis Material with PCD-informed SMOTE 

To investigate the effectiveness of the PCD informed SMOTE procedure, we 

consider the task of identifying acoustic non-reciprocity in a two-layer Willis material 

AMM. The primitive design of the AMM and heterogeneity are described in detail in 

Chapter 2 so this section focuses on the design of this AMM to a minimum specified 

acoustic non-reciprocity. Because any two materials may be used in the heterogeneity and 

the frequency band where non-reciprocal responses may occur is very large, the design 

space is vast. Finite element analysis is used to evaluate the non-reciprocal performance of 

prospective designs. Because of the quantity of possible feature combinations and 

computational expense of FEA, exhaustive exploration of this design space is infeasible. 

However, the design space can be mapped by limiting the scope of the investigation. The 

problem is well suited to set-based design and classification of high- and low- performance 

designs. Additionally, it provides a challenging case of class imbalance due to the nearly 
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infinite number of candidate designs and the relatively small fraction of those designs that 

meet reasonable high-performance thresholds.  

Data Generation 

There are six features stated in Section 2.2 that are considered as design variables 

for the two-layer Willis material and four performance indicators. Even and odd Willis 

coupling are the key performance indicators while the impedance ratio between the 

heterogeneity and background material and the effective wavenumber inside the 

heterogeneity are used as constraints. All the variables and performance indicators are 

defined and organized in Table 4.1. 

 
Design Variables Performance Indicators 

Density of 

Layer 1  
𝜌1 

Normalized 

Even Coupling 
𝑐𝑜𝜒𝑒/𝑘0𝐿 

Density of 

Layer 2 
𝜌2 

Normalized 

Odd Coupling 
𝑐𝑜𝜒𝑜/𝑘0𝐿𝑘𝐿 

Sound Speed 

in Layer 1 
𝑐1 

Ratio of 

Effective 

Impedance to 

Background 

Impedance 

𝑅𝑒(𝑍𝑒𝑓𝑓)

𝑍0

 
Sound Speed 

in Layer 2 
𝑐2 

Normalized 

Wavenumbe

r in the Fluid 

𝑘0𝐿 =
2𝜋𝑓𝐿

𝑐0

 

Effective 

Normalized 

Wavenumber 
𝑘𝐿 

Volume 

Fraction of 

Inhom. 
𝑉𝐹 =  

𝑙

𝐿
   

Table 4.1: Key terms for use in design of a two-layer Willis material. The design space 

is six-dimensional and there are four important performance indicators. 

Sampling was restricted to consider 324 possible combinations of 18 common 

materials (i.e. steel, rubber, glass, lead, etc.) of varying properties but equal layer thickness 

in a background of liquid water. A Halton sequence was used to uniformly sample 𝑉𝐹 ∈

(0.1, 0.35) at 5 points and 𝑓 ∈ [500𝐻𝑧, 50,000𝐻𝑧] at 100 points in increments of 500 



 83 

Hz. Sieck et al., the authors of the paper “Origins of Willis Coupling…” [27], suggested 

starting with these intervals for 𝑉𝐹 and  𝑓 to find useful results [27]. With these sampling 

increments, the data set includes 162,000 samples.  

To meet performance constraints, the effective impedance of the composite, 

𝑅𝑒(𝑍𝑒𝑓𝑓), was constrained to 80%-120% that of water, and the effective wavenumber, 𝑘𝐿, 

was constrained to be less than 𝜋, which is considered the upper limit for the dynamic 

homogenization scheme to produce valid results. After removing all samples violating 

these constraints, the data set contained 6,750 samples in a 6D design space and was 

prepared for classification using BNCs. Gathering the data set with 𝑁 = 6750 took 

approximately 17 hours on a Linux machine with two 12-core Intel Xeon Gold 5118 CPUs 

and 250 GB of RAM. A reasonable coupling performance threshold was selected to 

distinguish between high- and low-performance classes. By classifying any sample with 

|𝑐𝑜𝜒𝑒/𝑘0𝐿| > 0.02 as high-performance, 10% of samples were classified as high-

performance and 90% of samples as low-performance. For a visualization of the 6D design 

space, the material properties were combined by calculating the difference in characteristic 

acoustic impedance between the 2 layers of the inhomogeneity 𝑍1 − 𝑍2 = 𝜌1𝑐1 −  𝜌2𝑐2. 

Figure 4.4 shows this reduced design space in a 3D scatter plot with a color map indicating 

normalized even coupling, 𝑐𝑜𝜒𝑒/𝑘0𝐿.  
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Figure 4.4: All sample points used for the demonstration problem scattered in a design 

space reduced to 3D by consolidating the material properties into a difference 

of characteristic acoustic impedances (𝑍1 − 𝑍2). All points in this set have 

effective impedances within 80%-120% of water and effective wavenumbers 

less than 𝜋. The color map represents normalized even coupling values, with 

absolute values greater than 0.02 indicating high-performance. 

Figure 4.5 shows some examples of the normalized even coupling response as a 

function of the normalized wave number, 𝑘0𝐿, for unique material combinations. The 

relationships are a subset of mostly high-performance samples that are later used for 

synthetic sample generation in the synthetically enhanced BNC model.  
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Figure 4.5: Normalized even coupling values as a function of normalized wave number, 

for 15 unique combinations of materials at a volume fraction of 17%. All 

responses have effective wavenumber less than 𝝅 and effective impedance 

within 80%-120% of water. 

This entire data set with 𝑁 = 6750 was used to train and cross-validate a naïve Bayesian 

network classifier both with and without the PCD informed SMOTE method presented in 

this work. 

Training the Classifier 

The BNC described in Section 3.2.3 used a Gaussian kernel and was trained and 

tuned by three-fold cross-validation. Classifier performance is evaluated using the three 

scoring metrics: 𝐴𝐶𝐶, 𝑇𝑃𝑅, and 𝐹𝑃𝑅. The Gaussian kernel parameter is expressed as 

𝜎𝑖,𝑙 =
α𝜎̂𝑖,𝑙

𝑁
𝑙
1/𝐷,                               (4.7) 

with: 
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𝜎𝑖,𝑙: kernel width parameter (Equation 3.17), 

𝛼   : heuristic scalar, 

𝜎̂𝑖,𝑙: st. dev. of design var. 𝑖 for designs belonging to class 𝑙, 

𝑁𝑙 : number of samples in class 𝑙, 

𝐷  : number of design vars. (dimensions). 

Performance of the classifier was evaluated with the sole hyperparameter, 𝛼, set as each 

member of a linear sequence from 0.01 to 0.5 and 0.001 was included to investigate the 

effect of a very thin kernel width. The full sequence is given as 𝛼 = [0.001, 0.01, 0.064, 

0.119, 0.173, 0.228, 0.282, 0.337, 0.391, 0.446, 0.500]. 

The synthetically enhanced model was tuned and compared against the base BNC 

model by using an identical set of data and with synthetic points added only to the training 

set. Synthetic points were generated by linearly interpolating along the 𝑐𝑜𝜒𝑒/𝑘0𝐿 vs. 𝑘0𝐿 

response curves (e.g. Figure 4.5) for every unique combination of heterogeneous materials 

in the data set using the exact methodology developed in Section 4.4.1. Linear interpolation 

was used so that the performance of this method can be compared more easily to other 

SMOTE methods that do the same. The SMOTE method performance comparison is 

described in Section 4.5.1. Hyperparameters for the PCD-informed SMOTE are: 𝛼, PCD 

interval, and the quantity of synthetic points added between real samples (interpolation 

layers). Early tuning showed three 𝛼 settings from the base BNC training yielded the best 

performance for the synthetically enhanced model so the 𝛼 space was reduced for 

efficiency. As a result, a hyperparameter space with 240 unique combinations was 

evaluated for the synthetically enhanced model. Settings for each hyperparameter of the 

BNC with PCD-informed SMOTE model are organized in Table 4.2.  

 

Hyperparameter Settings 
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Interpolation Layers [3, 4, 5, 6, 7, 8, 9, 10, 11, 12] 

PCD Interval  ±[0.1, 0.2, 0.5, 0.6, 0.8, 0.9, 0.95, 0.99] 

𝛼 [0.391, 0.446, 0.500] 

Table 4.2: Hyperparameters for the PCD-informed SMOTE enhanced classifier 

Training and testing each classifier model variation takes less than 30 seconds on a 

Windows machine with an Intel i7-8700 CPU and 32 GB of RAM. The performance of the 

base BNC and synthetically enhanced BNC are compared in the results section that 

follows. 

4.5 PCD-INFORMED SMOTE TO IMPROVE BNC TRAINING RESULTS 

The base BNC model showed the best performance with thin kernels (e.g. at 𝛼 =

0.01). Table 4.3 below summarizes the performance of the base model.  Regardless of the 

𝛼 setting, the 𝑇𝑃𝑅 never rose above about 38%, indicating poor performance identifying 

the high-performance regions of the design space. Three classifier scoring metrics are used 

to track potential adverse effects of increasing 𝑇𝑃𝑅 within the space. For this base model, 

𝐹𝑃𝑅 increased with 𝑇𝑃𝑅 except for the very thin kernels. 

 

𝛼 TPR FPR ACC 

0.001 0.379 0.011 0.922 

0.010 0.381 0.011 0.923 

0.064 0.349 0.014 0.916 

0.119 0.206 0.013 0.902 

0.173 0.119 0.011 0.894 

0.228 0.071 0.011 0.889 

0.282 0.035 0.010 0.885 

0.337 0.020 0.010 0.884 

0.391 0.008 0.008 0.884 

0.446 0.001 0.008 0.884 

0.500 0.003 0.007 0.885 
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Table 4.3: Results of tuning the base BNC model by cross-validation with varying 

hyperparameter 𝛼. The green highlighted hyperparameter settings in Table 

4.2 indicate the values that lead to strong performance for the synthetically 

enhanced model. 

The BNCs that were enhanced with PCD-informed SMOTE showed a very 

significant increase in 𝑇𝑃𝑅 and some increase in 𝐹𝑃𝑅. Figure 4.6 shows the achievable 

trade-off between 𝐹𝑃𝑅 and 𝑇𝑃𝑅 graphically for all 240 hyperparameter combinations, as 

well as the best base BNC models highlighted in red. Detailed performance of 10 

synthetically enhanced models with high 𝑇𝑃𝑅 and the lowest associated 𝐹𝑃𝑅 is shown in 

Table 4.4. It is clear that 𝐹𝑃𝑅 rises sharply for models achieving a 𝑇𝑃𝑅 greater than 70%. 

Ideally, 𝑇𝑃𝑅 is maximized while 𝐹𝑃𝑅 is minimized, so the best models are considered to 

be those nearest the top-left corner of Figure 4.6. This trade-off relationship is analogous 

to a Pareto front in multi-objective optimization [90]. 
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Figure 4.6:  Results of tuning the synthetically enhanced model for the two-layer Willis 

material design. Selecting the optimal model requires a designer to 

determine an appropriate trade-off between increasing 𝑇𝑃𝑅 and 𝐹𝑃𝑅. 

Interpolation 

Layers 

PCD 

Interval 
𝛼 TPR FPR ACC 

6 0.99 0.500 0.624 0.059 0.907 

6 0.99 0.446 0.638 0.060 0.907 

7 0.99 0.391 0.665 0.076 0.895 

7 0.99 0.500 0.674 0.072 0.900 

7 0.99 0.446 0.678 0.076 0.897 

8 0.99 0.500 0.708 0.097 0.881 

8 0.99 0.446 0.708 0.099 0.880 

9 0.99 0.391 0.731 0.127 0.858 

9 0.99 0.446 0.733 0.129 0.856 

10 0.99 0.391 0.753 0.156 0.834 

Table 4.4: Ten best performing BNCs enhanced by PCD-informed SMOTE sorted by 

TPR. 

Increasing FPR is an undesirable result that comes along with expanding the high-

performance regions of the design space mapping, but it is difficult to avoid. The ACC is 

slightly lower for the synthetically enhanced models than the best base model, which means 

that more false positives have been introduced than false negatives have been removed. 

However, in the interest of identifying regions that hold minority high-performance class 

members in design exploration, false positives are of lesser consequence than false 

negatives. With a higher TPR rate, this classifier is now much more useful for exploring a 

design space. Note that the large PCD intervals work well for this problem. This is likely 

a result of two things: smooth relationships between even coupling and wavenumber within 

each unique material combination and rejection of synthetic points that would belong to 

the majority class according to the metamodel-predicted coupling response. In a design 

space with a highly non-linear and multimodal mapping, a thinner PCD interval may be 

necessary. Overall the performance of this classifier has been improved noticeably by 

adding synthetic points around the decision boundaries. 
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Synthetic Sample Validation 

A validation step compared the interpolated performance of the synthetic points to 

the results of the FEA. Plots of 𝑐𝑜𝜒𝑒/𝑘0𝐿 vs. 𝑘0𝐿  showed mostly smooth functional 

relationships that were suitable for linear interpolation, but to be thorough, we evaluated 

2811 synthetic design points. Simple but representative hyperparameters were chosen: 

𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝐿𝑎𝑦𝑒𝑟𝑠 = 1, 𝑃𝐶𝐷 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = [−1, 1], and 𝛼 = 0.5, along with a 

performance threshold of  |𝑐𝑜𝜒𝑒/𝑘0𝐿| > 0.02. The mean squared error (MSE) between the 

interpolated and simulated 𝑐𝑜𝜒𝑒/𝑘0𝐿  values of the synthetic points was 7.4𝑥10−6. For 

reference, 𝑐𝑜𝜒𝑒/𝑘0𝐿 ∈  [−0.1, 0.1]. This low error rate demonstrated that the interpolated 

performance values were very close to the result we would have gotten by incurring the 

computational expense to evaluate them all with FEA. In this case, it required about 3.5 

minutes to evaluate each design point, so evaluating all 2811 points required approximately 

164 hours on a PC with an Intel i5 processor and 16 GB of RAM. For comparison, 

generating the synthetic points on the same machine takes just a few seconds. 

4.5.1 Comparison to other SMOTE techniques 

PCD-informed SMOTE improves design space exploration for engineering design 

tasks that have a performance response that is functionally related to at least one continuous 

design variable. Accuracy of the design space mapping can be increased efficiently by 

exploiting this relationship when oversampling with synthetic design points. The 

methodology presented here performs well when compared with other leading SMOTE 

methods. To benchmark this method, SMOTE, ADASYN, and borderline-SMOTE were 

also used to enhance the BNC classifier. The best instantiations of each technique 

maximized 𝑇𝑃𝑅 more than PCD-informed SMOTE but also showed more bias towards 

positive classification in general. They increased 𝐹𝑃𝑅 and reduced 𝐴𝐶𝐶 more than PCD-
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informed SMOTE. Classification performance when using each method to enhance the 

BNC is displayed in Table 4.5.  

 

Method 𝛼 SMOTE Borderline-SMOTE ADASYN 

Score 
 

TPR FPR ACC TPR FPR ACC TPR FPR ACC 

 
0.322 0.957 0.166 0.895 0.962 0.225 0.868 0.952 0.208 0.872 

 
0.367 0.961 0.176 0.893 0.961 0.232 0.864 0.952 0.214 0.869 

 
0.411 0.969 0.185 0.892 0.962 0.237 0.863 0.953 0.214 0.869 

 
0.456 0.971 0.196 0.888 0.964 0.236 0.864 0.954 0.221 0.867 

 
0.5 0.972 0.204 0.884 0.965 0.237 0.864 0.954 0.223 0.865 

Table 4.5: Performance of the three leading SMOTE implementations. Each SMOTE 

algorithm is used to oversample the design space for the two-layer Willis 

material design task using the same dataset that was used for PCD-informed 

SMOTE. 

 The comparison is only for a single design task so no definitive conclusions can be 

made about the general effectiveness of PCD-informed SMOTE as compared to other 

leading techniques but at very least, this method is competitive with those leading methods. 

Because more information is utilized to place synthetic design points, it could be easily 

expected that PCD-informed SMOTE would perform more favorably in a design space 

with an even more challenging response topology.   

4.5.2 Results Discussion 

Despite the challenging characteristics of the design space, adding synthetic 

minority class samples to the training set improved the classifier’s performance by 

increasing TPR at a significantly greater rate than the FPR when hyperparameters were 

well tuned. An ideal synthetic oversampling would not increase FPR at all, but since the 
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synthetic points are enlarging the high-performance regions of the design map, it is 

expected that some low-performance designs will lie in those regions and be misclassified 

during the cross-validation. 

One obvious opportunity to expand this work is to apply the method to additional 

design tasks and fully benchmark it against other under- and over-sampling techniques. 

Another opportunity is to study the relationship between the PCD bounds and design space 

characteristics such as sparsity and their effect on the synthetic generation process. It would 

also be worth testing more sophisticated metamodeling techniques for generating synthetic 

samples from the exploitable continuous variable relationship. For example, prior 

knowledge of the response or transfer learning from similar problems could be 

incorporated to add realistic synthetic points in areas of the space with little definition. 

In general, validating the classified performance of synthetic points is of great 

interest for improving the accuracy of the enhanced classifier, but it must be done in a cost-

effective way. There is potential for developing a confidence-based algorithmic scheme to 

select a validation subset from the synthetic points to optimize validation expense. For 

example, a sampling scheme could be used to evaluate synthetic points while the synthetic 

sample is being generated, perhaps using an expected improvement framework to 

determine which synthetic points are most valuable to validate with the underlying 

expensive model. 
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Chapter 5:  AM-aware Design of Asymmetric Acoustic Absorbers2 

Materials that absorb sound waves asymmetrically have long been desired for a 

variety of acoustic applications. A material that exhibits asymmetric absorption of acoustic 

fields dissipates energy of an incident sound wave differently depending on the propagation 

direction. The AMS with asymmetric ellipsoidal inclusions presented in Section 2.3 has 

been shown by initial experiments to be a promising way to achieve this behavior; it is the 

focus of this chapter. Multi-material additive manufacturing (AM) processes enable 

fabrication of these types of metamaterials because they provide a greater variety of options 

for material and geometry than traditional manufacturing processes. However, these 

processes place important limits on the resolution of features and introduce variability in 

the material properties and geometries of fabricated parts.  In this chapter a metamodel-

driven framework is created to efficiently perform uncertainty analysis and enable robust 

design of asymmetric absorbers such that they can be reliably manufactured using multi-

material AM processes. The method evaluates the probability of building an AMS to 

specifications given any particular AM machine with its associated accuracy. It also allows 

exploration of different AM machine accuracy characteristics with negligible additional 

computational expense. As a result, this method facilitates the search for suitable AM 

machines and helps a designer identify and propose machine accuracy targets to help guide 

AM process development. 

                                                 
2 The majority of the content in Chapter 5 has been previously published in [256] and the primary author of 

that paper is also the author of this dissertation. Some additional background has been added for the 

dissertation. Carolyn Seepersad and Michael Haberman contributed to problem conception, supervised the 

work, and revised the manuscript. AJ Lawrence provided a template finite element model which was 

adapted by the author to generate data as described in Section 5.4.2. The Zhang laboratory at the University 

of California – Berkeley built the handmade specimen shown in Figure 5.1. The text of this chapter has 

been written by the author and edited by both Michael Haberman and Carolyn Seepersad. 
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Asymmetric absorption has been shown experimentally in a proof-of-concept 

metamaterial structure that is very similar to the ellipsoidal inclusion AMS, as described 

in a forthcoming journal article by AJ Lawrence and Michael Haberman. The specimen 

was fabricated by hand with 𝑑 = 1𝑚𝑚 inclusions encased in a matrix of PDMS. The 

inclusions contain iron (Fe) and polyethylene glycol (PEG) roughly separated such that the 

material interface is normal to the direction of incident wave propagation. Unlike the AMS 

design utilized in this work, the inclusion layer is multiple inclusions deep with varying 

thickness across the inclusion layer. Figure 5.1 is a photo of the specimen. 

 

 

Figure 5.1: Proof-of-concept sample of an asymmetrically absorbing AMM. Inclusions 

are made by solidifying droplets of an iron-PEG slurry. The inclusions are 

spread into a layer on a solid matrix of PDMS and then encased in PDMS by 

curing more PDMS resin on top of the inclusions. Post-fabrication, inclusion 

materials are separated and aligned by melting the PEG and spinning the 

AMM in a centrifuge to move the denser iron particles to one side. 

While this experiment proved the concept of fabricating an asymmetric absorber, 

significant design changes are necessary to build them to specific engineering 

specifications, and the multi-material constitution and size of the inclusions make accurate 

fabrication challenging. 
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This chapter presents a manufacturing-aware design methodology for an 

asymmetrically absorbing metamaterial with a planar layer of multi-material ellipsoidal 

inclusions. By designing for robust as-built performance, the expected absorptive response 

of an additively manufactured AMS can be evaluated against inherent process variability, 

which is of fundamental importance in realizing metamaterial concepts for real-world 

applications. Furthermore, from the results of the robust design process, a manufacturer 

gains the information required to appropriately tune—or even develop—an AM machine 

to meet manufacturing requirements for future AMM and AMS designs. In this work, the 

robust design process is used to ensure as-manufactured success of a class of 

asymmetrically absorbing AMS, but is practically extensible to any other AMM or AMS 

when considering manufacturing variability. 

5.1 AM METHODS FOR FABRICATING AMMS 

Although there has been considerable theoretical work on the topic of 

asymmetrically absorbing materials and some proof-of-concept experimental 

demonstrations, pushing the boundaries of AMM behavior requires manufacturing 

methods that can produce the novel material arrangements conceived by engineers. In 

practice, manufacturing capabilities often restrict the way that material arrangements can 

be realized. To this end, the ongoing development of AM is a paradigm shift that enables 

the realization of metamaterials that were previously impossible to create [168]. AM 

enables material to be patterned with greater control and for complex features to be built 

at small scales. To achieve predictable behavior of complex metamaterial designs, the 

manufacturing method must be able to fabricate them reliably. For a passive 

asymmetrically absorbing metamaterial, the behavior is sensitive to geometric variation 
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because the physical response relies on resonating inclusions to affect the scattered fields 

[169] [28] [29].  

A robust design method for AM must account for manufacturing-induced stochastic 

variations in geometry and the resulting deviations from target performance of the AMS. 

By studying the sensitivity of AMS performance to manufacturing variation, the 

development of a prospective process can directly target the accuracy metrics required to 

produce an AMS with as-built performance that meets design requirements. Quantifying 

those metrics, in turn, reduces the need for experimental iterations in process development. 

The true performance of an as-built AMM is expected to deviate from the nominal 

performance depending on the sensitivity of the performance to error (manufacturing 

variability) associated with the as-built inclusion geometry and the magnitude of that error. 

To quantify performance of the AMS, we express the acoustic response as a stochastic 

function, 𝑔(𝒙, 𝑓), having an error component represented as a random variable, 𝜖(𝒛, 𝑻): 

𝑔(𝒙, 𝑓) =  𝐿(𝒙, 𝑓) + 𝜖(𝒛, 𝑻)                             (5.1) 

with:  

𝒙 : design features, 

𝑓: frequency, 

𝐿: deterministic response, 

𝜖: error, 

𝑻 ∈ 𝜴: AM process random variable set, 

𝒛 ∈  ℝ3: 3D position in build chamber. 

As defined, the error component depends on the interaction between a process-

specific set of random variables, 𝑻, as well as the position, 𝒛, in the physical space of the 

build chamber.  Spatial error manifests itself as inaccuracy of size, shape, and location of 

each material and the interfaces between them. There is an abundance of literature 
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attempting to quantify error for specific AM processes [170] [171] [172] [173], as well as 

translating process error to as-built part inaccuracy [174] [175] [176] [177]. Regardless of 

the source of build accuracy information, a proper robust design workflow must be able to 

utilize it. 

Once the as-built part variability is quantified, the next step is to translate it into 

expected variation in performance and resulting manufacturability requirements. For the 

present study, the variation in performance is quantified in terms of the degree of 

asymmetry of acoustic absorption, 𝛼̅ =
𝛼2

𝛼1
⁄ .  This type of analysis may be performed 

using a Monte Carlo (MC) approach, but MC methods can be prohibitively expensive when 

the underlying FEA is computationally expensive. This is especially true when the MC 

analysis must be repeated iteratively as part of an optimization process. In this work, the 

computational expense is reduced by replacing the FEA with a classifier-based metamodel 

of the FEA. The modeling and design for AM are described in detail in Section 5.4. 

5.2 MULTI-MATERIAL AM PROCESSES 

This work seeks to prescribe the limits on fabrication accuracy for the creation of 

the Willis-coupled AMS displaying asymmetric absorption detailed in Chapter 2. The 

accuracy of the manufacturing method and the sensitivity of AMS performance must be 

considered during the design process in order to be certain that an as-built AMS will meet 

the as-designed performance criteria. Multi-material AM is an obvious choice for the 

creation of this type of AMS because of the small size scale as well as the unique material 

and geometric challenges of building heterogeneous inclusions to specification [178]. 

Multi-material AM processes enable a wide variety of materials and geometries to be 

explored to create an AMS demonstrating asymmetric absorption. This work considers 

combinations of material choices and manufacturing accuracies that are not currently 
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achievable to demonstrate how robust design can be used to help guide process 

development toward an AM process that is capable of fabricating similar AMMs and 

AMSs. 

Existing literature on multi-material AM offers a few potential approaches. Direct 

ink writing is capable of patterning material at the sub-millimeter scale [179], and 

microfluidic devices are able to deposit inclusions as small as 200𝜇𝑚 in a direct ink writing 

process [180], but depositing multiple materials within each inclusion is an outstanding 

challenge. Ultrasonic [181] and magnetic [182] fields can be used to align and arrange 

inclusions but have not been applied to multi-material inclusions. Aerosol deposition 

methods can create the type of material interfaces required [183] and have achieved 

deposition of silver in lines as narrow as 10𝜇𝑚 wide [184] and with very thin layers (on 

the order of 1𝜇𝑚) [183], so layering enough material for the inclusions in question may be 

prohibitively time-consuming. Since none of these methods have yet been used to create 

an AMM or AMS with the architected features motivated by the asymmetric absorber, a 

robust design approach is sought to help specify the requirements of a suitable 

manufacturing process.  

5.3 PERFORMANCE SENSITIVITY AND SPATIAL VARIABILITY 

The expected variation in geometry or material properties induced by the 

manufacturing process must be considered during the design process. By doing so, the 

design task becomes an exercise in manufacturing-aware robust design. Robust design 

processes seek to identify designs that exhibit high levels of performance despite 

underlying variation in the design itself and/or the environment in which it functions [175] 

[185] [186]. These approaches account for randomness in subsystems or manufacturing 

processes as an integral part of the design process; deterministic design optimization is 
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insufficient because it does not account for variable production and operating conditions. 

Utilizing robust design is especially important for design tasks where the effect of 

variations among fabricated components is significant with respect to expected 

performance. Robust topology optimization techniques have also been developed to 

incorporate stochastic variation in material properties and geometry into a topology 

optimization process [174] [187] [188], but they require the underlying analysis to be 

amenable to gradient-based topology optimization formulations.  The approach presented 

in this chapter is more general and broadly applicable than topology optimization 

approaches. It makes use of a unique classification procedure to identify high performance 

designs and then to identify the subset of those designs that meet performance targets 

reliably even with manufacturing-induced variability taken into account.  

5.3.1 Approximately Planar Scattered Fields 

As part of behaving like a metamaterial, the resultant scattered fields from a planar 

incident field must also be planar. A planar scattered field would be expected from a 

conventional bulk material in the absence of a metasurface layer. Furthermore, planar fields 

allow absorption to be expressed in a pseudo-one-dimensional form despite the AMS 

geometry containing features in three dimensions. This assumption is valid in the 

metamaterial paradigm where characteristic inclusion sizes, 𝑎, and inter-inclusion spacing 

are subwavelength, i.e. 𝑎 ≪ 𝜆 and 𝑑𝑝 ≪ 𝜆, and the scattered field is probed multiple 

wavelengths from the scattering surface such that evanescent fields are extinguished.  

Absorption asymmetry can then be characterized with the ratio 

𝛼̅  =  
𝛼2

𝛼1
                                         (5.2) 

which is a measure of the dependence of acoustic absorption with respect to the direction 

of incidence. These structures exhibit reciprocal transmission but not reflection, so  
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𝑅̅  = |
𝑅2

𝑅1
|                                       (5.3) 

will serve as the performance metric for this study. Figures 2.9 and 5.6 show that the 

scattered field is indeed planar when analyzed at an appropriately low 𝑘𝑎 value. This 

scattered wave behavior matches expectations for inclusions with 𝑘𝑎 ≪ 1, which is a 

constraint for the AMS being in the metamaterial regime. If the inclusions are larger with 

respect to incident wavelength, multiple modes are excited, which makes calculating 

energy absorption much more difficult. While the performance goal is application specific, 

one obvious goal would be to maximize asymmetry as a function of design features, namely 

the excitation frequency, the composition of the heterogeneous inclusions, and the 

distribution of constituent materials within the inclusion domain.  

5.3.2 Narrowband asymmetric behavior 

Robust design approaches are especially valuable for systems with response 

behavior that is highly sensitive to variability in either design features or exogenous factors. 

The AMS considered here demonstrates narrow bands of asymmetric behavior with respect 

to frequency. For example, the asymmetric response performance of an AMS with 

spherical silver and polystyrene inclusions is shown in Figure 5.2.  
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Figure 5.2: Response behavior of the asymmetrically absorbing AMS is narrowband 

with respect to frequency. The response of the AMS with an inclusion layer 

made of spherical silver and polystyrene inclusions is plotted as: (left) 

separate reflection coefficients, 𝑅, and (right) the ratio of those coefficients. 

Both responses are in decibels.  

As a result of the narrowband behavior, the design space is somewhat sparse and disjointed. 

Because the physical behavior is dependent on resonance of the inclusions, the response is 

also sensitive to inclusion feature variability. The combination of narrowband response and 

sensitivity to feature variation makes robust design practically necessary when designing 

this AMS. Sensitivity to feature variability and the effect on the design space is further 

examined in Section 5.4.2 – Training Data Generation. 

5.4 AM-AWARE METAMODELING METHODOLOGY 

Identifying a robust design and specifying manufacturing requirements for this 

class of asymmetric absorber requires a deliberate design approach to be computationally 

feasible without requiring supercomputing capacity. Feasibility is a concern because FEA 

is necessary to evaluate candidate designs and the potential design space is high-

dimensional and vast. Furthermore, consideration of the robustness of any given design to 

manufacturing variability requires additional sampling near optimally performing designs 

to quantify the sensitivity of performance to manufacturing variation.  In lieu of brute force 

methods, a progressively refining, coarse-to-fine, design approach is employed here to 

address this challenge. A visualization of the design process is provided as a flowchart in 

Figure 5.3. The focus in the present study is on an AMS displaying asymmetric acoustic 

absorption at a specified design frequency, but the robust design framework presented is 

applicable for studying the manufacturability of any AMM or AMS that has a quantifiable 

performance that can be functionally related to geometric features.  
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Although the design method seeks to minimize computational expense, simulating 

the behavior of the asymmetric absorber using finite elements is a critical element of the 

design because the spatial variability of the geometry precludes analytical solutions. A 

thorough description of the FEA specific to this AMS is provided in Section 2.3.2. The 

design method uses FEA to gather data to train a classifier-based metamodel that closely 

replicates the input/output behavior of the FEA. For fabrication processes like AM, which 

have variable process conditions, estimating the success rate for manufacturing a complex 

component whose performance is sensitive to geometry variability would require many 

calls to the FEA, making an uncertainty analysis computationally expensive. Alternatively, 

a metamodel of the simulation input/response relationship can be queried quickly and for 

much less computational expense. Metamodels are surrogate models that are trained on 

data obtained from an underlying physics-based model and approximate the predictions of 

the underlying model [189] [190] [191]. There are many types of metamodels, and 

selecting the appropriate one requires information from studies that benchmark techniques 

based on characteristics of the task [191] [192] [193] or directly comparing a suite of 

techniques for the task at hand. The metamodel used for asymmetric absorber design is 

detailed in Section 5.4.2. An accurate metamodel then replaces the FEA for MC 

simulations to evaluate manufacturability of the asymmetric absorber on a particular 

machine. 
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Figure 5.3: Design process for AM of asymmetric absorbers subject to manufacturing 

variation of part features. The process begins with FEA of initial designs, 

which are evaluated based on asymmetric absorption to identify ideally 

performing designs. Designs with feature variation based on a Halton 

sequence around the ideal design are evaluated to train a metamodel for MC 

simulations. The MC simulations are a statistical experiment to quantify the 

number of satisfactory as-built designs that can be expected while trying to 

manufacture an ideal design. 

5.4.1 Target Design Search 

The first step of the design methodology is to identify a target design assuming no 

manufacturing variation. Exploration of the asymmetry with respect to the constraint 𝑘𝑎 ≪
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1 is carried out by holding the geometric parameter 𝑎 constant (for the manufacturing-

agnostic design only) with 𝑎 = 𝑑 = 1 mm and varying frequency in the range of 1 to 160 

kHz. Design instances are evaluated by parameterizing all pertinent geometric variables so 

they may be changed programmatically. The simulations are executed in Comsol 

Multiphysics with the PARDISO solver [56] [194] as described in Section 2.3.2. Scattered 

fields are averaged across the probe planes and post-processed to yield reflection, 𝑅, 

transmission, 𝑇, and absorption, 𝛼. Given all constraints, the manufacturing-agnostic ideal 

design is chosen from a coarse exploratory sample of feature combinations with asymmetry 

of reflection, |𝑅2/𝑅1|, as the performance indicator. All combinations of the features 

presented in Table 5.1 are included in the initial exploration for a total of 240 unique 

designs. There are too many features (dimensions) to visualize so a subset of this initial 

sample is displayed with only three of the candidate metals and with ℎ = 300𝜇𝑚 in Figure 

5.4. 

 

Feature name Features Settings 

Metal inclusion 

material 
Elastic modulus 𝐸 

Density 𝜌  

Poisson ratio 𝜈 

Aluminum, Brass, Copper, 

Iron(cast), Lead, Nickel, Silver, Steel 

Viscoelastic 

inclusion material  
Elastic modulus 𝐸 

Density 𝜌  

Poisson ratio 𝜈 

Loss factor 𝜂𝑠 

Rubber, PMMA, PMMA 150C, 

Polystyrene, PTFE  

Inclusion 

geometry 
— 

Sphere 

Characteristic size  Inclusion 

diameter 𝑑 

1 mm 

Material interface Distance from 

inclusion center ℎ 

50, 100, 200, 300, 400, 450 µm 

Excitation Frequency 𝑓 1 kHz to 160 kHz (30 steps) 

Table 5.1: Features included in initial sample of asymmetric AMS absorber designs. 
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Figure 5.4: Asymmetric response of multiple material combinations where the 

geometric parameter settings are identical for all of these instances. Each of 

these design instances is manufacturing agnostic and has a centered 

spherical inclusion ([𝑥𝑎, 𝑥𝑏 , 𝑥𝑐 , 𝑟𝑎, 𝑟𝑏 , 𝑟𝑐] = 0). The dividing plane between 

materials is ℎ = 300𝜇𝑚 for all instances in this plot. 

The aggregate results of this initial exploration are used to identify the ideal design. 

From this sample, the most promising ideal design is made of silver and polystyrene with 

a material interface at ℎ = 200 𝜇𝑚 for excitation frequencies, 𝑓 ≅  125 𝑘𝐻𝑧. The strong 

narrowband asymmetry in acoustic absorption of this design is shown in Figure 5.5. 

Narrow peaks of asymmetric response indicate that this design is sensitive to excitation 

frequency or, conversely, that performance at the design frequency may be very sensitive 

to geometric parameters.  
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The strong asymmetric response of this instance can also be visualized in 3D plots 

of the total pressure fields in the matrix and 2D cross-sections of stress in the inclusions. 

Stress inside the inclusion shows strong dependence on direction of incident waves. When 

propagating in the +x direction, much more acoustic energy is converted to energy of 

deformation in the heterogeneous solid inclusion and therefore more energy is absorbed by 

the viscoelastic material. Recall that the AMS is an interface of finite, but subwavelength, 

thickness separating two half-spaces and that  the asymmetric absorption occurs in a narrow 

band of frequencies around a resonance frequency of the inclusions. Due to the asymmetric 

material distribution within the inclusions, the mode shape of the resonance is also 

asymmetric, and thus there are different local impedances for waves incident from each 

side. Specifically, on one side of the AMS, the resonance leads to very little motion, while 

on the other side, the local particle velocity and pressure fields better match the 

characteristic acoustic impedance in the background medium. The asymmetric mode 

therefore leads to poor impedance matching and strong reflections for plane waves 

traveling in the +x-direction (case 1), while waves traveling along the -x-direction (case 2) 

are associated with a good impedance match and strong acoustic absorption (see Figure 

5.5). This behavior is analogous to the resonances in de-tuned Helmholtz resonators 

reported by Long et al. [28] and Merkel et al. [29], but the present work exploits material 

property asymmetry in subwavelength structures to create asymmetric mode shapes and 

thus asymmetric acoustic absorption with reciprocal transmission. Visualizations of the 

resulting fields are presented in Figure 5.6.  
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Figure 5.5: Narrowband asymmetric reflection response of an asymmetric AMS 

absorber made of silver and polystyrene inclusions embedded in a PDMS 

matrix. 
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Figure 5.6: Total pressure fields for incident waves propagating along the ±𝑥-direction 

and the resultant stress field within the inclusions. (a, b) Results for the 

incident wave traveling from left to right (+x-direction), and (c, d) shows 

simulation results for incident wave propagating from right to left (-x-

direction). Von Mises stresses are plotted on a cross-section of the inclusion. 

5.4.2 Metamodeling with MLP Classifier 

Like any part whose performance is sensitive to variability, manufacturing an AMS 

to achieve strong asymmetry in absorption requires tolerance specifications on accuracy. 

It is impractical to design parts like this one to exact feature sizes without accounting for 

manufacturing variation, especially in the case of AM, which is well-known to suffer from 

high part-to-part variation [195]. To account for manufacturing variation, each source of 

variability can be modeled as a random variable with a specified distribution based on 

known fabrication techniques. For AM processes, the distribution that describes the 

variation of any given feature is often determined empirically via a metrology study. 

However, variation in AM processes is inconsistent across machines, raw material types, 

process parameter settings, etc. [195]. As a result, the success rate of building a satisfactory 

asymmetric AMS absorber will be different as each process variable changes. For effective 

and efficient production of these parts, an estimate of the build success rate given a specific 

set of variable process conditions is invaluable, such that the build success rate quantifies 

the likelihood that a fabricated AMM meets a threshold for satisfactory performance.  

For application to the asymmetric absorber design, the ability to specify a minimum 

magnitude of asymmetry is required. To that end, a classifier is a suitable type of 

metamodel because classifiers separate inputs into classes [192]. In this work, classes are 

separated in a binary sense based on whether the performance of a given design is 

satisfactory or unsatisfactory. We specify a performance threshold for acoustic absorption 

of 6 dB of directional asymmetry of reflection. A shallow neural network (NN) architecture 
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called a multi-layer perceptron (MLP) classifier is used as the metamodel for this 

application because it is a general purpose non-linear approximator that has many options 

for tuning the performance [192]. The same classifier would be applicable to any case for 

which a performance specification requires a minimum (threshold) value to render the part 

satisfactory.  

Training Data Generation 

Generating data necessary to train the MLP classifier requires querying the FEA 

sufficiently throughout the space of possible design feature settings. For a classifier that 

maps performance to manufacturing variability, this means starting with the ideal design, 

estimating the maximum range of manufacturing variability for each feature, and 

generating a space-filling sample of the variability space. The space-filling sample is 

generated using a Halton sequence, which is a quasi-random sequence that distributes 

samples quasi-uniformly throughout the design space and is described in detail in Section 

3.1.2. Training the classifier with a space-filling sample improves its accuracy by 

minimizing the distance between any prospective design instance and a ground-truth point 

from FEA. 

The ideal silver and polystyrene asymmetric absorber identified previously in this 

section is being designed for robustness to spatial variability of the build process. Using 

the best reported aerosol deposition raster widths as a reference [183] [184], the range of 

each spatial variable is estimated to be 𝒙 ± 10 𝜇m where 𝒙 = [𝑥𝑎, 𝑥𝑏 , 𝑥𝑐, 𝑟𝑎, 𝑟𝑏 , 𝑟𝑐, ℎ]. A 7D 

Halton sequence is used to generate 500 unique structural designs in this space, which are 

then evaluated at 20 discrete frequencies in a 2 kHz frequency range spanning 124-126 

kHz. This frequency range bounds the strong asymmetric response at 125 kHz in the ideal 

design. As a result of the spatial variability in the sample, peak asymmetry of the structures 
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subject to manufacturing variability varies in frequency and magnitude, as shown in Figure 

5.7. The training data generation details are in Table 5.2. Data is generated by calling the 

FEA model for each design at each frequency and post-processing the data to calculate the 

asymmetric response. The computational expense of generating 10,000 data points is quite 

high as expected. Approximately 100 computing hours are required on a Linux machine 

with two 12-core Intel Xeon Gold 5118 CPUs and 250 GB of RAM for an evaluation rate 

of 100 samples/hour via FEA. 

 

Training Data Generation 

Feature Mean 𝜇 (mm) Range (μm) 

𝑥𝑎 0 ±10 

𝑥𝑏 0 ±10 

𝑥𝑐 0 ±10 

𝑟𝑎 0.5  ±10 

𝑟𝑏 0.5  ±10 

𝑟𝑐  0.5 ±10 

ℎ 0.2 ±10 

Exogenous N Range (kHz) 

𝑓 20 124-126  

Table 5.2: Variable definitions for all variables included in the Halton sequence of 

training data. 
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Figure 5.7: Asymmetric reflection of a small (N=10) subset of samples that are subject 

to manufacturing variation are shown with the ideal design. The frequency 

at which the peak asymmetry occurs and the magnitude vary with respect to 

the spatial feature settings. 

Training the Classifier 

The training data is used to fit the MLP classifier algorithm to accurately represent 

the FEA outputs in order to reliably classify designs that were not explicitly modeled. The 

MLP classifier is a network (graph) of connected nodes organized into three types of layers: 

an input layer, an output layer, and one or more hidden layer as shown in Figure 5.8 [196] 

[197]. Edges and nodes of the network are represented by weights and biases that are 

multiplied and summed from layer-to-layer such that each output node is a non-linear 

function of preceding layers. 
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Figure 5.8:  An example MLP architecture with five input features, one hidden layer of 

three nodes, and three output values. 

Finally, each output node is scaled by an activation function [198]. The MLP is trained 

using backpropagation [199] and the mapping between input and output is optimized using 

a gradient-based optimization algorithm. A more detailed description of the MLP classifier 

algorithm and its hyperparameters is given in Section 3.3.1.  

Data from the FEA is used to train the MLP classifier and optimization of its 

hyperparameters is performed using a three-fold cross-validation (CV) [200] scheme where 

prediction accuracy,  

 

ACC =  
𝑇𝑃+𝑇𝑁

𝑁
 ,                                      (5.4) 

is maximized. In the expression above TP and TN represent true positive and negative 

predictions, respectively, and N is the total number of predictions. As part of CV, the 

predictive quality of a classifier trained on a subset of data is evaluated for comparison to 

other classifier training iterations. Training and testing the MLP takes less than a minute 

on a Windows machine with an Intel i7-8700 CPU and 32 GB of RAM. Cross-validation 
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is the most straightforward way to optimize hyperparameters, and the CV process also 

helps avoid overfitting by training and testing the MLP on multiple unique slices of the 

training data. Specified hyperparameter settings are tested for all unique combinations. For 

this design, the optimized hyperparameters are the hidden layer quantity and size, the 

activation function, the weight optimizer, and the regularization parameter (𝜆𝑤). Because 

training and testing the model requires very little computational expense, a large 

hyperparameter space was explored. The hyperparameter search space and optimal settings 

are displayed in Table 5.3. With optimized parameters, training accuracy of the classifier 

is repeatably 98%. 

 

Hyperparameter Settings Optimized 

Setting 

Hidden layers  

(# 1st layer, # 2nd layer) 

(100,0), (200,0), (500,0), (100,2), 

(500,2), (100,100), (500,500) 

(100,100) 

Activation function  Logistic, Rectified linear (ReLu), 

tanh 

ReLu 

Weight optimizer L-BFGS, Stochastic gradient descent 

(SGD), Adam 

Adam 

Regularization param. 𝜆𝑤 Logspace 10-4 to 10-0.25 10-2.04 

Table 5.3: Hyperparameters for the MLP classifier of an asymmetric absorber. Optimal 

settings identified with cross-validation are in the rightmost column. 

5.4.3 Evaluating Manufacturing Processes with Monte Carlo Simulations  

Once the classifier is trained to a high accuracy, it is used to evaluate the success 

of manufacturing the ideal design on a machine with non-ideal size and position accuracy 

(i.e. spatial variability). The trained classifier is called 1 million times by the MC 

simulation to evaluate the expected success rate of parts subject to manufacturing 

variability. One million calls to the trained classifier takes approximately 2 seconds on the 
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same machine used to train the classifier. The success rate of this design instance is 

evaluated for multiple different idealized AM machines where the geometric variables 

from Table 5.2 are distributed random variables. These random geometric variables are 

characterized by multivariate truncated Gaussian distributions and multivariate beta 

distributions. Truncated and beta distributions are chosen to represent centered and biased 

distributions while being bounded. As a matter of practicality, the distributions must be 

bounded to prevent the inclusion geometry being built outside the matrix. The biased beta 

distributions represent a manufacturing process that commonly skews one way (e.g., 

shrinkage or over-sintering). 

The truncated Gaussian distributions are truncated at ±1𝜎, ±2𝜎, and ±3𝜎 for 𝜇𝑥 =

0 mm, 𝜇𝑟 = 0.5 mm, 𝜇ℎ = 0.2 mm and 𝜎𝑥,𝑟,ℎ ∈ {1,3,5,8,10,15,20} 𝜇m . The range of 

standard deviations, 𝜎, was selected such that the lower bound matches the thinnest known 

layer thickness achieved from aerosol deposition techniques (1𝜇𝑚) [183], while the upper 

bound represents double the raster width (20𝜇𝑚) [184]. The beta distributions are defined 

as 𝐵𝑒𝑡𝑎(2,6) and 𝐵𝑒𝑡𝑎(6,2) with the lower bound (LB) and upper bound (UB) defined as 

(LB, UB) = (𝝁, 𝝁 + 10𝜇𝑚). Probability density functions (PDFs) of these distributions are 

shown in Figure 5.9  for a single variable. Figure 5.10 shows ±1𝜎 truncated Gaussian 

distributions a variety of 𝜎 settings. For a real AM machine, variability of every spatial 

feature would likely be described by a different probability distribution and any distribution 

that characterizes a machine’s spatial feature variability within the range of training data is 

applicable. For the sake of this demonstration, the distributions and standard deviations for 

each variable are assumed to be defined identically (e.g., 𝑥𝑎,𝑏,𝑐~𝑁(𝜇𝑥, 𝜎), 𝑟𝑎,𝑏,𝑐~𝑁(𝜇𝑟 , 𝜎), 

ℎ~𝑁(𝜇ℎ, 𝜎)) and frequency is sampled uniformly 𝑓~𝑈(124 𝑘𝐻𝑧, 126 𝑘𝐻𝑧) for all MC 

simulations. 
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Figure 5.9: PDFs of the distributed geometric variables used for MC simulation. Single 

variable distributions are shown for ease of visualization. Each distribution 

represents the idealized manufacturing variability of an AM machine. 

Distributions are: (a) ±1σ truncated Gaussian, (b) ±3σ truncated Gaussian, 

(c) Beta(2,6), and (d) Beta(6,2). 
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Figure 5.10: PDFs of ±1σ truncated Gaussian distributions used for MC simulation with 

varying standard deviation (𝜎) parameters. 

Finally, for validation of the metamodel, a subset of 500 designs generated by each 

MC simulation are evaluated with FEA and compared with the classifier metamodel’s 

predicted performance. The validation step ensures sufficient accuracy of the classifier for 

a specific set of process conditions. 

5.5 AM-AWARE METAMODELING RESULTS 

Results of the MC simulation using the MLP classifier metamodel provide 

important information for the prospective manufacturing of this asymmetric absorber. 

Most clearly, it shows the proportion of as-built parts with dimensions specified by the 

idealized design that would be expected to achieve a satisfactory magnitude of asymmetry. 

Conversely, the required manufacturing variability for an AM process can be specified in 

order to reach a satisfactory as-built success rate. As a result, the manufacturer gains 

information to balance the risk of part failure with the cost of accuracy. For the example 

case considered here, the predicted success rates are higher for lower variability, as one 
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would expect, with a success rate of approximately 40% for a machine with 𝜎 = 1 𝜇m 

accuracy for all specified geometric variables. Conversely, running a machine with 𝜎 =

20 𝜇m would lead to only about 14% success rate. Success rate results for all of the ±1 𝜎 

truncated Gaussian distributions used in MC simulations are shown in Figure 5.11(a). 

Figure 5.11 (b) shows results for ±1𝜎, ±2𝜎, and ±3𝜎 truncated Gaussian distributions. 

Results of a validation subset generated by evaluating the FEA simulation are also shown 

in Figure 5.11 labeled as “True.” 

 

 

Figure 5.11: Predicted and true (from FE simulation) success rates from the MC 

simulation process are shown for many idealized AM machines 

characterized by a variety of different distributions of geometric feature size 

and position. Plot (a) compares results for a variety of ±1σ truncated 

Gaussian distributions. Plot (b) compares ±1σ, ±2σ, and ±3σ truncated 

Gaussian distributions for two different values of σ. 

Analysis of validation samples shows that the classifier is ≥95% accurate when 

samples are generated from the MC simulations with ±1𝜎 truncated Gaussian 

distributions, as documented in Figure 5.12(a). As shown in Figure 5.12(b), classifier 

accuracy for the ±3𝜎 truncated Gaussian distribution with 𝜎 = 10 𝜇m is very high at 

98.2% despite no designs with a feature size 𝜇 ± 30 𝜇m being included in the training set. 
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Although very few samples are taken from the tail probability near 𝜎 = ±30 𝜇m, it is 

notable that the metamodel is effectively extrapolating in these cases.  

 

 

Figure 5.12: The accuracy of the classifier is evaluated relative to MC simulations for 

several different distributions. Plot (a) compares results for a variety of ±1σ 

truncated Gaussian distributions. Plot (b) compares ±1σ, ±2σ, and ±3σ 

truncated Gaussian distributions for two different values of σ. 

In contrast to the non-biased Gaussian distributions that concentrate as-built 

instances near the ideal design, the beta distributions are used in MC simulations to show 

the effect of bias in a manufacturing process. This case represents a machine with a process 

parameter maladjusted leading to the mean spatial result being skewed away from the 

expected mean. When the geometric variables are skewed toward the design setting with 

𝐵𝑒𝑡𝑎(2,6), the manufacturability performance is very similar to the Gaussian distribution 

results. However, when they are skewed away from the design setting and closer to the 

upper bound of 10𝜇𝑚 with 𝐵𝑒𝑡𝑎(6,2) there are no satisfactory as-built instances identified 

in the validation set. The classifier accuracy is still good for both cases; it even successfully 

identifies all instances as unsatisfactory when the variables are distributed as 𝐵𝑒𝑡𝑎(6,2). 

The results of the skewed MC simulations are documented in Figure 5.13. 
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Figure 5.13: (a) Predicted and true (from simulation) success rates from the MC 

simulations with skewed beta distributions. (b) Classifier accuracy 

performance for both beta distribution validation sets. Where the geometric 

variables are distributed as 𝐵𝑒𝑡𝑎(6,2) there are zero successful as-built 

instances. 

Ideally, the accuracy of a metamodel is the same for any spatial feature distributions 

tested. The demonstration problem shows very strong accuracies of 95-99% as long as the 

metamodel is fit to a range of data such that studies require interpolation only. While some 

extrapolation may be possible, the metamodel will lose accuracy very rapidly with respect 

to extension beyond its training data range. For this reason, the selection of an appropriate 

training data range is important. The range ±10 𝜇m was selected for training in this 

demonstration because it became clear during the initial design exploration that very few 

samples were satisfactory for larger geometric feature ranges at the frequencies of interest. 

Clearly, the performance of this structural asymmetric absorber is very sensitive to 

spatial variation during manufacturing. This is evident in that manufacturing success rate 

is only 40% with a modest standard deviation of 𝜎 = ±1 𝜇m on all geometric features. The 

success rate declines non-linearly as the distributions widen, whether due to more tail 

probabilities included (±1𝜎 to ±3𝜎 truncations) or larger 𝜎. The success rate decline 
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flattens as the truncated Gaussian distributions get wider because they are all centered on 

the mean value of the ideal design. Comparatively, the metamodel predicts zero instances 

of successful builds for the beta distribution that is skewed away from the mean. This shows 

the value of unbiased error in manufacturing these metamaterials. While it may be unlikely 

that all spatial features skew that much from the ideal design dimensions, it demonstrates 

a worst-case scenario and shows that the metamodel’s predictive capability is equally 

strong in the unsatisfactory regions of the design space. 

Results Discussion 

This work has demonstrated that the fabrication of an AMS with Willis constitutive 

behavior, well-matched to water, with asymmetric absorbing capabilities is possible using 

subwavelength asymmetric inclusions in an elastomeric matrix material. However, for the 

design to function properly at a design frequency of 125 kHz requires strict levels of 

accuracy in the fabrication process. The information provided here lends itself to a few 

options. Most obviously, the size of the structure could be increased. However, increasing 

the size will necessitate designing for lower frequency incident waves to stay in the 

metamaterial regime (𝑘𝑎 ≪ 1) and maintain approximately planar scattered fields. 

Increasing the size of the metamaterial may also limit its applicability as its size and weight 

increase accordingly. Another option is to develop a rigorous multi-material AM process 

suitable for building the AMS so it can work at higher frequencies. The methodology 

developed in this work evaluates the manufacturing process accuracy required to build this 

type of asymmetric absorber for any desired operating frequency and size scale. At time of 

writing, aerosol deposition development has achieved 1𝜇𝑚 size resolution [183] but only 

in the direction normal to the deposition surface. Aerosol deposition looks promising for 

building inclusions although future work will need to more fully characterize the spatial 



 121 

variability of the process, as well as address the co-deposition of viscoelastic polymers. 

Additionally, the layer-wise deposition of many layers is difficult due to thin layer sizes 

and layer deposition abrading the previous layer. 

In addition to spatial parameters, constitutive material properties are a source of 

manufacturing variability. This study only considered spatial parameters to reduce 

complexity and improve clarity of the method and demonstration, but in practice material 

properties are also random variables dependent on AM process parameters. For example, 

the material properties of PDMS are functionally related to resin viscosity, curing 

conditions, additives, material aging, etc. Metals produced with AM processes often have 

material properties that differ from reference values and are usually anisotropic based on 

build directions. For these reasons, the variability of as built material properties cannot be 

ignored when building sensitive AMS such as the asymmetric absorber considered here. 

Fortunately, as the AM industry grows and looks toward the future, many organizations 

are characterizing their machines and performing exactly the type of variability studies 

needed to execute a classifier-based robust design with MC simulation [201]. However, 

there will continue to be a need for design methods that help designers predict and manage 

the effect of process-induced variability on acoustic material performance. 

Although this work focuses on a particular AMS with a single layer of elliptical 

inclusions, the design methodology presented is applicable to the design of any structure 

whose performance is sensitive to spatial or material variability associated with AM 

machines. Reusability of the metamodel is key to reducing the computational expense of 

evaluating the robustness of manufacturing the part on an AM machine, but it is crucial 

that the designer understand the limits on reusability. A metamodel can be reused when the 

variability of the manufacturing process stays within, or very near, the range of the data 

used to train the metamodel. Any significant changes in geometry will require training of 
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a separate metamodel. No metamodel is universal, but the method presented here satisfies 

the need to evaluate many machines given a target design and performance specification. 
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Chapter 6:  Efficient AMM Metamodeling for Design Domains of 

Variable Size 

Passive metamaterials are composed of many small-scale features to cause macro-

scale behavior that is otherwise unachievable with conventional materials. Analyzing 

metamaterials with a wide range of size scales leads to large quantities of data to represent 

topologies and requires a tremendous number of computations to evaluate them. The most 

direct way to address this challenge is to employ big-data supercomputing techniques that 

can represent the entire metamaterial at the scale of its smallest features. Aage et al. 

demonstrated this approach to design a full-scale airplane wing by gradient-based topology 

optimization over multiple days on an 8000 CPU supercomputer [4]. While computational 

power is ever increasing, access to these resources is limited, so it is still prudent to develop 

more efficient design methods. Multilevel BNCs [202] are one such tool that have been 

demonstrated for design exploration across hierarchical size scales. Another approach is to 

design a structure with repeated unit cells and exploit symmetry or periodicity relations to 

reduce the size of the domain. For topology optimization, multi-scale techniques based on 

homogenization of micro-scale responses [203] and simultaneous optimizations for each 

discrete scale [204] have been developed. Another approach is to use machine learning 

(ML) methods to create a metamodel that is capable of representing macro-scale behavior 

of a metamaterial with a combination of micro-scale components without strict 

homogenization. 

When designing metamaterials, domain size is defined by the dimensionality of the 

design space, which is related to the complexity of the underlying topology and the number 

of design variables associated with it. Metamaterial systems with high-dimensional design 

spaces and behaviors that vary with respect to excitation frequency are challenging to 

represent with metamodels for several related reasons. Training models for high-
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dimensional systems requires large volumes of data, and responses that are sensitive with 

respect to frequency compound the issue by requiring dense sampling through the 

spectrum. When the design space dimensionality is variable, efficiency is gained by 

training a metamodel that is valid for systems with a range of dimensionalities. This process 

is known as domain adaptation in transfer learning research and enables ML models to 

accept designs as sets (vectors) of features with variable dimensionality (length) 𝐷. This 

chapter presents a method to efficiently design acoustic metamaterials (AMMs) with many 

heterogeneous features such that analysis cannot be simplified by reducing the domain to 

a unit cell, and therefore, homogenization cannot be applied. A metamodel that is agnostic 

to input dimensionality represents the AMMs as graphs and uses neural network 

architectures that operate on graphs to update the metamodel from state-to-state. For the 

purposes of AMM analysis and design, states are discrete frequencies in the spectrum. 

Encoding the attributed graph before—and decoding after—calling the state update 

functions enables the update functions to maintain generality with respect to 

dimensionality. The trained update functions are then applicable to systems with a range 

of input dimensionalities in the training set. By skewing training sample generation toward 

lower-dimensional systems that are less computationally expensive to evaluate, the 

computational expense of gathering training data can be reduced with minimal loss of 

accuracy in predicting the dynamic behavior of higher-dimensional systems. The method 

is demonstrated using the asymmetric acoustic absorber described in Section 2.3 where 

geometric features of each inclusion in the metasurface layer may vary. 

6.1 DESIGN OF DYNAMIC SYSTEMS WITH VARIABLE DESIGN SPACE DIMENSIONALITY 

Metamodeling of a high-dimensional system is difficult because many samples are 

required to train the model sufficiently, and acquiring samples is often expensive for 
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engineering tasks [205]. This trait of metamodels is often referred to as the curse of 

dimensionality, and many metamodeling techniques have been developed to enhance the 

trade-off between accuracy and training sample size 𝑁. Some strategies include dimension 

reduction, optimization of coarse and fine models simultaneously, and the use of radial 

basis functions combined with model reduction, among others [205] [206] [207] [34] [208] 

[209] [210]. These techniques are best suited when the output of interest is a single-valued 

or aggregated response (even if a dynamic process acts to transform input to output) [211] 

[212]. 

Creating a metamodel that can be queried at any step during a dynamic process is 

also a challenging pursuit that has inspired some work on the topic [87] [213] [214] [215]. 

Despite incremental increases in training efficiency, these referenced metamodels can 

evaluate only inputs with design spaces having the same number of dimensions as the 

training data. Consequently, a new metamodel must be trained for any change in design 

space dimensionality, which makes representing combinatorial problems expensive. The 

metamodeling approach presented in this chapter addresses both of these challenges. Using 

neural networks (NNs) to operate on graphs, we create metamodels of dynamic systems 

that are general with respect to length, 𝐷, of the input design feature set. The metamodel is 

also able to predict dynamic responses for combinations and spatial arrangements of design 

features that are not included in the training set. It is worth noting that, although general 

for input set length, this metamodel does not extrapolate but rather acts as a function 

approximator for the interactions among graph elements based on their attributes. Any 

individual input feature setting in a model query must be within the bounds of that feature’s 

set in the training data for the metamodel to achieve useful predictive capabilities. The 

following sections introduce how a dynamic system with many features can be represented 

as a graph and NN architectures that operate on these graphs. 
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6.2 REPRESENTING PHYSICAL STRUCTURES AS GRAPHS 

Many types of structured information can be represented as graphs, 𝐺, composed 

of nodes, 𝑉, and connecting edges, 𝐸. This includes canonical examples such as the 

Traveling Salesman and Seven Bridges of Königsberg problems to more recent social and 

computer networks. It is often natural to represent systems as graphs in engineering 

disciplines because, in essence, engineers deal with objects (nodes) and interactions 

(edges). For these purposes, attributed and directed graphs are used to describe the 

properties and actions of an engineering system. Some systems that are well represented 

by graphs include truss structures, gravitational interactions, serial manipulator robots, and 

circuits. The flexibility for grouping features is an advantage of representing systems as 

graphs and sets the approach apart from other feature-based metamodeling techniques.  

An attributed, directed graph, 𝐺, has three types of elements: nodes, 𝒗, edges, 𝒆, 

and global features, 𝑢. Attributes for each element can be collected into a set and indexed 

to denote structure and connectivity. Attribute sets are defined as: global attributes, 𝒖, node 

attributes, 𝑉, and edge attributes, 𝐸. The direction of action described by each connecting 

edge is expressed by organizing each edge into a three-tuple with the index of receiving 

and sending nodes associated with each edge’s attributes. With these definitions, the graph 

may be formulated as 

𝐺 = (𝒖, 𝑉, 𝐸),     (6.1) 

with  

𝑉 = {𝒗𝑖}𝑖=1:𝑁𝑚
,     (6.2) 

𝐸 = {(𝒆𝑘 , 𝑟𝑘, 𝑠𝑘)}𝑘=1:𝑁𝑒
,    (6.3) 

where: 

𝑁𝑚: quantity of nodes, 

𝑁𝑒: quantity of edges, 
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𝑟𝑘: index of receiving node, 

𝑠𝑘: index of sending node. 

A graph defined in this way with four nodes and five edges is illustrated in Figure 6.1. 

 

 

Figure 6.1: A graph with four nodes, 𝑣, and five edges, 𝑒, has global attributes 𝒖. 

Connectivity of nodes and direction of action by edges is denoted by 

associating sender and receiver indices of nodes to each edge definition. 

 Engineering systems made of discrete elements are naturally adaptable to a graph 

structure but continuum systems may also be defined on a graph with some assumptions. 

Just as a truss can be analyzed with joints as nodes and members as edges, an acoustic 

metasurface of inclusions can be represented with inclusions as nodes and their interactions 

as edges. Modeling the asymmetrically absorbing AMS as a graph is detailed in Section 

6.4. Updating the attributes of a graph is done with a function of the elements and their 

attributes. The update function is not constrained to any particular form, but NNs are a 

flexible type of non-linear approximator and can be trained to represent the relations 

between graph elements when they are not known a priori. However, a NN architecture 

must be deliberately designed to operate on dynamic systems, graphs, and graphs with 

variable dimensionality. 
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6.3 NEURAL NETWORK ARCHITECTURES FOR DYNAMIC SYSTEMS 

Although NNs can require significant volumes of training data to provide accurate 

predictions [34] [94], the increasing availability of training data for many modern 

engineering problems makes NNs more attractive as metamodels. Simple NN architectures 

like the multi-layer perceptron (MLP) map inputs to outputs and can feasibly accept a time-

step signature or other system state variable as an input but have some shortcomings for 

modeling dynamic systems. In particular, other input variables are dependent on the state 

variable and an MLP is incapable of updating inputs based on the output at a previous state.  

However, research on deep learning has produced NN architectures that are tailor-

made for dynamic systems. The original NN architecture for dynamic data is the recurrent 

neural network (RNN) [199] by Rumelhart et al. in 1986. It is well suited for dynamic 

systems because an RNN maintains state information across a sequence of calls to the 

model by passing latent variables with a feedback loop. There have been countless 

architectures developed on dynamic systems since then [216] and the field has subdivided 

to address specific functionalities. The following sections provide a brief overview of 

temporal NN methods and how NNs may be coupled with graph representations to model 

dynamic systems with variable input dimensionality.  

6.3.1 Temporal NN Methods 

Research seeking to improve the capabilities of NNs for engineering applications 

has led to two popular approaches to modeling non-linear dynamic systems. The most 

obvious and perhaps more difficult approach is to directly approximate parameters of 

ordinary and partial differential equations (ODEs and PDEs). One such method called 

Neural Differential Equations [217] performs backpropagation through ODE solvers by 

solving a second ODE through a reversed time series using adjoint states. The PDE-Net 



 129 

method fits parameters of PDE models in order to learn the expression of a system’s 

governing PDE by training a feed-forward deep network [218]. This approach implements 

NNs to model dynamic systems and is well suited for discovering an expression that 

underlies the nature of a particular system when the general structure of the expression is 

known.  

The other popular approach to modeling dynamic systems with NNs is to operate 

on graphs. Gori et al. [219] introduced graph neural networks (GNNs) as a class of models 

for learning on graphs. In this formulation NNs such as RNNs are used as functions to 

update the state of the graph. Others have used convolutional filter layers in NNs to treat 

graph states analogously to image data. Kipf and Welling [220] demonstrated that a well-

designed architecture of sequential convolutional neural networks (CNNs) could model 

time-series data faster than a similar system using RNNs because of the parallelization 

improvements gained by not requiring the sequential passing of state information across 

time steps. Overall, there is a wealth of literature detailing implementation of NNs on 

different types of graph data; however, most approaches require spatial input features to be 

constant through time. Zhou et al. [221] and Wu et al. [146]  provide near-comprehensive 

surveys of GNN methods. 

6.3.2 Spatiotemporal NN methods 

From an engineering design perspective, interesting work has been done to model 

systems that change through both space and time using attributed graphs and neural 

networks. This class of algorithms is called spatiotemporal graph neural networks 

(STGNNs). STGNNs are designed to operate on graphs with attributes that change in both 

space and time. The NN based processing core of STGNNs can be formulated with RNNs 

or CNNs or a combination of both to utilize the strengths of each. Most STGNNs in the 
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literature have architectures that are tailor-made for specific problems [146]. This class of 

models has been implemented with CNN cores for traffic forecasting [222] [223] and 

classification of human actions from kinematic data [224]. For graphs where the existence 

of node or edge inputs changes, these and many other STGNNs are no longer functional 

[146]. While custom architectures are appropriate for modeling systems with static feature 

dimensionality, problem specific architectures lack the ability to generalize across input 

dimensionalities.  

6.3.3 Encoded Graph Neural Networks 

An effective way to operate on graphs with variable dimensionality is to use update 

functions that operate on groups of multiple graph attributes. These update functions can 

be represented by any trainable non-linear approximator, but NNs with a relatively simple 

architecture are a good choice for the task of updating all the nodes or all the edges of a 

system. Many common combinatorial optimization problems have been explored with 

similar approaches [225] [226] [227]. The breadth of work on GNNs has led to the 

development of frameworks and codebases to unify the field and spur further development 

[228] [229] [230]. Sanchez-Gonzales et al. demonstrated a GNN with the capability to 

learn nonlinear physics of multi-bar linkages by encoding input graphs [231]. Their 

implementation showed that the model predicted motion with good accuracy even for 

systems with a few more links than the maximum number included in the training data set.  

Graph-encoding GNN methods have the ability to represent interactions between 

graph elements. This strength, along with aggregated node and edge update functions, 

enables the metamodeling of multiple systems with different input feature dimensionalities 

with a single model and reduces the computational expense from training each separately. 
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The limitation is that the relationship between graph elements must be similar regardless 

of quantity.  

The arbitrary function approximators, 𝜙, that update global, node, and edge 

attributes operate on each graph element separately with a single function per type of graph 

element. Encoding, decoding, and processing input to output are done in separate NN 

blocks but all operate on the graph elements  the same way with  

𝒆𝑘
′ = 𝜙𝑏

𝑒 (𝒆𝑘,  𝒗𝑟𝑘
, 𝒗𝑠𝑘

, 𝒖),     (6.4) 

𝒗𝑖
′ = 𝜙𝑏

𝑣(𝒆′̅
𝑖,  𝒗𝑖, 𝒖),      (6.5) 

𝒖′ = 𝜙𝑏
𝑢(𝒆′̅, 𝒗′̅, 𝒖),      (6.6) 

where subscript 𝑏 represents the block index and ∗̅ represents an aggregation (mean or 

sum). Encoding and decoding the graph with NNs allows for the number of nodes and 

edges to vary because the input and output size of the processing block remains constant. 

Figure 6.2 illustrates how data flows between blocks of the GNN architecture for a set of  

update functions, 𝜙𝑏, 𝑏 = 1: 3.  
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Figure 6.2: The encoder NN block feeds a constant input size to the processing block 

and the decoder NN block accepts the output of the processing block with a 

constant size. 

Any NN architecture may be used for each block so long as the inputs and outputs of the 

encoder, processing block(s), and decoder are compatible as shown in Figure 6.2. 

This approach has been shown by Battaglia et al. to work for a few systems with 

variable quantities of nodes and edges [228]. This work, however, will extend the concept 

to AMM design with heterogeneous arrangements of unit cells with variable design space 

dimensionality.  

6.4 AMS DESIGN WITH GNN METAMODELING METHODOLOGY 

A metamodel that accepts a design space of variable dimensionality is a valuable 

tool for designing the directionally asymmetric acoustic absorber introduced in Section 2.3. 
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Analysis and design of that type of structure has utilized periodic Floquet boundary 

conditions to exploit in-plane symmetry and reduce the domain of the system to a single 

unit cell. As a result, every inclusion in the semi-infinite AMS layer has an identical 

geometry. Because the asymmetry is dependent on resonant behavior of the inclusions, a 

layer of identical inclusions produces narrowband asymmetry at resonant frequencies of 

the AMS. However, a heterogeneous arrangement or functionally graded inclusion features 

across the AMS planar layer may produce broader band asymmetric responses.  

Literature on similar resonance-based AMM absorbers has shown that 

heterogeneous combinations of micro-scale features produce broadband and multi-band 

absorption [232] [233]. Furthermore, early-stage manual design exploration has identified 

designs that exhibit broader band asymmetric absorption using a heterogeneous layer of 

multi-material inclusions in the AMS introduced in Section 2.3. Broader band asymmetric 

absorption was observed in AMS layers composed of repeating “super cells”, which are 

arrangements of single-inclusion unit cells in which the geometry of each inclusion may 

vary independently. The super cells also have Floquet periodic conditions on the 

boundaries that are orthogonal to the inclusion layer plane. Super cells of 16 total unit cells 

in a square-packed planar arrangement were required to identify broader band 

performance. Figure 6.3 shows a 4x4 arrangement of inclusions labeled with indexed 

feature ℎ, which represents the distance of the material dividing plane from center of the 

inclusion (𝑥 = 0).  
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Figure 6.3: A 4x4 arrangement of inclusions labeled with indexed features ℎ in an 

isometric view. 

Super cells are more computationally expensive to evaluate than single unit cells 

because the number of elements and degrees of freedom is proportional to the number of 

cells in the geometry of the FEA. With a 4x4 super cell, evaluating the system at a single 

excitation frequency takes 15 minutes on a Linux machine with two 12-core Intel Xeon 

Gold 5118 CPUs and 250 GB of RAM. Because of the high expense and need to evaluate 

many frequencies to generate a response curve with respect to frequency, only ℎ was varied 

among inclusions in the initial super cell exploration to minimize confounding variable 

interactions and computational expense. A few super cell arrangements showed broader 

band performance than what is observed from homogenous AMS layers. Figure 6.4 

illustrates some of these examples along with a homogenous layer for reference. 
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Figure 6.4: Resulting asymmetric response curves with respect to frequency for four 

different arrangements of inclusions in a 4x4 super cell. One arrangement 

(blue) exhibits asymmetric behavior spanning a 1500 Hz band at |𝑅2/𝑅1| <
−6𝑑𝐵. A homogenous layer of inclusions (black) produces asymmetric 

behavior spanning an 850 Hz band at |𝑅2/𝑅1| < −6𝑑𝐵. The other 

arrangements also show broader band asymmetric absorption but at a lower 

magnitude. 

These preliminary results motivate metamodeling with GNNs to find broadband 

asymmetric absorption. However, without broadband behavior in the training set the model 

cannot predict broadband asymmetry. Within the constraints of the computational power 

and time available and considering that feature combinations leading to broadband 

performance are not well-understood, the GNN metamodel is demonstrated using training 

data from super cells with only one to nine inclusions. The following section describes the 

NN architecture used in GNNs for the asymmetrically absorbing AMSs before the 

geometry-specific modeling is explained. 
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6.4.1 GNN Model Architecture 

To encode the graphs and achieve size generalizability, each update function 

requires three separate blocks of NNs. All update functions, 𝜙, are MLPs with 2 hidden 

layers of 16 latent variables. The encoder and decoder MLPs feed into LayerNorm 

operators that normalize the distributions of intermediate layers [234]. The processing 

block uses a message passing neural network (MPNN) [235]. An MPNN is also an MLP 

with 2 hidden layers of 16 latent variables but operates multiple times sequentially by 

passing output to input as many times as is specified by the number of processing steps, 

𝑁𝑝𝑠. This feature allows the GNN to make multiple sequential predictions as the value of 

the state variable frequency increases through the spectrum. Once trained, it can predict 

both the magnitude of asymmetry, |
𝑅2

𝑅1
|
𝑗+1

, as well as frequency, 𝑓𝑗+1, of the subsequent 

state, 𝑗 + 1, given an input graph 𝐺𝑗(𝒖, 𝑉, 𝐸) at state 𝑗. A visual workflow of the GNN 

architecture is shown in Figure 6.5. The workflow uses arrows to indicate information flow 

between segments of the NN architecture. Solid line arrows represent the linear flow from 

graph-to-graph for each group of graph elements. Dot-dash line arrows represent 

information shared amongst NN segments such as aggregated information about the edge 

values provided as input to the node calculations as shown in Equations 6.4-6.5.  
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Figure 6.5: Architecture of the multi-block GNN metamodel. The graph is encoded 

before and after processing with the MPNN. The workflow uses arrows to 

indicate information flow between segments of the NN architecture. Solid 

line arrows represent the linear flow from graph-to-graph for each group of 

graph elements. Dot-dash line arrows represent information shared amongst 

NN segments. Edge update functions pass an aggregation of their outputs to 

the node update functions as shown in Equations 6.4-6.5. 

The NN architecture is built using Tensorflow 1.15, sonnet 1.35, and graph-nets 1.0.4 

software packages. Each of these is available for Python and provides robust functionality 

for defining multi-block NN architectures, training them, and testing them.  

6.4.2 Metamodeling Asymmetrically Absorbing AMS 

The AMSs are modeled as graphs with node, edge, and global attributes. Table 6.1 

provides the attributes associated with each element. All attributes are detailed in Section 

2.3 in Figure 2.6. 

 

Graph Element Attributes 



 138 

Node, 𝑣 [𝑥𝑎, 𝑥𝑏 , 𝑥𝑐, 𝑟𝑎, 𝑟𝑏 , 𝑟𝑐, ℎ] 

Edge, 𝑒 𝑑𝑝 

Global, 𝑢 [𝑓, |𝑅2/𝑅1|] 

Table 6.1: Graph elements and their attributes for the AMS structured as a graph 

With these attributes, the graphs are assembled to represent the connectivity of the 

inclusions in the AMS layer. Figure 6.6 provides illustration of this for a 2x2 super cell.  A 

3x3 super cell is connected in the same manner but with an expanded graph. 

 

 

Figure 6.6: A 2x2 super cell of inclusions is defined on a graph. Part (a) illustrates the 

geometry used in the FEA while part (b) shows the graph structure of the 

geometry that is used for metamodeling with the GNN. 

Generation of this graph is automated with script that organizes the attributes of 

each element into sets as defined in Equations 6.1-6.3. Assignment of sender and receiver 

nodes is also automated and requires only the number of inclusions as input. Once graphs 

are generated for each spatial arrangement in the training set, they are sent as inputs to the 

NN architecture. The process for operating on the graphs in training and testing the GNN 
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is covered in the section titled, Training the GNN Model, but first the process to generate 

data will be described. 

Data Generation 

Two separate GNN models are trained in this work with different training sets to 

demonstrate the two most advantageous characteristics of GNNs separately. The evaluated 

model characteristics are: 1) domain transduction and 2) interaction learning. Domain 

transduction involves predicting outputs for input domain dimensionalities that are present 

in the training set at a low occurrence rate or are not present in the training set at all. 

Interaction learning means the model is trained to represent spatial arrangements (graphs) 

that are not present in the training set so long as the input features are within the ranges of 

the training set. It is called interaction learning because the model learns interactions 

between nodes and edges agnostic to any specific connectivity. The two characteristics are 

considered separately to benchmark the model’s predictive capability for each trait 

independently. The domain transduction model hereafter is referred to as GNN1 and the 

interaction learning model is referred to as GNN2 for brevity. It is important to note that 

both GNN1 and GNN2 use the same architecture and both are capable of both goals. Only 

the data used to train and test the models is different. From a sampling perspective, this 

strategy also reduces the computational expense to generate data. Table 6.2 provides the 

time require to generate a single frequency sample for each super cell size using a Linux 

machine with a two 12-core Intel Xeon Gold 5118 CPUs and 250 GB of RAM. 

 

Super Cell Minutes per Single Frequency Sample 

1x1 0.7 

2x2 3.7 

3x3 11 

4x4 15 
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Table 6.2: Sampling times for a single frequency of a supercell on a Linux machine 

with two 12-core Intel Xeon Gold 5118 CPUs and 250 GB of RAM. 

The data for the GNN1 model reuses the sampling scheme in Section 5.4.2. In 

summary, the 7 geometric features of each inclusion, 𝑣𝑖 = [𝑥𝑎,𝑖, 𝑥𝑏,𝑖, 𝑥𝑐,𝑖, 𝑟𝑎,𝑖, 𝑟𝑏,𝑖, 𝑟𝑐,𝑖, ℎ𝑖], 

are sampled with a Halton sequence with each feature distributed uniformly over a ±10𝜇𝑚 

range. Each design is then evaluated at 20 discrete frequencies from 124 kHz to 126 kHz. 

The same scheme is used to sample systems that are of size 1x1, 2x2, and 3x3. All 

inclusions are identical in the AMS layer. Data is split such that 1x1 systems represent 2/3 

of the training data (𝑁 = 500), and 2x2 systems account for 1/3 of it (𝑁 = 250). Only a 

few 3x3 systems are evaluated, and they are not included in the training set, but rather used 

to test the generalizability of the model trained only on smaller systems.  

Data for GNN2 represents solely 2x2 super cell systems with heterogeneous 

inclusion features. Initial exploration showed that asymmetric absorption performance was 

so sensitive to variability in inclusion features that peaks of asymmetric behavior 

sometimes moved outside the sampling frequency range. As a result, only ℎ was varied for 

the training data set. The features were set at [𝑥𝑎,𝑖, 𝑥𝑏,𝑖, 𝑥𝑐,𝑖, 𝑟𝑎,𝑖, 𝑟𝑏,𝑖, 𝑟𝑐,𝑖] =

[0, 0, 0, 500, 500, 500]𝜇𝑚 and ℎ ∈ 𝐻~𝑈(200 − 5, 200 + 5)𝜇𝑚 and each design was 

sampled over 40 discrete frequencies from 124.5 kHz to 125.5 kHz. One hundred 2x2 super 

cell designs were sampled (𝑁 = 100) and Figure 6.7 shows ten of the |𝑅2/𝑅1|vs. 𝑓 

response curves from the FEA evaluated sample of heterogeneous 2x2 super cells.  
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Figure 6.7: Ten asymmetric response curves for 2x2 super cell systems with 

heterogeneous inclusions. These responses are used to train GNN2 along 

with other members of the same sampling scheme. 

Despite the increased sampling density of 𝑓 = 40, these responses are noisier than the ones 

for homogenous AMS layers. Noise was considered when training the metamodels. 

Training the GNN Metamodel 

Both models are trained to update a graph from one frequency state to a subsequent 

state. All elements of the graph, 𝐺(𝒖, 𝑉, 𝐸), are updated from state-to-state. To minimize 

error while training, a random state from the training set is selected as the input graph and 

the target output graph is the next state in the sequence (e.g. 𝐺124𝑘𝐻𝑧 → 𝐺125𝑘𝐻𝑧).  The loss 

function to be optimized is the root mean square error (RMSE) of the state and magnitude 

values: 

𝑅𝑀𝑆𝐸 = √∑ 𝑟𝑖
2𝑁

𝑖=1

𝑁
,     (6.7) 

𝑟𝑖 = 𝒖𝒊 − 𝒖𝒊′,      (6.8) 
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where 𝒖𝒊 represents the predicted global variables values 𝑓 and |𝑅2/𝑅1| at one state and 

𝒖𝒊′ indicates the ground-truth values. Loss is minimized by backpropagation and gradient 

descent using the Adam algorithm [129] as the optimizer with a learning rate of 1 × 10−6. 

Both models are trained over 3.5 million training iterations in batches of graphs per GNN. 

Table 6.3 contains an ordered presentation of the hyperparameter settings for training. 

 

GNN Model Settings 

Parameter GNN1 GNN2 

Latent space size 16 16 

MLP layers 2 2 

𝑁𝑡𝑟𝑎𝑖𝑛 3,500,000 3,500,00 

Training Batch 200 10 

Testing Batch 1 1 

State per sample 20 40 

Table 6.3: Parameters of the MPNNs trained as graph update functions 

While training, the training loss is stored at regular intervals to evaluate 

convergence. Both models reach a very low error rate in about 250,000 training iterations 

and then decrease only slightly over the rest of training and show some variability. 

Although the error rate deviates some in late stages of training, its value remains very small 

and the model does not diverge. Figure 6.8 shows the training loss for both models during 

the training process.  
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Figure 6.8: Error rate as a function of training iteration for both models, GNN1 and 

GNN2. 

Once trained, the model is tested by making sequential predictions of both state and 

asymmetric performance produced by specifying the MPNN process as many times as the 

number of requested states (i.e., frequencies) beyond the current state. For example to 

predict the output at state 5 given state 1, the MPNN passes 4 output states back to its input 

sequentially. The AMS geometries used in testing were excluded from the training sets. 

6.5 AMS DESIGN WITH GNN METAMODELING RESULTS 

The trained GNNs generate trajectories of the systems’ states and magnitudes of 

asymmetry. Predicted and ground-truth trajectories of all the test systems were stored and 

error was aggregated by calculating RMSE between the true and predicted values of 𝑓 and 

|𝑅2/𝑅1|. Aggregate error for all predicted trajectories are presented in Table 6.4 

 

 
𝑅𝑀𝑆𝐸𝑓𝑟𝑒𝑞 

(kHz) 

𝑅𝑀𝑆𝐸𝑅2/𝑅1
 

(dB) 

Domain Transduction 

GNN1 0.126 1.59 

Interaction Learning 

GNN2 0.373 1.31 
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Table 6.4: Aggregate RMSE for all test trajectories separated by GNN model.  

Test sets for GNN1 included ten 1x1 systems, five 2x2 systems, and three 3x3 systems. 

For GNN2 ten heterogeneous 2x2 systems were used for testing. In testing of GNN1, error 

varied amongst dimensionalities of the predicted systems. As expected, systems with 

dimensionalities that occurred less in the training set showed slightly higher error. Table 

6.5 lists aggregated RMSE by system dimensionality. 
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1x1 0.117 1.43 

2x2 0.124 1.55 

3x3 0.154 1.71 

 

Table 6.5: Aggregate RMSE for test trajectories from GNN1 model separated by 

dimensionality of the system.  

While error was low when aggregated, an important part of designing these AMSs 

is identifying the peaks of asymmetric behavior. To this end, predicted trajectories are 

plotted against the ground-truth response curves from FEA and error is measured along the 

curve. The non-aggregating error measures are absolute error (AE),  

𝐴𝐸 =  |𝑡𝑟𝑢𝑒 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|,     (6.9) 

and relative percent error (%Error), 

%𝐸𝑟𝑟𝑜𝑟 =
|𝑡𝑟𝑢𝑒−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|

𝑡𝑟𝑢𝑒
∗ 100.    (6.10) 

The following figures present examples of the way specific system trajectories compare to 

their true responses. Predicted and true response curves are plotted for three systems from 
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the test set (Figures 6.9 and 6.11), and one of those models is plotted along with its non-

aggregating error measures, 𝐴𝐸, and %𝐸𝑟𝑟𝑜𝑟 (Figures 6.10 and 6.12). 

GNN1 Single System Trajectories 

 

Figure 6.9: True and predicted response curves are plotted for randomly selected 

models from the GNN1 test set. One curve is provided for each different 

size of super cell.  
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Figure 6.10: A predicted response from the GNN1 test set is plotted along with its non-

aggregating error measures. 

GNN2 Single System Trajectories 
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Figure 6.11: True and predicted response curves are plotted for randomly selected 

models from the GNN2 test set. Each curve represents a system with a 

different heterogeneous arrangement of inclusions. 

 

Figure 6.12: A predicted response from the GNN2 test set is plotted along with its non-

aggregating error measures. 

Results Discussion 

Both GNN models are adept at identifying peaks of asymmetric response behavior. 

For some predictions the error measures indicate significant error around the peaks, but 

they still predict the peak at the correct frequency. Thresholding a magnitude of asymmetry 
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that qualifies as a peak of asymmetric behavior would allow a designer to automate peak 

identification even when using the GNN as the metamodel for evaluating this system. From 

the aggregate RMSEs in Table 6.4 and inspection of predicted response curves it is clear 

that the GNN2 predicts the magnitude of peaks with more accuracy than GNN1. This may 

be because the GNN does not have to generalize between different size domains but also 

could be explained by the quantity of variable node features in the training set of GNN1. 

Recall that GNN1 had seven variable design features per node while GNN2 had only one 

variable design feature per node. 

There are ways this GNN metamodel could be improved. In this demonstration only 

one NN architecture was used. Architecture of the metamodel is essentially a collection of 

hyperparameters and can be either optimized with a cross-validation scheme or set 

heuristically based on prior knowledge or analogous implementation in the literature. 

Additionally, the attributes of nodes and edges could be changed so that they provide more 

information such as attributes that update dynamically. For example, edges could be 

defined as dynamically updating distances between each node. For metamodeling of an 

AMS with resonating inclusions like the one focused on here, relative node motion would 

likely be a strong indicator of absorptive behavior. This approach was not implemented 

here because the motion would be very small in magnitude and have to be extracted from 

the FEA. Because the excitation is steady state at a given frequency in the FEA, the value 

would be an average distance and be very close to the static distances used here. However, 

a time-domain analysis would provide time-series inclusion motion data and the GNN 

methodology is capable of updating across time states as well as frequency states. 

Clearly GNNs are valuable tools for metamodeling an AMM system with a variable 

number of features and learning interactions between heterogeneous features. Training and 

evaluating a GNN model is more efficient than sole reliance on FEA, especially for design 
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exploration purposes even though it requires a nontrivial investment in generating training 

data.. In the AMS design use case presented here, the relative sampling, training, and 

evaluation costs are illustrative. The full training set for GNN1 required 17 days of 

computation and each 3x3 test system required 3.7 hours. Based on the speed of 

convergence shown in Figure 6.8, this much data was likely not necessary but 2/3 of it 

was reused from the sampling in Section 5.4 and the data was generated while model 

development was in progress. Training the GNN took 7 hours and predicting each 3x3 

trajectory took 2 seconds. To investigate the training data required, the model was trained 

again with only 1/4 of the full data set (4.5 days to generate) and there was no loss of 

predictive capacity on 3x3 system test trajectories. The upfront FEA and GNN training is 

equivalent to evaluating 31 3x3 systems directly with FEA in this trial. While the upfront 

computational investment is substantial, the investment in metamodeling breaks even at 31 

3x3 systems so using the GNN metamodel becomes the more efficient choice if a designer 

expects needing to evaluate more than that. A designer must weigh the cost and benefit of 

data acquisition and modeling in any computational design task and this method is no 

exception. Furthermore, data acquisition may be done in parallel with GNN training, 

testing, and optimizing which would enable early stopping once a sufficient model 

accuracy is achieved. 

The results of this work suggest this implementation is capable of metamodeling 

AMSs with heterogeneous or functionally graded inclusion layers that exhibit broadband 

behavior as long as enough compute power is committed to generate a sufficient training 

set. Furthermore, this implementation is extensible to other metamaterial systems with a 

large difference in size scales across their domains that are not amenable to strict 

homogenization. 
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Chapter 7:  Conclusions and Future Work 

The body of work documented in this dissertation is focused on computational 

methods to automate and accelerate design processes for engineering acoustic 

metamaterials. The research tasks are listed below: 

Task One: Improve sampling efficiency during design exploration in sparse design 

spaces with mixed (continuous, discrete, categorical) data types. 

Task Two: Evaluate the robustness of metamaterial performance to spatial 

variability induced by manufacturing processes in a computationally efficient way. 

Task Three: Establish an automated, simulation-based method to efficiently design 

metamaterials with a variable number of repeating features and functionally 

graded spatial properties. 

 All three of these tasks have been addressed. Chapter 2 provided foundational background 

on the analysis of acoustic metamaterials (AMMs) including the analytical and numerical 

methods for the two types of AMMs used to demonstrate each research task. Chapter 3 

provided context on computational design methods such as statistical and machine learning 

(ML) and differentiated between metamodeling and classification methods including brief 

histories and evaluation techniques for each. The first research task was addressed in 

Chapter 4 by developing the PCD-informed SMOTE algorithm and using it to improve 

design exploration in the imbalanced design space of a two-layer Willis material. The 

second task was satisfied in Chapter 5 by developing a workflow that replaces finite 

element analysis (FEA) with a metamodel and uses that metamodel to perform Monte Carlo 

analysis on the manufacturability of a directionally asymmetric absorber for an arbitrary 

manufacturing process. The third task was addressed in Chapter 6 by designing a graph 

neural network (GNN) architecture that is compatible with inputs of variable 
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dimensionality and can be trained to represent asymmetric acoustic absorbers with 

functionally graded spatial properties.  

As a result of completing the three research tasks, contributions to the engineering 

design community have been made. These contributions are simultaneously applicable for 

efficient design of AMMs and extensible to other engineering design and computational 

automation objectives. The following section summarizes the research contributions. 

7.1 SUMMARY OF RESEARCH CONTRIBUTIONS 

Completion of the research tasks has a tangible impact on AMM design. Each task 

directly affects a challenge that has limited AMM design thus far. Using products of the 

first task, metamaterial designers can take advantage of local metamodels that exploit 

frequency and/or time dependence to efficiently mitigate the design space sparsity caused 

by high dimensionality, computational expense, and discrete design variables. As a result, 

metamaterial designs can be discovered during design exploration more efficiently and 

stricter performance specifications can be satisfied. The process developed in the second 

task informs the design of reliably manufacturing metamaterials by providing designers a 

way to quantify the probability that as-built metamaterials will match the expected 

behavior of a precise design. It can also enable co-development of AMMs and the 

manufacturing processes necessary to realize them by providing bounds on acceptable 

spatial variation as goals for manufacturing process innovators. The final task addresses 

the challenge of designing heterogeneous micro-structures in cases where analytical 

homogenization is not feasible as a means of reducing computational expense. For these 

cases retraining metamodels for each unique dimensionality of a feature space is 

inefficient. This work removes that constraint and motivates and enables transduction 

between design spaces of differing dimensionality. All three of these tasks contribute to 
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the overarching goal of enabling data-driven design for applications in which intuition and 

brute force design methods are infeasible. 

Satisfying the three main challenges also enables development beyond the 

motivating topic of AMM. Any generative design space mapping using a probabilistic 

discriminating metric can benefit from selective sampling to refine that space. The general 

idea of generating synthetic samples from a metamodel is extensible anywhere that they 

can be used to cheaply represent a black box function. Especially when data types are 

mixed, doing so will reduce the sampling burden and make design less expensive by more 

efficiently finding the promising regions of a design space. For the same expense 

minimization reason, network-based metamodels that accommodate design domains of 

variable size are valuable for numerous other applications. These models provide the most 

benefit when representing dynamic black box behavior of assemblies of constituent 

components. Although these techniques are focused on AMM, they are applicable for other 

classes of metamaterials as well. Perhaps models that are general with respect to spatial 

and temporal variables would encourage metamaterial development in disciplines that have 

otherwise ignored them by providing a way to overcome the obvious obstructions to 

identifying useful designs in a complicated multi-scale domain. Finally, processes that 

evaluate robustness of design for metamaterial manufacturing will be useful to guide 

process development toward specific performance goals. Whether developing multi-

material processes or otherwise, determining build requirements requires a way of 

quantifying manufacturing variability’s effect on a part’s performance. 

7.2 OPPORTUNITIES FOR FUTURE WORK 

The research contributions also provide opportunities for extension and 

applicability in many ways. 
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7.2.1 Adaptive Sampling for Generative Classifiers 

Chapter 4 demonstrated a PCD-informed SMOTE using a BNC classifier for design 

space mapping. This technique is benchmarked against other leading SMOTE techniques 

from the literature but only on the two-layer Willis material design problem. While PCD-

informed SMOTE performed slightly better than those other techniques on that problem, 

it would be interesting to benchmark it more broadly. Testing PCD-informed SMOTE and 

the other techniques on many design tasks with various common characteristics would 

elucidate its standing among SMOTE methods. If the new method performed well enough 

it could warrant development of an open-source software implementation and potentially 

be included in existing ML software distributions. 

7.2.2 AMM Designs that are Robustly Manufacturable 

The design process for evaluating robustness of as-built AMM designs used 

guidance from literature to specify manufacturing variability that could be expected when 

attempting to build the directionally asymmetric acoustic absorber. In particular, the best 

reported layer thicknesses and raster widths of aerosol deposition were used as the basis 

for assumptions of spatial feature variability distributions. Gaussian and beta distributions 

were built to simulate patterns of variability that are common to additive manufacturing 

processes such as mean-centered and biased variability. The obvious goal is to actually 

build an AMS and the work in Chapter 5 concluded some reasonable bounds for expected 

success rate of as-built parts. However, there are two main tasks to be completed before 

attempting to build. First a machine (or multiple) that is thought to be accurate enough to 

build the part with a reasonable success rate must be identified and then a metrology study 

must be conducted to characterize the variability distributions of as-built spatial features 

with respect to the design. A coordinate measurement machine could be used to create a 
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distribution of variability for each spatial feature of interest. Once the prospective 

manufacturing machine is characterized, the analysis presented in Chapter 5 should be 

conducted using the machine specific distributions to evaluate a real as-built success rate 

for that part. If satisfactory, a run of AMS parts could be made and tested. Experimental 

results from this process would help validate and/or improve the numerical analysis of 

AMS performance. 

7.2.3 Graph Neural Networks for Metamaterial Design 

 The results discussion of Chapter 6 suggested trying different attributes for the 

nodes and edges of the graph that models the AMS system and optimizing the NN 

architecture. Both of these efforts have the potential to improve the accuracy of the GNN 

metamodel. In addition, the clear forward path is to continue work toward identifying 

broadband asymmetric behavior of this type of structure and attempt to efficiently design 

for it. There are two main thrusts of this effort. The first is improving the acoustic analysis 

so that the underlying physics are better understood. Of particular interest is how many 

hertz must separate the local resonance frequencies of localized homogenous inclusion 

groupings. Initial exploration showed that small groupings of at least four adjacent 

inclusions needed to be identical to create the local resonant behavior that leads to macro-

scale asymmetric absorption. However, local groupings of inclusions that were too similar 

in geometry to other local groupings in the AMS layer would cause interference that 

reduced or negated macro-scale asymmetry. Gaining understanding of this topic would 

constrain and guide the search for AMSs that exhibit broadband asymmetric absorption. 

That information is essential to the second thrust, which is acquiring enough compute time 

to sample the design space of 4x4 and 5x5 super cells with sufficient resolution in the 

frequency spectrum to identify peaks of asymmetric behavior. Because the minimum super 
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cell size to identify broadband asymmetric absorption requires a great deal of computation, 

the GNN methodology presented in Chapter 6 will be invaluable to assist exploration for 

broadband asymmetry. 

7.3 CLOSURE 

Computational power is ever increasing but Moore’s empirical law of integrated 

circuit capacity no longer holds. Meanwhile, demand for computational power is 

accelerating in large part due to the advent of deep learning. Under these circumstances 

improving the efficiency of computational design is crucial to continue the pace of 

development of new, interesting, and useful engineering systems. Even if the 

circumstances change and computational power tracks a new path of greatly accelerating 

improvement, no resource, including computing power, is ever infinite. For this reason, the 

pursuit of computational efficiency in design exploration will always be a worthwhile 

endeavor. 
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Appendix: Nomenclature 

The following table presents nomenclature used in the dissertation. Terms are listed 

by chapter as they are introduced. Later chapters may utilize previously introduced terms. 

 

 

Chapter 1 

𝑆 Scattering matrix 

𝑝𝑖
+, 𝑝𝑖

− Incident pressure waves travelling in the ±x-directions 

𝑝𝑜
+, 𝑝𝑜

− Outgoing pressure waves travelling in the ±x-directions 

𝑅 Reflection coefficient 

𝑇 Transmission coefficient 

𝛼 Absorption coefficient 

𝛼̅ Ratio of asymmetric absorption 

𝜆 Wavelength 

𝑣 Wave propagation speed 

𝑓 Frequency 

Chapter 2 

𝝁 Momentum density 

𝒖 Particle velocity 

𝜖 Volume strain 

𝑝 Acoustic pressure 

𝝆 Anisotropic mass density 

𝛽 Adiabatic compressibility 

𝝌𝑜 Odd coupling 

𝝌𝑒 Even coupling 

𝑘 Wavenumber 

𝑎 Characteristic feature size 

𝜌 Material density 
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𝑐 Sound speed in a material 

𝐿 Unit cell length in the Willis material 

𝑙 Heterogeneity length in the Willis material 

𝑍 Characteristic acoustic impedance 

𝜔 Frequency in radians 

𝒏 Unit normal vector 

𝑙𝑒 Characteristic element size 

𝑝𝑠 Scattered pressure 

𝛼𝑚 Monopole polarizability 

𝜶𝑑 Dipole polarizability 

𝜶𝑐 Coupled polarizability 

𝛼̃𝑚 Complementary monopole polarizability 

𝜶̃𝑑 Complementary dipole polarizability 

𝜶̃𝑐 Complementary coupled polarizability 

Λ𝑚 Monopole fields 

𝚲𝑑 Dipole fields 

𝚲𝑐
𝑜 Even coupled fields 

𝚲𝑐
𝑒  Odd coupled fields 

𝑑𝑝 Square-packed separation distance of in-plane inclusions 

𝑀 Complex plane wave modulus 

𝑭𝑣 Body force 

𝑆𝑝𝑘 Second Piola-Kirchhoff stress tensor 

𝑭𝐴 Force per unit area 

𝒖𝑡𝑡 Acceleration 

𝑟a, 𝑟b , 𝑟c Ellipsoidal radii 

ℎ Distance from center of ellipsoid to material interface plane 

𝜂𝑠 Structural loss parameter 
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𝐸 Young’s modulus 

𝜈 Poisson’s ratio 

Chapter 3 

𝑦(𝑥, 𝒘) Functional form of single variable polynomial regression model 

𝑤𝑗 Scalar term weight coefficients of polynomial regression model 

𝑁 Quantity of design instances 

𝐷 Dimensionality 

𝑆𝑝(𝑛) Morokoff and Caflisch’s Halton sequence expression 

𝒙𝑛 𝑛-length sequence of design points 

𝒙 𝐷dimensional array of 𝑛 design instances 

(𝑎, 𝑏) Minimum and maximum values for scaling sequence of numbers 

𝒙′ Transformed 𝐷dimensional array of 𝑛 design instances 

𝜇 Mean 

𝜎 Standard deviation 

𝑐𝑙 Class number 𝑙 assignment of design instances 

𝑝(𝑐|𝑥) Conditional probability of the class given the candidate design, x 

𝑃 Member of the positive class 

𝑁 Member of the negative class 

𝑇𝑃 True positive classifier prediction 

𝐹𝑃 False positive classifier prediction 

𝑇𝑁 True negative classifier prediction 

𝐹𝑁 False negative classifier prediction 

𝐴𝐶𝐶 Classifier accuracy 

𝑇𝑃𝑅 True positive rate 

𝐹𝑃𝑅 False positive rate 

𝐹𝑁𝑅 False negative rate 

𝜆𝑙 Bayesian network classifier heuristic probability weighting 

𝑃𝐶𝐷 Posterior class discriminant 
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𝜖 Error between two functions 

𝜙𝑗 Basis function 

𝑅𝑆𝑆 Residual sum of squares 

𝑅𝑀𝑆𝐸 Root mean square error 

𝑀𝐴𝐸 Mean absolute error 

𝑓′ Gradient of a function 𝑓 

𝛼 Bias of neural network 

𝑤 Weight of neural network 

𝜙 Activation function of neural network 

Chapter 4 

𝒔𝑖 Synthetic sample design instance 

𝜆𝑠 Randomly sampled number used to add noise in ADASYN procedure 

𝜎𝑖,𝑙 Kernel width parameter 

𝜎̂𝑖,𝑙 St. dev. of design variable 𝑖 for designs belonging to class 𝑙 

𝛼 Kernel width scaling hyperparameter 

Chapter 5 

𝑑 Diameter of roughly spherical inclusions 

𝑻 ∈ 𝛀 AM process random variable set 

𝒛 ∈  ℝ3 Spatial 3D position in build chamber 

𝑅̅ Asymmetric reflection ratio 

Chapter 6 

𝐺 Graph representation 

𝑉 Set of node attributes in a graph representation 

𝐸 Set of edge attributes in a graph representation 

𝒖 Set of global attributes of an entire graph 

𝒗𝑖 Single node’s set of attributes 

𝒆𝑖 Single edge’s set of attributes 

𝑁𝑚 Quantity of nodes 
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𝑁𝑒 Quantity of edges 

𝑟𝑘 Index of receiving node 

𝑠𝑘 Index of sending node 

𝒆𝑘
′  Updated edge attribute set representing the subsequent state 

𝒗𝑖
′ Updated node attribute set representing the subsequent state 

𝒖′ Updated global attribute set representing the subsequent state 

𝜙𝑏 Graph element update function 

𝐴𝐸 Absolute error measure 

%𝐸𝑟𝑟𝑜𝑟 Relative percent error measure 

Table A: Nomenclature used in the dissertation 
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