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Abstract

Machine Learning Algorithms in Political Research

Guy Freedman, Ph. D.

The University of Texas at Austin, 2022

Supervisor: Sean M. Theriault

In recent years, political science has witnessed an explosion of data. Political scientists have

begun turning to machine learning methods to provide reliable and scalable measurements of

such large datasets. Building on the emerging literature on the use of machine learning in

political science, I contribute four major lessons to the students and scholars who wish to

make the most of these methods. These lessons include the advantage of treating machine

learning as a process, combining text as data with standard data practices, the strength of

pooling together supervised and unsupervised learning and the importance of understanding

a model’s strengths and limits. Through two rigorous empirical chapters, I trace the process

of machine learning in two case studies, with actual outcomes for two widely-used datasets in

the discipline. The first centers on a model for identifying agency-creation in historical data

of congressional hearings. In the second case study, I tackle a multi-classification problem of

predicting one of 20 major policy topics (and over 220 minor topics) in congressional bills. I

conclude with a look to the future of machine learning in the discipline as we shift from a

first wave of the literature that served as an introduction to machine learning, to a second

wave of utilizing machine learning in actual research on political data and the challenges that

these data present.
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1 The Data (R)evolution in Political Science

1.1 The Blessing and Curse of Big Data

The evolution of political science is closely tied to the evolution of data in the discipline.

Early research relied heavily on theoretic approaches to understanding social problems and

interactions, with minimal access to data in their modern application (e.g. Downs, 1957;

Hardin, 1968; Schattschneider, 1960). Such studies lay the foundations that resonate in

scholars’ theoretical reasoning of politics to this very day. What they share in common is

that the role of data was secondary to the theory. Some studies from this period of time

relied on no data at all; others rested only on observational input from their own environment

(e.g. Dahl, 1961).

Nearly 60 years after Dahl’s (1961) publication, a new global dataset on members of

cabinets emerged, bearing Dahl’s original title “Who Governs” (Nyrup & Bramwell, 2020). In

modern political science, data play a crucial role. Much of our time as scholars is dedicated

to the collection, preparation and measurement of qualitative and quantitative measurements

of data. Our use of data is no longer ‘merely’ complementary to theory, but has become

equally important. Rigorous empirical analyses have become standard procedure and the

major publications all host online repositories for replicating authors’ data and analysis. In

some cases, the data we collect have become a goal in and of itself—students are routinely

encouraged to collect and thus ‘own’ an original dataset as both a demonstration of skill and

as a pathway to publication.

The broad trend that characterizes political science as a whole is true to congressional

research specifically. One would be hard-pressed to find current publications that do not cite

some of the earliest foundational work of authors such as Mayhew (1974) or (Fenno, 1966;

1977). These studies are unique not only in how strongly they set the research agenda for

years to come, but also in the fact that they relied on an exploratory approach to what the

authors were confronted with in front of their very own eyes. Less than two decades later,
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large-scale data started playing a major role in congressional research, for instance in our

understanding of the federal budget process (Wildavsky, 1986) or in the governing patterns

of unified and divided government through the analysis of legislation (Mayhew, 1991).

Research in this area continued to evolve with the advent of data resources. B. D. Jones et

al. (1993a) revolutionized the study of policy-making in Congress, by providing a theoretical

paradigm that continues to define policy research. Their theoretical achievement was also an

empirical one; offering a coding system for measuring the policy agenda and introducing a

unique dataset—and one of the largest of its time—of congressional hearings spanning the

post-WWII era. Tens of thousands of hearings were put together in a single tabular dataset

providing never-before-seen measurements of what it is that Congress does on a daily basis.

The dataverse of this sub-field alone has since exploded to include numerous datasets

of policy-making both within the United States and across over twenty different countries

(Baumgartner et al., 2019).1 Authors such as (Adler & Wilkerson, 2008, 2013) further

pushed the boundaries of congressional data collection, introducing the congressional bills

dataset. This dataset has by now surpassed half a million observations of all bills introduced

in Congress since WWII and has fueled several avenues of research. Similarly, advances

in understanding the role of the media in covering or influencing public policy continue

to provide scholars with large scale datasets (Boydstun, 2013; Dun et al., 2021; Soroka &

Wlezien, 2022). And, as technological innovation introduces new tools for governing, scholars

have doubled-down on the effort to collect and trace this activity, providing, for example,

insights into senatorial representation in the age of social media through the analysis of over

180,000 tweets, in a span of just two years (A. Russell, 2021).

These large-data publications are not anecdotal outliers; they represent the trend of

increasing datasets in political science as a whole. To illustrate, I plot the increase in file

sizes of replication data in three of the highest ranking journals in political science: American

Political Science Review (APSR), American Journal of Political Science (AJPS) and the
1See https://www.comparativeagendas.net/.

13

https://www.comparativeagendas.net/


Journal of Politics (JOP). All three journals host replication data on the Harvard Dataverse

(https://dataverse.harvard.edu/) and I queried the dataverse’s API to extract metadata on

each journal’s publications. Data for APSR and AJPS are available consistently since 2012

(N=368 and 586, respectively). The JOP provides the journal’s data since 2015 (N=706).

This is an imperfect method by any means, but as Figure 1.1 suggests, we are witnessing

over time larger files in publications in all three journals.

Figure 1.1: Increasing File Size in Top Three Political Science Journals
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Big data is here. It holds promise and opportunity for all avenues of research that social

scientists care about: measurement, description, formal theory and causal inference (Brady,

2019; Grimmer, 2015; Grimmer et al., 2022; Grossman & Pedahzur, 2020; Monroe, 2013;

Monroe et al., 2015; Salganik, 2019). Researching policy-making in Congress has, in this

respect, come to parallel policy-making in Congress itself. Just as policy-makers are often

over-burdened with a fire-hose of information (Baumgartner & Jones, 2015), congressional
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scholars now face the challenge of having too much data.

Congress supplies and documents so much policy content that the challenge is no longer

about collecting sufficient data for hypothesis testing (a burden many political scientists

faced in the past) and is instead about sifting through an abundance of data, sorting it and

measuring qualities of interest. Hundreds of thousands of observations are available to us and

it won’t be long before we’re faced with millions of data points to analyze. The human hours

and skill it takes to collect and categorize these volumes of data in a reliable fashion can be

tremendous. Human coders need to be expertly trained, their work must be reconciled to

solve any disagreements and some measurements may be too costly for humans. With every

observation that needs to be reviewed, and every additional variable we wish to measure, the

duration and complexity of the task is multiplied.

This explosion of data presents new challenges for congressional scholars. How do we

balance speed and scale with reliability to provide full and consistently measured data?

1.2 Shifting the Burden: From Human to Machine Learning

Machine learning (ML) methods are at the forefront of dealing with the challenges of big data.

Machine learning is a sub-field of artificial intelligence that applies algorithms to make sense

of data. Algorithms are able to identify and learn from patterns in data to create knowledge

(Raschka, 2015). We can then apply that knowledge to provide measurements, insights and

even decisions relating to unseen data. Their application is wide and varied, from targeted

online advertisements or online fraud detection to the identification of cancerous growths

(Amethiya et al., 2021; Perlich et al., 2014; Yee et al., 2018).2

In my dissertation, I build on the work of several scholars, who have taken up the task of

illustrating how political scientists can benefit from machine learning (e.g. Grimmer et al.,

2021; Wilkerson & Casas, 2017), transforming the challenge of big data into an opportunity.

Some of the same statistical models political scientists use for inference can be used in a
2There’s even an expert machine that takes out all of the fun of asking “Where’s Waldo?”; see https:

//www.businessinsider.com/wheres-waldo-robot-ai-machine-learning-2019-2.
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machine learning setting (for example linear or logistic regressions, although they tend to

under-perform compared to more advanced developments in the field). If we shift our focus

from understanding the (causal) relationship between X and y, to using a statistical model

for making accurate predictions of y, we have shifted into the realm of machine learning

(Cranmer & Desmarais, 2017; Grimmer et al., 2021; Molina & Garip, 2019; Mullainathan &

Spiess, 2017; see also N.-C. Chen et al., 2018; Rudin, 2015; Wallach, 2016 on the differences

between the social sciences and the approach that practitioners of machine learning usually

adopt, including causal relationship vs. prediction and the deductive vs. inductive approach

to theory-building and data collection).3

Prediction is a far more scarce exercise than causal analysis in the social science, primarily

because its contribution to theory-building is thought to be limited (Shmueli, 2010). However,

this trend is changing as scholars have recently begun to identify ways in which machine

learning-based predictions can be used to inform thoeretical interests, including causal

relationships (Grimmer et al., 2022). For instance, highlighting the relationship between

campaign contributions and roll-call voting patterns (Bonica, 2018), using machine learning

to empirically estimate delegation and constraint in EU legislation (Anastasopoulos & Bertelli,

2020), or using the accuracy itself of a trained model to gain insights on temporal political

changes, such as the extent of polarization in the UK House of Commons (Peterson & Spirling,

2018) or the meaning of human rights standards (Greene et al., 2019).

The use cases of prediction that I examine in this dissertation are closest to the tradition

of using machine learning to predict missing values in variables that are meant to be included

as covariates in some regression model (Anastasopoulos et al., 2016; Fong & Tyler, 2021;

Grimmer et al., 2012; Imai & Khanna, 2016; G. King et al., 2013; Stewart & Zhukov, 2009;

Theocharis et al., 2016). Otherwise labeled as scientific prediction, this practice follows the

logic that if some condition in X is true, we can accurately estimate the value of ŷ even if

we don’t know the true value of y. I am less interested, here, in pragmatic prediction, which
3In inferential settings, authors often use the change in the predicted value of ŷ for a given value of X to

demonstrate the impact of X on ŷ , but rarely is the concern to provide an accurate prediction of ŷ.
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relates to a more prophetic notion of prediction, predicting the likelihood of a particular event

to occur in the future (Dowding & Miller, 2019). This type of practice is even more scarce in

political science (with the exception perhaps of election outcomes, e.g. Y. Chen et al., 2022).

Just as in the inferential tradition, the choice of algorithm may depend on several aspects

of our data, first and foremost our outcome variable of interest y. Unlike the inferential

setting, the scale on which y is measured, and its distribution, are not the first questions we

might ask. The first question we should ask is whether we know the true values of y for a

given sample of data. If, in the data we plan to learn from, we have values or labels for our

outcome variable, we may rely on supervised learning algorithms.

1.2.1 Supervised Learning

In supervised learning, we provide an algorithm with some collection of features X (the term

for predictors or independent variables in machine learning lingo) and a corresponding list

of y values. We rely on the algorithm to identify meaningful patterns in the relationships

between X and y to allow us to provide accurate predictions of ŷ in unseen or unlabeled data

(i.e. data in which we do not know the true value of y and are relying on the machine to

provide us with a good estimate). Below, I provide a descriptive take on several models; see

an excellent review of these methods in Wilkerson & Casas (2017), Montgomery & Olivella

(2018), Molina & Garip (2019) and Grimmer et al. (2021), including a greater emphasis on

the mathematical foundations and assumptions of each model, as well as illustrations of their

potential use in political science.

Some of the best performing supervised learning algorithms rely on ensemble methods of

tree-based weak learners (Hastie et al., 2009). Imagine building a tree. At each step, our

algorithm creates a split on some value of one of the features we provided the model, e.g. X1

> 5 would create a split with two branches—if the value is greater than 5 it goes left, else it

goes right. Next, it might split on another feature and so on. At the end of all these splits are

“leaves” or nodes, which are essentially predictions of ŷ values. At each step, the algorithm
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splits on the feature (and its value) that would maximize the explainable variance of ŷ at

that step. Maximizing explained variance at each split is often referred to as the greediness of

tree-based algorithms.4

The problem with a single tree is that it may be very sensitive to the structure of the

data and is too weak to identify enough patterns to yield accurate predictions. But, if you

were to build n trees (a parameter which you can control and optimize for the algorithm,

e.g. 1,000 trees), each receiving a random subset of the features provided (and sometimes

random subsets of the data as well), you may average across all of them to provide a much

better performing model. You now have a forest of trees, which is the source for one of the

most popular tree-based algorithms: Random Forest.

Tree-based ensemble methods usually perform much better than regression models. Much-

linski et al. (2016) for example, illustrate the strength of Random Forest algorithms, compared

to logistic regression, in predicting the onset of civil war. Tree-based methods are appealing

for three main reasons. First, they are far lass sensitive than traditional statistical models to

co-linearity among predictors. Second, they are far more adept at dealing with rare-event

data (Muchlinski et al., 2016). Finally, given the structure of the tree and its splits, handling

multiple and complicated interactions is inherent to these methods (Montgomery & Olivella,

2018). Kastellec (2010) illustrates this last benefit in understanding legal doctrine through

the analysis of search and seizure cases decided by the U.S. Supreme Court and confession

cases decided by the courts of appeals. Green & Kern (2012) make a similar point, using

Bayesian Additive Regression Trees (BART) in the analysis of a well-known experiment on

public support for welfare spending.5

In Chapter 3, I compare the performance of the Random Forest algorithm to a gradient

boosting model, which differ in several meaningful ways. The key difference I highlight is
4One downside of the greediness of trees is that it’s possible that we could provide a better prediction by

splitting first on a and then on b (their combination being the key), but if at the first step b explains more
variance, it will first split on that, creating a sub-optimal prediction.

5My emphasis is on tree-based models because I chose to work with such algorithms in this dissertation.
Of course, machine learning encompasses a wide array of algorithms. See for example D’Orazio et al. (2014)
and Seb & Kacsuk (2021) on the use of support vector machines for document classification.
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that while the Random Forest begins each tree with a random subset of features without

prior knowledge of the previous tree’s errors, a boosting model uses the knowledge of the

previous tree’s errors and tries to correct them. In my limited experience, the former may be

more useful in small datasets with a small number of trees; the latter supersedes the former

if the data are sufficiently large and we can increase the number of trees. Kaufman et al.

(2019) demonstrate the superiority of a boosting algorithm over other predictive methods,

including Random Forest, in predicting U.S. Supreme Court rulings.

In Chapter 4, I use one of the leading boosting algorithms today: Catboost. The main

advantage of this algorithm that interests me (again, several differences exist compared

to other models) is its unique method of allowing the use of categorical features in the

model (other models require one-hot-encoding, i.e. a k − 1 series of binary predictors, each

representing a different category and leaving one out as a reference category).6

Unlike regression models, which require us to choose an appropriate regression based on

the scale on which the outcome variable is measured and its distribution, the same tree-based

models can be used for both prediction of numeric values and classification of categorical

labels—themselves based on numeric probabilities. Categorical data can refer to either

dichotomous or multi-categorical data (mutually exclusive or multi-labeled, see Erlich et al.,

2021; Verberne et al., 2014).

1.2.2 Unsupervised Learning

Unsupervised methods are useful when we have some dataset of X features, but no mea-

surement of y. Thus, we’re relying on the algorithm to reveal patterns that separate our

data into meaningful values, e.g. clusters, we may conceive of as ŷ. The two main appeals of

using unsupervised methods are (a) that they don’t require labeled data, reducing the cost of

building such a model; and (b) that they require fewer a-priori assumptions about the data
6Another advantage that is worth mentioning is that it is both highly customizable and very easy to

apply in R or Python. Assuming small differences in performance, I value the accessibility and ease-of-use in
research when working with these methods.
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and they let the data “speak for themselves.” Quinn et al. (2010) demonstrate this property

in classifying senate speeches into topics to learn about the congressional agenda. But, the

onus is then on the researcher to evaluate the algorithm’s output and identify if said values

represent anything that is theoretically meaningful, and if so, what.

Unsupervised methods can be used as standalone models to yield data-driven theoretical

insights. One of the simplest, yet very powerful, examples of unsupervised models is K-means

clustering. For a given dataset of columns (numeric variables) and rows (observations), this

algorithm outputs clusters. Each observation in the dataset is assigned to a single cluster based

on its similarity to other observations. The driving mechanism of the algorithm is the attempt

to minimize the variance within each cluster (grouping together most-similar observations)

and maximize the variance between each cluster (separating least-similar observations). The

only input that the researcher must provide is the value of K, i.e. the number of clusters.

Several data-driven methods exist for determining a correct value of K.

For example, Cavari & Freedman (2021) use K-means clustering to identify four tiers of

affect in public opinion data, providing an empirically-based description of Americans’ views

toward the world, without making any prior assumptions about the data. As such, they are

most useful for discovery (Grimmer et al., 2022), best summed up in the work of Wilkerson

& Casas (2017, p. 533):

“Grimmer & King (2011) demonstrate how unsupervised methods can lead to

new discoveries. They find that congressional press releases cluster in ways that

match Mayhew’s (1974) typology of constituent advertising, position taking, and

credit claiming, but they also observe an additional cluster they label ‘partisan

taunting’ ”

In Chapter 4, I illustrate a novel method of combining supervised and unsupervised

methods within a single process, in this case aimed at measuring the policy topics of

congressional bills. I use two unsupervised methods—K-means clustering and word vector

representation—in the pre-processing of data to create useful features for the model. The
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combination of supervised and unsupervised methods can be very powerful, as illustrated by

G. King et al. (2017), who use trained models to classify documents into groups and then

extract the keywords that best represent each group.

1.3 Other Types of Learning

The world of machine learning is as large as the datasets such methods are applied to. I do

not intend for this review to cover all types of learning and I barely scratched the surface

of supervised and unsupervised learning, mentioning only some of the more widely-known

algorithms and emphasizing those I intend on using in my research. It is, however, important

to consider other types of learning as well, including semi-supervised learning (combining

labeled and unlabeled data, Zhu & Goldberg, 2009), reinforcement learning (in which a

“learning system’s actions influence its later inputs,” Sutton & Barto, 2018, p. 2) or deep

learning (in which models are composed of multiple hidden layers of abstraction of the data,

LeCun et al., 2015).7 Learning to navigate this world of models based on one’s data, problem

and desired solution, can be very conducive to optimizing results.

7Two particularly interesting aspects of deep learning are that (a) they have the ability to learn as they
progress, making them very useful for online production systems, adapting to the population of data as they
evolve; and (b) they can work with unstructured texts, rather than tokenized tabular data, making use of
additional information stored in texts, such as the order in which terms appear, their grammatical role in a
sentence, etc.
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2 Learning to Teach (the Machine)

In the previous chapter I surveyed the literature to serve three purposes: (a) to illustrate

that the volumes of data that political scientists are facing in their research are increasingly

growing; (b) to review how, as in other fields, political scientists have adopted machine

learning as a solution to provide fast, scalable and reliable measurements of data, on the path

to scientific discovery; and (c) to provide a simple foundation of machine learning techniques,

as an introduction to the chapters to come.

In this chapter, I outline the most important lessons I wish to add to this exciting body

of literature. I make two types of contributions to this growing body of research. The first

comprises of methodological lessons. Reviewing the literature on machine learning in political

science and the vast world of online resources, first attempts at applying machine learning

algorithms can be as disheartening as they are exciting. The ease with which we can use

R or Python packages to make use of machine learning on our personal computer makes it

all the more disappointing when results are not up to par. The four lessons I list below are

hard-earned lessons I learned myself throughout this dissertation that the literature does not

always prepare you for. For example, how do you train a model to identify an incredibly rare

event? How do you balance the bias-variance trade-off in a multi-classification problem?8

How do you test and/or prevent overfitting when your training data and unseen data are

from two completely different periods?

This first type of contribution fits well under the title of “How do we get there?” The

second type of contribution I make is what there actually is. In this case, the product is two

new updated datasets to be used in congressional research. Following this chapter, I present

two empirical chapters. In Chapter 3, I deal with a particularly difficult problem. I use the

congressional hearings dataset—a dataset comprised of all hearings held in Congress in the

post-WWII period—to identify hearings that relate to the creation of federal government

agencies in unseen hearings data. The unseen data are in fact very old data—a collection of
8Some might wonder what does the bias-variance trade-off even mean! (stay tuned)
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congressional hearings held in the period after the American Civil War and prior to WWII.

What makes this problem challenging is that hearings on agency creation are very rare (only

1.5% of hearings in the post-WWII era discuss agency creation) and the fact that my training

data and the unseen data are from two distinct periods, which vary in several ways, first and

foremost, politically.

In Chapter 4, I take on the giant that is the congressional bills project. The dataset

comprises of all bills introduced in Congress in the post-WWII era, leading up to the 114th

Congress (ended January 3, 2017). The challenge here is to find a way to reliably code each

bill into one of 20 major topics of the Policy Agendas Codebook, and one of over 220 minor

topics. Several authors have published on the use of machine learning in the congressional

bills project (Collingwood & Wilkerson, 2012; Hillard et al., 2008; Purpura & Hillard, 2006).

It is extremely difficult to provide reliable predictions to this multi-classification problem

and even the best efforts so far have converged at about 89% for the major topic level, and

81% for the minor topic level. Combining supervised and unsupervised methods, as well

as extensive human validation, I was able to correct many misclassified bills in the current

dataset and provide an updated version of it, including the 115th Congress (and am currently

preparing the 116th Congress data).

I present both chapters as an empirical endeavour, highlighting the challenges each of

the problems presents and the machine learning process I chose to overcome them. This

process is a collection of methodological choices that bear consequences for both the product

itself and its indented role in research. The chapters also serve as a hands-on introduction to

several of the components and concepts in machine learning. Each of them ends with the

product of a measurement, or dataset, as described above. Together, they also illustrate the

four takeways that I believe will contribute to the good use of this method in political science.

I outline them below.
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2.1 Machine Learning as a Process

Machine learning—in congressional research or otherwise—is not just a method, it is a

process of sequential, sometimes iterable, steps. Each step represents a methodological

progression within an entire workflow. Progressing from one step to the next requires several

decisions relating to how the algorithm of choice (itself a decision) is ultimately implemented.

Describing it as a process opens the door for inductive discovery (Grimmer et al., 2021, 2022)

and emphasizes that it isn’t enough to think only about the desired product. When we use

machine learning methods for creating a reliable measurement, we need to consider the data

generation process, i.e. how we got there: “formal theory is central to modern data analysis

[. . . ] formal theory, specifically social choice theory, speaks to how the data with which the

test will be carried out was created” (Patty & Penn, 2015, p. 95).

I illustrate a typical flow of the process of supervised learning (see Figure 2.1 ). We begin

with defining a population of interest, from which we will sample a test set and one or more

training sets. The test set is meant to serve as a set for assessing model performance. It,

therefore, should meet three important conditions.

First, the algorithm should never learn from any information included in the test set

because that would overestimate model performance. At its simplest, this means there should

be no overlap of observations between a test set and the training data. More complicated

overlaps may refer for example to time periods—if the data bear some chronological meaning,

perhaps our training data and test set should be sampled from two distinct periods altogether.

Additionally, feature values in the training sets should not be influenced by information

stored in the test set.

Second, the test set must be labeled. Whatever quality we’re interested in measuring,

to properly asses how well our model is performing, we need to test its predictions against

known data.

Finally, it should be a good representation of the data we’re ultimately interested in

predicting. The more similar our test set is to our unseen (unlabeled) data, the more valid
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our test of the model’s performance. If the test set is too different from the unseen data, it

will serve a poor estimate of model performance and we may end up introducing mistaken

predictions into our new data.

Figure 2.1: Typical Model Training Process
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Once we’ve sampled our test set, we may sample one or more training sets. Textbooks

often list 80/20 as the desired ratio between training sets and test sets (Raschka, 2015).

While it is a good rule of thumb, understanding why it is a good rule of thumb makes using

it, and in fact, deviating from it, much more efficient. A test set that is roughly 20% of the

population is meant to convey that it should be sufficiently large to represent the population

when testing model performance, but not too large so that we leave enough data to train on.

The key is to have as much relevant information to train on while having enough relevant

information to test on. In some cases, this might be achievable with a 90/10 ratio; others

might require a 50/50 ratio. The point is not the actual ratio, but rather what goes into each

set in a way that maximizes learning and allows a good assessment of model performance.

The remaining data after creating a test set may not represent the actual training set,

but in fact the training population, from which we draw samples to construct meaningful,

well-balanced and manageable training sets. Why not use the entire left-over population as

a training set? Building a training set isn’t about representing the population. It’s about

providing the machine the best cases to learn from. This simple understanding provides

several motivations to use samples rather than the entire set, despite the obvious implication:

A lot of data may be ultimately unused, essentially wasted.

First, some observations may be better suited for learning, providing a clearer distinction

between classes, or at least the type of distinction the researcher is interested in making.
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Time may even be a factor; e.g. it may be more useful to train a model predicting the policy

topics of the 115th on only a handful of the congresses that preceded it, rather than going all

the way back to the 80th Congress.

Second, sometimes, being true to the ratio of classes in the population may make it more

difficult for the machine to find useful patterns. Balancing the ratio between classes may

assist the machine in identifying useful patterns for making accurate predictions. We may

opt, for example to have 50% of our data from one class and 50% from the other class (a

1:1 ratio, in which for every observation from one class we provide one observation from the

other class), even though in reality, one class dominates 95% of the observations (19:1). Even

if we reduce this extreme ratio to 4:1, we’ve controlled the ratio between classes in such a

way that makes it easier for the machine to learn. Sometimes we might attempt to construct

more than one training set, in an effort to compare the use of different observations, class

ratios, sampling methods etc.

Finally, we may be limited in resources. A model training on 1 million observations will

take much longer and require far more resources than a model trained on “only” 200,000

observations. If, using a fifth of the data can substantially reduce run-time, while maintaining

the quality of the model, it may be a good enough trade-off.

Once we’ve selected our observations that compile each of our sets, we may select the

features that go into our model. If observations represent a unit of information for the

machine to learn from, features offer the machine a useful measurement (numeric, categorical,

Boolean, etc.) to learn from; they are therefore a meaningful representation of a single

dimension of the information stored in each observation.9 Many machine learning algorithms,

especially tree-based ones, offer advantages over standard statistical procedures, e.g. the

ability to handle hundreds, even thousands of features, with varying degrees of correlation

between them. While modelling such data isn’t necessarily best practice, it is possible.
9One of the advantages of deep learning methods compared to supervised machine learning is that the

latter requires the researcher to define and measure the features, while deep learning may rely on a more
basic definition of features to reveal in hidden layers the features that comprise of the information stored in
the data.
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Several methods may reduce the dimensions (the number of features) that try to eliminate

the problems such approaches introduce into the model.

Feature selection is about deciding what pieces of information to use as features, how

to measure them and what to exclude from the model. The two cases I present in this

dissertation illustrate some of the considerations of selecting features. Throughout the

dissertation, I engineer features in my models from various data sources, combining text as

data with non-textual data. In the first case, I use single terms from congressional hearings

as features and combine them with several non-textual features relating to the Congress in

which each hearing was held. I maximize the amount of features passed to the model but

avoid categorical features (using one-hot-encoding for categorical features) due to the nature

of the algorithm. In the second case, I use clusters of terms to form features to both reduce

the number of features in the model and the weight of the single term. I also use a single

categorical feature—easily handled by my algorithm of choice—but minimize my non-textual

features in the model, to avoid creating endogeneity problems later down the line.

Every feature, be it based on text sources or otherwise, requires pre-processing. Several

guides describe the pre-processing involved in text-based features, e.g. stemming words,

removing stopwords, digits, punctuation etc. But even non-textual features require pre-

processing. For example, how do we handle missing values? In categorical features we can

pool them altogether into an “Other” category (although if in fact they represent several

unknown categories, this may be a dubious decision). For numeric features do we impute

some value such as the mean/min/max/median? Or use some more advanced method to

impute the missing values? Alternatively, do we drop all observations with a missing value?

Some algorithms have their own method of treating missing data to avoid losing information

stored in such observations.

What students often don’t take into account is that how we decide to pre-process our

training sets has to inform both our test set and our unseen data. The algorithm simply

fails to predict data that is not in the same structure of the set on which it was trained. It
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won’t provide incorrect predictions or even missing predictions—it simply returns an error.

This prerequisite is important for two reasons. First, reproducibility is an issue even within

one’s own flow. If you don’t keep track of how you pre-processed your training set, it is very

difficult to usefully test your model’s performance or apply it to unseen data. Second, with

every feature you use, consider whether that information is available to you in your unseen

data and whether it means the same thing. If you can’t usefully measure it in your unseen

data, your algorithm might prove useless in predicting your unseen data.

Finally, we’ve reached the model training stage. Choices here vary from the particular

algorithm we choose (which has upstream effects such as minimal training set sizes, types

of features it accepts, etc.), to how we apply our algorithm. For example, in a tree-based

model how many trees should we use? 1,000? 4,000? 14,000? 13,912? How much weight

should we allocate to the machine’s learning from one tree to the next (more commonly

known as learning rate)? These hyper-paremeters, indicate how the machine learns, and

they are parameters that the machine itself can’t learn on its own. Several methods exist

for hyper-paramater tuning, ranging form manual experiments when data are insufficient

to random or bayesian grids of parameter combinations. Model training also often involves

trying to prevent overfitting to our training set, e.g. using cross-validation or a separate

evaluation set (I illustrate each of these methods in the coming chapters).

As good as a model may seem on our training set, we don’t have a good indication of

its performance until we use it to predict known data in our test set. Several metrics exist

for assessing model performance but even then, deciding what would be considered a good

outcome in each metric is a matter of perspective—dependent on the research itself and

the researcher’s priorities. For instance, imagine a machine that has to sort ripe tomatoes

from ones that aren’t ripe yet, sending the ripe ones left and the not-so-ripe ones right.

Is it more important to me to find all of the ripe tomatoes, even if it means also sending

some not-so-ripe tomatoes to the left bin (false-positives)? Or is it more important to me to

send only ripe ones to the left bin, even if it means sending some ripe ones to the right bin
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(false-negatives)? In machine learning terminology, the question is one of recall (the former)

vs. precision (the latter), which I cover more extensively in Chapter 3. Many of the metrics I

dive into in the empirical chapters rest on the foundation of these two metrics—recall and

precision—which together, represent the model’s accuracy. We often aim to find a balance

that maximizes the two, while meeting some minimal threshold for whichever of the two we

prioritize.

Assessing model performance also introduces the question of the bias-variance trade-off.

Suppose I examine the overall accuracy of my model’s predictions on my test set and discover

it’s providing correct predictions for 75% of the data. Is this high or low? Satisfactory or

won’t do? As I mentioned before, these questions do no have one true answer and it often

depends on the research itself and the researcher’s priorities. For example, for a machine

meant to identify breast cancer, 75% is very problematic. If the machine’s job is to provide

Netflix users with recommendations for series they might like, perhaps 75% is good enough.

Setting aside this perspective, how would you asses 75% accuracy on the test set, if you knew

your model was correctly predicting 98% of the data in your training set? And what if it were

correctly predicting only 78% of your training data? In the former scenario, we might be very

disappointed in our results because our model suffers from overfitting to our training data

and high variance (much lower performance on our test set compared to our training set).

In the latter scenario, we may still be disappointed because we’re not doing we well as we

hoped, but it appears our model has low variance (small difference in performance between

our test set and training set) while suffering from high bias in both (high error rates).

Yu et al. (2008) provide an excellent empirical example of the bias-variance trade-off.

The authors make use of party classifiers for congressional speech data. They find that “party

classifiers trained on 2005 House speeches can be generalized to the Senate speeches of the

same year, but not vice versa” (p. 33). In other words, training on house data has low variance

when applied to Senate data because the bias (error rate) is similar in both; but suffers from

high variance when the direction is reversed, i.e. training on Senate data, resulting in higher
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error rates in the House data. They also find that their classifiers did better on data from

recent years (compared to the training data) than on older ones, illustrating high variance

rooted in time.

To avoid complication, the process I outline depicts a somewhat linear flow that moves only

in one direction (recall Figure 2.1). The truth is, often we have to backtrack (e.g. realizing we

need to pre-process our data differently to work with our algorithm of choice). Much more

than that though, when assessing model performance, we may decide to return all the way to

building new training sets, after understanding where our model is failing. Such backtracking

is the iterable side of the process. The risk here is that if we keep using the same test set we

may be informing our model based on insights from our test set, causing overfit to our test

set. With sufficient data, it’s often useful to create more than one test set, keeping one set

separate from all the rest, which we use only at the very end, when we’re confident enough in

our model.

Only once we’ve gone through this entire flow and we’ve reached a model we approve of,

can we use it to predict new data. This step should also include some assessment of model

performance, e.g. by examining samples of its predictions. Note how the most important

part of this exercise where we predict labels in our unseen data—the goal itself of the entire

endeavor—consists of the least effort. In fact, our entire effort in building a good model

occurs in the several steps that precede it and they represent a myriad of decisions, each one

affecting the ultimate outcome.

Thinking of this process as a black box that receives some minimal-effort input and

magically produces outstanding output is misleading and often results in sub-par results.

Instead, understanding and conveying to the reader all of the choices that went into this

process usually provides a much better outcome and helps avoiding pitfalls in research.

Consider the excellent guide put forth by Barberá et al. (2021) on the choices scholars

are required to make when using text as data in a machine learning context. Examining

different sampling methods, the use of keywords vs. a-priori category association and defining
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sentences vs. article segments as units of analysis affect which data the model is trained on,

how it trains and what its outcomes eventually are.

In this context, I highlight the centrality of questions such as what performance metrics

the author prioritized; how research goals influence these priorities, and in turn, the outcome;

what features are included in the model and how they might relate to the research at hand (do

they increase the risk of endogeneity?); or what is the inherent risk of overfitting our model

to the training data. Thinking about the choices we face when approaching such problems

and the consequences they have for our theoretical research (Denny & Spirling, 2018) is an

important lesson I discovered through this dissertation. Be it theoretical considerations or

methodological ones, these choices can have substantial consequences for subsequent research

that rely on these data.

2.2 Text as Data

My second contribution is an important clarification about the meaning of “text as data.”

Natural language processing is a field in and of itself with amazing developments. Most

recently, the GPT3 algorithm is able to write artificial documents based on a training set,

or provide accurate summaries of existing ones. Similarly, Github Co-pilot is an advanced

natural language algorithm that completes programming code for the user as they type.

One of the most applied methods of machine learning in political science is the use of text

as data (Cardie & Wilkerson, 2008; Slapin & Proksch, 2014) and almost all of the papers

cited in this dissertation make use of text as data. Examples include measurements of the

congressional agenda through legislation (Collingwood & Wilkerson, 2012; Hillard et al., 2008;

Purpura & Hillard, 2006; Quinn et al., 2010), of ideological positions or party membership

through legislative speeches (Diermeier et al., 2012; Yu et al., 2008) of topical themes through

the analysis of election manifestos (Verberne et al., 2014) or the analysis of agenda and tone

in news articles (Barberá et al., 2021; Boydstun, 2013).

Much of the work that has made use of textual-data in machine learning often rely solely
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on textual data. They can easily be misinterpreted to suggest that text-based models can only

rely on text. Instead, I encourage researchers to think of text as simply another source for

measurement. Through empirical analysis I illustrate that a single model consists of features.

Each feature may be constructed using different sources. Features are meant to capture

useful information for making accurate predictions. Some features may rely exclusively

on text (e.g. the number of times term a appears in a congressional hearing title), others

may rely on information from non-textual sources (e.g. the party that controled Congress

when a particular hearing was held) and some may combine both pieces of information

(e.g. measuring separately the number of times term a was mentioned by members of each

party in a particular hearing). The advent of big data and the methods that go with it,

introduce a variety of data types (Monroe, 2013) that can be used together, rather than

separately, for empirical inquiry.

2.3 Know Your Machine’s Strengths & Limits

While I am obviously advocating for the strengths of machine learning models, I also place

an important emphasis on model error. On the one hand, ignoring model error may result in

systematic mistakes in measurement, and subsequently in theory-testing. On the other hand,

students are often disheartened when several first attempts at using such promising methods

provide sub-par results. Understanding where errors are coming from can be useful for a

well-executed machine learning process. Doing so may allow improving model performance

to maximize the metrics we prioritize through data correction, model parameters and if

necessary, increasing algorithm complexity. It may require us to redefine the very metrics we

prioritize, and it can help in identifying the limits of our model, maximizing the benefit of

the model while minimizing the need for human intervention/review.

The question at heart is one of validity: How do we know a machine’s prediction is a

good measure of what we’re interested in (Monroe, 2013)? I adopt the agnostic approach

of Grimmer et al. (2021) in that I am not aspiring to find a model that represents some

32



unquestionable truth, but rather I am looking for a model that can yield good predictions.

Even when we overcome several root causes of model errors, and train an excellent model,

every model has its limits. The best model, trained on the most reliable of data and using the

most sophisticated method still makes some incorrect predictions when applied to new data.

The difference between the data we use to teach our model and the unseen data to which we

apply our model often reveals overfit. Hajare et al. (2021) provide an excellent example. In

their study, they make use of a pre-labeled dataset of political speeches made in Congress to

identify political bias in a separate, unrelated dataset, of social media posts from Twitter and

Gab. Their method illustrates maximizing a machine’s ability to provide accurate predictions

of 70% of the unseen data, thus using the machine to provide measurements for a large

majority of the data, while being of aware of its limits to avoid carrying mistakes forward.

Such limits may be rooted in different causes. The case study of the congressional bills

project (Chapter 4) illustrates two particular types of sources. First, When our training

data are inconsistent and may themselves include a large share of misclassified observations,

our model does poorly—it either replicates mistakes going forward, or finds it difficult to

learn meaningful patterns because of contradictory relationships. Second, the theoretical

definitions of the policy agendas codebook often result in overlapping terms used in different

combinations and contexts. Most of these, even 80-90%, can be overcome with a good model,

but it undoubtedly yields at least 10% of observations that confuse the machine. The bills

project also presents a rather extreme case of this type of problem because of my use of

a machine learning algorithm for a multi-classification problem. Models are complicated

enough when they are required to make only binary distinctions. Here, we are asking the

machine to learn how to distinguish between 20 different major categories and the 11 (on

average) minor categories within each major category.

The agenda-creation case study illustrates two more extreme problems we need to address.

First, an extremely unbalanced class distribution, in which the event we’re interested in

identifying is extremely rare—less than 2% of our training population and evidently, even
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rarer in the unseen data. Second, the data used to train the model (congressional hearings

in the post-WWII era) are markedly different from the unseen data (congressional hearings

pre-WWII) both politically and linguistically.

Even so, one of the most interesting advantages compared to the use of human coders that

I discovered, was the ability of machine learning to provide reliable predictions across time.

While scholars are usually extremely prudent about horizontal intercoder reliability (i.e. better

than random agreement between two or more coders in a single batch of documents), we

do not always guarantee intercoder reliability across time, for example when relying on a

changing cohort of research assistants for coding data every year. Even with the best training,

this can result in inconsistency in coding patterns from one year to the next.

A well-trained model, in some respects, can be more reliabile than human coding. While

researchers in the field, and PAP in particular, go to great lengths to train human coders

and to ensure inter-coder reliability, two targets remain difficult to achieve. Human coders

are susceptible to heuristics. In this case, the most recently available information they were

exposed to may influence human coders (Tversky & Kahneman, 1973), especially with so

many categories to choose from. With so many related categories in a single codebook that

aims to be comprehensive and mutually exclusive (B. D. Jones, 2016), coders may often code

based on the categories most readily-accessible to them.

Moreover, ensuring backward compatibility is a very difficult task. Whether the same

coders code the data over time, or coders change with the passage of time, both encompass a

risk of inconsistency. In fact, training a model for this study revealed this very problem in

the data and the topics of over 10,000 bills had to be manually corrected before a model was

able to accurately learn useful patterns from the data.

Finally, models offer additional information that may be close to impossible to ask of

human coders. For instance, when assigning one of twenty major policy topics to a particular

observation, the machine produces a probability for each topic. I use this probability to

identify a threshold above which the machine’s classifications appear reliable without requiring
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human intervention. No doubt such probability distributions may have additional uses. For

a human coder, providing reliable measures of certainty of their decision would be incredibly

difficult and time-consuming. Machine learning decisions can also be reverse-engineered to

understand how a model reached its classification and yielded these probabilities. Reverse-

engineering can be useful in understanding mistakes, justifying decisions and improving

performance in the future.

2.4 Maximize Performance by Combining Methods

Finally, I provide a useful demonstration that combines supervised and unsupervised learning

for dimension reduction and maximal model performance. Big data and machine learning

models often suffer from having too many features and researchers often use various methods

of reducing the dimensionality of the data (e.g. principal component analysis or feature

selection) to lower the amount of features in a single model (Grimmer et al., 2021; Patty &

Penn, 2015).

With “text as data,” dimensionality becomes even more complicated as each word in

each document can become a feature of its own creating a model with thousands of features,

and standard methods for dimension reduction do not apply here. Moreover, relying on a

single word can limit the effectiveness of a single feature. Consider the terms ‘gas,’ ‘fuel’ and

‘petrol.’ All three terms may be synonymous in certain contexts, yet predicting the topic of

an observation based only on the occurrance of the word ‘gas’ may result in missing some

relevant observations that used the words ‘fuel’ or ‘petrol’ instead.

The method I adopted in Chapter 4 used an unsupervised method to group related/similar

terms together to create features based on groups of terms, thus reducing the dimensionality

of the data and yielding better features. This method also has the advantage of succeeding

even when proponents change the terms they are using in an attempt to reframe the issue

(Baumgartner et al., 2008; Gamson & Modigliani, 1989; Jacoby, 2000; Nelson, 2011). Then,

I used a supervised method to learn patterns in the data for predicting policy topics of
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congressional bills.

The next two chapters serve as empirical use-cases of machine learning and illustrate the

four lessons outlined above.
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3 Congressional Hearings on Agency-Creation

3.1 The Problem

In the middle of the 20th Century, the American political system underwent a huge transfor-

mation, expanding its authority, involvement and policy scope (Pierson & Skocpol, 2007).

In a recent study, B. D. Jones et al. (2019) reveal the causes and consequences of this

great broadening of government. In their research, the authors offer a myriad of empirical

evidence to demonstrate how this expansion of government manifested itself in the congres-

sional agenda. Among other datasets, they rely on the dataset on congressional hearings

(hereafter: modern hearings dataset) at the Policy Agendas Project (PAP) that collects all

hearings held in Congress since the 80th Congress (1947, N = 100,942).10 Among the many

indicators in the set, is a binary indicator for hearings that discuss the creation of a new

federal government agency. I plot the number of hearings in each Congress that discusses

agency-creation according to the modern dataset in Figure 3.1. According to B. D. Jones et

al. (2019), the major increase starting in the 1960s and ending in the 1990s, lines up with

our understanding of the expansion of the federal government during this period.

The modern hearings dataset has afforded scholars an immense contribution to congres-

sional and policy studies, providing empirical evidence for the development of policy-making in

Congress. For instance, several studies highlight the increasing fragmentation—and erosion—

of committee jurisdictions in Congress (Adler & Wilkerson, 2013; Baumgartner et al., 2000a;

Baumgartner & Jones, 2015; B. D. Jones et al., 1993b). Others describe how committees

collect and process information and their effect on policy (Fagan & Shannon, 2020; Lewallen

et al., 2016) or the relationship between its agenda and economic inequality (Epp, 2018).

This dataset has also provided insights into Congress’s transition from a law-making body to

one that is more concerned with oversight of its bureaucratic agents (e.g. Lewallen, 2020;

McGrath, 2013), as well as an indicator of the degree to which congressional attention is
10At the time this study was carried out, the modern hearings dataset spanned 1946-2017 (79th- 115th

Congress). It has since been extended to 2020, including the 116th Congress.
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Figure 3.1: Number of Hearings Discussing agency-creation Post-WWII
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representative of mass preferences (B. D. Jones & Baumgartner, 2004).

The newest addition to the PAP collection of datasets covers congressional hearings

spanning the 40th Congress (1848, following the end of the American Civil War) all the way

through to the 80th Congress (hereafter: the old hearings dataset, N = 30,338), when the

modern dataset begins. Human coders coded each observation for the relevant major and

minor policy topic.

The old hearings dataset may provide some insight into the question of when Congress

began holding hearings that included agency-creation, the extent to which Congress held

such hearings and whether evidence exists of similar broadenings in America’s history. To

do so requires an indicator for whether each hearing discussed the creation of a government

agency or not, much like in the modern hearings dataset.

The congressional hearings datasets offer the potential for both insight into the above

political question and an opportunity for methodological innovation. The modern hearings
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dataset serves as a population of nearly 100,000 observations that have already been labeled

for the creation of government agency. In a supervised learning context, we may therefore

sample from these data to train a model (or several) for classifying agency-creation. Learning

based on which hearings discuss agency-creation, we may train a model to classify hearings

in the old hearings dataset. If successful, this method may save hours of human labor and

provide us with a reliable and consistent measure of agency-creation in congressional hearings

across time.

3.2 Model Training Strategy: An Overview

The desired outcome of the method implemented here is a single, reliable column to be

added to the old hearings dataset. This column should indicate whether each hearing in

the old hearings dataset references the creation of federal government agencies. Ultimately,

researchers may use this column as a dependent or independent variable in an inferential

setting. Here, it is the outcome of a structured process, using machine learning algorithms to

correctly identify the values of this column (Figure 3.2).

After identifying the modern hearings dataset as the population of data I wish to train

and test my model on, I sample the population to create two sets — a training set and a

test set. Training sets are often structured to represent a good sample to learn from (e.g. by

balancing the classes of interest), instead of representing the population from which it is

sampled. Usually, we prefer our test sets to serve as a good representation of the population.

Here, I opt for a non-representative test set of the population because the two classes are

severely imbalanced—only a rare minority of the observations reference agency-creation (I

discuss the extent and implications of this imbalance later in the chapter).

Training the model includes several steps. First, pre-processing the data, which in this

case means creating a document-term matrix (DTM) such that each row (observation) is a

hearing and each column (feature) is a term from the hearing’s description (see an illustration

below). Values indicate the number of times each term appeared in each hearing. I avoid
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Figure 3.2: Model Training Strategy
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weighting the values using TFIDF or any other weights because of how few terms each

document is comprised of (in this case, a document is a hearing’s description).11 Because the

descriptions are short, dimension reduction to reduce the number of features in the model is

also not possible (each document is comprised of a small list of terms that appear together

with only a small number of other terms in other observations). I also find no justification

for scaling or standardizing the features necessary because they’re all on an almost identical

scale.12

Second, I stem terms (pooling together variations of the same term into a single feature),

remove stop words and remove sparse features to avoid overfitting (by excluding rare terms)

and to reduce the number of features in the model. Third, I compare the performance of

two appropriate algorithms (random forest and gradient boosting). Fourth, I manually tune

some of the best model’s parameters. I avoid hyper-parameter tuning because the sets that

I can use for training, validating and testing my model are very small. In addition, the

problem is relatively simple and I manually review samples of the classification results as a

feedback mechanism. Finally, I examine the improvement in accuracy when including several

congress-related features that are not drawn from the hearings’ descriptions, and are therefore
11TFIDF or Term-Frequency Inverse Document-Frequency is a method of weighting the frequency of which

a term appears relative to the number of documents it appears in.
12All text-based features count the number of times a term appears in each hearing’s description. De-

scriptions are usually quite short and it is rare for the same term to appear in the same description more
than once. Thus, most features are binary variables and only rarely have a count greater than one. Most
of the non-textual features I add to the model are binary and only a handful are continuous and/or scaled.
Nonetheless, I empirically test applying TFIDF weights and standardizing the features using z-scores and
neither improved model performance.
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not text-based.

Text-based features are obviously important but they are not generated based on theoret-

ical expectations. Instead, they rely on some corellational pattern, representing either a fake

or real relationship with the class of interest and that are able to predict that class with some

degree of accuracy. Including theoretically-meaningful features may improve performance.

Together with the text-based features, they may improve prediction because, due to the

interactions embedded into the splits of tree-based algorithms, terms are now analyzed in a

particular context (e.g. some terms may be more meaningful when both chambers of Congress

are controlled by the same party).

I classify the test-set using several training sets. As I describe below, the data are too

limited to create different samples and so the same observations are used in all training sets.

The variation between them rests in the algorithm chosen, the model training parameters

(specifically, number of trees, depth and learning rate) and the addition of non-text based

features.

Classifying any set also requires pre-processing in the same manner as the training set.

First, it must be converted into a DTM and terms must be stemmed. Second, features that

appear in the training set but not in the test set, need to be added as columns to the DTM,

imputing some relevant value (in this case, 0, representing the term does not appear in any

of the observations).

Once I identify a model with sufficiently good performance on the test-set, and the best of

all those examined, I use it to classify the unseen data—the old hearings dataset. Since unseen

data are in fact unlabeled data, I have no way of assessing the performance of classification.

If anything, I am using the model to provide me with an indicator I do not currently have

in the unlabeled data. Therefore, I sample the unseen data based on the probabilities that

the model produced. My main concern is recall or true-positives (correctly identifying as

many agency-creation hearings as possible) and removing false-positives, while simultaneously

keeping them at a minimum. Rather than manually coding all 30,000 observations in the set,
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the model’s performance was good enough, that I required to sample and review only about

11% of the data (a little over 3,000 observations).13

Based on the samples, it is possible a retrain would be required (note the backward dashed

line in Figure 3.2), especially if recall is low. In other words, if the model incorrectly classified

certain hearings as non-agency-creation. The advantage of a retrain at this stage, is that I

could train based on the samples of the unseen data. The samples, previously unlabeled,

are now labeled, having been classified by the model and manually validated. These data

represent the most relevant data for both classes from the old hearings dataset, because they

include many of the strongest examples of agency-creation observations and they have been

subject to human review.

Unfortunately, I could not start with a random sample of the old hearings dataset to

manually code and train on it, because a random sample will likely have too few examples of

the class I am most interested in—agency-creation. Thankfully, results of the first model

were good enough and did not require a retrain. Recall was high, false-positives were easily

removed and the few false-negatives that remained were easily corrected in a manual search.

Ultimately, I am left with the final outcome: A binary agency-creation column, to match

that which exists in the modern hearings dataset.

3.2.1 Document-Term-Matrix: Illustration

In Table 3.1 I sample two hearings from each class of agency-creation (1 representing agency-

creation). The table also lists the meeting of Congress and year in which each hearing was

held, as well as the description of the hearings. The first column is simply a unique internal

id associated with each hearing.

13The sample was double-coded by me and a second coder. A special thank you to Iynkary Vigneswaran
Warr for her assistance in reviewing the sample.
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Table 3.1: Sample Hearing Descriptions

ID Congress Year Agency Creation Description

35859 93 1973 0 Safe transportation of Hazardous

materials by air.

37155 92 1971 0 Federal government’s role in the

achievement of equal opportunity

in housing.

84213 106 1999 1 To consider bill to establish a

Bureau of Immigration Services and

a Bureau of Immigration

Enforcement within Dept. of

Justice.

99426 112 2011 1 To establish within the Department

of Interior a new department to

consolidate responsibilities.

In Table 3.2 I provide an illustration of the same four hearings in the form of a document-

term-matrix. Note, for presentation purposes only, I split the table into three. Terms have

been stemmed and stopwords have been removed. For the sake of illustration I have not

removed sparse terms. Each row still represents a single hearing and each column represents

a term from all terms in the descriptions of all hearings—these are potential features to be

used in a model. The values represent the number of times each term appears in each hearing.
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Table 3.2: Document-Term-Matrix

ID achiev air bill bureau consolid depart dept enforc

35859 0 1 0 0 0 0 0 0

37155 1 0 0 0 0 0 0 0

84213 0 0 1 2 0 0 1 1

99426 0 0 0 0 1 2 0 0

(Table Continued)

ID equal establish feder govern hazard hous immigr interior

35859 0 0 0 0 1 0 0 0

37155 1 0 1 1 0 1 0 0

84213 0 1 0 0 0 0 2 0

99426 0 1 0 0 0 0 0 1

(Table Continued)

ID justic materi opportun respons role safe servic transport

35859 0 1 0 0 0 1 0 1

37155 0 0 1 0 1 0 0 0

84213 1 0 0 0 0 0 1 0

99426 0 0 0 1 0 0 0 0
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3.3 Challenges for Supervised Learning

The problem at hand, and the algorithm I employ, are relatively simple. I could settle on

a model that uses information stored only in the hearings’ descriptions, i.e. terms. But, as

I show later in the chapter, such a model can be substantially improved by accounting for

additional information we know about each hearing and the political environment in which it

was held. Ignoring this information might lead to sub-optimal performance because I am not

accounting for theoretical (and empirical) differences that change how each term from the

hearings’ descriptions is related to agency-creation. That said, these theoretical differences

also pose severe challenges and not all of them can be fully addressed. In fact, attempting to

address some of them might worsen model performance and lead to misclassification due to

overfitting my model. In other words, I risk training a model on patterns that are true only

for the modern hearings dataset and mistakenly applying them to the old hearings dataset. I

outline these challenges and my attempt to address them below.

3.3.1 Old vs. New Linguistic Features

The model I trained relies heavily on the language associated with the hearings. Specifically,

terms used in the hearing’s brief summary become features in my model.

Language is an incredibly dynamic form of documentation and communication. It is

constantly changing (Aitchison, 2001; Buerki, 2019). New terms continuously enter a language

as old ones slowly become extinct. Grammar too tends to change over time. With the advent

of social media, new methods of short-hand typing and acronyms have entered our linguistic

arsenal of tools. History tells us that even how we say things has changed (Wolfe, 1972). Even

in short periods when language itself may be relatively static, the advent of technology has

greatly increased the scope and volume of words that citizens may be exposed to, e.g. through

the media (Pool, 1983).

Linguistic evolution thus presents a difficult challenge to the method proposed here. I am

attempting to train a model on hearings’ summaries from the last 75 years (1947 onward),
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to classify newly collected data from the 80 or so years prior. Not only that, but it is likely

that within each of these two datasets, language has evolved, introducing a great deal of

variance into the training set, test set and the unseen data. The main question is how quickly

congressional language has evolved and has it evolved too quickly for a model of this type to

work.

The question is more complex than the challenge that language evolution presents on

its own. As I describe in the next section, Congress as an institution has developed. The

size and allocation of staff has changed, with meaningful effects on policy (DeGregorio, 1994;

Ornstein et al., 2009; Salisbury & Shepsle, 1981; Schiff & Smith, 1983). So have congressional

practices, e.g. in documenting hearings material. This is especially true with the advent

of technology, which has made it much easier to document such material. Moreover, these

datasets present a data-generation question. The hearings’ descriptions used in the modern

hearings dataset were largely written by students, trained by PAP to review a congressional

summary of the hearing and write out a brief description. However, the old hearings dataset

is comprised of descriptions provided by Proquest Congressional, which might follow different

guidelines when writing out such summaries.

Despite these potential problems, linguistic differences between the two datasets are quite

small. Of the 1,085 terms used in the final model, only 64 did not appear in the unseen data.

However, the unseen data include an additional 488 terms that are not part of the model

(after removing sparse terms, with sparsity set to 0.9995). The information stored in such

terms is essentially ignored. For comparison, only 1 of the model’s terms did not appear in

the test set. These numbers suggest changes in language over time make it more challenging

for a model like this to perform, but it is not too severe. Nearly all of the model’s text-based

features do in fact exist in the new data and can therefore be used. If the periods examined

were significantly longer, this may have become a bigger problem.
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3.3.2 Old vs. New Political Environment

It is very difficult to compare the period of 1868-1946 to that of 1947-2021. In many respects,

the entire political system has changed. The issues that were of concern in Congress in

the earlier period have mostly disappeared from the agenda, replaced by new issues. The

congressional structure, namely its committee system, has been reformed several times

throughout these periods. Committee jurisdictions and power over determining the agenda

are incredibly dynamic. The parties operating within Congress represented entirely different

agendas, positions and voters and partisan polarization has changed dramatically over time.

Each of these contribute to the challenges of relying on information in modern hearings to

identify similar information in older hearings.

3.3.2.1 Agenda Figure 3.3 plots the congressional hearings’ agenda throughout the entire

period examined. For each topic, I plot the proportion of the agenda it occupies in each

meeting of Congress. The red dashed line marks the transition from the old dataset to the

new one and offers a crude distinction between two very different policy agendas.14 Very few

of the issues maintain a consistent proportion of the agenda throughout the entire period.

Most that do—e.g. labor, education (ignoring the unusual spike in the 40th Congress, largely

driven by a small number of hearings), social welfare, housing and macroeconomics—usually

amount to a small proportion of the agenda.

Other topics are usually more dominant only in a single period. Government operations,

perhaps the most dominant topic of all, is far more dominant prior to the 80th Congress, than

after it. Many of these hearings in the first period related to elections, investigations into

corruption charges made against Representatives and Senators, federal buildings, etc. Public

lands and defense follow a similar pattern. Public lands mostly relating to Alaska, sale and
14The collection of hearings in each dataset is not perfect; some hearings from the 79th hearings appear in

the modern dataset and some hearings from the 80th hearings appear in the old dataset. This is largely an
error in data collection that was outside of my control and I therefore treat the 80th Congress as the start of
the modern dataset, especially given the changes in Congress that began in the 80th Congress, namely the
restructuring of the committee system through the Legislative Reorganization Act of 1946 (Evans, 1999).
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Figure 3.3: The Congressional Hearings’ Agenda

17 − SSTC 18 − Foreign Trade 19 − International Affairs 20 − Government 21 − Public Lands

12 − Law, Crime & Family 13 − Social Welfare 14 − Housing 15 − Banking 16 − Defense

06 − Education 07 − Environment 08 − Energy 09 − Immigration 10 − Transportation

01 − Macroeconomics 02 − Civil Rights 03 − Health 04 − Agriculture 05 − Labor

40
(1867)

60
(1907)

80
(1947)

100
(1987)

40
(1867)

60
(1907)

80
(1947)

100
(1987)

40
(1867)

60
(1907)

80
(1947)

100
(1987)

40
(1867)

60
(1907)

80
(1947)

100
(1987)

40
(1867)

60
(1907)

80
(1947)

100
(1987)

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

Congress (Start Year)

P
ro

po
rt

io
n 

of
 th

e 
A

ge
nd

a

Not displayed: 23 (Arts, 1 hearing) and 99 (Other, 11 hearings).

48



acquisition of land, and Native American territories (“e.g. Dividing Portion of Reservation of

Sioux Nation of Indians, in Dakota, into Separate Reservations, and Securing Relinquishment

of Indian Title to Remainder”). Defense was heavily influenced by wars the U.S. was involved

in at the time, the two world wars and the development of the military and navy.

Other issues were less dominant overall, but follow a similar pattern: health was hardly

a congressional concern in the first period and has consistently become about 10% of the

agenda in recent decades; environment and energy have both become nearly 10% of the

agenda in the second period after being non-existent in the first period; agriculture was far

more prominent in the first period, as was transportation (the railroad system underwent

massive development in this period); and several other issues, e.g. immigration and foreign

trade spiked for a short while in only one of the periods.

The implication of a changing agenda is that the types of agencies under consideration

may change. The more they change, the more difficult it may be for a model to correctly

identify agencies in new data. Consider for example, a model trained on agencies relating to

civil rights, social welfare or foreign trade and its performance on a set comprising mostly of

agencies relating to land regulation or military reorganization. Fortunately, as B. D. Jones

et al. (2019) demonstrate, the number of subtopics on the agenda has only increased with

time. In other words, the training data from which the model learns, includes examples of

new agencies from more topics than previously were on the agenda. The model is therefore

more likely to encounter an agency in the unseen data from a topic it has already learned

from, rather than one it has not.

To strengthen the model’s predictive ability, in the final model, which includes non-textual

features as well as text-based features, I add two indicators relating to the composition of

the agenda. Accounting for the specific topic of each hearing might be too complicated for a

model like this, and may even lead to overfitting. Instead, the indicators I include represent

how dominant the policy topic of a given hearing is on the entire agenda of a given meeting

of Congress:
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1. A scaled version of the number of hearings in the entire meeting of Congress that share

the same subtopic as the hearing in question. Labeled subtopic_count_scaled.

2. The proportion of hearings in the entire meeting of Congress that share the same

subtopic as the hearing in question. prop_subtopic.

3.3.2.2 Congressional Development The agenda, and the part of the agenda that is

dedicated to agency-creation, are a product of the institution itself—it’s modus operandi.

Congress has changed in several important ways that may affect the success of a model

predicting agency-creation: The development of the committee system; differences between

the two chambers; the role of party leaders; who the parties are and what they represent;

and party polarization in Congress. I address the latter two of these in the next sections.

Schickler & Bloch Rubin (2018) offer an excellent review of these developments and how

they coincide with congressional research. Here, I am interested specifically in theorizing

about the effect such developments might have on model performance and providing possible

solutions.

Both datasets record hearings after the creation of a system composed of specialized

standing committees, replacing the previous system of temporary select committees (Cooper,

1988). Unfortunately, that is about all the two datasets share considering committee structure

and each dataset contains meaningful changes within the period they cover. For example,

prior to the 1910-11 revolt against Speaker Cannon, committee assignments on standing

committees pointed to high turnover. The seniority system adopted in the early 20th Century

resulted in a more stable record of committee assignments (Abram & Cooper, 1968; Canon

& Stewart, 2001; Polsby et al., 1969).

The seniority system affected the appointment of committee chairs, who for a brief

period controlled the committee’s agenda (e.g. Fenno, 1966), but it only lasted till the

reforms of the 1970s. The restrengthening of party leaders in Congress (Rohde, 1991; Zelizer,

2006), especially after the reforms of the 1970s, came at the expense of the chairs’ power in
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determining the agenda (Cohen, 1999; Mann & Ornstein, 2006). More generally, the dynamic

nature of the Speaker of the House’s power in itself points to substantial changes in Congress

as an institution (see Bloch Rubin, 2013; Cooper & Brady, 1981; Schickler, 2001; Schickler &

Bloch Rubin, 2018 for a review of the changes bolstering the Speaker’s power leading up to

the 1910-11 Cannon revolt, and the reemergence of the Speaker’s power following the 1970s

reforms).

Beyond the question of who wields greater power in determining the congressional and

committee agenda, perhaps the most important distinction between the two datasets is the

Legislative Reorganization Act of 1946—right at the end of the old hearings dataset and the

beginning of the new hearings dataset. The act completely redefined committee jurisdictions

through official rules (Evans, 1999), affecting the topics each committee had power over, and

further bolstered the control of committee chairs (Davidson, 1990; Deering & Smith, 1997),

at least until the reemergence of the parties. The official rules changed again in the 93rd

Congress (1973-1974), with the Bolling committee (see Adler & Wilkerson, 2008, 2013; S.

S. Smith, 1986; Strahan, 1988 on the changes these reforms introduced and their effect on

policy-making in Congress). Furthermore, several studies have highlighted members’ attempt

to expand their committee jurisdictions by holding hearings on topics that may be considered

outside their scope, thereby setting an important new precedent for jurisdiction (Baumgartner

et al., 2000b; B. D. Jones et al., 1993b; D. C. King, 1997; Lawrence, 2013; Sheingate, 2006).

Thus, the relationship between the agenda and the committee structure changed between the

datasets and within them.

To summarize thus far, the first half of the old hearings dataset is characterized by strong

speakers and party leaders and it more closely resembles the second half of the modern

hearings dataset. In the period in between, covering the second half of the old hearings

dataset and the first half of the modern hearings dataset, parties and their leaders were

weaker while committee chairs wielded greater power. Moreover, committee jurisdictions

are dynamic, changing both through official rules and through legal precedents determined
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by the hearings themselves. These changes separate the two datasets from one another and

occur within each one.

The implication of the way in which Congress has developed is that who determines the

agenda may be markedly different between my training population (modern hearings dataset)

and my unseen data (old hearings dataset). Thus, the types of agencies they are interested

in creating, as well as their general tendency to discuss agency-creation, may be different.

The extent to which the committee system has changed, which committees exist and what

falls under their jurisdiction, makes controlling for them in a statistical model irrelevant.

The same committees do not operate in the two datasets and what they are responsible for

changes from Congress to Congress. In fact, assuming a relationship between the committee

holding the hearing and the topic of a hearing will likely lead to misclassifications and may

prevent us from revealing fragmentation in committee jurisdiction. As for the implications of

the changes that the two parties within Congress experienced, I address these in the next

sections.

The only valid feature I could add to the model at this point is the extent of power the

Speaker of the House has but this suffers from two main limitations. First, I am unaware of

a good quantitative or ordinal measure of Speaker power. Thus, I would resort to a binary

measure of high/low power (1/0 respectively), separating into broad periods (e.g. 1890-1910

would be considered high). Second, there’s no theoretical justification for a relationship

between Speaker power and agency-creation. Power may affect the topics themselves on the

agenda (which I already account for as described in the previous section), but the effect is less

likely with agency-creation. I therefore refrain from including such a feature in my model.

Before turning to the role of parties and the challenges they create for model performance,

I must address one other aspect of Congress: Bicameralism. Fundamental to its nature

as an institution, is the fact that it is composed of two separate chambers, with different

compositions, responsibilities and modes of representation. Two chambers often represent

different interests (Llanos & Nolte, 2003; Patterson & Mughan, 2001; Riker, 1992; M. Russell,
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2001; Tsebelis & Money, 1997), and therefore the House & Senate might diverge in their

approach to agency creation and the interests that serves. Bicameralism in Congress represents

a relatively stable set of differences rooted in the constitution (Lee, 2018) and relevant in

both periods. The chamber in which the hearing was held, could therefore be meaningful

for the likelihood of agency-creation. Thus, using one-hot-encoding, I add to the model two

indicators for whether the hearing in question was held in the House or whether it was a joint

hearing (0 in both indicators represents a hearing held in the Senate).

3.3.2.3 Political Parties Although the parties’ names have remained the same since

the mid 19th Century, the two parties themselves have been anything but stable (Silbey,

2010). They have realigned around both issues and voters (Key, 1959), creating several party

systems in American history (Brewer & Stonecash, 2009; Burnham, 1965; Sundquist, 1983).

For example, in many aspects, Lincoln’s Republican party more closely resembles today’s

Democrats on issues such as the role of government and racial relations, than modern-day

Republicans (Foner, 1988; Richardson, 2009). The realignment of Southern Democrats with

the Republican party (Black & Black, 2009; Jacobson, 2000; Roberts & Smith, 2003; Rohde,

1991) and the rise of Republican conservatism (Pierson & Skocpol, 2007) have resulted in

parties that are drastically different from their identically-named predecessors.

Together, the old and modern datasets span at least four different party systems. The

old dataset incorporates the 3rd (1850s-1890s), 4th (1890s-1930s) and half of the 5th party

system (1930s-1960s, the New Deal). The modern dataset includes the second half of the 5th

party system, and possibly a 6th and even 7th system (Aldrich, 1999; Aldrich & Niemi, 2018;

Karol & Hershey, 2014).

In practical terms, the challenge this presents is that the parties that are active in Congress

in the modern hearings dataset and infleunce the hearings’ agenda, are incredibly different

compared to those in the old dataset. A model that learns from data generated by one set of

party systems might fail at accurately predicting data generated by a separate set of party
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systems. Consider what it would mean to include various party features in such a model, for

instance which party controls each chamber (Republican/Democrat), which party heads the

committee holding each hearing, the number of members from each party on the committee

holding each hearing, etc. A Republican in the modern dataset is entirely different from a

Republican in the old dataset (as are Democrats) and such features might worsen model

performance, or at least, won’t improve it.

Figure 3.4 plots the number of hearings per Congress in the old dataset. The data are

clearly skewed toward the second half of the dataset—54.7% of the hearings were held in

the 72nd Congress (1931-1932) onward.15 This pattern actually minimizes the party-system

differences between the two dataset. The majority of the hearings in the old dataset are from

the 5th party system, which began in the 1930s with the New Deal. This represented a major

change in Democrats’ approach to the role and size of government (Hawley, 2015; Leuchtenburg,

1963; Romasco, 1983), which was decisively different compared to the Democratic stance in

previous systems (Argersinger, 1992; Foner, 1988; Richardson, 2009; Welch, 1988) and that

has lasted till today.

As I illustrated in the previous sections, I am able to address this challenge in two ways at

the agenda level. First, the terms that make up the textual features of the model represent the

content itself that is produced in the two periods. As I demonstrated earlier, this difference is

less severe than expected. Second, I account for changes in the agenda itself and the relative

size of the agenda that the topic of each hearing covers.

To include party-level features such as those described above, would likely reduce the

model’s accuracy, overfitting it to patterns that are true for the training and test data, but

not for the old dataset. The solution I propose is to account for certain things that the parties

represent, without capturing system-specific party characteristics. My goal is to maximize

prediction accuracy using as much information as I can gain from the parties in Congress
15This pattern may suggest that the data are incomplete. Data documentation and collection become more

challenging as we move back in time. While it hardly matters for the purposes of classifying agency-creation,
it may serve a problem for the theoretical inference we wish to make about agency-creation and the expansion
of government. Simply put, we may be seeing a non-random sample of the data.
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Figure 3.4: Number of Hearings Per Congress (Old Dataset)
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without overfitting my model, which I achieve by including two sets of non-textual features in

my final model that relate to party control of American government and party polarization.16

The first set of features includes indicators of party control, but instead of indicating

which party controls each chamber, I indicate whether the two chambers are controlled by

the same party. This way, I am not including information about who the parties are but I am

assuming that when the same party controls both chambers, it is more likely to hold hearings

concerning agency-creation. The logic behind my hypothesis is that federal agency-creation

is a difficult task, one that is likely to fail if the two parties disagree on the role of the federal
16Readers might wonder if adding a feature representing the party-system may be useful, if for example,

agency-creation is more likely in a given period (we could also include a congress or year feature). While it is
possible, it is unlikely to be very useful. The main problem is that, in this case, the model will have been
trained on one set of values (for these features), but it will encounter, for the first time, a different set of
values in the unseen data. For example, a Congress feature will include values between 80 and 115 and might
suggest that values between 90 and 100 (see Figure 3.1) are most likely to point to agency-creation. What is
a model to assume when the unseen data include values between 41 and 80? Standardizing such features will
not solve the problem either. Even if some models are able to technically overcome this (e.g. by converting
missing/new values to the modal value in the training set), it effectively negates the potential information to
be gained from these features, making them useless and possibly harmful for predicting unlabeled data.
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government and if they each control a different chamber. It may be more worthwhile to

invest precious time on agency-creation when there is a greater likelihood of achieving it.

Following the same line of thought, I account for whether the same party also controls the

presidency. Below, I list a series of binary features added to the final model:

• House, Senate & President controlled by the same party. Labeled SamePartyAll.

• House & Senate only controlled by the same party. SamePartyHouseSenate.

• House & President only controlled by the same party. SamePartyHousePresident.

• Senate & President only controlled by the same party. SamePartySenatePresident.

I describe the second set of relevant features in the next section, which capture elements

of party polarization.

3.3.2.4 Party Polarization As I described in the previous section, accounting for the

specific party controlling Congress or the committee holding a given hearing, might prove

fruitless when the sets we are working with cover distinctly different party systems. I therefore

find alternative means of accounting for the parties in Congress and their potential effect on

agency-creation. One important and dynamic characteristic of the two parties is their degree

of polarization over time.

Conventional wisdom suggests that American history has been rife with political polar-

ization. Parties have traditionally been polarized on the topic of the day: “the Democrats

and Republicans were polarized on slavery in the 1850s, agrarian and currency issues in the

1890s, the social welfare issues surrounding the New Deal in the 1930s, and civil rights in the

1960s (Stimson & Carmines, 1989; Sundquist, 1983)” (Layman et al., 2006, p. 85). In the

mid 19th century it became so extreme, it culminated in a civil war.

The middle of the 20th century is quite unusual in this regard. Polarization existed, but

it wasn’t sorted along partisan lines (Hetherington, 2009). Thus, this period, in which the
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parties appeared indistinguishable on most issues, is likely the exception to the rule and

is in keeping with the Schattschneider (1960) tradition on party conflict, which posits that

partisan polarization on the dominant issue of the day is to be expected in an effort to gain

power.

Still, party polarization in recent years stands out compared to previous eras of polarization.

Several studies have traced the development, causes and consequences of polarization in

the US Congress (e.g. Black & Black, 2009; Jacobson, 2000; Lee, 2008; Roberts & Smith,

2003; Rohde, 1991; Schaffner, 2018; Theriault, 2008). Modern times appear unique because

perspectives on polarization in American history “point to party polarization on a single

dominant policy dimension, we argue that the current parties have grown increasingly divided

on all the major policy dimensions in American politics—a process that we term conflict

extension” (Layman et al., 2006, p. 84).

Changes in partisan polarization matter for agency-creation because—under the assump-

tion that parties (and their leaders) matter for legislative outcomes (Aldrich & Rohde, 2001;

Cox & McCubbins, 2005)—parties and their members in Congress are more likely to agree

to create a new agency within the American government when differences between them

are smaller. Higher polarization suggests greater differences and may be tied to gridlock

(Binder, 1999; D. R. Jones, 2001; Thurber & Yoshinaka, 2015), which could result in denying

agenda-space (Bachrach & Baratz, 1962; Sinclair, 1986) to agency-creation in congressional

hearings.17

For model training, measures of how liberal or conservative the two parties are (and

thereby, how polarized they are) may be useful. Such measures are able to capture how

different the two parties are, without making any assumptions about who or what the parties

are, or what agenda they promote. Instead, they pick up on an important way in which

the parties have changed. They are therefore more appropriate for addressing the temporal

aspects of the hearings datasets. They may be particularly useful in conjunction with features
17Although, some scholars offer competing evidence, suggesting Congress continues to pass meaningful

legislation despite party polarization (e.g. Adler & Wilkerson, 2013; Mayhew, 1991).
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relating to the agenda, party control and the given chamber.

DW-Nominate scores offer some insight to the changes in polarization over time. Using

aggregated mean scores by party-chamber-Congress supplied by voteview.com (Poole, 2005;

Poole & Rosenthal, 2017), Figure 3.5 illustrates how the parties’ mean legislative behavior has

changed within each chamber of Congress, and with respect to the two dimensions of political

differences. On the first dimension, measuring a general liberal versus conservative voting

tendency, the two parties have been polarized throughout most of the period examined, but

the Cold War period does represent an unusual time for political polarization in which the

distance between the two parties was much smaller than in other times. In fact, in the late

19th Century, polarization reached historically record-breaking heights (Mettler & Lieberman,

2020) and the period during which the debate over the creation of most agencies was at its

highest, was when the parties were least polarized.

On the second dimension, measuring behavior with respect to slavery, currency, nativism,

civil rights, and lifestyle issues, there appears to be a somewhat mirror-image. Up until about

the 70th Congress (1927) most differences between parties were small, if they existed at all.

The two parties then polarized and the gap between the two lasted for almost the entire

period, only to be closed again in recent years.

Changes in ideological voting behavior could be meaningful to the likelihood of discussing

agency-creation. Specifically, as the average DW nominate scores of the two parties appear

closer to one another, the possibility of discussing agency-creation appears higher. I therefore

include several relevant measures in my final model:

1. Average DW nominate score in each Congress (both chambers). Labeled avg_dw.

2. Average DW nominate score in each Congress, of the relevant chamber in which the

hearing was held. avg_dw_chamber.

3. Average DW nominate score in each Congress, of the two parties. avg_dw_dem

(Democrats) and avg_dw_rep (Republicans).

4. Average DW nominate score in each Congress, of the two parties in the relevant
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chamber in which the hearing was held. avg_dw_dem_chamber (Democrats) and

avg_dw_rep_chamber (Republicans).

Figure 3.5: DW Nominate Scores

House Senate

60
(1907)

80
(1947)

100
(1987)

60
(1907)

80
(1947)

100
(1987)

−0.50

−0.25

0.00

0.25

0.50

M
ea

n 
S

co
re

First Dimension (Liberal vs. Conservative)

House Senate

60
(1907)

80
(1947)

100
(1987)

60
(1907)

80
(1947)

100
(1987)

−0.50

−0.25

0.00

0.25

0.50

Congress (Start Year)

M
ea

n 
S

co
re

Second Dimension (Slavery, Civil Rights & Lifestyle)

Mean: Democratic Party Republican Party

59



3.3.3 Severely Imbalanced Training Data

The challenges thus far relate mostly to theoretical differences between the two periods and

their empirical implications for the datasets I am working with. These challenges may be

more or less influential for model training and for the most part, their severity becomes

evident post-hoc. To some degree, the political environment challenges can also be accounted

for in the model by including several of the features described in previous sections.

The challenge I present here relates to the data themselves. In the modern hearings

dataset, only 1,419 (1.53%) of 92,597 hearings discuss agency-creation. Such a small percentage

presents a problem of imbalanced data between our classes (agency-creation or not), illustrated

in Figure 3.6.

To understand why this imbalance is so severe, imagine you’re at the roulette table in

Las Vegas. You start to notice a pattern: 98 out of every 100 rolls turn up black and only 2

rolls turn up red. At this point, it’s not so important to understand when the ball might

land on red (and it might prove near impossible to try) because betting on black will win

98% of the time. With agency-creation, a model trained on a training set that represents

the true imbalance of the population will simply always predict “not agency-creation” and it

will yield 98% accuracy. Any model that can yield 98% accuracy will be nearly impossible

to improve, even if its recall is in fact 0%. But here, almost all we care about is recall—the

ability to identify those few hearings that do relate to agency-creation.

3.4 Model Training: The Modern Hearings Dataset

3.4.1 Data

I begin by splitting the modern hearings dataset into a test set and a training population.

For my test set I randomly sampled about a third of the agency-creation hearings (N =

419) and complemented it with a random sample of the non-agency-creation hearings (N =

2,095), five times the size of the former. Normally, we would aim to use a representative
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Figure 3.6: agency-creation in the Modern Hearings Dataset

91,178 (98.47%)

1,419 (1.53%)

agency−creation Not agency−creation

sample of the population as our test set. But, the imbalance between classes (agency-creation

vs. non-agency-creation) is so severe, and the number of agency-creation hearings is so small,

that only a handful of them would be included in such a sample. Instead, I opted for

a stratified random sample that includes a sufficiently large share of the class of interest

(agency-creation), maintains a substantial imbalance compared to the non-agency class (even

if not as severe) and still leaves enough observations of the class of interest in the training

population.

For the training set, I selected all remaining hearings that discuss agency-creation (N =

1,000) and add to them a random sample of non-agency hearings, five times its size. This

ratio is not in itself meaningful in any way. I tried several ratios between the two classes,

from 2:1 (non-agency:agency) to 9:1 and 5:1 appeared to provide the best results, which I

present here. The key was to maintain the imbalance between the two classes, but make it

less severe than in the true population so that the machine can identify patterns to predict
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agency-creation, and to use as much information on the class of interest as possible.

Note, however, that I in fact am forced to ignore a large mass of information by sampling

only several thousand non-agency hearings, of a potential 92,597 hearings. While this

information is crucial in order to distinguish agency-creation from non-agency-creation,

oversampling the non-agency class will diminish the model’s recall. Therefore, a small sample

that uses only some of the data is actually preferable in this case.

Figure 3.7: Sets for Iteration 1

2,095 (83.33%)

419 (16.67%)

5,000 (83.33%)

1,000 (16.67%)

Test Set Training Set (Iteration 1)

agency−creation Not agency−creation agency−creation Not agency−creation

3.4.2 Machine Learning Algorithms

I test the performance of two widely used algorithms: Random Forest and gradient boosting.

The former builds several trees and uses a random subset of the data in each tree (aka bagging).

Then, it averages the probability that each tree assigns each of the classes examined, to

produce a single probability that a given observation belongs to a given class. Using random

subsets of the data is a useful method of overcoming tthe greediness of trees, reducing overfit
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and allowing the machine to learn weaker patterns. Gradient boosting also build a collection

of trees, but instead of randomly generating each tree on a subset of the data, it fits each

tree to predict the residuals of the previous tree (aka boosting). By doing so, it essentially

attempts to correctly predict the errors made by the previous tree. The term gradient refers

to the slope of the function, which is used to minimize the cost function of the model.

My expectation is that a gradient boosting model (GBM) will do better than a Random

Forest (RF) model, especially with a sufficient number of trees. The number of trees, along

with several other parameters (e.g. learning rate, how much weight to give the pattern learned

from each tree, or depth, how many features to split before making a prediction) are often

referred to as hyper-parameters. Hyper-parameters affect how the machine learns but unlike

the patterns that help make predictions of y based on values of X, hyper-parameters cannot

be learned by the machine itself and have to be provided externally.

Hyper-parameter tuning is a field in and of itself and practitioners use several approaches.

For example, in a grid approach we may build a grid of parameters, with a range of values for

each parameter. For each combination of values, we train a model and test its performance,

proceeding with the combination that yields the best performance. Table 3.3 includes an

illustration of a very small grid, tuning 4 values of trees (1000, 4000, 7000, 10000), two depth

values (4, 5) and three learning rates (0.05, 0.075, 0.1).

Grids are usually much larger, including a much greater range for each parameter and can

be very demanding. Random grids offer one solution, in which instead of trying all possible

values and combinations, we randomly sample a number of combinations from the grid and

test those. A Bayesian grid uses prior knowledge of the performance from each combination

to limit the random sampling to areas in which performance seems to be best. Rather than

making the entire process completely random, and “wasting” attempts on combinations

that likely won’t prove useful, it focuses on areas that seem to be most promising according

to previous results and searches within them, to converge on an optimal combination of

parameters.
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Table 3.3: Hyper-Parameters Grid

trees depth learning_rate
1000 4 0.050
4000 4 0.050
7000 4 0.050
10000 4 0.050
1000 5 0.050
4000 5 0.050
7000 5 0.050
10000 5 0.050
1000 4 0.075
4000 4 0.075
7000 4 0.075
10000 4 0.075
1000 5 0.075
4000 5 0.075
7000 5 0.075
10000 5 0.075
1000 4 0.100
4000 4 0.100
7000 4 0.100
10000 4 0.100
1000 5 0.100
4000 5 0.100
7000 5 0.100
10000 5 0.100
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Here, my data are incredibly limited and hyper-parameter tuning using one of the methods

above will likely be inefficient and perhaps a waste of time and resources. Instead, I manually

tune the parameters—testing out several different values of the parameters myself and

choosing those which appear to do best. Besides the comparison between RF and GBM, I

illustrate the manual tuning of the number of trees in GBM. Given how small the training

data are, I use an unusually small number of trees and demonstrate that increasing them to

the typical range of thousands of trees does not, in this case, improve model performance.

In all training, I also use repeated cross-validation with 10 folds (subset), repeated 3 times.

Cross-validation is a method in which a set is randomly split into v folds (here, v = 10).

The model is then trained on v − 1 (9) folds separately and the best of those models is

applied to the remaining (10th) fold (Geisser, 1975; Schaffer, 1993; Stone, 1974). In essence,

it is as though we’re creating an additional test set to test our model on, as it trains. In

repeated cross-validation, we repeat the process k times. Cross-validation is a useful method

for minimizing overfit, especially when our sets are two small to create additional, separate

evaluation sets (see Chapter 4).

3.4.3 Results

3.4.3.1 Model Performance In Figure 3.8 I present density plots of the predicted

probabilities of agency-creation in the training set. The higher the probability, the greater

the proportion of trees that predicted agency-creation for a given observation, and therefore,

the greater the likelihood of an observation to relate to agency-creation. The plot is split

into four panels, one for each of the four models I examined prior to adding non-textual

features. Density distributions are plotted by training class. That is, since these data are

pre-labeled into their respective classes—agency-creation or not—can use the probabilities

that the model attributes to them to learn about its ability to distinguish between classes. A

reminder, features at this point include only term-based features that are included in the

hearings’ description.
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Figure 3.8: Model Probabilities by Class
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Several conclusions are apparent. First, the probability distributions differ substantially by

class in all four models, suggesting all models do a pretty good job distinguishing between the

classes. Second, obviously, ten trees is not enough (note the density of the not-agency-creation

class when the number of trees is low, especially for gradient boosting) and increasing at least

to 50 improves the model’s ability to distinguish between classes.18 Although, increasing the

number of trees in the GBM model is limited in its ability to improve model performance: Note

the small change from 50 to 100 trees (and increasing further to 1,000 trees do not improve

results). Third, the overlap between classes suggests that no matter which model we choose,

we are likely to have errors. We will either have to sacrifice precision (accurately classifying

observation i as agency-creation) for recall (identifying all agency-creation observations

but including a portion of false-positives, i.e. incorrectly identifying some observations as

agency-creation) or vice versa. In this case, recall was more important and false-negatives

can be handled by complementing the machine’s classifications with human review.

The figure also illustrates another problem we face with classification: Identifying an

appropriate threshold. By default, many applications of ML algorithms will choose 0.5 as a

cut-off, suggesting that anything above or equal to a probability of 0.5 should be classified

as the class of interest and anything below it should be classified as the remaining class. A

threshold of 0.5 makes intuitive sense but is often disconnected from the actual data. Here, it

is clear that such a threshold would result in very high precision (100% in all the GBM models

and close to it in the RF) but very poor recall—ignoring at least 50% of the agency-creation

observations. Instead, we may choose a lower threshold that best balances the trade-off

between precision and recall in a given case, for a given purpose.

The vertical dashed line in red illustrates such a possible threshold. Note, the threshold

doesn’t have to be a fixed probability. Instead, it may be a fixed percentile, thus expressing a

cut-off that is more closely related to the output distribution of the model. In the figure, the
18I present here only the results of a Random Forest with 10 trees, for the sake of comparison. Increasing

the number of trees up to 1,000 (which may be more appropriate with weak learners) did not improve the
results from the Random Forest model and it is clear that in this case, the GBM is a better alternative.
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Table 3.4: Accuracy Measures

Model Precision Recall False.Positive.Rate
RF 10 0.706 0.818 0.659
GBM 10 0.686 0.759 0.684
GBM 50 0.708 0.824 0.657
GBM 100 0.709 0.826 0.656
a Threshold set to 60th percentile.

red line marks the 60th percentile, which may be a good threshold as it would provide a high

level of recall with a relatively low false-positive rate.19

In Table 3.4 I compare accuracy measures, treating the 60th percentile as a threshold.

The table illustrates that random forests does appear to do poorly compared to its gradient

boosting counterpart, but only when the number of trees is increased. Since gradient boosting

attempts to correct the errors of the previous tree, this makes sense. With fewer trees,

averaging across trees that were generated randomly is an advantage. Although improvements

are small, it is clear that increasing the number of trees to 50-100 maximizes recall and

slightly reduces the false positive rate.

The values in the table are calculated using a confusion matrix, which compares observed

and predicted values. While confusion matrices are very convenient for interpretability, they

can only be calculated for one given threshold at a time. They are therefore quite limiting

and may be prone to error.

Fortunately, ROC curves plot these very measures for every single threshold possible

in the data, essentially aggregating the results of all possible confusion matrices. As such,

they are particularly useful for comparing model performance. I plot the ROC curves for all
19Of course, choosing a correct threshold is an enterprise in and of itself. For identifying things like this, it

is often a good idea to create an additional set (data-permitting), that is separate from both the training and
test set. This set offers the opportunity to apply the trained model on pre-labeled data and learn from it to
inform certain decisions, prior to applying them to the test set. In this case, there is too little data to create
an additional set so I rely on the training set for this information. The risk here is the potential to overfit my
model to my training set—if not in the actual training, then in my decision on a good cut-off threshold. I
overcome this in two ways. First, by sampling and manually reviewing some of the machine’s classifications.
Second, by using repeated cross-validation in the model training itself. Although this doesn’t apply to the
choice of threshold, it does apply to the probabilities and their distribution that each model yields.
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four models in Figure 3.9. The rule of thumb is that models that trend toward the upper

left corner show the best performance because they maximize the true-positive-rate while

minimizing the false-positive-rate. However, the trend can be noisy and often we are more

interested in the area under the curve (AUC). The larger the area, the better the performance.

And yet, even here we may decide to prioritize a model with lower AUC, if the ROC curve

is higher in a particular area. For example, if we are willing to accept a certain rate of

false-positives, we may focus on a particular range of the ROC curve and examine which line

is highest in that range.

The figure illustrates the advantage that the GBM models have over the RF model. The

AUC is similar for all four models but for most of the values, the RF curve is lower than all of

the other three. The figure also illustrates that the differences between the three GBM models

are very small, but that more trees increase the true-positive-rate when we wish to minimize

the false-positive-rate (left side of the panel) but fewer trees improve our true-positive-rate

when we are willing to accept more false-positives.

It is for this reason that I decide to ultimately proceed with 50 trees. Results so far suggest

that increasing to 100 or more trees yield very small improvement in precision, possibly at

the expense of recall.

3.4.3.2 Adding Non-Textual Features Next, I retrain the GBM 50 model with the

addition of several non-textual features outlined earlier. Figure 3.10 compares the ROC curve

for the GBM 50 model, with (marked by a + sign) and without non-textual features. The

curve and the AUC clearly illustrate the advantage of adding non-textual features. At every

point along the curve, the model that includes non-textual features out-performs the model

that excludes them. I choose this model to proceed and use it to classify my test set.

3.4.3.3 Feature Importance The decision to proceed with a particular model is based

not only on performance and accuracy measures, but also on feature importance. One of

the challenges of using ensemble methods such as a collection of decision-trees is that we
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Figure 3.9: ROC Curves for Basic Models
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Figure 3.10: ROC Curves after Adding Non-Textual Features
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sacrifice interperability for performance. That is, it becomes very difficult to understand

which features the model chose to split on, when, on what values and how they interact with

one another. For a single decision-tree, with a limited number of features, we may plot this

quite easily. How do we plot a model that sums over several (sometimes thousands) of trees

and uses hundreds of features?

With this in mind, understanding feature importance has become an important part of

assessing model performance. Several methods are available for assessing feature importance,

for example information gain or SHAP values at both the aggregate and the individual

(observation) level (Antwarg et al., 2021; Giudici & Raffinetti, 2021; Heuillet et al., 2021;

Lundberg et al., 2019; Lundberg & Lee, 2017; Marcilio & Eler, 2020; Marcílio & Eler, 2021;

Raschka, 2015; Shapley, 1953; M. Smith & Alvarez, 2021). Reviewing feature importance is

not simply meant to satisfy our curiosity. It is an important post-hoc method of assuring

that the model “makes sense.” When reviewing it, we should often look for red-flags such as

features we expected to be important but are ranked low; features that appear unusually high,

etc. More often than not, exploring such anomalies reveal problems in our data and/or point

to observations/features that may contribute to overfitting. Correcting for such problems

and retraining our model may increase its performance and more importantly, the ability to

generalize it to unseen data.

In Table 3.5 I list the top 30 features of the two models using a relative importance (RI)

metric (such that all features are scaled relative to the most important one, which is set to

100). As before, I compare the GBM model with 50 trees to it’s counterpart that includes

non-textual features.

The first thing to note is that, overall, the textual features in both models make sense.

Terms such as ‘establish,’ ‘creat(e)’/‘creation,’ ‘reorgan(ize),’ ‘commiss(ion)’ and ‘center’ are

all likely to be associated with the creation of new government agencies. Some words may

indeed be associated with agency-creation, but in a very specific context. For instance ‘indian’

and ‘park’ relate to the creation of agencies dealing with public lands and Native American
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lands. Such terms may be problematic when generalizing to data from a period where these

types of agencies were not as prominent. The final results suggest that, here, these may be

more useful because some of the old hearings that deal with agency creation, actually do

relate to lands in Alaska and Native American lands.

Table 3.5: Feature Importance

GBM 50 Feature GBM 50 RI GBM 50 (+ Non-Textual)
Feature

GBM 50 (+
Non-Textual) RI

establish 100 establish 100
examin 11.26 avg_dw 16.55
creation 9.217 avg_dw_dem 11.87
creat 7.181 creation 9.998
reorgan 6.237 avg_dw_rep 8.495
commiss 6.088 commiss 7.181
review 5.791 creat 7.004
h.r 2.322 reorgan 6.825
mainten 2.269 prop_subtopic 5.271
coordin 2.187 avg_dw_rep_chamber 4.08
indian 2.121 improv 3.618
park 2.047 SamePartyAll 1.819
ethic 1.861 indian 1.689
program 1.86 mainten 1.515
hear 1.854 research 1.505
center 1.845 subtopic_count_scaled 1.462
preserv 1.763 advisori 1.158
improv 1.636 ethic 1.109
nation 1.625 park 0.9615
nomin 1.556 addit 0.9584
advisori 1.521 act 0.9165
uranium 1.423 nation 0.8764
control 1.371 resourc 0.8463
conserv 1.357 monitor 0.8372
act 1.331 coordin 0.8196
cleanup 1.256 avg_dw_chamber 0.8006
addit 1.221 preserv 0.7837
fund 1.147 tribal 0.7818
limit 1.103 center 0.7616
regul 1.098 control 0.7372

Perhaps the most interesting insight gleaned from this table is the importance of the
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non-textual features (in bold). Note how several of the top-most features relate to the average

DW nominate scores in Congress, the prominence of the hearing’s policy subtopic and the

combined control of the two chambers of Congress and the presidency. Not only did including

these features improve model performance, now it becomes clear they are some of the most

important features on which the model chooses to split first—before most of the textual

features come into play. These importance rankings may suggest that many of the terms

relating to agency-creation are more indicative when the topic receives more attention, the

chambers and presidency are all controlled by the same party and as a function of voting

patterns within Congress. The latter is difficult to interpret. For instance, clearly, the

average DW nominate score (avg_dw) in the entire Congress is important. But it is unclear

what about this feature is important—are high values associated with agency-creation? Low

values? What of the interaction with other features? A model aimed at statistical inference,

rather than classification, would increase interpretability of these features (though it might

introduce questions of endogeneity, which I will address later).

Some weaknesses stand out as well. First, the stemming algorithm I used may not be

strong enough, illustrated by the distinction between ‘creation’ and ‘creat’—two features

that can likely be combined. Second, the terms ‘h.r.’ and ‘act’ are a little concerning. That

a hearing refers to a bill should not be so important in identifying agency-creation and it

may result in false-positives. The word ‘uranium’ is also very likely context-specific and not

relevant to a pre-WWII dataset. Note how these terms fall in ranking when non-textual

features are added to the model. Thus, even though I did not correct for these weaknesses

(and in general, I would recommend correcting for them), the improved model appears to

correct some of the weaknesses on its own. In this respect, the feature importance of the

improved model makes more sense.

It is also interesting that none of the top 30 features include terms such as ‘agency,’

‘department,’ ‘bureau,’ ‘organization,’ etc. These may still be important, but simply ranked

below 30. Such terms might be likely candidates to include in a dictionary if we were
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compiling one a-priori, yet the model indicates they are not as important for identifying

agency-creation on their own. Perhaps this is because the type of body in question may

change from observation to observation, whereas the verbs relating to their establishment

may be more consistent. It may also have to do with their correlation with other top-ranking

features in the model.

3.5 Classification of the Test Set: Pre-Labeled Data

When using machine learning for this type of problem, we spend most of our time on training

the model. Until this point, I only worked on our test set once: When I created it and

separated the training population from it. Only now that I have completed training and

found a satisfactory (even if not perfect) model, do I return to the test set.

As its name suggests, its sole purpose is to test how well our model performs on known

data. It is an important test because it illustrates the extent that our model can be generalized

from the data it was trained on, to other data. As such, it also rests on two particularly

important assumptions. First, that no data leakage occurred between the test set and our

trained model(s). In practice, this means that the two sets do not share any of the same

observations and nothing about the data in the test set was used to inform the trained model.

Second, that the test set is a good representation of the population we’re interested in,

and specifically, of the unseen data we plan on classifying using our model. This assumption

can be difficult to confirm and often to meet. As a reminder, our test set was drawn from the

modern hearings dataset, whereas our new data are from a much older dataset of congressional

hearings.

Applying our trained model to other data—any data, test set or otherwise—requires

pre-processing the other data in the same way. In this case, all it requires is to ensure that

all features used in the model appear in the test set as well.20 If a single feature—in this
20In other cases, it may require different types of pre-processing that might be more complicated. Including,

for example, imputation for missing values, handling of categorical features, scaling and/or centering features
and principal component analysis to reduce the dimensionality of the data when features may be correlated
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case term—is included in the model but not in the test set, it will fail to classify the test

set. Because most of our features are in fact terms, we may identify which terms are missing

from the test set and add them, filling all rows with 0 (because they do not appear in any

observation).21

In Figure 3.11 I present density plots of the predicted probabilities in the test set. The

probabilities are obtained by applying the trained model to the observations in the test set.

The advantage of the test set is that, much like the training set, the true class of every

observations is known, allowing me to assess the model’s accuracy on the test data. I plot

the probabilities by class.

Figure 3.11: Predicted Probabilities in the Test Set
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or numerous. Whatever method is chosen, the same exact procedure must be applied to the training set, as
well as any other sets the model is to be applied to (e.g. a test set or unseen data). In this case, the large
number of features (terms) would make principal component analysis appealing but because so few words
appear together, most are not likely correlated with one another and dimension reduction in such sets usually
proves useless.

21This approach will vary based on the model being trained. Here, features represent terms so the decision
to fill in the value 0 is appropriate because those terms truly do not appear at all in any of the observations.
The choice on if and how to fill missing values may largely depend on what the feature itself measures and on
the chosen algorithm.
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It is striking how similar the distribution of probabilities in the test set is compared to

those of the training set (see Figure 3.8). The Agency class exhibits the same two local

maxima at the start and end of the distribution, though the dip in between the two is not as

pronounced. The not-agency-creation class starts with two maxima and quickly dissipates.

Almost all of the not-agency-creation received a probability lower than 0.25. The dotted

red line illustrates the 60th percentile of the entire distribution, using the same potential

threshold as before. If I treat the 60th percentile as the threshold, recall will be very high,

correctly identifying 87.35% of the agency-creation observations in the test set. I will of

course have a relatively large amount of false-positives, resulting in a lower precision value

(0.72) but the majority of not-agency-creation observations will fall below the threshold.

Since I plan to manually review samples of the unseen data post-classification, in the trade-off

between recall and precision, I prefer recall.

3.6 Classification of Unseen Data: Unlabeled Data

Much like with the test set, unseen data require pre-processing and then simply classifying

them with our model. An important difference is that in unseen data, labels are unknown—I

am using the model to estimate the correct label. In some scenarios we might have a feedback

mechanism that at some point confirms classification or marks them as an error. For example,

in commerce, a transaction can either be approved or declined. When someone commits

fraud and the transaction is approved, at some point in time we will have an indication that

the decision to approve the transaction was wrong, because it was reported as fraud (e.g. a

customer notifies the merchant that their credit card was stolen and they did not commit the

relevant purchase). If, after a certain period an approved order is not reported as fraud, we

can assume the decision to approve it was correct.

Feedback is an important mechanism of evaluating the performance of a model on unseen

data, monitoring it over time and retraining if necessary. Feedback is especially important

when using models to create measurements like I am here. Validating measurements has
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been underused in political research (Ying et al., 2021) and can lead to misclassifications. It

is therefore crucial to make sure that we are indeed measuring what we indented to, at the

accuracy rate we expected.

Feedback can also be very important for retraining a model at a later stage because (a)

we may wish to correct for the errors the previous model made; and (b) somewhat ironically,

errors represent the observations for which we have the highest confidence in their labels (as

opposed to an observation that received no feedback and we can only assume its classification

was correct). Thus, they represent the best samples for a new model to learn from.

Figure 3.12 plots the density distribution of probabilities in the new data. Almost all

observations received a very low probability of including agency-creation. On the one hand,

this distribution is unsurprising—fewer agencies were in fact created in this period and so we

might expect fewer hearings to discuss agency-creation. On the other hand, the distribution

is concerning because as good as the model appears (at least on recall), it seems to be

identifying very few observations as agency-creation. The concern is that these data are so

different from the data the model was trained and tested on, that its generalizability is in

fact very poor.

This concern is made worse when reviewing the actual probabilities. In Table 3.6 I group

these probabilities together, illustrating how little variance they exhibit. Eighty-one percent

of the observations received the probability 0.068. Less than 5% of the data received a

probability lower than that, and only about 14% of the data received a higher probability.

Using the 60th percentile as a cut-off would be meaningless here. Doing so, would result in

almost all observations in the set to be classified as potential agency-creation hearings.

Instead, I divide the data into three groups, assuming that a probability of 0.137 or

higher indicates a strong likelihood of agency-creation; 0.083-0.137 indicates a moderate

likelihood; and below 0.083 indicates a low probability of agency-creation. I manually review

all observations in the strong-likelihood category and a random sample of 1,000 observations

from each of the remaining categories, totaling 3,405 observations (about 11% of the original
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Figure 3.12: Predicted Probabilities in the Old Hearings Dataset
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Table 3.6: Percentile Groups

Percentile Group N Percent
(0,0.0651] 1,403 4.59%
(0.0684,0.0719] 24,769 81.09%
(0.0719,0.0834] 152 0.50%
(0.0834,0.137] 2,817 9.22%
(0.137,1] 1,405 4.60%

Table 3.7: Recall

Likelihood N Sample True_Agency
Strong 1,405 1,405 223
Moderate 2,817 1,000 17
Low 26,324 1,000 11

dataset).

In Table 3.7 I list the three groups, together with their sample sizes for manual review

and the outcome. Precision is obviously very low, because of a large number of false-positives.

This was the price I was willing to pay to maximize recall. Results suggest the model did

an excellent job in terms of recall, identifying 223 agency-creation (of 251) in the strong-

likelihood category. An additional 17 and 11 hearings were identified in the moderate and

low categories, respectively, out of a sample of 1,000 observations. Most of these agencies

related to governmental functions in territories such as Alaska and Hawaii (at the time, they

were the responsibility of the federal Government in Washington). A few observations related

to military agencies. The latter were not comprehensively coded for in the modern dataset,

and therefore the model was unable to properly learn about such observations.

Subsequently, I searched both datasets for military-related terms to identify any additional

agency-creation hearings. In the old dataset I also searched for various American territories. I

identified an additional 15 hearings using this method, reaching a total of 266 agency-creation

hearings. Identifying the weakness of the model, rooted in a type of agency the model was

not trained on, allowed me to complement the model’s performance with a simple dictionary,

ultimately increasing recall and my confidence in the outcome measurement.

79



Models are never perfect and errors are to be assumed. These results actually boost my

confidence in the model’s performance, despite the various challenges it faced. I found it very

difficult to address both recall and precision and chose to prioritize the former over the latter.

Prioritizing recall allowed me to identify the most relevant observations using the model’s

predictions, manually removing any false-positives and searching for any false-negatives,

i.e. agency-creation hearings misclassified as non-agency. Of course, there may be some

additional false-negatives but based on the results from sampling the two lower likelihood

groups in Table 3.7 and the follow-up searches, I am confident very few relevant observations

remain unidentified. Thus, the trained-model allowed a manual review of only 11% of the

data, instead of sifting through the entire dataset, and yielded very reliable results.

Finally, In Figure 3.13 I plot the number of hearings concerning agency-creation, within

each Congress, over the entire period, combining the two datasets. Clearly, the great

broadening that occurred in the second half of the 20th century was unique in terms of

agency-creation at the federal level. Aside from a spike in the 80th Congress, immediately

after WWII, no other period is as dramatic as the period starting in the late 1960s. That

said, the first half of the 20th century does indicate a change with respect to previous years.

Previously, most congresses did not hold a single hearing that included agency-creation, and

only a handful held at most 4 hearings. Between the 60th Congress and the 79th Congress

(1907-1946), every single congress held a minimum of 4 relevant hearings, with a median of

10 and an average of 10.55 hearings per Congress. It is possible that this represents a slow

start of the great broadening that exploded later in the 20th Century, and has since died

down, almost returning to the non-existent level of the 19th century.

3.7 Summary

My very first attempt at this project was a failure. I did not, at first, consider how severely

imbalanced the classes were in the modern hearings dataset and the model I trained predicted

that all observations do not relate to agency creation. Its predictions were correct for 98.5%
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Figure 3.13: agency-creation in Congressional Hearings
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of the observations in the modern hearings dataset and it would’ve been correct for 99.1% of

the observations in the old hearings dataset—a precision that no model can compete with.

But, its recall was a perfect 0. It failed to positively identify a single observation in the class

of interest: Agency-creation.

Addressing this imbalance in both my training set and my test set was the first successful

choice toward a useful model. Balancing the training set—controlling the ratio between

classes and choosing the best examples for the machine to learn from—is a widely used

technique. Balancing the test set is far more unusual. Had I not done so, relying instead on

a random sample of data, my test set would have had only a handful of observations relating

to agency-creation. It would’ve been impossible to assess model performance based on such a

model.

A second choice I made was about which metric to prioritize. Given how severe the

imbalance between classes is, it quickly became clear to me that I must prioritize recall. The

most important aspect of evaluating my model was its ability to correctly identify all of

the agency-creation observations. Of course, the best model would be one that is able to

maximize recall first, while still minimizing false-positives (i.e. maximizing precision second).

I was willing to manually review a large portion of the data but still required keeping this

to a minimum to avoid reviewing the entire dataset (and thus, negating the entire point of

using a machine learning algorithm here).

Finally, I chose to include non-textual features in the model. At first glance, this appears

an easy decision. It increased the model’s predictive power, substantially and wilted out

many of the false-positives. Deciding on which features to include and how to measure them

required addressing the theoretical differences between the two datasets, that stem from two

politically distinct periods.

I proceeded with including non-textual features precisely because of how much they

improved the model’s predictions. Yet, this choice comes with great risk for anyone making

use of this measurement. Consider a researcher who is interested in knowing if and how
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Table 3.8: Negative Binomial Coefficients

dataset term estimate std.error statistic p.value
modern hearings avg_dw_dem 6.383 3.176 2.010 0.044
old hearings avg_dw_dem 14.337 1.500 9.561 0.000

the distribution of DW nominate scores, as a proxy for ideology, affect Congress’ tendency

to discuss agency-creation. In Table 3.8 I list the results of a negative binomial regression.

The target variable is a count of the number of hearings in each Congress that relate to

agency-creation. The single predictor is the average DW score of Democrats in each Congress

(this feature was ranked 3rd in feature importance for the trained model, see Table 3.5).

Of course, such a model should include other predictors and the outcome variable might

be measured as a proportion to account for the changing number of hearings held in each

Congress overall, but I use this model for the sake of simplicity. I also remove the constant

from the table.

Distinguishing between the two datasets, the models suggest that increases in the DW

nominate scores of Democrats are associated with a greater likelihood to discuss agency

creation. The effect is significant in both sets, though much stronger in the old hearings

dataset. What are we to make of the effect we find in the old hearings dataset? Given

that this feature was used in training the model that classifies agency-creation, and that

the feature was one of the top-most ranking features, does this relationship reflect the true

relationship between DW scores and agency-creation? Or, does it reflect the predictions that

we made in the old hearings based on the relationship in the modern hearings dataset?

The problem is one of endogeneity that illustrates how the decisions I made during the

process of training the model can have downstream effects on any research carried out with

this measure. To some degree, I have mitigated the risk as much as possible by manually

reviewing a large enough sample of the data and validating the machine’s true-positive

predictions (as well as identifying the false-positives). Additionally, assuming the effect above

holds in a more suitable model, the researcher might seek a method to explain why this effect
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is so much stronger in the old hearings dataset—both theoretically and considering the data

themselves.

I presented in this chapter a well-detailed process of training a model for a relatively

simple purpose. The process is infused with a theoretical understanding of the topic and a

careful consideration of the data. My goal was to illustrate to the user the myriad of choices

we make when training such a model. Big or small, we encounter such choices in every step

of the way and they have consequences that affect both the outcome itself and how it might

be used later on in research. Even if we don’t justify every single choice, understanding that

each choice can have meaningful consequences for model performance and its ultimate use in

research provides a healthy perspective for using machine learning in practice.
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4 Policy Topics in Congressional Bills

4.1 The Problem

The congressional bills dataset includes all bills introduced in Congress since the 80th Congress

(1947). Currently, it ends with the 114th Congress, in 2016 and is therefore quite outdated.

The data consist of several indicators about each bill submitted in Congress including

information about the member who submitted the bill, the chamber it was submitted in, the

committees it was referred to, the legislative status of the bill, etc. My goal in this study

was to train a model for qualitative coding (N.-C. Chen et al., 2018). The model should

accurately classify bills, based on the title of introduction, into the PAP major & minor

policy topics. Assuming some random error, some level of error that a supervised model

cannot address (because of a few PAP coding rules that are not necessarily expressed in

the bill title), and changes from one Congress to the next (expressed in unseen data to be

classified), I plan to maximize the model’s performance such that it may reliably classify as

many observations on its own. By doing so, only the smallest amount of bills possible will

require human review. The threshold for reliable classifications of the model is the maximum

recall possible that will maintain a minimal precision of 0.95.

The project is incredibly complicated for several reasons. First, the outcome is a multiclass

variable. Excluding the rare occasion of no policy topic at all and the topic of arts (23), the

PAP major topics consist of 20 different topics. Multiclass problems with 4 or 5 categories

are substantially more complex than a dichotomous outcome, let alone 20.

Second, the outcome in fact includes several multiclass variables. After successfully

classifying the major topics, I am left with classifying minor topics. Thus, each major topic

can be broken down into a multiclass problem of its own. I am therefore faced with a total of

20 multiclass problems, each requiring their own model (one for classifying 20 major topics

and then 19 different models for classifying the minor topics within each major topic; this

excludes Immigration, which consists of only one minor topic). The number of minor topics
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per major topic is listed in Table 4.1. The average number of topics in each major topic is 11.

Table 4.1: Number of Minor Topics Per Major Topic (PAP Codebook)

Major Topic N Subtopics
1. Macroeconomics 9
2. Civil Rights, Minority Issues, and Civil Liberties 10
3. Health 18
4. Agriculture 9
5. Labor and Employment 10
6. Education 10
7. Environment 12
8. Energy 9
9. Immigration 1
10. Transportation 10
12. Law, Crime, and Family Issues 13
13. Social Welfare 7
14. Community Development and Housing Issues 11
15. Banking, Finance, and Domestic Commerce 14
16. Defense 19
17. Space, Science and Communications 10
18. Foreign Trade 8
19. International Affairs and Foreign Aid 13
20. Government Operations 18
21. Public Lands and Water Management 7

Third, it is likely that even 20 models may not be sufficient. Changes in the terms used,

and their association with policy topics, from one Congress to the next are sufficiently frequent

to make it difficult to classify data from one Congress based on the data from the previous

meeting of Congress. Therefore, I can expect a good model, trained on the last few meetings

of Congress in the data, which end with the 114th Congress, to classify a majority of the

115th Congress, but not all of it. The performance of such a model would likely be reduced

further if applied to the subsequent 116th Congress and even more so, to the first year of

the 117th Congress. Thus, with the addition of every additional Congress classified, I may

need to retrain the series of models to rely on the most recent data and improve performance

with respect to the subsequent model. Potentially, this may require an iterative process of
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training 60 models.

Fourth, I am resigned to relying almost exclusively on features based in bill titles. To

phrase it more accurately, my plan is to train a model without having to rely on features

that may likely be used in research. For instance, assessing model performance on a test

set, I can expect model performance to improve if I include features about who introduced

the bill (e.g. seniority, state, party, the committee they serve on), the chamber the bill was

introduced in, the committee the bill was referred to, etc. This approach raises two potential

issues. First, it assumes the relationship between these features, the terms they use and their

relationship to policy topics is fixed. Thus, if for example in the new data, Republicans begin

to use terms previously associated with Democrats, the model will misclassify observations

because of this. Second, these data are routinely used in political science for examining

differences in the agenda across the very same variables—party, chamber, committee and so

on. To use them as predictors that distinguish topics from one another and then have them

used in research to also examine differences across these variables creates a major problem of

endogeneity for an entire sub-discipline in the field (recall the example in the summary of

the previous chapter). My model is therefore limited to the information that can be gleaned

almost exclusively from bill titles.

Finally, in the very first attempts at training the very first model—for classifying major

topics—it became clear that two dimensions of the problem need to be adequately addressed.

A significant portion of the data used for training and assessing model performance appeared

to have been misclassified. A large portion of the labeled data I was relying on was simply

coded wrong. Any model trained on these data was unable to surpass the 80% level of

precision in the training data, let alone the test data (no higher than 75%). When too

many of the observations are coded wrong, the model struggles to find meaningful patterns,

replicates errors and it becomes very difficult to assess its performance because the test data

itself may be incorrect.

The second dimension relates to complexity. With a problem this complex, a Random

87



Forest algorithm using a simple document-term-matrix—the applied method in past attempts

(Collingwood & Wilkerson, 2012; Hillard et al., 2008; Purpura & Hillard, 2006)—was simply

not strong enough to address the complexity of the problem.

4.2 Model Training Strategy

As I have already alluded, the model training strategy relies on a supervised machine learning

framework in which words are translated into features and we rely on pre-labeled data

to identify patterns for predicting those labels. In the previous chapter, I made use of a

document-term-matrix in which each row is an observation (in this case, a bill) and each

column is a term. In each cell I record the number of times each term appeared in each

observation and compared the performance of two supervised training algorithms—Random

Forest and GBM. For the purposes of the previous study that approach was sufficient. Here,

it proved inadequate.

The training data used here were much larger. After removing stop words, stemming terms

and excluding terms that appeared less than 4 times in the entire training data, I am still

left with 8,199 terms. To use these as features would create a very large, memory-demanding

model. Moreover, it places a great deal of emphasis on the role of a single word, making

it less likely to perform well on unseen data and likely resulting in overfitting. To improve

performance on the bills dataset (and reduce dimensionality), I use unsupervised methods to

create clusters or groups of terms as features based on how often they appear together (or

with other terms). Each feature thus represents a count of a group of terms rather than a

single term, making the feature itself more powerful, reducing the weight of a single term

and reducing the number of features used in the model (an important consideration for both

highly correlated features and for how memory-demanding running the model might prove).
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4.2.1 Feature Engineering through Unsupervised Learning

To reduce the dimensionality of the data I pre-process it using two unsupervised learning

algorithms that allow me to combine terms into meaningful groups. The first algorithm is

the Word2vec algorithm, which, based on a corpus of data, creates numeric vectors of d

dimensions as word representations (Mikolov, Sutskever, et al., 2013; Mikolov, Yih, et al.,

2013; Mikolov, Chen, et al., 2013). These vectors measure the distance between terms based

on shared and/or similar appearances in the data:

“Extensive prior work in natural language processing has focused on automatically

identifying semantically similar words. In general, this research relies on the

distributional hypothesis, and the idea that words used in similar contexts have

similar meanings. Building from this central insight, researchers have recently

sought to identify methods for understanding a word’s embedding in a vector space;

that is, these approaches seek to capture meaning that is lost in sparse, discrete

representations of terms. Consider, for instance, the terms ‘king’ and ‘queen.’

Standard approaches take the terms as discrete (i.e., 0 or 1). Instead, vector

space models represent terms as distributions over word dimensions. Though

none of the dimensions of the estimated vector are named, the ‘loading’ of each

term on the dimensions often captures substantively important relationships. For

instance, ‘king’ and ‘queen’ might have a similar concentration on a dimension

that seems to relate to the concept of royalty but deviate on a dimension that

seems to relate to man. The resulting word vectors provide a wealth of linguistic

information” (Rice & Zorn, 2021, p. 3).

I process the terms in my data to yield vectors of 300 dimensions per term (a standard

number of dimensions often employed with this algorithm). Prior to the use of this algorithm,

I remove stopwords, stem all terms and use only terms that appear 4 times or more in the

data.
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Next, based on these numeric representations of the terms in my corpus, I use K-means

clustering to group together terms. As detailed in Chapter 1, K-means clustering is an

unsupervised algorithm that groups together columns of data in a way that minimizes within-

group variance and maximizes between-group variance (Hartigan, 1975; Hartigan & Wong,

1979). The result is a series of K groups. The members of each group most resemble each

other according to the measurement used and are most unlike the members of all other

groups.

I use the the gap statistic to determine the number of clusters (at the major topic level,

K=344) in my corpus of data (Tibshirani et al., 2001).22 Combined, these methods allowed

me to identify groups of terms that are related in some way, often appearing together and/or

in similar contexts. I use each group as a feature in my model and therefore reduce the

number of features (from over 8,000 to ~350) and reduce the risk of overfitting to patterns

that emerge from single words.

Table 4.2 includes an example of two such clusters. The first combines several terms

relating to vehicles and fuel consumption; the second relates to immigration and related

procedures. Note, the latter cluster also includes a term that could lead to overfit, specifically

listing the term ‘haitan.’ All terms are stemmed.

After a first few training iterations I refined these clusters by completely excluding terms

that appeared to be causing misclassifications23 and separated a handful of terms, which

increased model performance when used as stand-alone features (and in various combinations

with other features given the nature of the supervised algorithm).24

22I try several variations, using as few as 150 clusters and as many as 570 clusters; results are largely the
same and do not improve on the 344 clusters determined using the gap statistic.

23Terms excluded completely: ‘amend,’ ‘act,’ ‘bill,’ ‘oper,’ ‘implement,’ ‘program,’ ‘titl,’ ‘administration,’
‘american,’ ‘institut,’ ‘department,’ ‘secretari,’ ‘offic.’

24Terms used as stand-alone features: ‘safeti,’ ‘transit,’ ‘secur,’ ‘effici,’ ‘job,’ ‘vehicl,’ ‘reimburs,’ ‘construct,’
‘research,’ ‘school,’ ‘compet,’ ‘youth,’ ‘young,’ ‘clean,’ ‘production,’ ‘power.’
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Table 4.2: Example Clusters

cluster terms

5 fuel; vehicl; electr; motor; emiss;

automobil; coal; transmiss; phone; haul;

speedway; vehicular; injector

276 immigr; alien; statu; citizen; legal; visa;

waiver; nonimmigr; admiss; citizenship;

admit; unaccompani; haitian; undocu;

reunifi

One caveat to the clustering of these terms is that it lowers the interpretability of the

model. Machine learning models are notorious for their black-box-like character, making it

difficult to understand why a model makes the decisions it makes. Several methods exists for

opening this black box, e.g. using SHAP values (Antwarg et al., 2021; Giudici & Raffinetti,

2021; Heuillet et al., 2021; Lundberg et al., 2019; Lundberg & Lee, 2017; Marcilio & Eler, 2020;

Marcílio & Eler, 2021; Shapley, 1953; M. Smith & Alvarez, 2021) and they offer wonderful

insights on the contribution of each feature to a model’s decision on a specific observation or

at the aggregate on all observations. With word-clusters, these features are simply named

cluster 0 through n and as the researcher, it requires an additional step to reveal which terms

are associated with each cluster and make interpretation of model decisions meaningful.

To be clear, these clusters of terms do not perfectly match up to the topics in the PAP

codebook and cannot be used as a simple dictionary. It is the combination of these clusters

used as features within the framework of an ensemble of decision trees that proves most

effective.

To this list of features I add a single additional categorical feature. Every bill in the

modern era has been classified by the Congressional Research Service (CRS) into subject
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areas of their own. These subject areas do not correspond to the PAP policy topics in any

straightforward manner. But they do represent an additional piece of information about the

bills that can be used without risking endogeneity down the line. The list of subject areas

includes 34 subjects.

Table 4.3 lists all 34 subject areas and their frequencies in the data used for training

(80% of the bills in the 108th-114th Congresses; see next section). In Figure 4.1 I plot the

relationship between the PAP major topic of bills and the corresponding CRS subject areas.

The plot demonstrates two important trends. First, that the two coding schemes do not line

up perfectly; every PAP topic is split between several CRS topics and vice versa. Second,

despite that, some issues correspond quite well, for example the majority of PAP Health

bills are coded as Health as well according to CRS. Similarly, most of the PAP Defense bills

correspond to CRS Armed Forces and National Security. Together, these trends illustrate

that they may include additional information on the likely PAP topic of each bill, if used

correctly with useful patterns found in the bills’ titles.25

4.2.2 Supervised Learning Algorithm: Catboost

Due to the categorical nature of subject-area feature and several different hyper-parameters

that are easy to tune, I train the model using a Catboost algorithm (Dorogush et al., 2018).

This algorithm is an ensemble of decision trees that employs boosting over gradient descent.

In other words, each decision tree learns from the errors of the previous tree, rather than

starting at a random split. It is unique compared to other boosting algorithms (e.g. GBM),

in its method of handling categorical features, which does not require one-hot-encoding

(converting it to m-1 binary columns). This algorithm is also unique in its ability to use

symmetrical splitting. That is, within the decision tree, a feature can appear on both sides of

a split made on a previous feature, increasing the ability to learn from feature values.
25See the online appendix for an enlarged version of this plot, along with separate plots for each PAP

major topic and its relationship to CRS subject areas. Plots are presented as html widgets offering additional
information (number of bills in each relationship) and additional functionality.
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Table 4.3: Distribution of CRS Subject Area in Training Data

Subject Area n
Agriculture and Food 1021
Animals 288
Armed Forces and National Security 4270
Arts, Culture, Religion 69
Civil Rights and Liberties, Minority Issues 254
Commemorations 861
Commerce 1391
Congress 526
Crime and Law Enforcement 2621
Economics and Public Finance 863
Education 2379
Emergency Management 879
Energy 1716
Environmental Protection 1313
Families 258
Finance and Financial Sector 1759
Foreign Trade and International Finance 5164
Government Operations and Politics 3030
Health 5916
Housing and Community Development 803
Immigration 1272
International Affairs 1807
Labor and Employment 1270
Law 742
Native Americans 731
Private Legislation 181
Public Lands and Natural Resources 3545
Science, Technology, Communications 965
Social Sciences and History 30
Social Welfare 839
Sports and Recreation 61
Taxation 5884
Transportation and Public Works 2010
Water Resources Development 811

20

I combine manually tuning hyper-parameters, as well as an automatic tuning using a

random search function on a pre-defined grid. Hyper-parameters are not parameters the
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Figure 4.1: PAP Major Topics to CRS Subject Area
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model can learn on its own, but rather parameters that affect how the model learns. Using

an optimized combination of parameters can substantially increase model performance. The

final model for classifying major topics used symmetrical splits, 9,234 iterations (trees), max

depth of 10 (the number of features to split on before a decision is made—up to an interaction

of 10 features), learning rate of 0.025 (how weak of a learner each tree is), l2_leaf_reg of

0.75 (regularizing the loss function to improve learning), rsm 0.2 (size of a random sample

of features to use in each iteration, can address the greedy nature of the trees) and a loss

function of MultiClassOneVsAll.

My description so far summarizes the selection and creation of features, mostly through the

use of unsupervised learning algorithms, and the training of a supervised learning model using

the Catboost algorithm. These steps encompass my strategy for addressing the complexity

of the problem. The final question to address is the data itself.

94



4.2.3 Data

The data used in training the model for classifying major topics included the last congresses

in the data: From the 108th Congress to the 114th. I am essentially ignoring a few hundred

thousand observations from earlier congresses in favor of using only the most recent data.

The first step required correcting misclassifications in the data. Reviewing small samples

of data suggested one type of error in the data that is both easy to identify and fix: Bills

that are almost identical in title but have been coded into separate major and/or minor

topics. I wrote a simple iterative search algorithm. At each iteration, it randomly sampled

one bill. Then, it identified all bills that shared at least 80% of their terms in common with

the sampled bill. If they were all coded into the same topic, I removed them from the pool of

bills to sample. If they were coded into separate topics I moved them to a pool that required

manual review. I continued with this search until no bills were left in the original pool. I

performed the search only on the second half of the dataset, beginning in the 93rd Congress.

The point was not to correct any and all errors in the entire dataset, but rather to correct a

specific type of error in the data most likely to be used in training.

This method yielded 6,802 groups and a total of 50,210 bills to be reviewed. Table 4.4

illustrates one such group. The bill, which should be coded as major topic “Health” (3) and

minor topic “Children and Prenatal Care” (332), was miscoded once at the major topic level

into “Law, Crime and Family Issues” (12) and twice at the minor topic level into “Public

Health and Disease Prevention” (331).

Reviewing these bills resulted in the correction of 10,725 bills at the major topic level and

an additional 3,081 bills at the minor topic level.26

26See the online appendix for a series of plots that illustrate the corrections. For each original major topic,
I plot the distribution of corrections into other major topics. A special thank you to Jacob Fridakis for taking
a major role in reviewing these bills.
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Table 4.4: Example of Misclassified Bills

BillID Title Major Minor
109-HR-1709 To expand access to preventive health

care services that help reduce
unintended pregnancy, reduce the
number of abortions, and improve
access to women’s health care.

3 332

109-S-20 A bill to expand access to preventive
health care services that help reduce
unintended pregnancy, reduce the
number of abortions, and improve
access to women’s health care.

3 332

109-S-844 A bill to expand access to preventive
health care services that help reduce
unintended pregnancy, reduce the
number of abortions, and improve
access to women’s health care.

3 332

110-HR-819 To expand access to preventive health
care services that help reduce
unintended pregnancy, reduce
abortions, and improve access to
women’s health care.

12 1208

110-S-21 A bill to expand access to preventive
health care services that help reduce
unintended pregnancy, reduce
abortions, and improve access to
women’s health care.

3 331

111-HR-463 To expand access to preventive health
care services that help reduce
unintended pregnancy, reduce
abortions, and improve access to
women’s health care.

3 331

Once I completed this series of corrections, I moved to selecting the data to include in

training. As in the previous chapter, the data here are imbalanced as well, although they are

spread out between 20 categories, rather than just two. After several attempts at addressing

this imbalance (random sampling, oversampling of smaller categories and undersampling of

larger categories), it appeared the best performance was acheived using the entire data as-is.

As is customary in many machine learning practices (Raschka, 2015), I use a random
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split of the data; 80% used for the training set. I split the remaining 20% into two equally

sized sets. The first, I used as an evaluation set, which served two purposes. First, Catboost

allows the use of an evaluation set while training the model to prevent overfitting. As the

model measures the loss function from one iteration (tree) to the next on the training set, it

does so on the evaluation set as well. If at any point, the loss function stops improving for a

predefined number of consecutive iterations (in this case, 50), the model stops training and is

“shrunk” to the best performing number of iterations. In this way, it learns patterns from the

training set and applies them to the evaluation set to detect and prevent overfitting.

In a recent article by Galarnyk (2022), the author provides an excellent illustration of

overfit and the optimal point at which we hope to be in when training. Adapted from his

own article, Figure 4.2 illustrates the performance of a linear model using R2. Measured on

both the author’s training set and test set, he illustrates how a max depth of 5 gives the best

performance on the test set, while maintaining a small difference in performance between

training and test. Increasing the depth beyond 5 increasingly improves model performance

on the training set, but simultaneously decreases model performance on the test set—the

best test of model performance we have. What this image illustrates is a classic case of

overfitting: Increasing depth beyond 5 causes the model to learn patterns that are unique to

the training set and cannot be generalized well to other data. Using the evaluation set in

Catboost for overfit detection and early stopping is designed to prevent this from occurring

and to converge on meaningful and generalizable patterns.27 Note, the image also provides

an excellent illustration of the bias-variance trade-off. At the left extreme, where differences

between the training set and test set are small, we encounter high bias (greater model error

in both sets) but low variance (small differences); at the right extreme, we encounter high

variance (large differences in performance with high bias in the test set only and very low

bias, i.e. model error, in the training set). The best model balances minimal variance and
27Reminder, depth is a hyper-parameter that cannot be learned by the machine and the figure by Galarnyk

(2022) illustrates an attempt to tune it. My use of an evaluation set refers to the patterns the machine can
learn, but the principle is the same.
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bias.

Figure 4.2: Optimal Point in Training

Second, in the first few attempts at training, I reviewed the errors the model was making

in the evaluation set. Understanding errors helps to identify terms than need to be dropped

completely or included separately as stand-alone features. In the process, I also identified an

additional 538 bills28 that had originally been miscoded (and the trained model’s classifications

were in fact correct). Finally, I was able to determine when the model training had approached

the maximum possible improvement. About two thirds of the errors at this point were ones I

would not expect the model to handle. For example, short or obscure bill titles that did not

include sufficient information, or “arbitrary” rules in the codebook that cannot be gleaned

from the text of an observation, for example using the lower number of two codes when it
28An oddly meaningful number in the context of Congress.
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appears both codes are equally dominant in a given observation.

All that remained was a test set of 10% of the original data. This test set was used only

for the purpose of assessing model performance, with no attempt to use it as part of the

training or to learn from the model’s errors in this set. It is crucial to keep a separate set for

this purpose to ensure a good estimate of the performance on unseen data.

4.2.4 Strategy: A Summary

Figure 4.3 summarizes the model training strategy. After correcting for previously misclassified

data, I limited the population of interest to the last six meetings of Congress. I pre-processed

the data using Word2vec and K-means clustering to produce term-clusters as features. I also

added a categorical feature of subject-area as coded by the CRS. Next, I split the population

of interest into a training set (80%), an evaluation set (10%) and a test set (10%). I trained

a supervised Catboost model on the training set and used the evaluation set to prevent

overfitting. Once satisfied, I assessed model performance on the test set.

Figure 4.3: Model Training Strategy

Correcting	Misclassified	Data:
93rd-114th	Congress

Population:
108th-114th	Congress

Collected	CRS
Subject-Area Training	Set

(80.0%;	N=55,549)

Evaluation	Set
(10.0%;	N=6,944)

Test	Set
(10.0%;	N=6,944)

Word2vec
Training
(Catboost)

Performance	AssessmentKmeans

I used this approach for the model predicting major categories. I replicated this approach

for each model predicting the minor topics within each major topic, mostly with minor

changes (e.g. deviating from the 80-10-10 split, when the data did not permit this ratio for

reliable training/evaluation). One important way in which the minor topic models deviate

from the major topic model is that for the former, I used all data from the 93rd Congress

onward. While at the major topic level, relying on data from the most recent 5 or 6 congresses

provided a sufficiently large and representative dataset of the most recent examples from

each topic, at the minor topic level I was faced with more limited data, in both size and

range. Hence my decision to add additional, older data, for the minor topic models.
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Table 4.5: Major Topic Model Accuracy

Set Pre Corrections Post Corrections CRS Subject Area
Training set 0.804 0.972 0.975
Evaluation set 0.872 0.898
Test set 0.753 0.875 0.896

4.3 Classification of the Test Set: Pre-Labeled Data

In Table 4.5 I list the accuracy of the model trained to classify major topics at three stages:

prior to correcting misclassified data, after correcting the data and after adding the categorical

CRS subject area feature to the model. Prior to correcting the data I used only twosets —a

training set and a test set—with a standard document-term-matrix (terms as features) and

a Random Forest algorithm. After correcting the data, I also opted for a model that uses

a Catboost algorithm with clusters of terms following an implementation of Word2vec and

K-means clustering.

The improvement is remarkable. With much fewer incorrect data to learn from, and a

more advanced modelling strategy, the model is able to learn from the training set in an

almost perfect capacity. Applying this model to the evaluation set (used during training to

detect and prevent overfit) shows a huge improvement from accurately classifying only 3 of

every 4 observations (0.753) to accurately classifying nearly 9 of every 10 observations. This

is further improved with the addition of the categorical CRS subject area feature. The most

important testament of the model’s performance is that these accuracy measures hold when

applied to the test data—data that was not used in training in any way.

What these measures mean is that if I were satisfied with a minimal accuracy of 0.9, the

model could reliably classify almost all observations in the set and very few would require

human review. For a minimal accuracy of 0.95 (my chosen level of accuracy), I use the

evaluation set to identify a probability threshold. The evaluation set suggests all observations

with a probability of 0.590 or higher, which is assigned to the class the model predicts, will

yield 0.95 accuracy. I then confirm that this threshold holds in the test set. Overall, the
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model may reliably classify 88% of the test set with an accuracy of 0.95. Within only a few

seconds, an overwhelming majority of the data are reliably classified by the model and only a

small portion require human review.

In Table 4.6 I list the accuracy thresholds of each of the models trained on the data leading

up to the 114th Congress. The first row lists results for the major topic model (corresponding

to the final column in Table 4.5) and each of the remaining rows relate to a model classifying

the minor topics within a given major topic. In all of the training sets, model accuracy is

near perfect with a precision of 0.98 or higher.

Table 4.6: Model Precision by Topic

Model Training
Precision

Evaluation
Precision

Test Precision

major_topic_model 0.98 0.9 0.9
Macroeconomics 0.99 0.95 0.95
Civil_Rights 1 0.91 0.96
Health 0.98 0.88 0.87
Agriculture 0.99 0.92 0.91
Labor 1 0.95 0.94
Education 0.99 0.91 0.91
Environment 1 0.9 0.89
Energy 1 0.91 0.91
Transportation 1 0.92 0.92
Law_Crime_Family 0.99 0.88 0.89
Social_Welfare 0.98 0.94 0.93
Housing 0.99 0.93 0.9
Banking 0.98 0.92 0.93
Defense 0.99 0.89 0.89
SSTC 1 0.91 0.89
Trade 0.99 0.93 0.91
International_Affairs 0.99 0.86 0.88
Government_Operations 0.98 0.93 0.93
Public_Lands 1 0.96 0.95

Precision in the evaluation and test sets is usually lower—as is to be expected—but usually

still high. Several topics still exhibit high precision of 0.95 or greater and most are greater

than 0.90. Only a small number of topics yield lower precision rates (Health, Environment,
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Law_Crime_Family, Defense, SSTC & International_Affairs), but even they remain high

(minimal precision >= 0.86) considering past success rates. Thus, the models show mostly

low variance (slightly higher error rate in test sets compared to training).

4.4 Classification of Unseen Data: Unlabeled Data

The estimated performance illustrated in the previous section is only valid if the unseen data

are similar enough to the evaluation set and test set. Sampling the results of classifying

the unseen data from the 115th Congress, it became apparent that the data are in fact not

as similar as I had hoped. To understand model performance and identify thresholds for

95% precision, I manually reviewed large samples of data from the 115th Congress. Sorting

the data by probability, from the lowest to the highest, I reviewed each predicted category

separately, correcting the predictions where necessary. Within each category I continued

reviewing predictions until I identified at least 100 consecutive observations, 95 of which the

machine accurately predicted.

This method is incredibly rigorous and required reviewing more than half of the machine’s

predictions. Sometimes, especially in early iterations of model training, it is necessary to

invest the time and effort in manually reviewing the data. Not only is it important in order

to avoid making too many (more than 5% in this case) false predictions, but it is also a useful

way of learning about next steps in training a new model. In a multi-classification problem

with 20 categories, this is especially crucial and samples that require review based on the

first models one trains are often quite large. To improve models such as these, feedback is

imperative.

After reviewing nearly 59% of the data, an estimated 80% of the machine’s classifications

were correct. Considering the challenge of training a model like this and the fact that all

training and test data were from Congresses prior to the 115th, this is an excellent outcome.

Recall that performance on the test set was estimated at 89% precision—only 9 points higher.

Despite the encouraging outcome, to leave these data without manual review would leave too
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Table 4.7: Thresholds in 115th Congress

Topic Threshold Percent Above Percent Reviewed
Macroeconomics 0.377 60.411 69.208
Civil Rights 0.688 25.935 99.002
Health 0.453 84.723 21.642
Agriculture 0.159 56.410 86.325
Labor 0.000 100.000 62.500
Education 0.581 72.507 40.970
Environment 0.181 61.336 58.907
Energy 0.227 89.401 33.641
Immigration 0.000 100.000 32.680
Transportation 0.548 23.575 100.000
Law, Crime, Family 0.154 62.632 54.912
Social Welfare 0.050 88.584 57.078
Housing 0.058 80.556 100.000
Finance 0.245 58.681 50.000
Defense 0.151 53.577 63.062
SSTC 0.000 100.000 100.000
Trade 0.000 100.000 100.000
International Affairs 0.171 40.415 100.000
Government Operations 0.664 26.139 79.019
Public Lands 0.574 49.917 58.417
Total 57.898 58.621

many mistaken classifications in the new dataset, and these would be carried forward as I

progress to training a model for classifying the 116th Congress.

Through my review I was able to correct nearly 20% of the model’s predictions (at the

lower end of the probabilies) and I identified a different threshold per topic that better

represents these data. In total, I could rely on 58% of the predictions to be accurate at 95%

precision or higher, but had to review 59% of the data to guarantee 95% accuracy overall.

See thresholds and the number/percent of observations reviewed in each topic in Table 4.7.

Reviewing such a large portion of the data provides rare insights into understanding

previously unlabeled data. In Figure 4.4 I plot the density of model score (probability) per

major topic, separating between false predictions and true predictions (the latter includes all

predictions that I reviewed and found to be true with the addition of all predictions above

103



the relevant threshold, estimated to be true).

Topics such as Health, Education, Energy and to a lesser degree, Immigration are wonderful

illustrations of the distribution we aim for in a model like this. In each of this topics, the

two groups hardly overlap, if at all, and each is centered at an opposite end. Other topics

indicate a good ability to identify what does not belong in that topic, but yield uniform

probabilities for the observations that do belong in that topic. These include Macroeconomics,

Civil Rights, Agriculture, Environment, Transportation, Law/Crime/Family, Social Welfare,

Housing, Finance, Government Operations and Public Lands. The model performs worst in

topics such as Labor, Defense, Trade, International Affairs and SSTC. Note how in Trade

and International Affairs, the two groups overlap nearly perfectly, and the in SSTC, the bulk

of the true predictions are in fact at the lower end of the scale.

Finally, in Figure 4.5 I plot the proportion of bills in each topic on the congressional

agendas. For the sake of comparison, I plot the 114th and 115th Congresses side-by-side.

Despite the model’s difficulty with a lot of the observations the two consecutive meetings of

Congress held a similar agenda. The topics of the day did not change much between the two

Congresses.

4.5 Summary

The problem in this chapter is incredibly complicated to address. Any multi-classification

problem on its own is more complicated than predicting a dichotomous label. Having to rely

almost entirely on the terms used in bills descriptions adds to the complexity of the problem.

Considering the challenge, results are very promising but retraining this model to classify the

116th Congress will provide much further work.

The use of K-means clustering on numeric representations of terms substantially improved

model performance and reduced its dimensionality. With the addition of the CRS subject

area as a single non-textual categorical feature, Catboost was able to perform very well in

making good predictions. Although I manually reviewed a large portion of the data, the data
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Figure 4.4: Density Plots of Model Scores by Prediction Accuracy
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Figure 4.5: The 115th Congressional Policy Agenda
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did illustrate how beyond a certain threshold, Catboost did an excellent job in distinguishing

between classes. The challenge moving forward is to lower that threshold as much as possible.

Reviewing the data, one thing became apparent to me. Relying on a representative sample

to train on may have been a mistake. The outcome of this decision was that some terms were

associated with larger categories, not because they were better predictors of that category,

but simply because that category appeared more frequently in the training data. In other

words, I overfitted the model to the larger categories. As I progress to the 116th Congress, I

plan on using a balanced sample with the same number of observations from each topic to

address this mistake.

I move to the the next and final chapter, with this notion of moving forward and what

lies ahead for machine learning in political science.
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5 The Road Ahead: Machine Learning in Political Sci-

ence

Summarizing the purpose of the preceding chapters, I wish to make the following points.

Political science as a whole, and congressional research in particular, have experienced an

explosion of data. Such large scale data hold exciting promise for research but present

researchers with a difficult challenge of creating reliable measurements. Several scholars have

turned to machine learning as a suitable solution and for good reason. The two empirical

chapters illustrate just how far machine learning can take us. With relative ease, I was able

to train machine learning models for two complicated problems, saving hours of human labor

and even improving on existing human-coded data.

In this conclusions chapter, I am interested in the question: Where do we go from here?

My dissertation can help answer that crucial question.

5.1 Bridging the Gap: Textbook vs. Machine Learning in Practice

The first wave of machine learning literature in political science introduced to the discipline

machine learning algorithms and their potential. For good reason, it did not cover all of the

intricacies of machine learning and the challenges that real data present. Instead, articles

described what machine learning is, outlined several widely used algorithms and demonstrated

potential uses for it in political science.

I believe we are now entering a second wave of machine learning literature, which attempts

to unlock the potential of machine learning given the limitations and challenges that real,

political, data present. This wave has given birth to articles such as that of Barberá et al.

(2021) on the practical use of machine learning and the considerations that go with it, or the

groundbreaking work of Grimmer et al. (2022) that demonstrate the contribution of machine

learning in every step of empirical research in political science.

In a way, the shift from the first wave to the second wave marks a shift from textbook
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data to real data. In textbook data, our data are neatly organized and well balanced to

facilitate our own learning.29 Algorithms perform well on textbook data and it is easy for

the user to achieve good results, for example when clusters of data points are easily (and

visually) identifiable. Real data—the data we are able to collect for research purposes—are

far more complicated. Too little data presents a challenge for statistical inference. Too much

data presents a challenge for measurement. Real data for one reason or another have missing

observations. In real data, classes may be severely imbalanced. Text as data methods might

yield too many features. Training data and unseen data may be distinct from one another in

several ways. Real data have mistakes. Clusters in real data sometimes overlap; patterns are

not mutually exclusive. Deciding how best to sample data and split between training and

test sets is a complicated decision, infused by theoretical and methodological considerations.

The list goes on.

I see my dissertation as firmly placed within the start of this second wave. Chapter 3

illustrated several aspects that researchers may face when applying machine learning methods

to political data, as well as listed some possible solutions: Balanced sampling for training to

handle severely imbalanced data; feature engineering in the face of two politically distinct

periods for training and unseen data; the trade-off between precision and recall; and the

combination of features from different sources, including text and non-text based features.

Chapter 4 illustrated how to combine supervised and unsupervised methods to reduce

model dimensionality and improve prediction using clusters of similar words. It demonstrated

how a single problem might be broken up into several different models, each providing a

solution to only part of the problem. It also serves as an excellent example of sacrificing

model performance for the sake of providing the discipline with a widely-used dataset, while

minimizing the risk of endogeneity when used in research. Finally, it demonstrated the

challenge of a multi-classification scenario, a scenario that is all to common in a discipline

that favors qualitative measurements.
29For those familiar, think of datasets such as “iris,” “diamonds,” “cars,” “mtcars,” etc.
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The shift from textbook data to real data is in fact a leap; one that is not easy to make.

Without proper guidance on the solutions to the problems that real data present, we may

find ourselves ill-applying machine learning methods, receiving poor results and abandoning

a promising method; or perhaps even worse accepting poor machine-based predictions by

assuming that that they are good. Consider for example the notion of an 80/20 split offered

by textbooks. With real data, we may sometimes be better off using only a small part of the

80% of the potential training data, e.g. in order to balance classes or use only data of the

highest certainty in their labels. Or, perhaps other ratios might be preferable to guarantee

sufficient data to learn from in training and sufficient data to test on (for example, the minor

topic model for Housing in Chapter 4, required a 90/10 ratio).

Even the notion of what should be labeled for successful machine learning projects, could

be further developed in the literature. Recently a colleague of mine coded the first 10 years

of a dataset spanning 100 years. Her hope was that she could train a model based on the

labeled data to predict the remaining 90 years but it performed poorly. Instead, I suggested

drawing a random sample of the data, stratified by year/decade in order to yield a sample

that better represents the data across time. Labeling such a sample and training a model

based on it would provide much better results.

Finally, I have emphasized throughout the dissertation my argument that we should treat

the use of machine learning as a process, composed of multiple, consecutive and iterable

choices, the consequences of which are evident in both model performance and usage within

a research setting. With the increasing trend for data transparency and reproducibility, I

expect authors will be required to document and convey such processes in greater detail.

5.2 Trade-Offs in the Academic Practice of Machine Learning

Adopting and importing methods often entail tailoring them to one’s needs (e.g. my point

about using such methods on real data in political science) and addressing the unique

challenges that arise from one’s constraints. I have iterated that a machine learning project
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consists of trade-offs. In every project, we must choose between precision and recall; we must

balance bias and variance in our sets; we must forgo some of our data—sometimes, nearly all

of it—to achieve better performance; we must choose between adding features that improve

performance and risk introducing endogeneity into subsequent research.

This last trade-off may be somewhat unique to the academic use of machine learning.

Usually, especially in the industry, the use of machine learning to make certain predictions is

itself the project’s goal. When Google uses machine learning to complete users’ search texts,

when navigation apps predict the best traffic route or when algorithms estimate the likelihood

of cancer in test results, the process stops there. In these examples, we’re rarely concerned

with the downstream effect that such predictions have on causal or relational research. In

academia, prediction is used primarily to measure variables in large scale data, that are to

be subsequently used in inferential research. We build a model that predicts a in order to

subsequently understand the relationship between a and b.

As we incorporate machine learning methods into our research, researchers need to be

cognizant of this trade-off at both ends of the spectrum. Those designing machine learning

models need to consider how they intend to make use of their outcomes. Those that consume

the outcomes need to understand the process that produced them and the risks they pose to

their research. Anticipating that researchers might be interested in analyzing differences in

the congressional agenda by e.g. party, I excluded such variables from my model. Similarly, a

study that explores patterns of agency-creation in Congress, should be careful of examining

differences across chambers, because, in my model, I used chamber to make predictions about

agency-creation.

5.3 Moving from Specific to All-Purpose Models

Working on this dissertation, I became aware of another trade-off, one I hadn’t previously

considered. A colleague of mine recently asked if I think she could use the models I trained

to predict policy topics on congressional bills to predict policy topics in European party
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manifestos. My response was that my models are unlikely to do well in that area for three

main reasons. Each of them illustrates the trade-off between a model that can be easily

generalized to multiple datasets vs. a model that is trained to do well on a specific type of

dataset. The former sacrifices overall performance for the possibility of using it to make

predictions in a wider variety of projects. The latter limits the predictions to a specific

project, but with much better performance on that particular project.

The first challenge arises from differences across space: The geographical and institutional

characteristics of the data that the model was trained on (bills in the American Congress)

versus the target data (party manifestos in Europe). The greater the differences between

the data the model was trained on and the target, the more we can expect a reduction in

performance. One of the greatest achievements of the comparative agendas project was to

be able to replicate the coding system offered by the policy agendas project and provide a

universal framework for comparative analyses of agendas. But, a unified coding system does

not mean that the terms used to describe the issues within each policy topic are the same

across countries.

Second, bills and manifestos are different at the data level. That is, they represent different

units, target different audiences and may differ linguistically. It is impossible to guarantee

performance on a type of data that is different from the data on which the model was trained

(but we can at least empirically test performance).

The third challenge is rooted in differences across time. At the major topic level, I chose

to train a model based on the 108th-114th (2003-2016) in an effort to predict data from the

subsequent 115th Congress. Relying on the most recent data in the bills dataset rested on

the assumption that they are more likely to be similar to the unseen data, than previous

meetings of Congress. If the manifestos data are drawn from earlier years, my model may

be at a disadvantage in predicting policy topics. The minor topics models relied on data

reaching back to the 93rd Congress (1973) so differences across time are less pronounced at

the minor topic level.
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Finally, in a successful effort to boost model performance, I included a single non-textual

feature in my models: The CRS subject area associated with each bill. Adding this feature

introduced the largest limitation I did not think of ahead of time. The problem that this

feature presents is that it limits my ability to use the model on any data that do not have a

CRS subject area. Within Congress, the CRS might assign subject areas to other sources

aside from bills, but they are primarily used for bills. Outside of Congress, not to mention,

the United States, I don’t expect CRS subject areas to exist at all. Thus, even if we are

able to get past the first three challenges (all of which can be empirically tested) to use the

model on manifestos data would mean setting this feature to NA in all observations, yielding

reduced performance.

For a model with the purpose of doing well on predicting congressional bill topics, the

process I outlined in Chapter 4 is an excellent choice. The bills project is a large enough and

complicated enough project to justify its own specific model. Its downside is that my choice

of strategy limited its applicability to practically bills only. To design a model that might

provide good predictions of policy topics, regardless of the data type, unit of analysis, space

or time, requires not only a more diverse collection of data to train on, but also a selection of

features that can be widely and easily measured in most datasets.

So far, the use of machine learning algorithms in political science mostly converges on the

latter approach—designing dedicated models to address a specific problem. As we accumulate

more data, the discipline could benefit from training all-purpose models. For instance, rather

than training a model for predicting American policy topics in congressional bills, we may

choose to train a more generalized model. Including different types of data in training could

allow to to train a model that can be generalized to several different types of data.

The diagram in Figure 5.1 illustrates a hierarchy of generalizeable models. At the bottom

is a model predicting policy topics that was trained on congressional bills data only (much like

the model I trained in Chapter 4, and can therefore be reliably generalized to congressional

bills only.
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Adding additional types of congressional data, such as roll call votes, hearings, CRS

reports and others we can train a model that may be capable of predicting policy topics in

most types of congressional data. Any new dataset that includes congressional data could be

reliably classified using this type of model. The price of training such a model would be the

collection of additional data, the engineering of features that are easily applicable to most

types of congressional data and forgoing any features that are specifically engineered for bills

Figure 5.1: From Specific to All-Purpose Models

Congressional	bills

Congressional	data
(bills,	roll	call	votes,	hearings,	CRS	reports,	etc.)

American	Institutions
(congressional,	presidential,	judicial,	news	media	data,	etc.)

CAP	community	at-large
(data	from	all	institutions	from	all	countries	in	the	Comparative	Agendas	Project)

Moving up one more step in the hierarchy, we may decide to train a model that predicts

policy topics in data from several American institutions. As before, the price would be

the collection of additional data, for instance party platforms, State of the Union speeches,

executive orders, Supreme Court decisions or news articles and the need to use more easily

generalizable features.

At the final step, we could conceive of a model that is an expert at predicting policy

topics across geographical space by training on data from all, or several, countries that are

members of the Comparative Agendas Project (CAP).

As we move up in the hierarchy we face the same trade-off: Designing a model that
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applies more broadly to more types of data, but may perform more poorly on each dataset

alone because it cannot account for the unique features that make up each dataset. The

benefit could be a standard, uniform model for predicting policy topics across a wide range of

data, setting the stage for comparative big-data research sharing the same level of reliability

(i.e. even if mistakes exist in the data, they should be consistent across countries/institutions).

As the second wave of machine learning research in political science advances, we may

begin to move up the hierarchy and collaborate on these wide-spanning models.

5.4 The Ease and Accessibility of Machine Learning via Code

As quantitative methods have become ingrained into political research, so too has using

statistical programming languages become a prominent skill among students of politics. The

resources that the personal computer affords today, together with open source statistical

programming languages have made machine learning models accessible to whomever may be

interested. R packages such as “caret”30 (Kuhn, 2020) and “tidymodels”31 (Kuhn & Wickham,

2020) have transformed the ease with which we may train models using R, providing a flexible,

powerful and comprehensive framework for models training. The code chunk attached in

Appendix A to this chapter, displays example R code for one of the GBM models trained

in Chapter 3 (including text-based features only), using the caret package. In less than 100

lines of code, I was able to read in the data, pre-process it, split it into training and test set,

train a model and evaluate its performance.

Although R is incredibly popular in political science, advancements in machine learning

usually occur first in Python. Students wishing to use the most state-of-the-art algorithms

likely need to turn to Python. The package scikit-learn32 is without out a doubt the most

widely used machine learning package in Python today. Several algorithms are accompanied
30https://topepo.github.io/caret/
31https://www.tidymodels.org/
32https://scikit-learn.org/stable/user_guide.html
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by their own package, e.g. XGBoost33 or Catboost34 and offer comprehensive, flexible and

intuitive use of their algorithms, along with exceptional online documentation. In Appendix

B to this chapter, I have provided sample Python code, corresponding to the models in

Chapter 4. Relying on existing packages, I created classes for identical pre-processing of

my training set, evaluation set and test set. Next, I calculated word vectors based on the

population data, estimated K-means clustering to form features and trained the model in

Catboost.

Machine learning code is widely available online and users are likely to face the problem

of having too many code sources to sift through to find relevant solutions to their coding

challenges. The natural step, as academia progresses in this direction, is to match source code

with methods. As we adopt machine learning methods, and tailor them to our needs—those

specified by our data—complementing them with our code will provide the foundation for

students to practice machine learning in their own research. Dataverses that store code (and

data) for published work will no doubt become useful sources for this purpose, but perhaps

more importantly, using sources such as Github to host, share and collaborate on code (a

practice that is commonly used in other disciplines and in the industry) could open the door

to making machine learning code even more accessible.

5.5 The Model Training Game Plan

As we embark on the second wave of machine learning, I expect to see a growth in the number

of students adopting this method. Summing up the lessons I discovered in this dissertation, I

leave the reader with the following questions as guidance.

What is the purpose of the model you’re training? Training an all-purpose model will

require collecting data from various sources, of various types to provide reliable predictions

in a variety of datasets. Such a model will rely on features that can be engineered based on

the lowest common denominator that these various data sources share, and can therefore be
33https://xgboost.readthedocs.io/en/stable/
34https://Catboost.ai/en/docs/
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quite limiting. A more specific model will likely produce more accurate results for a specific

type of data and will allow more fine-grained features. However, the ability to generalize it

to more data will be severely limited. Such models are likely used only once.

How do unseen data affect your model? Obviously our models never learn from unseen

data and instead, we make use of models to make sense of unseen data. We do need to be

cognizant of what is available to us in unseen data. For instance, are all data points used to

engineer features in the training data, readily measurable in unseen data? Additionally, one

of the most challenging aspects of political data is their temporal nature. Temporal changes

can limit the use of some features, while offering a range of new features.

What data should your model learn from? Usually, we think the answer to this question is

‘all labeled data we have’ but the truth is we may prefer only a subset of that data. The best

data to learn from should be those whose labels are of the highest certainty. Additionally,

we should aim to include observations that make it easier for the machine to learn useful

patterns, rather than confuse it (e.g. near-identical observations with different labels). Finally,

we should prioritize the data that are likely to provide the best outcome on unseen data. In

an all-purpose model, this prioritization may results in training on a variety of data sources.

In a specific setting, we may prefer data that are most similar to whatever unseen data I

plan on labeling.

What feedback mechanism can you provide the model? One of the challenges in using

machine learning models is that once we’ve used them to label unseen data, we don’t have an

indication of ground-truth and we sometimes treat the machine’s predictions as ground-truth.

This approach can lead to misclassified observations and deteriorated model performance

down the line. Some areas have built-in feedback mechanism, where ground-truth is supported

externally. In most projects I expect researchers to use machine learning, I don’t think this

is the case. Researchers should be prepared to manually review large portions of the data.

As the process of machine learning progresses, we may train a better model, requiring less

human review and manual feedback. Feedback can also be useful for detecting a change in
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the population emphasizing the need for retraining the model. For example, we may find

that a model trained to predict policy topics in congressional bills performs well on three

meetings of Congress in a row, but a change in the agenda or balance of power in the fourth

meeting, reduced model performance and required a fresh take.

Finally, what downstream effects on research do your choices within the model training

process have? My emphasis throughout this dissertation on treating the model training stage

as a process reflects the numerous considerations we are faced with when applying machine

learning models. We now have the ability of training very powerful models for handling the

overload of data in political science. The choices we make along the way affect what each

model can and cannot do and how they can be used in research. Addressing these questions

can help improve model performance, but more than that, they help us in understanding

how to make the most of such models.
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Appendices

Appendix A

R demo code for training a model to classify agency-creation in congressional hearing data

(corresponds to Chapter 3).35

# install and load libraries

if(!("xfun" %in% installed.packages())){

install.packages("xfun")

}

xfun::pkg_attach2(c("readr","tm","tidyverse","tidytext","stringr","caret",

"SnowballC","ggplot2","mlbench","plotROC","MLeval",

"fmsb","rvest","zoo","gbm"))

# import data ----

hearings <- read_csv("US-Legislative-congressional_hearings-19.4.csv")

# remove missing cases

hearings <- filter(hearings, filter_Agency %in% c(0,1))

# create unique id

hearings$myid <- 1:nrow(hearings)

# pre-process data ----

fulldtm <- as.data.frame(hearings) %>%

filter(grepl("[a-z]",description, ignore.case = T)) %>%

unnest_tokens(output = word, input = description) %>%

35See full code at https://github.com/freedmanguy/agency/blob/main/agency_creation.R.
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filter(!str_detect(word, "ˆ[0-9]*$")) %>% # remove numbers

anti_join(stop_words) %>% # remove stop words

mutate(word = SnowballC::wordStem(word)) # stem the words

# create documen-term-matrix ----

fulldtm <- fulldtm %>%

count(myid, word) %>% # count of each word in each observation

cast_dtm(document = myid, term = word, value = n) # no weights

# remove observations with insufficient text

hearings.text <- hearings %>%

filter(myid %in% as.numeric(as.character(fulldtm$dimnames$Docs)))

# test set ----

# create data frame of test set (random sample with ration 5:1)

set.seed(2400)

testset2 <- hearings.text %>%

filter(filter_Agency==1) %>%

slice_sample(n=419)

testset2 <- hearings.text %>%

filter(filter_Agency==0) %>%

slice_sample(n=419*5) %>%

bind_rows(testset2, .) %>%

arrange(myid)

# reduce population data to exclude test set

popdata2 <- anti_join(hearings.text,testset2)
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# training set ----

# create data frame of training set (random sample with ration 5:1)

set.seed(2404)

trainingset2 <- popdata2 %>%

filter(filter_Agency==1)

trainingset2 <- popdata2 %>%

filter(filter_Agency==0) %>%

slice_sample(n = nrow(trainingset2)*5) %>%

bind_rows(trainingset2) %>%

arrange(myid)

# remove sparce terms

length(fulldtm$dimnames$Terms)

fulldtmS <- fulldtm

fulldtmS <- removeSparseTerms(fulldtmS, sparse = .999)

length(fulldtmS$dimnames$Terms)

fulldtmdf <- as.data.frame(as.matrix(fulldtmS))

# create training set in the form of dtm

mytrain <- fulldtmdf %>%

mutate(myid = as.numeric(as.character(rownames(.)))) %>%

filter(myid %in% trainingset2$myid)

# remove observations with insufficient text

trainingset2 <- filter(trainingset2, myid %in% mytrain$myid)
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# remove id variable

mytrain <- mytrain %>%

select(., -myid) %>%

as.matrix()

# create test set in the form of dtm

mytest <- fulldtmdf %>%

mutate(myid = as.numeric(as.character(rownames(.)))) %>%

filter(myid %in% testset2$myid) %>%

arrange(myid) %>%

select(., -myid) %>%

as.matrix()

# Train model (with final specifications) ----

mygbm50 <- train(x = as.matrix(mytrain), # training set

y = factor(trainingset2$filter_Agency, # DV

levels = c(0,1),

labels = c("NotAgency","Agency")),

method = "gbm", # use "ranger" for RF

# resampling:

trControl = trainControl(method = "repeatedcv",

number = 10,

repeats = 3,

classProbs = T,

savePredictions = T),

# tuning parameters:
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tuneGrid = data.frame(n.trees = 50,

n.minobsinnode = 2,

interaction.depth = 10,

shrinkage = .1))

# Predicted probabilities in training set

training_pred <- mygbm50$pred %>%

mutate(model = "GBM 50") %>%

group_by(obs, rowIndex, model) %>%

summarise(Agency_mean = mean(Agency),

Agency_sd = sd(Agency),

NotAgency_mean = mean(NotAgency),

NotAgency_sd = mean(NotAgency)) %>%

ungroup()

training_pred$predAgency <- ifelse(

training_pred$Agency_mean>=quantile(training_pred$Agency_mean, .6),

"Agency",

"Not Agency"

)

# density plot

training_pred %>%

mutate(Observed = factor(obs,

levels = c("NotAgency","Agency"),

labels = c("Not Agency","Agency"))) %>%

ggplot(aes(x = Agency_mean, fill = Observed)) +

geom_density(alpha = .5) +
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labs(x = "Pr(Agency==1)") +

theme(legend.position = "bottom")

# ROC curve

evalm(mygbm50)$roc

Appendix B

Python demo code for training a model to classify PAP topics in congressional bills data

(corresponds to Chapter 4).36

# packages

import Catboost

import gensim.models

import gap_statistic

import nltk

import re

import copy

import pandas as pd

import numpy as np

import gensim.downloader as wv

from gensim import utils

from scipy.stats import randint

from sklearn.model_selection import RandomizedSearchCV

from sklearn.pre-processing import StandardScaler

from nltk.stem import PorterStemmer

from nltk.corpus import stopwords

36Code available at https://github.com/freedmanguy/cbp/blob/main/Example.ipynb.
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from nltk import download

from nltk.cluster import KMeansClusterer

download('stopwords')

# class for pre-processing dta - stemming, tokenizing, removing stop words

porter = PorterStemmer()

class PrepareSentance():

def __init__(self, df, text_column):

self.df = df

self.text_column = text_column

self.processed_df = []

def tokenize(self, stem=True, remove_stopwords=True):

df = self.df.copy()

text_column = self.text_column

processed_df = [utils.simple_pre-process(t) for t in df[text_column]]

if remove_stopwords:

stop_words = set(stopwords.words('english'))

for i in range(len(processed_df)):

processed_df[i] = [

w for w in processed_df[i] if not w in stop_words

]

if stem:

for i in range(len(processed_df)):

processed_df[i] = [porter.stem(p) for p in processed_df[i]]

self.processed_df = processed_df
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return processed_df

# classes for pre-processing training/test sets

class TabularDescription():

def __init__(self, dataset, text_column, word_clusters,

single_words=None):

self.set = dataset

self.text_column = text_column

self.word_clusters = word_clusters

self.single_words = single_words

self.x = None

self.y = None

self.training_features = None

if 'congress_gov_major_topic' in list(dataset.columns):

congress_subject_area = dataset[

['billid','congress_gov_major_topic']

]

congress_subject_area = congress_subject_area.set_index(

keys='billid'

)

self.congress_subject_area = congress_subject_area

else:

self.congress_subject_area = None

def get_dataset(self):

return self.set
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def get_text_column(self):

return self.text_column

def get_word_clusters(self):

return self.word_clusters

def get_single_words(self):

return self.single_words

def get_congress_subject_area(self):

return self.congress_subject_area

def get_training_features(self):

tsf = copy.deepcopy(self.training_features)

return tsf

class TabularDescriptionTrain(TabularDescription):

def __init__(self, dataset, text_column, word_clusters,

single_words=None):

super().__init__(dataset, text_column, word_clusters,

single_words=single_words)

def prepare_set_for_training(self, stem=True, remove_stopwords=True):

ts = self.get_dataset()

tc = self.get_text_column()
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ts_pp = PrepareSentance(df=ts, text_column=tc)

ts_t = ts_pp.tokenize(stem=stem, remove_stopwords=remove_stopwords)

billid = [

[ts.billid[b]] * len(ts_pp.processed_df[b]) for b in range(

len(ts_pp.processed_df)

)

]

ts_train = pd.DataFrame({

'billid' : [item for bill in billid for item in bill],

'term' : [term for title in ts_pp.processed_df for term in title]

})

word_clusters = self.get_word_clusters()

ts_train = ts_train.merge(right=word_clusters, how='left')

ts_train = ts_train.astype(str)

ts_train['cluster_name'] = 'c_'

ts_train.cluster_name = ts_train.cluster_name.str.cat(

ts_train.cluster

)

ts_dtm = ts_train.groupby(

['billid', 'cluster_name']

).size().reset_index()

ts_dtm = ts_dtm.rename(columns={0:'n'})

ts_dtm = ts_dtm.pivot(

index="billid", columns="cluster_name", values="n"
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).fillna(0)

ts_dtm = ts_dtm.drop(labels='c_nan', axis=1)

sw = self.get_single_words()

if sw is not None:

ts_sw = ts_train.merge(right=sw, how='inner')

ts_sw = pd.DataFrame(ts_sw.groupby(['billid', 'term']).size())

ts_sw = ts_sw.reset_index()

ts_sw.columns = ['billid', 'term', 'n']

ts_sw = ts_sw.pivot(index="billid", columns="term", values="n")

ts_dtm = ts_dtm.merge(right=ts_sw, left_index=True,

right_index=True, how='left').fillna(0)

sa = self.get_congress_subject_area()

if sa is not None:

ts_dtm = ts_dtm.merge(right=sa, left_index=True,

right_index=True, how='left')

y = pd.DataFrame({'billid':ts_dtm.index}).merge(

right=ts[['billid', 'minor']], how='left', on='billid')

y = y.astype('str')

y = list(y['minor'])

self.x = ts_dtm

self.y = y

self.training_features = list(ts_dtm.columns)

return ts_dtm, y
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class TabularDescriptionTest(TabularDescription):

def __init__(self, dataset, text_column, word_clusters,

training_features, single_words=None):

super().__init__(dataset, text_column, word_clusters,

single_words=single_words)

self.training_features = training_features

def prepare_set_for_evaluation(self, stem=True, remove_stopwords=True):

ts = self.get_dataset()

tc = self.get_text_column()

ts_pp = PrepareSentance(df=ts, text_column=tc)

ts_t = ts_pp.tokenize(stem=stem, remove_stopwords=remove_stopwords)

billid = [

[ts.billid[b]] * len(ts_pp.processed_df[b]) for b in range(

len(ts_pp.processed_df)

)

]

ts_train = pd.DataFrame({

'billid' : [item for bill in billid for item in bill],

'term' : [term for title in ts_pp.processed_df for term in title]

})

word_clusters = self.get_word_clusters()

ts_train = ts_train.merge(right=word_clusters, how='left')
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ts_train = ts_train.astype(str)

ts_train['cluster_name'] = 'c_'

ts_train.cluster_name = ts_train.cluster_name.str.cat(

ts_train.cluster

)

ts_dtm = ts_train.groupby(

['billid', 'cluster_name']

).size().reset_index()

ts_dtm = ts_dtm.rename(columns={0:'n'})

ts_dtm = ts_dtm.pivot(index="billid", columns="cluster_name",

values="n").fillna(0)

ts_dtm = ts_dtm.drop(labels='c_nan', axis=1)

sw = self.get_single_words()

if sw is not None:

ts_sw = ts_train.merge(right=sw, how='inner')

ts_sw = pd.DataFrame(ts_sw.groupby(['billid', 'term']).size())

ts_sw = ts_sw.reset_index()

ts_sw.columns = ['billid', 'term', 'n']

ts_sw = ts_sw.pivot(index="billid", columns="term", values="n")

ts_dtm = ts_dtm.merge(right=ts_sw, left_index=True,

right_index=True, how='left').fillna(0)

ts_columns = set(ts_dtm.columns)

training_features = set(self.get_training_features())

missing_features = training_features.difference(ts_columns)
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number_of_columns = len(missing_features)

if number_of_columns > 0:

number_of_rows = len(ts_dtm)

missing_features_a = np.zeros((number_of_rows, number_of_columns))

missing_features_df = pd.DataFrame(missing_features_a)

missing_features_df.columns = missing_features

missing_features_df.index = ts_dtm.index

ts_dtm = pd.concat([ts_dtm, missing_features_df], axis = 1)

columns_to_keep = copy.deepcopy(self.get_training_features())

sa = self.get_congress_subject_area()

if sa is not None:

columns_to_keep.remove('congress_gov_major_topic')

ts_dtm = ts_dtm[columns_to_keep]

if sa is not None:

ts_dtm = ts_dtm.merge(right=sa, left_index=True,

right_index=True, how='left')

y = pd.DataFrame({'billid':ts_dtm.index}).merge(

right=ts[['billid', 'minor']], how='left', on='billid')

y = y.astype('str')

y = list(y['minor'])

self.x = ts_dtm

self.y = y

return ts_dtm, y
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# function for evaluating model performance

def get_classification_results(cbm_model, x, y=None):

pred_prob_set = pd.DataFrame(cbm_model.predict_proba(x))

pred_prob_set.columns = cbm_model.classes_

pred_prob_set['probability'] = pred_prob_set.max(1)

pred_prob_set['predicted'] = cbm_model.predict(x)

if y is not None:

pred_prob_set['observed'] = y

pred_prob_set['match'] = [

True if pred_prob_set['observed'][i] == \

pred_prob_set['predicted'][i] else False \

for i in pred_prob_set.index

]

pred_prob_set['billid'] = list(x.index)

return pred_prob_set

# files (prepared in advance)

population_csv_file = 'population_93_114.csv'

training_csv_file = 'training_80.csv'

evaluation_csv_file = 'evaluation_set_80.csv'

test_csv_file = 'test_set_80.csv'

# data

population = pd.read_csv(population_csv_file)

training_set = pd.read_csv(training_csv_file)

evaluation_set = pd.read_csv(evaluation_csv_file)

test_set = pd.read_csv(test_csv_file)
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# word vectors on population data

population = population.query('congress > 107')

population['title'] = [re.sub('united states code|other purposes', '', x,

flags=re.IGNORECASE) for x in population['title']]

population_pp = PrepareSentance(df=population, text_column='title')

population_t = population_pp.tokenize()

for i in population_t:

for j in ['amend', 'act', 'bill', 'oper', 'implement', 'program', 'titl',

'administration', 'american', 'institut','department',

'secretari', 'offic']:

try:

i.remove(j)

except:

pass

population_t

population_gm = gensim.models.Word2Vec(sentences=population_t, min_count=3,

vector_size=300)

dfwv = pd.DataFrame(population_gm.wv.vectors)

dfwv.index = population_gm.wv.index_to_key

# K-means clustering based on word vectors

optimalK = gap_statistic.OptimalK(n_jobs=4, parallel_backend='joblib')

n_clusters = optimalK(dfwv, cluster_array=np.arange(1, 350))

n_clusters
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optimalK.plot_results()

X = population_gm.wv.vectors

NUM_CLUSTERS=n_clusters

kclusterer = KMeansClusterer(NUM_CLUSTERS,

distance=nltk.cluster.util.cosine_distance,

repeats=25)

assigned_clusters = kclusterer.cluster(X, assign_clusters=True)

word_clusters = pd.DataFrame({'term':population_gm.wv.index_to_key,

'cluster':assigned_clusters})

word_clusters.to_csv('word_clusters_edit.csv')

# list of terms to use as single words, outside of clusters

single_words = pd.DataFrame({'term':['safeti', 'transit', 'secur', 'effici',

'job', 'vehicl', 'reimburs', 'construct'

'research', 'school', 'compet', 'youth',

'young', 'clean', 'production',

'power']})

# training

training_ins = TabularDescriptionTrain(dataset=training_set,

text_column='title',

word_clusters=word_clusters,

single_words=single_words)

ts_x, ts_y = training_ins.prepare_set_for_training()

training_ins.get_training_features()

# evaluation
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evaluation_ins = TabularDescriptionTest(

dataset=evaluation_set,

text_column='title',

word_clusters=word_clusters,

training_features=training_ins.get_training_features(),

single_words=single_words

)

ev_x, ev_y = evaluation_ins.prepare_set_for_evaluation()

# test set

test_ins = TabularDescriptionTest(

dataset=test_set,

text_column='title',

word_clusters=word_clusters,

training_features=training_ins.get_training_features(),

single_words=single_words

)

test_x, test_y = test_ins.prepare_set_for_evaluation()

# train Catboost

major_model_80 = Catboost.CatboostClassifier(

iterations=18000, max_depth=10,

learning_rate=0.025,

l2_leaf_reg=0.75,

loss_function='MultiClassOneVsAll',

rsm=0.2,

cat_features=['congress_gov_major_topic']
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)

major_model_80_mt = major_model_80.fit(

X=training_80_dtm, y=y_training_80,

early_stopping_rounds=50,

eval_set=(validation_80_dtm, y_validation_80)

)

# shrink number of iterations based on early detection of overfit

major_model_80_mt.shrink(9234)

# accuracy

ts_set_acc = major_model_80_mt.score(X=training_80_dtm, y=y_training_80)

eval_acc = major_model_80_mt.score(X=validation_80_dtm, y=y_validation_80)

test_set_acc = major_model_80_mt.score(X=test_set_80_dtm, y=y_test_set_80)

print(f'training set accuracy: {ts_set_acc}')

print(f'validation set accuracy: {eval_acc}')

print(f'test set accuracy: {test_set_acc}')

# predictions

pred = get_classification_results(cbm_model = model,

x=test_set_80_dtm, y=y_test_set_80)

137



References

Abram, M., & Cooper, J. (1968). The rise of seniority in the house of representatives. Polity,

1 (1), 5285.

Adler, E. S., & Wilkerson, J. D. (2008). Intended consequences: Jurisdictional reform and

issue control in the US house of representatives. Legislative Studies Quarterly, 33 (1),

85112.

Adler, E. S., & Wilkerson, J. D. (2013). Congress and the politics of problem solving.

Cambridge University Press.

Aitchison, J. (2001). Language change: Progress or decay? Cambridge university press.

Aldrich, J. H. (1999). Political parties in a critical era. American Politics Quarterly, 27 (1),

932.

Aldrich, J. H., & Niemi, R. G. (2018). The sixth american party system: Electoral change,

19521992 (p. 87109). Routledge.

Aldrich, J. H., & Rohde, D. (2001). The logic of conditional party government: Revisiting the

electoral connection (L. C. Dodd & B. I. Oppenheimer, Eds.; 7th ed.). CQ Press.

Amethiya, Y., Pipariya, P., Patel, S., & Shah, M. (2021). Comparative analysis of breast

cancer detection using machine learning and biosensors. Intelligent Medicine.

Anastasopoulos, L. J., Badani, D., Lee, C., Ginosar, S., & Williams, J. (2016). Photographic

home styles in congress: A computer vision approach. arXiv Preprint arXiv:1611.09942.

Anastasopoulos, L. J., & Bertelli, A. M. (2020). Understanding delegation through machine

learning: A method and application to the european union. American Political Science

Review, 114 (1), 291301.

Antwarg, L., Miller, R. M., Shapira, B., & Rokach, L. (2021). Explaining anomalies detected

by autoencoders using Shapley Additive Explanations. Expert Systems with Applications,

186, 115736. https://doi.org/10.1016/j.eswa.2021.115736

Argersinger, P. (1992). Structure, process, and party: Essays in american political history.

ME Sharpe Inc.

138

https://doi.org/10.1016/j.eswa.2021.115736


Bachrach, P., & Baratz, M. S. (1962). Two faces of power. American Political Science Review,

56 (4), 947952.

Barberá, P., Boydstun, A. E., Linn, S., McMahon, R., & Nagler, J. (2021). Automated Text

Classification of News Articles: A Practical Guide. Political analysis, 29 (1), 19–42.

Baumgartner, F. R., Breunig, C., & Grossman, E. (2019). Comparative policy agendas:

Theory, tools, data. Oxford University Press.

Baumgartner, F. R., De Boef, S. L., & Boydstun, A. E. (2008). The decline of the death

penalty and the discovery of innocence. Cambridge University Press.

Baumgartner, F. R., & Jones, B. D. (2015). The politics of information: Problem definition

and the course of public policy in america. University of Chicago Press.

Baumgartner, F. R., Jones, B. D., & MacLeod, M. C. (2000a). The evolution of legislative

jurisdictions. Journal of Politics, 62 (2), 321–349.

Baumgartner, F. R., Jones, B. D., & MacLeod, M. C. (2000b). The evolution of legislative

jurisdictions. Journal of Politics, 62 (2), 321–349.

Binder, S. A. (1999). The dynamics of legislative gridlock, 194796. American Political Science

Review, 93 (3), 519533.

Black, E., & Black, M. (2009). The rise of southern republicans. Harvard University Press.

Bloch Rubin, R. (2013). Organizing for insurgency: Intraparty organization and the devel-

opment of the house insurgency, 19081910. Studies in American Political Development,

27 (2), 86110.

Bonica, A. (2018). Inferring roll-call scores from campaign contributions using supervised

machine learning. American Journal of Political Science, 62 (4), 830848.

Boydstun, A. E. (2013). Making the news: Politics, the media, and agenda setting. University

of Chicago Press.

Brady, H. E. (2019). The challenge of big data and data science. Annual Review of Political

Science, 22, 297323.

139



Brewer, M. D., & Stonecash, J. M. (2009). Dynamics of american political parties. Cambridge

University Press.

Buerki, A. (2019). Furiously fast: On the speed of change in formulaic language. Yearbook of

Phraseology, 10 (1), 538.

Burnham, W. D. (1965). The changing shape of the american political universe. American

Political Science Review, 59 (1), 728.

Canon, D. T., & Stewart, C. H. (2001). The evolution of the committee system in congress

(L. C. Dodd & B. I. Oppenheimer, Eds.; 7th ed., pp. 163–190). CQ Press.

Cardie, C., & Wilkerson, J. (2008). Text annotation for political science research.

Cavari, A., & Freedman, G. (2021). American public opinion toward israel: From consensus

to divide. Routledge.

Chen, N.-C., Drouhard, M., Kocielnik, R., Suh, J., & Aragon, C. R. (2018). Using machine

learning to support qualitative coding in social science: Shifting the focus to ambiguity.

ACM Transactions on Interactive Intelligent Systems (TiiS), 8 (2), 120.

Chen, Y., Garnett, R., & Montgomery, J. M. (2022). Polls, context, and time: A dynamic

hierarchical bayesian forecasting model for US senate elections. Political Analysis, 121.

https://doi.org/10.1017/pan.2021.42

Cohen, R. E. (1999). Rostenkowski: The pursuit of power and the end of the old politics.

University of Chicago Press.

Collingwood, L., & Wilkerson, J. (2012). Tradeoffs in accuracy and efficiency in supervised

learning methods. Journal of Information Technology & Politics, 9 (3), 298318.

Cooper, J. (1988). Congress and its committees. Garland.

Cooper, J., & Brady, D. W. (1981). Institutional context and leadership style: The house

from cannon to rayburn. American Political Science Review, 75 (2), 411425.

Cox, G. W., & McCubbins, M. D. (2005). Setting the agenda: Responsible party government

in the US house of representatives. Cambridge University Press.

140

https://doi.org/10.1017/pan.2021.42


Cranmer, S. J., & Desmarais, B. A. (2017). What Can We Learn from Predictive Modeling?

Political analysis, 25 (2), 145–166.

D’Orazio, V., Landis, S. T., Palmer, G., & Schrodt, P. (2014). Separating the Wheat from

the Chaff: Applications of Automated Document Classification Using Support Vector

Machines. Political analysis, 22 (2), 224–242.

Dahl, R. A. (1961). Who governs?: Democracy and power in an american city. Yale

University Press.

Davidson, R. H. (1990). The advent of the modern congress: The legislative reorganization

act of 1946. Legislative Studies Quarterly, 15 (3), 357373.

Deering, C. J., & Smith, S. S. (1997). Committees in congress. CQ Press.

DeGregorio, C. (1994). Professional committee staff as policymaking partners in the US

congress. Congress & the Presidency, 21 (1), 4965.

Denny, M. J., & Spirling, A. (2018). Text preprocessing for unsupervised learning: Why it

matters, when it misleads, and what to do about it. Political Analysis, 26 (2), 168189.

Diermeier, D., Godbout, J.-F., Yu, B., & Kaufmann, S. (2012). Language and ideology in

congress. British Journal of Political Science, 42 (1), 3155.

Dorogush, A. V., Ershov, V., & Gulin, A. (2018). CatBoost: Gradient boosting with

categorical features support. arXiv Preprint arXiv:1810.11363.

Dowding, K., & Miller, C. (2019). On prediction in political science. European Journal of

Political Research, 58 (3), 10011018.

Downs, A. (1957). An economic theory of democracy. Harper & Row.

Dun, L., Soroka, S., & Wlezien, C. (2021). Dictionaries, supervised learning, and media

coverage of public policy. Political Communication, 38 (1-2), 140158.

Epp, D. A. (2018). Policy Agendas and Economic Inequality in American Politics. Political

Studies, 66 (4), 922–939. https://doi.org/10.1177/0032321717736951

Erlich, A., Dantas, S. G., Bagozzi, B. E., Berliner, D., & Palmer-Rubin, B. (2021). Multi-Label

Prediction for Political Text-as-Data. Political analysis, 1–18.

141

https://doi.org/10.1177/0032321717736951


Evans, C. L. (1999). Legislative structure: Rules, precedents, and jurisdictions. Legislative

Studies Quarterly, 605642.

Fagan, E., & Shannon, B. (2020). Using the comparative agendas project to examine interest

group behavior. Interest Groups & Advocacy, 9 (3), 361372.

Fenno, R. F. (1966). The power of the purse: Appropriations politics in congress. Little,

Brown.

Fenno, R. F. (1977). US house members in their constituencies: An exploration. American

Political Science Review, 71 (3), 883917.

Foner, E. (1988). Reconstruction: America’s unfinished revolution, 18631877. Harper & Row.

Fong, C., & Tyler, M. (2021). Machine Learning Predictions as Regression Covariates.

Political analysis, 29 (4), 467–484.

Galarnyk, M. (2022). Understanding train test split (scikit-learn + python). https://toward

sdatascience.com/understanding-train-test-split-scikit-learn-python-ea676d5e3d1

Gamson, W. A., & Modigliani, A. (1989). Media discourse and public opinion on nuclear

power: A constructionist approach. American Journal of Sociology, 95 (1), 137.

Geisser, S. (1975). The predictive sample reuse method with applications. Journal of the

American Statistical Association, 70 (350), 320328.

Giudici, P., & Raffinetti, E. (2021). Shapley-lorenz eXplainable artificial intelligence. Expert

Systems with Applications, 167, 114104. https://doi.org/https://doi.org/10.1016/j.eswa.2

020.114104

Green, D. P., & Kern, H. L. (2012). Modeling heterogeneous treatment effects in survey

experiments with bayesian additive regression trees. Public Opinion Quarterly, 76 (3),

491511.

Greene, K. T., Park, B., & Colaresi, M. (2019). Machine Learning Human Rights and Wrongs:

How the Successes and Failures of Supervised Learning Algorithms Can Inform the Debate

About Information Effects. Political analysis, 27 (2), 223–230.

142

https://towardsdatascience.com/understanding-train-test-split-scikit-learn-python-ea676d5e3d1
https://towardsdatascience.com/understanding-train-test-split-scikit-learn-python-ea676d5e3d1
https://doi.org/10.1016/j.eswa.2020.114104
https://doi.org/10.1016/j.eswa.2020.114104


Grimmer, J. (2015). We are all social scientists now: How big data, machine learning, and

causal inference work together. PS: Political Science & Politics, 48 (1), 8083.

Grimmer, J., & King, G. (2011). General purpose computer-assisted clustering and conceptu-

alization. Proceedings of the National Academy of Sciences, 108 (7), 26432650.

Grimmer, J., Messing, S., & Westwood, S. J. (2012). How words and money cultivate a

personal vote: The effect of legislator credit claiming on constituent credit allocation.

American Political Science Review, 106 (4), 703719.

Grimmer, J., Roberts, M. E., & Stewart, B. M. (2021). Machine learning for social science:

An agnostic approach. Annual Review of Political Science, 24, 395419.

Grimmer, J., Roberts, M. E., & Stewart, B. M. (2022). Text as data: A new framework for

machine learning and the social sciences. Princeton University Press.

Grossman, J., & Pedahzur, A. (2020). Political science and big data: Structured data,

unstructured data, and how to use them. Political Science Quarterly, 135 (2), 225257.

Hajare, P., Kamal, S., Krishnan, S., & Bagavathi, A. (2021). A machine learning pipeline to

examine political bias with congressional speeches. 239243.

Hardin, G. (1968). The tragedy of the commons. Science, 162 (3859), 12431248. http:

//www.jstor.org/stable/1724745

Hartigan, J. A. (1975). Clustering algorithms. John Wiley; Sons.

Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm.

Journal of the Royal Statistical Society. Series c (Applied Statistics), 28 (1), 100–108.

Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The elements of statistical learning:

Data mining, inference, and prediction (Vol. 2). Springer.

Hawley, E. W. (2015). The new deal and the problem of monopoly. Princeton University

Press.

Hetherington, M. J. (2009). Putting polarization in perspective. British Journal of Political

Science, 39 (2), 413448.

143

http://www.jstor.org/stable/1724745
http://www.jstor.org/stable/1724745


Heuillet, A., Couthouis, F., & Díaz-Rodríguez, N. (2021). Explainability in deep reinforcement

learning. Knowledge-Based Systems, 214, 106685. https://doi.org/10.1016/j.knosys.2020.

106685

Hillard, D., Purpura, S., & Wilkerson, J. (2008). Computer-assisted topic classification for

mixed-methods social science research. Journal of Information Technology & Politics,

4 (4), 3146.

Imai, K., & Khanna, K. (2016). Improving ecological inference by predicting individual

ethnicity from voter registration records. Political Analysis, 24 (2), 263272.

Jacobson, G. C. (2000). 2000. Party polarization in national politics: The electoral connection

(J. R. Bond & R. Fleisher, Eds.; p. 930). Congressional Quarterly Press.

Jacoby, W. G. (2000). Issue framing and public opinion on government spending. American

Journal of Political Science, 750767.

Jones, B. D. (2016). The comparative policy agendas projects as measurement systems:

Response to dowding, hindmoor and martin. Journal of Public Policy, 36 (1), 3146.

Jones, B. D., & Baumgartner, F. R. (2004). Representation and Agenda Setting. Policy

Studies Journal, 25.

Jones, B. D., Baumgartner, F. R., & Talbert, J. C. (1993a). The destruction of issue

monopolies in congress. American Political Science Review, 87 (3), 657671.

Jones, B. D., Baumgartner, F. R., & Talbert, J. C. (1993b). The destruction of issue

monopolies in congress. American Political Science Review, 87 (3).

Jones, B. D., Theriault, S. M., & Whyman, M. (2019). The great broadening: How the

vast expansion of the policymaking agenda transformed american politics. University of

Chicago Press.

Jones, D. R. (2001). Party polarization and legislative gridlock. Political Research Quarterly,

54 (1), 125141.

Karol, D., & Hershey, M. R. (2014). Parties revised and revived: Democrats and republicans

in the age of reagan, 1980-2000. CQ Press.

144

https://doi.org/10.1016/j.knosys.2020.106685
https://doi.org/10.1016/j.knosys.2020.106685


Kastellec, J. P. (2010). The statistical analysis of judicial decisions and legal rules with

classification trees. Journal of Empirical Legal Studies, 7 (2), 202230.

Kaufman, A. R., Kraft, P., & Sen, M. (2019). Improving Supreme Court Forecasting Using

Boosted Decision Trees. Political analysis, 27 (3), 381–387.

Key, V. O. (1959). Secular realignment and the party system. The Journal of Politics, 21 (2),

198210.

King, D. C. (1997). Turf wars: How congressional committees claim jurisdiction. University

of Chicago Press.

King, G., Lam, P., & Roberts, M. E. (2017). Computer-assisted keyword and document set

discovery from unstructured text. American Journal of Political Science, 61 (4), 971988.

King, G., Pan, J., & Roberts, M. E. (2013). How censorship in china allows government

criticism but silences collective expression. American Political Science Review, 107 (2),

326343.

Kuhn, M. (2020). Caret: Classification and regression training. https://CRAN.R-project.or

g/package=caret

Kuhn, M., & Wickham, H. (2020). Tidymodels: A collection of packages for modeling and

machine learning using tidyverse principles.

Lawrence, E. D. (2013). The publication of precedents and its effect on legislative behavior.

Legislative Studies Quarterly, 38 (1), 3158.

Layman, G. C., Carsey, T. M., & Horowitz, J. M. (2006). PARTY POLARIZATION IN

AMERICAN POLITICS: Characteristics, Causes, and Consequences. Annual Review of

Political Science, 9 (1), 83–110. https://doi.org/10.1146/annurev.polisci.9.070204.105138

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521 (7553), 436444.

Lee, F. E. (2008). Agreeing to disagree: Agenda content and senate partisanship, 19812004.

Legislative Studies Quarterly, 33 (2), 199222.

Lee, F. E. (2018). Bicameral representation (G. C. Edwards, F. E. Lee, & E. Schickler, Eds.).

Oxford University Press.

145

https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret
https://doi.org/10.1146/annurev.polisci.9.070204.105138


Leuchtenburg, W. E. (1963). Franklin d. Roosevelt and the new deal, 1932-1940. Harper &

Row.

Lewallen, J. (2020). Committees and the decline of lawmaking in congress. University of

Michigan Press.

Lewallen, J., Theriault, S. M., & Jones, B. D. (2016). Congressional dysfunction: An

information processing perspective: Congressional dysfunction and hearings. Regulation

& Governance, 10 (2), 179–190. https://doi.org/10.1111/rego.12090

Llanos, M., & Nolte, D. (2003). Bicameralism in the americas: Around the extremes of

symmetry and incongruence. The Journal of Legislative Studies, 9 (3), 5486.

Lundberg, S. M., Erion, G. G., & Lee, S.-I. (2019). Consistent Individualized Feature

Attribution for Tree Ensembles. arXiv:1802.03888 [Cs, Stat]. http://arxiv.org/abs/1802

.03888

Lundberg, S. M., & Lee, S.-I. (2017). 31st Conference on Neural Information Processing

Systems. 10.

Mann, T. E., & Ornstein, N. J. (2006). The broken branch: How congress is failing america

and how to get it back on track. Oxford University Press.

Marcilio, W. E., & Eler, D. M. (2020). 2020 33rd SIBGRAPI Conference on Graphics,

Patterns and Images (SIBGRAPI). https://doi.org/10.1109/SIBGRAPI51738.2020.00053

Marcílio, W. E., & Eler, D. M. (2021). Explaining dimensionality reduction results using

Shapley values. Expert Systems with Applications, 178, 115020. https://doi.org/10.1016/j.

eswa.2021.115020

Mayhew, D. R. (1974). Congress: The electoral connection. Yale university press.

Mayhew, D. R. (1991). Divided we govern. Yale University New Haven.

McGrath, R. J. (2013). Congressional Oversight Hearings and Policy Control: Congressional

Oversight. Legislative Studies Quarterly, 38 (3), 349–376. https://doi.org/10.1111/lsq.12

018

146

https://doi.org/10.1111/rego.12090
http://arxiv.org/abs/1802.03888
http://arxiv.org/abs/1802.03888
https://doi.org/10.1109/SIBGRAPI51738.2020.00053
https://doi.org/10.1016/j.eswa.2021.115020
https://doi.org/10.1016/j.eswa.2021.115020
https://doi.org/10.1111/lsq.12018
https://doi.org/10.1111/lsq.12018


Mettler, S., & Lieberman, R. C. (2020). Four threats: The recurring crises of american

democracy. St. Martin’s Press.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word

representations in vector space. Google Inc.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed

representations of words and phrases and their compositionality. 3111–3119.

Mikolov, T., Yih, W., & Zweig, G. (2013). Linguistic regularities in continuous space word

representations. 746–751.

Molina, M., & Garip, F. (2019). Machine learning for sociology. Annual Review of Sociology,

45, 2745.

Monroe, B. L. (2013). The five vs of big data political science introduction to the virtual

issue on big data in political science political analysis. Political Analysis, 21 (V5), 19.

Monroe, B. L., Pan, J., Roberts, M. E., Sen, M., & Sinclair, B. (2015). No! Formal theory,

causal inference, and big data are not contradictory trends in political science. PS:

Political Science & Politics, 48 (1), 7174.

Montgomery, J. M., & Olivella, S. (2018). Tree-based models for political science data.

American Journal of Political Science, 62 (3), 729744.

Muchlinski, D., Siroky, D., He, J., & Kocher, M. (2016). Comparing random forest with

logistic regression for predicting class-imbalanced civil war onset data. Political Analysis,

24 (1), 87103.

Mullainathan, S., & Spiess, J. (2017). Machine learning: An applied econometric approach.

Journal of Economic Perspectives, 31 (2), 87106.

Nelson, T. E. (2011). Issue framing (G. C. Edwards, L. R. Jacobs, & R. Y. Shapiro, Eds.; p.

189203).

Nyrup, J., & Bramwell, S. (2020). Who governs? A new global dataset on members of

cabinets. American Political Science Review, 114 (4), 13661374. https://doi.org/10.1017/

S0003055420000490

147

https://doi.org/10.1017/S0003055420000490
https://doi.org/10.1017/S0003055420000490


Ornstein, N. J., Mann, T. E., & Malbin, M. J. (2009). Vital statistics on congress 2008.

Brookings Institution Press.

Patterson, S. C., & Mughan, A. (2001). Fundamentals of institutional design: The functions

and powers of parliamentary second chambers. Journal of Legislative Studies, 7 (1), 3960.

Patty, J. W., & Penn, E. M. (2015). Analyzing big data: Social choice and measurement.

PS: Political Science & Politics, 48 (1), 95101.

Perlich, C., Dalessandro, B., Raeder, T., Stitelman, O., & Provost, F. (2014). Machine

learning for targeted display advertising: Transfer learning in action. Machine Learning,

95 (1), 103127.

Peterson, A., & Spirling, A. (2018). Classification accuracy as a substantive quantity of

interest: Measuring polarization in westminster systems. Political Analysis, 26 (1), 120128.

Pierson, P., & Skocpol, T. (Eds.). (2007). The transformation of american politics: Activist

government and the rise of conservatism. Princeton University Press.

Polsby, N. W., Gallaher, M., & Rundquist, B. S. (1969). The growth of the seniority system

in the US house of representatives. American Political Science Review, 63 (3), 787807.

Pool, I. de S. (1983). Tracking the flow of information. Science, 221 (4611), 609613.

Poole, K. T. (2005). Spatial models of parliamentary voting. Cambridge University Press.

Poole, K. T., & Rosenthal, H. (2017). Ideology & congress: A political economic history of

roll call voting. Routledge.

Purpura, S., & Hillard, D. (2006). Automated classification of congressional legislation.

219225.

Quinn, K. M., Monroe, B. L., Colaresi, M., Crespin, M. H., & Radev, D. R. (2010). How to

analyze political attention with minimal assumptions and costs. American Journal of

Political Science, 54 (1), 209–228.

Raschka, S. (2015). Python machine learning. Packt publishing ltd.

Rice, D. R., & Zorn, C. (2021). Corpus-based dictionaries for sentiment analysis of specialized

vocabularies. Political Science Research and Methods, 9 (1), 2035.

148



Richardson, H. C. (2009). The greatest nation of the earth: Republican economic policies

during the civil war (Vol. 126). Harvard University Press.

Riker, W. H. (1992). The justification of bicameralism. International Political Science Review,

13 (1), 101116.

Roberts, J. M., & Smith, S. S. (2003). Procedural contexts, party strategy, and conditional

party voting in the US house of representatives, 19712000. American Journal of Political

Science, 47 (2), 305317.

Rohde, D. W. (1991). Parties and leaders in the postreform house. University of Chicago

Press.

Romasco, A. U. (1983). The politics of recovery: Roosevelt’s new deal. Oxford University

Press.

Rudin, C. (2015). Can machine learning be useful for social science. The Cities: An Essay

Collection from the Decent City Initiative, 9, 8690.

Russell, A. (2021). Tweeting is leading : how senators communicate and represent in the age

of Twitter. Oxford University Press.

Russell, M. (2001). What are second chambers for? Parliamentary Affairs, 54 (3), 442458.

Salganik, M. J. (2019). Bit by bit: Social research in the digital age. Princeton University

Press.

Salisbury, R. H., & Shepsle, K. A. (1981). Congressional staff turnover and the ties-that-bind.

American Political Science Review, 75 (2), 381396.

Schaffer, C. (1993). Selecting a classification method by cross-validation. Machine Learning,

13 (1), 135143.

Schaffner, B. F. (2018). Party polarization (G. C. Edwards, F. E. Lee, & E. Schickler, Eds.).

Oxford University Press.

Schattschneider, E. E. (1960). The semisovereign people: A realists view of democracy in

america. The Drayden Press.

149



Schickler, E. (2001). Disjointed pluralism: Institutional innovation and the development of

the u.s. congress. Princeton University Press.

Schickler, E., & Bloch Rubin, R. (2018). Congress and american political development (R.

Valelly, S. Mettler, & R. Lieberman, Eds.). Oxford University Press.

Schiff, S. H., & Smith, S. S. (1983). Generational change and the allocation of staff in the

US congress. Legislative Studies Quarterly, 457467.

Seb, M., & Kacsuk, Z. (2021). The multiclass classification of newspaper articles with machine

learning: The hybrid binary snowball approach. Political Analysis, 29 (2), 236249.

Shapley, L. (1953). A value for n-person games: Vol. II (H. W. Kuhn & Tucker, Albert W.,

Eds.; p. 307317). Princeton University Press.

Sheingate, A. D. (2006). Structure and opportunity: Committee jurisdiction and issue

attention in congress. American Journal of Political Science, 50 (4), 844859.

Shmueli, G. (2010). To explain or to predict? Statistical Science, 25 (3), 289310.

Silbey, J. H. (2010). American political parties: History, voters, critical elections, and party

systems (S. Maisel, J. M. Berry, & G. C. Edwards, Eds.). Oxford University Press.

Sinclair, B. (1986). The role of committees in agenda setting in the US congress. Legislative

Studies Quarterly, 3545.

Slapin, J. B., & Proksch, S.-O. (2014). Words as data: Content analysis in legislative studies.

Oxford University Press.

Smith, M., & Alvarez, F. (2021). Identifying mortality factors from machine learning using

shapley valuesa case of COVID19. Expert Systems with Applications, 176, 114832.

Smith, S. S. (1986). The central concepts in fenno’s committee studies. Legislative Studies

Quarterly, 518.

Soroka, S. N., & Wlezien, C. (2022). Information and democracy. Cambridge University

Press.

Stewart, B. M., & Zhukov, Y. M. (2009). Use of force and civilmilitary relations in russia:

An automated content analysis. Small Wars & Insurgencies, 20 (2), 319343.

150



Stimson, J. A., & Carmines, E. G. (1989). Issue evolution: Race and the transformation of

american politics. Princeton University Press.

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal

of the Royal Statistical Society: Series B (Methodological), 36 (2), 111133.

Strahan, R. (1988). Agenda change and committee politics in the postreform house. Legislative

Studies Quarterly, 177197.

Sundquist, J. L. (1983). Dynamics of the party system: Alignment and realignment of political

parties in the united states. Brookings Institution Press.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Theocharis, Y., Barberá, P., Fazekas, Z., Popa, S. A., & Parnet, O. (2016). A bad workman

blames his tweets: The consequences of citizens’ uncivil twitter use when interacting with

party candidates. Journal of Communication, 66 (6), 10071031.

Theriault, S. M. (2008). Party polarization in congress. Cambridge University Press.

Thurber, J. A., & Yoshinaka, A. (2015). American gridlock: The sources, character, and

impact of political polarization. Cambridge University Press.

Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a data

set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 63 (2), 411423.

Tsebelis, G., & Money, J. (1997). Bicameralism. Cambridge University Press.

Tversky, A., & Kahneman, D. (1973). Availability: A heuristic for judging frequency and

probability. Cognitive Psychology, 5 (2), 207232.

Verberne, S., D’hondt, E., Van den Bosch, A., & Marx, M. (2014). Automatic thematic

classification of election manifestos. Information Processing & Management, 50 (4),

554567.

Wallach, H. (2016). Computational social science. Computational Social Science, 307.

Welch, R. E. (1988). The presidencies of grover cleveland. University of Kansas.

151



Wildavsky, A. B. (1986). Budgeting: A comparative theory of the budgeting process. Transac-

tion Publishers.

Wilkerson, J., & Casas, A. (2017). Large-scale computerized text analysis in political science:

Opportunities and challenges. Annual Review of Political Science, 20, 529544.

Wolfe, P. M. (1972). Linguistic change and the great vowel shift in english. University of

California Press.

Yee, O. S., Sagadevan, S., & Malim, N. H. A. H. (2018). Credit card fraud detection using

machine learning as data mining technique. Journal of Telecommunication, Electronic

and Computer Engineering (JTEC), 10 (1-4), 2327.

Ying, L., Montgomery, J. M., & Stewart, B. M. (2021). Topics, Concepts, and Measurement: A

Crowdsourced Procedure for Validating Topics as Measures. Political Analysis, FirstView.

Yu, B., Kaufmann, S., & Diermeier, D. (2008). Classifying party affiliation from political

speech. Journal of Information Technology & Politics, 5 (1), 3348.

Zelizer, J. E. (2006). On capitol hill: The struggle to reform congress and its consequences,

1948-2000. Cambridge University Press.

Zhu, X., & Goldberg, A. B. (2009). Introduction to semi-supervised learning. Synthesis

Lectures on Artificial Intelligence and Machine Learning, 3 (1), 1130.

152


	The Data (R)evolution in Political Science
	The Blessing and Curse of Big Data
	Shifting the Burden: From Human to Machine Learning
	Other Types of Learning

	Learning to Teach (the Machine)
	Machine Learning as a Process
	Text as Data
	Know Your Machine's Strengths & Limits
	Maximize Performance by Combining Methods

	Congressional Hearings on Agency-Creation
	The Problem
	Model Training Strategy: An Overview
	Challenges for Supervised Learning
	Model Training: The Modern Hearings Dataset
	Classification of the Test Set: Pre-Labeled Data
	Classification of Unseen Data: Unlabeled Data
	Summary

	Policy Topics in Congressional Bills
	The Problem
	Model Training Strategy
	Classification of the Test Set: Pre-Labeled Data
	Classification of Unseen Data: Unlabeled Data
	Summary

	The Road Ahead: Machine Learning in Political Science
	Bridging the Gap: Textbook vs. Machine Learning in Practice
	Trade-Offs in the Academic Practice of Machine Learning
	Moving from Specific to All-Purpose Models
	The Ease and Accessibility of Machine Learning via Code
	The Model Training Game Plan
	Appendices

	References

