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ABSTRACT 

Automated vehicles (AVs) are a concrete possibility in the near future. Since AVs may shift 
transportation paradigms, transportation agencies are eager to update their models to consider them 
in planning. In this context, the use of advanced models may be challenging, given the uncertainty 
in the use and deployment of AVs. In this paper, we present a general framework to extend the 
four-step model to include AVs, and test our extension on NCTCOG’s model. Our approach 
introduces a module for AV ownership and exogenous parameters into an existing four-step model 
to account for changes in travel decisions for AV owners, and for the impacts of AVs on network 
performance. The latter is modeled using the concept of passenger-car-equivalent to avoid 
imposing network-wide assumptions on AVs’ capacity consumption. We analyze five scenarios, 
representing different assumptions on the impacts of AVs, and include references to inform the 
selection of modeling parameters. We compute aggregate metrics that suggest that the model is 
sensitive to the proposed parameters, with the passenger-car-equivalent assumptions having the 
largest impact on model outcomes. Results suggest that, even when we assume that AVs can better 
use network capacity and that trip making rates do not drastically increase, AVs may lead to an 
increase of about 2.8 percent in VHT while also improving speeds by about 1.8 percent. If AVs 
introduce additional friction on traffic, the system performance may deteriorate. The analyses 
presented here suggest that existing modeling tools may be adjusted to support analyses of a future 
with AVs.  

 

 

KEY WORDS 
Autonomous vehicles, AVs, self-driving vehicles, demand model, four-step model. 
 

  



Dias, Nair, Juri, Bhat and Mirzaei  

3 

1 INTRODUCTION 

Recent technological advances make self-driving automated vehicles (AVs) a concrete possibility 
in the near future. AVs and connected AVs (those that that can send/receive data to/from each 
other) are likely to lead to a shift in existing transportation paradigms. As a result, transportation 
agencies must review and update their models to more accurately analyze future scenarios and 
plan accordingly, allowing them to accommodate these new developments within their long-term 
plans (e.g., allocating funds to infrastructure projects).  

Advanced transportation models, such as activity-based models (1), dynamic traffic 
assignment models (2), and agent-based simulations (3), are likely to have the flexibility to capture 
the impacts of AVs (4). However, the use of these models for long-term planning applications 
require making detailed assumptions regarding their inputs. Agencies, however, might simply not 
be ready to make and stand by all of the assumptions needed for such models. For example, in 
most dynamic traffic applications, some of the model’s main inputs are the signal timings for all 
intersections in the network. However, if an agency is attempting to forecast traffic flow patterns 
of 20, 30 or 40 years in the future, it can be quite challenging to, a priori, provide detailed signal 
timings data for all of the network’s intersections.  

This is why MPOs rely so heavily on the four-step model: its assumptions are typically less 
constraining than those of the advanced models built to substitute its integrating parts, such as 
dynamic traffic assignment, built to substitute static traffic assignment, or activity-based models, 
conceived to substitute trip generation (when MPOs generate trips using activity-based models, 
they typically allocate them to the transportation network through traditional static traffic 
assignment procedures). Thus, appropriately estimating and calibrating a four-step model is 
considerably easier than calibrating more advanced models. Furthermore, the four-step model is 
less prone to reacting poorly to slight inaccuracies in its calibration stage, input parameters or its 
intermediate outputs. For example, the fact that static assignment does not truly enforce link 
capacities makes it significantly less sensitive to potential travel demand overestimations.  

Even though the basic structure of the four-step model has remained fundamentally the 
same since its conception, it has also continued to see academic development, with researchers 
creating faster and more efficient sub-models (5). The enduring application of the four-step 
model’s structure speaks not only to its flexibility, but also to its transparency in terms of its 
assumptions of how demand and supply interact, and its comparative ease of use. Regardless of its 
limitations, the four-step model continues to be extensively used by transportation agencies and is 
still considered the de facto modeling standard in many circles.  

In this paper, we present a general framework to extend the traditional four-step model to 
include AVs, and test our extension on the North Central Texas Council of Governments’ 
(NCTCOG’s) four-step model. Our proposed changes, which are implemented through exogenous 
parameters, include segmenting the household population into AV households and non-AV 
households, as well as changing each step of the four-step process. Because there is still significant 
uncertainty concerning how AVs will be used in the future, the investigation of adequate values 
for each of the parameters is still ongoing. Regardless of what the actual values of these parameters 
may be, planners may use the exogenous parameters as “levers” that can be easily adjusted to 
generate future scenarios. In order to assess the performance and sensitivity of our proposed 
extension to the NCTCOG model, we run several different scenarios with slight changes in the 
main exogenous parameters, and analyze variations in aggregate results. The latter includes the 
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total number of trips, total vehicle-miles traveled (VMTs), and total vehicle-hours traveled 
(VHTs). The model responded according to our expectations in all scenarios, and proved to be a 
potentially valuable tool capable of answering important practical questions that practitioners 
might have, such as “What would happen if, instead of capacity gains, the mixing of AVs among 
non-autonomous vehicles actually reduced capacity?” 

Most transportation agencies and Metropolitan Planning Organizations (MPOs) already 
have a four-step model they use to evaluate infrastructure projects. Thus, we believe that our 
proposed framework to consider an AV future can be of great interest to many practitioners, given 
that the extensions we propose in this paper may be incorporated in most planning models. Further, 
the simplicity of the four-step process allows users to clearly track the impacts of their modeling 
assumptions (regarding AVs) on network performance. The extensions we developed also have 
clearly stated assumptions, each of which is characterized by its own exogenous control parameters 
and informed by literature. 

2 AVS IN PLANNING: RESEARCH AND PRACTICE 

Transportation planning typically relies on an iterative modeling process that considers the inter-
dependencies of travel demand and the performance of multi-modal transportation networks on 
which travel occurs. The traditional planning approach used by most MPOs relies on a four-step 
process that consists of multiple models that estimate trip generation, trip distribution, mode 
choice, and route assignment. Planning models are typically used to study the impact of 
transportation-related decisions fifteen to thirty years into the future, such as whether or not to 
fund a new infrastructure project. There is considerable uncertainty regarding how transportation 
systems will operate in a future that involves autonomous and connected vehicle technologies. 
Accounting for the impact of such technologies requires revisiting every step in the four-step 
process.  

While some transportation agencies have already started considering the impacts of AVs 
on their long-range regional transportation plans, Guerra (6) explores the extent to which MPOs 
have actually engaged in these efforts, and explains that most MPOs have not considered AVs in 
their current plans. His work highlights three MPOs that have attempted to quantify the impacts 
of AVs: the Atlanta Regional Commission (ARC) in Atlanta, GA; the Metropolitan Transportation 
Commission (MTC) in San Francisco, CA; and the Puget Sound Regional Council (PSRC) in 
Seattle, WA. The approach used in these three cases was to alter some parameters in existing 
activity-based models. More recently, Freemark et al. (7) surveyed multiple planning officials from 
120 cities in the U.S., and inspected municipal planning documents of the twenty-five largest U.S. 
cities. Their results showed that 36 percent of the largest cities mention AV-related policies, 
revealing that some local governments have begun planning for a future with AVs. However, the 
cities that mention AV-related policies usually avoid engaging in concrete strategies, instead 
focusing on the prioritization of “innovation” and “flexibility.” As part of a project funded by the 
North Central Texas Council of Governments (NCTCOG), we also contacted the New York 
Metropolitan Transportation Council (NYMTC) to inquire whether and how they have accounted 
for the potential impacts of AVs in their travel forecasts, and found that they are currently not 
incorporating these effects into their model because AVs are not yet legal in the state, making their 
future uncertain.  

While the consideration of AVs in practice is limited, there have been some research-based 
studies using trip-based modeling, including refining the traditional gravity model to enable lower 
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sensitivity to travel time in the trip distribution step and considering AVs as a distinct mode in the 
mode choice stage. Some very recent examples include (8), (9), (10), and (11), who implement 
small refinements on a trip-based framework at the statewide and metropolitan scales in Texas, 
Toronto (Canada), Michigan, Illinois, Virginia, Indiana, South Carolina, and Ontario (Canada). 
However, these studies typically take a simplified approach when modeling the capacity 
consumption of AVs, often using a single network-wide factor to adjust link-level capacities or 
simply occasionally ignoring capacity impacts altogether. 

 Other research efforts investigate the direct impacts of AVs on capacity, including (12) 
and (4). These approaches usually involve developing custom simulation tools to analyze either 
small highway sections (such as one road link or one intersection) or small cut-outs of larger 
networks. 

In an attempt to more broadly facilitate transportation agencies’ development of a system 
capable of evaluating the impact of AVs, Mahmassani et al. (13) worked with the U.S. Department 
of Transportation on a generalized conceptual framework for an analysis, modeling, and 
simulation system. The framework they propose, which can be seen in Figure 1, is divided into 
four main components: supply changes, demand changes, operational performance, and network 
integration. The authors also developed a prototype of their framework, applying it to a small 
testbed: the microsimulation of a 3.5-mile section of Interstate 290 in Chicago. Their proposed 
framework is very broad and is designed to capture all potential changes brought forth by AVs, 
while maintaining consistency across multiple sub-models. The framework is intended to take 
advantage of a number of advanced modeling tools, including agent-based simulations, dynamic 
traffic assignment, and microscopic flow simulations.  

The literature overview suggests that transportation agencies and MPOs are interested in 
incorporating new AV-related transportation elements in their long-term plans, but are finding it 
challenging to do so in the context of their current planning methods. While there are several earlier 
studies that focus on modeling specific elements of time-use and activity-related impacts of AVs, 
these studies need to make multiple behavioral assumptions and have to use large-scale resource-
intensive agent-based simulation approaches. While such activity-based models may provide more 
accurate forecasts, the uncertainty associated with the model assumptions and the resulting 
forecasts are at a level where resorting to simpler trip-based models with fewer assumptions, even 
if less accurate, may be an alternative prudent approach. This approach also has the appeal that it 
can be readily “wrapped” around the simpler trip-based modeling approach still used by most 
MPOs in the country. 
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Figure 1 Methodological framework proposed by Mahmassani et al. (13) 

 

3 EXPECTED IMPACTS OF AVS ON THE TRANSPORTATION SYSTEM 

In this section we use the main components of the four-step model to summarize the impacts of 
AVs that are commonly discussed in the transportation literature.  

3.1 Trip Generation 

AVs are expected to reduce many of the inconveniences associated with driving. For example, the 
trouble of finding a parking spot may be delegated to the vehicle itself. Such conveniences will 
likely make AV-related modes more desirable than other existing modes, leading to more vehicle-
trips. The repositioning of empty AVs will likely also increase vehicle-trips. AVs might also be 
used to increase transit ridership by facilitating first mile/last mile connectivity (14, 15, 16, and 
17). The number of trips by cars may also increase because of existing latent demand: AVs will 
allow certain demographics (e.g., older adults, individuals below the age of eighteen, and 
differently abled citizens) to make more trips (18 and 19). Conversely, access to ICT might reduce 
the general need for physical travel (20, 21). 

3.2 Trip Distribution 

It has been speculated that the increased convenience and the possibility of spending time more 
productively in an autonomous vehicle would make individuals more tolerant of higher in-vehicle 
travel times (22, 23, 17). To model this fact, it has been suggested in literature to the reduce value 
of time (VOT) by some factor when computing mode utilities (24, 25). It is also likely that AVs’ 
parking convenience might reduce generalized costs between OD pairs. 
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3.3 Mode Choice 

The attractiveness of AVs will likely affect mode splits. If AVs obviate the need for parking, AV’s 
mode share should increase, while the share of transit should decrease (as suggested by 26). Also 
related to mode choice is the aforementioned reduction in VOT—if time spent inside an AV is 
perceived as less burdensome than in other modes, it is likely that the share of AVs will increase 
even further while decreasing that of other modes.  

3.4 Trip Assignment 

In theory, AVs’ low reaction times and better awareness of their surroundings will likely allow 
them to utilize road space more efficiently than human drivers (27, 28, 29). For example, 
Automated Cruise Control (ACC) and Cooperative Adaptive Cruise Control (CACC) are 
autonomous-like features that allow vehicles to follow lead vehicles without any human 
intervention. Studies have shown that vehicles with ACC and CACC can improve traffic safety, 
stability, and capacity (30, 31, 32). AVs may also be able to affect network-wide performance by 
allowing for novel approaches to intersection management (33, 34). However, it has also been 
shown that platoons of ACC-enabled vehicles may be prone to large speed variations, and that 
higher headways (which are more likely at lower AV penetration rates) can cause capacity 
reductions (35, 36). 

3.5 Summary 

Some forces might push toward increased travel demands (such as induced travel due to increased 
convenience and lower VOT), while others might push toward reduced travel demands (such as 
the reduced need for actual person-travel brought forth by internet connectivity and/or virtual 
reality, and more activity chaining). Given the multitude of possibilities, the new model we 
developed had to be flexible to account for all cases. The potential AV impacts and the planning 
step that they may affect are summarized in Table 1. 
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Table 1 Summary of impacts 

Modeling Step Impacts References 

Trip Generation 

Increased convenience of travel (including 
increased ease of parking) will likely boost 
demand
 Significant improvement in mobility for 
certain demographics such as older adults, 
people with disabilities, and children 

 Access to ICT may reduce need for 
physical travel

Mokhtarian and Tal (2013) (21) 

Kim et al. (2015) (20) 

Levin and Boyles (2015) (26) 

Walker (2016) (14) 

Scheltes and de Almeida Correia (2017) (16) 

Shen et al. (2017) (15) 

Truong et al. (2017) (18) 

Lavieri and Bhat (2019) (19) 

Trip Distribution 

 Increased travel convenience may cause a 
drop in VOTs, leading to longer trips 

 Increased travel convenience (ease of 
parking) might reduce the generalized cost 
between OD pairs

Childress et al. (2015) (24) 

Kröger et al. (2016) (25) 

Kolarova et al. (2018) (22) 

Steck et al. (2018) (23) 

de Almeida Correia et al. (2019) (17) 

Mode Choice 

 Increased travel convenience may cause a 
drop in VOTs, increasing the attractiveness 
for AV modes
 The option of parking further for AV users 
might also affect mode choice

Levin and Boyles (2015) (26) 

Kolarova et al. (2018) (22) 

Steck et al. (2018) (23) 

de Almeida Correia et al. (2019) (17) 

Assignment 

 AV technologies enable vehicles to 
maintain lower headways at higher speeds 
increasing traffic capacity
 Communicating with traffic infrastructure 
such as traffic lights can further boost 
capacity
 Some technologies such as ACC may 
decrease traffic capacity depending on how 
they are implemented
 At low penetration rates, the mixing of 
AVs among non-autonomous vehicles might 
decrease capacity utilization  

 Increased travel demand may lead to more 
congestion, lowering network performance 

Sheikholeslam and Desoer (1990) (35) 

Vander Werf et al. (2002) (9) 

Dresner and Stone (2004, 2005) (33, 34) 

van Arem et al. (2006) (30) 

Tientrakool et al. (2011) (28) 

Okamura et al. (2011) (27) 

Milanés and Shladover (2014) (31) 

Delis et al. (2015) (32) 

Stern et al. (2018) (29) 
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4 MODELING FRAMEWORK 

In this section, we document the extensions to the four-step framework proposed to incorporate 
AVs. The major changes we propose include splitting households into two groups (AV households 
and non-AV households); setting potentially different trip generation rates for the new AV 
households; allowing trips generated by AV households to have different perceived values of time 
in trip distribution, mode choice, and assignment; and, using different passenger-car-equivalent 
(PCE) values for AV trips to account for the gains (or losses) in capacities brought by AVs. A 
general illustration of the modifications proposed can be seen in Figure 2. We discuss these 
changes in more detail below.  

 

 

 

Figure 2 Extension of the four-step framework 
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4.1 AV Ownership 

One of the most common approaches to start the four-step modeling method is to compile traffic 
analysis zone (TAZ) counts of households by specific segments, such as income, vehicle 
ownership and size, and pairing the TAZ-level counts with cross-tabulations of average trip 
generation values per segment. The approach we propose consists of adding another segmentation: 
whether or not the household is an AV household. This “AV Ownership” module is run before trip 
generation, and has the objective of splitting all households into two different types: non-AV 
households and AV households. This is achieved using an exogenous control parameter that we 
denote by PAV, set by the modeler between 0 and 1. This term represents the overall household-
level AV ownership, also known as the “penetration rate” for a desired year or scenario. We 
acknowledge that, while a deliberate choice of PAV will uncouple the work from any set timeline, 
as penetration predictions improve in the coming years, this work will be easily matched to any 
likely timeline of adoption. There have been several attempts at predicting future AV penetration 
rates (see 37 and 38 for reviews) which could be used to inform the selection of a PAV value.  

Once the global PAV value is selected, our implementation uses a method based on survey 
results to derive varying penetration rates by household segment. We use data from a survey 
conducted by the research team in the Dallas-Fort Worth area that included a question regarding 
respondents’ willingness to purchase an AV under different cost scenarios. While the adoption 
rates from the survey might not be suitable for directly predicting AV adoption in future scenarios, 
the survey did capture individuals’ sensitivity to AV technology across income segments. Our 
method implements a simple binary logit model to explain the adoption of AVs based on 
individuals’ household income. Model results are used in tandem with the number of households 
in each income segment and TAZ to produce an estimate of the number of AV households per 
income segment and TAZ by manually calibrating the model’s constant to reach the pre-defined 
overall household-level AV adoption. 

It should be noted that there are likely significant differences between owning an AV and 
having access to AVs through a fleet of shared AVs (39). However, the approach we propose in 
this paper is agnostic to the distinction between ownership and access to AVs. Even though we 
mostly use the term “AV ownership” throughout the paper, the outputs of this household AV 
ownership module could just as well be interpreted as “households who have access to a fleet of 
shared AVs”. Therefore, the distinction between ownership and access is up to the modeler and 
the suite of assumptions they make. This being said, we recognize that our implementation focused 
on privately owned AVs. We did not incorporate any specific changes that would make the four-
step framework readily appropriate for shared AV fleets, such as repositioning trips for shared 
AVs (i.e., the trip made by the shared AV after dropping off one passenger and picking up the next 
passenger). 

4.2 Trip Generation 

The NCTCOG model uses segment-specific household trip generation rates. In our extended 
model, the AV ownership module generates estimates of the number of AV households in each of 
the segments. We use an exogenous parameter, FAV_TripGen, to represent differences in trip-
generation rates between AV and non-AV households. As an example, consider that a specific 
segment of households (characterized by its income level and household size) produces six home-
based work trips per household per day in the original model. If we assume that AV households 
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will generate 5 percent more trips than non-AV households (i.e., FAV_TripGen=1.05), the trip 
generation rate of an AV-household in that same segment and for that same trip type is 6×1.05=6.3.  

In our application to the NCTCOG model, we used FAV_TripGen values of 1.05 and 1.10 based 
on (18) and (19).  

4.3 Trip Distribution 

The current NCTCOG model uses the gravity model for trip distribution, and its main inputs are 
travel times between OD pairs. Following the same approach as in the Trip Generation step, we 
propose an exogenous control parameter, FAV_TripDistVOT, to capture the difference in how users in 
AVs and non-AVs perceive travel impedances. Since trip distribution is performed separately for 
each trip type/segment, we obtain the impedances for the AV trips by simply multiplying the non-
AV impedances by FAV_TripDistVOT. 

In our application to the NCTCOG model, we used FAV_TripDistVOT values of 0.75, based on 
the findings of (22), (23), and (17). 

4.4 Mode Choice 

Since our approach considers that trips generated by AV households are completely separate from 
the trips generated by non-AV households, we can subject them to different mode-choice 
frameworks. The NCTCOG model has one mode choice model for each combination of trip type 
and household segment (e.g., “home-based shopping trips for households with income level = 1, 
worker count = 2, and vehicle count = 1”). In this planning step, our model extension uses the 
exogenous parameter FAV_ModeChoiceVOT to represent the difference in in-vehicle travel time 
perception between AV households and non-AV households. The procedure consists of simply 
multiplying the mode choice model’s coefficient on in-vehicle travel time by FAV_ModeChoiceVOT. We 
note here that, in our specific application in the NCTCOG model, we assume that AV households 
do not own human-driven vehicles, and driving such vehicles is not in their choice set. 
Analogously, non-AV households do not have “autonomous vehicle” in their choice set, which 
effectively means that non-AV and AV vehicles are not competing directly in mode choice. 

In our application to the NCTCOG model, we assume that FAV_ModeChoiceVOT is equivalent 
to the VOT change parameter used in the Trip Distribution stage (i.e., FAV_ModeChoiceVOT = 
FAV_TripDistVOT.). 

4.5 Assignment 

In the assignment step, the proposed framework includes extensions to consider the impact of VOT 
on route choice and the changes in network capacities to consider AVs different driving behavior. 

Route selection. The main purpose of the assignment step is to map trips to the transportation 
network. The assignment of vehicles to paths is typically achieved by assuming that drivers are 
minimizing their travel cost, which is often a function of travel times and other financial costs 
related to road use and vehicle maintenance. In this context, the VOT is used to express travel 
times in monetary units. Following the same approach taken in previous steps, we propose the use 
of an exogenous parameter, FAV_AssignmentVOT, to describe how individuals in AVs perceive VOT 
differently than those in non-autonomous vehicles. In our application to the NCTCOG model, we 
set FAV_AssignmentVOT to be equal to FAV_ModeChoiceVOT and FAV_TripDistVOT. 

Network link capacity. The use of a static traffic assignment tool imposes some limitations in our 
ability to reflect the actual effect of AVs on traffic flow, but we propose a simple approach to avoid 
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setting a fixed network-wide capacity gain/loss. A network-wide capacity adjustment implies that 
two links with the same capacity and flow but different AV penetrations would experience the 
same capacity impacts, which is counterintuitive. Therefore, the approach we propose uses the 
concept of passenger-car-equivalent (PCE) to “scale” benefits/losses as a function of link-specific 
AV use. The PCE can capture the impact of the potentially smaller headways enabled through 
automation and can also account for cases where AVs consume more road space than manually-
driven vehicles. If we assume that the PCE of a manually driven vehicle to be equal to 1, the PCE 
of an AV represents the ratio between the road capacity consumed by an AV and the capacity 
consumed by a manually driven vehicle traveling at the same speed. Once more, we create an 
exogenous control parameter called FAV_PCE, which directly represents this ratio. To determine a 
reasonable estimate of FAV_PCE, we consider it to be the ratio of the sum of the length and headway 
of an AV to that of a standard non-AV as shown below,  

𝐹஺௏_௉஼ா ൌ
𝑙஺௏ ൅ 𝐷஺௏
𝑙௦ ൅ 𝐷௦

 

where, 𝑙஺௏ is the length of an AV, 𝑙௦ is the length of a standard vehicle which consumes a capacity 
of 1 PCE, 𝐷஺௏ is the headway maintained by an AV and 𝐷௦ is the headway maintained by a vehicle 
having PCE of 1. The headways 𝐷஺௏ and 𝐷ௌ are computed based on the approach proposed by (28) 
for the case of AVs that do not communicate with each other. The headways are a function of the 
speed maintained in the link. Varying the speed from 20 mph to 80 mph varied the PCE values 
from 0.56 to 0.76. Since our model did not allow for speed-dependent PCE values, we selected a 
constant PCE from this range. Since the calculations above are based on steady traffic flow and do 
not consider turns and lane changes (i.e., situations that may dampen capacity improvements), we 
took a conservative approach with respect to AVs’ improved use of capacity and used a value of 
0.7 for the FAV_PCE. 

5 NUMERICAL ANALYSES 

5.1 Experimental design 

The experimental design for the project was quite simple. We used NCTCOG’s 2045 network as 
well as their 2045 demographic predictions and generated five scenarios:  

• Base scenarios are used explore the changes in travel patterns and network 
performance in a possible future scenario with AVs.    

o “Base – No AV” is NCTCOG’s original planning model. 
o “Base – High AV” is an optimistic AV adoption scenario. The values for the 

exogenous control parameters, informed by the literature, are combined to 
represent a future in which a significant portion of households adopt AVs but 
changes to VOT do not lead to a drastic increase in the number or length of 
trips. Further, AVs are assumed to have a beneficial impact on network 
capacity.   

• Sensitivity scenarios are used to test model sensitivity to assumptions in parameter 
values, and to understand how future scenarios may differ depending on realized user 
behaviors and network performance.  

o “Increased Trip Generation” considers a larger proportion of AV-induced trips.  
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o “No Change in VOT” considers that there is no perceived difference in the 
values of time between individuals driving non-autonomous vehicles and those 
in AVs. 

o “Capacity Decrease” assumes that AVs may consume additional road capacity. 

Table 2 presents the values used in each scenario and corresponding source. The scenarios 
were run in TransCAD 7 using two feedback iterations (0th and 1st iterations) and lenient 
assignment gaps for each feedback iteration: 0.01 and 0.005. The gaps used during assignment 
were significantly higher than the standard practice of 10-5 mostly because of run times: each 
scenario had a total run time of approximately thirty-six hours. For comparison, we also ran one 
scenario with four feedback iterations using the NCTCOG-recommended gaps of 10-2, 10-3, 10-4, 

and 10-5, respectively. This run took approximately 243 hours and yielded little to no difference in 
the aggregate measures used in our analysis, which suggests that our parameter selection is 
adequate for our analysis.  

A more comprehensive approach to the sensitivity analysis would have been to completely 
automate the proposed modeling approach and evaluate ranges of input values (as performed in 
40). However, such an approach would require extensive additional coding and a significant 
increase in processing time. Since the focus of this paper is the actual implementation of the 
extension (and not the sensitivity analysis itself), we decided to engage in a simpler approach. We 
evaluated the model’s sensitivity using just one run for each group of parameters tested. Based on 
the literature, we chose input parameter values that were not unreasonable and would give us 
important insights into the intuitive working of the model. We leave more comprehensive 
sensitivity analyses as avenues for future research.  

We used the following metrics to evaluate network performance and travel patterns cross 
scenarios:  

 Number of trips generated 
 Total vehicle-miles traveled (VMTs), calculated as:  

𝑇𝑜𝑡.𝑉𝑀𝑇 ൌ෍𝑉𝑀𝑇௜

ே

௜ୀଵ

ൌ෍ሺ𝑙𝑖𝑛𝑘 𝑓𝑙𝑜𝑤௜ ⋅ 𝑙𝑖𝑛𝑘 𝑙𝑒𝑛𝑔𝑡ℎ௜ሻ
ே

௜ୀଵ

 

 Total vehicle-hours traveled (VHTs), calculated as:  

𝑇𝑜𝑡.𝑉𝐻𝑇 ൌ෍𝑉𝐻𝑇௜

ே

௜ୀଵ

ൌ෍൬
𝑙𝑖𝑛𝑘 𝑓𝑙𝑜𝑤௜ ⋅ 𝑙𝑖𝑛𝑘 𝑙𝑒𝑛𝑔𝑡ℎ௜

𝑙𝑖𝑛𝑘 𝑠𝑝𝑒𝑒𝑑௜
൰

ே

௜ୀଵ

 

 Average distance traveled, calculated as: 𝐴𝑣𝑔.  𝐷𝑖𝑠𝑡 ൌ ்௢௧.  ௏ெ்

ே௨௠.  ்௥௜௣௦
  

 Average travel time, calculated as: 𝐴𝑣𝑔.𝑇𝑖𝑚𝑒 ൌ ்௢௧.  ௏ு்

଺଴⋅ே௨௠.  ்௥௜௣௦
 

 Average link-level speed, calculated as: 𝐴𝑣𝑔. 𝑆𝑝𝑒𝑒𝑑 ൌ ଵ

ே
∑ ௏ெ்೔

௏ு்೔

ே
௜ୀଵ  

 Average link-level AV penetration, calculated as: 𝐴𝑣𝑔.𝐴𝑉 % ൌ ଵ

ே
∑ ஺௏ ௏ெ்೔

௏ெ்೔

ே
௜ୀଵ  

In the equations above, i is the index representing each link in the network, N is the total 
number of links in then network, 𝑉𝑀𝑇௜ and 𝑉𝐻𝑇௜ are link-specific VMT and VHT values for link 
i, 𝑙𝑖𝑛𝑘 𝑓𝑙𝑜𝑤௜ is the flow on link i, 𝑙𝑖𝑛𝑘 𝑙𝑒𝑛𝑔𝑡ℎ௜ is the length of link i, 𝑙𝑖𝑛𝑘 𝑠𝑝𝑒𝑒𝑑௜ is the speed on 
link i based on the corresponding BPR function, 𝐴𝑉 𝑉𝑀𝑇௜ represents only the VMTs generated by 
AVs on link i, and 𝑁𝑢𝑚.  𝑇𝑟𝑖𝑝𝑠 represents the total number of trips in the network. 
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5.2 Model results 

Table 3 and Figure 3 present the main results from each scenario. As expected given the 
control parameters used in the “Base – High AV” scenario, the introduction of AVs in the network 
causes an increase in the total number of trips, which in turn contributes to about a 6 percent 
increase in VMTs. The increase in VMT is accompanied by a 2 percent increase in VHTs. The 
most likely reason why the increase in VHTs is lower than the increase in VMTs is AVs’ improved 
use of capacity, which generate a 2 percent increase in speeds.  

When we analyze the three sensitivity scenarios, we see small but notable changes. 
Admittedly, the model was less sensitive than we expected. For example, when we assume that 
AVs’ VOTs are identical to non-autonomous vehicle’s VOTs in the ‘No Change in VOT’ scenario, 
AV users, of course, no longer accept longer distances more so than their non-autonomous 
counterparts, and the difference in their average travel times and distances are reduced. Differences 
might still exist simply due to changes regarding where non-AV and AV trips are being generated. 
Mode-specific results (i.e., non-AV and AV autos) are available online at 
http://www.caee.utexas.edu/prof/bhat/ABSTRACTS/AVFourStep/AdditionalResults.pdf, and 
they show that AVs have, in general, longer trips in terms of both distance and time, and that the 
number of Non-AV and AV trips can be affected by parameters unrelated to trip generation. 
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Table 2 References and values used in modeling scenarios 

Parameter 
Reference 
Literature 

Values for each scenario 

Base –  
No AV 

Base – 
High AV 

Increased  
Trip  

Generation 

No 
Change 
in VOT 

Capacity 
Decrease 

Household-level AV 
Penetration Rate: PAV 

Autonomous Vehicles 
Projections summarized in 
Kuhr et al. (2017) (37) and 
Nair et al. (2019) (38) 

0% 40% 40% 40% 40% 

AV Trip Generation 
Factor: FAV_TripGen 

New travel needs by age and 
gaps in travel demand to be 
filled by AVs 
Truong et al., (2017) (18) and ; 
Lavieri and Bhat (2019) (19) 

NA 1.05 1.10 1.05 1.05 

AV VOT Factor (Trip 
Distribution, Mode 
Choice and 
Assignment): 
FAV_AssignmentVOT, 
FAV_ModeChoiceVOT, 
FAV_TripDistVOT 

Based on Kolarova et al. 
(2018) (22), Steck et al. (2018) 
(23), and de Almeida Correia 
et al. (2019) (17) 

NA 0.75 0.75 1.00 0.75 

AV Passenger-Car-
Equivalent: FAV_PCE 

Calculations based on 
Tientrakool et al. (2011) (28) 

NA 0.70 0.70 0.70 1.10 

Note: The bold numbers represent the parameters with changes in the sensitivity scenarios.  

 

 

Table 3 General network – Aggregate daily results for all scenarios 

Result 
Base – No 

AV 
Base – High 

AV 

Increased 
Trip 

Generation 

No Change 
in VOT 

Capacity 
Decrease 

Trips 33,428,247 34,064,090 34,405,630 34,059,693 34,051,584 

VMTs 305,224,517 326,382,965 326,795,757 321,748,181 315,395,539 

VHTs 9,617,887 9,888,466 9,901,773 9,650,964 10,608,271 

Average Distance (miles) 9.13 9.58 9.50 9.45 9.26 

Average Time (minutes) 17.26 17.42 17.27 17.00 18.69 

Average Link-level Speed 29.3 29.8 29.8 29.9 28.6 

Average Link-level AV penetration 0.0% 36.3% 36.8% 35.6% 36.4% 
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(a) 

 
(b) 

  

   
(c) 

 
Figure 3 Main simulation results: (a) change in daily VMTs; (b) change in daily VHTs; (c) change in average link-level speeds  
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Figure 4 Time-specific speeds on the general network 

We also observed that the overall link-level speeds seem insensitive to most changes apart 
from the scenario where AVs lead to capacity losses (i.e., the “Capacity Decrease” scenario), in 
which speeds drop by about 4 percent. This is likely because this speed metric is a link-by-link 
average across the whole network, which makes it quite robust to changes. 

Figure 4 presents the time-specific (AM-peak, PM-peak and off-peak) speeds of the general 
network. In all scenarios, as expected, speeds are generally higher during the off-peak period. For 
the “Capacity Decrease” scenario, during the AM-peak and the PM-peak, however, AVs’ larger 
capacity consumption causes a 4 percent decrease in speed (compared to the “Base – High AV” 
scenario). 

Some of the main lessons learned during this endeavor include: 

 The parameter that controls the relative capacity consumption of AVs, FAV_PCE, was 
the exogenous control parameter to which the model showed most sensitivity.  

 The aggregate metric that is least sensitive to all exogenous control parameters is 
the daily average speed on the general network. 

 The use of the PCE approach (as opposed to increasing capacities on a link-by-link 
basis) allowed the impacts of AVs on capacity to be (at least partially) endogenous 
to our model. 

 Model results suggest that, even when we assume that AVs can better use network 
capacity and that trip making rates do not drastically increase, AVs may lead to an 
increase of about 2.8 percent in VHT while still improving speeds by about 1.8 
percent (when compared to a scenario without AVs). 

 Links with large fractions of trips from high-income households will also likely 
have high AV penetrations.  

 When AVs are assumed to have negative impacts on capacity, there is an observable 
speed drop, causing average travel times to increase. However, AVs are expected 
to have a negative impact on capacity mostly at lower levels of penetration (Section 
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3). Our scenario assumes that 40 percent of households own AVs, which leads to 
more than 90 percent of all used links having AV penetration rates of 20 percent or 
higher. Such links are unlikely to experience a negative net impact on performance.  

 The extended framework can be used to evaluate multiple scenarios. For example, 
build/no build scenarios for large infrastructure projects, transit expansions, and 
densification policies.  

6 CONCLUSIONS 

In this paper, we presented a framework for a simple extension of the traditional four-step model 
that allows MPOs to capture the impact of autonomous vehicles. We also illustrated how to 
implement the primary changes in the proposed framework by applying them to the NCTCOG 
model. Model results were analyzed for five scenarios, for which we computed aggregate metrics 
of performance consistent with those used by MPOs. Results suggest that the model is sensitive to 
proposed parameters, in particular to AVs’ passenger-car-equivalent. In most modeled scenarios, 
AVs brought both positive consequences (such as improved speeds) as well as negative 
consequences (such as increased total system travel times) when compared to a scenario without 
AVs. These results might not be entirely consistent with much of the prior literature, which 
primarily focuses on modeling and quantifying the benefits that AVs might bring, and which 
usually disregard their potential negative consequences on capacity consumption and speeds. 
Therefore, we believe that our results simply highlight the importance of considering integrated 
modeling frameworks to comprehensively assess the true impacts of AVs. 

 It is important to note that any limitation that is associated with the original four-step model 
will persist even after the model is extended using our proposed framework. For example, the 
assignment stage in NCTCOG’s model assigns transit trips independently from auto-based and 
truck trips. One important avenue of future research would be the development of new multi-modal 
assignment algorithms that better accommodate for cross-modal congestion effects. Additional 
opportunities for model refinement include considering trips made by AVs with no passengers and 
addressing the fact that the impact of AVs on road capacity may not be exactly linear as assumed 
by our PCE based approach.  

At a more practical level, our implementation of the framework was quite cumbersome and 
required writing substantial amounts of additional TransCAD GISDK code. The network in the 
original NCTCOG model has approximately 55,000 links, 35,000 nodes, and 5,300 zones. In our 
application, the assignment step involved twenty different OD matrices. Given the large network 
size and the large number of matrices, the run times were very high, totaling around thirty-six 
hours even when using only two feedback iterations and assignment gaps of 0.01 and 0.005. This, 
however, was a direct consequence of the already significantly complex nature of NCTCOG’s 
current four-step model. 

Despite the many limitations of the traditional four-step model, we still believe it is an 
invaluable tool for MPOs and planning agencies. We trust that the extension we propose in this 
paper will prove to be very useful for practitioners given that a) it generates the same type of results 
that transportation planners and modelers are already accustomed to using on a day-to-day basis; 
and b) it can be quite easily implemented by almost any MPO that already has a four-step model. 
Ongoing work is exploring the use of the proposed framework to answer planning questions (e.g., 
“Will the ranking of infrastructure project be affected by the adoption of AVs?” or “How will AVs 
affect transit use?”). Researchers will also consider methodological refinements, including 
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addressing some of the limitations of using the PCE factor to model AVs impact on network 
capacity, and the consideration of empty AV trips.  

ACKNOWLEDGMENTS 

This research was partially supported by Cintra, the North Central Texas Council of Governments 
(NCTCOG) University Partnership Program (UPP) (Project TRN5045), and the U.S. Department 
of Transportation through the Data-Supported Transportation Operations and Planning (D-STOP) 
(Grant No. DTRT13GUTC58) Tier 1 University Transportation Center. The authors are grateful 
to Lisa Macias and Brandy Savarese for their help in formatting this document. The authors are 
also grateful to the three anonymous reviewers who provided useful comments on an earlier 
version of this paper. 

 

AUTHOR CONTRIBUTION STATEMENT 

The authors confirm contribution to the paper as follows: study conception and design: F.F. Dias, 
G.S. Nair, N.R. Juri, C.R. Bhat, A. Mirzaei; data collection: NCTCOG; analysis and interpretation 
of results: F.F. Dias, G.S. Nair, N.R. Juri, C.R. Bhat, A. Mirzaei; draft manuscript preparation: 
F.F. Dias, G.S. Nair, N.R. Juri, C.R. Bhat, A. Mirzaei. All authors reviewed the results and 
approved the final version of the manuscript.  

 

  



Dias, Nair, Juri, Bhat and Mirzaei  

20 

REFERENCES 

1. Bhat, C.R. and Koppelman, F.S., 1999. Activity-based modeling of travel demand. 
Handbook of transportation Science (pp. 35-61). Springer. 

2. Sumalee, A., Zhong, R.X., Pan, T.L. and Szeto, W.Y., 2011. Stochastic cell transmission 
model (SCTM): A stochastic dynamic traffic model for traffic state surveillance and 
assignment. Transportation Research Part B: Methodological, 45(3), pp.507-533. 

3. Balmer, M., Axhausen, K.W. and Nagel, K., 2006. Agent-based demand-modeling 
framework for large-scale microsimulations. Transportation Research Record, 1985(1), 
pp.125-134. 

4. Levin, M.W. and Boyles, S.D., 2016. A multiclass cell transmission model for shared 
human and autonomous vehicle roads. Transportation Research Part C: Emerging 
Technologies, 62, pp.103-116. 

5. Bar-Gera, H., 2010. Traffic assignment by paired alternative segments. Transportation 
Research Part B: Methodological, 44(8-9), pp.1022-1046. 

6. Guerra, E., 2016. Planning for cars that drive themselves: Metropolitan planning 
organizations, regional transportation plans, and autonomous vehicles. Journal of Planning 
Education and Research, 36(2), pp.210-224. 

7. Freemark, Y., Hudson, A. and Zhao, J., 2019. Are cities prepared for autonomous vehicles? 
Planning for technological change by US local governments. Journal of the American 
Planning Association, pp.1-19. 

8. Zhao, Y. and Kockelman, K.M., 2018. Anticipating the regional impacts of connected and 
automated vehicle travel in Austin, Texas. Journal of Urban Planning and Development, 
144(4), p.04018032. 

9. Wang, A., Stogios, C., Gai, Y., Vaughan, J., Ozonder, G., Lee, S., Posen, I.D., Miller, E.J. 
and Hatzopoulou, M., 2018. Automated, electric, or both? Investigating the effects of 
transportation and technology scenarios on metropolitan greenhouse gas emissions. 
Sustainable cities and society, 40, pp.524-533. 

10. Kloostra, B. and Roorda, M.J., 2019. Fully autonomous vehicles: analyzing transportation 
network performance and operating scenarios in the Greater Toronto Area, Canada. 
Transportation planning and technology, 42(2), pp.99-112. 

11. Bernardin Jr, V.L., Mansfield, T., Swanson, B., Sadrsadat, H. and Bindra, S., 2019. Scenario 
Modeling of Autonomous Vehicles with Trip-Based Models. Transportation Research 
Record, 2673(10), pp.261-270. 

12. Swaroop, D.V.A.H.G., Hedrick, J.K., Chien, C.C. and Ioannou, P., 1994. A comparision of 
spacing and headway control laws for automatically controlled vehicles1. Vehicle System 
Dynamics, 23(1), pp.597-625. 

13. Mahmassani, H.S., Elfar, A., Shladover, S.E. and Huang, Z., 2018. Development of an 
Analysis/Modeling/Simulation (AMS) Framework for V2I and Connected/Automated 
Vehicle Environment (No. FHWA-JPO-18-725). United States. Department of 
Transportation. Intelligent Transportation Systems Joint Program Office. 



Dias, Nair, Juri, Bhat and Mirzaei  

21 

14. Walker, A. LA's big plan to change the way we move. Sep 9, 2016. Curbed LA. Available 
at: https://la.curbed.com/2016/9/9/12824240/self-driving-cars-plan-los-angeles. Accessed 
on: Jul 17, 2019. 

15. Shen, Y., Zhang, H. and Zhao, J., 2017. Embedding autonomous vehicle sharing in public 
transit system: An example of last-mile problem (No. 17-04041). Presented at the 
Transportation Research Board 96th Annual Meeting.  

16. Scheltes, A. and de Almeida Correia, G.H., 2017. Exploring the use of automated vehicles 
as last mile connection of train trips through an agent-based simulation model: An 
application to Delft, Netherlands. International Journal of Transportation Science and 
Technology, 6(1), pp.28-41. 

17. de Almeida Correia, G.H., Looff, E., van Cranenburgh, S., Snelder, M. and van Arem, B., 
2019. On the impact of vehicle automation on the value of travel time while performing 
work and leisure activities in a car: Theoretical insights and results from a stated preference 
survey. Transportation Research Part A: Policy and Practice, 119, pp.359-382. 

18. Truong, L.T., De Gruyter, C., Currie, G. and Delbosc, A., 2017. Estimating the trip 
generation impacts of autonomous vehicles on car travel in Victoria, Australia. 
Transportation, 44(6), pp.1279-1292. 

19. Lavieri, P.S. and Bhat, C.R., 2019. Investigating objective and subjective factors 
influencing the adoption, frequency, and characteristics of ride-hailing trips. Transportation 
Research Part C: Emerging Technologies, 105, pp.100-125. 

20. Kim, S.N., Choo, S. and Mokhtarian, P.L., 2015. Home-based telecommuting and intra-
household interactions in work and non-work travel: A seemingly unrelated censored 
regression approach. Transportation Research Part A: Policy and Practice, 80, pp.197-214. 

21. Mokhtarian, P.L. and Tal, G., 2013. Impacts of ICT on travel behavior: a tapestry of 
relationships. The Sage handbook of transport studies, pp.241-260. 

22. Kolarova, V., Steck, F., Cyganski, R. and Trommer, S. 2018. Estimation of the value of 
time for automated driving using revealed and stated preference methods. Transportation 
research procedia, 31, pp.35-46. 

23. Steck, F., Kolarova, V., Bahamonde-Birke, F., Trommer, S. and Lenz, B. 2018. How 
autonomous driving may affect the value of travel time savings for commuting. 
Transportation research record, Vol 2678(46), pp.11-20. 

24. Childress, S., Nichols, B., Charlton, B. and Coe, S., 2015. Using an activity-based model to 
explore the potential impacts of automated vehicles. Transportation Research Record, 
2493(1), pp.99-106. 

25. Kröger, L., Kuhnimhof, T. and Trommer, S., 2016. Modelling the impact of automated 
driving–private autonomous vehicle scenarios for Germany and the US. European 
Transport Conference 2016 Association for European Transport (AET). 

26. Levin, M.W. and Boyles, S.D., 2015. Effects of autonomous vehicle ownership on trip, 
mode, and route choice. Transportation Research Record, 2493(1), pp.29-38. 



Dias, Nair, Juri, Bhat and Mirzaei  

22 

27. Okamura, M., Fukuda, A., Morita, H., Suzuki, H. and Nakazawa, M., 2011. Impact 
evaluation of a driving support system on traffic flow by microscopic traffic simulation. 
Advances in Transportation Studies. 

28. Tientrakool, P., Ho, Y.C. and Maxemchuk, N.F., 2011, September. Highway capacity 
benefits from using vehicle-to-vehicle communication and sensors for collision avoidance. 
2011 IEEE Vehicular Technology Conference (VTC Fall), pp. 1-5. 

29. Stern, R.E., Cui, S., Delle Monache, M.L., Bhadani, R., Bunting, M., Churchill, M., 
Hamilton, N., Pohlmann, H., Wu, F., Piccoli, B. and Seibold, B., 2018. Dissipation of stop-
and-go waves via control of autonomous vehicles: Field experiments. Transportation 
Research Part C: Emerging Technologies, 89, pp.205-221. 

30. van Arem, B., Van Driel, C.J. and Visser, R., 2006. The impact of cooperative adaptive 
cruise control on traffic-flow characteristics. IEEE Transactions on intelligent 
transportation systems, 7(4), pp.429-436. 

31. Milanés, V. and Shladover, S.E., 2014. Modeling cooperative and autonomous adaptive 
cruise control dynamic responses using experimental data. Transportation Research Part 
C: Emerging Technologies, 48, pp.285-300. 

32. Delis, A.I., Nikolos, I.K. and Papageorgiou, M., 2015. Macroscopic traffic flow modeling 
with adaptive cruise control: Development and numerical solution. Computers & 
Mathematics with Applications, 70(8), pp.1921-1947. 

33. Dresner, K. and Stone, P., 2004, July. Multiagent traffic management: A reservation-based 
intersection control mechanism. Proceedings of the Third International Joint Conference 
on Autonomous Agents and Multiagent Systems-Volume 2, pp. 530-537. 

34. Dresner, K. and Stone, P., 2005, July. Multiagent traffic management: An improved 
intersection control mechanism. Proceedings of the fourth international joint conference on 
Autonomous agents and multiagent systems, pp. 471-477. 

35. Sheikholeslam, S. and Desoer, C.A., 1990. Longitudinal control of a platoon of vehicles. 
III, Nonlinear model. 

36. Vander Werf, J., Shladover, S.E., Miller, M.A. and Kourjanskaia, N., 2002. Effects of 
adaptive cruise control systems on highway traffic flow capacity. Transportation Research 
Record, 1800(1), pp.78-84. 

37. Kuhr, J., Ruiz Juri, Natalia, Bhat, C.R., Archer, J., Duthie, J., Varela, E., Zalawadia, M., 
Bamonte, T., Mirzaei, A., Zheng, H., 2017. Travel Modeling in an Era of Connected and 
Automated Transportation Systems: An Investigation in the Dallas-Fort Worth Area. 
Technical Report 122. Center for Transportation Research, The University of Texas at 
Austin. 

38. Nair, G.S., Dias, F.F., Juri, N.R., Kuhr J., Bhat, C.R., 2019. Travel Modeling in an Era of 
Connected and Automated Transportation Systems: An Investigation in the Dallas-Fort 
Worth Area. Center for Transportation Research, Technical Report. The University of Texas 
at Austin. 

39. Haboucha, C.J., Ishaq, R. and Shiftan, Y., 2017. User preferences regarding autonomous 
vehicles. Transportation Research Part C: Emerging Technologies, 78, pp.37-49. 



Dias, Nair, Juri, Bhat and Mirzaei  

23 

40. Milkovits, M., Copperman, R., Newman, J., Lemp, J., Rossi, T. and Sun, S., 2019. 
Exploratory Modeling and Analysis for Transportation: An Approach and Support Tool-
TMIP-EMAT. Transportation Research Record, 2673(9), pp.407-418. 


