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 In his 1980 book, Mindstorms, Seymour Papert proposes using microworlds to help 

children learn mathematics like mathematicians.   In a microworld like LOGO that is culturally 

rich in math, Papert claims that learning math can be as natural as learning French in France.  

Although the technology at the time was adequate, LOGO faltered due to improper 

implementation in the classroom.  A newfound political interest in inquiry and computer 

literacy could breathe new life into Papert’s vision.  In contrast with the routinized approaches 

to introducing aspects of programming that, arguably, limited the trajectory for the 

implementation of programming in schools (Papert, 1980), this report explores what can and 

does happen in the first few minutes using a more open, student directed, approach to 

programming with high school physics students.  A grounded theory approach led to 

connections with Vygotsky’s Zone of Proximal Development. 
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Chapter 1 - Introduction 

 The driving force for this study is to investigate the viability of computer microworlds to 

help students make sense of physics.  Although mixing programming and physics may seem 

like a culture clash given their perceived domains in the virtual and physical world respectively, 

the two actually have a history of collaboration.  Some of the earliest IBM punch card 

calculators, the precursors to the modern programmable computer, were used to model uranium 

implosions at Los Alamos.  More recently, the demand for realism in video games has required 

game companies to employ physics engines to calculate trajectories, momentum, and shading.  

In this historical context, the lack of computer modeling in physics curriculums can be seen as a 

glaring omission.  Instead, physics is often taught with a heavy emphasis on formulas and 

mathematical computation. 

 In his book Mindstorms, Papert dubs school math the “QWERTY of education”.  The 

QWERTY keyboard was originally designed with a very practical purpose: to minimize the 

chance of neighboring typebars clashing.  Although current technology has rendered the 

typewriter obsolete, the QWERTY lives on due to network effects.  Likewise, the methods used 

in school are a set of “historical accidents” that, although practical once upon a time, do not take 

advantage of the technology currently available (Papert, 1980).  Instead of using a computer to 

force feed “indigestible” information at a faster rate, Papert suggests immersing kids in a 

culturally-rich computer environment like LOGO (Papert, 1980).  By giving students agency 

and allowing them to externalize their intuition, students can behave like mathematicians 

(Lawler, 1997).  Unfortunately, due to poor implementation at the classroom level, LOGO 

faltered and became a niche resource.   

 Recent changes may give microworlds like LOGO a second chance to flourish.  In 2011, the 

National Science Foundation (NSF) proposed the Cyberlearning initiatives as a way to improve 

learning through the optimization of technology (National Science Foundation, 2011).  The 

proposed activities include studying how people learn with technology, improving the use of 

technology to manage and share data on learning, and designing new learning technologies and 

environments (National Science Foundation, 2011).  This proposal signals a shift in power back 

to the NSF, which lost influence and power to the Department of Education when the United 

States Congress enacted a standards-based education reform called the No Child Left Behind 
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Act of 2001 (NCLB).  A reversal of power is significant because it also represents a reversal of 

educational philosophy.  The NSF, as its name suggests, values science, which in its purest form 

is a heuristic, inefficient, and fluid form of learning.  The Department of Education, on the other 

hand, values algorithmic teaching, success, and efficiency.  While those values are not 

intrinsically bad, the high-stakes testing ecosystem created in the wake of NCLB 

unintentionally created a classroom culture that was ineffective (Ravitch, 2010).  The results 

that were promised by NCLB have yet to materialize as of this writing (Bracey, 2003).   

 Legislators in seventeen states plus the District of Columbia have introduced legislation that 

will allow high school students to use computer science courses to satisfy their state's foreign 

language graduation requirement (Heitin, 2014), but LOGO itself is a reminder that effective 

implementation is not guaranteed.  In contrast with the routinized approaches to introducing 

aspects of programming that, arguably, limited the trajectory for the implementation of 

programming in schools (Papert, 1980), this report explores what can and does happen in the 

first few minutes using a more open, student directed, approach to programming with high 

school physics students. 
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Chapter 2 - Literature Review 

  The primary design criterion of LOGO was to be “appropriable” to help reconcile 

student’s relationship with math (Papert, 1980).  Typical schools build systems of prerequisites 

that alienate students from powerful mathematical ideas and ultimately create mathematically 

illiterate graduates (Papert, 1980).  Unfortunately, a mathematically-illiterate culture will not 

find any problems with this.  “For most people, nothing is more natural than that the most 

advanced ideas in mathematics should be inaccessible to children” (Papert, 1980).  In a 

microworld with a mathematically-rich culture, learning math becomes spontaneous.  Students 

will “reconstruct knowledge in such a way that no great effort is needed to teach it” (Papert, 

1980).  Papert compares learning math in a LOGO microworld to a child learning French in 

France.  A native speaker learns a word by encountering it in her environment, testing its 

meaning, and refining her understanding of the word until comfort with the culture is 

established.  Likewise, a child can learn math by developing mathematical intuition and 

“debugging” or resolving conflicts with the microworld as she uses and tests it (Papert, 1980).  

This type of “abstraction” is critical to learning, but is often avoided even in problem-solving 

situations because it is “difficult” (Lawler, 1997). 

 Spontaneous learning neither eliminates the need for instruction nor minimizes the teacher.  

After all, even native French speakers need French instruction.  Here, Vygotsky provides an 

additional dimension to the analogy.  Like Papert, he believes children, driven by an intrinsic 

desire to understand their environment, develop mental models of these ideas (Vygotsky, 1987).  

Literacy is achieved via a systematic manipulation of objects in the environment (Vygotsky, 

1987).  This type of spontaneous learning has its limitations however.  If asked to explain her 

pronunciation or sentence structure, the native French speaker (assuming she even understands 

the question) would probably say something to the effect of, “I don’t know… I just know.”  

How can someone show no awareness of the language she commands so effortlessly?   
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Figure 1: Two Types of Conceptual Development According to Vygotsky 

 

 Vygotsky’s explanation involves a second developmental process that couples with the 

spontaneous.  The two paths share the same endpoints but move in opposite directions as shown 

in Figure 1.  The aforementioned spontaneous concept development starts with a child’s 

encounter with a concrete (elementary) thing and transitions to an abstract (complex 

generalities) understanding after a long developmental process (Vygotsky, 1987).  Scientific 

conceptual development, on the other hand, starts a child with an abstract understanding of the 

thing (complex generalities) before leading him to the actual thing itself (Vygotsky, 1987).  The 

strength of one path is the weakness of the other (Vygotsky, 1987).  Scientific conceptual 

development in the context of the prior French analogy would be similar to learning French as a 

foreign language.  For example, foreign language students typically start with vocabulary, 

syntax, and pronunciation – ideas so abstract that they would be very difficult for students to 

learn spontaneously (Vygotsky, 1987) – and working “down” toward verbal fluency and 

pronunciation. 

 The interplay between the two paths forms the Zone of Proximal Development (ZPD).  In 

utilizing the ZPD for instructional purposes, instead of focusing on the development that has 

already happen, the teacher focuses on development that has yet to happen (Kozulin, 2003).  

The bottom threshold of the ZPD is defined by problem solving that the student can do 

individually.  The top threshold of the ZPD is defined by problem solving that the student 

cannot do.  In the middle is the ZPD, which Vygotsky defines as the problem solving that the 

student can do with guidance from an adult or in collaboration with more capable peers 
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(Kozulin, 2003).  When employed during the “sensitive period”, instruction leads development 

just enough to unlock “a swath of developmental processes” (Vygotsky, 1987). 

 With their embedded complementarity framework, Stroup and Wilensky provide more 

insight into this interplay between the spontaneous and scientific paths, which they call agent-

based and aggregate reasoning methods respectively.  Students’ reasoning is neither fully agent-

based nor fully aggregate, but an interaction of the two working as complementary pairs (Stroup 

& Wilensky, 2014).  Just as in the wave-particle duality theory of light, neither model alone 

sufficiently models the students learning.  Whereas Vygotsky’s ideas are framed in the context 

of childhood development, Stroup and Wilensky’s ideas seem framed in the context of sense-

making in a complex system.  Although the difference may be nuanced, it makes the ideas of 

embedded complementarity much more relevant in areas like STEM, where making sense of a 

dynamic world is seen as a critical objective. 

 The physical world is not culturally poor in physics, so why are misconceptions in physics 

so prevalent and persistent (Clement, 1982)?  Perhaps the dynamic complexity of the physical 

world makes it difficult for children to test their intuition.  Dynamic complex systems are 

dynamic, tightly coupled, governed by feedback, nonlinear, history-dependent, self-organizing, 

adaptive, counterintuitive, policy resistant, and characterized by trade-offs (Sterman, 2000).  

Entire blocks of study in physics are devoted to objects in states of change and these blocks of 

study are strongly interwoven; it is almost impossible to talk about forces, energy and 

momentum in isolation.  Calculus is often treated as a companion course to help students 

understand the non-linear relationships between variables.  If that was not enough, several 

physics concepts are notoriously counter-intuitive (Clement, 1982).  The current push in the 

physics community toward a single unifying theory of everything may reduce detail complexity 

(Sterman, 2000), but does nothing to reduce the dynamic complexity. 

 Research into bridging conceptual understanding and successful computation in physics has 

led to several terms to characterize the tacit nature of this activity, including blended processing 

(Kuo, 2012), abstraction (Chi, 1981), common sense (Sherin, 1999), transfer, “physical 

intuition” (Larkin, 1980) and the ability to “see” the math (Walkington, 2011).  Looking 

through the lens of Vygotsky, perhaps the reason learning physics is so difficult is two-fold: 

1. The dynamic complexity of the physical world limits students’ ability to experience 

spontaneous conceptual development related to physics 
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2. The tradition of teaching physics with computation keeps the scientific conceptual 

development very abstract and makes it less tangible for students 

In other words, the spontaneous development of the student may be too low to make the 

scientific instruction useful.  The other possibility is that the scientific instruction is too abstract 

to lead spontaneous development.  It is in this gap that a microworld like LOGO can serve as a 

“transitional object” that connects students to the powerful ideas that are not yet fully developed 

in their minds (Papert, 1980). 

 LOGO is not the first or only attempt to help students make these connections to powerful 

ideas in the classroom.  InSight Maker (Foreman-Roe & Bellinger, 2013) made it possible for 

students to simulate and discuss complex system dynamics (Sterman, 2000).  NetLogo adapted 

LOGO to help students experience agent-based computer modeling (Wilensky, 1999).  HubNet 

made it possible to explore embedded complementarity though networked computers (Stroup & 

Wilensky, 2014).  For this study, I decided to use an Introbuttons activity written by Dr. Walter 

Stroup for NetLogo (Stroup, 2008a).  The NetLogo model library does include specific 

activities for physics, but as my introductory study, a more general approach seemed more 

appropriate. 

 

Research question.  As their initial engagement with programming (the first few minutes), can 

students in a high school physics class use the Introbuttons microworld (Stroup, 2008a) and 

aspects of the Introbuttons activity sequence (Stroup, 2008b) as a scaffolding environment to 

support an open ended introduction to programming?  In this paper, we will discuss findings 

specific to the Introbuttons activity and then tie any conclusions back to a physics-specific 

classroom implementation. 
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Chapter 3 - Methods 

 The experiment was conducted in a classroom of thirteen high-school seniors in a large 

suburban senior high school.  The Introbuttons activity served as a seamless substitute in-lieu of 

the programming unit that was originally planned.  Because the experiment took place at the 

end of the school year, there was only time for one experiment, so the priority was to collect and 

store as much information as possible so that it would be easy to review and analyze at a later 

time.  Although the students’ source code was initially presumed to be the primary source of 

value, the students’ dialogue and interactions with the computer ended-up being most valuable. 

 Step 1: Group students in pairs.  Although the classroom had enough computers for most 

kids to work individually, the students were asked to work in pairs for two reasons.  First and 

most importantly, it fostered student collaboration and dialogue.  Without dialogue, it would 

have been significantly more difficult to determine what the students were thinking as they 

explored the Introbuttons activity.  Second, it allowed the recording responsibilities to be 

delegated to one person in each group.  Without any recording responsibilities, the researcher 

was free to roam, observe, and interact with the groups during the experiment.  These general 

observations were foundational in making an initial theory during analysis.   

 Step 2: Distribute the software to each group.  The Introbuttons activity (Stroup, 2008a) 

runs on NetLogo, a freely distributed version of LOGO.  Acquiring the software is easy, but 

installing and running software on school computers can be a challenge.  Because the network 

would not allow the NetLogo download, NetLogo was first copied onto multiple USB flash 

drives for later distribution.  Both Windows and Mac versions were copied to accommodate 

students who brought their own laptops.  Running NetLogo on the school computers required a 

teacher login.  The Introbuttons activity used in conjunction with NetLogo was designed for 

version 4.1.3, but the only version that worked on Mac was 5.0.3 (Stroup, 2008a).  We did not 

encounter any compatibility issues. 

 Step 3: Distribute a recording device to each group.  The student who was not operating the 

computer was asked to record the dialogue audio and the computer monitor.  The students were 

encouraged to swap responsibilities periodically.  After the experiment started, some students 

discovered screen-casting software, which had some advantages.  The video quality of screen-

casting was superior but it required an external microphones and additional post-processing 

time to convert into the usable .mp4 format. 
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Figure 2: NetLogo (left) running the Introbuttons activity (right) 

 

 Step 4: Ask students to start the Introbuttons activity.  NetLogo will not start the 

Introbuttons activity automatically (Stroup, 2008a).  After starting NetLogo, students were 

required to open the Introbuttons activity files manually from the File menu.  Figure 2 shows 

the difference between the two interfaces.  The Introbuttons activity includes two rows of 

buttons on either size of the black “space”.  On the left side, the buttons are physical instances 

of different turtle commands and are labeled accordingly.  Using these buttons, students can 

clear the screen, create turtles, control turtle movements, and change the color of the “space”.  

On the bottom of this column is a caption box which displays the source code produced by the 

Introbuttons.  Immediately below the caption box is the run code button, which prompts the 

user to enter a command.  On the right side, the buttons are physical instances of procedures.  

The procedures are initially empty so the buttons do nothing, but once working source code is 

added, the buttons can be used to run those procedures.  The remaining steps were adapted from 

Dr. Walter Stroup’s Introbuttons activity (Stroup, 2008b). 
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Figure 3: Basic Introbuttons 

  

 Step 5: Ask students to play with the Introbuttons.  Due to concerns about time, several 

buttons (shown in Figure 3) were explicitly taught to jumpstart the experiment: ca (clear all), 

crt 1 (create one turtle), crt 100 (create one hundred turtles), pu (pen up), and pd (pen down).  

These buttons were chosen because they were some of the most basic buttons of the set.  After 

the brief introduction, students were asked to start playing with the Introbuttons.  Students were 

often asked how they did something, particularly if it was found to be interesting.  Students who 

showed concerned about doing something wrong were given encouragement and assured that 

there was no right or wrong answers.  Periodically, students were asked to share what they 

noticed. 
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Figure 4: “Run code” Button 

  

 Step 6: Ask students to start typing source code.  After some time, students were asked to 

click the run code button (see Figure 4) and enter source code.  Although they were asked to 

look at the source code that was being generated in the caption box above the run code button, 

students were not told to type anything specifically. 
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Figure 5: Procedures Tab Showing the Fish and Tree Procedures 

  

 Step 7: Ask students to explore and modify the included FISH and TREE procedures.  

Students were asked to navigate to the “procedures” tab and view the source code (see Figure 

5).  The Fish and Tree procedures are at the end of the source code.  The goal is to modify the 

source code to make the fish look more like a fish and the tree to look more like a tree. 
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Figure 6: Source Code for myproc01 and myproc02 

  

 Step 8: Ask students to make their own procedures.  After students felt comfortable 

modifying the fish or tree procedures, they were asked to make their own procedures using the 

myproc01 and myproc02 buttons.  The myproc01 and myproc02 procedures are already 

instantiated in the source code (see Figure 6), but they are empty and therefore do nothing.  No 

further instructions were provided except for those written in the comments. 

 Step 9: Save, collect, and analyze data.  At the end of the period, students were asked to 

return their recording devices (or save their screen-casts) and save their source code.  Note that 

screen-casts can take up to thirty minutes to process and save.  After collection, all the data files 

(camera video, screen-cast, and source code) were immediately renamed to keep them 

organized.  All memory cards were cleared and all batteries were charged to prepare for the 

following day. 

 The framework of this experiment (Brown, 1992; Cobb, Confrey, diSessa, Lehrer, & 

Schauble, 2003; diSessa & Cobb, 2004; Edelson, 2002) has been supplemented with strands of 

grounded theory (i.e., Glasser & Strauss, 1967; Glaser, 1992; Strauss & Corbin, 1990), which 

involves repeatedly drawing samples and refining the data collection until a stable theory 

emerges from the data (Lichtman, 2013).  To harness the data, an exploratory approach to 
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coding was taken given the theory-driven nature of the experiment (Schoenfeld A. H., 1992).  

The following three coding methods were ultimately used (not predetermined): 

 An adaptation of Magnitude coding was used to visualize the size of students’ inputs as 

a function of time (Saldaña, 2009) 

 An adaptation of Theme coding was used to confirm the perceived emergent 

progression of students’ activities in the Introbuttons activity (Saldaña, 2009) 

 Axial coding was used to identify areas of generality as evidence for scientific 

conceptual development (Strauss, 1987) 

In no way do we suggest this coding scheme meets the “standards for novel methods” 

(Schoenfeld, 1992) or posit the data as proof.  Rather, we will describe our coding methods with 

as much detail and transparency as possible so that readers can 1) identify the limitations of this 

study and 2) replicate the methods in their own experiments and add to the body of data.  The 

overall intent is for our results and conclusions to seem reasonable given an understanding of 

our coding methodology and its limitations.  
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Chapter 4 - Results and Data Analysis 

 The extent of the instructions during the activity, especially in the early minutes, was to 

“play around with it”.  As a result, the six groups took different paths in their exploration.  

Some of the activities seen during the first day of the activity included drawing shapes, creating 

patterns, configuring the background colors, using the 3-D viewer, and trying to crash the 

computer by creating turtles.  Some of the words the students used to describe their creations 

included “dandelion”, “kaleidoscope”, “rainbow spider web”, and “fireworks”. Groups were 

assured that they were not doing anything wrong. 

 Initial theory development.  As mentioned in the previous chapter, my live observation of 

the experiment helped generate the first iteration of the theory.  It seemed that students’ 

interactions with LOGO spontaneously increased in complexity.  Most students were able to 

type their own source code by the end of the first day even though they had not been taught 

how.  To see how my observation of increasing complexity looked at a macro view, the size of 

the students’ inputs were coded. 
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Figure 7: Data Coded According to Input Size 

 

 Figure 7 above shows the results of all six groups (higher resolution versions are available 

in Appendix A).  Button presses were coded as a size of “1” because they required only one 

button press.  Custom source code was coded as the number of characters that were typed.  If 

the source code compiled and ran without generating an error, the input was coded as positive.  

If the source code generated an error message, the input was coded as negative.  Button presses 

were always +1 because they always ran without error.  Pressing the run code button but 

ignoring it was coded as 0.  To manage the scope of this analysis, coding stopped when a lull 

occurred in the activity.  In all but one group, this happened 12-15 minutes after entering the 
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LOGO microwold.  For example, in the twelfth minute, Group 5 stopped to show what they had 

learned and in the thirteenth minute, Group 3 crashed their computer by creating too many 

turtles.  Group 6 crashed theirs in the fifteenth minute. 

 This high-level view confirmed the original observations.  The rapid, indiscriminate button 

pressing is easy to see in the early minutes as the data points are so densely packed that they 

almost overlap.  In Group 3, the following exchange happened in the second minute (1:50) 

while the students experimented with the Introbuttons: 

David:  We’re just clicking every single button. 

Rachel:  That’s how you do it. 

As the students spent more time in LOGO, their inputs both increased in size (complexity) and 

decreased in frequency as students started deciphering the buttons.  Less than two minutes later, 

Group 3 had determined the function of three additional Introbuttons: 

David:  Those, ah.  Those... crt creates a turtle.  crt 1 creates one turtle.  crt 100 creates a 

hundred turtles 

Rachel: (clicked crt 1 to create a turtle and clicked fd 5, fd -5, and bk 5). This is like 

movements.  Forward five.  Back five.  (Compares fd -5 and bk 5).  Looks like 

there are two back five buttons.  Whatever. 

In Group 2, the students used the 3-D view to confirm their understanding of several 

Introbuttons. 

Mark:  (clicks ask turtles [set pcolor pink]) Does it change in 3D? 

Mark:  So the dots are above the pink (creates a few turtles then experiments with other 

buttons) 

Several things happened here.  First, the Introbuttons provided concrete items for the students to 

manipulate (Vygotsky, 1987).  In the context of the LOGO microworld, the Introbuttons 

allowed the students to externalize their intuition of LOGO so that it could be tested (Papert, 

1980).  Fortunately in a microworld, there is consistent application of decision rules and 

complete, accurate, and immediate feedback (Sterman, 2000).  The lack of dynamic complexity 

and inconsistency commonly found in the real world made LOGO more accessible for 

reflection (Sterman, 2000).  Therefore, the students’ ability to learn LOGO seems limited only 

by the speed they were able to resolve conflicts with their intuition.   Once they gained 

literacy of the buttons, students progressed from random button pressing to deliberate button 
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pressing.  As time progressed, the students started typing source code and the pace slowed even 

more.   

 Intermediate theory development.  In attempt to understand how students taught themselves 

to write source code, several additional attempts were made to code the data, but many of them 

were unsuccessful.  Some codes were too granular and resulted in noise.  Other codes were too 

high-level and required aggressive assumptions to interpret the data.  Finally, based on the 

conclusions of the initial analysis and watching the videos many times, the data was coded 

according to a progression that seemed to consistently emerge: 

Step 1: Students press buttons indiscriminately.  

Step 2: Students interpret button meanings and/or use them discriminately.  In this step, 

students either showed deliberate use of the Introbuttons or explained the meaning of 

Introbuttons out-loud.  These two activities could have been treated as two discrete steps, but 

were ultimately combined because they both show a conscious awareness of the buttons’ 

meaning.  Also, for groups that did not talk much, students’ interpretation of the buttons was not 

externalized verbally and would be impossible to code. 

Step 3: Students click the run code button.  Clicking the run code button did not necessarily 

signal readiness to type source code.  Sometimes students clicked it inadvertently and canceled 

out of it when they were confused by the text field.  These instances were coded as “Step 3” but 

identified as “ignored” to show that a conscious awareness of the source code had not yet be 

achieved. 

Step 4: Students imitate the source code from the caption box.  Students accomplished this two 

different ways.  Some copy-and-pasted it into the text field while others typed it in manually.  

Both were coded the same way. 

Step 5: Students type custom source code.  Actions were coded as “Step 5” if the source code 

entered was different than any of the Introbuttons.  Even a change to one parameter qualified 

the input as custom source code. 
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Table 1: Data Coded According to Progression 

 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 

Step 1: Students 

press buttons 

indiscriminately 

Insufficient 

data 

0:00-1:27 

1:41-3:03 

3:13-3:18 

0:00-3:20 

3:36-5:45 

6:14-6:30 

8:41-8:55 

 

0:00-3:09 

5:01-5:35 

5:40-6:40 

 

0:00-1:09 

1:20-1:59 

3:11-5:07 

0:00-2:02 

3:02-7:34 

7:47-9:12 

12:08-12:20 

12:59-13:44 

Step 2: Students 

interpret button 

meanings 

and/or use them 

discriminately 

Insufficient 

data 

1:28-1:40 

3:04-3:12 

3:21-3:35 

5:46-6:13 

6:31-6:38 

6:56-8:31 

9:00-9:29 

3:10-5:00 

5:36-5:39 

6:41-7:21 

1:10-1:19 

2:00-3:10 

5:08-5:30 

2:03-3:01 draw 

shape 

Step 3: Students 

click the run 

code button 

Insufficient 

data 

3:19 0:16 (ignored) 

1:06 (ignored) 

3:13 (ignored) 

6:39 

8:32 

7:22 

8:04 

4:04 (ignored) 7:35 (ignored) 

9:13 

11:00 

11:14 

12:21 

13:45 

Step 4: Students 

imitate the 

source code 

from the 

caption box 

Insufficient 

data 

3:20-4:13 6:40-6:55 

8:33-8:40 

 

7:23-8:03 

8:05-8:28 

5:31-6:39 7:36-7:46 

11:01-11:13 

11:46-12:07 

12:22-12:58 

Step 5: Students 

type custom 

source code 

Insufficient 

data 

4:14-5:15 8:56-8:59 

9:30- 

 6:40- 9:14-9:49 

11:15-11:45 

13:46- 

 

 The results of the coding, shown in Table 1, showed that the anticipated progression did 

exist, but was not linear.  The time periods spent at each step were coded for all groups until 

Step 5 was reached. All groups bounced between Step 1 and Step 2 at the beginning, so the 

initial wave of rapid button pushing was not comprised entirely of indiscriminate button-

pressing as first thought; it alternated between random pressing, button interpretation, and 

deliberate pressing.  A close inspection of the raw data shows that students were using their 

understanding of a few buttons to determine understandings of others.  Used repeatedly, this 

cycle allowed students to expand their understanding to additional Introbuttons.  A combination 

commonly used by students was clicking ca then crt to reset the screen and create new turtles.  

Here are more examples: 
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 In the third minute (2:01), Group 4 used the fd 5 button to confirm that the pd button 

drew lines. 

 In the fourth minute (3:52), Group 5 used the fd 5 button to experiment with the rt 10 

and lt 5 buttons.  By alternating between the forward and turn buttons, this group 

confirmed that rt 10 and lt 5 caused the turtle to turn right 10 degrees and left 5 degrees 

respectively. 

Some groups also returned to Step 1 or Step 2 after progressing to Step 4 or 5.  For example: 

 In the tenth minute (9:00), Group 3 typed their first custom code (“crt 200”) and used 

the fd 5 and fd -5 buttons to see if in fact two-hundred turtles had been created. 

 In the thirteenth minute (12:59), after imitating code from the caption box, Group 6 

clicked some additional buttons to generate additional code to imitate. 

Vygotsky claims that children learn to act with an object before they become consciously aware 

of it, but once conscious awareness is achieved, it leads to voluntary action (Vygotsky, 1987).  

In this context, the progression outlined in Table 1 could be interpreted as a progression in 

awareness: 

 Students are able to use the Introbuttons (Step 1) before they are consciously aware of 

their meaning (Step 2).  Conscious awareness of the Introbuttons leads to voluntary 

action using the Introbuttons.  

 Students are able to use the button meanings (Step 2) before they are consciously aware 

of the source code (Step 3 and Step 4).  Conscious awareness of the run code button 

and source code leads to voluntary action using the run code button and source code. 

 Students are able to use the run code button (Step 3) and imitate source code (Step 4) 

before they are consciously aware of the source code syntax (Step 5).  Conscious 

awareness of the source code syntax, leads to voluntary action using the source code 

syntax. 

If the students were able to achieve voluntary action, and thus conscious awareness, how did 

this happen?  And how did it happen so quickly without direct instruction?  Although it seems 

clear that the concrete nature of the Introbuttons placed students on the spontaneous path of 

conceptual development, the Introbuttons also appear to also provide scientific instruction by 

displaying source code in the caption box above the run code button.  If that instruction lay 

within the students’ ZPD, it might explain how the students were able to learn the source code.  
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Combined with the immediate and consistent nature of feedback in the microworld 

environment, this scaffolding resulted in very quick learning. 

 Final theory development.  Vygotsky’s own ambiguity in defining ZPD makes it hard to 

confirm its boundaries in this experiment.  However, Vygotsky also theorized that conscious 

awareness of concepts (generality) could develop as a child uses a native language to mediate 

meaning in a foreign language (Vygotsky, 1987).  If the source code is treated as a foreign 

language, perhaps the student dialogue could be used to confirm the effectiveness of the 

scientific instruction provided by the Introbuttons activity.   
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Table 2: Indications of Conscious Awareness 

Dialogue LOGO terms 

referenced 

Generality 

expressed 

David:  Those, ah.  Those... “crt” creates a turtle.  “crt 1” creates one turtle.  “crt 100” 

creates a hundred turtles 

Rachel:   This is like movements.  Forward five.  Back five.  (Compares <fd -5> and <bk 

5>) Looks like there are two back five buttons.  Whatever. 

“fd”, 

“bk” 

“movements” 

Keon:  Oh, so you can change their color? 

Shawn:  Yeah. 

Keon:  How so? 

Shawn:  You type in, ok, like here it says ask turtles bracket set color pink.  You can go, 

ask turtles bracket set color, let’s try red. 

“ask turtles [set 

color pink]” 

Syntax,  

Procedure, 

Parameter 

Zuriel: Oooh (creates a few turtles and experiments with fd, rt, and lt buttons) 

Zuriel: Oh okay, I see.  That’s right turn by 10 degrees.  Left turn by 5.  Random turn 

anywhere between 60 and 30. 

“rt”, 

“lt” 

“turn” 

Zuriel:  I figured out the backgrounds. 

Teacher:  Oh really? 

Zuriel:  So, ask patches.  Patches is the background, like the background scheme.  And 

then, pxcor mod equals... four.  Four is divided into sections, you could say.  So 

this section here, there’s red, blue, white, green is one section of four.  And then 

you can go in.  Four equals what you are selecting.  Zero is the first one. Three is 

the last one.  So you are selecting each bar within that given section and you can 

set the color to whatever…  So you can go in and give it this. 

“pxcor”, 

“mod” 

“background 

scheme” 

Afraz:   Ok, so I guess it’s not separated by commas.  It’s just strictly… 

Mitchell:  Ok so when it comes to the coding, all it is is like, ask turtle and then you type 

whatever it says on the button.  Or if it’s the top ones, you just type in ca or crt 1 

or crt 2… or 100.   

Afraz:  Uh huh. 

Mitchell:  Which I’m kind of wondering, like, if you type in crt 2 will it create two turtles? 

Afraz:  What did you say?  We can try that. 

Mitchell:  Type in crt space two. 

Mitchell:   It created two? 

Afraz:  Yeah, it did. 

Mitchell:  Oh, ok.  So we don’t even need to use those buttons.  We can put in any 

information that we want. 

Afraz:  crt one thousand.  Haha! (types “crt 99999” and watches computer freeze) 

Mitchell:  Oh God. 

“crt 1”, 

“crt 100”, 

“crt 2”, 

“crt 99999” 

Syntax, 

Procedure, 

Parameter 

 

Table 2 contains evidence of conscious awareness from the experiment.  Notice that these 

students did more than translate the source code into English; they translated the source code 

into concepts and created a super-concept, or generality, that includes them.  For example, in 
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the first example, fd and bk, were not just translated as forward and backward respectively, they 

were further categorized into movements, a generality that includes both forward and backward. 

Although it is likely these generalities were already formed in the students’ minds, using these 

existing generalities to mediate a relationship with LOGO causes the following to happen: 

1. The meaning of the concept is torn from its immediate connection in the native 

language (Vygotsky, 1987) 

2. Spontaneous concepts acquire new relationships with scientific concepts (Vygotsky, 

1987) 

3. The student develops a new relationship with the concept (Vygotsky, 1987). 

In other words, this mediation causes the student to gain a deeper understanding of the concept 

or generality.  This fits particularly well with Papert’s suggestion that children struggling to 

resolve conflicts in intuition need an intermediate to help them gain a better understanding of 

themselves and with the concept (Papert, 1980). 

 

Table 3: Potential Evidence for Embedded Complementarity 

Introbutton Generality Relationship 

fd 5 

bk 5 

“movements” Group 3 used the Introbuttons fd 5, fd -5, and bk 5 (agent-based) to develop a 

generality of turtle movements (aggregate).  Aggregate informed by agent-based 

reasoning? 

ask turtles 

bracket set color 

pink 

Syntax,  

Procedure,  

Parameter 

Group 4 used the ask turtles [set color pink] Introbutton (agent-based) to develop 

a generality of syntax, procedure, and parameter (aggregate).  Aggregate informed 

by agent-based reasoning? 

rt 10 

lt 5 

“turn” Group 5 used the Introbuttons rt 10 and lt 5 (agent-based) to develop the generality 

of turns in NetLogo (aggregate).  Aggregate informed by agent-based reasoning? 

ask patches [if 

pxcor mod 2 = 0 

[set pcolor 

green]] 

“background scheme” Group 5 used the ask patches [if pxcor mod 2 = 0 [set pcolor green]] Introbutton 

(agent-based) to develop the generality of a background scheme in NetLogo 

(aggregate).  Aggregate informed by agent-based reasoning? 

crt 1 

crt 100 

Syntax, 

Procedure, 

Parameter 

Group 6 used the crt  1 and crt 100 buttons (agent-based) to develop a generality 

of syntax, procedure, and parameter (aggregate).  Aggregate informed by agent-

based reasoning? 

 

 Are the examples of generality actually agent-informed aggregate reasoning (Stroup & 

Wilensky, 2014)?  In order for this to be true, we also need evidence of agent-based reasoning.  

Table 3 shows what happens when the “LOGO terms” in Table 2 are reverted to their respective 

Introbuttons.  By treating these “terms” as concrete buttons, the agent-based component of 
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embedded complementarity materializes and completes the coupling.  Additionally, the tacit 

nature of the students’ concept development observed between Steps (Table 1) could be 

explained as the “embedded” component of embedded complementarity.  Not enough data was 

collected to explain why embedded complementarity did not materialize in every group.  The 

remaining groups displayed behavior that arguably qualified (for example, Groups 1 and 2 used 

the fd 5 and bk 5 buttons to determine the boundary behavior in NetLogo), but did not employ 

the precise language found in the other examples.  An exit interview would have been useful in 

extracting this data, but we did not have the foresight to ask the necessary questions.  In a true 

implementation of grounded theory, another experiment would be modified and conducted at 

this point to confirm our observations. 
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Chapter 5 - Conclusion 

 Because the research question posed at the end of the literature review is multifaceted, I will 

first address the core of the question and add “layers” until the entire question is addressed. 

 Can students in a high school class use the Introbuttons microworld and aspects of the 

Introbuttons activity sequence as a scaffolding environment to support an open-ended 

introduction to programming?  Although the limited scope of this study makes it hard to 

make conclusive claims, the explicit generality produced by four of the five groups within the 

first few minutes is encouraging.  Although not all groups produced evidence of generality in 

this experiment, it is not clear whether this is due to a limitation of microworlds as a whole, the 

Introbuttons microworld/activity specifically, the limits of the students’ ZPD (Vygotsky, 1987), 

or the experiment’s scope and/or data resolution.  A follow-up experiment that extends the 

experiment time and tracks keystrokes and button presses automatically would be helpful in 

providing more insight.  Nevertheless, all groups, even those that struggled initially, were able 

to increase their input size by typing working source code within the first few minutes without 

direct instruction.  Even imitation (Vygotsky, 1987) of existing source code would indicate 

potential for development.  Spontaneous learning in a microworld can provide a compelling and 

productive alternative to the routinized approaches to introducing aspects of programming that 

arguably, have limited the trajectory for the implementation of programming in schools (Papert, 

1980).  As such, it might well begin to provide a credible way to achieve the objectives of the 

Cyberlearning initiative (National Science Foundation, 2011). 

 The inherent time limitation of the experiment also makes it difficult to gauge the 

effectiveness of the Introbuttons microworld over the course of a full school year.  It is not 

known, for example, whether the progress shown by the students would have continued at the 

same pace after the allotted time.  Vygotsky’s framework of ZPD suggests that the pace of 

spontaneous learning will slow as the students face ideas that grow increasingly abstract and 

complex.  However, if embedded complementarity is also in play (and the sequencing and 

generality coding show that it might), the results are too difficult to predict using this study 

alone.  Again, a longer study would be necessary to project its effectiveness in a year-long class. 

Implications for a general classroom using microworlds: 

 What teacher training is required? 

 How should teachers assess students? 
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 What are the teacher’s roles and responsibilities in a managing a microworld? 

 What should the prerequisites be for the class? 

 What should a modern microworld look like?  LOGO was built on 1970s technology.  

Surely a microworld built on today’s technology would be very different given the 

technological advances in computing and networking. 

 

 As their initial engagement with programming (the first few minutes), can students in a 

high school class use the Introbuttons microworld and aspects of the Introbuttons activity 

sequence as a scaffolding environment to support an open-ended introduction to 

programming?  Although none of the students had prior experience with the Introbuttons 

microworld or NetLogo, not enough data was collected to know each student’s overall 

programming experience.  It would be interesting to conduct the experiment again with prior 

knowledge of each student’s course history.  Although programming-as-a-foreign-language 

legislation is gaining momentum, neither its successful passing nor successful implementation is 

guaranteed.  Therefore, some teachers who want to integrate computer science into their 

curriculum will not be able to depend on prerequisite knowledge of programming.  

Implications for teachers of first-time programmers: 

 Would a microworld learning environment supplement or eliminate traditional 

routinized methods of teaching computer science? 

 What type of teacher is needed? 

 

 As their initial engagement with programming (the first few minutes), can students in 

a high school physics class use the Introbuttons microworld and aspects of the 

Introbuttons activity sequence as a scaffolding environment to support an open-ended 

introduction to programming?  In addition to all the aforementioned conclusions and 

considerations, a physics-specific implementation of a microworld has the added component of 

culture clash.  Although this is starting to change, standardized physics tests (e.g., Advanced 

Placement, district exams and finals) conform to standards that have a lineage in traditional 

physics teaching.  This means a heavy emphasis on formulas and numerical calculation and 

virtually zero emphasis on computer modeling/programming.  While a microworld may help 

students connect to the “powerful ideas” of physics, it may not prepare them as well for the tests 

as they are currently written.  Will teachers be willing to risk this potential trade-off?  
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Implications for physics teachers: 

 Neither Introbuttons nor NetLogo is designed specifically for physics, so it would need 

to be adapted.  What would the physics version of the Introbuttons activity look like?  

Could a physics-specific item from the models library be modified to work as 

effectively?  What are the generalities and powerful ideas in physics and could a 

microworld let students discover them?  Given that the real world is culture-rich in 

physics, would a physics-specific microworld need “introbuttons”?  Or could it be used 

to augment the student’s physical interaction with the real world?   

 If physics was taught using computer science, the Introbuttons activity could be used to 

help students achieve computer science literacy as a first step.  How long would that 

take?  And will spending time to teach computer science on the front-end pay-off in 

over a year-long class? 

 What are the downstream effects for students taking a microworld-based physics class?  

Will it prepare students for a college physics class with traditional values on formulas 

and numerical calculation? 

 What kind of physics teacher is required?  Will traditional physics teachers be able to 

make the transition without falling into old habits?  



27 

 

Chapter 6:  Applications to Practice 

 It is impossible for me to discuss how the UTeach Summer Masters (MASEE) influenced 

my development as a teacher without also discussing the Engineering Summer Institute for 

Teachers (ESIT), and Engineer Your World (EYW).  I had the privilege of participating in all 

three and have always considered each as a different member of the same family.  All were run 

by UTeachEngineering and all were funded by the same NSF grant. 

 Although I am a heavy participant of UTeachEngineering now, I never planned on 

becoming a teacher.  After earning my Bachelors of Science in Mechanical Engineering from 

The University of Texas at Austin, I went into business consulting, where I experienced culture 

shock.  My peers were much more diverse than my engineering classmates and I found it hard 

to communicate ideas.  In engineering school, everyone seemed to speak the same form of 

engineering English, but that was not the case anymore.  I finally learned how to communicate 

with non-engineers, but it was a long, hard road for me.  I also found that my colleagues scoffed 

when I presented engineering ideas that I considered commonplace.  It seemed that even my 

ideas were indigestible to my new peers.  I probably would have made a terrible engineering 

teacher at that time. 

 

 

Figure 8: Vygotsky’s Development Framework Applied to UTeach 

 

 My years of consulting had helped me realize that I needed to rethink how to present 

engineering ideas to non-engineers, but it did not show me how.  Having recently become a 

teacher, I needed help.  This is where UTeachEngineering came into the picture.  Perhaps 
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because this research report is still fresh in my mind, I believe UTeachEngineering was so 

effective because it provided me with both Spontaneous and Scientific teacher development (see 

Figure 9). 

 The EYW provided the Everyday development by giving me concrete experience.  The two 

most important tangibles were the recently minted UTeachEngineering Engineering Design 

Process (EDP) and project-based learning.  The former became a critical anchor in my 

classroom because it encapsulated engineering into a friendly illustration.  In my three years of 

teaching EYW, I found that students had broad misconceptions about engineering.  Some 

thought it was construction.  Others thought it was gadgeteering.  In these situations, I could 

always point to the EDP.  The latter provided my students with meaningful context to explore 

the EDP and develop engineering habits of mind organically.   My high school is academically 

competitive with a culture that punishes failure.  In this context, the clichés about failure are 

meaningless.  Engineering projects not only gave my students safe opportunities to experience 

failure, it showed them how to use failure to learn.  While my students were getting hands-one 

experience with engineering, I was getting hands-on experience with teaching engineering.   

 As I taught EYW, my understanding of project-based learning started to grow, but hands-on 

experience alone was not enough.  At the time, project-based learning was a hot topic, and lots 

of teachers either wanted to get started or claimed they were already doing it.  From my 

perspective, some projects that I experienced outside of EYW did not seem right, but I could not 

explain why.  Although I had a vague ability to identify great projects from those that were 

meaningless, I had no conscious awareness of what made certain projects better than others.  

This is where MASEE came in: it provided the Scientific development. 

 Using theory and history, MASEE gave me a conscious awareness of EYW’s design.  

Reading and discussing Sadler and Vygotsky have helped me understand why we encourage 

engineers to prototype.  Reading and discussing Walkington helped me explain why we reflect 

forward and backwards in our engineering notebooks.  Reading How People Learn empowered 

me to discuss the differences between experts and novices with my students.  MASEE also 

helped me find answers to a lot of questions that I had collected over the years.  Reading and 

discussing the history of our educational system helped me understand why our schools are the 

way they are and that some of the “new” ideas in education are not really new.  Reading Papert 

and Hatano helped me understand why students struggle with physics and math. Many of those 

questions were the genesis of this Masters report. 
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 Dr. Stroup says that literacy is empowerment.  It is more than being able to understand; it is 

“being able to do what you want to do”.  As I simultaneously taught EYW and pursued my 

Masters, I felt more literate in engineering.  It was more than just comfort or familiarity with the 

curriculum; it was the ability to extend the curriculum to meet my students’ capabilities and 

keep within the spirit of the original.  It started in small ways, like having unplanned discussions 

about patent protection.  As I grew more literate, my extensions became larger (like adding 

subsystems).  This past year, I was able to help my students send their aerial imaging high 

enough to see the curvature of the earth.  Although the project materialized very differently than 

originally prescribed, I made sure all the major components of the original stayed intact: sub-

systems, Pugh chart, C-Sketching, flight plan, and of course the EDP.  I even pulled in some 

reverse engineering because it was appropriate for our situation. 

 My adaptive expertise of teaching engineering also allowed me to extend engineering into 

my physics classroom.  Although it is hard to find engineering projects that encompass the full 

spectrum of physics TEKS, I have found opportunities to pull small threads of engineering and 

weave them into my physics class.  For example, when my students were building musical 

instruments to learn waves, I asked students to brainstorm using a C-Sketch.  The activity 

allowed me to briefly discuss the reasons it is better than individual brainstorming.  Although 

my individual efforts pale in comparison to the coherence the UTeachEngineering team has 

achieved with the EYW curriculum, my training has allowed me to add engineering components 

discriminately and responsibly.  Although I think that some exposure to engineering is better 

than none, adding engineering components haphazardly does the students no favors. 

 Next year, I will be building a curriculum for a new STEM academy and I know nothing 

about my situation except that I am representing 12th grade science.  It is an exciting 

opportunity, but I would not have felt prepared to walk into such an uncertain situation without 

all the training and development from UTeachEngineering.  EYW and ESIT have given me 

concrete experience with STEM and MASEE has given me an understanding of the educational 

theory to make STEM effective.  This means, as I plan for next year with my fellow 12th grade 

teachers, I can speak from both experience and from theory.  I will be able to intelligently 

discuss the practicality and effectiveness of ideas.  I will be able to distinguish powerful 

learning techniques from fads.  I will know how to integrate engineering components to develop 

engineering habits of mind.  I know that I will not have all the answers, but now I know where 



30 

 

to start my research and I have a community of teachers and researchers to ask.  Even four years 

ago, I neither had the capability nor the resources to do any of this. 
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Appendix 1 – Data Coded for Input Complexity 

Coded data for Group 1 

 

 

Coded data for Group 2 
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Coded data for Group 3 

 

 

Coded data for Group 4 
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Coded data for Group 5 

 

 

Coded data for Group 6 
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Appendix 2 – Raw Data 

Group 1 raw data 

Clicks buttons 

[7:00] 

Teacher: What are some things that you notice? 

[8:00] 

Copies text from the caption box and pastes it into command center 

[9:00] 

Steve: If I did a thousand? 

Cole: Inaudible 

Steve: I wanna do a thousand 

Cole: That’s massive.  It’s like an army. 

Steve: I’m setting up my troops 

Madison: Is there a button for a thousand? 

Steve: No, there’s only one for a hundred.  You have to just… you have to go into observer and type it in 

yourself. 

Cole: What did you put in? 

[10:00] 

Steve: What?  I put in a thousand.  I’m going to clear it. (presses ca) 

Steve: C R T ten thousand…  Oh man! 

Cole: I think its too complicated for the program to just… 

Steve: Hahaha 

Cole: 3-D? (switches to 3-D view) 

Cole: It’s completely full 

[11:00] 

 

 

 

Group 2 raw data Code 

[0:17] Mark: What do the “fd”s stand for? 

Katie: I don’t know.  Try those cr 1. 

Mark: Wait.  Which one?  crt 1? 

Katie: Yeah 

[CR clicks the crt 1 button] 

Illiteracy 

Unsure 

What does that do? 

 

Meaningless clicking 
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Group 2 raw data Code 

Katie: Whoa! 

[0:25] Mark: Do the 100 

[CR clicks the crt 100 button] 

Katie: That’s a big one. 

[0:31] (CR clicks the bk 5 button several times to create moving 

concentric circles) 

Katie: Whoa.  Whoa.  Whoa! 

Mark: I don’t know what that does though. //refering to the bk 5 button 

[1:12] Mark: What does that button do? 

[presses ht button and turtles disappear] 

Katie: What does that do?  Whoa! 

[pans window looking for turtles] 

Mark: There’s a 3D button.  Hang on. 

[1:19] (creates 100 new turtles.  presses bk 5 and fd -5 several times to 

reverse the turtles, making the circle larger.  Then clicks fd 5 and 

the turtles move forward, making the turtle smaller… until the 

circle collapses and the circle grows larger) 

Mark: fd 5 makes it go smaller.   

[clicks fd5] 

Mark: Ok… 

[1:31] (presses bk 5 multiple times and the same thing happens except the 

turtles move in opposite directions.) 

Katie: They all do that //intuition is wrong 

[clicks 3D View button] 

[1:45] Mark: What did that do?  I don’t think I did the right one. 

[rotates the 3D view] 

Katie: Whoa!  Cool!  That is cool! 

Mark: I don’t think I did that right. 

Teacher: No… There’s no right or wrong. 

Mark: There’s no right or wrong?  Ok... 

Teacher: At this point, you’re just playing around.  How did you do that? 

Mark: There was a button called 3D view… 

Teacher: Cool.  That is pretty cool. 

 

Tries more buttons 

 

 

 

Illiteracy 

Unsure 

What does that do? 

 

 

Changes perspective 

 

Tests intuition 

 

 

 

 

Intuition is wrong 

 

 

Changes perspective 

 

Unsure 

 

 

 

 

 

 

 

 

 

Unsure 
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Group 2 raw data Code 

[keeps playing with 3D view] 

Mark: How do I go back?  Ok 

[2:31] Mark: So now random… what does that do? 

[clicks ask turtles [set pcolor pink] 

Mark: Does it change in 3D? 

Mark: So the dots are above the pink 

Mark: No, no, no.  This one bad. 

[3:02] 

[clicks rt 10] 

Mark: That’s rotate 

// How? 

 

[clicks lt 5] 

[clicks rt (random 60 - 30)] 

Mark: That’s random 

[clicks fd random 5 repeatedly] 

Katie: Whoa!  Randomizes it. 

[3:19 clicks run code button] 

Katie: Halt? 

Mark: What user code? 

(Types “fd random 25”) 

Mark: Did that do anything? 

(3:40 Tries it again) 

(4:17 Tries it again: ask turtles [set pcolor green]) 

Mark: I don’t know what that did, but it did something 

Katie: Yeah 

[5:24] 

Mark: Wanna try? 

Katie: Sure. 

Katie: What’s that? 

Mark: I think that’s the fds 

Katie: Oh, what’s that?  Whoa! 

Katie: I dunno 

Changes perspective to test 

intuition 

 

Confirms intuition 

 

 

Verbalizes code 
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Group 2 raw data Code 

Mark: Try and clear 

Katie: Oh, wait.  It’s within the box.  It stays in the box and it continues to 

spread out. 

 

 

 

Group 3 raw data Code 

// Clicks buttons that teacher introduces 

[0:18] Clicks run code button; ignores 

 

[1:04] David: What does “fd random” do? 

Teacher: fd? Play around with it and see what it does. 

David: Ok. 

[1:07] [Clicked the “run code” button]  

[1:07] David: Do I need to type anything in the “user input code”? 

// Ignores run code button 

 

Teacher: No. We’ll talk about it in a little bit.  Just play around with it 

right now. 

David: Ah, ok 

[1:50] David: We’re just hitting every single button 

Rachel: That’s how you do it 

// repeatedly clicks [repeat 4 [fd 5 rt 90] 

Rachel: They’re all centered around the middle. 

David: I know. 

// clicks all buttons.  Buttons allow for small delay time and consequently 

short cycle time  

//clicks myproc01 and myproc02 

//repeatedly clicks crt 100 

Rachel: Gonna create more turtles 

[2:50] David: Wanna try it? 

Rachel: Sure. 

[3:00 switched users] 

Awareness fd random 

 

 

How does the ZPD change? 

 

 

 

 

 

 

Illiteracy all buttons 

 

Mediating crt 

 

 

 

Awareness fd and bk 

 

 

 

 

 

Illiteracy 

 

Volition fd 
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Group 3 raw data Code 

[3:16]// clicks “run code” button and ignores 

David: I think you have to… 

Rachel: Yeah… What did he say to start it? 

David: Those, ah.  Those... “crt” creates a turtle.  “crt 1” creates one 

turtle.  “crt 100” creates a hundred turtles 

[3:31] Rachel: This is like movements.  Forward five.  Back 

five.  [Compares <fd -5> and <bk 5>] Looks like there are two 

back five buttons.  Whatever. 

// How? 

 

Rachel: [plays around with window size] 

Rachel: I think I broke it 

//What did BL do at 5:08?  Caption box came up?  Types info in caption 

box but seems to get an error message 

[5:50] Rachel: So it has collision along the edges 

[6:05] It just makes the area pink underneath. 

[6:00] David: See where it says “continuous” next to settings?  What does 

that do? 

//changes settings and turtles change edge behavior 

Rachel: [Pulls down menu] On ticks.  I don’t know. [creates 100 turtles 

and clicks the fd 5 button continuously] 

 //how did he know to do that? 

David: Oh.  That’s sick. 

Rachel: Yeah, after it goes off the edge they don’t go back. 

David: Yeah, yeah, yeah. 

// How? 

//I should have had students talk to each other about what they are noticing 

so far 

BL noticed that you can replicate the button actions by typing in the code. 

// How? 

// Clicks run code button and types test code.  I think he copies something 

from the caption box. 

[6:44] Rachel: So pretty much you just type that and then it does it. 

 

Literacy crt and fd 

 

 

 

 

 

 

 

 

 

 

Literacy  
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Group 3 raw data Code 

[6:57] Rachel: Kinda basic but kinda cool though. 

[8:50] [BL tries to create 200 turtles by typing the source code rather than 

using buttons] 

 

// How? 

 

[9:30] Rachel: Let’s try to crash it. 

[9:55] David: I wonder what would happen if you tried to make a million. 

// how would i document the progress happening here? 

Rachel: I think the computer would die 

David: Literally put as many zeros as you can 

Rachel: Does it do half turtles? 

[15:03] I can remake it 

[19:xx] make procedures 

 

 

Group 4 raw data Codes 

[Clicks buttons] 

Keon: Huh 

Shawn: And there’s… 

Keon: This is underwhelming 

[screen turns orange and then pattered]  

Shawn: Ooh, that’s an interesting color scheme.  That’s very interesting. 

[hides turtle] 

Shawn: Hmm. 

Keon: Move forward and backward 

// How? 

 

Shawn: Where did it go?  Oh there it is. 

[mouses over code] 

[creates more turtles and moves them] 

Shawn: Ooh. 

[1:00] 

Clicks meaninglessly 

 

 

Underwhelming 

 

Interesting 

 

What happened? 

 

 

 

Explains result 
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Group 4 raw data Codes 

Keon: They’re all moving in different directions 

Shawn: That’s interesting. 

Keon: [inaudible] 

[repeatedly clicks crt 100 and then bk 5] 

Shawn: You just made a bunch of them.  That’s interesting.  That’s a lot of 

turtles.  Oh my gosh.  This is actually kinda fun.  It’s like you’re 

making digital artwork.  I’m definitely doing this after you 

[inaudible]. 

[2:00] 

Shawn: They’re just making a bunch of lines.  This is really cool. 

Keon: Yeah.  That’s what pen down does.  It let’s you draw lines. 

Shawn: That’s cool.  What does the pu do? 

Keon: pu?  Let’s see. 

Shawn: Yeah. 

Keon: Oh yeah, it’s pen up and pen down. 

Shawn: Let’s see what that does. 

Keon: No pen down makes them draw and pen up… 

Shawn: Oh, gets rid of that? 

Keon: Yeah. 

Shawn: Wait, what about the… okay ht when you did that gets rid of one 

of them, but what happens when…  

[creates a burst pattern using crt, pd and bk] 

Shawn: Oh cool!  It’s like a little fireworks show.  And then some. 

[clears] 

Shawn: Ok, what does st do? 

[3:00] 

[clicks the turn buttons] 

Keon: Random… 

Shawn: Oh cool! 

[clicks rt(random 60-30)] 

Keon: This makes them rotate... 

Shawn: Rotate them just a little bit. 

[clicks ask turtles set pcolor pink] 

Explains result 

Fun 

Artwork 

Desire 

 

 

 

Explains result 

Explains button 

Experiments with a button 

Confirms button 

 

 

Clarifies button function 

 

 

Personifies the image 

 

 

 

 

Experiments with a button 

Explains result 

 

Experiments with a button 

Explains result 
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Group 4 raw data Codes 

Shawn: Oh that makes… puts paint on them for no reason. 

[4:00] 

[creates lots of turtles] 

Shawn: That’s a crap ton of them.  Oh,  

that’s… 

[4:20] 

[creates lots of turtles] 

Shawn: Oh gosh... 

Teacher: You’re creating a bunch of turtles? 

Shawn: Yeah, we’re creating a crap ton of turtles. 

Teacher: What’s happening there?  Oh, it’s just taking so long to create...? 

Keon: Yeah. 

Shawn: That’s pretty cool.  It’s like a cool… 3-D art almost.   

[5:00] 

Shawn: Oh, there’s actually a 3-D! 

[Opens 3-D view] 

Shawn: Oh wow, that’s so cool!  That’s 3-D… 

[creates a bunch of turtles and fd random] 

Keon: [inaudible] 

Shawn: That does.  It looks more like an actual firework almost.  It’s like a 

colorful firework with like multiple colors going on. 

[6:00] 

Keon: These turtles are above the line. 

Shawn: Yeah.  That’s actually pretty cool.  It’s like the turtles are three-

dimensional. 

Teacher: What are some things you are noticing so far? 

Shawn: That you can make awesome random colorful drawings.  What 

does st do? 

[Creates lots of turtles and draws lines] 

Shawn: Lots of turtles.  Turtles everywhere!   

[7:00] 

Shawn: Turtles are our friends.  Like a rainbow spiderweb. 

[7:20 clicks the run code button and starts typing, “bk 5]] 

 

 

 

 

 

Personifies image 

 

 

 

 

 

 

 

Personifies image 

 

Changes perspective and 

confirms guess 

 

Awesome 

Random 

Colorful 

 

 

Personifies image 

 

 

 

Aware of code 

 

Replicates button code 

 

Debugs code 

Types custom code by 
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Group 4 raw data Codes 

[gets error message] 

Keon: Apparently that is not right. 

Shawn: It’s the code that’s like here [points to screen] 

Keon: But there’s a space [inaudible] 

[types more code]  //I think it was rt 90, which is not a button. 

Keon: So that makes it turn 90 degrees. 

Shawn: Oh cool! 

// How? 

 

[8:50 switch] 

[Types crt 100] 

Teacher: I see JV typing in stuff.  Start typing in code. 

[Types custom code and gets an error] 

Shawn: Ok, there is extra stuff with it. 

Keon: Ask turtle 

Shawn: Oh, ask turtle, okay 

// How? 

 

[Types custom code and gets an error] 

Shawn: What’s… what’s? 

Keon: You have to… 

Shawn: I’m typing... 

[Types custom code and gets an error] 

[Types custom code and nothing seems to happen] 

[Types custom code and gets desired result] 

[11:30 Types custom code and gets desired result] 

[Types custom code and gets desired result] 

Types code several more times 

Shawn: Ah yeah.  That’s what I’m talking about. 

Keon: Oh, so you can change their color? 

Shawn: Yeah. 

Keon: How so? 

Shawn: You type in, ok, like here it says ask turtles bracket set color 

changing 

parameters 

Code works 

Teacher prompt, but this 

group already 

started coding 

 

Aware of syntax 

 

 

Corrects syntax 

 

 

 

 

 

Literacy 

 

 

 

 

 

 

 

Corrects syntax 

 

 

 

 

 

 

 

Changes parameters 
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Group 4 raw data Codes 

pink.  You can go, ask turtles bracket set color, let’s try red. 

[turtle color changes] 

Keon: Hmm.  It says pcolor right here.  Now, it says set pcolor.  And that 

was the one that put it on the background. 

[Starts to type new code but forgets to type “ask turtles”] 

Keon: You have to ask turtles 

Shawn: You always have to ask turtles. 

Keon: pcolor puts it in the background.  Yeah.  Puts it in the background. 

Shawn: Let’s try green. 

[changes background color to green] 

Keon: Yeah, puts it in the background. 

[Types more custom code] 

Keon: Why are you having them go backwards? 

Shawn: I dunno. 

[15:00] 

Shawn: I kinda wanna still keep doing this.  This is fun. 

 

 

Corrects syntax 

 

Group 5 raw data Codes 

[0:00] 

[clicks the buttons identified by teacher] 

[starts to move down the panel] 

[1:00] 

Teacher: How did you do that? 

[2:00] 

[clicks crt 100 repeatedly] 

Zuriel: You’re making a lot of turtles 

[2:46] 

day 1.2 

[creates a few turtles then experiments with other buttons] 

[3:00] 

[clicks repeat 4] 

Zuriel: Oooh 
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[creates a few turtles and experiments with fd, rt, and lt buttons] 

Zuriel: Oh okay, I see.  That’s right turn by 10 degrees.  Left turn by 

5.  Random turn anywhere between 60 and 30. 

// How? 

[4:00] 

[creates lots of turtles one at a time] 

[alternates between fd and lt] 

[5:00] 

Zuriel: Look, we’re making circles today. 

Zuriel: Look Mr. Teacher, we’re making circles! 

// How? 

 

Teacher: How did you do that? 

Zuriel: Ah, you create a whole bunch.  Make them go forward 5 pen 

down.  Left turn 5 [inaudible].  Then repeat. 

Teacher: So it looks like they’re going off the screen it looks like? 

Zuriel: What they do is they go down, and where this screen ends it starts 

at the top and it keeps on repeating.   

//when did he first realize this? 

 

Teacher: That’s pretty cool. 

[4:08 clicks run code and ignores] //wait, maybe this was not the first time 

[tries to type in code.  where?  the command center?] 

[5:21] 

Zuriel: Oh, ok.  I got ya. 

[highlights code in the run box] 

[6:45 Copies code into the observer box]  

 

//when did he first do this? 

Teacher: Are you typing in code? 

Zuriel: Yeah, I’m still messing with the same command. 

Zuriel: Give me a color 

Anthony: Red 

Zuriel: Give me another color 

Anthony: Blue 
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Zuriel: Yeah 

Zuriel: Give me another color 

Anthony: White 

One more 

Anthony: Black 

Zuriel: Oh.  Three.  We need to get rid of that one. 

Zuriel: I figured out the backgrounds. 

Teacher: Oh really? 

Zuriel: So, ask patches.  Patches is the background, like the background 

scheme.  And then, pcolor mod equals... four.  Four is divided 

into sections, you could say.  So this section here, there’s red, 

blue, white, green is one section of four.  And then you can go 

in.  Four equals what you are selecting.  Zero is the first one. 

Three is the last one.  So you are selecting each bar within that 

given section and you can set the color to whatever…  So you can 

go in and give it this. 

Teacher: How did you figure that out? 

I did this one right here and noticed that two gives you two options.  And 

then it repeats.  And zero… I assumed zero was the first one.  So 

I went in and physically changed... 

Teacher: So you made some assumptions and then you just experimented 

to confirm your assumptions? 

Zuriel: And then I changed the colors as well. 

Teacher: Which colors are available? 

Zuriel: So far green, black, white, red, blue.  That’s all I’ve played up 

with. 

Teacher: How did you know that? 

Zuriel: I just plugged them in. 

Teacher: Ok.  Wait, you just typed in the colors? 

Zuriel: Yeah.  Down at the pcolor.  Let’s try yellow. 

Anthony: Yellow 

Zuriel: Give me a purple.  Purple has not been defined. 

Anthony: Maybe we only have primaries. 
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Group 6 raw data Code 

[clicks buttons - first three rows - as teacher talks] 

[starts to explore rest of buttons] 

[Makes a burst pattern] 

[Clears and experiments with other buttons] 

Mitchell: That’s kinda cool 

Afraz: Yeah 

Afraz: My arm is going to literally fall off by the time this video is over 

[1:35 Clicks run code button and ignores] 

Mitchell: I don’t know what we are supposed to be doing here.  Wanna 

try? 

Afraz: Yeah. 

1.2 

[0:25 Draws a closed shape using the buttons //literacy 

// Uses buttons like a joystick 

[3:00] 

Do you want to switch?  I don’t know what else I can do. 

[3:03 Switch] 

Mitchell: Is he going to tell us what to do? 

Afraz: I don’t think so.  I think we’re just messing with it right now. 

Mitchell: Do we have a set of instructions? [inaudible] 

Teacher: Right now you’re just playing around with it 

Afraz: Ok. 

Teacher: I just want you to experiment.  And try to make something cool 

looking. 

Teacher: What are some things you are noticing right now? 

[4:50 Clicks run code button and ignores] 

[Adjusts window size] 

[Opens 3-D view and closes it] 

Afraz: That was the 3-D view 

Mitchell: Yeah 

[Opens 3-D view again but it only had one turtle -- nothing to see] 

[5:35 Highlights code] 

[5:50 Copy and pastes custom code.  It works] 
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[6:45 3-D view] 

1.3 

[0:00 Types custom code.  Gets error] 

[2:05 Types crt 1] 

[2:40 Types custom code.  Gets error] 

[2:50 Types crt 1] 

Tries to copy paste big block of code and gets error 

Mitchell: I guess you can’t type them in all at once. 

Afraz: Ok, so I guess it’s not separated by commas.  It’s just strictly… 

(switch) 

Mitchell: Ok so when it comes to the coding, all it is is like, ask turtle and 

then you type whatever it says on the button.  Or if it’s the top 

ones, you just type in ca or crt 1 or crt 2… or 100.   

Afraz: Uh huh. 

Mitchell: Which I’m kind of wondering, like, if you type in crt 2 will it 

create two turtles? 

Afraz: What did you say?  We can try that. 

Mitchell: Type in crt space two. 

Mitchell: It created two? 

Afraz: Yeah, it did. 

Mitchell: Oh, ok.  So we don’t even need to use those buttons.  We can put 

in any information that we want. 

Afraz: crt one thousand.  Haha! 

(types crt 99999) 

Mitchell: Oh God. 

Afraz: That would probably crash it actually.  Yeah, I crashed it. 

Mitchell: Wait. 

Afraz: No.  Hold on. 

Mitchell: Forward.  Oh God. 

Afraz: Oh. 

[laughter] 

Afraz: Maybe I shouldn’t have created 99,999. 

Mitchell: I think we also crashed ours.  We figured we don’t have to input 
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Group 6 raw data Code 

the exact buttons. 

Teacher: So yours crashed?  Oh, it’s still drawing. 

Mitchell: We typed in crt 99999 

Teacher: It looks cool though.  It looks like a ball. 

Afraz: Explosion of colors. 

Teacher: It looks like a dandelion or something. 

Afraz: Or a kaleidoscope. 

Teacher: Or a Death Star? 

Afraz: This is awesome.  What do we do now though?  It’s just going to 

draw all of them. 

Mitchell: We could reopen the program. 
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