Copyright
by
Raymond Edward Lane III
2016

The Thesis Committee for Raymond Edward Lane III
Certifies that this is the approved version of the following thesis:

Modeling and Integration of Steam Accumulators in

Nuclear Steam Supply Systems

APPROVED BY

SUPERVISING COMMITTEE:

Erich Schneider, Supervisor

Sheldon Landsberger

Modeling and Integration of Steam Accumulators in

Nuclear Steam Supply Systems

by

Raymond Edward Lane III, B.S.M.E

THESIS
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN
December 2016

Dedicated to my son Rhys

Acknowledgments

I would like to thank the Nuclear and Radiation Engineering faculty at
the University of Texas at Austin; especially my thesis Supervisor, Dr. Erich
Schneider, whose support and mentorship has driven me to challenge myself
and pursue areas of study that were initially daunting to me. I would also like
to specifically thank Dr. Sheldon Landsberger for championing the distance

learning program and encouraging me to take this journey.

Modeling and Integration of Steam Accumulators in

Nuclear Steam Supply Systems

Raymond Edward Lane III, M.S.E.
The University of Texas at Austin, 2016

Supervisor: Erich Schneider

Nuclear power plants in deregulated markets need to leverage thermal
energy storage to take advantage of peak demand pricing to improve their
profitability in an increasingly competitive landscape. Substantial research
has been conducted to integrate steam accumulators into concentrated solar
power plants and they present a viable solution for the commercial nuclear
fleet. Prior work in this field has concentrated mainly on the installation
of separate turbine-generators to generate electricity from the stored thermal
energy. This work demonstrates that the use of stored thermal energy to
augment feedwater heaters and moisture separator reheaters, in lieu of using
separate electrical generating equipment, can result in sizable increases in elec-
trical power production for a significant period of time provided that a suitably
sized main steam turbine, main generator, and support systems are present.
Additionally, a model was constructed using prior work to reliably demonstrate

the time response of an accumulator to charge and discharge operations.

vi

Table of Contents

Acknowledgments
Abstract

List of Tables

List of Figures

Chapter 1. Introduction

Chapter 2. Literature Review

2.1 Steam Accumulators
2.2 Approximations in Modeling
2.3 Equilibrium versus Non-equilibrium Models
24 Existing Modelso oo
2.4.1 Steinmann and Eck 000

2.4.2 Schnaideretal..

2.4.3 Stevanovicetal.

2.4.3.1 Equilibrium Model

2.4.3.2 Non-equilibrium Model

2.4.3.3 Equilibrium versus Non-equilibrium Prediction
Differences

2.4.3.4 Derivation of Condensation and Evaporation Re-
laxation Times

Chapter 3. Methodology
3.1 Steam Plant Configurations
3.1.1 General Plant Designs
3.1.2 Selection of Plant Design for Analysis

vil

vi

xi

p—

0 00 1 O

11
15
16
19

26

29

30
31
31
34

3.1.3 Integration L. 35

3.1.4 Analyzed Plant Designs 41
3.1.5 Integration Assessment 43
3.1.6 Accumulator Efficiency 44

3.2 Steam Accumulator Model 44
3.2.1 Model Selection 44
3.22 Model Design 46
3.2.2.1 Solution Method 46

3.2.2.2 Accumulator Capacity 48

Chapter 4. Results 50
4.1 Steam Accumulator Model 50
4.1.1 Validation and Verification 50
4.1.2 Charge/Discharge Simulation 50
4.1.2.1 Conservation of Volume 51

4.1.2.2 Pressure 52

4.1.2.3 PhaseMass 53

4.1.2.4 Phase Specific Enthalpy 55

4.1.2.5 Phase Temperature 55

4.2 Steam Plant Integration 56
4.2.1 Recommendation Y
4.2.2 Key Considerations 65

4.2.2.1 Inadvertent Loss of the Steam Accumulator Sys-
tem During Charging or Discharging Operations 65

4.2.2.2 Additional Heat Sink 66
4.2.2.3 Increased Hotwell Capacity 66
Chapter 5. Conclusions 67
Appendices 69

viil

Appendix A. Validation and Verification of the Non-Equilibrium

Steam Accumulator Model 70

A.1 Discussion 70
A2 Results 73
A.2.1 Test Number 1 73
A.2.2 Test Number 2 73

A3 Summary 73

Appendix B. Accumulator Model Time Sensitivity Evaluation 76

Appendix C. MATLAB Code 81
C.1 Steam Accumulator 81
C.1.1 Steam Accumulator Model 81
C.1.2 Validation and Verification Model 113
C.1.3 Steam Accumulator Charge and Discharge Evolutions . 146
C.1.4 Validation and Verification Scripts 148
C.1.4.1 Validation 1 148
C.1.4.2 Validation 2 150
C.2 Steam Plant Heat and Mass Balances 152
C.2.1 Non-regenerative Cycle 152
C.2.2 Regenerative Cycle (Feedwater Heater) 155
C.2.3 Regenerative Cycle (Feedwater Heater and Accumulator
Discharging) 162
C.2.4 Regenerative Cycle (Feedwater Heater and Accumulator
Charging)o 169

C.2.5 Regenerative Cycle (Feedwater Heater and Reheater) . . 177
C.2.6 Regenerative Cycle (Feedwater Heater, Reheater, and Ac-

cumulator Discharging) 186

C.2.7 Regenerative Cycle SFeedwater Heater, Reheater, and Ac-
cumulator Charging) 196
C.2.8 Cycle Evaluation Script 206
C.2.9 Accumulator Discharge Rates versus Pressure 209
Bibliography 212

1X

4.1

List of Tables

Ideal cycle electrical output for analyzed cycles

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7

3.8

3.9

4.1
4.2

4.3

4.4

4.5

4.6
4.7
4.8

List of Figures

Steam accumulator layout 5
Equilibrium versus non-equilibrium model prediction (charging) 27
Equilibrium versus non-equilibrium model prediction (discharg-

INg) . .o 28
Non-regnerative plant layout 31
Regenerative plant layout 33
Non-regenerative plant with steam accumulator layout 35
Regenerative plant with steam accumulator layout 36
Non-regenerative plant design with parameters 40
Regenerative plant design with parameters (feedwater heater) 42
Regenerative plant design with parameters (feedwater heater,

reheater) 43
Accumulator mass flow rate versus accumulator pressure (feed-

water heater, accumulator discharging and charging) 48

Accumulator mass flow rate versus accumulator pressure (feed-
water heater, reheater, accumulator discharging and charging) 49

Accumulator pressure versus time (multiple charge and discharge) 51
Accumulator water level versus time (multiple charge and dis-

charge) 52
Accumulator phase mass versus time (multiple charge and dis-
charge) 53
Accumulator phase specific enthalpy versus time (multiple charge

and discharge)o Lo 54
Accumulator phase temperature versus time (multiple charge

and discharge) Lo 55
Saturation temperature versus pressure 58
Specific enthalpy versus pressure 59

Apparent efficiency versus accumulator pressure (feedwater heater) 60

X1

4.9 Apparent efficiency versus accumulator pressure (feedwater heater

4.10

4.11

4.12

4.13

Al
A2
A3
A4

B.1
B.2
B.3

and reheater)o

Regenerative plant design with parameters (feedwater heater,
accumulator discharging)

Regenerative plant design with parameters (feedwater heater,
accumulator charging) L0

Regenerative plant design with parameters (feedwater heater,
reheater, accumulator discharging)

Regenerative plant design with parameters (feedwater heater,
reheater, accumulator charging)

Pressure versus time for test 1
Pressure versus time for test 1 (Stevanovic et al.)
Pressure versus time for test 2

Pressure versus time for test 2 (Stevanovic et al.)

Volume defect versus time for selected values of time step . . .
Pressure versus time for selected values of time step
Pressure versus time for selected values of time step (detail)

xil

60

61

62

63

64

71
72
74
75

78
78
79

Chapter 1

Introduction

The last five decades have seen numerous changes in the electrical power
supply sector. Plant designs ranging from nuclear, coal, oil-fired, and finally
combined cycle gas stations were constructed. The paradigm enforced within
this framework was development of stations of various sizes and capacities
that provided reliable, affordable, and continuous supply of electricity to the
market. Operation of this controlled market was centrally organized with

electrical grids delivering efficiencies of scale in the use of their resources.

In the last 25 years, the liberalization of the electricity supply market
has resulted in additional changes. These changes were the result of the im-
position of emission controls on new and existing thermal plants, a focus on
the environmental effects of electricity generation, and the setting of national
targets for incorporation of renewable energy into the electricity supply mar-
ket. It is likely that, given additional time, further fundamental changes are
likely to develop due to technological, economic, and political developments.
One such change, fostered mainly by the growth of renewable energy, will be

the development and use of energy storage systems.

Although renewable resources can be reliably depended upon to deliver

a certain amount of energy over a sufficiently long period of time, most are
intermittent and their availability is subject to specific weather conditions.
Consequently, they cannot be reliably depended upon to provide a secure
source of power to the electrical power supply. As the penetration of renewable
energy sources into the market increases, the concern regarding the random
intermittency of the electrical power supply with any degree of security also
increases. Significant research has been done to address this concern with

renewable electrical power sources [1], [4], [6], [14], and [15].

In a deregulated market with substantial renewable penetration, ad-
verse weather conditions could result in large fluctuations in electrical prices.
This opportunity is easily leveraged by combined cycle plants to maximize
their revenue by increasing the power they supply during peak pricing. Nu-
clear power plants, by the nature of their design, lack the flexibility to respond
to short-term swings in electrical pricing. Energy storage systems could im-
prove the competitiveness of nuclear power plants by allowing them to store
the energy they produce during periods when prices are low and discharge
it can be sold at a more advantageous price without varying reactor output

power.

Multiple energy storage solutions have been developed including ther-
mal energy storage, flywheel storage, pumped hydro storage, compressed air
energy storage, hydrogen production, electrochemical energy storage, capaci-
tor bank storage, and superconducting magnetic energy storage [14]. Thermal

energy storage, specifically steam accumulators, have been reliably employed

in fossil-based electrical power production facilities for over 60 years [2] [14].
Steam accumulators could be integrated into new reactor designs to increase
flexibility. The incorporation of steam accumulators into reactor plant designs
introduces new benefits and liabilities. In order to assess these benefits and
vulnerabilities associated with the integration of steam accumulators with re-
actor plant systems, it is necessary to model the thermodynamic behavior of
steam accumulators and their response to various scenarios. This work an-
alyzes the integration of steam accumulators with reactor plant systems and

the potential benefits and liabilities introduced by that integration.

Chapter 2 provides an overview of existing literature, including prior
attempts to thermodynamically model steam accumulators. Chapter 3 pro-
vides the analysis methods used in this study. Chapter 4 presents the results

of the analysis.

Chapter 2

Literature Review

2.1 Steam Accumulators

A steam accumulator is a pressurized vessel filled with water and steam
as shown in Figure 2.1. The steam and water phases in the accumulator are
at saturation conditions. As steam is discharged from the accumulator, pres-
sure in the accumulator decreases. The liquid phase in the accumulator is
now at a temperature greater than saturation temperature for the new lower
pressure. A portion of the liquid phase flashes to steam. The latent heat
of vaporization removed by the phase change from liquid to steam reduces
the liquid phase temperature to saturation temperature for the lower pres-
sure. As steam continues to be drawn off, this process continuously occurs
with water level and pressure decreasing. To recharge the accumulator, steam
is introduced, increasing pressure in the accumulator. As pressure increases,
the temperature of the steam phase is below saturation temperature for the
new higher pressure. A portion of the steam phase condenses to liquid. The
latent heat of vaporization due to the phase change is absorbed by the remain-
ing steam phase, increasing its temperature to saturation temperature at the
higher pressure. As steam continues to be charged to the accumulator, this

process continuously occurs with water level and pressure increasing.

The development of the variable-pressure accumulator for power gen-

eration began in 1913 with a German patent issued to Dr. Johannes Ruth of

Djursholm, Sweden. The larges

t installation that is still in operation today

was constructed in 1929 in Berlin, Germany. The plant operates at 14 bar

pressure, 50MW electric power and 67TMWh storage capacity [14].

~ Steam charging Steam discharging .

2,in

Isolated
pressure vessel

m
A — e Ak
2,in h2.oul

TITTTIIIS

Mo, p, hsa Steam

Liquid

phase

777777777777 |

M1in

— < |
h1,in

Liquid water
charging

Liquid water
discharging

P

v

m1.oul
h1 ,out

Figure 2.1: Steam accumulator layout
Note. Reprinted from ”"Dynamics of steam accumulation” by V. Stevanovic,

B. Maslovaric, and S. Prica, 20
Copyright

Significant research has b

12, Applied Thermal Engineering, 37, p. 75,
2012 by Elsevier, Ltd.

een conducted to accurately model steam ac-

cumulator time response to charging and discharging evolutions as well as

predicting the quantity of water necessary to supply a given steam volume

between the accumulator initial

and final pressures. The prediction supplied

by these models rely on several approximations.

2.2 Approximations in Modeling

Despite the maturity of steam accumulator usage, methods employed
in their thermal design rely heavily on approximations. When predicting the
required steam accumulator volume or the charging and discharging capacity
of steam accumulators, Steinmann and Eck [9] determine the energy of phase
transition removed or added to the liquid phase by using a mean value of the
latent heat, which is itself determined by taking the mean of latent heats at the
initial and final operating pressures of the steam accumulator. Depending on
the initial and final operating pressures, the variation in latent heat of water

is non-linear, resulting in approximate results.

Some models approximate the equations of state for the thermodynamic
properties of the accumulator phases. Steinmann and Eck [9] use the Antoine
correlation, which assumes a temperature independent heat of vaporization,
for the relationship between saturation pressure and temperature and relies
on the Watson correlation for the latent heat of vaporization. Schnaider et al.
[8] use the ideal-gas law for approximating the equations of state for saturated
or near-saturated states. Two main types of models exist, equilibrium and

non-equilibrium.

2.3 Equilibrium versus Non-equilibrium Models

Most existing models rely on a thermal equilibrium between the steam
and liquid phases. Both phases are assumed to have the same pressure and
saturation temperature. Another noteworthy feature of equilibrium models is
that they rely on infinite rates of condensation and evaporation to resolve any

changes in thermodynamic state between the liquid and vapor phases.

The equilibrium model developed by Studovic and Stevanovic [12] and
employed by Stevanovic et al. [10] [11] and Sun et al. [13] calculates the
thermodynamic properties of the steam and vapor phases separately and allows
for different temperatures between the two phases that are in contact. In lieu
of infinite rates of condensation and evaporation, the non-equilibrium model
derives correlations from the Herz-Knudsen equation used in surface chemistry
to describe the sticking of gas molecules on a surface by expressing the time
rate of change of the concentration of molecules on the surface as a function
of the pressure of the gas and other parameters. The correlations from the
Herz-Knudsen equation quantify the values for phase transition surfaces and
the local water to steam interface thermodynamic conditions with a single

empirical constant, the relaxation time.

When compared with each other, the non-equilibrium model appears
to provide more accurate predictions of temperature, pressure, and water level
during accumulator charging and discharging transients [10] [11] [13]. A better
understanding of the model types and their strengths and weaknesses can be

obtained by examining the derivations of the different models in the literature.

2.4 Existing Models

Several steam accumulator models are present in the literature. Some
provide a complete picture of model response over time, others provide only
a few parameters with no time response prediction. Most of the literature
regards the integration of steam accumulators into concentrated solar plants.
An additional area of focus in the literature was the predictive response of
steam catapults used onboard aircraft carriers for for accelerating aircraft to
high speeds over a very short period of time to assist take off. A few models
are valuable for predicting the response of an accumulator in a steam plant

and are discussed in detail below.

2.4.1 Steinmann and Eck

The model developed by Steinmann and Eck [9] is not a complete
model. This model was developed to predict the amount of steam available
for discharge given an initial and final pressure. The model makes several

assumptions:

1. There is no heat transfer between the environment and the fluid volume

inside the pressure vessel.

2. There is no heat transfer between the walls of the pressure vessel and

the fluid volume.

3. The fluid inside the pressure vessel is always in thermal equilibrium.

4. The specific exit enthalpy (heyt) equals the specific enthalpy of saturated

steam (h”) at the pressure of the vessel (Pyessel)-

The model relates the change in internal energy of the liquid water vol-
ume with mass Mmyesser in the pressure vessel with the enthalpy flow transported

by the exiting mass flow dmyessel:

d (mvesseluvessel) - hexitdmvessel (21)

Based on the assumption 4 above:

"
uvesseldmvessel + mvesselduvessel =h dmvessel (22)

Pvessel

Integration of Equation 2.2 approximates the mass of saturated steam

that is provided during discharge of the steam accumulator.

This model also provides a method for quickly estimating the storage
capacity for discharge given a starting pressure (psiart), an end pressure (Pend),

and an initial liquid mass (mjyquia) based on the following assumptions:

1. All of the heat of vaporization is provided by the liquid phase.

2. It is reasonable to use an average specific heat capacity of liquid water

Cliquid, avg determined from an average pressure paye = ”““”Tﬂ’”‘d.

3. It is reasonable to use an average specific heat of vaporization Ahgg ave

determined from an average pressure pay, = z%m.

4. The change in liquid mass (myqua) during discharge is neglected.

Based on these assumptions, the mass of saturated steam (Mggeam) Pro-

vided by accumulator is approximated by:

msteamAhfg, avg — Miliquid Cliquid, avg (,-Tsan:pstart - Tsatpcnd) (23)

As discussed in Section 2.2, this model uses the Antoine equation to
approximate the saturation temperature for a given pressure and the Watson

equation to determine the specific heat of vaporization.

B
T = ——— — 2.4
’ A - lnpsat C ()

where:

Tyt is the saturation temperature, in °C.

Psat 1S the saturation pressure, in bar.

A =11.934
B = 3985
C =234.1
| — T+21315 1\ 0%
647
Ahfg = Ahfg, ref 1— Troi+273.15 (25)
647
where:

10

Ahgg, rer 1s the specific heat of vaporization at a reference temperature, T,

in kJkg™1!.
T is the temperature at which to approximate the specific heat of vaporization,
in °C.

Trer is the reference temperature at which the reference specific heat of vapor-

ization, Ahgg ref, is known, in °C.

Combining Equations 2.3, 2.4, and 2.5 allows for the estimation of the
total mass of saturated steam mgieam, provided when discharging from the

initial pressure, pgart, to the final pressure, peng.

1 1
Miquid Cliquid, avgB (A_lnpstart - A_lnpend)

Mgteam =
B _
| A Tupag C+273.15
Ah 647
fg, ref ~ Tpor+273.15

1 647

2.4.2 Schnaider et al.

The steam accumulator modeled in Schnaider et al. [8] was developed
to predict the response of a steam accumulator in an industrial steam sup-
ply system used in steel manufacturing. This model employs the Clapeyron-
Mendeleev equations to approximate the relationship between steam temper-
ature, pressure, and density (p = pRT') as mentioned in Section 2.2. Pressure

in the accumulator is calculated as follows:

11

Py=— (2.7)
where:

Py is the ambient pressure in the accumulator, in Pa.
R is the specific gas constant, 0.411526 kJ K~ kg1
Ta is the ambient temperature in the accumulator, in K.

ms is the steam mass in the accumulator, in kg.

Vy is the steam volume in the accumulator, in m?.

The Schnaider et al. model is an equilibrium model. Consequently, it
is assumed that the pressure and temperature of the liquid and vapor phases
are the same. The temperature T\ and pressure p, are interrelated due to the
saturated conditions in the accumulator. Temperature Ty can be evaluated as
a function of ps. This relationship could be determined via direct calculation
of thermodynamic properties or approximated using a relationship like the

Antoine equation (Equation 2.4).

Volume of the steam phase, Vj, is calculated by subtracting the volume

of the water phase from the total accumulator volume.

Vo=V, — (2.8)

w

where:

12

Va is the total accumulator volume, in m3.

My 18 the mass of water in the accumulator, in kg.

pw 1s the density of water in the accumulator for a given temperature, Ty, in

kgm™3

my, is evaluated by integrating the three material balance terms shown

above.

e (£) = /0 (Gh (8) — G () + Guy)) dt (2.9)

where:

G, is the mass flow rate of incoming charging steam, in kgs™.

G5 is the mass flow rate of outgoing discharge steam, in kgs™1.

Gy is the feedwater supply, in kgs™!.

The energy balance is determined by integrating the heat transfer terms

associated with the heat flows in and out of the model.

Eal(t) = / Q1 (t) = Qs (1) — Quow (1) + Qs (1)) dt (2.10)

where:

Ea is the heat energy stored in the accumulator, in kJ.

13

@, is the heat rate of the inlet charging steam, in kJs™!.

Q- is the heat rate of the outlet discharge steam, in kJs™1.

Qioss 1s the heat rate due to environmental losses, in kJ s 1.

Qs is the heat rate due to feeding, in kJ s~

The heat rates ()1, ()2, and @) are calculated according to the following

expressions:
Q1 () =G (1) X is (2.11)
Q2 (1) = Ga (t) X is (2.12)
Qs (t) = Gs (t) X g3 (2.13)
where:

is1 is the specific enthalpy of the inlet charging steam, in kJkg=!.
iso is the specific enthalpy of the outlet discharge steam, in kJkg™!.

is3 is the specific enthalpy of the feedwater, in kJ kg

The rate of environmental heat losses, Qoss, 1S calculated as follows:

Qloss = Kn X FA X (TA - Tout) (214)
where:

14

K, is the heat transfer coefficient from the tank surface to the environment,

in kJkg7! K71

F4 is the surface area of the accumulator, in m?.

Tout is the ambient air temperature, in K.

Equations 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, and 2.14 represent a

dynamic, equilibrium based model for steam accumulator response.

2.4.3 Stevanovic et al.

The model developed by Studovic and Stevanovic [12] and employed by
Stevanovic et al. [10] [11] and Sun et al. [13] is one of the most recent models
in the literature. The Stevanovic et al. model is based on a variable-pressure
steam accumulator and is designed to accurately predict response from indus-
trial and power plant accumulators. This model is a non-equilibrium model
that is presented as a tool for the design of steam accumulator volume and

control systems to govern the accumulator charging and discharging transients.

The more recent model documented in the literature by Stevanovic
et al. [11] provides a detailed analysis of the control system and provides
the derivation of an equilibrium based model to allow for a comparison of
equilibrium and non-equilibrium models. The equilibrium model developed by
Stevanovic et al. [11] was developed at a later time that the non-equilibrium

model [10], but is presented first to allow for a more ready identification of the

15

differences in modeling approaches between this equilibrium model, Schnaider

et al. [8], and the non-equilibrium model [10].

2.4.3.1 Equilibrium Model

Recall from Section 2.3 that equilibrium based models assume that the
pressures and saturation temperatures of the liquid and steam phases are the
same and rely on infinite rates of condensation and evaporation to resolve
any differences in thermodynamic properties between the two phases. Balance
equations address the entire accumulator versus the non-equilibrium approach

of addressing each phase independently.

Mass balance

(11—]\5 = My + Map (2.15)
M = M, in + 1, out (2.16)
Mo = My, in + M2, out (2.17)
where:
dM

‘g 1s change in mass of the accumulator, water and steam, with respect to

time, in kgs™!

Energy balance can be described as the following:

dH dp

16

(mh)lB = ml, inhl7 in T ml, outhl, out (219)

(mh>2B = m2, inhQ7 in — m2, outh2, out (220)
where:
%—I;I is change in bulk enthalpy of the accumulator with respect to time, in
kJ st

Thermodynamic properties of the water and steam phases can be in-
ferred using the saturation properties and steam quality. Quality is determined

by the specific volume of the saturated mixture in the accumulator:

(2.21)

where:

x is the steam quality.

v is the specific volume of the saturated mixture in the accumulator, in m3 kg=!.
This value is determined using the total volume of the accumulator and
v

total mass in the accumulator. v = i

v’ is the specific volume of saturated liquid at the current pressure in the

accumulator, in m3kg~!.
"

v” is the specific volume of saturated steam at the current pressure in the

accumulator, in m3kg~!.

17

Given that H = hM, differentiation of total enthalpy results in:

aH dh dAM
a4 9.92
at a (2.22)

The derivative of the specific enthalpy is:

dh (AW dhg\dp . da
_ s) £ 4 p— 2.23
at (dp+xdp)dt+ = g (2.23)

The derivative of quality is:

/) "m0
dz 1w dM_< 1 dv v—2 d(v v))@ (2.24)

— +
v —o' dp (v — U’)Z dpo dt

At~ Mo —v dt
Based on the assumed thermodynamic equilibrium of the phases, v, v"”,

h', and hg are purely functions of pressure. By incorporating Equations 2.22,
2.23, 2.24 into Equation 2.18, the differential equation for pressure is obtained
as:
o oh hig 17) (r .
dp (h)ip (h)op + (525 —) (g + 1iap)
=V d(v”w))
(U//

fv/)z dp

(2.25)

\% /
Y hig dov'
— e g

dt dn’
M E + o —v’ v”—v’a

Equations 2.15 and 2.25 can be solved numerically for specified initial

values of water and steam masses and initial pressure.

18

2.4.3.2 Non-equilibrium Model

The steam accumulator model is based on the the following mass and

energy balance equations for each phase:

Liquid mass balance can be described as the following:

dM
5 L — i 4 e (2.26)

t
77'/LlB = 77'/Ll, in ml, out (227)
pT1 = e — Tte (2.28)

where:

dM;

3~ is the change in liquid mass with respect to time, in kg s—h.

rip is the net mass balance of liquid water inlet and outlet flows, in kgs™!.

mpr1 is the liquid mass rate change due to evaporation and condensation

rates, in kgs!.

M1, in 1s the liquid mass flow into the accumulator, in kg s,
M1, out 1S the liquid mass flow into the accumulator, in kg s7L,
M. is the condensation rate in the accumulator, in kgs™!.

e is the evaporation rate in the accumulator, in kgs™1.

19

Steam mass balance can be described as the following:

d M,

TRl Mmap + MpT2 (2.29)
Mo = My, in + M2, out (2.30)
mPT2 - me - mc (231)

where:

dﬁ? is the change in steam mass with respect to time, in kgs™!.

Mg is the net mass balance of steam inlet and outlet flows, in kgs™!.
mpre is the steam mass rate change due to evaporation and condensation

rates, in kgs™!.

M2, in 1s the steam mass flow into the accumulator, in kg s

M2, out 1S the steam mass flow into the accumulator, in kg s

Liquid energy balance can be described as the following:

dH,

dp
dt

= (17h) g+ rprih” + Qo +1000 Vi

(2.32)
(mh)lB = mL inhl7 in 7;nl, outhl, out (233)

where:

% is the change in liquid bulk enthalpy in the accumulator, in kJs™.

20

(mmh),p is the net energy balance of inlet and outlet liquid flows, in kJs™*.

h" is the specific enthalpy of saturated steam at the current pressure in the

accumulator, in kJ kg

()21 is the heat transfer rate from superheated steam to liquid, in kJs™ L.

Vi is the volume of liquid in the accumulator, in m3.

1

4> 5 the rate of pressure change in the accumulator, in MPas™.

dt

hi, in is the specific enthalpy of liquid flowing into the accumulator, in kJ kg™!.

hi, out 1s the specific enthalpy of liquid flowing out of the accumulator, in

kI kg L.

Steam energy balance can be described as the following:

at,
dt

. d
= (mh)zB + mprah” — Qo1 + 1000 ng—IZ (2.34)

(mh)QB = m?, ir1h27 in T mQ, ouch, out (235)
where:

dd—l? is the change in steam bulk enthalpy in the accumulator, in kJs™*.

(mh),g is the net energy balance of inlet and outlet steam flows, in kJs™*.

V, is the volume of steam in the accumulator, in m3.

ha, in is the specific enthalpy of steam flowing into the accumulator, in kJ kg™!.

21

ha, out 1s the specific enthalpy of steam flowing out of the accumulator, in

kJ kgt

Volume balance can be described as the following:

Vi+Vo=V (2.36)
where:

V; is the volume of the liquid phase, in m3.

V, is the volume of the steam phase, in m3.

V is the total volume of the liquid and steam phases, in m®. This should also

be equal to the total controlled volume of the accumulator.

Condensation and Evaporation Rates

A key feature of the non-equilibrium model is the finite rates of con-
densation (7h.) and evaporation (r,.) employed to determine water mass ex-
changed between the liquid and steam phases. The condensation and evap-
oration relaxation times 7. and 7, are correlations from the Herz-Knudsen
equation that quantify the values for phase transition surfaces and the local
water to steam interface thermodynamic conditions with a single empirical
constant for condensation or evaporation. Derivation of the condensation and

evaporation relaxation times 7. and 7. will be discussed in more detail later in

22

this chapter. The condensation (ri.) and evaporation (17,) rates are calculated

as shown below.

p1V1(h/7h1) h < h/

M ={ TMe ' (2.37)
0 hi > W
p1V1(h1—h’) h > h/

The =4 T ' (2.38)
0 hy < h

where:

p1 is the density of the liquid phase, in kg m=3.

h' is the specific enthalpy of saturated liquid at the current pressure in the

accumulator, in kJ kg™
hy is the specific enthalpy of the liquid phase, in kJkg~!.
T. is the condensation relaxation time, in s.
T. is the evaporation relaxation time, in s.
hgg is the latent heat of vaporization at the current pressure in the accumula-

tor, in kJ kg1

The heat transfer rate from superheated steam to liquid, Qs;, represents
the heat transfer at the steam-water interface. It has been shown [11] that
the majority of heat transfer occurs at the steam-water interfaces of steam

bubbles that form in the liquid volume and that the heat transfer coefficient

23

and the interfacial area concentration are conditions of steam bubble flow in
stagnant water and not heat transfer between the steam-water interface at the

surface of the liquid.

Qa1 = (ha)y (T — 1) Vi (2.39)

where:

(ha),, is the product of the heat transfer coefficient, h, and the steam-water

interface area concentration, a, in Wm 3K~
T is the temperature of the liquid phase, in K.

T, is the temperature of the steam phase, in K.

Vi is the volume of the liquid phase, in m?3.

The accumulator model employed by Stevanovic et al. [10] empirically
identifies that 5 x 10* Wm 2K~ for (ha),, provides a good agreement be-
tween calculated and measured pressure data in their validation. This value
for (ha),, is also used in another model in the literature, Sun et al. [13], that

is based upon the Stevanovic et al. model.

The system of balance equations outlined in Equations 2.26, 2.29, 2.32,
2.34, and 2.36 are then rewritten into a set of first-order differential equations.
This is accomplished by transforming the steam and mass volumes in the

volume balance (Equation 2.36) as products of their mass and specific volume.

24

Additionally, the specific volumes of liquid and steam are written as functions
of pressure and corresponding specific enthalpies v = vy (p, hy) and v =
v (p, h2). The volume balance equation is then differentiated with respect to

time.

dM1 dM2 81)1 dp 81}1 dhl
LV i I Y I
g TR T 1(8}? L an | a)T
8’02 dp 81}2 dhg
My| —| —+—| — | =0 (240
2<8phdt+8hpdt> (2.40)

The energy balance equations (Equations 2.32 and 2.34) then have the
total enthalpies (H; and H,) replaced with corresponding products of masses

and specific enthalpies, and are also differentiated with respect to time.

dh 1 ‘ ‘) d dM
d_tl = [(mh>18 + mpr1h” 4+ Q21 + 1000 Mlvl—di) —h dtll (2.41)
dh 1 _ .) d d M-
d_tQ = W, |:(mh)2B + mpreh” — Q21 + 1000 M2U2_d]t9 — hy dtg} (2.42)

Substituting Equations 2.41 and 2.42 into Equation 2.40 yields:

25

0
(hlﬁ

ovq

_ dM; Ova | _ dMy

“1) a T <h2 oh U2> a
p p

dp oh

[(Thh)lB + mpri K + Qm} — % [(Mh)QB + mproh” — Q21]
_ h

op 1 Op 2
p p

Equations 2.26, 2.29, 2.41, 2.42, and 2.43 provide a set of five first-order

h

o)
h+ 1000 01# Bh

+ 1000 v 222
h

(2.43)

ordinary differential equations for the prediction of water and steam masses,
enthalpies, and steam accumulator pressure for specified initial values for water

and steam masses, enthalpies, and initial pressure.

2.4.3.3 Equilibrium versus Non-equilibrium Prediction Differences

As part of the verification and validation conducted by Stevanovic et
al. [10], they modeled charge and discharge evolutions using both the equi-
librium and non-equilibrium model. The equilibrium model was developed
by adjusting the model relaxation time to a value that resulted in heat and
mass transfer rates between phases thousands of times greater than in the
non-equilibrium model. Effectively, thermodynamic equilibrium between the

phases was nearly instantaneous.

During the charging evolution (Figure 2.2) it was noted that, upon se-
curing the charge when the non-equilibrium model at 50.0 bar, pressure quickly
decreased to 46.6 bar. Both the equilibrium and non-equilibrium ended at a

approximately the same value for the mass and energy introduced into the

26

Nonequilibrium

50 model e

Foy
o
L

Pressure (bar)
[FL RN
o o
\\
.-"--' “'«

" Equilibrium
30 - model
25 1=
ED T T T T
0 100 200 300 400 500

Time (s)

Figure 2.2: Equilibrium versus non-equilibrium model prediction (charging)

Note. Reprinted from ”"Dynamics of steam accumulation” by V. Stevanovic,

B. Maslovaric, and S. Prica, 2012, Applied Thermal Engineering, 37, p. 78,
Copyright 2012 by Elsevier, Ltd.

system. During the discharge evolution (Figure 2.3) it can be seen that the
discharge was secured when the non-equilibrium model was at 25.0 bar . Pres-
sure in the non-equilibrium model than recovers to the equilibrium model
value of 27.7bar. The non-equilibrium response to the initiation and secur-

ing of transients on the system conforms with system response observed by

operators.

The equilibrium and non-equilibrium models produce nearly identical

results from time period to time period, provided sufficient time has occurred

27

since the securing of the transient. Either model would be adequate if detailed

information is not needed for the system’s response during or shortly following

the transient. The non-equilibrium model would be more desirable if detailed

system response during transients is desired. For example, the non-equilibrium

model would be more desirable for the design of control systems associated

with the steam accumulator.

Pressure (bar)

95

RN MW W B B
o 6 | (R T) B B 6) I

. y. Equilibrium model

Nonequilibrium r‘nndN

0 100 200 300 400 500
Time (s)

Figure 2.3: Equilibrium versus non-equilibrium model prediction (discharging)
Note. Reprinted from ”Dynamics of steam accumulation” by V. Stevanovic,
B. Maslovaric, and S. Prica, 2012, Applied Thermal Engineering, 37, p. 78,

Copyright 2012 by Elsevier, Ltd.

28

2.4.3.4 Derivation of Condensation and Evaporation Relaxation
Times

The derivation of finite rates of condensation and evaporation in non-
equilibrium accumulator models constitutes a significant contribution to steam
accumulator modeling. Stevanovic et al. [10] [11] and Sun et al. [13] use
T. = 85s and assume that 7. = 7,.. Evaluation of the use of this empirical value
of 85 s versus a more detailed calculation of relaxation times was performed
by Stevanovic et al. [11]. Their analysis justified the use of the empirical
value of 85 s and the assumption that 7. = 7, versus a direct calculation of the

relaxation times.

29

Chapter 3

Methodology

Previous work has examined the integration of steam accumulators in
nuclear steam plant systems, but it was limited to the incorporation of a
separate turbine and generator. This work analyzes the incorporation of steam
accumulators that are integrated into the plant to leverage existing pathways
for the reintroduction of stored thermal energy back into the system. The

specific items studied as part of this analysis were:

1. Steam plant efficiency n
2. Steam accumulator discharge rate

3. Feasibility of specific points of stored thermal energy reintroduction

Section 3.1 provides details of the steam plant configurations used in
this study. Section 3.2 discusses the steam accumulator model evaluated for

the plant conditions identified by the steam plant configurations.

30

High Pressure

. Low Pressure Turbine
Turbine

Condenser

Figure 3.1: Non-regnerative plant layout

3.1 Steam Plant Configurations
3.1.1 General Plant Designs

Commercial nuclear power plants are typically divided into one of two
categories: pressurized water reactor and boiling water reactor. Pressurized
water reactors physically separate the radioactive reactor coolant from the
steam plant systems via a shell and tube heat exchanger called a steam gen-
erator. In a pressurized water reactor plant, steam plant components are kept
radioactively clean and radiation dose rates from steam plant components are
negligible. The steam in boiling water reactors is radioactively contaminated.
Consequently, steam plant components in boiling water reactor plants can

become highly contaminated and have significant radiation dose rates asso-

31

ciated with them. Additionally, steam plant components in a boiling water
reactor plant are required to be housed in a radiologically controlled area and

engineered structure.

Commercial nuclear power plants employ a Rankine cycle to extract
work from the steam [7]. Figure 3.1 summarizes a typical layout for a non-
regenerative Rankine cycle. In a non-regenerative cycle, all the steam produced
in the steam generator is used to produce work in the turbine. In regenerative
plant designs, condensate and feedwater are heated before entering the steam
generator by steam tapped off at various points in the steam plant. Regenera-
tion increases cycle efficiency by reducing the heat input required in the steam
generator necessary to change the phase of the incoming feedwater from liquid
to steam in the steam generator. An example of a regenerative steam plant

layout is shown on Figure 3.2.

In some designs, a fraction of the exhaust from the low pressure turbine
is mixed directly with condensate and kept near saturation in a deaerating feed
tank. In addition to improving cycle efficiency, maintaining the condensate at
elevated temperatures with a steam blanket that prevents direct contact with
atmospheric air provides the additional benefit of removing oxygen and other

potentially detrimental dissolved gases from the condensate.

32

— |

Low Pressure Turbine

/\

High Pressure

Turbine

Steam

Generato

Condenser -

v
Low

L

Feedwater
Heater

Feedwate)

|+——— Pressure
Pump

Heater

Figure 3.2: Regenerative plant layout

Additionally, extraction steam can be drawn at various locations in the
plant, including the main steam header, at the high or low pressure turbine
exhaust, or at various stages inside the turbines depending on the pressure
needed. Extracted steam can be directed to the deaerating feed tank, or to
a shell and tube heat exchanger for indirect heat exchange. The condensed
steam from the feedwater heaters is then directed to either the condenser
or deaerating feed tank. Given a basic understanding of the power cycles
employed, a decision must be made to incorporate the steam accumulator into

the boiling water and/or pressurized water reactor designs.

33

3.1.2 Selection of Plant Design for Analysis

Boiling water and pressurized water reactors have their own strengths
and weaknesses. This analysis will be limited to pressurized water reactor
designs. Steam plant components in pressurized water reactor plants are ra-
dioactively clean and are not subject to the stringent controls associated with
contaminated equipment. Pressurized water reactor plants are more likely to
integrate steam accumulators into their steam plant design due to lower capital

and operating costs and less regulatory burden.

Existing commercial plants leverage a regenerative thermal cycle. Re-
generative thermal cycles present more opportunities to reintroduce stored
thermal energy back into the cycle aside from the direct production of elec-
tricity via a separate turbine and generator. For these reasons, a regenerative
thermal cycle will be the subject of this analysis. It must determined how the

steam accumulator will be incorporated into plant design.

34

High Pressure
Turbine

Steam
Accumulatol

Accumulator

. Condenser
Turbine

Figure 3.3: Non-regenerative plant with steam accumulator layout

3.1.3 Integration

Integrating steam accumulators into power plant design is not a new
concept. Older examples in the literature [3] focus mainly on generating elec-
tricity with a separate turbine and generator, drawing steam from the accu-
mulator during times of peak demand. This configuration would be preferred
if the steam plant was non-regenerative. An example of this configuration is
provided on Figure 3.3. Systems designed around a regenerative thermal cycle
present numerous potential points for stored thermal energy to be reintroduced
back into the system, allowing steam flow that would otherwise be diverted to
auxiliary loads to be directed through the turbine and increase power output.

An illustration of potential entry points in a regenerative steam cycle is shown

35

on Figure 3.4.

Potential
Loads
Steam !
Accumulator
; Moisture [........o..n,
Separator : :
Reheater

- fof

High Pressure

N Low Pressure Turbine
Turbine

Steam '
Generatos | ol :
| Feedwater I : Condenser -3
: Pump .ol
| Turbine . : :
, :
............ . I
. : O
1 N I
i : I
O s |
¥ v I
Deaerating !
Feedwater Feedwatey !
Heat P Feed 1
eater ump Tank :
1
I
1

Potential Stored Thermal Energy
Admission Points

Feedwater

Main Steam Header
Inter-stage HP Turbine

HP Turbine Exhaust

LP Turbine Exhaust Inlet
Condenser

Deaerating Feed Tank
Feedwater Pump Turbine Inlet
Feedwater Heater Steam Side

©oOND TN

Figure 3.4: Regenerative plant with steam accumulator layout

36

Many of the potential entry points for stored energy reintroduction can
be eliminated based on the desired design characteristics of the accumulator
itself. The pressure in the accumulator will determine the loads to which the
accumulator will be able to supply steam, particularly when augmenting steam

from other sources that are supplied at a well-regulated pressure.

In general, nuclear steam plant cycles produce saturated steam. Ad-
ditionally, the steam available from the accumulator will decrease in pressure
over the course of the discharge. For these reasons, several admission points

can be eliminated.

The inter-stage high pressure turbine admission points (3) occur at very
specific stages and their associated pressures throughout the turbine. With
a variable pressure band, inter-stage high pressure turbine admission points
would only be available as a viable admission point for a relatively short period
when the accumulator pressure is within a small range of the stage pressure.
Otherwise, steam could backflow into the accumulator or upstream into the
turbine, reducing the pressure drop across upstream turbine stages and the

work extracted from the steam in those stages.

Injection of steam accumulator variable-pressure steam at either the
high pressure turbine exhaust (4) or the low pressure turbine inlet (5) pose a
considerable design problem. Significant engineering effort is spent designing
the turbine layout including the pressure drop across each stage, turbine steam,
extraction points, and steam quality throughout the turbine. Injection of

steam at the high pressure turbine exhaust (4) will result in a decrease in

37

the differential pressure across the high pressure turbine and the overall work

extracted from the steam.

Steam exiting the moisture separator reheater has a significant amount
of superheat. The introduction of saturated steam from a variable-pressure
steam accumulator into the low pressure turbine inlet (5) is likely to reduce
the specific enthalpy of the steam entering the low pressure turbine. This
could result in moisture formation in the turbine in locations not normally
designed for wet steam. The difficulty in designing a turbine train to operate
under both sets of conditions could present a serious obstacle, particularly

when other locations are available with fewer design considerations.

Steam admission to the deaerating feed tank (7) would provide some
benefit. However, temperature increases upstream of the feedwater pumps are
limited by the suction pressure of the main feed pump in order to prevent
cavitation. The same benefit can be obtained by supplying steam to the
feedwater heaters with no restrictions, beyond design, on the temperature
increase. Additionally, the steam flow rates required to the deaerating feed
tank are relatively low and minimize the benefit of supplying steam from the

steam accumulator.

Feed pump turbines are designed to operate efficiently at specific steam
pressures and flow rates. Supplying steam to the feed pump turbine inlet (8)
from a variable-pressure source would complicate feed pump turbine design.
However, plant power output could be increased on effectively one for one

basis if steam were supplied to the turbine from the accumulator. Given the

38

relatively small size of these turbines, several MW, this avenue would supply

limited benefits for the effort required.

Due to the saturated conditions in the accumulator, as the pressure de-
creases, so does the temperature of the available steam. Direct injection into
the feedwater header (1) may be undesirable due to the potential for changes
in feedwater injection temperature to result in an undesirable reactivity ex-
cursion. Additionally, two-phase flow may be introduced into portions of the
feed header and steam generator not designed for it. Another concern would
be the high precision feed flow detectors installed downstream of the feedwater
heaters in most designs. Typically, they function by measuring the velocity of
flow eddies in the feedwater. Operation of these high precision flow detectors
decreases instrumentation uncertainty and allows the units to more precisely
determine core thermal power, allowing for a reduction in operating margin
that translates into slightly greater power production. Introduction of steam
into the feedwater header may have unanticipated consequences with regards

to a plant’s ability to leverage these high precision flow meters.

It is normally unnecessary and undesirable to heat condensate in the
condenser (6). Some small amount of subcooling, called condensate depression,
is necessary to prevent cavitation of condensate as it is drawn into the suction
of the condensate pumps. For this reason, the condenser is a poor choice as
an admission point for the reintroduction of stored thermal energy into the

system.

The feedwater heater steam supply (9) would be a desirable admission

39

point. With a sophisticated enough control system and instrumentation, a rel-
atively constant feedwater injection temperature could be maintained during

the accumulator discharge.

Discharging the accumulator to the moisture separator reheater (2)
would also provide some gains. However, the low pressure steam discharged
to the low pressure turbine typically has a large amount of superheat supplied
by the high temperature main steam header. Replacing this steam with the
variable-pressure and variable-temperature steam from the steam accumula-
tor limits the minimum allowable pressure in the accumulator to ensure that

adequate superheat is present.

High Pressure

N Low Pressure Turbine
Turbine

P = 0.07 bar
P = 72.0 bar T =39 °C
T = 288 °C h =1,799 kJkg~!
h = 2,770 kJ kg ! x = 0.67
x=1.0 m = 1,347 kgs™!
m = 1,347 kgs~!
Condenser

P = 72.0 bar Pump P = 0.07 bar

T =139 °C U T =39 °C

h =170 kJkg™! h = 163 kJkg™!
m = 1,347 kgs™! m = 1,347 kgs™!

Thermal Power = 3500 MW
Electrical Power = 1307 MW

Figure 3.5: Non-regenerative plant design with parameters

40

3.1.4 Analyzed Plant Designs

An ideal Rankine cycle was evaluated with and without regeneration to
obtain baseline results for analysis. The non-regenerative Rankine cycle is de-
tailed on Figure 3.5. Regenerative cycles are outline on Figures 3.6 and 3.7. All

configurations evaluated incorporated the following applicable assumptions:

1. The cycle is an ideal Rankine cycle.

2. Rated thermal power of 3500 MW.

3. Steam generator pressure is 72 bar.

4. High pressure turbine discharge pressure is 20 bar.

5. High pressure turbine extraction pressure is 40 bar.

6. Condenser pressure of 0.07 bar

7. Accumulator pressure varies between 40 bar and 60 bar.

8. Accumulator minimum pressure is 40 bar and corresponds to the high

pressure turbine extraction pressure.

9. Accumulator maximum pressure is 60 bar and provides for some differ-
ential pressure between the steam generator, the high pressure source,

and the steam accumulator, the low pressure sink.

41

P = 20.0 bar

T =212°C
h =2,537 kJkg™!
— [
P = 72.0 bar 21101‘8?)631;1(‘]&71
T = 288 °C - °
h = 2,770 kJ kg !
x=10 High Pressure .
1 = 1,744 kgs! Turbine Low Pressure Turbine
P = 0.07 bar
P = 40.0 bar T =139 °C
Steam T = 250 °C h = 1,799 kJ kg~
Generator h = 2,660 kJkg™* x = 0.679
x = 0.9177 m = 1,333 kgs™!
m = 421 kgs™!
Condenser
P = 72.0 bar P = 72.0 bar P = 0.07 bar
T =179 °C T =139 °C T =39 °C
h =763 kJkg~! h =171 kJkg™! h =163 kJkg!
m = 1,744 kgs~! Feedwatel m = 1,744 kgs~ m = 1,744 kgs™
— |
Heater P = 0.07 bar
T =39 °C
h = 163 kJ kg™!
m = 502 kgs™!

Thermal Power = 3500 MW
Electrical Power = 1318 MW

Figure 3.6: Regenerative plant design with parameters (feedwater heater)

42

P = 72.0 bar

T =288 °C P = 72.0 bar
h = 2,770 kJ kg ™! T =223 °C
x=1.0 h =961 kJkg™!
Do i = 170 ks~ i = 170 ks~
h = 2,770 kJ kg ! _ i
x=1.0 E‘ B g(l)folgl Reheater P = 20.0 bar
m = 1,606 kgs~! ok 1 T =213 °C
h = 2,537 kJ kg b — 2.802 kJ ke—1
P = 72.0 bar x = 0.8615 i
T = 288 °C m = 1,161 kgs— = 1.161 kes—!
h = 2,770 kJ kg~ i
x=10 High Pressure
L o— 1.4 —1 ssure
m = 1,436 kgs Turbine

P = 0.07 bar
P = 40.0 bar T =39 °C
T = 250 °C h=1,970 kJ kg~!
h = 2,660 kJkg~! x = 0.75
x = 09177 m = 1,161 kgs~!
m = 275 kgs~!
Condenser
P = 72.0 bar P = 72.0 bar P = 0.07 bar
T =139 °C T =39 °C T =39 °C
h = 590 kJ kg~! h =171 kJkg™! h =163 kJkg™?
- = L _ L —
m = 1,606 kgs Feedwate M= 1,606 kg's Feedwate) m = 1,606 kgs
Heater P = 1.0 bar
T =49 °C

h = 206 kJ kg™
h = 275 kgs™!

Thermal Power = 3500 MW
Electrical Power = 1255 MW

Figure 3.7: Regenerative plant design with parameters (feedwater heater, re-
heater)

3.1.5 Integration Assessment

The benefit of steam accumulator integration will be assessed by the
change in time-averaged electrical power generated during charging and dis-
charging evolutions compared to time-averaged electrical power generation

without the accumulator.

43

disch i 'C isc dt — e auseinedt
benefit = { ischarging - Jo Qi Jo Qvese (3.1)

Charging fot Qbaseline dt — fg Qch dt

where:

Qdisch is the electrical power output of the plant with the accumulator dis-

charging, in MW.

Qen is the electrical power output of the plant with the accumulator charging,

in MW.

Qbaseline is the electrical power output of the plant with the accumulator idle,

in MW.

3.1.6 Accumulator Efficiency

The accumulator efficiency will be negatively impacted by heat losses to
the environment from the accumulator and its associated piping and enthalpy

loss due to pressure drop in the piping during flow.

3.2 Steam Accumulator Model
3.2.1 Model Selection

Two general types of models, equilibrium and non-equilibrium, have
been explored. Each model type has its own strengths and weaknesses, and
each is well suited to different types of analysis. The non-equilibrium model

provides the following advantages:

44

1. The non-equilibrium model is better suited to dynamic modeling of

steam accumulator response to charging and discharging evolutions.

2. The non-equilibrium model results in a lower final pressure following
accumulator discharge. The non-equilibrium model will provide more
conservative results when analyzing the the time required to discharge

the accumulator to a minimum allowable pressure.

3. Adequate data is available to validate and verify model response.

An example of accumulator response during and after plant transients
for both the equilibrium and non-equilibrium models was previously outlined
in Section 2.4.3.3. For these reasons, the non-equilibrium model will be used in
this analysis. The non-equilibrium model should allow for more accurate pre-
diction of desired accumulator parameters and response times during dynamic
evolutions. As discussed below in Section 3.2.2.1, the model used in this work
does not account for heat loss to the surroundings or head loss. Accumulator

efficiency would be calculated as shown below:

P . . .
. fO Qdisch - Qbaseline - Qheat loss — Qﬂow loss dt
— t

fO Qbaseline - C2(:h + Qheat loss T CQﬂow loss dt

(3.2)

Qheat loss 1s the rate of heat loss to the environment, in MW.

Qﬂow loss 18 the electrical power output of the plant with the accumulator

charging, in MW.

45

Qbaseline is the electrical power output of the plant with the accumulator idle,

in MW.

The Qheat loss heat loss term is a function of how well insulated the
piping and tank are, the temperature/pressure of the accumulator, and the
temperature of the environment around the accumulator and its associated
piping. It should vary linearly with temperature changes, and greater than
linearly with the change in piping length and change in accumulator volume.
Most of these will be set by the design and will not vary significantly during

operations.

The Qﬂow loss Will be the parameter that operators have the ability to
affect the most. It is a function of piping design and the flow rate through
the system. It will vary with the greater than linearly with the flow rate too
or from the accumulator. Accumulator efficiency could be maximized, for a
given discharge rate, by minimizing the charging flow rate to a value that is
just high enough to ensure the accumulator is available for discharge during

the next period of peak pricing.

3.2.2 Model Design
3.2.2.1 Solution Method

The first-order differential equations that comprise the non-equilibrium
model were solved using variable time step integration of the Runge-Katta
Method [5] for specified initial values water and steam masses and enthalpies

and initial steam accumulator pressure. The MATLAB code associated with

46

the solution is contained in Appendix C. Thermodynamic properties were
resolved using MATLAB libraries XSteam and TAPWS_IF97. XSteam was
used for the majority of steam properties. TAPWS_IF97 was mainly used to
directly calculate steam property derivatives. The accumulator was modeled

with the following assumptions:

1. The accumulator is charged using saturated steam available at the steam
generator pressure of 72.0 bar. No liquid is required to be charged to the
accumulator. Over the course of multiple charge/discharge cycles, water
level will slowly rise and must be adjusted by operators. Any liquid
drained can be directed back into the plant to avoid any loss of stored

thermal energy.

2. Moisture separators remove 100% of the moisture from steam being with-
drawn from the accumulator and return it to the accumulator to con-
serve thermal energy. Steam supplied to loads from the accumulator has

a quality of 1.0.

3. The accumulator model behaves like a single large tank. In reality, the
accumulator is likely to consist of a bank of tanks, charging and dis-

charging simultaneously.
4. No heat loss occurs between the tank and its surroundings.

5. There is no energy lost due to flow losses in the piping.

47

401 T T T T T T T T T
Discharging and Charging

— 400.5 [7
£

=)

=3

2

m — —
& 400

2

°

LL

@ 3995 4
@®©

p=

S

S 399 4
=}

S

=}

o

o

< 39851 7

398 L L L L L L L L L

40 42 44 46 48 50 52 54 56 58 60
Accumulator Pressure [bar]

Figure 3.8: Accumulator mass flow rate versus accumulator pressure (feedwa-
ter heater, accumulator discharging and charging)

3.2.2.2 Accumulator Capacity

The primary factors that determine the size of the accumulator are the
rate of discharge (power) and the duration of the discharge (energy). The
increase in electrical power output will have a theoretical maximum based
on the plant design and will be relatively fixed. The time of discharge will
be a function of power demand curves that are region specific. This study

will arbitrarily discharge using three hours as the period of peak demand and

48

pricing. The higher the power and the longer the rate of discharge, the larger

the required accumulator volume and water mass required.

In the band of pressures selected for analysis, 40bar to 60 bar, the
variation in mass flow rate for the charging and discharge conditions in both
the regenerative plant with feedwater heater (Figure 3.8) and regenerative
plant with feedwater heater and reheater (Figure 3.9) are shown below. The
MATLAB script used to generate these plots is detailed in Appendix C. Flow

rates vary only slightly over the pressure band, less than 20kgs1.

660 T T T T T T T T T

640 7

620

600 7

580 — Discharging
44444444 Chal’glng

560 7

540 r 7

520

Accumulator Mass Flow Rate [kg/s]

500 r 7

480 L L L L L L L L L
40 42 44 46 48 50 52 54 56 58 60

Accumulator Pressure [bar]

Figure 3.9: Accumulator mass flow rate versus accumulator pressure (feedwa-
ter heater, reheater, accumulator discharging and charging)

49

Chapter 4

Results

4.1 Steam Accumulator Model
4.1.1 Validation and Verification

A detailed discussion of the validation and verification can be found in
Appendix A. The non-equilibrium model, developed in MATLAB and pro-

vided in Appendix C, compares well with the results in Stevanovic et al. [10].

4.1.2 Charge/Discharge Simulation

A simulation was conducted of repeated charge/discharge evolutions on

the accumulator with the following conditions:

1. Accumulator charged pressure is 60 bar
2. Accumulator discharged pressure is 40 bar
3. The accumulator is discharged at 300 MW for 3 h

4. The accumulator is charged at a rate of 600kgs™!

The MATLAB code for the simulation is provided in Appendix C.1.3.

The above conditions do not necessarily represent optimal conditions, but are

50

65 T T T T T T

60 - 7

50 7

Pressure [bar]

45+ .

Time [s] x 10%

Figure 4.1: Accumulator pressure versus time (multiple charge and discharge)

reasonable for a nuclear steam plant. Time sensitivity testing showed results
of the model converging at a 1s time step. It was noted during the conduct
of the validation and verification tests that the smaller the volume of the

accumulator, the more sensitive the model is to large time steps.

4.1.2.1 Conservation of Volume

In the non-equilibrium model, the key indicator that either mass or
specific enthalpy are not being conserved is that volume is not conserved.

The steam accumulator model provided in Appendix C.1.1 compares the total

o1

Tank Water Level [%]

35 1 1 1 1 1 1
Time [s] x 10%
Figure 4.2: Accumulator water level versus time (multiple charge and dis-

charge)

volume of both the liquid and steam phases each iteration and calculates the
difference between the sum of both phases and the volume of the accumulator.

For this simulation, the highest volume defect detected was 0.04%.

4.1.2.2 Pressure

It can be noted from the pressure response of the model shown in Figure
4.1, that charge and discharge times are roughly equal. The model was set

to discharge at a constant power of 300 MW. The model was charged with

52

lO T T T T T T

Phase Mass [kg]
(6}

4 - -
3t Liquid ||
— Steam
ol Total
1 _\/\/\/—
O 1 1 1 1 1 1
1 2 3 4 5 6
Time [s] x 10%

Figure 4.3: Accumulator phase mass versus time (multiple charge and dis-
charge)

1

saturated steam at 72bar at a rate of 600kgs™. This value was selected

because it was approximately the accumulator discharge rate calculated by

the heat balance code detailed in Appendix C.

4.1.2.3 Phase Mass

A review of the mass response detailed in Figure 4.3 shows that mass

is roughly conserved through several charge and discharge cycles.

53

12 F 7

',;'
=,
>
2 8r A
G
<
c
LLl
o 61 7
0
8
T — Liquid
4+ — Steam | |
Total
2 _\/\/\/—
0 1 1 1 1 1 1
1 2 3 4 5 6
Time [s] x 10%

Figure 4.4: Accumulator phase specific enthalpy versus time (multiple charge
and discharge)

o4

280 T T T T T T

Liquid

275

N N N
(o2} (o)) ~
o 1 o

Phase Temperature [C]

N
[¢)]
a1

250

245 L L L L L L

Time [s] x 10%

Figure 4.5: Accumulator phase temperature versus time (multiple charge and
discharge)

4.1.2.4 Phase Specific Enthalpy

A review of the phase specific enthalpy, in conjunction with the phase
mass, shows that the overall bulk enthalpy of the accumulator is conserved

through several charge and discharge cycles.

4.1.2.5 Phase Temperature

Phase temperature behaved as predicted by the non-equilibrium model.

During the charging evolutions, a temperature difference developed between

55

the steam and liquid phase of less than 1°C.

4.2 Steam Plant Integration

Heat and mass balances were evaluated for the integration of a steam
accumulator for both the feedwater heaters and the moisture separator re-
heater. MATLAB code detailing each model and the script used to evaluate
the steam plant cycles can be found in Appendix C. Provided the pressure
range for the accumulator is small enough, the values for specific enthalpy
and temperature of the steam from the accumulator do not substantially as
shown on Figures 4.6 and 4.7. The result is that flow from the accumula-
tor varies little while maintaining the same rate of heat transfer in the steam
plant loads the accumulator supplies. Consequently, the smaller the amount
that pressure is allowed to decrease from the high pressure, charged condition
for the accumulator, the greater the amount of water mass required in the

accumulator.

During discharging operations, steam from the steam accumulator re-
places steam from the steam generator to the feedwater heater and/or mois-
ture separator reheater. The efficiency gains from the feedwater heater and/or
moisture separator remain and more work can be done by the turbine. Dur-
ing charging operations, the steam mass flow rate to the turbines, feedwater
heater, and moisture separator reheaters decreases. Consequently, turbine ef-

ficiency and electrical power output decreases.

Heat balances and mass flows for the analyzed configurations are de-

56

tailed on Figures 3.6, 3.7, 4.10, 4.11, 4.12, and 4.13. The electrical output
of the analyzed cycles are summarized on Table 4.1.Electrical power output
verus accumulator pressure for the analyzed designs are detailed on Figures
4.8 and 4.9. These figures are for ideal steam cycles. Although these values
are not real efficiencies, the values supplied still provide valuable insight into

the magnitude and trend of any changes due to accumulator integration.

Mass flow rates to and from the accumulator are a function of accumula-
tor pressure and were previously detailed on Figures 3.8 and 3.9. The electrical

powers provided in Table 4.1 are at an accumulator pressure of 60 bar.

Table 4.1: Ideal cycle electrical output for analyzed cycles

Electrical Power MW
Configuration Charging Idle Discharging
Feedwater Heater
and Accumulator
Feedwater Heater,
Reheater, and 687 1,255 1,699
Accumulator

929 1,318 1,680

4.2.1 Recommendation

Based on the results, it would be recommended to integrate the steam
accumulator into the feedwater heater steam supply. In the analyzed config-
uration, gains of approximately 300 MW electric were realized in a 3500 MW
thermal plant. Smaller gains could be realized by incorporation into the mois-

ture separator reheater, but given that the normal supply for the moisture

57

280 T T T T T T T T T

275 b

270 7

Temperature [C]
N
(o))
o1

260

255 7

250 1 1 1 1 1 1 1 1 1
40 42 44 46 48 50 52 54 56 58 60
Accumulator Pressure [bar]

Figure 4.6: Saturation temperature versus pressure

separator reheater is hotter steam directly from the steam generator, steam at
lower temperatures and pressures provide limited gains when compared to the
complexity and cost of integrating the steam accumulator into the moisture

separator and reheat system.

The proposed configuration would require scaling up existing plant sys-
tems to accommodate the higher mass flow rates and water inventory neces-
sary. The steam turbine, electrical generator, condenser and hotwell capacity,

and steam plant auxiliary systems would require uprating to the higher power

58

Figure 4.7: Specific enthalpy versus pressure

levels supplied by the accumulator during discharge. One benefit of this config-
uration versus direct electrical generation via a separate turbine and generator
is that none of the capital equipment used for power generation would be com-

pletely unused during periods of low demand.

Additionally, a significant amount of time would be needed to start up
and warm up an idle turbine, impairing the opportunity to take advantage of
peak pricing. The main turbine in an operating plant would already be at
a high enough temperature that large swings in power in a relatively short
period of time would not significantly stress the equipment. However, the
incorporation of steam accumulators into nuclear steam plant systems raises

several concerns that require consideration.

59

o2 ! I ! I I ! I I !
a0 2 “ 3 o s 5

50
Accumulator Pressure [bar]

Figure 4.8: Apparent efficiency versus accumulator pressure (feedwater heater)

015 | | | | | | | | |
0 2 “ ® I s 52 5 s s w
Accumulator Pressure [bar]

Figure 4.9: Apparent efficiency versus accumulator pressure (feedwater heater
and reheater)

60

P = 20.0 bar

T =212°C

h = 2,537 kJkg™!
P = 72.0 bar Ef_oisfii kgs~!
T = 288 °C o :
h = 2,770 kJ kg1
x = 1.0 High Pressure : ‘bi
= 1,744 kgs! Tarbine Low Pressure Turbine

P = 0.07 bar
T =39 °C
Steam h=1,799 kJkg=!
Generato P = 1.0 bar x = 0.679
T =49 °C h = 1,744 kgs™!
h = 206 kJkg~*
m = 401 kgs™!
Condenser
P = 72.0 bar P = 72.0 bar P = 0.07 bar
T =179 °C T =139 °C T =39 °C
h = 763 kJkg™! h =171 kJkg™! h = 163 kJkg™!
m = 1,744 kgs™! Feedwate] M= 1744 kgs™ \ h = 1,744 kgs™
Heater
P = 60.0 bar
T = 276 °C
h = 2,785 kJ kg™
x = 1.0
Steam i = 401 kg™t

Accumulatpr
Thermal Power = 3500 MW
Electrical Power = 1680 MW

Figure 4.10: Regenerative plant design with parameters (feedwater heater,
accumulator discharging)

61

m = 1,744 kgs~!

High Pressure
Turbine

x=1.0
m = 401 kgs™!

Steam
Accumulatr

h =206 kJkg~!
m = 421 kgs™!

h = 2,537 kJ kg~!

P = 72.0 bar x = 0.8615

T = 288 °C h = 922 kgs~!
h = 2,770 kJ kg !

x=1.0

P = 40.0 bar P = 0.07 bar
T = 250 °C T =39 °C
Steam h = 2,660 kJ kg ! h =1,799 kJ kg !
x = 0.9177 x = 0.679
m = 421 kgs™! m = 922 kgs™!
1 = 401 kg s Condenser
P = 72.0 bar P = 72.0 bar P = 0.07 bar
T =179 °C T =179 °C T =39 °C
h = 763 kJ kg~* h =171 kJkg! h = 163 kJkg™!
s 1 1744 ke S -
m = 1,744 kgs Feedwated ™= 1,744 kgs \ m = 1,744 kgs
— |
P = 60.0 bar Heater
T =276 °C
P = 1.0 bar
_ -1
h = 2,785 kJ kg T — 49 °C

Thermal Power = 3500 MW
Electrical Power = 929 MW

Figure 4.11: Regenerative plant design with parameters (feedwater heater,
accumulator charging)

62

P = 60.0 bar

T = 275 °C P = 60.0 bar
h=2785 kJkg* T =223 °C
x=1.0

h =960 kJ kgt

h = 233 kgs™! m = 233 kgs™!

he ggz(”éf” Reheater P = 20.0 bar

b = 2,537 kI kg Efflg‘gmi]k .
P =T72.0 bar x = 0.8615 x B > 10 J kg
T =288 °C = 1.606 kes— = :
h = 5,770 ki kg-! m = 1,606 kgs 1 = 1,606 kgs L
x = 1.0
m = 1,606 kgs™! High Pressure

N Low Pressure Turbine
Turbine

P = 0.07 bar
T =39 °C
h = 1,970 kJkg~*
P = 1.0 bar x=0.75
T=49°C 1 = 1,606 kgs !
h = 206 kJkg™!
h = 261 kgs™?
Condenser
P = 72.0 bar P = 72.0 bar P = 0.07 bar
T =139 °C T =39°C T =39 °C
h =590 kJkg~! h =171 kJkg™! h =163 kJkg*
h = 1,606 kgs™! Feedwaten m = 1,606 kgs™ m = 1,606 kgs™
— |
P = 60.0 bar Heater
T =275 °C h = 494 kgs~!
h = 2,785 kJkg !
x = 1.0
Steam | 1 = 261 kgs™!
— Accumulat;

Thermal Power = 3500 MW
Electrical Power = 1699 MW

Figure 4.12: Regenerative plant design with parameters (feedwater heater,
reheater, accumulator discharging)

63

Steam
Accumulatgr

m = 1,022 kgs™

m = 1,022 kgs—

High Pressure

P'=60.0 bar P = 72.0 bar
T =275 °C T = 288 °C P =60.0 Ién-
h = 2,785 kJ kg ™! _ 1 T = 223 °
x=10 bRk ke h = 960 kJ kg~
m = 654 kgs™! i = 68 kgs~! m = 68 kgs™!
P = 20.0 bar | -~ .
P = 72.0 bar T =212 °C Reheater i = ;(1);)1?1
=g h = 2,537 kJkg™ h — 2,802 ki kg~
h = 2,770 kJ kg | X = 0.8615 T RIRe
x=1.0 x=>1.0

m = 1,022 kgs!

P = 72.0 bar Turbine
T =288 °C ~——
h = 2,770 kJkg ™!
x=1.0
m = 1,744 kgs™!
P = 40.0 bar E‘ i (;QOZ(;JM
J[T—:gér?k?k 1 h = 1,970 kJ kg~!
R h = 654 ks~ x=0.75
x = 1. <= .
m = 421 kgs™! m = 1,022 kgs
Condenser
P = 72.0 bar P = 72.0 bar P = 0.07 bar
T =139 °C T =39 °C T =39 °C
h = 590 kJ kg~! h =171 kJkg™! h =163 kJkg~!
0= -1 . — L _
m = 1,606 kgs Feedwate ™= 1,744 kgs m = 1,744 kg's
Heater I
P = 1.0 bar
T =49 °C
h = 206 kJkg*
m = 421 kgs~!

Thermal Power = 3500 MW
Electrical Power = 687 MW

Figure 4.13: Regenerative plant design with parameters (feedwater heater,
reheater, accumulator charging)

64

4.2.2 Key Considerations

Several key considerations present themselves in the incorporation of

steam accumulators into the feedwater heater steam supply system.

4.2.2.1 Inadvertent Loss of the Steam Accumulator System During
Charging or Discharging Operations

Loss of the steam accumulator system during system discharge is un-

likely to result in significant consequences. Operators are already trained to

respond to loss of steam supply to the feedwater heaters. Operators are also

very sensitive to proper feedwater heater operation, due to the probability of

a reactivity excursion due to improper operation of the system.

Loss of the steam accumulator during system charging is a larger con-
cern. If the charging rate were sufficiently high, loss of the steam accumulator
during charging would result in an automatic reactor trip. To the reactor plant,
the loss of the steam accumulator would look exactly like a turbine runback or
load rejection. In some designs, automatic systems such as steam dumps can
automatically compensate for a load rejection up to a certain fraction of rated
thermal power, up to 40% in some cases. It would be recommended to restrict
the steam accumulator charging rate to a value within the capacity of any

available system designed to automatically compensate for a load rejection.

65

4.2.2.2 Additional Heat Sink

Provided the steam accumulator system is functioning normally, an ac-
cumulator that is not fully charged does provide an additional heat sink to the
plant. It may be worth considering when designing and sizing the accumulator
to identify a maximum accumulator pressure that provides sufficient margin
in accumulator capacity such that additional defense in depth against a loss

of heat sink event is present.

Depending on the reactor design and configuration, designing the sys-
tem to safety-related standards may provide additional flexibility that permit
continued operation when technical specifications applying to current designs

would require a shutdown and immediate correction of a deficiency.

4.2.2.3 Increased Hotwell Capacity

Accumulator flowrates during discharging evolutions, 500 kg s~ to 600 kg s™*
for an approximately 300 MW increase in electrical power output, could over-
whelm typical steam plant water makeup systems. Sufficiently increased hotwell
capacity would alleviate concerns regarding abnormally large swings in hotwell

level.

66

Chapter 5

Conclusions

In deregulated markets, peak demand prices present an opportunity for
nuclear power plants to increase their economic competitiveness. Currently,
the combined cycle fleet dominates this market. The historically low price of
natural gas coupled with their ability to nimbly start up and shut down with
little notice places nuclear power in a precariously uncompetitive position.
Nuclear power plants require an alternative that allows them to maintain their
baseload power level at all times, but not necessarily distribute that power to

the grid during periods of low demand and low prices.

This work expanded on prior studies to incorporate thermal energy stor-
age into existing steam plant components. It has been demonstrated by this
work that a sizable amount of additional power can be produced by augment-
ing existing steam flow paths, as opposed to a separate turbine-generator set.
By leveraging feedwater heaters and moisture separator reheaters as a point
of reintroduction of stored thermal energy, significant increases in electrical

power output can be sustained for hours.

A method for modeling steam plant accumulators was constructed from

prior work to demonstrate the time response of several key parameters during

67

charge and discharge.

Key areas that lend themselves to future work are:

1. Optimization of accumulator design for plant conditions

2. Study of the regulatory environment and licensing basis impacts associ-

ated with steam plant accumulator integration
3. Economic study of accumulator integration

4. Economic optimization of accumulator design to leverage peak demand

pricing

68

Appendices

69

Appendix A

Validation and Verification of the
Non-Equilibrium Steam Accumulator Model

A.1 Discussion

The non-equilibrium MATLAB steam accumulator model was evalu-
ated against two validations and verifications performed by Stevanovic et al.
[10]. Detailed data was not provided by Stevanovic et al. to allow for valida-
tion and verification of their model. Consequently, a graphical comparison of

results was necessary.

The accumulator used by Stevanovic was relatively small, 64m?, com-
pared to those used in commercial power production. A separate version of the
model was developed for testing to allow the test accumulator to be defined
by the specific parameters listed in the literature [10]. The model is detailed
in Appendix C.1.2.

It was noted while simulating the validation and verification tests that
the smaller volume test accumulator was particularly sensitive to large time
steps. A smaller time step, 0.1s, provided smooth and consistent results.
Given the time dependent nature of the first order differential equations that

make up the model, this was not unexpected.

70

46

44

w B B
[e¢] o N

Pressure [bar]

w
(o2}

34

32 L L L L L L
100 200 300 400 500 600 700

Time [s]

Figure A.1: Pressure versus time for test 1

The first validation and verification re-performed the simulation in Sec-
tion 3.0 of [10]. The first test involved charging steam into the plant at varying
rates over the course of the test. No discharges were performed as part of the
first test. The second validation and verification re-performed the simulation
in Section 3.2 of [10]. The second test evaluates that plant response during a
constant rate of discharge and varying rates of charging over the course of the

test. The MATLAB script automating this test is shown in Appendix C.1.4.

71

on
o

N
)

42

Pressure (bar)
I
(o]

— Calculated
* NMeasured

L o I o W
L Y N N o I
I

0 100 200 300 400 500 600 700
Time (s)
Figure A.2: Pressure versus time for test 1 (Stevanovic et al.)
Note. Reprinted from ”"Dynamics of steam accumulation” by V. Stevanovic,

B. Maslovaric, and S. Prica, 2012, Applied Thermal Engineering, 37, p. 76,
Copyright 2012 by Elsevier, Ltd.

72

A.2 Results
A.2.1 Test Number 1

Graphically, the results compare well. Figure A.1 follows the trend
and finishes very closely to Figure A.2. The final pressure of our model is
approximately 1.0 bar lower than the literature. This is very likely attributed
to the lack of detailed data regarding the exact initial conditions and flow

rates.

A.2.2 Test Number 2

Graphically, the results compare well. Figure A.3 follows the trend and
finishes very closely to Figure A.4. The final pressure of our model is slightly
higher than the literature. This is very likely attributed to the lack of detailed

data regarding the exact initial conditions and flow rates.

A.3 Summary

With the information available for validation and verification, our model

compares well with the literature and is acceptable for use.

73

Pressure [bar]

38

22

500 1000 1500 2000 2500
Time [s]

Figure A.3: Pressure versus time for test 2

74

e
=

L
o

YAV
NWAVAY

0 500 1000 1500 2000 2500 3000
Time (s)

Pressure (bar)
Lad
o=

[y
o

[
=

Figure A.4: Pressure versus time for test 2 (Stevanovic et al.)
Note. Reprinted from ”"Dynamics of steam accumulation” by V. Stevanovic,
B. Maslovaric, and S. Prica, 2012, Applied Thermal Engineering, 37, p. 77,
Copyright 2012 by Elsevier, Ltd.

75

Appendix B

Accumulator Model Time Sensitivity
Evaluation

The non-equilibrium steam accumulator model is comprised of first-
order differential equations differentiated with respect to time. Consequently,
the results obtained by employing the Runge-Katta method to iteratively solve
the model are sensitive to the period of time between each iteration. To test

the sensitivity of the model results to the value of the time step.

Two parameters were selected to evaluate the time sensitivity of the
model. Volume defect identifies the fractional difference between the sum of
the liquid and steam phase volumes and the accumulator volume (Equation
B.1). Obviously, the sum of the liquid and steam phase volumes cannot be
larger or smaller than the accumulator volume. The volume of each phase is
the product of the specific volume and mass of each respective phase (Equation
B.2). In the model, the specific volume is a function of pressure and specific
enthalpy. Both of which are solved by the model. Mass is a function of flow
in and out of the accumulator, which is resolved in the model as the product
of the mass flow rate and the time step. All of these factors make the volume

defect an excellent indicator of the consistency of the model. The volume

76

defect is also the product of factors that are very dependent on the time step
used for the model, making it a key indicator of whether or not the time step

is acceptable.

Pressure was also selected as an additional indicator of the time sensi-
tivity. It is the first thermodynamic parameter calculated by the model each
time step (Equation 2.43). The time step used affects the specific enthalpies
and masses that are used in the pressure equation, making pressure a good

indicator of the sensitivity of the model to the time step selected.

The model was run over a discharge and charge cycle between 40 bar
and 60 bar with time steps of 10s, 5s, 1s, and 0.01s. The steam cycle used
was a regenerative steam cycle with a feedwater heater. The mass flow rates
for charging and discharging the accumulator are a function of accumulator
pressure and are detailed on Figure 3.8. The plant was discharged for 1 h. The
results of the sensitivity evaluation run for volume defect and pressure are on

Figures B.1 and B.2.

It can be seen that a sharp jump in the volume defect is observed
when the mass flow rate of the accumulator suddenly shifts from discharging
to charging. The sensitivity of the model’s reaction to this abrupt change
decreases as the value of the time step decreases. With a time step of 10s or
5s the volume defect is unacceptably large (> 0.5%). A very small decrease

in the volume defect occurs between 1s and 0.01s.

7

Volume Defect [%]

I

o 1000 2000 3000 4000 5000 6000 7000
Time [s]

Figure B.1: Volume defect versus time for selected values of time step

Pressure [bar]
T
|

Time [s]

Figure B.2: Pressure versus time for selected values of time step

With regards to pressure, the higher the time step, the lower the pre-

dicted pressure at a specific time interval. This can be seen in greater detail

78

in Figure B.3. The response of the model to the change over from discharging
to charging also appears to be smoother with a higher time step. It can be
seen that the value for pressure appears to be converging for time step values

less than 5s.

There is very little difference in the pressures predicted by the models
with time steps of 1s and 0.01s. Models with a time step of 0.01s require 10
times the amount of computational time with little benefit. Consequently, for
the steam accumulator models simulated to be run in a nuclear steam plant

in this work, a time step of 1s will be used.

bar]
T
~
|

Figure B.3: Pressure versus time for selected values of time step (detail)

‘/liquid + ‘/;team - ‘/accumulator (B 1)

V:iefect =
‘/accumulator

79

80

Appendix C

MATLAB Code

C.1 Steam Accumulator
C.1.1 Steam Accumulator Model

The MATLAB class handle used to define the steam accumulator non-

equilibrium model is provided below.

classdef steam_accumulator < handle
properties
verbosity = 0

% i - Total loop count for the accumulator.
i
%» max_iter - Pre-assignment size for vectors.

max_iter

%» time_step - The time step of the assigned
to each loop.

time_step

%» tank_length - Length of the accumulator
piping [m].

tank_length

%» tank_volume - Volume of the accumulator
piping [m~3].

tank_volume

% water_level - Water level in the tank [%].

water_level

%» high_pressure - Design starting pressure
for discharge [bar].

high_pressure

81

% low_pressure - Design low pressure for
discharge [bar].

low_pressure

%» high_quality - Design high steam quality
after charging.

high_quality

% low_quality - Design low steam quality
after discharging.

low_quality

% minimum_efficiency - Design minimum cycle
efficiency.

minimum_efficiency

% minimum_water_mass - Design minimum water
mass required at the

%» beginning of a discharge [kg].

minimum_water_mass

% volume_defect_detected - True if a
volume_defect was detected in

% any loop.

volume_defect_detected = false

% initial_total_enthalpy
initial_total_enthalpy
initial_steam_mass
initial_water_mass
initial_water_level
prepared_for_evaluation = false
p = [I

x = []

v_1l = []

v_2 = []

rho_1 = []

rho_2 []

rho_mixture = []
v_mixture = []

t_1 = []

t_2 = []

m_1 = []

82

m_2 = []
m_total = [
vol_1 = []
vol_2 = []
vol_total =
vol_defect
h_1 = []
h_2 = []
q_loss = []
q_loss_1 =
q_loss_2 =
q-21 = []
m_dot_1b =
m_dot_2b =
mh_dot_1b =
mh_dot_2b =
r = []

m_c = []
m_e = []
m_dot_pt_1
m_dot_pt_2
dvidh = []
dv2dh = []
dvidp = []
dv2dp = []
terml = []
term2 = []
term3 = []
termd = []
termb = []
term6 = []
dpdt = []
dh_1dt = []
dh_2dt = []
time = []
m_dot_turb

eta =

[

]

]

(]
[]

L]
[]

(]
(]

L]
[]

[]
[]

[]

end

m_in = []

m_out = []
loop_time = []
x_1 = []

x_2 = []

properties (Constant)

TAU = 85.0 7 relaxation time [s]
EPSILON = 0.02 7 used to disrupt equilibrium
in temperature between
% liquid and steam phases
when setting up initial
% conditions
0.1 %» MPa per bar [MPa/bar]

MPA_PER_BAR

BAR_PER_MPA = 10 % bar per MPa [bar/MPal

W_PER_KW = 1000 % watts per kilowatt [W/kW]

KW_PER_W = 0.001 % kilowatts per watt [kW/
W]

MASS_TOLERANCE = 0.01 % tolerance used to
determine if a mass
% imbalance 1is
present [%]
VOLUME_TOLERANCE = 0.05 % tolerance used to
determine if a volume
% imbalance 1is
present
PIPE_RADIUS = 0.4064 % radius of the
natural gas pipeline being used
% to construct the
accumulator
PIPE_THICKNESS = 0.15875 % thickness of
the natural gas pipeline
INSULATION_THICKNESS = 0.2032 % insulation
thickness
K_INSULATION = 0.079 % thermal
conductivity of the insulation

84

K_PIPE = 41.0 % thermal conductivity of the
pipe

H_AIR = 15.0 % heat transfer coefficient
of the air

PASCALS_PER_BAR
/bar]

BAR_PER_PASCAL = 1le-5 % bar per Pascal [bar
/Pa]

ATM_PRESSURE_IN_BAR = 1.01325 % atmospheric
pressure [bar]

leb % Pascals per bar [Pa

end
methods
function obj = steam_accumulator (p0, xO0,
1_tank, dt, max_iter, verbosity)
if nargin > O
obj.verbosity = verbosity;
obj.i = 1;
obj.max_iter = max_iter;
obj.time_step = dt;
obj.tank_length = 1_tank;
obj.initialize_arrays();
obj.setup_initial_conditions (p0, x0);
end
end
function value = get.tank_volume (obj)
value = pi * (obj.PIPE_RADIUS"2) * obj.
tank_length;
end
function value = get.initial_total_enthalpy/(
obj)
value = obj.h_1(1) * obj.m_1(1) + obj.h_2
(1) * obj.m_2(1);
end
function value = get.initial_water_mass (obj)
value = obj.m_1(1);
end
function value = get.initial_steam_mass (obj)

85

value = obj.m_2(1);
end
function value = get.initial_water_level(obj)
value = obj.vol_1(1) / obj.vol_total(l);
end
function [mass_charged, charge_time,
final_quality, volume_defect] = charge(obj
final_pressure, charge_pressure,...
charge_flowrate, time_step)
mass_charged = 0.0;
obj.time_step = time_step;
if (obj.verbosity > 0)
fprintf ('Commencing charge to %.2f
bar.\n', final_pressure);
end
start_time = tic;
i_begin = obj.1i;
while obj.p(obj.i) < final_pressure
flow_multiplier = 0.0;
flow_multiplier 1 - sqrt(obj.p(obj.
i) / charge_pressure);
if (flow_multiplier < 0.0)
flow_multiplier = 0.0;
end
if(flow_multiplier > 1.0)
flow_multiplier = 1.0;
end
charge_steam_flow = 0.0;
charge_liquid_flow = 0.0;
h_1_in = IAPWS_IF97('hL_p',
charge_pressure * obj.MPA_PER_BAR)

I

h_2_in = IAPWS_IF97('hV_p',
charge_pressure * obj.MPA_PER_BAR)

b

if obj.p(obj.i) < final_pressure

86

charge_steam_flow = 600.0 +
charge_flowrate *
flow_multiplier;

end
if (obj.verbosity > 1 && mod(obj.1i,
100) == 0)
fprintf ('%10s = %.4f.\n', 'Tank
Level', obj.water_level (obj.1i)
);

fprintf ('Steam flow: %.2f kg/s.\n
', charge_steam_flow);
fprintf ('Liquid flow: %.2f kg/s.\
n', charge_liquid_flow);
end
mass_charged = mass_charged + (
charge_liquid_flow +
charge_steam_flow) * obj.time_step
obj.increment_time_step (
charge_liquid_flow, 0.0,
charge_steam_flow, 0.0, h_1_in,
h_2_in);
end
if (obj.verbosity > 0)
fprintf ('Charge function complete in
%.2f seconds.\n', toc(start_time))
fprintf ('Time to charge 7%.2f hours.\n
", (obj.i - i_begin) * obj.
time_step / 3600);
end
charge_time = (obj.i - i_begin) * obj.
time_step;
final_quality = obj.x(obj.1i);
volume_defect = obj.
volume_defect_detected;

end

87

function [mass_discharged, final_quality,

volume_defect] = discharge(obj, power,...
time, time_step)
mass_discharged = 0.0;

if (obj.verbosity > 0)
fprintf ('Discharging at %.1f MW for
%.1f hour(s).\n', power, time /
3600) ;
end
start_time = tic;
obj.time_step = time_step;
i_begin = obj.i;
while (obj.i - i_begin) * obj.time_step <
time
[obj.eta(obj.i), obj.m_dot_turb(obj.i
)] = obj.run_turbine(obj.p(obj.1i),
0.9, power, 5);
mass_discharged = mass_discharged +
obj.m_dot_turb(obj.i) * obj.
time_step;
obj.increment_time_step_test (0.0,
0.0, 0.0, obj.m_dot_turb(obj.i),
0.0, 0.0);
end
if (obj.verbosity > 0)
fprintf ('Discharge function complete
in %.2f seconds.\n', toc(
start_time)) ;
fprintf ('Discharge complete (7%.2f MW,
%.2f hours).\n', power, (obj.i -
i_begin) * obj.time_step / 3600);

end
final_quality = obj.x(obj.1i);
volume_defect = obj.

volume_defect_detected;
end

88

function [mass_discharged, final_quality,
volume_defect] = discharge_test (obj, power
time, time_step)
mass_discharged = 0.0;
if (obj.verbosity > 0)
fprintf ('Discharging at %.1f MW for
%.1f hour(s).\n', power, time /
3600) ;
end
start_time = tic;
obj.time_step = time_step;
i_begin = obj.1i;
while (obj.i - i_begin) * obj.time_step <
time
[obj.eta(obj.i), obj.m_dot_turb(obj.i
), m_dot_1, h_1, m_dot_2, h_2] =
obj.run_turbine_test (obj.p(obj.1i),
obj.h_2(obj.i), 0.9, power, 5);
mass_discharged = mass_discharged +
obj.m_dot_turb(obj.i) * obj.
time_step - m_dot_1 * obj.
time_step;
obj.increment_time_step(m_dot_1, 0.0,
0.0, obj.m_dot_turb(obj.i), h_1,
0.0);
end
if (obj.verbosity > 0)
fprintf ('Discharge function complete
in %.2f seconds.\n', toc(
start_time));
fprintf ('Discharge complete (%.2f MW,
%.2f hours).\n', power, (obj.i -
i_begin) * obj.time_step / 3600);
end
final_quality = obj.x(obj.1i);

89

volume_defect = obj.
volume_defect_detected;
end
function obj = wait(obj, time, time_step)
obj.time_step = time_step;
begin_i = obj.i;
while (obj.i - begin_i) * obj.time_step <
time
obj.increment_time_step (0.0, 0.0,
0.0, 0.0, 0.0, 0.0);

end

end

function obj = get_plots(obj)
time_plot = obj.time(l:0bj.1i);

p_plot = obj.p(l:o0bj.i);
figure (1) ;

plot (time_plot, p_plot);
hold on;

xlabel ('Time [s]');

ylabel ('Pressure [bar]');
x1im ([1, max(time_plot)]);

x_plot = obj.x(1l:0bj.1i);
figure (2);

plot (time_plot, x_plot * 100);
hold on;

xlabel ('Time [s]');

ylabel ('Quality [%]');
x1im([1, max(time_plot)]);

t_1_plot = obj.t_1(l:0bj.1i);

t_2_plot = obj.t_2(1:0bj.1i);

figure (3);

plot (time_plot, t_1_plot - 273.15, 'r')
hold on;

plot (time_plot, t_2_plot - 273.15)

90

xlabel (' Time [s]');

ylabel ('Phase Temperature [C]');
legend('Liquid', 'Steam');
x1im([1, max(time_plot)]);

vol_1_plot = obj.vol_1(l:0bj.i);

vol_2_plot obj.vol_2(1l:0bj.1i);

figure (4);

plot (time_plot, vol_1_plot, 'r');

hold on;

plot (time_plot, vol_2_plot);

plot (time_plot, vol_1_plot + vol_2_plot, '
g');

xlabel ('Time [s]');

ylabel ('Phase Volume [m~3]');

legend('Liquid', 'Steam', 'Total');

x1im ([1, max(time_plot)]);

eta_plot = obj.eta(l:0bj.1i);

eta_non_zeros = eta_plot(eta_plot~™=0);

average_eta = mean(eta_non_zeros);

average_eta_plot = average_eta * ones(1,
obj.i);

figure (6);

plot(time_plot, eta_plot * 100);

hold on;

plot (time_plot, average_eta_plot * 100, 'r
D

xlabel ('Time [s]');

ylabel ('Efficiency [%]"');

x1im ([1, max(time_plot)]);

h_1_plot = obj.h_1(1:0bj.i);
m_1_plot = obj.m_1(1l:0bj.1i);
h_2_plot = obj.h_2(1:0bj.i);
m_2_plot = obj.m_2(1l:0bj.1i);
figure (7);

91

plot (time_plot, times(h_1_plot, m_1_plot),
'r');

hold on;

plot (time_plot, times(h_2_plot, m_2_plot))

plot (time_plot, times(h_1_plot, m_1_plot)

+ times(h_2_plot, m_2_plot), 'g');

xlabel ('Time [s]');

ylabel ('Phase Enthalpy [kJ]');

legend('Liquid', 'Steam', 'Total');

x1lim ([1, max(time_plot)]);

figure (8);

plot (time_plot, m_1_plot, 'r');

hold on;

plot (time_plot, m_2_plot);

plot (time_plot, m_1_plot + m_2_plot, 'g');
xlabel ('Time [s]');

ylabel ('Phase Mass [kg]l');
legend('Liquid', 'Steam', 'Total');

x1lim ([1, max(time_plot)]);

m_dot_pt_1_plot = obj.m_dot_pt_1(l:0bj.1i);

m_dot_pt_2_plot obj.m_dot_pt_2(l:0bj.i);

figure (9) ;

plot (time_plot, m_dot_pt_1_plot, 'r');

hold on;

plot (time_plot, m_dot_pt_2_plot);

plot (time_plot, m_dot_pt_1_plot +
m_dot_pt_2_plot, 'g');

xlabel ('Time [s]');

ylabel ('Mass Change from Evaporation/
Condensation [kg/s]');

legend('Liquid', 'Steam', 'Total');

x1im ([1, max(time_plot)]);

92

water_level_plot = obj.water_level(l:obj.1i
)

figure (10);

plot (time_plot, water_level_plot);

hold on;

xlabel ('Time [s]');

ylabel (' Tank Water Level [%]');

x1im([1, max(time_plot)]);

v_1_plot obj.v_1(1l:0bj.1);
v_2_plot = obj.v_2(1:0bj.1i);

figure (11);

plot (time_plot, v_1_plot, 'r');
hold on;

plot (time_plot, v_2_plot);

plot (time_plot, v_1_plot + v_2_plot, 'g');
xlabel ('Time [s]');

ylabel ('Specific Volume [m~3/kgl');
legend('Liquid', 'Steam', 'Total');
x1im ([1, max(time_plot)]);

x_1_plot obj.x_1(1l:0bj.1);
x_2_plot = obj.x_2(1:0bj.1i);
figure (12);

plot (time_plot, x_1_plot, 'r');
hold on;

plot (time_plot, x_2_plot);
xlabel ('Time [s]');

ylabel ('Quality');

legend ('Liquid', 'Steam');

x1im ([1, max(time_plot)]);

m_c_plot obj.m_c(l:0bj.1i);
m_e_plot = obj.m_e(l:0bj.1i);
figure (13);

plot (time_plot, m_c_plot);
hold on;

93

plot (time_plot, m_e_plot);
xlabel('Time [s]');

ylabel ('Mass conversion rate [kg/s]');
legend ('Condensation', 'Evaporation');
x1im ([1, max(time_plot)]);

q_21_plot = obj.q_21(1:0bj.1i);

figure (14);

plot (time_plot, q_21_plot);

hold on;

xlabel (' Time [s]');

ylabel ('Heat Transfer from 2 to 1 [kJ/s]"')

x1im ([1, max(time_plot)]);

end
function obj = reset(obj, pressure, quality)
obj.i = 1;
obj.initialize_arrays();
obj.setup_initial_conditions (pressure,
quality);
end
function obj = soft_reset(obj)
if obj.i <= 1
return;
end
obj.
obj.
obj.v_

obj.p(obj.i:end);

obj.x(obj.i:end);

obj.v_1(obj.i:end);

obj.v_2 obj.v_2(obj.i:end);

obj.rho_1 = obj.rho_1(obj.i:end);

obj.rho_2 = obj.rho_2(obj.i:end);

obj.rho_mixture = obj.rho_mixture(obj.i:
end) ;

obj.v_mixture =obj.v_mixture(obj.i:end);

obj.t_1 = obj.t_1(obj.i:end);

obj.t_2 = obj.t_2(obj.i:end);

1

< < X 'O

=

94

obj.m_1 obj.m_1(obj.i:end);

obj.m_2 obj.m_2(obj.i:end);

obj.m_total = obj.m_total(obj.i:end);
obj.vol_1 = obj.vol_1(obj.i:end);
obj.vol_2 = obj.vol_2(obj.i:end);
obj.vol_total = obj.vol_total(obj.i:end);
obj.vol_defect = obj.vol_defect(obj.i:end

obj.h_1 = obj.h_1(obj.i:end);
obj.h_2 = obj.h_2(obj.i:end);
obj.q_loss = obj.q_loss(obj.i:end);

obj.q_loss_1 = obj.q_loss_1(obj.i:end);
obj.q_loss_2 = obj.q_loss_2(obj.i:end);
obj.q_21 = obj.q_21(obj.i:end);
obj.m_dot_1b = obj.m_dot_1b(obj.i:end);
obj.m_dot_2b = obj.m_dot_2b(obj.i:end);
obj.mh_dot_1b = obj.mh_dot_1b(obj.i:end);
obj.mh_dot_2b = obj.mh_dot_2b(obj.i:end);
obj.r = obj.r(obj.i:end);
obj.m_c = obj.m_c(obj.i:end);
obj.m_e = obj.m_e(obj.i:end);
obj.m_dot_pt_1 = obj.m_dot_pt_1(obj.i:end
)
obj.m_dot_pt_2

obj.m_dot_pt_2(obj.i:end

);
obj.dvlidh = obj.dvidh(obj.i:end);
obj.dv2dh = obj.dv2dh(obj.i:end);
obj.dvldp = obj.dvidp(obj.i:end);
obj.dv2dp = obj.dv2dp(obj.i:end);
obj.terml = obj.terml(obj.i:end);
obj.term2 = obj.term2(obj.i:end);
obj.term3 = obj.term3(obj.i:end);
obj.term4 = obj.term4(obj.i:end);
obj.term5 = obj.termb5(obj.i:end);
obj.term6 = obj.term6(obj.i:end);

obj.dpdt = obj.dpdt(obj.i:end);
obj.dh_1dt = obj.dh_1dt (obj.i:end);

95

obj.dh_2dt = obj.dh_2dt (obj.i:end);

obj.time = obj.time(obj.i:end);

obj.m_dot_turb = obj.m_dot_turb(obj.i:end
)

obj.eta = obj.eta(obj.i:end);

obj.m_in = obj.m_in(obj.i:end);

obj.m_out = obj.m_out(obj.i:end);

obj.loop_time = obj.loop_time(obj.i:end);

obj.water_level = obj.water_level(obj.i:
end) ;
obj.1i = 1;
obj.time(obj.i) = 0.0;
obj.time_step = 1.0;
end
function obj = prep_for_eval(obj, power, time

, charge_pressure, charge_flowrate)
for j = 1:3

[mass_discharged, final_qualitym,
volume_defect] = obj.discharge(
power , time, obj.low_pressure,
1.0);

[mass_charged, charge_time,
final_quality, volume_defect] =
obj.charge (obj.high_pressure, obj.
high_quality, charge_pressure,
charge_flowrate, 1.0);

end
obj.soft_reset ();
obj.prepared_for_evaluation = true;

end
function [avg_mass_charged, avg_charge_time,
avg_mass_discharged, ...
avg_min_quality, avg_max_quality,
valid_model] =...
evaluate_accumulator (obj, power, time
, charge_pressure, charge_flowrate

)

96

n = 1;

mass_charged = zeros (1, n);
mass_discharged = zeros(l, n);
charge_time = zeros(l, n);
volume_defect_d = zeros(l, n);
volume_defect_c = zeros(l, n);
max_quality = zeros (1, n);
min_quality = zeros (1, n);
parfor j = 1:n

par_object = obj;
[mass_discharged(j), min_quality(j),
volume_defect_d(j)] = par_object.
discharge_test (power, time, obj.
time_step) ;
[mass_charged(j), charge_time(j),
max_quality(j), volume_defect_c(j)
] = par_object.charge(obj.
high_pressure, obj.high_quality,
charge_pressure, charge_flowrate,
obj.time_step);
end
avg_mass_charged = mean(mass_charged) ;
avg_charge_time = mean(charge_time);
avg_mass_discharged = mean(
mass_discharged);
avg_min_quality = mean(min_quality);
avg_max_quality = mean(max_quality);
valid_model = all(volume_defect_d ==
false) && all(volume_defect_c == false
)
end
end
methods (Access = private)
function obj = initialize_arrays(obj)
obj.p = zeros(l, obj.max_iter);
obj.x = zeros(l, obj.max_iter);
obj.v_1 = zeros(l, obj.max_iter);

97

obj.v_2 = zeros(l, obj.max_iter);

obj.rho_1 = zeros(l, obj.max_iter);
obj.rho_2 = zeros(l, obj.max_iter);
obj.rho_mixture = zeros(l, obj.max_iter);
obj.v_mixture = zeros(l, obj.max_iter);
obj.t_1 = zeros(l, obj.max_iter);
obj.t_2 = zeros(l, obj.max_iter);
obj.m_1 = zeros(l, obj.max_iter);
obj.m_2 = zeros(l, obj.max_iter);
obj.m_total = zeros(l, obj.max_iter);
obj.vol_1 = zeros(l, obj.max_iter);
obj.vol_2 = zeros(l, obj.max_iter);
obj.vol_total = zeros(l, obj.max_iter);
obj.vol_defect = zeros(l, obj.max_iter);
obj.h_1 = zeros(l, obj.max_iter);
obj.h_2 = zeros(l, obj.max_iter);
obj.q_loss = zeros(l, obj.max_iter);
obj.q_loss_1 = zeros(l, obj.max_iter);

obj.q_loss_2 zeros (1, obj.max_iter);
obj.q_21 = zeros(l, obj.max_iter);

obj.m_dot_1b = zeros(l, obj.max_iter);
obj.m_dot_2b = zeros(l, obj.max_iter);
obj.mh_dot_1b = zeros(l, obj.max_iter);
obj.mh_dot_2b = zeros(l, obj.max_iter);

obj.r = zeros(l, obj.max_iter);
obj.m_c = zeros(l, obj.max_iter);
obj.m_e = zeros(l, obj.max_iter);

obj.m_dot_pt_1 = zeros(l, obj.max_iter);
obj.m_dot_pt_2 = zeros(l, obj.max_iter);
obj.dvlidh = zeros(l, obj.max_iter);

obj.dv2dh = zeros(l, obj.max_iter);
obj.dvldp = zeros(l, obj.max_iter);
obj.dv2dp = zeros(l, obj.max_iter);
obj.terml = zeros(l, obj.max_iter);
obj.term2 = zeros(l, obj.max_iter);
obj.term3 = zeros (1, obj.max_iter);
obj.term4 = zeros(l, obj.max_iter);

98

obj.termb = zeros(l, obj.max_iter);
obj.term6 zeros (1, obj.max_iter);
obj.dpdt = zeros(l, obj.max_iter);
obj.dh_1dt = zeros(l, obj.max_iter);
obj.dh_2dt = zeros(l, obj.max_iter);

obj.time = zeros(l, obj.max_iter);
obj.m_dot_turb = zeros(l, obj.max_iter);
obj.eta = zeros(l, obj.max_iter);
obj.m_in = zeros(l, obj.max_iter);
obj.m_out = zeros(l, obj.max_iter);
obj.loop_time = zeros(l, obj.max_iter);
obj.water_level = zeros(l, obj.max_iter);
obj.x_1 = zeros(l, obj.max_iter);
obj.x_2 = zeros(l, obj.max_iter);

end

function obj = setup_initial_conditions (obj,

p0, x0)

if (obj.verbosity > 0)
fprintf ('Setting up initial
conditions for p = %0.2f bar and x
= %0.2f and length = %0.2f m...\n
, PO, x0, obj.tank_length);

end

obj.time(obj.i) = 0.0;
obj.p(obj.i) = poO;
obj.x(obj.i) = x0;

if (obj.verbosity > 1)

fprintf ('%10s = %10f\n', 'p', obj.p(
obj.i));

fprintf ('%10s = %10f\n', 'x', obj.x(
obj.i));

end

obj.t_1(obj.i) = IAPWS_IF97('Tsat_p', obj
.p(obj.i) * obj.MPA_PER_BAR);

obj.t_2(obj.1) obj.t_1(obj.1i);

obj.h_1(obj.1) IAPWS_IF97('h_pT', obj.p
(obj.i) * obj.MPA_PER_BAR, obj.t_1(obj

99

.i) - obj.EPSILON);

obj.h_2(obj.i) = IAPWS_IF97('h_pT', obj.p
(obj.i) * obj.MPA_PER_BAR, obj.t_2(ob]
.i) + obj.EPSILON);

obj.x_1(obj.i) = 0.0;

obj.x_2(obj.i) = 1.0;

obj.v_1(obj.1i) IAPWS_IF97('v_ph', obj.p
(obj.i) * obj.MPA_PER_BAR, obj.h_1(obj
Li))

obj.v_2(obj.i) = IAPWS_IF97('v_ph', obj.p
(obj.i) * obj.MPA_PER_BAR, obj.h_2(obj
L1))

obj.rho_1(obj.i) = 1 / obj.v_1(obj.i);

obj.rho_2(obj.i) = 1 / obj.v_2(obj.1i);

obj.rho_mixture(obj.i) = 1 / (obj.x(obj.i
) / obj.rho_2(obj.i) + (1 - obj.x(obj.
i)) / obj.rho_1(obj.i));

obj.v_mixture(obj.i) = 1 / obj.
rho_mixture (obj.1i);

obj.m_total(obj.i) = obj.rho_mixture(obj.
i) * obj.tank_volume;

obj.m_1(obj.i) = obj.m_total(obj.i) * (1
- obj.x(obj.1i));

obj.m_2(obj.i) = obj.m_total(obj.i) * obj
.x(obj.1);

obj.vol_1(obj.1i)
rho_1(obj.1i);

obj.vol_2(obj.1)
rho_2(obj.1i);

obj.vol_total(obj.i) = obj.vol_1(obj.i) +
obj.vol_2(obj.1i);

obj.vol_defect(obj.i) = abs(obj.vol_total
(obj.i) - obj.tank_volume) / obj.
tank_volume;

if (obj.vol_defect(obj.i) > obj.
VOLUME_TOLERANCE)

obj.volume_defect_detected = true;

obj.m_1Cobj.i) / obj.

obj.m_2(obj.i) / obj.

100

end

if (obj.verbosity > 0 && obj.vol_defect (
obj.i) > obj.VOLUME_TOLERANCE)

disp('Volume defect detected. Results
unreliable! ') ;

end

obj.water_level(obj.i) = obj.vol_1(obj.1i)
/ obj.vol_total(obj.i);

end
function obj = increment_time_step (obj,
m_dot_1_in, m_dot_1_out, m_dot_2_in,
m_dot_2_out, h_1_in, h_2_in)
start_time = tic;
obj.m_in(obj.i) = (m_dot_1_in +
m_dot_2_in) * obj.time_step;
obj.m_out(obj.i) = (m_dot_1_out +
m_dot_2_out) * obj.time_step;
h_f = IAPWS_IF97('hL_p', obj.p(obj.i) *
obj.MPA_PER_BAR) ;
h_g = IAPWS_IF97('hV_p', obj.p(obj.i) x
obj.MPA_PER_BAR) ;
obj.r(obj.i) = h_g - h_f;
obj.q_loss(obj.i) = obj.heat_loss();
obj.q_loss_1(obj.i) = (obj.vol_1(obj.i) /
obj.vol_total(obj.i)) * obj.q_loss(
obj.1);
obj.q_loss_2(obj.i) = (obj.vol_2(obj.i) /
obj.vol_total(obj.i)) * obj.q_loss(
obj.i);
obj.q_21(obj.i) = obj.heat_transfer_21();
obj.m_dot_1b(obj.i) = m_dot_1_in -
m_dot_1_out;
obj.m_dot_2b(obj.1i)
m_dot_2_out;
obj.mh_dot_1b(obj.i) = m_dot_1_in =*
h_1_in - m_dot_1_out * obj.h_1(obj.i);

m_dot_2_in -

101

obj.mh_dot_2b(obj.i) = m_dot_2_in *
h_2_in - m_dot_2_out * obj.h_2(obj.1i);
obj.m_c(obj.i) = 0.0;
obj.m_e(obj.1i) 0.0
if (obj.h_1(obj.i) > h_f)
obj.m_e(obj.i) = obj.rho_1(obj.i) =*
obj.vol_1(obj.i) * (obj.h_1(obj.1i)
- h_f) / (obj.TAU * obj.r(obj.i))

3

b

else
obj.m_c(obj.i) = obj.rho_1(obj.i) =*
obj.vol_1(obj.i) * (h_f - obj.h_1(
obj.i)) / (obj.TAU * obj.r(obj.i))
end
obj.m_dot_pt_1(obj.1i)
obj.m_e(obj.i);
obj.m_dot_pt_2(obj.1i)
obj.m_c(obj.i);
obj.m_1(obj.i + 1) = obj.m_1(obj.i) + (
obj.m_dot_1b(obj.i) + obj.m_dot_pt_1(
obj.i)) * obj.time_step;
obj.m_2(obj.i + 1) = obj.m_2(obj.i) + (
obj.m_dot_2b(obj.i) + obj.m_dot_pt_2(
obj.i)) * obj.time_step;
obj.m_total(obj.i + 1) = obj.m_1(obj.i +
1) + obj.m_2(obj.i + 1);
obj.dvidh(obj.i) = IAPWS_IF97('dvdh_ph',
obj.p(obj.i) * obj.MPA_PER_BAR, obj.
h_1(obj.1i));
obj.dv2dh(obj.i) = IAPWS_IF97('dvdh_ph',
obj.p(obj.i) * obj.MPA_PER_BAR, obj.
h_2(obj.1i));
obj.dvidp (obj.i) = IAPWS_IF97('dvdp_ph',
obj.p(obj.i) * obj.MPA_PER_BAR, obj.
h_1(obj.i));

obj.m_c(obj.i) -

obj.m_e(obj.i) -

102

obj.dv2dp (obj.i) = IAPWS_IF97('dvdp_ph',
obj.p(obj.i) * obj.MPA_PER_BAR, obj.
h_2(obj.1));
obj.terml(obj.i) = (obj.h_1(obj.i) * obj.
dvidh(obj.i) - obj.v_1(obj.i)) * (obj.
m_1(obj.i + 1) - obj.m_1(obj.i)) / obj
.time_step;
obj.term2(obj.i) = (obj.h_2(obj.i) * obj.
dv2dh (obj.i) - obj.v_2(obj.i)) * (obj.
m_2(obj.i + 1) - obj.m_2(obj.i)) / obj
.time_step;
obj.term3(obj.i) = obj.dvidh(obj.i) * (
obj.mh_dot_1b(obj.i) + obj.m_dot_pt_1(
obj.i) * h_g + obj.q_21(obj.i) - obj.
g_loss_1(obj.1i));
obj.term4 (obj.i) = obj.dv2dh(obj.i) * (
obj.mh_dot_2b(obj.i) + obj.m_dot_pt_2(
obj.i) * h_g - obj.q_21(obj.i) - obj.
g_loss_2(obj.1i));
obj.term5(obj.i) = (obj.dvidp(obj.i) +
obj.v_1(obj.i) * obj.dvidh(obj.i) *
1000) * obj.m_1(obj.1i);
obj.term6(obj.i) = (obj.dv2dp(obj.i) +
obj.v_2(obj.i) * obj.dv2dh(obj.i) =*
1000) * obj.m_2(obj.1i);
obj.dpdt(obj.i) = ((obj.terml(obj.i) +
obj.term2(obj.i) - obj.term3(obj.i) -
obj.term4 (obj.i)) / (obj.termb(obj.1i)
+ obj.term6(obj.i))) * obj.BAR_PER_MPA
obj.p(obj.i + 1) = obj.p(obj.i) + obj.
dpdt (obj.i) * obj.time_step;
if (obj.verbosity > 1 && mod(obj.i, 100)
== 0)
fprintf ('%10s = %10.1f\n', 'Time',
obj.time(obj.i) + obj.time_step);

103

fprintf ('%10s
obj.i + 1));

%510f\n', 'p', obj.p(

end
obj.dh_1dt(obj.i) = (obj.mh_dot_1b(obj.i)
+ obj.m_dot_pt_1(obj.i) * h_g + obj.
q_21(obj.i) - obj.q_loss_1(obj.i) +
obj.m_1(obj.i) * obj.v_1(obj.i) * obj.
dpdt (obj.i) * 100 - obj.h_1(obj.i) * (
obj.m_1(obj.i + 1) - obj.m_1(obj.1i)) /
obj.time_step) / obj.m_1(obj.i);
obj.h_1(obj.i + 1) = obj.h_1(obj.i) + obj
.dh_1dt (obj.i) * obj.time_step;
obj.x_1(obj.i + 1) = TIAPWS_IF97('x_ph',
obj.p(obj.i + 1) * obj.MPA_PER_BAR,
obj.h_1(obj.i + 1));
obj.dh_2dt (obj.i) = (obj.mh_dot_2b(obj.i)
+ obj.m_dot_pt_2(obj.i) * h_g - obj.
q_21(obj.i) - obj.q_loss_2(obj.i) +
obj.m_2(obj.i) * obj.v_2(obj.i) * obj.
dpdt (obj.i) * 100 - obj.h_2(obj.i) * (
obj.m_2(obj.i + 1) - obj.m_2(obj.1i)) /
obj.time_step) / obj.m_2(obj.1i);
obj.h_2(obj.i + 1) = obj.h_2(obj.i) + obj
.dh_2dt (obj.i) * obj.time_step;
obj.x_2(obj.i + 1) = IAPWS_IF97('x_ph',
obj.p(obj.i + 1) * obj.MPA_PER_BAR,
obj.h_2(obj.i + 1));
obj.t_1(obj.i + 1) = IAPWS_IF97('T_ph',
obj.p(obj.i + 1) * obj.MPA_PER_BAR,
obj.h_1(obj.i + 1));
obj.t_2(obj.i + 1) = IAPWS_IF97('T_ph',
obj.p(obj.i + 1) * obj.MPA_PER_BAR,
obj.h_2(obj.i + 1));
obj.v_1(obj.i + 1) = IAPWS_IF97('v_ph',
obj.p(obj.i + 1) * obj.MPA_PER_BAR,
obj.h_1(obj.i + 1));

104

obj.v_2(obj.i + 1) = IAPWS_IF97('v_ph',
obj.p(obj.i + 1) * obj.MPA_PER_BAR,
obj.h_2(obj.i + 1));

obj.rho_1(obj.i + 1)
+ 1)
obj.rho_2(obj.i + 1)
+ 1)
obj.vol_1(obj.i + 1) obj.m_1(obj.i + 1)
* obj.v_1(obj.i + 1);
obj.vol_2(obj.i + 1) = obj.m_2(obj.i + 1)
* obj.v_2(obj.i + 1);
obj.vol_total(obj.i + 1) = obj.vol_1(obj.
i + 1) + obj.vol_2(obj.i + 1);
obj.vol_defect(obj.i + 1) = abs(obj.
vol_total(obj.i + 1) - obj.tank_volume
) / obj.tank_volume;
if (obj.vol_defect(obj.i) > obj.
VOLUME_TOLERANCE)
obj.volume_defect_detected = true;
end
if (obj.verbosity > 0 && mod(obj.i, 100)
== 0 && obj.vol_defect(obj.i + 1) >
obj.VOLUME_TOLERANCE)
disp('Volume defect detected. Results
unreliable! ') ;

1 / obj.v_1(obj.1i

1 / obj.v_2(obj.1i

end

obj.water_level(obj.i + 1) = obj.
get_water_level(obj.i + 1);

obj.x(obj.i + 1) = obj.get_quality(obj.1i
+ 1);

if (obj.verbosity > 1 && mod(obj.i, 100)
== 0)

fprintf ('%10s = %10f\n', 'x', obj.x(
obj.i + 1));
end

105

obj.time(obj.i + 1) = obj.time(obj.i) +
obj.time_step;
obj.loop_time(obj.i) = toc(start_time);
obj.i = obj.i + 1;
end
function value = heat_transfer_21(obj)
value = 5e4 x (obj.t_2(obj.i) - obj.t_1(
obj.i)) * obj.vol_1(obj.i) * obj.
KW_PER_W;
end
function value = heat_loss (obj)

t_acc = IAPWS_IF97('Tsat_p', obj.p(obj.i)
* obj.MPA_PER_BAR);

t_inf = 313.15;

r_insul_o = obj.PIPE_RADIUS + obj.
PIPE_THICKNESS + obj.
INSULATION_THICKNESS;

r_pipe_i = obj.PIPE_RADIUS - obj.
PIPE_THICKNESS;

sa_tank = 2 * pi *x obj.PIPE_RADIUS * obj.
tank_length,;

q = (t_acc - t_inf) / (r_insul_o * log(obj
.PIPE_RADIUS / r_pipe_i) / obj.
K_INSULATION + r_insul_o * log(
r_insul_o / obj.PIPE_RADIUS) / obj.
K_PIPE + 1 / obj.H_AIR);

value = q * sa_tank * obj.KW_PER_W;

value = 0.0;

end
function value = get_quality(obj, loop)
value = obj.m_2(loop) / (obj.m_1(loop) +
obj.m_2(loop));

end
function value = get_water_level(obj, loop)
value = obj.vol_1(loop) / obj.vol_total(
loop);
end

106

function value =

adjust_masses_for_new_qualities (obj, loop)

quality_1 = IAPWS_IF97('x_ph', obj.p(loop)
* obj.MPA_PER_BAR, obj.h_1(loop));

quality_2 = IAPWS_IF97('x_ph', obj.p(loop)
* obj.MPA_PER_BAR, obj.h_2(loop));

m_1 = obj.m_1(loop);

m_2 obj.m_2(loop);

if quality_1 > 0.0
m_1 = obj.m_1(loop) * (1 - quality_1);
m_2 = obj.m_2(loop) + (obj.m_1(loop) *

quality_1);

end
if quality_2 < 1.0
m_1 =m_1 + (obj.m_2(loop) * (1 -
quality_2));
m_2 = m_2 * quality_2;

end
value = m_2 / (m_1 + m_2);
end
end
methods (Static)
function [eff, m_dot_stm] = run_turbine(

p_turb_in, p_turb_exh, turb_power,
cond_depression)
turb_power = turb_power * 1le6;
MPA_PER_BAR = 0.1;
h_turb_in = IAPWS_IF97('hV_p', p_turb_in
* MPA_PER_BAR);
s_turb_in = XSteam('sV_p', p_turb_in);
t_exh = TIAPWS_IF97('Tsat_p', p_turb_exh =*
MPA_PER_BAR);
h_exh = XSteam('h_ps', p_turb_exh,
s_turb_in) ;
w_turb = h_turb_in - h_exh;
m_dot_stm = turb_power * 1le-3 / w_turb;

107

end

h_pump_out = IAPWS_IF97('h_pT', p_turb_in
* MPA_PER_BAR, t_exh -
cond_depression);

h_cond_out = IAPWS_IF97('h_pT"',
p_turb_exh * MPA_PER_BAR, t_exh -
cond_depression) ;

qg_cond = h_exh - h_cond_out;

w_pump = h_pump_out - h_cond_out;

gq_in = w_turb - w_pump + q_cond;

eff = w_turb / q_in;

function [eff, m_dot_total, m_dot_1, h_1,
m_dot_2, h_2] = run_turbine_test(p_turb_in

3

h_turb_in, p_turb_exh, turb_power,

cond_depression)

turb_power = turb_power * 1lef;

MPA_PER_BAR = 0.1;

x_turb_in = IAPWS_IF97('x_ph', p_turb_in
* MPA_PER_BAR, h_turb_in);

hV_turb_in = IAPWS_IF97('hV_p', p_turb_in
* MPA_PER_BAR);

h_2 = hV_turb_in;

hL_turb_in = IAPWS_IF97('hL_p', p_turb_in
* MPA_PER_BAR);

h_1 = hL_turb_in;

sV_turb_in = XSteam('sV_p', p_turb_in);

t_exh = IAPWS_IF97('Tsat_p', p_turb_exh x*
MPA_PER_BAR) ;

h_exh = XSteam('h_ps', p_turb_exh,
sV_turb_in) ;

w_turb = hV_turb_in - h_exh;

m_dot_stm = turb_power * le-3 / w_turb;

m_dot_total = m_dot_stm / x_turb_in;

m_dot_1 = m_dot_total * (1 - x_turb_in);

m_dot_2 = m_dot_stm;

h_pump_out = IAPWS_IF97('h_pT', p_turb_in
* MPA_PER_BAR, t_exh -

108

cond_depression) ;

h_cond_out = IAPWS_IF97('h_pT',
p_turb_exh * MPA_PER_BAR, t_exh -
cond_depression);

q_cond = h_exh - h_cond_out;

w_pump = h_pump_out - h_cond_out;

q_in = w_turb - w_pump + q_cond;
eff = w_turb / q_in;

end

function value = get_minimum_pressure (

initial_pressure, max_power,
min_efficiency, verbosity)
min_pressure = 0.0;
efficiency = 0.0;
steam_flow = 0.0;
while efficiency < min_efficiency
if min_pressure < initial_pressure

min_pressure = min_pressure +
1.0;
end
if (min_pressure >= initial_pressure)
assert (true, 'Minimum efficiency
(%.2f) is higher than
efficiency at initial pressure
(%.2f bar) .\nTry setting the
initial pressure higher or the
minimum efficiency lower.',
min_efficiency,
initial_pressure);
end

[efficiency, steam_flow] =
steam_accumulator.run_turbine (
min_pressure, 0.9, max_power, 5);

end
if verbosity > O

fprintf ('Minimum pressure allowable

for desired minimum efficiency

109

(h.2f) dis %.2f bar\n',
min_efficiency, min_pressure);

end
value = min_pressure;
end
function value = get_minimum_steam_mass(

initial_pressure, minimum_pressure, power,
duration, verbosity)
i = 0;

efficiency = 0.0;
steam_mass = 0.0;
steam_flow = 0.0;
current_pressure = initial_pressure;
while i <= duration
current_pressure = initial_pressure +

(minimum_pressure -
initial_pressure) * (i / duration
) ;

[efficiency, steam_flow] =
steam_accumulator.run_turbine(
current_pressure, 0.9, power, 5);

steam_mass = steam_mass + steam_flow;

i=1i + 1;

end
if verbosity > 0
fprintf ('Minimum steam mass is %.6e

kg\n', steam_mass) ;
end
value = steam_mass;
end
function value = get_minimum_liquid_mass(

steam_mass, initial_pressure,
final_pressure, verbosity)
MPA_PER_BAR = 0.1;

A = 11.934;
B = 3985;
C = 234.1;

110

average_pressure = (initial_pressure +
final_pressure) / 2;

c_p_avg = XSteam('CpL_p',
average_pressure) ;

h_f_ref = IAPWS_IF97('hL_p',
average_pressure *x MPA_PER_BAR);

h_g_ref = IAPWS_IF97('hV_p',
average_pressure * MPA_PER_BAR);

t_ref = IAPWS_IF97('Tsat_p',
average_pressure * MPA_PER_BAR) -
273.15;

r_ref = h_g_ref - h_f_ref;

a = ((B/ (A - log(average_pressure))) -
C + 273.15) / 647;

b = (t_ref + 273.15) / 647;

c ((1 - a) / (1 - b))"(0.38);

numerator = steam_mass * r_ref * c;

d =1/ (A - log(initial_pressure));

e =1/ (A - log(final_pressure));

denominator = c_p_avg * B * (d - e);

min_liquid_mass = numerator / denominator

if verbosity > O
fprintf ('Minimum liquid mass is %.6e

kg\n', min_liquid_mass);
end
value = min_liquid_mass;
end
function value = get_minimum_tank_length (

liquid_mass, pressure, quality, verbosity)

PIPE_RADIUS = 0.4064,

MPA_PER_BAR 0.1;

v_1 = IAPWS_IF97('vL_p', pressure x*
MPA_PER_BAR) ;

v_2 = IAPWS_IF97('vV_p', pressure *
MPA_PER_BAR);

rho_1 =1 / v_1;

111

rho_ 2 =1/ v_2;
rho_mixture = 1 / (quality / rho_2 + (1 -
quality) / rho_1);

steam_mass = liquid_mass * quality / (1 -
quality);
m_total = liquid_mass + steam_mass;

length = m_total / (rho_mixture * pi x*
PIPE_RADIUS"2);
if verbosity > O
fprintf ('Minimum tank length is %.2f
m\n', length);

end
value = length;
end
function accumulator = size_accumulator(

initial_pressure, initial_quality,
minimum_efficiency, max_power,
max_duration, time_step, max_iter,
verbosity)
minimum_pressure = steam_accumulator.
get_minimum_pressure(initial_pressure,
max_power , minimum_efficiency,
verbosity) ;
required_steam_mass = steam_accumulator.
get_minimum_steam_mass (
initial_pressure, minimum_pressure,
max_power , max_duration, verbosity);
required_liquid_mass = steam_accumulator.
get_minimum_liquid_mass(
required_steam_mass, initial_pressure,
minimum_pressure, verbosity);
tank_length = steam_accumulator.
get_minimum_tank_length (
required_liquid_mass, initial_pressure
, initial_quality, verbosity);
accumulator = steam_accumulator (
initial_pressure, initial_quality,

112

tank_length, time_step, max_iter,
verbosity) ;
accumulator.high_pressure =
initial_pressure;
accumulator.low_pressure
minimum_pressure;
accumulator.high_quality
initial_quality;
accumulator.low_quality = 0.01;
accumulator .minimum_efficiency
minimum_efficiency;
accumulator .minimum_water_mass

required_liquid_mass;
end
end
end

C.1.2 Validation and Verification Model

The MATLAB class handle used to define the steam accumulator used

in the validation and verification study is provided below.

classdef test_accumulator < handle

properties
verbosity = 0
i
max_iter
time_step
tank_length
tank_height
tank_width
tank_volume
water_level
high_pressure
low_pressure

113

high_quality

low_quality

minimum_efficiency
minimum_water_mass
volume_defect_detected = false
initial_total_enthalpy
initial_steam_mass
initial_water_mass
initial_water_level
prepared_for_evaluation = false
p = []

x = []

v_1l = []

v_2 = []

rho_1 = []

rho_2 []
rho_mixture = []
v_mixture = []
t_1 = []

t_2 = []

m_1 = []

m_2 = []
m_total = []
vol_1 = []
vol_2 []
vol_total = []
vol_defect = []
h_1 = []

h_2 = []
q_loss = []
g_loss_1 = []
q_loss_2 (]
q_21 = []
m_dot_1b = []
m_dot_2b = []
mh_dot_1b []
mh_dot_2b L]

114

r = []

m_c = []

m_e = []
m_dot_pt_1 = []
m_dot_pt_2 = []
dvidh = []
dv2dh = []
dvidp = []
dv2dp = []
terml = []
term2 = []
term3 = []
termd = []
termb = []
term6 = []

dpdt = []
dh_1dt = []
dh_2dt = []
time = []
m_dot_turb = []
eta = []

m_in = []

m_out = []
loop_time = []
x_1 = []

x_2 = []

end
properties (Constant)
TAU = 85.0), relaxation time [s]
EPSILON = 0.02 7 used to disrupt equilibrium
in temperature between
% liquid and steam phases
when setting up initial
% conditions
MPA_PER_BAR 0.1 %» MPa per bar [MPa/bar]
BAR_PER_MPA 10 % bar per MPa [bar/MPa]
W_PER_KW = 1000 % watts per kilowatt [W/kW]

115

KW_PER_W = 0.001 % kilowatts per watt [kW/
W]
MASS_TOLERANCE = 0.01 % tolerance used to
determine if a mass
% imbalance 1is
present [%]
VOLUME_TOLERANCE = 0.05 7 tolerance used to
determine if a volume
% imbalance 1is
present
PIPE_RADIUS = 0.4064 % radius of the
natural gas pipeline being used
% to construct the
accumulator
PIPE_THICKNESS = 0.15875 % thickness of
the natural gas pipeline
INSULATION_THICKNESS = 0.2032 % insulation
thickness
K_INSULATION = 0.079 % thermal
conductivity of the insulation
K_PIPE = 41.0 % thermal conductivity of the
pipe
H_AIR = 15.0 % heat transfer coefficient
of the air
PASCALS_PER_BAR
/bar]
BAR_PER_PASCAL = 1le-5 % bar per Pascal [bar
/Pa]
ATM_PRESSURE_IN_BAR = 1.01325 % atmospheric
pressure [bar]

1eb % Pascals per bar [Pa

end
methods
function obj = test_accumulator (p0O, 1l_tank,
h_tank, w_tank, 1l_water, dt, max_iter,
verbosity)
if nargin > O
obj.verbosity = verbosity;

116

obj.i = 1;
obj.max_iter = max_iter;
obj.time_step = dt;
obj.tank_length = 1_tank;
obj.tank_height = h_tank;
obj.tank_width = w_tank;
obj.initial_water_level = 1l_water;
x0 = test_accumulator.
get_quality_from_water_level (pO,
1_water, obj.tank_volume);
obj.initialize_arrays () ;
obj.setup_initial_conditions (p0, x0);
end
end
function value = get.tank_volume (obj)
value = obj.tank_width * obj.tank_height
* obj.tank_length;
end
function value = get.initial_total_enthalpy/(
obj)
value = obj.h_1(1) * obj.m_1(1) + obj.h_2
(1) * obj.m_2(1);
end
function value = get.initial_water_mass (obj)
value = obj.m_1(1);
end
function value = get.initial_steam_mass (obj)
value = obj.m_2(1);
end
function run_test(obj, charge_enthalpy_data,
charge_flow_data, discharge_data,
time_step)
for j = 1:numel(charge_enthalpy_data)
obj.time_step = time_step;
charge_flow = charge_flow_data(j);
charge_enthalpy =
charge_enthalpy_data(j);

117

discharge_flow = discharge_data(j);
obj.increment_time_step (0.0, 0.0,
charge_flow, discharge_flow, 0.0,
charge_enthalpy);
end
end
function [mass_charged, charge_time,
final_quality, volume_defect] = test_1(obj
duration, time_step)
mass_charged = 0.0;
obj.time_step = time_step;
if (obj.verbosity > 0)
fprintf ('Commencing charge for %.2f
seconds .\n', duration);
end
start_time = tic;
i_begin = obj.1i;
while (obj.i - i_begin) * obj.time_step
<= duration
charge_steam_flow = 3.0;
charge_liquid_flow = 0.0;
h_1_in = TAPWS_IF97('hL_p', 49.0 x*
obj.MPA_PER_BAR) ;
h_2_in = TAPWS_IF97('hV_p', 49.0 *
obj.MPA_PER_BAR) ;
if (obj.verbosity > 1 && mod(obj.1i,

100) == 0)
fprintf ('%10s = %.4f.\n', 'Tank
Level', obj.get_water_level(
obj.i));

fprintf ('Steam flow: %.2f kg/s.\n
', charge_steam_flow);

fprintf ('Liquid flow: %.2f kg/s.\
n', charge_liquid_flow);

end

118

mass_charged = mass_charged + (
charge_liquid_flow +
charge_steam_flow) * obj.time_step
obj.increment_time_step (
charge_liquid_flow, 0.0,
charge_steam_flow, 0.0, h_1_in,
h_2_in);
end
if (obj.verbosity > 0)
fprintf ('Charge function complete in
%.2f seconds.\n', toc(start_time))
fprintf ('Time to charge %.2f hours.\n
', (obj.i - i_begin) * obj.
time_step / 3600);
end
charge_time = (obj.i - i_begin) * obj.
time_step;
final_quality = obj.x(obj.1i);

volume_defect = obj.
volume_defect_detected;
end
function [mass_discharged, final_quality,
volume_defect] = discharge(obj, power,...
time, minimum_pressure, time_step)
mass_discharged = 0.0;

if (obj.verbosity > 0)
fprintf ('Discharging at %.1f MW for
%.1f hour(s).\n', power, time /
3600) ;
end
start_time = tic;
obj.time_step = time_step;
i_begin = obj.1i;
while (obj.i - i_begin) * obj.time_step <
time

119

[obj.eta(obj.i), obj.m_dot_turb(obj.i
)] = obj.run_turbine(obj.p(obj.1i),
0.9, power, 5);
mass_discharged = mass_discharged +
obj.m_dot_turb(obj.i) * obj.
time_step;
obj.increment_time_step_test (0.0,
0.0, 0.0, obj.m_dot_turb(obj.i),
0.0, 0.0);
end
if (obj.verbosity > 0)
fprintf ('Discharge function complete
in %.2f seconds.\n', toc(
start_time));
fprintf ('Discharge complete (7%.2f MW,
%.2f hours).\n', power, (obj.i -
i_begin) * obj.time_step / 3600);
end
final_quality = obj.x(obj.1i);
volume_defect obj.
volume_defect_detected;

end
function [mass_discharged, final_quality,
volume_defect] = discharge_test (obj, power
time, time_step)
mass_discharged = 0.0;
if (obj.verbosity > 0)
fprintf ('Discharging at %.1f MW for
%.1f hour(s).\n', power, time /
3600) ;
end
start_time = tic;
obj.time_step = time_step;
i_begin = obj.1i;
while (obj.i - i_begin) * obj.time_step <
time

120

[obj.eta(obj.i), obj.m_dot_turb(obj.i
), m_dot_1, h_1, m_dot_2, h_2] =
obj.run_turbine_test (obj.p(obj.1i),
obj.h_2(obj.i), 0.9, power, 5);
mass_discharged = mass_discharged +
obj.m_dot_turb(obj.i) * obj.
time_step - m_dot_1 * obj.
time_step;
obj.increment_time_step(m_dot_1, 0.0,
0.0, obj.m_dot_turb(obj.i), h_1,
0.0);
end
if (obj.verbosity > 0)
fprintf ('Discharge function complete
in %.2f seconds.\n', toc(
start_time)) ;
fprintf ('Discharge complete (%.2f MW,
%.2f hours).\n', power, (obj.i -
i_begin) * obj.time_step / 3600);
end
final_quality = obj.x(obj.1i);
volume_defect obj.
volume_defect_detected;

end
function obj = wait(obj, time, time_step)
obj.time_step = time_step;
begin_i = obj.i;
while (obj.i - begin_i) * obj.time_step <
time
obj.increment_time_step (0.0, 0.0,
0.0, 0.0, 0.0, 0.0);

end

end

function obj = get_plots(obj)
time_plot = obj.time(l:0bj.1i);

p_plot = obj.p(l:0bj.1i);

121

figure (1) ;

plot (time_plot, p_plot);
hold on;

xlabel ('Time [s]');

ylabel ('Pressure [bar]');
x1lim([1, max(time_plot)]);

x_plot = obj.x(1l:0bj.1i);
figure (2);

plot (time_plot, x_plot * 100);
hold on;

xlabel ('Time [s]');

ylabel ('Quality [%]');
x1im([1, max(time_plot)]);

t_1_plot = obj.t_1(l:0bj.1i);

t_2_plot obj.t_2(1l:0bj.1i);

figure (3);

plot (time_plot, t_1_plot - 273.15, 'r')
hold on;

plot(time_plot, t_2_plot - 273.15)
xlabel (' Time [s]');

ylabel ('Phase Temperature [C]');
legend('Liquid', 'Steam');

x1im([1, max(time_plot)]);

vol_1_plot = obj.vol_1(l:0bj.i);
vol_2_plot = obj.vol_2(l:0bj.i);
figure (4);

plot (time_plot, vol_1_plot, 'r');

hold on;

plot (time_plot, vol_2_plot);

plot (time_plot, vol_1_plot + vol_2_plot, '
g');

xlabel ('Time [s]');

ylabel ('Phase Volume [m~3]');

legend('Liquid', 'Steam', 'Total');

122

x1lim([1, max(time_plot)]);

eta_plot = obj.eta(l:0bj.1i);

eta_non_zeros = eta_plot(eta_plot™=0);

average_eta = mean(eta_non_zeros) ;

average_eta_plot = average_eta * ones(1,
obj.i);

figure (6);

plot (time_plot, eta_plot * 100);

hold on;

plot (time_plot, average_eta_plot * 100,
")

xlabel ('Time [s]');

ylabel ('Efficiency [%]"');

x1im ([1, max(time_plot)]);

'r

h_1_plot = obj.h_1(1:0bj.i);

m_1_plot = obj.m_1(1l:0bj.1i);

h_2_plot = obj.h_2(1:0bj.i);

m_2_plot = obj.m_2(1l:0bj.1i);

figure (7);

plot (time_plot, times(h_1_plot, m_1_plot),
't');

hold on;

plot (time_plot, times(h_2_plot, m_2_plot))

plot(time_plot, times(h_1_plot, m_1_plot)

+ times(h_2_plot, m_2_plot), 'g');

xlabel ('Time [s]');

ylabel ('Phase Enthalpy [kJ]');

legend('Liquid', 'Steam', 'Total');

x1im([1, max(time_plot)]);

figure (8);

plot (time_plot, m_1_plot, 'r');
hold on;

plot (time_plot, m_2_plot);

123

plot(time_plot, m_1_plot + m_2_plot, 'g');
xlabel('Time [s]');

ylabel ('Phase Mass [kg]');
legend('Liquid', 'Steam', 'Total');

x1im ([1, max(time_plot)]);

m_dot_pt_1_plot = obj.m_dot_pt_1(l:0bj.1i);

m_dot_pt_2_plot obj.m_dot_pt_2(1l:0bj.1i);

figure (9);

plot (time_plot, m_dot_pt_1_plot, 'r');

hold on;

plot (time_plot, m_dot_pt_2_plot);

plot (time_plot, m_dot_pt_1_plot +
m_dot_pt_2_plot, 'g');

xlabel ('Time [s]');

ylabel ('Mass Change from Evaporation/
Condensation [kg/s]');

legend('Liquid', 'Steam', 'Total');

x1im([1, max(time_plot)]);

water_level_plot = obj.water_level(l:obj.i
)

figure (10);

plot (time_plot, water_level_plot);

hold on;

xlabel ('Time [s]');

ylabel ('Tank Water Level [%]');

x1im([1, max(time_plot)]);

v_1_plot obj.v_1(1l:0bj.1);

v_2_plot = obj.v_2(1l:0bj.1i);

figure (11);

plot (time_plot, v_1_plot, 'r');

hold on;

plot (time_plot, v_2_plot);

plot (time_plot, v_1_plot + v_2_plot, 'g');
xlabel ('Time [s]');

124

ylabel ('Specific Volume [m~3/kgl');
legend('Liquid', 'Steam', 'Total');
x1im([1, max(time_plot)]);

x_1_plot obj.x_1(1l:0bj.1);
x_2_plot = obj.x_2(1:0bj.1i);
figure (12);

plot (time_plot, x_1_plot, 'r');
hold on;

plot (time_plot, x_2_plot);
xlabel (' Time [s]');

ylabel ('Quality');

legend ('Liquid', 'Steam');

x1im ([1, max(time_plot)]);

m_c_plot obj.m_c(l:0bj.1i);

m_e_plot = obj.m_e(l:0bj.1i);

figure (13);

plot (time_plot, m_c_plot);

hold on;

plot(time_plot, m_e_plot);
xlabel (' Time [s]');

ylabel ('Mass conversion rate [kg/s]');
legend ('Condensation', 'Evaporation');
x1im([1, max(time_plot)]);

q_21_plot = obj.q_21(1l:0bj.1i);

figure (14);

plot (time_plot, q_21_plot);

hold on;

xlabel ('Time [s]');

ylabel ('Heat Transfer from 2 to 1 [kJ/s]')

x1im ([1, max(time_plot)]);

end
function obj = reset(obj, pressure, quality)

125

obj.1
obj.

ob]j

end

1
initialize_arrays();
.setup_initial_conditions (pressure,

quality);

function obj = soft_reset(obj)

if

end

obj.
obj.
obj.
obj.
obj.
obj.
obj.

end) ;

ob]j
obj

obj.
obj.
obj.

obj.
ob]j
obj
obj
obj

obj.
obj.
obj.
obj.
obj.

obj
ob]j
obj
obj

obj.i <=1
return;

obj.p(obj.i:end);

obj.x(obj.i:end);

obj.v_1(obj.i:end);
obj.v_2(obj.i:end);

rho_1 = obj.rho_1(obj.i:end);

rho_2 = obj.rho_2(obj.i:end);

rho_mixture = obj.rho_mixture(obj.i:

< < X 'O

N =

=l

.v_mixture =obj.v_mixture(obj.i:end);
.t_1 = obj.t_1(obj.i:end);
= obj.t_2(obj.i:end);
= obj.m_1(obj.i:end);

_ obj.m_2(obj.i:end);
m_total = obj.m_total(obj.i:end);
.vol_1 = obj.vol_1(obj.i:end);

.vol_2 obj.vol_2(obj.i:end);
.vol_total = obj.vol_total(obj.i:end);
.vol_defect = obj.vol_defect(obj.i:end

B B o
N =N

h_1 = obj.h_1(obj.i:end);

h_2 = obj.h_2(obj.i:end);

g_loss = obj.q_loss(obj.i:end);
q_loss_1 = obj.q_loss_1(obj.i:end);
obj.q_loss_2(obj.i:end);
.q_21 = obj.q_21(obj.i:end);

.m_dot_1b = obj.m_dot_1b(obj.i:end);
.m_dot_2b obj.m_dot_2b(obj.i:end);
.mh_dot_1b = obj.mh_dot_1b(obj.i:end);

Q
=
o
n
0
N

]

126

end

obj.mh_dot_

2b =

obj.mh_dot_2b(obj.i:end);

obj.r = obj.r(obj.i:end);
obj.m_c = obj.m_c(obj.i:end);
obj.m_e = obj.m_e(obj.i:end);

obj.m_dot_p
)
obj.m_dot_p
)
obj.dvldh
obj.dv2dh
obj.dvldp
obj.dv2dp
obj.terml
obj.term2
obj.term3
obj.term4
obj.termb
obj.termb
obj.dpdt =
obj.dh_1dt
obj.dh_2dt
obj.time =
obj.m_dot_t
)

t_1
t_2

ob]j
obj
obj
obj
obj
ob]j
obj
obj
obj
obj

obj.m_dot_pt_1(obj.i:end

obj.m_dot_pt_2(obj.i:end

.dvlidh(obj.i:end);
.dv2dh (obj.i:end);
.dvlidp(obj.i:end);
.dv2dp (obj.i:end);
.terml (obj.i:end);
.term2(obj.i:end);
.term3(obj.i:end);
.term4 (obj.i:end);
.termb5(obj.i:end);
.term6 (obj.i:end);

obj.dpdt (obj.i:end);

obj.dh_1dt (obj.i:end);
obj.dh_2dt (obj.i:end);

obj.time (obj.i:end);

urb

obj.m_dot_turb(obj.i:end

obj.eta = obj.eta(obj.i:end);
obj.m_in(obj.i:end);
obj.m_out (obj.i:end);

obj.m_in =
obj.m_out =

obj.loop_time
obj.water_level

end) ;
obj.i = 1;

obj.time (obj.1i)
ep =

obj.time_st

function obj =
charge_pressure, charge_flowrate)

3

for j = 1:3

prep_

127

obj.loop_time(obj.i:end);
= obj.water_level(obj.i:

[
o

for_eval(obj, power, time

[mass_discharged, final_qualitym,
volume_defect] = obj.discharge(
power , time, obj.low_pressure,
1.0);

[mass_charged, charge_time,
final_quality, volume_defect] =
obj.charge (obj.high_pressure, obj.
high_quality, charge_pressure,
charge_flowrate, 1.0);

end
obj.soft_reset ();
obj.prepared_for_evaluation = true;

end
function [avg_mass_charged, avg_charge_time,
avg_mass_discharged, ...
avg_min_quality, avg_max_quality,
valid_model] =...
evaluate_accumulator (obj, power, time
, charge_pressure, charge_flowrate

)
n = 1;
mass_charged = zeros(l, n);
mass_discharged = zeros(l, n);
charge_time = zeros(l, n);
volume_defect_d = zeros(1l, n);
volume_defect_c = zeros(l, n);
max_quality = zeros (1, n);
min_quality = zeros (1, n);
parfor j = 1:n

par_object = obj;

[mass_discharged(j), min_quality(j),
volume_defect_d(j)] = par_object.
discharge_test (power, time, obj.
time_step) ;

[mass_charged(j), charge_time(j),
max_quality(j), volume_defect_c(j)
] = par_object.charge(obj.

128

high_pressure, obj.high_quality,
charge_pressure, charge_flowrate,
obj.time_step);

end

avg_mass_charged = mean(mass_charged) ;

avg_charge_time = mean(charge_time);

avg_mass_discharged = mean(
mass_discharged);

avg_min_quality = mean(min_quality);

avg_max_quality = mean(max_quality);

valid_model = all(volume_defect_d ==
false) && all(volume_defect_c == false
)

end
end
methods (Access = private)
function obj = initialize_arrays(obj)

obj.p = zeros(l, obj.max_iter);

obj.x = zeros(l, obj.max_iter);

obj.v_1 = zeros(l, obj.max_iter);

obj.v_2 = zeros(l, obj.max_iter);

obj.rho_1 = zeros(l, obj.max_iter);

obj.rho_2 = zeros(l, obj.max_iter);

obj.rho_mixture = zeros(l, obj.max_iter);

obj.v_mixture = zeros(l, obj.max_iter);

obj.t_1 = zeros(1l, obj.max_iter);

obj.t_2 = zeros(l, obj.max_iter);

obj.m_1 = zeros(l, obj.max_iter);

obj.m_2 = zeros(l, obj.max_iter);

obj.m_total = zeros(l, obj.max_iter);

obj.vol_1 = zeros(l, obj.max_iter);

obj.vol_2 = zeros(l, obj.max_iter);

obj.vol_total = zeros(l, obj.max_iter);

obj.vol_defect = zeros(l, obj.max_iter);

obj.h_1 = zeros(l, obj.max_iter);

obj.h_2 = zeros(l, obj.max_iter);

obj.q_loss = zeros(l, obj.max_iter);

129

obj
obj
ob]j
obj
obj
obj
obj
ob]j
ob]j
obj
obj
obj

obj.
obj.

obj
obj
obj
obj
ob]j
obj
obj
obj
obj
ob]j
ob]j
obj
obj
ob]j
ob]j
obj
obj
obj
obj
obj
end

.q_loss_1 = zeros(l, obj.max_iter);
.q_loss_2 = zeros(l, obj.max_iter);
.q_21 = zeros (1, obj.max_iter);

.m_dot_1b = zeros(l, obj.max_iter);
.m_dot_2b = zeros (1, obj.max_iter);
.mh_dot_1b = zeros(l, obj.max_iter);

.mh_dot_2b = zeros(l, obj.max_iter);

.r = Z

eros (1, obj.max_iter);

.m_c = zeros(l, obj.max_iter);

.m_e = zeros(l, obj.max_iter);
.m_dot_pt_1 = zeros(l, obj.max_iter);
.m_dot_pt_2 = zeros(l, obj.max_iter);
dvidh = zeros(l, obj.max_iter);
dv2dh = zeros(l, obj.max_iter);
.dvldp = zeros(l, obj.max_iter);
.dv2dp = zeros(l, obj.max_iter);
.terml = zeros(l, obj.max_iter);
.term2 = zeros(l, obj.max_iter);
.term3 = zeros(l, obj.max_iter);
.term4 = zeros(l, obj.max_iter);
.termb = zeros(1l, obj.max_iter);
.term6 = zeros(l, obj.max_iter);
.dpdt = zeros(l, obj.max_iter);
.dh_1dt = zeros(l, obj.max_iter);
.dh_2dt = zeros(l, obj.max_iter);
.time = zeros(l, obj.max_iter);
.m_dot_turb = zeros(l, obj.max_iter);
.eta = zeros(l, obj.max_iter);

.m_in = zeros(l, obj.max_iter);
.m_out = zeros(l, obj.max_iter);
.loop_time = zeros(l, obj.max_iter);
.water_level = zeros(l, obj.max_iter);
.x_1 = zeros(l, obj.max_iter);

.x_2 = zeros(l, obj.max_iter);

function obj

PO,

x0)

= setup_initial_conditions (obj,

130

if (obj.verbosity > 0)
fprintf ('Setting up initial
conditions for p = %0.2f bar and x
= %0.2f and volume = %0.2f m
“3...\n', p0, x0, obj.tank_volume)
end
obj.time(obj.i) = 0.0;
obj.p(obj.i) = poO;
obj.x(obj.i) = x0;
if (obj.verbosity > 1)
fprintf ('%10s %10f\n', 'p', obj.p(
obj.i));
fprintf ('%10s
obj.i));

%10f\n', 'x', obj.x(

end

obj.t_1(obj.i) = IAPWS_IF97('Tsat_p', obj
.p(obj.i) * obj.MPA_PER_BAR);

obj.t_2(obj.1i) = obj.t_1(obj.1i);

obj.h_1(obj.i) = IAPWS_IF97('h_pT', obj.p
(obj.i) * obj.MPA_PER_BAR, obj.t_1(obj
.i) - obj.EPSILON);

obj.h_2(obj.i) = IAPWS_IF97('h_pT', obj.p
(obj.i) * obj.MPA_PER_BAR, obj.t_2(ob]
.i) + obj.EPSILON);

obj.x_1(obj.i) = 0.0;

obj.x_2(obj.i) = 1.0;

obj.v_1(obj.1i) IAPWS_IF97('v_ph', obj.p
(obj.i) * obj.MPA_PER_BAR, obj.h_1(ob]
21)) 5

obj.v_2(obj.i) = IAPWS_IF97('v_ph', obj.p
(obj.i) * obj.MPA_PER_BAR, obj.h_2(obj
L1))

obj.rho_1(obj.i) = 1 / obj.v_1(obj.i);

obj.rho_2(obj.i) = 1 / obj.v_2(obj.1i);

obj.rho_mixture(obj.i) = 1 / (obj.x(obj.i
) / obj.rho_2(obj.i) + (1 - obj.x(obj.

131

i)) / obj.rho_1(obj.i));
obj.v_mixture(obj.i) = 1 / obj.
rho_mixture (obj.1i);
obj.m_total(obj.i) = obj.rho_mixture(obj.
i) * obj.tank_volume;
obj.m_1(obj.i) = obj.m_total(obj.i) * (1
- obj.x(obj.1i));
obj.m_2(obj.i) = obj.m_total(obj.i) * obj
.x(obj.1);
obj.vol_1(obj.1)
rho_1(obj.1i);
obj.vol_2(obj.1i)
rho_2(obj.1i);
obj.vol_total(obj.i) = obj.vol_1(obj.i) +
obj.vol_2(obj.1);
obj.vol_defect(obj.i) = abs(obj.vol_total
(obj.i) - obj.tank_volume) / obj.
tank_volume;
if (obj.vol_defect(obj.i) > obj.
VOLUME_TOLERANCE)
obj.volume_defect_detected = true;
end
if (obj.verbosity > 0 && obj.vol_defect(
obj.i) > obj.VOLUME_TOLERANCE)
disp('Volume defect detected. Results
unreliable! ') ;

obj.m_1(obj.i) / obj.

obj.m_2(Cobj.i) / obj.

end
obj.water_level(obj.i) = obj.vol_1(obj.1i)
/ obj.vol_total(obj.i);

end
function obj = increment_time_step (obj,
m_dot_1_in, m_dot_1_out, m_dot_2_in,
m_dot_2_out, h_1_in, h_2_in)
start_time = tic;
obj.m_in(obj.i) = (m_dot_1_in +
m_dot_2_in) * obj.time_step;

132

obj.m_out (obj.i) = (m_dot_1_out +
m_dot_2_out) * obj.time_step;
h_f = IAPWS_IF97('hL_p', obj.p(obj.i) *
obj.MPA_PER_BAR) ;
h_g = IAPWS_IF97('hV_p', obj.p(obj.i) =
obj.MPA_PER_BAR) ;
obj.r(obj.i) = h_g - h_f;
obj.q_loss(obj.i) = obj.heat_loss();
obj.q_loss_1(obj.i) = (obj.vol_1(obj.i) /
obj.vol_total(obj.i)) * obj.q_loss(
obj.1);
obj.q_loss_2(obj.i) = (obj.vol_2(obj.i) /
obj.vol_total(obj.i)) * obj.q_loss(
obj.i);
obj.q_21(obj.i) = obj.heat_transfer_21Q);
obj.m_dot_1b(obj.i) = m_dot_1_in -
m_dot_1_out;
obj.m_dot_2b(obj.1i)
m_dot_2_out;
obj.mh_dot_1b(obj.i) = m_dot_1_in =*
h_1_in - m_dot_1_out * obj.h_1(obj.i);
obj.mh_dot_2b(obj.i) = m_dot_2_in *
h_2_in - m_dot_2_out * obj.h_2(obj.1i);
obj.m_c(obj.i) = 0.0;
obj.m_e(obj.i) = 0.0;
if (obj.h_1(obj.i) > h_f)
obj.m_e(obj.i) = obj.rho_1(obj.i) x*
obj.vol_1(obj.i) * (obj.h_1(obj.i)
- h_f) / (obj.TAU * obj.r(obj.i))

I

m_dot_2_in -

else
obj.m_c(obj.i) = obj.rho_1(obj.i) =*
obj.vol_1(obj.i) * (h_f - obj.h_1(
obj.i)) / (obj.TAU * obj.r(obj.i))

end

133

obj.m_dot_pt_1(obj.1)
obj.m_e(obj.i);

obj.m_dot_pt_2(obj.1i)
obj.m_c(obj.i);

obj.m_1(Cobj.i + 1) = obj.m_1(obj.i) + (
obj.m_dot_1b(obj.i) + obj.m_dot_pt_1(
obj.i)) * obj.time_step;

obj.m_2(obj.i + 1) = obj.m_2(obj.i) + (
obj.m_dot_2b(obj.i) + obj.m_dot_pt_2(
obj.i)) * obj.time_step;

obj.m_total(obj.i + 1) = obj.m_1(obj.1i
1) + obj.m_2(obj.i + 1);

obj.dvidh(obj.i) = TIAPWS_IF97('dvdh_ph',
obj.p(obj.i) * obj.MPA_PER_BAR, obj.
h_1(obj.i));

obj.dv2dh (obj.i) = IAPWS_IF97('dvdh _ph',
obj.p(obj.i) * obj.MPA_PER_BAR, obj.
h_2(obj.1i));

obj.dvildp (obj.i) = IAPWS_IF97('dvdp_ph',
obj.p(obj.i) * obj.MPA_PER_BAR, obj.
h_1(obj.i));

obj.dv2dp (obj.i) = IAPWS_IF97('dvdp_ph',
obj.p(obj.i) * obj.MPA_PER_BAR, obj.
h_2(obj.i));

obj.terml(obj.i) = (obj.h_1(obj.i) * obj.
dvidh(obj.i) - obj.v_1(obj.i)) * (obj.
m_1(obj.i + 1) - obj.m_1(obj.i)) / obj
.time_step;

obj.term2(obj.i) = (obj.h_2(obj.i) * obj.
dv2dh (obj.i) - obj.v_2(obj.i)) * (obj.
m_2(obj.i + 1) - obj.m_2(obj.i)) / obj
.time_step;

obj.term3(obj.i) = obj.dvidh(obj.i) * (
obj.mh_dot_1b(obj.i) + obj.m_dot_pt_1(
obj.i) * h_g + obj.q_21(obj.i) - obj.
g_loss_1(obj.1i));

obj.m_c(obj.i) -

obj.m_e(obj.i) -

+

134

obj.term4 (obj.i) = obj.dv2dh(obj.i) * (
obj.mh_dot_2b(obj.i) + obj.m_dot_pt_2(
obj.i) * h_g - obj.q_21(obj.i) - obj.
g_loss_2(obj.1i));
obj.term5(obj.i) = (obj.dvidp(obj.i) +
obj.v_1(obj.i) * obj.dvidh(obj.i) *
1000) * obj.m_1(obj.i);
obj.term6(obj.i) = (obj.dv2dp(obj.i) +
obj.v_2(obj.i) * obj.dv2dh(obj.i) =*
1000) * obj.m_2(obj.i);
obj.dpdt (obj.i) = ((obj.terml(obj.i) +
obj.term2(obj.i) - obj.term3(obj.i) -
obj.term4 (obj.i)) / (obj.termb(obj.1i)
+ obj.term6(obj.i))) * obj.BAR_PER_MPA
obj.p(obj.i + 1) = obj.p(obj.i) + obj.
dpdt (obj.i) * obj.time_step;
if (obj.verbosity > 1 && mod(obj.i, 100)
== 0)
fprintf ('%10s = %10.1f\n', 'Time',
obj.time(obj.i) + obj.time_step);
fprintf ('%10s = %10f\n', 'p', obj.p(
obj.i + 1));
end
obj.dh_1dt(obj.i) = (obj.mh_dot_1b(obj.i)
+ obj.m_dot_pt_1(obj.i) * h_g + obj.
q_21(obj.i) - obj.q_loss_1(obj.i) +
obj.m_1(obj.i) * obj.v_1(obj.i) * obj.
dpdt (obj.i) * 100 - obj.h_1(obj.i) * (
obj.m_1(obj.i + 1) - obj.m_1(obj.1i)) /
obj.time_step) / obj.m_1(obj.i);
obj.h_1(obj.i + 1) = obj.h_1(obj.i) + obj
.dh_1dt (obj.i) * obj.time_step;
obj.x_1(obj.i + 1) = IAPWS_IF97('x_ph',
obj.p(obj.i + 1) * obj.MPA_PER_BAR,
obj.h_1(obj.i + 1));

135

obj.dh_2dt (obj.i) = (obj.mh_dot_2b(obj.i)
+ obj.m_dot_pt_2(obj.i) * h_g - obj.
q_21(obj.i) - obj.q_loss_2(obj.i) +
obj.m_2(obj.i) * obj.v_2(obj.i) * obj.
dpdt (obj.i) * 100 - obj.h_2(obj.i) * (
obj.m_2(obj.i + 1) - obj.m_2(obj.1i)) /
obj.time_step) / obj.m_2(obj.i);

obj.h_2(obj.i + 1) = obj.h_2(obj.i) + obj
.dh_2dt (obj.i) * obj.time_step;

obj.x_2(obj.i + 1) = IAPWS_IF97('x_ph',
obj.p(obj.i + 1) % obj.MPA_PER_BAR,
obj.h_2(obj.i + 1));

obj.t_1(obj.i + 1) = IAPWS_IF97('T_ph',
obj.p(obj.i + 1) * obj.MPA_PER_BAR,
obj.h_1(obj.i + 1));

obj.t_2(obj.i + 1) = IAPWS_IF97('T_ph',
obj.p(obj.i + 1) % obj.MPA_PER_BAR,
obj.h_2(obj.1i + 1));

obj.v_1(obj.i + 1) = IAPWS_IF97('v_ph',
obj.p(obj.i + 1) * obj.MPA_PER_BAR,
obj.h_1(obj.i + 1));

obj.v_2(obj.i + 1) = IAPWS_IF97('v_ph',
obj.p(obj.i + 1) * obj.MPA_PER_BAR,
obj.h_2(obj.i + 1));

obj.rho_1(obj.i + 1)
+ 1);

obj.rho_2(obj.i + 1)
+ 1);

obj.vol_1(obj.i + 1) obj.m_1(obj.i + 1)
* obj.v_1(obj.i + 1);

obj.vol_2(obj.i + 1) = obj.m_2(obj.i + 1)
* obj.v_2(obj.i + 1);

obj.vol_total(obj.i + 1) = obj.vol_1(obj.
i + 1) + obj.vol_2(obj.i + 1);

obj.vol_defect(obj.i + 1) = abs(obj.
vol_total(obj.i + 1) - obj.tank_volume

1 / obj.v_1(obj.1i

1 / obj.v_2(obj.1i

136

) / obj.tank_volume;
if (obj.vol_defect(obj.i) > obj.
VOLUME_TOLERANCE)
obj.volume_defect_detected = true;
end
if (obj.verbosity > 0 && mod(obj.i, 100)
== 0 && obj.vol_defect(obj.i + 1) >
obj.VOLUME_TOLERANCE)
disp('Volume defect detected. Results
unreliable!');
end
obj.water_level(obj.i + 1) = obj.
get_water_level(obj.i + 1);
obj.x(obj.i + 1) = obj.get_quality(obj.1i

+ 1)
if (obj.verbosity > 1 && mod(obj.i, 100)
fprintf ('%10s = %10f\n', 'x', obj.x(

obj.i + 1));
end
obj.time(obj.i + 1) = obj.time(obj.i) +
obj.time_step;
obj.loop_time(obj.i) = toc(start_time);
obj.i = obj.i + 1;
end
function value = heat_transfer_21(obj)
value = 5e4 * (obj.t_2(obj.i) - obj.t_1(
obj.i)) * obj.vol_1(obj.i) * obj.
KW_PER_W;
end
function value = heat_loss(obj)
t_acc = IAPWS_IF97('Tsat_p', obj.p(obj.i)
* obj.MPA_PER_BAR) ;
t_inf = 313.15;
r_insul_o = obj.PIPE_RADIUS + obj.
PIPE_THICKNESS + obj.
INSULATION_THICKNESS;

137

r_pipe_i = obj.PIPE_RADIUS - obj.
PIPE_THICKNESS;

sa_tank = 2 * pi * obj.PIPE_RADIUS * obj.
tank_length;

q = (t_acc - t_inf) / (r_insul_o * log(obj
.PIPE_RADIUS / r_pipe_i) / obj.
K_INSULATION + r_insul_o * log(
r_insul_o / obj.PIPE_RADIUS) / obj.
K_PIPE + 1 / obj.H_AIR);

value = q * sa_tank * obj.KW_PER_W;

0.0;

value
end
function value = get_quality(obj, loop)
quality_1 = IAPWS_IF97('x_ph', obj.p(loop
) * obj.MPA_PER_BAR, obj.h_1(loop));
quality_2 = IAPWS_IF97('x_ph', obj.p(loop
) * obj.MPA_PER_BAR, obj.h_2(loop));
m_1 obj.m_1(loop);
m_2 obj.m_2(loop);
if quality_1 > 0.0
m_1 = obj.m_1(loop) * (1 - quality_1)

m_2 = obj.m_2(loop) + (obj.m_1(loop)
* quality_1);
end
if quality_2 < 1.0
m_1 =m_1 + (obj.m_2(loop) * (1 -
quality_2));
m_2 = m_2 * quality_2;
end
value = m_2 / (m_1 + m_2);

value = obj.m_2(loop) / (obj.m_1(loop) +
obj.m_2(loop));
end
function value = get_water_level(obj, loop)

quality_1 = IAPWS_IF97('x_ph', obj.p(loop
) * obj.MPA_PER_BAR, obj.h_1(loop));

138

quality_2 = IAPWS_IF97('x_ph', obj.p(loop
) * obj.MPA_PER_BAR, obj.h_2(loop));
m_1 = obj.m_1(loop);
m_2 = obj.m_2(loop);
if quality_1 > 0.0
m_1 = obj.m_1(loop) * (1 - quality_1)
m_2 = obj.m_2(loop) + (obj.m_1(loop)
* quality_1);
end
if quality_2 < 1.0
m_1 = m_1 + (obj.m_2(loop) * (1 -
quality_2));
m_2 = m_2 * quality_2;
end
vol_1 = m_1 * obj.v_1(loop);
vol_2 m_2 x obj.v_2(loop);
value vol_1 / (vol_1 + wvol_2);
value obj.vol_1(loop) / obj.vol_total(
loop);

end
end
methods (Static)
function [eff, m_dot_stm] = run_turbine (
p_turb_in, p_turb_exh, turb_power,
cond_depression)
turb_power = turb_power * 1lef;
MPA_PER_BAR = 0.1;
h_turb_in = IAPWS_IF97('hV_p', p_turb_in
* MPA_PER_BAR);
s_turb_in = XSteam('sV_p', p_turb_in);
t_exh = IAPWS_IF97('Tsat_p', p_turb_exh x*
MPA_PER_BAR) ;
h_exh = XSteam('h_ps', p_turb_exh,
s_turb_in) ;
w_turb = h_turb_in - h_exh;
m_dot_stm = turb_power * le-3 / w_turb;

139

end

h_pump_out = IAPWS_IF97('h_pT', p_turb_in
* MPA_PER_BAR, t_exh -
cond_depression);

h_cond_out = IAPWS_IF97('h_pT"',
p_turb_exh * MPA_PER_BAR, t_exh -
cond_depression) ;

qg_cond = h_exh - h_cond_out;

w_pump = h_pump_out - h_cond_out;

gq_in = w_turb - w_pump + q_cond;

eff = w_turb / q_in;

function [eff, m_dot_total, m_dot_1, h_1,
m_dot_2, h_2] = run_turbine_test(p_turb_in

3

h_turb_in, p_turb_exh, turb_power,

cond_depression)

turb_power = turb_power * 1lef;

MPA_PER_BAR = 0.1;

x_turb_in = IAPWS_IF97('x_ph', p_turb_in
* MPA_PER_BAR, h_turb_in);

hV_turb_in = IAPWS_IF97('hV_p', p_turb_in
* MPA_PER_BAR);

h_2 = hV_turb_in;

hL_turb_in = IAPWS_IF97('hL_p', p_turb_in
* MPA_PER_BAR);

h_1 = hL_turb_in;

sV_turb_in = XSteam('sV_p', p_turb_in);

t_exh = IAPWS_IF97('Tsat_p', p_turb_exh x*
MPA_PER_BAR) ;

h_exh = XSteam('h_ps', p_turb_exh,
sV_turb_in) ;

w_turb = hV_turb_in - h_exh;

m_dot_stm = turb_power * le-3 / w_turb;

m_dot_total = m_dot_stm / x_turb_in;

m_dot_1 = m_dot_total * (1 - x_turb_in);

m_dot_2 = m_dot_stm;

h_pump_out = IAPWS_IF97('h_pT', p_turb_in
* MPA_PER_BAR, t_exh -

140

cond_depression) ;

h_cond_out = IAPWS_IF97('h_pT',
p_turb_exh * MPA_PER_BAR, t_exh -
cond_depression);

q_cond = h_exh - h_cond_out;

w_pump = h_pump_out - h_cond_out;

q_in = w_turb - w_pump + q_cond;
eff = w_turb / q_in;

end

function value = get_minimum_pressure (

initial_pressure, max_power,
min_efficiency, verbosity)
min_pressure = 0.0;
efficiency = 0.0;
steam_flow = 0.0;
while efficiency < min_efficiency
if min_pressure < initial_pressure

min_pressure = min_pressure +
1.0;
end
if (min_pressure >= initial_pressure)
assert (true, 'Minimum efficiency
(%.2f) is higher than
efficiency at initial pressure
(%.2f bar) .\nTry setting the
initial pressure higher or the
minimum efficiency lower.',
min_efficiency,
initial_pressure);
end

[efficiency, steam_flow] =
steam_accumulator.run_turbine (
min_pressure, 0.9, max_power, 5);

end
if verbosity > O

fprintf ('Minimum pressure allowable

for desired minimum efficiency

141

(h.2f) dis %.2f bar\n',
min_efficiency, min_pressure);

end
value = min_pressure;
end
function value = get_minimum_steam_mass(

initial_pressure, minimum_pressure, power,
duration, verbosity)
i = 0;

efficiency = 0.0;
steam_mass = 0.0;
steam_flow = 0.0;
current_pressure = initial_pressure;
while i <= duration
current_pressure = initial_pressure +

(minimum_pressure -
initial_pressure) * (i / duration
) ;

[efficiency, steam_flow] =
steam_accumulator.run_turbine(
current_pressure, 0.9, power, 5);

steam_mass = steam_mass + steam_flow;

i=1i + 1;

end
if verbosity > 0
fprintf ('Minimum steam mass is %.6e

kg\n', steam_mass) ;
end
value = steam_mass;
end
function value = get_minimum_liquid_mass(

steam_mass, initial_pressure,
final_pressure, verbosity)
MPA_PER_BAR = 0.1;

A = 11.934;
B = 3985;
C = 234.1;

142

average_pressure = (initial_pressure +
final_pressure) / 2;

c_p_avg = XSteam('CpL_p',
average_pressure) ;

h_f_ref = IAPWS_IF97('hL_p',
average_pressure *x MPA_PER_BAR);

h_g_ref = IAPWS_IF97('hV_p',
average_pressure * MPA_PER_BAR);

t_ref = IAPWS_IF97('Tsat_p',
average_pressure * MPA_PER_BAR) -
273.15;

r_ref = h_g_ref - h_f_ref;

a = ((B/ (A - log(average_pressure))) -
C + 273.15) / 647;

b = (t_ref + 273.15) / 647;

c ((1 - a) / (1 - b))"(0.38);

numerator = steam_mass * r_ref * c;

d =1/ (A - log(initial_pressure));

e =1/ (A - log(final_pressure));

denominator = c_p_avg * B * (d - e);

min_liquid_mass = numerator / denominator

if verbosity > O
fprintf ('Minimum liquid mass is %.6e

kg\n', min_liquid_mass);
end
value = min_liquid_mass;
end
function value = get_minimum_tank_length (

liquid_mass, pressure, quality, verbosity)

PIPE_RADIUS = 0.4064,

MPA_PER_BAR 0.1;

v_1 = IAPWS_IF97('vL_p', pressure x*
MPA_PER_BAR) ;

v_2 = IAPWS_IF97('vV_p', pressure *
MPA_PER_BAR);

rho_1 =1 / v_1;

143

rho_ 2 =1/ v_2;
rho_mixture = 1 / (quality / rho_2 + (1 -
quality) / rho_1);

steam_mass = liquid_mass * quality / (1 -
quality);
m_total = liquid_mass + steam_mass;

length = m_total / (rho_mixture * pi x*
PIPE_RADIUS"2);
if verbosity > O
fprintf ('Minimum tank length is %.2f
m\n', length);

end
value = length;
end
function accumulator = size_accumulator(

initial_pressure, initial_quality,
minimum_efficiency, max_power,
max_duration, time_step, max_iter,
verbosity)
minimum_pressure = test_accumulator.
get_minimum_pressure(initial_pressure,
max_power , minimum_efficiency,
verbosity) ;
required_steam_mass = test_accumulator.
get_minimum_steam_mass (
initial_pressure, minimum_pressure,
max_power , max_duration, verbosity);
required_liquid_mass = test_accumulator.
get_minimum_liquid_mass(
required_steam_mass, initial_pressure,
minimum_pressure, verbosity);
tank_length = test_accumulator.
get_minimum_tank_length (
required_liquid_mass, initial_pressure
, initial_quality, verbosity);
accumulator = test_accumulator (
initial_pressure, initial_quality,

144

tank_length, time_step, max_iter,
verbosity) ;
accumulator.high_pressure =
initial_pressure;
accumulator.low_pressure
minimum_pressure;
accumulator.high_quality
initial_quality;
accumulator.low_quality = 0.01;
accumulator .minimum_efficiency =
minimum_efficiency;
accumulator .minimum_water_mass =
required_liquid_mass;

end
function value = get_quality_from_water_level
(pressure, water_level, tank_volume)
MPA_PER_BAR = 0.1;
v_f = IAPWS_IF97('vL_p', pressure x*
MPA_PER_BAR);
v_g = IAPWS_IF97('vV_p', pressure x*
MPA_PER_BAR) ;

m_1 = tank_volume * water_level / v_f;
m_2 = tank_volume * (1 - water_level) /
V_g;
value = m_2 / (m_1 + m_2);
end
function value = get_flowrate_test_1(
current_duration)
value = 0.0;
if (current_duration <= 30.0)
value = 0.1367 * current_duration;

elseif (current_duration <= 210.0)
value = 0.1367 * 30.0 - 0.0047 *x (
current_duration - 30.0);
elseif (current_duration <= 410.0)
value = 0.1367 * 30.0 - 0.0047 =x*
(210.0 - 30.0) - 0.0013 * (

145

current_duration - 210.0);

elseif (current_duration > 410.0)
value = 0.1367 *x 30.0 - 0.0047 =x*
(210.0 - 30.0) - 0.0013 * (410.0 -
210.0) - 0.0021 * (
current_duration - 410.0);
end
if (value < 0.0)
value = 0.0;
end
end
function value = get_charge_pressure_test_1(

current_duration)
value = 49.0;
if (current_duration <= 220.0)
value = 49.0 - 0.0136 =«
current_duration;
elseif (current_duration > 220.0)
value = 49.0 - 0.0136 *x 220.0 +
0.0078 * (current_duration -
220.0) ;
end
if (value > 50.0)
value = 50.0;
elseif (value < 46.0)
value = 46.0;
end
end
end
end

C.1.3 Steam Accumulator Charge and Discharge Evolutions

The MATLAB script used to simulate the charge and discharge evolu-

tions is provided below.

146

clear all
close all
clc

POWER = 500.0;
HOURS_TO_DISCHARGE = 3.0;
HOURS_TO_WAIT = 0.0;

CHARGE_PRESSURE
CHARGE_FLOWRATE

o
o N
o N
o -

- O
O .-

START_PRESSURE = 60.0;
INITIAL_PRESSURE
MINIMUM_PRESSURE = 40.0;

Il
w
ol
(@)

INITIAL_QUALITY
MINIMUM_QUALITY
QUALITY = 0.05;

| |
o O
o O
o O

MINIMUM_EFFICIENCY = 0.25;

MAX_ITER = 1000000;

VERBOSITY

3;

TIME_STEP

10.0;
SECONDS_PER_HOUR = 3600.0;
start_time = tic;
acc = steam_accumulator.size_accumulator(
START_PRESSURE, QUALITY, ...
MINIMUM_EFFICIENCY, POWER, HOURS_TO_DISCHARGE x

SECONDS_PER_HOUR, ...
TIME_STEP, MAX_ITER, VERBOSITY);

147

for i = 1:3
acc.discharge_test (POWER, HOURS_TO_DISCHARGE =
SECONDS_PER_HOUR, TIME_STEP);

acc.charge (START_PRESSURE, CHARGE_PRESSURE,
CHARGE_FLOWRATE, ...
TIME_STEP) ;

acc.wait (HOURS_TO_WAIT * SECONDS_PER_HOUR,
TIME_STEP) ;
end

acc.get_plots();

fprintf ('Total time = %.2f seconds.\n', toc(
start_time));

C.1.4 Validation and Verification Scripts

The following MATLAB scripts were used to automate the validation

and verfication of the non-equilibrium model.

C.1.4.1 Validation 1

clear all;
close all;
clc;

TANK_HEIGHT = 4.0;
TANK_WIDTH = 4.0;
TANK_LENGTH = 4.0;

INITIAL_PRESSURE = 34.0;
INITIAL_WATER_LEVEL = 0.86;

148

TIME_STEP = 0.1;
MAX_ITER = 1000000;
VERBOSITY = 3;

enthalpy_data = zeros (1, 700 / TIME_STEP);
charge_flow = zeros(l1, 700 / TIME_STEP);
discharge_flow = zeros(l, 700 / TIME_STEP);

for i = 1:(700 / TIME_STEP)
enthalpy_data(i) = XSteam('hV_p',
get_charge_pressure_test_1(i * TIME_STEP));
charge_flow(i) = get_flowrate_test_1(i x*
TIME_STEP);
end

acc = test_accumulator (INITIAL_PRESSURE, TANK_LENGTH,
TANK_HEIGHT, TANK_WIDTH, INITIAL_WATER_LEVEL,
TIME_STEP, MAX_ITER, VERBOSITY);

acc.run_test (enthalpy_data, charge_flow,
discharge_flow, TIME_STEP);

acc.get_plots () ;

function value = get_flowrate_test_1(current_duration
)
value = 0.0;
if (current_duration <= 30.0)
value = 0.1367 * current_duration;

elseif (current_duration <= 210.0)
value = 0.1367 * 30.0 - 0.0047 * (
current_duration - 30.0);
elseif (current_duration <= 410.0)

149

value = 0.1367 * 30.0 - 0.0047 * (210.0 -
0.0013 * (current_duration - 210.0);
elseif (current_duration > 410.0)
value = 0.1367 * 30.0 - 0.0047 * (210.0 -
0.0013 * (410.0 - 210.0) - 0.0021 =* (
current_duration - 410.0);
end
if (value < 0.0)
value = 0.0;
end
end
function value = get_charge_pressure_test_1(
current_duration)
value = 49.0;
if (current_duration <= 220.0)
value = 49.0 - 0.0136 * current_duration;

elseif (current_duration > 220.0)

value = 49.0 - 0.0136 * 220.0 + 0.0078 * (
- 220.0);

current_duration

end

if (value > 50.0)
value = 50.0;

elseif (value < 46.0)
value = 46.0;

end

end

C.1.4.2 Validation 2

clear all;
close all;
clc;

TANK_HEIGHT = 4.0;
TANK_WIDTH = 4.0;
TANK_LENGTH = 4.0;

INITIAL_PRESSURE = 25.

0;

150

30.0)

30.0)

INITIAL_WATER_LEVEL = 0.5;
TIME_STEP = 0.1;

MAX_ITER = 1000000;
VERBOSITY = 3;

enthalpy_data = zeros (1, 3000 / TIME_STEP);
charge_flow = zeros (1, 3000 / TIME_STEP);
discharge_flow = zeros(l1, 3000 / TIME_STEP);

parfor i = 1:(3000 / TIME_STEP)
enthalpy_data(i) = XSteam('hV_p',
get_charge_pressure_test_2(i * TIME_STEP));
discharge_flow(i) = get_flowrate_test_2(i x
TIME_STEP) ;
charge_flow(i) = 5.0;
end

acc = test_accumulator (INITIAL_PRESSURE, TANK_LENGTH,
TANK_HEIGHT, TANK_WIDTH, INITIAL_WATER_LEVEL,
TIME_STEP, MAX_ITER, VERBOSITY);

acc.run_test (enthalpy_data, charge_flow,
discharge_flow, TIME_STEP);

acc.get_plots () ;

function value = get_flowrate_test_2(current_duration
)

value = 0.0;

while (current_duration > 600.0)
current_duration = current_duration - 600.0;

end

if (current_duration <= 200.0)

151

value = 1 + 0.04 *x current_duration;
elseif (current_duration <= 600.0)
value = 9 - 0.02 * (current_duration - 200.0);
end
end
function value = get_charge_pressure_test_2(
current_duration)
value = 50.0;
end

C.2 Steam Plant Heat and Mass Balances
C.2.1 Non-regenerative Cycle

The following MATLAB class handle was used to define the non-regenerative

steam plant.

classdef rankine_cycle < handle

properties
rated_thermal_power
electrical_power
eta
w_turb
W_turb
W_pump
W_pump
q-8§8
Q_sg
q_cond
Q_cond

152

NN NN

_dot_2

W wwww

Q.

ot_3

NN NN

B X o a0 B X P v B X B o

Q.
o
ct
|
IS

end

methods
function obj = rankine_cycle(sg_pressure,
cond_pressure, rated_thermal_power)
if (nargin “= 0)
obj.rated_thermal_power =
rated_thermal_power;
% Steam Generator

obj.p_1 = sg_pressure;

obj.t_1 = XSteam('Tsat_p', obj.p_1);
obj.h_1 = XSteam('hV_p', obj.p_1);
obj.s_1 = XSteam('sV_p', obj.p_1);
obj.x_1 = 1.0;

% Turbine Discharge

obj.p_2 = cond_pressure;

obj.t_2 = XSteam('Tsat_p', obj.p_2);

t

obj.s_2 = obj.s_1;

obj.h_2 = XSteam('h_ps', obj.p_2, obj
s .

153

obj.x_2 =

s_2);

XSteam('x_ps', obj.p_2, obj

% Condenser

obj.p_3 =
obj.t_3 =
obj.h_3 =
obj.s_3 =
obj.x_3 =
% Fee
obj.p_4 =
obj.s_4 =
obj.h_4 =
.s_4);
obj.t_4 =
.s_4);
obj.x_4 =
obj.q_sg
ob]j
obj
obj.w_turb
obj
obj.
obj.
obj.m_dot_4
obj.Q_sg

obj.

b

cond_pressure;
XSteam('Tsat_p', obj.p_3);
XSteam('hL_p', obj.p_3);
XSteam('sL_p', obj.p_3);
0.0;

d Pump Discharge

Sg_pressure;
obj.s_3;

XSteam('h_ps', obj.p_4, obj
XSteam('T_ps', obj.p_4, obj

0.0;

= obj.h_1 - obj.h_4;

.q_cond = obj.h_2 - obj.h_3;
.Ww_pump = obj.h_4 - obj.h_3;

obj.h_1 - obj.h_2;

.m_dot_1 = obj.rated_thermal_power
* 1000/ (obj.h_1 - obj.h_4);

m_dot_2 = obj.m_dot_1;
m_dot_3 = obj.m_dot_1;

obj.m_dot_1;

= obj.q_sg * obj.m_dot_1;
Q_cond = obj.q_cond * obj.m_dot_2

obj.W_pump = obj.w_pump * obj.m_dot_3

obj.W_turb

I

3

obj.w_turb * obj.m_dot_4

154

obj.eta = (obj.W_turb - obj.W_pump) /

obj.Q_sg;
end
end
function value = get.electrical_power (obj)
value = (obj.W_turb - obj.W_pump) / 1000;
end

end

end

C.2.2 Regenerative Cycle (Feedwater Heater)

The following MATLAB class handle was used to define the regenera-

tive steam plant with a feedwater heater.

classdef rankine_cycle_fwh < handle
HRANKINE_CYCLE_1_FWH_EXT Summary of this class
goes here
yA Detailed explanation goes here

properties
rated_thermal_power
electrical_power
fwh_flow
fwh_flow_fraction
fwh_delta_t
eta
w_turb_hp
W_turb_hp
w_turb_1p
W_turb_1p
W_pump
W_pump
q-8§g
U_sg

155

q_cond

N ~

|
QP

[
S owm

dot_1

o
e P

|
S owm

ot_2

[
e P

[
S owm

N AN NN NT OO M T

ot_3

o
X8 o P

[
S owm

ot_4

Lo
X8 o

[
S owm

¥ TWOWOWWWT

ot_5

o
X8 P

©O© © ©

|
<

156

dot_7

end

methods
function obj = rankine_cycle_fwh(sg_pressure,
hp_outlet_pressure,...
hp_extraction_pressure, cond_pressure
, rated_thermal_power,...
fwh_delta_t)
if (nargin “= 0)
obj.rated_thermal_power =
rated_thermal_power;
obj.fwh_delta_t = fwh_delta_t;
% Main Steam Header

obj.p_1 = sg_pressure;

obj.t_1 = XSteam('Tsat_p', obj.p_1);
obj.h_1 = XSteam('hV_p', obj.p_1);
obj.s_1 = XSteam('sV_p', obj.p_1);
obj.x_1 = 1.0;

% Crossover
obj.p_2 = hp_outlet_pressure;
obj.t_2 XSteam('Tsat_p', obj.p_2);

157

obj.s_2 = obj.s_1;

obj.h_2 = XSteam('h_ps', obj.p_2, obj
.8_2);

obj.x_2 = XSteam('x_ps', obj.p_2, obj
.8_2);

%» FW Heater Steam Supply

obj.p_3 = hp_extraction_pressure;

obj.t_3 = XSteam('Tsat_p', obj.p_3);

obj.s_3 = obj.s_2;

obj.h_3 = XSteam('h_ps', obj.p_3, obj
.s_3);

obj.x_3 = XSteam('x_ps', obj.p_3, obj
.8_3);

% LP Discharge

obj.p_4 = cond_pressure;

obj.t_4 = XSteam('Tsat_p', obj.p_4);

obj.s_4 = obj.s_2;

obj.h_4 = XSteam('h_ps', obj.p_4, obj
.s_4);

obj.x_4 = XSteam('x_ps', obj.p_4, obj
.s_4);

%» Condenser
obj.p_5 = cond_pressure;

obj.t_5 = XSteam('Tsat_p', obj.p_5);
obj.h_5 = XSteam('hL_p', obj.p_5);
obj.s_5 = XSteam('sL_p', obj.p_5);
obj.x_5 = 0.0;

% Feed Pump Discharge

obj.p_6 = sg_pressure;

obj.s_6 = obj.s_b;

obj.h_6 XSteam('h_ps', obj.p_6, obj
.8_6);

158

obj.t_6
.s8_6);
obj.x_6 = 0.0;

XSteam('T_ps', obj.p_6, obj

% FW Heater Drain to Condenser
obj.p_8 = 1.0;
obj.t_8 = obj.t_6 + 10.0;

obj.s_8 = XSteam('s_pT', obj.p_8, obj
.t_8);

obj.h_8 = XSteam('h_pT', obj.p_8, obj
.t_8);

obj.x_8 = 0.0;

% FW Heater Exit

obj.p_7 = obj.p_6;

obj.t_7 = obj.t_6 + fwh_delta_t;

obj.h_7 = XSteam('h_pT', obj.p_7, obj
t_7);

obj.s_7 = XSteam('s_pT', obj.p_7, obj
t_7);

obj.x_7 = 0.0;

obj.q_sg = obj.h_1 - obj.h_7;
obj.q_fwh = obj.h_7 - obj.h_6;
obj.w_pump = obj.h_6 - obj.h_5b;

obj.m_dot_1 = obj.rated_thermal_power
* 1000/ (obj.h_1 - obj.h_7);

syms m_dot_1 m_dot_2 m_dot_3 m_dot_4
m_dot_5 m_dot_6 m_dot_7 m_dot_8

eqn_1 = m_dot_1 - obj.m_dot_1 =
eqn_2 = m_dot_1 - m_dot_7 == 0
eqn_3 = m_dot_7 - m_dot_6 == 0.
eqn_4 m_dot_6 - m_dot_5 == 0

159

eqn_5 = m_dot_1 - m_dot_2 - m_dot_3
== 0.0;

eqn_6 = m_dot_2 - m_dot_4 == 0.0;

eqn_7 = m_dot_5 - m_dot_4 - m_dot_8
== 0.0;

eqn_8 = m_dot_6 * obj.h_6 + m_dot_3 *

obj.h_3 - m_dot_8 * obj.h_8 -
m_dot_7 * obj.h_7 == 0.0;

[A, B] = equationsToMatrix([eqn_1,
eqn_2, eqn_3, eqn_4, eqn_5, eqn_6,
eqn_7, eqn_8],...
[m_dot_1, m_dot_2, m_dot_3,
m_dot_4, m_dot_5, m_dot_6,
m_dot_7, m_dot_81);

X = linsolve (A, B);

m_dot = double(X);

obj.m_dot_2 = m_dot (2);
obj.m_dot_3 = m_dot (3);
obj.m_dot_4 = m_dot (4);
obj.m_dot_5 = m_dot (5);
obj.m_dot_6 = m_dot (6);
obj.m_dot_7 = m_dot (7);
obj.m_dot_8 = m_dot (8);

obj.fwh_flow = obj.m_dot_3;
obj.fwh_flow_fraction = obj.m_dot_3 /
obj.m_dot_1;

obj.q_cond = (obj.h_4 - obj.h_5) * (
obj.m_dot_4 / obj.m_dot_1)...
+ (obj.h_8 - obj.h_5) * (obj.
m_dot_8 / obj.m_dot_1);

160

obj.w_turb_hp = (obj.h_1 - obj.h_3) +

(obj.h_3 - obj.h_2) * (obj.
m_dot_2 / obj.m_dot_1);
obj.w_turb_lp = (obj.h_2 - obj.h_4) x*

(obj.m_dot_2 / obj.m_dot_1);

obj.Q_sg = obj.q_sg * obj.m_dot_1;
obj.Q_cond = obj.q_cond * obj.m_dot_1
obj.Q_fwh = obj.q_fwh * obj.m_dot_1;
obj.W_pump = obj.w_pump * obj.m_dot_1

I

obj.W_turb_hp
m_dot_1 ;

obj.W_turb_1p
m_dot_1;

obj.w_turb_hp * obj.

obj.w_turb_1lp * obj.

obj.eta = (obj.W_turb_hp + obj.
W_turb_lp - obj.W_pump) / obj.Q_sg
end
end
function value = get.electrical_power (obj)
value = (obj.W_turb_hp + obj.W_turb_lp -
obj.W_pump) / 1000;
end
end

end

161

C.2.3 Regenerative Cycle (Feedwater Heater and Accumulator Dis-
charging)

The following MATLAB class handle was used to define the regenera-

tive steam plant with a feedwater heater with the accumulator discharging.

classdef rankine_cycle_fwh_acc < handle
HRANKINE_CYCLE_1_FWH_EXT Summary of this class
goes here
yA Detailed explanation goes here

properties
accumulator_flow
rated_thermal_power
electrical_power
fwh_flow
fwh_flow_fraction
fwh_delta_t
eta
w_turb_hp
W_turb_hp
w_turb_1p
W_turb_1p
W_pump
W_pump
q-8§g
Q_sg

162

163

N 13p) < o) © N~
I I I I] |
)) i) i i Fa
o o o o o o
22222d33333d44444d55555d66666d77777d_8
1 T T T T T T T T T T T T O A O O T T T T T T T T T T e T T T I
P g X B AP g XK P 9 n XK E P g n K8 P 9 n K8 4P 9 n K8 o

|
o 0 00 00

B X n 5Bt 8 X n &5 o
|

methods
function obj = rankine_cycle_fwh_acc(
sg_pressure, hp_outlet_pressure,...
cond_pressure, rated_thermal_power,
fwh_delta_t, ...
accumulator_pressure)
if (nargin "= 0)
obj.rated_thermal_power =
rated_thermal_power;
obj.fwh_delta_t = fwh_delta_t;
% Main Steam Header

obj.p_1 = sg_pressure;

obj.t_1 = XSteam('Tsat_p', obj.p_1);
obj.h_1 = XSteam('hV_p', obj.p_1);
obj.s_1 = XSteam('sV_p', obj.p_1);
obj.x_1 = 1.0;

% Crossover

obj.p_2 = hp_outlet_pressure;

obj.t_2 = XSteam('Tsat_p', obj.p_2);

obj.s_2 = obj.s_1;

obj.h_2 = XSteam('h_ps', obj.p_2, obj
.8_2);

164

obj.x_2 = XSteam('x_ps', obj.p_2, obj
.8_2);

% LP Discharge

obj.p_3 = cond_pressure;

obj.t_3 = XSteam('Tsat_p', obj.p_3);

obj.s_3 = obj.s_2;

obj.h_3 = XSteam('h_ps', obj.p_3, obj
.s8_3);

obj.x_3 = XSteam('x_ps', obj.p_3, obj
.s_3);

%» Condenser
obj.p_4 = cond_pressure;

obj.t_4 = XSteam('Tsat_p', obj.p_4);
obj.h_4 = XSteam('hL_p', obj.p_4);
obj.s_4 = XSteam('sL_p', obj.p_4);
obj.x_4 = 0.0;

% Feed Pump Discharge
obj.p_5 = sg_pressure;
obj.s_5 = obj.s_4;

obj.h_5 = XSteam('h_ps', obj.p_5, obj
.s_5);

obj.t_5 = XSteam('T_ps', obj.p_5, obj
.s8_5);

obj.x_5 = 0.0;

/» FW Heater Steam Supply
obj.x_7 = 1.0;

obj.p_7 = accumulator_pressure;
obj.t_7 = XSteam('Tsat_p', obj.p_7);
obj.s_7 = XSteam('sL_p', obj.p_7) *

(1 - obj.x_7) + XSteam('sV_p', obj
.p_7) * obj.x_T7;

obj.h_7 = XSteam('hL_p', obj.p_7) =
(1 - obj.x_7) + XSteam('hV_p', obj

165

.p_7) * obj.x_7;

% FW Heater Exit
obj.p_6 = sg_pressure;
obj.t_6 = obj.t_5 + fwh_delta_t;

obj.h_6 = XSteam('h_pT', obj.p_6, obj
.t_6);

obj.s_6 = XSteam('s_pT', obj.p_6, obj
.t_6);

obj.x_6 = 0.0;

% FW Heater Drain to Condenser
obj.p_8 = 1.0;

obj.t_8 = obj.t_5 + 10.0;

obj.h_8 = XSteam('h_pT', obj.p_8, obj
.t_8);

obj.s_8 = XSteam('s_pT', obj.p_8, obj
.t_8);

obj.x_8 = 0.0;

% Condensate Storage Tank
obj.p_9 = cond_pressure;

obj.t_9 = XSteam('Tsat_p', obj.p_4);
obj.h_9 = XSteam('hL_p', obj.p_4);
obj.s_9 = XSteam('sL_p', obj.p_4);
obj.x_9 = 0.0;

obj.q_sg = obj.h_1 - obj.h_6;

obj.m_dot_1 = obj.rated_thermal_power
* 1000/ (obj.q_sg);

syms m_dot_1 m_dot_2 m_dot_3 m_dot_4
m_dot_5 m_dot_6 m_dot_7 m_dot_8
m_dot_9

eqn_1 = m_dot_1 - obj.m_dot_1 == 0.0;

166

eqn_2 = m_dot_1 - m_dot_6 == 0.0;

eqn_3 = m_dot_1 - m_dot_2 == 0.0;

eqn_4 = m_dot_2 - m_dot_3 == 0.0;

eqn_5 = m_dot_4 - m_dot_3 - m_dot_8 +
m_dot_9 == 0.0;

eqn_6 = m_dot_4 - m_dot_5 == 0.0;

eqn_7 = m_dot_5 - m_dot_6 == 0.0;

eqn_8 = m_dot_5 * obj.h_5 + m_dot_7 x*
obj.h_ 7 - m_dot_6 * obj.h_6 -

m_dot_8 * obj.h_8 == 0.0;
eqn_9 = m_dot_7 - m_dot_8 == 0.0;

[A, B] = equationsToMatrix([eqn_1,
eqn_2, eqn_3, eqn_4, eqn_5, eqn_6,
eqn_7, eqn_8, eqn_9], ...

[m_dot_1

b

m_dot_2, m_dot_3,

m_dot_4, m_dot_5, m_dot_6,
m_dot_7, m_dot_8, m_dot_9]);

X = linsolve (A, B);

m_dot = double (X);

obj.m_dot_2
obj.m_dot_3
obj.m_dot_4
obj.m_dot_5
obj.m_dot_6
obj.m_dot_7
obj.m_dot_8
obj.m_dot_9

obj.q_cond =

m_dot (2) ;
m_dot (3);
m_dot (4) ;
m_dot (5) ;
m_dot (6) ;
m_dot (7) ;
m_dot (8) ;
m_dot (9) ;

(obj.h_3 - obj.h_4) * (

obj.m_dot_3 / obj.m_dot_1)...
+ (obj.h_8 - obj.h_4) * (obj.
m_dot_8 / obj.m_dot_1);

167

end

end

obj.q_fwh = obj.h_6 - obj.h_5;
obj.w_pump = obj.h_5 - obj.h_4;

obj.w_turb_hp = obj.h_1 - obj.h_2;
obj.w_turb_1p (obj.h_2 - obj.h_3);

obj.Q_sg = obj.q_sg * obj.m_dot_1;
obj.Q_cond = obj.q_cond * obj.m_dot_1
obj.Q_fwh = obj.q_fwh * obj.m_dot_1;
obj.W_pump = obj.w_pump * obj.m_dot_1
obj.W_turb_hp
m_dot_1 ;
obj.W_turb_1p
m_dot_1;

obj.w_turb_hp * obj.

obj.w_turb_1lp * obj.

obj.eta = (obj.W_turb_hp + obj.
W_turb_lp - obj.W_pump) / obj.Q_sg
end
end
function value = get.electrical_power (obj)
value = (obj.W_turb_hp + obj.W_turb_lp -
obj.W_pump) / 1000;

end

function value = get.accumulator_flow(obj)
value = obj.m_dot_7;

end

168

C.2.4 Regenerative Cycle (Feedwater Heater and Accumulator Charg-
ing)

The following MATLAB class handle was used to define the regenera-

tive steam plant with a feedwater heater with the accumulator charging.

classdef rankine_cycle_fwh_acc_ch < handle
HRANKINE_CYCLE_1_FWH_EXT Summary of this class
goes here
yA Detailed explanation goes here

properties
accumulator_flow
charging_flow
charging_flow_fraction
rated_thermal_power
electrical_power
fwh_flow
fwh_flow_fraction
fwh_delta_t
eta
w_turb_hp
W_turb_hp
w_turb_1p
W_turb_1p
W_pump
W_pump
q-8§8
Q_sg

169

x_1

m_dot_1

p-la
t_1la

h_1a

(o]
~—
2]

o]
~—
>

(o]
—
P
o
o
=

N ANAN NN T

|
QP

|
S owm

ot_2

[
X B P

|
S owm

N Mmmomom T

ot_3

|
X OE P

[
S owm

A ARSI S U S U

dot_4

|
X OE P

[
=]

0w www T

ot_b5

|
XN OB o

[
S owm

© © © © ©

|
>

170

[oN
(@]

ct
(@)

~N NN NN

Q.

ot_7

00 00 0O 0O 00

Q.

ot_8

KNP o B XM n o B X n o o B
[
© © ©O© O ©

o B
|
= 0.
[@2Ne]
ct
©

t_10

h_10

s_10

x_10

m_dot_10
end

methods
function obj = rankine_cycle_fwh_acc_ch(
sg_pressure, hp_outlet_pressure,...
hp_extraction_pressure, cond_pressure
, rated_thermal_power , fwh_delta_t
accumulator_pressure)
if (nargin “= 0)
acc_d = rankine_cycle_fwh_acc(
sg_pressure, hp_outlet_pressure,...

171

cond_pressure, rated_thermal_power,
fwh_delta_t,...
accumulator_pressure) ;

obj.charging_flow = acc_d.
accumulator_flow;

obj.rated_thermal_power =
rated_thermal_power;

obj.fwh_delta_t = fwh_delta_t;

% Main Steam Header

obj.p_1 = sg_pressure;

obj.t_1 = XSteam('Tsat_p', obj.p_1);
obj.h_1 = XSteam('hV_p', obj.p_1);
obj.s_1 = XSteam('sV_p', obj.p_1);
obj.x_1 = 1.0;

% Main Steam Header

obj.p_la = sg_pressure;

obj.t_la = XSteam('Tsat_p', obj.p_1);
obj.h_1la = XSteam('hV_p', obj.p_1);
obj.s_la = XSteam('sV_p', obj.p_1);
obj.x_1a 1.0;

% Crossover
obj.p_2 = hp_outlet_pressure;

obj.t_2 = XSteam('Tsat_p', obj.p_2);

obj.s_2 = obj.s_1;

obj.h_2 = XSteam('h_ps', obj.p_2, obj
.s8_2);

obj.x_2 = XSteam('x_ps', obj.p_2, obj
.8_2);

% LP Discharge
obj.p_3 = cond_pressure;
obj.t_3 XSteam('Tsat_p', obj.p_3);

172

obj.s_3 = obj.s_2;

obj.h_3 = XSteam('h_ps', obj.p_3, obj
.s8_3);

obj.x_3 = XSteam('x_ps', obj.p_3, obj
.s8_3);

% Condenser
obj.p_4 = cond_pressure;

obj.t_4 = XSteam('Tsat_p', obj.p_4);
obj.h_4 = XSteam('hL_p', obj.p_4);
obj.s_4 = XSteam('sL_p', obj.p_4);
obj.x_4 = 0.0;

% Feed Pump Discharge
obj.p_5 = sg_pressure;
obj.s_5 = obj.s_4;

obj.h_5 = XSteam('h_ps', obj.p_5, obj
.s_5);

obj.t_5 = XSteam('T_ps', obj.p_5, obj
.s_5);

obj.x_5 = 0.0;

% FW Heater Steam Supply

obj.p_7 = hp_extraction_pressure;

obj.s_7 = obj.s_1;

obj.t_7 = XSteam('Tsat_p', obj.p_7);

obj.h_7 = XSteam('h_ps', obj.p_7, obj
.s_T7);

obj.x_7 = XSteam('x_ps', obj.p_7, obj
.s8_7);

% FW Heater Exit

obj.p_6 = sg_pressure;

obj.t_6 = obj.t_5 + fwh_delta_t;

obj.h_6 XSteam('h_pT', obj.p_6, obj
.t_6);

173

obj.s_6
.t_6);
obj.x_6 = 0.0;

XSteam('s_pT', obj.p_6, obj

% FW Heater Drain to Condenser
obj.p_8 = 1.0;
obj.t_8 = obj.t_5 + 10.0;

obj.h_8 = XSteam('h_pt', obj.p_8, obj
.t_8);

obj.s_8 = XSteam('s_pt', obj.p_8, obj
.t_8);

obj.x_8 = 0.0;

% Accumulator
obj.p_9 = accumulator_pressure;

obj.t_9 = XSteam('Tsat_p', obj.p_9);
obj.h_9 = XSteam('hV_p', obj.p_9);
obj.s_9 = XSteam('sV_p', obj.p_9);
obj.x_9 = 1.0;

% Condensate Drain Tank
obj.p_10 = cond_pressure;

obj.t_10 = XSteam('Tsat_p', obj.p_10)
obj.h_10 = XSteam('hL_p', obj.p_10);
obj.s_10 = XSteam('sL_p', obj.p_10);
obj.x_10 = 0.0;

obj.q_sg = obj.h_1 - obj.h_6;

obj.m_dot_1 = obj.rated_thermal_power
* 1000/ (obj.q_sg);

syms m_dot_1 m_dot_la m_dot_2 m_dot_3

m_dot_4 m_dot_5 m_dot_6 m_dot_7
m_dot_8 m_dot_9 m_dot_10

174

eqn_1 = m_dot_1 - obj.m_dot_1 == 0.0;

eqn_2 = m_dot_1 - m_dot_6 == 0.0;

eqn_3 = m_dot_1 - m_dot_la - m_dot_9
== 0.0;

eqn_4 = m_dot_la - m_dot_7 - m_dot_2
== 0.0;

eqn_5 = m_dot_2 - m_dot_3 == 0.0;

eqn_6 = m_dot_4 - m_dot_5 == 0.0;

eqn_7 = m_dot_3 + m_dot_10 + m_dot_8
- m_dot_4 == 0.0;

eqn_8 = m_dot_4 - m_dot_5 == 0.0;

eqn_9 = m_dot_5 - m_dot_6 == 0.0;

eqn_10 = m_dot_7 - m_dot_8 == 0.0;

eqn_11 = m_dot_5 * obj.h_5 + m_dot_7
* obj.h_7 - m_dot_6 * obj.h_6 -
m_dot_8 * obj.h_8 == 0.0;

eqn_12 = m_dot_9 - obj.charging_flow
== 0.0;

[A, B] = equationsToMatrix([eqn_1,
eqn_2, eqn_3, eqn_4, eqn_b5, eqn_6,
eqn_7, eqn_8, eqn_9, eqn_10,
eqn_11, eqn_12],...

[m_dot_1, m_dot_1la, m_dot_2,
m_dot_3, m_dot_4, m_dot_5,
m_dot_6, m_dot_7, m_dot_8,
m_dot_9, m_dot_10]);

X = linsolve (A, B);
m_dot = double(X);

obj.m_dot_la = m_dot (2);

obj.m_dot_2 = m_dot (3);
obj.m_dot_3 = m_dot (4);
obj.m_dot_4 = m_dot (5);
obj.m_dot_5 = m_dot (6);

175

obj
obj
ob]j
obj
obj
obj
obj

obj

obj
obj

obj

obj

obj

.m_dot_6 = m_dot (7);
.m_dot_7 = m_dot (8);
.m_dot_8 = m_dot (9);
.m_dot_9 = m_dot (10) ;

.m_dot_10 = m_dot (11);

.q_cond = (obj.h_3 - obj.h_4) x (
obj.m_dot_3 / obj.m_dot_1);

.q_fwh = (obj.h_6 - obj.h_5) * (
obj.m_dot_5 / obj.m_dot_1);

.w_pump = (obj.h_5 - obj.h_4) * (
obj.m_dot_4 / obj.m_dot_1);

.fwh_flow = obj.m_dot_7;
.fwh_flow_fraction = obj.fwh_flow
/ obj.m_dot_1;

.charging_flow_fraction = obj.
charging_flow / obj.m_dot_1;

.w_turb_hp = (obj.h_la - obj.h_7)
* (obj.m_dot_la / obj.m_dot_1)...
+ (obj.h_7 - obj.h_2) * (obj.
m_dot_2 / obj.m_dot_1);
.w_turb_1lp = (obj.h_2 - obj.h_3) x*
(obj.m_dot_2 / obj.m_dot_1);

obj.Q_sg = obj.q_sg * obj.m_dot_1;
obj.Q_cond = obj.q_cond * obj.m_dot_1

I

obj.Q_fwh = obj.q_fwh * obj.m_dot_1;
obj.W_pump = obj.w_pump * obj.m_dot_1

3

obj.W_turb_hp = obj.w_turb_hp * obj.

m_dot_1 ;

176

obj.W_turb_lp = obj.w_turb_lp * obj.
m_dot_1;

obj.eta = (obj.W_turb_hp + obj.
W_turb_lp - obj.W_pump) / obj.Q_sg
end
end
function value = get.electrical_power (obj)
value = (obj.W_turb_hp + obj.W_turb_lp -
obj.W_pump) / 1000;

end

function value = get.accumulator_flow(obj)
value = obj.m_dot_9;

end

end

end

C.2.5 Regenerative Cycle (Feedwater Heater and Reheater)

The following MATLAB class handle was used to define the regenera-

tive steam plant with a feedwater heater and reheater.

classdef rankine_cycle_fwh_msr < handle
HRANKINE_CYCLE_1_FWH_EXT Summary of this class
goes here
pA Detailed explanation goes here

properties
rated_thermal_power
electrical_power
fwh_flow
fwh_flow_fraction
fwh_delta_t
msr_superheat

177

msr_flow
msr_flow_fraction
eta
w_turb_hp
W_turb_hp
w_turb_1p
W_turb_1p
w_pump
W_pump
q-88

Q_sg
gq_cond
Q_cond
q_fwh
Q_fwh

Q.
(e}

ct
[y

NN DNDNDDN

Q.

ot_2

W W www

Q.

ot_3

o B XM W B o B XN B T B X0 P oo
|

|
FNGIN

178

179

< o) © ~ 0 o

] | I I I I

i P)) i) i)

o o o o o 0O o oo
T OWOLOWOWOLW T O©O©© OO T M~NNMNNMNNMNNTDBOWWOWOWOWMOMTOHODNDOO OO T —H
T Y T T B B
S n XK 8 AP 9 n XK 8 9P g n XK E 9P g n XK E 9P g n XK E P g n XK E P o

s_10
x_10
m_dot_10
p_11
t_11
h_11
s_11
x_11
m_dot_11
p_12
t_12
h_12
s_12
x_12
m_dot_12
end

methods
function obj = rankine_cycle_fwh_msr(
sg_pressure, hp_outlet_pressure,...
hp_extraction_pressure, cond_pressure
, rated_thermal_power,...
fwh_delta_t, msr_superheat)
if (nargin “= 0)
obj.rated_thermal_power =
rated_thermal_power;
obj.fwh_delta_t = fwh_delta_t;
obj.msr_superheat = msr_superheat;
%» Main Steam Header

obj.p_1 = sg_pressure;

obj.t_1 = XSteam('Tsat_p', obj.p_1);
obj.h_1 = XSteam('hV_p', obj.p_1);
obj.s_1 = XSteam('sV_p', obj.p_1);
obj.x_1 = 1.0;

% HP Turbine Inlet
obj.p_2 = obj.p_1;

180

obj.t_2 = obj.t_1;
obj.s_2 = obj.s_1;
obj.h_2 = obj.h_1;
obj.x_2 = obj.x_1;

% MSR Inlet

obj.p_3 = obj.p_1;
obj.t_3 = obj.t_1;
obj.s_3 = obj.s_1;
obj.h_3 = obj.h_1;
obj.x_3 = obj.x_1;

% HP Turbine Extraction

obj.p_4 = hp_extraction_pressure;

obj.t_4 = XSteam('Tsat_p', obj.p_4);

obj.s_4 = obj.s_2;

obj.h_4 = XSteam('h_ps', obj.p_4, obj
s_4);

obj.x_4 = XSteam('x_ps', obj.p_4, obj
s_4);

% HP Turbine Discharge

obj.p_5 = hp_outlet_pressure;

obj.t_5 = XSteam('Tsat_p', obj.p_5);

obj.s_5 = obj.s_2;

obj.h_5 = XSteam('h_ps', obj.p_5, obj
.s_5);

obj.x_5 = XSteam('x_ps', obj.p_5, obj
s_5);

% MSR to LP Turbine
obj.p_7 = obj.p_5;

obj.t_7 = obj.t_5 + msr_superheat;

obj.h_7 = XSteam('h_pT', obj.p_7, obj
RANOE

obj.s_7 = XSteam('s_pT', obj.p_7, obj
LE_T)

181

obj.x_7 = 1.0;

% LP Turbine Discharge

obj.p_8 = cond_pressure;

obj.s_8 = obj.s_7;

obj.t_8 = XSteam('Tsat_p', obj.p_8);

obj.h_8 = XSteam('h_ps', obj.p_8, obj
s_8);

obj.x_8 = XSteam('x_ps', obj.p_8, obj
s_8);

% MSR to Condenser
obj.p_6 = sg_pressure;

obj.t_6 = obj.t_7 + 10.0;

obj.s_6 = XSteam('s_pT', obj.p_6, obj
.t_6);

obj.h_6 = XSteam('h_pT', obj.p_6, obj
.t_6);

obj.x_6 = XSteam('x_ps', obj.p_6, obj
.8_6);

% Condenser Discharge
obj.p_9 = obj.p_8;

obj.t_9 = XSteam('Tsat_p', obj.p_9);
obj.h_9 = XSteam('hL_p', obj.p_9);
obj.s_9 = XSteam('sL_p', obj.p_9);
obj.x_9 = 0.0;

%» Feep Pump Discharge

obj.p_10 = sg_pressure;

obj.s_10 obj.s_9;

obj.t_10 = XSteam('T_ps', obj.p_10,
obj.s_10);

obj.h_10 = XSteam('h_ps', obj.p_10,
obj.s_10);

obj.x_10 = 0.0;

182

% FWH Discharge

obj.p_11 = sg_pressure;

obj.t_11 obj.t_10 + fwh_delta_t;

obj.s_11 = XSteam('s_pT', obj.p_11,
obj.t_11);

obj.h_11 = XSteam('h_pT', obj.p_11,
obj.t_11);

obj.x_11 = 0.0;

% FWH to Condenser

obj.p_12 = 1.0;

obj.t_12 obj.t_10 + 10.0;

obj.s_12 = XSteam('s_pT', obj.p_12,
obj.t_12);

obj.h_12 = XSteam('h_pT', obj.p_12,
obj.t_12);

obj.x_12 = 0.0;

obj.q_sg = obj.h_1 - obj.h_11;

obj.m_dot_1 = obj.rated_thermal_power
* 1000/ (obj.q_sg);

syms m_dot_1 m_dot_2 m_dot_3 m_dot_4
m_dot_5 m_dot_6 m_dot_7...
m_dot_8 m_dot_9 m_dot_10 m_dot_11

m_dot_12
eqn_1 = m_dot_1 - obj.m_dot_1 == 0.0;
eqn_2 = m_dot_1 - m_dot_11 == 0.0;
eqn_3 = m_dot_1 - m_dot_2 - m_dot_3
== 0.0;
eqn_4 = m_dot_2 - m_dot_4 - m_dot_5
== 0.0;
eqn_5 = m_dot_3 - m_dot_6 == 0.0;
eqn_6 = m_dot_5 - m_dot_7 == 0.0;
eqn_7 = m_dot_7 - m_dot_8 == 0.0;

183

eqn_8 = m_dot_8 - m_dot_9 + m_dot_6 +

m_dot_12 == 0.0;
eqn_9 = m_dot_9 - m_dot_10 == 0.0;
eqn_10 = m_dot_10 - m_dot_11 == 0.0;
eqn_11 = m_dot_10 * obj.h_10 +
m_dot_4 * obj.h_4 - m_dot_12 * obj

1
.h_ 12 - m_dot_11 * obj.h_11 ==
0.0;
eqn_12 = m_dot_3 * obj.h_3 + m_dot_b
* obj.h_5 - m_dot_6 * obj.h_6 -
m_dot_7 * obj.h_7 == 0.0;

[A, B] = equationsToMatrix([eqn_1,
eqn_2, eqn_3, eqn_4, eqn_5, eqn_6,
eqn_7, eqn_8, eqn_9, eqn_10,
eqn_11, eqn_12],...

[m_dot_1, m_dot_2, m_dot_3,
m_dot_4, m_dot_5, m_dot_6,
m_dot_7, m_dot_8, m_dot_9,
m_dot_10, m_dot_11, m_dot_12])

I

X = linsolve (A, B);

m_dot = double (X);

obj.m_dot_2 = m_dot (2);
obj.m_dot_3 = m_dot (3);
obj.m_dot_4 = m_dot (4);
obj.m_dot_5 = m_dot (5);
obj.m_dot_6 = m_dot (6);
obj.m_dot_7 = m_dot (7);
obj.m_dot_8 = m_dot (8);
obj.m_dot_9 = m_dot (9);
obj.m_dot_10 = m_dot (10);
obj.m_dot_11 = m_dot (11);
obj.m_dot_12 = m_dot (12);

184

obj.fwh_flow = obj.m_dot_4;
obj.fwh_flow_fraction = obj.m_dot_4 /
obj.m_dot_1;

obj.msr_flow = obj.m_dot_3;
obj.msr_flow_fraction = obj.m_dot_3 /
obj.m_dot_1;

obj.q_fwh = (obj.h_11 - obj.h_10);

obj.w_pump obj.h_10 - obj.h_9;
obj.qg_cond (obj.h_8 - obj.h_9) * (
obj.m_dot_8 / obj.m_dot_1)...
+ (obj.h_6 - obj.h_9) * (obj.
m_dot_6 / obj.m_dot_1) +...
(obj.h_12 - obj.h_9) * (obj.
m_dot_12 / obj.m_dot_1);

obj.q_msr = (obj.h_7 - obj.h_5) * (
obj.m_dot_5 / obj.m_dot_1);

obj.w_turb_hp = (obj.h_2 - obj.h_4) x*

(obj.m_dot_2 / obj.m_dot_1)...

+ (obj.h_4 - obj.h_5) * (obj.
m_dot_5 / obj.m_dot_1);

obj.w_turb_lp = (obj.h_7 - obj.h_8) x*

(obj.m_dot_7 / obj.m_dot_1);

obj.Q_sg = obj.q_sg * obj.m_dot_1;
obj.Q_cond = obj.q_cond * obj.m_dot_1
obj.Q_fwh = obj.q_fwh * obj.m_dot_1;
obj.Q_msr obj.q_msr * obj.m_dot_1;
obj.W_pump = obj.w_pump * obj.m_dot_1

I

185

obj.W_turb_hp = obj.w_turb_hp * obj.
m_dot_1;

obj.W_turb_1p
m_dot_1;

obj.w_turb_1p * obj.

obj.eta = (obj.W_turb_hp + obj.
W_turb_lp - obj.W_pump) / obj.Q_sg

end

end

function value = get.electrical_power (obj)
value = (obj.W_turb_hp + obj.W_turb_lp -

obj.W_pump)/ 1000;
end
end

end

C.2.6 Regenerative Cycle (Feedwater Heater, Reheater, and Ac-
cumulator Discharging)

The following MATLAB class handle was used to define the regenera-
tive steam plant with a feedwater heater and reheater with the accumulator

discharging.
classdef rankine_cycle_fwh_msr_acc < handle
HRANKINE_CYCLE_1_FWH_EXT Summary of this class

goes here
yA Detailed explanation goes here

properties
accumulator_flow
rated_thermal_power
electrical_power
fwh_flow
fwh_flow_fraction

186

fwh_delta_t
msr_superheat
msr_flow
msr_flow_fraction
eta

w_turb_hp
W_turb_hp
w_turb_1p
W_turb_1p
w_pump

W_pump

q-8§g

Q_sg

g_cond

Q_cond

g_fwh

Q_fwh

o,
(o]

ct
=

NN DN NN

(o}

ot_2

W wwww

B X 0 gt B XM B o B X 0B o'c
| |

[oN)
(]
ct
[
w

187

< S S
|

|
Q4 o

|
n

dot_4

|
N B o

|
S on

ot_5

[|
X B o P

|
K=

ot_6

[|
X B o

|
S n

ot_7

[
X B o

|
S on

ot_8

|
X H P

|
S on

(e}
i)

o

O WLWLWILW T O O© © O O© TM~NMNMNMNDNMNTDTOWLWO0OWOWOW T OO O O OO T

[
X =

o

~—
|
o

188

t_10
h_10
s_10
x_10
m_dot_10
p_11
t_11
h_11
s_11
x_11
m_dot_11
p-12
t_12
h_12
s_12
x_12
m_dot_12
p-13
t_13
h_13
s_13
x_13
m_dot_13
end

methods
function obj = rankine_cycle_fwh_msr_acc(
sg_pressure, hp_outlet_pressure,...
cond_pressure, rated_thermal_power,
fwh_delta_t, msr_superheat,...
accumulator_pressure)
if (nargin "= 0)
obj.rated_thermal_power =
rated_thermal_power;
obj.fwh_delta_t = fwh_delta_t;
obj.msr_superheat = msr_superheat;
% Main Steam Header

189

obj.p_1 =
obj.t_1 =
obj.h_1 =
obj.s_1 =
obj.x_1 =

Sg_pressure;

XSteam('Tsat_p', obj.p_1);
XSteam ('hV_p', obj.p_1);
XSteam('sV_p', obj.p_1);

1.0;

% Crossover to MSR
hp_outlet_pressure;

obj.p_2 =
obj.t_2
obj.s_2
obj.h_2

.s_2);
obj.x_2

.8_2);

XSteam('Tsat_p', obj.p_2);

obj.s_1;

XSteam('h_ps', obj.p_2, obj
XSteam('x_ps', obj.p_2, obj

% Accumulator
accumulator_pressure;

obj.p_8 =
obj.x_8 =
obj.t_8
obj.h_8
hL_p',
obj.x

obj.s_8 =
sL_p',
obj.x

I

% Accumul
obj.p_9 =
obj.t
obj.h
s
X

obj.
obj.

% Accumul
obj.p_10

1.00;
XSteam('Tsat_p',

obj.p_8);

(1 - obj.x_8) * XSteam('

obj.p_8) +...

_8 x XSteam('hV_p',

obj.p_8)

(1 - obj.x_8) * XSteam('

obj.p_8) +...

_8 x XSteam('sV_p',

ator t
obj.p
obj.t
obj.h
obj.s
obj.x

ator
= obj.p_8;

190

obj.p_8)

obj.t_10
obj.h_10
obj.s_10=
obj.x_10

obj.t_8;

obj.h_8;
obj.s_8;

obj.x_8;

% LP Turbine Inlet

obj.p_3 =
obj.t_3 =
obj.h_3

.t_3);
obj.s_3

.t_3);
obj.x_3

obj.p_2;

obj.t_2 + msr_superheat;

XSteam('h_pT"',

XSteam('s_pT',

1.0;

% LP Turbine Discharge

obj.p_4 =
obj.s_4 =
obj.t_4
obj.h_4

.s_4);
obj.x_4

.s_4);

cond_pressure;

obj.s_3;

XSteam('Tsat_p',
XSteam('h_ps"',

XSteam('x_ps',

/» Condenser Discharge

obj.p_5 =
obj.t_b5
obj.h_5
obj.s_5
obj.x_5

obj.p_4;

XSteam('Tsat_p',
XSteam('hL_p',
XSteam('sL_p',

0.0;

% Feep Pump Discharge

obj.p_6 =
obj.s_6 =
obj.t_6
.8_6);
obj.h_6
.s_6);

sg_pressure;
obj.s_5b;

XSteam('T_ps',

XSteam('h_ps',

191

obj.p_3, obj
obj.p_3, obj
obj.p_4);
obj.p_4, obj
obj.p_4, obj
obj.p_5);
obj.p_5);
obj.p_5);
obj.p_6, obj
obj.p_6, obj

obj.x_6 = 0.0;

% FWH Discharge
obj.p_7 = sg_pressure;
obj.t_7 = obj.t_6 + fwh_delta_t;

obj.s_7 = XSteam('s_pT', obj.p_7, obj
LE_T);

obj.h_7 = XSteam('h_pT', obj.p_7, obj
RANON

obj.x_7 = 0.0;

%» MSR to Condenser

obj.p_11 = sg_pressure;

obj.t_11 obj.t_3 + 10.0;

obj.h_11 = XSteam('h_pT', obj.p_11,
obj.t_11);

obj.s_11 = XSteam('s_pT', obj.p_11,
obj.t_11);

obj.x_11 = XSteam('x_ps', obj.p_11,
obj.s_11);

% FWH to Condenser

obj.p_12 = 1.0;

obj.t_12 = obj.t_6 + 10.0;

obj.h_12 = XSteam('h_pT', obj.p_12,
obj.t_12);

obj.s_12 = XSteam('s_pT', obj.p_12,
obj.t_12);

obj.x_12 = 0.0;

%» Condensate Storage Tank
obj.p_13 = cond_pressure;

obj.t_13 = XSteam('Tsat_p', obj.p_13)
obj.h_13 = XSteam('hL_p', obj.p_13);
obj.s_13 = XSteam('sL_p', obj.p_13);
obj.x_13 = 0.0;

192

obj.q_sg = obj.h_1 - obj.h_7;
obj.q_fwh = obj.h_7 - obj.h_6;
obj.w_pump = obj.h_6 - obj.h_5;

obj.m_dot_1 = obj.rated_thermal_power
* 1000/ (obj.q_sg);

syms m_dot_1 m_dot_2 m_dot_3 m_dot_4
m_dot_5 m_dot_6 m_dot_7...
m_dot_8 m_dot_9 m_dot_10 m_dot_11
m_dot_12 m_dot_13

eqn_1 = m_dot_1 - obj.m_dot_1 == 0.0;
eqn_2 = m_dot_1 - m_dot_7 == 0.0;
eqn_3 = m_dot_1 - m_dot_2 == 0.0;
eqn_4 = m_dot_2 - m_dot_3 == 0.0;
eqn_5 = m_dot_3 - m_dot_4 == 0.0;
eqn_6 = m_dot_4 + m_dot_11 + m_dot_12
- m_dot_5 - m_dot_13 == 0.0;
eqn_7 = m_dot_5 - m_dot_6 == 0.0;
eqn_8 = m_dot_6 - m_dot_7 == 0.0;
eqn_9 = m_dot_8 - m_dot_9 - m_dot_10
== 0.0;
eqn_10 = m_dot_9 - m_dot_11 == 0.0;
eqn_11 = m_dot_10 - m_dot_12 == 0.0;
eqn_12 = m_dot_2 * obj.h_2 + dot_9

m_dot_11 * obj.h_11 == 0.0;
eqn_13 = m_dot_6 * obj.h_6 + m_dot_10
* obj.h_10 - m_dot_7 * obj.h_7 -
m_dot_12 * obj.h_12 == 0.0;

m_
* obj.h_9 - m_dot_3 * obj.h_3 -

[A, B] = equationsToMatrix([eqn_1,
eqn_2, eqn_3, eqn_4, eqn_5,...
eqn_6, eqn_7, eqn_8, eqn_9,
eqn_10, eqn_11, eqn_12, eqn_13

193

1,...
[m_dot_1, m_dot_2, m_dot_3,
m_dot_4, m_dot_5, m_dot_6,...
m_dot_7, m_dot_8, m_dot_9,
m_dot_10, m_dot_11, m_dot_12,

m_dot_13]1);
X = linsolve (A, B);

m_dot = double (X);

obj.m_dot_2 = m_dot (2);
obj.m_dot_3 = m_dot (3);
obj.m_dot_4 = m_dot (4);
obj.m_dot_5 = m_dot (5);
obj.m_dot_6 = m_dot (6);
obj.m_dot_7 = m_dot (7);

obj.m_dot_8
obj.m_dot_9
obj.m_dot_10
obj.m_dot_11
obj.m_dot_12
obj.m_dot_13

abs (m_dot (8));
abs (m_dot (9));
abs(m_dot (10));
abs(m_dot (11));
abs (m_dot (12));
abs (m_dot (13));

obj.accumulator_flow = obj.m_dot_8;

obj.q_cond = (obj.h_4 - obj.h_5) * (
obj.m_dot_4 / obj.m_dot_5)...
+ (obj.h_12 - obj.h_5) * (obj.
m_dot_12 / obj.m_dot_1) +...
(obj.h_11 - obj.h_5) * (obj.
m_dot_11 / obj.m_dot_1);

obj.q_msr = (obj.h_3 - obj.h_2) * (
obj.m_dot_3 / obj.m_dot_1);

194

end

end

obj.w_turb_hp (obj.h_1 - obj.h_2);

obj.w_turb_1p (obj.h_3 - obj.h_4);
obj.Q_sg = obj.q_sg * obj.m_dot_1;
obj.Q_cond = obj.q_cond * obj.m_dot_1
obj.Q_fwh = obj.q_fwh * obj.m_dot_1;
obj.Q_msr = obj.q_msr * obj.m_dot_1;
obj.W_pump = obj.w_pump * obj.m_dot_1

I

obj.W_turb_hp
m_dot_1;

obj.W_turb_1p
m_dot_1,;

obj.w_turb_hp * obj.

obj.w_turb_1p * obj.

obj.eta = (obj.W_turb_hp + obj.
W_turb_lp - obj.W_pump) / obj.Q_sg
end
end
function value = get.electrical_power (obj)
value = (obj.W_turb_hp + obj.W_turb_lp -
obj.W_pump)/ 1000;

end

function value = get.accumulator_flow(obj)
value = obj.m_dot_8;

end

195

C.2.7 Regenerative Cycle (Feedwater Heater, Reheater, and Ac-
cumulator Charging)

The following MATLAB class handle was used to define the regenera-
tive steam plant with a feedwater heater and reheater with the accumulator

charging.

classdef rankine_cycle_fwh_msr_acc_ch < handle
HRANKINE_CYCLE_1_FWH_EXT Summary of this class
goes here
b Detailed explanation goes here

properties
accumulator_flow
accumulator_flow_fraction
charging_flow
rated_thermal_power
electrical_power
fwh_flow
fwh_flow_fraction
fwh_delta_t
msr_superheat
msr_flow
msr_flow_fraction
eta
w_turb_hp
W_turb_hp
w_turb_1p
W_turb_1p
W_pump
W_pump
q-88
Q_sg
g_cond
Q_cond
q_fwh
Q_fwh

196

~— N ™ < Lo

| | | | |

H N + + + + +

n n (o] (o] (o] (o] (@]
g8 8- 1 1 "~ T ANANNANNTOOMHONHOMNMHNM T HF T TWOLWHLWLWOLW T OO O O ©O
| | | | | | [| | | [| [| | | | [[| | | [[| | | | | | | | | [| | |
OO e 9 n XK E P g n KB P 90 XK E P 90 XK E P 9 n KB 9P 9 n N

197

[oN
(@]

ct
(@)

ESEENEENEENIEN

Q.

ot_7

00 00 0O 0O 00

Q.

ot_8

KNP o B XM n o B X n o o B
[
© © ©O© O ©

o B
|
= 0.
[@2Ne]
ct
©

t_10
h_10
s_10
x_10
m_dot_10
p-11
t_11
h_11
s_11
x_11
m_dot_11
p_12
t_12
h_12
s_12
x_12
m_dot_12

198

p_13
t_13
h_13
s_13
x_13
m_dot_13
p_14
t_14
h_14
s_14
x_14
m_dot_14
end

methods
function obj = rankine_cycle_fwh_msr_acc_ch(
sg_pressure, hp_outlet_pressure,...
hp_extraction_pressure, cond_pressure
, rated_thermal_power,...
fwh_delta_t, msr_superheat,
accumulator_pressure)
if (nargin "= 0)

cycle_regen_fwh_msr_acc =
rankine_cycle_fwh_msr_acc(
sg_pressure, ...
hp_outlet_pressure, cond_pressure
, rated_thermal_power,
fwh_delta_t, ...
msr_superheat,
accumulator_pressure) ;

obj.charging_flow =

cycle_regen_fwh_msr_acc.
accumulator_flow;

199

obj.rated_thermal_power =
rated_thermal_power;
obj.fwh_delta_t = fwh_delta_t;

obj.msr_superheat = msr_superheat;

% Main Steam Header

obj.p_1 = sg_pressure;

obj.t_1 = XSteam('Tsat_p', obj.p_1);
obj.h_1 = XSteam('hV_p', obj.p_1);
obj.s_1 = XSteam('sV_p', obj.p_1);
obj.x_1 = 1.0;

% Branch to HP Turbine

obj.p_2 = obj.p_1;
obj.t_2 = obj.t_1;
obj.h_2 = obj.h_1;
obj.s_2 = obj.s_1;
obj.x_2 = obj.x_1;
% Branch to MSR

obj.p_3 = obj.p_1;
obj.t_3 = obj.t_1;
obj.h_3 = obj.h_1;
obj.s_3 = obj.s_1;
obj.x_3 = obj.x_1;

% Branch to Accumulator
obj.p_4 = obj.p_1;

obj.t_4 = obj.t_1;
obj.h_4 = obj.h_1;
obj.s_4 = obj.s_1;
obj.x_4 = obj.x_1;

% HP Turbine Extraction

obj.p_5 = hp_extraction_pressure;
obj.t_5 = XSteam('Tsat_p', obj.p_5);
obj.s_5 = obj.s_2;

200

obj.h_5

.s_5);

obj.x_5

.s_5);

XSteam('h_ps', obj.p_5, obj

XSteam('x_ps', obj.p_5, obj

% Crossover to MSR

obj.p_6
obj.t_6
obj.s_6
obj.h_6

.S_6);

obj.x_6

.8_6);

hp_outlet_pressure;
XSteam('Tsat_p', obj.p_6);
obj.s_2;

XSteam('h_ps', obj.p_6, obj

XSteam('x_ps', obj.p_6, obj

% MSR to Condenser

obj.p_7
obj.t_7
obj.h_7
obj.s_7
obj .x_7

1.0;

XSteam('Tsat_p', obj.p_7);
XSteam('hL_p', obj.p_7);
XSteam('sL_p', obj.p_7);
0.0;

% LP Turbine Inlet

obj.p_8
obj.t_8
obj.h_8

.t_8);

obj.s_8

.t_8);

obj.x_8

obj.p_6;

obj.t_6 + msr_superheat;
XSteam('h_pT', obj.p_8, obj
XSteam('s_pT', obj.p_8, obj

1.0;

% LP Turbine Discharge

obj.p_9
obj.s_9
obj.t_9
obj.h_9

.5_9);

cond_pressure;

obj.s_8;

XSteam('Tsat_p', obj.p_9);
XSteam('h_ps', obj.p_9, obj

201

obj.x_9 =
.s8_9);

%#Condense
obj.p_10
obj.t_10
obj.h_10
obj.s_10
obj.x_10

% Feep Pu
obj.p_11
obj.s_11

XSteam('x_ps',

r Discharge
obj.p_9;

= XSteam('Tsat_p',

= XSteam('hL_p'
= XSteam('sL_p'
0.0;

mp Discharge
= sg_pressure;
obj.s_10;

obj.t_11 = XSteam('T_ps'

obj.s_11);

obj.h_11 = XSteam('h_ps'

obj.s_11);
obj.x_11 = 0.0;

% FWH Discharge

obj.p_12 = sg_pressure;
obj.t_11 + fwh_delta_t;

obj.t_12

3

3

b

b

obj.s_12 = XSteam('s_pT"',

obj.t_12);

obj.h_12 = XSteam('h_pT"',

obj.t_12);
obj.x_12 = 0.0;

% FWH to Condenser

obj.p_13 = 1.0;

obj.p_9, obj

obj.p_10)

obj.p_10);
obj.p_10);

obj.p_11,

obj.p_11,

obj.p_12,

obj.p_12,

obj.t_13 = obj.t_11 + 10.0;

obj.h_13
obj.t_13);

XSteam ('h_pT',

obj.s_13 = XSteam('s_pT"',

obj.t_13);
obj.x_13 = 0.0;

202

obj.p_13,

obj.p_13,

% Condensate Storage Tank

obj.p_14
obj.t_14
obj.h_14
obj.s_14
obj.x_14

obj.q_sg

obj.q_fwh

= cond_pressure;
= XSteam('Tsat_p', obj.p_14)

= XSteam('hL_p', obj.p_14);
= XSteam('sL_p', obj.p_14);
0.0;

obj.h_1 - obj.h_12;
= obj.h_12 - obj.h_11;

obj.m_dot_1 = obj.rated_thermal_power
* 1000/ (obj.q_sg);

syms m_dot_1 m_dot_2 m_dot_3 m_dot_4
m_dot_5 m_dot_6 m_dot_7...
m_dot_8 m_dot_9 m_dot_10 m_dot_11
m_dot_12 m_dot_13 m_dot_14

eqn_1 = m_dot_1 - obj.m_dot_1 == 0.0;
eqn_2 = m_dot_1 - m_dot_2 - m_dot_3 -
m_dot_4 == 0.0;
eqn_3 = m_dot_1 - m_dot_12 == 0.0;
eqn_4 = m_dot_2 - m_dot_5 - m_dot_6
== 0.0;
eqn_5 = m_dot_3 - m_dot_7 == 0.0;
eqn_6 = m_dot_6 - m_dot_8 == 0.0;
eqn_7 = m_dot_9 + m_dot_14 + m_dot_7
+ m_dot_13 - m_dot_10 == 0.0;
eqn_8 = m_dot_8 - m_dot_9 == 0.0;
eqn_9 = m_dot_10 - m_dot_11 == 0.0;
eqn_10 = m_dot_11 - m_dot_12 == 0.0;
eqn_11 = m_dot_5 - m_dot_13 == 0.0;
eqn_12 = m_dot_5 * obj.h_5 + m_dot_11

* obj.h_11 - m_dot_12 * obj.h_12
- m_dot_13 * obj.h_13 == 0.0;

203

eqn_13 = m_dot_3 * obj.h_3 + m_dot_6
* obj.h_6 - m_dot_7 * obj.h_7 -
m_dot_8 * obj.h_8 == 0.0;

eqn_14 = m_dot_4 - obj.charging_flow
== 0.0;

[A, B] = equationsToMatrix([eqn_1,
eqn_2, eqn_3, eqn_4, eqn_5,...

eqn_6, eqn_7, eqn_8, eqn_9,
eqn_10, eqn_11, eqn_12, eqn_13

eqn_147, ...

[m_dot_1, m_dot_2, m_dot_3,
m_dot_4, m_dot_5, m_dot_6,...

m_dot_7, m_dot_8, m_dot_9,
m_dot_10, m_dot_11, m_dot_12,

m_dot_13, m_dot_14]);
X = linsolve (A, B);

m_dot = double (X);

obj.m_dot_2 = m_dot (2);
obj.m_dot_3 = m_dot (3);
obj.m_dot_4 = m_dot (4);
obj.m_dot_5 = m_dot (5);
obj.m_dot_6 = m_dot (6);
obj.m_dot_7 = m_dot (7);
obj.m_dot_8 = m_dot (8);
obj.m_dot_9 = m_dot (9);
obj.m_dot_10 = m_dot (10) ;
obj.m_dot_11 = m_dot (11);
obj.m_dot_12 = m_dot (12);
obj.m_dot_13 = m_dot (13);
obj.m_dot_14 = m_dot (14);

204

obj.fwh_flow = obj.m_dot_5;
obj.fwh_flow_fraction = obj.m_dot_5 /
obj.m_dot_1;

obj.msr_flow = obj.m_dot_3;
obj.msr_flow_fraction = obj.msr_flow
/ obj.m_dot_1;

obj.accumulator_flow_fraction = obj.
accumulator_flow / obj.m_dot_1;

obj.q_cond = (obj.h_9 - obj.h_10) * (
obj.m_dot_9 / obj.m_dot_1) +...
(obj.h_7 - obj.h_10) * (obj.
m_dot_7 / obj.m_dot_1) +...
(obj.h_13 - obj.h_10) * (obj.
m_dot_13 / obj.m_dot_1) +...
(obj.h_14 - obj.h_10) * (obj.
m_dot_14 / obj.m_dot_1);

obj.w_pump = (obj.h_11 - obj.h_10) =x*
(obj.m_dot_10 / obj.m_dot_1);

obj.q_msr = (obj.h_8 - obj.h_6) * (
obj.m_dot_6 / obj.m_dot_1);

obj.w_turb_hp = (obj.h_2 - obj.h_5) x*
(obj.m_dot_2 / obj.m_dot_1) +...
(obj.h_5 - obj.h_6) * (obj.

m_dot_6 / obj.m_dot_1);
obj.w_turb_lp = (obj.h_8 - obj.h_9) =
(obj.m_dot_8 / obj.m_dot_1);

obj.Q_sg = obj.q_sg * obj.m_dot_1;
obj.Q_cond = obj.q_cond * obj.m_dot_1

b

obj.Q_fwh = obj.q_fwh * obj.m_dot_1;

205

obj.Q_msr = obj.q_msr * obj.m_dot_1;
obj.W_pump = obj.w_pump * obj.m_dot_1
obj.W_turb_hp
m_dot_1,;
obj.W_turb_1p
m_dot_1;

obj.w_turb_hp * obj.

obj.w_turb_lp * obj.

obj.eta = (obj.W_turb_hp + obj.
W_turb_lp - obj.W_pump) / obj.Q_sg

I

end

end

function value = get.electrical_power (obj)

value = (obj.W_turb_hp + obj.W_turb_1lp)/
1000;

end

function value = get.accumulator_flow(obj)
value = obj.m_dot_4;

end

end

end

C.2.8 Cycle Evaluation Script

The following MATLAB Script was used to evaluate each cycle at dif-

ferent accumulator pressures.

RATED_THERMAL_POWER = 3500;
SG_PRESSURE = 72.0;
HP_DISCHARGE_PRESSURE = 20.0;
HP_DISCHARGE_PRESSURE_MSR = 20.0;
HP_EXTRACTION_PRESSURE = 40.0;
HP_EXTRACTION_PRESSURE_MSR = 40.0;
COND_PRESSURE = 0.07;

206

ACCUMULATOR_PRESSURE = 60.0;
FWH_DELTA_T = 140.0;
FWH_DELTA_T_MSR = 100.0;
MSR_SUPERHEAT = 1.0;

ITER = 300;

p_accum = linspace (HP_EXTRACTION_PRESSURE,
ACCUMULATOR_PRESSURE, 100);

zeros (1, 100);
zeros (1, 100);

h_acc
t_acc

eta = zeros(1, 100);

eta_fwh = zeros(1, 100);
eta_fwh_msr = zeros (1, 100);
eta_fwh_acc = zeros(1,100);
eta_fwh_acc_ch = zeros(1,100);
eta_fwh_msr_acc = zeros (1, 100);
eta_fwh_msr_acc_ch = zeros(1l, 100);

parfor i = 1:100
cycle_non_regen = rankine_cycle (SG_PRESSURE,
COND_PRESSURE, RATED_THERMAL_POWER) ;

cycle_regen_fwh rankine_cycle_fwh (SG_PRESSURE,
HP_DISCHARGE_PRESSURE, HP_EXTRACTION_PRESSURE
, COND_PRESSURE, ...
RATED_THERMAL_POWER, FWH_DELTA_T);

cycle_regen_fwh_msr = rankine_cycle_fwh_msr(
SG_PRESSURE, ...
HP_DISCHARGE_PRESSURE_MSR,
HP_EXTRACTION_PRESSURE_MSR, COND_PRESSURE,

RATED_THERMAL_POWER, FWH_DELTA_T_MSR,
MSR_SUPERHEAT) ;

207

cycle_regen_fwh_acc = rankine_cycle_fwh_acc(
SG_PRESSURE, ...
HP_DISCHARGE_PRESSURE, COND_PRESSURE,
RATED_THERMAL_POWER, ...
FWH_DELTA_T, p_accum(i));

cycle_regen_fwh_acc_ch = rankine_cycle_fwh_acc_ch
(SG_PRESSURE, ...
HP_DISCHARGE_PRESSURE, HP_EXTRACTION_PRESSURE
, COND_PRESSURE, ...
RATED_THERMAL_POWER, FWH_DELTA_T, p_accum(i))

I

cycle_regen_fwh_msr_acc =
rankine_cycle_fwh_msr_acc (SG_PRESSURE, ...
HP_DISCHARGE_PRESSURE_MSR, COND_PRESSURE,
RATED_THERMAL_POWER, FWH_DELTA_T_MSR, ...
MSR_SUPERHEAT, p_accum(i));

cycle_regen_fwh_msr_acc_ch =
rankine_cycle_fwh_msr_acc_ch (SG_PRESSURE, ...
HP_DISCHARGE_PRESSURE, HP_EXTRACTION_PRESSURE
, COND_PRESSURE, ...
RATED_THERMAL_POWER , FWH_DELTA_T,
MSR_SUPERHEAT, p_accum(i));

eta(i) = cycle_non_regen.eta;

eta_fwh(i) = cycle_regen_fwh.eta;

eta_fwh_msr(i) = cycle_regen_fwh_msr.eta;

eta_fwh_acc(i) = cycle_regen_fwh_acc.eta;

eta_fwh_acc_ch(i) = cycle_regen_fwh_acc_ch.eta;

eta_fwh_msr_acc(i) = cycle_regen_fwh_msr_acc.eta;

eta_fwh_msr_acc_ch(i) =
cycle_regen_fwh_msr_acc_ch.eta;

h_acc(i) = XSteam('hV_p', p_accum(i));

208

t_acc(i) = XSteam('Tsat_p', p_accum(i));
end

figure (1)
plot(p_accum, eta_fwh);
hold on;

plot(p_accum, eta_fwh_acc, 'r');
plot(p_accum, eta_fwh_acc_ch, 'g');
xlabel ('Accumulator Pressure [bar]');
ylabel ('Apparent Efficiency');

legend ('No Accumulator', 'Discharging', 'Charging');
figure (2)

plot(p_accum, eta_fwh_msr);

hold on;

plot (p_accum, eta_fwh_msr_acc, 'r');

plot(p_accum, eta_fwh_msr_acc_ch, 'g');

xlabel ('Accumulator Pressure [bar]');

ylabel ('Apparent Efficiency');

legend ('No Accumulator', 'Discharging', 'Charging');

C.2.9 Accumulator Discharge Rates versus Pressure

The MATLAB script used to generate the plots of accumulator dis-

charge rate versus pressure for different plant configurations is provided below.

RATED_THERMAL_POWER = 3500;
SG_PRESSURE = 72.0;
HP_DISCHARGE_PRESSURE = 20.0;
HP_DISCHARGE_PRESSURE_MSR = 20.0;
HP_EXTRACTION_PRESSURE = 40.0;
HP_EXTRACTION_PRESSURE_MSR = 40.0;
COND_PRESSURE = 0.07;
ACCUMULATOR_PRESSURE = 60.0;
FWH_DELTA_T = 140.0;
FWH_DELTA_T_MSR = 100.0;

209

MSR_SUPERHEAT = 1.0;

= 300;

p_accum = linspace (HP_EXTRACTION_PRESSURE,

ACCUMULATOR_PRESSURE, 100);

flow_fwh_acc = zeros(1,100);
flow_fwh_acc_ch = zeros(1,100);
flow_fwh_msr_acc = zeros (1, 100);
flow_fwh_msr_acc_ch = zeros (1, 100);

parfor i = 1:100

cycle_regen_fwh_acc = rankine_cycle_fwh_acc(
SG_PRESSURE, ...
HP_DISCHARGE_PRESSURE, COND_PRESSURE,
RATED_THERMAL_POWER, ...
FWH_DELTA_T, p_accum(i));

cycle_regen_fwh_acc_ch = rankine_cycle_fwh_acc_ch
(SG_PRESSURE, . ..
HP_DISCHARGE_PRESSURE, HP_EXTRACTION_PRESSURE
, COND_PRESSURE, ...
RATED_THERMAL_POWER, FWH_DELTA_T, p_accum(i))

3

cycle_regen_fwh_msr_acc =
rankine_cycle_fwh_msr_acc (SG_PRESSURE, ...
HP_DISCHARGE_PRESSURE_MSR, COND_PRESSURE,
RATED_THERMAL_POWER, FWH_DELTA_T_MSR, ...
MSR_SUPERHEAT, p_accum(i));

cycle_regen_fwh_msr_acc_ch =
rankine_cycle_fwh_msr_acc_ch (SG_PRESSURE,...
HP_DISCHARGE_PRESSURE, HP_EXTRACTION_PRESSURE
, COND_PRESSURE, ...

210

RATED_THERMAL_POWER, FWH_DELTA_T,
MSR_SUPERHEAT, p_accum(i));

flow_fwh_acc(i) = cycle_regen_fwh_acc.
accumulator_flow;

flow_fwh_acc_ch(i) = cycle_regen_fwh_acc_ch.
accumulator_flow;

flow_fwh_msr_acc(i) = cycle_regen_fwh_msr_acc.

accumulator_flow;
flow_fwh_msr_acc_ch(i) =
cycle_regen_fwh_msr_acc_ch.accumulator_flow;
end

figure (1)

plot(p_accum, flow_fwh_acc, 'r');

hold on;

hplot(p_accum, flow_fwh_acc_ch, 'r:');
xlabel ('Accumulator Pressure [bar]');

ylabel ('Accumulator Mass Flow Rate [kg/s]');
legend('Discharging and Charging');

figure (2)

plot(p_accum, flow_fwh_msr_acc, 'b');

hold on;

plot(p_accum, flow_fwh_msr_acc_ch, 'b:');
xlabel ('Accumulator Pressure [bar]');

ylabel ('Accumulator Mass Flow Rate [kg/s]');
legend ('Discharging', 'Charging');

211

1]

Bibliography

M. Abutayeh, A. Alazzam, and B. El-Khasawneh. Optimizing thermal
energy storage. Solar Energy, 120:318-329, 2015.

G. Beckmann and P. Gilli. Thermal Energy Storage. Springer-Verlag,
1984.

P. Gilli and K. Fritz. Nuclear power plants with integrated steam accu-
mulators for load peaking. Vienna, October 1970. IAEA Symposium on
Economic Integration of Nuclear Power Stations in Electric Power Sys-

tems.

D. Haeseldonckx, L. Peeters, L. Helsen, and W. D’haeseleer. The impact
of thermal storage on the operational behavior of residential chp facili-

ties and the overall CO,y. Renewable and Sustainable Energy Reviews,

11:1227-1243, 2007.

J. Kiusalaas. Numerical Methods in Engineering with MATLAB. Cam-
bridge University Press, 2010.

S. Kuravi, J. Trahan, D. Goswami, M. Rahman, and E. Stefanakos.
Thermal energy storage technologies and systems for concentrating so-

lar plants. Progress in Energy and Combustion Science, 39(4):285-319,
2013.

212

[7]

[12]

[13]

[14]

A. Raja, A. Srivastava, and M. Dwivedi. Power Plant Engineering. New

Age International, 2006.

D. Schnaider, P. Divnich, and I. Vakhromeev. Modeling the dynamic
mode of steam accumulator. Automation and Remote Control, 71:1994—

1998, 2010.

W. Steinmann and M. Eck. Buffer storage for direct steam generation.

Solar Energy, 80:1277-1282, 2006.

V. Stevanovic, B. Maslovaric, and S. Prica. Dynamics of steam accumu-

lation. Applied Thermal Engineering, 37:73-79, 2012.

V. Stevanovic, M. Petrovic, S. Milivojevic, and B. Maslovaric. Prediction
and control of steam accumulation. Heat Transfer Engineering, 36:498—

510, 2015.

M. Studovic and V. Stevanovic. Non-equilibrium approach to the analysis
of steam accumulator operation. Thermophysics and Aeromechanics,

1:53-60, 1994.

B. Sun, J. Guo, Y. Lei, L. Yang, Y. Li, and G. Zhang. Simulation
and verification of a non-equilibrium thermodynamic model for a steam
catapult’s steam accumulator. International Journal of Heat and Mass

Transfer, 85:88-97, 2015.

A. Ter-Gazarian. Energy Storage for Power Systems. The Institute of

Engineering and Technology, second edition, 2011.

213

[15] Z. Bogdan and D. Kopjar. Improvement of the cogeneration plant econ-

omy by using heat accumulator. Energy, 31(13):1949-1956, 2006.

214

