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Chapter 1: Introduction

A dimer model is a type of directed graph that cellularly decomposes a Riemann surface.

It comes with a canonical superpotential whose derivatives determine the relations of an

associative, generally noncommutative algebra, called the Jacobi algebra. Under certain

consistency conditions on the dimer, the Jacobi algebra is Calabi-Yau 3 [13]. Furthermore,

when the ambient surface is a torus, the center is a three dimensional toric Gorenstein

singularity, of which the Jacobi algebra is a noncommutative crepant resolution [9].

As Bocklandt showed in [8], the role of dimers in noncommutative geometry extends to

homological mirror symmetry of punctured Riemann surfaces. On the A-side, given such

a space X, one embeds a dimer, say Q∨, into the closure of X in such a way that the

vertices align with the punctures. The arrows of Q∨ are exact Lagrangian submanifolds of

X between the punctures, and the full subcategory fuk(Q∨) of these objects in the Z/2Z-

graded wrapped Fukaya category wFuk(X) (see [1] for a definition) generate the whole

category.

On the B-side, a dimer Q is obtained from Q∨ by an involution called dimer duality.

Essentially, dimer duality preserves the arrow set but exchanges vertices and zigzag cycles:

i.e., closed paths that alternate between clockwise and anti-clockwise faces. The Jacobi al-

gebra J(Q) has a special central element `, called the potential, given by the sum of the

boundary cycles in the cellular decomposition. The pair (J(Q), `) constitutes a noncommu-

tative Z/2Z-graded Landau-Ginzburg (LG) model, and a matrix factorization of (J(Q), `)
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Figure 1.1: Noncommutative mirror symmetry for the three-punctured sphere [8].
The dimer Q∨ is embedded in the punctured sphere, with vertices corresponding to the
punctures. Its dimer dual Q is embedded in the torus.

is a curved complex of projective J(Q)-modules. This can be represented as a diagram of

the following form:

P0

d0 **
P1

d1

jj d1d0 = ` · IdP0 , d0d1 = ` · IdP1 .

Each arrow in Q determines a matrix factorization (see §2.7), and the collection of such

objects forms a full subcategory mf(Q) of the differential Z/2Z-graded (DG) category of

matrix factorizations MF (J(Q), `).

The statement of mirror symmetry in [8] is an equivalence between fuk(Q∨) and mf(Q).

Theorem 1.0.1 ([8] Corollary 8.4). Suppose Q is a zigzag consistent dimer in a surface of

nonpositive Euler characteristic. Then there exists an A∞-quasi-isomorphism

mf(Q) ∼= fuk(Q∨).

Here, zigzag consistency is a condition on the intersection properties of zigzag cycles (see

§2.3.2). Commutative versions of this mirror equivalence were proved in [28] and [25].

A natural question is if the Hochschild cohomology HH∗ of the A∞-categories in Theorem

1.0.1 can be computed. Like its classical counterpart for associative algebras, Hochschild

cohomology of categories governs their deformations. Additionally, Hochshchild cohomology

of the Fukaya category of an exact symplectic manifold is conjecturally equivalent to its

symplectic cohomology as Gerstenhaber algebras [31]. This equivalence was proved in [20]

for punctured surfaces satisfying a certain nondegeneracy condition.
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For matrix factorizations of commutative LG models, a general computation of Hochschild

cohomology was provided by Lin–Pomerleano.

Theorem 1.0.2 ([26] Theorem 3.1). Suppose X is a smooth variety over C and W : X → C

a function whose only critical value is 0. Let MF (X,W ) be the category of matrix factor-

izations of the Landau-Ginzburg model (X,W ). Then

HH∗
(
MF (X,W )

)
= RΓ(∧TX , [W,−]) mod 2

where ∧TX is the sheaf of polyvector fields on X and [−,−] is the Schouten-Nijenhuis bracket.

A dual description of homology in terms of differential forms follows when X is Calabi-

Yau (done generally in [16]). These results generalize the theorem of Dyckerhoff [15], which

gives the cohomology of a local LG model with an isolated singularity. The method in

common among these computations is to identify a compact generator of MF (X,W ) from

its equivalence with the derived singularities category. Then derived Morita theory [33] can

be applied to compute Hochschild cohomology as the derived endomorphism algebra of the

generator.

Our goal is to compute the Hochschild cohomology of the matrix factorization category

of the noncommutative LG model (J(Q), `). However, commutative methods do not readily

transfer. If Q is embedded in a hyperbolic surface, for example, then J(Q) is not Noetherian,

and it is unclear if MF (J(Q), `) has a compact generator.

An alternative is to compute the so-called Hochschild cohomology of the second kind

of the matrix factorization category. This is an example of a derived functor of the sec-

ond kind, the foundations of which were established in [30] and [29]. The essential differ-

ence is that, whereas ordinary Hochschild cohomology of a graded category is defined as

a direct product totalization of the Hochschild complex, cohomology of the second kind is

defined as a direct sum totalization. In analogy with the similarly defined topological in-
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variants, Hochschild (co)homology of the second kind is also called compactly supported

(Borel-Moore) Hochschild (co)homology, denoted HH∗c (HHBM
∗ ).

Polischuk–Positselski [29] show that the two kinds of Hochschild cohomology for the

commutative LG models in [26] and [15] coincide. Furthermore, they identify the compactly

supported Hochschild cohomology of matrix factorizations with that of the LG model treated

as a curved algebra. More precisely, if A is an associative algebra and h is a central element,

then the LG model (A, h) is equivalently the data of a curved A∞-structure on A for which

all multiplication maps {mk}∞k=0 are trivial except the associative product m2 and m0 = h.

We label this curved algebra Ah. The category of matrix factorizations of (A, h) can be

reinterpreted as the category of curved Z/2Z-graded modules over Ah, projective as A-

modules.

Theorem 1.0.3 ([29] §2.6). For a Landau-Ginzburg model (A, h), there are isomorphisms

of Z/2Z-graded vector spaces

HH∗c (Ah) ∼= HH∗c (MF (A, h)), HHBM
∗ (Ah) ∼= HHBM

∗ (MF (A, h))

We are unsure if the two kinds of Hochschild cohomology of MF (J(Q), `) are equivalent.

Nonetheless, support for the affirmative may come from computing HH∗c (J(Q)`). This can

be accomplished by a spectral sequence as in [12], where it is done for a commutative local

LG model with an isolated hypersurface singularity. The result, which we prove in Chapter

5, is analogous to Theorem 1.0.2.

Proposition 1.0.4. Suppose Q is a zigzag consistent dimer in a surface of nonpositive Euler
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characteristic. Suppose further that Q admits a perfect matching. Then

HH∗c (MF (J(Q), `)) ∼= H∗
(
HH∗(J(Q)), {`,−}

)
mod 2

HHBM
∗ (MF (J(Q), `)) ∼= H∗

(
HH∗(J(Q)), L`

)
mod 2

where {−,−} is the Gerstenhaber bracket and L− is the Lie derivative.

Here, a perfect matching is a subset of Q containing exactly one arrow from every bound-

ary cycle. It can be used to define a Z-grading on J(Q), which features prominently in the

proof of the proposition.

When Q is a zigzag consistent dimer embedded in a torus Σ, we describe HH∗(J(Q))

explicitly in terms of the underlying toric data of J(Q). The perfect matchings generate a

latticeN out of outer derivations of J(Q). A difference of perfect matchings can be identified as

an element of H1(Σ), the integer homology of Σ. Translating the perfect matchings by a fixed

reference matching and taking the convex hull produces a lattice polygon in H1(Σ)⊗ZR ∼= R2.

The toric variety from the cone on the polygon has coordinate ring isomorphic to the center

Z of J(Q). The rays of the dual cone are generated by the opposites to the homology classes

of the zigzag cycles. Moreover, in the facet of the dual cone orthogonal to a corner perfect

matching, the interior lattice points determine outer derivations of J(Q) that have degree

−1 with respect to the perfect matching. Let N out
R = N out ⊗Z R, {ν1, . . . , νk} ⊂ H1(Σ) be

the opposite homology classes of the zigzags, Γ =
⋃k
i=1 Z>0 · νi, and H1(Σ)∗ = H1(Σ) \ {0}.

In Chapter 4, we prove the following.
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Theorem 1.0.5. Suppose Q is a zigzag consistent dimer in a torus Σ. As a vector space,

HH∗(J(Q)) ∼=



Z if ∗ = 0

Z ⊗R N
out
R ⊕ C ·H1(Σ)∗ \ Γ if ∗ = 1

Z ⊗R N
out
R ∧N out

R ⊕
(
C ·H1(Σ)∗ \ Γ

)2 ⊕ C · Γ⊕ tor+
` if ∗ = 2

Z ⊗R N
out
R ∧N out

R ∧N out
R ⊕ C ·H1(Σ)⊕ tor` if ∗ = 3

0 otherwise.

Here, tor` is the subspace of HH0(J(Q)) of torsional elements under the action of `, and

tor+
` consists of all such elements with positive degree in some perfect matching. A more

geometric description in terms of paths in the dimer is provided in §4.3.

In Chapter 5, the above description ofHH∗(J(Q)) allows us to computeHH∗c (MF (J(Q), `)).

Let xνi be the central element of J(Q) corresponding to the homology class νi.

Theorem 1.0.6. Suppose Q is a zigzag consistent dimer in a torus Σ. Then

HHeven
c

(
MF (J(Q), `)

) ∼= tor+
` ⊕ C[xν1 , . . . , xνk ]/

(
xνixνj | i 6= j)

HHodd
c

(
MF (J(Q), `)

) ∼= tor` ⊕ C[xν1 , . . . , xνk ]/
(
xνixνj | i 6= j)

⊕ C

In examples, this computation gives the answer expected from considerations of mirror

symmetry.

We give here an outline of the paper. In Chapter 2, we briefly review the prerequisites

on dimer models, Calabi-Yau algebras, matrix factorizations, and Hochschild cohomology.

In Chapter 3, we characterize the Batalin-Vilkovisky (BV) structure of HH∗(J(Q)) induced

by the Calabi-Yau structure of J(Q). The idea is to relate Hochschild cohomology of J(Q)

6



to that of its localization with respect to `, J(Q)[`−1], which is Morita equivalent to the

fundamental group algebra of a circle bundle over Σ. This work helps us with the explicit

computation of the Hochschild cohomology of J(Q) in Chapter 4. Finally, in Chapter 5, the

compactly supported Hochschild cohomology of J(Q) is addressed.

1.1 Basic notation and conventions

We work generally over the complex numbers C. The following notation will be common

throughout the text.

• Q is a finite quiver (or directed graph) with vertex set Q0 and arrow set Q1.

• t, h : Q1 → Q0 are the tail and head functions, respectively.

• CQ is the path algebra of Q.

• For every vertex v ∈ Q0 and arrow a ∈ Q1, the same symbols v and a will also denote

the corresponding elements of CQ and J(Q).

• k := CQ0, the semisimple subalgebra of CQ spanned by the idempotents {v ∈ Q0}.

• Q̄ is the double of Q.

• The unadorned tensor product ⊗ stands for ⊗C.

The convention of forward concatenation of paths for multiplication in CQ will be fol-

lowed. That is, for arrows a1, . . . , an ∈ Q1,

a1a2 . . . an 6= 0 ∈ CQ ⇐⇒ h(ai) = t(ai+1) ∀ i = 1, . . . , n.

A symbol such as p : v → w will indicate a path p such that t(p) = v and h(p) = w, either

in CQ or in J(Q).

7



Chapter 2: Preliminaries

This chapter lays the groundwork for the rest of the paper. The exposition about dimer

models in §2.1 - 2.4 is adapted largely from the works of Bocklandt and Broomhead, [5,

8, 7, 9]. In §2.5, we discuss Ginzburg’s notion of Calabi-Yau algebras [22]. In §2.6-2.7, we

briefly review the essentials from Polischuk–Positselski [29] about curved differential graded

categories and Hochschild cohomology.

2.1 Dimer models

Conventionally, a dimer model is defined as a tiling of a Riemann surface by a bipartite

graph. The edges of the dual cellular decomposition can be oriented to give a quiver, from

which the Jacobi algebra is constructed. Since the algebra is our focus, we will simplify the

exposition by defining dimers from the quiver perspective.

Let Σ be a compact Riemann surface of genus g. We say a quiver Q embeds into Σ if

1. Q0 is identified with a finite subset of Σ,

2. each arrow a ∈ Q1 has a smooth embedding φa : [0, 1]→ Σ such that φa(0) = t(a) and

φa(1) = h(a), and

3. the images of distinct arrows intersect only at the vertices.

We also impose the condition that no arrow is a contractible loop. Such a quiver is said to

8



split Σ if Σ \ Q is a disjoint union of open disks. The closure of such a disk is called a face

of Q, which we denote generically by F .

Definition 2.1.1. A dimer model (or simply dimer) is a quiver Q splitting a Riemann

surface Σ such that every face is bounded by a path of length at least 3: that is, an element

a1a2 . . . am 6= 0 ∈ CQ where a1, . . . , am ∈ Q1 and m ≥ 3. We call such a closed path,

considered up to cyclic permutation of the arrows, a boundary cycle, and label it ∂F .

Let Q2 be the set of faces of a dimer model. It can be divided into two subsets: the col-

lection Q+
2 of faces whose boundary cycles are oriented anti-clockwise and the collection Q−2

of faces whose boundary cycles are oriented clockwise. We describe faces and their boundary

cycles as positive and negative accordingly. Every arrow is contained in the boundary cycle

of exactly one positive face and one negative face.

We see that a dimer model provides a cellular decomposition of the ambient Riemann

surface, and we write the associated chain complex with integer coefficients as

ZQ2
d // ZQ1

d // ZQ0. (2.1)

Dually, we write the cellular cochain complex as

ZQ0 ∂ // ZQ1 ∂ // ZQ2 . (2.2)

The Euler characteristic of Σ can be computed in the standard way from these complexes.

Hence, the Euler characteristic can be ascribed to the dimer itself, and we denote it χ(Q).

9



Example 2.1.2 ([8]).

1 2 1

3 4 3

1 2 1

a b

c

d

c

d

a b

1 1

3 2

1 1

a

x

y

b

a

b

1 1 1

1 1

1 1 1

a

b

b

c

a d

d c

The first two dimers have genus 1, while the third dimer has genus 2.

2.2 Jacobi algebras

Let Q be an arbitrary quiver. A superpotential of Q is an element Φ ∈ CQ/[CQ,CQ], the

vector space with basis given by the cyclic words in Q. For each arrow x ∈ Q1, Ginzburg

[22] defines an operator

∂x : CQ/[CQ,CQ]→ CQ

called the cyclic derivative with respect to x. It evaluates the equivalence class of a monomial

a1a2 . . . am ∈ CQ where ai ∈ Q1 as

∂x[a1a2 . . . am] =
∑
i | ai=x

ai+1 . . . ama1 . . . ai−1.

Then the Jacobi algebra of the pair (Q,Φ) is defined to be the quotient of the path algebra

by the ideal generated by the cyclic derivatives of Φ,

J(Q,Φ) = CQ/(∂aΦ | a ∈ Q1).

If Q is a dimer model, the boundary of a face, ∂F , can be viewed as an element in

10



CQ/[CQ,CQ]. Then the dimer is equipped with the canonical superpotential

Φ0 =
∑
F∈Q+

2

∂F −
∑
F∈Q−2

∂F.

Definition 2.2.1. The Jacobi algebra of a dimer model Q is the algebra J(Q) := J(Q,Φ0).

To write the relations explicitly, let x ∈ Q1 and R±x be the paths in CQ completing x to

positive and negative boundary paths, respectively. We see that

∂xΦ0 = R+
x −R−x . (2.3)

Since the boundary paths of a dimer have path length at least 3, the terms R±x have length at

least 2. Hence, the quotient map CQ� J(Q) preserves Q0 and Q1. In general, path length

induces only an increasing filtration on J(Q), as the relations need not be homogeneous.

We denote by Z the center of the algebra J(Q), the underlying dimer being implicit.

Choosing path that bounds a face at each vertex v and letting cv be its image in J(Q), we

define

` =
∑
v∈Q0

cv ∈ J(Q).

From the definition of the Jacobi algebra, it is straightforward to check that ` is independent

of the choice of boundary paths and, moreover, is in Z. This special central element is called

the potential of Q, and it pairs with J(Q) to form a Landau-Ginzburg model.

2.3 Consistency conditions

Several related notions of consistency of a dimer are defined in the literature. We discuss a

couple versions that will be most relevant to our interests. Throughout, it is assumed that

Q is a dimer model in a surface Σ.

11



2.3.1 Cancellation

Consider the set {1, `, `2, . . . `n, . . . } consisting of all nonnegative powers of ` in J(Q). We

denote by J(Q)[`−1] the central Ore localization of J(Q) with respect to this multiplicative

set and call it the localized Jacobi algebra. Geometrically, if J(Q) is viewed as the coordinate

ring of a hypothetical noncommutative affine variety, then J(Q)[`−1] is the coordinate ring

of the complement to the zero locus of `. Letting Z[`−1] = Z ⊗C[`] C[`, `−1], we can realize

it as

J(Q)⊗Z Z[`−1].

It can also be constructed from the path algebra of the double quiver Q by imposing the

relations

aa−1 = t(a), a−1a = h(a) ∀ a ∈ Q1 (2.4)

in addition to those in (2.3). Consequently, the localized algebra has an important cancel-

lation property: for any arrow a and paths p, q ∈ J(Q)[`−1] such that h(p) = h(q) = t(a),

then

pa = qa =⇒ p = q,

and similarly for products in the reverse direction.

Definition 2.3.1. A dimer model Q is said to be cancellation if J(Q) also has the cancel-

lation property, or equivalently, if the natural map L : J(Q)→ J(Q)[`−1] is injective.

The kernel of L consists of all torsion elements under the action of `, so a dimer is cancellation

if and only if J(Q) is torsion-free. Generally, cancellation can be difficult to check directly,

but in nonpositive Euler characteristic, there is an equivalent geometric condition to which

we now turn.

12



2.3.2 Zigzag consistency

Let Σ̃ be the universal cover of Σ. The dimer can be lifted to a quiver Q̃ embedded in Σ̃

that locally exhibits the same properties as Q.

Definition 2.3.2. A zigzag flow is an infinite path in Q̃

Z̃ := . . . Z̃[−2]Z̃[−1]Z̃[0]Z̃[1]Z̃[2] . . . , Z̃[i] ∈ Q̃1 ∀ i ∈ Z

such that Z̃[i]Z̃[i+1] is contained in a positive boundary cycle when i is even and a negative

boundary cycle when i is odd, or vice versa. Two zigzag flows are considered to be equivalent

if one is obtained from the other by an integer shift in parametrization. An arrow Z̃[i] is

called a zig if Z̃[i]Z̃[i+ 1] is contained in a positive boundary cycle and a zag if Z̃[i]Z̃[i+ 1]

is contained in a negative boundary cycle.

The projection of the zigzag flow Z̃ to Q is an infinite periodic path. We call a single

period of this path at a given vertex a zigzag path and denote it by Z; when considered up to

cyclic permutation of the arrows, we call it a zigzag cycle. An important related construction

is the path that runs opposite to a zigzag along the positive or negative boundary cycles it

meets.

Definition 2.3.3. Let Z be a zigzag path. The left opposite path to Z, denoted OL, is the

path in Q at t(Z) = h(Z) consisting of the arrows in the positive boundary cycles meeting

Z but not in Z. The right opposite path to Z, denoted OR, is defined similarly but with

negative boundary cycles. When considered up to cyclic permutation of the arrows, we call

them the left and right opposite cycles to Z.

Zigzag and opposite cycles can be identified as 1-cycles in the cellular chain complex (2.1).

Let {ν1, . . . , νk} ⊂ H1(Σ) be the homology classes of the opposite cycles, so {−ν1, . . . ,−νk}

13



are the homology classes of the zigzag cycles. In general, there are multiple opposites and

zigzags for each class.

Any arrow a ∈ Q̃1 is contained in exactly two zigzag flows: one for which a is a zig and

one for which a is a zag. Let

Z̃+
a = Z̃+

a [0]Z̃+
a [1]Z̃+

a [2] . . .

Z̃−a = Z̃−a [0]Z̃−a [1]Z̃−a [2] . . .

be the respective seminfinite subpaths emanating from Z̃+
a [0] = Z̃−a [0] = a, called the zig

and zag rays of a.

Definition 2.3.4. A dimer model Q is zigzag consistent if for all arrows a ∈ Q̃1, Z̃+
a and

Z̃−a intersect only in a:

Z̃+
a [i] = Z̃−a [j] =⇒ i = j = 0.

Note that a dimer model in the sphere can never be zigzag consistent because Q̃ = Q

is finite. Hence, whenever we assume a dimer is zigzag consistent, it will be implicit that

χ(Q) ≤ 0, in which case zigzag consistency is actually equivalent to cancellation.

Theorem 2.3.5 ([5] Theorem 5.5). Suppose Q is a dimer with χ(Q) ≤ 0. Then Q is

cancellation if and only if Q is zigzag consistent.

It is straightforward to check that the first and third examples in 2.1.2 are zigzag con-

sistent. However, the second example is not, as the zigzag rays emanating from a lift of the

arrow x intersect in a lift of y. Thus, the dimer is not cancellation.

When Q is a zigzag consistent dimer embedded in a torus, zigzag flows behave similarly

to lines in the Euclidean plane. As observed in Remark 5.6 [5], a zigzag path in this setting

cannot intersect itself in an arrow, so the νi are nonzero and are primitive elements of H1(Σ).

For a given zigzag flow Z̃, the homology −νi of the cycle to which it projects is the gradient of
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the line in R2 drawn through a vertex and its periodic shifts in Z̃. Hence, νi can be thought

of as the direction of Z̃. We may assume, then, that the homology classes {ν1, . . . , νk} are

ordered cyclically in anti-clockwise fashion. Distinct zigzag flows (paths, cycles) are said to

be parallel if they have the same direction, as justified by the following.

Proposition 2.3.6 ([5], [9]). Suppose Q is a zigzag consistent dimer model in a torus.

1. If two zigzag flows have the same homology, they do not intersect in an arrow.

2. If two zigzag paths have linearly independent homology, then they intersect in at least

one arrow.

Notation 2.3.7. Suppose Q is a zigzag consistent dimer in a torus. For each i ∈ Z/kZ, let

γi = Z>0 · νi, and let σi = IntCone(νi, νi+1) ∩ Z2, the set of lattice points in the interior of

the cone in R2 spanned by νi and νi+1.

2.4 Perfect matchings

Let Q be a dimer model. In the cellular cochain complex (2.2), the image of a vertex v ∈ ZQ0

under the differential ∂ is the function

∂(v) : a 7→ δvh(a) − δvt(a), ∀a ∈ Q1

where δvw is the Kronecker delta on Q0. The kernel of ∂ is precisely the sublattice generated

by
∑

v∈Q0
v. Modifying the notation in [9], write N in for ∂(ZQ0). We thus have an exact

sequence

0→ Z→ ZQ0 → N in → 0.

If α ∈ ZQ1 , then

∂α(F ) =
∑
a∈∂F

α(a), ∀F ∈ Q2.
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Let 1 ∈ ZQ2 be the constant function with value 1, N = ∂−1(Z · 1), and N out = N/N in. An

element α ∈ N has homogeneous summation on the boundary cycles of Q: there exists a

constant m ∈ Z such that ∑
a∈∂F

α(a) = m, ∀F ∈ Q2.

Since the relations of the Jacobi algebra (2.3) are homogeneous with respect to such α, it

determines an Z-grading on J(Q). By the rule α(a−1) = −α(a), it extends to a grading on

J(Q)[`−1].

Definition 2.4.1. A perfect matching P is a subset of Q1 containing exactly one arrow from

every boundary cycle. Such a set can be identified with the element of ∂−1(1) sending an

arrow a to 1 if a ∈ P and 0 otherwise. We write PM(Q) for the set of perfect matchings of

Q and degP(p) for the degree of a path p in J(Q) or J(Q)[`−1] with respect to P .

Not every dimer model admits a perfect matching. Broomhead gives a necessary and

sufficient condition for its existence ([9] Lemma 2.8). He also proves that N+ := ∂−1(N · 1)

is generated integrally by PM(Q). If every arrow of Q is contained in a perfect matching,

then the sum ∑
P∈PM(Q)

P

is a strictly positive element of N+. In this case, the perfect matchings generate the lattice

N .

Proposition 2.4.2 ([9] Lemma 2.11; [7] Lemma 1.39). Suppose Q is a dimer admitting a

strictly positive element of N+. Then N is integrally generated by PM(Q).

The difference of two perfect matchings is a cocycle (2.2) and so determines a class in

H1(Σ). Fixing a reference perfect matching P ′, we obtain a lattice polytope from the convex

hull of {P − P ′ | P ∈ PM(Q)} in H1(Σ) ⊗Z R ∼= R2g+1, unique to Q up to affine integral

transformation. We call this polytope the matching polytope and denote it MP (Q).
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When Q is a zigzag consistent dimer in a torus, the combinatorics are especially well-

understood. Every lattice point in the matching polygon is the image of some perfect match-

ing, which can then be classified as

• an internal matching if its image lies in the interior of MP (Q),

• a boundary matching if its image lies on the boundary of MP (Q), and

• corner matching if its image lies at the intersection of two boundary components.

Generally, multiple perfect matchings can map to the same lattice point. However, the

corner matchings are unique, and they can be constructed geometrically from an isoradial

embedding of Q̃ into R2 [5]. In fact, every arrow is contained in some corner matching, so

by Proposition 2.4.2, the lattice N is generated by PM(Q).

The homology classes of the zigzag cycles {−νi | i ∈ Z/kZ} are precisely the outward

pointing normals to MP (Q) [23]. Hence, we can cyclically order the corner matchings

{Pi | i ∈ Z/kZ} so that −νi is the normal to the boundary component between Pi and Pi+1.

The detailed relationship between perfect matchings and zigzag cycles can be summarized

as follows.

Theorem 2.4.3 ([23] §3; see also [7] Theorem 1.47). Suppose Q is a zigzag consistent dimer

in a torus.

1. The corner matchings Pi and Pi+1 contain the zigs and zags, respectively, of all zigzag

cycles of homology −νi. In each boundary cycle that does not meet a zigzag cycle of

homology −νi, Pi and Pi+1 coincide.

2. The number of zigzag cycles ni of homology −νi is one less than the number of lattice

points on the boundary between Pi and Pi+1. A boundary matching of length d away
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from Pi is the union of Pi ∩ Pi+1, all arrows in Pi from d chosen zigzag cycles of ho-

mology −νi, and all arrows in Pi+1 from the remaining ni−d zigzag cycles of homology

−νi.

3. The internal matchings meet every nontrivial closed path of Q.

As a corollary, the opposite paths OR and OL to a zigzag path of homology −νi have

degree 0 in Pi, Pi+1, and all boundary matchings between them. Since the potential ` has

degree 1 in all perfect matchings, this implies that the opposite paths are minimal paths in

J(Q): namely, they are not a multiple of `. Note, however, that OR and OL have positive

degree in all other perfect matchings, as can be deduced from Proposition 2.3.6.

Example 2.4.4 ([7] Example 1.5). The suspended pinchpoint can be modeled by a zigzag

consistent dimer in a torus.

1 1

3 3

2 2

1 1

d

ec

b

c

b
f

g
a

d

a {e, g} = P4

{a, e}, {c, g}

{a, c} = P3

P2 = {d, f}

P1 = {b, d}

Observe that the homology classes of the paths d and afcec generate H1(Σ). The match-

ing polygon MP (Q) is represented with respect to this basis. There are 4 corner matchings, 2

boundary matchings, and no internal matchings. We list the the zigzag cycles and represent

them as normal vectors in the diagram.
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zigzag cycle homology class

ag (−1, 0)

ce (−1, 0)

dafc (2, 1)

fb (1, 0)

debg (−1,−1)

2.5 Calabi-Yau algebras

Let A be an associative algebra and Ae = A⊗ Aop, the enveloping algebra of A.

Definition 2.5.1. An algebra A is (homologically) smooth if it has a bounded resolution by

finitely generated projective Ae-modules. A smooth algebra A is Calabi-Yau of dimension n

(CY-n) if there exists an A-bimodule quasi-isomorphism

A[n]→ RHomAe(A,A⊗ A)

where [−] denotes the shift in homological degree and RHomAe(A,A ⊗ A) has A-bimodule

structure from the inner bimodule action on A⊗ A.

The definition implies that, if A is CY-n, the Serre functor on the derived category of

finitely generated A-modules is translation by n,

RHomA(M,N) ∼= RHomA(N,M [n])∗.

In this sense, it is analogous to the geometric notion of a Calabi-Yau variety.
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The quasi-isomorphism in the definition is equivalently an A-bimodule isomorphism

A→ ExtnAe(A,A⊗ A), (2.5)

which is determined by the image of 1 ∈ A. The image, which is a central element in

ExtnAe(A,A⊗A), is called a volume of A, and the set of all volumes V ol(A) is a torsor over

the ring of central units, Z(A)× [22].

Not every dimer model yields a Jacobi algebra that is Calabi-Yau 3. As it turns out, the

Jacobi algebra of a dimer in the sphere can never be so [5]. However, a sufficient condition

when the Euler characteristic is nonpositive is that Q is cancellation or, equivalently, zigzag

consistent.

Theorem 2.5.2 ([13]). If Q is a zigzag consistent dimer model, then J(Q) is Calabi-Yau 3.

2.5.1 Resolutions of the Jacobi algebra

Let Q be a general quiver and Φ a superpotential of Q. As for any associative algebra,

A = J(Q,Φ) can be resolved as a bimodule by the bar complex,

Bar(A) = A⊗ A⊗∗ ⊗ A,

dBar(p1 ⊗ · · · ⊗ pn) =
n∑
i=1

(−1)i−1p1 ⊗ · · · ⊗ pipi+1 ⊗ · · · ⊗ pn.

A somewhat smaller resolution is obtained by normalizing with respect to the semisimple

subalgebra k. Letting A = A/k, we have

Bar(A) = A⊗k A
⊗k∗ ⊗k A, (2.6)

a quotient of Bar(A) by an acyclic subcomplex, with differential induced from dBar.
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The Calabi-Yau 3 property of A := J(Q,Φ) is equivalent to the exactness of a certain

bimodule complex. To define it, let

• V0 = k,

• V1 = CQ1, the vector space with basis given by the arrows of Q,

• V2 = C{∂aΦ | a ∈ Q1}, the vector space with basis given by the cyclic derivatives of Φ,

and

• V3 = C{Φv | v ∈ Q0}, the vector space with basis given by the syzygies

Φv =
∑

a | t(a)=v

a ∂aΦ =
∑

a |h(a)=v

∂aΦ a.

These vector spaces have obvious k-bimodule structures and thus generate projective A-

bimodules

Pi := A⊗k Vi ⊗k A.

Then define maps µi : Pi → Pi−1 for i = 1, 2, 3 and µ0 : P0 → A by

µ3 : p⊗ Φv ⊗ q 7→
∑

a | t(a)=v

pa⊗ ∂aΦ⊗ q −
∑

a |h(a)=v

p⊗ ∂aΦ⊗ aq,

µ2 : p⊗ ∂aΦ⊗ q 7→
∑
b∈Q1

(∂b ∂aΦ)′ ⊗ b⊗ (∂b ∂aΦ)′′,

µ1 : p⊗ a⊗ q 7→ pa⊗ q − p⊗ aq,

µ0 : p⊗ q 7→ pq,

where, for a path Y ∈ CQ, the element (∂bY )′ ⊗ (∂bY )′′ ∈ CQ ⊗ CQ is the sum over all

elements X ⊗ Z such that XbZ = Y . It is straightforward to check that µiµi−1 = 0, so we
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have a finitely generated A-bimodule complex

P3
µ3 // P2

µ2 // P1
µ1 // P0

µ0 // A. (2.7)

Theorem 2.5.3 ([22] Corollary 5.3.3). The algebra A is CY-3 if and only if the complex

(P∗, µ∗) is a projective resolution of A.

In fact, the resolution P∗ is self-dual in the derived category of A-bimodules: there is an

isomorphism of complexes

HomAe(P∗, A⊗ A) ∼= P3−∗. (2.8)

Generally, if an algebra has a self-dual resolution of length n, then it is Calabi-Yau n [6].

As a consequence of Theorems 2.5.2 and 2.5.3, a zigzag consistent dimer Q has a res-

olution of the form (2.7). Moreover, since J(Q)[`−1] is a flat J(Q)-module, the complex

J(Q)[`−1] ⊗J(Q) P ⊗J(Q) J(Q)[`−1] is a self-dual resolution of J(Q)[`−1], which is therefore

J(Q)[`−1] CY-3 as well.

2.6 Curved algebras and matrix factorizations

Curved differential graded categories provide a unified framework to discuss matrix factor-

izations, curved algebras, and Hochschild cohomology. We follow the exposition in [29], but

we restrict our attention to small C-linear categories and grading group Γ equal to Z or

Z/2Z.

Definition 2.6.1. A curved differential Γ-graded (Γ − CDG) category is the data (C, δ, h)

where

1. C is a small Γ-graded C-linear category,
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2. δ (the differential) is a collection of degree 1 endomorphisms δXY : C(X, Y )→ C(X, Y )

for all X, Y ∈ C, and

3. h (the curvature) is a collection of degree 2 morphisms hX ∈ C(X,X) for each X ∈ C,

satisfying the equations

1. δXZ(gf) = δY Z(g)f + (−1)|g|gδXY (f) for all morphisms f : X → Y and g : Y → Z,

2. δ2
XY (f) = hY f − fhX for all f ∈ C(X, Y ), and

3. δXX(hX) = 0 for all X ∈ C.

We will omit the subscripts from δ and h when they are clear from context.

A CDG category is a generalization of a differential graded (DG) category. Since the

square of the differential is generally nonzero, however, there is no natural definition of

homology or quasi-isomorphism. The correct notion of equivalence comes from derived cate-

gories of the second kind ([30], [29]), but since the examples of CDG categories we encounter

are well-established in other contexts, we will not explore this topic.

A curved algebra Ah is a Γ−CDG category with one object and trivial differential. From

the definition, it consists of a Γ-graded associative algebra A and a central element h in

degree 2. A curved differential graded module over Ah is a Γ-graded left A-module with an

A-linear endomorphism dM of degree 1 satisfying

d2
M = h · IdM .

We define Ah −ModΓ
CDG to be the category of such objects with morphism spaces given by

internal Hom of Γ-graded A-modules. In fact, there is a natural differential

δ(f) = dNf − (−1)|f |fdM ∀ f : M → N,
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and one easily checks δ2 = 0. Hence, Ah −ModΓ
CDG is actually DG- category.

Definition 2.6.2. Let (A, h) be a Z/2Z-graded Landau-Ginzburg model. The category of

matrix factorizations MF (A, h) is the full DG-subcategory of Ah −Mod
Z/2Z
CDG consisting of

curved differential graded modules that are projective and finitely generated as A-modules.

In detail, a matrix factorization of (A, h) is a diagram

P0

d0P **
P1

d1P

jj

where P0 and P1 are finitely generated projective A-modules and

d1
Pd

0
P = h · IdP0 , d0

Pd
1
P = h · IdP1 .

For the Landau-Ginzburg model (J(Q), `) associated to a dimer model, every arrow

a ∈ Q1 defines a matrix factorization

Ma = J(Q)t(a)
a ..

J(Q)h(a)
ra
mm

where ra is the equivalence class of R±a (2.3) in J(Q). We consider the action of a and ra

to be on the right. The full DG subcategory of MF (J(Q), `) consisting of these matrix

factorizations is the category mf(Q) appearing in Theorem 1.0.1. For two arrows a, b ∈ Q1,

a pair of paths (
p : t(a)→ t(b), q : h(a)→ h(b)

)
defines a degree 0 morphism Ma →Mb, while a pair

(
p : t(a)→ h(b), q : h(a)→ t(b)

)
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defines a degree 1 morphism.

2.7 Hochschild cohomology

Let (C, δ, h) be a Γ− CDG category. For any objects X0, . . . , Xn ∈ C, the vector space

C(X0, X1, . . . , Xn) := C(Xn, X
op
0 )⊗ C(X0, X1)⊗ · · · ⊗ C(Xn−1, Xn)

has tensor degree n, taken modulo 2 if Γ = Z/2Z. Moreover, it has the induced Γ-grading of

tensor products, and we denote by C(X0, X1, . . . , Xn)m the homogeneous degree m compo-

nent. We define the Hochschild chain complex C∗(C) (Hochschild chains of the first kind) as

the Γ-graded complex whose homogeneous degree k component is the direct sum totalization

⊕
m+n=k

C(X0, X1, . . . , Xn)m

with differential given by the sum of three terms:

dC(c0 ⊗ · · · ⊗ cn) =
n−1∑
i=0

(−1)ic0 ⊗ · · · ⊗ cici+1 · · · ⊗ cn (2.9)

+ (−1)n+|cn|(|c0|+···+|cn−1|)cnc0 ⊗ c1 ⊗ · · · ⊗ cn−1

dδ(c0 ⊗ · · · ⊗ cn) =
n∑
i=0

(−1)n+|c0|+···+|ci−1|c0 ⊗ · · · ⊗ δ(ci)⊗ · · · ⊗ cn

dh(c0 ⊗ · · · ⊗ cn) =
n∑
i=0

(−1)ic0 ⊗ · · · ⊗ ci ⊗ h⊗ ci+1 ⊗ · · · ⊗ cn.

Alternatively, the Borel-Moore Hochschild chain complex CBM
∗ (C) (Hochschild chains of the

second kind) is defined to be the Γ-graded complex whose homogeneous degree k component
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is the direct product totalization

∏
m+n=k

C(X0, X1, . . . , Xn)m

with differential given by the same formula. Denote the homologies of these complexes by

HH∗(C) and HHBM
∗ (C), respectively.

Dually, for any objects X0, . . . , Xn ∈ C, the internal Hom space of Γ-graded vector spaces

Hom
(
C(X0, X1)⊗ · · · ⊗ C(Xn−1, Xn), C(X0, X

op
n )
)

has tensor degree n, taken modulo 2 if Γ = Z/2Z. Let

Homm
(
C(X0, X1)⊗ · · · ⊗ C(Xn−1, Xn), C(X0, X

op
n )
)

be the homogeneous Γ-degree m component. We define the Hochschild cochain complex

C∗(C) (Hochschild cochains of the first kind) as the Γ-graded complex whose homogeneous

degree k component is the direct product totalization

∏
m+n=k

Homm
(
C(X0, X1)⊗ · · · ⊗ C(Xn−1, Xn), C(X0, X

op
n )
)
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with differential given by the sum of three terms:

dCf(c1 ⊗ · · · ⊗ cn+1) = (−1)|f ||c1|c1f(c2 ⊗ · · · ⊗ cn+1) (2.10)

+
n∑
i=1

(−1)if(c1 ⊗ · · · ⊗ cici+1 ⊗ · · · ⊗ cn+1)

+(−1)n+1f(c1 ⊗ · · · ⊗ cn)cn+1

dδf(c1 ⊗ · · · ⊗ cn) = (−1)nδ(f(c1 ⊗ · · · ⊗ cn))

−
n∑
i=1

(−1)n+|f |+|c1|+···+|ci−1|f(c1 ⊗ · · · ⊗ δ(ci)⊗ · · · ⊗ cn)

dhf(c1 ⊗ · · · ⊗ cn−1) =
n−1∑
i=0

(−1)i+1f(c1 ⊗ · · · ⊗ ci ⊗ h⊗ ci+1 ⊗ · · · ⊗ cn−1).

Alternatively, the compactly supported Hochschild cochain complex C∗c (C) (Hochschild cochains

of the second kind) is defined to be the Γ-graded complex whose homogeneous degree k com-

ponent is the direct sum totalization

⊕
m+n=k

Homm
(
C(X0, X1)⊗ · · · ⊗ C(Xn−1, Xn), C(X0, X

op
n )
)

with differential given by the same formula. The homologies of these complexes are denoted

HH∗(C) and HH∗c (C), respectively.

If the curvature h is trivial, then C∗(C) and C∗(C) recover the usual definition of Hochschild

(co)homology of a Γ − DG category. For an associative algebra A concentrated in degree

0, the Γ-grading of the two kinds of Hochschild complexes equals the tensor grading. If

Γ = Z, there is precisely one homogeneous component in each degree, so the direct product

totalization equals the direct sum totalization. Consequently, the two kinds of Hochschild

cohomology coincide. On the other hand, for Γ = Z/2Z, each degree has infinitely many
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homogeneous components:

C∗(A) =
⊕
n≥0

A⊗ A⊗n, C∗(A) =
∏

n≥0 HomC(A⊗n, A),

CBM
∗ (A) =

∏
n≥0

A⊗ A⊗n C∗c (A) =
⊕

n≥0 HomC(A⊗n, A).

In particular, CBM
∗ (A) is the completion of C∗(A) with respect to the tensor degree, and

similarly for C∗(A) is the completion of C∗c (A).

For a Z/2Z-graded Landau-Ginzburg model (A, h) with nonzero potential, ordinary

Hochschild (co)homology is trivial.

Theorem 2.7.1 ([12] Theorem 4.2). Let Ah be a Z/2Z-graded curved algebra such that

h 6= 0. Then

HH∗(Ah) = HH∗(Ah) = 0.

Consequently, the classical Hochschild invariants provide no information about Z/2Z-graded

curved algebras. Caldararu–Tu also show in [12] that if A is a smooth affine variety of

dimension n and h is a regular function with isolated singularity, then

HH∗c (Ah) ∼= Jac(h), HHBM
∗ (Ah) ∼= ω(h)[n] mod2

where Jac(h) is the ring of regular functions and ω(h) is the relative dualizing sheaf of the

critical locus. This agrees with the Hochschild cohomology of MF (A, h) computed in [15].

More generally, drawing an analogy with derived Morita theory [33], one might hope

from Definition 2.6.2 that there is at least a relationship between the compactly supported

invariants of a Z/2Z-graded curved algebra Ah and those of the matrix factorization category.

This is indeed part of a broader theorem of [29] relating a CDG category to its DG category

of modules.
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Theorem 2.7.2 ([29] §2.6). For a Z/2Z-graded Landau-Ginzburg model (A, h), there are

natural isomorphisms

HH∗c (Ah) ∼= HH∗c (MF (A, h))

HHBM
∗ (Ah) ∼= HHBM

∗ (MF (A, h)).

The subtlety is that, unlike for ordinary algebras, Ah is not naturally a left or right curved

module over itself (but is a curved bimodule over itself). The theorem is proved by embedding

both Ah and MF (A, h) into the larger category of so called QDG-modules and establishing

an isomorphism there.

The relationship between the two kinds of Hochschild invariants for the DG category

MF (A, h) is more complicated. The inclusion of direct sum into direct product totalizations

provides maps

HH∗(MF (A, h))→ HHBM
∗ (MF (A, h)), HH∗c (MF (A, h))→ HH∗(MF (A, h)). (2.11)

By [29] Corollary 4.7B, a sufficient condition for these maps to be isomorphisms is the

existence of a kind of resolution of Ah as an Ah-bimodule. This is satisfied, for example, for

smooth commutative algebras with potential having critical value only 0 [26].

For the Landau-Ginzburg model (J(Q), `) of a dimer, it is unknown whether the compar-

ison maps (2.11) are isomorphisms. The main issue is that the Jacobi algebra is generally not

Noetherian. However, in the case of a zigzag consistent dimer in a torus, J(Q) is Noetherian

and is a noncommutative crepant resolution of Z/2Z [9]. This leads us to make a conjecture.

29



Conjecture 2.7.3. If Q is a zigzag consistent dimer model, then

HH∗c (MF (J(Q), `)) ∼= HH∗(MF (J(Q), `))

HHBM
∗ (MF (J(Q), `))) ∼= HHBM

∗ (MF (J(Q), `))

Failure of the conjecture would provide a geometrically interesting example of the disagree-

ment between the two kinds of Hochschild cohomology. In any case, it provides some moti-

vation for computing the compact-type invairants of MF (J(Q), `).

2.7.1 Noncommutative calculus

Let Γ = Z and A be an associative algebra concentrated in degree 0. As explained previously,

the two kinds of Hochschild cohomology agree in this setup, so there is no need to distinguish

between them. The Hochschild homology and cohomology of A form a noncommuative

calculus [32], (
HH∗(A), ∪, {−,−}, HH∗(A), i−, B

)
,

which we now review.

The cup product ∪ and interior (or cap) product i− are well-known, but it will be useful

to have formulas for resolutions other than the bar resolution. For a projective A-bimodule

resolution P∗ of A, there is a diagonal map (unique up to homotopy equivalence)

D : P∗ → P∗ ⊗A P∗

lifting the identity of A. If P∗ = Bar(A), for example, the diagonal map is

D : a1 ⊗ · · · ⊗ an 7→
n∑
i=0

(a1 ⊗ · · · ⊗ ai ⊗ 1)⊗ (1⊗ ai+1 ⊗ · · · ⊗ an). (2.12)
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Then the cup product is defined as

α ∪ β = µ ◦ (α⊗ β) ◦D, ∀α, β ∈ HomAe(P∗, A)

where µ : A⊗ A→ A is multiplication. Similarly, the cap product is defined as

α ∩ η = (µ⊗ IdP ) ◦ (IdA ⊗ α⊗ IdP ) ◦ (IdA ⊗D) η, ∀α ∈ HomAe(P∗, A), η ∈ A⊗Ae P∗.

One can check that these operations descend to the usual cup and cap operations on

Hochschild (co)homology [2].

On cochains α, β ∈ C∗(A), the Gerstenhaber bracket has formula

{α, β}(a1, . . . , ad+e−1) =
∑
j≥0

(−1)j(|β|+1)α(a1, . . . , aj, β(aj+1, . . . , aj+e), . . . , ad+e−1) (2.13)

− (−1)(|α|+1)(|β|+1)
∑
j≥0

(−1)j(|α|+1)β(a1, . . . , aj, α(aj+1, . . . , aj+d), . . . , ad+e−1).

The cup product and Gerstenhaber bracket make HH∗(A) into a Gerstenhaber algebra [21].

In particular, the Leibniz identity is satisfied,

{α, β ∪ γ} = {α, β} ∪ γ + (−1)(|α|−1)|β|β{α, γ} ∀α, β, γ ∈ HH∗(A). (2.14)

Note that, for a central element h, the differential dh of (2.10) is the adjoint action of h,

dh(α) = −{α, h}.

The map B is the Connes differential, which on C∗(A) has the formula

B(a0 ⊗ a1 ⊗ · · · ⊗ an) =
n∑
i=0

(−1)ni1⊗ ai ⊗ · · · ⊗ an ⊗ a0 ⊗ · · · ⊗ ai−1 (2.15)

+
n∑
i=0

(−1)n(i+1)ai−1 ⊗ 1⊗ ai ⊗ · · · ⊗ an ⊗ a0 ⊗ · · · ⊗ ai−2.
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The action of C∗(A) on C∗(A) as a Lie algebra is defined by the Lie derivative, L−. It

satisfies the Cartan identity on HH∗(A),

Lα = [B, iα] ∀α ∈ HH∗(A). (2.16)

For a central element h, Lh coincides with the differential dh in (2.9).

Van den Bergh showed that if A is Calabi-Yau n, there is a Poincaré-type duality iso-

morphism between Hochschild cohomology and homology [35]. A volume π (2.5) determines

a quasi-isomorphism of bimodules

π+ : RHomAe(A,A⊗ A)→ A[n], π 7→ 1.

Furthermore, since A is smooth, there is a quasi-isomorphism

RHomAe(RHomAe(A,A⊗ A), A) ∼= A⊗L
Ae A,

sending π+ to a Hochschild cycle of degree n. In general, an element of HHn(A) which is

the image of a quasi-isomorphism under this identification is called a nondegenerate element.

By abuse of notation, we write π for the nondegenerate element corresponding to π+. Then

we have a quasi-isomorphism

RHomAe(A[n], A) ◦π
+
// RHomAe(RHomAe(A,A⊗ A), A)

∼= // A⊗L
Ae A, (2.17)

and the induced isomorphism on homology is [14]

Dπ : HH∗(A)→ HHn−∗(A), α 7→ α ∩ π. (2.18)
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One easily sees that Dπ exchanges α ∪− with α ∩Dπ(−). Moreover, the Connes differential B

is sent under Dπ to a Batalin-Vilkovisky (BV) operator ∆π compatible with the Gerstenhaber

structure, making HH∗(A) into a BV algebra [22]. The precise relationship is given by

∆π(α ∪ β) = ∆π(α) ∪ β + (−1)|α|α∆π(β) + (−1)|α|{α, β} ∀α, β ∈ HH∗(A). (2.19)
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Chapter 3: Batalin-Vilkovisky structure of

the Jacobi algebra

Throughout, we will assume that Q is a dimer model in a surface Σ that admits a perfect

matching. In §3.1, we recount the fact that the localized algebra J(Q)[`−1] is isomorphic to

a matrix algebra with coefficients in the fundamental group algebra of an S1-bundle over Σ

[6]. Then, in a general setting, we relate the BV structure of a Calabi-Yau algebra to that of

a central localization of the algebra. Combined, these results allow us in §3.4 to describe the

BV structure of J(Q) in terms of the calculus of Laurent polynomials and the group algebra

C[π1(Σ)].

3.1 The localized algebra as a matrix algebra

In addition to the Z-grading by a perfect matching, we shall consider a grading on J(Q)[`−1]

afforded by the homotopical structure [13]. Let π1(Σ,Q0) be the full subcategory of the

fundamental groupoid of Σ whose objects are the vertices of Q. The embedding of a Q into

Σ can be extended to the double Q̄ by letting the image of a−1 be the inverse path of the

image of a ∈ Q1. Since the paths in each relation of (2.3) and (2.4) are homotopic, a path

in J(Q)[`−1] represents a morphism in π1(Σ,Q0) between its endpoints. Hence, the algebra

J(Q)[`−1] is graded by π1(Σ,Q0), and J(Q) inherits the grading via the localization map

L : J(Q)→ J(Q)[`−1].
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Upon choosing a basepoint, the π(Σ,Q0)-grading of J(Q)[`−1] can be transformed into

a grading by the fundamental group. Fix a vertex v0, and for every v ∈ Q0, fix a path

pv : v0 → v in J(Q)[`−1], taking pv0 to be the idempotent v0. By multiplying by the

appropriate power of `, we can ensure that degP(pv) = 0 for a chosen P ∈ PM(Q). Then

define the π1(Σ, v0)-degree of a path p ∈ J(Q)[`−1], denoted |p|, to be the π1(Σ,Q0)-degree of

pt(p) p p
−1
h(p). For convenience, we suppress the basepoint and simply write π1(Σ). Passing to

the abelianization of π1(Σ) gives a grading of J(Q)[`−1] by the homology H1(Σ), independent

of the choice of basepoint and connecting paths pv.

The gradings can be leveraged to describe the Jacobi algebra in more familiar terms. For

any perfect matching P , consider the π1(Σ)×Z-bigrading on J(Q)[`−1] in which the bidegree

of a path p is (|p|, degP(p)). As the next lemma states, the homogeneous subspace of paths

between given vertices is one-dimensional.

Lemma 3.1.1 ([6] Lemma 7.2). Let Q be a dimer model admitting a perfect matching. Two

paths p, q : v → w ∈ J(Q)[`−1] are equal if and only if (|p|, degP(p)) = (|q|, degP(q)) for any

P ∈ PM(Q).

Consequently, keeping track of the head and tail data as well as the gradings, we can

write an isomorphism from J(Q)[`−1] to a matrix algebra.

Theorem 3.1.2 ([6] Theorem 7.4). Let Q be a dimer model admitting a perfect matching.

For any P ∈ PM(Q), the map

ΨP : J(Q)[`−1]→Mat#Q0(C[π1(Σ)]⊗ C[z±1]).

sending a path p : v → w to (
|p| ⊗ zdegP (p)

)
evw,

where evw is the (v, w)-elementary matrix, is an isomorphism of algebras.
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Thus, when χ(Q) = 0, J(Q)[`−1] is Morita equivalent to the algebra of Laurent poly-

nomials C[x±1, y±1, z±1]. When χ(Q) < 0, the algebra C[π1(Σ)] is noncommutative, but its

Hochschild (co)homology is still well-understood. In §3.4, this Morita equivalence will be

used to describe the BV structure of the Jacobi algebra explicitly.

Remark 3.1.3. We note here that the Hochshild homologies of J(Q) and J(Q)[`−1] inherit

the H1(Σ) × Z-bigrading with respect to any perfect matching. Since in each degree the

resolution P∗ is finitely generated by homogeneous elements, the Hochschild cohomologies

also inherit the H1(Σ) × Z-bigrading. This auxiliary data will allow for easy deductions

about the structure of Hochschild (co)homology.

3.2 Hochschild cohomology of a central localization

Let A be an associative algebra, Z be the center of A, and S ⊂ Z a multiplicative subset

containing 1 and excluding 0. We denote by Ẑ the localization of the center with respect to

S. Then the Ore localization of A with respect to S can be defined as

Â := A⊗Z Ẑ.

Moreover, for any A-module M , its Ore localization is the Â-module

M̂ := M ⊗Z Ẑ.

The natural map L : M → M̂ has kernel equal to the S-torsion of M ,

torS(M) = {m ∈M | sm = 0 for some s ∈ S}.

See for example [36] for a detailed account about localization.
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Let D(Ae) and D(Âe) be the derived categories of A and Â-bimodules, respectively. The

algebra Â is flat as a left and as a right A-module, and the functors

F = Â⊗A −⊗A Â : D(Ae)→ D(Âe),

G = Â⊗Â −⊗Â Â : D(Âe)→ D(Ae)

form an adjoint pair. They yield canonical maps

I∗ : A⊗L
Ae A→ A⊗L

Ae GF (A) ∼= Â⊗L
Âe
Â,

I∗ : HomD(Ae)(A,A[i])→ HomD(Âe)(F (A), F (A)[i]) ∼= HomD(Âe)(Â, Â[i]), ∀i ∈ Z.

Letting

B̂ar(A) := F (A) = Â⊗A Bar(A)⊗A Â ∼=
⊕
n∈N

Â⊗ A⊗n ⊗ Â,

we can write the maps explicitly on (co)chains:

I∗ : A⊗Ae Bar(A)→ Â⊗Âe B̂ar(A),

I∗(a0 ⊗ a1 ⊗ · · · ⊗ an) = L(a0)⊗ L(a1)⊗ a2 · · · ⊗ an−1 ⊗ L(an)

I∗ : HomAe(Bar(A), A)→ HomÂe(B̂ar(A), Â),

I∗(α)(â1 ⊗ a2 ⊗ · · · ⊗ an−1 ⊗ ân) = â1Lα(1⊗ a2 ⊗ · · · ⊗ an−1 ⊗ 1)ân.

To arrive at maps on Hochschild (co)chains, consider the comparison map

B̂ar(A)→ Bar(Â), â1 ⊗ a2 ⊗ · · · ⊗ an−1 ⊗ ân 7→ â1 ⊗ L(a2)⊗ · · · ⊗ L(an−1)⊗ ân.
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It lifts the identity of Â and so is a homotopy equivalence. Let

φ : Â⊗Âe B̂ar(A)→ Â⊗Âe Bar(Â)

be the induced map on chains and

φ∨ : HomÂe(B̂ar(A), Â)→ HomÂe(Bar(Â), Â)

be the map on cochains given by precomposition with the homotopy inverse. Then define

L∗ := φ ◦ I∗ : C∗(A)→ C∗(Â),

L∗ := φ∨ ◦ I∗ : C∗(A)→ C∗(Â)

as the maps on Hochschild (co)chains induced by localization. We see in particular that L∗

is given simply by

L∗ : a0 ⊗ a1 ⊗ a2 ⊗ · · · ⊗ an 7→ L(a0)⊗ L(a1)⊗ L(a2)⊗ · · · ⊗ L(an). (3.1)

Throughout, we denote the Connes differentials on the Hochschild complexes of A and

Â as BA and BÂ, respectively. As shown in [10], the functor HH∗ commutes with central

localization. This result can be slightly enhanced to include the Connes differentials.

Proposition 3.2.1. Let A be an associative algebra and S ⊂ Z a multiplicative subset. The

map

L̂∗ : ĤH∗(A) = HH∗(A)⊗Z Ẑ −→ HH∗(Â), η ⊗ ẑ 7→ L∗(η) ∩ ẑ

is an isomorphism of Ẑ-modules. Moreover, L̂∗ intertwines the Connes differential BÂ with
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the differential

B̂(η ⊗ s−1) := BA(η)⊗ s−1 − Ls(η)⊗ s−2, ∀s ∈ S.

Proof. It is clear from the formulas for the Connes differential (2.15) and L∗ (3.1) that L∗

intertwines BA and BÂ. Then the formula for the differential B̂ is obtained from the calculus

identities. Observe

BÂ L̂∗(η ⊗ s
−1) = BÂ is−1L∗(η)

= is−1BÂ L∗(η) + Ls−1 L∗(η)

= is−1L∗BA(η) + Ls−1 L∗(η).

We also have the identity Ls−1 = −is−2Ls so the last expression equals

is−1L∗BA(η)− is−2 Ls L∗(η) = is−1 L∗BA(η)− is−2 L∗ Ls(η).

Under the isomorphism L̂, this is precisely the image of

BA(η)⊗ s−1 − Ls(η)⊗ s−2.

We would like to prove analogously that HH∗ commutes with central localization in a

way that preserves the algebraic structure. To do so, the cup and cap products can be

defined for the resolution B̂ar(A). Let DA be the diagonal map for Bar(A) (2.12) and D̂ be

the diagonal map for B̂ar(A), which has the form

D̂ : B̂ar(A)→ B̂ar(A)⊗Â B̂ar(A)

â1 ⊗ a2 ⊗ · · · ⊗ an−1 ⊗ ân 7→
n∑
i=0

(â1 ⊗ a2 ⊗ · · · ⊗ ai ⊗ 1)⊗ (1⊗ ai+1 ⊗ · · · ⊗ an−1 ⊗ ân).

39



Lemma 3.2.2. The map L∗ : HH∗(A) → HH∗(Â) is a morphism of algebras with respect

to the cup products.

Proof. Consider the diagram of cochain complexes

HomAe(Bar(A), A) I∗ //

α∪−
��

HomÂe(B̂ar(A), Â)
φ∨ //

I∗(α)∪−
��

HomÂe(Bar(Â), Â)

L∗(α)∪−
��

HomAe(Bar(A), A) I∗ // HomÂe(B̂ar(A), Â)
φ∨ // HomÂe(Bar(Â), Â).

The horizontal composition is L∗. If we take homology, commutativity of the second square

follows from the independence of the cup product from the choice of resolution and diagonal

map. So to prove L∗ is an algebra morphism, it suffices to prove commutativity of the first

square. Observe

I∗(α ∪ β)(â1 ⊗ · · · ⊗ ân) = â1L(α ∪ β)(1⊗ a2 ⊗ · · · ⊗ an−1 ⊗ 1)ân

= â1L ◦ µ(α⊗ β)DA(1⊗ a2 ⊗ · · · ⊗ an−1 ⊗ 1)ân

= â1Lα(1⊗ a2 ⊗ · · · ⊗ ai ⊗ 1)Lβ(1⊗ ai+1 ⊗ · · · ⊗ an−1 ⊗ 1)ân

and

I∗(α) ∪ I∗(β)(â1 ⊗ · · · ⊗ ân) = µ(I∗(α) ∪ I∗(β))D̂(â1 ⊗ · · · ⊗ â1)

= I∗(α)(â1 ⊗ a2 ⊗ ai ⊗ 1)I∗(β)(1⊗ ai+1 ⊗ · · · ⊗ ân)

= â1Lα(1⊗ a2 ⊗ · · · ⊗ ai ⊗ 1)Lβ(1⊗ ai+1 ⊗ · · · ⊗ an−1 ⊗ 1)ân,

so indeed the first square commutes.
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Lemma 3.2.3. For all α ∈ HH∗(A) and η ∈ HH∗(A), the diagram

HH∗(A) L∗ //

−∩η
��

HH∗(Â)

−∩L∗(η)

��

HH∗(A)
L∗ // HH∗(Â)

commutes.

Proof. We use a similar argument as for the previous lemma. Consider the diagram of

complexes

HomAe(Bar(A), A) I∗ //

−∩η
��

HomÂe(B̂ar(A), Â)
φ∨ //

−∩I∗(η)

��

HomÂe(Bar(Â), Â)

−∩L∗(η)

��

A⊗Ae Bar(A)
I∗ // Â⊗Âe B̂ar(A)

φ // Â⊗Âe Bar(Â)

The top horizontal composition is the map L∗, while the bottom horizontal composition

is the mapL∗. If we take homology, commutativity of the second square follows from the

independence of the cap product from choice of resolution and diagonal map. So to prove

the result, it suffices to prove commutativity of the first square.

Without loss of generality, suppose

η = a0 ⊗ a1 ⊗ · · · ⊗ an ∈ A⊗Ae A⊗n.

Observe

I∗(α ∩ η) = I∗
(
a0 ⊗ (α⊗ Id)DA(a1 ⊗ . . . an)

)
= I∗

(
a0a1α(1⊗ a2 ⊗ · · · ⊗ ai ⊗ 1)⊗ (1⊗ ai+1 ⊗ · · · ⊗ an)

)
= L(a0)L(a1)Lα(1⊗ a2 ⊗ · · · ⊗ ai ⊗ 1)⊗ (1⊗ ai+1 ⊗ · · · ⊗ an−1 ⊗ L(an)),
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and

I∗(α) ∩ I∗(η) = L(a0)⊗ (I∗(α)⊗ Id)D̂(L(a1)⊗ a2 ⊗ · · · ⊗ an−1 ⊗ L(an))

= L(a0)I∗(α)(L(a1)⊗ a2 ⊗ · · · ⊗ ai ⊗ 1)⊗ (1⊗ ai+1 ⊗ · · · ⊗ an−1 ⊗ L(an))

= L(a0)L(a1)Lα(1⊗ a2 ⊗ · · · ⊗ ai ⊗ 1)⊗ (1⊗ ai+1 ⊗ · · · ⊗ an−1 ⊗ L(an)),

so indeed the first square commutes.

If A is Calabi-Yau n, then its central localization Â is also Calabi-Yau n [19]. Combined

with the preceding lemmas, the fact that Van den Berg duality (2.18) is the interior product

with a nondegenerate element shows that L∗ commutes with the BV operator.

Proposition 3.2.4. If A is CY-n with nondegenerate element π, then Â is CY-n with

nondegenerate element L∗(π), and the map L∗ is a morphism of BV-algebras.

Proof. Since A is smooth, we have a commutative diagram

RHomAe(RHomAe(A,A⊗ A), A)
∼= //

��

A⊗L
Ae A

I∗
��

RHomAe(RHomAe(A,A⊗ A), GF (A))
∼= // A⊗L

Ae GF (A) ∼= Â⊗L
Âe
Â

By the adjunction F a G and again by the fact that A is smooth, we have

RHomAe(RHomAe(A,A⊗ A), GF (A)) ∼= RHomÂe(Â⊗A RHomAe(A,A⊗ A)⊗A Â, Â)

∼= RHomÂe(RHomÂe(Â, Â⊗ Â), Â)

Consequently, a quasi-isomorphism in

RHomAe(RHomAe(A,A⊗ A), A)
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corresponding to the nondegenerate element π ∈ HH∗(A) maps to a quasi-isomorphism in

RHomÂe(RHomÂe(Â, Â⊗ Â), Â)

corresponding to L∗(π).

By Lemma 3.2.3, we then have a commutative diagram

HH∗(A) L∗ //

Dπ
��

HH∗(Â)

DL∗(π)
��

HH∗(A)
L∗ // HH∗(Â).

Since L∗ intertwines the Connes differentials by Lemma ??, L∗ must intertwine the BV

operators ∆π and ∆L∗(π).

The dual statement to Proposition 3.2.1 can now be formulated.

Theorem 3.2.5. Let A be an associative algebra and S ⊂ Z a multiplicative subset.

1. The map

L̂∗ : ĤH∗(A) = HH∗(A)⊗Z Ẑ −→ HH∗(Â), α⊗ ẑ 7→ L∗(α) ∪ ẑ.

is a morphism of graded Ẑ-algebras.

2. If A has a bimodule resolution by finitely generated projectives, then L̂∗ is an isomor-

phism.

3. If A is CY-n with nondegenerate element π, then map L̂∗ is an isomorphism of BV

algebras, intertwining ∆L∗(π) with the differential

∆̂π(α⊗ s−1) := ∆π(α)⊗ s−1 − {s, α} ⊗ s−2 ∀s ∈ S.
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Proof.

(1) This is clear from Lemma 3.2.2.

(2) Let P∗ be a resolution of A by finitely generated projectives, and let

P̂∗ := F (P∗) = Â⊗A P∗ ⊗A Â.

By a comparison between P∗ and Bar(A), the map I∗ : HomAe(Bar(A), A)→ HomÂe(B̂ar(A), Â)

is equivalent to the horizontal arrow of the diagram

HomAe(P∗, A) //

))

HomÂe(P̂∗, Â)

HomAe(P∗, A)⊗Z Ẑ

OO

By the action of Ẑ on the codomain Â, the map factors as shown. Since P∗ is finitely

generated in each degree,

HomAe(P∗, A)⊗Z Ẑ ∼= HomAe(P∗, Â).

The vertical map in the diagram is then identified as the isomorphism given by Âe-linearly

extending a morphism P∗ → Â to P̂∗ → Â.

(3) We have a commutative diagram of isomorphisms

HH∗(A)⊗Z Ẑ L̂∗ //

Dπ⊗Id
��

HH∗(Â)

DL∗(π)
��

HH∗(A)⊗Z Ẑ
L̂∗ // HH∗(Â).
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By Proposition 3.2.1, L̂∗ is a chain map where the left side is given differential

B̂(η ⊗ s−1) = B(η)⊗ s−1 − Ls(η)⊗ s−2, ∀s ∈ S

The dual to this operator under Dπ ⊗ Id has precisely the stated formula.

An immediate consequence of Proposition 3.2.1 and Theorem 3.2.5 is that the kernels of

L∗ and L∗ consist of the S-torsion.

Corollary 3.2.6. Let A be an associative algebra and S ⊂ Z a multiplicative subset. Then

Ker(L∗) = torS(HH∗(A)).

If furthermore A has a bimodule resolution by finitely generated projectives, then

Ker(L∗) = torS(HH∗(A)).

In general, injectivity of the localization map L : A→ Â does not prevent the existence

of torsion in Hochschild (co)homology, a fact that will play a crucial role in our computation

of HH∗(J(Q)).

3.3 Morita invariance

Let A be an associative algebra and Matr(A) be the algebra of r × r-matrices with coeffi-

cients in A. It is well-known that Morita equivalence induces isomorphisms on Hochschild

(co)homology. In the instance at hand, the isomorphisms are

HH∗(A) HH∗(Matr(A))
inc∗

tr∗
HH∗(A) HH∗(Matr(A))

cotr∗

inc∗
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where

• inc∗ is induced by the inclusion of A into the (1, 1)-entry;

• tr∗ is the generalized trace,

tr∗ : m0⊗m1⊗· · ·⊗mn 7→
∑

(i0,...,in)

mi0,i1
0 ⊗mi1,i2

1 ⊗· · ·⊗min,i0
n , mi ∈Matr(A), (3.2)

the sum being over all indices (i0, . . . , in) ∈ {1, 2, . . . , r}n+1;

• cotr∗ is the cotrace;

• inc∗ is the co-inclusion,

inc∗(α)(a0 ⊗ a1 ⊗ · · · ⊗ an) = proj11 α(a0e11 ⊗ a1e11 ⊗ · · · ⊗ ane11), (3.3)

the map proj11 being the projection onto the (1, 1)-coordinate.

If A is Calabi-Yau n, then Matn(A) is also Calabi-Yau n (see e.g.[38]), and the analogous

statement to Theorem 3.2.5 holds.

Proposition 3.3.1. If A is CY-n with nondegenerate element π, then the maps

(
HH∗(A),∆π

) (
HH∗(Matr(A)),∆inc∗(π)

)cotr∗

inc∗

are isomorphisms of BV algebras.

Proof. It is known from general theory that the Morita isomorphisms on Hochschild (co)homology

preserve the cup and cap products [3]. Hence, just as in Proposition 3.2.4, it remains to show

that tr∗ or inc∗ commutes with the Connes differential. But this is clear from the formulas

for B (2.15) and tr∗ (3.2).
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3.4 Batalin-Vilkovisky structure of HH∗(J(Q))

Given any P ∈ PM(Q), let Ψ := ΨP be the isomorphism in Theorem 3.1.2, and let Ψ∗ and

Ψ∗ be the induced isomorphisms on Hochschild (co)homology. Then we have isomorphisms

cotr∗ ◦Ψ∗ : HH∗(J(Q)[`−1]) → HH∗(C[π1(Σ)]⊗ C[z±1])

tr∗ ◦Ψ∗ : HH∗(J(Q)[`−1]) → HH∗(C[π1(Σ)]⊗ C[z±1]).

If χ(Q) = 0 so π1(Σ) ∼= H1(Σ) ∼= Z2, then

C[H1(Σ)]⊗ C[z±1] ∼= C[x±1, y±1, z±1]

with x and y corresponding to generators of H1(Σ). The Hochschild-Kostant-Rosenberg

isomorphism [24] gives an identification of calculus structures

HH∗(C[H1(Σ)]⊗ C[z±1]) ∼= C[x±1, y±1, z±1][∂x, ∂y, ∂z]

HH∗(C[H1(Σ)]⊗ C[z±1]) ∼= C[x±1, y±1, z±1][dx, dy, dz] (3.4)

where ∂x, ∂y, ∂z are the coordinate vector fields in cohomological degree 1 and dx, dy, dz

are the dual Kahler forms. In particular, the BV differential is the usual divergence op-

erator on polyvector fields, depending on a choice of 3-form. Explicitly, if ξx, ξy, and

ξz are the C[x±1, y±1, z±1]-linear vector fields for the coordinates ∂x, ∂y, and ∂z and if

π = xrysztdx dy dz, then the associated divergence operator is

divπ := x−r∂xx
rξx + y−s∂yy

sξy + z−t∂zz
tξz.

In the case that χ(Q) < 0, the algebra C[π1(Σ)] is noncommutative. It is, by a result of
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Kontsevich, Calabi-Yau 2 (see [22] Corollary 6.1.4), so its Hochschild cohomology has a BV

structure under Van den Bergh duality. Vaintrob [34] explicitly described the BV structure

in terms of the Chas-Sullivan string topology of Σ. Namely, let LΣ be the space of free

loops of Σ and H∗(Σ) := H∗(LΣ,C), the loop homology of Σ. The latter is endowed with an

associative multiplication, called the loop product, that is defined in terms of the intersection

product on Σ, as well as a differential ρ : H∗(Σ)→ H∗+1(Σ) induced by the natural S1-action

on LΣ [11]. Together, these operations make H∗(Σ) a BV algebra.

Theorem 3.4.1 ([34] Theorem 3.2). Suppose Σ is a Riemann surface of genus g > 1. There

is an isomorphism of BV algebras

HH∗(C[π1(Σ)]) ∼= H2−∗(Σ) ∼=


C if ∗ = 0

H1(Σ,C)⊕H0(LΣ,C)/Ce if ∗ = 1

H0(LΣ,C) if ∗ = 2

where e is the class of the trivial loop. The only nontrivial product is of elements in

HH1(C[π1(Σ)]) and has formula

(α1, β1) · (α2, β2) = 〈α1, α2〉e+ 〈α2, β1〉β1 + 〈α1, β2〉β2 + [β1, β2]Gold

for all αi ∈ H1(Σ,C) and βi ∈ H0(LΣ,C)/Ce, where 〈−,−〉 is the intersection pairing on

H1(Σ,C) and [−,−]Gold is the Goldmann bracket. The BV differential ρ is trivial except on

HH2(C[π1(Σ)]), where it is the projection H0(LΣ,C)→ H0(LΣ,C)/Ce.

Notice that, as the center of C[π1(Σ)] is trivial, there is a unique nondegenerate element

(or volume (2.5)) for the Calabi-Yau structure, up to scaling. Consequently, the BV structure

from Van den Bergh duality is unique. Letting πs be the nondegenerate element, we have

ρ = ∆πs .
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To relate the BV structure of C[π1(Σ)]⊗C[z±1] to the BV structures of its constituents,

we can apply the Kunneth isomorphism. The isomorphism for Hochschild homology holds

generally ([27] Theorem 4.2.5), so if π is a nondegenerate element for C[π1(Σ)] ⊗ C[z±1],

it corresponds to πs ⊗ ztdz for some t ∈ Z. As stated in the next lemma, the necessary

finiteness conditions hold for the Kunneth isomorphism on Hochschild cohomology to respect

BV structures.

Lemma 3.4.2. Suppose Σ is a Riemann surface of genus g > 1. There is an isomorphism

of BV algebras

(
HH∗(C[π1(Σ)]⊗ C[z±1]), ∆π

) ∼= (H∗(Σ)⊗ C[z±1][∂z], ρ⊗ id+ id⊗ z−t∂zztξz
)

Proof. Let A = C[π1(Σ)] and B = C[z±1]. Since A is smooth, it has a resolution by finitely

generated projective biomdules, P∗(A). By Theorem 3.13 of [2], we have only to show that

there exists a bimodule resolution P∗(B) of B such that

Hom(A⊗B)e(P∗(A)⊗ P∗(B), A⊗B) ∼= HomAe(P∗(A), A)⊗ HomBe(P∗(B), B).

But this is clear if we choose P∗(B) to be the Koszul bimodule resolution of B.

Now let Q be a zigzag consistent dimer model. We would like to use the results of the

previous sections and the above characterizations to relate the BV structure on HH∗(J(Q))

to string topology and calculus of Laurent polynomials. To do so, we first characterize the

set of volumes for the Calabi-Yau structure of J(Q). Recall the definition of the bimodule

resolution P∗ for J(Q) (2.7) and the grading of Remark 3.1.3.

Lemma 3.4.3. Suppose Q is a zigzag consistent dimer admitting a perfect matching.

1. Up to scaling, the unique volume of J(Q) is the class in Ext3
J(Q)e(J(Q), J(Q)⊗ J(Q))
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of the map

π0 : P3 → J(Q)⊗ J(Q), p⊗ Φv
0 ⊗ q 7→ pv ⊗ vq

Hence, ∆π0 is the unique BV differential induced from the Calabi-Yau structure of

J(Q).

2. For any P ∈ PM(Q), the Van den Bergh isomorphism

Dπ0 : HH∗(J(Q))→ HH3−∗(J(Q)), α 7→ α ∩ π0

has homogeneous H1(Σ)× Z-bidegree (0, 1).

Proof. By self-duality (2.8), there are J(Q)-bimodule isomorphisms

Ext3
J(Q)e(J(Q), J(Q)⊗ J(Q)) ∼= H0(P∗) ∼= J(Q).

The latter is given, for example, by [1 ⊗k 1] 7→ 1, where [−] denotes the class in H0(P∗).

Tracing this element back through the first isomorphism gets the class of

π0 : p⊗ Φv
0 ⊗ q 7→ pv ⊗ vq.

Any other volume element is in the Z×-orbit of π0. However, the only units in J(Q) are of

the form
∑

v∈Q0
ε(v)v where ε ∈ (C∗)Q0 , and among these, the only central units are those

with ε ≡ λ for some λ ∈ C∗. We conclude ∆π0 is the unique BV differential.

The volume π0 is homogeneous of bidegree (0,−1) with respect to any perfect matching

(Remark 3.1.3). This implies that the quasi-isomorphism (2.17) that descends to Dπ0 has

bidegree (0, 1), as desired.

With the lemma, degree considerations are enough to deduce which BV structure corre-
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sponds to that of J(Q).

Theorem 3.4.4. Suppose Q is a zigzag consistent dimer admitting a perfect matching.

1. If χ(Q) = 0, then there is an isomorphism of BV algebras

(
ĤH∗(J(Q)), ∆̂π0

) ∼= (C[x±1, y±1, z±1][∂x, ∂y, ∂z], div
)

where div is the divergence operator

div := x∂xx
−1ξx + y∂yy

−1ξy + ∂zξz.

2. If χ(Q) < 0, then there is an isomorphism of BV algebras

(
ĤH∗(J(Q)), ∆̂π0

) ∼= (H∗(Σ)⊗ C[z±1][∂z], ρ⊗ id+ id⊗ ∂zξz
)

where ρ is the string topology BV operator.

Proof. By Theorem 3.2.5 and Proposition 3.3.1, the map

inc∗ ◦Ψ∗ ◦ L̂∗ : ĤH∗(J(Q)) −→ HH∗(C[π1]⊗ C[z±1])

is an isomorphism of BV algebras when the BV structures are induced by the nondegenerate

elements π0 and π′0 := tr∗Ψ∗L∗(π0). Clearly, each map tr∗, Ψ∗, and L∗ preserves the H1(Σ)×

Z-bigrading with respect to any perfect matching. So by Lemma 3.4.3, π′0 must have bidegree

(0, 1).

If χ(Q) < 0, then under the Hochschild-Kostant-Rosenberg isomorphism (3.4), the only

nondegenrate element with bidegree (0, 1) is, up to to scaling, the 3-form x−1y−1dxdydz. The

resulting BV differential is precisely the divergence operator div with the stated formula.
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If χ(Q) < 0, then under the Kunneth isomorphism, the only nondegenerate element of

bidegree (0, 1) is, up to scaling, πs ⊗ dz. By Lemma 3.4.2, the the resulting BV differential

on the tensor product is

ρ⊗ id+ id⊗ ∂zξz.
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Chapter 4: Hochschild cohomology of the

Jacobi algebra

Hereafter, we assume that Q is a zigzag consistent dimer in a surface Σ and that Q admits

a perfect matching. We analyze in more detail the Hochschild (co)homology groups of the

Jacobi algebra. For a dimer embedded in a torus, the Hochschild cohomology is computed

explicitly in terms of perfect matchings and zigzag cycles.

In §4.1, we review the relevant facts regarding the center of J(Q). This material appears

in many sources, e.g. [9, 5, 7]. For a dimer in a torus, the center is isomorphic to the

coordinate ring of the toric variety associated to the matching polygon. However, we opt

for a more intrinsic description that elucidates the bigrading by the homology of Σ and any

perfect matching (Remark 3.1.3). Subsequently, in §4.2 - 4.3, we describe HH1(J(Q)) and

HH0(J(Q)), the latter of which is generally found to have `-torsion. Under Van den Bergh

duality, HH0(J(Q)) is isomorphic to HH3(J(Q)), allowing us to use the BV structure to

compute HH2(J(Q)) in §4.4. Throughout, the Hochschild (co)homology class of an element

will be denoted in brackets [−].
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4.1 Zeroth Hochschild cohomology

The center is a Morita invariant, so from Theorem 3.1.2, we immediately deduce

Z[`−1] ∼= Z(C[π1(Σ)])⊗ C[z±1].

For a hyperbolic surface, the center of the fundamental group algebra C[π1(Σ)] is trivial,

implying that the subalgebra Z is simply the polynomial algebra in `.

Proposition 4.1.1. Suppose Q is a zigzag consistent dimer with χ(Q) < 0, and suppose Q

admits a perfect matching. Then HH0(J(Q)) = C[`].

When χ(Q) = 0, then the center of J(Q)[`−1] is isomorphic to the algebra of Laurent

polynomials in three variables,

Z[`−1] ∼= C[x±1, y±1, z±1].

If x and y correspond to generators X and Y of H1(Σ) and P ∈ PM(Q) is used to define

Ψ in Theorem 3.1.2, the monomial xryszt corresponds to a sum of closed paths, one for

each vertex, with homology mX + nY and degree t with respect to P . Because in fact

any perfect matching can be used to construct Ψ, the central element is homogeneous in all

perfect matchings. By Lemma 3.1.1, a closed path p ∈ J(Q)[`−1] is determined uniquely by

its homology and degree in any perfect matching, so if f is the homogeneous central element

with the same bidegree, then fh(p) = p.

Lemma 4.1.2. Suppose Q is a zigzag consistent dimer in a torus, and let p be a closed

path in J(Q)[`−1] at a vertex v. Then there exists a unique f ∈ Z[`−1] such that f v = p.

Moreover, f is homogeneous with the same homology class and degree as p in all perfect

matchings.
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To describe the subalgebra Z, we use the following important result.

Proposition 4.1.3 ([9] Proposition 6.2; c.f. [7] Lemma 3.18). Suppose Q is a zigzag consis-

tent dimer in a torus. For any two vertices v, w ∈ Q0 and any homotopy class, there exists

a path v → w in Q of that homotopy class having degree 0 in some corner matching Pi.

In other words, for every pair of vertices and every homotopy class, there exists a minimal

path (§2.4) of that homotopy class running between the vertices. As an immediate conse-

quence, the paths in J(Q) can be recognized as those in J(Q)[`−1] that have nonnegative

degree in all perfect matchings.

Corollary 4.1.4. Suppose Q is a zigzag consistent dimer in a torus. A path p ∈ J(Q)[`−1]

lies in the subalgebra J(Q) if and only if degP(p) ≥ 0 for all P ∈ PM(Q).

Proof. The forward direction is clear. For the converse, by Proposition 4.1.3, there is path

q : t(p)→ h(p) ∈ J(Q) homotopic to p such that degP(q) = 0 for some P ∈ PM(Q). Then

by Lemma 3.1.1, p = q`degP (p).

The idea of the proof of Proposition 4.1.3 is to construct the minimal path (up to ho-

motopy) from pieces of opposite cycles with consecutive homologies νi and νi+1, for some

i ∈ Z/kZ. Since by Theorem 2.4.3 these opposite cycles have degree 0 in the corner matching

Pi+1, the resulting path has degree 0 in Pi+1 as well. In particular, it follows from the proof

that, if p is a minimal closed path with homology η ∈ σi (Notation 2.3.7), then Pi+1 is the

unique perfect matching for which p has degree 0.

Therefore, for a given η ∈ H1(Σ), the sum of the minimal closed paths of homology η is a

central element, which we denote as xη. Just as in the proof of Corollary 4.1.4, it is deduced

that every element of Z with homology η equals xη`
m for some m ∈ Z≥0. We summarize

these facts in the following.

Proposition 4.1.5. Suppose Q is a zigzag consistent dimer in a torus.
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1. If η ∈ γi, then xη has degree 0 in Pi, Pi+1, and all boundary matchings in between

them.

2. If η ∈ σi, then Pi+1 is the unique perfect matching in which xη has degree 0.

3. The center Z is generated over C[`] by {xη | η ∈ H1(Σ)}. As a vector space,

HH0(J(Q)) ∼=
⊕

η∈H1(Σ)
m∈Z≥0

C · xη `m ∼= C ·H1(Σ)× Z≥0

In this light, the relations of Z are of the form

xη · xµ = xη+µ`
m

for some m ≥ 0. They can be characterized more precisely by realizing Z as the coordinate

ring of the toric variety associated to MP (Q) (see [9, 7]).

4.2 First Hochschild cohomology

Let Derk(J(Q)) be the space of derivations of J(Q) that evaluate trivially on k. Furthermore,

let Innerk(J(Q)) be the subspace of Derk(J(Q)) of inner derivations : namely, those of the

form

adp : q 7→ [p, q] = pq − qp, ∀q ∈ J(Q)

where p ∈
⊕

v∈Q0
v J(Q) v. We define Derk(J(Q)[`−1]) and Innerk(J(Q)[`−1]) similarly for

the localized algebra. From the normalized relative bar resolution (2.6), the first Hochschild
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cohomology can be computed as

HH1(J(Q)) ∼= Derk(J(Q))/ Innerk(J(Q)),

HH1(J(Q)[`−1]) ∼= Derk(J(Q)[`−1])/ Innerk(J(Q)[`−1]).

An element of Derk(J(Q)) or Derk(J(Q)[`−1]) is specified by its values on arrows. Hence,

a derivation D ∈ Derk(J(Q)) uniquely extends to an element of Derk(J(Q)[`−1]) by prescrib-

ing

D(a−1) = −a−1D(a)a−1, ∀ a ∈ Q1.

Conversely, any derivation of J(Q)[`−1] is uniquely determined by its values on Q1. Thus,

we have an injection Derk(J(Q)) ↪→ Derk(J(Q)[`−1]) respecting the Z-module structures.

The relations of the Jacobi algebra require that a derivation D ∈ Derk(J(Q)[`−1]) is

homogeneous on boundary cycles: if a1 . . . am and b1 . . . bn are the positive and negative

boundary cycles containing the arrow a1 = b1 ∈ Q1, then

m∑
i=1

a1 . . . ai−1D(ai)ai+1 . . . am =
n∑
j=1

b1 . . . bj−1D(bj)bj+1 . . . bn. (4.1)

This constraint suggests a description of Derk(J(Q)[`−1]) in terms of the lattice N (§2.4).

Let NR = N ⊗Z R, N in
R = N in ⊗Z R, and N out

R = N out ⊗Z R.

Lemma 4.2.1. Suppose Q is a zigzag consistent dimer. There is an injection of Z[`−1]-

modules

Z[`−1]⊗R NR ↪→ Derk(J(Q)[`−1]),

under which Z[`−1] ⊗R N
in
R maps into Innerk(J(Q)[`−1]). If χ(Q) = 0, the map is an

isomorphism, under which Z[`−1]⊗R N
out
R maps onto Innerk(J(Q)[`−1]).
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Proof. Letting f ∈ Z[`−1] and β ∈ N , define a map

Df, β : Q1 → J(Q)[`−1], a 7→ fβ(a)a.

For any boundary cycle a1a2 . . . am,

m∑
i=1

a1 . . . ai−1Df, β(ai)ai+1 . . . am = f∂(β)a1a2 . . . am,

so Df, β satisfies condition (4.1) and defines an element of Derk(J(Q)[`−1]). We therefore

have a map

Z[`−1]⊗R NR → Derk(J(Q)[`−1]), f ⊗ β 7→ Df, β

that obviously respects the Z[`−1]-module structures and is injective. Furthermore, the

coboundary of a vertex

∂(v) : a 7→ δv h(a) − δv t(a)

corresponds to adv, so Z[`−1]⊗R N
in
R maps into Innerk(J(Q)[`−1]).

Now suppose that χ(Q) = 0 and let D ∈ Derk(J(Q)[`−1]). For each arrow a ∈ Q1, D(a)

is an element of t(a)J(Q)[`−1]h(a). Therefore, D(a)a−1 is a linear combination of closed

paths at t(a), implying D(a) = fa · a for some fa ∈ Z[`−1] by Lemma 4.1.2. The assignment

a 7→ fa must satisfy condition (4.1),

∑
a∈∂F1

fa =
∑
a∈∂F2

fa, ∀F1, F2 ∈ Q2,

and thus is an element of Z[`−1] ⊗R NR mapping to D. Therefore, Z[`−1] ⊗R NR ∼=

Derk(J(Q)[`−1]).

Finally, if p is a closed path at vertex v, then p = fv for a unique element f ∈ Z[`−1] by

Lemma 4.1.2. Therefore, adp = fadv, implying Z[`−1]⊗RN
in
R maps onto Innerk(J(Q)[`−1]).
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An immediate consequence of the lemma is a confirmation of what is already deduced

from the Morita equivalence of Theorem 3.1.2.

Corollary 4.2.2. Suppose Q is a zigzag consistent dimer with χ(Q) < 0. There is an

injection of Z[`−1]-modules

Z[`−1]⊗R N
out
R ↪→ HH1(J(Q)[`−1]).

If χ(Q) = 0, then the map is an isomorphism.

The image of N under the map of Lemma 4.2.1 is a lattice of derivations that preserve

the H1(Σ)× Z-bidegree with respect to all perfect matchings. In particular, the image of a

perfect matching P is the derivation

EP : J(Q)[`−1]→ J(Q)[`−1], EP(p) = degP(p) p.

By Lemma 2.4.2, when χ(Q) = 0, such derivations generate Derk(J(Q)[`−1]) over Z[`−1],

which can be decomposed into H1(Σ)× Z-homogeneous subspaces,

Derk(J(Q)[`−1]) ∼=
⊕

η∈H1(Σ)
m∈Z

C · xη`m ⊗R NR. (4.2)

The Z-submodule Derk(J(Q)) contains the image of Z ⊗R NR but is generally larger.

Lemma 4.2.3. Suppose Q is a zigzag consistent dimer in a torus. As a Z-module, Derk(J(Q))

is generated by

{EP | P ∈ PM(Q)} ∪ {xη`−1EPi+1
|i ∈ Z/kZ, η ∈ σi}.
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Proof. We determine which elements of Derk(J(Q)[`−1]) preserve the subalgebra J(Q). A

derivation preserves J(Q) if and only if each component in (4.2) preserves J(Q). So without

loss of generality, suppose

xη `
mD ∈ Derk(J(Q))

for some η ∈ H1(Σ), m ∈ Z, and D ∈ NR. Since xη is minimal, it has degree 0 in some

corner matching Pi. Then for all a ∈ Q1,

degPi(xη `
ma) = m+ degPi(a).

By Corollary 4.1.4, this must be nonnegative to land in J(Q). Thus, we must have m ≥ −1.

Obviously, if m is nonnegative, then the derivation preserves J(Q), but if m = −1 and η = 0,

then it does not. So it remains to analyze the case η 6= 0 and m ≥ −1.

First, suppose η ∈ σi for some i ∈ Z/kZ, so the corner matching Pi+1 is the unique

perfect matching evaluating xη to 0 (Proposition 4.1.5). For all a ∈ Q1,

degPi+1
(xη `

−1a) = −1 + degPi(a).

Hence, D(a) is nonzero only if a ∈ Pi+1, implying D = EPi+1
up to scaling.

Next, suppose η ∈ γi, so xη has degree 0 in the corner matchings Pi and Pi+1 (Proposition

4.1.5). For all a ∈ Q1,

degPi(xη`
−1a) = −1 + degPi(a)

degPi+1
(xη`

−1a) = −1 + degPi+1
(a).

Consequently, D(a) is nonzero only if a ∈ Pi ∩ Pi+1. However, by Proposition 2.4.3, in

any boundary cycle meeting a zigzag cycle of homology class νi, there is no arrow in the
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intersection. Hence, D must evaluate trivially on all boundary cycles, constraining D(a) to

be 0 for all a ∈ Pi ∩ Pi+1. Therefore, D is the trivial derivation.

Recall from Corollary 3.2.6 that the kernel of the localization map L∗ : HH∗(J(Q)) →

HH∗(J(Q)[`−1]) is the `-torsion of HH∗(J(Q)). As we now prove, the first Hochschild

cohomology is torsion free. Thus, it is generated over Z by the rank 3 lattice N out along

with the additional derivations of Lemma 4.2.3.

Theorem 4.2.4. Suppose Q is a zigzag consistent dimer in a torus. Then HH1(J(Q)) is

the Z-lattice in HH1(J(Q)[`−1]) generated by

{[EP ] | P ∈ PM(Q)} ∪ {[xη`−1EPi+1
] |i ∈ Z/kZ, η ∈ σi}.

As a vector space,

HH1(J(Q)) = Z ⊗R N
out
R ⊕

⊕
i∈Z/kZ
η∈σi

C · [xη `−1EPi+1
]

Proof. To prove the localization map L∗ : HH1(J(Q)) → HH1(J(Q)[`−1]) is injective, it

suffices to show that no element D of

Innerk(J(Q)[`−1]) \ Innerk(J(Q)) ∼= Z[`−1]⊗R N
in
R \ Z ⊗R N

in
R

preserves J(Q). Without loss of generality, we may assume that D is homogeneous in the

decomposition (4.2),

D = xη`
mD′

for some η ∈ H1(Σ), m < 0, and D′ ∈ N in
R . By Lemma 4.2.3, in order for D to preserve

J(Q), m must be −1, η ∈ σi for some i ∈ Z/kZ, and D must be (up to scaling) xη`
−1EPi+1

.
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However, this derivation is not inner.

The derivations EP provide convenient generators for working with the calculus structure.

Under the isomorphism of Theorem 3.4.4, they correspond to weighted Euler vector fields of

C[x±1, y±1, z±1].

Proposition 4.2.5. Suppose Q is a zigzag consistent dimer in a torus. Then

1. ∆π0(f [EP ]) = (1 + degP(f))f for all homgeneous f ∈ Z and P ∈ PM(Q);

2. ∆π0([xη`
−1EPi+1

]) = 0 for all i ∈ Z/kZ and η ∈ σi.

3. {[EP ], [EP ′ ]} = 0 for all P ,P ′ ∈ PM(Q).

Proof. By Theorem 3.4.4, the composition

ζ := inc∗Ψ∗L∗ : (HH∗(J(Q)),∆π0

)
→
(
C[x±1, y±1, z±1][∂x, ∂y, ∂z], div

)
is a morphism of BV algebras. Recall that the map Ψ of Theorem 3.1.2 was defined for a

choice of basepoint v0 for the fundamental group and a perfect matching P ′. Let px and py

be closed paths in v0J(Q)[`−1]v0 whose homology classes correspond to generators x and y

that, moreover, have degree 0 in P ′. Then we see that [EP ] is sent to the Euler vector field

weighted by the cohomology class (nx, ny) = (degP(px), degP(py)) of P − P ′,

ζ([EP ]) = nx x∂x + ny y∂y + z∂z.

Hence,

ζ(∆π0([EP ])) = div(nxx∂x + nyy∂y + z∂z) = 1,
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implying ∆π0([EP ]) = 1. The formula for ∆(f [EP ]) for homogeneous f ∈ Z follows from

identity (2.19) and the fact that

{f, EP} = EP(f) = degP(f) f.

For i ∈ Z/kZ and η ∈ σi, a similar computation shows

∆L∗(π0)

(
L∗([xη`

−1EPi+1
])
)

= ∆L∗(π0)

(
xη`
−1L∗([EPi+1

])
)

= 0.

Since HH0(J(Q))→ HH0(J(Q)[`−1]) is injective, it must be that

∆π0([xη`
−1EPi+1

]) = 0.

Finally, using the definition (2.13), observe

{EP , EP ′}(p) = EP(EP ′(p))− EP ′(EP)(p) = degP(p) degP ′(p) p− degP(p) degP ′(p) p = 0

for all P ,P ′ ∈ PM(Q).

4.3 Zeroth Hochschild homology

To describe HH0(J(Q)), we follow a similar strategy as in the preceding section. Let R be

the vector subspace of J(Q) generated by elements [p, q] = pq − qp where

1. p and q are paths in J(Q),

2. h(p) = t(q) and h(q) = t(p), and

3. q /∈ k.
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Define R[`−1] to be the analogous subspace of J(Q)[`−1] where p, q are allowed to be paths

in the localized algebra. Using the normalized relative bar resolution (2.6), we can compute

zeroth Hochschild homology as

HH0(J(Q)) ∼=
⊕
v∈Q0

vJ(Q)v /R,

HH0(J(Q)[`−1]) ∼=
⊕
v∈Q0

vJ(Q)[`−1]v /R[`−1]. (4.3)

Thus, it is spanned by equivalence classes of closed paths. In particular, if χ(Q) = 0, then

Lemma 4.1.2 implies that HH0(J(Q)) and HH0(J(Q)[`−1]) are generated over the respective

centers by the classes of the vertices, {[v] | v ∈ Q0}.

Under the Morita equivalence of Theorem 3.1.2, HH0(J(Q)) is isomorphic to the zeroth

Hochschild homology of C[π1(Σ)]⊗ C[z±1].

Lemma 4.3.1. Suppose Q is a zigzag consistent dimer that admits a perfect matching. Then

HH0(J(Q)[`−1]) ∼=
⊕

γ∈Conj(π1(Σ))

C · γ ⊗ C[z±1]

where Conj(π1(Σ)) is the set of conjugacy classes of the fundamental group. If χ(Q) = 0,

then as Z[`−1]-modules,

HH0(J(Q)[`−1]) ∼= Z[`−1].

Consequently, if c and c′ are closed paths in J(Q)[`−1], then the following are equivalent:

1. [c] = [c′] in HH0(J(Q)[`−1]);

2. c and c′ are homotopic free loops in Σ and have the same degree in a perfect matching;

3. |c| and |c′| are conjugate in π1(Σ) and have the same degree in all perfect matchings.
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In the third statement, the conjugating loop can be taken as a path in J(Q)[`−1] since Q

splits Σ. Hence, c′ = pcp−1 for some p : t(c)→ t(c′), and

c′ − c = pcp−1 − cp−1p = [p, cp−1] ∈ R[`−1].

This affirms [c] = [c′] in the description of HH0(J(Q)[`−1]) in (4.3).

However, the same statements are not equivalent for HH0(J(Q)) with c and c′ closed

paths in J(Q). Indeed, if p is a path in J(Q), then p−1 lies in J(Q) if and only if p = p−1 is

a vertex. Thus, while distinct vertices v and w are equivalent in HH0(J(Q)[`−1]), they are

not equivalent in HH0(J(Q)). The difference [v] − [w] lies in the kernel of the localization

map L∗ : HH0(J(Q))→ HH0(J(Q)[`−1]).

If χ(Q) = 0, then HH0(J(Q)) is generated over Z by {[v] | v ∈ Q0}. The relations in R

can be recast as equivalence relations among the vertices.

Definition 4.3.2. Let f be an element of Z with homogeneous H1(Σ) × Z-bidegree. We

say that two vertices v, v′ ∈ Q0 are connected through f if there exist vertices {wj | j =

1, . . . , n} ⊂ Q0 and closed paths {Cj | 1 ≤ j < n} ⊂ CQ such that

1. w1 = v and wn = v′,

2. the image of Cj in J(Q) is fwj, and

3. Cj contains vertex vj+1 in addition to vj for all 1 ≤ j < n− 1.

The notion of a path in J(Q) containing a vertex or intersecting another path in J(Q) is

not generally well-defined. Hence, the definition uses lifts of paths to the path algebra CQ.

Lemma 4.3.3. Suppose Q is a zigzag consistent dimer in a torus. Let v and v′ be vertices

in Q0, and let f ∈ Z be a homogeneous element. Then f [v] = f [v′] in HH0(J(Q)) if and

only if v and v′ are connected through f .
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Proof. The vector space R is generated by elements of the form

[p, q] = pq − qp = f t(p)− f h(p)

where f ∈ Z has the same homology class and degree as pq and qp in all perfect matchings.

Taking P,Q ∈ CQ to be respective representatives of p and q, the closed path PQ shows

that t(p) is connected to h(p) through f . Thus, for any two vertices v, v′ ∈ Q0, if f [v] = f [v′]

in HH0(J(Q)), then v and v′ are connected through f .

Conversely, suppose v and v′ are connected through f . Let {wj | j = 1, . . . , n} and

{Cj | 1 ≤ j < n} be vertices and closed paths as in the definition. For each 1 ≤ j < n, we

may write Cj = PjQj where Pj ∈ CQ is a path from wj to wj+1 and Qj ∈ CQ is a path

from wj+1 to wj. Let pj and qj be their images in J(Q). Then

f v − f v′ =
n−1∑
j=1

f(wj − wj+1) =
n−1∑
j=1

pjqj − qjpj =
n−1∑
j=1

[pj, qj] ∈ R

Hence, f [v] = f [v′].

As a result, the f -homogeneous subspace of HH0(J(Q)) has dimension equal to the

number of equivalence classes of vertices connected through f . Clearly, neighboring vertices

are connected through `, and thus any two vertices are connected through any multiple of

`. The `-torsion, then, is concentrated in subspaces corresponding to the minimal elements

of Z. For each η ∈ H1(Σ), let rη be the number of equivalence classes of vertices connected

through xη, and let vη1 , v
η
2 , . . . , v

η
rη be a full list of representative vertices. Note that r0 = #Q0

by the discussion following Lemma 4.3.1.

Proposition 4.3.4. Suppose Q is a zigzag consistent dimer in a torus.

1. For all i ∈ Z/kZ and η ∈ γi, rη is at least the number of zigzag cycles of homology νi.
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2. The `-torsion of HH0(J(Q)) is

tor`(HH0(J(Q))) =
⊕

η∈H1(Σ)
1<j≤rη

C · xη([vη1 ]− [vηj ])

3. As a vector space,

HH0(J(Q)) ∼= Z · ` ⊕
⊕

η∈H1(Σ)
1≤j≤rη

C · xη[vηj ].

Proof. For the first statement, suppose Q has two zigzag cycles Z1 and Z2 of homology −νi.

Fix a fundamental domain U in the universal cover, and let Z̃1 and Z̃2 be lifts of Z1 and

Z2 to zigzag flows incident to U. By Proposition 2.3.6, they are parallel. Let v be a vertex

whose lift ṽ in U lies between Z̃1 and Z̃2, and let w be a vertex whose lift w̃ in U lies outside

the region between Z̃1 and Z̃2. If η ∈ γi and v, w are connected through xη, then a path

p : v → w can be constructed from arrows contained in representatives of xη at various

vertices. In particular, p has degree 0 in the corner matchings Pi and Pi+1. But a lift of p̃

to U must intersect either Z̃1 or Z̃2 in an arrow, implying p intersects either Z1 or Z2 in an

arrow. This contradicts Theorem 2.4.3. Thus, v and w are not connected through xη. The

argument can be generalized to prove the statement for any number of zigzag cycles.

The second and third statements are immediate from the fact that any two vertices are

connected through `.
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4.4 Second and third Hochschild cohomology

Suppose Q is a zigzag consistent dimer for which every arrow is contained in a perfect

matching. Then the sum ∑
P∈PM(Q)

P

is a strictly positive element of N+, implying N is generated by PM(Q). With respect to

the grading imparted by the sum, J(Q) is a nonnegatively graded and connected k-algebra.

Consequently, by Lemma 3.6.1 of [17], the rows of the following commutative diagram are

exact:

k // HH3(J(Q))
∆π0 //

D
��

HH2(J(Q)))
∆π0 //

D
��

HH1(J(Q))
∆π0 //

D
��

HH0(J(Q))
∆π0 //

D
��

0

k // HH0(J(Q)) B // HH1(J(Q)) B // HH2(J(Q)) B // HH3(J(Q)) B // 0.

(4.4)

The map k → HH0(J(Q)) is the inclusion sending v ∈ Q0 to [v]. The second cohomology

decomposes as a vector space as

HH2(J(Q)) ∼= Im
(
∆π0 : HH3(J(Q))→ HH2(J(Q))

)
⊕ Ker

(
∆π0 : HH1(J(Q))→ HH0(J(Q))

)
. (4.5)

When χ(Q) = 0, we can therefore use the description of HH1(J(Q)) and HH3(J(Q)) ∼=

HH0(J(Q)) to deduce the structure ofHH2(J(Q)). First, we identify elements ofHH2(J(Q))

corresponding to the rays {γi | i ∈ Z/kZ}.

Lemma 4.4.1. Suppose Q is a zigzag consistent dimer in the torus. For all i ∈ Z/kZ and

η ∈ γi, the element xη`
−1EPi ∪ EPi+1

is a Hochschild 2-cocycle of J(Q).

Proof. As the cup product of derivations, the element xη`
−1EPi ∪ EPi+1

is a 2-cocycle of
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J(Q)[`−1]. Thus, it suffices to show the map restricts to a map J(Q)⊗k J(Q)→ J(Q). Let

p and q be paths in J(Q) such that h(p) = t(q). Observe

xη`
−1EPi ∪ EPi+1

(p, q) = − degPi(p) degPi+1
(q)xη`

−1pq,

which is nonzero if and only if degPi(p) and degPi+1
(q) are positive. If either p or q is

represented by a path containing an arrow in Pi∩Pi+1, then by Theorem 2.4.3, degP(pq) > 0

in all boundary matchings P on the component of MP (Q) between Pi and Pi+1. Therefore,

degP(xη`
−1pq) ≥ 0 ∀P ∈ PM(Q),

implying by Corollary 4.1.4 that xη`
−1pq ∈ J(Q). Otherwise, p must be represented by a

path containing a zig a of a zigzag cycle Z1, and q must be represented by a path containing

a zag b of a zigzag cycle Z2, both of homology νi. The part of pq running from a to b must

also contain a zag of Z1 or a zig of Z2. Then pq contains a zig and a zag of a single zigzag

cycle of homology νi, so again degP(pq) > 0 in all boundary matchings P between Pi and

Pi+1. As before, by Corollary 4.1.4, xη`
−1pq ∈ J(Q).

Taking products and comparing with Proposition 4.3.4, we arrive at a description of third

cohomology. In the notation of §4.3, let τ = D−1([v0
0]).

Proposition 4.4.2. Suppose Q is a zigzag consistent dimer in a torus. As a vector space,

HH3(J(Q)) ∼= Z ⊗R N
out
R ∧N out

R ∧N out
R

⊕
⊕
i∈Z/kZ
η∈σi

C · [xη`−1EPi+1
∪ EPi+2

∪ EPi+3
]

⊕
⊕
i∈Z/kZ
η∈γi

C · [xη`−1EPi ∪ EPi+1
∪ EPi+2

]

⊕ Cτ ⊕ tor`(HH0(J(Q))).
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Proof. By Theorem 4.2.4, the subalgebra generated under cup products by HH1(J(Q)) over

HH0(J(Q)) is torsion free. In degree 3, we thereby obtain Z ⊗R N
out
R ∧ N out

R ∧ N out
R and

[xη`
−1EPi+1

∪ EPi+2
∪ EPi+3

] for each i ∈ Z/kZ and η ∈ σi. From Lemma 4.4.1, we also

obtain, for each i ∈ Z/kZ and η ∈ γi, the element

[xη`
−1EPi ∪ EPi+1

] ∪ [EPi+2
] = [xη`

−1EPi ∪ EPi+1
∪ EPi+2

].

Multiplying it by ` lands in Z ⊗R N
out
R ∧ N out

R ∧ N out
R , so it is not torsional. By Lemma

3.4.3, Van den Bergh duality D has H1(Σ) × Z-bidegree (0, 1) with respect to all perfect

matchings. So for homogeneous f ∈ Z, the image of the homogeneous f`−1-subspace of

HH3(J(Q)) is the homogeneous f -subspace of HH0(J(Q)). Along with, say, [v0
0] ∈ k ↪→

HH0(J(Q)), the images under D of the elements of HH3(J(Q)) thus identified span a

subspace complementary to tor`(HH0(J(Q))).

To describe second cohomology, the decomposition (4.5) can now be used for a dimension

count. Let

tor+
` (HH0(J(Q))) = tor`(HH0(J(Q))) ∩ HH0(J(Q)) \ k,

the subspace spanned by torsional elements that have positive degree in some perfect match-

ing.

Theorem 4.4.3. Suppose Q is a zigzag consistent dimer in a torus. As a vector space,

HH2(J(Q)) ∼= Z ⊗R N
out
R ∧N out

R

⊕
⊕
i∈Z/kZ
η∈σi

C · {[xη`−1EPi+1
∪ EPi+2

], [xη`
−1EPi+1

∪ EPi+3
]}

⊕
⊕
i∈Z/kZ
η∈γi

C · [xη`−1EPi ∪ EPi+1
]

⊕ tor+
`

(
HH0(J(Q))

)
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Proof. Once again, by Theorem 4.2.4, the degree 2 part of the subalgebra generated by

HH1(J(Q)) over HH0(J(Q)) is torsion free. This accounts for Z ⊗R N
out
R ∧ N out

R and the

elements [xη`
−1EPi+1

∪EPi+2
] and [xη`

−1EPi+1
∪EPi+3

] for i ∈ Z/kZ and η ∈ σi. By Lemma

4.4.1, for each i ∈ Z/kZ and η ∈ γi, we also have the element [xη`
−1EPi ∪ EPi+1

]. Upon

multiplying by `, it lands in Z ⊗R N
out
R ∧N out

R and so is not a torsional element.

The torsion of HH∗(J(Q)) is the kernel of the localization map L∗ : HH∗(J(Q)) →

HH∗(J(Q)[`−1]), which is a morphism of BV algebras by Theorem 3.2.5. Hence, the torsion

of HH2(J(Q)) is the image under ∆π0 of the torsion of HH3(J(Q)). The latter is isomorphic

to tor`(HH0(J(Q))) under D, and the kernel of B : HH0(J(Q))→ HH1(J(Q)) is precisely

k. Therefore, the torsion of HH2(J(Q)) is isomorphic to tor+
` (HH0(J(Q))).

Let f be a homogeneous element of Z. The BV operator ∆π0 preserves the H1(Σ) ×

Z-bigrading with respect to all perfect matchings. Hence, by the exactness of (4.4), the

dimension of the f`−1-homogeneous subspace of HH2(J(Q)), modulo torsion, is

• 3 if f ∈ Z · `;

• 2 if f = xη with η ∈ σi, for all i ∈ Z/kZ;

• 1 if f = xη with η ∈ γi, for all i ∈ Z/kZ;

• 0 if f = 1.

Consequently, the elements of HH2(J(Q)) we have identified, along with torsion, span all

of HH2(J(Q)).

As is well-known, the second Hochschild cohomology of an associative algebra classifies

its infinitesimal deformations up to gauge equivalence (see e.g. [4]). The kernel of

∆π0 : HH2(J(Q))→ HH1(J(Q))
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consists of the Hochschild classes of deformations of J(Q) within the class of Calabi-Yau

algebras. By exactness, this space equals the image of ∆π0 : HH3(J(Q)) → HH2(J(Q)),

which corresponds to first-order deformations of the superpotential of J(Q) ([18] Proposition

2.1.5). More precisely, if u ∈ HH0(J(Q)) and U ∈ CQ/[CQ,CQ] is a lift of u, then the

element ∆π0 D−1(u) ∈ HH2(J(Q)) is the Hochshild class of the deformation

J(Q,Φ0 + ~u) :=
CQ[~]/(~2)(

∂a(Φ0 + ~U) | a ∈ Q1

)
.

Lifting the elements of HH0(J(Q)) in Proposition 4.3.4 to CQ/[CQ,CQ], we can thus de-

scribe all Calabi-Yau deformations of J(Q). In particular, the second cohomology classes

of the Calabi-Yau deformations corresponding to the non-torsional elements of Proposition

4.4.2 can be computed explicitly by (2.19), (2.14), and Proposition 4.2.5. We obtain

∆π0([fEP0 ∪ EP1 ∪ EP2 ]) = ((1 + degP0
(f))[fEP1 ∪ EP2 ]− (1 + degP1

(f))[fEP0 ∪ EP2 ]

+ (1 + degP2
(f))[EP0 ∪ EP1 ]

for all homogeneous f ∈ Z,

∆π0([xη`
−1EPi+1

∪ EPi+2
∪ EPi+3

]) = − degPi+2
(xη)[xη`

−1EPi+1
∪ EPi+3

]

+ degPi+3
(xη)[xη`

−1EPi+1
∪ EPi+2

]

for all i ∈ Z/kZ and η ∈ σi, and

∆π0([xη`
−1EPi ∪ EPi+1

∪ EPi+2
]) = degPi+2

(xη)[xη`
−1EPi ∪ EPi+1

]

for all i ∈ Z/kZ and η ∈ γi.
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4.5 Example: mirror to 4-punctured sphere

v v

w

v v

a2 b2

b1 a1
{b1} = P4

{a1} = P3 P2 = {b2}

P1 = {a2}

Consider the zigzag consistent dimer in a torus illustrated above. There are four zigzag cycles,

which coincide with the opposite cycles, and four perfect matchings, one for each arrow. The

dimer dual has genus 0 and four vertices, determining the sphere with 4-punctures.

The minimal central elements corresponding to the opposite cycles are

x1 := a1b1 + b1a1

x2 := a2b1 + b1a2

x3 := a2b2 + b2a2

x4 := a1b2 + b2a1.

In this case, they generate the center Z as algebra, with the single relation ` = x1x3 = x2x4,

so

HH0(J(Q)) ∼= Z ∼= C[x1, x2, x3, x4]/(x1x3 − x2x4).

By Theorem 4.2.4, the first Hochschild cohomology is given by

HH1(J(Q)) = Z ⊗R N
out
R ⊕

⊕
i∈Z/4Z
m,n>0

C · [xmi xni+1`
−1EPi+1

].
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Every closed path in Q contains both vertices v and w, and so the torsion of HH0(J(Q))

is simply

tor`(HH0(J(Q))) = C · {[v]− [w]} ⊂ k,

Therefore, according to Proposition 4.3.4,

HH0(J(Q)) ∼= Z · [v]⊕ C · [w].

which is isomorphic under Van den Bergh duality D to HH3(J(Q)). Writing τ = D−1([v]),

we can present third cohomology as in Proposition 4.4.2,

HH3(J(Q)) ∼= Z ⊗R N
out
R ∧N out

R ∧N out
R

⊕
⊕
i∈Z/4Z
m,n>0

C · [xmi xni+1`
−1EPi+1

∪ EPi+2
∪ EPi+3

]

⊕
⊕
i∈Z/4Z
m>0

C · [xmi EPi ∪ EPi+1
∪ EPi+2

]

⊕ Cτ ⊕ tor`(HH0(J(Q))).

Since the torsion of HH0(J(Q)) is concentrated in k, the second cohomology is torsion free.

Then by Theorem 4.4.3,

HH2(J(Q)) = Z ⊗R N
out
R ∧N out

R

⊕
⊕
i∈Z/4Z
m,n>0

C · {[xmi xni+1`
−1EPi+1

∪ EPi+2
], [xmi x

n
i+1`

−1EPi+1
∪ EPi+3

]}

⊕
⊕
i∈Z/4Z
m>0

C · [xmi `−1EPi ∪ EPi+1
].
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Chapter 5: Hochschild cohomology of matrix

factorizations

According to Theorem 2.7.2, the compactly supported Hochschild cohomology of the ma-

trix factorization category MF (J(Q), `) is isomorphic to that of the curved algebra J(Q)`.

In §5.1, the latter is computed by a spectral sequence of a mixed double complex associ-

ated to the compactly supported Hochschild cochain complex. We follow [12], where the

computation is done for a Landau-Ginzburg model of a commutative local algebra with iso-

lated hypersurface singularity. The result is a complex given by the ordinary cohomology

HH∗(J(Q)) equipped with differential {`,−}. In §5.2, the homology of this complex is

computed explicitly in the case χ(Q) = 0.

5.1 The spectral sequence

We set up the computation for Borel–Moore homology as in [12]; the computation for com-

pactly supported cohomology will be adapted easily from it. Let A be an associative algebra,

Z(A) be the center of A, and h be an element of Z(A). In the notation of §2.6, Ah is a curved

associative algebra. A mixed double complex supported above the diagonal is obtained by

letting

Ci,j =


A⊗ A⊗(j−i) if j ≥ i

0 otherwise,

75



equipped with dA (2.9) as the vertical differential (of homological degree −1) and Lh = dh

(2.9) as the horizontal differential (of homological degree +1).

. . . .

��

. . .

��

. . .

��
. . . A⊗ A⊗3oo

��

A⊗ A⊗2oo

��

A⊗ Aoo

��

Aoo

��

. . .oo

. . . A⊗ A⊗2oo

��

A⊗ Aoo

��

Aoo

��

0oo

��

. . .oo

. . . A⊗ Aoo

��

Aoo

��

0oo

��

. . .oo

. . . Aoo

��

0oo

��

0oo

��. . . . . . . . . . . .

Note that C∗,∗ is 2-periodic along the main diagonal. The even and odd degrees of the direct

product totalization TotΠ(C∗,∗) coincide respectively with the even and odd degrees of the

Borel–Moore chain complex CBM
∗ (Ah). Therefore,

H∗(TotΠ(C∗,∗)) = HBM
∗ (Ah) mod 2.

The periodicity can be leveraged to reduce the computation to the first quadrant. Let

C+
∗,∗ be the subcomplex

C+
∗,∗ =


A⊗ A⊗(j−i) if j ≥ i ≥ 0

0 otherwise.

For r ∈ N, let C+
∗,∗[2r] denote the complex shifted by 2r along the diagonal in the direction

of the third quadrant. If s > r, then C+
∗,∗[2r] is a quotient of C+

∗,∗[2s] by the subcomplex

consisting of terms Ci,j for which −2s ≤ i < −2r or −2s ≤ j < −2r. Thus, there are
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quotient maps

Tot(C+
∗,∗)[2s]→ Tot(C+

∗,∗)[2r], s > r ≥ 0.

Here, we ignore the distinction between direct product and direct sum totalizations since

they coincide for these complexes. The inverse system {Tot(C+
∗,∗)[2r] | r ∈ N} has limit

TotΠ(C∗,∗), and because it satisfies the Mittag-Leffler condition ([37] Theorem 3.5.8), there

is an exact sequence

0→ lim←−
1Hi+1(Tot(C+

∗,∗)[2r])→ Hi(TotΠ(C∗,∗))→ lim←−Hi(Tot(C+
∗,∗)[2r])→ 0. (5.1)

for all i ∈ Z. The symbol lim←−
1 denotes the first derived functor of the inverse limit. Since

Hi(Tot(C+
∗,∗)[2r]) = Hi+2r(Tot(C+

∗,∗)), the Borel–Moore Hochschild homology is determined

from (5.1) by the homology of Tot(C+
∗,∗).

Now, suppose Q is a zigzag consistent dimer admitting a perfect matching, and take

A = J(Q) and h = `. To compute the homology of Tot(C+
∗,∗), we first need a lemma

characterizing some terms of the spectral sequence.

Lemma 5.1.1. Suppose Q is a zigzag consistent dimer that admits a perfect matching.

1. If χ(Q) < 0, then

HH0(J(Q))/{`,HH1(J(Q))} ∼= C.

2. If χ(Q) = 0, then

HH0(J(Q))/{`,HH1(J(Q))} ∼= C[xν1 , . . . , xνk ]/
(
xνixνj | i 6= j

)

Proof. For any P ∈ PM(Q) and f ∈ Z[`−1] such that [fEP ] ∈ HH1(J(Q)), observe

{`, [fEP ]} = fEP(`) = f`.
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When χ(Q) < 0, the center Z is C[`] by Proposition 4.1.1. Letting f range in C[`], we see

that ` · C[`] ⊂ {`,HH1(J(Q))}. On the other hand, the image of ` under any derivation

of J(Q) must have degree at least 2 in the filtration by path length. Therefore, the reverse

inclusion holds, so

HH0(J(Q)) /{`,HH1(J(Q))} = C[`]/(`) ∼= C

When χ(Q) = 0, Theorem 4.2.4 implies that {`,HH1(J(Q))} is the ideal generated by ` and

the minimal elements {xη | i ∈ Z/kZ, η ∈ σi}. Hence, the quotient is the algebra generated

by the xνi for all i ∈ Z/kZ.

Proposition 5.1.2. Suppose Q is a zigzag consistent dimer model admitting a perfect match-

ing. Then

HHBM
∗
(
MF (J(Q), `)

) ∼= H∗
(
HH∗(J(Q)), L`

)
mod 2

HH∗c
(
MF (J(Q), `)

) ∼= H∗
(
HH∗(J(Q)), {`,−}

)
mod 2.

Proof. Let E∗∗,∗ be the homological spectral sequence for the first-quadrant double complex

C+
∗,∗. With respect to the vertical filtration, the first page is the Hochschild homology of

J(Q) with horizontal differential L`.

0 HH3(J(Q))oo HH2(J(Q))oo HH1(J(Q))oo HH0(J(Q))oo 0oo

0 HH2(J(Q))oo HH1(J(Q))oo HH0(J(Q))oo 0oo oo

0 HH1(J(Q))oo HH0(J(Q))oo 0oo oo

0 HH0(J(Q))oo 0oo oo
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Evidently, the only possible nonzero differential of the second page is

d2
i,i : Ker

(
L` : HH0(J(Q))→ HH1(J(Q))

)
→ Coker

(
L` : HH2(J(Q))→ HH3(J(Q))

)
.

The differentials dA and L` have H1(Σ) × Z-bidegree (0, 0) and (0, 1) with respect to all

perfect matchings, so the differential d2
∗,∗ has bidegree (0, 2). Consequently, the image of

d2
∗,∗ must be concentrated in degrees greater than or equal to 2 in all perfect matchings.

However, under the Van den Bergh isomorphism D,

HH0(J(Q))/{`,HH1(J(Q))} ∼= HH3(J(Q))/L`
(
(HH2(J(Q))

)
,

and by Lemma 3.4.3, D has bidegree (0, 1). It is then deduced from Lemma 5.1.1 that the

subspace of Coker
(
L` : HH2(J(Q))→ HH3(J(Q))

)
lying in degrees greater than or equal to

2 in all perfect matchings is trivial. Consequently, the differential d2
∗,∗ is 0, and E∗∗,∗ collapses

at the second page.

For r ≥ 2,

Hi+2r(Tot(C+
∗,∗))
∼=


Heven

(
HH∗(J(Q)),L`

)
if i ≡ 0 mod 2

Hodd

(
HH∗(J(Q)),L`

)
if i ≡ 1 mod 2,

and so

lim←−H∗(Tot(C+
∗,∗[2r])) = H∗

(
HH∗(J(Q)),Lw

)
mod 2.

Because the projections

H∗(Tot(C+
∗,∗[2s]))→ H∗(Tot(C+

∗,∗[2r]))

are isomorphisms for s > r ≥ 2, the inverse system {H∗(Tot(C+
∗,∗[2r]) | r ∈ N} satisfies the
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Mittag-Leffler condition ([37] Theorem 3.5.8), ensuring that

lim←−
1H∗(Tot(C+

∗,∗)[2r]) = 0

in all homological degrees. As a result, (5.1) the gives the desired description of the Borel–

Moore Hochschild homology of MF (J(Q), `).

The computation of compactly supported Hochschild cohomology follows similarly. The

relevant mixed double complex is Ci,j = Hom(J(Q)⊗j−i, J(Q)) equipped with vertical differ-

ential dA (2.10) and horizontal differential {`,−}. Since compactly supported cohomology

is a direct sum totalization, there is no need for truncating to the first quadrant and taking

inverse limits. The same argument as above shows that the spectral sequence with respect

to the vertical filtration collapses at the second page.

5.2 Compactly supported cohomology of MF (J(Q), `)

After Proposition 5.1.2, it remains to compute the homology of the complex HH∗(J(Q))

equipped with differential {`,−}. We begin with a lemma about the kernel of {`,−} in

degree 3 that holds generally in nonpositive Euler characteristic. Subsequently, we specialize

to χ(Q) = 0 and complete the computation.

Lemma 5.2.1. Suppose Q is a zigzag consistent dimer model admitting a perfect matching.

Then

Ker
(
{`,−} : HH3(J(Q))→ HH2(J(Q))

)
⊂ tor`(HH

3(J(Q))).

Proof. Under the Van den Bergh isomorphism D, the Cartan identity (2.16) dualizes to

{`,−} = [∆π0 , `].
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Recall from §4.4 that, for α ∈ HH3(J(Q)), the element ∆π0(α) is the Hochschild class of

the deformation of the superpotential determined by D(α) ∈ HH0(J(Q)). We will use this

interpretation to show that {`, α} is the equivalence class of the trivial deformation only if

α is torsion.

Let π : CQ → J(Q) be the quotient map and s : J(Q) → CQ be a section. If u ∈

J(Q), then [s(u)] ∈ CQ/[CQ,CQ] projects to [u] ∈ HH0(J(Q)) = J(Q)/[J(Q), J(Q)], and

the infinitesimal deformation of J(Q) with Hochschild class ∆π0D−1([u]) is, up to gauge

equivalence ([18] Proposition 2.1.5),

J(Φ0 + ~[s(u)]) :=
CQ[~]/(~2)(

∂a(Φ0 + ~[s(u)]) | a ∈ Q1

) .
We would like to relate this to a first-order star product on J(Q)[~]/(~2). Since the cyclic

derivatives of Φ0 (2.3) have path length at least 2, a gauge transformation can be applied if

necessary to obtain an ~-linear isomorphism

F : J(Φ0 + ~[s(u)])→ J(Q)[~]/(~2)

that preserves vertices and arrows. Then the ∗-product endowed on J(Q)[~]/(~2) via F has,

for each a ∈ Q1, the relation

x1 ∗ · · · ∗ xm − y1 ∗ · · · ∗ yn = −~π(∂a[s(u)]) (5.2)

where ax1 . . . xm is the positive boundary cycle starting at a and ay1 . . . yn is the negative

boundary cycle starting at a.

Without loss of generality, we may assume that s(`) ∈ CQ is a sum of only positive

boundary cycles. Applying (5.2) to [u] and `[u] separately, observe that the ∗-product with
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Hochschild class

{`,D−1([u])} = ∆π0(D−1(`[u]))− `∆π0(D−1[u])

has relation

x1 ∗ · · · ∗ xm − y1 ∗ · · · ∗ yn = −~ π(∂a[s(`u)]) + ~ ` π(∂a([s(u)]))

= ~
m+1∑
i=1

εix1 . . . xi−1uxi . . . xm (5.3)

where

εi =


−1 if xi . . . xmax1 . . . xi−1 is a summand of s(`)

0 otherwise.

We claim that, unless [u] is torsion, this relation cannot be made 0 for all a ∈ Q1

simultaneously by a gauge transformation. Let ψ ∈ C1(J(Q)) = Hom(J(Q), J(Q)) and

extend ~-linearly. The gauge equivalent ∗-product under ψ has relation

x1 ∗ · · · ∗ xm − y1 ∗ · · · ∗ yn = ~
m+1∑
i=1

εix1 . . . xi−1uxi . . . xm

− ~
m∑
i=1

x1 . . . ψ(xi) . . . xm + ~
n∑
i=1

y1 . . . ψ(yi) . . . yn.

Fixing P ∈ PM(Q), we ∗-multiply both sides by degP(a) a and sum over all a ∈ Q1. The

result on the right side is

∑
a∈Q1

degP(a)
{m+1∑

i=1

εiax1 . . . xi−1uxi . . . xm−
m∑
i=1

ax1 . . . ψ(xi) . . . xm +
n∑
i=1

ay1 . . . ψ(yi) . . . yn

}
.

Projected to HH0(J(Q)), the expression is the sum of two terms:

λ`[u], λ :=
∑
a∈Q1

degP(a)
m+1∑
i=1

εi
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and

∑
a∈Q1

degP(a)
{
−

m∑
i=1

[ψ(xi)xi+1 . . . xmax1 . . . xi−1] +
n∑
i=1

[ψ(yi)yi+1 . . . ynay1 . . . yi−1]
}

(5.4)

The coefficient λ is nonzero, since an arrow a can be chosen in P that also is contained in a

summand of s(`). On the other hand, for any b ∈ Q1, the terms of (5.4) having a factor of

ψ(b) sum to 0,

−
∑
a∈Rb+

degP(a)[ψ(b)π(Rb
+)] +

∑
a∈Rb−

degP(a)[ψ(b)π(Rb
−)]

= (1− degP(b))[ψ(b)(π(Rb
+)− π(Rb

−))] = 0.

Consequently, in order for the ∗-product to be the trivial deformation, `[u] must be 0.

With the explicit description of HH∗(J(Q)) when χ(Q) = 0, we can finish the computa-

tion.

Theorem 5.2.2. Suppose Q is a zigzag consistent dimer a torus. Then

HHeven
c

(
MF (J(Q), `)

) ∼= tor+
` (HH0(J(Q))) ⊕ C[xν1 , . . . , xνk ]/

(
xνixνj | i 6= j

)
HHodd

c

(
MF (J(Q), `)

) ∼= tor`(HH0(J(Q))) ⊕ C[xν1 , . . . , xνk ]/
(
xνixνj | i 6= j

)
⊕ C

Proof. First, we claim that {`,−} evaluates the `-torsion of HH∗(J(Q)) to 0. By Lemma

5.2.1, the kernel of {`,−} : HH3(J(Q))→ HH2(J(Q)) is contained in tor`(HH
3(J(Q))) ∼=

tor`(HH0(J(Q))). On the other hand, by Proposition 4.3.4, tor`(HH0(J(Q))) is generated
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as a Z-module by {[v]− [w] | v 6= w ∈ Q0}. Observe

L`([v]− [w]) = [B, `]([v]− [w]) = `B([v]− [w]) = 0,

the last equality following from the fact that the kernel of B is k ↪→ HH0(J(Q)) (4.4).

Therefore,

Ker({`,−} : HH3(J(Q))→ HH2(J(Q))) ∼= tor`(HH0(J(Q))). (5.5)

Since the localization map L∗ : HH∗(J(Q)) → HH∗(J(Q)[`−1]) is a morphism of BV

algebras (Theorem 3.2.5), the map {`,−} must send tor`(HH
2(J(Q))) ∼= tor+

` (HH0(J(Q))

into the torsion of HH1(J(Q)). But HH1(J(Q)) is torsion free by Theorem 4.2.4, so {`,−}

is trivial on the torsion of HH2(J(Q)).

Next, we compute the map {`,−} on the subspace of HH∗(J(Q)) complementary to the

torsion. Recall the presentation of HH2(J(Q)) from Theorem 4.4.3,

HH2(J(Q)) ∼= Z ⊗R N
out
R ∧N out

R

⊕
⊕
i∈Z/kZ
η∈σi

C · {[xη`−1EPi+1
∪ EPi+2

], [xη`
−1EPi+1

∪ EPi+3
]}

⊕
⊕
i∈Z/kZ
η∈γi

C · [xη`−1EPi ∪ EPi+1
]

⊕ tor+
`

(
HH0(J(Q))

)
.

Let f be a homogeneous element of Z and Pi 6= Pj be any corner matchings such that

[f`−1EPi ∪ EPj ] ∈ HH2(J(Q)).
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From the definition of the bracket (2.13), we compute

{`, [f`−1EPi ∪ EPj ]} = f([EPj ]− [EPi ]). (5.6)

Consequently, modulo torsion, the kernel of {`,−} : HH2(J(Q)) → HH1(J(Q)) is the

Z-submodule of Z ⊗R N
out
R ∧N out

R generated by the cocycle

α := [EP2 ] ∪ [EP3 ]− [EP1 ] ∪ [EP3 ] + [EP1 ] ∪ [EP2 ].

By (5.5), {`,−} : HH3(J(Q)) → HH2(J(Q)) is injective on the subspace complementary

to the torsion, and for degree reasons, the image lies in Z · α. But then it must be onto, so

we conclude that the homology of {`,−} in degree 2 is tor+
` (HH0(J(Q))).

In the presentation of Theorem 4.2.4,

HH1(J(Q)) ∼= Z ⊗R N
out
R ⊕

⊕
i∈Z/kZ
η∈σi

[xη`
−1EPi+1

].

As we saw in Lemma 5.1.1,

Coker({`,−} : HH1(J(Q))→ HH0(J(Q))) ∼= C[xν1 , . . . , xνk ]/
(
xνixνj | i 6= j

)
.

The kernel of {`,−} : HH1(J(Q)) → HH0(J(Q)) is generated over Z by differences of

perfect matchings,

Ker({`,−} : HH1(J(Q))→ HH0(J(Q))) = Z ⊗R H
1(Σ,R).

From (5.6), it is seen that the image of {`,−} : HH2(J(Q))→ HH1(J(Q)) is the span of

• Z · `⊗R H
1(Σ,R)
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• Z · xη ⊗R H
1(Σ,R) for all i ∈ Z/kZ and η ∈ σi, and

• Z · xη([EPi+1
]− [EPi ]) for all i ∈ Z/kZ and η ∈ γi.

Thus, the homology of {`,−} in degree 1 is isomorphic to

C[xν1 , . . . , xνk ]/
(
xνixνj | i 6= j

)
⊕ C.

5.3 Example: suspended pinchpoint

Recall from Example 2.4.4 the dimer of the suspended pinchpoint.

v1 v1

v3 v3

v2 v2

v1 v1

d

e
c

b

c

b
f

g
a

d

a {e, g} = P4

{a, e}, {c, g}

{a, c} = P3

P2 = {d, f}

P1 = {b, d}

The minimal central elements corresponding to the opposite cycles are

x1 = ag + ga+ ce

x2 = ebg + bge+ geb

x3 = bf + fb+ d

x4 = afc+ fca+ caf.

86



The vertices v2 and v3 are connected through x3, but by Proposition 4.3.4, neither are con-

nected to vertex v1 through x3. Otherwise, it can be seen directly that, for all homogeneous

f 6= xm3 in Z, all vertices are connected through f . Thus,

tor`(HH0(J(Q))) = C · {[v1]− [v2], [v1]− [v3]} ⊕
⊕
m>0

C · xm3 ([v1]− [v2]).

Then the compactly supported Hochschild cohomology of MF (J(Q), `) is

HHeven
c (MF (J(Q), `)) =

⊕
m>0

C · xm3 ([v1]− [v2]) ⊕ C[x1, x2, x3, x4]/(xixj | i 6= j)

HHodd
c (MF (J(Q), `)) = C · {[v1]− [v2], [v1]− [v3]} ⊕

⊕
m>0

C · xm3 ([v1]− [v2])

⊕ C[x1, x2, x3, x4]/(xixj | i 6= j) ⊕ C.
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