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ABSTRACT

In the theory of resonant mode coupling, the parent and child modes are directly related in frequency and phase. The
oscillations present in the fast rotating § Sct star KIC 8054146 allow us to test the most general and generic aspects
of such a theory. The only direct way to separate the parent and coupled (child) modes is to examine the correlations
in amplitude variability between the different frequencies. For the dominant family of related frequencies, only a
single mode and a triplet are the origins of nine dominant frequency peaks ranging from 2.93 to 66.30 cycles day ™!
(as well as dozens of small-amplitude combination modes and a predicted and detected third high-frequency triplet).
The mode-coupling model correctly predicts the large amplitude variations of the coupled modes as a product of
the amplitudes of the parent modes, while the phase changes are also correctly modeled. This differs from the
behavior of “normal” combination frequencies in that the amplitudes are three orders of magnitude larger and may
exceed even the amplitudes of the parent modes. We show that two dominant low frequencies at 5.86 and 2.93
cycles day~! in the gravity-mode region are not harmonics of each other, and their properties follow those of the
almost equidistant high-frequency triplet. We note that the previously puzzling situation of finding two strong peaks
in the low-frequency region related by nearly a factor of two in frequency has been seen in other § Sct stars as well.
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1. INTRODUCTION

The recent spaced-based studies of § Sct and y Dor stars
have revealed that most of these stars pulsate with a multitude
of pulsation modes in both the low and high-frequency regions
(Uytterhoeven et al. 2011), where the gravity (g) and pressure
(p) modes are found. The numerical relationships between many
low and high frequencies indicate that it is not possible to treat
these regions independently of each other. For example, the
low-frequency region contains g-mode pulsations as well as
rotation peaks (Balona 2011; Breger et al. 2011), while the
high-frequency region contains p-modes as well as high-degree
g-modes (Monnier et al. 2010; Breger et al. 2013). Regrettably,
pulsation mode identifications are generally not available for
these fainter stars studied from space; consequently, frequency
patterns have been the most valuable tool. In the present
investigation, we add amplitude and phase variations as an
additional method to determine the modal origin.

The rapidly rotating (Vsini = 300 km s~') hybrid
8 Sct/y Dor pulsator KIC 8054146 has been measured ex-
tensively by the Kepler spacecraft. Altogether, 349 statistically
significant frequencies were determined from three years of
short-cadence Kepler data (Breger et al. 2012, hereafter Paper I).
The amplitudes ranged from about 2 ppm (parts per million) to
200 ppm. The excellent frequency resolution of three years of
data for KIC 8054146 also revealed that many frequencies are re-
lated over and beyond the expected simple harmonics and com-
binations. In fact, three separate families of frequencies span-
ning a 200 cycles day~! frequency range have been discovered
so far. Within each family, the amplitude variations of the low-
frequency members correlate with those of the high-frequency
members. The unprecedented accuracy of the Kepler allows us
to examine the physical origin of these families in detail. One

of these families could already be interpreted as high-degree
prograde Kelvin modes (Breger et al. 2013).

This paper investigates the dominant set of modes excited in
KIC 8054146, which we have called the T family. The tools
for this investigation are not only the frequency values, but also
their large and steady amplitude and phase changes over the
three years.

The bottom panel of Figure 1 shows the amplitude spectrum
of KIC 8054146 in the 0-100 cycles day~' range. For more
observational information we refer to Paper I, which was
extended to include the Kepler short-cadence data from quarters
11 to 14 (Q11-Q14). Since the frequency resolution of the
combined Q5-Q14 data exceeds the timescales of the (small)
frequency variations of the star, the diagram actually shows the
sum of four subsets. The top panel of Figure 1 presents the T
family of dominant modes with additional properties of these
modes listed in Table 1.

While equidistant frequency spacings and a numerical rela-
tionship between the low and high frequencies are also seen in
other § Sct stars studied by Kepler, the number and sizes of such
occurrences in KIC 8054146 is unusual. In addition, the contin-
uous short-cadence coverage over three years makes a study of
the correlations of amplitude variability of the different modes
possible: this allows us to uniquely separate the parent and child
(coupled) modes.

2. DETERMINING AMPLITUDE AND PHASE
VARIATIONS FROM Q5 TO Q14

The three years of available data allow us to examine the
correlations of the amplitude and phase changes of the dom-
inant frequencies in order to detect their physical relationship
and origin. The one month of Q2 data was omitted from most
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Figure 1. Dominant nine frequencies of the T family of frequencies. The frequency numbers, e.g., f26, denote their approximate values in cycles day~! and this
notation will be used in the rest of the paper. Note that the frequencies are both in the low-frequency g-mode and high-frequency p-mode regions. The bottom panel

illustrates their relation to all the detected frequencies.
(A color version of this figure is available in the online journal.)

Table 1
Dominant Frequencies of the “T” Family

Name Frequency Comment

(cycles day_]) (uHz)
3 2.9308 33.92 Low frequency
f3b 2.9334 33.95 Low frequency
fo 5.8642 67.87 =f3+{3b
26 25.9509 300.36
34 34.4836 399.12 Triplet 2
37 37.4170 433.07 Triplet 2
40 40.3479 466.99 Triplet 2
60 60.4346 699.47 Triplet 1
f63 63.3680 733.43 Triplet 1
f66 66.2988 767.35 Triplet 1

of the present discussion due to the large time gap and large
phase changes from Q2 to Q5. This leaves the near-continuous
coverage from Q5 to Q14 spanning 928 days. For this analysis
we adopt a compromise between the wish to study short-term
amplitude and phase changes and an excellent frequency resolu-
tion obtained only from larger time intervals: 45 days intervals
were chosen. To minimize the remaining difficulties caused by
frequency resolution and small aliasing effects from short time
gaps in the data, a special technique was applied, which we
describe below.

The detected frequencies were divided into two groups: the
20 dominant modes and their harmonics (for which amplitude
and phase variations were desired) and the other modes with
smaller amplitudes. We divided the data into separate 270 day
data sets in order to minimize the effects of the amplitude and
phase variations of the small-amplitude modes. We assumed
constant amplitudes over 270 days for these small-amplitude

modes, while allowing for amplitude and phase variations of
the dominant modes and their harmonics. This allowed us to
prewhiten all the small-amplitude modes.

Two small-amplitude frequencies require a special mention:
the mode at 19.1838 cycles day~' showed a small amplitude
of 0.01 ppt from Q5 to Q8 and slowly increased in to 0.19 ppt
in amplitude from Q9 to Q14. This variation was taken into
account. Another weak mode at 25.9358 cycles day~! forms a
close double with a dominant mode at 25.9509 cycles day~!.
Because of the slow and systematic amplitude growth of this
weak companion (from 0.01 to 0.03 ppt) and its separation of
only 0.0151 cycles day~', we had to choose 45 days, rather than
30 days, intervals for this study.

As a next step, for each of the high-amplitude modes, av-
erage frequencies covering the entire Q5-Q13 quarters were
determined. The values of the frequencies are listed in Figure 3.
Using these average frequency values, for each 45 days interval
the amplitudes and (O — C) shifts were calculated for the differ-
ent high-amplitude modes. These statistically significant shifts
show that the frequencies are slightly variable. This does not
lead to problems with the adoption of constant frequency values
with variable phasing, since the 45 days intervals are short.

The most interesting results are connected with the dominant
frequencies associated with the T family. The amplitude and
(O — C) variations are shown in Figures 2 and 3. The formal
error bars are also plotted; in most cases they are smaller than
the symbols used. In these figures we also show the results for
amode at 47.5126 cycles day~!, which shows very little scatter
and confirms the high quality of the available data and the lack
of serious systematic errors.

The figures show very large changes in amplitude and phasing
with usual timescales of a year or longer. Furthermore, these
variations are steady with excellent agreement between the
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Figure 2. Amplitude variations of the components of Triplet 1 (T1) and Triplet 2 (T2). Two dominant low frequencies, f26, and a mode with constant amplitudes are

also shown.
(A color version of this figure is available in the online journal.)

values of adjacent 45 day time stretches. The variations vary
from mode to mode, in particular for the different components
of the triplets. Nevertheless, qualitative similarities can be seen
between Triplets 1 and 2.

As a next step, for both the amplitude and the (O — C) varia-
tions, we have computed the correlations between the different
frequencies. This led to the discovery of a remarkably simple
pattern, shown by both the amplitude and phase variations. This
pattern links the triplets with each other, as well as to the low
frequencies. This will be explored in the next section.

3. NONLINEAR MODE COUPLING
3.1. The Simple Model

The simplest possible way that combination frequencies (i.e.,
“sum and difference frequencies”) can be generated in a light
curve is through a nonlinear mixing process. Examples of this
are the nonlinear terms in the fluid equations and T* nonlinearity.
If x; = A cos(wit + ¢;) and x, = A, cos(wyt + ¢,), then the
lowest order nonlinear signal that will be generated is x3, where

x3(t) o< x1(2) x2(2)
o A1Ajcos(wit + @) cos(wit + @)
= Az cos(wsst + ¢3,) + Az cos(wz_t + ¢3_), €))]

where
1
Az = §A1A2 ()
w3+ = Wq + w7 (3)
$3x =1 £ 4)

(see Brassard et al. 1995 and Wu 2001 for particular examples).
In this model, w3+ does not correspond to the frequency
of oscillation of an actual mode. Rather, it is produced by
frequency mixing due to nonlinear effects, usually in the outer
portions of the star’s envelope. Since w; and w, correspond
to the frequencies of modes in the star, they are often called
“parent” frequencies and ws is called a “child” or “combination”
frequency. As already stated, such frequencies, which are
observed in § Sct stars, have amplitudes that are typically
three orders of magnitude smaller than those observed in
KIC 8054146.

One possible explanation for the large amplitudes is resonant
mode coupling. In this scenario there is a damped mode in the
star with a frequency very close to the sum of the frequencies
of two other linearly unstable modes, i.e., w3 & w; + wy; this
situation was first studied by Dziembowski (1982). If we take
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Figure 3. (O—C) phase variations of the modes shown in Figure 2. Note the qualitative similarity between the frequency changes of the related modes.

(A color version of this figure is available in the online journal.)

the amplitudes of the parent modes to be A; and A,, then the
steady-state solution of Equation (2.25) of Dziembowski (1982)
gives

H

As= —  AA,.
203313

&)

Here, H is a coupling coefficient, and o3, 3, and I3 are the
dimensionless frequency, damping rate, and inertia of mode 3.
We term this the “mode coupling model.” If the product of ys
and /5 is sufficiently small, then A3 can be much larger than in
the simple nonlinear mixing case, and could explain the large
amplitudes in this star. With the exception of the potentially
larger proportionality factor for the amplitude, we note that the
mode coupling model predicts the same relation between the
frequencies, phases, and amplitudes of the parent and coupled
modes given by Equations (3)—(5).

Of course, Equation (5) was derived for the case of no
rotation, whereas the star KIC 8054146 is rotating at a significant
fraction of break-up and is thus non-spherical; this will result in
modifications of the mode eigenfunctions and eigenfrequencies
(Reese et al. 2009). While difficult to calculate, each mode can
still be characterized with a damping rate and a mode inertia.
We posit that lowest-order nonlinear coupling of modes in such
a star could lead to resonant mode coupling as in Equation (5),

but with values of H, I3, and y; that are modified from the
non-rotating case.

Applying this model (Equations (3)—(5)) leads to three ob-
servational tests. The first test is that the frequencies need to
be related as in Equation (3); written in terms of observed fre-
quencies this is feoupted = fparent1 = fparent2. Such an agreement
alone is not sufficient to demonstrate mode coupling, since the
large number of detected frequencies may lead to accidental
agreements.

The other two tests are related to the phase and amplitude
constraints, Equations (4) and (5), respectively. For the case in
which the phase and amplitude of the modes are constant in
time, we are limited in what we can learn. We can measure
whether the phase condition (Equation (4)) holds for this set
of modes, which helps establish that the three modes have a
parent/coupled mode relationship, although we cannot tell
which are the parent modes and which is the coupled mode.
In the case of amplitudes, it is difficult to test the relationship
given by Equation (5) since the value of the coupling constant
H and the constants y; and I3 are not known a priori.

The situation is much better in the case of variable phases
and amplitudes. First, instead of providing a single global test
of the phase and amplitude relations, each data point provides
an independent check. Second, the case of variable amplitudes
allows a unique application of the simple mode-coupling model:
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Figure 4. Relationship between the observed and predicted amplitudes for all
three components of the frequency Triplet 2. This diagram illustrates that the
simple scaling model using the amplitudes of the Triplet 1 components alone
are not sufficient (lower panel). However, the mode-coupling model (using the
amplitudes of Triplet 1 and of mode £26) provides excellent fits (upper panel).

(A color version of this figure is available in the online journal.)

the amplitude variations of a coupled mode should follow the
product of the amplitude changes of the two parent modes,
independent of the unknown value of the coupling constant.
This allows us to observationally determine which are the parent
modes and which are the coupled modes.

In order to establish separately that the nine dominant modes
are related and to separate these into parent and coupled modes,
we have considered all possible combinations and computed
phase (O — C) changes and amplitude changes. Furthermore,
we also tested a number of possible multiple dependencies. The
results were surprisingly unambiguous and clear.

3.2. Triplet 2

Due to the qualitative similarity of the amplitude and phase
changes of the two triplets (see Figures 2 and 3), we now
compare the amplitudes and phasing for each component of the
two triplets. Our first model assumes that the amplitudes of the
modes in Triplet 2 are directly proportional to the amplitudes of
the respective modes in Triplet 1; we call this the “simple scaling
model.” This model is shown in the bottom panel of Figure 4
and, while hinting at the trend, does not accurately predict the
Triplet 2 amplitudes as a function of the Triplet 1 amplitudes.

The situation is considerably improved if we use the mode
coupling model in which Triplet 2 is the result of coupling
between Triplet 1 and mode f26. In this case, the amplitudes in
Triplet 2 are given by a product of the respective amplitudes in
Triplet 1 with the amplitude of 26, according to Equation (5).
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Figure 5. (O — C) phase shifts due to changing frequencies for the upper
component of Triplet 2. The diagram shows that the observed phase shifts can
be modeled by subtracting the phase shifts of £26 from those of Triplet 1, as
demanded by the mode-coupling model. Excellent agreement is also found for
the other two components of the triplet.

(A color version of this figure is available in the online journal.)

The success of this model is shown in the top panel of Figure 4:
the amplitude variations of all three triplet components are now
correctly matched. In fact, for the upper component of Triplet
2, the amplitudes are predicted to £0.002 ppt on the average!
Note that this shows that f26 and Triplet 1 contain the parent
modes, while Triplet 2 consists of the coupled modes.

The mode-coupling model also requires that the (O — C)
phase shifts should match. This excellent agreement is shown
in Figure 5 together with two other possible models.

3.3. The Dominant Low Frequency at 5.86 cycles day™'

There are at least three promising models for the observed
frequency peak at 5.8642 cycles day~', all of which are mode-
coupling models. The first hypothesis makes this frequency a
harmonic of the 2.93 cycles day~! peak(s). The second and
third models involve the outer components of the two triplets.
The frequency value of 5.8642 cycles day~! is exactly the
difference of the two outer components of either of the two
triplets. Consequently, this peak could be a mode coupled with
the two outer components of either (or both) Triplet 1 and
Triplet 2.

The (O — C) phase shift test supports mode coupling with
Triplet 1 (Figure 6) and rejects mode coupling with Triplet 2.
This result is supported by the amplitude test and is illustrated
in Figure 7. The figure also rejects the harmonic model, which
would explain the 5.86 cycles day~' peak as a consequence of a
nonsinusoidal light-curve shape of the 2.93 cycles day~! mode.

We conclude that the measured phase and amplitude varia-
tions of the low frequency at 5.86 cycles day~' are fully com-
patible with mode coupling of the Triplet 1 parents. This also
strengthens our earlier result that Triplet 1 is the parent of a
number of different coupled modes, such as Triplet 2.

3.4. The Dominant Low Frequency at 2.93 cycles day™'

In a few amplitude spectra combining data from different
quarters (e.g., Q11-Q14) for increased frequency resolution, we
see a small side-peak or asymmetry near 2.933 cycles day~',
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which is caused by the (smaller) coupling of f63 with f60.
Because this peak is uncertain, we have concentrated on the
dominant 2.9305 cycles day~' peak.

We have tested five models: (1) mode coupling between all
three components of Triplet 1 with a random-walk-type addition
of the amplitudes of f66/f63 and f63/f60, (2) mode coupling
between f66 and 63 of Triplet 1, (3) amplitude scaling of only
the central mode of Triplet 1, since that mode is responsible for
most of the amplitude variations, (4) mode coupling between
the three components of Triplet 2, and (5) assuming that 5.86
cycles day~! is a harmonic of 2.93 cycles day™!, i.e., scaling
the observed amplitudes of the 5.86 cycles day~' peak.

The results for the different quarters (Q5—Q14) are shown in
Table 2. The first two models track the observed variations
well, as expected from the mode-coupling model. We can

BREGER & MONTGOMERY

Table 2
Amplitudes of the 2.93 cycles day ' Frequency
Model Average Residuals (ppt)
Observed—Predicted

Triplet 1 combination 0.015
Triplet 1, f66*{63 0.017
Triplet 1 central comp. 0.021
Triplet 2 combination 0.050
If 5.86 cycles day ™!

were a harmonic of 3 0.058

immediately eliminate the Triplet 2 model as well as the
hypothesis that the 5.86 cycles day~! peak is a harmonic of
the 2.93 cycles day~! peak.

3.5. A Predicted Third Triplet

The mode coupling of Triplet 1 with 26 results in Triplet
2 as well as two dominant low frequencies. This represents
the frequency-difference term of the mode-coupling equation
(Equation (3)). The mode-coupling equation also predicts the
possibility of a frequency-sum term, i.e., an additional triplet
at very high frequencies. These components would be found at
86.3855, 89.3189 and 92.2497 cycles day~' (hereafter called
86, 89, and £92).

Two of these predicted modes from the third triplet were
detected before with small amplitudes in our analysis of the
Q5-Q10 data, which reported 349 statistically significant fre-
quencies. We detected frequencies of 86.3858 £ 0.0003 and
92.2497 + 0.0002 cycles day~!, which are in excellent agree-
ment with the predictions from the present mode-coupling
model. The amplitude signal-to-noise ratios were 4.7 and 7.1,
respectively. These values represent a statistically significant
detection (Breger et al. 1993). The 89 mode was not seen and
is probably hidden in the noise.

The mode-coupling model also predicts the shape of the
amplitude variability of the Triplet 3 modes. Only f92 has
an amplitude large enough to examine its variability on a
quarterly basis. We find a variation from 1.6 to 5.4 ppm
from Q5 to Q14. This variation accurately tracks the predicted
changes of amplitude. We find an average deviation between
the predicted and observed amplitude of only £ 0.4 ppm per
quarter. (At first sight, such extremely small deviations may be
appear unrealistic, since the formal uncertainty in the quarterly
amplitude solution is 1 ppm. However, the calculation of the
formal uncertainties assumes white noise. The real noise at such
high frequencies is much lower.)

Thus, not only did the mode coupling model predict the
existence of these additional frequencies, it correctly predicted
the amplitude variation of the only component of the new third
triplet for which this test could be made. We summarize our
results in Table 3.

4. ALTERNATE EXPLANATIONS
4.1. Combination-mode Hypothesis

Combination modes are usually observed in A/F stars, i.e.,
two simultaneously excited modes f; and f; lead to (f; £ f;),
observed at small amplitudes. (Note that these frequencies,
commonly called combination modes, may not be normal
modes, but nonlinearities in the star.) A typical example is the
star 44 Tau, in which combinations of different £ values are
detected (Breger & Lenz 2008). To quantify the size of these
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Table 3
Summary of Observational Findings
Identification Frequency Amplitude Phase
Matched by Matched by Matched by
34 Triplet 2 6026 £26*f60 f60—£26
37 Triplet 2 6326 f26*f63 6326
40 Triplet 2 6626 £26*f66 f66—£26
f6 Low frequency f66-£60 f66*f60 f66-160
f3, f3b Low frequency doublet f66—£63, f63-£60 f66*f63, f60*163
86 Triplet 3 60 + 26
92 Triplet 3 f66 + £26 £26*f66

Notes. Parent frequencies are f26 and f60, {63, f66 (Triplet 1). The f3/f3b peak has two components from the upper and lower components of triplets,

respectively.

combination amplitudes we introduce the parameter ., defined
as follows:
Acomb = MAiAjv (6)

where A; and A; are the amplitudes of the parent modes (in
fractions). Typical values of u are found to be about 4, which has
also been seen in other stars (u is observed to lie within a factor
of two of this value). Furthermore, the amplitudes of the (f;—
fj) combinations are generally slightly smaller than those of (f;
+fj). We have already noted earlier that KIC 8054146 exhibits
many of these typical combination frequencies and their small
amplitudes are typical for § Scuti stars.

We can now compare the values above to those found for the
coupled modes in KIC 8054146. There is a wide range of u
values ranging from 7000 to 60,000 for Triplet 2, and 11,000
for the 5.86 cycles day~' low frequency. Even for the small-
amplitude upper component of Triplet 3, we find a value near
700. We conclude that the observed coupling coefficients in
this star are three to four orders of magnitude larger than those
observed in other § Scuti stars. This makes it unlikely that these
frequencies are produced by the same mechanism that generates
combination frequencies in other § Scuti stars.

The only way to rescue the combination hypothesis involves
fortuitous geometry. In photometry we measure the integrated
light across the visible disk. For nonradial modes, the observed
amplitudes of pulsation suffer from cancellation effects due
to this integration. If a star is viewed nearly equator on, the
measured amplitude of a nonradial ¢ = 1, m = 0 mode, for
example, will be severely decreased. In the present discussion,
we eliminated the combination-mode hypothesis because the
observed amplitudes of the coupled modes were too large by
about four orders of magnitude. Could it be that instead the
observed amplitudes of one or more parents are too small by
these huge factors, i.e., that the star is seen essentially exactly
equator-on? Let us assume that one of the parent modes actually
has an amplitude larger by four orders of magnitude. Inspection
of Figure 2 shows that in this case, the intrinsic amplitude of the
parent mode would be much larger than any known amplitude
for a rapidly rotating § Scuti star. Moreover, at least one of the
parent modes of each of the coupled mode frequencies reported
in this paper would also have to suffer from such geometric
cancellation.

Consequently, we find the combination-mode hypothesis as
well as the cancellation argument very improbable.

4.2. Asymptotic Pulsation

The nearly equidistant spacing of the parent triplet identified
in Section 3 must be a result of the underlying frequency spec-
trum in the star. And, if the higher frequency child tripletis due to

resonant mode coupling, then the star must have eigenfrequen-
cies very close to these values as well, i.e., this second equally
spaced triplet must also exist in the eigenfrequency spectrum of
the star.

For a non-rotating star, the frequency spectrum of p modes in
the asymptotic limit is given by

L 1
ﬁ152<n+§+z+0{>Av, @)

R 71
Av = [2 / d—r} ®)
0 C

is the inverse sound crossing time and we have ignored the small
separation (Unno et al. 1989). Thus, modes differing by £ = *£1
or n = 1 would appear nearly equally spaced.

As it turns out, a modified form of Equation (7) exists for the
case of rapid rotation:

where

Onom = Aniit + Al + Ay |m| + o™, 9)

wheren = 2n +e¢, = (€ — |m| — €)/2, and the coefficients &,,,
Ag, and Am all depend on the structure of the star (Reese et al.
2008). For this case we again see that evenly spaced modes can
be produced by £ = +1 or /i = %1 modes. Thus, evenly spaced
modes can be a natural consequence of rapid rotation in this
star.

4.3. Rotational Modulation of Two p-modes

Small amplitude modulations of p-modes, caused by rotation,
have been detected before and may be very common even in
normal A and F stars, e.g., in KIC 9700322 (Breger et al. 2011).
The 2.93 cycles day~' peak would be the rotation frequency,
which would agree with the known high measured stellar
rotation (Paper I), while 5.86 cycles day~! would be the 2f
harmonic. The problem of rotational frequency peaks with fand
2f of similar amplitudes has been noted before (Balona 2011)
and awaits explanations. The upper and lower components of
Triplets 1 and 2 would be caused by the rotational amplitude
modulation of the central component.

This attractive hypothesis fails because the side peaks asso-
ciated with the amplitude modulation are not symmetric and at
most times are larger than the actual pulsation itself.

5. IS KIC 8054146 UNIQUE?

It might be argued that KIC 8054146 is unusual or unique due
to its very high stellar rotation of v sini = 300 km s~! (Paper I)
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and almost equidistant frequency triplets. However, many of
the properties shown by this star are shared by other stars of
spectral type A/F. In this discussion, let us ignore “normal”
combinations, nf; — mf;, where f; and f; are the frequencies of
two pulsation modes with the combination frequencies having
much smaller amplitudes than f; and f>. Related frequency peaks
of similar amplitudes have been seen before in a number of
A/F stars, even between the low-frequency and high-frequency
regions. The present results on KIC 8054146 are unusual
because the parent and child (coupled) modes could be uniquely
identified: any two of four identified parent frequencies (Triplet
1 and 25.95 cycles day~!) can correctly predict the variable
amplitudes of a number of other frequencies.

Let us compare KIC 8054146 with two other A/F stars. Our
unpublished analysis of KIC 9664869 also shows equidistant
frequency spacings and corresponding relationships between
low and high frequencies with relatively high amplitudes.
However, the available data are insufficient to use the amplitude
variations to separate the parent from the child modes.

Balona et al. (2013) studied the roAp star KIC 8677585.
As in KIC 8054146, the value of the dominant low frequency
corresponds to the spacing of some high-frequency modes.
Furthermore, it shares the amplitude and frequency variations
of a high-frequency mode at 140.1 cycles day~!, suggestive
of nonlinear interactions. Note that in KIC 8054146, such a
similarity with the behavior of a single mode is only superficial
and the variations of the low-frequency peak are matched
accurately only by the coupling of two parent modes. However,
the data (and amplitudes) for KIC 8677585 are insufficient to
test mode coupling between two modes and identify the parents.
Until more data of such other intriguing pulsators become
available, the main result of the present paper cannot be fully
tested in other stars.

The amplitude variability on a timescale of years found in
KIC 8054146 is not unique either for nonradial or even for some
radial modes. An example is the star 4 CVn (Breger 2009), for
which systematic changes as a function of the azimuthal number,
m, were detected over 40 yr.

Let us now turn to the relatively high frequencies of the
parent Triplet 1 (60, 63 and 66 cycles day~'). Are they
unusually high for a § Sct star? They certainly do not fit the
“classical” picture of stellar excitation shown by the HADS,
the slowly rotating high-amplitude § Scuti stars. In this picture,
pulsation is excited to high amplitude in a narrow range of
frequencies corresponding to low-order radial modes. However,
using ground-based telescopes, Rodriguez et al. (2007) already
showed that in the HADS star BL Cam, low-amplitude nonradial
modes were detected up to 79 cycles day~'. These were
explained by Breger et al. (2009) as nonradial modes trapped in
the envelope of the star.

The accurate, recent observations by Kepler and CoRoT have
further supported the detection of high-frequency oscillations in
8 Sct stars, e.g., see the catalog by Uytterhoeven et al. (2011).
We note here that some of the high frequencies listed in the
catalog are low-amplitude combination frequencies, rather than
independent pulsation modes. Also, some frequency peaks may
actually be low frequencies in the stellar frame of reference,
shifted to high frequencies in the observer’s frame of reference
due to rotational splitting (Breger et al. 2013). Consequently,
the detected high frequencies should be individually examined
for each star. Nevertheless, based on the recent observations of
a multitude of & Sct stars, the frequencies of the Triplet 1 near
63 cycles day~!, which is the main mode-coupling parent in
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KIC 8054146, is not unusual. Furthermore, present models of
pulsation instability as a function of frequency confirm that high
frequencies can indeed be excited (Daszynska-Daszkiewicz
et al. 2005, 2006), but the results depend critically on the
treatment of convection.

We conclude that while KIC 8054146 may be the first § Sct
star for which mode coupling and the identification of the parents
and the children are reported, many of the star’s properties are
shared by other § Sct stars. At this stage, considerably more data
are required in order to test the mode-coupling hypothesis for
these stars.

6. DISCUSSION

For KIC 8054146 we identify coupled modes and can
uniquely distinguish which are the parent and child modes. This
is made possible by the fact that for the simplest, lowest-order
mode coupling the amplitudes of the coupled modes are given
by the product of the amplitudes of the parents. We speculate
that the simple mode-coupling model is applicable due to the
relatively small amplitudes and therefore lowest-order nonlinear
interaction of the modes involved. Consequently, the present
study is only made possible by the excellent time coverage and
precision of the data from the Kepler spacecraft. We note that the
generally unknown mode-coupling constants do not present a
problem for KIC 8054146 due to the large amount of amplitude
variability over the three years of data; a single short stretch of
data allows us to derive the mode-coupling coefficients, which
subsequent data groups show to be constant.

The state of nonlinear or combination frequencies detected in
KIC 8054146 is the following:

1. We detect “normal” nonlinearities in this star; these are
combination frequencies for which the amplitudes are
related by A3 ~ u * A} % Ay, where u is ~4. These small
nonlinearities are commonly seen in most if not all Delta
Scuti stars.

2. KIC 8054146 also possesses larger-amplitude nonlinear
signals, and we are able to use the measured amplitude
and phase variations of these signals to determine which
modes are the “parent” modes and which are the “child”
modes. The derived value of u relating the amplitudes of
child and parent modes is & ~ 1000 to 10,000 or more.

A generic nonlinear model (such as the nonlinear relation
between temperature and flux at the surface) is not able
to simultaneously produce both these ‘“small” and “large”
nonlinearities. On the other hand, if a subset of the combination
frequencies lie close to eigenfrequencies in the star, then these
modes and only these modes can be resonantly driven to larger
amplitudes. While this is far from the last word on the subject,
the data are fully consistent with this “resonant mode coupling”
scenario.

In particular, the present investigation showed that in KIC
8054146, two dominant low frequencies are actually coupled
modes with amplitudes larger or equal to those of the dominant
parents in the higher-frequency domain. The low-frequency
region of these so-called hybrid pulsators contains a large
number of linearly driven gravity modes, as was confirmed
by Chapellier et al. (2012) from searching for equidistant
period spacings in ID 105733033. Furthermore, in a number of
hybrid pulsators, some frequency values in the gravity-mode and
pressure-mode domains are numerically not independent of each
other. Given the existence of these gravity modes, we speculate
that these could be the ‘“child” modes that are resonantly
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excited to larger amplitudes. A confirmation of this resonance
explanation would be provided if additional data could reveal
that these particular low frequencies are part of a sequence of
low-frequency modes equidistantly spaced in period.
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