
Copyright

by

Ali Samii

2017

The Dissertation Committee for Ali Samii
certifies that this is the approved version of the following dissertation:

A Hybridized Discontinuous Galerkin Method for

Nonlinear Dispersive Water Waves

Committee:

Clint Dawson, Supervisor

Leszek Demkowicz

Irene Gamba

Ben Hodges

Chad Landis

Laxminarayan Raja

A Hybridized Discontinuous Galerkin Method for

Nonlinear Dispersive Water Waves

by

Ali Samii, B.E.; M.E.; Ph.D.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2017

To my parents.

Acknowledgments

First and foremost, I wish to express my love and gratitude to the one

who bestowed on me the gift of life. Among all favors, he has given me the

opportunity to learn and interact with many great people, who I wish to thank

here.

This work was not possible without the help and guidance of Prof.

Clint Dawson. The joy of working with a knowledgeable, patient, and humble

adviser always kept me encouraged when facing different problems throughout

this journey.

I would like to thank the committee members, Profs. Demkowicz, Gamba,

Hodges, Landis, and Raja, for their time, input and participation.

During my work as part of the Computational Hydraulics Group (CHG)

in the Institute for Computational Engineering and Sciences (ICES), I bene-

fited from the companionship and discussion with my colleagues and friends.

I appreciate their help, and will never forget the good times that we spent

together.

Lastly, and maybe most important of all, I want to thank my family

for their continuous love and support. Their kind attention has always kept

me motivated in my whole life.

v

This work was funded in part by the National Science Foundation grant

ACI 1339801. Their support is gratefully acknowledged.

vi

A Hybridized Discontinuous Galerkin Method for

Nonlinear Dispersive Water Waves

Publication No.

Ali Samii, Ph.D.

The University of Texas at Austin, 2017

Supervisor: Clint Dawson

Simulation of water waves near the coast is an important problem in

different branches of engineering and mathematics. For mathematical models

to be valid in this region, they should include nonlinear and dispersive prop-

erties of the corresponding waves. Here, we study the numerical solution to

three equations for modeling coastal water waves using the hybridized discon-

tinuous Galerkin method (HDG). HDG is known to be a more efficient and in

certain cases a more accurate alternative to some other discontinuous Galerkin

methods, such as local DG.

The first equation that we solve here is the Korteweg-de Vries equation.

Similar to common HDG implementations, we first express the approximate

variables and numerical fluxes in each element in terms of the approximate

traces of the scalar variable, and its first derivative. These traces are assumed

to be single-valued on each face. We next impose the conservation of the

vii

numerical fluxes via two sets of equations on the element boundaries. We

solve this equation by Newton-Raphson method. We prove the stability of

the proposed method for a proper choice of stabilization parameters. Through

numerical examples, we observe that for a mesh with kth order elements, the

computed variable and its first and second derivatives show optimal conver-

gence at order k + 1 in both linear and nonlinear cases, which improves upon

previously employed techniques.

Next, we consider solving the fully nonlinear irrotational Green-Naghdi

equation. This equation is often used to simulate water waves close to the

shore, where there are significant dispersive and nonlinear effects involved.

To solve this equation, we use an operator splitting method to decompose

the problem into a dispersive part and a hyperbolic part. The dispersive

part involves an implicit step, which has regularizing effects on the solution

of the problem. On the other hand, for the hyperbolic sub-problem, we use

an explicit hybridized DG method. Unlike the more common implicit version

of the HDG, here we start by solving the flux conservation condition for the

numerical traces. Afterwards, we use these traces in the original PDEs to

obtain the internal unknowns. This process involves Newton iterations at each

time step for computing the numerical traces. Next, we couple this solver with

the dispersive solver to obtain the solution to the Green-Naghdi equation. We

then solve a set of numerical examples to verify and validate the employed

technique. In the first example we show the convergence properties of the

numerical method. Next, we compare our results with a set of experimental

viii

data for nonlinear water waves in different situations. We observe close to

optimal convergence rates and a good agreement between our numerical results

and the experimental data.

ix

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xiii

List of Figures xv

Chapter 1. Introduction 1

1.1 Shallow Water Regime . 2

1.2 A Review of Numerical Procedures in Shallow Water Regime . 4

1.3 Contributions . 8

1.4 Outline . 9

Chapter 2. Wave Models for Shallow Water Regime 10

2.1 Free Surface Bernoulli Equations 10

2.2 Dirichlet–Neumann (D–N) Operator 12

2.2.1 Definition of the D–N Operator 13

2.2.2 Relationship between D–N Map and the Depth Averaged
Momentum . 15

2.3 Nondimensionalization and Dominant Scales 16

2.3.1 Scaling the Variables and Operators 21

2.3.2 Nondimensionalization of the Equations 22

2.4 Shallow Water Models . 23

2.4.1 Nonlinear Shallow Water Equation 26

2.4.2 Green-Naghdi Equation 28

2.4.3 Korteweg–de Vries Equation (KdV) 29

x

Chapter 3. A Hybridized Discontinuous Galerkin Method for
the Korteweg-de Vries Equation 31

3.1 Problem Statement and Space Discretization 32

3.1.1 Mesh Notation . 34

3.1.2 Approximation Spaces 35

3.2 Solution Method . 36

3.2.1 Linear Problem Solver 36

3.2.1.1 Implementation 41

3.2.1.2 Stability of the Method 44

3.2.2 Nonlinear Solver . 50

3.2.2.1 Choice of the Numerical Fluxes 51

3.2.2.2 Implementation 52

3.3 Numerical Experiments . 54

Chapter 4. Hybridized Discontinuous Galerkin Method for Non-
linear Shallow Water Equation 68

4.1 Statement of the Problem . 69

4.1.1 Notation . 70

4.1.2 Functional setting . 71

4.2 Variational formulation . 71

4.2.1 Stabilization parameter 73

4.2.2 Boundary conditions . 74

4.3 Solution procedure . 75

4.3.1 Implicit approach . 75

4.3.2 Explicit approach . 77

4.4 Numerical experiments . 80

Chapter 5. Solving Green–Naghdi Equation Using Hybridized
Discontinuous Galerkin Method 101

5.1 Dispersive Properties of the Modified G–N Equation 103

5.2 Solution Approach . 106

5.3 Variational Formulation . 109

5.3.1 Boundary Conditions 111

5.3.2 Computation of Higher Order Derivatives in Q1(u) . . . 112

5.4 Numerical Examples . 113

xi

Chapter 6. Conclusion 133

Bibliography 137

xii

List of Tables

2.1 Range of nonlinearity parameter (ε), topography parameter (β),

and the spatial dimension for different shallow water models and

the corresponding precision order 27

3.1 Convergence rates of the solution of the linear problem (example

1), with the right side boundary condition on u. The analytical

solutions are denoted by ue, qe, and pe. 56

3.2 Convergence rates of the solution of linear problem (example

1), with the right side boundary condition on p. The analytical

solutions are denoted by ue, qe, and pe. 57

3.3 Convergence rates of the solution of nonlinear problem (example

2), with the right side boundary condition on u. The analytical

solutions are denoted by ue, qe, and pe. 58

3.4 Convergence rates of the solution of nonlinear problem (example

2), with the right side boundary condition on p. The analytical

solutions are denoted by ue, qe, and pe. 59

xiii

4.1 Execution time of local and global steps for solving 1000 time

steps of example 1 using the implicit method for the case of

26 × 26 elements, and different polynomial orders p 83

4.2 Execution time of local and global steps for solving 1000 time

steps of example 1 using the explicit method for the case of

26 × 26 elements, and different polynomial orders p 85

4.3 Execution time and speedup of implicit and explicit methods

for solving example 2 with different number of cores. For im-

plicit method we solve 200 steps with ∆t = 0.1, and for explicit

approach, we solve 20000 steps with ∆t = 0.001. 95

xiv

List of Figures

1.1 Domain of the problem, and the employed notations and length

scales. 3

2.1 Domain of the problem, and the employed notation. 11

2.2 Variation of
√
ν, with respect to shallowness parameter µ; the

dashed lines represent µ = 10−2 and
√
ν = 0.95. 19

2.3 Normalized group and phase velocity of linear waves for different

wavenumbers. 20

3.1 The domain of the problem and its left and right boundary. . 33

3.2 Space-time graphs of one soliton in the domain (x, t) ∈ [−10, 0]×

(0, 2]. Evolution of the computed solution (top) and analytical

solution (bottom) of u. 61

3.3 Space-time graphs of one soliton in the domain (x, t) ∈ [−10, 0]×

(0, 2]. Evolution of the computed solution (top) and analytical

solution (bottom) of q. 62

3.4 Space-time graphs of one soliton in the domain (x, t) ∈ [−10, 0]×

(0, 2]. Evolution of the computed solution (top) and analytical

solution (bottom) of p. 63

xv

3.5 Space-time graphs of two solitons in the domain (x, t) ∈ [−10, 0]×

(0, 2]. Evolution of the computed solution (top) and analytical

solution (bottom) of u. 65

3.6 Space-time graphs of two solitons in the domain (x, t) ∈ [−10, 0]×

(0, 2]. Evolution of the computed solution (top) and analytical

solution (bottom) of q. 66

3.7 Space-time graphs of two solitons in the domain (x, t) ∈ [−10, 0]×

(0, 2]. Evolution of the computed solution (top) and analytical

solution (bottom) of p. 67

4.1 (a): The schematic plot of the initial state of h in example 1 at

time t = 0; (b): The decomposed computational mesh between

24 processors for n = 6, i.e. 26 elements in each direction. . . . 82

4.2 Approximation error and convergence rate of the implicit method

for solving the first example in Ω ≡ [−1, 1]2, using 2.0/h ele-

ments in each direction, and polynomial order p = 0, 1, 2, 3. . . 83

4.3 Approximation error and convergence rate of the explicit method

for solving the first example in Ω ≡ [−1, 1]2, using 2.0/h ele-

ments in each direction, and polynomial order p = 0, 1, 2, 3. . . 85

4.4 The water surface profile of example 2, at different times, with

t0 = 1 and ∆t = 0.001. 89

xvi

4.4 (cont’d) The water surface profile of example 2, at different

times, with t0 = 1 and ∆t = 0.001. 90

4.5 The water surface profile of example 2, at different times, with

t0 = 3 and ∆t = 0.001. 91

4.5 (cont’d) The water surface profile of example 2, at different

times, with t0 = 3 and ∆t = 0.001. 92

4.6 Comparison of water surface profile in example 2, between ∆t =

0.001 and ∆t = 0.1, for the case of t0 = 1. 93

4.7 Comparison of water surface profile in example 2, between ∆t =

0.001 and ∆t = 0.1, for the case of t0 = 3. 94

4.8 The discretized computational domain of example 3. There are

64 divisions in the vertical direction, and in the horizontal di-

rection, we have 64 elements in each of the intervals x ∈ (−1, 0),

x ∈ (0, 0.5), and x ∈ (0.5, 1). 96

4.9 Water height in example 3, at different time steps. 97

4.9 (cont’d) Water height in example 3, at different time steps. . . 98

4.10 Velocity in y-direction in example 3, at different time steps. . . 99

4.10 (cont’d) Velocity in y-direction in example 3, at different time

steps. 100

xvii

5.1 The ratio of approximate phase velocity based on the modified

G–N equation to the exact linearized wave model, for different

values of α. 105

5.2 The ratio of approximate group velocity based on the modified

G–N equation to the exact linearized wave model, for different

values of α. 105

5.3 The splitting technique used to solve the coupling between the

hyperbolic and dispersive sub-problems. We start with qh|tn ,

and obtain qh|tn+1
at the end of the time step. 107

5.4 Schematic plot of the domain of Example 1. The stripe is 20 m

long and 0.2 m wide. 116

5.5 Plots of the numerical results of Example 1 with a0/H0 = 0.2,

at times (a): t = 0 s and (b): t = 0.375 s. 116

5.6 The approximation errors and rates of convergence for differ-

ent mesh sizes and polynomial orders (a): a0/H0 = 0.2, (b):

a0/H0 = 0.4. 118

5.7 Profile of water height h = ζ + H0 (measured in 0.1 meter) at

different times for the case of a0/H0 = 0.35. 120

5.8 Amplification effect of a solid wall on the reflected solitary wave

in Example 2. 121

5.9 The geometry of the numerical model of Example 3. 122

xviii

5.10 The snapshots of the water surface (ζ) in Example 3, at different

times. 123

5.11 Time history of the water surface at reading station (x = 37.75

m) in Example 3. 124

5.12 The setup of the numerical test of Example 4. 126

5.13 Time history of water surface elevation at different locations

near the shore, for Example 4. The numerical results are shown

in continuous lines and the corresponding experimental values

are shown in dotted lines. 127

5.14 The bathymetry and initial state of water surface in Example 5. 129

5.15 Water surface elevation of Example 5 at different time steps. . 130

xix

Chapter 1

Introduction

Computational modeling of near-coastal water waves is a crucial field

of research to understand the complicated behavior of the water flow in these

regions. While engineers use such models to design and build effective coastal

protection systems against hurricanes and storms, emergency managers use

them to improve their preparedness in the case of such hazards. The mathe-

matical models used to describe the fluid flow in such problems are based on

the asymptotic expansion of the incompressible Euler’s equation and removing

higher order terms from the expansion. When studying off-shore waves, we

usually consider nondispersive wave models where different wavelengths travel

with the same speed. However, near the coast, short waves start to fall behind

the longer waves and the shape of the waves start to evolve. This process,

which is known as wave shoaling, results in the breaking of waves and dis-

sipation of their energy. Including such phenomena in the simulations using

nondispersive wave models results in significant errors. The key fact in choos-

ing the correct wave model is knowing the scales dominating different regions

of the problem. Throughout this work, we will follow the shallow water regime

assumption, which are characterized by large length scales compared to the

typical depth.

1

1.1 Shallow Water Regime

In order to identify the regime of the water waves, we need to introduce

a number of length scales in the problem. These scales are shown in Fig. 1.1.

Here, we have denoted the horizontal coordinates with x ∈ Rd, where d is the

horizontal dimension of the problem. For instance, when we are solving a 2D

problem, x is simply the x-coordinate and for 3D problems x = (x, y). At

the given time t, we use Dt to denote the subset of Rd+1 which is filled with

water, and any point in Dt is identified by the coordinates (x, z) ∈ Rd+1. In

this dissertation, we make the following assumptions:

• The fluid is inviscid, incompressible, irrotational, with constant and uni-

form density.

• Water surface and bottom can be presented as graphs, in the forms

z = ζ(t,x) and z = b(x), respectively. Hence, while the water surface

can change as a function of time, the bottom boundary is taken constant

in time.

• Fluid particles do not cross the top and bottom boundaries.

• The external pressure (P0) is constant, and there is no surface tension.

• The only forcing applied to the water is the gravity force; hence, the

wind and Coriolis forces are not considered in this study.

For reasons that will become evident later, we define four dominant

length scales in our problem. As shown in Fig. 1.1 we use H0 to denote the

2

Figure 1.1: Domain of the problem, and the employed notations and length
scales.

typical water height, L0 for the typical horizontal scale, a0 for the order of

wave amplitude, and b0 to denote the order of topography variation. Based

on these length scales, we also define the following dimensionless parameters:

ε =
a0

H0

; µ =
H2

0

L2
0

; β =
b0

H0

. (1.1)

It is worthwhile noting that, while our definition of ε and β match the majority

of literature, some researchers tend to take µ = H0/L0. As we will see in the

next chapter, ε controls how much nonlinearity we allow in our formulation,

e.g. when ε = O(1), the regime is known as large amplitude or fully nonlinear;

moreover, 0 < ε � 1 results in the weakly nonlinear regimes. Accordingly,

ε is referred to as the nonlinearity parameter. Moreover, µ and β are the

shallowness and topography parameters, respectively. In our study, we assume

µ� 1, but we do not set any special condition on ε and β.

As we will see in Chapter 2, by expressing the solution of the Eu-

ler’s equation in terms of an asymptotic expansion with respect to µ, ε, β, we

3

arrive at an equation which is in terms of the increasing powers of these pa-

rameters. Now, if we assume µ � 1, and for some n ≥ 0 drop all terms

containing µm with m ≥ n, we say that the obtained equation is O(µn) con-

sistent with the original Euler’s equation. The shallow water regime is the set

of all such equations, in which by dropping the higher order terms of µ we

can achieve a desirable approximation to the original equation. This disser-

tation is devoted to develop a hybridized discontinuous Galerkin method for

solving three such equations, i.e. Nonlinear Shallow Water Equation (NSWE),

Green-Naghdi (GN) equation, and weakly nonlinear Korteweg-de Vries (KdV)

equation. The details for derivation of these equations are discussed in the

next chapter.

1.2 A Review of Numerical Procedures in Shallow Wa-
ter Regime

Among the equations in the shallow water regime, NSWE has been

studied by many researchers. This equation was first derived in the one-

dimensional case, by Saint-Venant [24], assuming a linear variation of the

pressure in the vertical direction. This work resulted in an equation with

advection, diffusion, and eddy viscosity terms. As will be shown in the next

chapter, the NSWE is O(µ) consistent with the water wave equation. Due

to the complex geometries in which we need to solve this equation, the finite

element method has been a viable option among other numerical methods.

Most of the efforts in this context have been on the development of stable

4

techniques for advection dominated flows. The first such study was conducted

using an implicit continuous Galerkin method with cubic Hermite functions

to solve the 1D NSWE [71]. The 2D problem was later solved in Cartesian

and Spherical coordinates, and including Coriolis forcing [21]. Most of these

methods were based on primitive variables (velocity and surface elevation). It

was later shown that approximating the primitive variables at the same nodal

points can result in spurious oscillation and the idea of staggered grids for these

variables were implemented [73]. Hence, most of the techniques developed later

were based on using primitive variables in staggered grids [70]. However, it

was known that using the formulation in terms of vorticity and divergence in

non-staggered grids does not result in the same issues as primitive variables in

such grids [74]. The developments in this context continued with conservative

iterative methods [56], selective lumping finite elements [35], and improved

stability methods [51]. One of the more popular techniques was based on wave

continuity equation instead of water surface evolution equation [46], which was

employed in a number of other works [36, 37, 45]. A priori error estimates were

also provided for this method [8, 9].

A majority of the methods based on the continuous Galerkin (CG) for-

mulation, have important drawbacks such as violating the local conservation,

failing to satisfy the primitive variable continuity, and lack of stability. As a

result, a number of important studies were carried out in the framework of dis-

continuous Galerkin methods (DG). These methods can naturally incorporate

some of the important features mentioned above. By a proper choice of nu-

5

merical fluxes, one can add more stability to the solution, and including slope

limiters in their formulations is quite straightforward [7]. They are locally con-

servative, which makes them appropriate choices when one wants to use them

for particle tracking purposes [22]. Different variations of DG have been used

to solve the system of nonlinear hyperbolic equations or specifically NSWE.

One of the first DG formulations for such equations was proposed in [6]. A

major upgrade to accuracy and stability of these methods was the Runge-

Kutta local projection DG [12–14, 16], which was later applied to nonlinear

convection-diffusion systems [10, 15]. Different studies have used coupled CG-

DG methods for the simulation of shallow water systems [23].

One of the drawbacks of the DG methods compared to the CG variants

is the large number of degrees of freedom that one needs to deal with when

solving large problems. Hence, by writing the DG equations in hybridized

form, one can get a comparably smaller global system along with a set of

element-wise equations. This technique is known as the hybridized DG (HDG)

and has been applied to a variety of problems, including nonlinear hyperbolic

systems [11, 53, 54, 57]. The global system of equations in HDG needs to

be solved on the skeleton space of the mesh, which results in lower number

of degrees of freedom and smaller bandwidth of the global matrix. HDG has

been usually used in combination with implicit time integrators; however, there

are other implementations such as implicit-explicit methods [68], fully explicit

methods [39, 65], and spacetime discretization [59].

A higher order approximation than NSWE to the water wave equation

6

is the Green-Naghdi equation (also known as Serre or fully nonlinear Bousinesq

equation [72]). It was first derived by Serre for a 1D problem [63], and later for

the 2D problems with general topography [31]. As we will show later, they are

O(µ2) consistent with the incompressible Euler’s equation. They are usually

used to solve the water wave problem in deeper regions compared to NSWE.

For example, while inside the ocean the values of µ vary between 10−5− 10−4,

near the coast, µ is of order 10−2. Hence, in the simulation of water waves

approaching from the ocean to the coast, if we use an O(µ) model for the ocean

(e.g. NSWE), we need an O(µ2) model for the coast to keep the approximation

order consistent throughout the computational domain.

An important feature that the Green-Naghdi equation offers is the abil-

ity to include dispersive characteristics of water waves. Simulation of dispersive

water waves dates back to the 1980s when numerical methods were used to

solve the run-up of non-breaking [47] and breaking [77] water waves. However,

most of these methods were at best based on weakly nonlinear assumption, i.e.

taking ε = O(µ) in the asymptotic expansion [50]. The equations in this regime

are usually referred to as the ‘classical’ Boussinesq equations or Boussinesq–

Peregrine models. This regime is not suitable in many applications in coastal

oceanography, where we need to model large amplitude waves. It was not

until the 2000s that the first works on solving the fully nonlinear dispersive

waves appeared [29, 30, 48]. Lannes et. al used an operator splitting technique

to solve the equations derived in [41], using a combination of finite volume

and finite difference methods [4]. These equations were later developed for 2D

7

simulations [42] and solved using local DG [28]. While most of these works

were based on the assumptions that we made in Sec. 1.1, one can also find

rotational fluid models employed to obtain such approximate equations [78].

This rotational model equations have been solved in [55] using local DG.

1.3 Contributions

The research work which is reported in this dissertation contains the

following contributions:

• We have developed an implicit hybridized DG method for the nonlin-

ear KdV equation. The KdV equation is one of the simplest dispersive

equations, which involves third order derivatives. We prove the stability

of our numerical scheme for the linear KdV, and show the convergence

properties of the proposed method through numerical examples. The

results of this part of the work is also reported in [62].

• We have developed a hybridized DG element in the deal.II finite element

library. This element can be used in shared and distributed parallel

frameworks. To this end, we have implemented a new scheme for num-

bering of the degrees of freedom and applying the boundary conditions

independent of the library. The developed software has been shown to

scale well up to 1024 computational cores. The results of using this ele-

ment in solving the nonhomogeneous and anisotropic diffusion equation

is reported in [61].

8

• We have solved the fully nonlinear irrotational Green-Naghdi equation

in two dimensions using the hybridized discontinuous Galerkin method.

The proposed method is validated against experimental benchmark tests,

where we have found good agreement between our numerical results and

the experimental data. This part of our work has also given rise to an

explicit hybridized DG for solving nonlinear shallow water equations.

To the best of our knowledge, this technique is among the first explicit

implementation of HDG for solving a nonlinear conservation law.

1.4 Outline

In the forthcoming chapters, we first discuss the different wave models,

which are solved in this dissertation, and explain how they are related to each

other. In Chapter 3, we present our method for solving the KdV equation

and show the corresponding results. In Chapter 4, we explain our explicit

hybridized DG method for the solution of the nonlinear shallow water equation.

In Chapter 5, we present our numerical method for solving the irrotational

Green-Naghdi equation, and use a set of numerical experiments to verify and

validate our proposed method. In Chapter 6, we mention our concluding

remarks and a few directions to continue the current work.

9

Chapter 2

Wave Models for Shallow Water Regime

In this section we derive the governing equations of the water waves

based on the assumptions that we introduced in Sec. 1.1. By substituting

an asymptotic expansion of the solution into these equations we obtain the

main wave equations that we plan to solve in the next three chapters. In this

section, we follow the notation used by many other researchers in the water

wave theory [40].

2.1 Free Surface Bernoulli Equations

At a given time t, let Dt denote the subset of Rd+1, which is filled

with water (refer to Fig. 2.1). At a given point (x, z) ∈ Dt, let U(t,x, z) ∈

Rd+1 denote the velocity of a fluid particle. Meanwhile u(t,x, z) ∈ Rd and

w(t,x, z) ∈ R are the horizontal and vertical components of the velocity. At

this point P (t,x, z) denotes the pressure. The acceleration of gravity, which

acts in the vertical direction (−gez), is taken constant everywhere. In what

follows, we use ∇ to denote the gradient in the horizontal direction and ∇˜ to

denote (∇, ∂z)T . In order to maintain consistency, we also use ∆ and ∆˜ to

denote ∇2 and ∇2 + ∂2
z , respectively.

10

Figure 2.1: Domain of the problem, and the employed notation.

Based on the assumptions introduced in Sec. 1.1, the Euler’s equation

governs the flow, and the velocity field is both irrotational and solenoidal:

∂tU + (U · ∇˜)U = −1

ρ
∇˜P − gez in Dt, (2.1a)

∇˜ ·U = 0 in Dt, (2.1b)

∇˜ ×U = 0 in Dt. (2.1c)

Meanwhile on ΓT , we have P = P0. The boundary conditions on ΓT and

ΓB can be derived using the fact that the fluid particles do not cross these

boundaries. Let (xp(t), zp(t)) denote the position of a fluid particle on ΓT .

Since, the equation of ΓT is −z + ζ(t,x) = 0, we have zp(t) − ζ(t,xp(t)) = 0.

Moreover, the particle stays on ΓT , and we have:

d

dt
[−zp(t) + ζ(t,x(t))] = 0 =⇒ −∂tzp + ∂tζ +∇ζ ∂txp = 0.

Knowing that ∂tzp = w, and ∂txp = u,

∂tζ +∇ζ · u− w = 0 on ΓT . (2.2)

11

This is the kinematic boundary condition on water surface. Now, the normal

vector to ΓT can be obtained by taking the gradient of the equation of this

surface, i.e. n = (−∇ζ, 1)/
√

1 + |∇ζ|2. Hence, (2.2) can be written as:

∂tζ −
√

1 + |∇ζ|2 U · n = 0 on ΓT . (2.3)

similarly on ΓB, we have:

U · n = 0 on ΓB. (2.4)

Next, we use (2.1c), to express U in the form U = ∇Φ, and obtain the free

surface Bernoulli equations:

∂tΦ +
1

2
|∇˜Φ|2 + gz = −1

ρ
(P − P0) in Dt, (2.5a)

∇˜ 2Φ = 0 in Dt, (2.5b)

∂tζ −
√

1 + |∇ζ|2∂nΦ = 0 on ΓT , (2.5c)

∂nΦ = 0 on ΓB. (2.5d)

2.2 Dirichlet–Neumann (D–N) Operator

Here, we plan to transfer our d+1-dimensional problem to a d-dimensional

problem. In the literature, this is usually done by a process of integrating the

equations over the depth of the domain [44]. Basically, we want to remove any

dependence on the vertical direction. To this end, we choose a more mathe-

matically established approach. First we combine Eqs. (2.5b-d) into a single

equation, which will be only in the horizontal direction. Second, we replace

12

the derivatives in the z-direction, using the chain rule. This scheme was first

introduced by Zakharov [76] and later formulated in a robust procedure in

[19, 20].

2.2.1 Definition of the D–N Operator

Let us define ψ as the trace of Φ at the water surface, i.e.: ψ = Φ|ΓT
.

We use the well-developed theory of Laplace’s equation to define an operator,

which takes ψ as its input and having ζ, b, uses the following boundary value

problem to solve for Φ:

∆˜Φ = 0 in Dt, (2.6a)

Φ = ψ on ΓT (i.e. z = ζ(t,x)), (2.6b)

∂nΦ = 0 on ΓB (i.e. z = −H0 + b(x)). (2.6c)

Under proper regularity assumptions, the above equation has a unique solution

for a given ψ. We identify the following map:

G[ζ, b] : ψ 7→
√

1 + |∇ζ|2 ∂nΦ|ΓT
, (2.7)

or the form, which is more useful for practical purposes (compare (2.2) and

(2.3)):

G[ζ, b] : ψ 7→ −∇ζ · ∇Φ|ΓT
+ ∂zΦ|ΓT

, (2.8)

which is known as the Dirichlet–Neumann operator. A rigorous definition of

the D–N operator is beyond the scope of this dissertation. Here, we have

assumed enough regularity for the unknowns, so that the solution of the above

13

boundary value problem exists in the distributional sense of the derivatives.

We refer the interested reader to the original papers [19, 20], where the operator

is defined in its appropriate functional settings, and is proved to be well-defined

and continuous.

Now, we can write (2.5b – d) as a single equation:

∂tζ −G[ζ, b]ψ = 0 (2.9)

In the next step, we want to remove Φ and its z-derivatives from (2.5a). For

this purpose, we obtain the three derivatives: ∂tΦ, ∂zΦ, and ∇Φ at the water

surface. For ∂tΦ and ∇Φ, we use ψ(t,x) = Φ(t,x, ζ(t,x)) and the chain rule

to get:

∂tΦ = ∂tψ − ∂zΦ ∂tζ on ΓT , (2.10a)

∇Φ = ∇ψ − ∂zΦ∇ζ on ΓT . (2.10b)

For ∂zΦ, we start from (2.2) and use (2.9) and (2.10) to obtain:

∂zΦ =
G[ζ, b]ψ +∇ζ · ∇ψ

1 + |∇ζ|2
on ΓT . (2.10c)

Next, substituting (2.9) and (2.10) in (2.5a) results in the following equation

on ΓT :

∂tψ + gζ = −1

2
(∇ψ − ∂z∇ζ) · (∇ψ − ∂z∇ζ)− 1

2
(∂z)

2 + ∂zΦ ∂tζ

= −1

2
|∂ψ|2 − 1

2

(
1 + |∇ζ|2

)
(∂zΦ)2 + (∂zΦ)2 + (∂zΦ)2|∇ζ|2

= −1

2
|∇ψ|2 +

1

2
(1 + |∇ζ|2)(∂zΦ)2

= −1

2
|∇ψ|2 +

(G[ζ, b]ψ +∇ζ · ∇ψ)2

2(1 + |∇ζ|2)
. (2.11)

14

In the above derivation, from first to second step, we have used (2.2), i.e.

∂tζ = −∇ζ · ∇Φ + ∂zΦ and substituted ∇Φ and ∂zΦ from (2.10).

Thus we arrive at the following two equations, which are written on the

water surface (a d-dimensional manifold) and only contain horizontal deriva-

tives: ∂tζ −G[ζ, b]ψ = 0,

∂tψ + gζ +
1

2
|∇ψ|2 − (G[ζ, b]ψ +∇ζ · ∇ψ)2

2(1 + |∇ζ|2)
= 0.

(2.12)

2.2.2 Relationship between D–N Map and the Depth Averaged
Momentum

In order to establish a relationship between D–N map and the depth

averaged velocity (ū), we start from the definition:

ū(t,x) =
1

h(t,x)

∫ ζ(t,x)

−H0+b(t,x)

∇Φ(t,x, z) dz,

and take the divergence of the integral in the horizontal direction, i.e.:

∇ · (hū) = ∇ ·
∫ ζ

−H0+b

∇Φ dz

=

∫ ζ

−H0+b

∇2Φ dz +∇ζ · ∇Φ|ΓT
−∇b · ∇Φ|ΓB

.

Due to the irrotational flow, ∆˜Φ = ∇2Φ + ∂2
zΦ = 0, and the term inside the

above integral is −∂2
zΦ. Furthermore, ∂nΦ|ΓB

= 0, which can be written as

∇b · ∇Φ|ΓB
− ∂zΦ|ΓB

= 0. Hence, the last term in the above relation can be

substituted with ∂zΦ|ΓB
. As a result:

∇ · (hū) =

∫ ζ

−H0+b

−∂2
zΦ dz +∇ζ · ∇Φ|ΓT

− ∂zΦ|ΓB

= −∂zΦ|ΓT
+∇ζ · ∇Φ|ΓT

(2.13)

15

Comparing this with (2.8), we find that:

G[ζ, b]ψ = −∇ · (hū). (2.14)

Substituting this relation into the first equation of (2.12), one gets the familiar

form of kinematic condition, i.e. ∂tζ +∇ · (hū) = 0. Since, we mainly use the

velocity potential to derive the asymptotic equations, we prefer to keep our

equations in terms of this variable instead of velocity and water height, for

now.

2.3 Nondimensionalization and Dominant Scales

We have already defined the length scales: L0, H0, a0, b0 (refer to Fig.

1.1, and Sec. 1.1). Now, we want to define a time scale. The way we do this is

by first obtaining a wave speed scale and then dividing a length scale by it to

get the time scale. The velocity scale that we use here is the phase speed of

the solution of the linearized equation about the rest state on a flat bottom,

i.e. when ζ = 0, b = 0. In this case (2.6) becomes:

∆˜Φ = 0 in Dt, (2.15a)

Φ = ψ on ΓT (i.e. z = 0), (2.15b)

∂zΦ = 0 on ΓB (i.e. z = −H0). (2.15c)

We also linearize (2.12) about ζ = 0, b = 0, to get:{
∂tζ −G[0, 0]ψ = 0,

∂tψ + gζ = 0.
(2.16)

16

Which can be combined to form the following equation for ζ:

∂2
t ζ + gG[0, 0]ζ = 0. (2.17)

For our purpose, we take the Fourier transform of (2.15) with respect to the

horizontal variable x:

1

(2π)d/2

∫
Rd

[
∂2
zΦ +∇2Φ(ξ, z)

]
e−ix·ξ dx = 0

∴ ∂2
z Φ̂(ξ, z)− |ξ|2Φ̂(ξ, z) = 0

With the boundary conditions ∂zΦ̂ = 0 on z = −H0, and Φ̂ = ψ̂ on z = 0. The

solution to this equation is Φ̂(ξ, z) = C1(ξ) sinh(|ξ|z) + C2(ξ) cosh(|ξ|z), and

after applying the boundary conditions: C1(ξ) = tanh(|ξ|H0)ψ̂(ξ), C2(ξ) =

ψ̂(ξ). This results in the following form for Φ̂:

Φ̂(ξ, z) =
cosh [(z +H0)|ξ|]

cosh(H0|ξ|)
ψ̂(ξ). (2.18)

Hence, the formulation for the Dirichlet-Neumann map in the wavenumber

domain becomes:

(∂zΦ̂)(ξ, 0) = |ξ| tanh(H0|ξ|)ψ̂(ξ)

And (2.17) becomes:

∂2
t ζ̂(ξ) + g|ξ| tanh(H0|ξ|)ζ̂(ξ) = 0.

Next we take the Fourier transform of the above equation with respect to

time to obtain the variation of the frequency (ω) as a function of the wave

number|ξ|:

ω(ξ) =
√
g|ξ| tanh(H0|ξ|),

17

which is the dispersion relation for linear waves. It gives the frequency of

oscillation as a function of the magnitude of the wavenumber vector (|ξ|).

The wavelength of the corresponding waves is given by λ = 2π/|ξ|. Next,

by calculating the ratio ω(ξ)/|ξ|, one obtains the phase speed (or celerity) of

linear water waves:

cP (|ξ|H0) =
√
gH0

√
tanh(|ξ|H0)√
|ξ|H0

, (2.19)

and we use νξ to denote:

νξ(|ξ|H0) =
tanh(|ξ|H0)

|ξ|H0

=
tanh(2πH0/λ)

2π(H0/λ)
.

Now, having (2.19), we can define our wave speed scale c0 by substituting νξ

with ν as follows:

c0 =
√
gH0ν , with ν =

tanh(2π
√
µ)

2π
√
µ

. (2.20)

Here, µ is the shallowness parameter and is defined according to (1.1). Intu-

itively, µ characterizes the typical wavenumber in the problem. The variation

of ν as a function of µ is shown in Fig. 2.2. When we are dealing with the shal-

low water regime or long waves (µ� 1), we can assume that ν ' 1. In other

words by a small change in λ, νξ does not vary significantly, and c0 =
√
gH0 is

the traveling speed of the majority of wavelengths. Thus the water waves are

nondispersive in very shallow waters. One can also refer to Fig. 2.3, where we

have shown the variation of normalized phase velocity (cP/
√
gH0) as a func-

tion of |ξ|H0. On the other hand, when we have intermediate values for µ, the

18

10−4 10−3 10−2 10−1 100 101 102

µ

0.0

0.2

0.4

0.6

0.8

1.0

√
ν

Figure 2.2: Variation of
√
ν, with respect to shallowness parameter µ; the

dashed lines represent µ = 10−2 and
√
ν = 0.95.

longer waves travel faster than the shorter waves and the water waves show

dispersive properties.

For future reference, we also derive the formula for the group velocity

of the linear waves. The group velocity characterizes the speed at which the

wave packet travels. The overall shape of the wave packet is formed by the

superposition of different wavelengths with different frequencies. If the disper-

sion relation is linear (i.e. the wave is nondispersive) then the wave packet and

the energy travel with the same speed as the global phase velocity. However,

in dispersive waves, the wave packet travels at a lower speed compared to its

wave constituents. The group velocity can be obtained as the gradient of ω(ξ)

19

10−2 10−1 100 101

|ξ|H0

0.0

0.2

0.4

0.6

0.8

1.0

c/
√
g
H

0

cG√
gH0

cP√
gH0

Figure 2.3: Normalized group and phase velocity of linear waves for different
wavenumbers.

with respect to ξ; hence:

cG(|ξ|H0) =
√
gH0
|ξ|H0 sech2(|ξ|H0) + tanh(|ξ|H0)

2
√
|ξ|H0 tanh(|ξ|H0)

(2.21)

The graphs of the phase and group velocity for different wavenumbers are

plotted in Fig. 2.3.

Finally, we can define our time scale based on the length scale (L0) and

the characteristic speed c0:

t0 =
L0√
gH0ν

(2.22)

20

2.3.1 Scaling the Variables and Operators

In order to obtain the nondimensionalized equations, we first define the

scaled space and time coordinates:

x′ =
x

L0

, z′ =
z

H0

, t′ =
t

t0
, (2.23)

and their corresponding derivatives:

∇′ = L0∇, ∇˜ ′ = L0(∇,√µ ∂z)T , ∆˜ ′ = L2
0(∇2 + µ ∂2

z), ∂t′ = t0∂t. (2.24)

For future reference, we also recall ∇˜ and ∆˜ in terms of nondimensionalized

coordinates:

∇˜ =
1

H0

(
√
µ∇′, ∂z′)T , ∆˜ =

1

H2
0

(µ∇′2 + ∂2
z′). (2.25)

The scaling of ζ, b, and h = ζ +H0 − b is quite straightforward:

ζ ′ =
ζ

a0

, b′ =
b

b0

, h′ =
h

H0

. (2.26)

To find the order of magnitude of Φ and ψ, we first refer to (2.18), which states

that Φ and ψ should have the same order of magnitude. Next, we look at the

second equation of (2.16) to get:

1

t0
∂t′ψ0ψ

′ + ga0ζ
′ = 0 =⇒ ψ0 = ga0t0 =

a0

H0

L0

√
gH0

ν
.

Hence, we define the scaled velocity potential as:

Φ′ =
1

Φ0

Φ, with Φ0 =
a0

H0

L0

√
gH0

ν
. (2.27)

21

Now, since we have defined Φ0, we define a velocity scale u0 based on the

identity: u0 = ∇Φ0, or in nondimensional form: u0u
′ = Φ0/L0∇′Φ′. Hence,

the dimensionless horizontal velocity finds the form:

u′ =
1

u0

u, with u0 =
Φ0

L0

=
ε√
ν

√
gH0. (2.28)

Before obtaining the nondimensionalized forms of the equations, we consider

scaling the Dirichlet-Neumann operator. According to (2.2), we know that

G[ζ, b]ψ = ∂zΦ−∇Φ ·∇ζ on the water surface. By substituting the derivatives

and variables from (2.24) – (2.27), we have:

G[ζ, b]ψ =
Φ0

H0

(∂z′Φ
′ − µ∇′(εζ ′) · ∇Φ′)|z′=εζ .

Thus we define:

G′[εζ ′, βb′]ψ′ := (∂z′Φ
′ − µ∇′(εζ ′) · ∇Φ′)|z′=εζ , (2.29)

to get:

G[ζ, b]ψ =
Φ0

H0

G′[εζ ′, βb′]ψ′. (2.30)

2.3.2 Nondimensionalization of the Equations

We first obtain the nondimensionalized version of the boundary value

problem (2.6). Using the definitions in the previous section, this equation

takes the form:

µ(∇′)2Φ′ + ∂2
z′Φ
′ = 0 in − 1 + βb′ ≤ z′ ≤ εζ ′, (2.31a)

Φ′ = ψ′ on z′ = εζ ′(t,x), (2.31b)

∂z′Φ
′ − µ∇′(βb′) · ∇′Φ′ = 0 on z = −1 + βb′(x). (2.31c)

22

Next, we write Eqs. (2.12) in the nondimensionalized form. We show the

procedure for the first equation, and only write the result for the second equa-

tion. As we have already defined, ζ = a0ζ
′, ∂t = (1/t0)∂t′ , and G[ζ, β]ψ =

(Φ0/H0)G′[εζ ′, βb′]ψ′. Hence, the first equation in (2.12) becomes:

1

t0
∂t′(a0ζ

′)− Φ0

H0

G′[εζ ′, βb′]ψ′ = 0 =⇒ ∂t′ζ
′ − t0Φ0

a0H0

G′[εζ ′, βb′]ψ′ = 0.

One can simply check the identity t0Φ0/a0H0 = 1/µν. The process for the

second equation is similar, but requires a little more work. We leave that part

to the reader and write the final nondimensionalized equations:

∂t′ζ
′ − 1

µν
G′[εζ ′, βb′]ψ′ = 0,

∂t′ψ
′ + ζ ′ +

ε

2ν
|∇ψ′|2

− εµ

ν

(
1
µ
G′[εζ ′, βb′]ψ′ +∇′(εζ ′) · ∇′ψ′

)2

2(1 + ε2µ|∇′ζ ′|2)
= 0.

(2.32)

It will be also useful to write (2.14) in the dimensionless form. This will be a

straightforward application of definitions for ∇′, Φ′, h′, and u′:

G′[εζ ′, βb′]ψ′ = −µ∇′ · (h′ū′) (2.33)

2.4 Shallow Water Models

In the previous sections we defined four dimensionless parameters µ, ε,

β, and ν. We mentioned that µ � 1 characterizes the shallow water regime

and in this case ν = 1. If we do not make any assumption on the typical

magnitude of topography and wave amplitude, we can take ε ∼ 1, β ∼ 1. The

23

equations which will be derived by this assumptions are called fully nonlinear

equations. As we will see both Nonlinear Shallow Water (NSW) and Green-

Naghdi equations belong to this group.

Since µ � 1, we consider approximating the velocity potential based

on the following asymptotic expansion:

Φ′(t,x, z) =
N∑
n=0

µnΦ′n(t,x, z) +O(µN+1) (2.34)

Hence, by including only the first term in the above sum, we approximate

Φ up to O(µN+1). Thus such a model is called O(µN+1)-consistent with the

solution to original water wave problem. Here, we only consider O(µ) and

O(µ2) models.

Substituting (2.34) to the boundary value problem (2.31), and arrang-

ing the terms with the same power of µ, one gets:

∂2
z′Φ
′
n =

{
0, for n = 0,

−(∇′)2Φ′n−1, otherwise.
(2.35)

Meanwhile, we let Φ′0 satisfy the boundary condition on the top and set the ho-

mogeneous boundary condition for other Φ′n’s. Thus the boundary conditions

find the form:

Φ′n =

{
ψ′, for n = 0,

0, otherwise,
for z′ = εζ ′, (2.36)

∂z′Φ
′
n =

{
0, for n = 0,

β∇′b′ · ∇′Φ′n−1 otherwise,
for z′ = −1 + βb′. (2.37)

We have to solve a simple ODE to obtain the solution to Φ′0. After-

wards, the solution to Φ′1 will be obtained by substituting Φ′0 in the above

24

equations and solving another ODE. The process is straightforward, and can

be done using a computer algebra software. Thus, we will have:

Φ′0 = ψ′ (2.38)

Φ′1 =− ∇
′2ψ′

2
z′2 +

[
(−1 + βb′)∇′2ψ′ + β∇b′ · ∇ψ

]
z

+
∇′2ψ

2
ε2ζ ′2 − εζ ′(−1 + βb′)∇′2ψ′ − εβζ ′∇′b′ · ∇′ψ′

=− ∇
′2ψ′

2
z′2 +

[
(−1 + βb′)∇′2ψ′ + β∇b′ · ∇ψ

]
z

+
∇′2ψ

2

[
h′2 − (1− βb′)2

]
− β(h′ − 1 + βb′)∇′b′ · ∇′ψ′ (2.39)

It is worthwhile noting that for an O(µ) model, the velocity potential is con-

stant in depth. This means, the velocity field does not depend on the z-

coordinate in the O(µ) models (e.g. NSWE). Also, the vertical component of

the velocity, i.e. w′ = ∂z′Φ
′ vanishes in these models. On the other hand, in

O(µ2) models, such as Green-Naghdi equation, the velocity varies quadrati-

cally in depth.

Next, let us obtain the velocity variation corresponding to Φ′0 and Φ′1.

In the nondimensionalized coordinates we have:

ū′n =
1

h′

∫ ζ′

−1+βb′
∇Φ′n dz

′.

Hence, we can obtain ū0 and ū1 by some algebraic manipulations. Here, we

use Wolfram Mathematica to obtain the following formula for these averaged

velocities:

ū′0 = ∇′ψ′, (2.40)

ū′1 = −µT ′[h′, b′]∇′ψ′, (2.41)

25

where,

T ′[h′, b′]w = R′1[h′, b′](∇′ ·w) + βR′2[h, b′](∇b′ ·w), (2.42)

and,

R′1[h′, b′]w = − 1

3h′
∇′(h′3w)− βh

′

2
w∇′b′, (2.43a)

R′2[h′, b′]w =
1

2h′
∇′(h′2w) + βw∇′b′. (2.43b)

Now, we can write the average velocity as:

ū′ = ∇′ψ′ − µT ′[h′, b′]∇′ψ′ +O(µ2) (2.44)

Therefore, ∇′ψ′ = ū′ + µT ′∇ψ′ +O(µ2). Substituting ∇′ψ′ from this relation

into itself, will result in:

∇′ψ′ = ū′ + µT ′[h′, b′]ū′ + µ2T ′[h′, b′] (T ′[h′, b′]∇′ψ′) +O(µ2)

∴ ∇′ψ′ = ū′ + µT ′[h′, b′]ū′ +O(µ2). (2.45)

This relation is our last piece of machinery to derive asymptotic water wave

equations. In the remainder of this chapter we obtain three main equations

in the water wave theory. In Table 2.1 we have summarized the main features

of a number of shallow water models based on the considered range of the

dimensionless parameters.

2.4.1 Nonlinear Shallow Water Equation

In order to obtain the nonlinear shallow water equation, we start with

(2.32) and use (2.33) to substitute G′ψ′ with −µ∇′ · (h′ū′). We also take the

26

Table 2.1: Range of nonlinearity parameter (ε), topography parameter (β),
and the spatial dimension for different shallow water models and the corre-
sponding precision order

Class Model ε β d Precision

Fully
Nonlinear

Saint-Venant (NSWE) O(1) O(1) 1,2 O(µt)

Green-Naghdi O(1) O(1) 1,2 O(µ2t)

Moderately
Nonlinear

Camassa-Holm O(
√
µ) 0 1 O(µ2t)

Weakly
Nonlinear

Bossinesq-Peregrine O(µ) O(µ) 1,2 O(µ2t)

KdV O(µ) 0 1 O(µ2t)

gradient of the second equation of (2.32), and use (2.33) and ∇′ψ′ = ū′ to

replace G′ψ′ and ∇′ψ′ in terms of ū′. We also drop all terms of order O(µN),

with N ≥ 1. Thus, we will get:{
∂t′ζ

′ +∇′ · (h′ū′) = 0,

∂t′ū
′ +∇′ζ ′ + εū′ · ∇ū′ = 0.

(2.46)

We usually prefer the equations to be in terms of the conserved variables, i.e.

h, hū. Hence, we use ∂t′h
′ = ε∂t′ζ

′, and ∂t′u
′ = [∂t′(h

′ū′) + εū′∇′ · (h′ū′)]/h in

the second equation to obtain:∂t′h
′ + ε∇′ · (h′ū′) = 0,

∂t′(h
′ū′) + ε∇′ · (h′ū′ ⊗ ū′) +

1

ε
h′(∇′(h′ + βb′)) = 0.

(2.47)

Finally, we can write the equations with dimensions:{
∂th+∇ · (hū) = 0,

∂t(hū) +∇ · (hū⊗ ū) + gh∇h+ gh∇b = 0.
(2.48)

We will explain the solution technique for this equation in chapter 4.

27

2.4.2 Green-Naghdi Equation

The process for obtaining Green-Naghdi equation is similar to NSWE;

however, in the final step, instead of dropping all terms containing powers of

µ, we drop the terms of order O(µN), with N > 1. This derivation is a little

more involved than NSWE, and we only give the final equations. In order

to avoid excessive verbosity, we denote such operators as T ′[h′, b′] without

their arguments, i.e. T ′. Then, the Green-Naghdi equations in terms of the

dimensionless variables reads as:{
∂t′ζ

′ +∇′ · (h′ū′) = 0,

(I + µT ′)(∂t′ū
′) +∇′ζ ′ + ε(ū′ · ∇′)ū′ + εµQ′(ū′) = 0.

(2.49)

With T ′ defined in (2.42), and Q′ is defined in terms of R′1 and R′2, which were

introduced in (2.43):

Q′(w) = R′1
(
∇′ · (w∇′ ·w)− 2(∇′ ·w)2

)
+ βR′2

(
(w · ∇′)2b′

)
(2.50)

It is easy to check that Q′ contains third order derivatives of the velocity field,

which can be avoided by introducing a new operator Q′1 as follows:

Q′1[h′, b′](w) = T ′[h′, b′] ((w · ∇)w)−Q′[h′, b′](w). (2.51)

Now, Q′1 contains up to second derivatives, and has the form:

Q′1(w) =− 2R′1
(
∂x′w · ∂y′w⊥ + (∇′ ·w)2

)
+ βR′2 (w · (w · ∇′)∇′b′) (2.52)

Here, w⊥ = (−w2,w1)T ; meanwhile, ∂x′ , and ∂y′ are the partial derivatives

with respect to x′, and y′ respectively. Using this definition, the equation

28

(2.49) becomes:{
∂t′ζ

′ +∇′ · (h′ū′) = 0,

(I + µT ′) (∂t′ū
′ + ε(ū′ · ∇′)ū′) +∇′ζ ′ + εµQ′1(ū′) = 0.

(2.53)

Similar to the previous section, we prefer the equations in terms of h′, h′ū′:{
∂t′h

′ + ε∇′ · (h′ū′) = 0,(
I + µh′T ′ 1

h′

)
(∂t′(h

′ū′) + ε∇′ · (h′ū′ ⊗ ū′)) + h′∇′ζ ′ + εµh′Q′1(ū′) = 0.

(2.54)

As we will see in chapter 5, solving this equation can be simplified, if we apply

the inverse operator
(
I + µhT ′ 1

h

)−1
on the second equation. Afterwards, we

go back to the unknowns with dimensions and the above system becomes:{
∂th+∇ · (hū) = 0,

∂t(hū) +∇ · (hū⊗ ū) +
(
I + µhT 1

h

)−1
(gh∇ζ + hQ1(ū)) = 0.

(2.55)

The operators T and Q1 with dimensions are according to (2.42) and (2.52)

with β = 1, respectively. We will solve this equation in chapter 5, with a small

modification which improves its dispersive properties.

2.4.3 Korteweg–de Vries Equation (KdV)

The KdV equation was first derived by Korteweg and De Vries [38],

and the existence of its solution was proved in [18]. Unlike the previous two

equations which were categorized as fully nonlinear models, the KdV equation

is a representative of weakly nonlinear models, i.e. µ � 1 and ε ∼ µ. In the

special case of KdV equation, we also take β = 0. As a result, we can write

equation (2.32) in a 1D setup as follows:{
∂t′ζ

′ + ∂x′(h
′ū′) = 0,(

1− µ
3
∂2
x′

)
(∂t′ū

′) + ∂x′ζ
′ + ε

2
ū′∂x′ū

′ = 0.
(2.56)

29

A possible solution to this equation satisfying it up to order O(µ2) is given by

[17]:

ζ ′ = ū′ +
ε

4
ū′2 +

µ

6
∂̄x′t′ū

′, ū′ = u+
µ

12
x′∂x′u.

Here u solves the Benjamin-Bona-Mahony equation [2], which is a weakly

nonlinear equation (ε ∼ O(
√
µ)). It is shown in [41] that by taking τ =

εt′, η = x′− t′, u = v(εt′, x′− t′), S = ε/µ, one can obtain a unidirectional wave

equation, which is known as the KdV equation:

∂τv +
3

2
v∂ηv +

1

6S
∂3
ηv = 0 (2.57)

We will solve this equation using an implicit hybridized DG method in the

next chapter.

30

Chapter 3

A Hybridized Discontinuous Galerkin

Technique for the KdV Equation1

In this chapter we introduce a hybridized discontinuous Galerkin (HDG)

method for solving nonlinear Korteweg-de Vries (KdV) type equations. Similar

to a standard HDG implementation, we first express the approximate variables

and numerical fluxes inside each element in terms of the approximate traces

of the scalar variable (u), and its first derivative (∂xu). These traces are as-

sumed to be single-valued on each face. Next, we impose the conservation of

numerical fluxes via two extra sets of equations. Using these global flux con-

servation conditions and applying the Newton-Raphson method, we construct

a system of equations that can be solely expressed in terms of the increments

of approximate traces in each iteration. Afterwards, we solve these equations,

and substitute the approximate traces back into local equations over each ele-

ment to obtain local approximate solutions. As for the time stepping scheme,

we use the backward difference formulae. The method is proved to be stable

1This chapter is based on the article by Ali Samii, Nishant Panda, Craig Michoski and
Clint Dawson, entitled: “A hybridized discontinuous Galerkin method for the nonlinear
Korteweg–de Vries equation” [62]. Samii prepared the computer code for this article and
wrote most of the manuscript except its introduction. Panda helped with implementing the
numerical approach, Michoski wrote the introduction of the article, and Dawson provided
mathematical proofs.

31

for a proper choice of stabilization parameters. Through numerical examples,

we observe that for a mesh with kth order elements, the computed variable

and its first and second derivatives show optimal convergence at order k + 1

in both linear and nonlinear cases, which improves upon previously employed

techniques.

3.1 Problem Statement and Space Discretization

We explained the derivation process of KdV equation in the previous

chapter. Here, we write this equation in a more general form:

∂tu+ ∂x(α1u
2 + α2∂

2
xu) = f(x, t), x ∈ Ω ⊂ R, t ∈ (0, T], (3.1)

with Ω := [xL, xR], and the following initial and boundary data:

u = u0 in Ω for t = 0,

either of


u = gu

u = gu

∂2
xu n = gp

on xL, and xR,

on xL, and ∂2
xu n = gp on xR,

on xL, and u = gu on xR,

∂xu = gq on xL or xR.

(3.2)

Here u represents the wave amplitude, and n is the outward unit normal on the

corresponding face (c.f. Fig. 3.1). Since, we are working in a one-dimensional

setup, we look at n as a scalar, which is equal to ±1 on xL and xR. α2 is also

equal to ±1, and signifies the wave propagation direction. Moreover, we use

α1 to switch between a linear problem, where α1 = 0, and the nonlinear case

with α1 = 3. When we take α2 = 1, the boundary condition on ∂xu should be

32

Figure 3.1: The domain of the problem and its left and right boundary.

applied on xR, and when α2 = −1, the boundary condition should be applied

on xL. The well-definedness of the above problem has been studied in detail

in [34], and it is known that the above set of boundary conditions results in a

well-posed initial-boundary value problem for the KdV equation.

Next, we introduce the mixed forms q = ∂xu and p = qx, and form the

first order system of equations corresponding to (3.1):

∂tu+ ∂x(α1u
2 + α2p) = f(x, t),

p− ∂xq = 0,

q − ∂xu = 0,

x ∈ Ω, t ∈ (0, T], (3.3)

with initial and boundary conditions:

u = u0 in Ω for t = 0,

either of


u = gu

u = gu

p n = gp

on xL, and xR,

on xL, and p n = gp on xR,

on xL, and u = gu on xR,

q = gq on xL or xR.

(3.4)

For the purposes of analyzing the stability of the method, we will also consider

periodic boundary conditions in place of (3.4).

33

3.1.1 Mesh Notation

We will partition Ω ⊂ R, by a finite collection of disjoint elements

Th := {Kj}. The domain of each element Kj is considered to be: Kj =

[xj− 1
2
, xj+ 1

2
]. Since, we will work on a 1D domain, the left and right faces of

Kj are each comprised of just one point. However, to maintain the generality,

we use ∂Th to denote the collection of the faces of all of the elements, i.e.

∂Th = {∂K : K ∈ Th}. Let us denote by E0
h the set of interior faces and E∂h

the set of boundary faces; meanwhile Eh = E∂h ∪ E0
h.

For any two neighboring elements K+ and K−, with nonempty ∂K+ ∩

∂K−, we will assign n+ and n− the outward pointing normals of ∂K+ and

∂K− respectively. The values of (u, q, p) on the common face of these ele-

ments will be denoted by u±, q±, p±. We also denote u±, q±, p± on xj∓ 1
2
, with

u ±
j∓ 1

2

, q ±
j∓ 1

2

, p ±
j∓ 1

2

. For instance, u −
j+ 1

2

means the value of u on the left side of a

face located at x
j+ 1

2

. Hence, n −
j+ 1

2

= +1 and n +
j− 1

2

= −1, for all j. The mean

{{·}} and jump J·K of the information v on a given face e ∈ E0
h are defined as:

{{v}} = (v+ + v−)/2, and Jv nK = v+ n+ + u− n−.

For boundary faces in E∂h where the information (v) is single valued, the mean

and jump are defined as:

{{v}} = v, and Jv nK = v n.

Furthermore, the boundary faces with available boundary data on u, q, and

p will be denoted by Γu, Γq, and Γp respectively. It is worthwhile to mention

E∂h = Γu ∪ Γp.

34

3.1.2 Approximation Spaces

Let Pk(G) be the set of polynomials of degree at most k on the domain

G. The discontinuous finite element spaces we use are

W k
h = {w ∈ L2(Ω) : w|K ∈ Pk(K), ∀K ∈ Th}.

The trace finite element space (or skeleton space) is defined by:

Mk
h = {µ ∈ L2(Eh) : µ|e ∈ Pk(e), ∀e ∈ Eh}.

We also characterize the following spaces, with the built-in boundary condi-

tions:

Mk
h (`) = {µ ∈Mk

h : µ = Π` on Γu}, M̄k
h (`) = {µ ∈Mk

h : µ = Π` on Γq},

with Π being the L2 projection into the skeleton space restricted to the bound-

ary.

For the scalar product of functions v and w we will use the convention

(v, w)G =
∫
G
vw dx, for G ⊂ Ω. Moreover, 〈v, w〉∂Kj

which is commonly

denoting the integration on the faces of Kj ∈ Th, may be simply written as

v −
j+ 1

2

w −
j+ 1

2

+ v +
j− 1

2

w +
j− 1

2

. Nevertheless, we might use any of these notations to

keep the expressions concise and clear.

When we sum inner products over the entire mesh we use the notation:

(v, w)Th =
∑
K∈Th

(v, w)K ,

〈ζ, ρ〉∂Th =
∑
K∈Th

〈ζ, ρ〉∂K ,

〈µ, ω〉Eh
=
∑
e∈Eh

〈µ, ω〉e,

35

where v, w are defined on Th, ζ, ρ are defined on ∂Th, and µ, ω are defined on

Eh.

3.2 Solution Method

Since the solution method for the nonlinear equation is closely related

to that of the linear problem, and the latter can be explained more clearly, we

will first look at the technique for the linear case. Without loss of generality,

we take α2 = −1 in (3.3).

3.2.1 Linear Problem Solver

Considering eq. (3.3) with α2 = −1 and α1 = 0, we want to find the

piecewise polynomial solutions u, q, p ∈ W k
h , such that for all test functions

v, w, z ∈ W k
h ,

(∂tu, v)K + (p, ∂xv)K − 〈
∗
p n, v〉∂K = (f, v)K ,

(p, w)K + (q, ∂xw)K − 〈
∗
q n, w〉∂K = 0,

(q, z)K + (u, ∂xz)K − 〈û, z n〉∂K = 0,

(3.5)

for all K ∈ Th. Here
∗
p,
∗
q, are numerical fluxes and û is the numerical trace on

∂K. Similar to other numerical methods, numerical fluxes are approximations

to p, q, and we choose them in a way to result in a stable and accurate method.

On the other hand, in our hybrid method, we keep the numerical trace û as

a new unknown on the skeleton space. We take û from Mk
h (gu), which means

û is single valued on Eh by construction. To ensure the conservativeness of

the method, we require that the normal components of
∗
q and

∗
p be continuous

36

across element edges. This continuity in our 1D problem means that these

fluxes should be single-valued on each face. In regular discontinuous Galerkin

methods, we can apply this single-valuedness by using the same flux on each

face for the two elements connected to that face. In our hybrid technique we

maintain the conservation of the flux via extra sets of equations. As a first

step, we define
∗
q, and

∗
p in the following forms:

∗
q = q̂ + σ(q − q̂) n,
∗
p = p+ τ(u− û) n.

(3.6)

Here, we have introduced a new numerical trace q̂ ∈ M̄k
h (gq) and expressed the

flux
∗
q in terms of this trace. Similar to û, we are going to keep q̂ as a global

unknown in the equations. Meanwhile,
∗
p is also defined in terms of u, û, p,

which are among the current unknowns of the problem. Moreover, σ and τ

are stabilization parameters. We will obtain the required condition for these

parameters to make the method stable in the next section.

Next, we want to include the boundary data gu and gq into our solu-

tion. These boundary data are included by defining û and q̂ on Γu and Γq,

respectively. Hence, we set:

û =

 gu, on ∂K ∩ Γu,

λ, on ∂K\Γu.
q̂ =

 gq, on ∂K ∩ Γq,

ψ, on ∂K\Γq.
(3.7)

With (λ, φ) ∈ Mk
h (0) × M̄k

h (0). In other words, on the faces where we have

boundary data on u (Γu), we exclude û from our set of unknowns. On other

faces, we substitute û with λ. We also eliminate q̂ on Γq, and substitute it

with ψ on all other faces.

37

So far, we have three equations (3.5), in the domain of each element.

These three equations will be used to compute the internal unknowns: u, p, q.

Solving these three equations in each element for u, p, q forms our local problem.

In other words, for a given element K ∈ Th, we assume û,
∗
p,
∗
q are known on

∂K, and we want to solve (3.5) for u, p, q. Since, the fluxes
∗
q,
∗
p are defined

through numerical traces û, q̂, we can solve the local problem, provided that

û, q̂ are known. Unlike, u, p, q, the traces û, q̂ are global unknowns. In order

to find them, we need two extra global equations. These global equations are

obtained by enforcing the conservation of the numerical fluxes on the element

edges. Hence, we require that, on a given face e ∈ Eh:

r
∗
q n

z
=

 q n, e ∈ E∂h\Γq,

0, e ∈ E0
h.

r
∗
p n

z
=

 gp, e ∈ Γp,

0, e ∈ E0
h.

(3.8)

It should be noted that, by setting
r
∗
q n

z
= q n we are not applying any

boundary condition on q̂. Instead, we want to emphasize that on the outflow

face, where we have no boundary data on q̂, the normal component of
∗
q should

be equal to the normal component of q from the upwind element. For the case

of α2 = −1, E∂h\Γq in the above relation is equivalent to x = xR. Since on xR,

∗
q n is single-valued, we set its value equal to q n from the only contributing

element. Meanwhile, by applying (3.8) on interior faces, we make sure that

the fluxes on all of the element edges are conserved.

Before we continue to the final formulation, let us review our unknowns

and the equations we use to solve them. We have three unknowns in the

domain of each element K ∈ Th, i.e. u, p, q. Our local problem is solving (3.5)

38

for these internal unknowns, assuming that û, q̂ are known on ∂K. We also

have two sets of global equations (3.8), which we use to compute û, q̂. These

equations are the conservation of the flux across element edges. For interior

faces, these global equations are simply
r
∗
q n

z
= 0 and

r
∗
p n

z
= 0. The

boundary conditions on u, q are applied on û, q̂, through (3.7). The boundary

condition on p is applied via
r
∗
p n

z
= gp on Γp. It should be noted that û is

unknown on every face in Eh\Γu, and we have an equation for
r
∗
p n

z
on every

face in E0
h ∪ Γp. Since, Eh\Γu = E0

h ∪ Γp the number of unknown û is equal to

the number of equations on
r
∗
p n

z
. Similarly, one can see that, the number of

unknown q̂ is equal to the number of equations on
r
∗
q n

z
. Since, we introduce

û, q̂ as extra unknowns on the mesh skeleton, and compute them using two

constraint equations, i.e. the flux continuity conditions, this method can be

classified as a hybrid method [3, 25].

As a special case of the above discussion, one can apply periodic bound-

ary conditions by setting û|xR = û|xL , and q̂|xR = q̂|xL . These two will guar-

antee that the numerical traces are the same at xL and xR. Also, in order to

apply the flux conservation conditions on the two ends of the domain, we set

∗
q |xR =

∗
q |xL , and

∗
p |xR =

∗
p |xL . These two conditions are actually obtained by

assuming all faces are interior faces in (3.8).

Ultimately, we want to find u, q, p ∈ W k
h , and traces (λ, ψ) ∈ Mk

h (0)×

M̄k
h (0), such that ∀v, w, z ∈ W k

h , (3.5), and (3.8) are satisfied. In this process

we will apply the boundary conditions (3.7) and the flux definitions (3.6).

Before looking at the implementation, we substitute the fluxes from (3.6) into

39

equation (3.5). Hence, for all K ∈ Th:

(∂tu, v)K + (p, ∂xv)K − 〈p n, v〉∂K − 〈τu, v〉∂K + 〈τ û, v〉∂K = (f, v)K ,

(p, w)K + (q, ∂xw)K − 〈σq, w〉∂K − 〈(n− σ)q̂, w〉∂K = 0,

(q, z)K + (u, ∂xz)K − 〈û, z n〉∂K = 0.

(3.9)

As mentioned before, for a given K ∈ Th, we will use these equations to obtain

u, q, p, assuming that û and q̂ are known on ∂K.

By inserting the boundary data (3.7) into these equations, one gets:

(∂tu, v)K − (∂xp, v)K − 〈τ u, v〉∂K

+ 〈τ λ, v〉∂K = (f, v)K − 〈τ gu, v〉∂K∩Γu ,

(p, w)K + (q, ∂xw)K − 〈σq, w〉∂K

− 〈(n− σ)ψ,w〉∂K = 〈(n− σ)gq, w〉∂K∩Γq ,

(q, z)K + (u, zx)K − 〈λ, z n〉∂K = 〈gu, z n〉∂K∩Γu .

(3.10)

Also substitute (3.6) into (3.8) to obtain the following global equations:

〈q̂ n + σ(q − q̂), µ〉∂Th = 0,

〈p n + τ(u− û), η〉∂Th = 〈gp, η〉∂Th∩Γp ,
(3.11)

for all (µ, η) ∈ M̄k
h (0)×Mk

h (0).

Next, we want to solve the system of equations (3.10) and (3.11) by the

hybridized DG technique.

40

3.2.1.1 Implementation

Let us assemble the local equations (3.10) and write them in terms of

the following bilinear operators:

a(∂tu, v)− bT(p, v) + c1(λ, v)− d1(u, v) = f(v)− g(v),

a(p, w) + b(q, w)− c2(ψ,w)− d2(q, w) = h(w),

a(q, z) + b(u, z)− c3(λ, z) = k(z),

(3.12)

and for the global equation (3.11):

cT
4 (q, µ) + e1(ψ, µ) = 0,

cT
5 (u, η) + cT

6 (p, η)− e2(λ, η) = s(η),
(3.13)

with the following definitions:

a(u, v) = (u, v)Th , b(q, w) = (q, ∂xw)Th ,

d1(u, v) = 〈τu, v〉∂Th , d2(q, w) = 〈σq, w〉∂Th ,

c1(λ, v) = 〈τλ, v〉∂Th , c2(ψ,w) = 〈(n− σ)ψ,w〉∂Th ,

c3(λ, z) = 〈λ, z n〉∂Th , cT
4 (q, µ) = 〈σq, µ〉∂Th − 〈q n, µ〉∂Th\Γq ,

cT
5 (u, η) = 〈τu, η〉∂Th , cT

6 (p, η) = 〈p n, η〉∂Th ,

e1(ψ, µ) = 〈(n− σ)ψ, µ〉∂Th , e2(λ, µ) = 〈τλ, µ〉∂Th ,

f(v) = (f, v)Th , g(v) = 〈τ gu, v〉∂Th∩Γu ,

h(w) = 〈(n− σ)gq, w〉∂Th∩Γq , k(z) = 〈gu, z n〉∂Th∩Γu ,

s(η) = 〈gp, η〉∂Th∩Γp ,

(3.14)

for all v, w, z ∈ W k
h , and (µ, η) ∈ M̄k

h (0)×Mk
h (0).

41

Next, we write (3.12) and (3.13) in the discretized form. As for the time

integration scheme, we choose a backward Euler approach with time-step ∆tn

at time-level tn. One may appropriately use higher order BDF or an implicit

Runge-Kutta method. As a result, the corresponding matrix equations at time

tn would become:

1

∆t
AU −BTP + C1Λ−D1U = F −G+

1

∆t
AUn−1, (3.15a)

AP +BQ− C2Ψ−D2Q = H, (3.15b)

AQ+BU − C3Λ = K, (3.15c)

CT
4 Q+ E1Ψ = 0, (3.15d)

CT
5 U + CT

6 P − E2Λ = S, (3.15e)

where Un−1 stands for U from the previous time-level, and all other variables

are calculated at the current time-level.

As mentioned before, we are not going to assemble eqs. (3.15a-c) and

solve them globally. We will apply a process of condensation on the internal

unknowns U , P and Q and express them in terms of the trace unknowns Λ

and Ψ. Then we solve global equations (3.15d,e) for Λ and Ψ. To this end, we

do a local solve on (3.15c) and obtain Q in terms of the other unknowns, and

the supported boundary data:

Q = A−1(K −BU + C3Λ). (3.16a)

Then, we substitute Q from the above relation into (3.15b), to obtain an

42

expression for P in terms of U , Λ, Ψ, and the boundary information:

P =A−1(B −D2)A−1BU − A−1(B −D2)A−1C3Λ + A−1C2Ψ

+ A−1H − A−1(B −D2)A−1K. (3.16b)

Finally, we put P from the above relation into (3.15a) to obtain U in terms of

Λ, Ψ and the boundary data:[
1

∆t
A−D1 −BTA−1(B −D2)A−1B

]
U

=
1

∆t
AUn−1 +

[
−C1 −BTA−1(B −D2)A−1C3

]
Λ +BTA−1C2Ψ

−BTA−1(B −D2)A−1K +BTA−1H + F −G. (3.16c)

The solution procedure to implement this technique, can be summarized in

three steps:

1. Obtain U in the local equation (3.16c) in terms of Λ and Ψ, and use this

U to obtain Q in terms of Λ and Ψ via (3.16a); also obtain P in terms

of Λ and Ψ via (3.16b).

2. Assemble the U , Q, and P from the previous step for each element,

along with Λ and Ψ into the global equations (3.15-d,e), to form the

global matrix equation and solve it for Λ and Ψ.

3. Use the globally solved Λ and Ψ from the previous step, to solve the

local equations (3.16c,a,b) for U , Q, and P . As explained in the first

step, one starts with (3.16c) to compute U , then use this U in (3.16a)

and (3.16b) to obtain Q and P .

43

In this scheme, the first and third steps are local on each element and can

be done in parallel. The only global solve step is the second step. Moreover,

the number of skeleton unknowns in these global equations are O(kd−1/h),

compared to the internal unknowns which are O(kd/h). Hence, we can expect

an improved performance from the proposed hybridized scheme.

3.2.1.2 Stability of the Method

In this section we prove the stability of the proposed method in the

continuous time case. We first look at the simplest case of periodic bound-

ary conditions. Then, we discuss the stability for other types of boundary

conditions.

Theorem 3.2.1. If the stabilization parameters in (3.6) satisfy: σ 6= 0, σ >

1
2
n, and τ < 0, then the proposed method with periodic boundary conditions is

stable and the solution to (3.5) exists and is unique.

Proof. We consider (3.5), with the zero source term and expand the boundary

terms to obtain:

(∂tu, v)Kj
+ (p, ∂xv)Kj

− ∗p
−
j+ 1

2
v −
j+ 1

2

+
∗
p

+

j− 1
2
v +
j− 1

2

= 0, (3.17a)

(p, w)Kj
+ (q, ∂xw)Kj

− ∗q
−
j+ 1

2
w −
j+ 1

2

+
∗
q

+

j− 1
2
w +
j− 1

2

= 0, (3.17b)

(q, z)Kj
+ (u, ∂xz)Kj

− û
j+ 1

2
z −
j+ 1

2

+ û
j− 1

2
z +
j− 1

2

= 0. (3.17c)

44

Setting v = u, w = −q, z = p, would yield:

(∂tu, u)Kj
+ (p, ∂xu)Kj

− ∗p
−
j+ 1

2
u −
j+ 1

2

+
∗
p

+

j− 1
2
u +
j− 1

2

= 0,

−(p, q)Kj
− (q, ∂xq)Kj

+
∗
q
−
j+ 1

2
q −
j+ 1

2

− ∗q
+

j− 1
2
q +
j− 1

2

= 0,

(q, p)Kj
+ (u, ∂xp)Kj

− û
j+ 1

2
p −
j+ 1

2

+ û
j− 1

2
p +
j− 1

2

= 0.

Then we add these equations together:

(∂tu, u)Kj
+

∫
Kj

∂x(pu) dx− 1

2

∫
Kj

∂x(q
2) dx

− ∗p
−
j+ 1

2
u −
j+ 1

2

+
∗
p

+

j− 1
2
u +
j− 1

2

+
∗
q
−
j+ 1

2
q −
j+ 1

2

− ∗q
+

j− 1
2
q +
j− 1

2

− û
j+ 1

2
p −
j+ 1

2

+ û
j− 1

2
p +
j− 1

2

= 0.

Which may be written as:

1

2
∂t(u, u)Kj

+ p −
j+ 1

2

u −
j+ 1

2

− p +
j− 1

2

u +
j− 1

2

− 1

2

[
(q2) −

j+ 1
2

− (q2) +
j− 1

2

]
− ∗p

−
j+ 1

2
u −
j+ 1

2

+
∗
p

+

j− 1
2
u +
j− 1

2

+
∗
q
−
j+ 1

2
q −
j+ 1

2

− ∗q
+

j− 1
2
q +
j− 1

2

− û
j+ 1

2
p −
j+ 1

2

+ û
j− 1

2
p +
j− 1

2

= 0.

By reordering the terms, we get:

1

2

∂

∂t
‖u‖2

Kj
+ Θq

Kj
+ Θp

Kj
= 0, (3.18)

with

Θq
Kj

=
[(
∗
q
−
j+ 1

2
− 1

2
q −
j+ 1

2

)
q −
j+ 1

2

−
(
∗
q

+

j− 1
2
− 1

2
q +
j− 1

2

)
q +
j− 1

2

]
,

Θp
Kj

=
[(
p −
j+ 1

2

− ∗p
−
j+ 1

2

)
u −
j+ 1

2

+
(
∗
p

+

j− 1
2
− p +

j− 1
2

)
u +
j− 1

2

− û
j+ 1

2
p −
j+ 1

2

+ û
j− 1

2
p +
j− 1

2

]
.

45

Now, let us rewrite
∗
p from (3.6), as below:

∗
p
−
j+ 1

2
= p −

j+ 1
2

+ τ −
j+ 1

2

(u −
j+ 1

2

− û
j+ 1

2
)n −
j+ 1

2

= p −
j+ 1

2

+ τ −
j+ 1

2

(u −
j+ 1

2

− û
j+ 1

2
),

∗
p

+

j− 1
2

= p +
j− 1

2

+ τ +
j− 1

2

(u +
j− 1

2

− û
j− 1

2
)n +
j− 1

2

= p +
j− 1

2

− τ +
j− 1

2

(u +
j− 1

2

− û
j− 1

2
).

(3.19)

By substituting p −
j+ 1

2

and p +
j+ 1

2

from (3.19) into Θp
Kj

, we have:

Θp
Kj

=− τ −
j+ 1

2

(u −
j+ 1

2

− û
j+ 1

2
)u −

j+ 1
2

− τ +
j− 1

2

(u +
j− 1

2

− û
j− 1

2
)u +

j− 1
2

− û
j+ 1

2

(
∗
p
−
j+ 1

2
− τ −

j+ 1
2

(u −
j+ 1

2

− û
j+ 1

2
)
)

+ û
j− 1

2

(
∗
p

+

j− 1
2

+ τ +
j− 1

2

(u +
j− 1

2

− û
j− 1

2
)
)

=− τ −
j+ 1

2

(
(u −

j+ 1
2

)2 − û
j+ 1

2
u −
j+ 1

2

)
− τ +

j− 1
2

(
(u +

j− 1
2

)2 − û
j− 1

2
u +
j− 1

2

)
− û

j+ 1
2

∗
p
−
j+ 1

2
+ τ −

j+ 1
2

(
û
j+ 1

2
u −
j+ 1

2

− (û
j+ 1

2
)2
)

+ û
j− 1

2

∗
p

+

j− 1
2

+ τ +
j− 1

2

(
û
j− 1

2
u +
j− 1

2

− (û
j− 1

2
)2
)
. (3.20)

Now, we sum over all elements, and apply the conservation of the flux. For

the current 1D problem, the flux conservation condition, i.e.
r
∗
p n

z
= 0, simply

becomes:
∗
p + =

∗
p −. Hence, we get:

Θp
Th

=
∑
Kj∈Th

Θp
Kj

=
∑
j

−τ −
j+ 1

2

(u −
j+ 1

2

− û
j+ 1

2
)2 − τ +

j− 1
2

(u +
j− 1

2

− û
j− 1

2
)2. (3.21)

which is nonnegative, for all τ ∓
j± 1

2

< 0, or simply τ < 0.

Next, let us consider Θq
Kj

in (3.18), and choose
∗
q similar to (3.6):

∗
q

+

j− 1
2

= q̂
j− 1

2
+ σ +

j− 1
2

(q +
j− 1

2

− q̂
j− 1

2
)n +
j− 1

2

= q̂
j− 1

2
− σ +

j− 1
2

(q +
j− 1

2

− q̂
j− 1

2
),

∗
q
−
j+ 1

2
= q̂

j+ 1
2

+ σ −
j+ 1

2

(q −
j+ 1

2

− q̂
j+ 1

2
)n −
j+ 1

2

= q̂
j+ 1

2
+ σ −

j+ 1
2

(q −
j+ 1

2

− q̂
j+ 1

2
).

(3.22)

46

These fluxes should be used along with the flux conservation condition J
∗
q nK =

∗
q

+
n+ +

∗
q
−
n− = 0. Assuming σ 6= 0, q −

j+ 1
2

and q +
j− 1

2

may be written as:

q +
j− 1

2

=
(1 + σ +

j− 1
2

)q̂
j− 1

2

− ∗q
+

j− 1
2

σ +
j− 1

2

, q −
j+ 1

2

=

∗
q
−
j+ 1

2
− (1− σ −

j+ 1
2

)q̂
j+ 1

2

σ −
j+ 1

2

. (3.23)

Next, we consider Θq
Kj

from (3.18), and substitute the above q±, to obtain:

Θq
Kj

= −
(
∗
q
−
j+ 1

2
)2 + (1− σ −

j+ 1
2

)2(q̂
j+ 1

2

)− 2(1− σ −
j+ 1

2

)
∗
q
−
j+ 1

2
q̂
j+ 1

2

2(σ −
j+ 1

2

)2

+
(
∗
q
−
j+ 1

2
)2 − (1− σ −

j+ 1
2

)
∗
q
−
j+ 1

2
q̂
j+ 1

2

σ −
j+ 1

2

−
(1 + σ +

j− 1
2

)
∗
q

+

j− 1
2
q̂
j− 1

2

− (
∗
q

+

j− 1
2
)2

σ +
j− 1

2

+
(
∗
q

+

j− 1
2
)2 + (1 + σ +

j− 1
2

)2(q̂
j− 1

2

)2 − 2(1 + σ +
j− 1

2

)
∗
q

+

j− 1
2
q̂
j− 1

2

2(σ +
j− 1

2

)2

=
(2σ −

j+ 1
2

− 1)

2(σ −
j+ 1

2

)2

[
(
∗
q
−
j+ 1

2
)2 + (q̂

j+ 1
2
)2 − 2

∗
q
−
j+ 1

2
q̂
j+ 1

2

]
− 1

2
(q̂
j+ 1

2
)2 +

∗
q
−
j+ 1

2
q̂
j+ 1

2

+
(2σ +

j− 1
2

+ 1)

2(σ +
j− 1

2

)2

[
∗
q

+

j− 1
2
− q̂

j− 1
2

]2

+
1

2
(q̂
j− 1

2
)2 − ∗q

+

j− 1
2
q̂
j− 1

2
. (3.24)

By summing over all elements, and applying the flux conservation and periodic

boundary condition, we get:

Θq
Th

=
∑
Kj∈Th

Θq
Kj

=
∑
j

(2σ −
j+ 1

2

− 1)

2(σ −
j+ 1

2

)2

[
∗
q
−
j+ 1

2
− q̂

j+ 1
2

]2

+
(2σ +

j− 1
2

+ 1)

2(σ +
j− 1

2

)2

[
∗
q

+

j− 1
2
− q̂

j− 1
2

]2

. (3.25)

Which is non-negative for σ− > 1
2
, and σ+ > −1

2
, or simply σ > 1

2
n, and also

σ 6= 0.

47

Eventually, if we sum (3.18) over all elements, we get:

1

2

∂

∂t
‖u‖2

Th
+ Θq

Th
+ Θp

Th
= 0,

with Θq
Th

and Θp
Th

obtained in (3.21) and (3.25). According to the assumptions

on σ and τ , these two are nonnegative. Hence, ∂‖u‖2
Th
/∂t ≤ 0, and the only

solution to the problem with zero source term and zero initial condition is

u = 0. By putting u = 0 in (3.21), and knowing that Θp
Th

= 0, one gets

û = 0. Next, set z = q in (3.17c) and use u = 0 and û = 0 to conclude q = 0.

Also, we know Θq
Th

= 0, which implies
∗
q + =

∗
q − = q̂. Comparing this with

the relationship of
∗
q and q̂ obtained from (3.23) and setting q = 0, one can

see that q̂ =
∗
q = 0. Finally, set w = p in (3.17b), and use q = 0 and

∗
q = 0

to deduce that p = 0. Consequently, the only solution to the problem with

periodic boundary condition, zero initial condition and zero source term is the

trivial solution.

Since we are working in a linear and finite dimensional setting, the

trivial null-space implies existence and uniqueness of the solution. Therefore,

the theorem follows.

Corollary 3.2.2. The proposed method with the boundary conditions u = 0

on xR, xL, and q = 0 on xL, and the stabilization parameters: σ > 1
2
n, τ < 0,

is stable and has a unique solution.

Proof. The proof follows similar steps as Theorem 3.1. However, in (3.20) the

two terms −û
j+ 1

2

∗
p
−
j+ 1

2
and û

j− 1
2

∗
p

+

j− 1
2

will not cancel at the boundaries of the

48

domain. Instead, by taking gu = 0 both of these terms become zero. Moreover,

in (3.24), by setting gq = 0, one can get
∗
q +q̂ = (q̂)2 = 0 at x = xL. On x = xR,

using (3.23) with
∗
q − = q−, results in

∗
q − = q̂. Hence, we get:

1

2

∂

∂t
‖u‖2

Th
+ Θ̄q

Th
+ Θp

Th
= 0.

with, Θ̄q
Th

= Θq
Th

+ 1
2
(q̂|x=xR)2, which is non-negative. Therefore, based on

the same logic as Theorem 3.1, the only solution to the problem with zero

source term, zero initial condition, and zero boundary conditions is the trivial

solution. Hence, we have stability. The existence and uniqueness will also

follow.

Corollary 3.2.3. The proposed method with the boundary conditions u = 0 on

xL, p = 0 on xR, and q = 0 on xL, and the stabilization parameters: σ > 1
2
n,

τ < 0, is stable and has a unique solution. The same is true for u = 0 on xR,

p = 0 on xL, and q = 0 on xL.

Proof. Similar to Corollary 3.2, one can show that in (3.20) the two terms

−û
j+ 1

2

∗
p
−
j+ 1

2
and û

j− 1
2

∗
p

+

j− 1
2

are zero for gu = gp = 0. Hence, for zero initial

condition, zero boundary condition and zero source term, the only solution to

the problem is the trivial solution. Therefore, we have stability, existence, and

uniqueness of the solution.

In the proof of Corollary 3.2.2, it is worthwhile noting that, supporting

the boundary data for q on xR instead of xL can result in an unstable scheme.

In that case, instead of Θ̄q
Th

= Θq
Th

+ 1
2
(q̂|x=xR)2, we get Θ̄q

Th
= Θq

Th
− 1

2
(q̂|x=xL)2,

which is not necessarily non-negative, and the stability cannot be inferred.

49

3.2.2 Nonlinear Solver

Let us consider (3.3), with α2 = −1 and α1 = 3. We want to find the

approximations u, q, p ∈ W k
h , such that for all test functions v, w, z ∈ W k

h ,

(∂tu, v)K − (3u2 − p, ∂xv)K + 〈H n, v〉∂K = (f, v)K ,

(p, w)K + (q, ∂xw)K − 〈
∗
q n, w〉∂K = 0,

(q, z)K + (u, ∂xz)K − 〈û, z n〉∂K = 0,

(3.26)

for all K ∈ Th. Here, the numerical flux H is an approximation to 3u2− p. In

this nonlinear problem, we define H and
∗
q as follows:

∗
q = q̂ + σ(q − q̂) n,

H = 3û2 − p+ τ(u− û) n.
(3.27)

In order to apply the boundary conditions on u, q, we use the same scheme as

linear case, i.e. (3.7). Furthermore, we require our fluxes to be conserved across

the element faces. This flux conservation will be enforced explicitly through a

set of global equations, which can be written for a given face e ∈ Eh:

r
∗
q n

z
=

 q n, e ∈ E∂h\Γq,

0, e ∈ E0
h.

 p n = gp, e ∈ Γp,

JH n K = 0, e ∈ E0
h.

(3.28)

The difference of the above equations with (3.8) is the way that we apply the

boundary condition on p. Since this boundary condition is applied through

the numerical flux, and the flux is nonlinear, the boundary condition at Γp is

applied via p n = gp. It should be noted that we use local equations to derive

p in terms of û and q̂; therefore, the corresponding global equation will be in

terms of the numerical traces.

50

Using the flux conservation relations together with (3.26) we can form

our nonlinear system of equations. Moreover, in order to discretize in time,

we use backward Euler time-stepping scheme with time-step ∆t at time-level

tn. Hence, we are looking for u, q, p ∈ W k
h and û, q̂ ∈ Mk

h (gu) × M̄k
h (gq), such

that:

1

∆t
(u, v)K−(px, v)K − (3u2, ∂xv)K + 〈3û2 n, v〉∂K

+〈τu, v〉∂K − 〈τ û, v〉∂K = (f, v)K +
1

∆t
(un−1, v)K ,

(p, w)K + (q, ∂xw)K − 〈σq, w〉∂K − 〈(n− σ)q̂, w〉∂K = 0,

(q, z)K + (u, zx)K − 〈û, z n〉∂K = 0,

〈q̂ n + σ(q − q̂), µ〉∂Th = 0,

〈3û2 n + τ(u− û), η〉∂Th\Γp − 〈p n, η〉∂Th = −〈gp, η〉Γp ,

(3.29)

For all v, w, z ∈ W k
h , and (µ, η) ∈ M̄k

h (0)×Mk
h (0).

3.2.2.1 Choice of the Numerical Fluxes

Theorem 3.2.1 gives the sufficient conditions on the stabilization pa-

rameters to make the linear solver stable. For the nonlinear solver, we use the

same σ as we suggested for the linear one. However, choosing a constant τ

will not result in the best approximation in nonlinear problems. Therefore,

we split τ into τ0 and τ1 which are corresponding to the linear and nonlinear

parts of total flux. Hence, in (3.27), H = 3û2 − p + (τ0 + τ1)(u− û) n. Based

on Theorem 3.2.1, −τ0 should be a constant negative real value; hence, τ0 > 0.

For τ1, one option can be based on a Lax-Friedrichs type of flux [54, 57]; how-

ever, according to Theorem 3.2.1, we still want τ1 < 0. Hence, we choose

51

τ1 = −|∂(3û2)/∂û|, and finally τ can be written as:

τ(û) = −
∣∣∣∣∂(3û2)

∂û

∣∣∣∣+ τ0 = −6 |û|+ τ0,

with τ0 being a constant positive real value.

3.2.2.2 Implementation

To implement the nonlinear solver, we apply the Newton-Raphson

method to the system of equations (3.29). Hence, having the current iter-

ation ū, q̄, p̄ ∈ W k
h and (¯̂u, ¯̂q) ∈ Mk

h (gu) × M̄k
h (gq), and denoting τ(¯̂u) with τ̄ ,

we want to find the increments δu, δq, δp ∈ W k
h and (δû, δq̂) ∈Mk

h (0)× M̄k
h (0)

such that:

ã(δu, v)− bT(δp, v) + c̃1(δû, v) = f̃(v),

a(δp, w) + b(δq, w)− c2(δq̂, w)− d2(δq, w) = h̃(w),

a(δq, z) + b(δu, z)− c3(δû, z) = k̃(z),

cT
4 (δq, µ) + e1(δq̂, µ) = r̃(µ),

c̄T
5 (δu, η)− cT

6 (δp, η) + ẽ2(δû, η) = s̃(η),

(3.30)

52

with v, w, z ∈ W k
h , and (µ, η) ∈ M̄k

h (0)×Mk
h (0). The bilinear forms are similar

to (3.14), except the following:

ã(δu, v) =
1

∆t
(δu, v)Th − (6 ū δu, ∂xv)Th + 〈τ̄ δu, v〉∂Th ,

c̃1(δû, v) =
〈
6 ¯̂u δû n, v

〉
∂Th

+

〈[
∂τ̄

∂ ¯̂u
(ū− ¯̂u)− τ̄

]
δû, v

〉
∂Th

,

ẽ2(δû, η) =
〈
6 ¯̂u δû n, η

〉
∂Th

+

〈[
∂τ̄

∂ ¯̂u
(ū− ¯̂u)− τ̄

]
δû, η

〉
∂Th

,

f̃(v) = (f, v)Th −
1

∆t

(
ū− un−1, v

)
Th

+ (p̄x, v)Th

+
(
3ū2, ∂xv

)
Th
−
〈
3¯̂u2 + τ̄(ū− ¯̂u) n, v

〉
∂Th

,

h̃(w) = −(p̄, w)Th − (q̄, ∂xw)Th + 〈σq̄, w〉∂Th + 〈(n− σ)¯̂q, w〉∂Th ,

k̃(z) = −(q, z)Th − (u, zx)Th + 〈û, z n〉∂Th ,

r̃(µ) = −〈¯̂q n + σ(q̄ − ¯̂q), µ〉∂Th ,

s̃(η) = 〈gp, η〉Γp −
[
〈3û2 n + τ(u− û), η〉∂Th\Γp − 〈3p n, η〉∂Th

]
.

(3.31)

Next, let us discretize system of equations (3.30), to obtain the following ma-

trix equations:

Ã δU −BT δP + C̃1 δΛ = F̃ ,

A δP + (B −D2) δQ− C2 δΨ = H̃,

A δQ+B δU − C3 δΛ = K̃,

CT
4 δQ+ E1 δΨ = R̃,

CT
5 δU − CT

6 δP + Ẽ2 δU = S̃.

(3.32)

The process of solving this system of equations is similar to the linear case.

We will use the first three equations to obtain δU , δQ, and δP in terms of

δΛ and δΨ; then we solve for δΛ and δΨ using the last two equations. It is

53

worth noting that in the process of condensing the interior unknowns on the

numerical traces, we just solve a series of independent local equations, which

can be done simultaneously.

3.3 Numerical Experiments

In this section we will solve a number of simple examples to study the

accuracy and capability of the proposed method. In all of these experiments

we will use a first order backward difference scheme for time discretization. We

will first examine the convergence rate of the computed u, q, p for linear and

nonlinear problems. Afterwards, we use the method to solve a few well-known

problems in the context of dispersive wave problems.

Example 1: In the first example, we solve the equation (3.3), with α2 = −1,

α1 = 0, and f(x) = 0 in the domain Ω = [0, π]. The initial condition is taken

u0 = sinx, and the boundary conditions are u(0, t) = −u(π, t) = − sin(t), and

q(0, t) = cos t. Obviously, the exact solution to this problem is u = sin(x− t).

Meanwhile, the boundary conditions are not periodic, but would result in a

well-posed problem. We use a constant and appropriately small time step

with different mesh sizes. The values of τ , and σ are equal to −10, and 10,

respectively. Hence, the convergence rate of the computed solutions u, q, p at

the final time level T = 0.1 is calculated. These rates are listed in Table 3.1 for

different number of cells and different orders of the polynomial approximation.

As one can observe, all of the approximate solutions u, q, p are converging with

54

k + 1.

In the second part of this example we consider a similar problem, except

at the right side of the domain we apply the boundary condition on p, leading

to the boundary data: u(0, t) = − sin t, p(π, t) = − sin t, and q(0, t) = cos t. It

is worth noting that the boundary condition on p is applied through the flux

conservation condition (3.11). Since this set of boundary conditions provide

a well-posed problem, one might expect the proposed numerical method to

converge at the optimal rates for each k ≥ 0. We list the corresponding rates

of convergence in Table 3.2. Note that unlike the previous case where, we

obtain optimal convergence for all k ≥ 0, in this example, when boundary

data on p is set in tandem with no information on the variation of the solution

within the interior of the cell, i.e. the case of k = 0, we see a loss of uniform

optimal convergence. Here, the solution of q will be unique up to a constant,

and although we can satisfy all of the boundary conditions, we lose the optimal

convergence. Nevertheless, the uniform optimal convergence is still observed

for each u, q, p whenever k ≥ 1.

Example 2 In this sample problem, we examine the convergence of the

method in solving a nonlinear problem. In Eq. (3.3) we let α2 = −1, α1 = 3,

and f(x) = 7 cos(2x− t)+6 sin(4x−2t), and solve the equation in the domain

Ω = [0, π]. As for the initial condition we apply u(x, 0) = sin(2x), and the

boundary conditions are u(0, t) = u(π, t) = − sin t, and q(0, t) = 2 cos t. Thus,

the exact solution of the problem is u = sin(2x− t). The stabilization param-

55

Table 3.1: Convergence rates of the solution of the linear problem (example
1), with the right side boundary condition on u. The analytical solutions are
denoted by ue, qe, and pe.

Order (k) Num. of cells ‖u− ue‖L2(Ω) ‖q − qe‖L2(Ω) ‖p− pe‖L2(Ω)

0

10 5.95E-02 8.14E-02 2.16E-01
20 3.06E-02 3.74E-02 1.12E-01
40 1.55E-02 1.79E-02 5.73E-02

Convergence rate 0.98 1.09 0.95

1

10 1.12E-03 3.95E-03 5.89E-02
20 1.97E-04 7.60E-04 1.48E-02
40 4.12E-05 1.39E-04 3.72E-03

Convergence rate 2.38 2.41 1.99

2

10 2.48E-04 1.16E-03 4.37E-03
20 3.18E-05 1.80E-04 5.71E-04
40 3.47E-06 2.32E-05 5.22E-05

Convergence rate 3.08 2.82 3.19

3

10 3.36E-06 5.23E-06 3.34E-05
20 2.09E-07 3.01E-07 2.04E-06
40 1.59E-08 2.17E-08 1.33E-07

Convergence rate 3.86 3.96 3.98

56

Table 3.2: Convergence rates of the solution of linear problem (example 1),
with the right side boundary condition on p. The analytical solutions are
denoted by ue, qe, and pe.

Order (k) Num. of cells ‖u− ue‖L2(Ω) ‖q − qe‖L2(Ω) ‖p− pe‖L2(Ω)

1

10 1.13E-03 4.04E-03 5.89E-02
20 1.98E-04 7.60E-04 1.48E-02
40 4.12E-05 1.39E-04 3.72E-03

Convergence rate 2.39 2.43 1.99

2

10 2.46E-04 1.16E-03 4.23E-03
20 3.17E-05 1.79E-04 5.58E-04
40 3.47E-06 2.32E-05 5.15E-05

Convergence rate 3.07 2.83 3.18

3

10 3.36E-06 5.25E-06 3.35E-05
20 2.09E-07 3.01E-07 2.03E-06
40 1.59E-08 2.18E-08 1.33E-07

Convergence rate 3.86 3.96 3.99

eters are σ = 1, and τ0 = 20. In this problem, the stabilization parameters

have a noticeable effect on the accuracy of the solution, and need to be cho-

sen carefully to result in optimal convergence. The convergence rates of the

approximate solutions are presented in Table 3.3. It is worthwhile noting that

the approximate solutions u, p, and q are converging with optimal convergence

for polynomial orders 0 ≤ k ≤ 3.

Next, we test the method for the case where the boundary condition

on the right side of the domain is applied on p instead of u. The convergence

results for this problem are listed in Table 3.4. Similar to the linear case with

the boundary condition on p, the method results in the optimal convergence

for polynomial orders k ≥ 1.

57

Table 3.3: Convergence rates of the solution of nonlinear problem (example
2), with the right side boundary condition on u. The analytical solutions are
denoted by ue, qe, and pe.

Order (k) Num. of cells ‖u− ue‖L2(Ω) ‖q − qe‖L2(Ω) ‖p− pe‖L2(Ω)

0

10 2.22E-01 5.92E-01 1.71E+00
20 1.23E-01 2.98E-01 9.86E-01
40 6.49E-02 1.49E-01 5.33E-01

Convergence rate 0.93 1.00 0.84

1

10 1.08E-02 5.04E-02 3.46E-01
20 2.46E-03 1.21E-02 8.83E-02
40 5.97E-04 2.99E-03 2.22E-02

Convergence rate 2.04 2.04 1.98

2

10 1.62E-03 3.94E-03 2.61E-02
20 2.06E-04 4.79E-04 3.17E-03
40 2.59E-05 5.93E-05 3.93E-04

Convergence rate 2.99 3.03 3.03

3

10 7.88E-05 1.56E-04 1.39E-03
20 4.99E-06 9.28E-06 8.72E-05
40 3.15E-07 5.76E-07 5.50E-06

Convergence rate 3.99 4.04 3.99

58

Table 3.4: Convergence rates of the solution of nonlinear problem (example
2), with the right side boundary condition on p. The analytical solutions are
denoted by ue, qe, and pe.

Order (k) Num. of cells ‖u− ue‖L2(Ω) ‖q − qe‖L2(Ω) ‖p− pe‖L2(Ω)

1

10 1.09E-02 5.11E-02 3.46E-01
20 2.46E-03 1.21E-02 8.83E-02
40 5.97E-04 2.99E-03 2.22E-02

Convergence rate 2.04 2.02 1.99

2

10 1.59E-03 3.99E-03 2.64E-02
20 2.06E-04 4.79E-04 3.17E-03
40 2.59E-05 5.93E-05 3.93E-04

Convergence rate 2.99 3.01 3.01

3

10 7.88E-05 1.56E-04 1.38E-03
20 4.99E-06 9.28E-06 8.72E-05
40 3.15E-07 5.79E-07 5.50E-06

Convergence rate 3.99 4.00 3.99

Example 3 In the previous examples, we have shown the convergence prop-

erties of the method; in this example, we are solving for the classical solution

of (3.3) with α2 = 1, α1 = 3, and f(x, t) = 0. We solve this equation taking

(x, t) ∈ [−10, 0]× (0, 2], with initial condition u(x, 0) = 2 sech2(x+ 4). An ex-

act solution to this problem is u(x, t) = 2 sech(x−4t+4); therefore, we extract

the relevant boundary data for u(−10, t), u(0, t), and q(0, t) and include them

in IBVP definition. Since, α2 = 1, we have applied the q-boundary condition

at the right end of the domain. Results are computed using 100 elements with

3rd order polynomials. The time-step size in this example is ∆t = 10−3.

The space-time graphs of the computed solution are shown in Figs.

3.2–3.4. Moreover, the relevant analytical solutions are also shown, for a side

by side comparison. Although, we have not chosen our time-step small enough

59

for error calculation, one can still observe a good match between the computed

and analytical solutions.

Example 4 In this experiment, we examine the interaction of two solitary

waves with different propagation speeds [75]. We want to solve equation (3.3),

with α2 = 1, α1 = 3, and f(x, t) = 0 with (x, t) ∈ [−20, 0]× (0, 2]. The initial

condition is assumed as:

u0(x) = 5
4.5 csch2 [1.5(x+ 14.5)] + 2 sech2(x+ 12)

{3 coth [1.5(x+ 14.5)]− 2 tanh(x+ 12)}2 .

Next, we use the following exact solution to extract three required boundary

data, to complete the problem definition:

u(x, t) = 5
4.5 csch2 [1.5(x− 9t+ 14.5)] + 2 sech2(x− 4t+ 12)

{3 coth [1.5(x− 9t+ 14.5)]− 2 tanh(x− 4t+ 12)}2 .

Similar to the previous example, α2 = 1 in (3.3); hence we apply the boundary

condition on p at the right end of the domain. The results are computed using

50 elements with 4th order polynomials. The time-step size is also taken as:

∆t = 10−5.

Figs. 3.5–3.7 shows the space-time graphs of the two solitons interacting

with each other. In the first phase, the two waves are approaching, and around

t = 0.5, they overlap each other. Afterwards, the faster soliton continues to

propagate and leaves the domain of analysis. The analytical solutions are also

presented in this figure, for comparison purposes. It is worthwhile to note that,

one can achieve a better accuracy by using a smaller time-step; nevertheless,

60

Figure 3.2: Space-time graphs of one soliton in the domain (x, t) ∈ [−10, 0]×
(0, 2]. Evolution of the computed solution (top) and analytical solution (bot-
tom) of u.

61

Figure 3.3: Space-time graphs of one soliton in the domain (x, t) ∈ [−10, 0]×
(0, 2]. Evolution of the computed solution (top) and analytical solution (bot-
tom) of q.

62

Figure 3.4: Space-time graphs of one soliton in the domain (x, t) ∈ [−10, 0]×
(0, 2]. Evolution of the computed solution (top) and analytical solution (bot-
tom) of p.

63

even with the current time-step size, we have obtained a very good match

between the analytical and computed solutions.

Based on the presented results, we have shown the accuracy of the

proposed HDG method. It is worth noting that this technique may be extended

to higher order equations. This can perfectly fit into the optimal convergence

of HDG in high order derivatives, and give rise to a family of accurate methods

for higher order differential equations.

64

Figure 3.5: Space-time graphs of two solitons in the domain (x, t) ∈ [−10, 0]×
(0, 2]. Evolution of the computed solution (top) and analytical solution (bot-
tom) of u.

65

Figure 3.6: Space-time graphs of two solitons in the domain (x, t) ∈ [−10, 0]×
(0, 2]. Evolution of the computed solution (top) and analytical solution (bot-
tom) of q.

66

Figure 3.7: Space-time graphs of two solitons in the domain (x, t) ∈ [−10, 0]×
(0, 2]. Evolution of the computed solution (top) and analytical solution (bot-
tom) of p.

67

Chapter 4

Hybridized Discontinuous Galerkin Method

for Nonlinear Shallow Water Equation1

In this chapter we present an explicit implementation of the hybridiz-

able discontinuous Galerkin (HDG) method for solving the nonlinear shallow

water equation (NSWE). We first follow the common construction of the im-

plicit HDG for nonlinear conservation laws, and then explain the differences

between the explicit formulation and the implicit version. For the implicit im-

plementation, we use the approximate traces of the conserved variables (ĥ, ĥu)

to express the internal variables and numerical fluxes in each element. Next,

we impose the conservation of the numerical fluxes via a global system of equa-

tions. Using the Newton-Raphson method, this global system can be solely

expressed in terms of the increments of the approximate traces in each iter-

ation. On the other hand, for the explicit method, having (h, hu) at each

time level, we first obtain (ĥ, ĥu), such that the conservation of the numerical

fluxes is satisfied. This will result in a nonlinear system of equations, which

is local to each face of the mesh. Having the solution ((h, hu),ĥ, ĥu) for the

previous time step, we use the Runge-Kutta time integration method to ob-

1This chapter is based on the paper which will be submitted to Computer Methods in
Applied Mechanics and Engineering [60].

68

tain (ĥ, ĥu) in the next time step. Hence, the introduced explicit technique

is based on local operations over the faces and elements of the mesh. Using

different numerical examples, we show the optimal convergence of the solution

of the explicit approach in the L2 norm. Finally, through numerical experi-

ments, we discuss the advantages of the implicit and explicit techniques from

the computational costs point of view.

4.1 Statement of the Problem

We showed in Chapter 2 that the water wave problem can be approx-

imated by the NSWE up to a good accuracy [40, 41]. This equation reads as

follows:

∂tq +∇ · F (q) = L in Ω ⊂ Rd, (4.1)

with L being the source term, and

q =

{
h
hu

}
, F (q) =

{
hu

hu⊗ u + 1
2
gh2I

}
. (4.2)

Here, g is the gravitational acceleration and h is the water depth, i.e.

h(x, t) = ζ(x, t) + H0 − b(x) (refer to Fig. 2.1). Meanwhile, u is the velocity

vector in d spacial dimensions, and I is the d× d identity matrix. We assume

that h is bounded from below by a minimum positive value.

On the domain boundary (∂Ω) we can employ different types of bound-

ary conditions, such as periodic conditions, inflow or outflow boundaries, solid

wall or any other type of boundary condition which can accompany Eq. (4.1)

69

and result in a well-posed problem. We postpone the matter of boundary

conditions to section 4.2.2, where we discuss the formulation of the method.

4.1.1 Notation

In order to solve Eq. (4.1) with discontinuous finite elements, we define

Th = {K} as a finite collection of disjoint elements partitioning Ω. Also,

let ∂Th denote all of the faces of the elements in Th, and Eh be the set of

faces in the mesh. It is worthwhile mentioning that, while in Eh, we count

the common faces between two elements only once, the same common face is

counted twice when we form ∂Th. Now, assume e is a common face between

two elements K+ and K−, i.e. e = ∂K+ ∩ ∂K−. We denote by n± the unit

normals of K± at e and use J·K to show the jump of the information across e,

e.g. JF · nK = F+ ·n+ +F− ·n−, with F± being the values of F corresponding

to K±. For the faces on the boundary of the domain, where e ∈ ∂Th ∩ ∂Ω, we

define the jump based on the only contributing face, i.e. JF · nK = F · n.

Throughout this chapter, we mainly use vector notation, with bold

italic symbols denoting tuples with d+ 1 components (such as q in Eq. (4.1)).

For certain relations, the index notation can provide a more clear description.

In those cases, we denote derivatives with respect to spatial coordinates with

subscripts, i.e. qi,j denotes the derivative of ith component of q with respect to

the jth spatial coordinate. We also use (v, w)G to denote the inner product of

functions v and w in G ⊂ Rd, i.e. (v, w)G =
∫
G
vw dG. Furthermore, 〈v, w〉Γ

denotes
∫

Γ
vw dΓ, when Γ ⊂ Rd−1.

70

4.1.2 Functional setting

For each element K ∈ Th and p ≥ 0, let Qp(K) denote the space of

polynomials of degree at most p in each spatial direction. We choose our trial

solution and test spaces, as the set of square integrable functions over Th, such

that their restriction to the domain of K belongs to Qp(K); i.e.

Vp
h := {q ∈ (L2(Th))

d+1 : q|K ∈ (Qp(K))d+1 ∀K ∈ Th}. (4.3a)

The approximation space over the mesh skeleton (Eh) is defined as:

Mp
h := {µ ∈ (L2(Eh))

d+1 : µ|e ∈ (Qp(e))d+1 ∀e ∈ Eh}. (4.3b)

We also define the L2-projection operator Π∂, which maps a given ξ ∈ (L2(Eh))
d+1

to the set of functions whose restriction to e ∈ Eh is in (Qp(e))d+1, and Π∂ sat-

isfies:

〈Π∂ξ − ξ,µ〉e = 0, ∀µ ∈ (Qp(e))d+1.

4.2 Variational formulation

We are looking for a piecewise polynomial solution qh ∈ Vp
h which

satisfies Eq. (4.1) in the variational sense. Hence, for all p ∈ Vp
h and every

K ∈ Th, we want qh to satisfy:

(∂tqh,p)K + 〈F ∗h,p〉∂K − (F (qh),∇p)K −Lh(p) = 0. (4.4)

Here, F ∗h is the numerical flux, an approximation to F (q) · n over the faces

of the element K. Similar to the finite volume method, we can obtain a

71

stable and convergent solution by a proper choice of F ∗h. In hybridizable DG

formulation, the numerical flux is defined through the numerical trace (q̂h),

which is an approximation to q on the skeleton space (Eh). Here, we consider

the following form for F ∗h:

F ∗h = F (q̂h) · n + τ (qh − q̂h), (4.5)

where τ is the stabilization parameter and its choice is important for obtaining

a convergent and stable method. We briefly discuss some of the well-known

choices for this parameter in section 4.2.1. It is also worth mentioning that q̂h

is assumed to be single-valued on any given face in Eh.

Next, we also want to satisfy the flux conservation condition across the

element faces. Since, the numerical flux is the only means of communication

between elements, in all of the internal faces, we require that the projection

of the jump of F ∗h onto Mp
h vanishes, i.e. Π∂ JF ∗hK = 0. On the other hand,

over the domain boundary (∂Ω), we apply the boundary condition through

the boundary operator Bh. Hence, ∀µ ∈Mp
h, we want to have:

〈F ∗h,µ〉∂Th\∂Ω + 〈Bh,µ〉∂Th∩∂Ω = 0 (4.6)

Here, Bh is the boundary operator, and should be defined according to the

applied conditions on ∂Ω. The extended form of Bh for a few boundary

condition types is represented in subsection 4.2.2.

We should solve (4.4) and (4.6) to obtain the unknowns of the problem.

We can substitute F ∗h from (4.5) into these two equations, and assemble (4.4)

72

over all of the elements. Thus, the problem may be summarized as finding the

approximate solution (qh, q̂h) ∈ Vp
h×Mp

h, such that, for all (p,µ) ∈ Vp
h×Mp

h:

(∂tqh,p)Th − (F (qh),∇p)Th + 〈τqh,p〉∂Th

+ 〈F (q̂h) · n,p〉∂Th − 〈τ q̂h,p〉∂Th −Lh(p) = 0, (4.7a)

〈F (q̂h) · n,µ〉∂Th\∂Ω + 〈τqh,µ〉∂Th\∂Ω

− 〈τ q̂h,µ〉∂Th\∂Ω + 〈Bh,µ〉∂Th∩∂Ω = 0. (4.7b)

Before we explain the solution approach for this problem, a brief discussion on

the stabilization parameter and the employed boundary conditions is worth-

while.

4.2.1 Stabilization parameter

As commonly considered in the literature [52], we employ two choices

for the stabilization parameter (τ) which are motivated by Lax-Friedrichs

and Roe solvers. As for the Lax-Friedrichs approach, we first find λmax, the

maximum absolute value of the eigenvalues of the Jacobian matrix of the

system (denoted by A):

A = ∂F (q̂)/∂q̂ · n (4.8)

Having in mind that q̂ = {ĥ, ĥu}, one can simply verify that λmax =
√
ĥ +

|(ĥu/ĥ) · n| [43]. Now, we define the Lax-Friedrichs stabilization matrix as:

τ = λmaxI,

with I being the (d+ 1)× (d+ 1) identity matrix.

73

Another option for constructing the stabilization parameter is based

on the Roe solver. For this purpose, we form the eigenvalue decomposition

of A as: A = RΛR−1, where, R is a matrix whose columns are the right

eigenvectors of A, and Λ contains the eigenvalues of A. Thus, we form the

stabilization matrix as:

τ = |A| := R|Λ|R−1, (4.9)

with |Λ| being a diagonal matrix containing the absolute values of the eigen-

values of A.

4.2.2 Boundary conditions

Different types of boundary conditions can be employed in Eq. (4.7).

One of the simplest ones is the periodic boundary conditions. Let Γ1 and

Γ2 denote a pair of periodic boundaries; along these boundaries, we should

have q̂h|Γ1 = q̂h|Γ2 , and the numerical flux passing through them should be

conserved. To this end, one can couple the degrees of freedom on Γ1 and Γ2

and set the boundary operator in Eq. (4.6) as: Bh|Γ1 = F ∗h|Γ1 , and Bh|Γ2 =

F ∗h|Γ2 . This way, the method remains conservative and the required periodic

conditions are satisfied.

We can also use Eq. (4.6) to apply inflow/outflow boundary conditions.

To this end, we define Bh as:

Bh = A+qh − |A|q̂h −A−q∞,

with A and |A| defined in (4.8) and (4.9), and A± = A ± |A|. By applying

this boundary condition, when the characteristic directions on a given point

74

at the boundary are outward, we define the value q̂h from q. On the other

hand, when a characteristic direction is pointing inward, the values of q̂h are

chosen according to the supported boundary data, i.e. q∞. As we will see in

the second numerical example, by a proper choice of q∞, we use this boundary

condition to apply a wavemaker boundary.

One can also implement a solid wall with slip condition using the

boundary operator Bh. For this purpose, we need to construct Bh, such

that ĥh = hh, and ûh · n = 0 [52].

4.3 Solution procedure

We now consider solving the nonlinear system of equations (4.7) us-

ing two approaches. In the first approach, we use an implicit time stepping

technique to form a global system of equations and solve it using Newton it-

erations. In the second approach, we use an explicit time stepping technique

to form a set of local nonlinear equations and solve them using local Newton

iterations.

4.3.1 Implicit approach

Considering Eq. (4.7), we use Newton-Raphson method to form a lin-

earized equation in terms of the increments of qh and q̂h. For the simplicity of

the presentation, we consider backward Euler technique as the time integra-

tor, with ∆t being the current time step. Hence, denoting by qn−1
h the values

of qh in the previous time level, and (q̄h,
¯̂qh) ∈ Vp

h ×Mp
h the corresponding

75

values in the current iteration, we seek (δqh, δq̂h) ∈ Vp
h×Mp

h such that for all

(p,µ) ∈ Vp
h ×Mp

h, we have:

a1(δqh,p) + c1(δq̂h,p) + f1(p) = 0, (4.10a)

cT2 (δqh,µ) + cT3 (δqh,µ) + e1(δq̂h,µ)

+ e2(δq̂h,µ) + f2(µ) + f3(µ) = 0. (4.10b)

with the bilinear forms and functionals defined as below:

a1(δqj, pi) =
1

∆t
(δqj, δijpi)Th −

(
∂Fik
∂qj

δqj, pi,k

)
Th

+ 〈τijδqj, pi〉∂Th ,

c1(δq̂j, pi) =

〈(
∂F̂ik
∂q̂j

nk +
∂τik
∂q̂j

q̄k −
∂τik
∂q̂j

¯̂qk − τij

)
δq̂j, pi

〉
∂Th

,

f1(pi) =
1

∆t
(q̄i − qn−1

i , pi)Th−〈F̂ijnj, pi〉∂Th + 〈τij q̄j, pi〉∂Th

− 〈τij ¯̂qj, pi〉∂Th − (Fij, ∂jpi)Th − Li(pi),

cT2 (δqj, µi) = 〈τijδqj, µi〉∂T\∂Ω , cT3 (δqh,µ) =

〈
∂Bh

∂qh
δqh,µ

〉
∂Ω

,

e1(δq̂i, µi) =

〈(
∂F̂ik
∂q̂j

nk +
∂τik
∂q̂j

q̄k −
∂τik
∂q̂j

¯̂qk − τij

)
δq̂j, µi

〉
∂T\∂Ω

,

e2(δq̂h,µ) =

〈
∂Bh

∂q̂h
δq̂h,µ

〉
∂Ω

,

f2(µi) =
〈
F̂ijnj + τij q̄j − τij ¯̂qj, µi

〉
∂T\∂Ω

; f3(µ) = 〈Bh,µ〉∂Ω

(4.11)

In the above definitions, Fij, F̂ij, and τij denote the element at ith row and

jth column of F (q̄h), F (¯̂qh), and τ (¯̂qh), respectively. Meanwhile, δij denotes

the Kronecker delta.

Thus, the implicit solution approach can be summarized as below:

76

• Step 1: Having q̄h, and ¯̂qh from previous time step, solve Eq. (4.10a) in

all of the elements to obtain an expression for δqh in terms of δq̂h, q̄h,

and ¯̂qh.

• Step 2: Assemble the computed δqh from the previous step into Eq.

(4.10b) and form a global system of equations for δq̂. Solve the global

system and obtain δq̂h.

• Step 3: Use the computed δ ¯̂qh from the above global system in Eq.

(4.10a) to obtain q̄h, and ¯̂qh for the next iteration.

• Step 4: Substitute the computed q̄h, and ¯̂qh from Step 3 into Step 1,

and continue iterating through Steps 1-3, for the Newton method to

converge.

As mentioned before, the system of equations that we solve in Step 2, is a

global system. For later reference, we call this step, the global step, while all

the other three steps are called local steps. From the computational costs point

of view, for large problems, solving a sizable global system may not scale well

with the computational cores. This is a main motivation to use an explicit

method, which does not require solving such a large system of equations.

4.3.2 Explicit approach

Again, we consider Eq. (4.7). As for the explicit time stepping, we first

use the computed qn−1
h from the previous time step (or in the first step we

take it from the initial condition) in Eq. (4.7b) to derive q̂n−1
h that results in

77

the conserved numerical fluxes at time level tn−1. Then, we use qn−1
h and q̂n−1

h

in Eq. (4.7a) along with an explicit time integrator to obtain qnh and use it as

the initial condition for the next time step. As a result, our solution procedure

is comprised of two parts. In the first part, having qn−1
h ∈ Vp

h from the last

time step and ¯̂qh ∈ Vp
h from the previous iteration, we seek δq̂h ∈ Mp

h such

that for all µ ∈Mp
h we have:

e3(δq̂h,µ) + e2(δq̂h,µ) + f4(µ) + f3(µ) = 0, (4.12)

with, e2 and f3 defined as in (4.11), while e3 and f4 have the following forms:

e3(δq̂i, µi) =

〈(
∂F̂ik
∂q̂j

nk +
∂τik
∂q̂j

qn−1
k − ∂τik

∂q̂j
¯̂qk − τij

)
δq̂j, µi

〉
∂T\∂Ω

,

f4(µi) =
〈
F̂ijnj + τijq

n−1
j − τij ¯̂qj, µi

〉
∂T\∂Ω

(4.13)

A closer look at e3 and f4 reveals that we do not perform any iterations on

qh. As a result, this equation is local to each face. In other words, instead of

solving a large system of equations in implicit method, we solve many small

systems of equations, each corresponding to one of the faces in Eh.

After solving Eq. (4.12) through Newton iterations, we have qn−1
h and

q̂n−1
h , which satisfy the flux conservation condition. In the second part of the

method, we should use some explicit time integration technique to obtain qnh.

For simplicity of formulation, we use forward Euler technique. Hence, we want

to find qnh ∈ Vp
h such that for all p ∈ Vp

h, we have:

(qnh,p) = (qn−1
h ,p) + ∆t

(
− 〈F (q̂n−1

h) · n,p〉 − 〈τqn−1
h ,p〉

+ 〈τ q̂n−1
h ,p〉+ (F (qn−1

h),∇p) +L(p)
)

(4.14)

78

In other words, the equations in the element interiors are a set of linear equa-

tion, which are directly giving the qh for the next time step. Concerning, this

explicit approach, we want to highlight the following points:

• The first step in the above approach, i.e. solving Eq. (4.12) by Newton

iterations, is local to each face in Eh. Hence, for large problems, the com-

putational time can be scaled down by increasing the number of working

processors. Furthermore, the second part of the approach is also local to

each element in Th. As a result, for large practical problems, this explicit

method perfectly fits the high performance computing requirements, i.e.

scalability and local operations.

• There are similarities between the above procedure and the Reconstruct-

Evolve-Average algorithm, which is used in the finite volume method.

Albeit, we prefer to use the terms Extend-Evolve-Project for our ap-

proach. This is because, in the first step, we obtain an extension of qn−1
h

to a numerical trace q̂n−1
h , which satisfies the flux conservation condi-

tion. In the second step, we evolve the solution of the previous step, and

finally project it onto Vp
h.

• In order to achieve a higher accuracy for the same time step size, one

can use the explicit Runge-Kutta methods instead of the forward Euler

method in the above algorithm. In that case, at the end of any Runge-

Kutta stage in Eq. (4.14), we have to solve Eq. (4.12) and use those

results for the next stage.

79

• Similar to other explicit techniques, the limitations on the time step

size is an important issue in the proposed algorithm. Although by using

strong stability-preserving techniques [64] can improve the time step size,

we cannot obtain an unconditionally stable technique, similar to what

an implicit method can offer.

4.4 Numerical experiments

In this section we present a set of numerical examples to investigate

the accuracy, convergence properties and the performance of the described

technique. The software that we use to solve these problems is written in

C++, and makes use of different numerical libraries such as deal.II, PETSc,

MUMPS, and Eigen. This software is an extension of the one developed in

[61], and utilizes the shared and distributed memory parallelism.

Example 1: In this example we consider the nondimensionalized ver-

sion of Eq. (4.1) with a known smooth solution in Ω = (−1, 1)2. Hence, we

want to solve:

∂t

{
h
hu

}
+∇ ·

{
hu

hu⊗ u + 1
2
h2I

}
= L, in (−1, 1)2 ⊂ R2. (4.15)

Here, all of the variables and derivatives are nondimensionalized, and we define

L to balance the above equation for the following manufactured solution:

h = 2 + esin(3x) sin(3y)−sin(3t), hu = (cos(4t− x), sin(4t+ y)) .

Fig. 4.1a shows the variation of h at t = 0 in the domain. For the implicit

approach, we use second order backward difference formula to integrate the

80

solution in time. For elements of order 0, 1, and 2, we use ∆t = 10−3, and for

third order elements we use ∆t = 2.5×10−4 to keep the time integration error

below the space discretization error. At time t = 1, we compute the L2(Ω)

error of the qh and use them to obtain the rates of convergence for a set of

uniformly refined meshes. We use Lax-Friedrichs flux in all of the elements,

and inflow/outflow boundary condition on all of the boundary faces. As for the

space discretization, we utilize modal elements with Legendre polynomials to

construct the basis for each element. The finite element mesh will have 2n×2n

elements, where n = 3, 4, 5, 6. In Fig. 4.1b, we have shown the employed mesh

with n = 6, which is decomposed into 24 subdomains for a distributed parallel

solve. At each Newton-Raphson iteration, the global system of equations is

solved using the PETSc wrapper for MUMPS solver. The convergence toler-

ance for Newton iterations is set to 10−12. Using this tolerance, the maximum

number of Newton iterations was six throughout the analysis.

In Fig. 4.2 we have shown the L2-norm of the error of qh and the cor-

responding convergence plots. We observe that in all of the polynomial orders

we get the optimal (p + 1) order of convergence. The computational time for

solving 1000 time steps for the models with n = 6, and different polynomial

orders are listed in Table 4.1. For this timing, we have used 24 processors of

the Lonestar 5 supercomputer in the Texas Advanced Supercomputing Cen-

ter (TACC). Since, each node of Lonestar 5 contains 24 processors, this test

does not involve any node-to-node communication. However, we have used

distributed memory parallelism to run these tests. By no means, we claim

81

2.5 3.0 3.5 4.0 4.5

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 4.1: (a): The schematic plot of the initial state of h in example 1 at
time t = 0; (b): The decomposed computational mesh between 24 processors
for n = 6, i.e. 26 elements in each direction.

82

10−2 10−1

h

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

||(
q
−
q
h
)||
L

2
(Ω

)

p = 0

0.87
1.0

p = 1

2.00

1.0 p = 2

2.97

1.0

p = 3

3.98

1.0

Approximation error of qh for the implicit method

Figure 4.2: Approximation error and convergence rate of the implicit method
for solving the first example in Ω ≡ [−1, 1]2, using 2.0/h elements in each
direction, and polynomial order p = 0, 1, 2, 3.

that our code is optimal for conducting a conclusive performance test; nev-

ertheless, both implicit and explicit methods have received the same amount

of optimization in our code. Hence, we can use this code for a comparison

between the performance of implicit and explicit methods.

Next, we use the introduced explicit method to solve the same problem

Table 4.1: Execution time of local and global steps for solving 1000 time steps
of example 1 using the implicit method for the case of 26 × 26 elements, and
different polynomial orders p

p Local
DOFs

Global
DOFs

Execution time (seconds) CPU time share (%)
Local steps Global step Total time Local Steps Global Steps

0 12,288 24,960 35.2 48.1 83.3 42% 58%

1 49,152 49,920 92.4 200 292 32% 68%
2 110,592 74,880 224 378 602 37% 63%
3 196,608 99,840 535 636 1171 46% 54%

83

as explained above. For our time integration algorithm, we use the four stage

low-storage explicit Runge-Kutta method. For the case of p = 0, 1, 2, we use

∆t = 10−3, and for p = 3, we set ∆t = 5×10−4. Similar to the implicit case, we

compute the L2(Ω)-error of qh at t = 1. To solve the decoupled equations on

each face, we use MUMPS direct solver. The convergence tolerance for Newton

iterations is set to 10−12, which results in a maximum of three iterations per

stage for the solution to converge. We use the same meshes as described in

the implicit method to solve this problem.

In Fig. 4.3, we have shown the L2 errors of qh for meshes with differ-

ent element sizes and polynomial orders. Similar to the implicit method, we

observe optimal convergence for all of the polynomial orders. Moreover, the

errors for the same mesh size seems to be smaller than the implicit method

errors. This can be due to the higher order time integration technique that

we use here, and the strong variation of q with time in this example. We have

also listed the computational times for solving 1000 time step of the models

with n = 6 and different polynomial orders in Table 4.2. One can observe that

the explicit solver is around eight times faster than the implicit solver, for the

same setup and computational power.

For practical applications one can also increase the time step size of an

implicit solver to obtain a comparable performance to the explicit methods.

We will consider this in the next example, where the time step size of the

implicit solver is around 100 times larger than the explicit method. As such,

gaining around eight times performance boost by using an explicit solver,

84

10−2 10−1

h

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
||(
q
−
q
h
)||
L

2
(Ω

)
p = 0

0.88
1.0

p = 1

1.98

1.0

p = 2

3.01

1.0

p = 3

3.96

1.0

Approximation error of qh for the explicit method

Figure 4.3: Approximation error and convergence rate of the explicit method
for solving the first example in Ω ≡ [−1, 1]2, using 2.0/h elements in each
direction, and polynomial order p = 0, 1, 2, 3.

Table 4.2: Execution time of local and global steps for solving 1000 time steps
of example 1 using the explicit method for the case of 26 × 26 elements, and
different polynomial orders p

p
Local
DOFs

Global
DOFs

Execution time (seconds) CPU time share (%)
Local steps Global step Total time Local Steps Global Steps

0 12,288 24,960 8.9 28.0 37 24% 76%
1 49,152 49,920 17.9 44.2 62.1 29% 71%
2 110,592 74,880 33.2 58.7 91.9 36% 64%
3 196,608 99,840 65.4 80.5 146 44% 55%

85

may not sound very promising. Nevertheless, one should also note that, in

practical applications, the memory usage of an implicit solver can be its main

bottleneck. In large problems, this can also result in the higher scalability of

explicit solvers, by increasing the number of processing cores.

Example 2: In this example, we consider the propagation of a long

wave in a relatively fine mesh. In Eq. (4.15) set L = 0, and let us solve it

in Ω ≡ (−1, 1)2. As for the initial condition we set h|t=0 = 3 and u|t=0 = 0

everywhere in the domain. We use solid wall with slip condition on ΓS, ΓN ,

and ΓE (c.f. Fig. 4.1b). On ΓW , we apply inflow/outflow boundary condition

with u∞ = 0, and h∞ defined in the following form:

h∞ =

{
2 + cos(t) t ≤ t0

0 t0 < t

In this example we consider two cases with t0 = 1, 3. Hence, the excitation

frequency in both of these cases is the same, and the only difference is the

longer loading time in the case with t0 = 3. The case with t0 = 1 imitates the

waves induced by a tide from the right side of the domain. We want to solve

this problem in the time interval t ∈ (0, 20].

Our finite element mesh for this problem consists of piecewise quadratic

elements with n = 7, i.e. 27 × 27 elements. This results in roughly 300,000

global unknowns. We use both implicit and explicit methods to solve this

problem. Our initial perception of this process suggests that since the induced

waves are fairly long waves, we can choose a large time step size for the implicit

method and still obtain a valid solution. Therefore, we choose ∆t = 0.1 for

86

the implicit method. On the other hand, the time step size for the explicit

solver is still restrained by the stability requirements. For our setup, the CFL

condition suggests [32]:

∆tExplicit ∝
1

λmax

lh.

With lh being the smallest element size, and λmax being the largest eigenvalue

of the Jacobian matrix A (as defined in Eq. (4.8)). This results in a time step

size around 10−3; although we can choose the time step size adaptively, we

use the simple choice of ∆t = 10−3 for the explicit method in all time steps.

Thus, if both methods had the same performance for solving the problem at

each time step, the implicit method would have been 100 times faster.

The profiles of the water surface at different time steps are shown in

Figs. 4.4 and 4.5 for t0 = 1 and t0 = 3, respectively. These figures are obtained

using the explicit solver, with ∆t = 10−3. We have also compared the water

surface profiles obtained from implicit solver (with ∆t = 10−1) and explicit

solver (with ∆t = 10−3) at different time steps In Figs. 4.6 and 4.7. For the

case of t0 = 1, i.e. Fig. 4.6, we can see a very good match between the results

of ∆t = 10−1 and ∆t = 10−3. On the other hand, in Fig. 4.7, we notice that

after t = 1, the plots of ∆t = 10−1 and ∆t = 10−3 do not match. Even

though both of these figures are obtained for the same wave length, the longer

excitation time in the case of t0 = 3 has resulted in the formation of shock

waves that require a smaller time step to be resolved in the solution. Hence,

when we want to choose the time step size of the implicit solver, the excitation

wavelength is not the only deciding factor. Even if the solution seems quite

87

stable and well behaved, we might still loose important phenomena that might

be captured if we use a smaller time step.

Despite the accuracy loss for the case of t0 = 3, the implicit method

with time step ∆t = 0.1 can produce quite good results for t0 = 1 case.

Hence, it is worthwhile to compare the CPU time of the implicit method (with

∆t = 10−1) and explicit method (with ∆ = 10−3) for solving the problem

using different number of processing cores. In Table 4.3 we have listed the

computational time of solving this problem on 12, 24, and 48 cores. Again,

we use Lonestar 5 to perform these tests. The first observation in this table

is the noticeably lower computational time of the implicit method. As we

mentioned earlier, this is due to the much larger time step size of the implicit

technique, which requires 200 time steps to solve the problem as opposed to

the explicit method, which requires 20000 time steps. Although each time

step in the explicit solver is 5 to 8 times faster (depending on the number of

processors), it cannot make up for the 100 times fewer time steps required in

the implicit method. On the other hand, the explicit solver exhibits a better

scalability than implicit method. This can be mainly attributed to the local

nature of the computation in the explicit solver, which reduces memory usage

and communication between nodes.

Example 3: In our last example, we solve the release of water from

a dam into the still water inside a narrowing channel. Consider the trape-

zoidal domain in Fig. 4.8. This domain is discretized with 192 × 64 first

order elements. We want to solve the nondimensionalized shallow water equa-

88

(a) t = 1.0

(b) t = 2.0

Figure 4.4: The water surface profile of example 2, at different times, with
t0 = 1 and ∆t = 0.001.

89

(c) t = 3.0

(d) t = 4.5

Figure 4.4: (cont’d) The water surface profile of example 2, at different times,
with t0 = 1 and ∆t = 0.001.

90

(a) t = 1.0

(b) t = 2.2

Figure 4.5: The water surface profile of example 2, at different times, with
t0 = 3 and ∆t = 0.001.

91

(c) t = 3.2

(d) t = 4.0

Figure 4.5: (cont’d) The water surface profile of example 2, at different times,
with t0 = 3 and ∆t = 0.001.

92

−1.0 −0.5 0.0 0.5 1.0
1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

∆t = 0.1

∆t = 0.001

(a) t = 1.0

−1.0 −0.5 0.0 0.5 1.0
1.6

1.7

1.8

1.9

2.0

2.1

(b) t = 2.0

−1.0 −0.5 0.0 0.5 1.0
1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

(c) t = 3.0

−1.0 −0.5 0.0 0.5 1.0
0.7

0.8

0.9

1.0

1.1

1.2

(d) t = 4.5

Figure 4.6: Comparison of water surface profile in example 2, between ∆t =
0.001 and ∆t = 0.1, for the case of t0 = 1.

93

−1.0 −0.5 0.0 0.5 1.0
1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

∆t = 0.1

∆t = 0.001

(a) t = 1.0

−1.0 −0.5 0.0 0.5 1.0
1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

(b) t = 2.2

−1.0 −0.5 0.0 0.5 1.0
1.0

1.5

2.0

2.5

3.0

3.5

(c) t = 3.2

−1.0 −0.5 0.0 0.5 1.0
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

(d) t = 4.0

Figure 4.7: Comparison of water surface profile in example 2, between ∆t =
0.001 and ∆t = 0.1, for the case of t0 = 3.

94

Table 4.3: Execution time and speedup of implicit and explicit methods for
solving example 2 with different number of cores. For implicit method we solve
200 steps with ∆t = 0.1, and for explicit approach, we solve 20000 steps with
∆t = 0.001.

Cores
Implicit method CPU time (seconds) Explicit method CPU time (seconds)

Local steps Global steps Total Speedup Local steps Global step Total Speedup
12 373 357 730 1.00 5522 8733 14255 1.00
24 182 311 493 1.48 2785 5107 7892 1.81
48 94.2 268 362 2.01 1382 2930 4312 3.31

tion (similar to (4.10)) in this domain. As for the initial condition, we set

h|t=0 = 1.5, u|t=0 = 0 everywhere in the domain. We apply, inflow/outflow

boundary condition on the left boundary (c.f. Fig. 4.8) with h∞ = 3, and

u∞ = 0.5 ex. Meanwhile, on the right boundary, the outflow boundary condi-

tion is applied, and on the top and bottom boundaries, we employ solid wall

condition. We solve the problem in the time interval t ∈ (0, 5]. In order to

integrate the semi-discrete form in time, we use the low-storage fourth order

explicit Runge-Kutta method. The time step size is chosen constant equal to

10−3 throughout the analysis.

In Fig. 4.9, we show the snapshots of water height at four different

time steps. This setup can imitate the water released from a dam into the

downstream water at rest. Throughout the channel, the Froude number is less

than one, which is an indication of a subcritical flow. Hence, the initial water

wave is traveling faster than the flow, until it reaches the narrower sections of

the channel. Near the outlet, the water starts to build up, and thus, a new

wave start to propagate towards upstream (c.f. Figs. 4.9c,d). This process will

eventually results in a steady water profile. Fig. 4.10 presents the velocity in

95

Figure 4.8: The discretized computational domain of example 3. There are 64
divisions in the vertical direction, and in the horizontal direction, we have 64
elements in each of the intervals x ∈ (−1, 0), x ∈ (0, 0.5), and x ∈ (0.5, 1).

y-direction for the same problem at the same time steps.

Overall, based on the presented results, each time step in the explicit

approach is faster and scales better by increasing the number of computing

cores. On the other hand, the time step size in the implicit approach can

be increased significantly, and hence result in a good performance, especially

when the evolution of the solution happens slowly. However, by increasing the

time step size, there is a chance that we miss important processes in the flow.

In practice, both of these methods can have their own applications. While,

the lower memory usage of the explicit method and the local nature of its

computation results in a better scalability of this approach for large problems,

the higher stability of implicit method can be utilized for a more efficient time

integration procedure.

96

(a) t = 1.0

(b) t = 2.7

Figure 4.9: Water height in example 3, at different time steps.

97

(c) t = 3.5

(d) t = 4.5

Figure 4.9: (cont’d) Water height in example 3, at different time steps.

98

(a) t = 1.0

(b) t = 2.7

Figure 4.10: Velocity in y-direction in example 3, at different time steps.

99

(c) t = 3.5

(d) t = 4.5

Figure 4.10: (cont’d) Velocity in y-direction in example 3, at different time
steps.

100

Chapter 5

Solving Green–Naghdi Equation Using

Hybridized Discontinuous Galerkin Method

In this chapter we introduce a hybridized discontinuous Galerkin method

for the Green-Naghdi equation. We explained the derivation procedure of this

equation in Chapter 2, and here we apply a minor change on the equation to

improve its dispersive properties. We then use an operator splitting technique

to split the equation to a hyperbolic part and a dispersive part. The hyperbolic

part will be solved using the explicit technique that we introduced in Chapter

4. Here, the solution to the dispersive part will be explained in more detail.

Let us first recall the G–N equation (2.54) in the nondimensionalized form:{
∂tζ +∇ · (hū) = 0,

(I + µT) (∂tū + ε(ū · ∇)ū) +∇ζ + εµQ1(ū) = 0.
(5.1)

Here, we have dropped primes, despite all variables and operators being nondi-

mensional. Meanwhile, operators T,Q1 are defined as:

T (w) = R1(∇ ·w) + βR2(∇b ·w), (5.2)

Q1(w) = −2R1

(
∂xw · ∂yw⊥ + (∇ ·w)2

)
+ βR2 (w · (w · ∇)∇b) , (5.3)

101

where, w⊥ = (−w2, w1), and:

R1(w) = − 1

3h
∇(h3w)− βh

2
w∇b, (5.4)

R2(w) =
1

2h
∇(h2w) + βw∇b. (5.5)

Although Eq. (5.1) is a dispersive equation, there are modified versions of this

equation which can offer better dispersive properties [48]. The main idea here

is to add some terms of order O(µ2), such that the approximation order of the

equations are not affected, but the equations will be appropriate for a wider

range of µ. To this end, based on the second equation of (5.1), we have:

∂tu = −∇ζ − ε(u · ∇)u +O(µ)

Now, given α ∈ R, we have:

∂tu = α∂tu + (1− α)∂tu = α∂tu− (1− α) (∇ζ + ε(u · ∇)u) +O(µ)

Substituting ∂tu from above into equation (5.1) and dropping all terms of

order µ2 or higher, we will have:{
∂tζ +∇ · (hū) = 0,

(I + µαT) (∂tū + ε(ū · ∇)ū) + (I − µ(1− α)T)∇ζ + εµQ1(ū) = 0.

(5.6)

We rewrite the term (I − µ(1− α)T)∇ζ as:

(I − µ(1− α)T)∇ζ = (I + µαT)∇ζ − µT∇ζ

=
∇ζ −∇ζ + α(I + µαT)∇ζ − µαT∇ζ

α

=
1

α
∇ζ +

α− 1

α
(I + µαT)∇ζ.

102

Next, we will replace the variables (ζ,u) with the conserved variables (h, hu).

In this regard, we use ∂tu = 1
h
∂t(hu) + ε

h
∇ · (hu)u, and ∇ · (hu ⊗ u) =

∇ · (hu)u + h(u · ∇)u to get:
∂th+ ε∇ · (hū) = 0,

∂t(hū) + ε∇ · (hū⊗ ū) +
α− 1

α
h∇ζ

+
(
I + µαhT 1

h

)−1
[

1

α
h∇ζ + εµhQ1(ū)

]
= 0.

(5.7)

Finally, we write the equations in the dimensionalized form:
∂th+∇ · (hū) = 0,

∂t(hū) +∇ · (hū⊗ ū) +
α− 1

α
gh∇ζ

+
(
I + αhT 1

h

)−1
[

1

α
gh∇ζ + hQ1(ū)

]
= 0.

(5.8)

5.1 Dispersive Properties of the Modified G–N Equa-
tion

Before we continue to the solution of Eq. (5.8), we need to explain

the effect of α on the dispersive properties of this equation. Let us refer

to (2.6), and linearize it by setting β = ε = 0, and u = 0. Hence, h

(nondimensionalized water depth) is equal to 1, and Q1(u) = 0. Moreover,

T (∂tu) = −(1/3)∇ (∇ · (∂tu)). Thus, the linearized version of equation (5.6)

reads as: ∂tζ +∇ · u = 0,

∂tu−
µα

3
∇∇ · ∂tu +∇ζ + µ

1− α
3
∇∇ · ∇ζ = 0.

(5.9)

103

The dimensionalized equation, corresponding to (5.9) finds the following form:∂tζ +H0∇ · u = 0,

∂tu−
α

3
H2

0∇∇ · ∂tu + g∇ζ +
1− α

3
gH2

0∇∇ · ∇ζ = 0.
(5.10)

By taking Fourier transform of this equation with respect to the horizontal

variable and time we obtain the corresponding dispersion relation. A less

intricate approach for this purpose is to use (ζ,u) = (ζ̂ , û)ei(ξ·x−ωt) as the

solution and obtain the following relation:

ω(ξ) = |ξ|
√
gH0

√
1 + α−1

3
(|ξ|H0)2

1 + α
3
(|ξ|H0)2

(5.11)

Now, we want to compute the phase and group velocities based on this dis-

persion relation. One can easily check that:

cGN
P (|ξ|H0) =

√
gH0

√
1 + α−1

3
(|ξ|H0)2

1 + α
3
(|ξ|H0)2

(5.12)

cGN
G (|ξ|H0) =

9 + 6(a− 1)(kH0)2 + a(a− 1)(kH0)4

(3 + (a− 1)(kH0)2)1/2 (3 + a(kH0)2)3/2
(5.13)

These relations are an approximation to the phase and group velocities that

we derived in Chapter 2 (refer to Eqs. (2.19), (2.21)). In Figs. 5.1 and 5.2 we

have plotted the ratios
cGN
P (|ξ|H0)

cP (|ξ|H0)
and

cGN
G (|ξ|H0)

cG(|ξ|H0)
for |ξ|H0 ∈ [0, 4]. Based on these

graphs and the range of wavenumbers that we have to resolve in a problem,

we can choose the proper value for α to make our model more dependable in

practical applications.

104

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
|ξ|H0

0.9

1.0

1.1

cG
N

P
/c

P

α = 1.0
α = 1.15
α = 1.2

Figure 5.1: The ratio of approximate phase velocity based on the modified
G–N equation to the exact linearized wave model, for different values of α.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
|ξ|H0

0.9

1.0

1.1

cG
N

G
/c

G

α = 1.0
α = 1.15
α = 1.2

Figure 5.2: The ratio of approximate group velocity based on the modified
G–N equation to the exact linearized wave model, for different values of α.

105

5.2 Solution Approach

Here we introduce an operator splitting approach which will be used to

solve Eq. (5.8). The splitting method that we use here is widely referred to

as Strang splitting [66]. This splitting is known to be second order accurate if

each of its components are at least second order accurate.

In order to apply this method, we first consider S1 as the solution

operator associated with hyperbolic part of (5.8):{
∂th+∇ · (hu) = 0,

∂t(hu) +∇(1
2
gh2) +∇ · (hu⊗ u) + gh∇b = 0.

(5.14)

This operator takes the solution at the previous time level and computes the

evolution of the solution during the current time step. Moreover, S2 is the

solution operator for the dispersive part:{
∂th = 0,

∂t(hu)− 1
α
gh∇ζ + (1 + αhT 1

h
)−1
[

1
α
gh∇ζ + hQ1(u)

]
= 0.

(5.15)

Then the Strang splitting suggests that the solution operator corresponding

to system (5.8) is:

S(∆t) = S1(∆t/2)S2(∆t)S1(∆t/2). (5.16)

Thus, we start our computation by solving Eq. (5.14), and use the solution

obtained from this equation at time ∆t/2, as the initial condition for Eq. (5.15).

Then we use the solution of (5.15) at time ∆t as the initial condition for (5.14)

and solve this equation to obtain the solution at time ∆t. We continue this

process in the next time steps. A graphical representation of the employed

technique is shown in Fig. 5.3.

106

Figure 5.3: The splitting technique used to solve the coupling between the hy-
perbolic and dispersive sub-problems. We start with qh|tn , and obtain qh|tn+1

at the end of the time step.

Since the second step in this splitting, takes into account the dispersive

terms in the Green–Naghdi equation, in some references [33], this step has

been called the dispersive correction step. The significance of this naming is

that by turning this correction off, we can reduce the computational cost of

the dispersive terms in those parts of the domain where these effects can be

neglected. For example, as we mentioned in Chapter 2, for ocean modeling

applications, near the coast, the value of µ is large enough to consider using

O(µ2) models. Hence, using the dispersive correction is an apt choice. How-

ever, away from the coast, the values of µ are small and an O(µ) model (such

as Saint-Venant wave equation) can give us the required precision.

The solution to system (5.14) was explained in Chapter 4, and here,

we only discuss the solution to system (5.15). To this end, we are looking for

107

(h, hu) that solves the following equation:{
∂th = 0,

∂t(hu)− 1
α
gh∇ζ + w1 = 0,

(5.17)

where w1 is obtained using:

(1 + αhT
1

h
)w1 =

1

α
gh∇ζ + hQ1(u). (5.18)

Using definition (5.2) with β = 1, the above equation finds the following form:

w1 + αhT
(

1
h
w1

)
= w1 −

α

3
∇
(
h3∇ ·

(
1
h
w1

))
− αh2

2
∇ ·
(

1
h
w1

)
∇b

+
α

2
∇ (h∇b ·w1) + α∇b ·w1∇b. (5.19)

We also expand the operator Q1(u) in the right hand side of (5.18) as follows:

hQ1(u) =
2

3
∇
(
h3∂xu · ∂yu⊥ + h3(∇ · u)2

)
+

1

2
∇
(
h2u · (u · ∇)∇b

)
+ h2

(
∂xu · ∂yu⊥ + (∇ · u)2

)
∇b+ h (u · (u · ∇)∇b)∇b. (5.20)

It should be noted that in order to compute Q1(u), one needs to obtain the

second derivatives of u in the domain of each element. As will be explained

later, we use a local discontinuous Galerkin approximation to ∇u and ∇∇u

to compute the high order derivatives of u inside Q1(u).

Based on the above relations, (5.18) can be written as a system of first

order equations:
∇ · (1

h
w1)− h−3w2 = 0,

w1 − α
3
∇(w2)− α

2h
w2∇b+ α

2
∇(h∇b ·w1)

+ αw1∇b⊗∇b = 1
α
gh∇ζ + hQ1(u).

(5.21)

108

We are going to use an explicit method to solve (5.17). Hence, in the process

of solving (5.21), h and u are known. However, the assumption that h ≥ hmin

with hmin being a uniform positive constant should be taken into account.

An important feature of Eq. (5.18) is the regularization effect of this

equation on the solution [41]. One can realize this fact, by comparing the effect

of the term gh∇ζ in Eqs. (5.17) and (5.18). This term can significantly affect

the momentum equation in NSWE and is usually in charge of the development

of sharp features in this equation. Since, in the dispersive correction, we apply

the operator S2 after each hyperbolic solve, we actually remove the sharp

features which might be developed by gh∇ζ and replace them with w1, which

is the solution to a globally solved equation. This property improves the

stability of the numerical method and diffuses some of the features that will

develop in the solution due to the nonlinear hyperbolic part, i.e. Eq. (5.14).

5.3 Variational Formulation

In this section we use the hybridized DG method to solve Eq. (5.17).

To this end, we refer to the functional settings introduced in Section 4.1.2,

and define an additional space M̄p
h as follows:

M̄p
h := {µ ∈

(
L2(Eh)

)d
: µ|e ∈ (Qp(e))d ∀e ∈ Eh}. (5.22)

109

Now, we want to find (w1h, w2h) ∈ Vp
h, and ŵ1h ∈ M̄p

h such that:
(h−3w2h, p2)−

〈
ĥ−1 ŵ1h · n, p2

〉
+ (h−1 w1h,∇p2) = 0.

(w1h,p1)− α
3
〈w∗2h · n,p1〉+ α

3
(w2h,∇ · p1)− α

2

(
1
h
∇bw2h,p1

)
+ α

2

〈
ĥ∇b · ŵ1h,p1 · n

〉
− α

2
(h∇b ·w1h,∇ · p1)

+ α (∇b⊗∇bw1h,p1) = l01(p1),

(5.23)

for all (p1, p2) ∈ Vp
h. Here, the definition of l01(p1) can be inferred by com-

paring the above system with (5.21); moreover, the numerical flux w∗2h · n is

defined as:

w∗2h · n = w2hI · n + τ (w1h − ŵ1h) , (5.24)

where I is the d×d identity matrix and τ is the stabilization parameter matrix.

We will use a constant and uniform diagonal matrix for this purpose.

Next, we define the following bilinear forms and functionals:

a02(w2h, p2) = (h−3w2h, p2); bT01(w1h, p2) = (h−1w1h,∇p2);

c01(ŵ1, p2) = 〈ĥ−1ŵ1h · n, p2〉; b02(w2h,p1) = (∇w2h,p1);

a01(w1h,p1) = (w1h,p1) + α (∇b⊗∇bw1h,p1) ;

d01(w1h,p1) = 〈τw1h,p1〉; bT03(w1h,p1) = (h∇b ·w1h,∇ · p1)

a03(w2h,p1) =
(

1
h
∇bw2h,p1

)
;

c02(ŵ1h,p1) = 〈τŵ1h,p1〉+
3

2

〈
ĥ∇b · ŵ1h,p1 · n

〉
.

(5.25)

We are now able to write Eq. (5.23) as:{
A02w2h +BT

01w1h − C01ŵ1h = 0(
A01 − α

2
BT

03 − α
3
D01

)
w1h −

(
α
2
A03 + α

3
B02

)
w2h + α

3
C02ŵ1h = L01

(5.26a)

110

Finally, we also require that the numerical flux be conserved across element

edges. In other words, we have:

〈w∗2h · n, µ〉∂Th\∂Ω + 〈Bh, µ〉∂Th∩∂Ω = 0, (5.26b)

for all µ ∈ M̄p
h. Here Bh is the boundary operator, which can be defined based

on the applied boundary conditions.

5.3.1 Boundary Conditions

In this study, the following types of boundary conditions have been

applied through the operator Bh:

• Periodic boundary condition: In this case, we couple ŵ1h on the two

periodic boundaries and also set the incoming and outgoing fluxes from

these boundaries equal to each other. Hence, Bh = w∗2h · n, which sat-

isfies the conservation of the numerical flux w∗2h · n across the periodic

boundaries. This also means that the periodic boundary will be treated

as if it is a boundary between two elements inside the domain.

• Solid wall boundary: At the solid wall, we simply set ŵ1h · n = 0.

However, this condition does not set ŵ1h in the tangent direction to the

wall. In the tangent direction, we set ŵ1h · t based on the projection of

w1h · t onto M̄p
h at the corresponding face (t being the tangent vector to

the solid wall). This means, we take the tangential component of ŵ1h

from the tangential component of w1h. We include the conditions on

111

normal and tangential directions of ŵ1h using the following definition of

Bh in (5.26b):

Bh = w1h − (w1h · n)n− ŵ1h. (5.27)

One can simply check that Bh ·n = ŵ1h ·n, and Bh · t = ŵ1h · t−w1h · t.

We will use the above boundary conditions in the examples presented below.

Here, we also need inflow boundary conditions. To apply these types of bound-

ary condition, we simply use a region with no dispersive correction. Hence,

we simply solve NSWE in that region to be able to apply more sophisticated

boundary conditions. As a result, there is no need for including those types of

boundary conditions directly in the formulation of Bh in (5.26b).

5.3.2 Computation of Higher Order Derivatives in Q1(u)

Solving equation (5.18) involves computation of the 1st and 2nd order

derivatives of the velocity vector. Among all other terms, we need to compute

the term ∇
(
h3∂xu · ∂yu⊥ + h3(∇ · u)2

)
in each element. If this computation

is performed in a local manner in each element independent of the others, we

lose a significant order of accuracy. It can be easily checked that by computing

this term locally, our solution will not converge for elements with first order

polynomial approximation. On the other hand, since we use this term in our

weak formulation, one might consider using the integration by parts technique

to transfer the gradient of the term in parentheses to the test function, and

replace their flux with a proper numerical flux. However, finding such a flux

formulation for the extremely nonlinear terms like (∇·u)2 or ∂xu ·∂yu⊥ is not

112

straightforward. Therefore, in this study we use a local discontinuous Galerkin

technique to obtain approximations to ∇u and ∇∇u. It is worthwhile to note

that, ∇u is a 2-tensor and ∇∇u is a 3-tensor; As a result, we switch to index

notation for clarity. We use ui to denote the components of u and define the

tensors rij (which contains the components of ∇u), and sijk (containing the

components of ∇∇u) as follows:

rij − ∂jui = 0, (5.28a)

sijk − ∂krij = 0. (5.28b)

Next, we write the variational formulations corresponding to these equations

in an element (K ∈ Th):

(rij, σij)K = 〈ûi, σijnj〉∂K − (ui, ∂jσij)K , (5.29a)

(sijk, ηijk)K = 〈r̂ij, ηijknk〉∂K − (rij, ∂kηijk)K . (5.29b)

In these equations, ûi and r̂ij are the numerical fluxes, which should be defined

based on the values of ui and rij in the two neighboring elements. In this study

we will use the centered fluxes [1], i.e. ûi = {{ui}}, r̂ij = {{rij}}.

By using this technique, we can compute the derivatives of u, and

substitute them in (5.20) to compute hQ1(u), and solve the system (5.26a) by

an explicit time integration method.

5.4 Numerical Examples

In this section, we present five numerical example, for verification and

validation of the presented technique. The purpose of the first example is to

113

show the convergence properties of the numerical approximation with respect

to the element size (∆x) and the polynomial order (p). We also measure the

amount of time spent on each phase of the operator splitting to give a sense

of the cost of each phase of this procedure. In the second example we consider

the amplifying effect of the reflection from a solid wall on the amplitude of a

solitary wave. These kinds of simulations are useful in the design of levees and

dikes. We compare our numerical results with a number of experimental data

from the literature. In the third example, we study the shoaling and reflection

of a solitary wave. This example tests the model’s dispersive and nonlinear

properties before the breaking stage. In the fourth example, we compare our

numerical results for a wave traveling on a mild slope with the corresponding

experimental observations. In the last example, we solve a two dimensional

problem. Even though, we do not compare our results for this example with

experimental data, we find our numerical results to be consistent with the

observations in 1D experiments. In all of the numerical tests presented here,

we use the regular Runge-Kutta time integration technique for each part of the

operator splitting. Similar to Chapter 4, we use our software which is written

in C++, and uses the libraries deal.II, PETSc, and MUMPS for solving the

GN equation.

Example 1: In this example we consider the exact solution to the

nonlinear Green-Naghdi equation on a flat bathymetry in one dimension. This

solution, which is derived by Serre [63], should match our numerical results

114

with α = 1. This analytical solution is given by:

h(t, x) = H0 + a0 sech2 (κ(x− x0 − c0t)) , (5.30a)

hu(t, x) = c0h(t, x)− c0H0, (5.30b)

κ =

√
3a0

2H0

√
H0 + a0

, (5.30c)

c0 =
√
g(H0 + a0) (5.30d)

Here, we consider H0 = 0.5, and two values for a0/H0, i.e. 0.05, 0.2. We solve

the problem in the domain shown in Fig. 5.4. The domain is a stripe with 20

m length and 0.2 m width, and is oriented with an angle of 30◦ with respect

to the x-axis. The reason for choosing a rotated domain is to include as many

nonzero terms as possible in Eq. (5.18). Since we have rotated the domain,

the x-coordinate in the analytical solution (5.30) should be replaced by x1

(refer to Fig. 5.4). At all boundaries we consider solid wall conditions. In

our numerical scheme, we assign the initial conditions according to the above

h, hu at t = 0, x0 = −4, and let the solitary wave propagate in the positive

x-direction (refer to Fig. 5.5).

We compute the errors of the numerical results at time t = 0.375 s

in the L2-norm, i.e. ‖q − qh‖L2 with q = (h, hu). Next, we compute the

corresponding rates of convergence on a set of successively refined meshes for

polynomial orders p = 0, 1, 2, 3. The time step size in all of the simulations is

chosen such that the CFL condition is satisfied. The corresponding plots for

a0/H0 = 0.2, 0.4 are shown in Fig. 5.6. We can observe that for a0/H0 = 0.2,

the convergence rates are very close to the optimal rates, i.e. p + 1, for all

115

Figure 5.4: Schematic plot of the domain of Example 1. The stripe is 20 m
long and 0.2 m wide.

(a)

(b)

Figure 5.5: Plots of the numerical results of Example 1 with a0/H0 = 0.2, at
times (a): t = 0 s and (b): t = 0.375 s.

116

orders of polynomial approximations. An important feature in these plots is

the convergence of the results for p = 0 with the order 0.85. This is of special

interest in practical applications where one needs to use filters to stabilize the

numerical results, and the convergence in lowest order approximation can be

very helpful [29]. The same observation as above is also true for a0/H0 = 0.4,

except the lower convergence rate for p = 0. As a final remark, it should be

noted that in this example, the analytical solution of u is not exactly zero

at the two ends of the domain i.e. x1 = ±10 m. Hence, the error caused

by applying the solid wall becomes the dominant error as we decrease the

discretization errors. As a result we cannot achieve errors lower than 10−6 in

this example.

Finally, from the computational cost point of view, we compare the

CPU time of different phases of the computation in our splitting scheme. As

mentioned before, our computation at each time step consists of two NSWE

solves and one dispersive solve. We have measured computational time of each

of these steps on a mesh with 480 elements with p = 2, when 4 computational

cores on a single machine are utilized. We observe that in each time step,

around 52% of the CPU time is taken by the two NSWE solves and 48% is

taken by the dispersive solve step. It is worthwhile to mention that these

cost shares can vary based on the size of the matrices and the way we employ

parallelism.

Example 2: In this example, we compare our numerical results with

the experimental data regarding the reflection of a solitary wave from a solid

117

10−1 100

∆x

10−6

10−5

10−4

10−3

10−2

10−1

100

||(q
−
q
h
)|| L

2
(Ω

)

p = 0
0.85

1.0

p = 1

2.07

1.0

p = 2

2.94

1.0

p = 3

4.18
1.0

Approximation error of qh

(a)

10−1 100

∆x

10−6

10−5

10−4

10−3

10−2

10−1

100

||(q
−
q
h
)|| L

2
(Ω

)

p = 0
0.69

1.0

p = 1

2.07

1.0

p = 2

2.95

1.0

p = 3

4.08

1.0

Approximation error of qh

(b)

Figure 5.6: The approximation errors and rates of convergence for different
mesh sizes and polynomial orders (a): a0/H0 = 0.2, (b): a0/H0 = 0.4.

118

wall [5, 49, 58, 67]. The phase change and the amplification of a nonlinear

wave reaching a solid wall is of special interest in the design of levees and

dikes.

Here, we consider a similar setup as Example 1, but we let the wave

reach the solid wall and report the maximum water elevation that it exhibits at

this location. For this test we use a mesh of first order elements with ∆x = 0.1

m. As an example, we show the snapshots of the water surface for a solitary

wave with a0/H0 = 0.35 at two different times in Fig. 5.7. One can observe

that the maximum wave height reaches 0.887 m near the wall, which results

in ζmax/H0 = 0.774. This value is very close to the experimental data for

a0/H0 = 0.35. In Fig. 5.8, the wave amplification factors are computed for

multiple values of a0/H0 and compared with the experimental data. Moreover,

we include the results from linear dispersive wave theory in this graph. One can

observe that, for large values of a0/H0, the linear wave theory has noticeable

errors compared to the Green-Naghdi model. It is also worthwhile to mention

that simulating this phenomenon using the nonlinear shallow water equation

requires a filtering or limiting process. This process will in turn result in the

loss of the peak amplitude, which happens next to the wall.

Example 3: In this example we validate our numerical results against

the experimental data regarding the reflection of a solitary wave over a sloping

beach [26, 69]. The geometry of this problem is shown in Fig. 5.9. The incident

wave does not break prior to touching the wall; however, after the reflection its

shape changes dramatically, which requires a fully nonlinear model to capture

119

(a)

(b)

Figure 5.7: Profile of water height h = ζ +H0 (measured in 0.1 meter) at two
times for the case of a0/H0 = 0.35; (a): t = 0.0, (b): t = 17.36/

√
g/H0.

120

0.0 0.1 0.2 0.3 0.4 0.5 0.6

a0/H0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ζ m
a

x
/
H

0

Maximum surface elevation for different values of a0

Linear theory

Experimental data

Numerical results

Figure 5.8: Amplification effect of a solid wall on the reflected solitary wave
in Example 2.

its behavior.

The numerical model is 40 m long, and the solid wall condition is

applied at both ends. The initial water depth is H0 = 0.7 m, and two values

are used for the initial wave amplitude, i.e. a0 = 7 cm, and a0 = 12 cm. The

wave starts its propagation at x = 10 m (refer to Fig. 5.9), and the beach with

the slope 1:50 starts at x = 20 m. The element size is 8 cm and we use first

order elements to discretize the domain. To satisfy the stability criterion, the

time step size is taken to be 0.01 s. The time history of water surface elevation

at different locations in the domain is available in the literature [69]. Here, we

present our results for a reading station located at x = 37.75 m.

In Fig. 5.10, we show the snapshots of the water surface rise during

the simulation for the initial amplitudes a0 = 7 and 12 cm. In Fig. 5.11 we

121

Figure 5.9: The geometry of the numerical model of Example 3.

show the time history of the water surface elevation at the reading station with

x = 37.75 m. The numerical results have been able to capture the peaks in the

experimental data quite well; however, as the reflected waves return from the

wall, we can observe differences between numerical and experimental results.

Example 4: In this example, we validate our numerical results against

experimental data for the nonlinear shoaling of waves propagating over a slop-

ing beach. The sloping beach causes the waves traveling over it to steepen and

shoal and finally break. Including the nonlinear shoaling is a required feature

for the models used in the coastal ocean simulation. The experimental data

for the current test can be found in [4, 27]. The interested reader can also

refer to the original reports in French, which were prepared in the Laboratoire

des Ècoulements Gèophysiques et Industriels (LEGI) in Grenoble.

As shown in Fig. 5.12, we generate a solitary wave at x = 0, and

let it propagate towards the sloping beach, which has a mild slope of 1:30.

The water height at the flat part of the channel is H0 = 25 cm. We use

four different values for the amplitude of the solitary wave, i.e. a0/H0 =

122

20 25 30 35 40

x (m)

−5

0

5

10

15

20

ζ
(c

m
)

Snapshots of the water surface at different times

t = 9 s

t = 10 s

t = 10.7 s

t = 11 s

t = 11.2 s

t = 11.5 s

t = 11.75 s

(a) For a0 = 7 cm

20 25 30 35 40

x (m)

0

5

10

15

20

25

30

35

40

ζ
(c

m
)

Snapshots of the water surface at different times

t = 9 s

t = 10 s

t = 10.25 s

t = 10.5 s

t = 10.75 s

t = 11 s

t = 11.25 s

(b) For a0 = 12 cm

Figure 5.10: The snapshots of the water surface (ζ) in Example 3, at different
times.

123

6 8 10 12 14 16 18 20

t (s)

−2

0

2

4

6

8

10

12

ζ
(c

m
)

Time history of ζ at x = 37.75 m, for a0 = 7 cm

Numerical result

Experimental data

(a) For a0 = 7 cm

6 8 10 12 14 16 18 20

t (s)

0

5

10

15

20

ζ
(c

m
)

Time history of ζ at x = 37.75 m, for a0 = 12 cm

Numerical result

Experimental data

(b) For a0 = 12 cm

Figure 5.11: Time history of the water surface at reading station (x = 37.75
m) in Example 3.

124

0.096, 0.298, 0.456, 0.534. As the solitary wave travels into the sloping beach,

it shoals and gets close to the breaking point. We plot the time-history of the

water surface at four stations near the shore and compare it with the data

presented in [4].

As for the numerical mesh, we use a 25 m long 2D domain, with 0.2 m

width. In the longitudinal direction, we use 420 elements with ∆xmin = 0.05

m and ∆xmax = 0.1 m. The polynomial order of all of the elements is p = 1.

The time step size is taken ∆t = 0.015 seconds.

The plots of the time history of water surface elevation at five stations

near the shore are shown in Fig. 5.13. For moderate nonlinearity parame-

ter, i.e. a0/H0 = 0.298, 0.456, we can observe a good agreement between the

numerical results and the experimental data. However, the unexpected obser-

vation in these figures is the noticeable difference in the phase and amplitude of

the numerical and experimental results for the case of a0/H0 = 0.096. Since,

both nonlinearity and shallowness parameters are smaller in this case com-

pared to all other cases, we expect to see a good match for a0/H0 = 0.096.

The reason for this discrepancy, which has been also reported in the literature

[4] is unknown to us.

Example 5: In this example we solve a two dimensional problem with

varying bathymetry. It should be mentioned that, most of the available test

cases for the two dimensional experiments require an absorbing boundary con-

dition to be implemented in the numerical solver. Employing such absorbing

boundary conditions is a demanding process in a two dimensional problem.

125

Figure 5.12: The setup of the numerical test of Example 4.

Hence, we only present our numerical results for a sample 2D problem and

leave the more sophisticated test problems for later developments.

The geometry of the problem, along with the initial water elevation

is shown in Fig. 5.14. Here, we have a rectangular domain Ω = (−3, 7) ×

(−2.5, 2.5) m, with solid wall boundary conditions on all of its boundaries.

The topography is flat, except a cosine hump which is located inside a circle

with radius 2.0 m and centered at x = 2 m, y = 0 m. The following formula

is used for the bathymetry:

b =

{
0.0

√
(x− 2)2 + y2 > 2.0

1
8

[
1 + cos

(
π
2

√
(x− 2)2 + y2

)] √
(x− 2)2 + y2 ≤ 2.0

One can observe that by using the above definition for b, the gradient of b in Eq.

(5.20) is not zero. Actually, we have to obtain ∇b, ∇∇b, and ∇∇∇b (which

are first, second, and third rank tensors) at the integration points and support

them to the solver. We use the solitary wave introduced in Example 1 with

H0 = 0.3 m and a0 = 0.1 m, as our initial condition. The domain is divided

into 120 × 50 elements with ∆y = 0.1 m, ∆xmin = 0.05 m, and ∆xmax = 0.1

m. All of the elements have second order polynomial basis and accordingly

126

(a)

(b)

Figure 5.13: Time history of water surface elevation at different locations near
the shore, for Example 4. The numerical results are shown in continuous lines
and the corresponding experimental values are shown in dotted lines.

127

(c)

(d)

Figure 5.13 (cont.): Time history of water surface elevation at different lo-
cations near the shore, for Example 4. The numerical results are shown in
continuous lines and the corresponding experimental values are shown in dot-
ted lines.

128

Figure 5.14: The bathymetry and initial state of water surface in Example 5.

the time step size is taken ∆t = 0.005 s. The water surface at different time

steps during the simulation is shown in Fig. 5.15. As the solitary wave travels

over the hump, its shape starts to change (5.15a) and it is no more the exact

solution to the Green-Naghdi equation. Hence, we notice in 5.15b that the

long waves have traveled ahead of the shorter waves and after the reflection in

5.15c, the same pattern is followed by the returning waves.

129

(a) t = 1.01 s

(b) t = 2.00 s

Figure 5.15: Water surface elevation of Example 5 at different time steps.

130

(c) t = 3.82 s

(d) t = 6.28 s

Figure 5.15 (cont.): Water surface elevation of Example 5 at different time
steps.

131

(e) t = 6.96 s

Figure 5.15 (cont.): Water surface elevation of Example 5 at different time
steps.

132

Chapter 6

Conclusion

In this study we solved three equations of the shallow water regime

using the hybridized discontinuous Galerkin method. We first discussed the

solution of the KdV equation, which belongs to the family of weakly nonlinear

dispersive waves. We have shown the proposed method is stable and highly

accurate compared to the previous methods used in the literature. When HDG

is applied to lower order equations, we express the approximate variables and

numerical fluxes in terms of the numerial trace of u. Here, in order to keep the

same workflow as the common HDG schemes, we include the numerical traces

of ∂xu and u as our global unknowns. By using this technique, the method can

be conveniently extended to higher order equations. Despite adding another

global unknown, the number of global equations is still O(kd−1/h). Although,

we solve our global set of equations for two numerical traces, the solution pro-

cedure is similar to that of common HDG implementations. Hence, we expect

to inherit the corresponding properties of the HDG, especially the optimal

convergence of the method. In our method, the numerical fluxes are related

to the unknown traces through two stabilization parameters, σ and τ . We

derived the sufficient conditions on σ and τ to construct a stable method for

the linear problem. Next, for the nonlinear case, we chose the stabilization

133

parameter (τ) based on a Lax-Fredriech choice of flux. Afterwards, through a

set of numerical experiments we have shown that by using elements of order

k, the computed solution would converge optimally with order k+ 1 for every

approximate solution, i.e. u, p, and q.

Next, we solved the nonlinear shallow water equation using an explicit

hybridized DG. Although the NSWE is not a dispersive wave equation, it was

necessary to solve this equation to be able to tackle the fully nonlinear Green-

Naghdi equation by an operator splitting technique. There are a number of

papers for solving nonlinear conservation laws using HDG in the literature;

however, to the best of our knowledge, the presented method is one the few

explicit implementations of the hybridized DG for this purpose. We demon-

strated the optimal convergence of the results of the proposed method and

explained the main advantages of an explicit technique compared to the more

developed implicit scheme for the NSWE.

In the final part of this work, we explained our technique to solve the

Green-Naghdi equation using the hybridized DG method. This equation is

a fully nonlinear and dispersive equation, which is used to model nearshore

water waves. We also employed a well known modification of this equation

to improve its dispersive properties for a wider range of wavenumbers. The

developed method is based on an operator splitting of the original equation,

which involves solving a hyperbolic and a dispersive part. This operator split-

ting is second order accurate, if each of its constituents are at least second

order accurate. To solve the hyperbolic equation we used the explicit tech-

134

nique, which we developed for the Saint-Venant equation. The dispersive part

of the problem was also solved using the standard HDG flux. This part of

the splitting involves an implicit solve step, which is known to have regulariz-

ing effects on the solution, and hence improves the numerical stability of the

scheme. Finally, we carried out a set of numerical experiments to verify and

validate the proposed method. We first discussed the convergence properties

of the proposed technique. Next we simulated a set of standard experimental

tests, which are often used as benchmarks for dispersive water waves. We

showed good agreement of the numerical results of these problems, with the

experimental data.

For the continuation of this research, we suggest the following direc-

tions:

• In the Green-Naghdi equation that we solved here, a matrix factorization

is required at every time step for the elliptic solve stage. To avoid this

expensive procedure, one can use the proposed method in this study to

solve the new family of Green-Naghdi equation [42], which are known to

be more computationally efficient than the one we solved here.

• Adding wetting and drying techniques to the current solver is needed to

make it more appropriate for the simulation of run-up.

• As we mentioned earlier, the dispersive correction requires a good spatial

discretization to give accurate results. By refining the mesh for this

equation, we will need a reduced time step size to maintain the stability of

135

the NSWE solver. However, if we use an implicit solver for the hyperbolic

part of splitting, we can get a more efficient solver. Moreover, it will be

possible to use the adaptive mesh refinement which is available in the

developed software.

• Applying the developed software to more practically relevant problems.

136

Bibliography

[1] Francesco Bassi and Stefano Rebay. A high-order accurate discontinu-

ous finite element method for the numerical solution of the compressible

navier–stokes equations. Journal of computational physics, 131(2):267–

279, 1997.

[2] Thomas Brooke Benjamin, Jerry Lloyd Bona, and John Joseph Mahony.

Model equations for long waves in nonlinear dispersive systems. Philo-

sophical Transactions of the Royal Society of London A: Mathematical,

Physical and Engineering Sciences, 272(1220):47–78, 1972.

[3] Daniele Boffi, Franco Brezzi, and Michel Fortin. Mixed Finite Element

Methods and Applications, volume 44. Springer Science & Business Media,

2013.

[4] Philippe Bonneton, Florent Chazel, David Lannes, Fabien Marche, and

Marion Tissier. A splitting approach for the fully nonlinear and weakly

dispersive Green–Naghdi model. Journal of Computational Physics,

230(4):1479–1498, 2011.

[5] Robert K-C Chan and Robert L Street. A computer study of finite-

amplitude water waves. Journal of Computational Physics, 6(1):68–94,

1970.

137

[6] G Chavent and G Salzano. A finite-element method for the 1-d wa-

ter flooding problem with gravity. Journal of Computational Physics,

45(3):307–344, 1982.

[7] Guy Chavent and Bernardo Cockburn. The local projection P 0 − P 1-

discontinuous-Galerkin finite element method for scalar conservation laws.

RAIRO-Modélisation mathématique et analyse numérique, 23(4):565–592,

1989.

[8] S Chippada, Clint N Dawson, ML Martinez, and Mary F Wheeler. Fi-

nite element approximations to the system of shallow water equations

i: Continuous-time a priori error estimates. SIAM journal on numerical

analysis, 35(2):692–711, 1998.

[9] S Chippada, CN Dawson, ML Martinez-Canales, and MF Wheeler. Finite

element approximations to the system of shallow water equations, part

ii: Discrete-time a priori error estimates. SIAM journal on numerical

analysis, 36(1):226–250, 1998.

[10] Bernardo Cockburn and Clint Dawson. Some extensions of the local dis-

continuous Galerkin method for convection-diffusion equations in multi-

dimensions. 1999.

[11] Bernardo Cockburn, Jayadeep Gopalakrishnan, and Raytcho Lazarov.

Unified hybridization of discontinuous Galerkin, mixed, and continuous

Galerkin methods for second order elliptic problems. SIAM Journal on

Numerical Analysis, 47(2):1319–1365, 2009.

138

[12] Bernardo Cockburn, Suchung Hou, and Chi-Wang Shu. The Runge-Kutta

local projection discontinuous Galerkin finite element method for conser-

vation laws. iv. the multidimensional case. Mathematics of Computation,

54(190):545–581, 1990.

[13] Bernardo Cockburn, San-Yih Lin, and Chi-Wang Shu. TVB Runge-Kutta

local projection discontinuous Galerkin finite element method for con-

servation laws iii: one-dimensional systems. Journal of Computational

Physics, 84(1):90–113, 1989.

[14] Bernardo Cockburn and Chi-Wang Shu. TVB Runge-Kutta local pro-

jection discontinuous Galerkin finite element method for conservation

laws. ii. general framework. Mathematics of computation, 52(186):411–

435, 1989.

[15] Bernardo Cockburn and Chi-Wang Shu. The local discontinuous Galerkin

method for time-dependent convection-diffusion systems. SIAM Journal

on Numerical Analysis, 35(6):2440–2463, 1998.

[16] Bernardo Cockburn and Chi-Wang Shu. The runge–kutta discontinu-

ous Galerkin method for conservation laws v: multidimensional systems.

Journal of Computational Physics, 141(2):199–224, 1998.

[17] Adrian Constantin and David Lannes. The hydrodynamical relevance of

the Camassa–Holm and Degasperis–Procesi equations. Archive for Ratio-

nal Mechanics and Analysis, 192(1):165–186, 2009.

139

[18] Walter Craig. An existence theory for water waves and the Boussinesq and

Korteweg-deVries scaling limits. Communications in Partial Differential

Equations, 10(8):787–1003, 1985.

[19] Walter Craig and Catherine Sulem. Numerical simulation of gravity

waves. Journal of Computational Physics, 108(1):73–83, 1993.

[20] Walter Craig, Catherine Sulem, and Pierre-Louis Sulem. Nonlinear mod-

ulation of gravity waves: a rigorous approach. Nonlinearity, 5(2):497,

1992.

[21] MJP Cullen. A finite element method for a non-linear initial value prob-

lem. IMA Journal of Applied Mathematics, 13(2):233–247, 1974.

[22] Clint Dawson. Conservative, shock-capturing transport methods with

nonconservative velocity approximations. Computational Geosciences,

3(3-4):205–227, 1999.

[23] Clint Dawson, Joannes J Westerink, Jesse C Feyen, and Dharhas

Pothina. Continuous, discontinuous and coupled discontinuous–

continuous Galerkin finite element methods for the shallow water equa-

tions. International Journal for Numerical Methods in Fluids, 52(1):63–

88, 2006.

[24] A. B. de Saint-Venant. Thorie du mouvement non permanent des eaux,

avec application aux crues des rivires et l’introduction des mares dans

leur lit. C. R. Acad. Sc. Paris, 73, 1871.

140

[25] Daniele Antonio Di Pietro and Alexandre Ern. Mathematical aspects of

discontinuous Galerkin methods, volume 69. Springer Science & Business

Media, 2011.

[26] Nicholas Dodd. Numerical model of wave run-up, overtopping, and re-

generation. Journal of Waterway, Port, Coastal, and Ocean Engineering,

124(2):73–81, 1998.

[27] Arnaud Duran and Fabien Marche. Discontinuous Galerkin discretization

of a new class of Green-Naghdi equations. Communications in Computa-

tional Physics, 17(03):721–760, 2015.

[28] Arnaud Duran and Fabien Marche. A discontinuous Galerkin method for

a new class of Green-Naghdi equations on simplicial unstructured meshes.

arXiv preprint arXiv:1604.05227, 2016.

[29] Allan P Engsig-Karup, Jan S Hesthaven, Harry B Bingham, and Per A

Madsen. Nodal dg-fem solution of high-order Boussinesq-type equations.

Journal of engineering mathematics, 56(3):351–370, 2006.

[30] David R Fuhrman and Harry B Bingham. Numerical solutions of fully

non-linear and highly dispersive Boussinesq equations in two horizon-

tal dimensions. International Journal for Numerical Methods in Fluids,

44(3):231–255, 2004.

[31] Albert E Green and Paul M Naghdi. A derivation of equations for wave

141

propagation in water of variable depth. Journal of Fluid Mechanics,

78(02):237–246, 1976.

[32] Jan S Hesthaven and Tim Warburton. Nodal discontinuous Galerkin

methods: algorithms, analysis, and applications. Springer Science & Busi-

ness Media, 2007.

[33] Helge Holden, Kenneth Hvistendahl Karlsen, and Nils Henrik Risebro.

Operator splitting methods for generalized Korteweg–de Vries equations.

Journal of Computational Physics, 153(1):203–222, 1999.

[34] Justin Holmer. The initial-boundary value problem for the kortewegde

vries equation. Communications in Partial Differential Equations,

31(8):1151–1190, 2006.

[35] Mutsuto Kawahara, Hirokazu Hirano, Khoji Tsubota, and Kazuo Inagaki.

Selective lumping finite element method for shallow water flow. Interna-

tional Journal for Numerical Methods in Fluids, 2(1):89–112, 1982.

[36] Ingemar Kinnmark. The shallow water wave equations: formulation,

analysis and application, Ph.D. Thesis, Department of Civil Engineering.

Princeton University, 1984.

[37] RL Kolar, JJ Westerink, ME Cantekin, and CA Blain. Aspects of nonlin-

ear simulations using shallow-water models based on the wave continuity

equation. Computers & fluids, 23(3):523–538, 1994.

142

[38] Diederik Johannes Korteweg and Gustav De Vries. Xli. on the change of

form of long waves advancing in a rectangular canal, and on a new type of

long stationary waves. The London, Edinburgh, and Dublin Philosophical

Magazine and Journal of Science, 39(240):422–443, 1895.

[39] M Kronbichler, S Schoeder, C Müller, and WA Wall. Comparison of

implicit and explicit hybridizable discontinuous Galerkin methods for the

acoustic wave equation. International Journal for Numerical Methods in

Engineering, 2015.

[40] David Lannes. The water waves problem - mathematical analysis and

assymptotics. American Mathematical Society, 2013.

[41] David Lannes and Philippe Bonneton. Derivation of asymptotic two-

dimensional time-dependent equations for surface water wave propaga-

tion. Physics of Fluids (1994-present), 21(1):016601, 2009.

[42] David Lannes and Fabien Marche. A new class of fully nonlinear and

weakly dispersive Green–Naghdi models for efficient 2d simulations. Jour-

nal of Computational Physics, 282:238–268, 2015.

[43] Randall J LeVeque. Finite volume methods for hyperbolic problems, vol-

ume 31. Cambridge university press, 2002.

[44] Pengzhi Lin. Numerical modeling of water waves. CRC Press, 2008.

[45] RA Luettich Jr, JJ Westerink, and Norman W Scheffner. Adcirc: An

advanced three-dimensional circulation model for shelves, coasts, and es-

143

tuaries. report 1. theory and methodology of adcirc-2ddi and adcirc-3dl.

1992.

[46] Daniel R Lynch and William G Gray. A wave equation model for finite

element tidal computations. Computers & fluids, 7(3):207–228, 1979.

[47] Daniel R Lynch and William G Gray. Finite element simulation of flow

in deforming regions. Journal of Computational Physics, 36(2):135–153,

1980.

[48] Per A Madsen, HB Bingham, and Hua Liu. A new Boussinesq method

for fully nonlinear waves from shallow to deep water. Journal of Fluid

Mechanics, 462:1–30, 2002.

[49] T Maxworthy. Experiments on collisions between solitary waves. Journal

of Fluid Mechanics, 76(01):177–186, 1976.

[50] Chiang C Mei. The Applied Dynamics of Ocean Surface Waves. New

York: John Wiley, 1983.

[51] Beny Neta and RT Williams. Stability and phase speed for various fi-

nite element formulations of the advection equation. Computers & fluids,

14(4):393–410, 1986.

[52] Ngoc Cuong Nguyen and Jaume Peraire. Hybridizable discontinuous

Galerkin methods for partial differential equations in continuum mechan-

ics. Journal of Computational Physics, 231(18):5955–5988, 2012.

144

[53] Ngoc Cuong Nguyen, Jaume Peraire, and Bernardo Cockburn. An

implicit high-order hybridizable discontinuous Galerkin method for lin-

ear convection–diffusion equations. Journal of Computational Physics,

228(9):3232–3254, 2009.

[54] Ngoc Cuong Nguyen, Jaume Peraire, and Bernardo Cockburn. An im-

plicit high-order hybridizable discontinuous Galerkin method for nonlin-

ear convection–diffusion equations. Journal of Computational Physics,

228(23):8841–8855, 2009.

[55] Nishant Panda, Clint Dawson, Yao Zhang, Andrew B Kennedy, Joannes J

Westerink, and Aaron S Donahue. Discontinuous Galerkin methods

for solving Boussinesq–Green–Naghdi equations in resolving non-linear

and dispersive surface water waves. Journal of Computational Physics,

273:572–588, 2014.

[56] J Peraire, OC Zienkiewicz, and K Morgan. Shallow water problems: a

general explicit formulation. International Journal for Numerical Methods

in Engineering, 22(3):547–574, 1986.

[57] Jaime Peraire, NC Nguyen, and Bernardo Cockburn. A hybridizable

discontinuous Galerkin method for the compressible euler and Navier-

Stokes equations. 2010.

[58] Henry Power and Allen T Chwang. On reflection of a planar solitary wave

at a vertical wall. Wave Motion, 6(2):183–195, 1984.

145

[59] Sander Rhebergen and Bernardo Cockburn. A space–time hybridizable

discontinuous Galerkin method for incompressible flows on deforming do-

mains. Journal of Computational Physics, 231(11):4185–4204, 2012.

[60] Ali Samii, Craig Michoski, and Clint Dawson. A comparison of the explicit

and implicit hybridizable discontinuous Galerkin methods for nonlinear

shallow water equation. In preparation, 2016.

[61] Ali Samii, Craig Michoski, and Clint Dawson. A parallel and adaptive

hybridized discontinuous Galerkin method for anisotropic nonhomoge-

neous diffusion. Computer Methods in Applied Mechanics and Engineer-

ing, 304:118–139, 6 2016.

[62] Ali Samii, Nishant Panda, Craig Michoski, and Clint Dawson. A hy-

bridized discontinuous Galerkin method for the nonlinear Korteweg–de

Vries equation. Journal of Scientific Computing, 68(1):191–212, 2016.

[63] François Serre. Contribution à l’étude des écoulements permanents et

variables dans les canaux. La Houille Blanche, (6):830–872, 1953.

[64] Chi-Wang Shu and Stanley Osher. Efficient implementation of essen-

tially non-oscillatory shock-capturing schemes. Journal of Computational

Physics, 77(2):439–471, 1988.

[65] M Stanglmeier, NC Nguyen, J Peraire, and B Cockburn. An explicit hy-

bridizable discontinuous Galerkin method for the acoustic wave equation.

146

Computer Methods in Applied Mechanics and Engineering, 300:748–769,

2016.

[66] Gilbert Strang. On the construction and comparison of difference schemes.

SIAM Journal on Numerical Analysis, 5(3):506–517, 1968.

[67] CH Su and Rida M Mirie. On head-on collisions between two solitary

waves. Journal of Fluid Mechanics, 98(03):509–525, 1980.

[68] MP Ueckermann and PFJ Lermusiaux. Hybridizable discontinuous

Galerkin projection methods for navier–stokes and Boussinesq equations.

Journal of Computational Physics, 306:390–421, 2016.

[69] MA Walkley, Martin Berzins, et al. A finite element method for the one-

dimensional extended Boussinesq equations. International Journal for

Numerical Methods in Fluids, 29(2):143–157, 1999.

[70] Roy A Walters and Graham F Carey. Analysis of spurious oscillation

modes for the shallow water and Navier-Stokes equations. Computers &

Fluids, 11(1):51–68, 1983.

[71] Hsuan-heng Wang, Paul Halpern-ism, Jim Douglas, et al. Numerical

solutions of the one-dimensional primitive equations using Galerkin ap-

proximations with localized basis functions.

[72] Ge Wei, James T Kirby, et al. A fully nonlinear Boussinesq model for

surface waves. part 1. highly nonlinear unsteady waves. 1995.

147

[73] RT Williams. On the formulation of finite-element prediction models.

Monthly Weather Review, 109(3):463–466, 1981.

[74] RT Williams and OC Zienkiewicz. Improved finite element forms for

the shallow-water wave equations. International Journal for Numerical

Methods in Fluids, 1(1):81–97, 1981.

[75] Jue Yan and Chi-Wang Shu. A local discontinuous Galerkin method for

kdv type equations. SIAM Journal on Numerical Analysis, 40(2):769–791,

2002.

[76] Vladimir E Zakharov. Stability of periodic waves of finite amplitude on

the surface of a deep fluid. Journal of Applied Mechanics and Technical

Physics, 9(2):190–194, 1968.

[77] JA Zelt. The run-up of nonbreaking and breaking solitary waves. Coastal

Engineering, 15(3):205–246, 1991.

[78] Yao Zhang, Andrew B Kennedy, Nishant Panda, Clint Dawson, and

Joannes J Westerink. Boussinesq–Green–Naghdi rotational water wave

theory. Coastal Engineering, 73:13–27, 2013.

148

