
The Dissertation Committee for Maximilian Heimo Moritz Bremer certifies that this is the

approved version of the following dissertation:

Task-Based Parallelism for Hurricane Storm Surge Modeling

Committee:

Clint Dawson, Supervisor

George Biros

Irene Gamba

Patrick Heimbach

Keshav Pingali



Task-Based Parallelism for Hurricane Storm Surge Modeling

by

Maximilian Heimo Moritz Bremer

Dissertation

Presented to the Faculty of the Graduate School

of the University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2020



In dedication to my family—old and new—for all of their love and support.



Acknowledgments

First and foremost I would like to thank Prof. Clint Dawson, my advisor, for all of his

support over the many years. None of this would have been possible without his patience,

encouragement, and guidance.

Secondly, I would like to gratefully acknowledge the funding that allowed me to pursue

this research. Thank you to the Department of Energy’s Computational Science Graduate

Fellowship (Grant DE-FG02-97ER25308) not only for their financial support, but also all

the friends I have made along the way. Additionally, I would like to thank the University of

Texas at Austin’s Donald D. Harrington Graduate Fellowship.

Finally, I would like to thank the many mentors that have made this journey wonderful:

Craig Michoski, Cy Chan, John Bachan, Hartmut Kaiser, and many more unnamed friends

made along the way.

iv



Task-Based Parallelism for Hurricane Storm Surge Modeling

by

Maximilian Heimo Moritz Bremer, Ph.D.

The University of Texas at Austin, 2020

SUPERVISOR: Clint Dawson

Hurricanes are incredibly devastating events, constituting seven of the ten most costly

U.S. natural disasters since 1980. The development of real-time forecasting models that

accurately capture a storm’s dynamics play an essential role in informing local officials’

emergency management decisions. ADCIRC is one such model that is operationally active

in the National Oceanic and Atmospheric Administration’s Hurricane Surge On-Demand

Forecast System. However, ADCIRC faces several limitations. It struggles solving highly

advective flows and is not locally mass conservative. These aspects limit applicable flow

regimes and can cause unphysical behavior. One proposed alternative which addresses these

limitations is the discontinuous Galerkin (DG) finite element method. However, the DG

method’s high computational cost makes it unsuitable for real-time forecasting and has lim-

ited adoption among coastal engineers. Simultaneously, efforts to build an exascale machine

and the resulting power constrained computing architectures have led to massive increases in

the concurrency applications are expected to manage. These architectural shifts have in turn

caused some groups to turn away from the traditional flat MPI or MPI+OpenMP program-

ming models to more functional task-based programming models, designed specifically to be

performant on these next generation architectures. The aim of this thesis is to utilize these

new task-based programming models to accelerate DG simulations for coastal applications.

v



We explore two strategies for accelerating the DG method for storm surge simulation.

The first strategy addresses load imbalance caused by coastal flooding. During the simu-

lation of hurricane storm surge, cells are classified as either wet or dry. Dry cells can trivially

update, while wet cells require full evaluation of the physics. As the storm makes landfall and

causes flooding, this generates a load imbalance. We present two load balancing strategies—

an asynchronous diffusion-based approach and semi-static approach—to optimize compute

resource utilization. These load balancing strategies are analyzed using a discrete-event sim-

ulation that models the task-based storm surge simulation. We find speed-ups of up to 56%

over the currently used mesh partitioning and up to 97% of the theoretical speed-up.

The second strategy focuses on a first order adaptive local timestepping scheme for

nonlinear conservation laws. For problems such as hurricane storm surge, the global CFL

timestepping constraint is overly stringent for the majority of cells. We present a timestep-

ping scheme that allows cells to stably advance based on local stability constraints. Since

allowable timestep sizes depend on the state of the solution, care must be taken not to

incur causality errors. The algorithm is accompanied with a proof of formal correctness

that ensures that with a sufficiently small minimum timestep, the solution exhibits desired

characteristics such as a maximum principle and total variation stability. The algorithm is

parallelized using a speculative discrete event simulator. Performance results show that the

implementation recovers 59%-77% of the optimal speed-up.

vi



Contents

Acknowledgments iv

Abstract v

Chapter 1. Introduction 1
1.1 Storm Surge Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 The Discontinuous Galerkin Finite Element Method . . . . . . . . . . . . . . 5
1.3 Exascale Computing–Novel Programming Models . . . . . . . . . . . . . . . 8

Chapter 2. Semi-Static and Dynamic Load Balancing for Asynchronous
Hurricane Storm Surge Simulations 12

2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Forecasting Hurricane Storm Surge . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 The DGSim Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Performance Model Calibration . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Compute Cost Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.2 Communication Cost Model . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Balancers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.1 Theoretical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.2 Static load balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.3 Dynamic load balancing . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.4 Semi-static load balancing . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6.1 Empirical Validation of DGSim . . . . . . . . . . . . . . . . . . . . . 29
2.6.2 Load Balance Comparison . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6.3 Strong Scaling Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 3. Adaptive Total Variation Stable Local Timestepping for Con-
servation Laws 38

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Theoretical Results for Scalar Conservation Laws . . . . . . . . . . . . . . . 43

3.3.1 TVD Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vii



3.4 An Adaptive Local Timestepping Algorithm . . . . . . . . . . . . . . . . . . 52
3.4.1 Discrete Event Simulation . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.2 Proof of Theorem 3.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.3 Proof of Proposition 3.4.1 . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.5.1 Devastator Simulation Framework . . . . . . . . . . . . . . . . . . . . 74
3.5.2 Performance related optimizations . . . . . . . . . . . . . . . . . . . . 75
3.5.3 Performance Modeling and Load Balancing . . . . . . . . . . . . . . . 77
3.5.4 Ease of Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.6.1 Burgers’ Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.6.2 Shallow Water Equations . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.6.3 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.6.4 Description of Misspeculation . . . . . . . . . . . . . . . . . . . . . . 95
3.6.5 Conservative Parallel Discrete Event Simulation . . . . . . . . . . . . 100

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Chapter 4. Conclusion 105
4.1 Implications for hurricane storm surge . . . . . . . . . . . . . . . . . . . . . 105
4.2 Tao analysis of adaptive timestepping . . . . . . . . . . . . . . . . . . . . . . 109
4.3 Impact of the end of Moore’s Law . . . . . . . . . . . . . . . . . . . . . . . . 113

Bibliography 118

viii



Chapter 1

Introduction

Since 1980, seven out of the ten most costly US climate disasters were hurricanes, with

Hurricane Katrina being the most expensive [97], and Hurricanes Harvey, Maria, and Irma,

which occurred in 2017, among the five most costly US natural disasters. The utilization

of computational models can provide local officials with high fidelity tools to assist in evac-

uation efforts and mitigate loss of life and property. Due to the highly nonlinear nature

of hurricane dynamics and stringent time constraints, high performance computing (HPC)

plays a cornerstone role in providing accurate predictions of flooding. Because of the im-

portance of fast, efficient models, there is a significant interest in improving the speed and

quality of these computational tools.

Even as the speed of supercomputers is drastically increasing, the end of Moore’s law

and the introduction of many-core architectures represent a tectonic shift in the HPC com-

munity. In particular, the degree of hardware parallelism is increasing at an exponential

rate and the cost of data movement and synchronization is increasing faster than the cost

of computation. Additionally, hardware is becoming increasingly irregular due to the use of

accelerators and susceptibility to failure [73]. In order to achieve good resource utilization

on these machines, task-based programming and execution models are being developed to

express increased software parallelism, introduce more flexible load balancing capabilities,

and hide the cost of communication through task over-decomposition. Examples of major

1



task-based programming and execution models include Charm++, HPX [68], Legion [6],

OCR [86], PaRSEC [14], StarPU [2], Galois [79, 106]. There are also domain-specific task-

based programming systems, such as the Uintah AMR Framework [8], and task-based porta-

bility layers such as DARMA [127]. These programming models decouple the specification

of the algorithm from the task scheduling mechanism, which determines where and when

each task may execute and orchestrates the movement of required data between the tasks.

Furthermore, lightweight, one-sided messaging protocols that support active messages have

the potential to reduce the overheads associated with inter-process communication and syn-

chronization, which will become even more important as parallelism increases.

The aim of this thesis is to identify means to improve the performance of the simulation

of hurricane storm surge by using task-based runtimes. We accomplish this by identify-

ing and introducing adaptivity into the simulation. These improvements historically suffer

from complex implementations that are difficult to optimize using traditional programming

models. Through proper mapping of the algorithms onto a task-based runtime, these per-

formance gains are realized and the complexity of the implementation is managed by the

runtime system.

1.1 Storm Surge Modeling

The motivating application for this work is the numerical simulation of large-scale coastal

ocean physics, in particular, the modeling of hurricane storm surges. One of the leading

simulation codes in this area is the Advanced Circulation (ADCIRC) model, developed by

a large collaborative team including the author’s supervisor [20, 36–38, 60, 61, 83, 126]. AD-

CIRC is a Galerkin finite element based model that uses continuous, piecewise linear basis

functions defined on unstructured triangular meshes. The model has been parallelized using

MPI and has been shown to scale well to a few thousand processors for large-scale prob-

2



lems [119]. While ADCIRC is now an operational model within the National Oceanographic

and Atmospheric Administration’s Hurricane Surge On-Demand Forecast System (HSOFS),

its performance on future computational architectures is dependent on potentially restruc-

turing the algorithms and software used within the model. Furthermore, ADCIRC provides

a low-order approximation and does not have special stabilization for advection-dominated

flows, thus requiring a substantial amount of mesh resolution. Extending it to higher-order

or substantially modifying the algorithms within the current structure of the code is a chal-

lenging task.

With this in mind, our group has also been investigating the use of discontinuous Galerkin

(DG) methods for the shallow water equations [21,75,76,78,90–93,129,130], focusing on the

Runge-Kutta DG method as described in [28]. We have shown that this model can also

be applied to hurricane storm surge [32]. DG methods have potential advantages over the

standard continuous Galerkin methods used in ADCIRC, including local mass conservation,

ability to dynamically adapt the solution in both spatial resolution and polynomial order (hp-

adaptivity), and potential for more efficient distributed memory parallelism [77]. While DG

methods for the shallow water equations have not yet achieved widespread operational use,

recent results have shown that for solving a physically realistic tidal forecasts at comparable

accuracies, the DG model outperformed ADCIRC in terms of efficiency by a speed-up of

2.3 and when omitting eddy viscosity, a speed-up of 3.9 [19]. We note that translating

these results to hurricane storm surge remains an open problem. There remain outstanding

stability issues for wetting and drying of high order DG methods. Furthermore, physically

relevant problems may form discontinuities. The loss of smoothness will also require more

computational work to match the accuracy of ADCIRC. Ultimately, we expect some accuracy

improvements of high order methods compared to low order DG methods, however, given

the stability issues, we do not consider high order methods in this thesis, but rather seek

performance improvements from avenues that are “orthogonal” in the sense that we hope to

3



at a later point incorporate both high-order methods as well as the performance optimizations

explored in this thesis.

To propose replacing the computational kernel inside ADCIRC with a DG kernel, it

is important to understand the computational environment and needs of the simulation.

During a hurricane event, the National Weather Service releases advisories every 6 hours

updated with the newest best estimates of windspeeds and storm trajectories. Emergency

management officials require a 2 hour turnaround of the simulation with the new data as

inputs. This turns out to be a relatively stringent time constraint, and requires significant

strong scaling of the simulation. Extrapolating the HPX-based results from [15], a 4 day

forecast using a DG method would require 17.5 hours at the strong scaling limit. The required

minimum task sizes for good runtime efficiency (i.e. fraction of time spent in the application

versus the runtime) puts the HPX implementation well outside of the scalability regime

needed for real-time forecasting of storm surge. From a work depth perspective, this is not

an issue of available parallelism, but rather a depth issue. In considering task-based runtimes,

we are highly sensitive to task-overheads as these ultimately determine how far we can scale

out. However, the work required by the simulation is also an issue. Surge forecasts are run

on shared compute resources, typically university clusters. While runs are given scheduling

priority, we are certainly constrained by available compute resources. Furthermore, we would

like to run ensembles of surge simulations. Hence, work reduction is a point of key emphasis.

Lastly, a single surge simulation requires up to O(102) nodes. These node counts correspond

to mesh resolutions of O(10) meters. We expect that higher resolution would only lead to

marginal benefits, due to limitations of the model and uncertainties in the input.

The prediction of hurricane storm surge involves solving physics-based models that de-

termine the effect of wind stresses pushing water onto land and the restorative effects of

gravity and bottom friction. These flows typically occur in regimes where the shallow water

approximation is valid [41,92] . Taking the hydrostatic and Boussinesq approximations, the

4



governing equations can be written as

∂tζ +∇ · q = 0,

∂tqx +∇ · (uqx) + ∂xg(ζ2/2 + ζb) = gζ∂xb+ S1,

∂tqy +∇ · (uqy) + ∂yg(ζ2/2 + ζb) = gζ∂yb+ S2,

where:

· ζ is the water surface height above the mean geoid,

· b is the bathymetry of the sea floor with the convention that downwards from the mean

geoid is positive,

· H = ζ + b is the water column height,

· u = [u , v]T is the depth-averaged velocity of the water,

· q = Hu = [qx , qy]
T is the velocity integrated over the water column height.

Additionally, g is the acceleration due to gravity, and S1 and S2 are source terms that intro-

duce additional forcing associated with relevant physical phenomena, e.g. bottom friction,

Coriolis forces, wind stresses, etc.

1.2 The Discontinuous Galerkin Finite Element Method

The discontinuous Galerkin (DG) kernel originally proposed by Reed and Hill [108] has

achieved widespread popularity due to its stability and high-order convergence properties.

For an overview on the method, we refer the reader to [29, 58] and references therein. For

brevity, we forgo rigorous derivation of the algorithm, but rather aim to provide the salient

features of the algorithm to facilitate discussion of the parallelization strategies.

We can rewrite the shallow water equations in conservation form

∂tU +∇ · F(t,x,U) = S(t,x,U), (1.1)

5



where

U =


ζ

qx

qy

 , F =


qx qy

u2H + g(ζ2/2 + ζb) uvH

uvH v2H + g(ζ2/2 + ζb)

 .

Let Ω be the domain over which we would like to solve Equation (1.1), and consider a

mesh discretization Ωh = ∪nele Ωh
e of the domain Ω, where nel denotes the number of elements

in the mesh.

We define the discretized solution space, Wh as the set of functions such that for each

state variable the restriction to any element Ωh
e is a polynomial of degree p. Note that we

enforce no continuity between element boundaries. Let 〈f, g〉Γ =
∫

Γ
fg dx denote the L2

inner product over a set Γ. The discontinuous Galerkin formulation then approximates the

solution by projecting U onto Wh and enforcing Equation (1.1) in the weak sense over Wh,

i.e.

〈∂tU +∇ · F (t,x,U)− S(t,x,U),w〉Ωh = 0

for all w ∈ Wh, where U ∈ Wh denotes the projected solution. Since the indicator functions

over each element are members of Wh, it suffices to satisfy the weak formulation element-

wise. The discontinuous Galerkin method can be alternatively formulated as

∂t〈U,w〉Ωhe = 〈F,∇w〉Ωhe − 〈F̂ · n,w〉∂Ωhe
+ 〈S,w〉Ωhe (1.2)

for all w ∈
⊕3

d=1Pp(Ωh
e ) and for all e = 1, . . . , nel, where Pp(Ωh

e ) is the space of polynomials

of degree p over Ωh
e . Due to the discontinuities between elements in both trial and test

spaces, particular attention must be given to the boundary integral term, which is not well-

defined even in a distributional sense. For evaluation, the boundary integral’s integrand is

replaced with a numerical flux F̂ · n(Uint,Uext)wint. To parse this term, let Uint and wint

denote the value of U and w at the boundary taking the limit from the interior of Ωh
e , and

6



let Uext denote the value of U at the boundary by taking the limit from the interior of the

neighboring element. For elements along the boundary of the mesh, the boundary conditions

are enforced by setting Uext to the prescribed values. For the numerical flux, F̂ · n, we use

the local Lax-Friedrichs flux,

F̂ · n(Uint,Uext) =
1

2

(
F(Uint) + F(Uext) + |Λ|(Uext −Uint)

)
· n,

where n is the unit normal pointing from Ωh
e outward, and |Λ| denotes the magnitude of the

largest eigenvalue of ∇uF · n at Uint or Uext.

In order to convey more clearly the implementation of such a kernel in practice, consider

the element Ωh
e . For simplicity of notation for the remainder of the subsection we drop all

element-related subscripts, e. Over this element, we can represent our solution using a basis,

{ϕi}
ndof
i=1 . Then we can let our solution be represented as

U(t, x) =

ndof∑
i=1

Ũi(t)ϕi(x),

where Ũ are the basis-dependent coefficients describing U. Following the notation of War-

buton [47], it is possible to break down Equation (1.2) into a set of kernels as

∂tŨi =

ndof∑
j=1

M−1
ij

〈F,∇ϕj〉Ωhe︸ ︷︷ ︸
Vj

+ 〈S, ϕj〉Ωhe︸ ︷︷ ︸
Sj

−〈F̂ · n, ϕj〉∂Ωhe︸ ︷︷ ︸
Ij

 , (1.3)

whereMij = 〈ϕi, ϕj〉Ωhe denotes the local mass matrix. Here we define the following kernels:

· V : The volume kernel,

· S: The source kernel,

· I: The interface kernel.

To discretize in time, we use the strong stability preserving Runge-Kutta methods [49].

7



Letting

Lh
(
Ũ
)

=M−1
(
V
(
Ũ
)

+ S
(
Ũ
)
− I

(
Ũ
))

,

we can define the timestepping method, for computing the i-th stage as

Ũ(i) =
i−1∑
k=0

αikŨ
(k) + βik∆tLh

(
Ũ(k)

)
,

where Ũ(k) denotes the basis coefficients at the k-th Runge-Kutta stage. We denote the op-

erator, which maps
{

Ũ(k), V
(
Ũ(k)

)
, S
(
Ũ(k)

)
, I
(
Ũ(k)

)}i−1

k=0
to Ũ(i) as the update kernel,

U .

Solutions to hyperbolic conservation laws may give rise to discontinuous solutions. In

these regions, the underlying approximation theory breaks down, and the DG algorithm

gives rise to spurious oscillations. These oscillations are treated in a post processing phase

known as slope-limiting. Techniques roughly are categorized as limiting based on neighbor-

ing information [7, 27, 80], reducing high frequency modes via filtering [58, 84, 87], adding

viscosity to smear out sharp gradients [51, 105], or projection to lower orders [40]. For an

in-depth comparison of various slope limiting approaches, we refer the reader to [91]. For

the shallow water equations, an additional instability occurs for small water column heights.

The numerics may give rise to regions of negative water column height causing the shallow

water equations to become meaningless both physically and mathematically. To address

this, numerous approaches have been proposed [21,24,47,107,124,131].

1.3 Exascale Computing–Novel Programming Models

Task-based programming models have arisen in response to increased hardware concurrency

and irregularity. To identify what makes multithreaded code slow, the Ste||ar group—who

develop HPX—use the acronym SLOW:

8



· Starvation: cores idling due to insufficient parallelism exposed by the application,

· Latency: delays induced by waiting on dependencies, e.g. waiting on messages which are

sent through a cluster’s interconnect,

· Overhead: additional work performed for a multithreaded application which is unnecessary

in a sequential implementation,

· Waiting for contention resolution: delays associated with the accessing of shared resources

between threads.

These factors are prevalent in any multi-threaded code including those that use a task-based

runtime. However task-based runtimes aim to outperform their more traditional counterparts

by mitigating the impacts of SLOW, e.g. by hiding message latencies or aggressive work

stealing to address starvation.

Even as there appears to be no convergence to a single task-based runtime in the HPC

community, there appears to be broad agreement on the abstractions being used. Most

runtimes favor some task-graph or dataflow based abstraction for algorithm design. Once the

task graph has been specified it is given to the runtime to be executed. Another commonly

used abstraction is that of globally addressable objects. By making actors or objects globally

addressable, the application is able to specify dependencies between objects with similar

syntax for both shared and distributed memory parallelizations.

While simply porting algorithms will certainly allow us to mitigate the impact of hardware

irregularity, we have found that in practice this gives small to moderate improvement over

existing optimized MPI implementations. In [15], we found that HPX—one such runtime—

gives a speed-up of 1.2 over an MPI implementation on 256 Knights Landing nodes. Results

suggest that the speed-up was mainly attributed to page faults for the MPI implementation,

rather than avoiding message latencies or MPI overhead. In fact, we suspect that this

gap could largely be closed through the use of a better memory allocator for the MPI

implementation.

9



This limited improvement can be attributed to two main factors. Firstly, Moore’s law

has not yet ended, and we have not yet truly entered the age of extreme heterogeneity where

managing the SLOW factors will become increasingly important. Furthermore and specifi-

cally related to storm surge, given the relatively modest computational resource requirement

of a real-time forecast, the dependence on legacy codes, and the low arithmetic intensity

of the storm surge codes (both ADCIRC and low-order DG solvers), there still remains a

hesitation to adopt non-CPU based architectures that may provide more FLOPs but whose

impact on time to solution is unclear.

Secondly, the test case used in [15] ultimately lacks irregularity. The communication pro-

file of the code reduces to a stencil code on an unstructured mesh, which can be implemented

efficiently using non-blocking point to point MPI messages. What is needed to generate a

value proposal for using task-based runtime systems are sources of irregularity. Algorithms

need to be more adaptive and perform compute only where needed. While doing so makes

the implementation certainly more difficult, this complexity is passed off to the runtime.

Then, the aim of this work is to identify or introduce sources of adaptivity into the storm

surge code, which are are then efficiently mapped onto a runtime. This thesis is split into

two main chapters describing the impact of two such ideas:

1. Chapter 2: A key feature of storm surge simulation is the classification of cells as either

wet or dry. The relevant computational impact of this classification is that while wet

cells require the evaluation of the full physics to update, dry cells trivially update. As

the storm makes landfall, inland cells wet and create a load imbalance. This chapter

explores the impact of dynamic load balancing strategies, whereby we move cells across

processor ranks during the simulation to ensure that each rank must update an equal

number of cells.

2. Chapter 3: The timestep taken by these simulations is restricted by the Courant-

10



Friedrichs-Lewy (CFL) condition. The CFL condition forms the basis of the stability

results which have led to the popularity of finite volume and DG methods. However,

this condition is ultimately a condition that can be enforced locally, and in light of

significant variations in mesh size and advection speeds, local CFL enforcement can

lead to dramatic reduction in work. This chapter develops a timestepping method

that locally enforces the CFL condition and recovers the same stability results for the

global timestepping case. The proposed timestepping scheme is then parallelized using

an optimistic (speculative) parallel discrete event simulator.

11



Chapter 2

Semi-Static and Dynamic Load Balancing for Asynchronous

Hurricane Storm Surge Simulations1

This chapter examines the potential benefits of implementing DGSWEM, a discontinuous

Galerkin (DG) finite-element storm surge code, on a task-based asynchronous execution

model, and investigates various load balancing strategies for the resulting program. One of

the key aspects of DGSWEM is its ability to simulate coastal inundation during hurricane

landfall. The DG kernel can be implemented in a manner such that dry regions of the

simulation require no computational work; however, as the hurricane inundates the coast,

this optimization introduces significant dynamic load imbalance. In order to address the

load imbalance while still fitting the problem in machine memory, two constraints (load and

memory) must be accounted for simultaneously.

While multi-constraint graph partitioning tools have been used to obtain good static

partitions for these scenarios, they perform sub-optimally for irregular applications such

as ours. On the other hand, fully dynamic load balancing strategies are typically based

on balancing a single constraint, which is insufficient for hurricane simulation. In order to

overcome these shortcomings, we investigate dynamic and semi-static multi-constraint load

1This chapter is based on the following publication: Maximilian Bremer, John Bachan, and Cy Chan.
“Semi-Static and Dynamic Load Balancing for Asynchronous Hurricane Storm Surge Simulations.” In 2018
IEEE/ACM Parallel Applications Workshop, Alternatives To MPI (PAW-ATM), pages 44-56, 2018. Max-
imilian Bremer contributed 60% of the work, John Bachan contributed 20% of the work, and Cy Chan
contributed 20% of the work in this chapter.

12



balancing approaches that can be leveraged to run hurricane simulations efficiently on future

supercomputing platforms.

To circumvent the software engineering effort to port DGSWEM to a task-based model

and to allow extremely rapid evaluation of the resulting execution under a variety of pa-

rameters (e.g. choice of load balancing algorithm), we have developed DGSim, a task-based

execution model and discrete-event simulation tool that features asynchronously migratable,

globally addressable objects. DGSim was designed to natively model lightweight, one-sided,

active interprocess messaging along with distributed, asynchronously migratable objects.

Together, these allow the simulation to fully overlap both the computation of the new tile

placements and the resulting movement of the tile data with the application’s main compu-

tation. These features are not readily available in other simulation tools but are key features

of the fully asynchronous load balancing algorithms introduced here. The development of

DGSim allows us to estimate the performance of hurricane simulations running with these

advanced features in a variety of configurations. Crucially, DGSim allows us to simulate the

computational behavior of DGSWEM in an asynchronous task-based runtime using skele-

tonization, eliminating the need to execute the costly computational kernels, resulting in a

lightweight approach that allows for rapid algorithm prototyping and evaluation. The main

contributions of this section are:

1. The development of multi-constraint dynamic load balancing strategies specifically

geared for the irregularity associated with the simulation of hurricane storm surge. In

doing so, we present a dynamic and semi-static algorithm.

2. The trellis approach for semi-static repartitiong strategies which fully leverages the

asynchronous nature of the run-time. This approach can be extended to ensure efficient

semi-static load balancing for a wide range of problems.

3. The development and validation of DGSim, a discrete-event simulator that enables

13



rapid prototyping and evaluation of fully asynchronous load balancers for task-based

parallel programs.

The outline of the chapter is as follows. Section 2.1 presents related work. In Section

2.2, we discuss the DG kernel and the irregular nature of the inundation problem. There-

after, we outline DGSim, which simulates the performance of an asynchronous task-based

implementation of DGSWEM. Section 2.5 presents formalism for load balancing in an asyn-

chronous context and outlines a distributed diffusion-based and a semi-static load balancing

algorithm. Lastly, in Section 2.6, we present our model validation and experimental results,

demonstrating the viability of these load balancing approaches.

2.1 Related Work

In adaptive mesh refinement (AMR) codes and hp-adaptive finite elements, dynamic load

balancing typically relies on one of three approaches: (1) graph partitioning using space

filling curves, known as geometric partitioning [11, 22, 35, 43] (2) graph partitioning algo-

rithms, such as those provided in the METIS and SCOTCH libraries [3, 9, 35, 70, 104], or

(3) diffusion or refinement based approaches [111]. The simulation of coastal inundation

introduces irregularity, which decouples the memory and load balancing constraints. To the

authors’ knowledge, the only paper that uses dynamic load balancing to address this issue

is [34]. However, their approach only balances load on structured grids, which may result

in memory overflow. Local timestepping methods introduce similar irregularity. Seny et al.

have proposed a static load balancing scheme using multi-constraint partitioning in [112].

However, they note the dynamic load balancing problem as an open one. Some examples of

load balancing algorithm evaluations in the context of task-based execution models include

the use of cellular automata [62], hierarchical partitioning [135], and gossip protocols [88].

There has been much previous work on the use of system-level hardware simulation to

14



evaluate how existing applications will behave on future architectures (e.g. [5,64,66,94,132]).

For example, the SST-macro simulator [65] allows performance evaluation of existing MPI

programs on future hardware by coupling skeletonized application processes with a net-

work interconnect model. Previous work has investigated the impact of various static task

placement strategies for AMR multigrid solvers using simulation techniques [26]. Evalua-

tion of various load balancing strategies using discrete event simulation has been conducted

in [133], and the use of particular asynchronous load balancing algorithms has been discussed

in [103,134]. However, [134] examines only a simple greedy algorithm that ignores communi-

cation costs, and [103] examines an offload model that still requires synchronization to enter

and exit the load balancing phase. Another framework, StarPU with SimGrid [115, 116],

allows estimation of task-based execution on a parameterized hardware model, emphasizing

the simulation of heterogeneous nodes with GPUs. However, these papers leave modeling

of distributed memory simulations as a subject of future work. These existing simulators

do not natively model one-sided, active message communication or asynchronously migrat-

able objects, where the migration of objects happens simultaneously during the execution of

computational tasks.

Our simulation approach combines an application task dependency graph with a perfor-

mance model to enable the evaluation of an application (DGSWEM) that does not yet have

a task-based implementation, allowing us to forecast its performance with different load bal-

ancing strategies and estimate the benefits on large-scale runs. Furthermore, the interplay

between the multi-constraint nature of the storm surge application and the effectiveness

of the load balancing strategies has not been previously investigated, to the best of our

knowledge.

15



2.2 Forecasting Hurricane Storm Surge

The details of storm surge modeling were presented in Section 1.1, and details of the DG

method were presented in Section 1.2. In order to understand the communication pattern

of the kernel, recall that Runge-Kutta stages are updated according to the following update

rule,

Ũ(i) =
i−1∑
k=0

αikŨ
(k) + βik∆tLh

(
Ũ(k)

)
,

where

Lh
(
Ũ
)

=M−1
(
V
(
Ũ
)

+ S
(
Ũ
)
− I

(
Ũ
))

. (2.1)

The DG method is parallelized by distributing elements across a set of concurrent processes

(referred to as ranks) that cooperate by message passing. In (2.1), the volume V , and source

S kernels can be computed entirely locally (independent of other elements). The interface

kernel is the only portion of the DG algorithm that may require non-local information, so

elements not on the same rank must communicate over the network. With explicit timestep-

ping, these equations can be thought of as a stencil code over an irregular graph.

One of the key aspects of a storm surge code is its ability to simulate inundation. Due to

the numerical discretization, regions of negative water column height may occur throughout

the simulation, rendering the shallow water equations meaningless, both mathematically

and physically. To remedy this, an additional slopelimiter is applied after the update kernel.

We use the limiter proposed in [21], which locally examines elements after each update and

fixes problematic regions. One of the key features of this algorithm is its ability to classify

elements as either wet or dry. The performance implication of this classification is that dry

elements require almost no work, thus as the hurricane inundates the coast, elements become

wet in localized regions, causing load imbalance.

16



2.3 The DGSim Simulator

Our DGSim simulator utilizes discrete event simulation to model the execution of the parallel

application. It is expected to only run skeletonized applications, where heavy computation

and large data allocations are omitted for efficiency. Every thread in the simulation schedules

events into a global priority queue keyed on virtual time, so that events are processed in the

correct simulation order. Threads “burn” virtual time to simulate the execution of heavy

computational tasks, and message arrival times are delayed to capture communication costs.

This method permits efficient large-scale simulation while retaining the salient computation

and communication characteristics of the program execution. With DGSim, we are able

to rapidly evaluate hundreds of simulation trials with different parameterizations in 4,000

core-hours compared to over 21,000,000 core-hours had we run DGSWEM itself, roughly

translating to a 5,200x speed-up.

DGSim is designed from the ground up to model a very aggressive asynchronous execution

framework, which is comprised of three layers. The lowest layer of our framework, the

parallel machine, mirrors the communicating multi-threaded processes prevalent in current

extreme scale computing. All inter-processes communication is expressed through one-sided,

point-to-point active messages, each containing a bound function. Active messages impose

no synchronization, and thus encourage a very asynchronous methodology. Each process

contains a master thread responsible for executing active messages, and all other threads

belong to a pool of worker threads. Messages from other processes are only executed by

the master thread, but any thread may send messages to other processes. The dedication of

the master thread to handling incoming messages and managing worker threads may seem

wasteful, but this fits asynchronous execution well as it ensures there is a core that will

remain attentive to servicing incoming messages. Production asynchronous runtimes such

as Charm++ usually dedicate at least one CPU core for communication and scheduling.

17



The second layer of the framework’s stack is our interpretation of Active Global Address

Space (AGAS) [68]. This is a software layer that allows the user to place parts of their

application state in a named-object store without having to explicitly manage where objects

reside. Users simply visit objects by sending an active message to a name (as opposed

to a process id) and the function will be executed on the process currently holding the

object. To migrate an object, there is a relocate function that takes a name and a target

process id and will cause the named object to migrate from wherever it currently resides to

the target. Relocates and visits can be issued concurrently from any number of processes

without any synchronization whatsoever. This design is similar to the chare/actor model

of Charm++. They too express parallel computation as asynchronous method invocations

between relocatable objects.

The top layer is a distributed tasking layer, which allows the application to describe

named units of non-blocking work that are executed on worker threads. Tasks mainly com-

municate via satisfaction of another task’s dependencies. The task graph has no explicit

hierarchy (no parent or sub-tasks), and all dependencies are managed through task names.

When a task has computed data required by other tasks, that task sends a satisfaction con-

taining the data to its successors. All task satisfactions are sent through AGAS visits,

allowing task migrations to be issued independently of the task graph scheduler. This sep-

aration allows the scheduling logic to reside entirely in the application code, giving it easy

access to pertinent metadata, and enables task migration to occur concurrently with task

execution. Thus we have no need to explicitly enter or exit a load balancing phase.

18



2.4 Performance Model Calibration

2.4.1 Compute Cost Model

Since DGSim utilizes a skeletonized form of the kernel, we developed a model to estimate the

time to execute each task. As there is a limitation associated with the amount of fine-grain

parallelism we can expose due to scheduling overhead, we agglomerate elements together into

tiles, whose size is sufficiently large such that the performance improvement obtained via

exposing more parallelism to the system amortizes the scheduling overhead. Furthermore,

more tiles than worker threads are assigned to each rank. This oversubscription of compute

resources allows the scheduler to hide message latencies.

Given a tile T , that consists of the elements {Ωe}, we approximate the execution time to

advance T by one RK stage, tT by tT =
∑

Ωe
ωeτe where ωe is 1 if the element is wet and 0 if

it is dry, and τe is the time required to advance 1 element by 1 RK stage. Timing DGSWEM

using polynomial order p = 2 with a modal filter and the wetting and drying limiter on a

single Edison node, we measured τe to be 2.62µs.

To determine the wet/dry status of elements at each time step, we use a hurricane

simulation of a synthetic storm from a FEMA flood insurance test suite throughout this

chapter, which we refer to as Storm36. The test problem is a 4 day simulation with a

timestep of 0.25 seconds using a 2-stage RK method on a 3.6 million element unstructured

mesh. Using this benchmark, the wet/dry state of each element is recorded every 1200 time

steps in DGSWEM, and the recorded states are then interpolated for intermediate time steps

in DGSim.

Due to constraints on the length of simulation, DGSim only simulates every tenth

timestep. This conservatively approximates the available work to hide the load balanc-

ing costs, but still models the full imbalance generated by the simulated surge. The other

contributors to compute time are the task scheduler overhead and the cost to run the load

19



balancer. We use timers to measure the actual costs of these computations on the host

machine.

2.4.2 Communication Cost Model

In order to model the delay incurred by messages sent between ranks in the machine, we

defined a hierarchical communications model with varying costs associated with sending

messages across different memory levels. On many current and future memory architec-

ture designs, the memory on a compute node is split into separate partitions. In such a

configuration, the cost of accessing data from the closest partition is lower than for distant

partitions, thus creating non-uniform memory access (NUMA) domains. For example, on

the NERSC Edison supercomputer [96], each node contains two NUMA domains, one for

each CPU socket containing 12 compute cores.

Our execution model instantiates one rank per NUMA domain, each with eleven worker

threads dedicated to executing compute tasks and one communication thread dedicated to

send and receive active messages. We also model messages between nodes, resulting in three

message categories: intra-NUMA, inter-NUMA, and inter-node. Given a message source,

destination, and size, our simulator’s performance model estimates the delivery delay by

summing per-message (latency/overhead) and per-byte (bandwidth) costs over the path

connecting the ranks. For our experiments, we utilize performance model parameters simu-

lating a machine similar to Edison [96]. Table 2.1 summarizes the parameters used in our

model to estimate message delivery costs. We conservatively assume that communication

links are utilized by all cores that share them (e.g. multiples cores sharing the DDR3 bus).

All messages are subject to two memory copies over the DDR3 memory bus: one to copy

the message from application memory to a communications buffer, then an additional copy

at the destination from the communications buffer to the final address. For intra-NUMA

messages, these two copies constitute the entire delivery cost. The measured STREAM

20



Table 2.1: Message transmission costs

Communications Performance Model
Link Latency (per-message) Bandwidth (per-core)

1866MHz DDR3 77 ns 4.3 GiB/s
Intel QuickPath 132 ns 11.5 GiB/s

Cray Aries 1.2 - 1.5 µs 0.2 - 9 GiB/s

bandwidth on Edison is 103 GiB/s [96], thus the per-core bandwidth is 4.3 GiB/s.

For inter-NUMA messages, messages must additionally traverse the inter-socket com-

munications bus. On Edison, the sockets are connected via the Intel QuickPath intercon-

nect [63]. Since no worker threads may send or receive messages, the dedicated communica-

tions thread can use the full uni-directional bandwidth (11.5 GiB/s) for sending messages.

The latency for intra-/inter-NUMA messages is measured using Intel®Memory Latency

Checker–v3.5 with a 200 MB buffer on NERSC’s Edison.

For inter-node messages, we parameterize our model using data from performance bench-

marks conducted using the Cray Aries interconnect [42]. Although the Aries interconnect

has a dragonfly topology, for simplicity, we assume a uniform cost of communication be-

tween ranks. Figures 7 and 8 in that paper specify how the message latency and bandwidth

costs vary with message size. Since we simulate two communicating ranks per node (one

per socket), we conservatively halve the reported bandwidth. Section 2.6.1 presents a vali-

dation of our performance model, comparing our modeled execution time versus empirically

observed execution time of a skeletonized DGSWEM implementation.

2.5 Balancers

2.5.1 Theoretical Preliminaries

In order to express our load balancing algorithms, we first present the precise load balancing

problem and then introduce our model terminology and the trellis load balancing concept.

21



As mentioned in Section 2.4, elements are agglomerated into tiles to amortize the scheduling

overhead. The simulation consists of many tasks, each one responsible for advancing a single

tile by one RK stage. Based on the DG kernel (2.1), any edge between two elements on

different tiles constitutes a dependency. In order to minimize the number of dependencies

and expose the largest amount of asynchrony, we group elements into tiles using the METIS

k-way graph partitioning algorithm [70].

Each tile i will have a memory space requirement mi, and an amount of work required

to advance the tile by one RK stage will be given by ti. We now introduce the assignment

variables, χik, where

χik =


1 if tile i is on rank k

0 otherwise

,

and χik is subject to the following constraints:

nranks∑
k=1

χik = 1 ∀ i = 1, . . . , ntiles. (2.2)

Ideally, we would solve for time-dependent values of χik that minimize the total application

execution time. However, for asynchronous applications, this is an NP-hard mixed integer

optimal scheduling problem, which is not feasible to solve in situ. Since the compute cost

of the tiles dominates the execution time, we make the simplifying assumption that the

execution time is approximately proportional to

T = max
k

ntiles∑
i=1

tiχik (2.3)

Additionally, we also have a memory constraint, namely, if mi is the memory required for

22



tile i and Mk is the available memory on rank k, then we obtain the additional constraints:

ntiles∑
i=1

miχik ≤Mk ∀k = 1, . . . , nranks. (2.4)

Our optimization problem is defined by (2.2), (2.3), and (2.4). Note that since the tile’s

compute cost changes as the simulation progresses, the optimal assignment {χik} is also

a function of the simulation’s progress. Furthermore, the irregularity associated with the

wetting and drying algorithm requires that the memory constraint (2.4) and the execution

time (2.3) are accounted for separately. Before we discuss approaches to approximate optimal

assignments {χik}, we introduce some formalism upon which we will base our load balancing

strategies.

The trellis approach

The main idea of this approach is to execute a second, parallel task dependency graph to

handle load balancing that is completely independent of the application task graph. The

motivation for this approach is twofold: it decouples the load balancer from the application

execution, avoiding the need for costly control synchronization and it accurately accounts

for the improvement in load balance with the cost of making load balancing decisions.

First, a common strategy taken by semi-static load balancers is to periodically pause

application execution, issue data and task migrations (rebalancing phase), and resume ap-

plication execution. This strategy is convenient because it decouples the times during which

tasks and data are allowed to be in transit from the times that tasks are executing and

sending messages to each other. Unfortunately, in order to enter and exit the rebalancing

phase, control dependencies are added to the application task graph (often in the form of

global synchronization), which can severely impact the performance of a highly asynchronous

execution model. The trellis approach introduces an ancillary set of tasks that collect the

23



application state, make rebalancing decisions, and launch tile migrations, all without adding

synchronization to the application execution.

Another advantage of the trellis approach is the fixed frequency and natural amortization

of the cost of rebalancing. Were the frequency of rebalancing instead linked to application

progress, the frequency of rebalancing would decrease as the load balance worsens since each

iteration would take longer to complete. Additionally, assuming reasonable strong scaling,

doubling the simulation core count would approximately double the frequency of the load

balancer even though the cost of the load balancer would remain the same. In practice, there

is a trade-off between the improvement in run-time due to improved load balance and the

cost of rebalancing. The trellis approach allows us to simplify our cost model, reducing the

numbers of parameters that need to be tuned in order to maintain effective load balancing.

Local models

The second bit of formalism we would like to introduce, are local models. These models

capture local states of the system that can be used to make load balancing decisions. The

use of local models reduces the need to aggregate global information; however, it is infeasible

to keep all model information up-to-date at all times, thus the information in these models

can become stale. If a rank steals a tile based on stale information, the tile migration could

in fact negatively impact the load balance. Since this information is exclusively used for load

balancing, the correctness of the numerical simulation remains unaffected. For our problem,

we consider 3 types of models:

1. Tile model : Information such as the location and compute load of neighboring tiles.

2. Rank model : Information such as how much work is located on a rank (may aggregate

local tile models).

3. World model : Information about the global state of the simulation (may aggregate tile

24



World
Model

...

Rank
Model

...Tile Model

Figure 2.1: Each world model is able to aggregate rank models, which aggregate tile models.
This allows for representations of the system with various levels of completeness.

and rank models).

The nested nature of these models is represented in Figure 2.1. These models provide

representations of the simulation upon which the load balancers make relocation decisions.

2.5.2 Static load balancing

By re-imagining the wetting and drying algorithm as a type of multirate timestepping,

where the dry elements have an infinitely large timestep and the wet elements advance at

the implemented timestep, we use the static load balancing approach outlined in [112]. Here

the goal is to assign an equal number of dry elements and wet elements to each rank. This

is accomplished by using the multi-constraint graph partitioning outlined in [71]. Note that

balancing the memory and load constraints and balancing the wet and dry elements are

equivalent formulations of the same load balancing problem.

2.5.3 Dynamic load balancing

Dynamic load balancers in our context are defined as load balancing strategies that operate in

an entirely distributed, asynchronous manner. The methods relocate tiles based on a “load

pressure”—the local difference in loads. The idea is to issue many individual relocation

requests based on these local observations, and thereby achieve a global balance.

To accommodate both memory and load balance objectives, we implement the refinement

25



Listing 2.1: Asynchronous Diffusion Tile Model

s t r u c t TileModel {
i n t my rank ;
map<int , int> ne igh rank ;
double w e t f r a c t i o n ;
double g e t g a i n ( i n t rank ) ;
void l o c a l b r o a d c a s t ( ) ;

} ;

Listing 2.2: Asynchronous Diffusion Rank Model

s t r u c t RankModel {
map<int , pa ir<double , double>> rank weight ;
StealQ boundary data ;
void l o c a l b r o a d c a s t ( ) ;
void update boundary ( i n t l e av i ng ) ;
void s t e a l o n e t i l e ( ) ;

} ;

procedure used in [71]. Specifically, our asynchronous diffusion approach includes no world

model, but we include tile models and rank models outlined in Listings 2.1 and 2.2.

The tile model consists of the tile’s wet fraction, the location of neighboring tiles, and a

communication gain function, which determines the net impact on inter-rank communication

were the tile to be relocated. The rank model aggregates its tile models to include the tiles

bordering the rank, changes in the rank’s load balance, and a list of neighboring ranks. These

neighboring tiles are stored in the StealQ. A rank periodically broadcasts its load balancing

information to its neighbors, allowing ranks to aggregate the load state of neighboring ranks.

The execution model does not guarantee message ordering. In order to ensure correctness,

both tile and rank models call a local broadcast function, which updates neighbors’ rank

and tile states at regular intervals. The StealQ contains two STL maps for each rank. This

data structure allows us to prioritize, which tile to steal to balance an imbalance in wet or

dry tiles from a given rank. The maps are sorted by the amount of extra communication

that would be required after stealing a given tile; we prioritize stealing tiles that minimize

26



Algorithm 1 Asynchronous Diffusion Thresholding

Set r to current rank ID
Set ΣW ←W(r) +

∑
n∈neighbors(r)W(n)

Set ΣD ← D(r) +
∑

n∈neighbors(r)D(n)

for all n ∈ neighbors(r) do
if W(r) + αG <W(n) then

Insert n into PQ(r) with weight W(n)/ΣW .
end if
if D(r) + βG < D(n) then

Insert n into PQ(r) with weight D(n)/ΣD.
end if

end for

this additional communication.

During the execution of a task, the tile checks to determine if the wet fraction has switched

between wet and dry states. In the case this happens, the tile’s local broadcast updates

neighboring tile models. AGAS visit is utilized to ensure that updates are delivered to the

tiles no matter where they are located. The rank model periodically calls steal one tile().

Based on the rank model’s estimation of the neighboring ranks’ work and memory loads,

the rank assembles a priority queue PQ sorted by normalized wet- and dry-element counts.

Only ranks that are overworked or have too many tiles will be inserted into this queue;

overburdened ranks will never steal tiles. Karypis and Kumar note this stealing heuristic

may lead to chatter, which is when tiles get passed back and forth between the same ranks. To

mitigate this, we introduce admissible pressure gradients, i.e. a required minimum imbalance

to warrant being inserted into the pool of candidate ranks to be stolen from. Specifically,

let the granularity G be the largest number of elements per tile. For a given rank r, let D(r)

be the number of dry elements on rank r and W(r) the number of wet elements on rank r.

The precise heuristic for inserting elements is shown in Algorithm 1.

Then, we attempt to find the tile on the most imbalanced neighboring rank, which borders

27



the stealing rank and would result in the best communication gain. If there is no satisfactory

tile to select, we attempt to improve the most imbalanced constraint associated with the next

most-imbalanced rank.

2.5.4 Semi-static load balancing

While the dynamic load balancing procedure allows for fully distributed load balancing de-

cisions, it is unclear that this will result in a good global load balance. The multi-constraint

partitioning problem may result in unconnected partitions [71]. Additionally, the threshold-

ing heuristic is unable to correct gradual–yet large–load imbalances.

To ensure, that we have a good load balance, we consider a semi-static approach which

periodically rebalances the global model. In our formalism, the tile model updates the world

model with its wet fraction at a fixed frequency. Therefore, we can trigger a load balance

when all the tiles have sent their information without having to perform any synchronization.

The global model incorporates all the information required to perform load balancing, i.e.

the current tile partition and an approximation to the current wet fractions of the respective

tiles. The global model is the only entity which may issue relocates, as such the tile

partition stored in the global model is always accurate.

Semistatic rebalancing involves constructing an updated tile-to-rank assignment based on

the constraints associated with the updated wet fractions using the multi-constraint graph

partitioning algorithm [71]. To keep the master threads available to process messages, we

offload the relatively expensive rebalancing operations onto the worker threads where the

global model is stored. After obtaining this new partition, we potentially have the means to

load balance the system. However, the multi-constraint graph partitioner is unable to take

into account the previous location of the tiles. As a worst case scenario, the graph partitioner

could return the same partition with permuted partition IDs. The resulting relocation would

require migration of every tile, whereas simply maintaining the old partition we would achieve

28



Table 2.2: DGSim parameters for load balance comparison.
Machine DGSWEM

NUMA domains/node 2 Runge-Kutta Stages 273600
Threads/NUMA domain 12 Polynomial order (p) 2
CPU clock-speed 2.4 GHz Tiles/worker thread 4

Asynchronous Diffusion Semi-Static
Rebalance Frequency 40 ms Rebalance Frequency 5 s
α 1
β 2

the same load balance without disruption. In order to remedy this, we solve a minimization

problem which determines a permutation in the global rank ID names, which minimizes the

number of tiles to be migrated. Using a greedy method, we construct a priority queue of old

ID and new ID pairs weighted by the number of tiles that reside in both partitions. We then

pop the members of the priority queue until all of the ranks have been assigned new IDs.

This approach can have a significant impact on the number of tiles migrated: for example,

during a 1200 core run with 4,400 tiles, the greedy assignment reduced the total number of

tiles migrated from roughly 317,000 to 106,000.

2.6 Numerical Experiments

2.6.1 Empirical Validation of DGSim

To ensure that our simulator is accurate, we compared the DGSim execution times for

the Storm36 synthetic hurricane simulation to a skeletonized version of DGSWEM run on

NERSC’s Edison. The skeletonized DGSWEM implements the programming model outlined

in Section 2.3. Inter-process communication is achieved through one-sided asynchronous re-

mote procedure calls using UPC++ [4], and tasks are executed using a dataflow execution

model with a master-worker thread organization. One feature not implemented in the skele-

tonized DGSWEM is the AGAS layer. However, for the statically balanced problems con-

sidered for this validation, AGAS overhead is negligible due to caching of neighbors’ ranks.

By burning identical worker thread execution times, the validation examines whether the

29



1200 2400 3600 4800 6000

Number of Cores

0.0

0.2

0.4

0.6

0.8

1.0

P
a
ra

ll
el

E
ffi

ci
en

cy
UPC++

DGSim

Figure 2.2: Comparison between the parallel efficiency of the simulated performance
(DGSim) and the skeletonized application code (DGSWEM) on NERSC’s Edison super-
computer for 1200 to 6000 cores for the Storm36 hurricane using Machine and DGSWEM
parameters as outlined in Table 2.2. Each configuration was run five times. The standard
deviations for a given core count were each below 1%.

messaging and threading overhead models as described in Section 2.4.1 are reasonable. The

parallel efficiencies for the two simulations are shown in Figure 2.2. Differences in execution

times between the simulation and the skeletonized DGSWEM application do not exceed 7%

of the runtime. Furthermore, the DGSim execution time was slower than the DGSWEM ex-

ecution time for all simulations, reflecting the conservative design of our cost models. These

validation results demonstrate that despite our relatively simple network model, DGSim pre-

dicts execution times for this particular hurricane simulation with accuracies comparable to

more sophisticated approaches, e.g. [64,116].

2.6.2 Load Balance Comparison

In order to compare the load balancing algorithms outlined in Section 2.5, we compare

performance for the hurricane used in the previous subsection using a fixed machine and

algorithmic configuration outlined in Table 2.2. The load balancer parameters are based on

parameter sweeps done at 1200 and 3600 cores.

To quantify the quality of our load balancing algorithms, we use two performance met-

30



T
ab

le
2.

3:
P

er
fo

rm
an

ce
of

lo
ad

b
al

an
ce

rs
fo

r
S
to

rm
36

S
ta

ti
c

M
u

lt
i-

co
n

st
ra

in
t

st
at

ic
A

sy
n

ch
ro

n
o
u

s
d

iff
u

si
o
n

S
em

i-
st

a
ti

c
C

or
es

T
S
T

T
M

C
S
S
T

T
A
D

T
M

σ
T
M

S
S
T

S
M

C
T
S
S

T
M

σ
T
M

S
S
T

S
M

C

12
00

2,
61

3
2,

04
8

1.
28

1
,6

8
6

3
,6

5
4

1
4
5

1
.5

5
1
.2

1
1
,6

7
5

7
2
3
,1

0
9

2
,3

2
5

1
.5

6
1
.2

2
24

00
1,

31
0

1,
05

8
1.

24
8
4
9

9
,5

3
2

1
8
9

1
.5

4
1
.2

5
8
5
6

6
8
1
,6

5
4

5
5
7

1
.5

3
1
.2

4
36

00
87

6
69

8
1.

26
5
7
1

1
6
,6

1
4

3
1
9

1
.5

3
1
.2

2
5
8
5

6
4
1
,9

5
0

5
6
8

1
.5

0
1
.1

9
48

00
65

9
55

3
1.

19
4
3
1

2
4
,4

0
2

3
1
9

1
.5

3
1
.2

8
4
5
2

5
9
3
,7

0
9

3
,9

3
2

1
.4

6
1
.2

2
60

00
52

8
44

4
1.

19
3
4
8

3
6
,9

5
5

7
6
1

1
.5

2
1
.2

8
3
7
3

5
7
4
,1

0
9

1
,2

5
5

1
.4

1
1
.1

9

N
o
te

:
A

ll
ti

m
es

ar
e

re
p

or
te

d
in

se
co

n
d
s.

F
or

ea
ch

ca
se

,
5

ru
n
s

w
er

e
p

er
fo

rm
ed

.
T

h
e

st
an

d
ar

d
d
ev

ia
ti

on
of

al
l

ex
ec

u
ti

on
ti

m
es

w
as

fo
u
n
d

to
b

e
b

el
ow

2%
of

th
e

m
ea

n
.
T

co
rr

es
p

on
d
s

to
th

e
ex

ec
u
ti

on
ti

m
e

in
se

co
n
d
s.

T
M

re
fe

rs
to

th
e

n
u
m

b
er

of
re

lo
ca

te
d

ti
le

s.
T

h
e

sp
ee

d
-u

p
S
X

is
th

e
sp

ee
d
-u

p
of

th
e

si
m

u
la

ti
on

re
la

ti
ve

to
st

ra
te

gy
X

at
th

e
gi

ve
n

co
re

co
u
n
t.

D
u
e

to
n
on

-d
et

er
m

in
is

m
in

ou
r

si
m

u
la

ti
on

,
w

e’
ve

re
p

or
te

d
st

an
d
ar

d
d
ev

ia
ti

on
s

of
ti

le
s

m
ov

ed
σ
T
M

fo
r

a
sa

m
p
le

si
ze

of
5.

31



Figure 2.3: Load imbalance for Storm 36 using 1200 cores with the configuration outlined
in Table 2.2. The following load balancing strategies were evaluated: static (ST), multi-
constraint static (MCS), asynchronous diffusion (AD), and semi-static (SS).

rics: the compute intensity, which is defined for a given rank as the fraction of time spent

computing at a given instant in the simulation, and the imbalance, which is defined as

I =
maxT − T

T
,

where maxT is maximum load on a given rank and T is the average load across the system.

The combined performance results are shown in Figure 2.3 and the elapsed times and speed-

ups in Table 2.3.

Since the traditional static load balancing approach solely distributes tiles to ranks to

satisfy the memory constraint, it is expected that the static curve in Figure 2.3 has a high

imbalance. This is reflected in Figure 2.4a, where roughly half the ranks are underutilized

until the storm inundates the coast. This load profile is consistent with the 60% parallel

efficiency observed in Figure 2.2. The multi-constraint static load balancer takes load as

well as memory into account. This results in much better load balance until the hurricane

makes landfall. Once this happens, the dynamic nature of the computational load causes a

strong increase in imbalance and a corresponding decrease in computational intensity. Since

32



(a) Static (b) Multi-constraint static

(c) Asynchronous diffusion (d) Semi-static

Figure 2.4: Compute intensities of the various load balancing strategies for a 1200 core
simulation. For clarity, the ranks have been sorted according to average compute intensity.

33



the majority of the time DGSWEM simulates is prior to landfall, the multi-constraint static

mesh partitioning achieves a speed-up of 1.28 versus the original static partitioning.

Both the asynchronous diffusion and semi-static load balancers are very effective at re-

ducing load imbalance. The compute intensities shown in Figure 2.4d and 2.4c illustrate

the ranks are being well utilized throughout the simulation. With roughly equal execution

times, both load balancers achieve 96% of the ideal parallel efficiency. While the semi-static

strategy migrates significantly more tiles than asynchronous diffusion, we have observed a

small dependence of execution time in DGSIM on tiles moved. AGAS’s ability to overlap

computation and tile migration minimizes resource starvation. Furthermore, the execution

time is mainly determined by the simulation’s critical path. Thus migrating tiles not on the

critical path will not impact execution time.

2.6.3 Strong Scaling Study

To demonstrate that these algorithms are scalable for operationally-relevant core counts, we

present a strong scaling study for up to 6000 cores. To obtain an understanding of the quality

of the load balancers relative to achievable performance, we define the parallel efficiency E

for load balancer LB as ELB = T ∗

ncTLB
where T ∗ is the serial execution time, nc is the core

count, and TLB is the execution time at a given core count. As the master threads do not

compute tasks themselves, the best attainable parallel efficiency is 91.7% = 11/12.

Using the parameters Table 2.2, the parallel efficiencies for the four partitioning strategies

are shown in Figure 2.5. Note that by fixing tiles per worker thread, the task granularity

decreases as we scale out to higher core counts. Firstly, we note that the code scales well:

the static partitioning strategy loses less than 1% parallel efficiency across the range of

core counts. The execution time here should be similar to that of a fully wetted mesh,

and demonstrates the parallelizability of the DG method. Next, the multi-constraint static

partitioner experiences a slight degradation in performance; EMC
6000/E

MC
1200 = 92.1%. As the

34



number of cores increases each NUMA domain is assigned a smaller fraction of the mesh.

Scaling out, the imbalance becomes more sensitive to local inundation, causing degradation

of the strong scaling performance.

The semi-static load balancer also loses efficiency at scale with ESS
6000/E

SS
1200 = 89.6%.

Since the rebalance frequency is fixed by the trellis approach, as we scaled out to larger

core counts, the number of times the balancer is called decreases. Furthermore, the cost

of repartitioning the tile graph increases. At 1200 simulated cores, the METIS calls take

approximately 700 ms. These timings increase to around 3700 ms at 6000 simulated cores.

We suspect that the performance degradation is due to both the faster rate that imbalance

is introduced, as well as a mismatch between the load balance used to compute the reparti-

tioning and the load balance at the time when the AGAS migrates get issued. Ultimately,

the performance appears to remain robust, with the semi-static partitioner maintaining a

speed-up of 1.19 over the multi-constraint static partitioner at 6000 cores.

The asynchronous diffusion load balancing scales the best with EAD
6000/E

AD
1200 = 96.9%.

Since the cost of rebalancing is entirely local, the computational complexity of load balanc-

ing decisions does not grow with the number of cores. Furthermore, since the rebalancing

frequency is roughly two orders of magnitude higher than the semi-static rebalancing fre-

quency, the asynchronous diffusion approach does not struggle with increased irregularity

due to higher core counts. A common problem with strong scaling of diffusion-based algo-

rithms is the persistence of small gradients. Even with finer tiles at large core counts, as the

rank graph grows, the maximum allowable imbalance grows as well. This did not appear to

be a problem here. However, we do not claim that this approach would work equally well

for other applications. Ultimately, the asynchronous diffusion worked very well providing

a speed-up of 1.28 over the multi-constraint static partitioning strategy at 6000 cores, and

achieved 93.7% of the maximum attainable speed-up.

35



1200 2400 3600 4800 6000

Number of Cores

0.0

0.2

0.4

0.6

0.8

1.0

P
a
ra

ll
el

E
ffi

ci
en

cy
Ideal

Static

Multi-constraint static

Asynchronous diffusion

Semi-static

Figure 2.5: Parallel efficiency of the various load balancing strategies on Edison for 1200 to
6000 cores.

2.7 Conclusion and Future Work

Hurricane storm surge simulation stands to benefit greatly from the dynamic load balancing

techniques outlined in this paper. The irregularity introduced by flooding requires load

balancers to simultaneously account for both memory and compute load. We have presented

a dynamic diffusion-based and a semi-static load balancing approach for an asynchronous,

task-based implementation of DGSWEM. To enable rapid prototyping and evaluation of

these load balancing strategies, we simulated DGSWEM using a discrete event simulation

approach, which allowed us to evaluate configurations 5,000 times faster than running the

actual code (in terms of core-hours). We found that static multi-constraint partitioning gives

a speed-up of 1.28 over static single-constraint balancing. Both semi-static and asynchronous

diffusion approaches worked very well, achieving speed-ups of 1.2 over the static multi-

constraint partitioning strategy at 1200 cores. The asynchronous diffusion approach scaled

best, maintaining a speed-up of 1.52 over the original static partitioning approach at 6000

cores. Furthermore, the asynchronous diffusion approach migrated an order of magnitude

fewer tiles than the semi-static approach.

36



The irregularity of the hurricane limits the need for more sophisticated approaches. By

only simulating every tenth timestep, we have exaggerated the rate of change of the imbalance

by a factor of ten. In practice, we expect the methods proposed here to completely balance

the compute load. Implementing these load balancing strategies in DGSWEM is a topic of

future work.

The nature of simulating DGSWEM opens up many interesting avenues of future research.

We plan to model parallel performance behavior of DGSWEM on future supercomputer

architectures, e.g. x86 many-core, GPU, and RISC cores. Additionally, we would like to

perform a co-design exploration of algorithmic and software optimizations in conjunction

with the hardware parameter space. Increased communication costs on future architectures

will likely play a role in choosing between load balancing strategies that trade between load

balance quality, application communication costs, and tile migration costs.

37



Chapter 3

Adaptive Total Variation Stable Local Timestepping for

Conservation Laws1

3.1 Introduction

The total variation stability results for scalar conservation laws form the basis of the ro-

bustness which has led to the popularity of finite volume and discontinuous Galerkin finite

element methods. Roughly, the Courant-Friedrichs-Lax (CFL) condition stipulates that un-

der a restriction on the timestep as a function of wave speed |Λ| and mesh size ∆x,

∆t ≤ CCFL∆x

|Λ|
, (3.1)

the numerical solution will weakly converge to a weak solution [81]. However, for large scale

simulations, it is computationally too expensive to check that (3.1) is enforced due to high

communication overhead. In practice, timesteps are set to sufficiently small values.

Enforcing a global CFL condition or using a sufficiently small global timestep tends to be

overly conservative for large portions of the mesh. For example, in the case of hurricane storm

surge simulations, meshes are used with length scales ranging from O(10 m) to O(1 km) [32].

1This chapter is based on the following publication currently under review: Maximilian Bremer, John
Bachan, Cy Chan, Clint Dawson. “Adaptive Total Variation Stable Local Timestepping for Conservation
Laws.” Preprint available at arXiv:2003.09020 [math.NA]. Maximilian Bremer contributed 65% of the work,
John Bachan contributed 15% of the work, Cy Chan contributed 10% of the work, and Clint Dawson
contributed 10% of the work in this chapter.

38

https://arxiv.org/abs/2003.09020


u0 = 1

j

Figure 3.1: Riemann problem for Burgers’ equation with initial conditions, Eqn. (3.2).

Local timestepping relaxes the global CFL constraint (3.1) by allowing different regions of

the mesh to advance with different local timesteps. Similar to synchronous timestepping,

existing methods are unable to account for significant temporal variations in the wave speed

|Λ|.

As a motivating example, consider (inviscid) Burgers’ equation (f(u) = u2/2), with initial

conditions,

u0(x) =


1 u < 0,

0 u > 0.

(3.2)

The solution to this problem is a shockwave moving with speed 1/2 to the right, i.e. u(x, t) =

u0(x− t/2). The local wavespeed is given by |Λ|(x) = |u|(x, t). For clarity, we have depicted

the schematic in Figure 3.1. Consider the cell j downstream of the shock. Were one to

naively evaluate the CFL condition (3.1), they would incorrectly determine that cell j is

able to step arbitrarily far. In doing so, as the shock arrives at cell j, it would be unable to

pass through the cell, and mass would accumulate at the interface. Such a scheme is unable

to converge.

Current theoretical results require knowing the entire temporal history of the flux, before

being able to determine that a timestep will be stable. Therefore, one cannot look only at

neighboring values, but must consider all flux values between the last update and the next

update. While existing works can assess whether or not a timestep will be stable, they fail

to describe an algorithm that will advance the system in a manner that guarantees stability.

39



This work addresses this issue.

The main result of this chapter is a novel adaptive local timestepping algorithm, which

is provably total variation stable. The algorithm recasts local timestepping as a discrete

event simulation, which allows cells to dynamically coarsen and refine their timesteps. A

proof of correctness is supplied to verify that under a sufficiently small minimum timestep,

the algorithm will stably advance the system to an arbitrary final time, tend. While the

presented algorithm is first order in time, this work makes two fundamental contributions,

which will enable local timestepping to become feasible for nonlinear hyperbolic problems in

a massively parallel computing environment:

1. The application of loop invariants in the proof of correctness: Loop invariants are

a proof technique that guarantee a program is formally correct, and have been used

with great success in the linear algebra community [10]. Given the highly asynchronous

context in which our timestepping method is executed, it is extremely difficult to debug

such a program. By using these formal correctness techniques we have machinery which

ensures that the algorithm achieves desired mathematical properties, e.g. the CFL

condition. This not only strengthens the confidence in the results produced by the

algorithm, but provides a systematic way to manage the complexity associated with

higher order timestepping methods. We expect this proof technique to be indispensable

in the extension of this timestepping scheme to higher orders and multiple dimensions.

2. A discrete event formulation which removes artificial synchronizations: Many current

timestepping formulations consider only two timestepping groups. Extending these

formulations to more timestepping groups is done in a recursive fashion. However,

parallelizing these methods then requires a synchronization between each fine timestep

to allow for timestepping adapativity. These approaches are fundamentally limited by

the parallelism in the finest timestepping group. Using hurricane storm surge as an

40



example, there exist O(104) elements in the finest timestepping group in a mesh that

consists of O(106) elements [33]. Amdahl’s law severely restricts the scalability of any

such formulation. By using a discrete event simulation, we consider arbitrarily many

timestepping groups. Furthermore, we can leverage the extensive work done for parallel

discrete event simulation to arrive at an efficient parallel implementation. Parallel

performance is demonstrated for a single node on Stampede2’s Skylake architecture

using Devastator, one such parallel discrete event simulator [25]. We also introduce

a performance model for the adaptive, locally time-stepped method, which is used to

both load balance the execution and explain the observed performance gains relative

to theoretical speedup bounds. These results highlight the ability of the algorithm to

capitalize on adaptivity on mesh size as well as adaptivity in local wave speeds.

The remainder of this chapter is structured as follows. In Section 3.2, we discuss the

current state of the art. Section 3.3 generalizes existing local timestepping results to account

for arbitrary local timestepping. Section 3.4 presents the timestepping algorithm, which we

accompany with a proof of correctness. Section 3.5 introduces the Devastator runtime along

with performance optimizations for the local timestepping algorithm. Finally, numerical

results are presented in Section 3.6, where we present one-dimensional results for Burgers’

equation and the shallow water equations on a variety of meshes.

3.2 Previous Work

Relaxing the CFL condition for conservation laws by allowing different regions of the mesh

to advance with different timesteps has been the subject of numerous studies. Osher et al.

presented a first-order total variation diminishing timestepping scheme in [101]. Dawson

and Kirby developed a second order method, which reduces to first order at the interface

between elements stepping with different timesteps [31]. Kirby generalized this approach to

41



high resolution methods in [72]. Constantinescu developed a second order total variation

stable method for conservation laws [30], leveraging the P-series analysis of Hairer [54].

Third order methods were presented in the work of Schlegel et al [110]. These methods can

conserve mass, however are unable to demonstrate total variation stability.

Other methods have relied on high-order interpolation strategies to approximate coupled

terms with larger timesteps [52, 59, 74]. Another set of local timestepping algorithms for

conservation laws rely on single step methods with high-order space-time representations [82,

89, 120]. These methods are conservative and high-order, however fail to recover the total

variation stability results of the partitioned Runge-Kutta approaches.

The main thrust of this chapter is a reformulation of the algorithm of Osher et al [101]

to improve parallel performance. Previous work parallelizing local timestepping approaches

has had mixed results. In cases, where the CFL number is fixed, e.g. for linear conservation

laws with static meshes, task-based programming models have been extremely effective, with

local timestepping ADER-DG methods scaling up to full system runs [17,123].

While task-based approaches have proven successful for linear conservation laws, their

implementations fundamentally rely on timestepping groups being statically determined, and

thus are unsuitable for timestepping adaptivity. Ignoring dynamic changes in timestepping

groups results in CFL violations and associated instabilities, e.g. [48, 121]. Other paral-

lelization attempts for conservation laws have been made by recursively updating finer and

finer timestepping groups. These methods would allow for adaptive timestepping by syn-

chronizing after each fine timestep to allow for cells to change their timestepping groups.

However, load balancing these methods requires balancing the work in each timestepping

group across all ranks [109, 112]. The scalability of these approaches is limited by the

amount of work in the timestepping group with the smallest timestep. Other paralleliza-

tion approaches have treated the adaptive local timestepping problem as a discrete event

simulation [69,98–100,114,117,122]. While these approaches achieve tremendous speed-ups,

42



these methods typically provide only heuristics and examples as proofs of robustness. To

the authors’ knowledge, no method has presented a provably total-variation stable adaptive

timestepping scheme.

3.3 Theoretical Results for Scalar Conservation Laws

In this section, we are concerned with solving problems of the following form: Find u ∈

L∞((0, tend);T) such that 
∂tu+ ∂xf(u) = 0

u(x, 0) = u0(x),

(3.3)

where f is a Lipschitz flux, u0(x) ∈ L∞(T) ∩ BV (T), and T is the unit torus. Consider

a finite partitioning of the torus, Ωh = ∪nelj=0(xj, xj+1) as defined by the strictly increasing

sequence xj ⊂ (0, 1). Let Uj denote the average value on the interval (xj, xj+1), and let ∆

denote the forward difference operator, i.e.

∆Uk = Uk+1 − Uk.

We specify an approximation to the conservation law as a set of pairs,

E =
{

(tnj , U
n
j ) : 0 ≤ j ≤ nel, n ∈ R+

}
,

where Un
j is the average value over the cell (xj, xj+1) at time tnj . We refer to this collection

of space-time points as the event trace. We define the timestamps Tj on cell j, as

Tj =
{
t∗j : ∃U∗j s.t. (t∗j , U

∗
j ) ∈ E

}
.

43



We define for cell j, the nearest previous timestep for time t as

btcj = max{τ ∈ Tj : τ ≤ t}.

We similarly define the next timestep at time t as

dtej = min{τ ∈ Tj : τ > t}.

To achieve the desired theoretical results, we impose two constraints on the event traces.

Firstly, we assume that there are only a finite number of events. Secondly, we need to restrict

when timestamps are able to step relative to one another.

We call the set of timestamps ∪jTj locally ordered if for each cell j there exists a sequence

of pairwise synchronization times {sµj,j+1}
ns
µ=0 ⊂ Tj ∩ Tj+1 such that for all consecutive syn-

chronization times sµj,j+1 and sµ+1
j,j+1, either

Tj ∩ (sµj,j+1, s
µ+1
j,j+1) = ∅ or Tj+1 ∩ (sµj,j+1, s

µ+1
j,j+1) = ∅.

That is to say that one cell must step strictly faster than its neighbor between synchronization

times. To illustrate this definition, we’ve drawn a sketch of potential local timestepping

solutions in Figure 3.2. Additionally, we define the value of an approximation at any point

in time and space as the most recent average value of the cell containing the given point, i.e.

U(t, x) =


Un
j if x ∈ (xj, xj+1) and t = tjn ,

U(btcj, x) where x ∈ (xj, xj+1).

We also introduce Uj(t) as the value of the solution U(x, t) inside cell j at time t. To approx-

imate the flux exchange at the boundary, we define a numerical flux F̂ (·, ·). Additionally,

44



Space

Time

(a) Straddling

Space

Time

(b) Locally Ordered

Figure 3.2: Comparison of two event traces.

we require that the numerical flux be:

1. Consistent, i.e. F̂ (u∗, u∗) = f(u∗),

2. Monotone, i.e. F̂ is increasing in the first argument, and decreasing in the second

argument,

3. Lipschitz continuous in both arguments.

We now define the Euler approximation to the scalar conservation law as follows.

Definition 3.3.1 (Forward Euler Approximation). An event trace E is an Euler approxi-

mation to the scalar conservation law if

Un+1
j = Un

j +
1

∆xj

∫ tn+1
j

tnj

[
F̂ (Uj−1(τ), Un

j )− F̂ (Un
j , Uj+1(τ))

]
dτ, (3.4)

for all cells j, and between all updates tnj and tn+1
j , where F̂ is a numerical flux.

The remainder of this section assumes the existence of forward Euler approximations.

Under this assumption, we present proofs that under CFL-like constraints, a maximum

principle and total variation stability can be obtained. We note that the proofs follow

closely the proof presented in [72, 101]. In the next section, we will present an algorithm

which satisfies the assumptions of the theorems presented in this section.

45



Following the spirit of the analysis proposed in [55], define

Cj = −

(
F̂ (Uj, Uj+1)− F̂ (Uj−1, Uj+1)

∆xj(Uj − Uj−1)

)
and Dj =

F̂ (Uj−1, Uj+1)− F̂ (Uj−1, Uj)

∆xj(Uj+1 − Uj)
.

We remark that due to the Lipschitz continuity of the numerical flux both Cj and Dj

are bounded, and due to the monotonicity of the numerical flux Cj ≤ 0 ≤ Dj for all

Uj−1, Uj, Uj+1 ∈ R. We reformulate the update rule (3.4) as

Un+1
j = Un

j +

∫ tn+1
j

tnj

[
Cj(τ)∆Uj−1(τ)−Dj(τ)∆Uj(τ)

]
dτ. (3.5)

Note that this representation is slightly different than the analyses presented in [55,72,101].

We do not multiply our Cj and Dj coefficients by ∆t.

Theorem 3.3.1 (Maximum Principle). Consider an event trace E satisfying the forward

Euler approximation (3.4). If given any two events (tnj , U
n
j ) and (tn+1

j , Un+1
j ),

1 +

∫ tn+1
j

tnj

[
Cj(τ)−Dj(τ)

]
dτ ≥ 0, (3.6)

then

|Un
j | ≤ sup

j
|U0

j |.

Proof. Using the update criterion (3.5),

Un+1
j = Un

j +

∫ tn+1
j

tnj

[
Cj(τ)∆Uj−1(τ)−Dj(τ)∆Uj(τ)

]
dτ

46



Using the CFL condition (3.6), and Cj(τ) ≤ 0 ≤ Dj(τ) for all τ ,

∣∣Un+1
j

∣∣ ≤ ∣∣∣∣∣Un
j +

∫ tn+1
j

tnj

[
Cj(τ)Un

j −Dj(τ)Un
j

]
dτ

∣∣∣∣∣
+

∣∣∣∣∣
∫ tn+1

j

tnj

Cj(τ)Uj−1(τ)dτ

∣∣∣∣∣+

∣∣∣∣∣
∫ tn+1

j

tnj

Dj(τ)Uj+1(τ)dτ

∣∣∣∣∣ ,
≤

(
1 +

∫ tn+1
j

tnj

Cj(τ) +Dj(τ) dτ

)
|Un

j |

−
∫ tn+1

j

tnj

Cj(τ)|Uj−1(τ)| dτ +

∫ tn+1
j

tnj

Dj(τ)|Uj+1(τ)| dτ.

Let U∗ = supτ∈[tnj ,t
n+1
j ){|Un

j |, |Uj−1(τ)|, |Uj+1(τ)|}, then

|Un+1
j | ≤

(
1 +

∫ tn+1
j

tnj

[
Cj(τ)−Dj(τ)

]
dτ

)
U∗

−

(∫ tn+1
j

tnj

Cj(τ)dτ

)
U∗ +

(∫ tn+1
j

tnj

Dj(τ)dτ

)
U∗

≤ U∗.

Lastly, we define the minimum time between events as

ε = inf
j,k,n

{
tnj − t : t ∈ Tk ∧ t < tnj

}
.

Since we’ve assumed a finite number of events, ε > 0. Letting U(t) be defined as the largest

value up till time t, i.e.

U(t) = max
j, τ≤t
|Uj(τ)|.

By the definition of ε, U∗ ≤ U(tn+1
j − ε/2). Finally, we claim U((n+ 1)ε/2) ≤ U(nε/2). Pick

47



any event at tmi such that nε/2 < tmi ≤ (n+ 1)ε/2. By the above analysis,

|Um
i | ≤ U(tim − ε/2) ≤ U(nε/2).

Taking the maximum over all events occurring between nε/2 and (n+1)ε/2, U((n+1)ε/2) ≤

U(nε). Arguing inductively, for all events (tnj , U
n
j ), |Un

j | ≤ U(0) = supj |U0
j |.

Remark 3.3.1. This proof did not require that the solution be locally ordered.

3.3.1 TVD Analysis

The main result of this section will be:

Theorem 3.3.2. A locally ordered forward Euler solution E subject to the following CFL

constraint: for all cells j and for all times between consecutive synchronization times, t ∈

(sµj,j+1, s
µ+1
j,j+1),

1 + (dtej+1 − sµj,j+1)Cj+1(t)− (dtej − sµj,j+1)Dj(t) ≥ 0, (3.7)

is total variation diminishing (TVD), i.e.

TV (U(t)) =
∑
j

|Uj+1(t)− Uj(t)| ≤ TV (U(0)).

Remark 3.3.2. The CFL condition presented here looks different than the one presented in

Kirby [72]. We’ve simply opted to use a less stringent inequality by making the time interval

in the CFL condition span from the last synchronization time to the next update time rather

than the next synchronization time.

Before we begin the proof, we introduce the following Lemma:

48



Lemma 3.3.1. Given cell j, and two update points, t1, t2 ∈ Tj and t1 < t2,

∫ t2

t1

[
Uj(t1)− Uj(τ)

]
dτ = −

∫ t2

t1

(t2 − dτej)
[
Cj∆Uj−1(τ) +Dj∆Uj(τ)

]
dτ.

Proof of Lemma 3.3.1. Using the update relation,

∫ t2

t1

[
Uj(t1)− Uj(σ)

]
dσ = −

∫ t2

t1

∫ bσcj
t1

[
Cj∆Uj−1(τ) +Dj∆Uj(τ)

]
dτ dσ.

Changing the order of integration, yields the result

∫ t2

t1

[
Uj(t1)− Uj(σ)

]
dσ = −

∫ t2

t1

∫ t2

dτej

[
Cj∆Uj−1(τ) +Dj∆Uj(τ)

]
dσ dτ,

= −
∫ t2

t1

(t2 − dτej)
[
Cj∆Uj−1(τ) +Dj∆Uj(τ)

]
dτ.

Proof of Theorem 3.3.2. The proof closely follows that of [72]. We’ve included it here for

completeness. Given an interface between cells j and j+ 1 with consecutive synchronization

times sµj,j+1 and sµ+1
j,j+1, the update is given by

∆Uj(s
µ+1
j,j+1) = ∆

(
Uj(s

µ
j,j+1) +

∫ sµ+1
j,j+1

sµj,j+1

[
Cj∆Uj−1(τ) +Dj∆Uj(τ)

]
dτ

)

Let ∆sµj,j+1 = sµ+1
j,j+1 − s

µ
j,j+1, we can then re-write the update rule as

∆Uj(s
µ+1
j,j+1) =

1

∆sµj,j+1

(∫ sµ+1
j,j+1

sµj,j+1

∆Uj(s
µ
j,j+1)−∆Uj(τ) dτ

+ ∆

∫ sµ+1
j,j+1

sµj,j+1

Uj(τ) + ∆sµj,j+1

(
Cj∆Uj−1(τ) +Dj∆Uj(τ)

)
dτ

)
.

49



By Lemma 3.3.1,

∆Uj(s
µ+1
j,j+1) =

1

∆sµj,j+1

∫ sµ+1
j,j+1

sµj,j+1

∆
(
Uj(τ) + (dτej − sµj,j+1) (Cj∆Uj−1(τ) +Dj∆Uj(τ))

)
dτ

=
1

∆sµj,j+1

∫ sµ+1
j,j+1

sµj,j+1

(
1 + (dτej+1 − sµj,j+1)Cj+1(τ)− (dτej − sµj,j+1)Dj(τ)

)
∆Uj(τ) dτ

+
1

∆sµj,j+1

∫ sµ+1
j,j+1

sµj,j+1

(dτej+1 − sµj,j+1)Dj+1∆Uj+1(τ)− (dτej − sµj,j+1)Cj∆Uj−1(τ) dτ.

Taking the absolute value of both sides, and using the CFL condition and Cj ≤ 0 ≤ Dj for

all j and τ , we obtain

|∆Uj(sµ+1
j,j+1)| ≤ 1

∆sµj,j+1

∫ sµ+1
j,j+1

sµj,j+1

(
1+(dτej+1−sµj,j+1)Cj+1(τ)−(dτej−sµj,j+1)Dj(τ)

)
|∆Uj(τ)| dτ

+
1

∆sµj,j+1

∫ sµ+1
j,j+1

sµj,j+1

(dτej+1 − sµj,j+1)Dj+1|∆Uj+1(τ)| − (dτej − sµj,j+1)Cj|∆Uj−1(τ)| dτ.

(3.8)

Lastly, we establish bounds for |∆Uj(τ)|. Consider the sequence of update points {tk} for

either cell j or j + 1 in [sµj,j+1, s
µ+1
j,j+1], i.e. tk ∈ (Tj ∪ Tj+1) ∩ [sµj,j+1, s

µ+1
j,j+1]. Importantly,

∆Uj(τ) is constant for all τ ∈ (tk, tk+1). Then, for r, tk+1 ≤ r < tk+2,

∆Uj(r) = ∆Uj(tk) + ∆

(∫ brcj
btkcj

Cj∆Uj−1(σ) +Dj∆Uj(σ) dσ

)
.

Due to the local ordering constraint, either cell j or cell j + 1 will only update at sµj,j+1 and

sµ+1
j,j+1. Let us assume btkcj = brcj. Taking the absolute value of both sides and grouping

like terms, we obtain

|∆Uj(r)| ≤ |∆Uj(tk)|

∣∣∣∣∣1 +

∫ brcj+1

btkcj+1

Cj+1(σ) dσ

∣∣∣∣∣+

∫ bscj+1

btkcj+1

Dj+1|∆Uj+1|(σ) dσ.

50



Using the CFL condition (3.7), it follows that

1 +

∫ brcj+1

btkcj+1

Cj+1(σ) dσ ≥ 0.

Summing over the update points {tk}, for r < sµ+1
j,j+1, we obtain

|∆Uj(r)| ≤ |∆Uj(sµj,j+1)|+
∫ brcj+1

sµj,j+1

Cj+1|∆Uj|(σ) +Dj+1|∆Uj+1|(σ) dσ

−
∫ brcj
sµj,j+1

Cj|∆Uj−1|(σ) +Dj|∆Uj|(σ) dσ.

Substituting this expression into (3.8),

|∆Uj(sµ+1
j,j+1)| ≤ |∆Uj(sµj,j+1)|

+
1

∆sµj,j+1

∫ sµ+1
j,j+1

sµj,j+1

(dτej+1 − sµj,j+1) (Cj+1|∆Uj|(τ) +Dj+1|∆Uj+1|(τ)) dτ

− 1

∆sµj,j+1

∫ sµ+1
j,j+1

sµj,j+1

(dτej − sµj,j+1) (Cj|∆Uj−1|(τ) +Dj|∆Uj|(τ)) dτ

+
1

∆sµj,j+1

∫ sµ+1
j,j+1

sµj,j+1

∫ bτcj+1

sµj,j+1

Cj+1|∆Uj|(σ) +Dj+1|∆Uj+1|(σ) dσ dτ

− 1

∆sµj,j+1

∫ sµ+1
j,j+1

sµj,j+1

∫ bτcj
sµj,j+1

Cj|∆Uj−1|(σ) +Dj|∆Uj|(σ) dσ dτ

51



Reversing the order of integration for the double integrals, we obtain

|∆Uj(sµ+1
j,j+1)| ≤ |∆Uj(sµj,j+1)|

+
1

∆sµj,j+1

∫ sµ+1
j,j+1

sµj,j+1

(dτej+1 − sµj,j+1) (Cj+1|∆Uj|(τ) +Dj+1|∆Uj+1|(τ)) dτ

− 1

sµj,j+1

∫ sµ+1
j,j+1

sµj,j+1

(dτej − sµj,j+1) (Cj|∆Uj−1|(τ) +Dj|∆Uj|(τ)) dτ

+
1

∆sµj,j+1

∫ sµ+1
j,j+1

sµj,j+1

(sµ+1
j,j+1 − dτej+1) (Cj+1|∆Uj|(τ) +Dj+1|∆Uj+1|(τ)) dτ

− 1

∆sµj,j+1

∫ sµ+1
j,j+1

sµj,j+1

(sµ+1
j,j+1 − dτej) (Cj|∆Uj−1|(τ) +Dj|∆Uj|(τ)) dτ

= |∆Uj(sµj,j+1)|

+

∫ sµ+1
j,j+1

sµj,j+1

Cj+1|∆Uj|(τ) +Dj+1|∆Uj+1|(τ) dτ

−
∫ sµ+1

j,j+1

sµj,j+1

Cj|∆Uj−1|(τ) +Dj|∆Uj|(τ) dτ

Summing over all synchronization times, we obtain

|∆Uj(t)| ≤ |∆Uj(0)|+ ∆

∫ t

0

Cj|∆Uj−1|+Dj|∆Uj| dτ.

Summing across all cells j gives the result.

3.4 An Adaptive Local Timestepping Algorithm

The previous proofs dealt with certain classes of event traces and demonstrated that they

were TVD. In this section, we present an algorithm that generates an event trace satisfying

the hypotheses of Theorem 3.3.2. To allow for an efficient implementation, we couch the

52



algorithm in the language of discrete event simulations, which will allow us to rely on the

extensive work done in that field for the parallelization. The main result of this section will

demonstrate that with a sufficiently small minimum timestep, our algorithm will generate a

total variation stable event trace.

3.4.1 Discrete Event Simulation

Discrete event simulation as a tool has been used extensively for the simulation of numerous

phenomena [46]. Fundamentally, the simulation is represented as a set of actors denoted

here as A, and a set of events to be executed on an actor at a given point in time. When

executed, each event may then schedule more events with later timestamps. The discrete

event simulator guarantees that events will be executed in order of their timestamps.

At a high level, the actors used for the approximation of solutions to conservation laws

will consist of submeshes. For this section, we require that at least two elements be assigned

to each submesh. However, given an update rule with a 2n+ 1-sized stencil per cell as is the

case for high order finite volume methods, we require that the submesh contain at least n+1

cells. In practice, achieving performance requires balancing the overhead of the simulator

against the amount of useful work being done during each task [15]. Therefore, submeshes

should contain significantly more cells to balance simulation overheads. Each submesh can

schedule one of two events: (1) Update (U) the submesh to the time at which the update is

scheduled, and (2) Push Flux (PF), wherein the submesh sends relevant metadata to the

neighboring cell to allow advancing along the shared boundary. We quantize our time to

be an integer multiple of a smallest timestep, ∆tmin. In this section, we use t, btc, dte as

variable names and τ is used to specify timestamps in the discrete event simulation.

The actor states are described in Figure 3.3a. The actor’s members correspond to

· id: The submesh id,

· t: The current time of the submesh,

53



c l a s s Submesh

id ∈ Z

t, btc, dte ∈ Z

u, ∆x ∈ Rnel

`, r ∈ I n t e r f a c e

(a) Submesh class

c l a s s I n t e r f a c e

id ∈ Z

btc, tsync ∈ Z

u, ΣF̂ , ∆x ∈ R

Kint, Kext ∈ R

(b) Interface class

Figure 3.3: Local timestepping data structures

· btc: The last time at which the submesh was updated,

· dte: The next time at which the submesh is scheduled to be updated,

· u: The average density on each cell,

· ∆x: The sizes of the cells for the submesh,

· `, r: Representations of the states to the left and right of the submesh, respectively.

The interface class in Figure 3.3b describes neighboring cell metadata and has members

describing:

· id: The id of the neighboring submesh,

· btc: The last time at which the neighbor was updated,

· tsync: The last time at which the neighbor and submesh both updated,

· u: The neighbor’s density at time btc,

· K∗: The largest Lipschitz constant of the numerical flux between time tsync to btc on the

internal interface (K int) or external interface cell (Kext),

· ΣF̂ : The integral of the numerical flux between the submesh and its neighbor from time

btc to the current time,

· ∆x: is the size of the neighboring cell.

We note that the Lipschitz constant K is used to bound Cj and Dj terms simultaneously. For

commonly used fluxes like the Godunov flux or Lax-Friedrichs flux, K will look like |Λ|/∆x

yielding the commonly seen version of the CFL condition (3.1). Member fields are denoted

using a period, e.g. S.`.btc denotes the previous update of the left interface of submesh S.

54



We next turn to describing our events. Before we define our two main events, update and

push flux, we define some helper functions.

Definition 3.4.1 (Helper Functions). · advance(t, submesh): Advance the submesh one

timestep from submesh.btc to t according to the update rule (3.4). Note that this will also

cause corresponding updates in boundary terms such as K∗ and ΣF̂ .

· compute t next bdry(submesh, neigh): Compute the timestep size for interfaces

which depend on neigh.u. This evaluates two CFL conditions at: (1) the external interface

between the submesh and its neighbor, which is synchronized at neigh.tsync and (2) the

internal interface nearest to the external interface, which is synchronized at submesh.btc.

· compute t next(submesh, t): Compute the allowable timestep size for the submesh.

This is taken to be the minimum of the largest timesteps for the values returned by

compute t next bdry for both neighbors and the largest allowable internal timestep.

· make msg(submesh, neigh): Generate a buffer with the required information to update

the neighbor’s corresponding interface.

· accumulate(t, submesh, neigh): Update neigh.ΣF̂ to integrate from the previous

integration point neigh.btc to time t.

· update K bdry(submesh, neigh): Update Lipschitz constants K∗ according to the

new updated values at the boundary.

The helper functions serve as an API between the application and the timestepping

algorithm. Features like which set of conservation laws or choice of discretization are encap-

sulated into the above function calls. In addition to the helper functions, we also define our

scheduling primitives. These are the function calls with which events are scheduled in the

discrete event simulator.

Definition 3.4.2 (Scheduling Primitives). · schedule(t, event): Schedule event at time

t in the discrete event simulator.

55



f unc t i on update ( id , update fo r ced )
τ ← get t ime ( )
submesh ← get submesh ( id )

i f ( τ 6= submesh.dte ∧ ¬force update ) re turn
i f ( τ = submesh.btc ) r e turn

advance (τ , submesh )
submesh . dte ← compute t next ( submesh , τ )

f o r ne igh ∈ submesh . bdry
fo rced update ← neigh . btc > neigh . tsync

∧ compute t next bdry ( submesh , ne igh ) ≤ τ

schedu le ( τ , push f lux ( neigh . id , id ,
make msg ( submesh , ne igh ) ,
f o r c e updat e ) )

i f ( f o r ced update ) neigh . tsync ← τ

i f ( submesh . dte > τ )
schedu le ( submesh . btc , update ( id , f a l s e ) )

Figure 3.4: Update function

· schedule inline(event): Execute event in the current execution context, i.e. on that

actor at that time.

With these helper functions, we now define our two main events: update (U) and push

flux (PF). Shown in Algorithm 2, the main loop schedules initial updates at time 0 in a

priority queue (Q). As events execute, they may cause other events to be enqueued in the

priority queue as pairs with the desired timestamp of evaluation as the key. The lowest

timestamps receive the highest priority, and in case of ties, we impose no ordering.

Algorithm 2 Main timestepping loop

Initialize actors A = {S1, . . . , Snsbmsh}
Initialize Q := {}
for sbmsh ∈ A do

schedule( 0, update(sbmsh.id, false))
end for
while ∃ q ∈ Q do

current event ← Q.pull highest priority()
evaluate(current event)

end while

We now arrive at the main result for this section.

56



f unc t i on push f lux ( id , id from , msg , f o r c e update )
τ ← get t ime ( )
submesh ← get submesh ( id )
neigh ← ge t ne i gh ( submesh , id f rom )

accumulate ( τ , submesh , ne igh )
neigh . u ← msg
neigh . btc ← τ
i f ( ne igh . btc =submesh . btc ) ne igh . tsync ← τ
update K bdry ( submesh , ne igh )

submesh . dte ← compute t next ( submesh , τ )
i f ( f o r c e update ∨ submesh . dte ≤ τ )

s c h e d u l e i n l i n e ( update ( id , t rue ) )
re turn

i f ( submesh . dte > τ )
schedu le ( submesh . dte , update ( id , f a l s e ) )

Figure 3.5: Push flux function

Theorem 3.4.1. Given a minimum timestep size of

∆tmin < inf

{
∆xmin

2 max(K1(ξ), K2(ξ))
: ξ ∈ range(u0)

}
, (3.9)

where ∆xmin is the smallest element size, K1(ξ) is the local Lipschitz constant of F̂ (·, ξ) and

K2(ξ) is the local Lipschitz constant of F̂ (ξ, ·). The discrete event simulator as defined in

Algorithm 2 with a minimum timestep of ∆tmin will produce a TVD solution to the scalar

conservation law in (3.3).

3.4.2 Proof of Theorem 3.4.1

The proof of the theorem requires demonstrating that the discrete event simulation generates

an event trace that satisfies the conditions of Theorem 3.3.2. The main machinery for this

proof will be loop invariants. Loop invariants are a formal correctness technique whereby we

specify a set of “correct” states. By showing that every event maps a correct state onto the

set of correct states, we are able to ensure that the following state satisfies certain desired

criteria. Once all events have executed, we will have proven that the simulation terminates

in the correct state and the algorithm behaves as desired. This proof technique has been

57



SA SB SC

uB uA uC uB

Figure 3.6: Three neighboring submeshes SA, SB, and SC with bordering cells named.

utilized with great success for systematic design of algorithms for numerical linear algebra

as part of the FLAME project [10, 95]. To demonstrate that the algorithm satisfies the

conditions of Theorem 3.3.2, we need invariants to satisfy:

1. the local ordering principle,

2. the CFL condition,

3. and the update rule as expressed in (3.4).

Additionally, we will require two further invariants to show that the computed values are

correct, and that duplicated metadata in the boundaries is consistent with the values on

the neighboring submesh. To simplify, the notation in these invariants, we assume three

submeshes are enumerated as, SA, SB, and SC . The value of u at the cell neighboring

another submesh, will be indexed with that neighbors name, e.g. the cell in submesh SB

that neighbors SA we will reference as SB.uA. For clarity, we have depicted this naming

convention in Figure 3.6.

Local ordering implies that one of two neighboring submeshes must have last updated

at the last synchronization time. To ensure that the event trace will be locally ordered, we

define the local ordering invariant for the left interface as

LO`(SB, τ) = (SB.btc = SB.`.tsync ∨ SB.`.btc = SB.`.tsync) (3.10)

Note that we similarly define LOr(SB, τ) for the right interface. The τ in the arguments of

the loop invariants refers to the simulation time at which we evaluate the invariant.

58



Next, we define the CFL-related invariants. These invariants will ensure that our al-

gorithm satisfies the CFL condition (3.7). Define the invariant for the left boundary cell

as

CFL`(SB, τ) = (SB.dte − SB.`.tsync)SB.`.K
ext ≤ 1/2 (3.11)

∧ (SB.dte − SB.btc)SB.`.K int ≤ 1/2, (3.12)

where K is used to bound the respective Cj and Dj terms. Note that (3.11) corresponds to

interface between submeshes SA and SB, thus the CFL condition is relative to SB.`.tsync. The

other CFL condition (3.12) corresponds to the interior interface of the cell associated with

SB.ua. Since internally the internal cells step synchronously, the last synchronization time is

SB.btc, but since SB.`.K
int still depends on SB.`.u, this condition must be re-evaluated after

each push flux. We define a CFL invariant for the right interface, CFLr(SB, τ) similarly. We

also define an internal CFL invariant, CFLint, which can be determined by solely examining

the internal state of the submesh.

CFLint =

nel−1∧
i=2

(
(SB.dte−SB.btc)

[
Di(SB.ui−1, SB.ui, SB.ui+1)−Ci(SB.ui−1, SB.ui, SB.ui+1)

]
≤ 1
)

We then define our CFL invariant as

CFL(SB, τ) = (CFLint ∧ CFL` ∧ CFLr). (3.13)

The correctness invariant CR checks that all computations are being done correctly. Here,

59



we use S̃B to denote the state before executing an event.

CR(SB, τ) =
(
(SB.btc = S̃B.btc ∧ SB.u = S̃B.u) (3.14)

∨ (SB.btc 6= S̃B.btc ∧ SB updated according to Equation (3.4)
)

(3.15)

∧

(
SB.`.ΣF̂ =

∫ max(SB .`.btc,SB .btc)

SB .btc
F̂ (SB.`.u(σ), SB.uA) dσ

)
(3.16)

∧

(
SB.r.ΣF̂ =

∫ max(SB .r.btc,SB .btc)

SB .btc
F̂ (SB.uC , SB.r.u(σ)) dσ

)
(3.17)

∧ SB.`.K
int ≥ max

σ∈(SB .btc,τ)
Dj(SB.`.u(σ), SB.uA, SB.uA+1) (3.18)

∧ SB.`.K
ext ≥ max

σ∈(SB .`.tsync,τ)
−Cj(SB.`.u(σ), SB.uA, SB.uA+1) (3.19)

∧ SB.r.K
int ≥ max

σ∈(SB .btc,τ)
−Cj(SB.uC−1, SB.uC , SB.r.u(σ)) (3.20)

∧ SB.r.K
ext ≥ max

σ∈(SB .r.tsync,τ)
Dj(SB.uC−1, SB.uC , SB.`.u(σ)). (3.21)

Equations (3.14) and (3.15) require that if the state has been updated, SB.btc will reflect

that, and that the state is updated according to the update rule. We check that the flux

buffers are being correctly integrated at the boundary with (3.16) and (3.17). The last

set of equations (3.18)–(3.21) check that the K terms used to enforced the CFL condition

correctly bound the Lipschitz constants of the numerical flux. Internal values of SB.u in

(3.18)–(3.21) have no dependence on the time variable σ since the solution remains constant

on a cell between updates. For this invariant to be well-defined, we require that each submesh

contain at least two cells. Otherwise, terms like SB.uA+1 would not exist.

The previous three invariants, LO,CFL, and CR, have all used information available on

submesh SB. However, when duplicating information between neighbors, we need to ensure

60



that the information is consistent. Thus, we define a consistency invariant,

CI(SB, SA, τ) =
(
SB.uA = SA.r.uB ∧ SB.btc = SA.r.btc) (3.22)

∨ ∃ (τ,PF(SA.id, SB.id, SB.ua, ·)) ∈ Q
)

(3.23)

∧
(
SB.`.tsync = SA.r.tsync (3.24)

∨ (SB.`.tsync = τ ∧ ∃ (τ,PF(SA.id, SB.id, ·, ·)) ∈ Q (3.25)

∨ (SA.r.tsync = τ ∧ ∃ (τ,PF(SB.id, SA.id, ·, ·)) ∈ Q
)

(3.26)

Here we use the dot, · to denote any argument. Note that we similarly define consistency

for the other interface between SB and SC .

The last invariant we define is a progress invariant to ensure that the simulation can

make progress,

P (SB, τ) = (SB.btc = tend) (3.27)

∨ (∃ (s,U(s, SB, false)) ∈ Q : {s = SB.dte ≥ τ > SB.btc}) (3.28)

∨ ∃ (τ,PF(SB.id, ·, ·, ·)) ∈ Q (3.29)

∨ ∃ (τ,PF(·, SB.id, ·, true)) ∈ Q. (3.30)

Combining these five loop invariants, we arrive at

I(SB, SA, SC , τ) = LO`(SB) ∧ LOr(SB) ∧ CFL(SB, τ) ∧ CR(SB, τ) (3.31)

∧ CI(SB, SA, τ) ∧ CI(SB, SC , τ) ∧ P (SB, τ). (3.32)

As the aim is to ensure the invariants hold for all submeshes, we will refer to I(τ) (without

61



the submesh arguments) as

I(τ) =

nsbmsh∧
k=1

I(Sk, Sk−1, Sk+1, τ).

Proposition 3.4.1. A discrete event simulation which satisfies the invariant I between all

events executed before time τ , will execute a finite number of events at τ and satisfy I between

each of these events.

Assuming Proposition 3.4.1 holds, the remainder of the proof of Theorem 3.4.1 follows by

induction. At the start of time τ , we note that no updates have executed, and so S.btc < τ .

Furthermore, since push fluxes may only be scheduled at the time at which the spawning

updates are executed, there are no outstanding push fluxes. Thus, the invariant I before

any events have been executed at time τ is

I(τ, SB, SA, SC) = LO` ∧ LOr ∧ CFLint ∧ CFL` ∧ CFLr ∧ CR

∧ SB.uA = SA.r.uB ∧ SB.btc = SA.r.btc

∧ SB.`.tsync = SA.r.tsync

∧ SB.uC = SC .`.uB ∧ SB.btc = SC .`.btc

∧ SB.r.tsync = SC .`.tsync

∧ ∃ (s,U(SB.id, false)) ∈ Q for which τ ≤ s ≤ SB.dte.

After all events at time τ have finished executing, we end in the same state, with the exception

that the progress invariant implies that every element must have an update scheduled at a

time strictly greater than τ . Due to consistency and correctness, every cell which updated

at time τ , was updated according to the update rule (3.4). Furthermore, consistency and

correctness along with the CFL condition, imply that the event trace up until time τ satisfies

the CFL condition (3.7). Once all the events have executed, remaining in I implies that

62



updates must be scheduled for time τ + ∆tmin or greater, since otherwise the discrete event

simulation would not advance past time τ in a finite number of events. Lastly, the event

trace remains locally ordered. Were it not, one of the locally ordered invariants would be

violated after all events at τ had executed. Remarking that the solution remains constant

from τ to τ + ∆tmin, we have established the inductive hypothesis. Arguing inductively, the

event trace at tend is locally ordered, satisfies the CFL condition, and obeys the forward

Euler update rule. Therefore, the discrete event simulation will generate a TVD solution.

3.4.3 Proof of Proposition 3.4.1

The remainder of the proof relies on demonstrating that the simulation state satisfies the

invariants after each event is evaluated at time τ . However, before we proceed, we prove a

progress guarantee.

Proposition 3.4.2. Given a discrete event simulation that satisfies invariant I up until

time τ , u(τ) will satisfy a maximum principle.

Proof. Pick any cell j and consider two update points tnj and tn+1
j . Let sµj−1,j and sηj,j+1

represent the most recent left and right synchronization times, respectively, and let uj−1, uj,

uj+1 represent the associated cell densities. Since the total variation CFL condition (3.7) is

satisfied for all time up until τ ,

1 +

∫ tn+1
j

tnj

[
Cj(σ)−Dj(σ)

]
dσ

≥ 1 + (tn+1
j − sµj−1,j) min

σ∈(sµj−1,j ,t
n+1
j )

Cj(uj−1, uj, uj+1)

− (tn+1
j − sηj,j+1) max

σ∈(sηj,j+1,t
n+1
j )

Dj(uj−1, uj, uj+1)

≥ 0.

63



Thus, the event trace satisfies the maximum principle, Theorem 3.3.1.

Lemma 3.4.1 (Progress Guarantees). Given a simulation that satisfies the invariant I up

until time τ , if a submesh SB and its neighbors SA and SB are both updated at time τ , then

c o m p u t e t n e x t ( submesh , τ ) ≥ τ + ∆tmin .

Proof. Pick any cell of SB and consider the two neighboring cells. Enumerate the densities

as uj−1, uj and uj+1. By definition of the Lipschitz constant

−Cj(uj−1, uj, uj+1) ≤ K1(uj+1)/∆xmin

for all uj−1, uj, uj+1 ∈ range(u0). By Proposition 3.4.2, uj−1, uj, uj+1 ∈ range(u0). There-

fore,

−∆tminCj(uj−1, uj, uj+1) ≤ K1(uj+1)

∆xmin

∆xmin

2K1(uj+1)
=

1

2

The proof for the right interface of cell j follows similarly. Thus, taking a timestep of size

∆tmin satisfies (3.7). Since this holds for every cell in submesh SB,

g e t t n e x t ( submesh , τ ) ≥ τ + ∆tmin .

To see that there are at most a finite number of messages sent at each τ , note that

each update will only execute the main body at most once for a given timestep. If multiple

updates are scheduled for the same time τ , SB.btc = τ after the first update, and subsequent

update events would cause the function to become a no-op. Furthermore, since push fluxes

can only be scheduled when an update has executed at that timestep, we bound the total

number of events scheduled at a given timestep by 3nsbmsh.

64



Table 3.1: All possible states as a submesh S processes various messages. Without loss of
generality the first push flux is assumed to arrive from the left.

b1 b2 b3 b4 b5 b6

qa True True True True True True
qb True False True True True True
qc False True True True True True
qd False True ∨ False True False True True
qe False True ∨ False True True True False
qf False True ∨ False True False True False
qg True True False True True True
qh False True False True True True
qi False True ∨ False False True True False
qj True True False True False True
qk False True False True False True

Completing the proof requires showing that as each event at time τ is processed I is not

violated. To do so, we will enumerate some states of the submesh and show that execution

of any event will not lead to an invariant violation. In order to determine the state of a

submesh S, we require 6 Boolean variables:

b1 = (S.btc < τ)

b2 = (S.dte > τ)

b3 = (S.`.btc < τ)

b4 = (S.`.tsync ≤ S.`.btc)

b5 = (S.r.btc < τ)

b6 = (S.r.tsync ≤ S.r.btc).

Our aim will be to derive a finite state machine and show that all transitions preserve

the loop invariants. With 6 binary variables, we have 64 possible states. To reduce the

complexity of the system we assume that if a submesh receives a message, the first message

it processes will come from the left. All states that are attained are shown in Table 3.1

65



qastart

qbstart

qf

qe

qd

qc

qh

qi

qg

qj

qk

Figure 3.7: Possible state transitions during a single timestamp. Accepting states are denoted
with double circles. The line styles indicate the type of message: the solid line denotes a
push flux from the left neighbor, the dotted line denotes a push flux from the right neighbor,
the dash-dotted line denotes an update. Without loss of generality we assume that the first
push flux processed arrives from the left.

and their transitions are pictorially shown in Figure 3.7. We note the non-standard nota-

tion depicting multiple arrows coming out of given states. These multiple arrows leaving

a state are due to the fact that our binary state representation doesn’t fully capture the

internal state of any given submesh. In particular, when any given message is processed, the

algorithm deterministically computes the appropriate transition based on the values at the

cells, e.g. does the submesh need to execute an inlined update. This representation could

be expanded to recover the traditional finite state machine representation at significantly

greater complexity.

Before we assess any state transitions,we note that the CFL invariant simply checks

whether or not the proposed SB.dte satisfies the invariant. The function compute t next,

which exclusively sets SB.dte is constructed to always satisfy the CFL invariant, i.e. we

never propose a timestep that if executed would cause a CFL violation. Thus, we will omit

66



the invariant in the following proof. However, the proposed timesteps may be unphysically

small, i.e. zero or even negative. Equation (3.28) of the progress invariant will be used to

ensure that all executed updates occur between intervals larger than ∆tmin.

We begin by noting that before any submesh has processed any event at time τ , the last

events must have been processed at a time strictly less than τ , implying that the submesh

must satisfy b1∧ b3∧ b5. In addition, since the synchronization times are only updated when

two neighboring submeshes update at the same time, both b4 and b6 must be true. Therefore,

any submesh must begin in states qa or qb. These states differ based on whether or not there

is an update scheduled at τ .

Processing Unforced Updates

We refer to unforced updates as updates for which the update forced argument of the update

function is false. All update events scheduled during the simulation are unforced updates.

On the other hand, forced updates only occur as inlined events during a push flux evaluation.

An unforced update will only be applied to submeshes for which SB.dte = τ and SB.btc < τ .

Otherwise, the update becomes a no-op. Thus, non-trivial update events can only be applied

to submeshes in state qb.

CR: Satisfying the consistency invariant before the update implies the values of the neigh-

bors are correct until τ . Therefore, the update will satisfy (3.15). After the update,

the values of the flux buffers at the edges trivially satisfy (3.16) and (3.17) since

SB.btc = τ > SB.`.btc. Assuming K is updated appropriately in advance, qb will

satisfy the correctness invariant after the execution of an update.

LO: To be locally ordered either the submesh or its neighbor must have last updated at

the synchronization time. Consider the left side. If SB.`.btc = SB.`.tsync, the submesh

will update without causing a local ordering violation. Otherwise, the neighbor has

67



updated since the last synchronization, and updating the submesh must be treated as a

local ordering violation. In that case, SB.`.btc > SB.`.tsync and the push flux scheduled

during the update will force the neighbor to update at τ , meaning at some point we

expect the neighbor to update at τ . Inside the submesh, the synchronization time

SB.`.tsync is set to τ in anticipation of the scheduled synchronization thus satisfying

the local ordering invariant.

P : The scheduled push fluxes satisfy (3.30).

CI: Updating a submesh will cause the consistency invariant (3.22) to fail on the neighbor.

However, the submesh will send a push flux. Thus, Equation (3.23) holds. If the

synchronization times remain unchanged, SB.`.tsync = SA.r.tsync continues to hold.

Otherwise, the update causes a push flux, which implies that SB.`.tsync = τ and there

exists a forced push flux to SA.

Thus, qb will satisfy I after processing the update. The state transition depends solely on,

which sides need to receive a push flux from their neighboring submesh in order to satisfy

local ordering or allow scheduling the next non-trivial update. State qb transitions to qc if

no side requires updating, to qd if the left side requires updating, qe if the right side requires

updating, and qf if the both sides require updating. Since the last message was received

before time τ , and a forced update would set SB.`.tsync = τ . Precisely, b4 and b6 correspond

to waiting on these missing flux updates. Lastly, any state that caused a forced update to

be scheduled (qd, qe, qf ) cannot be terminal. The forced push flux implies that the neighbor

to which that message was sent must send a push flux back if it hasn’t already sent a flux.

Therefore, these states will process at least one push flux.

68



Processing the Push Flux from the Left

Without loss of generality we assume that the first message comes from the left. Since no

push fluxes have been processed, we only consider cases for which b3 ∧ b5 is true. Since the

submesh must begin in state qa or qb and can transition to states qc-qf after executing an

update, it suffices to show that the invariants remain unviolated after executing the push

flux on a submesh in any one of the states qa-qf . There are three broad cases of states to

consider: (i) submeshes that have not updated, but execute an inlined update during the

push flux, (ii) submeshes that have not updated and do not update during the push flux,

and (iii) submeshes that have already updated.

CR: For case (i), S̃B.btc < τ and the push flux causes the submesh to update. In this

case, CR follows by the same reasoning mentioned in the previous section. For cases

(ii) and (iii), S̃B.btc = SB.btc. In the case of (iii), even if the push flux executed

an inlined update, the update would be a no-op as SB.btc = τ . Since the push flux

function doesn’t modify SB.u, (3.14) holds. The call to accumulate correctly updates

SB.`.ΣF̂ so that (3.16) holds, and update K bdry ensures that (3.18) and (3.19) are

true. For the right side, since no modifications occur to SB.u or SB.r and the submesh

is assumed to have satisfied CR before the push flux, (3.17), (3.20), and (3.21) must

hold.

LO: For case (i), the processing of the push flux and inlined update implies SA and SB

are synchronized SB.`.btc = SB.btc = SB.`.tsync. Thus, LO` holds. On the right side,

LOr will be satisfied using the same logic to ensure that LOr holds when updating

a submesh. For case (ii), processing the push flux and not updating, implies that

SA.r.btc = SA.r.tsync. Since SB.btc < τ , the consistency invariant implies SB.btc =

SB.`.tsync. Therefore LO` is true. Since SB.btc and SB.r are unchanged LOr must

hold, since it held before the push flux by assumption. Lastly, for case (iii), once the

69



push flux has been processed at τ , LO` holds by the same logic used for case (i), and

since SB.btc and SB.r remain unchanged, LOr holds following the same logic used in

case (ii).

P : For case (i), the push fluxes scheduled in the inlined update satisfy (3.30). For case

(ii), since the message was processed and did not lead to an inlined update, SB.dte > τ ,

and an update has been scheduled satisfying (3.28). For case (iii), if after the push

flux we are able to schedule an update greater than τ , (3.28) is satisfied. Otherwise,

the progress guarantee and the fact that after the push flux the submesh and its left

neighbor are synchronized imply that being unable to schedule a future update must

arise due to the CFL condition at the right boundary, i.e. compute t next(SB, SB.r)

≤ τ . When the submesh updated it must have sent a forced push flux to the right

neighbor, satisfying (3.30). If that push flux has already been consumed, this implies

that the right neighbor has updated at τ and sent a push flux back to the submesh,

satisfying (3.29). Thus, (3.29) or (3.30) must hold.

CI: For case (i), SB updates, and the push flux sent to SA as well as the the fact that

SB.`.tsync = τ implies that (3.23) and (3.25) hold. On the right side, CI(SB, SC , τ)

holds following the same logic used during the unforced update. For case (ii), CI(SB, SC , τ)

continues to hold since it held before the push flux was executed. Considering CI(SB, SA, τ),

(3.22) or (3.23) held before the push flux. Without changes to SB.uA or SB.btc, one of

the two statements continues to hold after the push flux. Since SB did not update, SA

could not have scheduled a forced update, and SA.r.tsync remains unchanged from the

state before SA last updated. Satisfying the consistency invariant on SB before any

events executed at time τ implies SA.r.tsync = S̃B.`.tsync. Since the synchronization

time on SB also remains unchanged (3.24) must hold. For case (iii), CI(SB, SC , τ)

holds following the same logic used for case (ii). On the left interface, SB.`.tsync = τ

70



after the push flux. When SB updated at τ it sent a message to SA. If this message

has not been processed (3.25) holds. Otherwise, SA has updated and processed the

push flux for SB (in no particular order). This implies that SA.r.tsync = τ = SB.`.tsync.

Therefore, (3.24) holds.

It is necessary to check that consuming the push flux does not lead to invariant violations

of P or CI on SA. If SA is able to schedule a future update or still requires a message from

its left neighbor (i.e. not SB), consuming the push flux has no impact on P (SA, τ). However,

if SA is unable to schedule a future update due to required synchronization with SB, the

push flux must require an inlined update on SB. If SB updates during the push flux, it will

send a message to SA, thereby satisfying (3.29). If SB has already updated, there must be

an outstanding push flux from SB to SA. This event cannot have been consumed yet, since

otherwise SA and SB would be synchronized on SA and the progress guarantee implies that

this boundary could not hinder the scheduling of a future update. The existing push flux

from SB to SA at time τ satisfies (3.29). Thus P (SA, τ) continues to hold after processing

the push flux on SB. Next, we check that CI(SA, SB, τ) is not violated. Since SA must have

updated at τ to send the push flux and will only update once at τ , we are guaranteed that SA

will not have updated since sending the push flux. Therefore Equation (3.22) holds. If a push

flux from SB to SA has already been processed, we know that SB.`.tsync = τ = SA.r.tsync,

satisfying (3.24). Otherwise, the outstanding push flux from SB to SA implies that (3.26)

holds. Thus, processing the push flux will not violate I on SA.

The transitions following the execution of a push flux from the left (or right) neighbor

depend on whether or not the submesh updated and whether or not it can make progress

on the right side. If the submesh did not update at τ—which is only the case for qa—and it

is able to schedule an update at a time greater than τ , this will transition to qg. If the mesh

previously updated or is updated during the push flux, the state depends on whether or not

the mesh is able to make progress on the right hand side, i.e. whether or not b6 is true.

71



We note that the value of b6 remains unchanged for submeshes updated before the push

flux. Therefore, states qc and qd will transition to qh, and states qe and qf will transition to

qi. Submeshes which execute an inlined update transition depending on the value of b6. If

the submesh has issued a force push flux to its right neighbor to enforce local ordering or

enable scheduling a future update, the submesh transitions to qi. Otherwise, the submesh is

able to make progress and the submesh transitions to qh.

Processing the Push Flux from the Right

Since by assumption the first message arrives from the left, we only need to consider the

right push flux applied to states after processing the push flux from the left neighbor, i.e.

states qi-qf .

CR: The correctness of the algorithm relies on arguments similar to those use for the push

flux from the left.

LO: If the push flux did not cause an update, then both sides must satisfy the local ordering

constraint. Otherwise, the submesh has synchronized with both of its neighbors and

satisfies the local ordering constraint on either side.

P : If no update is required, that implies SB.dte > τ . Thus, P is satisfied by (3.28).

Otherwise, if the submesh updated at time τ , it will have already processed both

neighboring push fluxes. The progress guarantee implies that the simulation will be

able to schedule an update at a time greater than τ , satisfying (3.28).

CI: The consistency invariant holds making the same arguments used to show the consis-

tency invariant holds after processing the push flux from the left.

In the case that push fluxes have been processed on both sides, SB.`.btc = SB.r.btc = τ .

Implying both b3 and b5 are false. In the case in which no inlined update occurred, SB.btc =

72



SB.`.tsync < τ = SB.`.btc. Otherwise, the neighbors are synchronized at time τ . Therefore,

SB.`.btc = SB.`.tsync. Either way, b4 must be true. Arguing similarly for the right side, b6

must also be true. Finally, since in either case the progress guarantee was able to schedule

an update for a time greater than τ , b2 must be true. The state transition can then be

determined by whether or not the submesh updated at τ , if it did not the submesh must

have started in state qg and transitions to qj. Otherwise, the submesh transitions to qk.

Remark 3.4.1. We note that this proof imposed no restriction on scheduling order of events

with the same timestamp τ . That is to say that neither update nor push flux event with the

same timestamp are required to be executed before the other. However, what we have not

shown here is that the events commute, i.e. given any state qa and qb, any order of execution

would result in the same final state along with the same messages being scheduled. Thus,

while any ordering of events would provide a total variation solution, we have not shown

that it would provide a unique event trace. Taking advantage of this commutativity might

have performance benefits and is a topic of future work. However, for our implementation,

we have enforced deterministic execution by ordering events which share a timestamp on a

submesh. This is achieved by bit shifting timestamps to the left and using the extra trailing

bits to break ties in timestamps.

3.5 Implementation Details

By expressing the algorithm as a discrete event simulation, we can use existing parallelization

infrastructure to rapidly and efficiently parallelize the proposed local timestepping algorithm.

This section introduces Devastator, the parallel discrete event simulator upon which our

implementation is based. Additionally, we outline several performance optimizations made

to the algorithm to improve the performance as well as load balancing strategies to achieve

good compute resource utilization.

73



3.5.1 Devastator Simulation Framework

Devastator (publication forthcoming) is the parallel discrete event simulation (PDES) frame-

work we have used to implemented this work. As with other PDES frameworks, Devastator

expects the simulation to be modeled as a discrete number of logical processes (i.e. ac-

tors) producing and consuming timestamped events. Once the logical processes and their

event processing behaviors have been defined, Devastator handles the task of progressing

and maintaining consistency of the distributed parallel execution. To do this, Devastator

employs the TimeWarp algorithm [67] with an asynchronous algorithm for bounding global

virtual time (GVT). Devastator was chosen for this work for its emphasis on performance in

HPC environments as well as its productive C++14 interface.

PDES frameworks generally fall in one of two categories in how they maintain consistency

of the distributed state, these are named optimistic and conservative. Consider the following

scenario: a CPU A in the simulation wants to execute event E having timestamp T . How

can the CPU be sure that no other event E ′ with timestamp T ′ where T ′ < T is going

to be generated by some other CPU B and sent to A? Conservative methods require all

CPUs to synchronize heavily to ensure that E is only ever executed after it can be proven

that no such E ′ is possible. Optimistic methods, like TimeWarp, instead execute events

optimistically before knowing that it is safe to so. To deal with the inevitable causality

violations (discovering E ′ only after executing E), TimeWarp performs a rollback to revert

the logical process’s state to before execution of E, then executes E ′, then E, and carries

on. Once GVT passes T , the CPU knows that no such further events E ′ can occur, and the

event E is committed.

Optimistic execution enjoys the ability to operate with high performance in regimes of

low communication, dynamically, simply by virtue that it always assumes no communication

is needed before executing the next event. This makes it an excellent choice for domains

74



where absolute bounds on the needed inter-CPU synchronization are far tighter than what

is required in the average case. Simply put, for an application that rarely needs to com-

municate, it’s best to assume it never needs to and then only pay a heavy cost when that

assumption fails, rather than synchronizing frequently (as in a conservative execution) only

to learn communication isn’t required.

In the case of nonlinear conservation laws, determining whether an event is able to exe-

cute without incurring a CFL violation requires determining the domain of dependence for

that submesh. Due to pathological examples such as the shockwave for Burgers’ equation

considered in the introduction, this is an inherently non-local problem. In situ computation

of the domain of dependence would greatly increase required communication between sub-

meshes. The locality of this problem can be limited by considering smaller timesteps at the

cost of available parallelism. However, in practice we assume that the probability of a re-

mote high-speed wave dramatically increasing |Λ| and causing CFL violations is very small.

Using optimistic execution, we are able to maintain our local communication stencil without

limiting parallelism, and only incur significant overhead when timesteps require refining.

3.5.2 Performance related optimizations

While implementing the above presented push flux and update functions specify a TVD

timestepping algorithm, three performance optimizations were necessary to obtain good

parallel performance.

1. Timestep binning: While the compute t next allows us to take optimally large

timesteps, the local ordering constraint makes this approach suboptimal. As an exam-

ple consider two neighboring submeshes, which are able to take respective timesteps of

16 (the left submesh) and 17 (the right submesh) time units. During the simulation,

the left submesh advances to time 16, and the right submesh advances to time 17.

Once the right submesh has advanced, it forces its neighbor to update due to a local

75



ordering violation, and so the left submesh has updated at both times 16 and 17. Using

a work-depth analysis, at time 272, this approach requires 3 · 16 (48) updates, and has

a depth of 2 · 16 (32). Instead, we propose binning timesteps to the nearest power of

two. Specifically, we require that given a certain timestep size (∆t), we step to largest

multiple of the largest power of two multiplied by ∆tmin less than the given timestep.

This naturally synchronizes submeshes and avoids extra updates due to local ordering

violations. In the given example, both submeshes would take timesteps of 16. Thus,

the work would be 17 · 2 (34) and the depth would be 17. By restricting allowable

timestep sizes, we potentially reduce both work and the depth of the simulation.

2. Reducing unnecessary speculation: While TimeWarp allows us to speculatively update

the submeshes, it is not always wise to do so. If a submesh updates and sends a forced

push flux to one neighbor, we know that at that time the neighbor would have to send a

push flux back. Therefore, any events executed on the submesh before the neighboring

push flux arrives must be rolled back. Therefore, whenever scheduling new updates

the submesh inspects its state to determine whether it is still waiting for a message

from one of its neighbors. If so, it will simply return without scheduling any further

events. Once the messages the submesh is waiting on arrive, it will schedule the next

events without having to roll back events.

3. Avoiding small timesteps due to binning: While timestep binning reduces the number

of synchronizations required due to local ordering violations, it introduces another

problem due to the fact that timesteps at submesh boundaries are computed relative

to the previous synchronization time. Considering two submeshes that both could step

at 7 time units. The timestep binning would make both of these submeshes update at

time 4. However, assuming that the push flux from one submesh is delayed, the other

submesh would take timesteps of sizes 2 and 1 before being unable to make progress

76



and sending a forced update to the neighbor. Since the timestep is taken relative to

the previous synchronization time, the submesh will try to enumerate the bits of its

maximum timestep before waiting on a message from its neighbor. This phenomena

is highly problematic for parallel discrete event simulation, since once the neighboring

message at time 4 arrives, the updates at times 6 (timestep of 2) and 7 (timestep of

1) would have to be rolled back along with any events scheduled due to those later

updates. Furthermore, since the timesteps become smaller and smaller, the associated

updates are enqueued with a high priority into the event queue and the simulator is

more likely to spend time executing events which will be rolled back. To remedy this,

we introduce a heuristic whereby we examine the ratio between the timestep taken if

the submesh were synchronized with its neighbors divided by the computed timestep

due to a single neighbor, i.e. the value of compute t next bdry. If this ratio is

greater than or equal to 2, we force that neighbor to update at the current time. The

previous optimization (reducing unnecessary speculation) then causes the submesh to

wait until the neighbor’s push flux has been processed. While this may increase the

critical path of simulation depending on the latency associated with sending messages,

we have found that in practice this significantly reduces bad speculation.

3.5.3 Performance Modeling and Load Balancing

To understand the performance results as well as load balance the problem, we estimate the

work for a given problem as follows. At a given simulation time τ , the timestep dt taken by

cell j can be approximated as

dtj(τ) = ∆tmin2

⌊
log2

∆xj
2|Λ(τ,xj)|∆tmin

⌋
,

77



where ∆tmin is the smallest timestep, ∆xj is the cell size, and |Λ| corresponds to the wave

speed at time τ in the midpoint of the cell. The log2 appropriately bins the timesteps.

The mesh partitioning problem follows a 2-phase process of aggregating cells into sub-

meshes and assigning the submeshes to ranks. Cells within each submesh step synchronously

enabling efficient utilization of CPU architectures. Although stability requirements neces-

sitate that cells step at the most stringent timestep of cells associated with that submesh,

unstructured finite element meshes typically exhibit small variations of timestep sizes in

a given neighborhood. Therefore, the synchronous stepping inside a submesh marginally

decreases the maximum attainable speed-up.

The mapping of cells to submeshes is denoted by π : Z → Z. Since in this chapter, we

exclusively consider one dimensional problems, we define our partition using a set of ordered

splitters {si} ⊂ Z where the submesh i has been assigned the cells with indices [si, si+1).

The relationship between the splitters and partition function is then given by: for cell j,

π(j) = i∗ such that si∗ ≤ j < si∗+1. For the generation of π, we assume no prior knowledge

on Λ i.e. |Λ| ≡ 1, and partition solely based on variation in cell sizes. Let wj be the weights

assigned to each cell. Each wj is determined by the smallest allowable timestep on a given

submesh, i.e.

wj =
1

min1≤r≤nel{dtr(τ) : π(j) = π(r)}
.

Since the partitioner balances work across submeshes, but the work depends on the partition-

ing, there exists a circular dependency. Hence, we generate π using an iterative procedure.

Given weights {wj}, we create a partition π, ensuring each submesh has the same amount of

work. With the new partition, update the weights wj, which may change based on elements

added or removed from a submesh. Repeat this process until some terminating condition is

satisfied. In this thesis, we stop iterating after 100 iterations. Throughout the iterations,

we track the amount of work assigned to the most overworked submesh. At the end of the

78



iterative procedure, we return the partition with the least overworked submesh, i.e. if π` is

the `-th iteration of the submesh partitioner,

π = argmin
{π`}

max
0<i<nsbmsh

nel∑
j=1

χ{π`(j)=i}(j)wj

where χA denotes an indicator function over set A. The objective of the first partitioning

phase is to specify a problem that can be efficiently executed by the parallel discrete event

simulator. The proposed scheme attempts to generate submeshes such that the number of

cells updated is approximately equal across all submeshes. However, due to the dependence of

work on partitioning, we must also pay attention to the total work. A proposed partitioning

may be perfectly load balanced but require a lot more work and therefore be less preferable

than a partitioning which is imbalanced but more work optimal, i.e. for which the discrepancy

between wj and dt−1
j is smaller.

The second partitioning phase assigns submeshes to ranks. The objective of this phase is

to minimize the runtime of the simulation. Let ρ map a submesh to its assigned rank. Since

the most overworked rank will determine the rate at which global virtual time is advanced,

we estimate the wall-clock time as

T =

∫ tend

0

max
0≤k<nranks

nel∑
j=1

wj(τ)χ{(ρ◦π)(j)=k}(j) dτ. (3.33)

We remark that for performance results presented in Section 3.6.3, we consider analytic

solutions, thereby yielding a good approximation to |Λ| and hence wj. We solve (3.33)

using a Gauss-Lobatto quadrature to approximate the integral in time. Given the submesh

partition π and our assumed wavespeed Λ, we can formulate this problem as mixed integer

programming problem, which we solve using Gurobi [53]. The incorporation of |Λ| in (3.33)

introduces a discrepancy between the |Λ| used for the two partitioning phases. The decision

79



to use different |Λ| for the partitioning phases arises from two considerations. First, exactly

knowing |Λ| is an impractical constraint. Since |Λ| is a function of the solution, knowing

|Λ| implies already knowing the solution to the problem we are interested in solving. Using

approximations or even analytic representations of |Λ| for determining π can be problematic.

If we consider one giant submesh and a single cell underestimates |Λ|, the entire submesh

will incur extra work. By ignoring |Λ| in during the computation of π, we inoculate ourselves

against adverse effects caused by poor estimates of |Λ|. The second consideration has to do

with partitioner performance. The number of cells is 2-3 orders of magnitude larger than

the number of submeshes. Attempting to solve (3.33) for the cell graph would be intractable

for large cell counts. By ignoring |Λ| in the first partitioning phase, we can use existing fast

graph partitioners to generate submeshes and use more sophisticated means to achieve good

load balance at the submesh level.

Lastly, we derive upper limits on the speed-up achievable as the ratio of work (i.e. number

of cell updates) executed by a standard synchronous timestepping implementation using an

MPI runtime divided by the local timestepping Devastator implementation. We calculate

the total work for the Devastator runtime as

W th
deva =

nel∑
j=1

∫ tend

0

wj(τ) dτ.

Note that this estimate is a conservative work estimate for the Devastator implementation as

it doesn’t account for factors such as taking intermediate timesteps between finer and coarser

timesteps as well as extra timesteps due to forced updates and rollbacks. For an MPI-based

implementation, which steps with uniform timesteps, we compute the work W th
MPI as the

number of timesteps times the number of elements. We bound the largest theoretical speed-

up by

Sth =
W th
MPI

W th
deva

.

80



Application Layer

Timestepping
Layer

Discrete Event
Simulation Layer

Helper Functions

Scheduling Primitives

Figure 3.8: Stack Diagram for the Local Timestepping Implementation

This will provide a baseline to assess how efficient the implementation is.

3.5.4 Ease of Implementation

We conclude this section by remarking on the complexity of the implementation. The pro-

posed algorithm can be segmented into three main software layers shown in Figure 3.8. At

the lowest level is the discrete event simulation layer for which we are using Devastator. Dev-

astator handles all parallelism via the scheduling primitives (Definition 3.4.2). The layers on

top of it schedule events and Devastator ensures that the events are executed in the correct

order in a parallel setting. On top of the Devastator layer is the timestepping layer. This

layer contains the timestepping logic introduced in Section 3.4. The complexity of running

in an asynchronous context makes this layer difficult to reason about without a tool like loop

invariants. However, through judicious specification of helper functions (Definition 3.4.1)

we can prevent the complexity of the timestepping algorithm from seeping into the topmost

layer, the application layer. In practice, the timestepping algorithm should be wrapped

into a library, and the user would solely need to implement the helper functions. At this

highest level, features of the algorithm such as numerical discretization and the form of the

conservation laws are specified. Programming at this highest level is effectively identical to

programming flat MPI code. The advance function is essentially the main kernel of an MPI

rank. The only additional calls that need to be supplied deal with assessing the appropriate

timestepping size and what to do once a submesh update is either committed or rolled back.

81



(a) Uniform

(b) Polynomial

(c) Piecewise

Figure 3.9: Meshes used for numerical experiments

This segmentation facilitates the introduction of local timestepping into existing scientific

applications without requiring extensive rewriting of code or impeding productive software

development in the application layer.

3.6 Results

In this section we present results for the one dimensional Burgers’ equation and the shallow

water equations. Since the timestepping method is first order, we only consider first order

finite volume schemes. To demonstrate the robustness of the timestepping method for dif-

ferent types of meshes, we consider three meshes: a uniform mesh, a polynomial mesh, and a

piecewise mesh. These meshes are generated by warping uniformly distributed nodes along

(−1, 1) onto the interval (−1, 1). The base case is the uniform mesh for which the warp

function is the identity, i.e. w(x) = x. The polynomial mesh refines the mesh around the

origin. This type of mesh is common for finite element applications where local refinement

is required to resolve flow around fine features. The warp function for this mesh is given as

w(x) =
1

1/3 + ε

(
x3

3
+ εx

)
,

82



where we set ε = 0.02 in order the bound the ratio of largest to smallest cells. Lastly, we

consider a mesh with a large jump in refinement. The warp function is then defined so

that the ratios of cell sizes is at least 16 to 1. Assuming the nodes are enumerated xj for

0 ≤ j ≤ nel, define j∗ = bnnodes/17c. We then define the warp function for the piecewise

mesh as

w(x) =


x+1

1+xj∗
− 1 for j ≤ j∗

x−1
1−xj∗ + 1 for j > j∗

.

For clarity the meshes used are depicted in Figure 3.9. To illustrate the behavior of the

timestepping algorithm, we consider meshes with 100 cells and 20 submeshes in the next

two sections. In practice, the number of cells per submesh needs to be significantly larger to

amortize runtime overheads with useful work. Section 3.6.3 showcases performance results

with meshes consisting of 500,000 cells.

3.6.1 Burgers’ Equation

Consider Burgers’ equation on the line,

∂tu+ ∂xu
2/2 = 0. (3.34)

We consider two sets of initial conditions: firstly, the shockwave, which is initialized

u0(x) =


1 x < 0

0 x > 0,

83



and secondly a rarefaction wave,

u0(x) =


−1 x < 0

1 x > 0.

For both cases, we enforce the boundary conditions by setting the boundary value to the

analytic solution. We note that these test cases highlight the ability of the local timestepping

algorithm to refine the timestep—in the case of the shockwave—and the ability to coarsen

the timestep—in the case of the rarefaction. To visualize the timesteps taken by these

algorithms, we present space-time event traces similar to those shown in Figure 3.2. In these

plots, the x-axis corresponds to the domain Ω, and the y-axis represents simulation time,

each line corresponds to an update having executed at that given time. The space-time

plots are shown in Figure 3.10. For the shockwave and rarefaction problems on the uniform

polynomial mesh, the L1- and L2-errors are bounded by 0.055. For the piecewise mesh, the

errors are bounded by 0.15. Nevertheless, results for the piecewise mesh remain stable and

show that the under resolved region is able to step with much larger timesteps. Looking at

Figures 3.10a and 3.10e, we see that submeshes only update behind the shock front. For the

shockwave initial conditions on the polynomial mesh—shown in Figure 3.10c—after t = 0.2

the entire mesh begins stepping. This is due to the fact that cells in the interval (0.146, 1)

belong to a single submesh. Since these cells take larger timesteps the submesh partitioner

places more cells into this submesh. In later results with more cells and submeshes, the

inactive regions of the polynomial mesh do not update. For the rarefaction problem, due

to timestep binning, timestep coarsening happens only once the submesh is able to take a

timestep twice as large as the previous timestep. For the analytic solution to the rarefaction

wave at t = 0.7–the end of the simulation—|u| < 0.5 for |x| < 0.35. This is consistent

with the observed timestep coarsening seen in Figure 3.10b. Similarly, the polynomial and

84



−1.0 −0.5 0.0 0.5 1.0

Space (x)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
im

e
(t

)

(a) Uniform-Shockwave

−1.0 −0.5 0.0 0.5 1.0

Space (x)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
im

e
(t

)

(b) Uniform-Rarefaction

−1.0 −0.5 0.0 0.5 1.0

Space (x)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
im

e
(t

)

(c) Polynomial-Shockwave

−1.0 −0.5 0.0 0.5 1.0

Space (x)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
im

e
(t

)

(d) Polynomial-Rarefaction

−1.0 −0.5 0.0 0.5 1.0

Space (x)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
im

e
(t

)

(e) Piecewise-Shockwave

−1.0 −0.5 0.0 0.5 1.0

Space (x)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
im

e
(t

)

(f) Piecewise-Rarefaction

Figure 3.10: Space-time plots for Burgers’ equation with various meshes and problem con-
figurations.

85



piecewise meshes are able to adapt their timesteps appropriately. In these cases, the submesh

partitions are not symmetric about x = 0, giving rise to the asymmetry in the event traces.

3.6.2 Shallow Water Equations

In order to show that the local timestepping scheme is robust for more non-linear problems

and in the absence of the theoretical guarantees, we provide two problems for the shallow

water equations. Consider the system of conservation laws,


∂th+ ∂xqx = 0

∂tqx + ∂x(hu
2 + gh2/2) = −gh∂xz

where qx = hu, z is the bathymetry, and g = 1. We consider here the dam break Riemann

problem, for which,

h0(x) =


1 if x < 0,

1/16.1 if x > 0,

qx,0(x) = 0,

z = 0.

For the shallow water equations the maximum advection speed, |Λ| is
√
gh+ |u|. The initial

conditions have been chosen to allow a 4-to-1 timestepping ratio between downstream and

upstream of the dam break for the uniform mesh. The second shallow water test case we

consider is the analytic problem of Carrier and Greenspan [23]. This problem considers water

moving up and down a shoreline with uniform slope in a periodic manner. We follow the

set-up outlined in [12] with a phase shift of ϕ = −π.

For the numerical discretization, we use a local Lax-Friedrichs flux along with the first-

86



order local hydrostatic reconstruction proposed in [1]. The space time plots are shown in

Figure 3.11. We note that for the shallow water flow, the theoretical guarantees no longer

hold. In fact, the timestepping region between the two waves emanating from the dam break

problem in Figure 3.11a requires a finer timestep than observed during the beginning of the

simulation, and thereby violates the progress guarantee, Lemma 3.4.1. For the dam break

problem, the refinement of the timesteps looks similar to that of the shockwave problem

for Burgers’ equation. For the uniform and piecewise meshes, we see expected refining of

timestep sizes, and for the polynomial mesh, regions far from the shock waves prematurely

begin taking fine timesteps due to the large submeshes generated by the submesh partitioner.

For the Carrier-Greenspan problem on the uniform mesh, shown in Figure 3.11b, we

see the wave moving in and out of the domain. Analytically, the water front never goes

past x = 0.25, and the simulated event trace reflects this as no submesh updates occur

for in regions for which x > 0.3. For the polynomial mesh in Figure 3.11d, we again begin

stepping everywhere due to the submesh graph partitioning. For both of these cases, we note

hysteretic effects in regions which are mesh drying. The final simulation time of 2π contains

two periods of the Carrier-Greenspan solution. At time π, the submeshes participating in

updates would ideally look identical to the start of the simulation, i.e. only submeshes which

contain cells located at x < −0.25 would update. Rather we see this slow “draining” of mass

as submeshes try to coarsen their timesteps, resulting in updates occurring in regions of the

mesh that are dry in the analytic solution. The impact of behavior on performance will be

touched upon in the next section. For the piecewise mesh, the incoming wave is so under

resolved that it is unable to cause significant wetting and drying on the beach. Hence, this

configuration fails to reproduce the periodic wetting and drying event trace seen for the

uniform and polynomial meshes.

To conclude, the proposed timestepping method remains stable for simulations with dra-

matic temporal variations in Λ as shown for Burgers’ equation in Figure 3.10 and the shallow

87



water equations in Figure 3.11. For the latter problem, we fail to satisfy the assumptions for

the proof of correctness and even observe a violation of the progress guarantee, and yet the

algorithm is able to stably compute the correct solution. Important in both problems is the

ability for the algorithm to locally refine or coarsen timesteps. The proposed formulation

dispenses with complicated book keeping relating to which timestepping level submeshes

are in and how to appropriately define buffer zones, but simply computes and adjusts the

timestep based on locally available information.

3.6.3 Performance Comparison

In this section, we compare the performance of our local timestepping implementation to a

flat MPI implementation. For the MPI implementation, we use non-blocking point to point

messaging and hide message latencies with internal work. For more details, we refer the

reader to implementation in [15]. One key detail is that the MPI implementation does not

compute the CFL condition, but rather uses a fixed timestep. Since dynamically updating

a CFL condition would require an all-reduce at each timestep, the communication overhead

makes an adaptive CFL condition non-viable for large-scale simulation. For the performance

comparison, we consider the uniform and polynomial mesh with 500,000 cells on one Skylake

node with 48 cores on TACC’s Stampede2. We partition the mesh into 48 (one per core)

uniform submeshes for the MPI implementation, and 288 (six per core) submeshes for the

Devastator implementation. We partition the mesh into 48 (one per core) uniform submeshes

for the MPI implementation, and 288 (six per core) submeshes for the Devastator implemen-

tation based on the heuristic described in Section 3.5.3. The over-decomposition factors of

submeshes to ranks have been optimized for each runtime. Over-decomposition of the mesh

for Devastator enables three performance optimizations. Firstly, over-decomposition allows

a rank to hide message latencies. While one actor may be waiting on a message to arrive, the

rank may execute events scheduled for other actors. Secondly, over-decomposition reduces

88



−1.0 −0.5 0.0 0.5 1.0

Space (x)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
im

e
(t

)

(a) Uniform-Dam break

−1.0 −0.5 0.0 0.5 1.0

Space (x)

0

1

2

3

4

5

6

T
im

e
(t

)

(b) Uniform-Carrier-Greenspan

−1.0 −0.5 0.0 0.5 1.0

Space (x)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
im

e
(t

)

(c) Polynomial-Dam break

−1.0 −0.5 0.0 0.5 1.0

Space (x)

0

1

2

3

4

5

6

T
im

e
(t

)

(d) Polynomial-Carrier-Greenspan

−1.0 −0.5 0.0 0.5 1.0

Space (x)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
im

e
(t

)

(e) Piecewise-Dam break

−1.0 −0.5 0.0 0.5 1.0

Space (x)

0

1

2

3

4

5

6

T
im

e
(t

)

(f) Piecewise-Carrier-Greenspan

Figure 3.11: Space-time plots for the shallow water equations with various meshes and
problem configurations.

89



the total amount of work required. Since each cell must step synchronously with other cells

on that submesh, creating more submeshes implies that more cells are able to step with differ-

ent timesteps. Lastly, more submeshes improves the performance of the load balancer. With

more submeshes, the load balancing algorithm is able to more easily balance the simulation

throughout all time points in the simulation. However, over-decomposition comes at the

cost of higher runtime overhead. More events with less work implies that a larger fraction of

event execution time is spent on scheduling and control flow. The over-decomposition factor

of 6 was chosen based on observed performance. The MPI implementation does not benefit

from over-decomposition. We explicitly hide message latencies by performing all internal

work after posting sends and receives. Furthermore, the total number of cell updates—and

thus work—remains independent of the over-decomposition factor and the load balancer is

able to balance work across MPI ranks easily.

To analyze the impact of the dynamic CFL condition versus the local timestepping due

to mesh refinement, we consider two problems for the shallow water equations. Firstly, we

consider a lake at rest problem, where

h0(x) = 1,

qx,0(x) = 0,

z = 0.

For this problem, differences in the CFL condition are solely a function of differences in cell

size, ∆x. The second problem we consider is the Carrier-Greenspan solution, outlined in

the previous section. As the water front moves across the mesh, large portions of the mesh

wet and dry throughout the simulation, causing these regions to experience large changes

in allowable timestep sizes. For the lake at rest problem, the work in each submesh is

approximately the same. Thus, we assign submeshes [6 · k, 6 · (k+ 1)) to rank k. In the case

90



of the Carrier-Greenspan problem, due to the periodic nature of |Λ|, we load balance over a

quarter of the period, i.e. tend = π/2 in (3.33). For simulations of the Carrier-Greenspan

problem on either mesh, we run Gurobi for 6 minutes and then use the best solution found.

There are significant variations in the difficulty of the load balancing the problem. For

the uniform mesh, the partitioner returns with a solution with an imbalance of 4%. For

the solution to the polynomial mesh, Gurobi returns a solution with an imbalance of 25%.

However, Gurobi also reports that a lower bound on the best possible partitioning is 20%

indicating that the solution is within 5% of the optimal partitioning.

The performance data is shown in Table 3.2. For the static uniform Lake at Rest prob-

lem, we include a Devastator configuration—labeled as (no CFL)—without the overhead of

computing the local CFL in order to provide a more direct comparison with the MPI version,

which does not compute the CFL in any configuration. Each configuration is run 10 times

with the average time elapsed, T̄ reported in seconds. The standard deviation over the mean

σT/T̄ is given in percentages. Lastly, the number of updates and rollbacks are taken from a

single run.

We begin by noting that the number of cells rolled back is limited. At most 3.5% of

updates are rolled back suggesting that the performance related optimizations do a good job

of preventing unnecessary rollback. The lack of rolled back updates for the uniform mesh

lake at rest problem shows that we are able to completely avoid bad speculation for this

configuration. For the lake at rest problem on the polynomial mesh, it should be possible

to infer when messages are incoming since |Λ| and ∆x are fixed. The existence of rollbacks

implies that there is still future work to be done to prevent bad speculation.

The speed-up achieved via local timestepping is attained through work reduction. To as-

sess the quality of our implementation, we contextualize execution times with configuration-

dependent metrics to determine what fraction of unnecessary work was skipped. Recall the

theoretical speed-up Sth, which estimates the maximum achievable speed-up based on ana-

91



Table 3.2: Execution times for the shallow water equations on Stampede2.

Problem Mesh Runtime T̄ σT /T̄ # of Updates # of Rollbacks
Lake at Rest Uniform Devastator (no CFL) 139.4 0.8% 252.5 · 109 0
Lake at Rest Uniform Devastator 173.2 0.8% 252.5 · 109 0
Lake at Rest Uniform MPI 133.2 0.1% 252.5 · 109 –
Lake at Rest Polynomial Devastator 192.6 3.3% 239.7 · 109 3.5 · 109

Lake at Rest Polynomial MPI 478.4 2.0% 892.2 · 109 –
Carrier-Greenspan Uniform Devastator 729.4 1.1% 856.2 · 109 12.0 · 109

Carrier-Greenspan Uniform MPI 995.7 0.7% 1674.5 · 109 –
Carrier-Greenspan Polynomial Devastator 3212.4 0.5% 3209.6 · 109 113.3 · 109

Carrier-Greenspan Polynomial MPI 10732.0 0.1% 18070.1 · 109 –

Table 3.3: Theoretical versus observed speed-ups.

lytic values of Λ and ∆x. We compare this theoretical estimate against a speed-up based on

the number of cells updated. Let W obs
MPI and W obs

deva be the number of cells updated during

the simulation with respective runtimes, and define the work-based speed-up as Swork the

ratio of observed updates, i.e.

Swork =
W obs
MPI

W obs
deva

.

Discrepancies in Swork and Sth arise due to the enforcing of the local ordering constraint as

well as extra updates arising from a combination of timestep binning and variations in Λ.

Lastly, we introduce the observed speed-up, which is based on the ratio of run times,

Sobs =
T̄MPI

T̄deva
,

where T̄∗ corresponds to the mean observed execution time for either runtime. While the work

based speed-up Swork represents an upper bound on achievable speed-up, the observed speed-

up is able to take into consideration factors such as imbalance, rollbacks, and algorithmic

overhead.

Table 3.3 presents the three speed-up values for each configuration. The discrepancies

between Sth and Swork are less than 3% with the exception of the Carrier-Greenspan poly-

92



LAR,Unif LAR,Poly CG, Unif CG,Poly
0

1

2

3

4

5

S
p

ee
d

-u
p Swork

Sobs

CFL

Imb+Rb

Figure 3.12: Comparison of speed-up due to work reduction Swork against observed speed-up
Sobs and the impact of avoiding CFL computations (CFL) and fixing load imbalance and
rollbacks (Imb + Rb) for the lake at rest (LAR) and Carrier-Greenspan (CG) problem on
the uniform (Unif) and polynomial meshes (Poly).

nomial configuration where we over-predict the attainable speed-up by 17%. In particular,

we suspect these discrepancies result due to difficulties in water draining out of dry regions

akin to the updates seen in Figures 3.11b and 3.11d.

The observed speed-up ranges from 59% to 77% of the work-based theoretical speed-up,

Swork. Since there is no theoretical benefit from using adaptive, local timestepping in the

lake at rest on a uniform mesh configuration, this case highlights the overhead associated

with using an adaptive, local timestepping scheme versus a static synchronous timestepping

scheme. If we skip the CFL computation and use the analytic value of K int (see the first

row of Table 3.2), the observed speed-up is Sobs = 0.96.

To distinguish between algorithmic overhead of computing the CFL condition and other

performance issues, we account for the cost of the CFL condition by multiplying the MPI

execution times by the ratio of the execution times between the CFL and the no-CFL config-

urations of the lake at rest problem on the uniform mesh using the Devastator runtime. With

these corrections, we obtain 82.9% of Swork for the lake at rest problem with the polynomial

mesh, 86.7% of Swork of the Carrier-Greenspan problem with the uniform mesh, and 73.7%

of Swork of the Carrier-Greenspan problem for the polynomial mesh. Furthermore, the im-

pact of load imbalance and rollbacks is approximated by considering the average imbalance

93



during the simulation. The imbalance is computed as the ratio of cells updated (both rolled

back and committed) on the most overworked rank divided by the average number of com-

mitted cell updates across all ranks. Over a sufficiently small time interval this imbalance

ratio approximates the improvement obtained through perfect load balancing. We estimate

the impact of load imbalance by considering average imbalance over 100 evenly sized time

intervals.

The cumulative performance impacts of the CFL computation and load imbalance are

shown in Figure 3.12. This graph compares the speed-up due to work reduction, Swork against

the observed speed-up Sobs and illustrates how the CFL computation and load imbalance

account for the discrepancy. It is important to note that a given part of the stacked bar graph

multiplies factors below it, e.g. the top of the Imb + Rb bar corresponds to the expected

speed-up if the simulation were perfectly balanced and there was no cost associated with

the CFL condition. This distorts the size of bars towards the top of the graph, but allows

us to compare the magnitudes of the speed-ups across problem configurations. With these

two factors, we are able to account for the discrepancy in expected Swork and observed Sobs

speed-ups within 6.0%.

We also observed that rollback had a limited impact on performance for our experimental

configurations. For the Carrier-Greenspan problem, rollback minimally impacted the imbal-

ance of the simulation with the imbalance metric increasing by no more than 0.02 for either

mesh. For the polynomial lake at rest problem, the imbalance of committed updates was

only 1.02. However, once rollbacks are taken into consideration the imbalance went up to

1.13. Detailed discussion of rollback is presented in Section 3.6.4.

Another cause of the performance degradation due to imbalance may be limitations of

static load balancing. Firstly, there exist discrepancies between the performance model

outlined in Section 3.5.3 and the observed work done by each submesh, as evidenced by

discrepancies between Sth and Swork. Since the load balancing is based on the work of

94



the theoretical model, this may lead to load imbalances, which we are not accounting for.

Furthermore, the lower bound for the imbalance of the Carrier-Greenspan problem at the

end of the Gurobi partitioning was 20%. Although this lower bound does not account for the

discrepancy between the performance model and observed work as well as error due to the

quadrature used to approximate the integral in (3.33), it suggests that there are underlying

limits to how well the partitioner is able to statically load balance the problem. In that case,

further reduction in load imbalance would benefit from dynamic load balancing techniques

outlined in [16].

Lastly, we note that while the overhead associated with computing the CFL condition

may seem high, it is worth noting that the MPI implementation is not provably stable.

For the results presented here, we are able to take optimal timestep sizes, because we are

able to analytically determine (Λ/δx)max. In practice, this value is unobtainable, and the

selected ∆t would either lead to sub-optimal timestepping, i.e. taking timesteps smaller than

necessary or manifest instabilities. The local timestepping algorithm can set an arbitrarily

small ∆tmin, and then take appropriately sized timesteps with step-size reductions taken as

needed to guarantee stability.

3.6.4 Description of Misspeculation

Since we are able to make updates arbitrarily expensive through the addition of cells to a

submesh in order to hide task overheads, we only look at rollbacks of non-trivial updates.

Events such as push fluxes or updates for which dte does not match the current simulation

time, require little work and rolling them back incurs relatively little overhead. To help

understand the behavior of rollback for the simulation, we plot the total number of elements

updated and rolled-back per actor in Figure 3.13. Since all considered problems are one

dimensional, the actors are ordered to reflect their positions in the mesh, i.e. actor 0 updates

the leftmost submesh, and actor 1 corresponds to the submesh immediately to the right of

95



0 50 100 150 200 250 300

Actor ID

0.0

2.5

5.0

7.5

N
u
m

b
er

o
f
el

em
en

t
u
p
d
a
te

s

×108

(a) Lake at Rest–Uniform

0 50 100 150 200 250 300

Actor ID

0.0

0.5

1.0

N
u
m

b
er

o
f
el

em
en

t
u
p
d
a
te

s

×109

(b) Lake at Rest–Polynomial

0 50 100 150 200 250 300

Actor ID

0

2

4

6

N
u
m

b
er

o
f
el

em
en

t
u
p
d
a
te

s

×109

(c) Carrier-Greenspan–Uniform

0 50 100 150 200 250 300

Actor ID

0

1

2

3

N
u
m

b
er

o
f
el

em
en

t
u
p
d
a
te

s

×1010

(d) Carrier-Greenspan–Polynomial

Figure 3.13: Cumulative number of element updates committed—shown in —and rolled
back—shown in updates for each actor.

96



the leftmost submesh, etc. We also plot the commits and rollbacks performed by each

rank in Figure 3.15. For the lake at rest problem, ranks are assigned 6 contiguous actors.

Hence, similar to the actors, the rank ID corresponds to the position relative to other ranks.

However, for the Carrier-Greenspan problem, the integer programming problem does not

consider submesh locality and any rank may be assigned submeshes from anywhere in the

mesh.

For the lake at rest problem on either of the two meshes, shown in Figure 3.13a and

3.13b, we see that the partitioning strategy creates submeshes which require roughly the

same amount of work to update. The partitioning into submeshes assumes no knowledge of

the wave speed Λ and thus uses |Λ| ≡ 1. Since this corresponds exactly to the |Λ| of the lake

at rest problem, we achieve a good distribution of work between actors. In Figure 3.13b, we

note that a few submeshes are assigned significantly less work than the mean amount of work.

This arises due to the non-uniform increments in work added by a single cell. In the iterative

submesh partitioning process, if a cell which is constraining the CFL condition for a submesh

is removed from that submesh, the submesh will take a larger timestep, thus lowering the

overall amount of work associated with that given submesh. Figure 3.13b shows that near

these under worked regions is also where rollback occurs. As seen in Figure 3.15b, the

ranks which contain these submeshes are assigned less work yet incur significant rollback.

Ultimately this speculation causes these ranks to perform the largest number of element

updates and determine the critical path of the simulation.

For the Lake at Rest-Uniform configuration shown in Figure 3.13a, the submesh detects

stutter stepping after each update and waits. In this case, no updates are rolled back, and

due to the balanced submesh partitioning, the imbalance is negligible.

For the Carrier-Greenspan problem, we observe that not all submeshes are assigned the

same amount of total work since the flow field is not constant. For the uniform mesh shown

in Figure 3.13c, we note that the number of updates per actor is relatively similar for the left

97



0 2 4 6

Simulation Time (t)

−1.0

−0.5

0.0

0.5

1.0

x

1∆tmin

2∆tmin

4∆tmin

8∆tmin

≥ 16∆tmin

(a) Predicted ∆t

0 200 400 600

Wall clock time (in s)

0

50

100

150

200

250

A
ct

o
r

ID

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

6.4

7.2

U
p
d
a
te

s
ro

ll
ed

b
a
ck

×106

(b) Observed Rollback

Figure 3.14: Temporal occurrence of rollback compared to expected timestep size for the
Carrier-Greenspan problem on the uniform mesh.

side of the mesh. In the center of the mesh, the cells are wetting and drying as the oscillatory

wave passes over them. There is a small amount of rollback occurring, and updates per actor

decrease as the water gets shallower. The dry right portion of the mesh does not execute

any updates. The Carrier-Greenspan problem on the polynomial mesh heavily distorts the

center of submesh. The sharply spiked pattern corresponds to timestep transition regions.

The total rollback for both meshes remains low overall, with 1.3% of element updates being

rolled back for the uniform mesh and 3.4% of element updates being rolled back for the

polynomial mesh.

In Figure 3.14, we compare the theoretical timestep size based on the analytic solution

against the time-resolved location of rollback for the Carrier-Greenspan problem on the

uniform mesh. Rollback in this case tends to only occur near regions where the timestep is

changing. At any given point, only a very small number of updates are rolled-back. However,

the location of roll-back depends on the solution and therefore cannot be known a priori in

general.

In Figure 3.15, we display the amount of work done by each rank throughout the simu-

lation. The plots show that the load balancing approaches do a reasonable job of balancing

98



0 10 20 30 40

Rank ID

0

2

4

N
u
m

b
er

o
f
el

em
en

t
u
p
d
a
te

s

×109

(a) Lake at Rest–Uniform

0 10 20 30 40

Rank ID

0

2

4

N
u
m

b
er

o
f
el

em
en

t
u
p
d
a
te

s

×109

(b) Lake at Rest–Polynomial

0 10 20 30 40

Rank ID

0

1

2

N
u
m

b
er

o
f
el

em
en

t
u
p
d
a
te

s

×1010

(c) Carrier-Greenspan–Uniform

0 10 20 30 40

Rank ID

0.0

2.5

5.0

7.5

N
u
m

b
er

o
f
el

em
en

t
u
p
d
a
te

s

×1010

(d) Carrier-Greenspan–Polynomial

Figure 3.15: Cumulative number of element updates committed—shown in —and rolled
back—shown in updates for each rank.

99



committed updates across all ranks. To estimate the impact of rollback on the time to

solution, we introduce the time averaged imbalance as

IC =
1

T

∫ T

0

maxr uc(r, t)− uc(t)
uc(t)

dt,

where uc(r, t) is the rate of updates committed on rank r at time t, and uc(t) corresponds

to the mean number of updates committed at time t. We also define the rollback based

imbalance as

IC+RB =
1

T

∫ T

0

maxr (uc(r, t) + urb(r, t))− uc(t)
uc(t)

dt,

where urb(r, t) corresponds to the rate of updates rolled back on rank r. The aim of comparing

the two metrics is to identify what percentage of the performance degradation is due to poor

load balance versus misspeculation. The update and rollback densities are estimated by

calculating how many updates are rolled back or committed every second. In a strictly

performance oriented setting, we do not care about the absolute amount of rollback, but

rather only about rollback incurred on the critical path, i.e. most overworked rank. In

Table 3.4, we compare the two imbalances for the test cases. For the Carrier-Greenspan

problem, we observe that due to the fact that the actors which are rolled back are distributed

across many ranks, rollback does not accumulate on any single rank. We estimate that the

time to solution would only be 2% faster if we didn’t incur any rollback. On the other hand,

for the polynomial lake at rest problem, the rollback is confined to only a few ranks. In turn,

these ranks slow down the otherwise well balanced problem configuration. We predict that

we would observe a 12% reduction in time to solution if this rollback were not present.

3.6.5 Conservative Parallel Discrete Event Simulation

An alternative way to parallelize the algorithm would be through conservative parallel dis-

crete event simulation. Whereas the timewarp based algorithm has a mechanism to correct

100



Lake at Rest Carrier-Greenspan
Mesh Type IC IC+RB IC IC+RB

Uniform 1.00 1.00 1.12 1.14
Polynomial 1.01 1.13 1.16 1.18

Table 3.4: Time-averaged imbalance with and without rollback

T
im

es
te

p
p
in

g
G

ro
u
p
s

Simulation time

∆t

2∆t

4∆t

Figure 3.16: Illustration of conservative parallel discrete event simulation with no look ahead.

causality violations. Conservative parallel discrete event simulation requires the program

to guarantee that no causality violation can occur. Perhaps the most simple version of a

conservative parallel discrete event simulation would be to maintain a global priority queue

and execute events with the lowest timestamp. A schematic of elements updating in various

timestepping groups is shown in Figure 3.16. This implementation suffers from insufficient

available parallelism and significant synchronization overhead. For the hurricane storm surge

problem considered in [33], a mesh with O(106) elements only has O(104) elements stepping

in the smallest timestepping group. Amdahl’s law limits the scalability of any such approach.

Conservative parallel discrete event simulations introduce more parallelism into the sys-

tem through the introduction of look ahead. If for a given global timestamp, we can ensure

that no causality violations can occur over some time interval, all events scheduled within

that interval may be safely executed. The use of a global priority queue corresponds to a

look ahead of zero. To derive look ahead estimates for systems of conservation laws, we must

prove that no push flux—the result of a neighbor updating—will be processed within the

101



look ahead interval.

To achieve a viable implementation using a conservative parallel discrete event simulation,

two major problems need to be resolved.

1. Energy-based look ahead estimates: The wavespeed |Λ| can be bounded above and

below by the energy of the system with a constant for Burgers’ equation and the

shallow water equations. This intuition provides a useful glimpse into the evolution of

Λ. We know from the Burgers’ equation example used in the motivation of this chapter

that any look ahead estimate must consider the discrete domain of dependence of the

problem. This requires global knowledge since pathological spikes of energy could

exist anywhere. However, a hope would be that once initial global communication has

occurred, we may be able to derive estimates for local energy growth, and thus bound

changes in wavespeed |Λ|. By determining the growth of Λ, look ahead estimates can

then be determined by deriving lower bounds on when neighboring actors will update.

2. Loosening of TVD properties: The aim of this thesis is to derive a total variation di-

minishing timestepping scheme. The analysis used in this chapter requires that the

event trace be locally ordered. From a parallel discrete event standpoint, this is prob-

lematic as it may generate event cascades, i.e. events scheduled on neighboring actors

with the same timestamp. This complicates the derivation of look ahead estimates,

because in addition to bounding the growth of |Λ|, we also need to ensure that no

locally ordering violations can occur. Lastly, the binning of timesteps to powers of two

of ∆tmin also presents issues. Given an actor at timestep 10 with a largest allowable

timestep of 15, the next update would occur at 24 (i.e. the largest multiple of 8). If

however, at time 10, a message is processed that causes the wavespeed to decrease and

the allowable timestep increased to 16, the timestep would occur sooner—rather than

later—at time 16 (the largest multiple of 16). Thus, there are also cases where lowering

102



the wavespeed causes the proposed timestep to decrease. We conjecture that the need

for locally ordered event traces can be eliminated by relaxing the requirement of total

variation diminishing to total variation bounded. Total variation bounded solutions

correspond to a larger, but still stable solution class. The relaxation to total variation

bounded solutions may be inevitable as we move to higher order timestepping schemes,

e.g. [30]. Apart from allowing for easier derivation of look ahead estimates, eliminat-

ing the locally ordered event trace requirement would also eliminate the need to bin

timesteps, reducing the total amount of work performed.

Given the difficulties required to obtain meaningful look ahead estimates, we have pri-

marily focused on optimistic speculation in this thesis. Rather than focus on deriving look

ahead estimates, we have found it easier to derive tests which identify when speculation

is guaranteed to be rolled-back based on local information and then simply wait for the

message that causes the rollback of any subsequent events to be processed. Furthermore,

given the near optimal performance of the optimistic parallel discrete event simulator for

this small problem, we need to identify use cases to motivate development of conservative

parallel discrete event simulation.

3.7 Conclusion

This work presented an adaptive local timestepping algorithm for conservation laws. Loop

invariants were used to derive a proof of formal correctness, ensuring that the algorithm is

total variation stable even when considering dynamic changes in local wave speeds. Further-

more, the algorithm was parallelized using a speculative parallel discrete event simulator.

Results indicate that the parallelization recovers a majority of the expected speed-up, when

accounting for the cost of the CFL condition.

As part of our future work, we will examine higher order timestepping strategies. The

103



forward Euler step forms the basis of higher order strong stability preserving methods. Future

work will include the development of higher order adaptive timestepping methods in the spirit

of [30]. Furthermore, we aim to apply this method to physically relevant coastal modeling

problems to better quantify benefit of adaptive local timestepping to communities of interest.

At a more general level this work makes two important contributions to the development

of asynchronous algorithms. Firstly, the nonlinearity of this problem makes knowing the

task graph a priori impossible. While there has been an emergence of task-based runtimes in

recent years to address architectural heterogeneity, this work calls into question the efficacy

of a task-dependency graph as the sole means of representing scientific computing work

flows within these modern runtime systems. Close interdisciplinary work is required with

runtime system engineers and applied mathematicians to ensure that avenues for efficient

implementations of adaptive algorithms remain accessible.

Secondly, the application of loop invariant analysis in order to assess the correctness of ap-

plication significantly simplifies the development. Formal correctness techniques are expected

to play an increasingly important role in the era of extreme heterogeneity as exhaustively

replicating the states of a system in a highly concurrent setting will become increasingly

difficult [125]. The results here showcase how to use the invariant analysis proposed in [10].

Due to the formal correctness proof, we ran into significantly fewer bugs during application

development. Nevertheless, we found the derivation of the proof to be tedious. Automating

this proof technique would allow us to better manage complexity and support the derivation

of increasingly complicated algorithms.

104



Chapter 4

Conclusion

While load balancing and local timestepping certainly display great promise for the acceler-

ation of hurricane storm surge, their implementation in a storm surge code is left as future

work. In this chapter we conclude with an analysis of the impact of this work on hurricane

storm surge, examine local timestepping through a Tao of parallelism analysis [106], and

conclude with thoughts on storm surge simulations in post-Moore’s era computing.

4.1 Implications for hurricane storm surge

In order to make the DG method viable for hurricane storm surge, we require a reduction

in required compute resources to still complete a storm surge simulation within a two hour

time window. While the proposed local timestepping method represents a significant building

block towards using adaptive local timestepping for the simulation of hurricane storm surge,

the method must be extended in several important ways. Firstly, the method must be

extended to higher-order timestepping schemes. Both partitioned Runge-Kutta methods [30]

and the extrapolation based methods in [59] offer potential means of achieving this. The

high order timestepping schemes extend straightforwardly to the generalized event trace

setting. However, mapping these methods onto a parallel discrete event engine requires

more work. Firstly, the extension to multiple dimensions is non-trivial. In the proof of

correctness, we showed that a submesh would only send a single message to its neighbor

105



101 102 103 104

Inscribed radius, h (in m)

0

200000

400000

600000

#
of

el
em

en
ts

(a) Element sizes

0 100000 200000 300000

Simulation time (in s)

0.65

0.70

0.75

0.80

0.85

F
ra

ct
io

n
of

w
et

el
em

en
ts

(b) Wet fraction

Figure 4.1: Storm36 metadata

per timestep. This was a result of assuming that the minimum diameter of the submeshes

was at least two cells. In a multi-dimensional setting, it is possible that a submesh updates,

sends unforced push fluxes to a neighbor, and then receives a neighboring push flux that

forces the other neighbors to update even though they have already received a push flux.

This requires additional control flow as well as incorporation of these states into the proof of

correctness. The second issue arises due to the presence of multiple Runge-Kutta stages per

timestep as well as multiple halo-exchanges within a given Runge-Kutta stage. For a given

timestepping method these exchanges are statically determined. These message exchanges

can be thought of as a static task-graph (determined at compile time) embedded inside

a dynamic task-graph (determined based on the state of the cell). When executing the

tasks inside a static task-subgraph, we know precisely what messages need to be processed

before progress can be made. During these portions of the algorithm, any speculation will

be rolled back, and insofar we should always wait on these messages. Better abstractions

for embedding subgraphs inside a speculative execution context would simplify algorithm

development.

106



100 102

Timestep size (in s)

0

250000

500000

750000

1000000

1250000

#
of

el
em

en
ts

(a) t = 2 hr

100 102

Timestep size (in s)

0

250000

500000

750000

1000000

1250000

#
of

el
em

en
ts

(b) t = 77 hr

Figure 4.2: Timestep distribution during Storm36

50000 100000 150000 200000 250000 300000

Simulation time (in s)

0

500

1000

1500

2000

2500

3000

3500

E
le

m
en

ts

0

4000

8000

12000

16000

20000

24000

28000

T
im

es
te

p
s

to
si

m
u

la
te

1
h

ou
r

Figure 4.3: Work distribution during Storm36

107



Although high order adaptive local timestepping is a topic of current research, we can use

the performance model developed in Chapter 3 to approximate the speed-up for a hurricane

storm surge simulation. Here we use an ADCIRC solution to the Storm36 problem considered

in Chapter 2 to compute the wavespeed |Λ| at each element. The simulation is run for 3.75

days and the output is recorded hourly. Figure 4.1 shows both the wet fraction as well as the

distribution of length scales h, the inscribed radius of a given element. The mesh contains

3.6 million elements with h ranging from 5.5 m to 8.5 km. We use the output to compute |Λ|

and determine the theoretical speed-up Sth. Based on the minimum inscribed radius and

assuming a CFL number of 1/3, we determine the largest stable timestep to be 0.13 s and bin

the remaining timesteps relative to this ∆tmin. Figure 4.2 shows the distribution of timesteps

for both before the storm makes landfall and at peak inundation. In Figure 4.2a, only 0.1%

of elements are required to take a timestep of ∆tmin, and the median timestep size is 4.16 s

(32∆tmin). As the storm makes landfall in Figure 4.2b, the number of elements in the finest

timestepping group remains low at 0.3%. However significant inundation has occurred. Dry

cells are binned into a timestep of 1 hour. The number of cells in this timestepping group

has decreased from 35.4% to 15.1% and the median timestep size has also decreased to 2.08 s

(16∆tmin). To highlight the small number of cells at the finest timestepping level, we present

the work wj at every thousandth element as a function of simulation time in Figure 4.3. We

have intentionally left the colorbar scale linear to highlight that a very small percentage of

the elements requires stepping at the finest level. With this information, we can compute

the theoretical speed-up Sth to be 15.1. Importantly, this number will be smaller in practice

since the actual timestep size will also depend on other elements in the given submesh. The

discrepancy in expected speed-up computed from [33] to the number presented here is due

to the fact that in [33] the number of timestepping groups was limited to 4 and they used

a different mesh. The stability results associated with our adaptive timestepping scheme

make this algorithm a good candidate for hurricane storm surge. With proper limiting

108



Figure 4.4: Tao classification of parallel algorithms [106]

of bad speculation, we can run the simulation in an almost task-graph manner. Causality

violations are relatively rare, yet continuously occurring, making semi-static re-assignment of

timestepping groups non-viable. One important question that remains is what is the available

parallelism in the simulation? Does our speculative approach bypass the limitations of the

adaptive timestepping method, which requires a synchronization after each ∆tmin? This is

certainly a lower bound to the amount of available parallelism. On the upper end, we are

constrained by the parallelism available in the event trace, which is only known a posteriori.

These performance analyses are the subject of future work.

4.2 Tao analysis of adaptive timestepping

The tao of parallelism categorizes algorithms based on salient features to guide parallel

implementations [106]. Programs are thought of as a graph of abstract data types (ADT)

and algorithms. In the case of DG finite element methods, the abstract data types correspond

to the submeshes, and the edges of the graph are used to reason about dependencies, i.e.

which flux buffers need to have been processed before proceeding. The algorithm corresponds

to the timestepping scheme, which exchanges flux buffers and updates elements. The tao

analysis then examines three main features shown in Figure 4.4.

109



· Topology: The topology refers to the ADT graph, for example, if a task is embarrassingly

parallel, this might be represented as a graph with an empty edge set. Graphs are classified

by the amount of information required to describe them, ranging from structured to semi-

structured to unstructured. For our work, we consider the submesh graph generated by

the partitioning of a dual graph of a planar mesh. The most important invariant of the

graph is that it remains static throughout the simulation. Since we are able to utilize this

information to guarantee once an event can be safely processed, we refer to the graph as

semi-structured.

· Active nodes: At any given point in the simulation, active nodes are nodes which may

perform compute. In the case of the task-based synchronous timestepping, a submesh may

only update once it has received the updated boundary state from each of the submesh’s

neighbors, i.e. once all of its dependencies have been satisfied. The topic of active nodes is

split into two further subcategories, location and ordering. Location emphasizes whether

the active nodes are purely determined by the graph (referred to as topology-driven) or

if the state also influences whether or not the algorithm is able to advance (referred to

as data-driven). For both synchronous and adaptive local timestepping algorithms, the

methods are data-driven. Based on whether or not a submesh has processed a message

determines whether or not it can advance to the next timestep. The second subcategory

is ordering. Timestepping methods are inherently ordered. It is nonsensical to have a

submesh update in a non-sequential order.

· Operator: Operators are applied to the ADTs. If the operator changes the topology of

the graph it is classified as morph. A local computation updates the state of the ADT,

and a reader changes neither the state nor the topology. All of our timestepping methods

are local computations. Updating the state does not introduce new vertices into the ADT

graph.

All three timestepping schemes for hurricane storms surge—asynchronous timestepping with

110



a fixed timestep, asynchronous local timestepping, and synchronous timestepping with an

adaptive timestep—rely one the same underlying ADT, with an irregular static topology, con-

sist of operators that perform local computation, and have data-driven ordered active nodes.

To distinguish between the types of parallelism between each of the timestepping scheme,

we rely on the further classification of ordered algorithms by Hassaan [56, 57]. Hassaan in-

troduces the notion of a Kinetic Dependence Graph (KDG) to classify ordered algorithms.

The KDG is defined by a triple (G,P, U), where:

· G is the task graph,

· P is a safe source test,

· U is an update rule.

The task graph looks similar to the graph associated with the ADTs. In this case directed

edges correspond to the next pending flux buffer exchange. The update rule corresponds

to the method for updating the ADT, i.e. stepping the mesh forward in time. The key

distinction between the three timestepping methods comes from the safe source test. Given

an active node of the graph, i.e. a submesh that can be updated, this function examines the

graph, and determines whether or not that submesh can locally update. If the safe source

test is trivial, any active node can update in parallel and the method is called source stable.

Coming back to the timestepping schemes, the asynchronous fixed timestepping algorithm

is an example of a source stable KDG. Once all messages have been processed at a timestamp,

we can safely—here in reference to the algorithm, not the numerical stability—advance to

the next timestep. This importantly is contrasted with the other two methods in which

case a non-local condition (the CFL condition) needs to be satisfied in order to ensure that

the submesh can be safely updated, i.e. the currently proposed timestep will not need to

be shortened. Note that the need to check the safety of an update arises due to the fact

the shallow water equations are non-linear. Mathematically, the safe-source test requires

examining the state of the full domain of dependence. For linear systems of equations, this

111



problem is statically determined, and so timesteps can be proposed (even local timesteps)

such that the source test can be guaranteed to be satisfied by construction.

For the synchronous adaptive timestep, the safe source test simply checks all cells, en-

suring that the domain of dependence at the proposed timestep is inside the region checked

by the safe source test. On the other hand, for the speculative adaptive local timestepping

algorithm, we assume that generally the source test will evaluate to true and then rollback

in the case that that assumption was incorrect. The performance optimizations outlined

in Section 3.5.2 then provide two important limitations to bad speculation. The Reducing

unnecessary speculation fix can be thought of as tighter policing of which nodes are active.

This fix acknowledges outstanding push fluxes from neighbors as dependencies, and so the

node forgoes the executing of further updates until these waited upon messages arrive, and

the node reactivates. The Avoiding small timesteps due to binning fix can be thought of as

the introduction of a non-trivial source test. By examining the state of an active node, we

are able to defer execution until a message from the neighbor arrives. However, rather than

wait for the safe source test to be resolved, we introduce dependencies by forcing selected

neighbors to synchronize. Areas of future work include coming up with better source sta-

ble tests. In particular, considering the lake at rest problem on the polynomial mesh, even

though the set of equations is non-linear, the solution is source stable by construction, and

insofar it should be possible to eliminate all rollback. This could be thought of as being

equivalent to enforcing the dependencies of a locally linearized local timestepping problems,

and then only speculating when non-linearities dominate the evolution.

Amorphous data-parallelism arises out of tao-analysis to quantify optimal parallel per-

formance. Amorphous data parallelism describes the amount of parallelism found in active

nodes throughout the simulation. Parallelism profiles inform what performance benefits we

may expect to see. Comparing the fixed timestep asynchronous timestepping scheme with

the synchronous adaptive timestepping method we see little difference in available paral-

112



lelism, the difference being the cost of the synchronization associated with updating the

global timestep. The direct impact may be unclear since taking a global adaptive timestep

may reduce the overall work. As an example, the fixed timestep sizes of year long simulations

of the Australian coast are limited by a brief period during the rainy season where inland

estuaries flood. Since the timestep is fixed, it will be unnecessarily stringent for the remain-

der of the year. Navigating this trade-off is problem specific. The deciding factors require

comparing the cost of the all-reduces to update the adaptive timestep versus the suboptimal

fixed size timestepping. For the locally adaptive method, we can expect to see any critical

path shortening also found for the adaptive synchronous timestepping algorithm. We may

experience further shortening of the critical path through good speculation, but we have

not found a use case where this plays a dominant role. Primarily, the benefit of the local

timestepping can be attributed to work reduction. The amount of parallelism decreases since

there are fewer active nodes. But since we’d like to simulate the storm with fewer nodes the

more important question is given the available parallelism how well can we strong scale. By

enabling speculation, the aim is to keep more nodes active allowing more work to be done.

The synchronizations, which in this case are managed through GVT are hidden behind useful

work, and furthermore, distributed performance studies done for traffic simulations suggest

that Devastator should be able to hide the cost of GVT over core counts relevant for storm

surge simulation [25].

4.3 Impact of the end of Moore’s Law

We conclude this thesis with a look towards the future. Moore’s Law, the techno-economic

factors which have led to the exponential growth in computer performance over the past

50 years is ending as physical limitations in lithography are attained [113]. Rather than

producing faster general purpose hardware, solutions at the computer architecture level will

113



have to use transistors more efficiently to provide continued performance gains in comput-

ing. These architectures will become increasingly specialized for specific problems, resulting

in computing systems with a swiss army knife of accelerators [125]. These changes are al-

ready underway within the machine learning community with start-ups such as Tenstorrent,

Cerebaras, and SambaNova as well as initiatives under industry giants such as Microsoft’s

Project Catapult, Facebook’s Big Sur nodes, and Google’s tensor processing units. While

the economic drivers for industry primarily revolve around accelerating machine learning

workflows, these innovations will translate to scientific computing with mixed success.

The technical difficulty associated with effectively using these new computers threatens

to split the scientific computing community into two camps: those whose applications are

able to efficiently run on these new architectures, and those who see limited benefit from new

architectures either due to hardware constraints and/or the high opportunity cost of exten-

sive code refactoring. Originally, the road map to exascale had proposed a two path solution,

one based on manycore processors and the other based on GPUs. The difficulties in excising

performance from the second generation Intel Xeon Phi (KNL) architecture and subsequently

weak demand for the product, lead to the shuttering of the CPU path as Intel canceled the

Xeon Phi product line. The Exascale Computing Initiative has since fully committed to

the GPU path towards an exascale machine. With two exascale GPU-based clusters—Oak

Ridge Leadership Computing Facility (OLCF)’s Frontier and Argonne Leadership Comput-

ing Facility’s Aurora—scheduled for delivery in 2021. The interests of the winners and losers

of these post-CPU architectures are apparent in the contrasting recent acquisitions made by

OLCF and the Texas Advanced Computing Center (TACC). The most recent acquisition

by TACC was Frontera, a predominantly Intel Xeon cluster. These server class x86 CPU

nodes are substantially less power efficient than GPUs. At a peak performance (Rmax) of

23.5 PFLOPS, Frontera consumes 5.9 MW of power (4.0 PFLOPS/MW)1. In comparison,

1Performance results for Frontera is taken from November 2019 TOP500 table, and the power consumption

114



OLCF’s GPU-based Summit, which was acquired one year before Frontera, boasts a peak

performance (Rmax) of 149 PFLOPS at 10 MW of of consumption (14.9 PFLOPS/MW)2.

The trade-off is that the Intel Xeon-based architecture requires very little modification to

existing code bases, greatly improving immediate usability. Whereas tremendous effort has

been poured into making applications performant on GPUs with substantial funding from

the US Department of Energy (DOE). This divergence in hardware and application readiness

will lead to a schism in scientific computing where access to the most performant machines

is restricted to a few highly optimized applications, while the remainder of the scientific

computing community will continue to use machines like Frontera to achieve their research

goals. Through improvements in programming models and code portability, these post-CPU

architectures may slowly achieve more widespread adoption.

At the same time, the field of computational science is not in stasis. Different numerical

methods will become more commonly used, reflecting funding priorities as well as competitive

advantages of software frameworks. Regardless of the adoption of post-Moore architectures,

the fundamental design constraints are incontrovertible. Algorithms which can effectively

leverage the increasing FLOPS to bandwidth ratios will ultimately win out over codes that

do not. The algorithms currently used to simulate hurricane storm surge, low order stencil

codes, are expected to be among the losers. We propose three research directions which may

lead to improved performance of storm surge simulation on future architectures:

1. Stable high order discretizations: The impact of high order finite element methods has

already been extensively studied [17, 44, 45, 102, 118, 123] and specifically examined in

the context of the shallow water equations in [13, 18, 19, 47, 85, 128]. For smooth solu-

tions, not only do we achieve higher accuracy per degree of freedom and are able to

coarsen the mesh, which decreases the number of required timesteps, the larger mass

estimate was taken from https://www.tacc.utexas.edu/diy-how-to-build-a-supercomputer, accessed
May 11, 2020.

2Both performance and power results are based on the November 2019 TOP500 entry for Summit.

115

https://www.tacc.utexas.edu/diy-how-to-build-a-supercomputer


matrices associated with each element require a higher arithmetic intensity to update.

For memory bound applications, this additional computational work generates no per-

formance penalty as memory traffic remains the performance bottleneck. However,

the emphasis on stable is not to be underestimated. In the case of the shallow water

equations, specifically stable treatment of the wet-dry interface remains a thorny issue.

Promising approaches include the use of WENO like algorithms to accurately compute

derivatives near the wet-dry interface [13] and projection methods that map troubled

high-order cells to refined low-order cells [107].

2. Lower floating point precision: Another way to reduce the bandwidth requirements

is to make the solution smaller. By moving from double precision to lower precision

solutions, the amount of data loaded from memory can be significantly reduced. Work

by Düben and Palmer has examined the impact of reduced precision on weather simu-

lation [39]. Findings suggest that the size of floating point numbers could be reduced

to 15 bits with no visible degradation of the solution. Extension of these results to

hurricane storm surge must be done cautiously. Careful analysis must be done to

demonstrate that numerical accuracy remains higher than the uncertainty associated

with the inputs (storm track, Manning’s n, coastal bathymetry). This could introduce

significant speed-ups with minimally invasive modifications to the code.

3. Exploiting data parallelism of ensemble runs: Ultimately, we do not care about the

performance of a single run, but rather the overall performance of an ensemble of runs.

These runs are entirely independent of one another, but execute the same code on the

same mesh. Assuming that we have a natural size, e.g. a cache line width or warp size,

we propose solving that many solutions concurrently thereby exposing data parallelism.

Thus, we would ensure that all data in the cache line is being used, lowering the amount

of data required to be loaded from memory. This would particularly help with low order

116



methods, where the sparse matrix-vector products associated with exchanging flux

information at the boundary cause significant numbers of cache misses. The impact of

this approach on the time to solution remains unclear. While we certainly would induce

fewer cache misses, we would have to scale out the single run which executes multiple

simulations further than the multiple separate runs. However, overall compute resource

utilization would increase. For problems for which time to solution is less important

and numerous runs are required, e.g. updating flood insurance maps or uncertainty

quantification [50], we would expect to see significant savings in core-hours used.

117



Bibliography

[1] Emmanuel Audusse, François Bouchut, Marie-Odile Bristeau, Rupert Klein, and
Benôıt Perthame. A fast and stable well-balanced scheme with hydrostatic reconstruc-
tion for shallow water flows. SIAM Journal on Scientific Computing, 25(6):2050–2065,
2004.

[2] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier.
StarPU: A unified platform for task scheduling on heterogeneous multicore architec-
tures. Concurrency and Computation: Practice and Experience, 23(2):187–198, 2011.

[3] Cevdet Aykanat, B. Barla Cambazoglu, Ferit Findik, and Tahsin Kurc. Adaptive
decomposition and remapping algorithms for object-space-parallel direct volume ren-
dering of unstructured grids. Journal of Parallel Distributed Computing, 67(1):77 – 99,
2007.

[4] John Bachan, Dan Bonachea, Paul H Hargrove, Steve Hofmeyr, Mathias Jacquelin,
Amir Kamil, Brian van Straalen, and Scott B Baden. The UPC++ PGAS library for
exascale computing. In Proceedings of the Second Annual PGAS Applications Work-
shop, PAW ’17, 2017.

[5] Richard F. Barrett, X. S. Hu, Sudip S. Dosanjh, S. Parker, Michael A. Heroux, and
J. Shalf. Toward codesign in high performance computing systems. In Proceedings of
the International Conference on Computer-Aided Design, ICCAD ’12, 2012.

[6] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. Legion: Expressing
locality and independence with logical regions. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, SC
’12, 2012.

[7] John B Bell, Clint N Dawson, and Gregory R Shubin. An unsplit, higher order godunov
method for scalar conservation laws in multiple dimensions. Journal of Computational
Physics, 74(1):1 – 24, 1988.

[8] Martin Berzins, Justin Luitjens, Qingyu Meng, Todd Harman, Charles A. Wight, and
Joseph R. Peterson. Uintah: A scalable framework for hazard analysis. In Proceedings
of the 2010 TeraGrid Conference, TG ’10, 2010.

118



[9] A. Bhatele, S. Fourestier, H. Menon, L. V. Kale, and F. Pellegrini. Applying graph
partitioning methods in measurement-based dynamic load balancing. Technical report,
Lawrence Livermore National Laboratory, 2011.

[10] Paolo Bientinesi and Robert A. van de Geijn. Goal-oriented and modular stability
analysis. SIAM Journal on Matrix Analysis and Applications, 32(1):286–308, 2011.

[11] Sébastien Blaise and Amik St-Cyr. A dynamic hp-adaptive discontinuous Galerkin
method for shallow-water flows on the sphere with application to a global tsunami
simulation. Monthly Weather Review, 140(3):978–996, 2012.

[12] Onno Bokhove. Flooding and drying in discontinuous Galerkin finite-element dis-
cretizations of shallow-water equations. Part 1: One dimension. Journal of Scientific
Computing, 22(1):47–82, 2005.

[13] Boris Bonev, Jan S. Hesthaven, Francis X. Giraldo, and Michal A. Kopera. Discontin-
uous Galerkin scheme for the spherical shallow water equations with applications to
tsunami modeling and prediction. Journal of Computational Physics, 362:425 – 448,
2018.

[14] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and J. J. Dongarra.
PaRSEC: Exploiting heterogeneity to enhance scalability. Computing in Science &
Engineering, 15(6):36–45, Nov 2013.

[15] Maximilian Bremer, Kazbek Kazhyken, Hartmut Kaiser, Craig Michoski, and Clint
Dawson. Performance comparison of HPX versus traditional parallelization strategies
for the discontinuous Galerkin method. Journal of Scientific Computing, 80(2):878–
902, 2019.

[16] Maximilian H. Bremer, John D. Bachan, and Cy P. Chan. Semi-static and dynamic
load balancing for asynchronous hurricane storm surge simulations. In Proceedings
of the Parallel Applications Workshop, Alternatives To MPI, PAW-ATM ’18, pages
44–56, 2018.

[17] Alexander Breuer, Alexander Heinecke, and Michael Bader. Petascale local time step-
ping for the ADER-DG finite element method. In International Parallel and Distributed
Processing Symposium, IPDPS ’16, pages 854–863, May 2016.

[18] S.R. Brus, D. Wirasaet, E.J. Kubatko, J.J. Westerink, and C. Dawson. High-order
discontinuous Galerkin methods for coastal hydrodynamics applications. Computer
Methods in Applied Mechanics and Engineering, 355:860 – 899, 2019.

[19] Steven R. Brus. Efficiency Improvements for Modeling Coastal Hydrodynamics through
the Application of High-Order discontinuous Galerkin Solutions to the Shallow Water
Equations. PhD thesis, University of Notre Dame, 2017.

119



[20] S. Bunya, J.C. Dietrich, J.J. Westerink, B.A. Ebersole, J.M. Smith, J.H. Atkinson,
R. Jensen, D.T. Resio, R.A. Luettich, C. Dawson, V.J. Cardone, A.T. Cox, M.D.
Powell, H.J. Westerink, and H.J. Roberts. A high resolution coupled riverine flow,
tide, wind, wind wave and storm surge model for Southern Louisiana and Mississippi:
Part I - Model development and validation. Monthly Weather Review, 138:345–377,
2010.

[21] Shintaro Bunya, Ethan J Kubatko, Joannes J Westerink, and Clint Dawson. A wetting
and drying treatment for the Runge–Kutta discontinuous Galerkin solution to the
shallow water equations. Computer Methods in Applied Mechanics and Engineering,
198(17-20):1548–1562, 2009.

[22] Carsten Burstedde, Lucas C Wilcox, and Omar Ghattas. p4est: Scalable algorithms
for parallel adaptive mesh refinement on forests of octrees. SIAM Journal on Scientific
Computing, 33(3):1103–1133, 2011.

[23] G.F. Carrier and H.P. Greenspan. Water waves of finite amplitude on a sloping beach.
Journal of Fluid Mechanics, 4(1):97–109, 1958.

[24] Vincenzo Casulli. A high-resolution wetting and drying algorithm for free-surface
hydrodynamics. International Journal for Numerical Methods in Fluids, 60(4):391–
408, 2009.

[25] C. Chan, B. Wang, J. Bachan, and J. Macfarlane. Mobiliti: Scalable transportation
simulation using high-performance parallel computing. In Proceedings of the Inter-
national Conference on Intelligent Transportation Systems, ITSC ’18, pages 634–641,
Nov 2018.

[26] Cy P. Chan, John D. Bachan, Joseph P. Kenny, Jeremiah J. Wilke, Vincent E. Beckner,
Ann S. Almgren, and John B. Bell. Topology-aware performance optimization and
modeling of adaptive mesh refinement codes for exascale. In Proceedings of the First
Workshop on Optimization of Communication in HPC, COM-HPC ’16, pages 17–28,
2016.

[27] Bernardo Cockburn, San-Yih Lin, and Chi-Wang Shu. TVB Runge-Kutta local pro-
jection discontinuous Galerkin finite element method for conservation laws III: One-
dimensional systems. Journal of Computational Physics, 84(1):90 – 113, 1989.

[28] Bernardo Cockburn and Chi-Wang Shu. TVB Runge-Kutta local projection discon-
tinuous Galerkin finite element method for conservation laws II: General framework.
Mathematics of Computation, 52(186):411–435, 1989.

[29] Bernardo Cockburn and Chi-Wang Shu. Runge–Kutta discontinuous Galerkin methods
for convection-dominated problems. Journal of Scientific Computing, 16(3):173–261,
2001.

120



[30] Emil M. Constantinescu and Adrian Sandu. Multirate timestepping methods for hy-
perbolic conservation laws. Journal of Scientific Computing, 33(3):239–278, December
2007.

[31] Clint Dawson and Robert Kirby. High resolution schemes for conservation laws with
locally varying time steps. SIAM Journal on Scientific Computing, 22(6):2256–2281,
2001.

[32] Clint Dawson, Ethan J. Kubatko, Joannes J. Westerink, Corey Trahan, Christopher
Mirabito, Craig Michoski, and Nishant Panda. Discontinuous Galerkin methods for
modeling hurricane storm surge. Advances in Water Resources, 34(9):1165–1176, 2011.

[33] Clint Dawson, Corey Jason Trahan, Ethan J. Kubatko, and Joannes J. Westerink.
A parallel local timestepping Runge–Kutta discontinuous Galerkin method with ap-
plications to coastal ocean modeling. Computer Methods in Applied Mechanics and
Engineering, 259:154 – 165, 2013.

[34] M. de la Asunción, M.J. Castro, J.M. Mantas, and S. Ortega. Numerical simulation of
tsunamis generated by landslides on multiple GPUs. Advances in Engineering Software,
99:59 – 72, 2016.

[35] Karen D. Devine, Erik G. Boman, Robert T. Heaphy, Bruce A. Hendrickson, James D.
Teresco, Jamal Faik, Joseph E. Flaherty, and Luis G. Gervasio. New challenges in
dynamic load balancing. Applied Numerical Mathematics, 52(2-3):133–152, 2005.

[36] J. C. Dietrich, S. Bunya, J. J. Westerink, B. A. Ebersole, J. M. Smith, J. H. Atkinson,
R. Jensen, D. T. Resio, R. A. Luettich, C. Dawson, V. J. Cardone, A. T. Cox, M. D.
Powell, H. J. Westerink, and H. J. Roberts. A high resolution coupled riverine flow,
tide, wind, wind wave and storm surge model for southern Louisiana and Mississippi:
Part ii - synoptic description and analyses of Hurricanes Katrina and Rita. Monthly
Weather Review, 138:378–404, 2010.

[37] J.C. Dietrich, J.J. Westerink, A.B. Kennedy, J.M. Smith, R. E. Jensen, M. Zijlema,
L.H. Holthuijsen, C. Dawson, R.A. Luettich, M.D. Powell, V.J. Cardone, A.T. Cox,
G.W. Stone, H. Pourtaheri, M.E. Hope, S. Tanaka, L.G. Westerink, H. J. Westerink,
and Z. Cobell. Hurricane Gustav (2008) waves and storm surge: Hindcast, synoptic
analysis and validation in southern Louisiana. Monthly Weather Review, 139:2488–
2522, 2011.

[38] J.C. Dietrich, M. Zijlema, J.J. Westerink, L.H. Holtjuijsen, C. Dawson, Jr. R.A. Luet-
tich, R. Jensen, J.M. Smith, G.S. Stelling, and G.W. Stone. Modeling hurricane wave
and storm surge using integrally-coupled, scalable computations. Coastal Engineering,
58:45–65, 2011.

[39] Peter D. Düben and T. N. Palmer. Benchmark tests for numerical weather forecasts
on inexact hardware. Monthly Weather Review, 142(10):3809–3829, 2014.

121



[40] Michael Dumbser and Raphaël Loubère. A simple robust and accurate a posteriori
sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured
meshes. Journal of Computational Physics, 319:163 – 199, 2016.

[41] Denys Dutykh and Didier Clamond. Modified shallow water equations for significantly
varying seabeds. Applied Mathematical Modelling, 40(23):9767 – 9787, 2016.

[42] Greg Faanes, Abdulla Bataineh, Duncan Roweth, Tom Court, Edwin Froese, Bob
Alverson, Tim Johnson, Joe Kopnick, Mike Higgins, and James Reinhard. Cray cas-
cade: A scalable hpc system based on a dragonfly network. In Proceedings of the 2012
International Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’12, pages 1–9, Washington, DC, USA, 2012. IEEE Computer Society.

[43] Chaulio R. Ferreira and Michael Bader. Load balancing and patch-based parallel adap-
tive mesh refinement for tsunami simulation on heterogeneous platforms using Xeon
Phi coprocessors. In Proceedings of the Platform for Advanced Scientific Computing
Conference, PASC ’17, pages 12:1–12:12, 2017.

[44] Paul Fischer, Misun Min, Thilina Rathnayake, Som Dutta, Tzanio Kolev, Veselin Do-
brev, Jean-Sylvain Camier, Martin Kronbichler, Tim Warburton, Kasia Swirydowicz,
and Jed Brown. Scalability of high-performance PDE solvers, 2020. arXiv:2004.06722
[cs.PF].

[45] Lucas Friedrich, Gero Schnücke, Andrew R. Winters, David C. Del Rey Fernández,
Gregor J. Gassner, and Mark H. Carpenter. Entropy stable space–time discontinuous
Galerkin schemes with summation-by-parts property for hyperbolic conservation laws.
Journal of Scientific Computing, 80:175–222, 2019.

[46] Richard M. Fujimoto. Parallel discrete event simulation. Communications of the ACM,
33(10):30–53, 1990.

[47] Rajesh Gandham, David Medina, and Timothy Warburton. GPU accelerated discon-
tinuous Galerkin methods for shallow water equations. Communications in Computa-
tional Physics, 18(1):37–64, 2015.

[48] Nickolay Y. Gnedin, Vadim A. Semenov, and Andrey V. Kravtsov. Enforcing
the courant–friedrichs–lewy condition in explicitly conservative local time stepping
schemes. Journal of Computational Physics, 359:93 – 105, 2018.

[49] Sigal Gottlieb, Chi-Wang Shu, and Eitan Tadmor. Strong stability-preserving high-
order time discretization methods. SIAM Review, 43(1):89–112, 2001.

[50] Lindley Graham, Troy Butler, Scott Walsh, Clint Dawson, and Joannes J. Westerink.
A measure-theoretic algorithm for estimating bottom friction in a coastal inlet: Case
study of Bay St. Louis during Hurricane Gustav (2008). Monthly Weather Review,
145(3):929–954, 2017.

122



[51] Jean-Luc Guermond, Richard Pasquetti, and Bojan Popov. Entropy viscosity method
for nonlinear conservation laws. Journal of Computational Physics, 230(11):4248 –
4267, 2011. Special issue High Order Methods for CFD Problems.

[52] Shubhangi Gupta, Barbara Wohlmuth, and Rainer Helmig. Multi-rate time stepping
schemes for hydro-geomechanical model for subsurface methane hydrate reservoirs.
Advances in Water Resources, 91:78 – 87, 2016.

[53] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2020.

[54] Ernst Hairer. Order conditions for numerical methods for partitioned ordinary differ-
ential equations. Numerische Mathematik, 36(4):431–445, Dec 1981.

[55] Ami Harten. High resolution schemes for hyperbolic conservation laws. Journal of
Computational Physics, 49(3):357–393, 1983.

[56] Muhammad Amber Hassaan. Parallelization of Ordered Irregular Algorithms. PhD
thesis, University of Texas at Austin, 2016.

[57] Muhammad Amber Hassaan, Donald D. Nguyen, and Keshav K. Pingali. Kinetic
dependence graphs. In Proceedings of the Twentieth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, ASPLOS ’15,
pages 457–471, New York, NY, USA, 2015. ACM.

[58] Jan S Hesthaven and Tim Warburton. Nodal discontinuous Galerkin methods: algo-
rithms, analysis, and applications. Springer Science & Business Media, 2007.

[59] Thi-Thao-Phuong Hoang, Wei Leng, Lili Ju, Zhu Wang, and Konstantin Pieper. Con-
servative explicit local time-stepping schemes for the shallow water equations. Journal
of Computational Physics, 382:152 – 176, 2019.

[60] M.E. Hope, J.J. Westerink, A.B. Kennedy, P.C. Kerr, J.C. Dietrich, C. Dawson, C.J.
Bender, J.M. Smith, R.E. Jensen, M. Zijlema, L.H. Holthuijsen, Jr. Luettich, R.A.,
M.D. Powell, V.J. Cardone, A.T. Cox, H. Pourtaheri, H.J. Roberts, J.H. Atkinson,
S. Tanaka, H.J. Westerink, and L.G. Westerink. Hindcast and validation of Hurricane
Ike (2008) waves, forerunner, and storm surge. Journal of Geophysical Research Oceans,
118:4424–4460, 2013.

[61] M.E. Hope, J.J. Westerink, A.B. Kennedy, J.M. Smith, H.J. Westerink, A. Cox,
S. Nong, K.J. Roberts, D.T. Resio, and Totht A.P. Hurricane Sandy (2012) wind,
waves and storm surge in New York Bight. I: Model validation. Journal of Waterway,
Port, Coastal and Ocean Engineering, 2016.

[62] Laleh Rostami Hosoori and Amir Masoud Rahmani. An adaptive load balancing al-
gorithm with use of cellular automata for computational grid systems. In Emmanuel
Jeannot, Raymond Namyst, and Jean Roman, editors, Euro-Par 2011 Parallel Pro-
cessing, pages 419–430, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

123



[63] Intel. An introduction to the intel quickpath interconnect. http:

//www.intel.com/content/www/us/en/io/quickpath-technology/

quick-path-interconnect-introduction-paper.html, 2009. Accessed: 2018-
07-31.

[64] Nikhil Jain, Abhinav Bhatele, Sam White, Todd Gamblin, and Laxmikant V. Kale.
Evaluating hpc networks via simulation of parallel workloads. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’16, pages 14:1–14:12, Piscataway, NJ, USA, 2016. IEEE Press.

[65] Curtis L. Janssen, Helgi Adalsteinsson, Scott Cranford, Joseph P. Kenny, Ali Pinar,
David A. Evensky, and Jackson Mayo. A simulator for large-scale parallel computer
architectures. International Journal of Distributed Systems and Technologies, 1(2):57–
73, 2010.

[66] Curtis L. Janssen, Helgi Adalsteinsson, and Joseph P. Kenny. Using simulation to
design extremescale applications and architectures: Programming model exploration.
ACM SIGMETRICS Performance Evaluation Review, 38(4):4–8, March 2011.

[67] David R Jefferson. Virtual time. ACM Transactions on Programming Languages and
Systems (TOPLAS), 7(3):404–425, 1985.

[68] Hartmut Kaiser, Thomas Heller, Bryce Adelstein-Lelbach, Adrian Serio, and Dietmar
Fey. HPX: A task based programming model in a global address space. In Proceedings
of the 8th International Conference on Partitioned Global Address Space Programming
Models, PGAS ’14, pages 6:1–6:11, New York, NY, USA, 2014. ACM.

[69] Homa Karimabadi, Jonathan Driscoll, Jagrut Dave, Yuri Omelchenko, Kalyan Pe-
rumalla, Richard Fujimoto, and Nick Omidi. Parallel discrete event simulations of
grid-based models: Asynchronous electromagnetic hybrid code. In Jack Dongarra,
Kaj Madsen, and Jerzy Waśniewski, editors, Applied Parallel Computing. State of the
Art in Scientific Computing, pages 573–582, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

[70] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on Scientific Computing, 20(1):359–392,
1998.

[71] George Karypis and Vipin Kumar. Multilevel algorithms for multi-constraint graph
partitioning. In Proceedings of the 1998 ACM/IEEE conference on Supercomputing,
pages 1–13. IEEE Computer Society, 1998.

[72] Robert Kirby. On the convergence of high resolution methods with multiple time
scales for hyperbolic conservation laws. Mathematics of Computation, 72(243):1239–
1250, 2003.

124

http://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
http://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
http://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html


[73] Peter M. Kogge and John Shalf. Exascale computing trends: Adjusting to the “new
normal” for computer architecture. Computing in Science & Engineering, 15(6):16–26,
2013.

[74] Lilia Krivodonova. An efficient local time-stepping scheme for solution of nonlinear
conservation laws. Journal of Computational Physics, 229(22):8537 – 8551, 2010.

[75] E.J. Kubatko, S. Bunya, C. Dawson, and J.J. Westerink. Dynamic p-adaptive Runge-
Kutta discontinuous Galerkin methods for the shallow water equations. Computer
Methods in Applied Mechanics and Engineering, 198:1766–1774, 2009.

[76] E.J. Kubatko, J.J. Westerink, and C. Dawson. hp Discontinuous Galerkin methods for
advection dominated problems in shallow water flow. Computer Methods in Applied
Mechanics and Engineering, 196:437–451, 2006.

[77] Ethan J. Kubatko, Shintaro Bunya, Clint Dawson, Joannes J. Westerink, and Chris
Mirabito. A performance comparison of continuous and discontinuous finite element
shallow water models. Journal of Scientific Computing, 40(1):315–339, Jul 2009.

[78] Ethan J Kubatko, Joannes J Westerink, and Clint Dawson. Semi discrete discontinuous
Galerkin methods and stage-exceeding-order, strong-stability-preserving Runge–Kutta
time discretizations. Journal of Computational Physics, 222(2):832–848, 2007.

[79] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita Bala,
and L. Paul Chew. Optimistic parallelism requires abstractions. SIGPLAN Not. (Pro-
ceedings of PLDI), 42(6):211–222, 2007.

[80] Dmitri Kuzmin. A vertex-based hierarchical slope limiter for p-adaptive discontinuous
Galerkin methods. Journal of Computational and Applied Mathematics, 233(12):3077
– 3085, 2010.

[81] Randall J. LeVeque. Numerical methods for conservation laws. Birkäuser Verlag, 1992.

[82] F. Lörcher, G. Gassner, and C.-D. Munz. A discontinuous Galerkin scheme based on
a space–time expansion. I. Inviscid compressible flow in one space dimension. Journal
of Scientific Computing, 32(2):175–199, Aug 2007.

[83] R.A. Luettich, J.J. Westerink, et al. ADCIRC: A parallel advanced circulation
model for oceanic, coastal and estuarine waters, 2017. Users manual available at
www.adcirc.org.

[84] Y. Maday, S. Kaber, and E. Tadmor. Legendre pseudospectral viscosity method for
nonlinear conservation laws. SIAM Journal on Numerical Analysis, 30(2):321–342,
1993.

125



[85] Simone Marras, Michal A. Kopera, Emil M. Constantinescu, Jenny Suckale, and Fran-
cis X. Giraldo. A residual-based shock capturing scheme for the continuous/discontin-
uous spectral element solution of the 2D shallow water equations. Advances in Water
Resources, 114:45 – 63, 2018.

[86] T. G. Mattson, R. Cledat, V. Cavé, V. Sarkar, Z. Budimlić, S. Chatterjee, J. Fry-
man, I. Ganev, R. Knauerhase, Min Lee, B. Meister, B. Nickerson, N. Pepperling,
B. Seshasayee, S. Tasirlar, J. Teller, and N. Vrvilo. The open community runtime: A
runtime system for extreme scale computing. In 2016 IEEE High Performance Extreme
Computing Conference, HPEC, pages 1–7, Sept 2016.

[87] A. Meister, S. Ortleb, and Th. Sonar. Application of spectral filtering to discontinu-
ous Galerkin methods on triangulations. Numerical Methods for Partial Differential
Equations, 28(6):1840–1868, 2011.

[88] Harshitha Menon and Laxmikant Kalé. A distributed dynamic load balancer for itera-
tive applications. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC ’13, pages 1–11, 2013.

[89] Dumbser Michael, Käser Martin, and Eleuterio F. Toro. An arbitrary high-order
Discontinuous Galerkin method for elastic waves on unstructured meshes - V. local
time stepping and p-adaptivity. Geophysical Journal International, 171(2):695–717,
2007.

[90] C. Michoski, A. Alexanderian, C. Paillet, E.J. Kubatko, and C. Dawson. Stability
of nonlinear convection-diffusion-reaction systems in discontinuous Galerkin methods.
Journal of Scientific Computing, 70:516–550, 2017.

[91] C. Michoski, C. Dawson, E.J. Kubatko, D. Wirasaet, S. Brus, and J.J. Westerink.
A comparison of artificial viscosity, limiters, and filter, for high order discontinuous
Galerkin solution in nonlinear settings. Journal of Scientific Computing, 2015.

[92] C. Michoski, C. Dawson, C. Mirabito, E.J. Kubatko, D. Wirasaet, and J.J. Westerink.
Fully coupled methods for multiphase morphodynamics. Advances in Water Resources,
59:95–110, 2013.

[93] C Michoski, Chris Mirabito, Clint Dawson, D Wirasaet, Ethan J Kubatko, and
Joannes J Westerink. Adaptive hierarchic transformations for dynamically p-enriched
slope-limiting over discontinuous Galerkin systems of generalized equations. Journal
of Computational Physics, 230(22):8028–8056, 2011.

[94] Misbah Mubarak, Christopher D. Carothers, Robert B. Ross, and Philip Carns. A case
study in using massively parallel simulation for extreme-scale torus network codesign.
In Proceedings of the 2nd ACM SIGSIM Conference on Principles of Advanced Discrete
Simulation, SIGSIM PADS ’14, pages 27–38, New York, NY, USA, 2014. ACM.

126



[95] Margaret Myers and Robert van de Geijn. LAFF-ON Programming for Correctness,
2018. URL: http://www.cs.utexas.edu/users/rvdg/pubs/LAFFPfC.pdf. Last vis-
ited on 2020/02/25.

[96] NERSC. Nersc edison configuration. http://www.nersc.gov/users/

computational-systems/edison/configuration/, 2018. Accessed: 2018-07-31.

[97] NOAA National Centers for Environmental Information (NCEI). U.S. billion-dollar
weather and climate disasters. https://www.ncdc.noaa.gov/billions/, 2018. Ac-
cessed: 2018-05-23.

[98] Y. A. Omelchenko and H. Karimabadi. Parallel asynchronous hybrid simulations of
strongly inhomogeneous plasmas. In Proceedings of the Winter Simulation Conference
2014, pages 3435–3446, Dec 2014.

[99] Y.A. Omelchenko and H. Karimabadi. Event-driven, hybrid particle-in-cell simulation:
A new paradigm for multi-scale plasma modeling. Journal of Computational Physics,
216(1):153 – 178, 2006.

[100] Y.A. Omelchenko and H. Karimabadi. HYPERS: A unidimensional asynchronous
framework for multiscale hybrid simulations. Journal of Computational Physics,
231(4):1766 – 1780, 2012.

[101] Stanley Osher and Richard Sanders. Numerical approximations to nonlinear conser-
vation laws with locally varying time and space grids. Mathematics of Computation,
pages 321–336, 1983.

[102] Will Pazner and Per-Olof Persson. Approximate tensor-product preconditioners for
very high order discontinuous Galerkin methods. Journal of Computational Physics,
354:344 – 369, 2018.

[103] Olga Pearce, Todd Gamblin, Bronis R. de Supinski, Martin Schulz, and Nancy M.
Amato. Mpmd framework for offloading load balance computation. In Proceedings of
the 2016 IEEE International Parallel and Distributed Processing Symposium, IPDPS,
pages 943–952, 2016.

[104] François Pellegrini. Scotch and libScotch 5.1 user’s guide. INRIA Bordeaux Sud-Ouest.

[105] Per-Olof Persson and Jaime Peraire. Sub-cell shock capturing for discontinuous
Galerkin methods. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and
Exhibit, page 13. IEEE Computer Society Press, 2006.

[106] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher, M. Amber Has-
saan, Rashid Kaleem, Tsung-Hsien Lee, Andrew Lenharth, Roman Manevich, Mario
Méndez-Lojo, Dimitrios Prountzos, and Xin Sui. The tao of parallelism in algorithms.
In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language

127

http://www.cs.utexas.edu/users/rvdg/pubs/LAFFPfC.pdf
http://www.nersc.gov/users/computational-systems/edison/configuration/
http://www.nersc.gov/users/computational-systems/edison/configuration/
https://www.ncdc.noaa.gov/billions/


Design and Implementation, PLDI ’11, page 12–25, New York, NY, USA, 2011. Asso-
ciation for Computing Machinery.

[107] Leonhard Rannabauer, Michael Dumbser, and Michael Bader. ADER-DG with a-
posteriori finite-volume limiting to simulate tsunamis in a parallel adaptive mesh re-
finement framework. Computers & Fluids, 2018.

[108] William H Reed and TR Hill. Triangular mesh methods for the neutron transport
equation. Technical report, Los Alamos Scientific Lab., N. Mex.(USA), 1973.

[109] M. Rietmann, D. Peter, O. Schenk, B. Uçar, and M. Grote. Load-balanced local time
stepping for large-scale wave propagation. In Proceedings of the 2015 IEEE Inter-
national Parallel and Distributed Processing Symposium, IPDPS ’15, pages 925–935,
2015.

[110] Martin Schlegel, Oswald Knoth, Martin Arnold, and Ralf Wolke. Multirate
Runge–Kutta schemes for advection equations. Journal of Computational and Applied
Mathematics, 226(2):345 – 357, 2009. Special Issue: Large scale scientific computa-
tions.

[111] Kirk Schloegel, George Karypis, and Vipin Kumar. Parallel multilevel diffusion algo-
rithms for repartitioning of adaptive meshes. Technical Report 97-014, UMN, 1997.

[112] Bruno Seny, Jonathan Lambrechts, Thomas Toulorge, Vincent Legat, and Jean-
François Remacle. An efficient parallel implementation of explicit multirate Runge-
Kutta schemes for discontinuous Galerkin computations. Journal of Computational
Physics, 256(1):135–160, 2014.

[113] John Shalf. The future of computing beyond Moore’s law. Philosophical Transactions
of the Royal Society A, 378(2166):20190061, 2020.

[114] Q. Shao, S.K. Matthäi, and L. Gross. Efficient modelling of solute transport in het-
erogeneous media with discrete event simulation. Journal of Computational Physics,
384:134 – 150, 2019.

[115] Luka Stanisic, Emmanuel Agullo, Alfredo Buttari, Abdou Guermouche, Arnaud
Legrand, Florent Lopez, and Brice Videau. Fast and accurate simulation of multi-
threaded sparse linear algebra solvers. In Proceedings of the 21st International Con-
ference on Parallel and Distributed Systems, ICPADS ’15, pages 481–490, 2015.

[116] Luka Stanisic, Samuel Thibault, Arnaud Legrand, Brice Videau, and Jean-François
Méhaut. Faithful performance prediction of a dynamic task-based runtime system for
heterogeneous multi-core architectures. Concurrency and Computation: Practice and
Experience, 27(16):4075–4090, 2015.

[117] D. Stone, S. Geiger, and G.J. Lord. Asynchronous discrete event schemes for PDEs.
Journal of Computational Physics, 342:161 – 176, 2017.

128



[118] Kasia S̀wirydowicz, Noel Chalmers, Ali Karakus, and Tim Warburton. Acceleration
of tensor-product operations for high-order finite element methods. The International
Journal of High Performance Computing Applications, 33(4):735–757, 2019.

[119] S. Tanaka, S. Bunya, J.J. Westerink, C. Dawson, and R.A. Luettich. Scalability of an
unstructured grid continuous Galerkin based hurricane storm surge model. Journal of
Scientific Computing, 46:329–358, 2011.

[120] Arne Taube, Michael Dumbser, Claus-Dieter Munz, and Rudolf Schneider. A high-
order discontinuous Galerkin method with time-accurate local time stepping for the
Maxwell equations. International Journal of Numerical Modelling: Electronic Net-
works, Devices and Fields, 22(1):77–103, 2009.

[121] Corey J. Trahan and Clint Dawson. Local time-stepping in Runge-Kutta discontinuous
Galerkin finite element methods applied to the shallow-water equations. Computer
Methods in Applied Mechanics and Engineering, 217-220:139 – 152, 2012.

[122] Thomas Unfer, Jean-Pierre Boeuf, François Rogier, and Frédéric Thivet. An asyn-
chronous scheme with local time stepping for multi-scale transport problems: Appli-
cation to gas discharges. Journal of Computational Physics, 227(2):898 – 918, 2007.

[123] Carsten Uphoff, Sebastian Rettenberger, Michael Bader, Elizabeth H. Madden,
Thomas Ulrich, Stephanie Wollherr, and Alice-Agnes Gabriel. Extreme scale multi-
physics simulations of the tsunamigenic 2004 Sumatra megathrust earthquake. In
Proceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC ’17, pages 21:1–21:16, New York, NY, USA, 2017.
ACM.

[124] Stefan Vater, Nicole Beisiegel, and Jörn Behrens. A limiter-based well-balanced dis-
continuous Galerkin method for shallow-water flows with wetting and drying: One-
dimensional case. Advances in Water Resources, 85:1 – 13, 2015.

[125] Jeffrey S. Vetter, Ron Brightwell, Maya Gokhale, Pat McCormick, Rob Ross, John
Shalf, Katie Antypas, David Donofrio, Travis Humble, Catherine Schuman, Brian
Van Essen, Shinjae Yoo, Alex Aiken, David Bernholdt, Suren Byna, Kirk Cameron,
Frank Cappello, Barbara Chapman, Andrew Chien, Mary Hall, Rebecca Hartman-
Baker, Zhiling Lan, Michael Lang, John Leidel, Sherry Li, Robert Lucas, John Mellor-
Crummey, Paul Peltz Jr., Thomas Peterka, Michelle Strout, and Jeremiah Wilke.
Extreme heterogeneity 2018 - Productive computational science in the era of extreme
heterogeneity: Report for DOE ASCR workshop on extreme heterogeneity. Technical
report, US Department of Energy Office of Science (SC), 2018.

[126] J. J. Westerink, R. A. Luettich, J. C. Feyen, J. H. Atkinson, C. N. Dawson, H. J.
Roberts, M. D. Powell, J. P. Dunion, E. J. Kubatko, and H. Pourtaheri. A basin
to channel scale unstructured grid hurricane storm surge model applied to southern
Louisiana. Monthly Weather Review, 136:833–864, 2008.

129



[127] Jeremiah J Wilke, David S Hollman, Nicole Lemaster Slattengren, Hemanth Kolla,
Francesco Rizzi, Keita Teranishi, Janine Camille Bennett, and Robert L. Clay. The
DARMA approach to asynchronous many-task (amt) programming. In JOWOG Pro-
gramming Models and Co-Design Meeting (Presentation), February 2016.

[128] Niklas Wintermeyer, Andrew R. Winters, Gregor J. Gassner, and Timothy Warburton.
An entropy stable discontinuous Galerkin method for the shallow water equations on
curvilinear meshes with wet/dry fronts accelerated by GPUs. Journal of Computational
Physics, 375:447 – 480, 2018.

[129] D. Wirasaet, S. Brus, C.E. Michoski, E.J. Kubatko, and J.J. Westerink. Artificial
boundary layers in discontinuous Galerkin solutions to shallow water equations in
channels. Journal of Computational Physics, 299:597–612, 2015.

[130] D Wirasaet, EJ Kubatko, CE Michoski, S Tanaka, JJ Westerink, and C Dawson. Dis-
continuous Galerkin methods with nodal and hybrid modal/nodal triangular, quadri-
lateral, and polygonal elements for nonlinear shallow water flow. Computer Methods
in Applied Mechanics and Engineering, 270:113–149, 2014.

[131] Yulong Xing and Xiangxiong Zhang. Positivity-preserving well-balanced discontinuous
Galerkin methods for the shallow water equations on unstructured triangular meshes.
Journal of Scientific Computing, 57(1):19–41, October 2013.

[132] Deli Zhang, Jeremiah Wilke, Gilbert Hendry, and Damian Dechev. Validating the sim-
ulation of large-scale parallel applications using statistical characteristics. ACM Trans-
actions on Modeling and Performance Evaluation of Computing Systems, 1(1):3:1–3:22,
February 2016.

[133] Gengbin Zheng. Achieving high performance on extremely large parallel machines:
performance prediction and load balancing. PhD thesis, Department of Computer
Science, University of Illinois at Urbana-Champaign, 2005.

[134] Gengbin Zheng, Michael S. Breitenfeld, Hari Govind, Philippe Geubelle, and
Laxmikant V. Kale. Automatic dynamic load balancing for a crack propagation ap-
plication. Technical Report 06-08, Parallel Programming Laboratory, Department of
Computer Science, University of Illinois at Urbana-Champaign, June 2006.

[135] Gengbin Zheng, Esteban Meneses, Abhinav Bhatelé, and Laxmikant V. Kalé. Hierar-
chical load balancing for Charm++ applications on large supercomputers. In Proceed-
ings of the 39th International Conference on Parallel Processing Workshops, ICPPW,
pages 436–444, 2010.

130


	Acknowledgments
	Abstract
	Introduction
	Storm Surge Modeling
	The Discontinuous Galerkin Finite Element Method
	Exascale Computing–Novel Programming Models

	Semi-Static and Dynamic Load Balancing for Asynchronous Hurricane Storm Surge Simulations
	Related Work
	Forecasting Hurricane Storm Surge
	The DGSim Simulator
	Performance Model Calibration
	Compute Cost Model
	Communication Cost Model

	Balancers
	Theoretical Preliminaries
	Static load balancing
	Dynamic load balancing
	Semi-static load balancing

	Numerical Experiments
	Empirical Validation of DGSim
	Load Balance Comparison
	Strong Scaling Study

	Conclusion and Future Work

	Adaptive Total Variation Stable Local Timestepping for Conservation Laws
	Introduction
	Previous Work
	Theoretical Results for Scalar Conservation Laws
	TVD Analysis

	An Adaptive Local Timestepping Algorithm
	Discrete Event Simulation
	Proof of Theorem 3.4.1
	Proof of Proposition 3.4.1

	Implementation Details
	Devastator Simulation Framework
	Performance related optimizations
	Performance Modeling and Load Balancing
	Ease of Implementation

	Results
	Burgers' Equation
	Shallow Water Equations
	Performance Comparison
	Description of Misspeculation
	Conservative Parallel Discrete Event Simulation

	Conclusion

	Conclusion
	Implications for hurricane storm surge
	Tao analysis of adaptive timestepping
	Impact of the end of Moore's Law

	Bibliography

