
Copyright

by

Madhu Sarava Govindan

2010

The Dissertation Committee for Madhu Sarava Govindan

certifies that this is the approved version of the following dissertation:

E3: Energy-Efficient EDGE Architectures

Committee:

Stephen W. Keckler, Supervisor

Douglas C. Burger

Derek Chiou

Kathryn S. McKinley

Warren A. Hunt Jr

David Brooks

E3: Energy-Efficient EDGE Architectures

by

Madhu Sarava Govindan, B.E., M.S.C.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2010

To my loving parents, Govindan and Vasanthi,

and my loving wife, Vimala,

and Baba!

Acknowledgments

First and foremost, I am extremely grateful to my advisor, Steve Keckler, for his

guidance, and patience throughout my stay in graduate school. This dissertation

would not be possible without his constant support, guidance, and research vision. I

am deeply indebted to him for teaching me the basics of systems research, moulding,

and grooming my skills as a researcher, and for instilling a sense of scientific rigor in

me. His research vision, clarity of thought, work ethic, and his breadth of knowledge

in Computer Architecture, and in Computer Science, continues to amaze me till

date. I am also grateful to Steve for funding my research, and my several conference

trips during graduate school. I am very fortunate to have had the opportunity to

work with Steve, and I could not have asked for a better advisor. I hope that I can

emulate him in my future career.

Next, I would like to thank my de-facto co-advisor, Doug Burger. I am forever

indebted to Doug because he was instrumental in bringing me to the University of

Texas at Austin, and all of my Ph.D. experience would not be possible without him.

As the co-leader of the TRIPS project, and as my advisor through the first two years

in graduate school, he has had a major impact on my research style and problem

solving. His quick thinking, encyclopaedic knowledge of prior literature in many

sub-fields of computer architecture, and his research vision are truly amazing, and

I have learned quite a lot from him. Both Doug and Steve have always emphasized

the importance of oral and written communication, and have been great role models

v

for better communication. For that, I am very thankful to both.

I am very grateful to all my committee members, Kathryn McKinley, Derek

Chiou, Warren A. Hunt, Jr., and David Brooks. My committee members, despite

having busy research schedules, took pains and the time to read through my disser-

tation, and provided me with comments for making this dissertation better. It was

a great learning experience to see how each committee member, who have differ-

ent research backgrounds, comes up with interesting solutions to different research

problems.

I would like to specially thank Professor David Brooks of Harvard University

for agreeing to serve in my committee, invaluable advice on the power modeling and

validation work, his patience and support with the Turandot/PowerTimer modeling

infrastructure, and his deep collaboration with me on the fine-grained DVFS work. I

am also grateful to Professor Gu-Yeon Wei, and Wonyoung Kim, and Meeta Gupta

of Harvard for their help in refining the idea of fine-grained DVFS policies, and

on-die voltage regulator module design. Similarly, our power comparison work was

made possible by the two simulators made available to me. I thank Pradip Bose of

IBM for providing us access to the Turandot simulator, and Gilberto Contreras for

shipping us the XTREM simulator for XScale.

My graduate school experience has been truly amazing, and my involvement

with the TRIPS prototype design has made it better. I thoroughly enjoyed my

time working on bringing up TRIPS motherboards and chips. It was an amaz-

ing experience in an academic setting, and I fully gauged its value during my in-

terview process. My special thanks to the entire hardware team—Raj Desikan,

Saurabh Drolia, Divya Gulati, Paul Gratz, Heather Hanson, Changkyu Kim, Haim-

ing Liu, Nitya Ranganathan, Karu Sankaralingam, Simha Sethumadhavan, and

Premkishore Shivakumar—and the entire software team—Jim Burrill, Katie Coons,

Mark Gebhart, Madhavi Krishnan, Sundeep Kushwaha, Bert Maher, Nick Nether-

vi

cote, Behnam Robatmili, Sadia Sharif, Aaron Smith, and Bill Yoder— for providing

a warm and cordial work atmosphere, and for their excellent efforts in making the

entire TRIPS system work. My early power modeling work, power validation ex-

periments, and the rest of my dissertation hinge on vast amounts of infrastructure

built by all of them, and for that I am grateful to all. Steve Crago, Chen Chen,

and Karandeep Singh of Information Sciences Institute (ISI East) require a special

mention. My interaction with them for the TRIPS motherboard and chip bring-up

was amazing, and I thank them for making my stay at ISI enjoyable, but more

importantly, for getting the TRIPS system design right.

I thank all the current and old students of the CART lab, and their family

members for making my graduate school experience better, and for the technical

camaraderie they brought to the CART meetings and otherwise. I would like to

thank Vikas Agarwal, Raj Desikan, and Karthik Agaram for providing support and

help during various junctures. M. S. Hrishikesh deserves a special thanks for being

a great friend and mentor, and for helping me make important career decisions. I

would like to thank his relentless pursuit in bringing me to India to start my career.

I really hope that I would be able to get back to India in the near future.

I thank Premkishore, Karu, Ramdas, Simha, Heather, and CK for being

wonderful cubicle-neighbors, and for being great role models, and for making life in

the ACES building more enjoyable with debates and chats about everything under

the sun. Ramdas and Simha have been good personal friends, who have guided,

advised, and mentored me at various critical junctures. Special thanks to Ramdas,

Premkishore, CK, Nitya, Haiming, and Sai Santosh of Intel for helping with my job

search and advising me on career opportunities. Also, I would like to thank Haiming,

Jaehyuh, and Paul Gratz for their advice and support at various junctures. I would

like to specially thank Divya Gulati, who joined UT Austin in 2003 with me, and

shared many of his experiences and struggles with me. The various cricket and

vii

tennis sessions with Divya were unforgettable. Behnam, Dong, and Hadi deserve

a special place in this dissertation because many of the TFlex experiments and

infrastructure would not be possible without their help. Special thanks to Bert,

Katie, Boris, Renee, Jeff, Joel, and Mark of the CART lab for helping me polish the

ideas in this dissertation, for proof-reading and helping with paper drafts, and for

attending my practice talks and helping me face tough questions. I am especially

indebted to Boris for proof-reading my dissertation, and suggesting ideas for its

improvement, and for instilling confidence to face my defense. Nitya Ranganathan

and her husband, Ram Rangan, have been extremely valuable friends in my life.

Nitya extended a great amount of help in the branch confidence work, and Ram

helped by extending a patient ear to my frustrations, and for suggesting new ideas

for my experiments. Their move to India actually saddened me, and I hope I can

follow suit some day.

I am forever grateful to all the folks in the Computer Sciences (CS) depart-

ment at UT and other departments, who helped me with the required official work.

First, I would like to thank the folks at the International Students Office who made

my early days at Austin very comfortable. Second, Gloria Ramirez, Katherine Utz,

and Lydia Griffith of the CS department helped me wade through the various rules

regarding course work, and Ph.D. proposal, and defense–I convey my sincere thanks

to all of them for their patience in answering my questions. I would like to specially

thank Gem Naivar, who was very kind, patient, and extremely helpful with all the

travel arrangements, and other logistics. She also ensured that I received my salary

in an orderly fashion every month. Next, the departmental technical support folks,

“gripe” , were extremely helpful and patient with me when I filled up the disk vol-

umes several times due to faulting experiments. Special thanks to David Kotz for

his help and guidance with the condor system, and for providing me the necessary

disk space for conducting my experiments. Dave extended special help during times

viii

when I attempted to compile the TFlex simulator for the standard universe.

I have been fortunate to interact with several experienced researchers during

my internships at IBM Research and AMD Graphics group. My interactions with

Sani Nassif at IBM Research during my initial TRIPS power modeling work were

eye opening in many respects, especially with respect to research in the industry.

My IBM research mentor, Charles Lefurgy, has impacted my way of research a

lot. He strongly encouraged me to qualitatively evaluate new ideas before actually

implementing them to study their effects. My experience at AMD graphics group

was amazing, thanks to the support and help of my mentor, Karthik Ramani, and

my manager, John Brothers.

I would like to acknowledge Steve and Doug for providing me with funding

during my stay at UT. Specifically, I would like to acknowledge NSF award CCF-

0916745, Defense Advanced Research Projects Agency under contract F33615-01-

C-4106 and NSF CISE Research Infrastructure grant EIA-0303609, which directly

funded the research in this dissertation. I also would like to extend my gratitude

to the CS department for providing me with teaching assistantships during various

semesters of my Ph.D.

My roommates during these years, Piyush Agarwal, Ramtilak Vemu, and

Suriya Subramanian, have been an important part of my Austin life and have sup-

ported me through tough times, and have shared my joyous moments as theirs.

They have become my friends for life, and I hope to be in touch with them. A

special mention to the entire Far West gang, Sankar, Sriram, Sundar, Vijaykiran,

and Kalyan who made an incredible company during the late-night cricket sessions,

movie nights, late-night visits to Ken’s Donuts for their samosas, and many other

fun-filled activities. Many of my friday evenings were spent at the Intramural Fields

playing cricket with many of my friends from UT, especially Sreenivasan, and others.

Thanks gang, my life would not have been sane without you all!

ix

My set of friends from my undergraduate institution, Anna University, played

a key role in making my life enjoyable, and helped me withstand the struggles of

graduate school. The weekend chats with Arumugam, Laks, Pradeep, Sam, Sai, and

Vijayaraghavan were all unforgettable memories, and I thank each and every one

of them for motivating me during low times. Special thanks to my undergraduate

friend, Venkatesan, for providing me with advice with Ph.D. and job search, and for

hosting me during my AMD internship. Mani Sridhar deserves a special thanks for

motivating me to graduate soon whenever I spoke with him.

My stay at UT Austin was made all the more enjoyable by the students,

who joined UT with me in Fall 2003. Their help and support to navigate the new

town and UT system have been extremely useful–for that, I thank you all. My

experience with the Tamil Cultural Association (TCA), a student organization at

UT that caters to the needs of Tamil students from India, has been amazing. By

serving as its President for two years, I had great lessons in leadership and team

organization, which will be extremely handy in my career. Thanks to Dr. Sata

Sathasivan, faculty advisor of TCA, for his constant support and encouragement for

TCA activities and my academic research.

This dissertation would not be possible without the constant support, love,

and blessings of Shiva Shankar Baba. He has been a friend, philosopher, guide, and

an incredible mentor to me during my formative years, and even now. I am ever

grateful to him for his love and blessings.

I am forever grateful to my loving wife, Vimala, who has been very under-

standing and patient with me during my stay in graduate school. She was extremely

helpful during my late-night research and writing work, and whenever I fell sick dur-

ing my dissertation writing. She has been a great source of inspiration during low

times, and whenever I was anxious before interviews and just before my defense. I

cannot wait to start my life with you, and I look forward to everything life has in

x

store for us, Vimala!

Last but not the least, I am eternally grateful to my loving parents without

whose support this dissertation would not be possible at all. Right from motivating

me to go to graduate school to listening to my endless rants filled with frustration

to motivating me to complete my Ph.d., they have been with me every step of the

way–I am very fortunate to have such loving and understanding parents. They

laughed with me when I was happy and achieved in graduate school, and they cried

with me when my papers got rejected, and they motivated me to get up every time

I fell down. Being their only son, it was one of the toughest decisions of my life

to be away from them for an extended period of time at Austin, and to pursue my

Ph.d. Looking back, it was one of the best decisions of my life, and it has made a

better person out of me. Without the support of my loving parents, and my wife,

I would not have travelled this far. To my parents, my wife, and Baba, I dedicate

this dissertation.

Madhu Sarava Govindan

The University of Texas at Austin

August 2010

xi

E3: Energy-Efficient EDGE Architectures

Publication No.

Madhu Sarava Govindan, Ph.D.

The University of Texas at Austin, 2010

Supervisor: Stephen W. Keckler

Increasing power dissipation is one of the most serious challenges facing de-

signers in the microprocessor industry. Power dissipation, increasing wire delays,

and increasing design complexity have forced industry to embrace multi-core archi-

tectures or chip multiprocessors (CMPs). While CMPs mitigate wire delays and

design complexity, they do not directly address single-threaded performance. Addi-

tionally, programs must be parallelized, either manually or automatically, to fully

exploit the performance of CMPs. Researchers have recently proposed an architec-

ture called Explicit Data Graph Execution (EDGE) as an alternative to conventional

CMPs. EDGE architectures are designed to be technology-scalable and to provide

good single-threaded performance as well as exploit other types of parallelism in-

xii

cluding data-level and thread-level parallelism. In this dissertation, we examine

the energy efficiency of a specific EDGE architecture called TRIPS Instruction Set

Architecture (ISA) and two microarchitectures called TRIPS and TFlex that im-

plement the TRIPS ISA. TRIPS microarchitecture is a first-generation design that

proves the feasibility of the TRIPS ISA and distributed tiled microarchitectures.

The second-generation TFlex microarchitecture addresses key inefficiencies of the

TRIPS microarchitecture by matching the resource needs of applications to a com-

posable hardware substrate.

First, we perform a thorough power analysis of the TRIPS microarchitecture.

We describe how we develop architectural power models for TRIPS. We then im-

prove power-modeling accuracy using hardware power measurements on the TRIPS

prototype combined with detailed Register Transfer Level (RTL) power models from

the TRIPS design. Using these refined architectural power models and normalized

power modeling methodologies, we perform a detailed performance and power com-

parison of the TRIPS microarchitecture with two different processors: 1) a low-end

processor designed for power efficiency (ARM/XScale) and 2) a high-end superscalar

processor designed for high performance (a variant of Power4). This detailed power

analysis provides key insights into the advantages and disadvantages of the TRIPS

ISA and microarchitecture compared to processors on either end of the performance-

power spectrum. Our results indicate that the TRIPS microarchitecture achieves

11.7 times better energy efficiency compared to ARM, and approximately 12% better

energy efficiency than Power4, in terms of the Energy-Delay-Squared (ED2) metric.

Second, we evaluate the energy efficiency of the TFlex microarchitecture in

comparison to TRIPS, ARM, and Power4. TFlex belongs to a class of microarchi-

tectures called Composable Lightweight Processors (CLPs). CLPs are distributed

microarchitectures designed with simple cores and are highly configurable at run-

time to adapt to resource needs of applications. We develop power models for the

xiii

TFlex microarchitecture based on the validated TRIPS power models. Our quanti-

tative results indicate that by better matching execution resources to the needs of

applications, the composable TFlex system can operate in both regimes of low power

(similar to ARM) and high performance (similar to Power4). We also show that the

composability feature of TFlex achieves a signification improvement (2 times) in the

ED2 metric compared to TRIPS.

Third, using TFlex as our experimental platform, we examine the efficacy

of processor composability as a potential performance-power trade-off mechanism.

Most modern processors support a form of dynamic voltage and frequency scaling

(DVFS) as a performance-power trade-off mechanism. Since the rate of voltage

scaling has slowed significantly in recent process technologies, processor designers

are in dire need of alternatives to DVFS. In this dissertation, we explore proces-

sor composability as an architectural alternative to DVFS. Through experimental

results we show that processor composability achieves almost as good performance-

power trade-offs as pure frequency scaling (no changes in supply voltages), and a

much better performance-power trade-off compared to voltage and frequency scaling

(both supply voltage and frequency change).

Next, we explore the effects of additional performance-improving techniques

for the TFlex system on its energy efficiency. Researchers have proposed a variety

of techniques for improving the performance of the TFlex system. These include:

(1) block mapping techniques to trade off intra-block concurrency with communi-

cation across the operand network; (2) predicate prediction and (3) operand multi-

cast/broadcast mechanism. We examine each of these mechanisms in terms of its

effect on the energy efficiency of TFlex, and our experimental results demonstrate

the effects of operand communication, and speculation on the energy efficiency of

TFlex.

Finally, this dissertation evaluates a set of fine-grained power management

xiv

(FGPM) policies for TFlex: instruction criticality and controlled speculation. These

policies rely on a temporally and spatially fine-grained dynamic voltage and fre-

quency scaling (DVFS) mechanism for improving power efficiency. The instruction

criticality policy seeks to improve power efficiency by mapping critical computation

in a program to higher performance-power levels, and by mapping non-critical com-

putation to lower performance-power levels. Controlled speculation policy, on the

other hand, maps blocks that are highly likely to be on correct execution path in

a program to higher performance levels, and the other blocks to lower performance

levels. Our experimental results indicate that idealized instruction criticality and

controlled speculation policies improve the operating range and flexibility of the

TFlex system. However, when the actual overheads of fine-grained DVFS, espe-

cially energy conversion losses of voltage regulator modules (VRMs), are considered

the power efficiency advantages of these idealized policies quickly diminish. Our

results also indicate that the current conversion efficiencies of on-chip VRMs need

to improve to as high as 95% for the realistic policies to be feasible.

xv

Contents

Acknowledgments v

Abstract xii

List of Tables xxi

List of Figures xxii

Chapter 1 Introduction 1

1.1 EDGE Architectures . 2

1.2 Dissertation Contributions . 4

1.2.1 TRIPS: A Detailed Power Analysis 4

1.2.2 TFlex Power Analysis and Comparison 6

1.2.3 Composability versus DVFS 6

1.2.4 Additional Performance Mechanisms for TFlex 9

1.2.5 Fine-grained Power Management Policies 9

1.3 Leakage Power . 11

1.4 Dissertation Layout . 12

Chapter 2 ISA and Microarchitectures Overview 14

2.1 TRIPS ISA . 14

2.1.1 Block-Atomic Execution . 15

xvi

2.1.2 Direct Instruction Communication 16

2.1.3 ISA Advantages and Disadvantages 16

2.2 TRIPS Microarchitecture . 20

2.3 TFlex Overview . 22

2.4 TFlex Microarchitecture . 24

2.5 Support for Composability . 27

Chapter 3 TRIPS Power Modeling and Validation 29

3.1 Architectural Power Models . 30

3.2 Power Model Validation . 33

3.2.1 Hardware Power Measurement 33

3.2.2 RTL Power Models . 35

3.2.3 Validation Results . 36

3.3 Improved Architectural Models and Relative Accuracy 39

3.4 Lessons . 42

Chapter 4 Performance and Power Comparison Methodology 44

4.1 Experimental Platforms . 44

4.2 Power Models . 46

4.2.1 TRIPS Power Models . 46

4.2.2 Turandot and ARM Power Models 47

4.2.3 More Normalization Efforts 48

4.2.4 TFlex Power Models . 50

4.3 Experimental Configuration . 51

4.3.1 Benchmarks . 51

4.3.2 Microarchitectural Parameters 52

Chapter 5 Performance and Power Comparison Results 57

5.1 TRIPS Comparison . 59

xvii

5.1.1 Performance and Raw Power 59

5.1.2 Energy-Delay-Product and Energy-Delay2 Product 62

5.1.3 Comparison of Chip Power 64

5.1.4 TRIPS: Detailed Power Breakdown 64

5.1.5 Summary of TRIPS Results 70

5.2 TFlex Results . 70

5.2.1 TFlex 1-Core and 2-Core Configurations 71

5.2.2 Power Breakdown Analysis of TFlex 1-Core 73

5.2.3 Energy Breakdown Analysis 78

5.2.4 Performance and Power Comparison of Composability 80

5.2.5 Composability: Power Breakdown Analysis 86

5.2.6 Summary of TFlex Results 87

5.2.7 Lessons . 88

Chapter 6 DVFS and Composability: A Comparison 89

6.1 Introduction . 89

6.2 DVFS Alternatives . 93

6.3 Methodology . 95

6.4 Experimental Results . 96

6.4.1 Composability Results . 96

6.4.2 Composability and DVFS . 100

6.4.3 Summary . 107

6.5 Lessons . 108

Chapter 7 TFlex Performance Mechanisms: An Evaluation 109

7.1 Block Mapping Policies . 110

7.1.1 Results . 114

7.2 Predicate Prediction . 116

xviii

7.2.1 Results . 118

7.3 Operand Multicast . 122

7.4 Summary . 124

Chapter 8 Fine-Grained Power Management Policies 127

8.1 DVFS Mechanism . 129

8.1.1 Implementation Challenges 130

8.2 Experimental Setup . 132

8.3 Instruction Criticality . 133

8.4 Limit Study . 135

8.4.1 Effects on Performance and Processor Power 137

8.4.2 Effects on Chip Power . 142

8.4.3 Limits of Criticality-based Slack 143

8.4.4 L2 Caches . 145

8.5 Realistic Synchronization . 148

8.6 Realistic DVFS Transition Times . 150

8.7 VRM Area versus Efficiency . 154

8.8 Controlled Speculation . 163

8.9 Branch Confidence: Results . 165

8.10 Future Work and Conclusions . 169

8.11 Lessons . 172

Chapter 9 Related Work 174

9.1 Energy Efficiency . 174

9.1.1 Dynamic Power . 175

9.1.2 Leakage Power . 176

9.1.3 ISA and Compiler Support 176

9.2 Power Modeling . 177

xix

9.3 Composability . 179

9.4 Dynamic Voltage and Frequency Scaling 183

Chapter 10 Conclusions 186

10.1 Dissertation Contributions . 187

10.1.1 TRIPS: A Detailed Power Analysis 187

10.1.2 TFlex Power Analysis and Comparison 188

10.1.3 Composability vs. DVFS: Comparison of Performance/Power

Mechanisms . 188

10.1.4 Additional Performance Mechanisms for TFlex 189

10.1.5 Fine-grained Power Management Policies 190

10.2 Future Directions . 191

Appendix A Power Validation Results 195

Appendix B Power Density Comparison 197

Bibliography 199

Vita 218

xx

List of Tables

3.1 Control Logic Ratios . 32

3.2 Detailed Power Breakdown . 37

4.1 Benchmarks and Experimental Configuration 51

4.2 TRIPS Microarchitecture Comparison 54

4.3 TFlex Microarchitecture Comparison 55

5.1 TRIPS Power Breakdown Comparison 65

5.2 Detailed Power Breakdown . 65

5.3 TFlex 1-Core Power Breakdown Comparison 74

5.4 Detailed Power Breakdown . 74

5.5 Comparison of Energy Breakdowns: Power4 and TFlex 1-core 78

5.6 TFlex 1-Core Power Breakdown Comparison 86

6.1 DVFS Configurations for all platforms. 100

8.1 DVFS settings used . 132

8.2 VRM Area vs Loss Comparison . 155

8.3 VRM Area vs Loss Comparison . 156

8.4 Off-Chip VRM Losses . 159

B.1 Power Density Comparison . 198

xxi

List of Figures

2.1 Block Diagram of the TRIPS Chip 18

2.2 Die Photo of the TRIPS Chip . 19

2.3 TFlex Microarchitecture Overview 24

2.4 Illustration of microarchitectural components of a single TFlex core. The

TFlex chip consists of 32 such TFlex cores and NUCA L2. 25

3.1 Baseline Architectural Power Models 30

3.2 TRIPS Circuit Boards and Power Measurement Infrastructure. . . . 33

3.3 RTL Simulation Methodology . 35

3.4 TRIPS Estimated and Measured Power. 39

5.1 TRIPS vs. Other Platforms: Performance Comparison @ 1.2V, 2

GHz, 65nm . 58

5.2 TRIPS vs. Other Platforms: Power Comparison @ 1.2V, 2GHz, 65nm 58

5.3 TRIPS vs. Other Platforms: Inverse PDP Comparison @ 1.2V,

2GHz, 65nm . 60

5.4 TRIPS vs. Other Platforms: Inverse EDP Comparison @ 1.2V,

2GHz, 65nm . 61

5.5 TRIPS vs. Other Platforms: Inverse ED2P Comparison @ 1.2V,

2GHz, 65nm . 61

xxii

5.6 TRIPS vs. Other Platforms: Chip Power Comparison 63

5.7 Performance comparison of 1-core and 2-core TFlex configurations with

ARM and Power4 @ 1.2V, 2GHz and 65nm. 71

5.8 Power comparison of 1-core and 2-core TFlex configurations with ARM and

Power4 @ 1.2V, 2GHz and 65nm. 72

5.9 ED2P comparison of 1-core and 2-core TFlex configurations with ARM and

Power4 @ 1.2V, 2GHz and 65nm. 73

5.10 Power Breakdown . 75

5.11 Energy Breakdown . 79

5.12 Performance comparison of all TFlex configurations with other platforms @

1.2V, 2GHz and 65nm. 80

5.13 Power comparison of all TFlex configurations with other platforms @ 1.2V,

2GHz and 65nm. 81

5.14 ED2P comparison of all TFlex configurations with other platforms @ 1.2V,

2GHz and 65nm. 82

5.15 EDP comparison of all TFlex configurations with other platforms @ 1.2V,

2GHz and 65nm. 83

5.16 PDP comparison of all TFlex configurations with other platforms @ 1.2V,

2GHz and 65nm. 84

5.17 Chip Power Comparison . 87

6.1 DVFS: Performance vs. Power . 91

6.2 DVFS vs. Composability . 95

6.3 TFlex Performance Scalability: SPEC-INT 97

6.4 TFlex Performance Scalability: SPEC-FP 98

6.5 Normalized Performance and Power: SPEC-INT 101

6.6 Normalized Performance and Power: SPEC-FP 102

6.7 TFlex Pareto-Frontier: SPEC-INT . 105

xxiii

6.8 TFlex Pareto-Frontier: SPEC-FP . 106

7.1 Block Mapping Policies . 111

7.2 Block Mapping Example. Reproduced from the paper by Robatmili

et al. [88] . 112

7.3 Flat vs. Deep Modes: Normalized Performance and Normalized Power114

7.4 Flat vs. Deep Modes: Inverse Energy-Delay2 Product Comparison . 116

7.5 Deep vs. Deep + Predicate Prediction: Normalized Performance and

Normalized Power . 119

7.6 Deep vs. Deep + Predicate Prediction: Inverse Energy-Delay2 Prod-

uct Comparison . 121

7.7 Performance of Limited broadcast support in TFlex. Figure repro-

duced from [64]. 123

7.8 Power of Limited broadcast support in TFlex. Figure reproduced

from [64]. 124

8.1 Criticality-based DVFS Mapping . 134

8.2 Percentage of Critical Blocks . 136

8.3 Performance Comparison with C-Ideal policy 138

8.4 Power Comparison with C-Ideal policy 139

8.5 Performance/Watt Comparison with C-Ideal policy 139

8.6 Total Chip Power Comparison with C-Ideal policy 142

8.7 Total Performance/Watt Comparison using Chip Power with C-Ideal

policy . 143

8.8 Performance Comparison with C-Ideal, C-IdealM and C-IdealL policies144

8.9 Processor Power Comparison with C-Ideal, C-IdealM and C-IdealL

policies . 144

xxiv

8.10 Performance/Watt Comparison with C-Ideal, C-IdealM and C-IdealL

policies . 145

8.11 Performance Comparison with C-Ideal-L2 policy 146

8.12 Chip Power Comparison with C-Ideal-L2 policy 146

8.13 Performance/Watt Comparison with C-Ideal-L2 policy 147

8.14 Synchronization Optimization . 149

8.15 Performance Comparison with C-Sync policy 150

8.16 Processor Power Comparison with C-Sync policy 151

8.17 Performance/Watt Comparison with C-Sync policy 151

8.18 Performance Comparison with C-DVFS policy 152

8.19 Processor Power Comparison with C-DVFS policy 153

8.20 Performance/Watt Comparison with C-DVFS policy 153

8.21 VRM Design Space: Area vs. Efficiency 155

8.22 Performance Comparison with limited VRMs 157

8.23 Processor Power Comparison with limited VRMs 158

8.24 Performance/Watt Comparison with limited VRMs 158

8.25 Processor Power Comparison with real VRM efficiency 160

8.26 Chip Power Comparison with real VRM efficiency 160

8.27 Performance/Watt Comparison with real VRM efficiency 161

8.28 Processor Power Comparison with hypothetical VRM efficiencies . . 162

8.29 Performance/Watt Comparison with hypothetical VRM efficiencies . 163

8.30 Controlled Speculation Technique . 165

8.31 Performance Comparison with Branch Confidence based mapping . . 165

8.32 Processor Power Comparison with Branch Confidence based mapping 166

8.33 Performance/Watt Comparison with Branch Confidence based mapping166

8.34 Performance Comparison with Realistic Branch Confidence based

mapping . 167

xxv

8.35 Processor Power Comparison with Realistic Branch Confidence based

mapping . 168

8.36 Performance/Watt Comparison with Realistic Branch Confidence based

mapping . 168

A.1 TRIPS Power Validation Results: All Benchmarks 196

xxvi

Chapter 1

Introduction

Increasing power dissipation is one of the most serious challenges facing the design-

ers in the microprocessor industry. Current and projected power trends point to

a world where all transistors on a microprocessor chip cannot be operated at the

maximum possible frequency, and worse, they may not all be switched on simultane-

ously. Historically, power dissipation and energy efficiency have been main concerns

only in the domain of embedded or mobile computing. However, increasing power

consumption of processors has started to affect the high-performance computing do-

main as well, which includes servers, workstations, and supercomputers. Depending

on the computing domain, power dissipation affects system costs differently. While

power affects overall battery life in the embedded domain, it increases the operating

temperature, system cooling, and packaging costs in high-end systems [114].

Industrial data published by researchers show that power consumption of

processors has increased steeply over successive generations [3, 40, 74]. Researchers

have predicted a super-linear increase in system cooling costs for every additional

watt beyond 40 watts consumed by a chip [114]. Similarly, system-level power

dissipation affects the overall operating cost of large-scale data centers and super-

computers. Such large-scale systems commonly consume more than 2 Megawatts,

1

which corresponds to an operational electricity cost of over $1M per year, even at

the bargain price of five cents per kilowatt-hour. A recent study shows that the

peak load on the US power grid from data centers and servers is about 7 Gigawatts;

if current trends continue, this peak load will grow to 12 Gigawatts in 2011 [25].

On the other hand, the Consumer Electronics Association estimates that consumer

electronics (cell phones, corded phones, TVs, etc.) consume about 11% and 4% of

US residential and total electricity consumption respectively. The expected growth

in the number of data centers and the volume of consumer electronics is likely to

worsen the problem [90]. Hence, there is an ever-increasing demand for energy-

efficient systems in all computing domains.

1.1 EDGE Architectures

Technology trends like increasing processor power dissipation, increasing wire de-

lays [4], and design complexity have forced the processor industry to switch from con-

ventional superscalar processors to multi-core architectures or chip multi-processors

(CMPs). While CMPs mitigate the increasing wire delays and the design com-

plexity, they do not directly address single-threaded performance. Also, programs

must be parallelized (automatically or manually) to fully exploit the performance

of CMPs. Despite the presence of a plethora of parallel language frameworks and

APIs (Application Programming Interfaces) [9,17,22,35,80,83,86,105,112,113,115],

there is no clear winner yet in terms of universal adoption among programmers.

The transition from single-threaded code to pervasive parallel code is steep, and is

unlikely to happen soon.

Additionally, the shift to CMPs is likely to worsen the power problem. CMPs

must operate within a strict chip-level power budget, (this is true for uniprocessor

chips as well) which varies by the market segment targeted by the chip. With the

number of cores per chip increasing steadily, operating all the cores in a CMP at

2

the maximum possible frequency is challenging at best and impossible in the worst

case. To stay within the power budget, system designers will be forced to run certain

cores at a slower frequency, thereby incurring performance losses in the workloads

running on such cores.

As an alternative to conventional CMPs, researchers have recently proposed

Explicit Data Graph Execution (EDGE) architectures [14] which enable technology-

scalable microarchitectures that can potentially provide good single-threaded per-

formance while exploiting other types of parallelism including data-level and thread-

level parallelism [91]. In this dissertation, we examine the energy efficiency of EDGE

architectures, specifically one architecture called TRIPS Instruction Set Architec-

ture (ISA) and two microarchitectures – TRIPS and TFlex – that implement the

TRIPS ISA. The TRIPS ISA is a novel architecture characterized by two key fea-

tures: (1) block-atomic execution and (2) dataflow-style execution within blocks [14].

Microarchitectures that implement the ISA fetch, execute, and commit instruc-

tions in a group (called a block). This block-atomic execution minimizes the per-

instruction book-keeping overheads found in conventional architectures. Addition-

ally, within a block, producer instructions send their results directly to their con-

sumers with sufficient support from the ISA. This dataflow-style execution within

a block relieves the hardware from rediscovering the dependence among instruc-

tions at runtime, a task that conventional superscalar processors devote significant

resources to, and greatly simplifies the underlying microarchitectures.

The TRIPS microarchitecture is a first-generation implementation of the

TRIPS ISA [92]. The microarchitecture is partitioned into various small tiles com-

municating with each other using micronetworks to mitigate worsening on-chip wire

delays. The partitioned TRIPS microarchitecture avoids large, centralized hardware

structures, typically found in superscalar processors, to reduce the impact of wire

delays. The absence of such centralized structures has the potential to decrease the

3

power consumption of the TRIPS microarchitecture vis-a-vis superscalar processors.

On the flip side, the novel ISA and the distributed microarchitecture have their en-

ergy overheads, which need to be assessed. Hence, we examine the energy efficiency

advantages and overheads of the TRIPS microarchitecture in comparison to other

conventional platforms in this dissertation.

The TFlex microarchitecture is a second-generation implementation of the

TRIPS ISA, and further improves the energy efficiency of EDGE architectures by

a concept called composability. TFlex belongs to a class of microarchitectures

called Composable Lightweight Processors (CLPs) – such microarchitectures are

distributed and are designed with simple cores. Additionally, CLPs can dynami-

cally aggregate multiple physical cores into a logical processor, and hence, are highly

configurable at runtime. By aggregating or disaggregating cores, the TFlex microar-

chitecture can be adapted to provide logical processors of varying sizes at runtime.

This composable nature of TFlex further improves energy efficiency of EDGE ar-

chitectures by matching resource demands of applications to the right amount of

hardware resources. As a key contribution of this dissertation, we examine the en-

ergy efficiency of the TFlex microarchitecture in comparison to TRIPS and other

hardware platforms as well.

1.2 Dissertation Contributions

This dissertation explores the energy efficiency of EDGE architectures, specifically

one architecture called the TRIPS ISA, and that of two microarchitectures: TRIPS

and TFlex. This section lists the key contributions of this dissertation.

1.2.1 TRIPS: A Detailed Power Analysis

First, we perform a thorough power analysis of the TRIPS microarchitecture. Build-

ing accurate architectural power models is a challenging exercise for several rea-

4

sons [59], and is especially challenging for novel architectures such as TRIPS. As

one of the key contributions of this dissertation, we describe our methodology for

building initial architectural power models for TRIPS, and our methodology for

validating those models. We also identify common pitfalls in architectural power

modeling, and suggest a few recommendations from our validation experience to

avoid such pitfalls [36].

Power Model Validation: In this part of the dissertation, we first de-

scribe how we develop architectural power models for TRIPS. We then improve the

accuracy of the architectural power models using hardware power measurements on

the TRIPS prototype system combined with detailed Register Transfer Level (RTL)

power models from the TRIPS design. Using these refined architectural power

models, we perform a detailed performance and power comparison of the TRIPS

microarchitecture with two different processors: 1) a low-end processor designed

for energy efficiency (ARM/XScale [20]1) and 2) a high-end superscalar processor

designed for high performance (a variant of Power4 [54]).

Such an exercise in performance and power comparison is very challenging

mainly because these processors have been designed using different process technolo-

gies, and design methodologies. We normalize the performance and power models

of all platforms to the best extent possible to ensure a very fair comparison of the

underlying architectures and microarchitectures. This detailed power analysis pro-

vides key insights into the advantages and disadvantages of the TRIPS ISA and

the TRIPS microarchitecture compared to other processors like XScale and Power4.

Our results indicate that the TRIPS microarchitecture achieves achieves 11 times

better energy efficiency compared to ARM, and 12% better energy efficiency than

Power4, in terms of the Energy-Delay-Squared (ED2) metric.

1We use the terms ARM/XScale interchangeably in this dissertation

5

1.2.2 TFlex Power Analysis and Comparison

Second, we analyze the power efficiency of the TFlex microarchitecture [57]. As

TFlex belongs to a family of Composable Lightweight Processors (CLPs), it can

be configured to match the resource needs of a variety of applications. If an appli-

cation has abundant parallelism, TFlex aggregates multiple physical cores2 into a

logical processor, and improves system performance or throughput. On the other

hand, if the application has poor parallelism TFlex devotes fewer logical cores to

the application, thereby optimizing for energy efficiency. We evaluate the energy

efficiency of the TFlex microarchitecture by developing its power models based on

the validated TRIPS power models. Our quantitative results indicate that by bet-

ter matching execution resources to the needs of applications the composable TFlex

system can operate in both regimes of low power (similar to ARM) and high perfor-

mance (similar to Power4). We also show that composability of TFlex helps achieve

a signification improvement (2x) in energy-efficiency compared to TRIPS, in terms

of the ED2 metric.

1.2.3 Composability versus DVFS

Third, we examine the efficacy of processor composability – the ability of dynami-

cally composing physical cores into a logical processor – as a potential performance-

power trade-off mechanism using the TFlex microarchitecture. A technique called

Dynamic Voltage and Frequency Scaling (DVFS) has served as the mainstay performance-

power trade-off mechanism in processors. To explain how DVFS serves as a performance-

power mechanism we look at the different components of processor power dissipation,

and how voltage and frequency affect the power dissipation.

2The exact number depends on various factors, and can be decided by the compiler or the
operating system or some combination of the two

6

Processor power consumption is governed by the equation

P = CV 2f + V Ioff (1.1)

. In Equation 1.1, P, V, f, C, Ioff denote power dissipated, supply voltage, clock

frequency, active capacitance (capacitance that is charged and discharged), and

leakage current of the processor respectively. The first term is dynamic power due

to charging and discharging of circuit capacitance as the processor operates. The

second term is static power due to leakage of transistors that cannot be completely

turned off. Historically, due to increasing clock frequencies dynamic power has been

a major component of the total power. However, in deep-submicron technologies

(90nm and below), leakage power has become a significant fraction of the total

power [21].

Most modern processors support a form of dynamic voltage and frequency

scaling (DVFS) as a performance-power trade-off mechanism. As given in Equation

1.1, the dynamic power of a processor depends on the supply voltage(V), and the

clock frequency(f) of the processor. The maximum clock frequency of the processor

depends on the supply voltage of the processor. Additionally, to a first order, the

performance of the processor depends linearly on its clock frequency (ignoring the

effect of clock frequency on main memory latency). Hence, by reducing the supply

voltage, and thereby reducing the processor clock frequency, one can obtain cubic

reductions in dynamic power (a quadratic effect due to reduction in voltage and

a linear effect due to reduction in clock frequency) with only a linear reduction in

processor performance. By modulating the supply voltage and clock frequency of

the processor, DVFS helps trade-off dynamic power for performance.

DVFS has been the traditional performance-power trade-off mechanism in

all modern processors. However, the rate of supply voltage scaling has slowed sig-

nificantly in recent process technologies. A key reason for the slow rate of voltage

7

scaling is a type of leakage power called sub-threshold leakage. When supply volt-

age is reduced sub-threshold leakage increases exponentially [21]. Designers have

slowed the rate of voltage scaling to keep sub-threshold leakage power under check.

This slow rate of voltage scaling has significantly limited the effectiveness of DVFS

as a performance-power trade-off mechanism, and has created a dire need for al-

ternatives to DVFS. In this dissertation, we explore processor composability as an

architectural alternative to DVFS.

Through experimental results we compare the performance and power trade-

offs offered by three distinct mechanisms: (1) pure frequency scaling, (2) processor

composability, and (3) voltage and frequency scaling. Our results show that com-

posability achieves as good performance-power trade-offs as pure frequency scaling

(only changes in frequency with no change in voltage), and much better trade-offs

when compared to voltage and frequency scaling (both frequency and voltage can

change). Our results indicate that among the mechanisms of frequency scaling,

composability, and DVFS, when scaling up performance and power, pure frequency

scaling is the best option as it provides a one-to-one trade-off between performance

and power. Once the point where the frequency cannot be increased further with-

out increasing the voltage is reached, processor composability provides the next best

performance-power trade-off. Adding more physical cores to the logical TFlex pro-

cessor buys a linear increase in performance with linear increases in power similar

to pure frequency scaling. Beyond a tipping point, which is application-dependent,

where adding more TFlex cores does not provide a linear performance-power trade-

off, voltage and frequency scaling should be used as a last resort to improve per-

formance. DVFS must be the last resort because a linear increase in performance

with DVFS comes with a cubic increase in power. On the other hand, when per-

formance and power are scaled down, the above steps should be applied in reverse.

First, DVFS must be applied as it can provide cubic reductions in power for only

8

a linear drop in performance, followed by scaling down the number of cores using

composability, which can be finally followed by pure frequency scaling. We also

present a case for combining DVFS with composability. Our results show that this

combination widens the operating regime of the composable system when operating

under fixed performance or power targets.

1.2.4 Additional Performance Mechanisms for TFlex

Next, we explore the effects of additional performance-improving techniques for the

TFlex system on its energy efficiency. Researchers have proposed a variety of tech-

niques for improving the performance of the TFlex system. These include: (1) block

mapping techniques to trade off data locality with concurrency [88]; (2) predicate

prediction [27]; and (3) operand multi-cast/broadcast mechanism [64]. We examine

each of these mechanisms in terms of its effect on the energy efficiency of TFlex,

and our experimental results demonstrate the effects of operand communication,

and speculation on the energy efficiency of TFlex.

1.2.5 Fine-grained Power Management Policies

Finally, this dissertation evaluates a set of fine-grained power management (FGPM)

policies for TFlex: exploiting instruction criticality and controlled speculation. These

policies rely on a temporally and spatially fine-grained dynamic voltage and fre-

quency scaling (DVFS) mechanism for improving power efficiency. Because modu-

lating the power supply voltage requires adjusting the board-level voltage regulator

module (VRM), DVFS has been historically applied to an entire chip as a whole.

However, recent research has proposed on-chip VRMs that provide a spatially and

temporally fine-grained DVFS mechanism [60]. A Composable Lightweight Proces-

sor (CLP) like TFlex combined with such a fine-grained DVFS mechanism opens

up exciting opportunities for power management policies. In this dissertation, we

9

explore two such fine-grained policies for the TFlex platform.

The first policy exploits the concept of instruction criticality to improve en-

ergy efficiency. We exploit the general principle that critical computation of the

application determines execution speed, and non-critical computation in an appli-

cation can be slowed down to exploit the inherent slack. Using a critical path model

for the TFlex microarchitecture we compute the criticality of instruction blocks, and

use this criticality to decide the DVFS setting that the block gets mapped to. Our

policy maps highly critical blocks to higher frequencies whereas non-critical ones

get mapped to lower frequencies so that the average power dissipation of the system

can be reduced without significantly affecting performance.

The second policy explores the use of controlled speculation. Modern pro-

cessors employ various forms of speculation like branch prediction, and memory

disambiguation. to extract better performance from applications. Although essen-

tial for high performance, aggressive speculation could potentially lead to wasted

instructions and resources, and thus, wasted energy. The TFlex system also em-

ploys speculation by executing multiple blocks in parallel via branch prediction.

The second policy attempts to minimize the energy wasted by aggressive specula-

tion in TFlex using a technique called branch confidence prediction. Branch con-

fidence prediction attempts to predict how confident we are about a given branch

prediction. If branch confidence prediction accuracy is very high, we can easily

identify high and low confidence branch predictions. Instruction blocks that have

high branch confidence are mapped to higher frequencies while ones that have lower

branch confidence are mapped to lower frequencies. Our experimental results indi-

cate that idealized instruction criticality and controlled speculation policies improve

the operating range and flexibility of the TFlex system. However, when the actual

overheads of fine-grained DVFS, especially energy conversion losses of voltage reg-

ulator modules (VRMs), are considered the power efficiency advantages of these

10

idealized policies quickly diminish. Our results also indicate that the current con-

version efficiencies of on-chip VRMs need to improve to as high as 95% (current

efficiencies range from 80% to 89%) for the realistic policies to be feasible.

1.3 Leakage Power

As discussed in Section 1.2.3, processor power consumption consists of two com-

ponents: 1) dynamic power and 2) leakage power. Leakage power arises due to

leakage of transistors that cannot be completely turned off. Although there are sev-

eral sources of leakage, the two major sources are sub-threshold and gate-tunneling

leakage currents [119]. Researchers have extensively studied techniques to reduce

these sources of leakage, and have proposed solutions at the process technology, cir-

cuit, and microarchitectural levels. For example, Intel has introduced metal gates

and high-K dielectric materials in its 45nm process technology [72]. These changes

provide signification reduction in gate-tunneling leakage current. Techniques like

dual-VT transistors [45], Gated Vdd and MTCMOS with sleep transistors [15, 85],

body biasing [56], drowsy caches [32], and leakage-biased bitlines [44] have been

studied to reduce sub-threshold leakage. In this proposal, we do not explore tech-

niques that directly address leakage: most of the above techniques are directly

applicable to the TRIPS and the TFlex microarchitectures. However, we explore a

fine-grained DVFS mechanism which modulates the voltage and the frequency of el-

ements on a multi-core chip. This technique addresses sub-threshold leakage power

in two ways. First, as leakage power is governed by the equation V Ioff, reduction

in voltage reduces leakage power. Second, due to short-channel effects, reduction in

supply voltage also reduces Ioff which in turn reduces leakage power [32].

11

1.4 Dissertation Layout

This dissertation is organized as follows. Chapter 2 provides an overview of the

TRIPS ISA and the TRIPS microarchitecture. We also qualitatively discuss the ad-

vantages and disadvantages of the TRIPS ISA and microarchitecture compared to

conventional processors in that chapter. Next, we present an overview of Compos-

able Lightweight Processors (CLPs) and the TFlex microarchitecture in the same

chapter.

Chapter 3 first describes how we build our architectural power models for

the TRIPS microarchitecture. We examine the accuracy of our architectural power

models by comparing against power measurements from a TRIPS hardware pro-

totype. We also describe how we improve the accuracy of our power models by

leveraging hardware power measurements, and detailed RTL power models.

Chapters 4 and 5 present a detailed performance and power comparison of

TRIPS and TFlex with that of ARM and Power4 microarchitectures. First, we de-

scribe our power modeling methodology for all platforms involved, and also describe

how we normalize the power models of all platforms to ensure a fairer comparison.

Next, we compare the performance, power, and energy efficiency of all the platforms.

Finally, we present a detailed power breakdown of various hardware structures in

all the platforms. This chapter highlights the advantages and disadvantages of the

TRIPS and TFlex microarchitectures compared to other processors.

Chapter 6 compares the power-performance trade-offs offered by composabil-

ity to that of DVFS with the goal of examining if composability can be an effective

alternative to DVFS. Chapter 7 evaluates the energy efficiency of three different

mechanisms that improve the performance of the TFlex system. These include: 1)

block mapping techniques to trade off intra-block concurrency with operand com-

munication across the operand network. 2) predicate prediction and 3) operand

multi-cast/broadcast mechanism.

12

Chapter 8 provides an overview of the fine-grained power management tech-

niques to improve TFlex power efficiency. We briefly discuss related work in Chapter

9. Chapter 10 concludes this dissertation by summarizing our key experimental re-

sults and observations, and by discussing possible future work for further improving

energy efficiency of EDGE architectures.

13

Chapter 2

ISA and Microarchitectures

Overview

This chapter provides a brief overview of the TRIPS ISA, and the TRIPS and the

TFlex microarchitectures. This chapter also lists the advantages and disadvantages

of the TRIPS ISA and the TRIPS microarchitecture, followed by a discussion of

composable features provided by the TFlex microarchitecture.

2.1 TRIPS ISA

In this dissertation we examine the TRIPS ISA, an EDGE architecture [14], which

is implemented by the TRIPS and the TFlex microarchitectures. The ISA en-

ables compiler-generated dataflow graphs to be mapped to distributed, technology-

scalable microarchitectures. The TRIPS ISA is characterized by two key features:

(1) block-atomic execution and (2) direct communication among instructions within

a block. Both these features allow an efficient dataflow-style execution of instruc-

tions.

14

2.1.1 Block-Atomic Execution

The TRIPS ISA obeys a block-atomic execution model, in which a block (a group of

instructions) is fetched, executed, and committed as one entity. The ISA can group

up to 128 instructions into a single TRIPS block. This block-atomic model amortizes

many per-instruction bookkeeping overheads across a large number of instructions.

The model also reduces the number of branch predictions, and the number of times

control decisions such as fetch and commit have to be made.

The TRIPS compiler constructs the blocks out of individual instructions,

and also assigns a location within the block to each instruction. Each TRIPS block

can contain anywhere from two to five 128-byte chunks. The first 128-byte chunk

of every block is called the header block, which can encode up to 32 read and 32

write instructions. The TRIPS ISA partitions the architectural register file into

four register banks according to the register specifier. The ISA restricts the number

of read and write instructions in a given block to a maximum of eight for each

register bank (meaning each bank can support up to 8 register read and 8 register

write instructions for a total of up to 32 read and 32 write instructions per block).

Each read instruction accesses the architectural register value from its corresponding

bank and sends the value to its consumers within the block. The write instruction,

on the other hand, receives outputs from instructions within the block and commits

them to the architectural register file. The header chunk also holds three types of

control state for the block: a 32-bit “store mask” that indicates which of the possible

32 memory instructions are stores, block execution flags that indicate the execution

mode of the block, and the number of instruction “body” chunks in the block.

A TRIPS block can contain up to four body chunks of 128 bytes each. Each

body chunk contains up to 32 instructions, thus giving a maximum of 128 instruc-

tions (32 instructions per chunk x 4 body chunks) per TRIPS block. In addition

to the maximum number of read and write instructions, the TRIPS ISA enforces

15

additional restrictions to easily detect block completion on the distributed execution

substrate. Of the total 128 instructions, each TRIPS block can only contain up to

32 load or store instructions. The “store mask” in the header chunk identifies which

of these 32 instructions is a store, and is a key component in the block commit

protocol [92]. Furthermore, the TRIPS compiler employs a technique called predi-

cation [102] to construct large blocks. In order to easily detect the block completion

event through all paths taken through predicated code, the TRIPS ISA also enforces

that every predicated path must produce the same number of block outputs (stores,

register writes and one branch). The TRIPS compiler ensures that the generated

blocks conform to these constraints [101].

2.1.2 Direct Instruction Communication

The second key feature of the TRIPS ISA is the direct instruction communication

within each TRIPS block. Using this feature, the producing instructions in a block

directly send their results to their dependent consumers in a dataflow-style. Con-

ventional superscalar processors typically devote monolithic, power-hungry hard-

ware resources to identify all consumers of a given instruction. The dataflow-style

execution enabled by the TRIPS ISA significantly simplifies the underlying mi-

croarchitectures. Any microarchitecture that implements the TRIPS ISA assigns

physical coordinates to each of the 128 instructions in a TRIPS block. Using these

physical coordinates, the microarchitecture precisely determines the location of all

consumers of a given producing instruction, and can forward the produced values

to the consumers.

2.1.3 ISA Advantages and Disadvantages

The TRIPS ISA has several advantages over conventional ISAs. Since the TRIPS

ISA is block-based, any microarchitecture that implements this ISA fetches, exe-

16

cutes, and commits instructions as a block, in contrast to conventional designs that

work with individual instructions. Second, the direct instruction-to-instruction com-

munication in the TRIPS ISA relieves the hardware from rediscovering dependence

among instructions again at runtime, which in turn simplifies the microarchitectures

that implement the TRIPS ISA. Additionally, since all temporary values produced

and consumed entirely within a block are directly communicated to the consuming

instructions, the TRIPS ISA reduces the number of accesses to the global register

file.

However, the block-oriented nature and the direct instruction communica-

tion of the TRIPS ISA have their disadvantages too. As mentioned in Section 2.1,

every TRIPS block necessarily includes a header chunk with the register read and

write instructions along with other metadata needed for executing that block. The

body contains the actual “compute” instructions from the block. The presence of

the header block is a clear disadvantage of the TRIPS ISA with respect to instruc-

tion cache efficiency and capacity. The direct instruction communication can be an

additional overhead when a given producing instruction has many consumers. The

TRIPS ISA employs “move” instructions to build a software fan-out tree for deliver-

ing values to all consumers, which is another disadvantage of the ISA. Furthermore,

the TRIPS ISA utilizes dataflow-style predication [102] to build large blocks that

can be mapped to the microarchitecture. Predication helps the compiler to build

large blocks, and thereby reduce book-keeping overheads including instruction fetch

and commit. However, the instructions within a block that are present on the wrong

path of the predicate value consume precious resources like instruction cache lines,

and reservation stations, and do not contribute to the actual output of the block.

17

Figure 2.1: Block Diagram of the TRIPS Chip

18

Figure 2.2: Die Photo of the TRIPS Chip

19

2.2 TRIPS Microarchitecture

The TRIPS microarchitecture implements the TRIPS ISA and provides technology-

scalable performance on single-threaded workloads as well as exploits parallelism

at different levels of granularity. Figures 2.1 and 2.2 show a block diagram of the

TRIPS microarchitecture and an annotated die photo of the TRIPS prototype chip

respectively. Each TRIPS chip consists of two processor cores (marked as Processors

0 and 1) and a 1-MB Non-Uniform Cache Access (NUCA) L2 cache organized into

16 memory banks [58]. The block diagram also shows the major microarchitectural

units of a single TRIPS processor, including the register file, global control unit,

L1 instruction, and data caches, and the 4x4 array of execution units. Each of

these units is partitioned into smaller identical tiles, which are marked using various

letters in the block diagram. The tile marked G is the Global Control Tile that

orchestrates global block fetch and commit protocols. The register tiles (marked R)

implement the partitioned register file banks and the register read and write queues

that implement register forwarding between blocks. The data and instruction caches

are implemented by tiles marked as D and I respectively. The 4x4 grid of execution

units are marked with the letter E. The various tiles in the processor communicate

with each other using well-defined micronetworks. One such network is the operand

network (OPN) used for communicating operands (register values, ALU results, and

load results) among various tiles. Each processor core also implements six additional

micronetworks for orchestrating other distributed control and data protocols [92].

The processors and the NUCA L2 caches communicate using an on-chip net-

work. The chip additionally has several data controller tiles, including two SDRAM

controllers (SDC), two Direct Memory Access (DMA) controllers, an External Bus

Controller (EBC) and a Chip-to-Chip (C2C) controller. The TRIPS chip is designed

in a 130 nm IBM ASIC process with about 170 million transistors. To simplify pre-

silicon verification, the TRIPS chip does not implement any power management

20

features like clock gating or dynamic voltage and frequency scaling [98].

Since the TRIPS ISA is block-based, the TRIPS microarchitecture fetches,

executes, and commits instructions as a block of instructions. As mentioned in

Section 2.1, the TRIPS compiler constructs large (up to 128 TRIPS instructions)

single-entry multiple-exit blocks of instructions that are similar to hyperblocks [101].

The TRIPS microarchitecture fetches and maps these blocks of instructions onto the

grid of 16 execution units (E-Tiles). All instructions within a TRIPS block execute in

a dataflow-order. The TRIPS microarchitecture supports up to eight TRIPS blocks

in flight, of which seven blocks are speculative and one is non-speculative. These

eight blocks are stored in the reservation stations distributed across the 16 E-Tiles,

and constitute a large 1024-entry instruction window (8 blocks x 128 instructions).

The distributed nature of the microarchitecture allows such a large instruction win-

dow to be constructed without adversely affecting processor cycle time. The TRIPS

microarchitecture supports both single-threaded and multi-threaded modes [92]. In

the multi-threaded mode, the TRIPS microarchitecture supports up to four inde-

pendent threads by partitioning its resources (register banks, reservation stations)

equally among the four thread slots. In this dissertation, we only exercise the single-

threaded mode where a single application is run across the entire processor core.

Microarchitecture Advantages and Disadvantages: The TRIPS mi-

croarchitecture has been implemented using small distributed tiles connected via

well-defined micronetworks. This tiled design has been primarily motivated by ever-

worsening on-chip wire delays, which are even exacerbated by superscalar designs

that employ power-hungry monolithic hardware structures. In addition to mitigat-

ing wire delays, the tiled nature of the TRIPS microarchitecture has the additional

benefit of energy efficiency. Conventional superscalar processors that sustain high

issue widths (of four or greater) employ multi-ported register files, and Content-

Addressable Memory (CAM) based instruction windows to extract better perfor-

21

mance. In contrast, the TRIPS microarchitecture extracts better performance using

its distributed substrate. For instance, instead of employing multi-ported register

files to support multiple in-flight accesses, the TRIPS microarchitecture partitions

a large register file into four register banks (R tiles), each of which has only two

read ports and one write port. Similarly, the dataflow-style execution of TRIPS

ISA greatly simplifies the hardware for identifying the dependent consumers instead

of relying on power-hungry CAM structures.

On the flip side, the distributed nature of TRIPS microarchitecture comes

with certain energy overheads as well. The tiled microarchitecture relies on well-

defined micronetworks and distributed protocols for various operations like block

fetches, flushes, and commits. Such distributed protocols are an energy overhead

of the TRIPS microarchitecture. Furthermore, the TRIPS microarchitecture relies

on an operand network (OPN) for communicating data among the tiles of a TRIPS

core. The OPN replaces the conventional bypass networks, and is a key determinant

of TRIPS performance. The OPN implementation in TRIPS is a 5x5 mesh network

connecting 25 tiles. All of these 25 instances of the OPN router consume energy for

clocking the input FIFOs, arbitration logic, and for driving control and data packets

onto wires connecting to the neighboring routers. Thus, the OPN could be a signif-

icant energy overhead for the TRIPS microarchitecture. Our experimental results

in later chapters clearly quantify the effects of the advantages and disadvantages of

the TRIPS ISA and microarchitecture.

2.3 TFlex Overview

In this section, we provide an overview of a new class of microarchitectures called

Composable Lightweight Processors (CLPs) and the TFlex microarchitecture, a type

of CLP that implements the TRIPS ISA. The TFlex microarchitecture supports

composability - a feature that enables dynamic aggregating of physical cores into

22

a logical processor. In this section, we also describe the various features of TFlex

microarchitecture, and the features of the TRIPS ISA and TFlex microarchitecture

that support composability.

Composable Lightweight Processors (CLPs) are a new class of microarchi-

tectures that are characterized by two key features: they are highly configurable

at runtime to adapt to resource needs of applications and are distributed microar-

chitectures built using simple cores or tiles. CLPs provide a flexible solution to

one of the key questions in chip multiprocessor (CMP) design: how many cores to

place in each chip, and how big should each core be? Different CMPs take differing

approaches to this question depending on their market segment, which we refer to

as bulldozers, chainsaws, and termites. Bulldozer designs typically are composed

of fewer but complex cores of larger area whereas termites are composed of lots

of simpler cores, and chainsaws fall somewhere in between bulldozers and termites.

As an example, at one end of the spectrum are bulldozer designs like AMD quad-

core Barcelona, which consists of four complex 4-issue, out-of-order processors each

measuring 36mm2 at 65nm [23]. At the other end, Intel’s Polaris chip is an exam-

ple of a bunch of termite processors, each measuring about 2.5mm2, and is aimed

at very parallel workloads like network processing. We also have chainsaw designs

like the Sun’s single-issue in-order Niagara-2, which exploits abundant thread-level

parallelism (TLP) in transaction processing workloads.

While bulldozer designs are better suited for mining ILP, termite and chain-

saw designs are better suited for mining TLP. Thus, these CMP designs are better

optimized for exploiting one type of parallelism or the other at design time, and are

inflexible when the available parallelism in workloads does not match their assump-

tions. The goal of CLPs is to increase the flexibility of CMPs by building termites

or chainsaws, and to dynamically aggregate them together to build bulldozers as

and when needed.

23

P P P P

P P P P

P P P P

P P P P

P P P P

P P P P

P P P P

P P P P

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

P P

P P

P P

P

P

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

P

(a) 32 2-wide CLP config. (b) 8-processor CLP config. (c) One 64-wide CLP config.

Figure 2.3: TFlex Microarchitecture Overview

The key advantage of CLPs is the flexibility offered to software layers, espe-

cially the Operating System (OS) or the hypervisor and the compiler. Depending

on the system metric to be optimized for, and the inherent concurrency available in

workloads, the OS can choose the right granularity of logical processors to allocate

to those workloads. For example, if an application has high inherent concurrency

(Instruction-Level Parallelism or ILP), the OS can aggregate many physical cores

into a logical processor, allocate that processor to the application, and thus, opti-

mize for performance. On the other hand, if an application has lower concurrency,

the OS can allocate fewer physical cores to that application, and thus, optimize for

power efficiency. Because CLPs provide adaptability in the number and granularity

of processors, their flexibility not only enables efficient execution of single-threaded

workloads, but also multi-threaded workloads by extracting TLP.

2.4 TFlex Microarchitecture

The TFlex microarchitecture [57] belongs to this new class of microarchitectures

(CLPs) for the following reasons: 1) TFlex is configurable because it can dynam-

ically aggregate multiple physical cores into a logical processor and 2) TFlex is a

distributed microarchitecture built using simple, dual-issue cores. In this disserta-

tion, we evaluate a specific TFlex microarchitecture through simulation that has 32

24

128-entry

instruction

window

Int.

ALU

FP

ALU

Memory

network

in/out

S
e

le
ct

 lo
g

ic

Register

forwarding

logic & queues

40-entry

load/store

queue

8KB 2-way

L1 D-cache

4KB

direct-mapped

L1 I-cache

Operand

buffer

128x64b

Operand

buffer

128x64b

128-entry

architectural

register file

2R, 1W port

Operand

network

out queue

Operand

network

in queue

8-Kbit

next-block

predictor

Block

control

Control

networks

4KB block

header cache

Figure 2.4: Illustration of microarchitectural components of a single TFlex core. The TFlex
chip consists of 32 such TFlex cores and NUCA L2.

25

simple dual-issue cores along with 16 banks of NUCA L2 cache. The OS can con-

figure the TFlex microarchitecture into many possible configurations, each having

a different number and granularity of processors. Figure 2.3 shows three sample

configurations out of the many possible configurations: (a) 32 1-core processors,

(b) a mix of processors composed of different numbers of cores and (c) one 32-core

processor. Depending on the needs of the application and the need to optimize

for performance, power-efficiency or throughput, the right number of cores can be

allocated to a process.

Figure 2.4 details the microarchitecture of the TFlex processor. The TFlex

system we use in this dissertation consists of 32 such TFlex cores, and 16 L2 banks of

64KB each for a total of 4 MB of L2 cache capacity. Each TFlex core has enough re-

sources (Instruction-Cache, Data-cache, instruction windows, operand buffers, load-

store queues, register files, and an operand router) to fully execute only one TRIPS

block. There are certain key differences between the TRIPS and the TFlex microar-

chitectures. First, the TFlex microarchitecture avoids the maximally-sized solution

employed in the load-store queue design of TRIPS. TFlex instead employs a nega-

tive acknowledgement based load-store queue design to avoid fully-sized LSQs [97].

Second, each OPN router in TFlex enjoys twice the bandwidth when compared to

its counterpart from the TRIPS design. Each TFlex router employs two sets of OPN

channels and FIFOs compared to single channel and set of FIFOs in TRIPS. Third,

each TFlex core is capable of issuing two instructions in each cycle. Each core can

either issue two integer instructions or one integer and one floating point instruction

every cycle. This is in contrast to the E-Tiles of the TRIPS design which can issue

only one instruction per cycle. We refer the reader to [57] for a more thorough and

detailed description of the TFlex microarchitecture.

26

2.5 Support for Composability

The TFlex processor leverages support from the TRIPS ISA and the microarchi-

tecture to provide a composable execution substrate. First, the TRIPS ISA being

block-oriented greatly reduces many book-keeping overheads like instruction fetch,

and commit [14]. Since each TRIPS block can have up to 128 instructions, the

frequency of key control decisions like fetching new blocks, committing executed

blocks, and predicting the next block can be reduced. Second, since the TRIPS ISA

is an EDGE architecture the communication between instructions within a block is

explicit. This support from the ISA facilitates the process of composing physical

cores into logical processors. The explicit encoding of the targets of an instruction

(the physical co-ordinates specifying the core ID and the instruction queue ID) are

interpreted “differently” depending the “logical” size of the composed TFlex system.

Thus, the direct instruction communication feature of the TRIPS ISA eliminates the

need for operand broadcast otherwise required for composing cores.

The CLP microarchitectures partition structures by address whenever possi-

ble, and avoid physically centralized microarchitectural structures completely. Specif-

ically, the TFlex microarchitecture supports composability by physically distribut-

ing various structures including the register file, instruction window, L1 caches, and

operand bypass network. When a TFlex core operates as a single logical processor,

all of the microarchitecture structures are local. However, when multiple cores are

aggregated into a logical processor, the logical instruction window, register file, in-

struction cache, data cache, and branch predictor are address-interleaved across all

the participating cores. Since interleaving is controlled by bit-level hash functions,

all logical processor sizes must be a power-of-two number of cores (up to 32 cores

in our TFlex system).

The TFlex microarchitecture currently uses three distinct hash functions for

address leaving across three different classes of hardware structures: (1) Block Start-

27

ing Address, (2) Instruction ID within a block, and (3) Data address. The next-block

predictor tables and the I-Cache tags utilize a hash function based on the virtual

address of a block, which corresponds to the Program Counter in conventional ar-

chitectures. Each TRIPS block contains up to 128 instructions. Depending on the

block-mapping mode (described further in Chapter 7), these 128 instructions are

either striped across all the participating cores or all mapped to a single owner core.

Finally, the data caches and the load-store queues are partitioned based on a hash

function of the load-store addresses, and the register files are address-interleaved

based on the lower order bits of the register ID.

In addition to partitioning of various structures, the microarchitecture imple-

ments various distributed protocols using micronetworks to implement instruction

fetch, execute, commit, speculation recovery, and other processor actions [57]. Each

TRIPS block is assigned an owner core based on a hash function of the virtual ad-

dress of the block. This owner core is in charge of initiating the fetch of the block,

and also predicting the next block. Once the address of the next predicted block is

known, a message is sent to the owner core of the predicted block to initiate fetch.

The owner core is also responsible for initiating flush messages caused by misspecu-

lations, and also detecting when the block is complete and committing it. Similar to

the TRIPS microarchitecture, the TFlex microarchitecture maintains many blocks

in flight depending on the number of cores in the composed system. When the logi-

cal TFlex processor is composed of just one core, only one TRIPS block is in flight

as each core only has enough resources to execute a single block. When more than

one physical core is composed into a logical processor, the TFlex microarchitecture

maintains as many blocks in flight as the number of physical cores. Only one of

these in-flight blocks is non-speculative, and the others are speculative.

28

Chapter 3

TRIPS Power Modeling and

Validation

Designers typically construct architectural power models with cycle-level perfor-

mance simulators to investigate power-performance trade-offs early in the design

cycle. The most commonly used power model in academic architectural studies is

Wattch [12]. Other high-level analytical power models are listed in the survey by

Najm [76]. Despite substantial effort by researchers to build such power models,

validating these models has proven difficult at best. The absolute power estimates

of Wattch are validated to within 30% for three industrial designs [12]. Despite such

validation efforts, applying such models to novel architectures such as TRIPS and

new process technologies invariably results in errors.

In this chapter, we describe our methodology for building initial architectural

power models for the TRIPS architecture. Next, we describe our methodology for

validating these power models with feedback from RTL power models and hardware

power measurements. We show that applying common power modeling methodolo-

gies to the TRIPS architecture underestimates the hardware power by 65% on an

average (This means that the measured hardware power is almost 3 times that of the

29

������������	�
��������
�����	�� ������������	�����
�����	��
�� � ����
��������������� ���������
��������
��������� ����
��������� ������ ����
���������

��������
���� �� � ����
���� �	��
����
��������� ����
	�! "
	�! �

Figure 3.1: Baseline Architectural Power Models

initial architectural power estimate). Using a detailed power breakdown obtained

from a validated Register Transfer Level(RTL) power model of the same processor

(which has 6% average error), we identify, classify, and quantify the major sources

of inaccuracy in the architectural power models. Using feedback from the hardware

and RTL models, we reduce the accuracy gap between the baseline architecture

power model and the hardware. Despite poor absolute accuracy, the baseline archi-

tectural power models have good relative accuracy to begin with (10%) and in the

improved architectural power models the relative accuracy improves with absolute

accuracy (to 3%).

3.1 Architectural Power Models

Figure 3.1 describes our baseline architectural power modeling methodology for

TRIPS, which matches the state-of-the-art methodology in academia for building

architectural power models. First, we run the benchmark binary on a cycle-level

30

simulator that models the TRIPS processor core alone (excluding the L2). This

simulation produces access counts of various microarchitectural structures in the

core and a trace of all generated L2 addresses. Second, we run this L2 address trace

through a cycle-level NUCA L2 simulator to obtain access counts of the structures

in the L2 subsystem. We follow this two-step methodology to ease the process of

validation and correlation with RTL power models. Since RTL simulation speed is

orders of magnitude lower than architectural simulations, we adopt a two-step RTL

simulation methodology to run reasonable benchmarks. We use the same unified L2

and DIMM model for both architectural and RTL simulators of the processor core.

The TRIPS base architectural power is derived via commonly used power

modeling methodologies. We build CACTI [110] models for all major structures

such as caches, SRAM arrays, register arrays, branch predictor tables, load-store

queue CAMs, and on-chip network router FIFOs to obtain a per-access energy for

each structure. This per-access energy combined with the access counts from the

architectural simulator provides the overall energy dissipated in these structures.

The power models for integer and floating point ALUs and the clock tree are derived

from Wattch [12] using linear technology scaling from the built-in 350nm technology

of Wattch. We model global clock drivers, global clock tree interconnect, pre-charge

transistors and pipeline latches as part of the clock tree. We estimate the number of

latches in each tile based on a detailed microarchitecture specification. The per-latch

capacitance estimates are derived from Wattch as well.

Analytical estimation of combinational or control logic power is challenging

at the architectural level. As one of the key contributions of this work, we propose

simple rules-of-thumb to estimate control logic power. We assume that the total

gate count for a TRIPS tile is a constant (about four) times the number of latches

in the tile. Table 3.1 shows the gate-to-latch ratio of various TRIPS tiles based

on a detailed analysis of the post-synthesized netlist. We observe that the rule,

31

Tile Name G/L Ratio
Chip-to-Chip Controller 3.56
DMA Controller 14.23
External Bus Controller 9.50
Instruction Cache 2.23
SDRAM Memory Controller 3.96
Data Cache and Load-Store
Queues

5.54

Execution Tile (Issue Logic,
ALUs)

8.57

Global Control Tile 4.15
L2 Cache Banks 3.45
Register Tile 5.19
L2 Router Tile 4.41

Table 3.1: Control Logic Ratios

despite being simple, holds for most of the TRIPS tiles with notable exceptions

being DMA (Direct Memory Access Controller), EBC (External Bus Controller)

and the Execution Tile, which are control-logic intensive and have relatively less

storage when compared to other tiles. Excluding the DMA and the EBC, which

are not used in this study, the arithmetic mean of the gate-to-latch ratio is 4.56

with a standard deviation of 1.8. Although such simple rules must be fine-tuned

before applying to other architectures, the key take-away is that applying even

simple rules-of-thumb for control logic improves the accuracy of architectural power

models significantly.

Given the gate counts, we use another rule-of-thumb, similar to equation

(2) in [79], to estimate the total gate capacitance. The value of Cavg, a high-level

estimate of the average gate capacitance, is obtained from the documentation of

IBM 130nm ASIC process. Using these gate capacitance estimates and models

based on Rent’s rule [106], we estimate the control logic and interconnect access

energies of the various tiles. These energies combined with various event counts of

the tiles provide the total control logic and interconnect energies. We build leakage

power models for all array structures based on HotLeakage [127], and leakage models

for non-array structures are based on gate-count estimates and average transistor

32

ATX Power Supply

Voltage Regulator
 Module

Heatsink & Fan

Agilent Current
 Probe

TRIPS Motherboard

NI USB 6009
 DAQ Unit

DIMMs

Daughtercard with
 TRIPS Chip

Figure 3.2: TRIPS Circuit Boards and Power Measurement Infrastructure.

density estimates. We use an analytical power model for the DIMMs obtained from

Micron for both architectural and RTL power models [71].

3.2 Power Model Validation

We now describe how we use real hardware power measurements on the TRIPS

prototype chips and detailed RTL power models to validate the baseline architectural

power models (described above).

3.2.1 Hardware Power Measurement

Figure 3.2 shows a photograph of our power measurement infrastructure and the

TRIPS prototype system. Each TRIPS motherboard can support up to four TRIPS

chips. Each chip is mounted on the motherboard via a daughtercard. The daugh-

33

tercard contains one Voltage Regulator Module (VRM) that steps down the 12 V

ATX power supply to 1.5 V for the TRIPS chip, a heat-sink and fan assembly, and

two 1-GB DDR SDRAM DIMMs. The DIMMs receive a 2.5 V power supply from

the regulator. We use the following system parameters for our validation experi-

ments: 1.5V chip power supply, 366 MHz chip clock frequency and 133/266 MHz for

the DIMMs. We use an Agilent 1146A clamp-on current probe for measuring the

power consumption of the TRIPS daughtercard. The voltage output of the probe

is sampled by a National Instruments (NI) USB 6009 Data Acquisition System at

the rate of 10 KHz and is logged to a Linux Workstation using the NI Data Logger

program.

Using a set of carefully-designed experiments, we isolate the power consumed

by the TRIPS motherboard and the DRAM DIMMs from the measured hardware

power. We remove the TRIPS daughtercard from the motherboard and note the

measured power. This power is 3.3 Watts and is attributed to the TRIPS mother-

board alone. To measure the power consumed by the DDR DIMMs, we take two

power measurements: one when the DIMMs are unplugged from the daughtercard

and a second when the DIMMs are plugged in and a sequence of random memory

reads and writes are being performed. The difference between these two readings,

about 3.6 Watts, is attributed to the DIMMs. After this isolation, we also ac-

count for 90% rated conversion efficiency of the VRM when converting from 12V

to 1.5V needed for the TRIPS chip. This provides the measured hardware power

for the TRIPS chip. Finally, we attempt to isolate the clock tree portion of the

total power. To this end, we run the chip in the idle mode at 100 and 366 MHz

and measure the dissipated power. Since the chip is idle in both cases, we use the

linear dependence between clock frequency and power with these two data points to

isolate the clock tree power. We interpolate the clock tree power model and confirm

that it matches the measured power at 200 MHz. In total, we estimate the clock

34

#$%&'((%$)*+,-./012%$ 3456)*+,-./012%$
+7 8 9:;;#'$<%$.1=&';%>'0 ?'=&@.1$A +76>>$'((*$1&'

;-&$%= 9:;;#%B'$;%>'0*%210#%B'$ *'&@=%0%CD+-E1D#$-.'F%B'$
G12'H0'I'03'20-(2

,6:JJ-0'(
6&2-I-2DJ1&2%$(

,6:JJ-0'(

Figure 3.3: RTL Simulation Methodology

tree to consume 18.3 Watts at 366 MHz.

We run a set of microbenchmarks, which have key loops extracted from the

SPEC CPU2000 [43], for our validation experiments. We run these benchmarks on

real TRIPS hardware, TRIPS architectural simulator, and on TRIPS RTL simulator.

We use these microbenchmarks to mitigate the slow RTL simulation speeds. We

then compare the measured hardware power to the estimated architectural power.

We find that on an average the architectural power model underestimates the total

power by about 65%.

3.2.2 RTL Power Models

Having observed the inaccuracy of our baseline architectural power models, we use

a detailed RTL power model of the TRIPS design to identify, quantify and rectify

the various sources of inaccuracy. Figure 3.3 describes our RTL power modeling

methodology. First, we run the benchmark on a Synopys VCS [108]-based processor-

level RTL simulator, which uses a pre-synthesized RTL netlist of the design. This

simulation produces a set of Switching Activity Interchange Format (SAIF) files.

35

Next, we feed the L2 address trace obtained from the architectural simulations

(Figure 3.1) to the NUCA RTL simulator to obtain the L2 cache SAIF files.

The SAIF files represent the toggle counts of the various nodes in the pre-

synthesized netlist of the design. We use Synopys Primepower [107] to propagate

these toggle counts to a post-synthesized, gate-level netlist and obtain an average

switching activity (is benchmark-dependent) for each tile in the core and the L2

subsystem. Combining this average activity factor for each tile with the total ca-

pacitance estimate from the gate-level netlist and the IBM Standard Cell library, we

estimate the average dynamic power. We obtain the capacitance of the gates and

global clock buffers from IBM cell library. We estimate the interconnect capacitance

using Rent’s Rule as published in [106]. We also obtain the PFET and the NFET

widths of various IBM cells from the library to estimate the leakage power.

3.2.3 Validation Results

Figure 3.4 compares the power estimates of the baseline architectural models (the

bar labeled Base) to RTL estimates (labeled RTL) and hardware power (labeled

HW). We observe that the baseline architectural power model underestimates the

total power by 65% compared to the hardware power. We also find that the RTL

power estimates are much more accurate and within 6% of the measured hardware

power. As shown in Table 3.2, we break down the RTL power estimates into power

categories not visible via hardware measurement to identify the root source of errors

in the baseline architecture power model and to derive improvements to the power

model.

Sources of Inaccuracy: Table 3.2 shows a breakdown of the average power

estimate of the microbenchmarks into major categories like dynamic power due to

combinational logic, array structures, ALUs, interconnect, clock tree including the

latches and clock buffers, leakage power and power dissipated in the DIMMs along

36

Category Arch(W) RTL(W) Fraction of
Total Error

Control Logic
+ Arrays +
ALUs

1.91 5.94 0.21

Interconnection 0.47 1.27 0.04

Clock Buffers 0.13 3.30 0.16

Latches 4.21 14.56 0.54

Leakage 1.36 1.91 0.03

DIMMs 3.44 3.61 0.01

Total 11.52 30.84 1.00

Table 3.2: Detailed Power Breakdown

with the fraction of the total error caused by each category in Column 4. Using

this breakdown, we focus our attention on the major sources of error: latches, clock

buffers, and control logic power. Errors in these categories of power can stem from

underestimates in counts (latch counts, gate counts, etc) and underestimates in

capacitances.

Latch Counts: We estimate the number of latches based on microarchitec-

ture specifications for each tile in the TRIPS design. Upon a detailed analysis, the

architectural model underestimates the latch counts by 53%. The key reasons for

this underestimate are twofold. First, certain structures in the TRIPS design like

load-store queue Content-Addressable Memories (CAMs), and FIFOs, which were

expected to be custom SRAM arrays, had to be implemented out of discrete latches

due to a lack of suitable dense structures in the ASIC library. These latches, which

account for 40% of the actual latch count, are not included in the initial architec-

tural estimates. The D-Tile (data tiles) in the TRIPS design is the most prominent

source of this error - each D-Tile contains a maximally-sized load/store CAM with

256 entries.

After accounting for these additional latches, the architectural latch esti-

mates still underestimate the latch count by 13%. The second key reason for the

37

initial underestimates is as follows. The microarchitectural specifications, that form

the basis for our initial latch counts, invariably change during actual RTL imple-

mentation and the specifications are not kept up to date to reflect the actual design.

Additionally, when preparing specifications, designers typically do not anticipate the

use of temporary latches that are needed during actual design. This mismatch be-

tween the tile specification and the actual design causes the additional mismatches

in latch counts. In our experience, although we find this specification mismatch in

most tiles we find it to be severe in E-Tile and the M-Tile in the TRIPS design.

Since the TRIPS design has many instances of the E-Tile (32) and M-Tile (16), even

small underestimates on a single instance of such tiles quickly adds up at the chip

level.

Latch Capacitance: The architectural latch capacitance estimates come

from Wattch, after suitable technology scaling and the RTL estimates come from the

IBM Standard Cell library. The architectural models underestimate the per-latch

capacitance by 40%. The errors in latch counts and latch capacitances contribute

54% of the overall error (Row 4 in Table 3.2).

Clock Buffer Counts: The base architectural models underestimate the

number of clock buffers in the design by 33%. Additionally, IBM requires Level-

Sensitive Scan Design (LSSD) based latches for testability [24]. Due to this require-

ment, the final TRIPS clock tree has many clock-splitters [24] (about 30K), which

are not accounted for in the initial architectural power estimates. This mismatch

in the number of clock-splitters causes an average error of about 16% in the total

power estimate (Row 3 in Table 3.2).

Control Logic Power: Estimating control logic power at the architectural

level is challenging because of the inherent difference in the level of abstraction be-

tween architectural and RTL models [59]. We estimate the control logic capacitance

based on rules-of-thumb for gate-counts and gate capacitances, which are described

38

HW
RTL
Base+C+T+P+G
Base+C+T+P
Base+C+T
Base+C
Base

 0

 5

 10

 15

 20

 25

 30

 35

 40

dh
ry

po
w

er
_v

iru
s

eq
ua

ke
_1

am
m

p_
1

fft
4_

G
M

T
I

dc
t8

x8

va
dd

pa
rs

er
_1

m
at

rix
_1

ar
t_

1

si
ev

e

do
pp

le
r_

G
M

T
I

A
rit

h.
 M

ea
n

P
ow

er
 E

st
im

at
e

(W
at

ts
)

Benchmarks

Figure 3.4: TRIPS Estimated and Measured Power.

in Section 3.1. A detailed analysis shows that the capacitance estimates based on

rules-of-thumb underestimate the actual capacitance by 35%. We use an event-

based model in the architectural simulator to estimate the activity factor of control

logic. This event-based model, although accurate, is clearly not a substitute for

the more accurate bit-level switching activity factors from the RTL power models.

These differences combined cause a 21% error attributed to both the control logic

and the array power (Row 1 in Table 3.2).

3.3 Improved Architectural Models and Relative Accu-

racy

Using the above analysis, we evaluate a series of architecture power models that

incrementally fix classes of errors to improve accuracy. Figure 3.4 shows the power

estimates of the architectural power models for the microbenchmark suite. For rea-

39

sons of clarity, the figure only plots 12 of the 24 benchmarks in the suite, and the

arithmetic mean is shown for all 24 benchmarks. Appendix A presents the validation

results for all 24 benchmarks in our suite. In Figure 3.4, for each benchmark, the

graph shows three bars: architectural power estimates, RTL power estimates, and

measured hardware power. The architectural bar has five segments, each represent-

ing a different architectural power model. Base represents our baseline architectural

power model described in Section 3.1, which underestimates total power by 65%.

In the Base+C model, we fix most of modeling errors introduced by latch

and clock-splitter counts. However, we do not include the underestimate of latches

(13%) due to differences between the specifications and the RTL, and the under-

estimate of buffers in the clock tree (33%). The Base+C+T model fixes all the

technology scaling errors in the latch capacitance and clock buffer capacitance. In

the Base+C+T+P model, we include the additional 13% latches and 33% clock

buffers to fix all errors in the clock tree power. In the Base+C+T+P+G model,

we replace the gate count estimates for various tiles based on rules-of-thumb by the

actual gate counts of the tiles.

The Base+C model, which fixes the modeling errors related to the clock

tree, reduces the overall error by 13% compared to Base. Fixing the technology

scaling errors in the Base+C+T model reduces the overall error by an additional

22% compared to the Base+C model. The Base+C+T+P model with a perfect

clock tree model reduces the overall error by 6%. Finally, the actual gate counts

in the Base+C+T+P+G model reduces the error by a small amount of 2%.

The marginal reduction in error in the Base+C+T+P+G model is due to two

reasons: (1) the original rules-of-thumb for control logic capacitance estimation are

reasonably accurate, and (2) the actual gate counts for a few tiles are less than the

rule-of-thumb estimates, which tends to negate the accuracy improvement of actual

gate counts.

40

Thus, power estimates obtained using the Base+C+T+P+G model are

within 21% of measured hardware power for the microbenchmark suite. We also

apply the Base+C+T+P+G models to the EEMBC suite and observe that on an

average the architectural estimates are within 24% of hardware power. We further

fine-tune the Base+C+T+P+G models, by mainly experimenting with different

scaling factors for control logic switching activity, to bring the final accuracy to

within 15% of measured hardware power. This scaling factor is an attempt to address

the lack of fine-grained bit-level switching activity in the architectural simulator.

Such support could be added to the simulator, but only at the expense of increased

simulation times. Further differences in the power models for control logic switching

activity, interconnects, leakage, and the DIMMs cause the remaining discrepancy

between modeled and measured power.

Our experience shows that applying commonly used power modeling method-

ologies to TRIPS results in a more than a factor of two underestimate in absolute

power consumption. The underestimate stems from errors in estimating latch count,

gate count, clock tree, and logic gate capacitance. While refining these estimates

with feedback from the final design improves the accuracy to within 21%, yet more

empirical data from the final design is needed. These results point to the difficulty

in building architecture power models from the ground up and provide guidance

on where to focus attention in architecture-level power models: better clock tree

models, accurate technology models and better models for unstructured, random

logic.

Our experience also indicates that power-modeling tools like Wattch [12]

and CACTI [110] are very valuable in early-stage architectural power modeling.

However, understanding the limitations of such tools is critical in achieving better

accuracy. For example, although Wattch and CACTI have been validated against

real industrial designs, such validation efforts have been performed at older technol-

41

ogy nodes. One must be careful when applying such tools to novel architectures such

as TRIPS, and to newer process technologies. Considering that companies like Intel

have introduced drastically new manufacturing technologies [72], more frequent val-

idation efforts such as ours are needed to make these tools more useful and relevant

to current technologies. Additionally, the CACTI [110] tool is extremely valuable in

modeling regular array structures such as caches, SRAM arrays, and register files.

However, such tools might be less useful in modeling unstructured random logic,

and custom-designed array structures, which tend to be heavily circuit-optimized

in industrial designs, and thus, cannot be modeled accurately with the analytical

models of CACTI.

While estimating absolute power consumption is particularly difficult, we

did find that the relative power from the architecture models tracked the power

measured in hardware reasonably well across the programs in our benchmark suite.

We measure this relative accuracy by measuring relative increase or decrease in

power on a benchmark from the arithmetic mean across all the benchmarks for both

the power models and the hardware. The results show that all the architectural

power models track the hardware results very closely, and that on average Base

tracks the hardware to within about 10%. The average relative accuracy improves

to within 3% with Base+C+T+P+G model. This observation bodes well for

architecture studies that seek to compare relative power consumption across different

applications and architecture configurations as long as the modeling, abstraction,

and technology modeling errors in the power models are shared in common mode

across the configurations.

3.4 Lessons

Our power model validation work in this dissertation has provided us with some

invaluable lessons, which are as follows. First, developing accurate architectural

42

power models is a very challenging exercise, especially for novel architectures such

as TRIPS. Designers must exercise caution when applying pre-existing power models

to novel architectures, and new technology nodes. Understanding the true limita-

tions of tools like CACTI and Wattch is very critical to the final model accuracy.

Second, while achieving absolute accuracy with architectural power models is very

challenging for any architecture, we observe that architectural power models fare well

in relative accuracy–the relative increase or decrease in power across microarchitec-

tural configurations and benchmarks. This observation bodes well for architectural

power models, which are typically used for early-stage design explorations.

43

Chapter 4

Performance and Power

Comparison Methodology

This chapter describes our experimental methodology for comparing the TRIPS and

the TFlex microarchitectures with ARM and PowerPC platforms. We justify the

choice of these platforms for our comparison and describe the simulators used for

the different platforms. We outline our efforts to normalize the respective power

and performance models to ensure a fair comparison of the architectures. We list

the benchmark suites used for our comparison. This chapter also discusses the

microarchitectural parameters of all the platforms included in our study: ARM,

PowerPC, TRIPS and TFlex.

4.1 Experimental Platforms

We use a cycle-level, execution-driven simulator, called TFlex simulator [57], capable

of simulating both the TRIPS and the TFlex microarchitectures for our comparison

experiments. Although the TRIPS microarchitecture is multi-threaded, and can

execute up to four threads [92], we only run the TRIPS processor in the single-

44

threaded mode running a single application thread.

To assess the relative advantages and disadvantages of TRIPS and TFlex

microarchitectures, we use two microarchitectures, Power4 [54] and XScale [20],

as our comparison platforms. We model the Power4 microarchitecture with a

trace-driven simulator called Turandot, which incorporates parameterizable pro-

cessor power models called PowerTimer [73]. We use “version II” of the Turan-

dot/PowerTimer models for our experiments. We leverage the XTREM performance

and power simulator for modeling the XScale microarchitecture [20].

Choice of Experimental Platforms: We compare TRIPS and TFlex

against Power4 and XScale for the following reasons. First, these platforms represent

two categorical extremes in the performance and power spectrum – a high-end sys-

tem optimized for performance and a low-end system optimized for power, providing

a good range for our comparison to the EDGE architectures. Second, as mentioned

in Chapter 3, the TRIPS architectural power models have been validated against

hardware power measurements and accurate RTL power models [36]. Thus, the

baseline TRIPS power models are based on the 130nm node used for the TRIPS pro-

totype implementation [36]. The original Power4 processor has been implemented

at the 180nm technology [54]. The Turandot simulator and its power models have

been validated against low-level RTL models of the Power4 processor [73]. Similarly,

the XTREM power models have been validated against real hardware [20]. Since all

platforms have been through some form of validation, our methodology eliminates

many uncertainties of unvalidated architectural power models. While it would be

interesting to compare TRIPS and TFlex power and performance to other high-

performance, power-optimized platforms like Intel Core-2 [81] or AMD Opteron [23]

microarchitectures, we avoid such an attempt because using real hardware for one

platform and a simulator for another injects many uncontrollable unknowns into

our experiments. Furthermore, to understand the relative advantages and disad-

45

vantages of TRIPS and TFlex compared to these new platforms, detailed access to

fine-grained power and performance measurements is essential and is not readily

available outside of simulation.

4.2 Power Models

A comparison of disparate platforms such as TRIPS, TFlex, Power4 and XScale is

challenging because they all implement different instruction sets, and are based on

different process technologies and design methodologies (custom vs. ASIC). To mit-

igate these challenges and to enable a fair comparison, we tune the baseline Power4

and XTREM power models to reasonably match that of TRIPS. As a first step,

we ensure the same process technology (65nm), supply voltage (1.2 Volt) and core

frequency (2 GHz) in all platforms. Although TRIPS, TFlex, and Power4 could

potentially operate at higher frequencies at 65nm we choose 2 GHz to be a reason-

able operating frequency for the XScale platform. Additionally, we ensure that all

platforms use the same main memory latency (cycles). The baseline TRIPS power

models at 130nm and Power4 and XTREM power models at 180nm are suitably

scaled down to the 65nm using linear technology scaling. The Turandot simula-

tor accepts the number of fan-out-of-4 (FO4) delays of the design as a parameter

to adjust its performance and power models. Assuming a FO4 delay value of 22

picoseconds (which is equal to 0.3 ∗ 65nm (feature size)) and the desired 2 GHz

frequency, we use 23 FO4 delays in the simulator.

4.2.1 TRIPS Power Models

The TRIPS power models are based on the Base+C+T+P+G power models

(described in Section 3.3). We incorporate these power models into the TFlex

simulator, and place the simulator in the TRIPS mode for our comparison. The

power model uses CACTI [110] models for all major structures such as instruction

46

and data caches, SRAM arrays, register arrays, branch predictor tables, load-store

queue CAMs, and on-chip network router FIFOs to obtain a per-access energy for

each structure. These per-access energies combined with access counts from the ar-

chitectural simulator provides the energy dissipated in these structures. The power

models for integer and floating point ALUs are derived from both Wattch [12] and

the TRIPS design database.

The combinational logic power in various microarchitectural units is modeled

based on detailed gate and parasitic capacitances from the TRIPS design databases,

and activity factor estimates from the simulator. The Base+C+T+P+G models

do not include clock gating support to conform with the TRIPS prototype, which

does not implement clock gating [98]. However, we add clock gating support (ex-

plained below) to the TFlex simulator for all of our experiments.

4.2.2 Turandot and ARM Power Models

The baseline Power4 models use detailed circuit-level simulations of various circuit

macros of the processor. The XTREM models use the models (version 1.0 [123])

for various array structures. For a consistent comparison, we replace these in-built

power models for all array structures in Turandot and XTREM with CACTI power

models for the same structures, ensuring that TRIPS, XScale and Power4 all utilize

CACTI models for all array structures. To ensure further consistency, we replace

built-in ALU power models of Power4 and XTREM with those of the TRIPS model

with one key difference. The Power4 microarchitecture supports a fused-multiply-

add floating point instruction, which performs two operations (a multiply and an

add) in one instruction. Hence, we rely on the baseline Turandot FPU power models

for Power4 to correctly model this fused instruction. The combinational logic power

in Turandot is modeled similar to TRIPS: capacitances come from the Power4 design

database, and activity estimates come from the Turandot simulator.

47

4.2.3 More Normalization Efforts

L2 Caches: The three simulators support different L2 cache organizations. While

TRIPS implements a Non-Uniform Cache Access (NUCA) L2 cache [58], Turandot

and XTREM support a unified, banked L2 cache. In all the experiments of this

chapter, we ignore the L2 power – both dynamic and static – to focus solely on

the efficacy of composability and EDGE architectures. Since the focus of this dis-

sertation is on the advantages and disadvantages of EDGE architectures vis-a-vis

conventional architectures, and not NUCA versus non-NUCA cache organization,

we assume the above simplification for our experiments. However, for the sake of

completeness we do present the overall chip power estimates for all platforms in

Chapter 5.

Clock Tree: We model global clock drivers, global clock tree interconnect,

pre-charge transistors and pipeline latches as part of the TRIPS clock tree. The

TRIPS clock models are based on validated latch count estimates from the TRIPS

design and accurate per-latch capacitances from the design library. Since the TRIPS

prototype chip does not implement clock gating [98], we add the clock gating support

to the TRIPS simulator for our experiments. Our clock gating model keeps track of

utilization factors in all microarchitectural units. If a unit is active during a clock

cycle, our model attributes the full ungated clock power to that unit. However, if a

unit is idle during a cycle our model does not completely clock-gate that unit to be

realistic. Instead, our model assigns a fixed percentage (10%) of the ungated clock

power to the idle unit. Our power models also clock gate the OPN routers in the

TRIPS microarchitecture.

The Turandot clock power models are similarly based on measurements on

circuit-level macros [78]. However, the baseline Turandot clock model has two key

differences with the TRIPS model. First, the Turandot model assumes perfect clock

gating – any gateable unit is completely clock gated. We adjust this clock gat-

48

ing style to match the realistic gating style of TRIPS (fixed 10% overhead for idle

units). Second, the power consumption of higher levels of the clock tree (clock

buffers, and splitters) is not modeled in the Turandot model. Assuming the same

clock-tree design style across the two systems, and using the clock tree power mod-

els from the TRIPS design, we add a fixed percentage overhead to the baseline

Turandot clock power. Our analysis of the TRIPS clock tree power shows that the

clock-tree overhead with varying clock-gating patterns is around 20% for the TRIPS

microarchitecture. However, to be conservative, we only add around 10% clock-tree

overhead to the Turandot models. We also add clock gating support to the XTREM

simulator. The simulator keeps track of activity in the pipeline latches, and all idle

latches and the associated last level of clock buffers are assumed to be clock-gated.

The rest of clock tree is always left on.

Leakage Models: We obtain detailed transistor width estimates for all the

TRIPS tiles from the TRIPS design database. We use the sub-threshold current

values predicted by Zhao et al. [128]. For gate-leakage current, we use gate-oxide

thickness values from [128] and the work that relates gate-oxide thickness to gate-

leakage density [19]. These unit-width leakage current values combined with transis-

tor width estimates provide a simple area-based leakage power models for the TRIPS

processor. The total leakage power of the TRIPS system is estimated as the sum

of leakage powers of all the constituent tiles in a TRIPS processor. Although the

TRIPS prototype chip consists of two TRIPS processors, we assume that only one

TRIPS processor is used to run the benchmark, and that the other TRIPS processor

is completely turned off and it does not contribute to any dynamic or static power.

To normalize the leakage power models across all platforms, we replace the built-in

Turandot model, which estimates leakage power as a fixed percentage of dynamic

power, and XTREM models with our area-based leakage models after adjusting for

the area estimates of the Power4 and the XScale core.

49

4.2.4 TFlex Power Models

As mentioned in Section 4.1, we use a cycle-accurate simulator called the TFlex

simulator, capable of simulating both the TRIPS and the TFlex microarchitectures,

for our experiments. The TFlex power model is incorporated into the TFlex simu-

lator in a manner similar to Wattch [12], and is derived from the validated TRIPS

power models, the Base+C+T+P+G models, described in Section 3.3. The

power model for an individual TFlex core consists of components from the TRIPS

power model and clock tree power scaled by the ratio of TRIPS to TFlex core latch

counts. The power model uses CACTI [110] models for all major structures such as

instruction and data caches, SRAM arrays, register arrays, branch predictor tables,

load-store queue CAMs, and on-chip network router FIFOs to obtain a per-access

energy for each structure. These per-access energies combined with access counts

from the TFlex simulator provides the energy dissipated in these structures. The

power models for integer and floating point ALUs are derived from both Wattch [12]

and the TRIPS design database. The combinational logic power in various microar-

chitectural units is modeled based on detailed gate and parasitic capacitances from

the TRIPS design databases, and activity factor estimates from the simulator.

The TFlex power models employ the same clock gating models as described

in Section 4.2. TFlex has two additional enhancements over the TRIPS microarchi-

tecture. First, each TFlex core is dual-issue processor compared to the single-issue

E-Tile in TRIPS [57]. Second, each TFlex core enjoys twice the OPN bandwidth

compared to the E-Tile in TRIPS by using two sets of channels, FIFOs, etc. We

incorporate these enhancements into our TFlex power models by including the ad-

ditional ports in the reservation station, additional ALU and instruction selection

logic needed for dual issue, and the additional channels and FIFOs required in the

OPN router.

The leakage power models for TFlex are based on core area estimates and

50

Parameter Configuration

Hand-optimized Bench-
marks

2 Kernels, 6 EEMBC benchmarks

4 microbenchmarks, 6 kernels, 23 EEMBC and 15
SPEC CPU 2000 benchmarks currently supported (7
Integer, 8 FP),

Compiled Benchmarks simulated with single simpoint of 100 million instruc-
tions [100]

Process Technology 65 nm
Supply Voltage 1.2 volts
Clock Frequency 2 GHz
Memory Frequency 667 MHz

Table 4.1: Benchmarks and Experimental Configuration

unit-area based leakage models from Section 4.2. The total leakage power of the

TFlex system is estimated as the sum of leakage powers of all cores in the composed

system. We assume that when two TFlex cores are composed into a logical proces-

sor, the total power consumption is the sum of the dynamic and the static power

dissipated in those two cores; we assume that unused TFlex cores can be completely

power- and clock-gated.

4.3 Experimental Configuration

In this section, we describe our experimental configuration used for the comparison

study: list of benchmarks, and the microarchitectural configurations for various

platforms, and a detailed area estimate for each platform at 65nm technology node.

4.3.1 Benchmarks

Table 4.1 lists the various benchmarks used in this study and the experimental

configuration. Although processors built in 45nm technology, and even 32nm tech-

nology, are being shipped in 2010, we assume the 65nm process technology for our

51

experiments. We expect our experimental results to hold if more recent process

technologies were used. The key difference would be that 45nm process would en-

joy reduced leakage power levels because of transition to metal gates and high-K

dielectric material as in [72]. The benchmarks fall under two categories. The first

category of benchmarks are compiled by the TRIPS compiler, and are additionally

hand-optimized. These include 2 kernels and 6 EEMBC [2] benchmarks. The sec-

ond category of benchmarks are purely compiled by the TRIPS compiler. These

include 6 kernels, 4 microbenchmarks, 23 EEMBC benchmarks, and 15 SPEC [43]

benchmarks with a single simpoint of 100 million instructions [100]. We include

both categories of benchmarks because hand-optimized benchmarks typically ex-

hibit better performance on TRIPS than compiled ones. All these benchmarks are

compiled with the XLC compiler on an AIX system for the Power4 platform. Code

for the ARM platform is generated using a gcc cross-compiler.

For SPEC benchmarks, we generate the instruction traces corresponding to

the same simpoints on an AIX machine, and feed these traces to the Turandot

simulator. We were forced to exclude the rest of SPEC suite for one or more of the

following reasons:

• The TRIPS compiler infrastructure, as of late January 2010, currently fails

to generate reliable binaries for four benchmarks (197.parser, 200.sixtrack,

255.vortex and 254.gap);

• The ARM simulators (functional and performance) fail output checks for the

SIMPOINT regions on others (253.perlbmk and 301.apsi).

4.3.2 Microarchitectural Parameters

We tabulate the microarchitectural parameters of TRIPS, XScale and Power4 in this

section along with a detailed area estimates of various microarchitectural structures

in 65 nm process technology. Tables 4.2 and 4.3 compare the microarchitectural

52

features of TRIPS and TFlex to that of the ARM and Power4 microarchitectures

respectively. The table also shows the corresponding area estimates for each microar-

chitecture at 65nm. The area estimates for TRIPS are obtained from the TRIPS

design database; the Power4 area estimates are from the Turandot simulator, and

the ARM estimates come from [20]. The original area estimates for each platform

has been suitably scaled down to 65nm using linear technology scaling with a fixed

10% scaling overhead. Although the L2 cache capacity is the same across all plat-

forms, the L2 cache organization is very different: while TRIPS uses the NUCA L2

caches ARM and Power4 use banked L2 caches. As mentioned in Section 4.2 we

ignore the power consumed by the L2 cache banks for our comparison, and we also

ignore the differences in their area estimates. We argue that this is a reasonable

assumption because it is relatively straight forward to implement the same L2 cache

organization on all platforms having similar areas.

The original Power4 processor can issue up to eight instructions [54] whereas

the Power4 in this study has been scaled down to issue up to four instructions.

The scaled-down Power4 avoids the high complexity and the power overhead of

the original Power4. The number of ports in the register files, and issue queues in

Power4 have been suitably adjusted to match the new issue width of four. We have

also disabled the multi-threading functionality present in original Power4 proces-

sor [54], and have suitably adjusted the area estimates, the performance and the

power models in the Turandot simulator.

Similar to TRIPS, the TFlex power models have been suitably scaled to the

65nm process technology to ensure a fair comparison across all platforms: TRIPS,

TFlex, ARM and Power4. We use the exact set of simulators, benchmarks, voltage

and frequency settings, and power models for the other platforms (TRIPS, ARM

and Power4) as mentioned in Sections 4.1 and 4.2. The TFlex system utilizes the

4MB NUCA L2 cache similar to the TRIPS system. However, we only use the power

53

Structures TRIPS (16-issue) Arm (1-issue, in-order) Power4 (4-issue)
Size Area Size Area Size Area

(mm2) (mm2) (mm2)

Fetch Block Predictor
(64Kbit) [87]

BTB in [20] Predictor in [54]

(B.Pred.,
I-cache)

80KB I-cache 2.1 32KB I-Cache 0.69 64KB I-cache 1.72

Reg. Files 512 entries 0.83 16 entries 0.12 80-entry INT 0.63
72-entry FP

Exec. re-
sources

1024 entries 10.82 Single Issue 0.36 82-entry 2.86

SRAM-based CAM-based
issue window issue window

(partitioned)
(issue win-
dow,

INT(16),FP(16) 1 INT-ALU, 1
MAC

1 combined,

ALUs) INT+MEM
Unit
1 FP, 1 Branch
1 Logical

L1 D-
cache

32KB D-cache 9.20 32 KB D-cache 0.62 32KB D-cache 2.99

(D-cache,
LSQ)

1K-entry LSQ Write and Fill
Buffers

Two 36-entry
queues

Routers OPN [38] 3.03 N/A 0.0 N/A 0.0

L2 Caches 4-MB NUCA
Cache

– 4-MB Banked
Cache

– 4-MB Banked
Cache

–

Total 25.98 1.79 8.2

Table 4.2: TRIPS Microarchitecture Comparison

54

Structures TFlex-1 (2-issue) Arm (1-issue, in-order) Power4 (4-issue)
Size Area Size Area Size Area

(mm2) (mm2) (mm2)

Fetch Block Predictor
in [57]

BTB in [20] Predictor in [54]

(B.Pred.,
I-cache)

8KB I-cache 1.06 32KB I-Cache 0.69 64KB I-cache 1.72

Reg. Files 128 entries 0.25 16 entries 0.12 80-entry INT 0.63
72-entry FP

Exec. re-
sources

128-entry 1.06 Single Issue 0.36 82-entry 2.86

SRAM-based CAM-based
issue window issue window

(partitioned)
(issue win-
dow,

2-INT ALU, 1-
FP ALU

1 INT-ALU, 1
MAC

1 combined,

ALUs) INT+MEM
Unit
1 FP, 1 Branch
1 Logical

L1 D-
cache

8KB D-cache 0.99 32 KB D-cache 0.62 32KB D-cache 2.99

(D-cache,
LSQ)

44-entry LSQ Write and Fill
Buffers

Two 36-entry
queues

Routers Dual OPN [57] 0.27 N/A 0.0 N/A 0.0

L2 Caches 4-MB NUCA
Cache

– 4-MB Banked
Cache

– 4-MB Banked
Cache

–

Total 3.63 1.79 8.2

Table 4.3: TFlex Microarchitecture Comparison

55

dissipated in the TFlex cores for our comparison studies.

The TFlex microarchitecture supports various block mapping policies aimed

at balancing concurrency and communication across the distributed substrate [88].

We provide a brief overview of these block-mapping policies in Chapter 7, and eval-

uate the combined performance and power characteristics of some of these policies.

In our comparison experiments involving TFlex, we use “deep” block-mapping strat-

egy [88], which maps each TFlex block to single owner core. In contrast, the original

TFlex implementation uses the “flat” mapping strategy [57] that stripes each TFlex

block across multiple participating cores.

56

Chapter 5

Performance and Power

Comparison Results

This chapter presents the results for performance and power comparison of all the

platforms: TRIPS, ARM, Power4, and TFlex. The simulators, power models, mi-

croarchitectural configurations, and benchmarks used in these experiments are de-

scribed in Chapter 4. To simplify the discussion, we first compare TRIPS to Power4

and ARM in terms of metrics like performance, power, energy-delay, and energy-

delay-squared product. Next, we present a detailed structure-by-structure power

breakdown analysis of TRIPS and Power4. This analysis provides insights into the

overheads of the respective systems. Finally, we compare the TFlex microarchi-

tecture to all the previous platforms, and discuss the effects of composability on

performance and energy efficiency.

57

 0.00

 2.00

 4.00

 6.00

 8.00

 10.00

 12.00

 14.00

 16.00

G
eo

M
ea

n(
H

)

E
E

M
B

C
(C

)

S
P

E
C

IN
T

(C
)

S
P

E
C

F
P

(C
)

G
eo

M
ea

n(
C

)

G
eo

M
ea

n

P
er

fo
rm

an
ce

 n
or

m
al

iz
ed

 to
 A

R
M

ARM
PPC
TRIPS

Figure 5.1: TRIPS vs. Other Platforms: Performance Comparison @ 1.2V, 2 GHz,
65nm

 0.0

 2.0

 4.0

 6.0

 8.0

 10.0

 12.0

 14.0

G
eo

M
ea

n(
H

)

E
E

M
B

C
(C

)

S
P

E
C

IN
T

(C
)

S
P

E
C

F
P

(C
)

G
eo

M
ea

n(
C

)

G
eo

M
ea

n

P
ow

er
 n

or
m

al
iz

ed
 to

 A
R

M

 15 25, 34 ARM
PPC
TRIPS

Figure 5.2: TRIPS vs. Other Platforms: Power Comparison @ 1.2V, 2GHz, 65nm

58

5.1 TRIPS Comparison

5.1.1 Performance and Raw Power

Figures 5.1 and 5.2 compare performance and power respectively of the three plat-

forms: ARM, Power4, and TRIPS. In these graphs, both performance and power

of all platforms are normalized to that of ARM. The following experimental config-

uration is used to generate these results: voltage supply of 1.2 Volts, 2GHz clock

frequency and 65nm technology. The y-axis of Figure 5.1 plots performance (inverse

of number of execution cycles); higher bars equate to fewer execution cycles, and

better performance. The y-axis of Figure 5.2 plots power dissipation in Watts with

higher bars indicating higher power dissipation. The x-axis of both figures show

the various types of benchmarks. The graphs show benchmarks that are compiled

and then hand-optimized on TRIPS (denoted by the letter ’H’) separately from the

ones that are purely compiled by the TRIPS compiler (denoted by ’C’). We sepa-

rate these benchmarks because hand-optimized benchmarks typically exhibit better

performance on TRIPS than compiled ones. The graphs also report the overall

geometric mean of normalized performance and power for all platforms.

On average, we observe that TRIPS achieves five times better performance

compared to the ARM platform, and approximately the same performance as the

Power4. On the SPEC floating point (FP) benchmarks (SPECFP), TRIPS and

Power4 outperform the ARM platform mainly because the simulated ARM plat-

form lacks hardware FP support and emulates FP code in software. The TRIPS

microarchitecture implements 16 FP units compared to one FP unit (with support

for fused multiply and add) in Power4. By better extracting the parallelism in

FP code using its 16 FP units, TRIPS outperforms Power4 in the SPEC FP cate-

gory. In addition, due to better code quality of hand-optimized benchmarks, TRIPS

outperforms Power4 in those benchmarks as well. Since the other compiled bench-

marks are control-intensive, the quality of code generated by the TRIPS compiler

59

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

G
eo

M
ea

n(
H

)

E
E

M
B

C
(C

)

S
P

E
C

IN
T

(C
)

S
P

E
C

F
P

(C
)

G
eo

M
ea

n(
C

)

G
eo

M
ea

nP
er

fo
rm

an
ce

/W
at

t n
or

m
al

iz
ed

 to
 A

R
M

ARM
PPC
TRIPS

Figure 5.3: TRIPS vs. Other Platforms: Inverse PDP Comparison @ 1.2V, 2GHz,
65nm

prevents TRIPS from achieving better performance. As a result, the Power4 slightly

outperforms TRIPS in such benchmarks.

In terms of raw power dissipation, we observe that on average TRIPS con-

sumes approximately 11.5 times more power than ARM. Power4 fares similarly con-

suming about 12 times more power compared to ARM. The ARM microarchitecture

has a single-issue pipeline, and has been heavily optimized for the embedded domain.

On the other hand, both TRIPS and Power4 target higher performance, and are not

necessarily optimized for the lowest power. Despite achieving the same performance

level as that of Power4, TRIPS consumes slightly lower power on average compared

to Power4. As mentioned above, TRIPS achieves much better performance than

Power4 on SpecFP code, by better utilizing the 16 FP ALUs. Due to this, TRIPS

consumes almost 40% more power than Power4 in SPEC FP code.

60

 0.00

 1.00

 2.00

 3.00

 4.00

 5.00

 6.00

 7.00

G
eo

M
ea

n(
H

)

E
E

M
B

C
(C

)

S
P

E
C

IN
T

(C
)

S
P

E
C

F
P

(C
)

G
eo

M
ea

n(
C

)

G
eo

M
ea

n

P
er

f ^
 2

/W
at

t n
or

m
al

iz
ed

 to
 A

R
M

ARM
PPC
TRIPS

Figure 5.4: TRIPS vs. Other Platforms: Inverse EDP Comparison @ 1.2V, 2GHz,
65nm

 0.00

 2.00

 4.00

 6.00

 8.00

 10.00

 12.00

 14.00

 16.00

G
eo

M
ea

n(
H

)

E
E

M
B

C
(C

)

S
P

E
C

IN
T

(C
)

S
P

E
C

F
P

(C
)

G
eo

M
ea

n(
C

)

G
eo

M
ea

n

P
er

f ^
 3

/W
at

t n
or

m
al

iz
ed

 to
 A

R
M

24 29 93 ARM

PPC
TRIPS

Figure 5.5: TRIPS vs. Other Platforms: Inverse ED2P Comparison @ 1.2V, 2GHz,
65nm

61

5.1.2 Energy-Delay-Product and Energy-Delay2 Product

Researchers use different metrics to compare the energy efficiency of processors.

These metrics include, but are not limited to, power-delay-product (PDP), energy-

delay-product (EDP), and energy-delay2-product (ED2P) [13]. Hofstee suggests the

use of a metric called Energy-Performance Ratio (EPR) to evaluate techniques that

maximize performance within strict power budgets [46]. For every design parame-

ter that affects performance and energy (circuit techniques, pipelining, and voltage

scaling are some examples), the EPR metric measures the ratio of percent change

in energy-per-operation per percent change in performance. Hofstee also classifies

the metrics of PDP, EDP, and ED2P according to the EPR values of 0, 1, and 2

respectively. Each of these metrics (PDP, EDP, and ED2P) can be used for energy

efficiency comparison under different scenarios. The PDP metric and its inverse, per-

formance/watt, represent the total energy consumed, and are used for comparison

in the mobile computing domain. In this domain, maximizing the battery life takes

precedence over performance. Hence, the PDP metric favors designs with lower

power consumption regardless of their performance levels. In contrast, the EDP

and the ED2P metrics place equal or more emphasis on performance compared to

energy respectively, and is typically used in high-end designs [13]. The PDP metric

is useful in the narrow regime of mobile computing (sub 10-watt regime), where

maximizing battery life is of utmost importance. However, we mainly use the ED2P

metric in this dissertation for comparing energy efficiency of the various platforms

because this metric favors designs with maximal performance within strict power

budgets [11, 13, 69, 103, 130]. For the sake of completeness, we also compare the

various platforms using the PDP and the EDP metrics.

Figure 5.5 compares the inverse ED2P metric of ARM, Power4, and TRIPS

platforms. The y-axis of the graph plots performance3/watt normalized to that of

ARM, and the x-axis shows various types of benchmarks. In this graph, a higher

62

KL
MKML
NKNL

OPQ RRS TPURVWXYZ[\]̂_
_̀a

bcdefgd hijk klmde hlnkfejolp
qr stuvwswtxvyytw stuvw

Figure 5.6: TRIPS vs. Other Platforms: Chip Power Comparison

value for performance3/watt means higher energy efficiency of the system. Both

TRIPS and Power4 achieve better inverse ED2P compared to ARM because they

achieve better performance. In comparison to Power4, TRIPS achieves approxi-

mately 12% better ED2P, as they both have similar performance and TRIPS has

slightly lower power dissipation. Figures 5.3 and 5.4 compare the inverse PDP, and

EDP respectively of ARM, Power4 and TRIPS. The y-axis of the graphs plots per-

formance/watt, and performance2/watt normalized to that of ARM respectively.

As discussed above, when the PDP metric is used for comparison, the ARM plat-

form performs about 2.5 times better than Power4 and TRIPS. In terms of per-

formance/watt, both Power4 and TRIPS do not achieve a one-to-one increase in

performance and power, despite the better performance compared to ARM. So,

Power4 and TRIPS do not fare as well as ARM using the PDP metric.

63

5.1.3 Comparison of Chip Power

Figure 5.6 compares the average chip power consumption of ARM, Power4, and

the TRIPS platforms. Each bar shows the average chip power consumed by each

platform, and also shows the fraction of the chip power contributed by the processor

core and the L2. As mentioned before, both ARM and Power4 designs model a 4-

MB banked cache whereas the TRIPS design uses a 4-MB NUCA cache. As the

ARM processor we study is single issue, it experiences lower L2 utilization than

other platforms, and hence, consumes the least chip power. TRIPS, on the other

hand, experiences a higher L2 utilization than Power4, and hence, consumes about

14% more power in the L2 than Power4. Overall, the TRIPS chip consumes the

most power (as both the TRIPS core and NUCA L2 consume more power than the

Power4 and banked L2 respectively), and is almost 16% more than Power4.

5.1.4 TRIPS: Detailed Power Breakdown

Table 5.1 presents average power (arithmetic mean) breakdowns of XScale, Power4

and TRIPS configurations across all benchmarks. Table 5.1 breaks down the total

processor power into categories including leakage, clock tree, and different microar-

chitectural units. The power for each category is reported in milliWatts (mW).

Since XScale is an in-order, single-issue microarchitecture that has been optimized

for power, many structures including the load-store queues, issue windows and reg-

ister renamers are absent. Such categories are attributed 0% power for XScale.

In our analysis, we mainly focus the comparison on the power overheads of

the superscalar Power4 and the distributed TRIPS microarchitectures. Power4 is

a typical superscalar processor that employs large, multi-ported register files, com-

plex register renamers, power-hungry issue windows supporting associative searches

to extract better performance. TRIPS, on the other hand, completely eliminates

monolithic, centralized structures, and uses partitioning and replication to achieve

64

Category XScale Power4 TRIPS
(milliWatts) (milliWatts) (milliWatts)

LEAKAGE 44 (5%) 234 (2%) 632 (5%)

CLOCK-TREE 56 (6%) 479 (4%) 441 (3%)

FETCH 239 (27%) 1026 (10%) 472 (4%)

DECODE 21 (2%) 1284 (12%) 73 (1%)

DCACHE 144 (16%) 451 (4%) 412 (3%)

FP-ALUs 0 (0%) 1246 (12%) 1745 (13%)

INT-ALUs 369 (41%) 2887 (27%) 4967 (38%)

ISSUE-Q 0 (0%) 1848 (17%) 545 (4%)

REGFILE 23 (3%) 130 (1%) 26 (0%)

REG-RENAMER 0 (0%) 875 (8%) 303 (2%)

LSQ 0 (0%) 304 (3%) 2232 (17%)

BLOCK-CONTROL 0 (0%) 0 (0%) 85 (1%)

OPN-ROUTER 0 (0%) 0 (0%) 1030 (8%)

TOTAL POWER 896 10764 12964

Table 5.1: TRIPS Power Breakdown Comparison

Structure Per-Access Energy Avg. Number Avg. Power
(pJ) of Accesses (millions) (mW)

Power4 TRIPS Power4 TRIPS Power4 TRIPS

Reg. File 15.79 5.685 78.6 14.2 130 26

Reg. Re-
namer

401.72 224.13 78.6 61.8 875.0 303.0

Issue Win-
dow

94.42 8.91 882 319 1848.0 545.0

LSQ 153.18 1348.06 20.0 22.64 304.0 2232.0

Table 5.2: Detailed Power Breakdown

65

better performance. Our comparison clearly illustrates the power advantages and

disadvantages of either approach.

All power categories in Table 5.1 are common to both TRIPS and Power4 ex-

cept for “Block-Control” and the “OPN-Router”. Block control refers to the power

spent in the block fetch and commit protocols in the distributed TRIPS microar-

chitecture, and OPN-Router refers to the power consumed by the operand network

router. Table 5.2 tabulates the per-access energy, average number of accesses, and

the average power consumed by important structures in Power4 and TRIPS. The

per-access energy comes from CACTI-based models, and does not include clock or

control logic power. However, the average power column includes both clock and

control logic power for each structure.

Clock Tree and Leakage: As can be seen from Table 5.1, the in-order,

single-issue XScale microarchitectural is power-optimized compared to TRIPS and

Power4. Since both Power4 and TRIPS are larger designs, the clock tree power for

Power4 and TRIPS are almost 8 times that of ARM. TRIPS being the largest of

the three designs (in terms of area) has the most leakage power, which is about 3x

that of Power4 which in turn is 5x that of XScale.

Power4 is a complex design, compared to TRIPS, with larger caches, multi-

ple register files with higher number of ports and CAM-based issue queues, which

require larger clocking support. Also, as described in Section 4.2 we perform two

normalization steps to the baseline clock models of Power4 – realistic clock gating

and clock tree overhead. Realistic clock gating adds a fixed percentage (10%) of

ungated clock power as overhead to an idle unit. Clock tree overhead adds the

power dissipated in the clock tree (clock buffers) to the baseline clock power (a fixed

percentage of 10%). These two normalization steps combined with more complex

design cause Power4’s clock tree power comparable to that of TRIPS.

Register Files: The TRIPS microarchitecture implements 128 architectural

66

registers per thread slot, which are partitioned into four R-Tiles [92]. The register

files in each R-Tile have only 1 read and 1 write ports. The Power4 baseline, on the

other hand, implements separate floating point and integer register files. The FP

and the Integer register files have 3 read and 1 write, and 2 read and 1 write ports

respectively, which in turn increases the per-access power for the Power4 register

files.

Furthermore, the EDGE ISA eliminates many register accesses due to direct

intra-block instruction communication (5 times less register accesses compared to

Power4), as indicated in Table 5.2. Due to these factors the register file power in

Power4 is 5 times that of TRIPS. Power4 supports multiple concurrent register ac-

cesses through additional ports, whereas TRIPS concurrent register access through

partitioned register files with fewer ports. Simple and partitioned register files and

direct dependence encoding are clear advantages for the TRIPS microarchitecture.

Register Renamer: The Power4 microarchitecture maps architectural reg-

ister names to physical registers using integer and FP register renamers. Since the

Power4 baseline can dispatch up to 4 integer operation and 4 FP operations per cycle

to the issue queues, the individual register renamers should have the ability to map

a maximum of 12 integer (4 * 2 Sources + 4 * 1 Destination) and 12 FP registers,

which greatly increases the complexity of the renamer. The TRIPS microarchi-

tecture implements register renaming between blocks using read and write queues

in each R-Tile [92]. The partitioned implementation of the read and write queues

decreases the number of required ports, and achieves a 3x reduction is register for-

warding power compared to that of Power. Again, the partitioned implementation

of register forwarding is an advantage for the distributed TRIPS microarchitecture.

Issue Windows: Power4 microarchitecture dynamically rediscovers de-

pendencies between producer and consumer instructions in a program using the

wake-up/select logic in the issue windows. Power4 employs power-hungry, content-

67

addressable memories (CAMs) in the integer and FP issue windows. Every re-

sult broadcasts its tag to all instructions in the issue window and an associative

search is performed to find the correct dependent instructions. TRIPS employs

an ISA, which explicitly encodes the dependence between a producer and a con-

sumer, thereby avoiding the need for this associative search at runtime. TRIPS has

a power-efficient, RAM-based issue window which significantly reduces the energy

consumption. The associative issues windows of Power4 (integer and FP combined)

consume 3x more power than that of TRIPS.

Load-Store Queues: Modern microprocessors typically include load-store

queues for dynamic memory disambiguation [96]. The Power4 microarchitecture em-

ploys a 36-entry load queue and a 36-entry store queue for memory disambiguation.

The TRIPS microarchitecture supports a large instruction window (1024 instruc-

tions) with a total of 8-inflight TRIPS blocks [92]. Due to restrictions in the TRIPS

ISA [92] each TRIPS block is allowed up to 32 load or store instructions. This

means a total 256 load or store instructions (32 instructions x 8 blocks) could po-

tentially be in-flight. TRIPS employs a brute-force solution to attack this problem:

each D-Tile implementing the load-store queue in TRIPS has a 256-entry load-store

queue [92]. This ensures correctness in the worst case where all 256 load or store

instructions map to a single D-Tile (because of address partitioning). This brute-

force LSQ design in the TRIPS is a significant area and power overhead compared

to Power4. Our results indicate that TRIPS LSQs consume almost 7x the power of

Power4 LSQs. Researchers have proposed solutions for solving this problem using

negative acknowledgements on the operand network [97]. The TFlex microarchitec-

ture employs this solution to avoid maximally sizing the LSQs, and thus mitigates

this disadvantage significantly.

Operand Network and Block Control: As shown above, the distributed

TRIPS microarchitecture achieves better power efficiency by avoiding multi-ported,

68

monolithic hardware structures, and by partitioning various hardware structures.

On the downside, TRIPS must spend significant energy for communication across

the distributed substrate. The TRIPS microarchitecture implements a host of mi-

cronetworks for both communicating data and sending control messages to orches-

trate distributed execution. The operand network (OPN), a key micronetwork,

replaces the conventional bypass networks in the TRIPS microarchitecture and

transports results of an instruction to all of its consumers. Our results indicate

that almost 9% of total processor power is spent in the distributed micronetworks

(OPN-Router and Block-Control categories in Table 5.1).

Additionally, as described in Section 2.1, another overhead of the TRIPS ISA

is the move instruction. TRIPS compiler employs the move instruction to create a

software fan-out tree whenever a producer has more consuming instructions than

supported by a single instruction. Analysis of simulation results show that roughly

20% of all TRIPS instructions consists of moves. The energy spent by TRIPS in

these communication micronetworks, and the limited fan-out of the move instruction

are power overheads.

I-Cache Efficiency: Each TRIPS block has a header block that holds has

the register read and write instructions and other metadata. This header block is

an overhead of the TRIPS ISA with respect to the instruction cache capacity and

hit rate. Although the ISA has support for variable-sized blocks, the TRIPS mi-

croarchitecture expands non-full blocks into NOPs when fetching blocks from the

L2 cache to I-caches [68]. These overheads affect the overall I-cache hit rate, thus

impacting performance. For instance, the average I-cache hit rate for SPEC bench-

marks in Power4 is about 99% whereas it is 97% in TRIPS. These efficiency issues

can be addressed by reducing the header-block size in the ISA and by support-

ing variable-sized blocks in the I-cache. However, exploring techniques to improve

I-cache efficiency is outside the scope of this dissertation.

69

5.1.5 Summary of TRIPS Results

Using a detailed power breakdown of XScale, Power4 and TRIPS, we have dis-

cussed the power advantages and overheads of the TRIPS ISA and the TRIPS

microarchitecture. Despite the overheads of the TRIPS ISA and the distributed

TRIPS microarchitecture, TRIPS achieves similar performance and slightly lower

power compared to Power4. Thus, TRIPS achieves slightly better energy efficiency,

approximately 12% better ED2P, compared to the Power4. XScale consumes much

lower power than both TRIPS and Power4, but also achieves poor performance, and

thereby, achieving poor energy efficiency compared to other platforms.

The TFlex microarchitecture, which also implements the TRIPS ISA, shares

a few overheads of the TRIPS ISA like predication and I-cache efficiency. However,

by better matching hardware resources to needs of applications, TFlex is expected

to achieve better energy efficiency compared to TRIPS. Additionally, TFlex employs

the NACK LSQ mechanism to avoid maximally-sized LSQs found in TRIPS.

5.2 TFlex Results

In this section, we present our experimental results comparing performance, power,

and energy efficiency of the TFlex platform to that of ARM, Power4 and TRIPS.

First, we present the comparison results of TFlex 1-core and 2-core configurations

with that of ARM and Power4. Next, we present a detailed power breakdown anal-

ysis of 1-core TFlex configuration, and compare it with the breakdowns of Power4.

Finally, we describe the effects of composability (all TFlex configurations, up to 32

cores) on performance, power and energy efficiency. We conclude the chapter with a

comparison of all platforms discussed so far: TRIPS, ARM, Power4, and all TFlex

configurations.

70

 0.00

 1.00

 2.00

 3.00

 4.00

 5.00

 6.00

 7.00

 8.00

 9.00

G
eo

M
ea

n(
H

)

E
E

M
B

C
(C

)

S
P

E
C

IN
T

(C
)

S
P

E
C

F
P

(C
)

G
eo

M
ea

n(
C

)

G
eo

M
ea

n

P
er

fo
rm

an
ce

 n
or

m
al

iz
ed

 to
 A

R
M

ARM
PPC
TFlex−1
TFlex−2

Figure 5.7: Performance comparison of 1-core and 2-core TFlex configurations with ARM

and Power4 @ 1.2V, 2GHz and 65nm.

5.2.1 TFlex 1-Core and 2-Core Configurations

Figures 5.7 and 5.8 compare the performance and power of Power4, XScale, TFlex

1-core and 2-core configurations all normalized to that of XScale (“ARM” bar) for

different benchmark types. We show both TFlex 1-core and 2-core configurations

here because each is similar in performance to XScale and Power4 respectively. As

discussed in Chapter 4, we separate the benchmarks that are hand-optimized for

TFlex from the purely compiled ones because hand benchmarks typically exhibit

better performance on TFlex than compiled ones. Power4 out-performs TFlex 1-

core by 2.3x on average and has better performance in all benchmark categories due

to its larger level-1 caches and higher issue width. Additionally, Power4 supports a

fused multiply-add instruction that combines a multiply and add operation into one

instruction. On the other hand, dual-issue, out-of-order TFlex 1-core outperforms

the single-issue, in-order XScale core by achieving 2.1x better performance. Power4

outperforms TFlex 2-cores only by 30%, but TFlex 2-cores achieves almost 4 times

better performance than ARM.

71

 0.0

 2.0

 4.0

 6.0

 8.0

 10.0

 12.0

G
eo

M
ea

n(
H

)

E
E

M
B

C
(C

)

S
P

E
C

IN
T

(C
)

S
P

E
C

F
P

(C
)

G
eo

M
ea

n(
C

)

G
eo

M
ea

n

P
ow

er
 n

or
m

al
iz

ed
 to

 A
R

M

 15 25 13 12 12 ARM
PPC
TFlex−1
TFlex−2

Figure 5.8: Power comparison of 1-core and 2-core TFlex configurations with ARM and

Power4 @ 1.2V, 2GHz and 65nm.

Figure 5.8 shows the geometric mean of power for Power, TFlex-1, and TFlex-

2 all normalized to XScale. As discussed in Chapter 4, we only report the power

consumed by the respective processor cores in all platforms, and exclude the L2

power to limit the discussion to relative advantages and disadvantages of EDGE.

While Power4 performs 2.4 times better than 1-core TFlex, Power4 also consumes

4 times more power than 1-core TFlex. TFlex 1-core outperforms XScale by 2.1x

while consuming 3x more power, achieving 30% worse energy efficiency. The key

reason for higher power consumption of Power4 is its use of many power-inefficient

structures to extract better performance.

Figure 5.9 compares the inverse ED2P metrics of Power4, TFlex-1 and TFlex-

2 all normalized to XScale. The y-axis of the graphs plots performance3/watt nor-

malized to ARM and the x-axis shows various types of benchmarks. On average,

Power4 achieves 3.2x better ED2P than TFlex 1-core, a direct result of better per-

formance of Power4 compared to TFlex. Additionally, Power4 only achieves a 2%

improvement in ED2P over TFlex 2-cores despite consuming 2x the power of TFlex

72

 0.00

 2.00

 4.00

 6.00

 8.00

 10.00

 12.00

G
eo

M
ea

n(
H

)

E
E

M
B

C
(C

)

S
P

E
C

IN
T

(C
)

S
P

E
C

F
P

(C
)

G
eo

M
ea

n(
C

)

G
eo

M
ea

n

P
er

f ^
 3

/W
at

t n
or

m
al

iz
ed

 to
 A

R
M

 17 14 16 29 32 ARM
PPC
TFlex−1
TFlex−2

Figure 5.9: ED2P comparison of 1-core and 2-core TFlex configurations with ARM and

Power4 @ 1.2V, 2GHz and 65nm.

2-cores.

5.2.2 Power Breakdown Analysis of TFlex 1-Core

Table 5.3 presents detailed average power statistics of XScale, Power4 and TFlex 1-

core configurations across all benchmarks. This table has the same format as Table

5.1 but reports the power breakdown of TFlex 1-core configuration as opposed to

TRIPS. As in the case of TRIPS breakdown, we restrict our analysis to Power and

TFlex. Figure 5.10 presents the same data for both Power4 and TFlex 1-core (as in

Table 5.3) in the form of a pie-chart. In addition, Table 5.4 tabulates the per-access

energy, average number of accesses, and the average power consumed by important

structures in Power4 and TFlex.

Clock Tree and Leakage: TFlex 1-core has a smaller area compared to

Power4, and is closer to the ARM core in its power consumption. The clock tree

and leakage power of Power4 is about 5 times and 2.3 times that of TFlex 1-core.

Register Files and Renamers Each TFlex core implements a unified ar-

73

Category ARM Power4 TFlex 1-Core
(milliWatts) (milliWatts) (milliWatts)

LEAKAGE 44 (5%) 234 (2%) 98 (3%)

CLOCK-TREE 56 (6%) 479 (4%) 97 (3%)

FETCH 239 (27%) 1026 (10%) 307 (11%)

DECODE 21 (2%) 1284 (12%) 32 (1%)

DCACHE 144 (16%) 451 (4%) 124 (4%)

FP-ALUs 0 (0%) 1246 (12%) 488 (17%)

INT-ALUs 369 (41%) 2887 (27%) 1336 (47%)

ISSUE-Q 0 (0%) 1848 (17%) 95 (3%)

REGFILE 23 (3%) 130 (1%) 14 (0%)

REG-RENAMER 0 (0%) 875 (8%) 87 (3%)

LSQ 0 (0%) 304 (3%) 103 (4%)

BLOCK-CONTROL 0 (0%) 0 (0%) 48 (2%)

OPN-ROUTER 0 (0%) 0 (0%) 17 (1%)

TOTAL POWER 896 10764 2848

Table 5.3: TFlex 1-Core Power Breakdown Comparison

Structure Per-Access Energy Avg. Number Avg. Power
(pJ) of Accesses (millions) (mW)

Power4 TFlex-
1

Power4 TFlex-1 Power4 TFlex-
1

Reg. File 15.79 11.27 78.6 21.6 130.0 14.0

Reg. Re-
namer

401.72 223.37 78.6 23.0 875.0 87.0

Issue Win-
dow

94.42 20.1 882 272.0 1848.0 95

LSQ 153.18 269.2 20.0 19.3 304.0 103.0

Table 5.4: Detailed Power Breakdown

74

z{|}|~{�� �z��}���{{�� �{������ �{���{���
��|��{�����|z���������|z�����

����{�����
�{~��z{���{~��{�|�{��� z����

(a) Power4 Power Breakdown

��������� ����� ¡¢����£�¡�¤¥¥�¦���¦�¥�¦���¤�§�
£ ̈��©ª¥«�¬­¡ ��©ª§«�

¬®®©� ¯��¢��£¬��¥�¢�� ¢�­�°�¢�� �®¯§� ±���� ��­¡¢��²� �¨­ ¢�©¡�¢¥�

(b) TFlex 1-core power breakdown

Figure 5.10: Power Breakdown

75

chitectural register file containing 128 architectural registers with 2 read and 1 write

ports [57]. As discussed before, Power4 employs multi-ported integer and FP reg-

ister files, and register renamers to extract better performance. Similar to TRIPS,

TFlex enjoys the reduced register file accesses (3 times less compared to Power4 as

shown in Table 5.4) due to direct instruction encoding of the TRIPS ISA. These fac-

tors cause the register file in TFlex to consume about 9 times less power compared

to Power4. Similarly, register renaming implemented in TFlex consumes almost 10

times less power than Power4 register renaming.

Issue Windows: TFlex employs an efficient RAM-based issue window,

which is enabled by the direct instruction encoding of the ISA. Power4, which em-

ploys power-hungry CAM structures for its issue windows, consumes 19 times more

power than TFlex.

LSQs: The TRIPS microarchitecture implemented a maximally-sized LSQ

as a brute-force solution to its memory disambiguation problem. As a result, the

LSQs are a significant source of power and area overhead in the TRIPS design.

TFlex, on the other hand, avoids maximally-sized LSQs by implementing unordered

LSQs along with negative acknowledgements (NACKs) in the OPN [97]. These

unordered LSQs significantly reduce the power overhead of the LSQs for TFlex

(about 20x compared to TRIPS).

Operand Network and Block Control: In the 1-core mode, TFlex only

executes a single block at a time. Hence, TFlex does not incur any distributed

control messages overhead in the 1-core mode. Similarly, there is no communication

across the operand network in TFlex. Although our power models implement clock

gating in the OPN routers, the input FIFOs are not completely clock-gated. The

power model attributes a 10% overhead in all hardware structures during idle cycles.

This clock-gating overhead for the router shows up as “OPN-ROUTER” in the table,

and is less than 1% of the total processor power.

76

Useful Instructions: Although the 1-core TFlex configuration spends a

significant fraction of its power in the ALUs (a total of 64%), not all of these exe-

cuted instructions are useful in producing the final block outputs (register writes,

stores, or branches). Our analysis indicates that about 20% of all the executed

instructions are useless in that they do not contribute to the final block outputs.

Additionally, about 36% of all the fetched instructions are useless. These instruc-

tions are rendered useless by the predication model of the TRIPS ISA. Instructions

that are fetched but do not receive a matching predicate or all of their operands are

not executed at all. Other instructions that are speculatively executed are predi-

cated out later in their dependence chain. Both these instruction types (fetched but

not executed, and executed but not used) contribute to useless instructions, which

consume approximately 20% of the total TFlex 1-core energy on an average.

Move Instructions: As described before, whenever a producer instruction

has many dependent consumers the TRIPS ISA uses a software fanout tree to dis-

tribute results to the consumers. This fanout tree is built out of a special “move”

instruction in the TRIPS ISA. While the explicit dependence encoding of the TRIPS

ISA reduces the number of accesses to the global register file, the presence of these

extra move instructions adds overhead to TFlex execution. On average, about 25%

of the executed instructions in TFlex 1-core configuration are moves. Since conven-

tional architectures like Power4 use the global register file to communicate operands

from producers to consumers (ignoring operand bypassing), it is interesting to com-

pare the energy required for a register file access in Power4 and the move instruction

in TFlex. Our CACTI models show that a single access to the operand buffer (a

structure that stores the operands for each instruction) requires an energy of 11.2

picoJoules (pJ), whereas a single access to the combined FP and integer register file

in Power4 costs approximately 15.8 pJ. Because the move instruction must perform

two accesses to the operand buffer to deliver the result to actual consumer (one

77

Category Power4 TFlex 1-Core
(milliJoules) (milliJoules)

LEAKAGE 6 8

CLOCK-TREE 13 8

FETCH 27 23

DECODE 38 2

DCACHE 13 10

FP-ALUs 40 43

INT-ALUs 50 93

ISSUE-Q 51 7

REGFILE 4 1

REG-RENAMER 25 7

LSQ 9 8

BLOCK-CONTROL 0 4

OPN-ROUTER 0 1

TOTAL ENERGY 276 215

Table 5.5: Comparison of Energy Breakdowns: Power4 and TFlex 1-core

access for reading the result value and another for storing the result in the entry

corresponding to the consumer), it consumes a total of 22.4 pJ for one consumer,

and 11.2 + 11.2 * n pJ, in general, where n is the number of targets supported by

the move instruction.

5.2.3 Energy Breakdown Analysis

One of the main reasons for the higher power consumption of Power4 compared to

TFlex 1-core is that the performance of Power4 is better than TFlex 1-core. Power4

completes execution of the benchmarks in a shorter time interval compared to TFlex

1-core, and because power is measured as energy consumed per unit time, the average

power dissipation is higher for Power4. In order to discount the effects of execution

time in the comparison, we look at the average (arithmetic mean) energy breakdown

of Power4 and TFlex 1-core. Table 5.5 presents this average energy breakdown for

Power4 and TFlex 1-core in milliJoules. The same data is represented as a pie-chart

78

³´µ¶µ·´¸¹ º³»º¶¼½¾´´¿¹ À´½ºÁÂÃ¹ Ä´º»Ä´ÂÅ¹
ÄºµºÁ´¿¹ÀÆ¼µ³ÇÈÂ¿¹ÉÊ½¼µ³ÇÈÂË¹

ÉÌÌÇ ¼́ÍÂË¹
¾´·ÀÉ³´Â¹ ¾´·¼¾´ÊµÎ´¾Ï¹ ³ÌÍÐ¹

(a) Power4 Energy BreakdownÑÒÓÔÓÕÒÖ× ØÑÙØÔÚÛÜÒÒÖ× ÝÒÛØÞßß× àÒØÙàÒß× àØÓØÞÒá×
ÝâÚÓÑãäåæ×çèÛÚÓÑãäÖé×

çêêãÒÚëé×ÜÒÕÝçÑÒæ×ÜÒÕÚÜÒèÓìÒÜé× ÑêëÖ× íÑÙØÔÚØÙèÛÜÙÑå× ÙâèÚÜÙãÛÒÜæ×

(b) TFlex 1-core Energy Breakdown

Figure 5.11: Energy Breakdown

79

 0.00

 1.00

 2.00

 3.00

 4.00

 5.00

 6.00

 7.00

 8.00

G
eo

M
ea

n(
H

)

E
E

M
B

C
(C

)

S
P

E
C

IN
T

(C
)

S
P

E
C

F
P

(C
)

G
eo

M
ea

n(
C

)

G
eo

M
ea

n

P
er

fo
rm

an
ce

 n
or

m
al

iz
ed

 to
 A

R
M

 9, 15 12,17,22,25, 26 ARM

PPC
TRIPS
TFlex−1
TFlex−2
TFlex−4
TFlex−8
TFlex−16
TFlex−32
TFlex−Best

Figure 5.12: Performance comparison of all TFlex configurations with other platforms @

1.2V, 2GHz and 65nm.

in Figure 5.11. From these results, we observe that the Power4, on an average,

consumes about 30% more energy than the TFlex 1-core configuration.

5.2.4 Performance and Power Comparison of Composability

In this section we examine the effects of composability on performance, power and

ED2P of the TFlex system, scaling from 1 to 32 cores. We also plot the same

metrics for the other platforms considered so far: TRIPS, ARM and Power4. All

of these metrics have been normalized to that of ARM. Figures 5.12, 5.13, and 5.14

plot normalized performance, power, and inverse ED2P of all TFlex configurations

along with other platforms. As discussed earlier, we mainly use the ED2P metric for

energy efficiency comparison as it favors designs that achieve maximal performance

within a power budget. Figure 5.16 and 5.15 compare the inverse PDP and EDP

80

 0.0

 5.0

 10.0

 15.0

 20.0

 25.0

 30.0

G
eo

M
ea

n(
H

)

E
E

M
B

C
(C

)

S
P

E
C

IN
T

(C
)

S
P

E
C

F
P

(C
)

G
eo

M
ea

n(
C

)

G
eo

M
ea

n

P
ow

er
 n

or
m

al
iz

ed
 to

 A
R

M

 34 36, 54, 74 ARM
PPC
TRIPS
TFlex−1
TFlex−2
TFlex−4
TFlex−8
TFlex−16
TFlex−32

Figure 5.13: Power comparison of all TFlex configurations with other platforms @ 1.2V,

2GHz and 65nm.

81

 0.00

 5.00

 10.00

 15.00

 20.00

 25.00

 30.00

 35.00

 40.00

G
eo

M
ea

n(
H

)

E
E

M
B

C
(C

)

S
P

E
C

IN
T

(C
)

S
P

E
C

F
P

(C
)

G
eo

M
ea

n(
C

)

G
eo

M
ea

n

P
er

f ^
 3

/W
at

t n
or

m
al

iz
ed

 to
 A

R
M

 43 93 78,141,206,203, 274 ARM
PPC
TRIPS
TFlex−1
TFlex−2
TFlex−4
TFlex−8
TFlex−16
TFlex−32
TFlex−Best

Figure 5.14: ED2P comparison of all TFlex configurations with other platforms @ 1.2V,

2GHz and 65nm.

82

 0.00

 1.00

 2.00

 3.00

 4.00

 5.00

 6.00

G
eo

M
ea

n(
H

)

E
E

M
B

C
(C

)

S
P

E
C

IN
T

(C
)

S
P

E
C

F
P

(C
)

G
eo

M
ea

n(
C

)

G
eo

M
ea

n

P
er

f ^
 2

/W
at

t n
or

m
al

iz
ed

 to
 A

R
M

 6 6, 8, 9, 8, 11 ARM
PPC
TRIPS
TFlex−1
TFlex−2
TFlex−4
TFlex−8
TFlex−16
TFlex−32
TFlex−Best

Figure 5.15: EDP comparison of all TFlex configurations with other platforms @ 1.2V,

2GHz and 65nm.

83

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

G
eo

M
ea

n(
H

)

E
E

M
B

C
(C

)

S
P

E
C

IN
T

(C
)

S
P

E
C

F
P

(C
)

G
eo

M
ea

n(
C

)

G
eo

M
ea

nP
er

fo
rm

an
ce

/W
at

t n
or

m
al

iz
ed

 to
 A

R
M

ARM
PPC
TRIPS
TFlex−1
TFlex−2
TFlex−4
TFlex−8
TFlex−16
TFlex−32
TFlex−Best

Figure 5.16: PDP comparison of all TFlex configurations with other platforms @ 1.2V,

2GHz and 65nm.

84

metrics of various platforms, and are presented here for the sake of completeness.

The various TFlex bars represent the TFlex configurations with increasing number

of cores. Since TFlex is flexible enough to use different core configurations for

different applications, we also plot the “TFlex-Best” bar which represents the best-

performing TFlex configuration for each application.

From these results, we observe that TFlex 16-cores is the best performing

configuration on average, and the optimal TFlex configuration, in terms of perfor-

mance, varies with each benchmark and benchmark types. For example, perfor-

mance peaks at TFlex 16-cores for Integer SPEC programs whereas performance

scales up to 32 cores in FP SPEC benchmarks. We also observe that TFlex 16-core

configuration achieves roughly 20% better performance compared to Power4 and

TRIPS configurations. As we increase the number of cores in the TFlex system, its

power consumption also increases with increasing clock power, leakage, and com-

munication overheads with TFlex 32-cores consuming almost 8 times more power

than TFlex 1-core. Presence of fine-grained clock gating in TFlex, and the relative

reduction in OPN traffic in the “deep” block mapping mode compared to the “flat”

mode (please refer to Chapter 7.1 for a discussion of block-mapping policies), keep

the TFlex power consumption under check as we increase the number of cores.

In terms of inverse ED2P, TFlex 8-cores fares best compared to other TFlex

configurations, and platforms. Although TFlex 16-cores has better performance

than TFlex 8-cores, it also consumes more power than TFlex 8-cores and 4-cores.

Hence, the optimal configuration in terms of ED2P shifts to TFlex 8-cores, which

achieves 67% and 50% better ED2P compared to Power4 and TRIPS. The “TFlex-

Best” configuration achieves 29% better ED2P than the best performing static TFlex

configuration (TFlex 8-cores). The TFlex-Best also achieves 2.1x and 1.93x better

ED2P compared to Power4 and TRIPS respectively. Thus, by better matching

execution resources to the needs and parallelism profiles of applications, the TFlex

85

Category TFlex-1 TFlex-2 TFlex-4 TFlex-8 TFlex-16 TFlex-32
(mW) (mW) (mW) (mW) (mW) (mW)

LEAKAGE 98 (3%) 196 (3%) 392 (4%) 784 (6%) 1568 (9%) 3136 (13%)

CLOCK-
TREE

97 (3%) 189 (3%) 341 (4%) 602 (5%) 1074 (6%) 1969 (8%)

FETCH 307 (11%) 618 (11%) 977 (11%) 1386 (11%) 1880 (10%) 2073 (9%)

DECODE 32 (1%) 63 (1%) 95 (1%) 126 (1%) 150 (1%) 152 (1%)

DCACHE 124 (4%) 248 (4%) 411 (5%) 624 (5%) 935 (5%) 1386 (6%)

FP-ALUs 488 (17%) 930 (16%) 1451 (16%) 2037 (16%) 2653 (15%) 3124 (13%)

INT-ALUs 1336 (47%) 2526 (45%) 3782 (42%) 4967 (38%) 5782 (32%) 5844 (25%)

ISSUE-Q 95 (3%) 177 (3%) 271 (3%) 378 (3%) 499 (3%) 627 (3%)

REGFILE 14 (0%) 26 (0%) 43 (0%) 71 (1%) 122 (1%) 218 (1%)

REG-
RENAMER

87 (3%) 236 (4%) 449 (5%) 751 (6%) 1162 (6%) 1735 (7%)

LSQ 103 (4%) 207 (4%) 320 (4%) 434 (3%) 549 (3%) 623 (3%)

BLOCK-
CONTROL

48 (2%) 91 (2%) 156 (2%) 268 (2%) 459 (3%) 844 (4%)

OPN-
ROUTER

17 (1%) 138 (2%) 347 (4%) 706 (5%) 1195 (7%) 1927 (8%)

TOTAL
POWER

2848 5645 9035 13135 18028 23658

Table 5.6: TFlex 1-Core Power Breakdown Comparison

platform produces better energy efficiency than the other platforms, and TRIPS

microarchitecture.

5.2.5 Composability: Power Breakdown Analysis

Table 5.6 shows the average power breakdown in milliwatts for all TFlex config-

urations. The leakage power doubles as we double the number of cores because

transistor counts grow with area. With increasing cores clock tree power increases

as well, but grows sub-linearly due to fine-grained clock gating in the cores. All the

other power categories show a steady increase from 1 to 32 cores due to higher num-

ber of in-flight blocks, and higher microarchitectural activity. The largest source

of power overhead for TFlex is operand communication over the network. Despite

the presence of clock-gating, the OPN routers consume roughly 8% of the total core

power at the 32-core configuration. Similarly, the increased overhead caused by the

86

îïðî
ðïñîñï
òîòï

óôõ öö÷ øôùöú øûüýþÿ� øûüýþÿ� øûüýþÿ� øûüýþÿ� øûüýþÿ�� øûüýþÿ��
���	
��

����

������� ���� ����� ����������
 ! "#$%&"&#'%((#&"#$%&

Figure 5.17: Chip Power Comparison

control messages becomes noticeable at 32 cores (about 4% of total power).

Figure 5.17 compares the average chip power consumption of all the plat-

forms so far. We observe that the NUCA L2 cache consumes slightly more power

than its banked L2 counterpart in Power4. This is especially true for higher TFlex

configurations with the 32-core configuration consuming 24% more power than the

L2 in Power4. This higher power is mainly caused by the increased issue width in

higher core configurations, and hence, the increased L2 utilization. Additionally, the

additional clocking and routing support needed in the network tiles in the NUCA

L2 increase the energy overhead slightly.

5.2.6 Summary of TFlex Results

Our experimental results can be summarized as follows:

• The TFlex microarchitecture exhibits great flexibility by operating both in

high-performance and low-power regimes. For example, TFlex 1-core configu-

ration has similar power profile as that of an optimized XScale platform while

87

achieving better performance. On the other hand, TFlex 2-core configura-

tion performs 30% within the performance of a 4-issue, out-of-order Power4

configuration while consuming 2x lower power than Power4.

• By better matching hardware execution resources to the needs and parallelism

profiles of applications through its composability, TFlex achieves better energy

efficiency both compared to the high-performance, out-of-order Power4 and

non-composable TRIPS microarchitectures. For example, the “TFlex-Best”

configuration achieves almost 2x better ED2P compared to Power4 and TRIPS

respectively across a wide range of applications.

5.2.7 Lessons

Based on our experience in comparing conventional platforms with TRIPS and

TFlex, we have learned that EDGE architectures are promising candidates for

energy-efficient extraction of performance. With composability as a mechanism

to improve performance or to reduce power when desired, the TFlex architecture

shows enormous promise for improved energy efficiency compared to fixed, non-

composable architectures. As the demand for energy-efficient computing increases

and as leakage power begins to dominate overall power, the ability to match under-

lying computational resources to needs of applications becomes extremely critical

to better energy efficiency.

88

Chapter 6

DVFS and Composability: A

Comparison

In this chapter, we examine the efficacy of processor composability - the ability

to dynamically aggregate physical cores into a logical processor - as a performance-

power trade-off mechanism. In particular, we examine composability with respect to

the performance-power trade-offs offered by Dynamic Voltage and Frequency Scaling

(DVFS) mechanism. First, we provide a brief overview of DVFS, and explain how it

trades performance for power. We also motivate the need for potential alternatives

to DVFS, and how composability can serve as this alternative. Next, we describe

our experimental methodology for this chapter. Finally, we present our experimen-

tal findings, and describe under what circumstances DVFS and Composability are

useful.

6.1 Introduction

As described by Equation 1.1, the power consumption of a processor has two com-

ponents: 1) dynamic power caused by charging and discharging capacitance as the

89

processor operates, and 2) leakage power which is caused by transistors not com-

pletely turning off. Equation 1.1 describes how DVFS acts a mechanism to trade

performance for power. Processor performance is linearly proportional to the oper-

ating frequency, f , to a first order. Certain types of workloads are mostly memory-

bound (meaning the processor is often waiting for memory requests to complete),

and do not experience this linear trend. Ignoring such workloads and the effects of

main memory on performance, we typically see a linear boost in the performance

when frequency is increased and vice versa. On the other hand, processor dynamic

power is linearly dependent on the frequency, f , and quadratically dependent on

the supply voltage, v. The maximum operating frequency of the processor depends

on the current supply voltage. Hence, reducing the supply voltage allows reduction

in operating frequency of the processor. The combined reduction of supply voltage

and the operating frequency provides a cubic reduction of dynamic power (quadratic

reduction due to drop in voltage and a linear reduction due to drop in frequency).

Performance, as discussed above, experiences only a linear drop because frequency

has been reduced linearly. In summary, DVFS provides an efficient mechanism to

achieve cubic reductions in power with only linear drop in performance. Thus, DVFS

has been the mainstay performance-power trade-off mechanism for a long time, and

is universally implemented in current processor designs.

Figure 6.1 provides an overview of the performance-power trade-offs offered

by DVFS. The graph plots performance on the y-axis, and power on the x-axis.

We use several terms in the chart which are explained as follows. Vmin is the mini-

mum supply voltage supported by a given process technology and processor design.

Of the different frequencies supported at Vmin, fmin represents the minimum fre-

quency. fmaxeff , on the other hand, is the maximum frequency supported at Vmin.

The maximum supply voltage is Vmax, and the maximum frequency supported at

Vmax is given by fmax . As shown in Figure 6.1, DVFS provides two distinct modes

90

)*+,-
./01203456/

7 89: ; < 8=>?@@
7 89: ; < 89:

7 8=> ; < 8=>

Figure 6.1: DVFS: Performance vs. Power

or regimes of operation: 1) pure frequency scaling and 2) dynamic voltage and fre-

quency scaling. Several modern processors exhibit these regimes [1, 37]. Table 1

of [37] lists the various P-states (DVFS regime) and the T-states (frequency scal-

ing regime) supported by the Intel 5160 processor in an IBM HS21 blade server.

Additionally, Figure 1 from [37] clearly demonstrates the performance and power

trade-offs provided by both DVFS and frequency scaling.

In the pure frequency scaling regime only the operating frequency of the

processor changes, and the supply voltage is held constant. In the example shown

in the chart, the supply voltage Vmin remains the same, and the processor frequency

is allowed to change from fmin to fmaxeff in the frequency scaling regime. In this

regime, DVFS typically achieves a linear performance and power trade-off because

only the frequency is modulated: a linear increase in frequency buys a linear increase

in performance at the cost of linear increase in power.

91

The second regime is the dynamic voltage and frequency regime where both

the supply voltage and the clock frequency of the processor are allowed to change.

In our example, the voltage can range from Vmin to Vmax whereas the frequency can

range from fmaxeff to fmax . In this regime, an increase in frequency additionally

requires a proportional increase in voltage resulting in a cubic increase in power

(linear factor from the frequency increase, and quadratic factor from the voltage

increase) with only a linear increase in performance (resulting from the increased

frequency). Hence, the slope of the performance-power curve in this regime is lower

than that of the frequency scaling regime. In other words for every additional watt

expended by the system frequency scaling regime achieves better performance than

DVFS regime.

Although ED2P metric has been used in earlier chapters for comparing energy

efficiency, we use the line plots as shown in Figure 6.1 containing performance on

the y-axis and power on the x-axis throughout this chapter. We use such plots

primarily to highlight the difference in performance and power trade-offs provided

by techniques such as frequency scaling and voltage scaling. As can be seen in

Figure 6.1 and as results presented later in this chapter indicate, pure frequency

scaling provides a one-to-one increase in performance and power, whereas the rate

of increase in power is much higher in the voltage scaling regime. Experimental

results presented later in this chapter compare the performance and power trade-

offs of composability to that of frequency and voltage scaling.

In summary, the p-state, (Vmin, fmaxeff), represents a fundamental constraint

for the DVFS mechanism. At this p-state, the system can no longer extend the lin-

ear performance-power trade-off offered by pure frequency scaling as the maximum

frequency supported at Vmin has already been reached. Further increases in fre-

quency necessitate an increase in voltage that results in a worse performance-power

trade-off than frequency scaling.

92

6.2 DVFS Alternatives

Despite being the mainstay power management scheme in modern processors, the

flexibility of DVFS is fast becoming limited due to narrowing voltage margins. A

recent paper by Watanabe et al. [121] illustrates that the dynamic range supported

by DVFS mechanisms has narrowed significantly. This narrow range of voltage

scaling motivates the need for potential alternatives to DVFS. One of the key reasons

for this slowing rate of voltage scaling is leakage power. When supply voltage is

reduced sub-threshold leakage, a type of leakage power, increases exponentially [21].

As a result, the rate of voltage scaling has slowed down significantly to keep the

increasing leakage power under check.

Given the current strict chip-level power budgets and the projected power

trends, we can expect systems to be operated at the minimum voltage point Vmin.

With voltage held at Vmin one can keep increasing frequency to get linear perfor-

mance and power until we reach the (Vmin, fmaxeff) point. At this point, further

increases to frequency are accompanied by further increases to voltage thereby sub-

stantially increasing power dissipation for a modest increase in performance. Thus,

conventional designs implementing DVFS lack alternative mechanisms that provide

performance-power trade-offs similar to frequency scaling. Furthermore, processor

designers have backed away from ultra-high frequency designs because power grows

superlinearly as circuits are successively optimized for higher and higher clock fre-

quency. Thus, the maximum frequency (fmax) for integrated circuits is likely to

scale slowly in future technologies. To achieve single-thread performance beyond

the range of fmax, systems need new microarchitectural mechanisms that provide

the same or better performance-power trade-offs as frequency scaling.

We argue that processor composability is such an alternative mechanism that

provides almost as good performance-power curves as frequency scaling, and much

better curves compared to DVFS. A composable system can scale up or down the

93

number of physical cores to match the needs of the application at hand. If the

application has abundant parallelism the system can aggregate many physical cores

to exploit the parallelism at the cost of additional power. On the other hand, the

system can reduce the alloted physical cores to an application with less parallelism

(lower performance) and thereby reduce the power. Thus, processor composabil-

ity provides a completely orthogonal dimension for performance-power trade-offs

by scaling the number of cores up or down, and could be a potential alternative

to DVFS. Additionally, composability provides a mechanism to further improve

single-threaded performance beyond the range of fmax . This chapter examines the

efficiency of composability vis-a-vis DVFS.

This study shows that composition, coupled with frequency scaling, can pro-

vide a dynamic range of power and performance for single threads that other ar-

chitectures cannot, scaling from low-performance, high power efficiency to power-

efficient high performance. Using that efficiency as a baseline, composing a moderate

number of cores (four to eight dual-issue cores) can provide increased performance

at roughly the same energy efficiency as strict frequency scaling, thus providing a

more efficient solution than increasing the supply voltage.

Figure 6.2 illustrates the kind of experimental results that we aim to achieve

in this chapter. The figure includes the frequency scaling and the DVFS regimes,

discussed earlier in this chapter, along with the composability regime. To achieve

the best power efficiency while scaling performance, one should first scale frequency

while maintaining the voltage at Vmin until the maximum frequency at that voltage

(which we term fmaxeff)is reached. One should then compose more cores while still

at Vmin and fmaxeff until diminishing returns are reached at eight or sixteen cores.

This diminishing point is labeled as the “tipping point” in the above figure. The

performance-power slopes achieved by composability are expected to be approxi-

mately linear like frequency scaling. Hence, the slope of the composability regime is

94

ABCDE
FGHIJHKLMNG OP QRS T U QVWXYY Z

[\]]\^_]`\^[OP QVW T U QVW Z
OP QRS T U QRS Z

Figure 6.2: DVFS vs. Composability

slightly smaller than that of frequency scaling. As a last resort to further improve

performance, voltage and frequency can be scaled together. Similarly, when scaling

performance and power down, one should perform the above steps in reverse order:

scale voltage and frequency first, scale down the number of cores next followed by

frequency scaling alone.

6.3 Methodology

We use the TFlex platform as our experimental vehicle to study the efficiency of

composability and DVFS. We use the TFlex simulator and the power models as

described in Chapter 4. Since TFlex already supports composability, we merely add

the support for the two DVFS regimes in the TFlex simulator: 1) pure frequency

scaling and 2) dynamic voltage and frequency scaling. In addition, we also add

DVFS support to the other experimental platforms, ARM and Power4, to compare

95

them with TFlex. Since TFlex supports both composability and DVFS, and the

other platforms only DVFS, this comparison allows us to discern the benefits of

composability by itself, and when composability is combined with DVFS.

We limit our experiments to static DVFS where the voltage and frequency

are set before running the application and not dynamic DVFS where the settings

are changed while the application is running (Chapter 8 discusses experiments with

dynamic DVFS). Thus, we do not need to model the reconfiguration costs associated

with changing the settings in all the platforms. This approach is fair because we

compare static DVFS to static composability, that is composing the cores before

an application runs. Static composability also does not incur the reconfiguration

costs similar to static DVFS. If one were to compare dynamic DVFS configurations

with dynamic composability modeling the reconfigurations costs for both DVFS and

composability would be a fairer comparison.

In our DVFS experiments we assume a fixed set of voltages and frequencies

supported at these voltages (given later in Table 6.1). We also assume that our

platforms can be designed to run at the maximum frequency, 2 GHz in our case,

and that these designs can be scaled down to run at lower frequencies. For modeling

power with DVFS, we scale the dynamic power by the applied voltage and frequency

and leakage power by the applied voltage. We also adjust the memory latency (in

cycles) based on the current processor frequency. We measure performance in these

DVFS experiments as the inverse of total time taken (in seconds) by the benchmark.

6.4 Experimental Results

6.4.1 Composability Results

To examine the relationship between performance and power for the TFlex com-

posable core processor, we vary the core count from 1 to 32 (while running a single

96

0 2 4 6 8 10 12
Normalized Power

0

1

2

3

4

5

6

7

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
ce

bzip2
crafty
gzip
mcf
twolf
vpr
Ideal

Figure 6.3: TFlex Performance Scalability: SPEC-INT

97

0 5 10 15 20 25
Normalized Power

0

5

10

15

20

25

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
ce

ammp
applu
art
equake
mesa
mgrid
swim
wupwise
Ideal

Figure 6.4: TFlex Performance Scalability: SPEC-FP

98

thread that employs all of the provided cores) and measure the improvement in

performance and power relative to a 1-core configuration. Figures 6.3 and 6.4 plot

these performance and power results for SPECINT and SPECFP applications re-

spectively. Both graphs plot power normalized to TFlex 1-core on the x-axis and

performance normalized to TFlex 1-core on the y-axis. Both graphs also plot a

dotted line labeled “Ideal”. This line has a slope of 1 and represents the linear

performance-power trade-off (a unit increase in performance causes a unit increase

in power and vice versa). Comparing the different TFlex lines with this ideal line

provides insights into the regimes where composability offers a near-linear perfor-

mance and power trade-off.

For most of the SPECINT benchmarks, performance and power increase at

equal rates in the range of 1–4 cores. Performance reaches a peak at 8 cores and then

drops off at 16 and 32 cores. These applications have insufficient instruction level

parallelism to effectively use more than 8 cores; beyond that point, the increasing

distribution of the architecture (with higher number of cores) increases communi-

cation overheads and causes performance to drop. In this regime, power increases

but sublinearly relative to core-count increases because clock gating reduces power

consumption in the idle cores. The benchmark mcf performs particularly poorly as

it is memory bound and reaches its limit with just a few cores. Adding more cores to

such workloads has little or negative impact on the overall performance. However,

addition of more cores increases power dissipation. Composability fares worse than

the ideal curve for such workloads.

On the other hand, the SPECFP benchmarks have abundant instruction level

parallelism, and show better scalability with core count increases. Most SPECFP

benchmarks are able to use up to 16 cores effectively, and provide almost near-ideal

performance and power trade-offs. In particular, benchmarks like applu and swim

have ample parallelism and easily scale up to 32 cores, providing the same trade-

99

Index Vdd (volts) Frequency (MHz)

1 1.2 (Vmax) 2000 (fmax)

2 1.1 1750

3 1.0 1500

4 0.9 1250

5 0.8 1000 (fmaxeff)

6 0.8 800

7 0.8 600

8 0.8 (Vmin) 400 (fmin)

Table 6.1: DVFS Configurations for all platforms.

offs as the ideal curve. In addition, power and performance scale nearly linearly

in the regime of 1–16 cores for SPECFP benchmarks, and for most applications

performance drops when moving to 32 cores.

6.4.2 Composability and DVFS

To model voltage and frequency scaling we assume a 65nm process and the power

states listed in Table 6.1 for our experiments. The table shows that we assume a

moderate fmax of 2 GHz. Indices from 1 through 5 represent the DVFS regime,

where both the operating voltage and frequency can change. Indices from 5 through

8 represent the frequency scaling regime where only the operating frequency changes

and the voltage remains constant at 0.8 volts. We include both voltage/frequency

scaling and just frequency scaling regimes to account for limited reduction in Vmin in

future process technologies. We operate Power4 and XScale models at all the states

in Table 6.1. The TFlex processor is operated at all composable configurations –

1, 2, 4, 8, 16 and 32 cores – at each of the DVFS states, resulting in a total of 48

configurations (6 core configurations x 8 DVFS states).

Figures 6.5 and 6.6 show normalized performance (Y-axis) and normalized

power (X-axis) of various TFlex configurations, Power4, and ARM for the SPEC-

INT and SPEC-FP applications. The performance and power of all the configura-

tions are normalized to that of TFlex 1-core configuration operating at Vmin and

fmin (index 8 in Table 6.1). Since performance is plotted on the y-axis and power

100

0 10 20 30 40 50 60 70 80 90
Geometric Mean of Power

0

5

10

15

20

25

G
e
o
m

e
tr

ic
 M

e
a
n
 o

f
P
e
rf

o
rm

a
n
ce

TFlex-1

TFlex-2

TFlex-4

TFlex-8

TFlex-16

TFlex-32

ARM

Power4

Ideal

Figure 6.5: Normalized Performance and Power: SPEC-INT

101

0 20 40 60 80 100 120
Geometric Mean of Power

0

5

10

15

20

25

30

G
e
o
m

e
tr

ic
 M

e
a
n
 o

f
P
e
rf

o
rm

a
n
ce

TFlex-1

TFlex-2

TFlex-4

TFlex-8

TFlex-16

TFlex-32

ARM

Power4

Ideal

Figure 6.6: Normalized Performance and Power: SPEC-FP

102

on the x-axis, configurations that have higher y values and lower x values are more

energy efficient than other configurations – such configurations expend less energy

and achieve better performance compared to other configurations. Each TFlex curve

represents a different core count (1–32 cores) and the points on each curve cover all

the DVFS settings in Table 6.1. The graphs also plot the various DVFS settings

for both ARM and Power4 platforms. The graphs also include a dotted line labeled

“Ideal”, which represents a linear performance and power trade-off (a slope of 1).

The ARM and the Power4 curves contain points from the frequency scaling

and DVFS regimes whereas the TFlex curves include points from three regimes:

frequency scaling, composability, and DVFS. A key insight from these graphs is that

combining the composability with DVFS increases the operating range of TFlex

significantly. For instance, Power4 and ARM curves include 8 operating points

corresponding to the 8 indices in Table 6.1. On the other hand, TFlex curves include

a total of 48 configurations (6 TFlex cores x 8 DVFS points). This observation

could be exploited by the operating system (OS) that attempts to maximize system

throughput subject to a given power budget. The OS chooses from a wide variety

of TFlex configurations that either provide different performance levels at a given

power or different power levels for a given performance.

From these graphs, we observe that in the frequency scaling regime (indices 5

through 8 in Table 6.1), each TFlex configuration achieves approximately a one-for-

one improvement in performance when additional power is applied. The ARM and

the Power4 platforms also perform similarly in the frequency scaling regime. For all

platforms involved, the points in the frequency scaling regime of the graphs represent

the iso-energy configurations–meaning all configurations of a given platform consume

the same amount of energy (equal increase or decrease in both performance and

power) in this frequency scaling regime. The performance-power curves for almost

all of the platforms in this regime is parallel to the “linear” line (that is they achieve

103

the same slope) plotted in the graph, which proves the one-to-one performance and

power relationship provided by frequency scaling. However, when the Vmin and

fmaxeff p-state is reached, conventional platforms like Power4 and ARM have no

other mechanism to further improve performance except to increase the voltage.

TFlex, on the other hand, provides composability to further improve performance

without adversely incurring power overhead of voltage scaling.

In the SPECINT benchmarks, although Power4 performs as good as or bet-

ter than many TFlex configurations, most Power4 configurations incur more power

overhead at similar performance levels. By providing a rich range of feasible config-

urations, TFlex optimizes for power efficiency in SPECINT benchmarks when lower

performance levels could be tolerated. As discussed in Section 6.4.1, since SPECFP

benchmarks have abundant parallelism, TFlex achieves much better performance-

power trade-offs than in SPECINT workloads. Figure 6.6 shows that TFlex achieves

better performance at similar power levels and lower power at similar power levels

compared to Power4.

Figures 6.7 and 6.8 show the power and performance scaling curves for ARM,

PowerPC, and TFlex, all normalized to the ARM core at the lowest voltage and

frequency we examine (index 8 from Table 6.1). Both ARM and PowerPC show

a linear relationship between power and performance while frequency is scaled up

at Vmin. The TFlex curves plot the pareto-optimal configurations from all three

regimes, frequency scaling, composability, and DVFS. These configurations produce

the best measured power and performance compared to other TFlex, Power4, and

ARM configurations. Like ARM and PowerPC, frequency scaling at Vmin and one

TFlex core produces the best power and performance until reaching fmaxeff . At

this point, keeping voltage and frequency constant while scaling the core count up

to eight produces the best results. When core scaling reaches diminishing returns,

returning to voltage and frequency scaling produces greater performance, albeit at

104

a

bcde
fghigjklmnmop

dqrstrupeuknmvw
x fgqrj

yfgqr

Figure 6.7: TFlex Pareto-Frontier: SPEC-INT

105

z{|}~|�� �������

�������������
��z�
����{|�

���{|

Figure 6.8: TFlex Pareto-Frontier: SPEC-FP

106

a higher power cost. The graph also shows the potential for composability as a

means of bridging across the spectrum of architectures with different power and

performance optimization points. Although ARM and PowerPC are designed for

very different points in the spectrum, the composabilty of TFlex allows different

configurations to operate in either regime.

In summary, for scaling up performance and power from a single TFlex core

operating at vmin and fmin, the first best choice is to scale frequency only. Once vmin

and fmin is reached, the second best option that provides the biggest performance

benefit for the power cost is processor composability. This concurs with the observa-

tion from Section 6.4.1 that performance and power trade nearly one-for-one for at

least a subset of the composable configurations. Once the tipping point of compos-

ability is reached after which adding cores ceases to improve performance, voltage

and frequency scaling combined should be applied. Such scaling should be reserved

for last as reaching fmax through voltage increases is power inefficient. For the pur-

poses of scaling performance and power down, one must apply the above regimes

in reverse order. In the regime where the supply voltage is greater than vmin and

TFlex has more than one core, DVFS provides the best reduction in power. When

vmin is reached, scaling down the number of cores provides the next best possible

power reduction followed by pure frequency scaling.

6.4.3 Summary

Obtaining higher performance generally requires expending more power. For a con-

ventional microprocessor chip that supports voltage and frequency scaling, improv-

ing performance with the best efficiency first comes by scaling the frequency while

keeping the processor at its minimal possible voltage (vmin). Eventually, scaling

will reach the maximum possible frequency attainable at this lowest voltage, which

we term fmaxeff . If the system requires greater performance, frequency and voltage

107

must increase in concert, with each step being less power efficient than the last.

Likewise, when aiming for lower power with the least drop in performance, conven-

tional systems should perform the reverse of these steps: first scale down voltage

and frequency to vmin, and then scale frequency down alone. Our experimental re-

sults show that composability offers an additional step, namely keeping voltage and

frequency the same and changing the number of cores. In general, in a composable

TFlex system, one can start with a single core at vmin and fmin , and keep increasing

frequency to get better performance. This trend can continue until we reach the

maximum frequency fmaxeff at Vmin. At this point, to further improve performance,

we can keep adding more cores until we reach the point of diminishing returns. Only

after reaching this point does it make sense to increase the supply voltage to further

increase the performance because of higher power overheads of increasing voltage.

Additionally, combining DVFS with composability provides a richer trade-off space

than with DVFS or composability alone, which can be exploited by system software

policies.

6.5 Lessons

Increasing demand for energy efficiency requires mechanisms at all layers of system

stack to trade off performance for power. Dynamic voltage and frequency scaling is

a circuit-level technique, and has been the main-stay power management scheme in

modern processors. Recent technology trends have significantly slowed down the rate

of supply voltages, thus limiting the flexibility of DVFS. Our experience indicates

that composability, a microarchitectural technique, is complementary to DVFS, and

their combination can significantly improve the performance and power trade-offs

provided by either technique. Going forward, we expect a deeper cooperation among

all layers of the system stack, namely, silicon technology, circuits, microarchitecture,

architecture, system software, and applications, to enhance energy efficiency.

108

Chapter 7

TFlex Performance

Mechanisms: An Evaluation

This chapter evaluates a set of performance-enhancing mechanisms for the TFlex

microarchitecture with respect to energy efficiency. Prior research has proposed a

set of mechanisms to address certain overheads of the TFlex system and to subse-

quently improve its performance. We evaluate the effects of two such techniques

on the energy-efficiency of TFlex: 1) Block Mapping policies that balance concur-

rency and communication and 2) Predicate prediction, a speculative technique that

predicts the value of a predicate chain to improve performance. Finally, as men-

tioned in Section 5.2, the TFlex microarchitecture suffers from the overhead caused

by “move” instructions used for fanning out operands. To address the performance

overheads of such “move” instructions, researchers have evaluated an operand multi-

cast/broadcast policy that aims to improve performance as well as energy efficiency.

We summarize their findings with respect to the performance and energy improve-

ment here as well.

109

7.1 Block Mapping Policies

In distributed architectures like Composable Lightweight Processors (CLPs), there

exist two key determinants of good performance: program concurrency and data

locality. TFlex composes many physical cores into a logical processor and exploits

concurrency by mapping program blocks to different cores. On the other hand, when

blocks are mapped to different physical cores, TFlex has to efficiently manage all

inter-core communication on the operand network (OPN). For example, a producing

instruction must be mapped closer to its consuming instruction to minimize com-

munication over the OPN. Likewise, consumers of read and load instructions should

be ideally mapped closer to the cores containing the register banks and data caches

respectively. The OPN, a characteristic feature of distributed microarchitectures

like TRIPS [92], RAW [111], and Intel Tera-Scale [118], is key to good performance

and power efficiency in such distributed microarchitectures. Hence, reducing com-

munication across the OPN could potentially improve both performance and energy

efficiency in distributed microarchitectures.

Block-mapping policies for the TFlex microarchitecture determine how var-

ious TFlex blocks from a program binary are mapped to participating cores, as

described by Robatmili et al. [88]. These policies provide a flexible software mech-

anism for TFlex to manage program concurrency and data communication across

the OPN. Block-mapping policies are broadly classified into two categories: 1) fixed

policies and 2) adaptive policies. While fixed policies use the same block-mapping

technique for all blocks in a program, adaptive policies use a per-block mapping

technique. Fixed block-mapping policies are further classified into 1) flat mode and

2) deep mode. The TRIPS and the original TFlex microarchitectures use the flat

mapping mode [57] shown in Figure 7.1(a). In this example, the TFlex system has

four participating cores and hence, four in-flight blocks. Each of the four blocks is

striped equally across all four cores. In the deep mapping mode, each in-flight block

110

BLOCK 1

BLOCK 2

BLOCK 3

BLOCK 4

CORE 0

CORE 2

CORE 1

CORE 3

Flat Mode

(a)

CORE 3

CORE 0 CORE 1

CORE 2

Deep Mode

BLOCK 1

BLOCK 2

BLOCK 3

BLOCK 4

(b)

Figure 7.1: Block Mapping Policies

is assigned to a single participating core. As shown in Figure 7.1(b), each of the four

in-flight blocks is mapped to a single core in the TFlex system. However, the register

files, the data caches, and the load/store queues are partitioned equally across all

participating cores in both the flat and the deep modes. Figure 7.2 reproduced from

the paper by Robatmili et al. [88] is a concrete example that shows how two blocks,

B0 and B1, are mapped differently in the flat mode (sub-figure (b)) and in the deep

mode (sub-figure (c)) in a TFlex system with four cores. We note that although the

instructions in the two blocks (’a’ through ’h’) are mapped differently in the deep

and the flat modes, the registers (R0, R1, and R3) and data cache banks (D3) are

mapped in the same manner in both the modes.

The flat and the deep modes have their own advantages and disadvantages

in balancing extraction of concurrency and data communication across OPN. The

flat mode can extract intra-block concurrency by mapping instructions from a single

block to different cores. However, since each block is striped across multiple cores

111

Figure 7.2: Block Mapping Example. Reproduced from the paper by Robatmili et
al. [88]

112

the flat mode has more communication across the network, especially in higher core

counts. On the other hand, since all instructions of the same block are mapped to

the same core in the deep mode this mode decreases OPN traffic significantly at the

expense of lesser intra-block concurrency.

Researchers have also proposed adaptive policies that determine the map-

ping technique on a per-block basis with the help of the compiler [88]. The TFlex

compiler analyses each block for its intra-block concurrency. After this analysis, the

compiler embeds a numeric value denoting the estimated concurrency into the block

header. The concurrency value serves as a hint to the dynamic block mapper (an

OS scheduler) to determine the right block-mapping policy and the number of allot-

ted cores for this block. Sub-figure (d) in Figure 7.2 illustrates the adaptive block

mapping policy. Various block-mapping policies have different concurrency versus

OPN communication trade-offs and clearly have an impact on the performance and

power profiles of the TFlex microarchitecture. Results from Robatmili et al. [88]

indicate that the adaptive policy provides the best performance among all policies

and is about 18% better than the best fixed policies. The results from Robatmili

et al. [88] also show that as issue width of a TFlex core increases the performance

boosts from the adaptive policy decreases, making the complexity of the adaptive

policy not worth the effort.

For our analysis in this chapter, we consider dual-issue TFlex cores, and

the effects of various fixed block-mapping policies on both the performance and

energy-efficiency of TFlex. Since the performance boost from the adaptive policy

decreases as we move from single-issue to dual-issue TFlex cores, we do not consider

the adaptive policy for our comparison. However, we expect the adaptive policy

to provide the best performance with lower power than fixed policies by virtue of

its better trade-off between concurrency and OPN traffic. As mentioned in Section

4.1, we use the cycle-accurate TFlex simulator for our experiments with the block-

113

1 2 3 4 5 6 7 8 9
Normalized Power

1.0

1.5

2.0

2.5

3.0
N

o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
ce

4

8

16

32

1

2

4

8
16

32

Flat
Deep

Figure 7.3: Flat vs. Deep Modes: Normalized Performance and Normalized Power

mapping policies. The TFlex simulator supports both the “flat” and the “deep”

mapping policies, and we obtain the performance and power results for both of

these policies. We use the same TFlex microarchitecture as described in Table 4.3,

and the benchmarks listed in Table 4.1 for our evaluation.

7.1.1 Results

Figure 7.3 plots the geometric mean of normalized performance and normalized

power for both the flat and the deep block-mapping modes. Normalized power is

plotted on the x-axis and normalized performance is plotted on the y-axis. Both

power and performance have been normalized to that of the 1-core configuration

114

of the flat mode. Each point on the flat and deep curves represents a TFlex con-

figuration with a specific core count increasing from 1 to 32 cores (a total of six

configurations for each mapping mode). We observe that for lower core configura-

tions (1 and 2 cores), both the flat and deep modes are approximately similar to

each in both performance and power. This is because with lower core counts com-

munication over the operand network does not dominate the overall performance,

and hence, both flat and deep modes perform similarly.

With increasing core counts, we observe that the deep mode outperforms the

flat mode both in terms of performance and power. For example, in the 16-core

configuration the deep mode performs about 15% better than the flat mode while

consuming 3% less power. As the core count increases, the flat mode experiences

increased OPN traffic among the cores (intra-block operands, registers, loads and

stores). The performance loss due to this increased OPN traffic completely offsets

the performance gains due to extraction of intra-block concurrency in the flat mode.

On the other hand, since each TFlex core is dual-issue, the deep mode exploits good

intra-block concurrency while experiencing reduced OPN communication. Thus,

the deep mode outperforms the flat mode both in terms of performance and energy

efficiency.

We plot the inverse Energy-Delay2 Product (ED2P) (perf3/watt) for both

deep and flat modes to assess the combined effects of the block-mapping policies

on both performance and power. Overall, we observe that the deep mode achieves

better EDP than the flat mode for all TFlex configurations except 1-core configu-

ration. In the 1-core configuration, the deep and the flat mapping modes behave

exactly the same due to absence of any inter-core communication. Thus, both block-

mapping modes achieve exact same performance, power and EDP. With increasing

core counts the deep mode either achieves better performance with same power or

better performance with lower power compared to the flat mode, achieving better

115

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

 1.20

 1.40

 1.60

T
F

le
x−

1

T
F

le
x−

2

T
F

le
x−

4

T
F

le
x−

8

T
F

le
x−

16

T
F

le
x−

32

P
er

f ^
 3

/W
at

t n
or

m
al

iz
ed

 to
 F

la
t

Flat
Deep

Figure 7.4: Flat vs. Deep Modes: Inverse Energy-Delay2 Product Comparison

EDP. For instance, the 16-core TFlex configuration of deep mode achieves the best

EDP of all TFlex configurations of both block mapping modes, and is approximately

50% better than its flat-mode 16-core counterpart.

To summarize, inter-core communication across distributed substrates like

TFlex play a key role in both performance and energy efficiency. Higher level soft-

ware policies that perform block allocations to programs must balance two key

aspects of the TFlex system: program concurrency and traffic across the OPN. Our

results indicate that in TFlex configurations with higher core counts the deep block

mapping mode significantly reduces OPN traffic compared to the flat mode, and

achieves better energy efficiency.

7.2 Predicate Prediction

Sustaining good instruction fetch bandwidth is a key determinant of good processor

performance. This is especially true for processors like TFlex which implement

a large instruction window. The TRIPS ISA, which the TFlex microarchitecture

116

implements, supports large instruction blocks containing up to 128 instructions.

The TRIPS compiler employs techniques like if-conversion [101] to construct large

hyperblocks, which are mapped to the distributed execution substrate in TFlex.

Ideally, difficult to predict branches are converted to predicates, thereby converting

the control dependence on the branch to a data dependence on the value of the

predicate. Thus, the technique of predication enables the compiler to aggressively

construct large hyperblocks, which is key to sustaining a good fetch bandwidth. On

the downside, the newly introduced predicates must wait until execution time for

their values to resolve. This additional waiting time for the predicate values could

negatively impact performance. In order to minimize the performance impacts of

predication, researchers have proposed the technique of predicate prediction. This

technique predicts if a given predicate evaluates to true or false, and speculatively

executes the instructions predicted to be on “true” path. Prior work has applied

the concept of predicate prediction to the distributed TFlex microarchitecture [27].

In that work, the authors propose predicate prediction mechanisms that balance

accuracy of prediction with the complexity of prediction in the distributed TFlex

substrate. Like with any speculative technique, predicate prediction must be used

with caution with respect to energy efficiency. While predicate prediction is essential

to improve performance in TFlex, we seek to ensure that the energy overheads of the

prediction mechanism – energy consumed by the prediction tables and components,

and reissuing of instructions when the prediction is wrong – do not outweigh the

benefits provided by prediction.

In the work by Esmaeilzadeh et al. [27] the authors evaluate the impact of

predicate prediction on performance of the 16-core TFlex configuration. In this

section, we evaluate the combined effects of predicate prediction on both the per-

formance and power of the TFlex system. We compare two different versions of the

TFlex system: 1) a baseline system with no predicate prediction and 2) a system that

117

supports predicate prediction. The TFlex simulator is augmented to support the

2KB GPHR.exit ⊕ CLPHR predicate predictor as described by Esmaeilzadeh

et al. [27], which achieved better prediction accuracy than other techniques, and

within a reasonable area overhead. This predictor augments the base GEHL pre-

dictor in each TFlex core with a core-local prediction table for predicate prediction.

The core-local table is indexed by the core-local predicate history register (CLPHR),

and the global tables in the GEHL predictor are indexed using the Global Predictor

History Register (GPHR) in each core. The predictions from the core-local table,

the global and local GEHL tables are added up to make the prediction. The sign

of the resultant sum provides the actual prediction whereas the confidence of the

prediction is given by the absolute value of the sum. The GPHR.exit in this pre-

dictor stands for the way of constructing the global histories with the exit IDs of

each branch prediction [27]. In this scheme, the compiler statically assigns suitable

branch IDs to capture the predicate path leading to those branches.

We augment the baseline TFlex power models with CACTI-based power

models for the predictor tables and power models of adders needed for prediction,

and additional leakage power dissipated due to the increased area. Since the integer

benchmarks of the SPEC suite are more control-intensive, and thereby result in

more aggressively predicated code than floating point benchmarks, we restrict our

analysis to the SPECINT benchmarks.

7.2.1 Results

Figure 7.5 plots the geometric mean of normalized performance and normalized

power for four different configurations: flat, deep, flat + predp, and deep+predp

modes, where flat refers to the flat mapping mode where all blocks are equally

striped across participating TFlex cores, and deep refers to the deep mapping mode

where each block is assigned to a single TFlex core in the system. flat + predp

118

1 2 3 4 5 6 7 8 9
Normalized Power

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
ce

4

8
16

32
4

8

16

32

4

8
16

32

1

2

4

8 16

32

Flat
Deep+Predp
Deep
Flat+Predp

Figure 7.5: Deep vs. Deep + Predicate Prediction: Normalized Performance and
Normalized Power

119

mode refers to predicate prediction enabled in the flat mode, and deep + predp

refers to the deep mode with predicate prediction. Normalized power is plotted on

the x-axis and normalized performance is plotted on the y-axis. Both power and

performance have been normalized to that of the 1-core configuration of the flat

mode. Each point on the flat, deep, flat + predp, and deep + predp curves

represents a TFlex configuration with a specific core count increasing from 1 to 32

cores (a total of six configurations for each mapping mode). The curves are anno-

tated with the core counts near each point. We observe that for configurations up

to two TFlex cores, all the four modes are approximately the same in terms of both

performance and power. At four cores, the modes with predicate prediction achieve

approximately the same performance as their non-predicate prediction counterparts

but at the expense of slightly higher power. From eight cores and upwards, predi-

cate prediction shows marginal performance improvements over both the deep and

the flat mode but at higher power levels. For example, the 32-core configuration in

predp mode achieves about 4% better performance than its deep mode counterpart

while consuming about 2% more power than the deep mode. Additionally, we ob-

serve that predicate prediction achieves better performance in the flat mode than

the deep mode. We hypothesize that the predicate prediction accuracy is higher in

the flat mode than in the deep mode, given the way instructions are mapped to

different cores, and thus, predicate prediction achieves better performance boosts in

the flat mode.

We plot the inverse EDP (perf3/watt) for the four modes to assess the com-

bined effect of predicate prediction on both performance and power. Overall, we

observe that the deep mode achieves better EDP than the deep + predp mode for

all TFlex configurations except the 16-core and 32-core configurations. This ob-

servation is also true with the flat mode. In the 32-core configuration, deep +

predp mode achieves the maximum performance boost over the deep mode with

120

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

 1.20

 1.40

 1.60

T
F

le
x−

1

T
F

le
x−

2

T
F

le
x−

4

T
F

le
x−

8

T
F

le
x−

16

T
F

le
x−

32

P
er

f ^
 3

/W
at

t n
or

m
al

iz
ed

 to
 F

la
t

Flat
Deep
Flat+PredP
Deep+PredP

Figure 7.6: Deep vs. Deep + Predicate Prediction: Inverse Energy-Delay2 Product
Comparison

a minimal increase in power, thus achieving a 11% boost in ED2P over the deep

mode. Similarly, in the 32-core configuration, flat + predp mode achieves a 25%

boost in ED2P compared to the flat mode. With the other core counts the pred-

icate prediction either achieves poor performance at similar power levels or better

performance with even worse power levels.

Our experimental results indicate that predicate prediction, a speculative

technique, does not always improve performance over a baseline without predicate

prediction. For instance, predicate prediction provides only marginal performance

improvement in the deep mode while adding energy overheads to the baseline.

Hence, when energy efficiency is considered, predicate prediction achieves improve-

ments in energy efficiency only with higher core counts. At lower core counts, the

increased energy overheads of predicate prediction combined with only marginal

performance improvements do not justify predicate prediction.

121

7.3 Operand Multicast

Another key overhead in the EDGE architecture implemented in TFlex stems from

move instructions required to fan out values that are used by many consumers [68].

Unlike a conventional architecture which can employ the register file to broadcast

values, a compiler for an EDGE architecture must build a software fanout tree

of move instructions which can result in instruction execution overheads of up to

20% [68].

To target this overhead, researchers have examined a compiler-assisted hy-

brid instruction communication mechanism that augments a token-based instruction

communication model with a small number of architecturally exposed broadcasts

within the instruction window [64]. A narrow CAM allows high-fanout instruc-

tions to send their operands to their multiple consumers. All other instructions,

which have low-fanout, rely on the point-to-point token communication model. The

compiler determines statically which instructions use tokens and which use broad-

casts. Few tags are required as the compiler can reuse broadcast identifiers for

non-overlapping live range broadcasts.

Figures 7.7 and 7.8, reproduced from the results in [64], show the performance

and power respectively of the hybrid broadcast scheme running single-threaded code

on a composed 16-core TFlex system relative to a system without support for broad-

cast. With four overlapping broadcasts per hyperblock, the hybrid scheme achieves

about a 5% speedup and 10% reduction in power for SPEC-INT. For SPEC-FP,

the speedup and power reductions are mixed, due largely from the fewer number of

move fanout trees in these benchmarks.

122

������������������������������������

����� ¡¢ �£¤�¥¢¦ �£���§§ �̈��©§ª �̈��§¦«ª¬­ ®¤¤�¥̄¦¬°± ²³³�¬́̄µª ®¤²�¢°¦µ¶©· ¹̧º»¼½¾¿ÀÁÂ ��̈�́Ã¢́¡Ä° �£��Ä́¡© �£®�©�¦¡Å �£²�«¢¢µÃ �££�©°Ä« �£Æ�«¦¬ �̈²�°ÇÃ«·° �̈̈�«©©¢ ¹̧º»È¹¿ÀÁÂ
ÉÊËÌÍËÎÏÐÑÊ

Figure 7.7: Performance of Limited broadcast support in TFlex. Figure reproduced
from [64].

123

ÒÓÔÒÕÔÖÓÔÖÕÔ×ÓÔ×ÕÔØÓÓÔØÓÕÔØØÓÔ

ÙÚÛÜÝÞßà ÙáâÜãàä ÙáÚÜÝåå ÙæÙÜçåè ÙæÚÜåäéèêë ìââÜãíäêîï ðññÜêòíóè ìâðÜàîäóôçõ ö÷øùúûüýþÿ
�

ÙÚæÜò�àòß�î ÙáÙÜ�òßç ÙáìÜçÝäß� ÙáðÜéààó� ÙááÜçî�é Ùá�Üéäê ÙæðÜî��éõî ÙææÜéççà ö÷øù�÷ýþÿ�
��	
�

Figure 7.8: Power of Limited broadcast support in TFlex. Figure reproduced
from [64].

7.4 Summary

In this chapter, we evaluate a set of performance-boosting mechanisms for the TFlex

microarchitecture with respect to energy efficiency. These mechanisms include flex-

ible block-mapping policies, predicate prediction and multicast/broadcast support

for operands on the TFlex microarchitecture. Block-mapping policies trade off pro-

gram concurrency and communication across the operand network in the distributed

TFlex substrate. Predicate prediction, a speculative technique, aims to improve the

performance of TFlex by predicting the value of predicate instructions in programs.

The multicasting/broadcasting mechanism mitigates the performance impact by the

additional move instructions used for operand communication. We examine the ef-

fects of these mechanisms in terms of both performance and power, and summarize

the lessons learnt from our evaluation below.

124

• Data communication across distributed microarchitectures such as TFlex is a

key determinant of both performance and power. The block-mapping modes,

flat and deep, balance intra-block parallelism with communication across the

operand network. By significantly reducing operand communication across the

network, the deep mode achieves better performance flat mode. As an added

advantage, by virtue of reduced communication the deep mode reduces power

dissipation compared to flat mode. Hence, the deep block-mapping mode is a

“win-win” strategy with respect to performance and power for the distributed

TFlex microarchitecture.

• Like with any technique of speculation, predicate prediction should be im-

plemented with caution. Although predicate prediction significantly improves

performance at higher TFlex core counts in both flat and deep modes, the

performance improvements are only marginal or sometimes negative at lower

core counts. Considering the added energy overheads caused by this form of

speculation, the marginal performance improvements at lower core counts do

not justify the inclusion of predicate prediction.

• The TRIPS ISA employs the move instruction to fan out operands when a

producer has more consumers than allowed by the ISA. These additional move

instructions increase the dependence height between producers and consumers.

The broadcast technique decreases the dependence height by adding hardware

support for limited broadcast. While the technique itself adds more power

consumption, it achieves an overall reduction in power due to reduced number

of move instructions.

An interesting future research direction could look at the combined effects

of all these mechanisms both in terms of performance and power. This dissertation

evaluates these mechanisms mostly individually. However, because these mecha-

125

nisms are orthogonal to one another it would be interesting to study the combined

effects of all mechanisms. Similar to the flexibility offered by the composability

of the TFlex substrate, higher levels of system software combined with adequate

compiler support could pick and choose various combinations of mechanisms that

achieve the best performance and power characteristics for each application.

126

Chapter 8

Fine-Grained Power

Management Policies

As described in Chapter 1, power dissipation is governed by the equation P =

CV 2f + V Ioff . The first term in this equation is the dynamic power component,

and the second term is leakage. Various forms of power management exist in modern

microprocessors including clock gating, power gating, and frequency throttling [119]

that reduce power consumption by modulating different variables in the power equa-

tion. One such popular technique is dynamic voltage and frequency scaling (DVFS).

The dynamic component of power dissipation is quadratically dependent on the op-

erating voltage (V), and linearly dependent on the frequency (f). Since DVFS si-

multaneously modulates both the voltage and the frequency of the processor, DVFS

typically achieves a cubic reduction in power combined with a linear reduction in

performance.

Several researchers have used DVFS to trade performance for power in chip

multiprocessors (CMPs) and in Multiple Clock-Domain (MCD) processors [49, 51,

65,94]. Because modulating the power supply voltage requires adjusting the board-

level voltage regulator circuit, DVFS has been historically applied to an entire chip

127

as a whole. Although the work by Isci et al. [49] assumes a fine-grained per-core

DVFS implementation, they do not explore the design issues of on-chip Voltage

Regulator Modules (VRMs), and the interplay between the policies and the fine-

grained DVFS mechanism. Researchers at Harvard have recently shown the po-

tential to build multiple on-chip VRMs, enabling the modulation of DVFS settings

of individual cores/elements on a chip and providing very fast DVFS transitions

(a few nanoseconds) [60]. These on-chip VRMs enable a temporally and spatially

fine-grained DVFS mechanism. Distributed microarchitectures like TFlex, when

combined with such a fine-grained DVFS mechanism, open up novel opportunities

for fine-grained power management policies.

In this chapter, we explore the feasibility of two such fine-grained power

management policies for the TFlex microarchitecture as novel contributions of this

dissertation. The first policy seeks to run critical computation within a program at

the highest performance levels, and slows down non-critical computation by mapping

them to lower performance levels to improve overall power efficiency. The second

policy explores the idea of using controlled speculation to achieve a better trade-off

between performance and power. CLPs like TFlex provide an extremely flexible

substrate to manage speculation, and thereby, trade off performance for power. In

particular, we explore the idea of using the confidence of a branch prediction (block

prediction in TFlex) to decide the DVFS state of the block. If a branch prediction

has high confidence, we map the block to higher DVFS states, and vice-versa. For

each of the above policies, we discuss the general principle underlying each policy,

which is applicable to any architecture, followed by the implementation details on

the TFlex microarchitecture in the sections below.

Although the DVFS mechanism has been extensively studied in prior re-

search, the novelty of our contributions stems from applying a temporally and spa-

tially fine-grained DVFS mechanism to CLPs like TFlex. Since the DVFS mech-

128

anism is spatially fine-grained, it can be applied to individual TFlex cores. This

feature combined with the ability of TFlex to dynamically aggregate cores has the

potential to enable better power management policies. For example, critical and

non-critical components of a single-threaded program can be mapped to cores with

different DVFS settings, and hence, different performance levels. Similarly, non-

speculative and speculative components of the program can be mapped to cores with

varying DVFS/performance levels. The block-oriented TRIPS ISA provides addi-

tional benefits by amortizing DVFS transition overheads among many instructions.

However, combining fine-grained DVFS with TFlex opens up several challenges as

well. Our novel contributions include exploring the detailed interplay between the

policies and the fine-grained DVFS mechanism, and analyzing the various sources

of overheads of the fine-grained DVFS mechanism.

In the rest of this chapter, we first discuss the fine-grained DVFS mechanism

and its associated design issues. Next, we explore the critical policy with a limit

study for gauging the upper bound on its potential. In this limit study, we idealize

many parameters of the system design. Next, we explore a series of realistic designs

where we incrementally remove the idealistic assumptions of the limit study. Next,

we explore the policy that maps blocks based on branch confidence and wrap up the

chapter with a summary of our findings and directions for future research.

8.1 DVFS Mechanism

The fine-grained power management policies discussed in this section utilize an un-

derlying per-core DVFS mechanism. Conventional DVFS designs rely on VRMs

located on the motherboard and only provide a temporally and spatially coarse-

grained DVFS mechanism. In contrast, we consider on-chip VRMs that enable a

temporally and spatially fine-grained DVFS mechanism. The key VRM character-

istics are its energy conversion efficiency, load transient response, DVFS transition

129

time, and area [60]. Since these characteristics are highly interdependent, we require

design-space explorations to finalize the VRM design for the TFlex microarchitec-

ture. In this section, we outline the major challenges in the design of the fine-grained

DVFS mechanism. In the following sections, we present the results of VRM design

space exploration that was conducted in collaboration with Harvard researchers.

Our primary focus for this chapter will be on the policies that leverage the DVFS

mechanism and the challenges in making such a design work. Hence, we evaluate

a few solution points from the VRM design space results, and we explore the two

proposed policies.

8.1.1 Implementation Challenges

Area: Our fine-grained DVFS mechanism uses on-die VRMs to supply power to the

TFlex cores. Since the VRMs are located on the die, the area of the VRM dictates

the number of VRMs on the chip, and hence, the number of TFlex cores that can

share a single VRM. At one end of the design spectrum, each TFlex core can have

a dedicated VRM. At the other end, all TFlex cores can share a single VRM. The

first option has the highest area overhead but enjoys enormous flexibility in terms

choosing the right DVFS state for each core. The second option has the lowest

area overhead but has limited flexibility in terms of DVFS mapping. To place the

area overheads in perspective, our estimates show that if all 32 TFlex cores share a

single VRM, it could occupy 12.5 mm2 in 65nm technology, which is about 5% of

the TFlex chip area. On the other hand, if each TFlex core has its dedicated VRM,

the total area overhead would be 82 mm2, which is 32% of the chip area.

DVFS transitions: During the transition from a DVFS state to another,

the voltage transitions are not instantaneous, but occur gradually. Typical voltage

transitions occur in the nanonseconds range (for example, 5 to 40 millivolts per

nanosecond have been reported) [60]. These gradual voltage transitions result in

130

both performance and energy overheads in a real fine-grained DVFS system as the

voltage cannot transition instantaneously. However, just like in prior work [30, 60],

we assume that the processor clocks are kept running during the voltage transition

and that frequency changes are effectively instantaneous.

Efficiency: Both on-chip and off-chip VRMs supply power for the operation

of circuits by converting a higher voltage to lower voltages. This process of conver-

sion incurs losses due to inefficiencies in the voltage regulator. Efficiency of VRMs,

specifically on-chip VRMs, is a key characteristic, and is heavily interdependent

on the area of the VRM. On-die VRMs with higher conversion efficiency typically

occupy a larger area whereas VRMs with smaller area have lower efficiency. Any

system using on-chip VRMs must carefully trade off energy efficiency for on-chip

area. Efficiencies of 80-90% have been reported for on-die VRMs [60].

Synchronization: When fine-grained DVFS is combined with a CLP like

TFlex, cores operating at different voltage/frequency levels need to communicate

among themselves. This cross-domain communication requires a mechanism of syn-

chronization across voltage/frequency boundaries, and is a key challenge that needs

to be addressed in such a design. The synchronization issue has been encoun-

tered in various designs where different frequency domains interact [104], including

Globally Asynchronous Locally Synchronous (GALS) processors [51]. The problem

is mitigated by the use of synchronizers (synchronizing latches and dual-clocked

FIFOs [82]) at the edge of the domains when data crosses from one frequency

to another. While synchronizers greatly reduce the probability of the metastable

state [104], they introduce extra latencies in the communication path. Since all

TFlex cores communicate among themselves using the operand network (OPN),

which replaces the conventional bypass networks, any extra latency in the OPN

will directly affect the performance and will counterbalance the power advantages

of DVFS.

131

Voltage (volts) Frequencies (MHz)

1.1 3000 2400
1.0 2000 1500
0.9 1000 800
0.8 500 400

Table 8.1: DVFS settings used

8.2 Experimental Setup

We use the TFlex platform as our experimental vehicle for exploring the fine-grained

DVFS policies on CLPs. Our experiments described in this chapter use the cycle-

level TFlex simulator described in Chapter 4.1 after necessary modifications. We

add the support for modeling the interaction among different architectural com-

ponents (cores, network routers, and L2 banks) each running at a different clock

frequency. We also model the synchronization delays that are needed when commu-

nication happens across frequency domains. Finally, we also model the finite voltage

transition delay penalty that occurs when shifting voltage levels. In our limit study,

which gauges the upper bound on the DVFS benefits, we assume ideal synchroniza-

tion delays, DVFS transition timings, and regulator efficiency. We assume the 65nm

process technology, and the voltage and clock frequencies as described in Table 8.1,

which differ from those used in Chapter 6. As listed in Table 8.1, each voltage level

is assumed to support two different frequencies. The simulator models events at a

frequency equal to the lowest common multiple of all frequencies supported by the

system. Hence, we chose these settings to model a reasonable range of voltages and

frequencies, and also, to minimize the performance impact on the TFlex simulator.

We use all benchmarks as described in Table 4.1 except that we were only able to

include 10 SPEC benchmarks (5 INT and 5 FP). For the other SPEC benchmarks,

a few of the TFlex core configurations face long simulations times, and hence, were

excluded from the study.

132

8.3 Instruction Criticality

We first evaluate an idea that runs computation critical to the performance of the

program at the maximum performance level, and slows down non-critical computa-

tion by mapping it to lower performance levels. This idea finds many embodiments

in prior research. Seng et al. [95] use a critical path predictor to predict if each

instruction is critical to the overall program execution. If the instruction is critical,

the microarchitecture steers that instruction to a high-performance, higher power

pipeline. If the instruction is predicted non-critical, it is steered towards a low-

performance, lower power pipeline. Other researchers have exploited this principle

of criticality for better performance as opposed to reducing power. For example,

Fields et al. [29] use a token-based critical path predictor for better instruction

scheduling and improved value prediction.

TFlex Implementation: We evaluate an embodiment of this principle on

the tiled and distributed TFlex microarchitecture. We leverage a simulation-based

critical path tool designed for the TFlex microarchitecture [89] for identifying critical

blocks in a program. Figure 8.1 describes the design of our criticality-based block

mapping heuristic on the TFlex substrate. Although our implementation uses the

concept of instruction criticality for power efficiency like others, the similarities

end there. The fine-grained DVFS mechanism is expected to provide very fast

DVFS transitions for each participating TFlex core. Also, since TFlex implements

the block-based TRIPS ISA, we expect TFlex to better amortize DVFS transition

overheads among many instructions. These aspects distinguish our work from prior

applications of instruction criticality for power efficiency.

For each benchmark, we perform two runs on the TFlex simulator. In the

first phase, we leverage the critical path tool described in [89] to categorize all

committed blocks as either critical or non-critical. The tool uses a critical path

model of the TFlex microarchitecture, similar to [75] but applied to TFlex, and

133

�
����������
���������� ���������������������������� ������
����
� !"# $

�
����
����
�������� ����������%�&�� ����
�
�
������
����������
�
�
����������% �����'(���
� ���
�&�� ����
������������ �

�
�� !"# $$
Figure 8.1: Criticality-based DVFS Mapping

134

analyzes the various microarchitectural events to identify the critical path for the

benchmark. The critical path includes all the instructions that contribute to the

longest path from the first block to the last block in the benchmark. We extend the

notion of criticality to the block level, and classify every block that contains at least

one critical instruction or event as critical. All the other blocks are classified as non-

critical. Although there are many possible definitions of block-based criticality, we

use the above definition because it is a natural and simple extension of instruction

criticality to the block level.

The profile data (critical and non-critical blocks) from the first phase is

passed onto the second phase. Typical studies that use profile data do so by using

training data from a different input set than the actual input set. In our method-

ology, we leverage the training data from the same input set, which helps us gauge

the upper bound on the power efficiency of this approach. During the second phase,

each time the TFlex microarchitecture fetches a new block, the profile data from the

first phase is consulted to check if this block is critical or not. If a block is predicted

critical, then the block is mapped to a TFlex core with a higher DVFS setting. On

the other hand, if the block is predicted non-critical, it is mapped to a TFlex core

with a lower DVFS setting and is run slower with lesser power and to exploit the

slack. We explore different heuristics that use different DVFS settings for critical

and non-critical blocks, and study the effects on overall performance and power.

8.4 Limit Study

To begin our limit study, we first analyze the percentage of committed blocks that

are categorized as critical by the critical path tool using the maximum voltage and

frequency point in Table 8.1. Figure 8.2 shows the average percentage of critical

(committed) blocks in different benchmark categories. The different benchmarks

are plotted in the x-axis, and percentage is plotted in the y-axis. We note that only

135

 0%

 20%

 40%

 60%

 80%

 100%

M
IC

R
O

K
E

R
N

E
LS

E
E

M
B

C

S
P

E
C

−
IN

T

S
P

E
C

−
F

P

A
V

G

P
er

ce
nt

ag
e

of
 C

rit
ic

al
 C

om
m

itt
ed

 B
lo

ck
s

1−Core
2−Core
4−Core
8−Core
16−Core
32−Core

Figure 8.2: Percentage of Critical Blocks

committed blocks are considered by the critical path tool for this categorization,

and all mis-speculated blocks are ignored in this analysis. For each benchmark

category, the figure reports the percentage of critical blocks in all possible TFlex

configurations ranging from 1 to 32 cores.

Overall, we observe that percentage of criticality starts at 100% for the 1-

core configuration, and falls down to 60% in the 4-core configuration and increases

to about 94% in the 32-core configuration. In the 1-core configuration, every block

is run on a single core, and hence, every block ends up in the critical path. The

percentage of critical blocks decreases in the 2-core and 4-core configurations due

to increased parallelism in the system. However, when the core count increases

beyond eight, the inter-core communication starts to dominate the latencies despite

the increased extraction of parallelism. This causes the percentage of critical blocks

136

to increase with higher core counts. According to these results and according to

Amdahl’s law, we can theoretically improve the power efficiency by 40%, in the

best case, for the 4-core TFlex configuration – assuming that the performance is

unaffected, and all critical blocks are mapped to the maximum p-state and that the

non-critical blocks consume no power. This theoretical upper limit varies with the

number of cores, according to the percentage of critical blocks. In a realistic setup,

the non-critical blocks must be executed to complete the program, and hence, the

overall performance will drop down. Furthermore, the non-critical blocks must be

executed at some non-zero frequency, however low that might be. All these factors

would mean that in a realistic setup the improvement in power efficiency using this

policy is likely to be far lower than 40% in the 4-core case, and even lower in other

configurations.

We idealize all the parameters of the fine-grained DVFS system for the pur-

poses of this limit study. This includes perfect or zero-cycle synchronization across

frequency domains, perfect or instantaneous voltage transitions, and perfect regula-

tor conversion efficiency. Additionally, we assume that there are unlimited number of

VRMs to provide the fine-grained DVFS for all the components of the chip (cores,

L2 banks, network routers, etc) as needed. These idealizations provide an upper

bound for the benefits expected from fine-grained DVFS.

8.4.1 Effects on Performance and Processor Power

The first policy we consider maps all critical blocks to the maximum frequency (1.1

volts and 3 GHz) and all non-critical blocks to the state with 1.0 volts and 2 GHz

(called C-Ideal policy). We compare this policy to two static policies: one which

runs all the blocks at the 3 GHz (called as 3GHz policy) and another that runs all

blocks at 2 GHz (2GHz policy). This comparison shows how much performance and

power difference is expected from this policy when two frequencies are available at

137

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

 1.20

 1.40

 1.60

T
F

le
x−

1

T
F

le
x−

2

T
F

le
x−

4

T
F

le
x−

8

T
F

le
x−

16

T
F

le
x−

32

P
er

fo
rm

an
ce

 n
or

m
al

iz
ed

 to
 2

G
H

z

Performance Comparison
2GHz
C−Ideal
3GHz

Figure 8.3: Performance Comparison with C-Ideal policy

hand. The 3GHz and 2GHz policies operate the entire chip (all the cores, L2 cache

banks and network routers) at 3 GHz and 2 GHz respectively, whereas the C-Ideal

operates the rest of the chip (L2 cache banks and network routers) at 3 GHz, and the

cores at the desired frequency (3 GHz for critical blocks and 2 GHz for non-critical

ones).

Figures 8.3, 8.4, and 8.5 compare the performance, processor power, and

performance/watt of the three policies: 3GHz, C-Ideal, and 2GHz policies. The

X-axis shows the various TFlex configurations, and the Y-axis shows performance,

processor power, and performance/watt, each normalized to that of the 2GHz policy

for each TFlex core configuration. Since the voltage conversion efficiency of VRMs is

a key design criteria, we focus on the energy metric or its inverse, performance/watt,

throughout this chapter. As Figure 8.2 indicates, all blocks are critical in the 1-core

configuration. Hence, the C-Ideal policy maps all blocks to 3 GHz, and is identical

to the 3GHz policy in all respects. Except for the 1-core configuration, the 3GHz

policy outperforms the other two policies but at the cost of consuming the maximum

power of all policies. The 2GHz policy, on the other hand, consumes the minimum

138

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

 1.8

T
F

le
x−

1

T
F

le
x−

2

T
F

le
x−

4

T
F

le
x−

8

T
F

le
x−

16

T
F

le
x−

32

P
ow

er
 n

or
m

al
iz

ed
 to

 2
G

H
z

Power Comparison
2GHz
C−Ideal
3GHz

Figure 8.4: Power Comparison with C-Ideal policy

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

T
F

le
x−

1

T
F

le
x−

2

T
F

le
x−

4

T
F

le
x−

8

T
F

le
x−

16

T
F

le
x−

32

P
er

fo
rm

an
ce

/W
at

t n
or

m
al

iz
ed

 to
 2

G
H

z Performance/Watt Comparison
2GHz
C−Ideal
3GHz

Figure 8.5: Performance/Watt Comparison with C-Ideal policy

139

power of all the policies, but also performs poorly compared to the other two. The

C-Ideal policy, however, performs better than the 2GHz policy while consuming less

power than the 3GHz policy. As the core count increases, as shown in figure 8.2,

a higher percent of blocks become critical, and thus, the C-Ideal policy maps more

blocks to 3 GHz, and so approaches the 3GHz policy in all respects.

Challenges: Ideally, the C-Ideal policy must achieve similar performance

levels as the 3GHz policy because all the critical blocks are mapped to 3 GHz in

the C-Ideal policy. However, from the above results, we observe that this is not the

case, and C-Ideal policy falls short of the 3GHz policy. There are two key reasons

for this performance drop. First, TFlex is a distributed microarchitecture where all

hardware structures including the register file, data cache banks, and instruction

windows are equally partitioned across the participating cores (when there is more

than one core in the composed TFlex system). While the C-Ideal policy maps all

critical blocks to 3 GHz the non-critical blocks are mapped to 2 GHz. Because

many non-critical blocks execute concurrently with the critical blocks, certain cores

are mapped to 3 GHz and certain other cores are mapped to 2 GHz. The critical

blocks running at 3 GHz do need to communicate with cores running at 2 GHz

mainly because the register files and the data cache banks are address-interleaved

across all the participating cores. Thus, even though the critical blocks are run at 3

GHz they are invariably slowed down because of the necessary communication with

the register file banks and data cache banks running at 2 GHz. From our analysis,

this observation is the key challenge in marrying fine-grained DVFS policies with

distributed architectures like TFlex.

Second, in the ideal case, when the non-critical blocks are slowed down and

are run at 2 GHz one should not see any drop in performance. However, in reality, we

do observe performance drops when non-critical blocks are run at 2 GHz. Typically,

programs consist of multiple paths that are slightly shorter than the actual critical

140

path through the program. When the non-critical blocks are slowed down, it is

possible that paths which are non-critical originally become critical. Due to this,

the C-Ideal policy could experience performance drops compared to the 3GHz policy.

Effects on Performance/Watt: In terms of the inverse of energy or per-

formance/watt, the 2GHz policy outperforms the 3GHz and C-Ideal policies in all

configurations. This is because both 3GHz and C-Ideal policies rely on expensive

voltage scaling to go from 2 GHz to 3 GHz (a voltage increase from 1.0 volt to 1.1

volts). This voltage increases brings along a quadratic increase in power but only

with a linear increase in performance. So, in terms of performance/watt, 2 GHz

policy shines. However, because the C-Ideal policy maps only a certain percentage

of blocks to 3 GHz, it is marginally (4-6%) better than the 3GHz policy in terms of

performance/watt.

Although the C-Ideal policy does not provide a linear improvement in per-

formance and power like pure frequency scaling (a linear increase in power results

in a linear increase in performance), the C-Ideal policy improves the flexibility and

operating range of the TFlex system. These results indicate that the C-Ideal policy

is only marginally successful in exploiting the slack from non-critical blocks. For

example, the C-Ideal policy only provides a 15% drop in processor power and 11%

drop in performance compared to the static 3GHz policy. In comparison, our ideal-

case theoretical upper limit for the power reduction is 40% in the 4-core case with

no change in performance. The distributed TFlex microarchitecture requires com-

munication across cores running at different frequencies. Hence, the critical blocks

are invariably slowed down compared to the static 3GHz policy. Furthermore, these

results assume ideal synchronization, ideal voltage transitions with perfect on-die

VRM efficiency. We expect these marginal improvements to dwindle further if these

ideal assumptions are relaxed.

141

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

T
F

le
x−

1

T
F

le
x−

2

T
F

le
x−

4

T
F

le
x−

8

T
F

le
x−

16

T
F

le
x−

32

Chip Power Comparison
2GHz
C−Ideal
3GHz

Figure 8.6: Total Chip Power Comparison with C-Ideal policy

8.4.2 Effects on Chip Power

The previous figures plot only the processor power and the performance/watt met-

ric calculated with the processor power. The C-Ideal policy actively modulates the

DVFS settings of the cores only, and these processor power metrics provide us a

clear picture of performance and power differential of the critical policy. Figures

8.6 and 8.7 compare the total chip power and the performance/watt metric (inverse

of energy) calculated with the chip power. We observe that the power and perfor-

mance/watt advantage of the C-Ideal policy over the 3GHz policy diminishes when

the total chip power is used for comparison. This is because both the 3GHz and

C-Ideal policies run the L2 cache banks and network routers at 3 GHz, and the

C-Ideal policy only modulates the frequencies of the cores. So, the only reduction

in the overall chip power comes from the cores, and the amount of power reduction

decreases when chip power metric is used.

142

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

T
F

le
x−

1

T
F

le
x−

2

T
F

le
x−

4

T
F

le
x−

8

T
F

le
x−

16

T
F

le
x−

32

P
er

fo
rm

an
ce

/W
at

t n
or

m
al

iz
ed

 to
 2

G
H

z Performance/Watt Comparison
2GHz
C−Ideal
3GHz

Figure 8.7: Total Performance/Watt Comparison using Chip Power with C-Ideal
policy

8.4.3 Limits of Criticality-based Slack

Next, we explore a set of criticality-based policies to fully gauge how much slack

we can exploit from the non-critical blocks. We study two more policies called C-

IdealM and C-IdealL, which are similar to the C-Ideal in that they map critical

blocks to 3 GHz but map the non-critical ones to 1 GHz and 0.8 GHz respectively.

By mapping non-critical blocks to lower frequencies, these policies aim to further

exploit the slack from non-critical blocks.

Figures 8.8, 8.9, and 8.10 compare the performance, processor power, and

performance/watt of all the policies: 3GHz,C-Ideal,C-IdealM,C-IdealL, and 2GHz.

The C-IdealM and C-IdealL policies have lower power consumption that the C-

Ideal policy, but also perform worse. In the 2-core and 4-core configurations, the

C-IdealM and C-IdealL policies consume either the same power or slightly more

power compared to the 2GHz policy. However, the performance of these policies

in the 2-core and 4-core case is also worse than the 2GHz policy. Hence, in terms

of performance/watt metric, the C-IdealM and C-IdealL policies are outperformed

143

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

 1.20

 1.40

 1.60

T
F

le
x−

1

T
F

le
x−

2

T
F

le
x−

4

T
F

le
x−

8

T
F

le
x−

16

T
F

le
x−

32

P
er

fo
rm

an
ce

 n
or

m
al

iz
ed

 to
 2

G
H

z

Performance Comparison
2GHz
C−Ideal
C−IdealM
C−IdealL
3GHz

Figure 8.8: Performance Comparison with C-Ideal, C-IdealM and C-IdealL policies

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

 1.8

T
F

le
x−

1

T
F

le
x−

2

T
F

le
x−

4

T
F

le
x−

8

T
F

le
x−

16

T
F

le
x−

32

P
ow

er
 n

or
m

al
iz

ed
 to

 2
G

H
z

Power Comparison
2GHz
C−Ideal
C−IdealM
C−IdealL
3GHz

Figure 8.9: Processor Power Comparison with C-Ideal, C-IdealM and C-IdealL poli-
cies

144

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

T
F

le
x−

1

T
F

le
x−

2

T
F

le
x−

4

T
F

le
x−

8

T
F

le
x−

16

T
F

le
x−

32

P
er

fo
rm

an
ce

/W
at

t n
or

m
al

iz
ed

 to
 2

G
H

z Performance/Watt Comparison
2GHz
C−Ideal
C−IdealM
C−IdealL
3GHz

Figure 8.10: Performance/Watt Comparison with C-Ideal, C-IdealM and C-IdealL
policies

by the 2GHz policy, and even by the 3GHz policy. At higher core counts, the C-

IdealM and C-IdealL catch up to the 3GHz policy in terms of performance/watt,

but only beat it marginally. This result adds further testimony to the fact that even

by mapping non-critical blocks to lower and lower frequencies, the criticality-based

policies are unable to exploit any slack. This, we hypothesize, is mainly due to the

percentage of critical blocks at various core counts, which is noticeably high.

8.4.4 L2 Caches

All the policies studied above modulate only the core frequencies by assuming that

the L2 cache banks are run at the maximum frequency. Additional power benefits

could be reaped if the L2 cache banks are operated at lower frequencies. To esti-

mate the possible power savings by potentially running L2 at slower frequencies, we

explore two other policies called C-Ideal-L2 and C-Ideal-L2-Low, which area simi-

lar to the C-IdealM policy except that the L2 cache banks are operated at slower

frequency of 1.5 GHz and 1.0 GHz respectively.

Figures 8.11, 8.12, and 8.13 show the performance, total chip power, and per-

145

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

 1.20

 1.40

 1.60

T
F

le
x−

1

T
F

le
x−

2

T
F

le
x−

4

T
F

le
x−

8

T
F

le
x−

16

T
F

le
x−

32

P
er

fo
rm

an
ce

 n
or

m
al

iz
ed

 to
 2

G
H

z

Performance Comparison
2GHz
C−Ideal
C−Ideal−L2
C−Ideal−L2−Low
3GHz

Figure 8.11: Performance Comparison with C-Ideal-L2 policy

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

T
F

le
x−

1

T
F

le
x−

2

T
F

le
x−

4

T
F

le
x−

8

T
F

le
x−

16

T
F

le
x−

32

Chip Power Comparison
2GHz
C−Ideal
C−Ideal−L2
C−Ideal−L2−Low
3GHz

Figure 8.12: Chip Power Comparison with C-Ideal-L2 policy

146

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

 1.20

 1.40

T
F

le
x−

1

T
F

le
x−

2

T
F

le
x−

4

T
F

le
x−

8

T
F

le
x−

16

T
F

le
x−

32

P
er

fo
rm

an
ce

/W
at

t n
or

m
al

iz
ed

 to
 2

G
H

z Performance/Watt Comparison
2GHz
C−Ideal
C−Ideal−L2
3GHz

Figure 8.13: Performance/Watt Comparison with C-Ideal-L2 policy

formance/watt for C-Ideal-L2 and C-Ideal-L2-Low policies. From these results, we

observe that C-Ideal-L2 and C-Ideal-L2-Low provide further reduction in total chip

power compared to C-Ideal with good improvements in performance/watt. The C-

Ideal-L2-Low and C-Ideal-L2 policies outperform C-Ideal, 2GHz and 3GHz policies,

by simultaneously exploiting instructions criticality and slack in the L2 sub-system.

These results point to the advantage of having an independent VRM controlling the

L2 cache banks, and the flexibility and improvement in power efficiency offered by

such a design. By operating the L2 cache banks at even lower frequencies or dif-

ferent L2 banks at different frequencies according to demand, more power efficiency

benefits are expected. Fully exploring the design space of modulating the processors

and the L2 cache banks is beyond the scope of this dissertation.

Overall, the ideal critical policies extend the operating range of TFlex, and

marginally outperform the static 2GHz policy while consuming marginally lower

power than the static 3GHz policy. In terms of overall energy usage or its inverse

performance/watt, all the ideal critical policies outperform the static 3GHz policy,

which has the best performance, but is outperformed by the 2GHz policy due to the

usage of costly voltage scaling in their criticality-based mapping. Also, when operat-

147

ing under tight chip-level power budgets, such policies are necessary to extract more

performance from the system within the power budget. Our experimental results

show that having an additional VRM to operate the L2 cache banks independently

improves the power efficiency of the overall chip in terms of the performance/watt

metric.

8.5 Realistic Synchronization

The previous section performs a limit study of the various criticality-based policies

with ideal synchronization, ideal voltage transition, unlimited number of VRMs,

and ideal regulator efficiency. In this section, we relax the assumption of ideal syn-

chronization across frequency domains and study the ensuing effect on performance

and power of the TFlex system. We assume the presence of dual-clocked synchro-

nizing FIFOs [82] at the boundary of the different frequency domains. Whenever

the transported data crosses frequency domains, for example from a core to its at-

tached operand network router or from a core to its attached L2 cache bank router,

we assume that the data is transmitted and received using these dual-clock FIFOs.

Although the synchronizing latencies could vary [104], a synchronizing delay of at

least one clock cycle is necessary for virtually all synchronizers. We model a syn-

chronization cost of one cycle when data crosses different frequency domains. We

further assume that when data is transported across the same frequency we do not

have to pay the synchronization penalty. Finally, we ignore the area and power

overheads of the dual-clocked synchronizing FIFOs.

All TFlex cores are tightly coupled by the operand network (OPN) which

transports different types of operands among the TFlex cores: register, memory, and

intra-block operands. Because the OPN replaces the conventional bypass networks,

any extra latency in the OPN will have a major impact on TFlex performance.

To mitigate this performance impact, we explore two different solutions. The first

148

Router Router

RouterRouter

TFlex Core 0 TFlex Core 1

TFlex Core 2 TFlex Core 3

Other DVFS States

Use synchronization only when entering

and exitting the network routers.

DVFS State (for all Routers)

Figure 8.14: Synchronization Optimization

solution is to use the “deep” block-mapping strategy as discussed in Chapter 7. The

“deep” strategy maps every block to a dedicated TFlex core, thereby minimizing the

intra-block communication overhead compared to the “flat” strategy. As results in

Chapter 7 show, the “deep” strategy outperforms the “flat” strategy both in terms

of performance and energy efficiency. Hence, using the “deep” strategy is a win-

win situation: better performance and energy efficiency overall as well as reduced

synchronization with fine-grained DVFS policies.

The second technique to mitigate synchronization delays is to decouple each

OPN router in a TFlex core and to run the OPN router in a power and frequency

domain different from that of the cores. Figure 8.14 describes this design where in

the worst case (where every TFlex core is at a different frequency), a data packet

would incur a 2-cycle bubble throughout its entire path (1-cycle bubble each during

entry and exit from the network) as opposed to a 1-cycle bubble for every hop.

To study the effects of realistic synchronization, we relax the assumption of

ideal synchronization with a penalty of 1 cycle to cross from one frequency domain

149

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

 1.20

 1.40

 1.60

T
F

le
x−

1

T
F

le
x−

2

T
F

le
x−

4

T
F

le
x−

8

T
F

le
x−

16

T
F

le
x−

32

P
er

fo
rm

an
ce

 n
or

m
al

iz
ed

 to
 2

G
H

z

Performance Comparison
2GHz
C−Ideal
C−Sync
3GHz

Figure 8.15: Performance Comparison with C-Sync policy

to another. We also apply the optimization described in Figure 8.14 to our design,

and study the effects with C-Ideal policy.

Figures 8.15, 8.16, and 8.17 describe the effects of realistic synchronization

on performance, processor power, and performance/watt respectively. These figures

compare the 2GHz,C-Ideal,C-Sync and 3GHz policies, where C-Sync represents the

C-Ideal policy but with real synchronization. We observe that C-Sync policy per-

forms almost the same as the C-Ideal policy and is mostly with 2% of the perfor-

mance and 1% of power of that of the C-Ideal policy. The network optimization

described in Figure 8.14 proves extremely effective in mitigating the performance

impact of real synchronizations. These results indicate that the extra overhead of

having an independent VRM for the network routers, and providing dual-clocked

FIFOs at network boundaries is definitely worth the overhead.

8.6 Realistic DVFS Transition Times

This section further relaxes the idealistic assumptions of our initial limit study by

examining the effects of real voltage transition times. The previous sections assume

150

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

 1.8

T
F

le
x−

1

T
F

le
x−

2

T
F

le
x−

4

T
F

le
x−

8

T
F

le
x−

16

T
F

le
x−

32

P
ow

er
 n

or
m

al
iz

ed
 to

 2
G

H
z

Power Comparison
2GHz
C−Ideal
C−Sync
3GHz

Figure 8.16: Processor Power Comparison with C-Sync policy

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

T
F

le
x−

1

T
F

le
x−

2

T
F

le
x−

4

T
F

le
x−

8

T
F

le
x−

16

T
F

le
x−

32

P
er

fo
rm

an
ce

/W
at

t n
or

m
al

iz
ed

 to
 2

G
H

z Performance/Watt Comparison
2GHz
C−Ideal
C−Sync
3GHz

Figure 8.17: Performance/Watt Comparison with C-Sync policy

151

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

 1.20

 1.40

 1.60

T
F

le
x−

1

T
F

le
x−

2

T
F

le
x−

4

T
F

le
x−

8

T
F

le
x−

16

T
F

le
x−

32

P
er

fo
rm

an
ce

 n
or

m
al

iz
ed

 to
 2

G
H

z

Performance Comparison
2GHz
C−Ideal
C−Sync
C−DVFS
3GHz

Figure 8.18: Performance Comparison with C-DVFS policy

an instantaneous transition in voltage levels when moving from one DVFS level to

another. Voltage transition times of conventional off-chip VRMs are in the range of

several microseconds to milliseconds whereas on-chip VRMs enable very fast DVFS

transitions in the range of few tens of nanoseconds [60]. For our experiments in

this section, we assume a very conservative voltage transition time of 5 millivolts

per nanosecond. With this transition slope, it would take 20 nanoseconds for the

voltage to transition a full 100 millivolts. We plug in this voltage transition time

into the TFlex simulator to study the effects of realistic voltage transitions. As

mentioned before, during an upward voltage transition our models ramp up the

voltage first before ramping up the frequency. Likewise, during a downward voltage

transition our models first ramp down the frequency followed by a ramp-down of

the voltage. This ensures that the circuits do not encounter timing errors during

voltage transitions [60].

Figures 8.18, 8.19, and 8.20 describe the effects of realistic voltage transition

times on performance, processor power, and performance/watt on the C-Ideal pol-

icy. These graphs plot the various policies for reference: 2GHz, 3GHz, and C-Ideal

152

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

 1.8

T
F

le
x−

1

T
F

le
x−

2

T
F

le
x−

4

T
F

le
x−

8

T
F

le
x−

16

T
F

le
x−

32

P
ow

er
 n

or
m

al
iz

ed
 to

 2
G

H
z

Power Comparison
2GHz
C−Ideal
C−Sync
C−DVFS
3GHz

Figure 8.19: Processor Power Comparison with C-DVFS policy

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

T
F

le
x−

1

T
F

le
x−

2

T
F

le
x−

4

T
F

le
x−

8

T
F

le
x−

16

T
F

le
x−

32

P
er

fo
rm

an
ce

/W
at

t n
or

m
al

iz
ed

 to
 2

G
H

z Performance/Watt Comparison
2GHz
C−Ideal
C−Sync
C−DVFS
3GHz

Figure 8.20: Performance/Watt Comparison with C-DVFS policy

153

are the policies discussed above. C-Sync is the C-Ideal policy with realistic synchro-

nization, and C-DVFS is the C-Sync policy with realistic voltage transitions. These

results indicate that the realistic C-DVFS policy achieves about 4-5% of both the

performance and power of the C-Sync policy. Similarly, the C-DVFS policy is within

8% and 5% of the performance and power the C-Ideal policy respectively. These re-

sults indicate the potential of on-chip VRMs, and their fast transition times. Even

a conservative voltage transition time of 5 millivolts per nanosecond enables the

C-DVFS policy to achieve performance and power levels of within 5% of a similar

policy that assumes instantaneous voltage transitions.

8.7 VRM Area versus Efficiency

In this section, we analyze the area overheads and energy efficiency overheads of

on-chip VRMs and the interdependence between their area and energy efficiency.

We explore the design space of on-die VRMs with the help of our collaborators at

Harvard. Figure 8.21 is a scatter plot of VRM area overhead and VRM loss at

different voltages of interest. The VRM area overhead is plotted in the y-axis in

mm2/Watt (the watts in the denominator denotes average dissipated power), and

the VRM loss is plotted in the x-axis as a percentage. If the VRM loss is, say, 20%,

and if the power delivered to the VRM is 20 watts, then only 16 watts (80% of 20

watts) is actually available for the VRM load and the remaining 4 watts is lost in

the process of voltage conversion in the VRM. The scatter plot clearly shows the

trade off involved in VRM area and conversion loss. If we wish to minimize the area

overheads of on-die VRMs (lower y values), we should pay for the choice with higher

conversion losses of the VRM (higher x values). On the other hand, if we attempt

to minimize regulator losses, large area overheads must be incurred.

From these scatter plot results, we choose two different VRM designs for our

evaluation. The first design minimizes the area overhead of the VRM while suffering

154

8 10 12 14 16 18 20 22 24 26
VRM Loss %

0.0

0.5

1.0

1.5

2.0

2.5

A
re

a
 O

v
e
rh

e
a
d
(m

m
^

2
/W

a
tt

)

0.8V
0.9V
1.1V
1V

Figure 8.21: VRM Design Space: Area vs. Efficiency

VRM Category Area Overhead Voltage VRM Loss
(mm2/Watt) (volts) (%)

Small Area

1.1 17%
0.5 1.0 13%

0.9 17%
0.8 19%

Large Area

1.1 15%
1.0 1.0 11%

0.9 15%
0.8 19%

Table 8.2: VRM Area vs Loss Comparison

155

Number
of
VRMs

Small Area Large Area

VRM
Area
(mm2)

VRM
Area
Over-
head
(%)

VRM
Area
(mm2)

VRM
Area
Over-
head
(%)

1 12.5 5.0 25.0 9.9

2 17.1 6.8 34.2 13.6

4 24.3 9.7 48.6 19.3

8 33.2 13.2 66.5 26.4

16 66.4 26.4 132.8 52.8

32 81.9 32.6 163.8 65.1

Table 8.3: VRM Area vs Loss Comparison

from higher losses. The second design has one of the lowest losses but incurs a high

area overhead. Table 8.2 tabulates the area overheads and conversion losses of these

VRMs at different voltages. As we observe from this table, the conversion losses of

the VRMs is dependent on the voltage level. Typical VRMs, both off-chip and on-

chip, attain their peak efficiency at a certain voltage level and their efficiency falls off

at other voltages. The exact voltage at which the peak efficiency is reached depends

on the type of the voltage regulator and its individual characteristics. We observe

this trend in Table 8.2, where both the VRM designs reach their peak efficiency

(minimum loss) at 1.0 volts and their efficiency drops off at other voltages.

To fully evaluate the area overheads of on-die VRMs we use the 32-core TFlex

microarchitecture with 4-MB of NUCA L2 cache. Our area models indicate that

this chip occupies an area of 252 mm2 in the 65nm process technology. Table 8.3

tabulates the area estimates and the ratio of VRM area to the chip area (without

the VRMs) with varying number of on-die VRMs (ranging from 1 to 32). The table

includes estimates for both types of VRM designs: smaller area-lower efficiency

156

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

T
F

le
x−

1

T
F

le
x−

2

T
F

le
x−

4

T
F

le
x−

8

T
F

le
x−

16

T
F

le
x−

32

P
er

fo
rm

an
ce

 n
or

m
al

iz
ed

 to
 3

2

Performance Comparison
32
1
2
4
8

Figure 8.22: Performance Comparison with limited VRMs

and larger area-higher efficiency. If the chip includes only one VRM for the cores,

the area overhead is minimal (around 5% for the smaller area design). However,

this design is inflexible in that when one core needs to transition to a new DVFS

setting, all the 32 cores have to undergo the transition as well. At the other end

of the spectrum, if the chip includes 32 independent VRMs, one for each core, the

design is more flexible as each core can independently transition its DVFS setting.

However, this option has a huge area overhead, which can be up to 65% in the

large area VRM design. We study a series of designs where we vary the number of

on-die VRMs from 1 to 8, and compare these designs to the 32-VRM design. This

experiment gauges the performance and power impact of having limited number of

VRMs on the chip to minimize the area overhead.

Figures 8.22, 8.23, and 8.24 report the performance, power, and perfor-

mance/watt of the designs with varying number of VRMs. The bars are labeled

with numbers which represent the number of VRMs in the design. From these

results, we observe that the limited VRM designs suffer from performance losses,

especially with higher TFlex core counts, compared to the 32-VRM design. At the

157

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

T
F

le
x−

1

T
F

le
x−

2

T
F

le
x−

4

T
F

le
x−

8

T
F

le
x−

16

T
F

le
x−

32

P
ow

er
 n

or
m

al
iz

ed
 to

 3
2

Power Comparison
32
1
2
4
8

Figure 8.23: Processor Power Comparison with limited VRMs

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

T
F

le
x−

1

T
F

le
x−

2

T
F

le
x−

4

T
F

le
x−

8

T
F

le
x−

16

T
F

le
x−

32

P
er

fo
rm

an
ce

/W
at

t n
or

m
al

iz
ed

 to
 3

2

Performance/Watt Comparison
32
1
2
4
8

Figure 8.24: Performance/Watt Comparison with limited VRMs

158

Voltage Efficiency
(volts) (%)

1.1 90

1.0 89

0.9 88

0.8 87

Table 8.4: Off-Chip VRM Losses

same time, the limited VRM designs also achieve a marginal reduction in processor

power. The limited VRM designs achieve within 5% of performance/watt compared

to the 32-VRM design. Only the 16-core and 32-core configurations experience

about 5% drop in performance/watt whereas all the other configurations achieve

virtually the same performance/watt as 32 VRMs. Considering these results, and

the area overheads of the VRMs, a realistic TFlex design could potentially include

four or eight on-die VRMs for the TFlex cores.

Finally, to assess the effects of VRM efficiency on the overall power efficiency

of the system we use the efficiency values tabulated in Table 8.2. We study the

effects of both the large area-high efficiency and small area-low efficiency VRM

designs reported in the table. We compare the overall power efficiency of the C-

DVFS policy (real synchronization with realistic voltage transitions) with that of

the 3GHz and 2GHz policies. The C-DVFS policy includes 32 on-chip VRMs, one

for each core, and two additional VRMs, one for the operand network and another

for L2. The 3GHz and 2GHz policies assume an off-chip VRM to supply their

voltages. In order to do a fair comparison between on-chip and off-chip VRMs,

we add efficiency models to the off-chip VRMs as well. Table 8.4 tabulates the

efficiencies we assume for the off-chip VRM. Similar to the on-chip VRMs we assume

that the efficiency of off-chip VRMs peak at a given voltage (1.1 volts in this case)

and drop off at other voltages.

Figures 8.25 and 8.27 compare the processor power and performance/watt

159

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

 1.8

 2.0

T
F

le
x−

1

T
F

le
x−

2

T
F

le
x−

4

T
F

le
x−

8

T
F

le
x−

16

T
F

le
x−

32

P
ow

er
 n

or
m

al
iz

ed
 to

 2
G

H
z

Power Comparison
2GHz
C−DVFS
C−DVFS−Low
C−DVFS−High
3GHz

Figure 8.25: Processor Power Comparison with real VRM efficiency

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

T
F

le
x−

1

T
F

le
x−

2

T
F

le
x−

4

T
F

le
x−

8

T
F

le
x−

16

T
F

le
x−

32

Chip Power Comparison
2GHz
C−DVFS
C−DVFS−Low
C−DVFS−High
3GHz

Figure 8.26: Chip Power Comparison with real VRM efficiency

160

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

 1.20

T
F

le
x−

1

T
F

le
x−

2

T
F

le
x−

4

T
F

le
x−

8

T
F

le
x−

16

T
F

le
x−

32

P
er

fo
rm

an
ce

/W
at

t n
or

m
al

iz
ed

 to
 2

G
H

z Performance/Watt Comparison
2GHz
C−DVFS
C−DVFS−Low
C−DVFS−High
3GHz

Figure 8.27: Performance/Watt Comparison with real VRM efficiency

of the various policies when VRM efficiency is taken into account. Figure 8.26

compares the overall chip power when VRM efficiency is taken into account. The

3GHz and 2GHz policies assume an off-chip VRM with efficiency values as in Table

8.4 whereas the C-DVFS policy assumes both the smaller area-lower efficiency VRMs

(labeled as C-DVFS-Low) and the larger area-higher efficiency VRM design (labeled

as C-DVFS-High).

These results indicate that even with the best possible on-chip VRM efficien-

cies the marginal processor power and performance/watt improvements observed in

the C-Ideal policies rapidly diminish when compared to the off-chip-VRM-powered

static policies. We additionally observe that the higher efficiency designs only pro-

vide a marginal reduction in power compared to the lower efficiency designs. This is

already demonstrated by the reported efficiency values in Table 8.2. In terms of the

performance/watt metric, the C-DVFS policy is outperformed by the static policies

in most TFlex configurations except in 16- and 32-core configurations where the

C-DVFS policy achieves almost the same performance/watt as 3GHz policy. When

the overall chip power is considered, the marginal improvements achieved by C-Ideal

policy are diminished even further because the inefficiencies of the VRM powering

161

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

 1.8

T
F

le
x−

1

T
F

le
x−

2

T
F

le
x−

4

T
F

le
x−

8

T
F

le
x−

16

T
F

le
x−

32

P
ow

er
 n

or
m

al
iz

ed
 to

 2
G

H
z

Power Comparison
2GHz
C−DVFS
C−DVFS−90%
C−DVFS−95%
3GHz

Figure 8.28: Processor Power Comparison with hypothetical VRM efficiencies

the L2 cache banks are included as well.

The above result is one of the key observations of this chapter, and represents

a fundamental challenge in the wide-spread adoption of on-chip VRMs in future

chip multiprocessors and CLPs. Our collaborators at Harvard, Wonyoung et al.,

indicate that by using more sophisticated on-package inductors the efficiency of on-

chip VRMs by about 15% better than their current values [124]. Even with these

improved efficiency values, the C-Ideal policies, at least as studied here, would be

outperformed by the off-chip VRM designs.

To wrap up, we examine two hypothetical on-chip VRM designs with higher

efficiencies than the ones used above to find out the efficiencies at which on-chip

VRMs used with our criticality-based block mapping would exceed the overall power

efficiency of off-chip VRMs. We examine the VRMs with efficiency of 90% and

95% respectively. Figures 8.28 and 8.29 compare the processor power and perfor-

mance/watt of all the VRMs including the hypothetical VRMs with efficiency of

90% and 95%. The bars labeled C-DVFS correspond to the VRM with ideal or

100% efficiency whereas the bars labeled 90% and 95% correspond to the hypothet-

ical designs with 90% and 95% efficiency respectively. These results indicate that

162

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

 1.20

T
F

le
x−

1

T
F

le
x−

2

T
F

le
x−

4

T
F

le
x−

8

T
F

le
x−

16

T
F

le
x−

32

P
er

fo
rm

an
ce

/W
at

t n
or

m
al

iz
ed

 to
 2

G
H

z Performance/Watt Comparison
2GHz
C−DVFS
C−DVFS−90%
C−DVFS−95%
3GHz

Figure 8.29: Performance/Watt Comparison with hypothetical VRM efficiencies

with our current criticality-based block mapping policies, the on-chip VRMs should

achieve very high efficiencies, in the range of 95%, to be able to achieve better overall

power efficiencies than the off-chip VRMs studied here.

8.8 Controlled Speculation

The next principle we explore employs controlled speculation to improve energy ef-

ficiency. Modern microprocessors typically employ various speculation techniques

including control and data speculation to extract better performance. While spec-

ulative techniques generally improve performance and in some cases are crucial

to good performance (for e.g., branch prediction), speculation can be a source of

wasted energy when not done correctly. For example, during a branch mispredic-

tion all pipeline stages with the wrong instructions must be flushed before correct

execution can begin. The costs of misspeculation are even greater for block-oriented

architectures like TFlex which have to potentially flush hundreds of instructions.

To achieve a better trade-off between performance and energy, we evaluate the prin-

ciple that processors must employ controlled speculation. Many researchers have

163

evaluated implementations of this principle in different contexts. Manne et al. [67]

evaluate the concept of pipeline gating for superscalar processors. They use confi-

dence estimates of branch instructions to gate or throttle the fetch pipeline. If the

current branch prediction has high confidence, the fetch pipeline continues normally

as usual. If the current prediction has a low confidence estimate, the fetch pipeline is

gated, thereby preventing any further fetching of instructions and reducing wasted

energy.

TFlex Implementation: We evaluate this principle on the TFlex microar-

chitecture using fine-grained DVFS. Figure 8.30 describes our TFlex implementation

based on branch confidence. Our branch confidence predictor is based on the con-

fidence predictor described in [53], and is incorporated into the block-based branch

predictor in the TFlex design [57]. In the deep block mapping mode, each in-flight

TFlex block gets mapped to a different TFlex core depending on the number of

cores allocated to the program. We map speculative blocks to specific cores with

a given DVFS setting based on the branch confidence estimates. The TFlex mi-

croarchitecture uses an exit predictor, a version of the branch predictor adapted

for block-oriented architectures, to predict the next block to be fetched and exe-

cuted [57]. We augment this exit predictor to also provide a confidence estimate

for each prediction. The confidence estimate is a value ranging from 0 to 15 as the

confidence predictor uses 4-bit counters. We evaluate a set of policies which choose

the DVFS settings of the core based on the branch confidence value. Two bimodal

policies split the confidence values into two ranges, and maps the higher range to

the maximum DVFS setting and the lower range to 2 GHz and 1 GHz respectively.

For example, assuming good confidence prediction, if a specific branch prediction

has high confidence, the corresponding TFlex block is almost guaranteed to be in

the correct path and can be mapped to a core with the highest DVFS setting. If

the confidence in the estimate is lower, this block could potentially be in the wrong

164

Next Block

Predictor

current

block pc

predicted
next block pc

branch prediction
confidence estimate

Engine

Core Selection

Engine
TFlex Core

DVFS

Selection
DVFS

State

(if needed)
transition

DVFS

map block
to core

Figure 8.30: Controlled Speculation Technique

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

 1.20

 1.40

 1.60

T
F

le
x−

1

T
F

le
x−

2

T
F

le
x−

4

T
F

le
x−

8

T
F

le
x−

16

T
F

le
x−

32

P
er

fo
rm

an
ce

 n
or

m
al

iz
ed

 to
 2

G
H

z

Performance Comparison
2GHz
Bimodal
Bimodal−Low
3GHz

Figure 8.31: Performance Comparison with Branch Confidence based mapping

path and will be mapped to a lower DVFS setting. Thus, the above policies could

potentially help TFlex to intelligently manage the trade-off between performance

via speculation and energy dissipation.

8.9 Branch Confidence: Results

As in Section 8.4, we first assume idealized parameters to gauge the potential of

branch confidence-based block mapping. Similar to criticality-based block mapping,

165

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

 1.8

T
F

le
x−

1

T
F

le
x−

2

T
F

le
x−

4

T
F

le
x−

8

T
F

le
x−

16

T
F

le
x−

32

P
ow

er
 n

or
m

al
iz

ed
 to

 2
G

H
z

Power Comparison
2GHz
Bimodal
Bimodal−Low
3GHz

Figure 8.32: Processor Power Comparison with Branch Confidence based mapping

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

T
F

le
x−

1

T
F

le
x−

2

T
F

le
x−

4

T
F

le
x−

8

T
F

le
x−

16

T
F

le
x−

32

P
er

fo
rm

an
ce

/W
at

t n
or

m
al

iz
ed

 to
 2

G
H

z Performance/Watt Comparison
2GHz
Bimodal
Bimodal−Low
3GHz

Figure 8.33: Performance/Watt Comparison with Branch Confidence based map-
ping

166

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

 1.20

 1.40

 1.60

T
F

le
x−

1

T
F

le
x−

2

T
F

le
x−

4

T
F

le
x−

8

T
F

le
x−

16

T
F

le
x−

32

P
er

fo
rm

an
ce

 n
or

m
al

iz
ed

 to
 2

G
H

z

Performance Comparison
2GHz
Real−Bimodal
Real−Bimodal−Low
3GHz

Figure 8.34: Performance Comparison with Realistic Branch Confidence based map-
ping

we compare the various branch confidence to static policies that map all blocks

in a program to a specific frequency. Figures 8.31, 8.32, and 8.33 compare the

performance, processor power, and performance/watt of the static 3GHz, 2GHz

policies with that of the branch confidence policies. These results show that the

various branch confidence policies achieve better performance than the 2GHz policy,

but do not achieve commensurate drop in processor power. Similarly, the branch

confidence policies perform worse than the 3GHz policy while consuming lower power

than 3GHz policy. In terms of performance/watt, the various branch confidence

policies do not exhibit the marginal improvements seen by the C-Ideal policy in

the previous section. At best, the various branch confidence policies achieve the

same performance/watt as the 3GHz. Additionally, our results indicate that adding

the synchronization overhead, voltage transition times and regulator efficiency, the

performance/watt of the various branch confidence policies become significantly

worse compared to the static policies.

Figures 8.34, 8.35, and 8.36 compare the performance, processor power, and

performance/watt of the static 3GHz, 2GHz policies with that of realistic branch

167

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

 1.8

T
F

le
x−

1

T
F

le
x−

2

T
F

le
x−

4

T
F

le
x−

8

T
F

le
x−

16

T
F

le
x−

32

P
ow

er
 n

or
m

al
iz

ed
 to

 2
G

H
z

Power Comparison
2GHz
Real−Bimodal
Real−Bimodal−Low
3GHz

Figure 8.35: Processor Power Comparison with Realistic Branch Confidence based
mapping

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

T
F

le
x−

1

T
F

le
x−

2

T
F

le
x−

4

T
F

le
x−

8

T
F

le
x−

16

T
F

le
x−

32

P
er

fo
rm

an
ce

/W
at

t n
or

m
al

iz
ed

 to
 2

G
H

z Performance/Watt Comparison
2GHz
Real−Bimodal
Real−Bimodal−Low
3GHz

Figure 8.36: Performance/Watt Comparison with Realistic Branch Confidence based
mapping

168

confidence policies, which assume realistic synchronization and DVFS transition

times. As with the criticality-based policies, the overhead caused by realistic syn-

chronization and DVFS times are very minimal. However, when we take into account

the VRM conversion efficiency, the confidence-based policies quickly lose their power

advantage over the static 3GHz policy.

Further analysis indicates that the simple, low-complexity branch confidence

estimation mechanism we evaluate suffers from inaccuracies. On average, the branch

confidence predictor achieves only 83% accuracy across all the TFlex configurations.

Since TFlex implements a block-based EDGE ISA, it is inherently challenging to

achieve same levels of confidence accuracy as in conventional processors. This drop

in confidence accuracy is the key reason for the poor performance of all branch

confidence policies even with ideal DVFS parameters: ideal synchronization, ideal

DVFS transitions, and ideal VRM conversion efficiencies. More sophisticated branch

confidence estimation techniques as reported in [5,41], could potentially enhance the

feasibility of the branch confidence based block mapping policies we have studied so

far. However, it would be challenging to adapt these sophisticated branch-confidence

estimation techniques to a distributed block-based architecture such as TFlex.

8.10 Future Work and Conclusions

In this section, we explored two fine-grained power management policies on the

distributed TFlex substrate. These policies rely on a temporally and spatially fine-

grained DVFS mechanism enabled by Voltage Regulator Modules (VRMs) built on

the same die as the TFlex processor. The first set of policies we evaluate is based on

the concept of instruction criticality. Using profiling results from a simulation-based

critical path prediction tool, we categorize the committed blocks of a program as

critical and non-critical. By mapping the critical blocks to the maximum frequency,

and non-critical ones to lower frequencies, this set of policies attempts to reduce the

169

average power consumption while minimizing the performance loss.

Our initial limit study, which assumes ideal synchronization, ideal DVFS

transitions and ideal conversion efficiency, shows that the critical policies increase

the operating range and flexibility of the TFlex system. Given two different DVFS

settings, one with higher frequency and another with lower frequency, the critical

policies achieve better performance than a static policy which maps all blocks to the

lower frequency, and lower power than the static policy which maps all blocks to

the higher frequency. However, our experience indicates that our current criticality-

based policies are barely able to exploit the slack from non-critical blocks.

Our next set of experiments assess the effects of real synchronization and

real DVFS transitions on the overall performance and power of the TFlex system.

Our results indicate that real synchronization and real DVFS transitions have very

minimal impact on system performance and power. Our optimization of decoupling

the operand network routers from the TFlex cores, and running the routers at the

maximum frequency proves to be very effective in minimizing the effects of real

synchronization. Furthermore, even with a conservative voltage transition time of

5 millivolts per nanosecond, the on-chip VRMs we consider provide very fast DVFS

transitions with minimal impact on performance and power.

Our experiments involving VRM conversion efficiencies and area overheads

identify the real challenge in making the on-chip VRMs feasible for TFlex and other

CMPs. Our design-space exploration studies clearly demonstrate the tight trade off

between area overheads of VRMs and their efficiencies. If one wishes to minimize

area overhead, we must compromise on the VRM efficiency. On the other hand,

if one wishes to maximize VRM efficiency, a severe area penalty must be incurred,

sometimes more than 50% of the chip area. Even the best VRMs we evaluate

have maximum efficiencies less than 90%, and sometimes have efficiencies as low as

80%. All on-chip VRM based policies we study are outperformed by static policies

170

based on off-chip VRMs. This is mainly because the on-chip VRMs achieve lower

conversion efficiency than their off-chip counterparts. Although current research is

looking at using on-package inductors to achieve higher efficiencies than possible

today, our results indicate that with our current policies the on-chip VRMs must

achieve efficiencies as high as 95% to be better than the off-chip policies. Future

research attempting to use criticality-based policies must look at improving things

from multiple directions. First, one should attempt to use on-chip VRMs with

higher efficiencies. Second, one could attempt to use different “definitions” for the

notion of block criticality. In the current scheme or definition, as much as 60% of

the blocks are categorized as critical and are mapped to the maximum frequency.

Due to this, the theoretical upper limit according to Amdahl’s law for the power

reduction is only 40%. Future research could actually rank critical blocks in terms

of number of cycles contributed to the critical path, and in turn use the ranking to

decide the DVFS mappings. By reducing the number of blocks being mapped to

the maximum frequency, such a policy could expect better power savings than the

policies studied here.

Furthermore, we have explored only a fraction of the interesting trade-offs

among choosing the number of independent voltage and frequency domains, suitable

voltage and frequency values for these domains, and the different block-mapping

policies. The distributed TFlex architecture with various modular components such

as the cores, OPN routers, and L2 cache banks offers an excellent substrate for

studying this design space, and further investigation of this trade-off space definitely

merits more attention.

Finally, the second policy we evaluate is branch confidence based block map-

ping. In this policy, we estimate the confidence of every branch prediction made by

the TFlex microarchitecture. Depending on the confidence estimate, the policy map

blocks with high confidence values to higher frequencies and vice versa. We eval-

171

uate a simple confidence predictor incorporated along with the block predictor in

the TFlex microarchitecture. Our experimental results indicate that even idealized

confidence policies do not provide any improvements in performance/watt compared

to the 3GHz policy, and that real confidence policies are outperformed by the 2GHz

policy. The current branch confidence predictor achieves only an accuracy of 83%,

which causes many blocks to be mapped to lower frequencies. Consequently, the

static policies outperform the confidence policies. Implementing more sophisticated

confidence prediction schemes such as perceptron-based predictors could potentially

improve the confidence prediction accuracy, and hence, the overall power efficiency.

8.11 Lessons

The key lesson we glean from our fine-grained DVFS work is that designers should

carefully account for all overheads when evaluating new ideas for their feasibility.

Our overall goal in the fine-grained work is to reduce power consumption without

drastically affecting performance. Our idealized limit study indicates that com-

bining fine-grained dynamic voltage and frequency scaling (DVFS) with the TFlex

architecture can be useful. However, the limit study also indicates the fundamental

challenge in getting such a design to work effectively. In the distributed TFlex archi-

tecture, the register files, and the data cache banks are distributed across multiple

participating cores. So, when one core is slowed down to improve energy efficiency

the overall performance is affected as well. Due to this challenge, the fine-grained

mechanism sacrifices performance commensurate to the energy savings, and thus,

provides only marginal benefits. Furthermore, when realistic system overheads such

as synchronization and finite DVFS transitions are considered, the already-marginal

benefits of the fine-grained policies diminish even further. We conclude that for the

two policies we study the overheads of the fine-grained DVFS mechanism might not

justify its inclusion for single-threaded workloads. However, more research is needed

172

to study if different policies might be useful for single-threaded workloads, and for

parallel and multi-programmed workloads.

173

Chapter 9

Related Work

9.1 Energy Efficiency

Researchers have extensively studied the area of energy efficiency, and have proposed

various solutions for the same in different fields of computing including algorithms,

applications, compilers, architectures, microarchitectures, circuit design and process

technologies. A survey by Vasanth et al. [119] lists the techniques at various levels

of abstraction for power efficient designs. A catalog of power efficiency techniques in

different fields can also be found in a recent book [39]. Another recent compilation

by Kaxiras and Martonosi provides an in-depth survey of techniques to improve

power efficiency [55]. This book discusses several power modeling techniques, the

metrics required to evaluate energy efficiency, and several techniques for achieving

energy efficiency. Since the volume of power-related work is large, we restrict our

discussion to research that is most relevant and related to our work. We refer the

reader to the survey and the books discussed above for a more thorough treatment

of the techniques to improve energy efficiency.

174

9.1.1 Dynamic Power

Researchers have studied many techniques at different layers of the system stack

to reduce dynamic as well as leakage power [55]. Techniques to reduce dynamic

power attempt to reduce at least one of the four main factors that dynamic power

depends on: the voltage of the processor, its clock frequency, the capacitance of

the design, and the switching activity. Dynamic voltage and frequency scaling

(DVFS) modulates the voltage and frequency of the processor, and trades off perfor-

mance for power, as described in Chapter 6. The power efficiency book by Kaxiras

and Martonosi discusses the application of the DVFS technique at different levels:

system-level [33, 122], program-level [47, 50, 93, 125], and the hardware level [26].

DVFS can also be applied for Multiple-Clock Domain (MCD) processors, which is

discussed in Section 9.4. Techniques have also been studied to reduce the over-

all capacitance of the processor by leveraging clustered microarchitectures [16, 28],

partitioned, and modular NUCA caches [58], and tiled CMPs [57, 120]. These and

several related ideas tend to avoid large, monolithic hardware structures that do not

scale well to wire-delay dominated process technologies, and thus, provide sizeable

reductions in the total capacitance of the design. A plethora of research has looked

at reducing the net switching activity of the processor in order to reduce dynamic

power. Table 4.1 of the book by Kaxiras and Martonosi clearly categorizes such

techniques by the type of switching activity reduced by each technique, such as 1)

clock-gating idle functional units 2) support for narrow-width operands and ALUs

3) adaptively resizing hardware structures based on workload demand 4) serializing

or eliminating parallel lookup activity in caches 5) use of caching or memoization

to prevent repetitive operations 6) techniques to reduce speculative activity and 7)

different encoding schemes to reduce switching activity on buses [55].

175

9.1.2 Leakage Power

Recently, starting with the 90nm technology node, leakage power has steeply in-

creased in prominence. Researchers have extensively studied techniques to reduce

different sources of leakage, and have proposed solutions at the process technology,

circuit, and microarchitectural levels. The two major sources of leakage are sub-

threshold and gate-tunneling leakage currents [119]. Intel has introduced metal gates

and high-K dielectric materials in its 45nm process technology [72]. These changes

provide signification reduction in gate-tunneling leakage current. Techniques like

dual-VT transistors [45], Gated Vdd and MTCMOS with sleep transistors [15, 85],

body biasing [56], drowsy caches [32], and leakage-biased bitlines [44] have been

studied to reduce sub-threshold leakage.

9.1.3 ISA and Compiler Support

Prior work has investigated support from the instruction set and the compiler for

improving energy efficiency. Like EDGE architectures that are described in this

dissertation, VLIW architectures [31] also aim to simplify the microarchitecture by

shifting the burden of extracting parallelism from the hardware to the compiler.

The task of identifying the dependence between instructions rests entirely with the

compiler. The underlying microarchitecture avoids much of the complexity found

in superscalar processors to dynamically identify the dependence among instruc-

tions. A few VLIW architectures are also block-based like EDGE architectures

because they employ hyperblocks. However, the key difference between VLIW and

EDGE architectures is the data-flow style execution within an EDGE block and

the dynamic issue of instructions in EDGE compared to the static issue in VLIW

architectures. Energy-exposed ISA work by Asanovic et al. aims to improve energy

efficiency by using an energy-aware instruction set to enable better compiler energy

optimizations [39]. While their work retains a conventional ISA with only select

176

modifications for energy efficiency, EDGE architectures rely on a completely novel

ISA. Being block-atomic, EDGE architectures provide a broader and general frame-

work for amortizing book-keeping overheads compared to software restart markers

in Energy-exposed ISAs. Additionally, EDGE ISAs support explicit dependence

encoding between producer and consumer instructions. In contrast, energy-exposed

ISAs work exposes the internal accumulator registers to software to eliminate some

additional register accesses between producers and consumers [39].

Many researchers have investigated using the compiler to improve power ef-

ficiency [63, 117, 126] and using compiler hints to improve performance. The work

by Valluri and John attempts to find if compiling for performance and power or en-

ergy are identical [116]. These authors conclude that compiler optimizations which

improve performance by reducing the amount of work done reduces the total en-

ergy. On the other hand, optimizations that improve the IPC or the overlap of

executing instructions tend to increase the average power dissipation [116]. Vari-

ous block mapping policies discussed in Chapter 7 leverage the compiler to both

improve performance and power. The compiler analyzes each TFlex block for its

concurrency and communicates this concurrency to the hardware via an encoding

in the block header. The compiler additionally optimizes for operand locality by

placing producers and consumers near by on the TFlex grid of cores.

9.2 Power Modeling

We distinguish our power model validation from prior work by using all three levels

for our validation–architectural models, RTL power models, and hardware power

measurements. While prior work that compares across any two levels exists, our

work compares across all levels to gain additional insights. The work by Kim et

al. [59] discusses the challenges for architectural power modeling, and provides guide-

lines for architectural power modeling. While our work has some similarities, we

177

additionally quantify the various sources of inaccuracies in architectural power mod-

eling by comparing with real hardware.

Chen et al. [18] present a technique to validate architectural-level power esti-

mation of a processor, consisting of a 16-bit Digital Signal Processing (DSP) engine

and a 32-bit Reduced Instruction Set Computing (RISC) core. Their technique vali-

dates their architectural power models by comparing the estimated values with those

from a gate level power simulator. Our approach uses more realistic benchmarks for

our study as opposed to simple ones. Natarajan et al. [77] built a validated power

model for Alpha 21264 processor to analyze the energy implications of speculation

and pipeline over-provisioning. They leverage detailed power breakdowns of Alpha

21264 published in literature for their model validations. The original Wattch work

by Brooks et al. [12] also validates architectural power models against fine-grained

capacitance estimates and published industrial power data for many designs. Our

work is similar in that we leverage a detailed, post-synthesized netlist to validate our

architectural power models. More importantly, our observation that architectural

power models provide better relative accuracy than absolute accuracy concurs well

with a similar observation by Brooks et al. [12].

Shafi et al. [99] performed hardware power measurements on PowerPC based

systems with the intent of validating their higher level power models. They used

various microbenchmarks to understand the energy consumed by various events of

interest like a cache miss, an ALU operation, etc. We categorize the power dissi-

pated by various components on the hardware, but use a slightly different approach

as described in Chapter 3. However, we do use certain hand-crafted benchmarks

for studying the power dissipation of a few hardware subsystems in the TRIPS de-

sign similar to their work. The authors of the XTREM simulator for the XScale

microarchitecture validate their architectural power models with hardware power

measurements on a development board [20]. These authors employ hand-crafted

178

stress tests to exercise specific components of the XScale system to validate their

power models. Our work also utilizes hand-crafted stress tests in hardware power

measurements to isolate power dissipated by different system components.

Brooks et al. perform a validation study by using two power estimation mod-

els: Wattch and Powertimer [10]. They compare the power modeling methodologies

of Wattch and Powertimer and also discuss the various modeling errors possible with

Wattch. While our work also quantifies a few inaccuracies in the Wattch model, we

do so by comparing against a gate-level simulator and the real hardware.

Many authors have used real hardware power measurements before. One such

work was done by Wu et al. [125], where the main goal in using hardware power

measurements is to study power and thermal management, and to analyze power

impact of compilation. On the other hand, we use hardware power measurements

to validate our gate-level and architectural-level power models. The work by Mesa-

Martinez et al. [70] validates architectural power models by using thermal models

built with an infrared camera. Our work is similar in that we use real hardware for

validation, but we also use RTL power models for validation.

9.3 Composability

The TFlex microarchitecture provides composability as a mechanism to match the

resource needs of applications to hardware resources. There have been many pro-

posals in the literature which aim at matching resource needs of applications to

hardware. The fundamental difference between TFlex and most such approaches is

that sharing of any centralized hardware structure is completely eliminated by the

distributed TFlex microarchitecture. This, in turn, provides seamless scalability of

TFlex cores, up to 32 in our design. Most of the related approaches share some hard-

ware structures among the composed cores, and hence, suffer from scalability issues.

On the downside, TFlex relies on a novel EDGE ISA to support its composability,

179

and hence, does not maintain binary compatibility like other approaches.

The most closely related approach to composability is the Core Fusion work

by Ipek et al. [48]. Core Fusion provides support for dynamically aggregating out-of-

order cores into a larger logical core, when the application requires more resources.

The key motivation of Core Fusion is to provide a hardware substrate that can

dynamically accommodate software diversity (single-threaded, and multi-threaded

workloads), and to provide a gradual path from single-threaded code to pervasive

parallelism. The key differences between Core Fusion and TFlex are twofold. First,

TFlex uses support from the EDGE ISA to support composability while Core Fusion

supports conventional ISAs, thereby providing software compatibility with existing

binaries. Second, since Core Fusion does not leverage any support from the ISA for

composing cores, it relies on centralized register renaming and synchronized fetch

mechanisms that limit the scalability of the technique to four dual-issue cores (a

maximum issue width of eight instructions). In contrast, since TFlex relies on the

EDGE ISA support and a distributed microarchitecture, it can provide scalability

up to 32 cores in SPEC-FP applications and up to 16 cores in SPEC-INT workloads.

In the core federation technique [109], multiple in-order cores are fused to

form a larger out-of-order core. However, each TFlex core supports dual-issue and

is out-of-order, and can be aggregated to form larger logical cores. Another related

approach to composability is the Voltron architecture by Zhong et al. [129]. In this

architecture, a set of VLIW cores can operate in two different modes: coupled and

decoupled. In the coupled mode, which is similar to the composed mode in TFlex,

a set of cores act as a wide-issue VLIW machine executing a single logical stream

of instructions. In the decoupled mode, each VLIW core executes an independent

thread that uses fine-grained synchronization to communicate with other threads

running on different cores. The Voltron architecture is similar to the TFlex ar-

chitecture in that both leverage an operand network to communicate intermediate

180

values to other cores. On the other hand, because Voltron is a statically exposed

microarchitecture, applications typically require recompilation when targeted to a

different microarchitecture to maintain good performance compared to the original

microarchitecture.

Several researchers have explored the idea of clustered microarchitectures,

where multiple clustered execution units are combined to form a larger superscalar

processor [16,28]. Such approaches address the increased complexity of unclustered,

high-issue width superscalar designs. Hardware structures like register files, register

renamers, and issue windows become increasingly complex when the issue width of

processors is increased. Such microarchitectures employ multiple execution clusters,

for example, one integer cluster and one floating point cluster, to provide higher

issue widths with lower complexity. A recent paper by Watanabe et al. [121] lever-

ages a clustered microarchitecture to provide an array of execution units (EUs),

and can dynamically compose two adjacent EUs to adapt to workloads with dif-

ferent parallelism profiles. Although such clustered microarchitectures reduce the

complexity of supporting higher issue width, they require an instruction steering

mechanism to direct instructions to a given cluster. Such a mechanism must strive

to steer dependent instructions to the same cluster to minimize inter-cluster com-

munication. Additionally, such microarchitectures must cope with physical register

files that are partitioned across the clusters, and must implement mechanisms such

as copy instructions to move register values from one cluster to another.

Adaptive processing techniques dynamically resize various hardware struc-

tures in a superscalar processor to adjust to varying phases in the workload [6].

These techniques add microarchitectural support to resize various structures like

caches, and instruction issue windows, and expose a set of control registers to soft-

ware to trigger these adaptations. These techniques involve mechanisms to dy-

namically resize caches [7], issue window entries [34], issue windows combined with

181

load-store queues [84], and the issue width of the processor along with the number

of functional units [8]. Most of such adaptive processing techniques are orthogo-

nal to EDGE architectures, especially the TFlex architecture, in that they can be

easily combined with the TFlex implementation. For example, the selective cache

ways technique [7] could be easily combined with the TFlex microarchitecture to

provide a fine-grained adaptation of instruction and data cache capacity. By virtue

of composability, TFlex already provides a coarse-grained cache size trade off by

aggregating or disaggregating different cores. Another key difference between com-

posability and such adaptive techniques is that they do not provide a fine-grained

trade-off between hardware resources and varying number of threads.

Kumar et al. [61] describe a heterogeneous multi-core architecture that imple-

ments the same instruction set. The multi-core chip consists of a mix of processors,

some possibly from older technology nodes and some of which are simple cores con-

suming lower power and providing lower performance while others are more complex

cores consuming more power but with better performance. Depending on the phase

of the application or the type of the workload, the chip runs the workload either on

the simpler cores or on the complex cores. For example, if the workload has a lot

of threads it could be run on multiple simple cores. On the other hand, if there is

enough ILP to be extracted from the application it could be run on a larger core.

Although providing heterogeneous cores on a chip increases flexibility provided to an

operating system, such a design is relatively inflexible in that the choice of the vari-

ous processors is made at design time, and not at runtime like TFlex. For example,

heterogeneous cores could hurt efficiency when running multiple identical threads on

these cores or when the hardware requirements of workloads do not exactly match

that provided by the heterogeneous cores.

Conjoined-core CMPs [62] is a related approach in which adjacent cores share

some hardware structures to reduce area and power complexity. The authors study

182

sharing the floating point unit, L2 crossbar ports, instruction and data caches among

the adjacent cores. By intelligently sharing these resources between adjacent cores,

this approach aims to match requirements of workloads to actual resources. How-

ever, due to large wiring overheads in sharing the resources, it would be prohibitive

to scale this approach to more than two adjacent cores. In contrast, the TFlex

microarchitecture explicitly addresses the growing wire delay issues by distributing

the cores, and by elegantly sharing these cores to provide scalability.

9.4 Dynamic Voltage and Frequency Scaling

Dynamic voltage and frequency scaling has been an effective power management

technique, and has been extensively studied in literature. Researchers have used

DVFS to trade performance for power in the context of chip multiprocessors (CMPs).

For example, the work by Isci et al. [49] explores the use of fine-grained, per-core

DVFS mechanism for global chip-level power management. Their work assumes

a global power manager that has access to fine-grained core-level power data. The

global power manager uses these fine-grained statistics to decide the DVFS setting of

individual cores, and thereby maximizes the throughput of the system under a strict

chip-level power budget. Although this work assumes a fine-grained per-core DVFS

implementation, they do not explore design issues of on-chip Voltage Regulator

Modules (VRMs) and the interplay between the policies and the fine-grained DVFS

mechanism. Li et al. explore the trade-off between number of allocated cores and

DVFS settings of a CMP in the context of parallel workloads [52]. Their adaptation

technique dynamically searches a two-dimensional space, number of cores allocated

to the parallel workload, and the DVFS setting of these cores, to maximize power

savings within specified levels of performance.

DVFS has been extensively studied in the context of Multiple Clock-Domain

(MCD) processors and Globally Asynchronous, Locally Synchronous processors [51,

183

65, 94]. Such designs decouple different stages of a processor, and place each stage

in a different frequency domain. For example, the work by Iyer et al. [51] partitions

a conventional processor into five different frequency domains: i-cache and branch

predictors, decode and rename, integer issue queues and ALUs, floating point issue

queues and ALUs, and memory issue queues and data cache. When data crosses

frequency domains, it is communicated via dual-clocked queue entries at the edge of

each frequency domain. By limiting the size of each frequency domain, these designs

better tolerate the problem of distributing a global clock signal with minimal skew.

Additionally, these MCD designs have the flexibility of operating the frequency

domains at different frequencies, and thereby, slow down parts of the processor

on demand. MCD and GALS designs take advantage of the inherent slack in the

processor pipeline, and slow down parts of the pipeline to achieve better energy

efficiency. Although our fine-grained power management policies are very similar to

the GALS approach, we apply the voltage and frequency domains at the granularity

of individual TFlex cores, and not within a single TFlex core. Our fine-grained policy

results indicate the potential for incorporating a GALS-type design in the context

of TFlex, by running the register files and data cache banks in a different frequency

domain from other hardware structures inside a core. However, the GALS approach

is too fine-grained for reasonable implementation in a chip multi-processor. The

number of on-die VRMs is primarily dictated by the area of the VRMs [60]. Hence,

when we combine on-die VRMs with GALS, the number of required VRMs might

become prohibitive (essentially number of cores x number of microarchitecture units

within a GALS core).

Because modulating the power supply voltage requires adjusting the board-

level voltage regulator circuit, DVFS has been historically applied to an entire chip

as a whole. We leverage recent research at Harvard that has shown the potential to

build multiple on-chip VRMs, enabling modulation of DVFS settings of individual

184

cores/elements on a chip and providing very fast DVFS transitions (a few nanosec-

onds) [60]. These on-chip VRMs enable a temporally and spatially fine-grained

DVFS mechanism. The combination of such a fine-grained DVFS mechanism with

the distributed composable TFlex architecture provides novelty for our work. The

generalized principles that underlie our fine-grained DVFS policies have been im-

plemented in conventional designs [67,95]. Manne et al. [67] use the idea of branch

confidence to throttle the fetch unit of a processor, and thereby to save energy.

Although we borrow the idea of branch confidence for saving energy, we use the

confidence estimate to decide a suitable DVFS setting for a TFlex core. Similarly,

we borrow the idea of instruction criticality for power efficiency from Fields et al. [29]

and Seng et al. [95]. The distributed TFlex microarchitecture provides an interesting

substrate to implement the token-based critical-path model from [29]. Additionally,

we map blocks of instructions to a TFlex core after setting that core to a DVFS

level. This helps us amortize the cost of DVFS transitions over many instructions.

185

Chapter 10

Conclusions

Increasing power dissipation is one of the most serious challenges facing the designers

in the microprocessor industry. Current and projected power trends point to a world

where all transistors on a microprocessor chip cannot be operated at the maximum

possible frequency, and worse, all of them may not be switched on simultaneously.

The expected growth in the number of data centers and the volume of consumer

electronics is likely to worsen the problem [90]. Hence, the demand for energy

efficiency in all domains of computing is on the rise.

Technology trends like increasing power dissipation, increasing wire delays [4],

and design complexity have forced designers to switch from conventional super-

scalar processors to multi-core architectures or chip multi-processors (CMPs). While

CMPs mitigate the increasing wire delays and the design complexity, they do not

directly address single-threaded performance. Also, programs must be parallelized

(automatically or manually) to fully exploit the performance of CMPs. In addition,

according to Amdahl’s law, the overall efficiency of a parallel system is eventually

constrained by the sequential region of the code.

As an alternative to conventional CMPs, researchers have recently proposed

an architecture called Explicit Data Graph Execution (EDGE) [14]. EDGE archi-

186

tectures enable technology-scalable microarchitectures that can potentially provide

good single-threaded performance while exploiting other types of parallelism includ-

ing data-level and thread-level parallelism [91]. EDGE architectures are character-

ized by two key features. First, they are block-oriented architectures which fetch,

execute, and commit instructions as a group in contrast to conventional architec-

tures that work with individual instructions. Second, within a block the dependence

between a producing and a consuming instruction is explicitly encoded in the pro-

ducing instruction. This relieves the hardware from rediscovering this dependence

at runtime and greatly simplifies the underlying microarchitectures.

In this dissertation, we examine the energy efficiency of EDGE architectures,

specifically the TRIPS Instruction Set Architecture (ISA) and two microarchitectures–

TRIPS and TFlex–that implement the TRIPS ISA.

10.1 Dissertation Contributions

10.1.1 TRIPS: A Detailed Power Analysis

First, this dissertation presented a thorough power analysis of the TRIPS microar-

chitecture. We described how we develop architectural power models for TRIPS and

how we improved the accuracy of the architectural power models using hardware

power measurements on the TRIPS prototype system combined with detailed Reg-

ister Transfer Level (RTL) power models. Using these refined architectural power

models, we performed a detailed performance and power comparison of the TRIPS

microarchitecture with two different processors: a low-end processor designed for

energy efficiency (ARM/XScale) and a high-end superscalar processor designed for

high performance (a variant of Power4). This detailed power analysis provided key

insights into the advantages and disadvantages of the TRIPS ISA and the TRIPS

microarchitecture compared to other processors like XScale and Power4. Our re-

187

sults indicate that the TRIPS microarchitecture achieves 11x better energy efficiency

compared to ARM, and 12% better energy efficiency than Power4, in terms of the

Energy-Delay-Squared (ED2) metric.

10.1.2 TFlex Power Analysis and Comparison

Second, this dissertation analyzed the power efficiency of the TFlex microarchitec-

ture, which also implements the TRIPS ISA. TFlex belongs to a class of microarchi-

tectures called Composable Lightweight Processors (CLPs). CLPs are distributed

microarchitectures composed of simple cores. Additionally, CLPs are highly con-

figurable at runtime to adapt to resource needs of applications. This dissertation

showed how we developed power models for the TFlex microarchitecture based on

the validated TRIPS power models. Next, we evaluated the energy efficiency of the

TFlex microarchitecture by comparing to the ARM and Power4 platforms, and the

TRIPS microarchitecture. Our quantitative results showed that by better match-

ing execution resources to the needs of applications, the composable TFlex system

can operate in both regimes of low power (similar to ARM) and high performance

(similar to Power4). We also showed that composability of TFlex helps achieve a

signification improvement (2x) in energy-efficiency compared to TRIPS in terms of

ED2.

10.1.3 Composability vs. DVFS: Comparison of Performance/Power

Mechanisms

Third, we examined the efficacy of processor composability–the ability of dynami-

cally composing physical cores into a logical processor–as a potential performance-

power trade-off mechanism, using TFlex as our experimental platform. Tradition-

ally, a technique called Dynamic Voltage and Frequency Scaling (DVFS) has served

as the mainstay performance-power trade-off mechanism in processors. By reduc-

188

ing the supply voltage, and thereby reducing the processor clock frequency one can

obtain cubic reductions in dynamic power (quadratic reduction due to reduction

in voltage and a linear reduction due to reduction in clock frequency) with only a

linear reduction in processor performance. By modulating the supply voltage and

clock frequency of the processor, DVFS helps trade off dynamic power for perfor-

mance. However, the rate of supply voltage scaling has slowed significantly in recent

process technologies, to keep increasing leakage power under check [21]. This slow

rate of voltage scaling has significantly limited of DVFS, and has created a dire

need for alternatives to DVFS. As one of the key contributions of this disserta-

tion, we explored processor composability as an architectural alternative to DVFS.

Through experimental results, this dissertation showed that processor composability

achieves almost as good performance-power trade-offs as pure frequency scaling (no

changes in supply voltages), and much better performance-power curves compared

to voltage and frequency scaling (both supply voltage and frequency change). This

dissertation also presented a case for combining DVFS with composability. Our

results clearly indicated that this combination widens the operating regime of the

composable system when operating under fixed performance or power targets.

10.1.4 Additional Performance Mechanisms for TFlex

Next, we explored the effects of additional performance-improving techniques for

the TFlex system on its energy efficiency. Researchers have proposed a variety of

techniques for improving the performance of the TFlex system. These include: 1)

block mapping techniques to trade off data locality with concurrency 2) predicate

prediction and 3) operand multi-cast/broadcast mechanism. We examine each of

these mechanisms in terms of its effect on the energy efficiency of TFlex, and our

experimental results demonstrate the effects of operand communication, and spec-

ulation on the energy efficiency of TFlex.

189

10.1.5 Fine-grained Power Management Policies

Finally, this dissertation evaluated a set of fine-grained power management (FGPM)

policies for TFlex: exploiting instruction criticality and controlled speculation. These

policies rely on a temporally and spatially fine-grained dynamic voltage and fre-

quency scaling (DVFS) mechanism for improving power efficiency. The first policy

exploited the concept of instruction criticality to improve energy efficiency. We ex-

ploited the general principle that computation that is critical to the speed of the

application must execute faster, and non-critical computation in an application can

be slowed down to exploit the inherent slack. Using a critical path model for the

TFlex microarchitecture, we computed the criticality of instruction blocks, and use

this criticality to decide the DVFS setting that the block gets mapped to. Our

policy mapped highly critical blocks to higher frequencies whereas non-critical ones

get mapped to lower frequencies so that average power dissipation of the system can

be reduced without adversely affecting performance.

The second policy explored the use of controlled speculation. Modern pro-

cessors employ various forms of speculation to extract better performance from

applications. Although essential for high performance, aggressive speculation could

potentially lead to wasted instructions, and hence, wasted energy. The TFlex sys-

tem also employs speculation by executing multiple blocks in parallel via branch

prediction. The second policy attempted to minimize the energy wasted in aggres-

sive speculation in TFlex by using a technique called branch confidence prediction.

Branch confidence prediction attempts to estimate the confidence of a given branch

prediction. If branch confidence prediction accuracy is very high, we can easily iden-

tify high (likely to be on the correct path) and low confidence branch predictions

(likely to be on the wrong path). Instruction blocks that have high branch confidence

are mapped to higher frequencies while ones that have lower branch confidence are

mapped to lower frequencies.

190

Our experimental results indicated that idealized instruction criticality and

controlled speculation policies improve the operating range and flexibility of the

TFlex system. However, when the actual overheads of fine-grained DVFS, especially

energy conversion losses of voltage regulator modules (VRMs), are considered the

power efficiency advantages of these idealized policies quickly diminish. Our results

also indicated that the current conversion efficiencies of on-chip VRMs need to

improve to as high as 95% (current efficiencies range from 80% to 89%) for the

realistic policies to be feasible.

10.2 Future Directions

We conclude this dissertation with a discussion about possible future directions

of research for further improving the performance and power efficiency of EDGE

architectures, specifically the TFlex microarchitecture.

• In this dissertation, for the purposes of power model validation, we consid-

ered power models for a TRIPS chip running a single thread on a single

TRIPS processor. It would be interesting as well as challenging to extend

our power models to the entire TRIPS motherboard consisting of four TRIPS

chips, and further to a set of TRIPS motherboards running a mix of paral-

lel, single-threaded, and multi-programmed workloads. Such a power model

would require accurate power estimates of both intra- and inter-motherboard

communication across the chip-to-chip interfaces, as well as amount of data

communicated across the chips and boards, communication pattern among

the workloads, and the voltage and frequency setting of individual chips and

chip-to-chip links.

• Current EDGE architectures suffer from code bloat and I-cache efficiency is-

sues mainly because of a separate header block for encoding register read and

191

write instructions, and because partially filled blocks are expanded to their full

size in the Level-1 instruction caches with NOPs. ISA changes to minimize

the header overhead, and compiler and microarchitectural support for variable-

sized blocks would go a long way in improving the I-cache efficiency of EDGE

architectures. Researchers are currently looking at supporting variable-sized

blocks in TFlex [66].

• Composable architectures like TFlex open up excellent research opportunities

at the Operating System or Hypervisor level. Researchers have analyzed the

impact of various OS scheduling algorithms on the TFlex architecture and their

benefits in [42]. However, this work only considers overall system throughput,

and not power efficiency. It would be extremely interesting to explore ways to

maximize the overall system throughput under a strict chip-level power budget.

Furthermore, adding the mechanism of DVFS and even on-chip fine-grained

DVFS opens up exciting opportunities as well as challenges for the Operating

System or Hypervisor to maximize system throughput under a power budget.

• Since TFlex microarchitecture tightly integrates the network routers with the

cores as well as the L2 cache banks, more exploration is required in the area

of power-optimized network routers. Policies that implement intelligent power

management features like power gating, and link-gating are necessary to man-

age the power dissipated in the routers. Additionally, such policies must be

tightly integrated with the dynamic block-mapping schemes to maximize lo-

cality with minimal impact on performance.

• Although the fine-grained power management policies we study provided only

marginal benefits, there remain lots of avenues for further exploration of fine-

grained policies. For example, one idea is matching the capacity and speed

of the L2 cache banks to that of composed cores of varying sizes. Since the

192

L2 cache banks in TFlex are NUCA-based, they form a neat, modular design

where fine-grained DVFS can be applied to further improve power efficiency.

• The concept of hardware accelerators is very popular, and for any given task,

a dedicated hardware accelerator produces one of the best possible energy effi-

ciencies. The TFlex microarchitecture, with its routed mesh network, provides

an ideal eco-system for integrating on-chip accelerators tightly along with the

TFlex cores. By using the operand network router and/or additional control

networks, the integrated hardware accelerators can share access to other cores

as well as L2 cache banks, and can execute portions of the code that can be

optimized on the accelerator. The identification and mapping of the special

regions of code can be done with compiler and OS support.

• Last but least, the EDGE architectures evaluated so far show good promise

for power efficiency when compared to their superscalar counterparts. How-

ever, in order to become mainstream, the EDGE architectures must address

the issue of x86 software compatibility. More research is needed in adapt-

ing techniques like binary translation and just-in-time compilation to provide

x86 compatibility with minimal impact on performance and power. Another

interesting research direction could look at the potential for augmenting main-

stream processors with EDGE hardware accelerators. Vast amount of research

is needed into CUDA-style [80] ecosystems to get such heterogeneous systems

containing EDGE accelerators to work well with mainstream processors.

193

Appendices

194

Appendix A

Power Validation Results

This appendix presents the power model validation results for all 24 benchmarks

used in this dissertation. Section 3.3 presented these results only for 12 benchmarks

for the sake of clarity. In this appendix, we present the results for all benchmarks,

including the 12 that were presented in Section 3.3.

In Figure A.1, for each benchmark, the graph shows three bars: architec-

tural power estimates, RTL power estimates, and measured hardware power. The

architectural bar has five segments, each representing a different architectural power

model. For a description of the various architectural power models, please refer to

the discussion in Section 3.3.

195

 0 5

 10

 15

 20

 25

 30

 35

 40

fft4
memcopy

fft2_GMTI
bzip2_1
gzip_1
gzip_2

bzip2_2
twolf_3

dhry
ammp_2

power_virus
equake_1
ammp_1

art_2
art_3

fft4_GMTI
bzip2_3
dct8x8

vadd
parser_1
matrix_1

art_1
sieve

doppler_GMTI
Arith. Mean

Power Estimate (Watts)

B
enchm

arks

H
W

R
T

L
B

ase+
C

+
T

+
P

+
G

B
ase+

C
+

T
+

P
B

ase+
C

+
T

B
ase+

C
B

ase

Figure A.1: TRIPS Power Validation Results: All Benchmarks

196

Appendix B

Power Density Comparison

As microprocessors operate the power dissipated generates heat that must be safely

removed for continued reliable operation of the chip. Computing systems utilize a

variety of techniques including active and passive heatsinks, and cooling fans for

dissipating the generated heat. A metric called power density, power dissipated

per unit area, is commonly used to compare the heat generated by various processors.

The higher the power density of a microprocessor, the more heat is generated per

unit area in the overall system, and thus, the cooling system needs to work more

efficiently to remove the heat. Therefore, microprocessors with lower power densities

are preferred because they result in lower packaging and cooling costs than ones with

higher power densities.

Table B.1 tabulates the average power densities of all platforms examined

so far. From these results we observe that all TFlex configurations have either

comparable or lower power densities compared to ARM and TRIPS, and have much

lower power densities compared to the Power4. The average power consumption in

the TFlex system increases with the number of cores as does the total core area. The

sub-linear growth in average power combined with linear growth in core area causes

the power density of TFlex to decrease as more cores are added to the system.

197

Configuration Avg.
Power

Area Avg. Power
Density

(Watts) (cm2) (Watts/cm2)

ARM 0.90 0.0179 50.34

Power4 10.78 0.0820 131.44

TRIPS 12.96 0.2598 49.90

TFlex-1 2.85 0.0363 78.45

TFlex-2 5.65 0.0726 77.76

TFlex-4 9.03 0.1452 62.22

TFlex-8 13.14 0.2904 45.23

TFlex-16 18.03 0.5808 31.04

TFlex-32 23.66 1.1616 20.37

Table B.1: Power Density Comparison

198

Bibliography

[1] Bay Wolf’s Speedstep FAQ. www.bay-wolf.com/speedstep.htm.

[2] EEMBC: The Embedded Microprocessor Benchmark Consortium.

http://www.eembc.org.

[3] The Problem of Power Consumption in Servers, March 2009.

http://www.drdobbs.com/215800830;jsessionid=3LQKHP2H3QX0ZQ

E1GHPCKHWATMY32JVN.

[4] Vikas Agarwal, M. S. Hrishikesh, Stephen W. Keckler, and Doug Burger. Clock

Rate versus IPC: The End of the Road for Conventional Microarchitectures.

In Proceedings of the 27th Annual International Symposium on Computer Ar-

chitecture, pages 248–259, May 2000.

[5] Haitham Akkary, Srikanth T. Srinivasan, Rajendar Koltur, Yogesh Patil, and

Wael Refaai. Perceptron-based Branch Confidence Estimation. In Proceedings

of the 10th Annual International Symposium on High Performance Computer

Architecture, pages 265–277, February 2004.

[6] David H. Albonesi, Rajeev Balasubramonian, Steve Dropsho, Sandhya

Dwarkadas, Eby G. Friedman, Michael C. Huang, Volkan Kursun, Grigo-

rios Magklis, Michael L. Scott, Greg Semeraro, Pradip Bose, Alper Buyukto-

199

www.bay-wolf.com/speedstep.htm
http://www.eembc.org

sunoglu, Peter W. Cook, and Stanley Schuster. Dynamically Tuning Processor

Resources with Adaptive Processing. IEEE Computer, 36(12):49–58, 2003.

[7] D.H. Albonesi. Selective Cache Ways: On-Demand Cache Resource Alloca-

tion. In Proceedings of the 32nd Annual International Symposium on Microar-

chitecture, pages 248–259, December 1999.

[8] R. Iris Bahar and Srilatha Manne. Power and Energy Reduction via Pipeline

Balancing. In Proceedings of the 28th Annual International Symposium on

Computer Architecture, pages 218–229, July 2001.

[9] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.

Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An Efficient Multithreaded

Runtime System. In Proceedings of the 5th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming (PPoPP), pages 207–216,

July 1995.

[10] David Brooks, Pradip Bose, and Margaret Martonosi. Power-performance

Simulation: Design and Validation Strategies. SIGMETRICS Performance

Evaluation Review, 31(4):13–18, 2004.

[11] David Brooks, Margaret Martonosi, John david Wellman, and Pradip Bose.

Power-Performance Modeling and Tradeoff Analysis for a High End Micro-

processor. In International Workshop on Power Aware Computing Systems

(PACS) at ASPLOS-IX, pages 126–136, November 2000.

[12] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A Framework

for Architectural-level Power Analysis and Optimizations. In Proceedings of

the 27th Annual International Symposium on Computer Architecture, pages

83–94, May 2000.

200

[13] D.M. Brooks, P. Bose, S.E. Schuster, H. Jacobson, P.N. Kudva, A. Buyukto-

sunoglu, J. Wellman, V. Zyuban, M. Gupta, and P.W. Cook. Power-aware

Microarchitecture: Design and Modeling Challenges for Next-Generation Mi-

croprocessors. IEEE Micro, 20(6):26–44, November/December 2000.

[14] D. Burger, S.W. Keckler, K.S. McKinley, M. Dahlin, L.K. John, Calvin Lin,

C.R. Moore, J. Burrill, R.G. McDonald, and W. Yoder. Scaling to the End of

Silicon with EDGE Architectures. IEEE Computer, 37(7):44–55, July 2004.

[15] Benton H. Calhoun, Frank A. Honore, and Anantha Chandrakasan. Design

Methodology for Fine-grained Leakage Control in MTCMOS. In Proceedings

of the 2003 Annual International Symposium on Low power Electronics and

Design, pages 104–109, August 2003.

[16] Ramon Canal, Joan-Manuel Parcerisa, and Antonio González. A Cost-

Effective Clustered Architecture. In Proceedings of the 8th International Sym-

posium on Parallel Architectures and Compilation Techniques, pages 160–168,

October 1999.

[17] Bradford L. Chamberlain. The Design and Implementation of a Region-Based

Parallel Language. PhD thesis, The University of Washington, November 2001.

[18] Rita Yu Chen, Robert Michael Owens, Mary Jane Irwin, and Raminder Singh

Bajwa. Validation of an Architectural Level Power Analysis Technique. In

Proceedings of the 1998 International Design Automation Conference, pages

242–245, June 1998.

[19] Mike Goodwin Chris Bowen, Gerhard Klimeck and Dick Chapman.

Dopant Fluctuations and Quantum Effects in Sub-0.1um CMOS, 1997.

http://www.cfdrc.com/nemo/pubs/isdrs html/isdrs html.html.

201

[20] Gilberto Contreras, Margaret Martonosi, Jinzhang Peng, Guei-Yuan Lueh,

and Roy Ju. The XTREM Power and Performance Simulator for the Intel

XScale Core: Design and Experiences. ACM Transactions in Embedded Com-

puting Systems, 6(1):4, 2007.

[21] Vivek De and Shekhar Borkar. Technology and Design Challenges for Low

Power and High Performance. In Proceedings of the 1999 Annual International

Symposium on Low Power Electronics and Design, pages 163–168, August

1999.

[22] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large

Clusters. In Proceedings of the 2004 Usenix Symposium on Operating System

Design and Implementation(OSDI), pages 137–150, December 2004.

[23] J. Dorsey, S. Searles, M. Ciraula, E. Fang, S. Johnson, N. Bujanos, R. Kumar,

D. Wu, M. Braganza, and S̃. Meyers. An Integrated Quad-Core OpteronTM

Processor. In IEEE International Solid-State Circuits Conference, pages 102–

103, February 2007.

[24] J.J. Engel, T.S. Guzowksi, A. Hunt, D.E. Lackey, L.D. Pickup, R.A. Proctor,

K. Reynolds, A.M. Rincon, and D.R. Stauffer. Design Methodology for IBM

ASIC Products. IBM Journal of Research and Development, 40(4):387–406,

July 1996.

[25] United States Environmental Protection Agency Report to

Congress on Server and Data Center Energy Efficiency, 2007.

http://www.energystar.gov/ia/partners/prod development/downloads/

EPA Report Exec Summary Final.pdf.

[26] Dan Ernst, Shidhartha Das, Seokwoo Lee, David Blaauw, Todd Austin, Trevor

Mudge, Nam Sung Kim, and Krisztian Flautner. Razor: Circuit-Level Cor-

202

rection of Timing Errors for Low-Power Operation. IEEE Micro, 24(6):10–20,

November/December 2004.

[27] Hadi Esmaeilzadeh and Doug Burger. Hierarchical Control Prediction: Sup-

port for Aggressive Predication. In Proceedings of the 2009 Workshop on

Parallel Execution of Sequential Programs on Multi-core Architectures, pages

71–80, June 2009.

[28] Keith I. Farkas, Paul Chow, Norman P. Jouppi, and Zvonko Vranesic. The

Multicluster Architecture: Reducing Cycle Time Through Partitioning. In

Proceedings of the 30th International Symposium on Microarchitecture, pages

149–159, December 1997.

[29] Brian Fields, Shai Rubin, and Rastislav Bod́ık. Focusing Processor Policies

via Critical-Path Prediction. In Proceedings of the 28th Annual International

Symposium on Computer Architecture, pages 74–85, July 2001.

[30] T. Fischer, J. Desai, B. Doyle, S. Naffziger, and B. Patella. A 90-nm Variable

Frequency Clock System for a Power-Managed Itanium Architecture Proces-

sor. IEEE Journal of Solid-State Circuits, 41(1):218–228, January 2006.

[31] J.A. Fisher. Very Long Instruction Word Architectures and the ELI-512. In

Proceedings of the 10th Annual International Symposium on Computer Archi-

tecture, pages 140–150, June 1983.

[32] Krisztián Flautner, Nam Sung Kim, Steve Martin, David Blaauw, and Trevor

Mudge. Drowsy Caches: Simple Techniques for Reducing Leakage Power. In

Proceedings of the 29th Annual International Symposium on Computer Archi-

tecture, pages 148–157, May 2002.

[33] Krisztián Flautner, Steve Reinhardt, and Trevor Mudge. Automatic Perfor-

203

mance Setting for Dynamic Voltage Scaling. Wireless Networks, 8(5):507–520,

2002.

[34] Daniele Folegnani and Antonio González. Energy-Effective Issue Logic. In

Proceedings of the 28th Annual International Symposium on Computer Archi-

tecture, pages 230–239, July 2001.

[35] Message Passing Interface Forum. A Message-Passing Interface Standard.

Technical report, University of Tennessee, Knoxville, April 1994.

[36] Madhu Saravana Sibi Govindan, Stephen W. Keckler, and Doug Burger. End-

to-End Validation of Architectural Power Models. In Proceedings of the 2009

International Symposium on Low Power Electronics and Design (ISLPED),

pages 383–388, 2009.

[37] Madhu Saravana Sibi Govindan, Charles Lefurgy, and Ajay Dholakia. Using

On-line Power Modeling for Server Power Capping. In Proceedings of the 2009

Workshop on Energy-Efficient Design (WEED), June 2009.

[38] Paul Gratz, Karthikeyan Sankaralingam, Heather Hanson, Premkishore Shiv-

akumar, Robert McDonald, Stephen W. Keckler, and Doug Burger. Implemen-

tation and Evaluation of Dynamically Routed Processor Operand Network.

In Proceedings of the 1st International Symposium on Networks-on-Chip, May

2007.

[39] Robert Graybill and Rami Melhem, editors. Power Aware Computing. Kluwer

Academic Publishers, Norwell, MA, USA, 2002.

[40] Ed Grochowski and Murali Annavaram. Energy-

Per-Instruction Trends in Intel Microprocessors.

http://www.intel.com/pressroom/kits/core2duo/pdf/epi-trends-final2.pdf.

204

[41] Dirk Grunwald, Artur Klauser, Srilatha Manne, and Andrew Pleszkun. Confi-

dence Estimation for Speculation Control. SIGARCH Computer Architecture

News, 26(3):122–131, 1998.

[42] D.P. Gulati, C. Kim, S. Sethumadhavan, S.W. Keckler, and D. Burger. Multi-

tasking Workload Scheduling on Flexible-Core Chip Multiprocessors. In Pro-

ceedings of the 17th International Conference on Parallel Architectures and

Compilation Techniques, pages 187–196, October 2008.

[43] John L. Henning. SPEC CPU2000: Measuring CPU Performance in the New

Millennium. IEEE Computer, 33(7):28–35, July 2000.

[44] Seongmoo Heo, Kenneth Barr, Mark Hampton, and Krste Asanović. Dynamic

Fine-grain Leakage Reduction using Leakage-biased Bitlines. In Proceedings

of the 29th Annual International Symposium on Computer Architecture, pages

137–147, May 2002.

[45] Yen-Te Ho and Ting-Ting Hwang. Low Power Design Using Dual Threshold

Voltage. In Proceedings of the 2004 Annual Conference on Asia South Pacific

Design Automation, pages 205–208, January 2004.

[46] H. Peter Hofstee. Power-Constrained Microprocessor Design. In International

Conference on Computer Design, volume 0, pages 14–16, September 2002.

[47] Chung-Hsing Hsu and Ulrich Kremer. The Design, Implementation, and Eval-

uation of a Compiler Algorithm for CPU Energy Reduction. In Proceedings of

the 2003 ACM conference on Programming Language Design and Implemen-

tation (PLDI), pages 38–48, June 2003.

[48] Engin Ipek, Meyrem Kirman, Nevin Kirman, and Jose F. Martinez. Core

Fusion: Accommodating Software Diversity in Chip Multiprocessors. In 34th

205

Annual International Symposium on Computer Architecture, pages 186–197,

June 2007.

[49] Canturk Isci, Alper Buyuktosunoglu, Chen-Yong Cher, Pradip Bose, and Mar-

garet Martonosi. An Analysis of Efficient Multi-Core Global Power Manage-

ment Policies: Maximizing Performance For A Given Power Budget. In Pro-

ceedings of the 39th Annual International Symposium on Microarchitecture,

pages 347–358, December 2006.

[50] Canturk Isci, Gilberto Contreras, and Margaret Martonosi. Live, Runtime

Phase Monitoring and Prediction on Real Systems with Application to Dy-

namic Power Management. In Proceedings of the 39th Annual International

Symposium on Microarchitecture, pages 359–370, December 2006.

[51] Anoop Iyer and Diana Marculescu. Power and Performance Evaluation of

Globally Asynchronous Locally Synchronous Processors. In Proceedings of

the 29th Annual International Symposium on Computer Architecture, pages

158–168, May 2002.

[52] Li J. and Martinez J.F. Dynamic Power-Performance Adaptation of Parallel

Computation on Chip Multiprocessors. In Proceedings of the 12th Annual

International Symposium on High-Performance Computer Architecture, pages

77–87, February 2006.

[53] Erik Jacobsen, Eric Rotenberg, and J. E. Smith. Assigning Confidence to Con-

ditional Branch Predictions. In Proceedings of the 29th Annual International

Symposium on Microarchitecture, pages 142–152, December 1996.

[54] J.M.Tendler, J.S.Dodson, Jr J.S.Fields, H.Le, and B.Sinharoy. Power4 System

Microarchitecture. IBM Journal of Research and Development, 46(1):5–25,

2002.

206

[55] Stefanos Kaxiras and Margaret Martonosi, editors. Computer Architecture

Techniques for Power-Efficiency, Synthesis Lectures on Computer Architec-

ture. Morgan and Claypool Publishers, 2008.

[56] C. Kim and K. Roy. Dynamic Vth Scaling Scheme for Active Leakage Power

Reduction. In Proceedings of the 2002 Annual Conference on Design, Automa-

tion and Test in Europe, pages 163–167, May 2002.

[57] Changkyu Kim, Simha Sethumadhavan, M. S. Govindan, Nitya Ranganathan,

Divya Gulati, Doug Burger, and Stephen W. Keckler. Composable Lightweight

Processors. In Proceedings of the 40th Annual International Symposium on

Microarchitecture, pages 381–394, December 2007.

[58] Chankyu Kim, Doug Burger, and Stephen W. Keckler. An Adaptive, Non-

Uniform Cache Structure for Wire-Delay Dominated On-Chip Caches. In Pro-

ceedings of the 10th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, pages 211–222, October 2002.

[59] Nam Sung Kim, Todd Austin, Trevor Mudge, and Dirk Grunwald. Challenges

for Architectural Level Power Modeling. In Power Aware Computing, pages

317–337. Kluwer Academic Publishers, Norwell, MA, 2002.

[60] Wonyoung Kim, Meeta Gupta, Gu-Yeon Wei, and David Brooks. System Level

Analysis of Fast, Per-Core DVFS using On-Chip Switching Regulators. In

Proceedings of the 14th Annual International Symposium on High Performance

Computer Architecture, pages 123–136, February 2008.

[61] Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy Ran-

ganathan, and Dean M. Tullsen. Single-ISA Heterogeneous Multi-Core Ar-

chitectures: The Potential for Processor Power Reduction. In Proceedings of

207

the 36th Annual International Symposium on Microarchitecture, pages 81–92,

December 2003.

[62] Rakesh Kumar, Norman P. Jouppi, and Dean M. Tullsen. Conjoined-Core

Chip Multiprocessing. In Proceedings of the 37th Annual International Sym-

posium on Microarchitecture, pages 195–206, December 2004.

[63] Chingren Lee, Jenq Kuen Lee, Tingting Hwang, and Shi-Chun Tsai. Compiler

optimization on VLIW instruction scheduling for Low Power. ACM Transac-

tions on Design Automation of Electronic Systems, 8(2):252–268, 2003.

[64] Dong Li, Behnam Robatmili, Madhu Saravana Sibi Govindan, Aaron Smith,

Stephen W. Keckler, and Doug Burger. Compiler-assisted Hybrid Operand

Communication. Technical Report TR-09-33, Department of Computer Sci-

ences, The University of Texas at Austin, November 2009.

[65] Grigorios Magklis, Michael L. Scott, Greg Semeraro, David H. Albonesi, and

Steven Dropsho. Profile-based Dynamic Voltage and Frequency Scaling for

a Multiple Clock Domain Microprocessor. In Proceedings of the 30th Annual

International Symposium on Computer Architecture, pages 14–27, June 2003.

[66] Bertrand Maher. Atomic Block Formation for Explicit Data Graph Execution

Architectures. PhD thesis, Department of Computer Sciences, The University

of Texas at Austin, August 2010.

[67] S. Manne, A. Klauser, and D. Grunwald. Pipeline Gating: Speculation Control

for Energy Reduction. Proceedings of the 25th Annual International Sympo-

sium on Computer Architecture, pages 132–141, July 1998.

[68] Mark Gebhart, Bertrand A. Maher, Katherine E. Coons, Jeff Diamond, Paul

Gratz, Mario Marino, Nitya Ranganathan, Behnam Robatmili, Aaron Smith,

James Burrill, Stephen W. Keckler, Doug Burger, and Kathryn S. McKinley.

208

An Evaluation of the TRIPS Computer System. In Proceedings of the 14th In-

ternational Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), pages 1–12, August 2009.

[69] Alain J. Martin. Towards an energy complexity of computation. Information

Processing Letters, 77(2-4), February 2001.

[70] Francisco Javier Mesa-Martinez, Joseph Nayfach-Battilana, and Jose Renau.

Power Model Validation through Thermal Measurements. In Proceedings of

the 34th Annual International Symposium on Computer Architecture, pages

302–311, June 2007.

[71] Micron Technology Incorporated: Calculating DDR Memory System Power.

http://download.micron.com/pdf/technotes/ddr/TN4603.pdf, 2001.

[72] K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Bra-

zier, M. Buehler, A. Cappellani, R. Chau, C.-H. Choi, G. Ding, K. Fischer,

T. Ghani, R. Grover, W. Han, D. Hanken, M. Hattendorf, J. He, J. Hicks,

R. Huessner, D. Ingerly, P. Jain, R. James, L. Jong, S. Joshi, C. Kenyon,

K. Kuhn, K. Lee, H. Liu, J. Maiz, B. Mclntyre, P. Moon, J. Neirynck, S. Pae,

C. Parker, D. Parsons, C. Prasad, L. Pipes, M. Prince, P. Ranade, T. Reynolds,

J. Sandford, L. Shifren, J. Sebastian, J. Seiple, D. Simon, S. Sivakumar,

P. Smith, C. Thomas, T. Troeger, P. Vandervoorn, S. Williams, and K. Za-

wadzki. A 45nm Logic Technology with High-k+Metal Gate Transistors,

Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100%

Pb-free Packaging. International Electron Devices Meeting, pages 247–250,

December 2007.

[73] M. Moudgill, P. Bose, and J.H. Moreno. Validation of Turandot, a Fast Pro-

cessor Model for Microarchitecture Exploration. International Performance,

Computing and Communications Conference, pages 451–457, February 1999.

209

[74] T. Mudge. Power: A First-Class Architectural Design Constraint. IEEE

Computer, 34(4):52–58, April 2001.

[75] Ramadass Nagarajan, Xia Chen, Robert G. McDonald, Doug Burger, and

Stephen W. Keckler. Critical Path Analysis of the TRIPS Architecture. In

Proceedings of the 2006 International Symposium on Performance Analysis of

Systems and Software, pages 37–47, March 2006.

[76] Farid N. Najm. A Survey of Power Estimation Techniques in VLSI circuits.

IEEE Transactions on Very Large Scale Integrated Systems, 2(4):446–455, De-

cember 1994.

[77] Karthik Natarajan, Heather Hanson, Stephen W. Keckler, Charles R. Moore,

and Doug Burger. Microprocessor Pipeline Energy Analysis. In Proceedings

of the 2003 Annual International Symposium on Low power Electronics and

Design, pages 282–287, August 2003.

[78] J.S. Neely, H.H. Chen, S.G. Walker, J. Venuto, and T.J. Bucelot. CPAM: A

Common Power Analysis Methodology for High-Rerformance VLSI Design. In

Proceedings of the Conference on Electrical Performance of Electronic Pack-

aging, pages 303–306, October 2000.

[79] M. Nemani and F.N. Najm. High-level Area and Power Estimation for VLSI

Circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 18(6):697–713, June 1999.

[80] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable Par-

allel Programming with CUDA. ACM Queue, 6(2):40–53, 2008.

[81] Asim Nisar, Mongkol Ekpanyapong, and Kuppuswamy Sivakumar. Original

45nm Intel CoreTM Microarchitecture. Intel Technology Journal, 12(3), Octo-

ber 2008.

210

[82] U.Y. Ogras, R. Marculescu, P. Choudhary, and D. Marculescu. Voltage-

Frequency Island Partitioning for GALS-based Networks-on-Chip. In Proceed-

ings of the 46th Annual International Design Automation Conference, pages

110–115, June 2007.

[83] The OpenMP API Specification for Parallel Programming.

http://openmp.org/wp/.

[84] Dmitry Ponomarev, Gurhan Kucuk, and Kanad Ghose. Reducing Power Re-

quirements of Instruction Scheduling through Dynamic Allocation of Multiple

Datapath Resources. In Proceedings of the 34th Annual International Sympo-

sium on Microarchitecture, pages 90–101, 2001.

[85] M. Powell, Se-Hyun Yang, B. Falsafi, K. Roy, and T.N. Vijaykumar. Gated-

Vdd: A Circuit Technique to Reduce Leakage in Deep-Submicron Cache Mem-

ories. In Proceedings of the 2000 International Symposium on Low Power

Electronics and Design, pages 90–95, July 2000.

[86] POSIX Threads Programming. https://computing.llnl.gov/tutorials/pthreads/.

[87] Nitya Ranganathan, Doug Burger, and Stephen W. Keckler. Analysis of the

TRIPS Prototype Block Predictor. In Proceedings of the 2009 International

Symposium on Performance Analysis of Systems and Software, pages 195–206,

April 2009.

[88] Behnam Robatmili, Katherine E. Coons, Doug Burger, and Kathryn S.

McKinley. Strategies for Mapping Dataflow Blocks to Distributed Hardware.

In Proceedings of the 41st Annual International Symposium on Microarchitec-

ture, pages 23–34, November 2008.

[89] Behnam Robatmili, Madhu Saravana Sibi Govindan, Doug Burger, and Steve

Keckler. Reducing Performance Bottlenecks in Composable Multicore Proces-

211

sors. In Submitted for review to International Symposium of Microarchitecture,

December 2010.

[90] Kurt W. Roth and Kurtis McKenney. Energy Consumption by Consumer

Electronics in U.S. Residences. Technical Report D5525, Consumer Electronics

Association, January 2007.

[91] Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu, Changkyu

Kim, Jaehyuk Huh, Doug Burger, Stephen W. Keckler, and Charles R. Moore.

Exploiting ILP, TLP, and DLP with the Polymorphous TRIPS Architecture.

In Proceedings of the 30th Annual International Symposium on Computer Ar-

chitecture, pages 422–433, June 2003.

[92] Karthikeyan Sankaralingam, Ramadass Nagarajan, Robert McDonald, Ra-

jagopalan Desikan, Saurabh Drolia, Madhu Saravana Sibi Govindan, Paul

Gratz, Divya Gulati, Heather Hanson, Changkyu Kim, Haiming Liu, Nitya

Ranganathan, Simha Sethmadhavan, Sadia Sharif, Premkishore Shivakumar,

Stephen W. Keckler, and Doug Burger. Distributed Microarchitectural Proto-

cols in the TRIPS Prototype Processor. In Proceedings of the 39th Annual In-

ternational Symposium on Microarchitecture, pages 480–491, December 2006.

[93] H. Saputra, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, J. S. Hu, C-H. Hsu,

and U. Kremer. Energy-conscious Compilation based on Voltage Scaling. In

Proceedings of the Joint Conference on Languages, Compilers and Tools for

Embedded Systems (LCTES/SCOPES), pages 2–11, June 2002.

[94] Greg Semeraro, Grigorios Magklis, Rajeev Balasubramonian, David H. Al-

bonesi, Sandhya Dwarkadas, and Michael L. Scott. Energy-Efficient Processor

Design Using Multiple Clock Domains with Dynamic Voltage and Frequency

Scaling. In Proceedings of the 8th Annual International Symposium on High-

Performance Computer Architecture, pages 29–40, February 2002.

212

[95] John S. Seng, Eric S. Tune, and Dean M. Tullsen. Reducing Power with

Dynamic Critical Path Information. In Proceedings of the 34th Annual Inter-

national Symposium on Microarchitecture, pages 114–123, December 2001.

[96] Simha Sethumadhavan, Rajagopalan Desikan, Doug Burger, Charles R.

Moore, and Stephen W. Keckler. Scalable Memory Disambiguation for High

ILP Processors. In Proceedings of the 36th Annual International Symposium

on Microarchitecture, pages 399–410, December 2003.

[97] Simha Sethumadhavan, Franziska Roesner, Joel S. Emer, Doug Burger, and

Stephen W. Keckler. Late-Binding: Enabling Unordered Load-Store Queues.

In Proceedings of the 34th Annual International Symposium on Computer Ar-

chitecture, pages 347–357, June 2007.

[98] Madhu S.Govindan, Doug Burger, Stephen W.Keckler, and the TRIPS Team.

TRIPS: A Distributed Explicit Data Graph Execution Microprocessor. Hot

Chips 19: A Symposium of High Performance Chips, August 2007.

[99] H. Shafi, P. J. Bohrer, J. Phelan, C. A. Rusu, and J. L. Peterson. Design and

Validation of a Performance and Power Simulator for PowerPC Systems. IBM

Journal of Research and Development, 47(5/6):641–651, 2003.

[100] Timothy Sherwood, Erez Perelman, and Brad Calder. Basic Block Distribu-

tion Analysis to Find Periodic Behavior and Simulation Points in Applica-

tions. In Proceedings of the Internationl Symposium on Parallel Architectures

and Compilation Techniques (PACT), pages 3–14, September 2001.

[101] Aaron Smith, Jim Burrill, Jon Gibson, Bertrand Maher, Nick Nethercote, Bill

Yoder, Doug Burger, and Kathryn S. McKinley. Compiling for EDGE archi-

tectures. In International Symposium on Code Generation and Optimization,

pages 185–195, March 2006.

213

[102] Aaron Smith, Ramadass Nagarajan, Karthikeyan Sankaralingam, Robert

McDonald, Doug Burger, Stephen W. Keckler, and Kathryn S. McKinley.

Dataflow Predication. In Proceedings of the 39th Annual International Sym-

posium on Microarchitecture, pages 89–100, December 2006.

[103] Viji Srinivasan, David Brooks, Michael Gschwind, Pradip Bose, Victor

Zyuban, Philip N. Strenski, and Philip G. Emma. Optimizing Pipelines for

Power and Performance. In Proceedings of the 35th Annual International Sym-

posium on Microarchitecture, pages 333–344, November 2002.

[104] Mike Stein. Crossing the Abyss: Asynchronous Signals in a Synchronous

World. http://www.edn.com/index.asp?layout=article&articleid=CA310388.

[105] John E. Stone, David Gohara, and Guochun Shi. OpenCL: A Parallel Pro-

gramming Standard for Heterogeneous Computing Systems. Computing in

Science and Engineering, 12:66–73, 2010.

[106] D. Stroobandt and J. Van Campenhout. Accurate Interconnection Length

Estimations for Predictions Early in the Design Cycle. In VLSI Design, Special

Issue on Physical Design in Deep Submicron, volume 10, pages 1–20, 1999.

[107] Synopsys, Inc. PrimePower: Full-Chip Dy-

namic Power Analysis for Multi-million Gate Designs.

www.synopsys.com/products/power/primepower ds.pdf.

[108] Synopsys Incorporated. VCS: Comprehensive RTL Verification Solution.

http://www.synopsys.com/products/simulation/simulation.html.

[109] D. Tarjan, M. Boyer, and K. Skadron. Federation: Out-of-Order Execution

using Simple In-Order Cores. Technical Report CS-2007-11, University of

Virginia, Department of Computer Science, August 2007.

214

[110] David Tarjan, Shyamkumar Thoziyoor, and Norman Jouppi.

Cacti 4.0. HP Labs Technical Report, HPL-2006-86.

http://www.hpl.hp.com/techreports/2006/HPL-2006-86.pdf.

[111] M. Taylor, W. Lee, S. Amarasinghe, and A. Agarwal. Scalar Operand Net-

works: On-chip Interconnect for ILP in Partitioned Architectures. In Pro-

ceedings of the 9th Annual International Symposium on High Performance

Computer Architecture, pages 341–353, February 2003.

[112] The Intel Thread Building Blocks. http://www.threadingbuildingblocks.org/.

[113] William Thies, Michal Karczmarek, Michael Gordon, David Z. Maze, Jeremy

Wong, Henry Hoffman, Matthew Brown, and Saman Amarasinghe. StreamIt:

A Compiler for Streaming Applications. Technical Report MIT/LCS Technical

Memo LCS-TM-622, Massachusetts Institute of Technology, Cambridge, MA,

Dec 2001.

[114] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez. Reduc-

ing Power in High-Performance Microprocessors. In Proceedings of the 1998

International Design Automation Conference, pages 732–737, June 1998.

[115] UPC Consortium. UPC Language Specifications, v1.2. Technical Report

LBNL-59208, Lawrence Berkeley National Lab, 2005.

[116] Madhavi Valluri and Lizy John. Is Compiling for Performance == Compiling

for Power? In Proceedings of the 2001 Workshop on Interaction Between

Compilers and Computer Architectures (INTERACT-5), January 2001.

[117] Madhavi G. Valluri, Lizy K. John, and Kathryn S. McKinley. Low-power,

Low-Complexity Instruction Issue using Compiler Assistance. In Proceedings

of the 19th Annual International Conference on Supercomputing, pages 209–

218, June 2005.

215

[118] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Fi-

nan, P. Iyer, A. Singh, T. Jacob, S. Jain, S. Venkataraman, Y. Hoskote, and

N. Borkar. An 80-Tile 1.28TFLOPS Network-on-Chip in 65nm CMOS. In

Proceedings of the 2007 International Solid-State Circuits Conference, pages

98–589, February 2007.

[119] Vasanth Venkatachalam and Michael Franz. Power Reduction Techniques for

Microprocessor Systems. ACM Computing Survey, 37(3):195–237, 2005.

[120] Elliot Waingold, Michael Taylor, Devabhaktuni Srikrishna, Vivek Sarkar, Wal-

ter Lee, Victor Lee, Jang Kim, Matthew Frank, Peter Finch, Rajeev Barua,

Jonathan Babb, Saman Amarasinghe, and Anant Agarwal. Baring It All to

Software: RAW Machines. IEEE Computer, 30(9):86–93, September 1997.

[121] Watanabe, Yasuko and Davis, John D. and Wood, David A. WiDGET: Wis-

consin Decoupled Grid Execution Tiles. In Proceedings of the 37th Annual

International Symposium on Computer Architecture, pages 2–13, June 2010.

[122] Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker. Scheduling

for reduced CPU energy. In Proceedings of the 1st Conference on Operating

Systems Design and Implementation (OSDI), pages 13–23, November 1994.

[123] Steve Wilton and Norman Jouppi. An Enhanced Access and Cy-

cle Time Model for On-Chip Caches. WRL Research Report 93/5.

http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-93-5.pdf.

[124] Wonyoung Kim, Meeta S. Gupta, Gu-Yeon Wei, and David Brooks. On-Chip

VRM Design. Through Private Communication.

[125] Qiang Wu, Margaret Martonosi, Douglas W. Clark, V. J. Reddi, Dan Connors,

Youfeng Wu, Jin L ee, and David Brooks. A Dynamic Compilation Framework

for Controlling Microprocessor Energy and Performance. In Proceedings of the

216

38th Annual International Symposium on Microarchitecture, pages 271–282,

November 2005.

[126] Yi-Ping You, Chingren Lee, and Jenq Kuen Lee. Compilers for Leakage Power

Reduction. ACM Transactions on Design Automation of Electronic Systems,

11(1):147–164, 2006.

[127] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan.

HotLeakage: A Temperature-Aware Model of Subthreshold and Gate Leakage

for Architects. Technical Report CS-2003-05, University of Virginia, Depart-

ment of Computer Science, March 2003.

[128] Wei Zhao and Yu Cao. New generation of predictive technology model for sub-

45nm design exploration. In Proceedings of the 7th International Symposium

on Quality Electronic Design (ISQED), pages 585–590, 2006.

[129] Hongtao Zhong, Steven A. Lieberman, and Scott A. Mahlke. Extending mul-

ticore architectures to exploit hybrid parallelism in single-thread applications.

In Proceedings of the 13th Annual International Conference on High Perfor-

mance Computer Architecture, pages 25–36, February 2007.

[130] Victor Zyuban, David Brooks, Viji Srinivasan, Michael Gschwind, Pradip

Bose, Philip N Strenski, and Philip G Emma. Integrated Analysis of Power

and Performance of Pipelined Microprocessors. volume 53, pages 1004–1016,

August 2004.

217

Vita

Madhu Saravana Sibi Govindan (official name: Madhu Sarava Govindan) was born

as the only son to Govindan K. and Vasanthi Govindan S., on 10th September,

1980, in the town of Palayamkottai, in the state of Tamil Nadu, India. He attended

high school in various places including Tirunelveli, Tuticorin, and Chennai. Later,

he enrolled in the College of Engineering, Guindy, Anna University, for his under-

graduate education in 1998. He graduated with a Bachelors degree in Computer

Science and Engineering in 2002. After working in Bangalore for a company called

Trilogy E-Business Software for about a year, he joined the Ph.D. program in the

Computer Sciences Department at the University of Texas at Austin in 2003. While

enrolled in the Ph.D. program he earned his Masters degree in Computer Science in

2006.

Permanent Address: New No. 12, Old No. 32, B Block

BBC Apartments, Vaithyram Street,

T. Nagar, Chennai - 600017, India.

This dissertation was typeset with LATEX2ε
1 by the author.

1LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin, and extended
by Bert Kay, James A. Bednar, and Ayman El-Khashab.

218

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1 Introduction
	1.1 EDGE Architectures
	1.2 Dissertation Contributions
	1.2.1 TRIPS: A Detailed Power Analysis
	1.2.2 TFlex Power Analysis and Comparison
	1.2.3 Composability versus DVFS
	1.2.4 Additional Performance Mechanisms for TFlex
	1.2.5 Fine-grained Power Management Policies

	1.3 Leakage Power
	1.4 Dissertation Layout

	Chapter 2 ISA and Microarchitectures Overview
	2.1 TRIPS ISA
	2.1.1 Block-Atomic Execution
	2.1.2 Direct Instruction Communication
	2.1.3 ISA Advantages and Disadvantages

	2.2 TRIPS Microarchitecture
	2.3 TFlex Overview
	2.4 TFlex Microarchitecture
	2.5 Support for Composability

	Chapter 3 TRIPS Power Modeling and Validation
	3.1 Architectural Power Models
	3.2 Power Model Validation
	3.2.1 Hardware Power Measurement
	3.2.2 RTL Power Models
	3.2.3 Validation Results

	3.3 Improved Architectural Models and Relative Accuracy
	3.4 Lessons

	Chapter 4 Performance and Power Comparison Methodology
	4.1 Experimental Platforms
	4.2 Power Models
	4.2.1 TRIPS Power Models
	4.2.2 Turandot and ARM Power Models
	4.2.3 More Normalization Efforts
	4.2.4 TFlex Power Models

	4.3 Experimental Configuration
	4.3.1 Benchmarks
	4.3.2 Microarchitectural Parameters

	Chapter 5 Performance and Power Comparison Results
	5.1 TRIPS Comparison
	5.1.1 Performance and Raw Power
	5.1.2 Energy-Delay-Product and Energy-Delay2 Product
	5.1.3 Comparison of Chip Power
	5.1.4 TRIPS: Detailed Power Breakdown
	5.1.5 Summary of TRIPS Results

	5.2 TFlex Results
	5.2.1 TFlex 1-Core and 2-Core Configurations
	5.2.2 Power Breakdown Analysis of TFlex 1-Core
	5.2.3 Energy Breakdown Analysis
	5.2.4 Performance and Power Comparison of Composability
	5.2.5 Composability: Power Breakdown Analysis
	5.2.6 Summary of TFlex Results
	5.2.7 Lessons

	Chapter 6 DVFS and Composability: A Comparison
	6.1 Introduction
	6.2 DVFS Alternatives
	6.3 Methodology
	6.4 Experimental Results
	6.4.1 Composability Results
	6.4.2 Composability and DVFS
	6.4.3 Summary

	6.5 Lessons

	Chapter 7 TFlex Performance Mechanisms: An Evaluation
	7.1 Block Mapping Policies
	7.1.1 Results

	7.2 Predicate Prediction
	7.2.1 Results

	7.3 Operand Multicast
	7.4 Summary

	Chapter 8 Fine-Grained Power Management Policies
	8.1 DVFS Mechanism
	8.1.1 Implementation Challenges

	8.2 Experimental Setup
	8.3 Instruction Criticality
	8.4 Limit Study
	8.4.1 Effects on Performance and Processor Power
	8.4.2 Effects on Chip Power
	8.4.3 Limits of Criticality-based Slack
	8.4.4 L2 Caches

	8.5 Realistic Synchronization
	8.6 Realistic DVFS Transition Times
	8.7 VRM Area versus Efficiency
	8.8 Controlled Speculation
	8.9 Branch Confidence: Results
	8.10 Future Work and Conclusions
	8.11 Lessons

	Chapter 9 Related Work
	9.1 Energy Efficiency
	9.1.1 Dynamic Power
	9.1.2 Leakage Power
	9.1.3 ISA and Compiler Support

	9.2 Power Modeling
	9.3 Composability
	9.4 Dynamic Voltage and Frequency Scaling

	Chapter 10 Conclusions
	10.1 Dissertation Contributions
	10.1.1 TRIPS: A Detailed Power Analysis
	10.1.2 TFlex Power Analysis and Comparison
	10.1.3 Composability vs. DVFS: Comparison of Performance/Power Mechanisms
	10.1.4 Additional Performance Mechanisms for TFlex
	10.1.5 Fine-grained Power Management Policies

	10.2 Future Directions

	Appendix A Power Validation Results
	Appendix B Power Density Comparison
	Bibliography
	Vita

