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The study of Quantum Chromodynamics (QCD) in conditions of ex-

treme temperature and energy density has been accomplished over the past

two decades using heavy-ion collisions at the Relativistic Heavy-Ion Collider

(RHIC). Recently, the addition of the Heavy Flavor Tracker from 2014-2016

has granted the STAR experiment the ability to precisely reconstruct decay-

vertices of secondary particles separated from the primary collision vertex

by ∼ 30µm. This enables the direct reconstruction of heavy-flavor quark

(e.g. charm, bottom) mesons, which are useful for studying the hot and dense

medium - known as the Quark-Gluon Plasma (QGP) - formed in heavy-ion

collisions. Heavy-flavor quarks are useful for studying the QGP because they

are formed in hard-scattering interactions that take place before the formation

of the medium and then hadronize and decay outside the medium. This makes

heavy-quarks sensitive to the entire evolution of the QGP, and therefore an

ideal probe for its study.
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In this analysis, correlations on relative azimuth and pseudorapidity

between a charm-containing meson (D0) and all other charged hadrons are

presented. In particular, the near-side (∆φ < π
2
) jet-like peak is studied, with

the D0 serving as a proxy for charm-jet. Using a multi-parameter fit-model

with no underlying physics assumptions, the widths and associated yield of the

near-side peak are studied as a function of centrality. The evolution of this

near-side correlation structure yields insight into the charm-jet interactions

with the partonic medium.

These results are compared to PYTHIA and a trigger-associated light-

flavor correlation analysis. The results imply significant interaction of the

charm-quark with the medium via gluon radiation and collisions with neigh-

boring partons, similar to what is observed for light-flavor correlations at a

similar transverse momentum. Model predictions for heavy-ion collisions that

include charm are needed for further understanding of these measurements.
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Chapter 1

Introduction and Motivation

As far as we currently understand, there are four fundamental forces

of nature. They are the well-known gravitational force, the electromagnetic

force, the weak nuclear force, and the strong nuclear force. Quantum Chro-

modynamics (QCD) is the theory describing the strong nuclear force, which is

the force responsible for the binding together of atomic nuclei and the partons

(quarks and gluons) residing in the individual nucleons (protons and neu-

trons). Decades of experiments indicate that partons are forever bound under

the strong force within the confines of their respective hadrons, or particles

made from partons.

However, lattice QCD predictions imply that under sufficient conditions

ordinary hadronic matter could undergo a transition into a phase where the

normally confined partons could become deconfined over nuclear distances,

forming a new state of matter called the Quark-Gluon Plasma (QGP) [1, 2].

This state of matter is believed to have existed in the hot and dense early

universe just micro-seconds after the Big Bang and possibly exists in the dense

cores of neutron stars.

In 1983 it was proposed by Bjorken that the collision of two heavy

nuclei at sufficiently high center-of-mass energy could provide the needed tem-

perature and energy density to produce a QGP in a laboratory environment.

However, the study of heavy-ion collisions is a steep experimental and theo-
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retical challenge, requiring the use of novel techniques and differential mea-

surements to piece together the full dynamical picture of the medium formed

in heavy-ion collisions.

The goal of this thesis is to contribute to the overall physics under-

standing of ultra-relativistic heavy-ion collisions and their relation to the QGP.

This goal will be achieved by studying how heavy quarks (charm, in this case)

interact with the medium formed in heavy-ion collisions, and see how those in-

teractions compare to the interactions of light quarks (up, down, and strange)

in the medium.

1.1 Quarks and the Development of QCD

In 1964, Murray Gell-Mann and George Zweig proposed that baryons

and mesons were actually composed of smaller particles of spin-1/2 and frac-

tional electric charge. They proposed that this subtructure was needed to

explain the mass differences seen in the baryon and meson octets of particles.

This approach was based on the earlier work of Gell-Mann on the Eightfold

Way (see Fig. 1.1) to describe the symmetries between hadrons [3, 4, 6].

Figure 1.1: Sketch of the Eightfold Way symmetery for the meson and baryon
octets. [7]
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Gell-Mann and Zweig found that the underlying symmetry to describe

this arrangement of the baryon and meson octets was best described by the

Lie group SU(3), which led to the proposal that baryons and mesons con-

tained these “quarks”, as Gell-Mann called them (Zweig called them “aces”[4]).

Baryons are particles comprised of three quarks, while mesons are comprised of

a quark and an anti-quark, with quark-containing particles dubbed “hadrons”.

Initially, only three quark flavors were proposed (up, down, and strange), since

that described the observed particle mass differences at that time. It was then

the proposal of Zweig that there should be an experimental search for these

particles since the formulation under the SU(3) symmetry group described the

observed baryon and meson octets so well and even predicted the Ω baryon,

which was later discovered at Brookhaven National Laboratory [5].

From 1968 to 1970, deep inelastic scattering experiments performed

at the Stanford Linear Accelerator Center (SLAC) confirmed that the pro-

ton and neutron had internal, point-like substructure via the observation of

Bjorken scaling in the electron+proton scattering cross section. This scaling

phenomenon has to do with the structure functions (W1(Q2, ν),W2(Q2, ν))

that are a part of the differential cross section for inelastic electron+proton

scattering, as seen in Eq. 1.1,

dσ

dΩdE ′
=

α2

4E2
0 sin2(θ/2)

cos2(θ/2)[W2(Q2, ν) + 2W1(Q2, ν) tan2(θ/2)], (1.1)

where E0 is the energy of the incident electron, E ′ is the energy of the scattered

outgoing electron, θ is the scattering angle, Q2 is the energy transfer (squared),

and ν = E0 − E ′. Experimental data (Fig. 1.2) from SLAC showed that the

cross section for these collisions sharply differed with the expectation for elastic

scattering.
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Figure 1.2: Data from SLAC experiments showing the scattering cross section
for electron+proton collisions, scaled by the Mott cross section, as a function
of q2 (note: Q2 = −q2) [8]. The different behavior of the measured cross
section compared to the expectation from elastic scattering is apparent and
came as a surprise.

Bjorken proposed that these structure functions, W1 and W2, could be

written as a function of a “scaling variable”, ω = 2Mν
Q2 . In the limit Q2 → ∞

and ν → ∞, the “Bjorken limit”, the structure functions depend only on

the scaling variable. Feynman then proposed the “parton” model with the

scaling variable x = 1
ω

(“Bjorken-x”) which naturally explained this scaling

behavior coming from collisions of the electrons with sub-nucleonic partons in

the protons [9].
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Further analysis of the experimental data, and development of theory

that included the spins and fractional charges of the partons, confirmed that

the quark model proposed by Zweig and Gell-Mann was indeed correct. But

there were still some basic problems. For one, based on the Pauli Exclusion

Principle, there were some baryon states, namely the ∆++ baryon, which would

not obey the Pauli Exclusion Principle without the introduction of a new

quantum number. In 1972, Murray Gell-Mann and Harald Fritzsch gave a

talk in which they presented a new quantum number [10]. They dubbed this

quantum number “color”, and also introduced the gluon gauge field needed to

describe the interactions between the quarks in the strong nuclear force. They

described color as a conserved charge, coming in red, green and blue (and the

anti-colors). When the color-charges are combined in combinations of all three

colors (or anti-colors) for baryons, or a color and its anti-color for mesons,

a color-neutral object is formed, which we know as a hadron. Only color-

neutral objects are observed in nature. This was the first presentation of an

almost modern theory of the strong force - dubbed Quantum Chromodynamics

(QCD). But there was still an unanswered question - why were the quarks

forever confined in their hadrons?

The answer to this condundrum of confinement came in 1973 with the

discovery of “asymptotic freedom” by Politzer, Gross and Wilczek [11, 12] in

QCD. Asymptotic freedom describes the strong force as asymptotically “weak”

at very short (sub-nucleon) distances, but increasingly strong at nuclear dis-

tance or greater. At nuclear distances, the strong-force binding energy between

the quarks becomes so large, that it is more favorable for the quarks to form

a new quark/anti-quark pair from the QCD vacuum rather than to separate.

This makes the observation of a free quark in nature not possible, as far as
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we know. The discovery of asymptotic freedom is what solidified QCD as the

theory of the strong force and gave it predictive power.

In QCD, because the strong force coupling displays this property of

asymptotic freedom, the coupling gets larger (logarithmically) as you go to

lower energy (Q2) exchange. This makes a whole portion of QCD calculations

“non-perturbative”, which is very problematic and requires special treatment

of the theory in order to carry out analytic calculations. In 1974, Ken Wilson

proposed a solution to this problem by calculating QCD on a discretized “lat-

tice,” and eventually taking the lattice space to a continuum [13]. However,

even elementary lattice calculations are very computationally challenging. De-

spite those challenges, lattice gauge theory has been able to successfully predict

properties of hadrons, such as mass, using nothing but lattice QCD.

Over the years the theories of the subatomic world - electro-weak (QED)

theory and QCD - as well as the enormous body of collected and analyzed

experimental data (including the discovery of the heavy quarks [14, 15, 16, 17,

18], the weak gauge bosons, and the Higgs [19]) have been nicely buttoned-up

in the “Standard Model”. Fig. 1.3 depicts the full set of Standard Model

particles and the force-mediating gauge bosons.
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Figure 1.3: Schematic drawing of the Standard Model particles and gauge
bosons. [20]

The Standard Model contains six quark flavors, and their anti-quarks:

up, down, strange, charm, bottom, and top (in order of increasing mass). It

also contains six leptons: the electron, muon, and tau lepton, and their cor-

responding neutrinos. The gauge bosons are spin-1 particles that mediate the

various forces, with the photon being responsible for the electromagnetic force,

the gluon responsible for the strong force, and the W/Z bosons responsible for

mediating the weak nuclear force. The newly-discovered Higgs Boson [19], par-

tially responsible for giving particles their mass, is also a part of the Standard
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Model.

1.2 Deconfinement and The Quark-Gluon Plasma

As stated previously, the running QCD coupling becomes logarithmi-

cally weaker at higher energy transfers between partons. From finite temper-

ature perturbation theory [1], the QCD coupling was also shown to become

weaker as the temperature increases. Furthermore, chiral symmetry, which is

spontaneously broken by QCD, is restored at very high temperature. These

observations led to the proposal of a new state of QCD matter at very high

temperature where the coupling becomes weak enough for the quarks and glu-

ons to be deconfined over nuclear, rather than nucleon distances [1, 2]. This

state of matter is known as the Quark-Gluon Plasma (QGP). Lattice QCD

predicts that for matter with zero baryochemical potential (or net baryon

density), a crossover phase transition to the QGP phase could happen at

T ∼ 150− 180 MeV (see Fig. 1.4).
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Figure 1.4: Lattice calculations with zero net-baryon density of energy density
vs. temperature. A cross-over phase transition can be seen around ∼173 MeV
[23].
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Figure 1.5: Cartoon of the QGP phase diagram, with the limits of lattice
predictions loosely outlined [24].

This QGP state of matter is believed to have existed in the very early

universe several microseconds after the Big Bang, when the energy density

and temperature would have been sufficiently high. Based on the lattice pre-

dictions, the phase diagram shows that this state of matter could also exist

in the very dense cores of neutron stars (meaning, high baryon density and

low temperature - not easily accessible in the lab). The QGP is not just an

exotic state of matter to be studied because of where it could have or could

now exist. It is also important because its existence is a prediction of QCD, so

searching for evidence of and understanding the QGP could help us to better

understand the fundamental theory of the strong nuclear force in areas off-

limits to perturbative calculations. To study the QGP, our best option is to
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use collide heavy-ions in high-energy particle colliders to produce the needed

energy density and low net baryon density to produce it.

1.3 Heavy-Ion Collisions

Bjorken first suggested that collisions between two heavy-ions at rela-

tivistic energies provide access to the energy densities needed to possibly create

a phase transition to a QGP state in a laboratory environment [21]. However,

there are significant experimental challenges that must be overcome in using

heavy-ion collisions to study high energy density QCD and the QGP.

Several initial observables of the production of a QGP were originally

predicted. Perhaps the most-notable early prediction was the existence of crit-

ical fluctuations consistent with a first- or second-order phase transition. In

fact, the measurement of critical fluctuations of thermodynamic quantities was

the original idea of a “smoking gun” observable for the QGP phase transition,

since one would expect a rapid change in thermodynamic quantities near a

phase transition boundary [22]. Current lattice predictions indicate a rapid

crossover transition to a QGP, without necessarily producing critical fluctua-

tions of thermodynamic quantities. Other observables, such as enhancement of

strangeness production [25], suppression of the J/ψ via Debye color-screening

[27], and opacity of jets traversing the medium [29] were all proposed as sig-

natures of QGP formation. Some of these things have indeed been observed

in heavy-ion collisions [26, 28, 30]. Furthermore, ideal hydrodynamics proved

to be very successful at explaining the measured azimuthal anisotropy param-

eter, v2, and thermal models were able to predict particle yields and ratios,

leading to the claim of the existence of an equilibrated, zero-viscosity fluid in

heavy-ion collisions [31], or “perfect” fluid.
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However, despite all of these signatures for QGP, it turns out that

many different phenomenological models can reproduce many of the observ-

ables measured, despite having different underlying physical mechanisms [31].

Recently, as newer experimental upgrades are completed and beam luminosi-

ties have increased, the use of rare, “hard probes” to study the QGP has

grown in popularity. A hard probe is one that is formed by a high-momentum

transfer between partons in the colliding nuclei, before any possible phase tran-

sition can occur. These hard-scattered partons produce heavy-flavor quarks

and jets (collimated sprays of particles) which probe the entire QGP medium

from formation to freeze out (when final-state particles are free-streaming to

detectors) and can in-principle yield information about the entire evolution of

the medium. In general, hard probe measurements are not well-described by

the current phenomenological models and could therefore provide constraints

to the available bouquet of models on the market. Hard probes are also gener-

ally rare processes, requiring combinatorial background reduction and/or very

large statistics datasets. The next section will expand on the study of hard

probes in heavy-ion collisions.

1.4 Hard Probes and Heavy Flavor

In QCD, interactions involving high momentum transfers ∼ 1 GeV/c

or more are able to be calculated perturbatively, and are generally referred to

as hard processes. As mentioned in the previous sections, observables related

to these hard processes are referred to as hard probes and include things

like particle jets, heavy-flavor hadrons, and electromagnetic probes, such as

photons.

In order for a heavy-flavor quark (i.e. charm, bottom) to be produced
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in a heavy-ion collision, an inelastic scattering with high energy transfer must

take place (e.g. high energy gluon fusion g + g → c+ c). The energy transfer

for the formation of the charm is 3 GeV, enabling perturbative calculation of

its production using pQCD [33, 34]. These hard-scattering processes happen

very early in the evolution of the collision medium [35, 36]. Because of this a

heavy-flavor quark is produced before any possible QGP is formed and then,

its subsequently formed hadron, decays outside of the medium after freeze out

has occurred. This makes heavy-flavor quarks ideal to study the properties of

the medium.

Several important heavy flavor measurements have been made thus

far at both RHIC and the LHC. Studies of the nuclear modification factor,

RAA, which compares production of particles in heavy-ion collisions to the

production in proton+proton collisions, scaled by the average number of binary

nucleon+nucleon interactions, have demonstrated that charm production is

suppressed [32, 37] in very central heavy-ion collisions (see Fig. 1.6).
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Figure 1.6: Measurement of the nuclear modification factor, RAA, for the D0-
meson in Au+Au collisions at

√
sNN =200 GeV, as a function of pT . Panel

a) is the peripheral centrality bin 40-80%, panel b) is 10-40%, and panel c) is
0-10% [32].

Furthermore, it has also been demonstrated that the charm quark has

an appreciable azimuthal anisotropy (v2), which in the conventional under-

standing implies that the charm quarks experience collective motion in the

medium, similar to that of light quarks, although a bit smaller in magnitude

[38, 39], as shown in Fig. 1.7.
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Figure 1.7: Measurement of the azimuthal anisotropy parameter, v2, for the
D0-meson in Au+Au collisions at

√
sNN =200 GeV, as a function of pT [38].

These results were a bit surprising since initial theory predictions indi-

cated that the mass of the charm would be high enough to see significantly less

interaction with the medium because of decreased gluon-radiation due to the

dead-cone effect [40], and decreased collisional energy loss due to the higher

mass [41].

When two-particle correlations are carried out using heavy-flavor hadrons

(i.e. D-mesons), access is gained to the underlying dynamics of the interaction

between the charm quark and the medium. However, when these correlations

are analyzed in heavy-ion collisions, they contain dynamics from vacuum frag-

mentation as well as from medium interactions. To approximately separate

these contributions, correlations must be studied from proton+proton (pp)

collisions (vacuum processes), proton+nucleus (pA) collisions (vacuum + nu-

clear effects), and nucleus+nucleus (AA) collisions. However, much can be
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learned by studying the dependence of the correlations in AA collisions as a

function of the overlap of the nuclei (centrality), which determines the size

of the collision system, and as a function of the momentum or energy of the

heavy-flavor quark containing meson.

1.5 Measurement Variables

1.5.1 Kinematic Variables

Before we delve into the details of the detectors, let’s digress momentar-

ily to introduce the kinematic variables relevant to the present analysis. Many

current high-energy particle and nuclear collider experiments use spectrome-

ters that have cylindrical symmetry. This makes the natural choice of coor-

dinate system cylindrical coordinates based on the geometry of the detectors.

However, a coordinate system with a well-defined center makes more sense for

measurements involving relativistic transformations from the lab frame to the

center-of-mass frame used in collider experiments. As a result, a combination

of spherical and cylindrical coordinates are instead used as illustrated in Fig.

1.8.
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Figure 1.8: Cartoon illustrating a generic cylindrical detector with the axes
labeled and relevant quantities noted.

This combination of coordinates uses the particle trajectory (track) momen-

tum vector information on the transverse plane (perpendicular to the beam),

containing the x- and y- components of the vector, along with the polar angle

(the angle between the z-component and the beam axis) from the spherical co-

ordinate system. Using this set of coordinates, the Cartesian momentum com-

ponents (px, py, pz) are substituted with (pT , φ, η), where pT =
√
p2
x + p2

y is

the momentum in the transverse plane, φ is the angle of the pT vector in the

transverse plane, and η is the pseudorapidity, η ≡ −ln(tan( θ
2
)). η is depen-

dent on the polar (longitudinal) angle with respect to the beam direction, but

the polar angle itself is not a helpful variable since it is not Lorentz invariant

or boost-additive. Pseudorapidity is the longitudinal rapidity, y = 1
2
lnE+pz

E−pz ,

in the high-energy limit (i.e. E >> m). Rapidity is an additive quantity

when boosted to a different reference frame, and therefore a more appropriate

quantity for use in relativistic collider experiments.
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1.5.2 Impact Parameter and Centrality

In heavy-ion collisions, incoming nuclei do not always collide head-on.

In fact, interactions can occur between nuclei that simply pass each other and

exchange a virtual photon (so-called “ultra-peripheral collisions”). Measuring

observables as a function of the impact parameter, or the amount of overlap,

of the colliding nuclei allows one to study the effect of system size on an

observable, where more head-on collisions produce the larger system size. The

basic idea is illustrated in Fig. 1.9.

Figure 1.9: Cartoon illustrating a generic collision between two nuclei partially
overlapping [42].

The particles (protons and neutrons) that participate in the interaction

are known as “participants” while particles in the remaining nuclear fragments

that travel down the beam pipe after the collision are called “spectators”. Cen-

trality is measured as the fraction of the total inelastic collision cross section,

usually written as a percentage range, with the most-central (most head-on,

smallest impact parameter) collisions being the ones with the lowest percent-

ages. In practice, centrality is measured by tabulating the charged-particle
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multiplicity (the number of tracks counted in the detector) per event and pro-

ducing a histogram, as illustrated in Fig. 1.10.

Figure 1.10: Plot depicting centrality fractions extracted from a plot of the
charged particle multiplicity [43].

Once this histogram is produced for a sufficient number of events and

normalized by the number of events, the distribution is divided into equal-area

sections that represent the various multiplicity bins, with the highest charged-

particle multiplicities being the central collisions, and the lowest multiplicities

being the peripheral collisions. This is related to the inelastic cross section

by using a “Glauber Linear Superposition” [44, 45] model that uses geometric

arguments to relate the impact parameter to a number of participant particles,
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shown in the top axis of Fig. 1.10. By using a Monte Carlo simulation of a

Glauber Model (MCG), a similar track multiplicity distribution can be gen-

erated that can then be matched to the experimental data from the detector.

Only then can centrality fractions be assigned to the multiplicity bins in the

data, as shown in Fig. 1.10.
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Chapter 2

Experimental Setup

2.1 The Relativistic heavy-ion Collider (RHIC)

RHIC [46] came online in the year 2000 with the physics goals of study-

ing matter at extreme temperature and energy densities via heavy-ion colli-

sions, and of studying the origin of the spin of the proton by colliding beams

of polarized protons.

The RHIC accelerator complex consists of several components required

to accelerate the ions (maximum energy of 100 GeV per nucleon) or protons

(maximum energy of 250 GeV) to the design energies for our physics goals.

The heavy-ions are initially produced using the Electron Beam Ion Source

(EBIS) [47], capable of providing ions ranging from helium to uranium, while

protons are initially sourced by a 200 MeV linear accelerator (LINAC). EBIS

produces Au ions with a charge of +32 at an energy of 2 MeV/nucleon. EBIS

can also feed ions to the NASA Space Radiation Laboratory, where they are

used to test long-term radiation exposure experienced in space.

After the ions are initially produced at this low energy, they are trans-

ferred to the Booster Synchrotron, where they are accelerated to 100 MeV/nucleon,

or about 37% the speed of light, and further stripped of their electrons to pro-

duce ions with a charge of +77. The ions are then injected into the Alternating

Gradient Synchrotron (AGS), where they are accelerated to 8.86 GeV/nucleon,
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or about 99.7% the speed of light, and are injected into RHIC with their re-

maining electrons stripped. This process is done twice, once for each of the two

RHIC rings. Once the two rings are filled with the ion beams, the beams are

further accelerated to the maximum operating energy of 100 GeV/nucleon per

beam, yielding a maximum center-of-mass energy of 200 GeV/nucleon-pair.

Fig. 2.1 depicts the overview of the RHIC complex.

Figure 2.1: Cartoon drawing of the RHIC complex. Courtesy of rhic.bnl.gov.

The RHIC accelerator is 2.4 miles in circumference, and has six regions

where the counter-circulating beams intersect - dubbed “interaction regions”,

or IRs. At the start of RHIC operations, experiments were constructed and

placed at four of the six IRs - PHOBOS [48], BRAHMS [49], PHENIX [50]

and STAR [51]. PHOBOS and BRAHMS have been decommissioned, and

PHENIX is in the process of a complete rebuild as sPHENIX [52]. STAR is

currently the only operating experiment at RHIC at the time of this thesis.
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2.2 The Solenoidal Tracker at RHIC (STAR) Detector

The STAR detector was designed to be a multi-purpose, mid-rapidity

detector capable of collecting both heavy-ion collision data for studying the

QGP, as well as polarized proton collision data useful for cold-QCD studies.

STAR is comprised of over ten different detector subsystems useful for analysis

of a multitude of different physical observables, as shown in Fig. 2.2.

Figure 2.2: Schematic of the STAR detector, depicting the various detector
subsystems at STAR. Of special interest to this thesis are the TPC, HFT,
VPD, and MTD which are detailed in this chapter.

These detector systems include a Time Projection Chamber (TPC) for

tracking, a Barrel Electromagnetic Calorimeter (BEMC) for measuring parti-

cle energy, a Time of Flight detector (TOF) useful for particle identification,
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the Heavy-Flavor Tracker (HFT) for reconstruction of short-lifetime decay

vertices, and the Muon Telescope Detector (MTD) used for identification of

di-muon decays from J/ψ and Υs.

In the following sections, I will discuss the sub-systems most relevant

to the present analysis, the TPC and HFT, in detail.

2.2.1 Time Projection Chamber (TPC)

Perhaps the most important detector for the majority of analyses car-

ried out by STAR is the Time Projection Chamber (TPC) [53]. This detector

allows for the reconstruction of the momentum of particle trajectories (with

a .5 T magnetic field directed parallel to the beam) as well as particle iden-

tification (PID) by observing the energy loss per unit length (dE/dx) in the

detection medium, which is P10 gas (90% argon, 10% methane). The P10

mixture is used because of fast drift velocity of electrons and ions in the gas

(∼5.5 cm/µs). The TPC is 4.2 meters long and 4 meters in diameter (see Fig.

2.3).
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Figure 2.3: Schematic drawing of the STAR TPC [53].

When a charged particle enters the TPC it ionizes the gas molecules. A

high-voltage cathode at 28 kV in the central membrane of the TPC causes the

liberated electrons in the gas to drift in the electric field toward the endcaps,

where they are collected by multi-wire proportional counters (MWPC). The

TPC is arranged into 24 sectors, with each sector containing an inner and

outer sub-sector. The two endcaps of the TPC each have 12 of these sectors

arranged in a circle. An example of a full TPC sector is shown in Fig. 2.4.
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Figure 2.4: Schematic drawing of a STAR TPC sector, with the inner and
outer sub-sectors differentiated. [53].

When the electrons arrive at a TPC sector, they are first greeted by a

gating grid, which is a set of wires kept at ±75 V when it is “closed”, and 110

V when it is “open”. The gating stops the liberated electrons (and left-over

positive ions) from making it to the readout pads on the MWPCs. The grid

only opens when an event is triggered so the event can be read out. When

the gating grid opens, the electrons are drawn toward the anode wires, kept

at 1390 V for the outer sectors, and 1170 V for the inner sectors, which cause

an avalanche of electrons to create the gain necessary to register hits on the

readout pads. These parameters have been chosen to maintain a 20:1 signal

to noise ratio for readout of the pads.

Once the hits are collected on the pads, a clustering algorithm is invoked

to cluster the hits together so they can be used to reconstruct the particle tra-

jectories (tracks). The x and y coordinates are found by looking at the hits

in a pad and the two adjacent pads on the same row (for each direction), and

assuming all of signal-peaks are Gaussian (the pad response function). This
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approach, detailed in [53], yields an x- and y-coordinate with a precision of a

few hundred µm each. The full track information is provided by a maximum

of 45 possible hits for single track in the TPC. The z-coordinate is calculated

by measuring the drift time between the first ionization of the gas in the TPC

(based on the collision trigger) and the readout on the MWPC pads, then di-

viding this time by the TPC drift velocity. This velocity changes as the TPC

gas pressure varies along with the temperature in the TPC. This is somewhat

mitigated by the voltage of the cathode, which is chosen to correspond to a

maximum drift velocity in the gas. Furthermore, every few hours the TPC

drift velocity is re-calculated by using a calibration laser. The various param-

eters calculated based on TPC information (momentum, energy loss (dE/dx),

primary collision vertex, etc.) are all limited by the spatial resolution from

reconstruction, as well as other issues that go beyond the scope of the detail

necessary for this thesis.

The track information provided by the TPC includes the particle mo-

mentum, calculated by looking at the radius of curvature of the track in the

STAR magnetic field. The direction of the curvature in the transverse plane

also determines the charge of the track, provided you know the direction of

the magnetic field. The other information that can be extracted is the energy

loss per unit length (dE/dx), which can be plotted as a function of particle

momentum. This can be parameterized using the Bischel formula and used

for particle identification (PID) [54]. An illustration of the PID capabilities

from this information is shown in Fig. 2.5.
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Figure 2.5: Histogram showing track dE/dx vs. momentum. The individual
bands from the hits alone are apparent. Each band is fit using a predic-
tion from the Bischel formula, which gives the “expected” values used in Eq.
nSigmaFormula to calculate TPC nσ.

In order for this PID capability to be applied a quantity must be cal-

culated that can be imposed as a cut on a track to decide its species. The

convenient approach is to calculate the statistical likelihood that a track is

identifiable as a particular species using nσ, where the number of σs defines

how good of a fit a track’s dE/dx vs. momentum is to what is expected by

the Bischel formula (normally an nσ < 3 is considered a good cut). This nσ

quantity is defined in Eq. 2.1,
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nσPID,TPC =
ln(dE/dxmeasured)− ln(dE/dxexpected)

σln(dE/dxmeasured)

. (2.1)

The PID capabilities of the TPC are only good for lower momentum

tracks, as shown in Fig. 2.5. The TPC has pseudorapidity acceptance of

|η| < 1, 2π coverage in azimuth, and can reconstruct particle tracks with

pT > 150 MeV/c. The distance of closest approach (DCA) resolution for

the tracks to the primary collision vertex are limited to about 1 cm making

the differentiation of primary and secondary decay particles difficult with the

TPC alone.

2.2.2 The Heavy Flavor Tracker (HFT)

Because of the limitations of the TPC in regards to DCA resolution

(∼ 1 cm, at best), a detector that can be used to reconstruct secondary decay

vertices with a DCA pointing resolution on the order of ∼ 100µm (i.e. for

heavy flavor meson decays) is necessary. A silicon detector placed closer to

the interaction point is the best option for providing the needed DCA pointing

resolution. During the three data-taking runs in 2014, 2015, and 2016 at

STAR, the Heavy Flavor Tracker (HFT) was used for analysis of these heavy-

flavor decays [55].

The HFT consists of four layers of silicon detectors comprising three

individual sub-detectors, as seen in Fig. 2.6.

29



Figure 2.6: Schematic drawing of the Heavy Flavor Tracker.

The inner-most two layers are comprised of individual silicon pixel

chips based on MAPS technology [56], collectively called the PXL detector. A

schematic is shown in Fig. 2.7.

30



Figure 2.7: Schematic drawing of the PXL sub-detector of the HFT [57]. The
PXL detector is arranged in sectors, with each sector containing ladders of
ten PXL chips each. One ladder resides on the inner radius of the sector,
and three are staggered to overlap on the outer radius of the sector. When
the sectors are combined, an inner and outer layer of the PXL detector are
formed, allowing for reconstruction of two hits for a single track much closer
to the collision vertex than the TPC.

The next detector layer is the Inner Silicon Tracker (IST) [55, 58], which

is comprised of silicon-strip detectors. The IST provides an extra detector hit

to help guide the TPC track between the TPC and PXL detector, thereby

increasing the overall precision of the HFT as a whole. Furthermore, the

IST is a very fast detector, making it ideal for filtering out pileup events,

or events that occur before or after the triggered collision event being read-

out. The final layer is the Silicon Strip Detector (SSD), which is made of

silicon drift detectors, and was originally part of the STAR Silicon Vertex

Tracker (SVT) [59]. The SSD was meant to provide a redundancy for the
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IST and further improve the performance of the HFT as a whole, but did not

improve the resolution enough to justify the drop in overall tracking efficiency.

Therefore, most HFT analyses do not include it in their tracking. Overall,

the HFT achieved a DCA pointing resolution of ∼46 µm for kaons with pT =

750 MeV/c, and better than ∼30 µm DCA pointing resolution for tracks with

pT > 1.0 GeV/c, exceeding the original design specifications.

The HFT is able to accomplish two important tasks relevant to analysis

involving heavy-flavor hadrons. First, the reconstruction resolution of the full

HFT system being at best ∼30 µm is more than enough to reconstruct the

secondary decay vertex for a D0-meson (123 µm). The second important task

the HFT accomplishes actually comes from the rapid timing of the IST layer

of the detector system. The IST can read-out hits at a rate faster than that

of the bunch crossing rate for AuAu collisions at RHIC (107 ns). This means

that the IST acts a pileup-event filter when you restrict your track sample to

only accepting tracks that have the full HFT reconstruction (or tracks that

have hits in the IST). Filtering pileup is especially important in correlations

analyses as documented in [67].

2.2.3 The Vertex Position Detector (VPD)

The VPD, originally called the pVPD, or “pseudo” VPD (now the “up-

graded” VPD, or upVPD), is actually a pair of detectors located on the beam

pipe on either side of STAR (see “VPD” in Fig. 2.2) [60]. These detectors

consist of 19 photo-multiplier tubes (PMTs) surrounding the beam-pipe like

a revolver (see Fig. 2.8).
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Figure 2.8: The left panel is schematic drawing of one of the upVPD asemblies,
and the right panel is a photograph of both upVPD assemblies [60].

The PMTs capture neutral fragments of collided nuclei (spectators) or

photons coming from the collisions inside of STAR, providing a start-time for

the collision, as well as a time difference based on the different recorded times

in both detectors (on either side of STAR). This time difference can be used

to calculate the position of the z-coordinate of the primary collision vertex for

the two colliding nuclei, assuming the fragments or photons are moving at the

speed of light. This provides an independent measurement of the z-position

of the primary vertex that can be used to filter out pileup events by requiring

that this vertex and the vertex calculated using the TPC tracking differ by

only a small amount.

2.3 The Muon Telescope Detector (MTD)

The MTD was fully installed and commissioned at STAR before the

start of the 2014 RHIC physics run to complement the heavy-flavor physics

program at STAR. The MTD physics goals are to measure charmonium and

bottomonium states via their di-muon decay channels produced in Au+Au and

p+p collisions in STAR. Even though the physics goals of the MTD are not

33



directly related to the measurements presented in this thesis, the author spent

a considerable amount of time aiding in the construction and commissioning

of the MTD, so a digression to discuss these details will be taken.

The MTD sub-system is located on the outer-most layer of STAR as

shown in Fig. 2.2. The MTD consists of 120 detector trays arranged in 30

“backlegs” of either three or five MTD trays (see Fig. 2.9). Each tray con-

tains a large Multi-Gap Resistive Plate (MRPC) detector module, discussed

in detail in section 2.3.1. The MTD covers 45% of STAR in azimuth and has

pseudorapidity coverage of |η| < .5.

Figure 2.9: The left panel shows a cartoon of the modules arranged in backlegs
around the STAR geomtery, with the rest of the STAR detector removed
(photo credit: [61]). The right panel shows a photo of some installed MTD
trays on STAR taken by the author during the installation in Fall of 2013.

2.3.1 MTD Construction

Each MTD tray is constructed from aluminum and contains an MRPC

detector module and the related electronics. The trays were sealed using
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a corrosion-resistant silicone sealant (Dow Corning DC-730) to contain the

gaseous medium to be ionized by incoming muons. Fig. 2.10 depicts a

schematic diagram of an MRPC module. Each module consists of an outer-

most layer of honeycomb support structure glued to PCB with twelve long

readout strips. Each strip is read-out on both ends to measure a time-difference

for a hit, allowing for determination of the position of a hit on the strip. On

the other side of the PCB, carbon paint is applied to the surface of the PCB

to act as the high-voltage electrode to produce the electric field need to cause

the ions liberated by charged particles (muons, in this case) to drift toward

the readout pads. The modules are kept at ±6300 V during physics operation.

The outer-most layers of glass in the MRPC are adhered directly to the carbon

electrode.

Figure 2.10: A cross-section of an MRPC module with the honeycomb support
structure shown in yellow, the glass sparating the individual gas-gaps in sky-
blue, and the PCB (green layer) and strip layers [62].

Four more layers of glass are placed between the two outer-most layers

of glass, separated by .25 mm using nylon fibers. These layers of glass produce

five gas-gaps which contain highly electro-negative R-134a gas (85%), isobu-

tane (10%) to suppress streamers, and SF6 (5%) to reduce overall noise in

the detector. The “multi-gap” in MRPC is a refinement of the original RPC

detector, where the gaps allow for a more controlled electron-ion avalanche
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from the ionizing particles. This better controlled avalanche allows the tim-

ing resolution of the MRPCs used in the MTD to reach ∼90ps! The sum of

the liberated charges produce an image charge on the readout strips which

generates the pulse read-out by the electronics.

2.3.2 MTD Noise Testing

Before installation at STAR each MTD tray had to be tested for noise

to ensure the proper operation and electronic response. The noise testing

was preceded by approximately one week of purging with R-134a just above

atmospheric pressure after the DC-730 sealant had cured with ambient air for

approximately one week. DC-730 off-gases acetic acid (vinegar) and causes the

noise rates to increase for the detector. Measurements of detector noise were

done for 24 hours at a time, and for a total of approximately five days to see

that the noise rates were decreasing as a function of time as the sealant cured

and any remaining pollutants in the detector were purged. In the case of very

noisy detectors the detectors were purged with N2 at slightly higher pressure

to try and remove any dust particles from the gas gaps. In a few cases, the

nylon fibers separating the gas gaps were suspected as possible culprits of high

noise rates and the offending modules were completely disassembled (see Fig.

2.11).
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Figure 2.11: An MTD module with the top layer of honeycomb+PCB removed.
The zig-zag pattern of nylon fibers separating the glass layers can be seen, as
well as the carbon paint beneath the bottom-most glass layer.

Based on the “bad” noise-rate plots, the nylon fiber pattern was seen as

the cause of the noise in the case of the fibers being improperly cleaned during

assembly and and prior to shipment to UT (see Fig. 2.12). To remedy this

issue, the offending modules were disassembled. The individual glass layers

were then cleaned with isopropanol and the nylon fibers carefully cleaned and

replaced. Fig. 2.12 depicts examples of a good and bad noise rate plots for

the MTD detectors.
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Figure 2.12: Plots of MTD noise rates (in Hz) as a function of percent of total
length along strip. The left plot is from a “good” strip, with rates around
30-40Hz and no obvious noise pattern. The right plot is from a strip in a
module with dirty nylon fibers, with extremely high noise rates (∼3000 Hz)
and obvious periodicity of the noise consistent with the pattern of the nylon
fibers.
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Chapter 3

Theoretical Background

3.1 Two-Particle Correlations

Two-particle correlations have been used extensively in heavy-ion and

nuclear physics for the past several decades. Correlations are useful because

they enable the extraction of small signals from the enormous statistical back-

grounds in heavy-ion collisions, enabling access to the underlying dynamics.

3.1.1 Pearson’s Correlation Coefficient

A statistical correlation was first defined by Karl Pearson and Francis

Galton in [63], and has the form of a normalized co-variance,

correlation =
Cov(X, Y )

σXσY
, (3.1)

where Cov(X, Y ) refers to a co-variance between two random variables, X

and Y , and σX and σY are the standard deviations of the random variables.

This correlation quantity is dimensionless, and takes values between -1 and

+1, with +1 defining a 100%, linear correlation between X and Y , and -1

defining an anti-correlation. A correlation measurement gives a probability

that two random variables linearly depend on each other, and coupled with

a plausible physical mechanism to relate them, provides good supporting ev-

idence for their relationship. This is especially useful when the underlying
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physical relationship is not clearly understood, since models containing various

correlations can be directly compared to the correlation from data to either

falsify or give weight to a particular model with some physical mechanisms

employed. A good example of this would be correlations between CO2 in our

atmosphere and average global surface temperature. The correlation between

these data-sets is high, and is explained by the findings of Arrhenius on the

heat-trapping power of CO2 [64] and further confirmed by the observation of

the infrared absorption and emission from CO2 molecules.

In the context of heavy-ion collisions, correlations between final-state

particles in an event can provide insight into the dynamical mechanisms that

produce them. Correlations between pairs of particles, or two-particle correla-

tions, are the simplest to calculate, but are still not well-described by models

[67].

Using the definition of the correlation in Eq. 3.1, we can relate the

general correlation to a two-particle correlation with

correlation =
1

Nevents

Nevents∑
j=1

Npart∑
i=1

(na,i − na)(nb,i − nb)
σaσb

, (3.2)

where i is the particle index out of an ensemble of particles, Npart, all contained

in an ensemble of events, Nevents, indexed by j. na,i and nb,i represent the

number of particles in arbitrary bins, a and b, and the quantities with overbars

denote the mean values in those bins, 1
Npart

∑Npart
i=1 ni. Since we are measuring

particle counts, Poisson statistics can be used, which implies that σ2
a = na

and similarly for bin b. Eq. 3.2 can then be written as
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correlation =
1

Nevents

Nevents∑
j=1

Npart∑
i=1

(na,i − na)(nb,i − nb)√
σ2
aσ

2
b

=
nanb − na · nb√

na · nb
.

(3.3)

Since the particle-pair counts in each bin reflect the dimensions of the bin, it

is a good idea to remove this dependence by dividing the particle-pair counts

by the area of the bin, ε. Applying this to all terms in Eq. 3.3 yields,

correlation =
(nanb/ε) − (na · nb/ε)√

(na · nb)/ε
. (3.4)

where the products nanb/ε and
√
na · nb/ε are two-particle densities, denoted

by ρ. The nanb/ε term corresponds to a two-particle density using particles

from the same-event, denoted by ρSE, while the term
√
na · nb/ε corresponds to

a two-particle density where the particles are coming from independent events,

which is defined as the uncorrelated reference. We will call this density ρref .

Substituting these into Eq. 3.4 gives

correlation =
ρSE − ρref√

ρref
. (3.5)

The last step in constructing a useful correlation measure for use in experiment

has to do with the denominator in Eq. 3.5. The root of a two-particle density is

problematic because experimentally we are talking about histograms of counts

in bins. It is therefore useful to do a trivial algebra step to write Eq. 3.5 as

a ratio of the experimentally accessible two-particle densities, multiplied by a

“pre-factor” calculated from products of single-particle spectra,

correlation =
ρSE − ρref√

ρref
=
√
ρref

ρSE − ρref
ρref

. (3.6)
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3.1.2 Correlation Subspaces

Two-particle correlations are computed via construction of two-particle

densities from particle collision events. Originally, correlations were calcu-

lated in the momentum space of the particles, but the combined momentum

space for a two-particle correlation represents a six-dimensional quantity, i.e.

ρ(p1x, p1y, p1z, p2x, p2y, p2z). In practice, two-particle correlations must be pro-

jected onto a smaller-dimensional subspace for us to use them.

For example, correlations between identical pions at the AGS, or Hanbury-

Brown Twiss (HBT) correlations, have been carried out by the E877 collab-

orations in the momentum difference space of the particles, reducing the di-

mensionality of the correlation function from six dimensions to one dimension,

ρ(q = |~p1 − ~p2|) [65, 66], by taking the difference in the three-momentum

of the particle pairs and projecting onto the different (x, y, z) axes. These

analyses were carried-out on momentum differences with one in the longi-

tudinal direction (parallel to the beam, qlong), one in the transverse direc-

tion (perpendicular to the beam, qside), and one in the plane perpendicular

to the beam and transverse plane (qout). An additional observable, Qinv =√
(p2 − p1)2 − (E2 − E1)2, was also used. An example of these results for Qinv

is shown in Fig. 3.1.
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Figure 3.1: Correlations projected onQinv for π+π+, π−π− and π+π−. The top
row are uncorrected, the middle row are Gamow-corrected (Coulomb correc-
tion assuming point-like charge source), and the bottom row has the correction
for the Coulomb interaction applied. The solid line is the Gaussian fit to the
data.

The analysis in Fig. 3.1 had physics extracted via a Gaussian fit to the

correlation function C(Qinv) = 1+λexp[−R2Q2
inv], where λ gives the amplitude

of the correlation above unity, and the “R” value is related to the radius of the

source (the gold nucleus, in this case). Even with the loss of some dynamical

information from projecting onto the sub-space, there is much to be learned

from two-particle correlations, such as the radius of the three-dimensional

emitting source of particles as shown above.
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For this thesis, we are using spherical coordinates (see Section 1.5.1)

so our six-dimensional correlation space is ρ(pT,1, φ1, η1, pT,2, φ2, η2). Correla-

tions in this coordinate space have been projected onto the difference of the

azimuthal angles, ∆φ ≡ φ2 − φ1, for many analyses as a one-dimensional

correlation space. For two-dimensional correlation space, the correlations can

be projected onto pT,1 and pT,2 or the 2D angular difference space (∆φ =

φ1 − φ2,∆η = η1 − η2). The latter two-dimensional sub-spaces in principle

contain all of the relevant underlying dynamical information.

For this thesis, the two-dimensional angular subspace (∆φ = φ1 −

φ2,∆η = η1 − η2) is used. All correlation quantities will now be shown as a

function of these two variables for the remainder of the thesis.

3.1.3 Correlations Projected on Relative Angular Coordinates (An-
gular Correlations)

Experimentally, two-particle densities for angular correlations come

from counting pairs of particles in bins on the angular supspace in the same-

event, and using particles from different events, or mixed-events, to approxi-

mate the uncorrelated reference. A cartoon example of this is shown in Fig.

3.2.
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Figure 3.2: An example of building the histograms of two-particle pair densities
on (∆η,∆φ).

Specifying the correlation sub-space, we now write Eq. 3.4 in the sec-

ond algebraic form, following the method used in [67]. The way the correlation

quantity is defined, we are actually calculating the ratio of particle-pairs from

the same-event to those from the uncorrelated reference, or mixed-events. This

ratio has the added bonus of also canceling out our pair acceptance effects

and detector inefficiencies. The remaining “pre-factor”,
√
ρref , which prop-

erly scales the final correlations, must be efficiency and acceptance corrected

separately. The underlying dynamics related to the widths and amplitudes

of correlation structures are encompassed in the ratio ρSE

ρref
, where the mixed-

events are used to construct the reference. The pre-factor is responsible for the

final normalization of the correlations needed to yield the number of correlated

pairs of particles per-particle, or per-trigger. The final per-pair correlation is
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then

correlation(∆η,∆φ) ∝ ρ(∆η,∆φ)SE − αρ(∆η,∆φ)ME

αρ(∆η,∆φ)ME

, (3.7)

where the α is introduced to normalize the mixed-event distribution,

and is defined as α = NSE
NME

where NSE and NME are the total number of pairs

in the same-event and mixed-events distributions, respectively.

3.2 Obtaining Underlying Dynamics from Correlations

There have been a number of methods introduced to try to glean

“physics”, or the underlying dynamics, from correlation measures. The goal

is to extract some quantities from the correlation function found in data, and

compare those quantities to correlations from a Monte-Carlo (MC) event gen-

erator containing some specific physics mechanisms. The method quantifying

the correlation structures involves fitting the structures with a function, and

extracting the fit parameters and errors, as was shown in the brief overview of

the results from [65, 66] in Section 3.1.2. This procedure can then be carried

out for the MC model, and the fit parameters can be compared between MC

and data. A few examples of this approach for angular correlations in both

proton+proton and Au+Au collision data from STAR are presented in the

following sections.

3.2.1 Two-Particle Correlations in Proton-Proton Collisions

Studying two-particle correlations in proton-proton collisions provides

a baseline for the study of these correlations in heavy-ion collisions. In 2005,
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results presented by R. Jeff Porter on behalf of STAR [68] showed uniden-

tified charged two-particle correlations from STAR proton+proton data at
√
s = 200 GeV, projected on the two-particle subspace (yT,1, yT,2), where

yT is the transverse rapidity and is approximately the natural log of pT . Fig.

3.3 shows some of these preliminary (yT,1, yT,2) STAR results. These results

show correlations using unidentified particles from both the “away-side” (AS)

where the difference in azimuthal angle (∆φ) between the particles is greater

than π/2, and on the “near-side” (NS), where ∆φ < π/2. Also shown are

the charge combinations for particles that have the same charge (same-sign,

or SS) and particles that have different charge (unlike-sign, or US).

Figure 3.3: Correlations projected on transverse rapidity (yT,1, yT,2) for near-
side like-sign pairs (first panel), near-side unlike-sign pairs (second panel),
away-side like-sign pairs (third panel), and away-side unlike-sign pairs(fourth
panel).

These proton+proton correlations can also be projected on two-dimensional

angular coordinates (∆η,∆φ), as shown in Fig. 3.4. The “soft-component”

refers to angular pairs with yT,1 and yT,2 < 2 (pT,1 and pT,2 < 0.5 GeV/c),

while the “hard-component” refers to angular pairs with yT,1 and yT,2 > 2.
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Figure 3.4: Correlations projected on (∆η,∆φ) for soft-component like-sign
pairs (first panel), soft-component unlike-sign pairs (second panel), hard-
component like-sign pairs (third panel), and hard-component unlike-sign
pairs(fourth panel).

The angular correlations are a bit easier to interpret visually because

we are essentially counting particles in phase-space coordinates in the three-

dimensional detector cylinder. For example, when we see a peak at (∆η,∆φ) =

(0, 0) what we are observing is an excess above statistical fluctuations of par-

ticles very close together in angular space. There are many sources of these

particular, peaked correlations on (∆η,∆φ) = (0, 0) including Hanbury-

Brown Twiss (HBT) correlations [69] from the LS pairs (quantum correlations

coming from identical bosons), photon conversion in the detector material for

unlike-sign pairs (the production of unlike-sign electrons from the material),

and the fragmentation of jets from a hard-scattered parton in the collision.

Many of these physical correlations are found in the most modern version of

PYTHIA [70]. Focusing on the hard-component correlations, one can apply a

very simple mathematical model to fit the data, with terms only used to de-

scribe the observed structure. In this study, a model including a constant-offset

term, a two-dimensional Gaussian term for the NS peak, and a one-dimensional

Gaussian on ∆φ was used to fit the hard-component data, shown in Eq. 3.8,
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Fit(∆η,∆φ) =

A0 + ANSExp

(
− ∆η2

2σ∆η

− ∆φ2

2σ∆φ

)
+ AASExp

(
− (∆φ− π)2

2σ∆φ

)
.

(3.8)

This fitting procedure was also carried out for a proton+proton sample using

PYTHIA 6.2. The results of those fits are shown in Fig. 3.5.

Figure 3.5: Comparison of the fits from the STAR data and PYTHIA 6.2
predictions. The left panel shows a plot of the radius of the NS peak (σΨ =√
σ2

∆η + σ2
∆φ) as a function of the sum yT,1 and yT,2. The right panel shows

a plot of the ratio of the widths of the NS peak (ε =
σ∆η

σ∆φ
).

From this study, the ability of the two-particle correlation measurement

to provide quantitative comparisons to MC physics models is apparent. Studies

of the correlation structures on (yT,1, yT,2) and a phenomenological description

of those structures is discussed in [71].

3.2.2 Two-Particle Angular Correlations in Heavy-Ion Collisions

Since this thesis is on the subject of two-particle correlations in heavy-

ion physics, a discussion of this methodology in the more complicated nu-
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clear system is necessary. In 2012, STAR published a comprehensive study

of unidentified charge-hadron correlations in Au+Au collisions at
√
sNN =

64 GeV and
√
sNN = 200 GeV (the “NN” here refers to the center-of-mass

energy of two individually colliding nucleons) [67]. In this paper, correlations

were studied as a function of centrality, which is related to the impact param-

eter (or nuclear overlap) of the colliding nuclei (see Sec. 1.5.2). The more

central a collision is, the more head-on the nuclei collide, and the more par-

ticles are produced. Fig. 3.6 shows the results in a few of the centrality bins

for both beam energies.

Figure 3.6: Two-dimensional charge-independent angular correlations on
(∆η,∆φ) for Au-Au collisions at

√
sNN = 64GeV (top row) and

√
sNN =

200GeV (bottom row). Centrality increases left to right, from most peripheral
to most central.

Similar correlation structures are seen as were observed in the correla-

tions from proton+proton collisions, but now there is an addtional modulation

in ∆φ that appears to be proportional to cos(2∆φ), or a quadrupole. Since

these correlations also have no cuts on the transverse momentum, the soft and

hard components are all mixed together, meaning more structures are likely
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present physically, but hard to observe visually. The fit model for these heavy-

ion data therefore contains one more term, the quadrupole, to accommodate

the more complicated dynamics observed in heavy-ion collisions and can be

found in Eq. (4) of [67]. The results of this fitting procedure are found in Fig.

3.7.

Figure 3.7: Two-dimensional charge-independent angular correlations on
(∆η,∆φ) for Au-Au collisions at

√
sNN = 64GeV (top row) and

√
sNN =

200GeV (bottom row). Centrality measure (ν) increases left to right in the
x-axis of each plot, from most-peripheral to most-central. The left panel is
width of the NS peak on ∆η, the middle panel is the width of the NS peak on
∆φ, and the right panel shows the ratio σ∆η/σ∆φ

.

The results of the correlation study in Au+Au collisions in [67] showed

some interesting results, including significant broadening of the near-side (∆φ <

π/2) correlation peak on ∆η as a function of centrality. These results were

in sharp contrast to null-hypothesis Glauber model expectations and indicate

significant modification of the the correlation structures in heavy-ion collisions

as a function of centrality.
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Chapter 4

Analysis Details

Before discussing the details of the correlation analysis the dataset and

preliminary cuts must be discussed. This section will discuss the various event

and track cuts imposed on the data, and then detail the determination of

centrality bins for this analysis.

4.1 Event and Track Selection

4.1.1 Event Selection

The events used in the present analysis all come from the 2014 dataset

collected by the STAR experiment (Run14). The dataset consists of 832M

minimum-bias events - events with no special trigger considerations - with

trigger IDs 450050, 450060, 450005, 450015, and 450025. The following cuts

were imposed on the events used:

| Vz,TPC | < 6 cm

| Vz,TPC − Vz,upV PD | < 3 cm

Vz,TPC and Vz,upV PD refer to the z-coordinate of the primary vertex

reconstructed using the TPC and the upVPD, respectively. The TPC vertex

is the best-ranked vertex from the vertex finding algorithm using the raw

reconstructed track information for an event. The algorthim uses a DCA
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minimization to find the z-position of the primary vertex based on the DCA

of the z-position of each track to the beamline at (x, y) = (0, 0). The z-vertex

from the upVPD is calculated by taking the time difference between the two

spectator fragments of the colliding nuclei on the east and west side of STAR,

Vz,upV PD = c(Teast − Twest)/2 (see Sec. 2.2.3)[60].

The 6 cm z-vertex cut is imposed to ensure the events fall within the

volume of the Heavy Flavor Tracker detector subsystem used for secondary

vertex reconstruction, while the upVPD z-vertex cut is imposed to help remove

pileup events by ensuring that the timing window for the vertex falls within a

single bunch crossing via the two independently-calculated z-vertices from the

TPC and upVPD.

4.1.2 Track Selection

Since this analysis is the measurement of correlated D0+hadron pairs,

separate track cuts are imposed for both the triggers (D0) and associated

charged-hadrons. All tracks in this analysis are required to be “HFT” tracks,

meaning that each track has to satisfy the requirement of having hits in both

layers of the PXL detector and the IST used in its reconstruction. While it

is obvious why this is necessary for the D0 daughters (given that the HFT is

necessary for the secondary vertex reconstruction), the requirement for asso-

ciated hadrons may not be obvious. The main reason for the additional HFT

hit requirement on the associated tracks is that the IST timing is fast enough

to differentiate individual bunch-crossings, which happen every 107 ns, mak-

ing it ideal for removing pileup tracks from our event sample [81]. Pileup has

been shown to produce considerable artifacts in two-dimensional, two-particle

correlations [67]. Because of the information available (or rather, unavailable)
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in the data files for this analysis, post-pileup filtration would have been im-

possible. Therefore, imposing cuts to remove pileup tracks before calculating

correlations, even at the cost of pair-statistics, was the only option to ensure

removal of the pileup.

4.1.2.1 Trigger D0 Selection

The D0(and D0) mesons were reconstructed directly via the hadronic

decay channel (D0 → K+π). Since the average decay length (cτ) for the decay

is 123 µm, backgrounds can be significantly reduced in the reconstruction by

removing tracks which come from the primary collision vertex (PV) instead

of the displaced, secondary vertex (SV). The K and π tracks were identified

using the TPC nσ from the dE/dx information for the track, as discussed in

section 2.2.1. The charge of the tracks is calculated based on the direction of

the curvature of the track in the transverse plane due to the 0.5 T magnetic

field in the STAR detector, parallel the beam direction (z-axis).

| η | < 1.0
Track DCA to primary vertex < 3 cm

χ2 of track helix fit < 3
nHitsFit in TPC > 20

nHitsFit/nHitsFitMax > 0.52
pT,daughters > 0.15 GeV/c
TPC nσπ < 2.0
TPC nσK < 2.0

reconstructed D0 candidate pT 2-10 GeV/c

Table 4.1: General daughter and D0 cuts.

After ensuring that the candidate daughter tracks meet their respective
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requirements for being a TPC K or π, the HFT topological cuts were imposed

to reduce combinatorial background originating from tracks coming from the

primary vertex.

1) D0 decay length from PV to SV > 212µm
2) DCA daughter K and π < 57µm

3) DCA of D0 candidate mom. vector to PV < 38µm
4) DCA daughter K to primary vertex > 95µm
5) DCA daughter π to primary vertex > 86µm

Table 4.2: D0 HFT topological cuts.

These cuts came from a Toolkit for Multivariate Analysis (TMVA)

study applied in the D0 v2 event-plane analysis [38] used to optimize the

topological cuts based on the D0 signal significance, S/
√
S +B. The cuts for

the D0 pT 2-3 GeV/c bin from [38] were applied to the broader 2-10 GeV/c pT

bin. The systematic uncertainty from varying the topological cuts is discussed

in Chapter 6.

Figure 4.1: Sketch of the D0 decay. The numbers in the sketch correspond to
the enumeration in table 4.2.
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In addition to obtaining the Kπ pairs from the invariant mass signal

region, we also need triggers from the side-bands of the unlike-sign invariant

mass distribution to estimate the correlation contributions from background

Kπ pairs (what is done with these pairs is described in section 5.1). The same

topological cuts are used for all Kπ pairs, and the invariant mass ranges are

in table 4.3.

Signal region 1.82 < MKπ < 1.9 GeV/c
Left sideband 1.7 < MKπ < 1.8 GeV/c

Right sideband 1.92 < MKπ < 2.1 GeV/c

Table 4.3: Invariant mass cuts for the signal and side-band regions.

The illustration of these sidebands is shown in Fig. 4.2.
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Figure 4.2: Invariant Mass Distribution for D0 showing the “signal band” (red)
and the “side bands” (green) used in the analysis. Several different side band
ranges were used to assess systematics on the choice of side bands (see Sec.
6).

4.1.2.2 Associated Hadron Selection

The associated hadrons used for this analysis are any charged parti-

cles meeting the cuts mentioned in Table 4.1, except the ones specific to the

D0 itself. We are taking essentially all charged-hadrons in the acceptance of

STAR. In principle, one could also place PT cuts on the associated hadrons

to study different physical mechanisms, but the low overall pair-statistics of

this analysis established by the scarcity of D0 events prohibits any of these

additional cuts.
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4.2 D0 Reconstruction Results and Yields

As mentioned in Section 4.1.2.1, the reconstruction of the D0 from its

hadronic decay daughters makes use of the HFT and the various topological

cuts detailed above. From this reconstruction, we get invariant mass distribu-

tions which can be used to extract the signal (S) and background (B) yields. To

extract the yields, we construct the invariant mass distributions for both the

unlike-sign (US) Kπ pairs and the like-sign (LS) pairs. The LS distributions

are then normalized to a region in the US invariant mass distribution where

the shapes match well with that of the US distribution (2.0 to 2.2 GeV/c2),

and the normalized LS distribution is subtracted from the US. The residual

background is then fit with a straight-line and then removed. The systematic

uncertainty for this procedure is discussed in Section 6. The integral over the

range ±2σ (see table 4.3) of the remaining peak, yields the signal (S). Then B

is calculated by subtracting S from the total yield in the raw US distribution

in the same ±2σ region. The results of this procedure are shown in Fig. 4.3.
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Figure 4.3: D0 invariant mass distributions for all three centrality bins. The
left column is the raw US invariant mass distributions in black, plotted with
the normalized LS distribution in red. The right column shows the final, fully-
subtracted distribution.
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Centrality (%) 50-80% 20-50% 0-20%
Signal Yield 2637±51 20,170±142 30037±173

Background Yield 1049±32 12077±110 33650±183

Table 4.4: Signal and background yields from the invariant mass distributions
in Fig. 4.3.

4.3 Centrality Determination

Since this analysis contains correlation information on |∆η| < 2, the

standard RefMult software package for determining centrality in STAR, which

is restricted to the charged particle multiplicty in |∆η| < 1, could not be used.

In the standard RefMult definition, track multiplicity in an event is calculated

within |η| < 0.5. It has been shown in previous analyses involving angular

correlations on ∆η that using this definition of centrality with the restriction

on |η| < .5 introduces an unphysical correlation structure at |∆η| ≥ 1.0

[67].

To calculate the centrality bins for this analysis, the track multiplic-

ity distribution, dNevent/dNch , is generated from the event-by-event charged-

particle multiplicity, where the “good tracks” must meet the requirements for

an associated track, with the exception of the HFT requirement. dNevent/dNch

is then converted from Nch vs. dNevent/dNch to (Nch)
1/4 vs. dNevent/dN

1/4
ch us-

ing the Jacobian for the transform.

dNevent

dN
1/4
ch

= 4N
3/4
ch

dNevent

dNch

(4.1)

This is done in response to the empirical fact that the track-multiplicity

distribution follows a power law, dNevent
dNch

∝ N
−3/4
ch , if trigger and primary
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vertex finding inefficencies are minimal as shown in Ref. [75]. The original

track multiplicity distribution and the transformed distribution are shown in

Fig. 4.4. In the transformed distribution, trigger and primary vertex finding

inefficiencies at lower multiplicity become apparent (seen as a loss from most-

peripheral to mid-central events), and the enhancement of high-multiplicity

events due to the VPD efficiency can be seen, when compared to Monte-

Carlo Glauber (MCG) predictions. Because of this trigger inefficiency for

low-multiplicity events, the 80-100% centrality fraction could not be used.

Figure 4.4: Track Multiplicity per event on log-log scale (left) and the Jacobian
transform of the track multiplicity distribution (right) in run14.

The procedure to correct the raw distribution is explained in the thesis

of Prabhat Bhattarai [76], but we will repeat the basic steps here. Using the

power-law distribution from data, and comparing to a MCG, it can readily be

seen that there is a loss of events (inefficiencies) at low-multiplicity, compared

to MCG, and that the tails do not match at high-multiplicity as in Fig. 4.5.
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Figure 4.5: Comparison of run2 data (red) to MCG (black).

To correct for this, a non-linear function is introduced to approximately

correct the tracking inefficiency,

Nch,corrected = Nch,raw
(1 + αNch,raw)

β
(4.2)

where α and β are chosen to best match the mid-centrality and high-

multiplicity tail of the raw data to the MCG. This process was carried out for

run2 and run4 Au+Au 200 GeV minimum-bias data in the dihadron correla-

tion paper published by STAR [67].

To correct for these inefficiencies in run14, a slightly simpler approach

was taken by matching the raw run14 data to the raw run4 data and then

using the previous run4 correction. This was done to simplify the process

of centrality determination, and because the trigger bias and vertex finding

inefficiencies were much smaller in run4. First, using Eq. (4.2) with αrun4 =

.000203 and βrun4 = .819 (from matching the raw run4 to MCG), the raw

run4 data were corrected in the previous dihadron analysis [67]. Then, the
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raw run14 distribution was best-matched to the raw run4 distribution, with

αrun14 = .00014 and βrun14 = .9, as in figure 4.6.

Figure 4.6: Raw run14 power law data (red) and raw run4 data (blue). The
left histogram shows the raw data overlaid on the same plot, and the right
histogram shows the corrected run14 curve.

Solving Eq.(4.2) for Nch,raw, and writing a separate equation for the

run4 correction to MCG, and the run14 correction to raw run4 gives:

Nch,raw,run4 =

√
1 + 4αrun4βrun4Nch,corr,run4 − 1

2αrun4

(4.3)

Nch,raw,run14 =

√
1 + 4αrun14βrun14Nch,raw,run4 − 1

2αrun14

(4.4)

Inserting the corrected Nch values, corresponding to the selected cen-

trality bins in Table 4.5, into Eq.(4.3) and the resulting Nch,raw,run4 into

Eq.(4.4) gives the uncorrected, raw multiplicity cuts for run14 to use for cen-

trality event selection.
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centrality(%) multiplicity
90-100 2-6
80-90 7-17
70-80 18-39
60-70 40-76
50-60 77-131
40-50 132-209
30-40 210-311
20-30 312-439
10-20 440-596
5-10 597-689
0-5 > 690

Table 4.5: Raw multiplicity cuts for the run14 centrality bins.

This procedure corrects for trigger and track reconstruction inefficien-

cies, but not for the possible luminosity and z-vertex effects on the centrality

determination. The z-vertex effects refer to the different track multiplicities

possibly measured for different primary vertex positions. For example, if a

collision occurs at a large distance from the center of STAR in z, the detector

would only be able to detect a portion of the tracks available in the collisions.

The z-vertex effect was addressed at the STAR collaboration meeting at BNL

in May of 2017 (see [77]). On slides 15-21 of [77], it was shown that the effects

of the luminosity and z-vertex corrections were very small in run4, and they

were included as a systematic. Because of the narrow z-vertex requirement im-

posed by the HFT acceptance in run14, this effect was shown to be very small

[78]. The luminosity dependence of the centrality determination is mostly due

to increased track reconstruction inefficiencies because of the increased occu-

pancy of tracks in the TPC. For run14, these effects were also studied in [78]),

and were subsequently estimated to be negligibly small. The combined effects
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from vertex finding and luminosity are estimated to be < 1% for this analysis.

4.4 Statistical Uncertainty

Statistical uncertainties in two-particle correlations for various event-

mixing techniques have been worked out in [79, 80]. In [79], the uncertainties

are worked out under the assumption that event-mixing is done using particles

from one event with another event, and vice-versa (i.e. the tracks from event

A with the tracks from event B, and then the tracks from event B with the

tracks from event A). Doing the event mixing using both permutations of tracks

from the different events in this manner allows for cancellation of correlated

statistical fluctuations between the same-event and mixed-event pairs.

However, in this thesis, the event mixing cannot be done in this way

due to statistical and computational constraints caused by the rare production

of and reconstruction of of the D0 (∼ .0001 D0 per event in our pT range).

Instead, our mixed-event pool consists of the overwhelming majority of events

not containing a D0 candidate, where one D0 candidate track is mixed with

several (five, in this thesis) events from this non-D0 candidate pool. Because

of this, the statistical noise cancellation that happens using the algorithm in

[79] does not occur here. This means that the statistical uncertainties in the

present analysis contain both uncorrelated and correlated noise. However,

these correlated errors are negative contributions to the overall statistical un-

certainty, and are small contributions. In order to simplify computation of

the correlations, the statistical uncertainties were assumed to only contain un-

correlated noise, making the error scale with
√
Npairs as shown in [79]. This

essentially assumes an upper-bound for the statistical uncertainties presented

in this thesis.
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Chapter 5

D0+hadron Correlations

5.1 Derivation of the Correlation Quantity

Experimentally, direct access to a “clean” sample of D0-mesons is not

possible - meaning, there is combinatorial background present that cannot be

removed in the process of constructing correlations using the reconstructed

trigger-D0 candidates. In addition, the actual number of correlated pairs is

not directly accessible. A relationship with respect to some reference that is

uncorrelated (e.g. mixed event reference) must be constructed - as described

in 3.1.1. As a reminder here for convenience, ∆ρ = ρSE − αρME, where ∆ρ

is the same-event correlation distribution minus the mixed-event distribution,

which removes the contribution from uncorrelated background pairs.

The starting point for the derivation of the correlation quantity is a

number of correlated pairs (∆ρ). Working backwards from this starting point

will enable the relationship between the general correlation quantity of interest

in terms of quantities accessible experimentally. Starting with the number of

correlated pairs in the “signal region” of the invariant mass spectrum (the red

band in Fig. 4.3)):

∆ρsignal = ∆ρD0+hadron + ∆ρD∗ + ∆ρBG+h (5.1)

The first quantity on the right-hand side is the correlated D0+hadron pair

quantity desired; the second quantity includes only those D0+hadron pairs
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where the hadron is a πsoft (low-momentum pion) coming from the decay of the

D∗± (D∗ → D0 +πsoft); and the third term is the background pairs, where the

trigger comes from combinatorial background in the trigger D0 reconstruction.

As a note, the D∗ correction is necessary because of the details of the decay

kinematics for a D∗ meson, and the time it decays (after freeze-out of the

medium evolution). This is discussed in detail in Section 5.2.4.

Rearranging the above equation to isolate the ∆ρD0+hadron quantity of

interest yields

∆ρD0+hadron = ∆ρsignal −∆ρD∗ −∆ρBG+h. (5.2)

The ∆ρ quantities would in principle be calculated by constructing histograms

binned on (∆η = ηD0 − ηh,∆φ = φD0 − φh) from all D0(candidate)+hadron

pairs in the “same-event (SE)” - meaning the candidate Kπ pairs and asso-

ciated hadrons originating from the same collision event. However, the SE

quantity still contains an uncorrelated background (i.e. pairs that have no

physical correlations) as well as detector artifacts that can manifest as cor-

relation structure, but contain no physics. This background is removed by

constructing a similar set of histograms binned on (∆η,∆φ), where the asso-

ciated hadrons come from “different” events, or “mixed-events” (ME), other

than the events that contain the D0(candidate). These mixed-events must

have a similar charged-particle multiplicity and similar primary z-vertex loca-

tion as the events used for the SE pairs.

As described in 3.1.1, ∆ρ = ρSE − αρME, where α is a normalization

factor, which in this case is defined as α ≡ Nsame
Nmix

, where Nsame, Nmix are

the total number of pairs in the SE and ME histograms, respectively. This

normalizes the ME distribution to have the same integral as the SE. Then to
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correct for detector acceptance and efficiency effects this quantity is divided

by the ME histogram,

corr =
ρSE − αρME

αρME

. (5.3)

Eq. 5.3 depicts a simple quantity that represents the physical corre-

lations with detector effects corrected for. Using the above definition for the

general correlation quantity in terms of the SE and ME distribution,

corr(D0 + hadron) =
∆ρD0+hadron

ρME,D0+hadron

=
(ρSE,signal − αsignalρME,signal)

ρME,D0+hadron

− (ρSE,BG+h − αBG+hρME,BG+h)

ρME,D0+hadron

− (ρSE,D∗ − αD∗ρME,D∗)

ρME,D0+hadron

.

(5.4)

The denominator is not something directly accessible experimentally. Approx-

imations must be made in order to calculate the final correlation quantity from

experimentally available quantities. Expanding the first two terms of equation

5.4 in terms of the ME distributions related to the SE for those bands yields,

(ρSE,signal − αsignalρME,signal)

ρME,D0+hadron

=

αsignalρME,signal

ρME,D0+hadron

(ρSE,signal − αsignalρME,signal)

αsignalρME,signal

(5.5)

(ρSE,BG+h − αBG+hρME,BG+h)

ρME,D0+hadron

=

αBG+hρME,BG+h

ρME,D0+hadron

(ρSE,BG+h − αBG+hρME,BG+h)

αBG+hρME,BG+h

(5.6)

αsignalρME,signal

ρME,D0+hadron

' S +B

S
(5.7)
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αBG+hρME,BG+h

ρME,D0+hadron

' B

S
, (5.8)

where S and B are the signal and background yields extracted from the D0

invariant mass distributions. Inserting Eqs. 5.5 - 5.8 into Eq. 5.4, the following

expression is obtained,

∆ρD0+hadron

ρME,D0+hadron

=
S +B

S

(ρSE,signal − αsignalρME,signal)

αsignalρME,signal

− B

S

(ρSE,BG+h − αBG+hρME,BG+h)

ρME,BG+h

− (ρSE,D∗ − αD∗ρME,D∗)

ρME,D0+hadron

.

(5.9)

In this analysis, the background is estimated using Kπ-hadron pairs, where

the Kπ candidates come from side bands in the invariant mass distribution:

(ρSE,BG+h − αBG+hρME,BG+h)

αBG+hρME,BG+h

' (ρSE,SB − αSBρME,SB)

αSBρME,SB

. (5.10)

Like-sign Kπ pairs were also considered for use in describing the background

in the correlations, but since the correlation structures are charge dependent,

as demonstrated in [67], correlations from two side-bands in the D0 invariant

mass distribution were instead used to approximate the correlation function

coming from the background Kπ+hadron pairs.

For the D∗ correction the same expansion can be carried out, but the

ratio of the ME distributions seen in the previous expansion does not have the

same approximate reduction.

(ρSE,D∗ − αD∗ρME,D∗)

ρME,D0+hadron

=
αD∗ρME,D∗

ρME,D0+hadron

(ρSE,D∗ − αD∗ρME,D∗)

αD∗ρME,D∗
(5.11)

ρME,D0+hadron '
S

S +B
αsignalρME,signal (5.12)
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Plugging these expressions into the Eq. 5.4 yields,

∆ρD0+hadron

ρME,D0+hadron

=

S +B

S

(ρSE,signal − αsignalρME,signal)

αsignalρME,signal

− B

S

(ρSE,SB − αSBρME,SB)

ρME,SB

− S +B

S

αD∗ρME,D∗

αsignalρME,signal

(ρSE,D∗ − αD∗ρME,D∗)

αD∗ρME,D∗
.

(5.13)

The final expression in Eq. 5.13 represents a correlation quantity that only

contains terms accessible experimentally, allowing for approximate calculation

of the true D0+hadron correlations. The next section will detail how to ex-

perimentally obtain each of these terms.

5.2 Calculation of Correlations from STAR Data

In order to calculate the final correlations, the ρSE(∆η,∆φ) (for events

with D0-candidates) and ρME(∆η,∆φ) (using associated hadrons from differ-

ent events) histograms need to be obtained for each term in Eq. 5.13. For

any given event, if that event has a “candidate” - either a “signal” region or

“sideband” Kπ pair that passes the required cuts in Tables 4.1 and 4.2 - then

the event is used to generate the SE pairs for the present Kπ candidate. The

details of this procedure and the event mixing are in the following sections.

5.2.1 Event Mixing with Vz and Multiplicity (Nch) Sub-bins

In order to construct the uncorrelated background distribution on (∆η,∆φ),

an event-mixing technique is used, where the (∆η,∆φ) distribution with D0

candidates from one event is formed with charged-hadrons from another, “sim-
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ilar” event. The event-mixing in this analysis had to be done in such a way as

to ensure enough events were present in the mixed-event buffer so event-mixing

could take place efficiently. Unfortunately, due to the low statistics for the D0

events (< ∼ 1 per 106 events) there were never enough events populated to do

the mixing with those events alone.

“Similar” meaning that the events have a similar charged-track multi-

plicity (Nch) and a similar primary vertex position in the TPC (specifically, the

z-coordinate). The ranges of the various bins are chosen to balance the need

for enough statistics to carry out the event mixing, and to ensure that events

being mixed don’t have some inherent bias by virtue of being very different

(i.e. an event with a primary vertex far away from another primary vertex will

have a different TPC acceptance). The full range of the Vz cuts were chosen

to ensure the events fall within the HFT detector volume (± 6cm relative to

the geometric center of STAR). The cut ranges for both the Nch and Vz bins

are shown in tables 5.1 and 5.2.

Bin Vz range (in cm)
1 [-6, -4.8)
2 [-4.8, -3.6)
3 [-3.6, -2.4)
4 [-2.4, -1.2)
5 [-1.2, 0.0)
6 [0.0, 1.2)
7 [1.2, 2.4)
8 [2.4, 3.6)
9 [3.6, 4.8)
10 [4.8, 6.0]

Table 5.1: Vz bins for event-mixing.
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Bin Nch range
1 [1, 42)
2 [42, 86)
3 [86, 131)
4 [131, 183)
5 [183, 235)
6 [235, 288)
7 [288, 340)
8 [340, 392)
9 [392, 440)
10 [440, 491)
11 [491, 542)
12 [542, 593)
13 [593, 644)
14 [644, 695)
15 [695, 746)
16 ≥ 746

Table 5.2: Nch bins for event-mixing.

The main reason these events must have these similarities is because

of the different two-particle acceptance effects. For example, if an event is

very close to the edge of the acceptance in Vz (perhaps at 5 cm), the tracks

streaming through the detector closer to that edge have less physical space to

be able to traverse the TPC and still acquire enough hits to meet the quality

cuts. This results in an skewed correlation function on ∆η, rather than the

normal symmetric triangular shape seen in the center of the detector. Because

of this, events used for mixing must have the same general acceptance shape

in order to actually cancel these effects.
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5.2.2 Efficiency Corrections

In correlation analyses in general, taking a ratio of SE and ME distribu-

tions cancels out acceptance and detector inefficiency effects present in the SE

distributions. In most cases, this is also true for the efficiency effects present

in the SE pair distribution, if the efficiency variation for the single-particle

distributions are roughly constant in the region of interest (or change slowly).

Even though in the present analysis, these effects have been shown to cancel

out with no discernible effects on the final correlations when comparing the

results with and without the efficiency corrections, the efficiency correction is

still applied to D0+hadron pairs.

5.2.2.1 Associated Hadron Efficiency Correction

The efficiency function for the associated hadrons is taken from pub-

lished STAR spectra [72],

εh,TPC(pT ) = P0e
−(

P1
pT

)P2
, (5.14)

where the parameters P0, P1, and P2 are taken from table IV of [72]. This

function is then multiplied by a correction factor to account for the inclusion

of the HFT - the so-called “HFT ratio”, which reduces the overall efficiency

since not every good TPC track is matched to and reconstructed with HFT

hits. The HFT ratio comes from taking the hadron pT -distribution with the

HFT required, and dividing by the non-HFT TPC pT -distribution [38], with

each distribution normalized by the total number of counts,

HFTRatio =
TPC +HFT pT dist

TPConly pT dist
. (5.15)

This yields the results in Fig. 5.1, which were fit with a 6th-order polynomial.
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Figure 5.1: HFT Ratio plots with 6th-degree polynomial fit.

The parameters of the 6th-order polynomial fit [P(0)-P(6)] for the HFT

ratios were extracted from the three centrality-bins and can be found in table

5.3.

cent. bin P(0) P(1) P(2) P(3) P(4) P(5) P(6)
peripheral .6427 -.2948 .2179 -.0793 .0153 -0.0015 6.084e-5
mid-central .8062 -.7176 .6154 -.2665 .0617 -.0073 3.319e-4

central .9455 -.9337 .7367 -.2981 .0649 -.0073 3.319e-4

Table 5.3: Table of 6th-order polynomial fit parameters for the HFT Ratios.

The final hadron efficiency correction becomes,

εh(pT )corrected = εh,TPC(pT ) ∗ HFTRatio(pT ). (5.16)

5.2.2.2 D0 Efficiency Correction

The efficiency correction for the D0 is calculated by comparing the

raw yields of D0 mesons found in the present dataset to published, corrected

spectra for STAR data [85] (an erratum for [32]). Fig. 5.2 shows the published

STAR D0 meson spectra in three centrality bins. The spectra were fit with a
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Levy distribution,

Fit(A, T, n,mT ,m0) =
A

(1 + mT−m0

nT
)n
, (5.17)

where A, T and n are parameters of the distribution, m0 is the rest mass of

the D0, and mT is the transverse mass, mT =
√
p2
T +m2

0. The fit parameters

for all three of the centrality bins can be found in Table 5.4.

Figure 5.2: Plot of the D0 spectra from [32]. The red curve shows the fit with
the Levy distribution.

cent. bin A T n
40-80 % .0214 12.995 .3256
10-40% .1566 249.9997 .3705
0-10% .3638 15.91 .3070

Table 5.4: Table of Levy fit parameters for D0 meson spectra data.

Using the corrected spectra compared with the raw, uncorrected D0

signal yields per event in the present data enables an overall efficiency correc-

tion for the D0 reconstruction in the present dataset. To do this, the D0 was

reconstructed in 10 pT -bins in all three centralities, with some bins being too

sparsely populated to extract a yield. The procedure for extracting the signal
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yield was the same as was described in Section 4.2. Once these yields were

extracted, the efficiency was calculated to be,

effD0(pT − bin) =
Y ieldraw,pT−bin/Nev,pT−bin(

p2
T

mT

A

(1+
mT−m0
nT

)n

) , (5.18)

where the factor p2
T/mT in the denominator of Eq. 5.18 is included to convert

the D0 spectra data from d2N
(2πpT )dpT dy

to d2N
(2π)dpT dη

, which is the form obtained

from the raw run14 D0 yield. The result of these efficiencies per pT -bin were fit

with a 4th-order polynomial. The results can be seen in Fig. 5.3, plotted with

their respective fits. Table 5.5 shows the fit parameter values for 4th-order

polynomial.

Figure 5.3: Plot of all the D0 efficiencies for this analysis. The red curves
are the individual 4th-order polynomial fits. The parameters for the fits are
summed up in table 5.5

The final D0 efficiencies are fit with a 4th-order polynomial. The pa-

rameters are listed below:
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centrality bin P(0) P(1) P(2) P(3) P(4)
peripheral 0.002258 -0.000672 0.000689 0.000035 -0.000007

mid-central 0.004414 -0.007136 0.003958 -0.000377 0.000010
central 0.001541 -0.000731 0.000957 -0.000036 -0.000002

Table 5.5: Table of 4th-order polynomial fit parameters for the D0 efficiencies.

Above pT = 6 GeV/c, the efficiency calculation was not reliable to due

the very low statistics of D0 events at the higher pT at STAR. For this reason,

the efficiency correction for the D0s with pT > 6 GeV/c were taken to be flat.

In the case of the mid-central bin, this was actually cut back to pT < 5 GeV/c

because of the error bars on the 10-40% central D0 spectra data. The effect of

this efficiency correction on the final correlations is discussed in Section 6. The

D0 efficiency correction applied to the data presented in Sec. 5.2.5 used spec-

tra data from [32], the publication previous to the recently published erratum.

The updated efficiency correction from the erratum was studied in comparison

to the old correction applied to the data presented here. The erratum spectra

resulted in an efficiency correction with the same functional shape and a few

percent difference in overall amplitude. Due to technical constraints at the

time of this analysis and the small effect of the efficiency correction on the

final results (see Sec. 6), the D0 correction applied to the data in this thesis

uses the spectra from [32].

5.2.2.3 Full Efficiency Correction and Pair Weight

These individual efficiency corrections are applied for everyD0-candidate

+ hadron pair by applying a weight-factor to the pair. The weight factor is
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calculated from the efficiency functions derived in the previous sections for

the hadrons and D0s. However, a heuristic method was employed to calcu-

late a pair weight that accounts for the different reconstruction efficiency of

a true D0 and a combinatorial background Kπ pair. Since the background is

suppressed compared to the D0 signal due to the HFT topological cuts, the

overall efficiency correction is modified in reference to the D0 signal. This

was accounted for by assigning a probability based on the ratio of raw signal

(S) and background (B) yields to the total yield (S+B) in the invariant mass

distribution. This approach results in a weight applied to each D0 candidate

+ hadron pair that has a term for the probability that the pair contains a real

D0-meson, and a term for the probability that the pair contains a background

Kπ pair mistaken for a real D0. The full pair-weight is defined in Eq. 5.19,

pair weight =
B

S +B

εKεπεh
εKεπεh

+
S

S +B

εD0εh
εD0εh

, (5.19)

where the εKεπεh and εD0εh are included to ensure that the pair weights are

approximately maintained when summed over all pairs.

5.2.3 Calculation of SE and ME Pair Distributions

When a Kπ-hadron pair is formed for ρSE(∆η,∆φ) or ρME(∆η,∆φ),

the pair angular differences are calculated on (|∆η|, |∆φ|), and the pair is

recorded in all four quadrants on (∆η,∆φ). This procedure is called sym-

metrization. The symmetrization procedure is justified because of the sym-

metry in the collision system (i.e. two colliding nuclei of same species and

energy), and the fact that STAR is a mid-rapidity detector (i.e. our η depen-

dence is symmetric and our system is rotationally invariant about φ). The

symmetrization is only useful to make the correlations visually more intuitive.
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The symmetrization must be taken into account when calculating errors and

doing fitting. The efficiency correction is also applied to each individual pair,

and the copies. Any one “pair” increments a bin on (∆η,∆φ) by one, with

a weight being applied as calculated in Eq. 5.19. Eq. 5.20 shows the basic

approach of calculating the SE distribution in a generic multiplicity, Vz, and

D0 pT sub-bin,

ρSE(∆η,∆φ) =
Nevents∑

1

Ntrks∑
j=1

(pair weight) pairj(∆η,∆φ), (5.20)

where j is the track index for the associated hadron list (containing Ntrks

number of hadrons), and Nevents is the number of events containing a D0 in

the generic set of sub-bins and is equal to the number of D0 candidates in that

bin (since any candidate event only ever has one D0 candidate).

When the ME buffer is filled for a given multiplicity and Vz sub-bin,

event mixing can take place for that bin. The procedure is the same as for the

SE calculation, except that a single candidate Kπ pair is paired with associated

hadrons from multiple mixed events (Nmix−events = 5). Eq. 5.21 shows the

same calculation as in Eq. 5.20,

ρME(∆η,∆φ) =

NKπevents∑
1

Nmix−events∑
1

Ntrks∑
j=1

(pair weight) pairj(∆η,∆φ) (5.21)

where Ntrks is the number of tracks in the mixed-event, Nmix−events is the

number of mixed-events used, and NKπevents is the number of D0 tracks in the

buffer at that time.
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5.2.4 D∗ Correction

In Section 5.1 the calculation of the correlations from the signal re-

gion and from the sideband regions were discussed. The sideband correlations

are meant to estimate the correlation contribution from the D0 combinato-

rial background from the invariant mass spectrum and also mentioned the

contribution from the decay of the D∗.

The predominate decay of the charged, excited D-meson state is D∗ →

D0 + πsoft (BR = 67%) [84]. From charm quark fragmentation calculations,

about 25% of the charm formed in the initial hard-scattering interactions forms

a D∗±-meson, which can then subsequently decay into the trigger D0. The

lifetime of the D∗±-meson yields a cτ ∼ 12 nm, while the medium only exists

for ∼ 10 fm/c, so the D∗± decay happens well outside the medium. Given the

charm fragmentation, about 17% of the D0 sample could be coming from the

decay of a D∗± and therefore must be accounted for.

The reason to specifically correct for the D∗ contribution is because of

the kinematics of the decay, which makes the angular distribution on (∆η,∆φ)

peaked around (0,0), as can be seen in the PYTHIA results below.
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Figure 5.4: D∗ decay distribution on (∆η,∆φ) between the daughter D0 and
πsoft.

The reason this contribution is problematic is that the πsoft coming from

the decay of the D∗ is produced outside the medium, and therefore does not

interact with it. This produces a D0+hadron correlated pair that does not

contain information about the interactions with the medium, but clearly affects

the final correlation structure, making the jet-like peak have an artificially

larger amplitude. The issue is sketched in the cartoon in figure 5.5.

Figure 5.5: Cartoon of a D0 created promptly, then decaying (left) vs. a D0

produced alongside a πsoft from the decay of a D∗ outside the medium (right).

As noted in the derivation of the correlation quantity, the D∗ correction

is carried out in the same way as is done for the invariant mass background

81



present in the correlations, meaning the ρSE and ρME distributions are calcu-

lated for the D0+pion pairs falling in the invariant mass window of the D∗±

and the correlation functions are computed.

Figure 5.6: Invariant mass distribution for the D∗, plotted as the difference in
mass between the MKππ and the MKπ. This histogram is for the 0-20% most
central bin. The normalization is done by normalizing the ME distribution to
the SE distribution in the range 0.15 to 0.16 GeV/c2 using the ratio of the
integral of the SE and ME distributions in that range.

The invariant mass combination shown in figure 5.6 is calculated, and

a D∗± candidate is identified when the invariant mass of a D0-candidate +

π (identified with the TPC) falls within the range MKππs −MKπ = 0.143 −

0.147GeV/c2. When that condition is met, the (∆η,∆φ) ordered-pair is cal-

culated for the D0-candidate + π and is binned in a separate histogram. The

set of π that satisfy this invariant mass condition are then referred to as πsoft.
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5.2.5 Correlation Results

In practice, the correlations for the three terms in Eq. 5.13 are all

calculated in a very similar way, with the “trigger” and “associated” tracks

coming from different sources, depending on the ”band” in question. The three

possible sources, as mentioned before, are the “signal”, “sideband” and “D∗”

bands. In every case, separate SE and ME histograms are calculated for each

of the four total bands. In figure 5.7 below are examples of SE distributions

from each of the four bands and the D∗ correlation.

Figure 5.7: Same-event distributions for all unlike-sign bands and the D∗ →
D0+πsoft (as pictured: Left-most is the left side-band contribution, the second
is the signal region, third is from the right side-band, and the right-most plot
is from the D∗).

These correlations are calculated in the sixteen multiplicity and ten Vz

sub-bins for each of the four contributions (signal region, left side-band, and
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right side-band), with the exception of the D∗±, which was only calculated for

the three centrality bins. This is done for both the same-event and mixed-

event distributions, yielding a total of 966 histograms! The whole procedure

is illustrated below with a sub-set of histograms for one multiplicity bin.

5.2.5.1 Detailed View of Computation of Correlation Function

For this section the focus will be on the computation of the correlation

function for the signal region in the D0 invariant mass distribution. The

individual ρSE and ρME histograms for all of the Vz-bins, and one of the

multiplicity sub-bins are shown in Figs. 5.8 and 5.9.

Figure 5.8: Same-event distributions for the signal region of D0 invariant mass
distribution for multiplicity bin 9 (see Table 5.2). The Vz-bins in the plots
above increase from left-to-right, top-to-bottom, with the ranges shown in
Table 5.1.
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Figure 5.9: Mixed-event distributions for the signal region of D0 invariant
mass distribution for multiplicity bin 9 (see Table 5.2). The Vz-bins in the
plots above increase from left-to-right, top-to-bottom, with the ranges shown
in Table 5.1.

These histograms are then used to calculate the quantity ∆ρ for each of the

sub-bins on Vz, as shown in Fig. 5.10.

Figure 5.10: ∆ρ
ρ

distributions for the signal region of D0 invariant mass distri-

bution for multiplicity bin 9 (see Table 5.2). The Vz-bins in the plots above
increase from left-to-right, top-to-bottom, with the ranges shown in Table 5.1.

Once the ∆ρ/ρref histograms are calculated for a particular multiplicity bin

in the various Vz bins the histograms can be summed along Vz, since this

dependence is only important for the acceptance correction. The sum over

Vz is carried out using a weight factor based on the number of pairs for each
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histogram, and is defined in Eq. 5.22,

∆ρ

ρref
(Vz − integrated) =

10∑
i=1

(
wi

∆ρ

ρref i

)
, (5.22)

where the weight factor, wi is defined as wi =
∑10

i=1

(
NSE,i

NSE,Vz−total

)
, where

NSE,i and NSE,Vz−total are the total pair counts in histogram “i” and the total

pair counts in all ten histograms combined, respectively. The results of this

summation can be found for all of the multiplicity bins (2-16, bin 1 is dropped

due to trigger bias) in Fig. 5.11.

Figure 5.11: ∆ρ
ρ

distributions for the signal region of D0 invariant mass dis-

tribution for all multiplicity bins, increasing left-to-right, top-to-bottom (see
Table 5.2).

These histograms represent the full procedure for obtaining the correlations

for a given source (in this case, the signal region). This procedure is repeated

for the side band correlations in the same manner as described above. The
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results for this procedure for the left and right side bands are shown in Figs.

5.12 and 5.13, respectively.

Figure 5.12: ∆ρ
ρ

distributions for the left side band region of D0 invariant mass

distribution for all multiplicity bins, increasing left-to-right, top-to-bottom (see
Table 5.2).

Figure 5.13: ∆ρ
ρ

distributions for the right side band region region of D0 in-
variant mass distribution for all multiplicity bins, increasing left-to-right, top-
to-bottom (see Table 5.2).
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Once this is done, the side band contributions are averaged, scaled by B/S (as

in Eq. 5.4), and then subtracted from the signal region contribution, as shown

in Fig. 5.14.

Figure 5.14: ∆ρ
ρ

distributions with the background correlation from the invari-
ant mass distribution subtracted.

Now that the correlations are calculated with the invariant mass background

subtracted, integration over the multiplicity sub-bins to the final three central-

ity bins is done. The weight factor applied in Eq. 5.22 is also applied to this

summation, but in each of the three centrality bins individually. The result of

this is shown in Fig. 5.15.

Figure 5.15: Invariant mass background subtracted correlations in three cen-
trality bins: 50-80% (left), 20-50% (middle), and 0-20% (right).
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With the final invariant mass background subtracted correlations, the cor-

rection for the D∗ contribution can be carried out. Fig. 5.16 shows the D∗

correlations calculated using the third term of Eq. 5.4.

Figure 5.16: D0 + πsoft correlations from D∗ decay in three centrality bins:
50-80% (left), 20-50% (middle), and 0-20% (right).

Once the D∗ contribution is subtracted, the final correlations are obtained in

Fig. 5.17.

Figure 5.17: Final, fully corrected correlations.

5.3 Fitting of Correlation Results

In order to extract the underlying dynamics from these correlations, the

correlation structures and their evolution with centrality must be quantified.

To do this, a simple fit-function containing the fewest number of terms to get

the best chi-square per degree of freedom and the minimum overall residuals

from fitting was used,
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fit(∆η,∆φ) = Aoffset + 2AQuadrupole ∗ cos(2∆φ) + ANSe
−.5 ∆η2

(σ∆η)2 e
−.5 ∆φ2

(σ∆φ)2

+ AASe
−.5 ∆η2

(σ∆η)2 e
−.5 (∆φ−π)2

(σ∆φ)2 + periodicity on ∆φ.

(5.23)

The terms in the fit model include a near-side 2D Gaussian, describing the jet-

like peak seen at small angles in (∆η,∆φ), a quadrupole term, which is related

to v2 (see appendix), and an away-side 2D Gaussian. In most two-particle

correlations, ∆η-dependence is not observed on the away-side, but there is

no reason to assume a priori that there is none. The constant offset exists

in all angular correlation measures, since these measures are controlled by an

arbitrary normalization (in the present case, the pair-normalization defined as

α). Some analyses refer to the constant offset term as the “baseline”. The

periodicity on ∆φ refers to the need to make the NS and AS ∆φ-dependent

Gaussian terms periodic, which is done by repeating the Gaussian every 2π

radians (e.g. for the NS, there would be a Gaussian at -2π, 0, 2π, etc.). A

pictorial representation of the various terms in the fit function is shown in Fig.

5.18.
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(a) Offset (b) Quadrupole

(c) Near-side Gaussian (d) Away-side Gaussian

Figure 5.18: 3D depiction of fit-function terms used in the fit for the
D0+hadron correlation function.

In order to fit all of the data, parameter bounds need to be chosen for

the ROOT [89] fitter to find a χ2-minimum. For simple fits with high-statistics

data, this is generally straight-forward. However, with statistically limited

data and a two-dimensional fit, we employed a more quantitative approach to

ensure good starting values for the fitter, and to check for multiple minima in

the χ2-space that may indicate alternate solutions. This was done by mapping

the χ2-space for each parameter and locating the minimum or minima. An
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example of this is shown in Fig. 5.19.

Figure 5.19: Generic χ2/DOF vs. parameter value plot used for setting fit-
parameter boundaries for the Root Minuit fitter. These plots are also used to
determine if there are multiple χ2-minima.

These plots are generated for each fit in the three centrality bins, and

for each of the parameters used in the fits. The Downhill-Simplex method

[86], or “amoeba” method was used to sample 10,000 starting values for the

parameters. For each starting value, the fit-function is computed using those

values and compared to the data to calculate the χ2 per degree of freedom.

For each step, the χ2/DOF and parameter-value ordered-pair is plotted, and

the result is what is seen in Fig. 5.19. These plots can then be used to pick

the starting values for the ROOT fitter by inspection. This method also serves

as an independent check on the fit-parameters found using the ROOT fitter.
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An important thing to note in doing the fitting is how the width on

∆φ on the away-side evolves with centrality. Since the ∆φ coordinate system

is periodic, if the Gaussian becomes broad it approaches a limit (σ∆φ ∼ 1)

where it mathematically becomes a dipole term ∝ cos(∆φ), as shown in Eq.

5.24,

∑
k−odd

exp[−(∆φ− kπ)/2σ2] =

σ√
2π

(
1 + 2

∞∑
m=1

(−1)me(−m2σ2/2) cos(m∆φ)

)
=

σ√
2π

(
1− 2e(−σ2/2) cos(∆φ) + ...

)
,

(5.24)

plus a constant, which gets absorbed by the constant used in the fit.

The 50-80% data were fit using the fit model in Eq. 5.23 as is. The

20-50% data used the dipole term in place of the 2D away-side Gaussian,

since the away-side was too broad on ∆φ to be described by a Gaussian, and

approached the dipole limit. Furthermore, to better constrain the near-side

fit, the fit was performed only using the offset, dipole and quadrupole terms

on the away-side, and then those values were fixed in the full-fit. The 0-20%

data were fit using a dipole in place of the Gaussian on ∆φ, but required

the ∆η-dependent portion of the Gaussian to best describe the data, which is

qualitatively not flat on ∆η within statistical uncertainty.
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Figure 5.20: Final fits in all centrality bins: Top: 50-80%, Middle: 20-50%,
Bottom: 0-20%. The left column is the data, the second column is the fit, and
the third column is a map of the nσfluctuation in each (∆η,∆φ) bin (i.e. (data-
fit)/error). The nσfluctuation is a quantitative version of a standard residual,
and is more informative.

The residuals in all three cases have fluctuations on the order of 3σ or

less, with the exception of the (∆η,∆φ) = (0, 0) bin in the 20-50% centrality

bin, which is addressed in the systematic uncertainty section. Table 5.6 shows

all of the fit-parameters and associated errors.
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σAA(%) 50-80 20-50 0-20
A0 -0.0118(±0.0044) -0.0093(±0.0014) -0.0117(±0.0025)

AQ 0.0040(±0.0028) 0.0066(±0.0030) 0.0(±0.0022)
ANS 0.091(±0.019) 0.0374(±0.0035) 0.0439(±0.0061)
σ∆η,NS 0.312(±0.078) 1.37(±0.35) 1.24(±0.30)
σ∆φ,NS 0.350(±0.068) 0.663(±0.064) 0.754(±0.073)
AAS 0.0295(±0.0196) - -
σ∆η,AS - - 1.33(±0.25)
σ∆φ,AS 0.55(±0.14) - -
AD - 0.0158(±0.0117) 0.0191(±0.0037)

χ2/DoF .93 1.90 1.17

Table 5.6: Model parameters and statistical errors (in parentheses) for 200
GeV Au+Au D0 + hadron correlations as discussed in the text.

5.4 Extraction of the Near-Side Associated Yield (per-
trigger yield)

Since the correlations in the present analysis are normalized per-particle

pair, we need to apply a proper normalization in order to extract an associated

yield on the near-side. The associated yield refers to the average number of

particles associated with the the charm-quark in the jet-like correlation struc-

ture on the near-siide - or more simply, “how many particles appear nearby

the charm quark (or D0-meson) as it traverses the medium.” This procedure

is done using a different approach than other per-trigger correlation analy-

ses, where the correlation is normalized differently, and the final correlation

divided by the number of trigger particles (c.f. [87, 88]). This is because of

the needed efficiency correction for the number of triggers (the D0 efficiency

correction) and to make a direct comparison with the published LF results

more straight-forward, since the same normalization was used in that analysis

[83].
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The associated hadron yield per D0 trigger in the NS jet-like corre-

lation structure, YNS−peak/ND0 , is estimated by summing that portion of the

correlation fitting model in Eq. 5.23 over the (∆η,∆φ) acceptance, including

efficiency and acceptance corrections, and dividing by the efficiency corrected

number of D0 mesons, ND0 , used in the analysis. Starting with this more

conventional per-trigger yield,

YNS−peak/ND0 =
1

ND0

×
∑

∆η,∆φ

 ∆nD0+h
αD0+hρME,D0+h

αD0+hρ
max
ME,D0+h


NS−peak

, (5.25)

where ∆nD0+h is the number of correlated D0 + h± pairs in bins (∆η,∆φ),

which is equal to δ∆ηδ∆φ∆ρD0+h, where δ∆η, δ∆φ are the bin widths on ∆η and

∆φ. αD0+hρ
max
ME,D0+h is the maximum value of the normalized, mixed-event pair

distribution, evaluated by averaging over the ∆φ bins for ∆η = 0. The ratio

in the denominator represents the mixed-event distribution normalized to 1.0

at the maximum. Rearranging Eq. 5.25 gives

YNS−peak/ND0 =
αD0+hρ

max
ME,D0+h

ND0

×
∑

∆η,∆φ

δ∆ηδ∆φ

[
∆ρD0+h

αD0+hρME,D0+h

]
NS−peak

=
αD0+hρ

max
ME,D0+h

ND0

VNS−peak

(5.26)

where the summation in the first line of Eq. 5.26 is defined as VNS−peak, the

volume of the NS peak correlation structure, represented by the integral of the

NS 2D Gaussian in the fit-model in Eq. 5.23,

VNS−peak =

∫
∆η accep

d∆η

∫ +π

−π
d∆φANSe

−.5 ∆η2

(σ∆η)2 e
−.5 ∆φ2

(σ∆φ)2 (5.27)

The ratio on the RHS of the second line of Eq. (5.26) can be estimated from

the measured numbers of D0 and D0 +h± ME pairs, provided both numerator
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and denominator are corrected for inefficiencies. A simpler form is given in the

following in which the required efficiency corrected quantities are more readily

obtained.

The maximum value of the efficiency corrected, normalized mixed-event

density equals the fraction of the total number of D0 + h± pairs in a ∆η = 0,

∆φ bin per bin area. This is given by

αD0+hρ
max
ME,D0+h =

εn̄D0n̄h
δ∆ηδ∆φ

2[1− 1/(2N∆η)]

N∆ηN∆φ

(5.28)

where ε is the number of events in the centrality bin, n̄D0 and n̄h are the

efficiency corrected, event-averaged number of D0 mesons and associated h±

particles in the acceptance, N∆η and N∆φ are the numbers of ∆η and ∆φ bins,

where N∆η is odd and N∆φ is a multiple of four. The second ratio on the RHS

of Eq. (5.28) is the fraction of D0 + h± pairs in an average ∆η = 0, ∆φ bin.

The efficiency corrected number of D0 mesons is ND0 = εn̄D0 . The ratio in

Eq. (5.26) simplifies to

αD0+hρ
max
ME,D0+h

ND0

=
2n̄h[1− 1/(2N∆η)]

N∆ηN∆φδ∆ηδ∆φ

=
n̄h

2πΩη

(
1− 1

2N∆η

)
≈ dNch

2πdη

(
1− 1

2N∆η

) (5.29)

where N∆ηN∆φδ∆ηδ∆φ = 4πΩη, and Ωη is the single particle pseudorapidity ac-

ceptance which equals 2 units for the STAR TPC. In the last step we assumed

that the number of K, π daughters is much less than the event multiplicity,

such that n̄h is well approximated by event multiplicity Nch. The final NS-peak

correlated yield per D0 trigger is given by

YNS−peak/ND0 =
dNch

2πdη

(
1− 1

2N∆η

)
VNS−peak (5.30)

where dNch/2πdη is efficiency corrected [67].
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5.5 PYTHIA Analysis

Since there were no data available for pp 200 GeV with the HFT at

STAR, PYTHIA 8.23 was used to generate a pp baseline analysis. The tune

used for PYTHIA was obtained from two studies in [73] and [74]. It involved

setting the value beamRemnant:primordialkt = 1.0 to soften the D0 pT distri-

bution to match data from AuAu 200 GeV collisions measured at STAR. The

the tune settings used are the defaults in PYTHIA for the Monash 2013 tune.

After the tune was adjusted, D0+hadron correlations were calculated

in the same way as was done in the Au+Au run14 data presented in this thesis,

with the contributions from D∗ → D0 + πsoft removed. One major difference

is that the secondary decays from the K0
S and the Λ-baryon were removed.

All other trigger and associated cuts were imposed as detailed in Sec. 4.1.2,

except those cuts related to specific detectors (e.g. HFT requirement, number

of TPC fit points, etc.). The results for the data and the fitting are seen in Fig.

5.21. The fit model used is similar to Eq. 5.23, but without the quadrupole

term and with a generalized Gaussian for the NS peak, as the NS peak in

PYTHIA is significantly sharper,

fit(∆η,∆φ) = Aoffset + ANSe
−.5
(

∆η2

(σ∆η)2

)β
e
−.5
(

∆φ2

(σ∆φ)2

)β
+ AASe

−.5 ∆η2

(σ∆η)2 e
−.5 (∆φ−π)2

(σ∆φ)2 + periodicity on ∆φ.

(5.31)
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Parameter of fit Value
A0 -0.210(±0.00398)
ANS 1.398(±0.0135)
σ∆η,NS 0.397(±0.003918)
σ∆φ,NS 0.451(±0.003676)
AAS 0.345(±0.00437)
σ∆φ,AS 0.808(±0.0138)

β (Gen. Gaussian Parameter) .829(±.0123)

YNS,peak/ND0 0.987(±0.023)
χ2/DoF 1.77

Table 5.7: Model parameters and statistical errors (in parentheses) for D0 +
hadron correlations from 10M PYTHIA p+p

√
s = 200 GeV events.

Figure 5.21: Simulated data and fits for D0+hadron correlations from
PYTHIA. The left column is the data, the second column is the fit, the third
is the residual and the fourth column is a map of the nσfluctuation in each
(∆η,∆φ) bin.
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Chapter 6

Systematic Uncertainties

There are several sources of possible systematic uncertainty in this anal-

ysis, which are summarized below:

• Secondary hadron contamination

• B-meson feed down

• D0 yield determination (calculation of S and B)

• D0 Decay Topological Cuts

• Sideband Variations (widths and range)

• Pileup

• Fits using various (∆η,∆φ) bins

• D∗ correction

• Efficiency Correction

Systematic uncertainties in the 2D D0 + h± correlation data are dis-

cussed first. The impact of these uncertainties in the data, plus uncertainties

in the mathematical representation of the fitting model on the properties of

the correlations are discussed next.

The largest source of systematic uncertainty is that caused by non-

primary (secondary) particle contamination in the associated charged-particle

sample originating from weak decay daughter particles and secondary particle
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production (mainly pions and protons) in the detector material. Tracks which

pass the associated hadron requirements in Sec. 4.1.2.2, contain an estimated

12% contamination from these secondary particle sources [67]. The effect of

this secondary contamination on the di-hadron correlations was estimated to

be no more than 3% in minimum-bias Au+Au collisions at 200 GeV [67]. In

the present analysis secondary particle contamination is mostly removed from

the (Kπ) D0-decay candidates which include stringent secondary vertex recon-

struction requirements. Furthermore, any secondary particle contamination in

the (Kπ) candidate sample will be included in the random [Kπ] background.

The remaining contamination in the associated particle sample is assumed to

produce one-half the systematic uncertainty of that in the di-hadron correla-

tion analysis, or ±1.5% in overall amplitude.

centrality bin Dipole Quadrupole NS Volume NS Phi NS Eta
peripheral N/A ± 1.5% ± 1.5% ± 0% ± 0%

mid-central ± 1.5% ± 1.5% ± 1.5% ± 0% ± 0%
central ± 1.5% ± 0 ± 1.5% ± 0% ± 0%

Table 6.1: Table of systematics from secondary hadron contamination. Note:
the central bin quadrupole systematic is not quoted as % error.

Contributions from B-meson feed-down to D0-mesons was estimated

to be 4% of the D0 sample in minimum-bias 200 GeV Au+Au collisions [38].

These decays occur well outside the collision volume such that the daughter

D0 has little opportunity to develop correlations with particle in the medium.

Due to the large Q-value of the decay process, the D0 daughter momentum

vector will likely be shifted significantly away from the parent momentum, re-

sulting in some dissipation of any correlations the parent B-meson may have

had with the associated hadrons. We consider two limits: (1) the B-meson
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+ hadron correlations are similar to the D0 + h± correlations and are passed

on unaffected to the daughter D0 and associated hadrons; (2) any B-meson

+ hadron correlations are fully dissipated in the decay process. The result-

ing systematic uncertainty ranges from zero to a +4% overall increase in the

correlation amplitude as listed in Table 6.2.

centrality bin Dipole Quadrupole NS Volume NS Phi NS Eta
peripheral N/A +4.0% +4.0% +0% +0%
mid-central +4.0% +0% +4.0% +0% +0%

central +4.0% +0.0 +4.0% +0% +0%

Table 6.2: Table of systematics from B-meson feed-down contamination. Note:
the central bin quadrupole systematic is not quoted as % error.

Secondary vertex reconstruction of the D0 → Kπ decay requires five

cut-parameters (see Sec. 4.1.2.1). The final correlations are insensitive to rea-

sonable variations in each cut-parameter about the set of values which were

optimized with respect to the statistical significance of the D0 signal in the

invariant mass distribution [38]. The one exception is the daughter kaon mini-

mum DCA to the primary vertex which has marginal effects beyond statistical

fluctuations. These effects on the correlations were similar in each central-

ity and were approximated with a small 1D Gaussian on ∆η with amplitude

±0.002 and width σ = 0.5. Including this uncertainty in the data affected the

fit model results as listed in Table 6.3.
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centrality bin Dipole Quadrupole NS Volume NS Phi NS Eta
peripheral N/A ± 7.0% ± 3.8% ± 1.8% ± 0.9%

mid-central ± 1.9% ± .79% +1.4%, -0% ± 0.8% ± 17.0%
central ± 8.4% ± 0 +0.7%, -0% ± 2.6% ± 23.0%

Table 6.3: Table of systematic topological cut variations. Note: the central
bin quadrupole systematic is not quoted as % error.

Uncertainties in the magnitude of the D? → D0πs contamination in

the (∆η,∆φ) = (0, 0) bin were estimated by varying the background sub-

tracted from the (MKππs −MKπ) invariant mass distribution where as much

as 20% variation in the D? yield was allowed, given the background distribu-

tion statistics. This uncertainty only affects the (∆η,∆φ) = (0,0) angular bin.

The resulting uncertainty in the (0,0) bin affected the fit model quantities as

listed in Table 6.4.

centrality bin Dipole Quadrupole NS Volume NS Phi NS Eta
peripheral N/A ± 2.4% ± 1.0% ± 2.2% ± 2.9%

mid-central ± 0% ± 0% ± 3.2% ± 4.8% ± 9.2%
central ± 10.5% ± 0 ± 18.3% ± 9.2% ± 13.1%

Table 6.4: Table of systematics from D∗ background. Note: the central bin
quadrupole systematic is not quoted as % error.

Other systematic uncertainties were estimated by varying the analy-

sis parameters and examining the resulting changes in the final correlations.

These variations included: (1) adjusting the side-band widths and positions,

(2) including or not including the D0 and hadron reconstruction efficiency cor-

rections, (3) including or not including two-particle reconstruction inefficiency
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corrections, (4) adjusting the dE/dx particle identification cuts for the D0 de-

cay daughter candidates, (5) including or excluding decay daughter candidates

which have ambiguous particle identification, (6) adjusting the background in

the (Kπ) invariant mass distribution used for the D0 signal estimate (2-3%

variation in signal yield), (7) adjusting the widths of the primary vertex po-

sition and event multiplicity sub-bins used for the mixed-event distributions,

and (8) including or not including corrections to the assigned event-wise mul-

tiplicity (for centrality determination) due to tracking efficiency dependence

on primary vertex position in the TPC and beam+beam collision luminosity

during each data acquisition run period. Each systematic uncertainty source

was studied and found to have negligible effects on the correlations, i.e. less

than the statistical uncertainties. Systematic effects in the associated particle

sample due to multiple-event track pileup in the TPC [67] were suppressed by

requiring at least three HFT space points to be assigned to the charged par-

ticle track. The fast-response of the HFT detector, specifically the IST layer

(a few hundred ns [82]) suppresses pre- and post-trigger event tracks from the

associated particle sample. Other systematic effects associated with detector

stability during runs, Coulomb multiple scattering in the detector material,

and finite momentum resolution were considered previously and found to be

negligible [67].

The above systematic uncertainties in the correlation data directly af-

fect the fitting model parameters. Secondary particle contamination is as-

sumed to contribute a ±1.5% uncertainty to each amplitude parameter. The

B-meson feed-down contamination adds a 0% − +4% uncertainty range to

each correlation amplitude. The small 1D Gaussian resulting from variations

in the D0 decay daughter kaon DCA cut was added (both ±0.002 amplitudes
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were used) to the correlation data and refitted with the nominal fitting model.

The average magnitudes of the parameter changes resulting from the ±0.002

amplitude perturbation were included in the systematic uncertainties in the

model parameters. Similarly, the systematic uncertainty in the (0,0) angular

bin due to the D? → D0πs contamination correction contributed to the model

parameter uncertainties.

The choices of fitting model elements also produce systematic uncer-

tainties in the deduced properties of the angular correlations. Defining the

model elements in Sec. 5.3 as the base-line, or nominal model, we considered

several alternate models which, for the most part, produce similar quality

descriptions of the correlation data. These include: (1) adding a sextupole

AS cos(3∆φ) to the nominal model, (2) replacing the same-side 2D jet-like

Gaussian with a Lorentzian × Gaussian, (3) replacing the same-side peak

with a platykurtic raised cosine × Gaussian function, and (4) replacing the

away-side dipole with an away-side 2D Gaussian. The Lorentzian × Gaussian

model element is given by

A
(Γη/2)2

∆η2 + (Γη/2)2

(
e−∆φ2/2σ2

φ + e−(∆φ−2π)2/2σ2
φ

)
(6.1)

with fit parameters A, Γη and σφ. The raised cosine × Gaussian term is

(A/2) [1 + cos (∆ηπ/ση)]
(
e−∆φ2/2σ2

φ + e−(∆φ−2π)2/2σ2
φ

)
(6.2)

when |∆η| ≤ ση and zero otherwise. The fit parameters are A, ση and σφ.

The same periodic Gaussian distribution on ∆φ in the nominal model was

assumed here. For the alternate model with an away-side 2D Gaussian the

azimuth component is also required to be periodic.

The Lorentzian × Gaussian model fit to the 50-80% correlations was

significantly poorer than the nominal fit and the other alternate model fits.
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These alternate fit results were therefore not used. The nominal plus sextupole

alternate model fit to the 0-20% data resulted in a χ2 minimum fit which pro-

duced an unphysical dipole correlation (very narrow on ∆η) and was discarded.

All other alternate model fit results had comparable χ2 and residuals as the

nominal fit model results and did not produce unphysical model elements and

were therefore used in the systematic error estimates. No one model element

dominated the final uncertainties.

Systematic uncertainties were estimated for the dipole and quadrupole

amplitudes, the same-side peak volume per D0 trigger and its Gaussian width

along azimuth (σφ) and rms width along ∆η, and for the peripheral bin the

away-side Gaussian volume per D0 trigger per unit ∆η. For each of these quan-

tities the mean and standard deviation of the nominal and alternate model

results were calculated. The resulting systematic uncertainties relative to the

nominal fit values were adjusted to encompass the mean ± one standard de-

viation. The resulting systematic uncertainties are asymmetric.

centrality bin Dipole Quadrupole NS Volume
peripheral N/A +16.0%, -2.8% +1.9%, -10.9%

mid-central +0%, -0% +0%, -0% +1.9%, -1.3%
central +0.5%, -2.4% +.00043, -.00007 +0.8%, -4.7%

centrality bin NS Phi NS Eta
peripheral +0.7%, -3.9% +2.6%, -15.2%

mid-central +0.2%, -0.3% +6.1%, -19.0%
central +0.3%, -2.2% +3.4%, -20.01%

Table 6.5: Table of systematics from ambiguity in fit model. Note: the central
bin quadrupole systematic is not quoted as % error.

An additional contribution to the fitting model uncertainty due to al-
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ternate (∆η,∆φ) bin choices was estimated by fitting the data with 11 ∆η

bins and 16 ∆φ bins in place of the nominal 13 × 12 bins. The alternate

binning continued to cover 2 units in pseudorapidity and 2π in azimuth. The

above correlation properties were calculated using the nominal fitting model in

Eq. (5.23) applied to the re-binned data. These results were compared to the

nominal correlation quantities and the differences were included in the final

systematic uncertainties.

Each of the above positive and negative systematic uncertainties in the

correlation quantities resulting from the six sources of systematic uncertainty

discussed in this section were added in quadrature, where positive and negative

errors were combined separately. The nominal fitting model results, statistical

fitting errors and the combined systematic uncertainties are listed in Table

6.6.

centrality bin Dipole Quadrupole NS Volume
peripheral N/A +18.9%, -9.7% +6.1%, -11.7%
mid-central +4.7%, -2.43% +6.1%, -4.7% +32.7%, -32.5%

central +14.3%, -14.0% +.00043, -.00007 +20.1%, -20.2%

centrality bin NS Phi NS Eta
peripheral +2.9%, -4.9% +4.0%, -15.5%

mid-central +9.6%, -9.6% +21.1%, -27.7%
central +10.5%, -10.7% +27.1%, -33.5%

Table 6.6: Table of total systematics. Note: the central bin quadrupole sys-
tematic is not quoted as % error.

The effect of the efficiency correction was evaluated by comparing the

final correlations with and without the prescribed efficiency correction in 5.2.2.

This comparison was done by calculating the bin-wise residual nσ for the nom-
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inal (with efficiency correction) correlation and the non-efficiency corrected

correlations. Fig. 6.1 depicts this comparison.

Figure 6.1: Shown here are the comparison plots for the correlations with
and without the efficiency correction derived in Sec. 5.2.2. The top row are
simple residuals, and the bottom row are the nσ residuals for each bin. The
nσ fluctuations do not exceed 2σ for any bin, indicating little difference in the
correlations with or without the efficiency correction.

These results confirm that the inefficiencies cancel in the ratio ρSE/ρME,

as expected.
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Chapter 7

Final Results

7.1 Results

The final results of the fitting on the near-side (NS) and the NS as-

sociated yield can be seen in figures 7.1, 7.2, and 7.3. The data are shown

alongside the PYTHIA 8.23 results (see Sec. 5.5) in all of the figures.

Figure 7.1: Near-side Gaussian ∆φ and ∆η width as a function of centrality.
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Figure 7.2: Quadrupole amplitude from fit as a function of centrality.

Figure 7.3: Near-side Associated Yield as calculated in Eq. 5.30.

The data indicate broadening on both ∆η and ∆φ, implying substantial in-

110



teractions of the charm-jet with the medium for a D0 with a mean-pT ∼ 3

GeV/c with growing system size (centrality). The quadrupole amplitude has

a maximum value in the 20-50% centrality bin, which is expected given that

a mid-central collision has a maximum ellipticity, which translates to the final

state as a larger quadrupole amplitude. The NS associated yield increases

over an order of magnitude from peripheral to central collisions, further indi-

cating substantial interactions of the charm-quark or meson with the medium.

These interactions are the sum of both the radiative energy loss due to gluon

bremsstrahlung, collisional energy loss in the medium, and possible medium

effects on the vacuum fragmentation. Due to our limited statistics, approxi-

mate separation of the energy loss mechanisms via different pT bins was not

possible (and is not possible exactly, as determination of the exact onset of

these mechanisms is not experimentally attainable).

7.2 Comparison to Light-Flavor Di-hadron Correlations

Aside from reporting the evolution of the correlation function and asso-

ciated fit-parameters with centrality, we can also compare the correlations to

a light-flavor unidentified di-hadron correlations, using an unidentified hadron

trigger at a similar mean-pT to our D0. The light-flavor results used in this

section are reported in [83]. The light-flavor di-hadron correlations were com-

puted from STAR Au+Au
√
sNN = 200 GeV collisions contained in the same

dataset as in [67]. The only difference between the analysis in [67] and [83] is

that the latter analysis was also carried out using trigger-pT (or rather, yT )

bins, and show the resulting fit parameters as a function of both yT and cen-

trality. The correlations in [83] were fit with a function similar to that used

in [67] and in the present thesis,
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fit(∆η,∆φ) = B0 +B2Dexp

{
− 1

2

[(
∆η

σ∆η

)2

+

(
∆φ

σ∆φ

)2]}
+BD{1 + cos(∆φ− π)}/2 + 2BQ cos(2∆φ).

(7.1)

The results from extracting the fit parameters from [83] are plotted along with

the results from this thesis analysis in Figs. 7.4, 7.5, and 7.6.

Figure 7.4: NS Gaussian ∆φ (left) and ∆η (right) width as a function of
centrality. The red data points are from this thesis analysis, while the blue
points are from [83].
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Figure 7.5: Quadrupole amplitude from fit as a function of centrality. The red
data points are from this thesis analysis, while the blue points are from [83].

Figure 7.6: NS Associated Yield as calculated in Eq. 5.30. The red data points
are from this thesis analysis, while the blue points are from [83].
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The trends observed in the present analysis and in [83] exhibit some

interesting similarities. The widths on ∆η and ∆φ for a LF trigger hadron

of similar mean-pT to our D0 trigger show a similar amount of broadening

from peripheral to mid-central. However, the error bars for the D0+hadron

∆η width correlation results make conclusions difficult from mid-central to

central collisions. The evolution of the NS associated yield, however, shows

quite good agreement within errors over all centralities. This indicates that the

sum of the interactions experienced by charm in the medium are very similar

to that experienced by a LF quark at a similar mean-pT .

7.3 Discussion

Based on the results for the centrality dependence of the NS widths

(related to the charm-jet shape) and associated yield (both are related to

the net interactions of the charm-quark with the medium), it is clear that

the charm quark experiences significant interactions in the heavy-ion collision

medium. This is especially startling given that the NS jet-like correlation peak

also experiences some surface bias due to the trigger pT restriction, where the

NS jet sees less medium than the away-side jet. The evolution of the away-side

(AS) correlation structure is also indicative of strong medium interactions since

broadening on ∆φ is observed as a function of centrality. The broadening of

the AS correlation structure is indicative of the recoil-jet (which likely contains

the other charm-quark from the original cc pair) experiencing more medium

interactions, reinforcing the idea that the NS is at least partially surface-

biased.

The notable similarities between the LF correlations and theD0+hadron

correlations - especially involving the NS associated yield - are interesting be-

114



cause of the significant mass of the charm-quark compared to the light-quarks.

The mass dependence, however, is specifically related to the radiation of glu-

ons (gluon bremsstrahlung) via the dead-cone effect [40]. Given our low D0

pT , it is unlikely we are observing much of this effect as our energy-loss is

likely dominated by collisional energy-loss in the medium. If we were seeing

significantly more energy-loss due to gluon radiation, we would expect to see a

suppression of the jet-like correlation structures at small angles on (∆η,∆φ),

since the dead cone effect predicts suppression of radiation at small angles for

higher mass quarks. Some higher statistics analysis with a better separation

of high and low pT for the D0 would certainly aid in our understanding of the

energy-loss processes themselves.

Even though charm-quarks are formed in perturbative hard scatterings

before medium formation, such as gg → cc, heavy quarks propagating through

a partonic medium experience mostly non-perturbative collisional and radia-

tive energy-loss interactions. The early-formation of the charm quarks (re-

quiring pQCD - not a priori included in all models), and their higher mass

compared to light quarks makes their inclusion in heavy-ion models challeng-

ing.

Many models can reproduce nuclear modification factor (RAA) and v2

results for charged-hadrons (and light quarks) simultaneously, with only a few

accomplishing the same feat for charm. Some notable models/groups that can

do this for charm are the Parton Hadron String Dynamics (PHSD) model [90],

and the larger effort by the Rapid Reaction Task Force (EMMI RRTF) at GSI

[92] which aims to bring together many theorists working with heavy flavor for

a joint effort to extract heavy flavor transport coefficients from the available

data.
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What is interesting, however, is that up to this point very few models

have used the wealth of correlation data to constrain parameters - most use

only the azimuthal anisotropy parameters, such as v2 and higher-order har-

monics, and the nuclear modification factor. These parameters alone have,

thus far, not provided the necessary constraints to falsify models with funda-

mentally different underlying physics assumptions. Two-particle correlation

measurements that provide information on both ∆η and ∆φ give access to

the correlations coming from jets and fragmentation, and collective flow along

with the transverse momentum dependence and centrality dependence (as in

the case of [67, 83]). Using measured LF correlations, forthcoming correlations

on transverse rapidity from STAR [71], and the HF correlations presented in

this thesis, a wealth data will be available that are sensitive to the under-

lying dynamics of heavy-ion collisions that will enable us to hone-in on the

correct physical understanding of this complicated system, and further our

understanding of QCD in a highly non-perturbative regime.
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Chapter 8

Summary and Outlook

8.1 Summary and Conclusions

This thesis presents two-dimensional D0+hadron angular correlations

projected on (∆η,∆φ) for the first time in heavy-ion collisions. The analysis

was done using the
√
sNN = 200 GeV Au+Au collision data collected by the

STAR experiment in 2014, using the newly installed HFT for reconstruction

of the D0-meson.

The correlations computed in this thesis exhibit qualitatively simi-

lar structures to previous two-particle correlation studies using LF hadrons.

Quantitative information was extracted from these correlations using a multi-

parameter fit model chosen to reflect the geometric structures present in the

correlations and to simultaneously measure the contributions from jets and

bulk sources.

The peripheral (50-80%) data indicate that the jets formed from charm

are essentially unmodified in shape in our D0 pT range (2-10 GeV/c) in Au+Au

collisions when compared to PYTHIA, although PYTHIA predicts a larger

yield of associated particles from vacuum fragmentation. This unmodified jet

shape is in coincidence with a non-zero value for D0 v2 in that same centrality

bin. The mid-central (20-50%) results indicate modification of the charm-jet

structure, seen as broadening in both ∆η and ∆φ, as well as an increase in the

average number of associated hadrons. The D0 v2 measured in this centrality
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bin is consistent with the published STAR measurement using the event-plane

analysis method. The central (0-20%) data similarly indicate strong interac-

tions of the charm-jet with the medium, while the v2 is consistent with zero.

This analysis shows that jets containing charm quarks indeed experi-

ence modification as they traverse the medium formed in heavy-ion collisions.

This is not just seen from the broadening of the jet-like peak on the near-

side, but from the order-of-magnitude increase in the NS associated yield as

a function of centrality, which indicates that the charm quark and/or hadron

is interacting substantially with the medium via either collisions with other

partons or radiation of gluons. The appearance of the NS ∆η elongation with

centrality seen in LF correlations [67] - also known as the “ridge” - is now

shown to occur in HF correlations.

Some theory calculations which correctly predict the available measure-

ments of D0 RAA and v2 indicate that the dominant energy-loss mechanism

at the pT of the D0 presented in this thesis is from collisions with partons in

the medium. Further differential measurements of correlations as a function

of D0-pT could help to verify if this is the case.

8.2 Outlook and Future Measurements

The installation of the HFT in STAR enabled measurements with open

heavy flavor that would have otherwise been impossible. Almost 1 billion

Au+Au collision events were collected in 2014, and yet, that enormous dataset

was still only barely able to deliver the necessary statistics for this thesis analy-

sis, and only enabled a minimal amount of differential study (only as a function

of centrality). The combination of the other Au+Au dataset containing the

HFT (run 2016) with the present 2014 data would enable further differential
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study of the correlations, most-notably as a function of D0 transverse momen-

tum.

With a sufficiently wide range of transverse momentum covered (and

the necessary statistics), one could potentially isolate regions more kinemati-

cally prone to either the energy loss mechanism of collisions with other partons

in the medium (lower pT ), or the radiation of gluons (higher pT ).

The up-and-coming sPHENIX experiment is designed around maxi-

mum capability in the reconstruction of jets and open heavy flavor. This

could allow for more differential correlation studies with heavy flavor to be

carried out, as well as studies using heavy-flavor tagged, fully-reconstructed

jets. sPHENIX is being designed to take data at a very high luminosity, which

will allow for incredibly high statistics to study these rare probes.

The study of heavy flavor and other hard probes (e.g. jets), in my

view, is important for the heavy-ion physics community given that the theory

and phenomenology are still sparse with respect to the inclusion of heavy

flavor and other hard probes, as well as the interaction of these hard probes

with the medium. Hard probes, being formed in the early collision stage and

surviving well-after the medium dissipates, makes them perfect probes of the

QGP. Heavy flavor quarks are evidently very much affected by the medium

formed in heavy-ion collisions, and further experimental analysis will provide

more constraints for models in the future, adding to our understanding of this

very complicated state of QCD matter.
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Appendix

Obtaining v2 from the Quadrupole Amplitude

v2 is the amplitude of the second Fourier component and is commonly

ascribed to elliptic flow. The Fourier decomposition is performed on the single

particle distribution projected on φ:

dN

dφ
= 1 + 2

∞∑
n=1

vn cos(n(φ−ΨR)) (1)

Averaging the product of the dN
dφ

decompositions for both the hadrons

and the D0 mesons yields,

〈dND

dφ

dNh

dφ
〉ΨR = 1 + 2

∞∑
n=1

vDn v
h
n cos(n(φD − φh)) (2)

where φD − φh = ∆φ. The n = 2 term is exactly the term used in the

multi-parameter fit for this analysis.

〈dND

dφ

dNh

dφ
〉ΨR = 1 + 2vD2 v

h
2 cos(2∆φ) + ... (3)
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