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Energy storage-aware prediction/control for mobile

systems with unstructured loads

Jonathan Robert LeSage, Ph.D.

The University of Texas at Austin, 2013

Supervisor: Raul G. Longoria

Mobile systems, such as ground robots and electric vehicles, inherently

operate in stochastic environments where load demands are largely unknown.

Onboard energy storage, most commonly an electrochemical battery system,

can significantly constrain operation. As such, mission planning and control of

mobile systems can benefit from a priori knowledge about battery dynamics

and constraints, especially the rate-capacity and recovery effects.

To help overcome overly conservative predictions common with most

existing battery remaining run-time algorithms, a prediction scheme was pro-

posed. For characterization of a priori unknown power loads, an unsupervised

Gaussian mixture routine identifies/clusters the measured power loads, and a

jump-Markov chain characterizes the load transients. With the jump-Markov

load forecasts, a model-based particle filter scheme predicts battery remaining

run-time. Monte Carlo simulation studies demonstrate the marked improve-

ment of the proposed technique. It was found that the increase in compu-

tational complexity from using a particle filter was justified for power load

transient jumps greater than 13.4% of total system power.

vi



A multivariable reliability method was developed to assess the feasibil-

ity of a planned mission. The probability of mission completion is computed as

the reliability integral of mission time exceeding the battery run-time. Because

these random variables are inherently dependent, a bivariate characterization

was necessary and a method is presented for online estimation of the process

correlation via Bayesian updating. Finally, to abate transient shutdown of

mobile systems, a model predictive control scheme is proposed that enforces

battery terminal voltage constraints under stochastic loading conditions. A

Monte Carlo simulation study of a small ground vehicle indicated significant

improvement in both time and distance traveled as a result.

For evaluation of the proposed methodologies, a laboratory terrain en-

vironment was designed and constructed for repeated mobile system discharge

studies. The test environment consists of three distinct terrains. For each

discharge study, a small unmanned ground vehicle traversed the stochastic

terrain environment until battery exhaustion. Results from field tests with a

Packbot ground vehicle in generic desert terrain were also used. Evaluation of

the proposed prediction algorithms using the experimental studies, via relative

accuracy and α−λ prognostic metrics, indicated significant gains over existing

methods.
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Chapter 1

Introduction

With the advent of reliable and robust rechargeable energy storage sys-

tems, e.g., secondary cell batteries, ultra capacitors, flywheels and fuel cells,

energy storage system usage has proliferated over the past decade [1]. For

instance, the global market for Li-ion cells is expected to jump nearly 350%

in a span of just four years, with the worldwide demand rising from 5.4 GWh

in 2011 to 24.2 GWh in 2015 [2]. Mobile electronic systems, ranging from

small-scale consumer electronics and mobile robotics to behemoth electric war-

ships account for significant/varied demands on energy storage technologies.

However, energy storage devices inherently hold limited charge, and as such,

isolated operation of such mobile electronic systems remains bounded in time.

Source
(Limited)

Mobile
System

IB

Uncertain
Load

IL

Figure 1.1: General source-load abstraction for prediction/control given lim-
ited source energy.

In many emerging applications, such as mobile robotics for reconnais-

sance in rugged environments and electric vehicles for commuting in dense

1



traffic, the power demands, imposed on the energy storage systems, display

significant transient jumps and marked stochasticity due to operation in un-

certain environments. For example, an unmanned ground vehicle moving from

a non-deformable surface to a deformable one, such as snow, can result in an

instantaneous jump in required power [3]. Transient jumps of 135W (a ratio of

58.7% of total power capacity) measured for the Polar navigator robot, illus-

trate the potential significant transients imposed on an energy-storage system

[4]. Large mobile systems, such as next-generation electric ships with total

generation capabilities in excess of 78 MW, can accommodate hybrid energy

storage systems composed of synergistic ultracapacitors and battery banks [5].

Resultantly, significant power transients, such as the 25 MW required for a

free electron laser pulse [6], draw from power-dense ultracapacitors as appar-

ent energy in electrochemical batteries is power rate-limited [7]. However,

in smaller scale applications, such as electric vehicles and particularly with

ground robotics, the battery remains the de facto standard power source due

to high energy densities, cost, and simplicity [8]. As a result, the onboard

battery systems, in these applications, is directly subject to power transients

and load stochasticity.

In response to the continued increase in battery-based mobile system

deployment, research into energy source-aware prediction and control has con-

tinued to rise. The number of publications/patents with keywords of “battery,”

“mobile system”, and “prediction”/“control” have increased such that publica-

tions over the decade of 2001 - 2011 (approximately 16,700) are outnumbered

2



by the number of cumulative publications since 2012 (approximately 17,200)

according to a Google Scholar search. While the subset of the reviewed litera-

ture presents a variety of contrasting prediction/control methods, the unifying

theme is the increased systems perspective where the battery and system are

considered jointly [9, 10]. Resultantly, the reported battery/system prediction

and control methods have increasingly adopted systems-level theory, such as

condition-based maintenance for battery run time prognosis [11] and model-

based supervisory control for battery energy optimization [10].

1.1 Active Challenges and Research Objectives

Considerable challenges remain for battery run time prediction/control

for mobile systems operating in stochastic environments. For small-scale mo-

bile vehicles, particularly field robotics where the battery is the dominant

source of energy, significant load transients result in unexpected vehicle shut-

down [12]. Existing methods presented in the literature have only recently

begun to address the need for transient shutdown consideration in prediction

and control [13]. As a result, a number of active challenges for mobile system

run time prediction/control, which have either been disregarded or proposed

for future work in the literature, remain:

• Application-dependency of prediction algorithms: Numerous bat-

tery remaining run time algorithms have been proposed over the past

century, ranging from analytical Peukert’s law [14] to model-based par-

ticle filter prediction [11]. While these algorithms range significantly in
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computational complexity [15], no clear study has indicated the trade-off

between power load characteristics and prediction accuracy.

• Prediction of battery transient shutdown: While mobile systems

inherently operate with stochastic loads [16], existing battery remain-

ing run time prediction schemes ignore load transients or ignore battery

terminal voltage shutdown [17]. Consequentially, these algorithms disre-

gard transient shutdown conditions, where transient load jump triggers

battery protective circuitry shutdown [18].

• Transient load history characterization: For prediction of transient

battery shutdown, the transient characteristics of the power load history

must be modeled. Existing battery run time algorithms that consider

transients require a priori characterization of loads [19]. However, offline

experimental characterization of all potential power loads, for a mobile

system in an unstructured environment, remains infeasible for all but

the most simple applications [20].

• Battery-based mission planning/assessment: To consider the con-

straint of available onboard energy, mission and path planning algorithms

have been developed which consider constrained energy [21]. However,

for battery systems, the apparent available energy reduces for high cur-

rent loads due to the rate-capacity effect. Resultantly, mission energy

and available energy remain dependent processes which invalidate direct

energy consumption comparison methods.
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• Transient shutdown prevention: To optimize battery usage, super-

visory control schemes have been developed which consider battery and

drivetrain dynamics [22]. While these methods preserve battery state-

of-charge, considerations of transient shutdown remain neglected.

• Experimental analysis of stochastic energy-constrained mobile

systems: The battery discharge process of a mobile system operating

in an unstructured environment is inherently stochastic. However, in

the existing literature, validation of stochastic prediction methodologies

for mobile systems have only considered single discharge experiments

[13, 15, 17]. However, demonstration of statistically significant algorithm

improvement requires numerous repeated studies [23].

The objectives of this dissertation are to expand the scope of existing

battery prediction/control methods and to address the stated challenges. As

discussed, a particular focus is paid to small ground vehicles due to their

susceptibility to significant transient load variation. The following section

briefly introduces the proposed methodology which addresses the discussed

challenges.

1.2 Overview of Methodology

While the past decade has seen considerable growth in battery power

mobile systems, energy-aware prediction/control in the literature have only

just begun to address the need for transient power load considerations. As a
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result, the goals of this work are: to broaden battery remaining run time pre-

diction algorithms to include stochastic/transient load characteristics, reeval-

uate the relationship between demanded mission energy and available onboard

energy, and investigate control methodologies that prevent battery transient

shutdown conditions. While the discussion in this dissertation is applicable

to any mobile system with constrained energy, a selective focus is given to

small scale applications, particularly unmanned ground vehicles (UGV). As

discussed, UGVs experience significant load transients due to varied terrame-

chanical interactions, often while operating with only a single battery source.

Transient/Stochastic

Load Characterization

Battery Run Time

Prediction

Mission 

Evaulation/Mission

Restructuring

Online Transient

 Shutdown 

Prevention Control

Mobile System with

Constrained Energy

(Chapter 3)
(Chapter 6)

(Chapter 4)(Chapter 5)

Figure 1.2: Summary of the proposed methodology for mobile system opera-
tion in stochastic environments.

To address the proposed goals of this work, several methods are pro-

posed over the course of this dissertation, which are summarized in Figure 1.2.

As such, each method is briefly introduced, and the active challenges that each
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contribution addresses are elucidated.

1.2.1 Online Unsupervised Characterization of Loads

Mobile systems with finite onboard storage commonly operate in un-

structured environments where load transients/statistics remain a priori un-

known [12, 16]. To identify transient and stochastic load characteristics during

mobile system operation, an online self-supervised load clustering algorithm is

proposed in Chapter 3. The proposed methodology clusters measured power

loads using a Gaussian mixture modeling scheme, where the number of load

clusters is determined via model selection based on the Akaike information cri-

terion. Upon identification of the transient loading clusters, maximum likeli-

hood estimation is used to fit a jump-Markov chain. As a result, the integrated

Gaussian mixture and jump-Markov model provides a stochastic characteriza-

tion of power loads which can be used for prediction and load forecasting.

1.2.2 Model-based Prediction of Run Times

The battery discharge process which occurs during mobile system op-

eration can be viewed as a fault with failure occurring upon system shutdown.

As such, the particle filter, which has found widespread adoption in engineer-

ing fault prognosis [24], was adopted for battery remaining run time predic-

tion. Provided a model of the battery dynamics, the particle filter allows for

nonlinear/non-Gaussian state prediction and accounts for transient battery

voltage shutdown conditions. Resultantly, a modified sequential importance
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resampling particle filter routine is proposed in Chapter 4 that predicts the

battery remaining run time probability density function. Finally, transient

loads, as characterized by the jump-Markov chain, are used to forecast future

expected power loads.

1.2.3 Online Mission Reliability Assessment

Mobile systems typically have objectives to achieve during operation

(or during a mission), such as a completing a morning commute in an electric

vehicle or a surveillance mission for a ground robot. These mobile systems,

however, remain constrained by finite onboard energy storage, and as such, a

finite probability exist for required mission energy exceeding available energy.

Furthermore, in the case of battery systems, the available energy and mission

energy remain correlated through the rate of power consumption. As a result, a

bivariate characterization is proposed in Chapter 5 for evaluation of the proba-

bility of mission completion. An online Bayesian correlation estimation scheme

is proposed to determine the bivariate relationship between mission time and

battery run time. Integration over the region of failure (where mission time

exceeds battery run time) yields an estimate for the probability of mission

failure. Finally, a mission restructuring algorithm is proposed. When the pri-

mary mission probability of completion drops below a prespecified threshold,

a contingency plan (such as aborting the mission) can be adopted.
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1.2.4 Real-time Energy Aware Control

Mobile systems operating with only batteries remain subject to tran-

sient shutdown conditions [18]. Significant transient load demands, such as

those encountered during ground robot locomotion in loose soil [25], can result

in considerable terminal voltage reduction which triggers protective circuitry

shutdown [26]. To preclude these transient shutdown scenarios, a constrained

model predictive control methodology is proposed in Chapter 6 that inte-

grates both the battery and drivetrain dynamics of a ground robot. Using

transient load forecasts, the predictive control scheme adjusts the desired su-

pervisory/teleoperated control command to ensure satisfaction of the battery

terminal voltage constraint.

1.3 Dissertation Overview

The remainder of this work is arranged as follows. In Chapter 2, the

literature concerning mobile system operation time prediction/control is re-

viewed with a particular emphasis on battery-based systems. In Chapter 3,

the transient load characterization scheme is proposed and demonstrated with

experimental data. In Chapter 4, a model-based particle filter scheme is in-

troduced for online battery remaining run-time prediction. Results from two

experimental studies involving ground robots are also presented which demon-

strated predictor efficacy.

In Chapter 5, a method evaluating the probability of completing a mis-

sion/driving a distance is proposed which integrates methods from Chapters
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3 and 4. This probability of mission completion algorithm is then experi-

mentally demonstrated with a ground robot study. In Chapter 6, a transient

shutdown prevention control scheme is introduced. Finally, in Chapter 7, the

contributions of this work are summarized and directions for future research

are discussed.
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Chapter 2

Literature Review

Energy storage aware prediction/control and mission feasibility assess-

ment remain multifaceted problems which have been explored in the literature

with varying degrees of complexity. While some researchers have integrated

some aspects of load characterization and prediction, these studies persist as

exceptions rather than the norm. As such, the prior art is subdivided and

discussed independently with cross disciplinary studies noted. Firstly, exist-

ing methodologies for energy storage prediction are explored. As a result of

the inherent nonlinear and dynamic complexities, the battery system serves

as the paradigm on which prediction algorithms are based, and as such, bat-

tery prediction is explored in detail. A review of statistical characterization

techniques is presented for the modeling of stochastic power loads. Finally,

literature detailing battery-aware predictive control schemes is discussed.

2.1 Run-time Prediction Algorithms

Due to the continually improving energy density of battery systems

(with current military grade Li-ion cells reaching densities of 250 W-h/kg

[27]), battery systems remain one of the prime candidates for mobile energy
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storage [8]. Furthermore, due to the dynamic complexities of electrochemi-

cal systems and the ubiquitous adoption of battery-based energy storage, the

mobile energy storage remaining run-time (RRT) prediction literature focuses

on battery systems. For mobile systems operating with solely battery energy,

prediction of the RRT provides a metric to aid in ensuring the safe return of a

vehicle. A detailed review of battery RRT literature was conducted, and exist-

ing battery RRT algorithms were found to be divisible into three overarching

groups: static RRT maps, model-based predictors, and data driven predictors.

Empirical static

maps

Run Time

Voltage

Data-driven

prediction

Model-based

prediction

Battery Run-time Prediction Schemes

- Peukert’s law

- Transformations

- Neural nets

- Regression

- Time series methods

- Monte Carlo

- Unscented trans.

- Particle !lter

Load Run Time

Inputs
Run Time

pdf

f(x)

Model
u(t),w(t)

Inputs/

Uncertainty

Figure 2.1: Summary chart of battery prediction schemes in the literature.

2.1.1 Static Battery Run-time Maps

Static RRT mapping algorithms rely on a longstanding empirical re-

lationship known as Peukert’s law [28], which was originally formulated ex-

perimentally in 1897 [14]. Fundamentally, Peukert’s law is a current counting

technique with a polynomial modifier on the battery load current. The polyno-

mial current modifier empirically models the rate-capacity effect which result
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from the internal diffusion process of ions in a battery cell [29]. Contempo-

rary modifications [30–32] of the constant current load relationship expand

Peukert’s law to include piecewise constant loading,

L =
C

m
∑

k=1

αkI
b
k

(2.1)

where Ik are constant current loads belonging to some finite set Ik ∈ I1, I2, ..., Im

and αk are the duty cycles of the respective current loads. Furthermore, L is

the remaining life in hours, C is the battery capacity in A-h, and b > 1 is

some experimentally determined finite scaling coefficient. As equation (2.1) is

analytical, uncertainty analysis provides an estimate of the Peukert prediction

variance [19]. Peukert prediction uncertainty is given as follows,

σ2
L = Ī−2bσ2

C + b2C̄2Ī−2(b+1)σ2
I (2.2)

where C̄ and σ2
C are the current mean and variance of the battery capacity

in A-h, respectively. Furthermore, Ī and σ2
I are the mean and variance of the

battery current draw.

Other modern analytical methods [33–35] utilize algebraic transforma-

tions to exploit a region of linearity in the discharge process. These trans-

formations remove the denominator polynomial term of Peukert’s law, and

subdivide the time discharge curve into an exponential region and a linear re-

gion. Linear regression of the linear region of the transformed function provide

for RRT prediction. To further extend the prediction capabilities of Peukert’s
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law, researchers further modify equation (2.1) to accommodate additional in-

puts. These added empirical relationships allow for additional prediction in-

puts, such as temperature [36], current duty cycles [30–32, 37], battery age

[38], and current SOC [36, 38]. In low rate discharge systems (> 1A) with

purely constant discharge profiles (m = 1), Peukert’s law has been shown to

accurately predict RRT of a battery system with lead-acid chemistry [28].
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Figure 2.2: Comparison of Peukert’s run-time predictions made at 50% run-
time using discharge data from [39]. (a) Constant current [4 A] discharge time.
(b) Periodic current discharge [0-4 A]

While the static mapping techniques discussed above have been experi-

mentally demonstrated under certain conditions, e.g. with lead-acid chemistries

under constant current/temperature discharge, the methods fail more gener-

ally. Experimental studies [28] found Peukert’s law does not accurately predict

RRT for Li-ion or NiMH batteries, and even fails with lead-acid chemistries

when subject to stochastic loads. For mobile systems operating in field environ-

ments, battery power loads remain inherently stochastic due to both driver and

environmental uncertainties [4, 12, 16]. Furthermore, modern mobile systems,
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such as electric vehicles and unmanned ground robots, rely on high specific

energy chemistries such as NiMH or Li-ion to lengthen operation time between

charges [40]. Implementation of Peukert’s law with Li-ion constant/periodic

discharge data [39], illustrated in Figure 2.2, further substantiates the results

of [28]. Resultantly, RRT via empirical methodologies, such as Peukert’s law,

demonstrates erroneous predictions for mobile system which experience tran-

sient loading.

2.1.2 Data-Driven Prediction Methodologies

To overcome limitations associated with static mapping methods, data-

driven, or soft computing, approaches have been proposed to predict battery

RRT using purely measurements. In the literature, data-driven RRT pre-

diction for batteries falls into two distinct categories: battery state-of-charge

(SOC) forecasting and discharge process learning via artificial intelligence tech-

niques. Battery SOC, which is discussed in detail in Section A.3, indicates the

remaining charge in a particular cell.

Correspondingly, provided online estimates of SOC, linear regression

can forecast SOC to determine the time of cell exhaustion (SOC = 0) [41].

A least squares regression relating SOC to future run-time yields SOC(t) =

φ1t+φ0. Provided mobile system shutdown occurs at zero SOC, the predicted

RRT can be expressed analytically,

L = −
φ0

φ1
. (2.3)

While ample techniques exist for data-driven forecasting, which are discussed
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further in Section 2.2, only nonlinear regression [41] and ARMA forecasting

[42] have been presented in the literature for SOC RRT forecasts. As a physics-

based battery model remains necessary for online SOC estimation, purely data-

driven forecasting techniques discount the a priori known physics and suffer

under transient loading scenarios [11].

Contrastingly, artificial intelligence methodologies have been employed

to ascertain a nonlinear relationship between measured battery inputs and

RRT [43]. In particular, an artificial neural network (ANN) was trained with

87 high fidelity battery discharge data sets. These discharge tests included

measurements of battery current loads, terminal voltage and remaining dis-

charge time [43]. Once trained, the ANN was shown to predict mean RRT

with errors on the order of ±10.55%, under the assumption that future loads

are known [43]. For mobile systems of interest to this work, the future load

history cannot be known with certainty [12]. Furthermore, for a 2.5 hour mis-

sion, errors with the ANN method would result in RRT uncertainty of ±15.8

minutes. As a result, existing data-driven battery run-time techniques cannot

be used in the field and do not adequately capture transient effects [41].

2.1.3 Model-based Run-time Prediction

As discussed, the static mapping methods and purely data-driven schemes

fail to accurately predict battery RRT with stochastic loads due ignorance of

transient/dynamic battery effects. The battery electrochemical system, which

is introduced in detail in Section 2.3.3, exhibits transient load dependent ef-
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fects, such as the rate-capacity effect and recovery effects [44]. Resultantly,

prediction including transients requires a model basis which captures the dy-

namic effects of the battery system [24]. Furthermore, systems-level repre-

sentations of the battery discharge process remain nonlinear, which is further

elucidated in Section 2.3.3. As such, model-based prediction schemes must ac-

commodate nonlinear dynamic models. To ensure computational tractability

for online algorithm deployment, the discussion is restricted to discrete time

stochastic systems [45]. Generally, a stochastic nonlinear discrete system is

expressed as,

xk+1 = f(xk, uk, ωk) (2.4)

where xk and uk are the system state vector and the system input at time, k,

respectively. Furthermore, ωk is the zero mean Gaussian process noise, and

f(.) is the nonlinear discrete system which describes the state evolution. A

stochastic continuous time nonlinear dynamic system can be discretized to the

standard form of equation (2.4) via Euler-Maruyama discretization [46, 47].

Finally, as stochastic loading encountered in unstructured environments

cannot be guaranteed to be Gaussian, the prediction scheme should account

for non-Gaussian loading conditions. Provided a mathematical representa-

tion of the battery discharge process, several techniques exist for prediction

of future states and RRT: a priori extended Kalman prediction [48, 49], un-

scented transformations [50, 51], batch Monte Carlo [19, 52], and sequential

Monte Carlo (particle filtering) [15, 53–55].
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Assuming only Gaussian state uncertainty and process noise, lineariza-

tion of a nonlinear dynamic model, in equation (2.4), provides for prediction of

future states/uncertainty. Furthermore, if the model uncertainty is restricted

to be Gaussian, only the first two statistical moments, the state means and

covariance, must be predicted [49]. This linear prediction, known as first order

propagation, forms the basis of the prediction step of the extended Kalman fil-

ter [48]. Schematically, the first order propagation methodology is illustrated

in Figure 2.3.
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Figure 2.3: Illustration of model-based linear variance propagation via first-
order Taylor expansion. Adapted from [56].

To predict the one-step ahead state and variance, the nonlinear trans-

formation of equation (2.4) is linearized via a first-order Taylor series expansion

[57]. Linearization of the nonlinear state function produces the linear state and

noise matrices, given by Ak = ∇x f(xk, uk, ωk) and Ek = ∇ω f(xk, uk, ωk), re-

spectively. The first-order mean state prediction is given by equation (2.4),

where xk+1 is the one step ahead mean state forecast. Correspondingly, the

18



state covariance prediction is given by,

Pk+1 = AkPkAk
T + EkQkE

T
k (2.5)

where Pk+1 is the predicted covariance matrix and Qk is the variance of the

process noise.
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Figure 2.4: Comparison of model-based prediction methods. Adapted from
[50].

Contrastingly, the unscented transformation (UT), which forms the ba-

sis for the prediction step of the unscented Kalman filter (UKF), replaces the

first-order propagation prediction of the EKF. The UT, as compared to other

model-based prediction techniques, is demonstrated in Figure 2.4. Rather

than perform local linearization, a small set of significant particles, or sigma

points, propagate through the nonlinear model of equation (2.4). The set of

sigma points is composed of 2i + 1 values, where i is the number of model

inputs and model states [58]. These sigma points approximate a third order
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Taylor series propagation of Gaussian state uncertainty through a nonlinear

model [50]. Resultantly, the UT outperforms first-order propagation partic-

ularly when subjected to stark nonlinearities [59, 60]. Details of sigma point

generation are provided in [61].

While the presented first-order propagation and unscented transfor-

mation methods require little in terms of computational complexity, the lack

of non-Gaussian state prediction hinders prediction of complex systems [24].

Furthermore, predicted distributions of interest in this work, such as battery

RRT in stochastic environments, have been shown to exhibit non-Gaussianity

[11]. As such, the remaining discussion of model-based prediction methods is

restricted to nonlinear/non-Gaussian methods.

2.1.3.1 Particle Filter-based Prognostics

The particle filter has seen increased utilization in recent years, beyond

the initial proposed scope of online state estimation. In particular, the PF

methodology has been altered for long-term model-based predictions, or prog-

nostics, particularly in the field of condition-based maintenance [24, 55, 62].

Consequentially, as the PF allows for nonlinear dynamic models and provides

for non-Gaussian predicted state representation, the PF remains the standard

for model-based fault prognostics [63]. In Figure 2.5, the particle filter predic-

tion scheme for system prognostics of a generic fault is presented.
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2.1.3.2 General Markovian Stochastic Process

Rather than modeling individual realizations of a stochastic process to

predict remaining run-time, a Markov process representation models the evo-

lution of the state probability density functions (PDF) [64]. Resultantly, the

propagation of a PDF through a general nonlinear system can be expressed as,

P (xk|x0:k−1), which is the conditional probability of the current state given the

joint probability of all prior states, x0:k−1. The probability of the joint condi-

tional PDF, P (xk|x0:k−1) collapses to P (xk|xk−1) as a result of the celebrated

Markov assumption [24]. For prediction given the Markov process representa-

tion, the joint probability of all the predicted states P (xk:k+n) is given by the

product of the conditional transition probabilities, as shown,

P (xk:k+n, z1:k) = P (xk|z1:k)
n
∏

i=1

P (xk+i|xk+i−1) (2.6)

where n is the prediction interval and P (xk|z1:k) is the current state estimate

given the z1:k process measurements. To ascertain the marginal probability
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density function of the final state prediction, P (xk+n|z1:k), the intermediate

states must be marginalized [64]. Marginalization of the prediction states

gives the p-step ahead PDF prediction, as follows,

P (xk+n, z1:k) =

∫ ∞

−∞
. . .

∫ ∞

−∞
P (xk|z1:k)

n
∏

i=1

P (xk+i|xk+i−1)

n
∏

i=0

dxk+i (2.7)

Evaluation of the marginalization integrals is analytically intractable

and computationally complex to evaluate via numerical batch processing [64].

As a result, sequential prediction is adopted where the predicted state PDF,

P (xk+1, z1:p), becomes the prior PDF, P (xk|z1:p), for the subsequent predic-

tion. Mathematically, sequential prediction is expressed via the Chapman-

Kolmogorov equation,

P (xk+1, z1:p) =

∫ ∞

−∞
P (xk|z1:p)P (xk+1|xk)dxk, (2.8)

where p is the initialization time of the prediction. Under certain assumptions,

equation (2.8) becomes analytically tractable. For example, when assuming a

linear system process, normally distributed states and Gaussian process noise,

equation (2.8) reduces to the Kalman prediction equation [48]. However, for

general non-Gaussian stochastic loading and non-normally distributed states,

the Chapman-Kolmogorov equation remains analytically intractable [64].

2.1.3.3 Particle Filter Algorithm

The particle filter persists as the foremost methodology in the litera-

ture with regards to fault prognosis due to nonlinear/non-Gaussian prediction
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capabilities [64]. In addition to non-Gaussian prediction, the particle filter was

originally developed for non-Gaussian state estimation for nonlinear systems.

A summary of the sequential importance sampling particle filter routine for

estimation and prediction is briefly presented [24, 55].

For non-Gaussian state estimation, the states can be represented as a

sum of discrete weighted particles. The set of these particle locations and

associated weights,
{

xi
k−1, w

i
k−1

}

, respectively, approximate the state PDF at

time, k − 1,

P (xk−1|z1:k−1) ≈

Np
∑

i=1

wi
k−1δ(xk−1 − xi

k−1) (2.9)

where Np is the total number of particles, δ(.) is the Dirac delta operator, xi
k−1

is location of the i’th particle, and wi
k−1 is the associated particle weight.

P(xk+1|V1:p)

P(xk|V1:p)

xk

xk+1

k

(b)

(b)

Figure 2.6: Single step illustration of particle filtering prediction.

To obtain the predicted a priori state estimate, the set of particles,

xi
k−1, is propagated through the nonlinear dynamic model, xi

k = f(xi
k−1, uk−1).

Particle propagation is illustrated in Figure 2.6. Given a new measurement,
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zk, the a priori estimate can be updated via weight innovation. A common

assumption to simplify the particle filter implementation is to assume the

importance function and prior distributions are equivalent [65]. Resultantly,

the weight update given measurement innovation becomes,

wi
k ∝ wi

k−1P (zk|x
i
k) (2.10)

where P (zk|x
i
k) is the likelihood function for the measurement process. The

particle weights should remain normalized such that
∑

wi
k = 1. The poste-

rior distribution is represented via equation (2.9) with updated weights and

locations. To utilized the PF for prediction, the particles are continuously

propagated through the nonlinear dynamic model. During prediction, no mea-

surements are taken and thus the particle weights remain constant [55].

2.1.4 Metrics for Prognostic Fidelity Evaluation

To evaluate the fidelity of prognostics methodologies, numerous predic-

tion fidelity metrics have been proposed. A full review of prognostic metrics

used in academia/industry can be found in [66]. Protocol for prediction eval-

uation is to ensure the proposed algorithm predicts the ground truth run-time

over the entire run-time of the mobile system, known as the prognostic horizon

[24]. The ground truth (GT) run-time is the measured time of an experiment

performed for prognostic algorithm verification [67]. To evaluate an algo-

rithm over the prognostic horizon, the algorithm under study predicts RRT

at specified intervals over an entire experimental study. These predictions are
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evaluated against the GT run-time. Two metrics, utilized in this work for

algorithm comparison, are subsequently presented.

One common accuracy-based metric, for evaluating a prognostic algo-

rithm’s prediction fidelity over the prognostic horizon, is the relative accuracy

(RA) metric [68]. The relative accuracy of a prediction gives the fractional

error of the predicted RT and the GT for a given prediction time. An example

prognostic horizon with the RA metric is illustrated in Figure 2.7. As such,

the RA at time, ts, is given by,

RA(ts) = 1−
|r∗(ts)− r(ts)|

r∗(ts)
(2.11)

where r∗(ts) is the GT run-time and r(ts) is the predicted RT of the prognos-

tic algorithm under evaluation. The RA metric is bounded on the interval,

RA(ts) ∈ [0, 1], such that large prediction errors are truncated to a RA score

of zero. Furthermore, the numerator of equation (2.11) is often shortened to

∆GT (ts) = |r∗(ts)− r(ts)| for simplicity [67].

The RA metric individually evaluates the fractional accuracy of a prog-

nostic algorithm for a given prediction time on the prognostic horizon. Resul-

tantly, the normalized sum of the RA scores for the entire prognostic horizon

yields the cumulative relative accuracy (CRA) for a single prognostic study

[24]. The CRA can be expressed as follows,

CRA =
1

Np

tRT
∑

s=tp

RA(ts) (2.12)

where tp is the time of the first prediction on the prognostic horizon, tRT is the

GT run-time, and Np is the number of predictions over the prognostic horizon.
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As the domain of the RA scores is restricted, similarly, the domain of the CRA

scores is restricted to CRA ∈ [0, 1]. A perfect CRA score of unity implies the

prognostic algorithm under evaluation predicts the GT run-time perfectly for

each prediction made.
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Figure 2.7: Cumulative relative accuracy prognostic evaluation metric over the
prognostic horizon. Adapted from [67].

Evaluating a prognostic algorithm with solely accuracy-based metrics,

such as the CRA metric, ignores the associated predicted uncertainty bounds.

Resultantly, a hybrid precision/accuracy evaluation metric, the so-called the

α − λ (AL) prognostic metric, was introduced in [66] to further account for

prediction uncertainty. As a consequence of the dual precision/accuracy evalu-

ation, the AL metric has seen widespread adoption for prognostic methodology

evaluation in applications such as bearing fault prognosis [69], Li-ion battery

state-of-health prognosis [68], and battery end-of-discharge prognosis [11]. The

AL metric evaluates the total probability of an algorithm prediction which lies

within a shrinking horizon, illustrated in Figure 2.8.
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The α−λ bounds of integration for prognostic evaluation are given by,

∆α−λ(ts) = r∗(ts) [1 + α] (2.13)

where r∗(ts) is the GT run-time at prediction time, ts, and α is the window

modifier. An α = 0.3 implies a α − λ horizon of 30% with respect to the

remaining RT run-time, and as such, the bounds tighten with time. Fur-

thermore, the λ represents the normalized prognostic horizon where the GT

run-time indicates λ = 1. Finally, to award the binary scores, a percentage of

the predicted PDF, β must lie within the α− λ interval. Succinctly stated,

∫ +α

−α

π [r(ts)] ≥ β (2.14)

where π [r(ts)] is the predicted PDF at prediction time, ts. Provided an a

priori specified area of the predicted PDF lie within the AL bounds given by

equation (2.14), the prognostic algorithm is awarded a binary score of unity for

the prediction (AL(ts) = 1). Otherwise, a score of zero is issued (AL(ts) = 0).
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Akin to the RA metric, the AL metric can be evaluated over the entire

prognostic horizon for a single prognostic experiment. A normalized sum of

the AL scores over the prognostic horizon yields the cumulative α− λ (CAL)

metric

CAL =
1

Np

tRT
∑

s=tp

AL(ts) (2.15)

where tp is the time of the first prediction on the prognostic horizon, tRT is the

GT run-time, and Np is the number of predictions over the prognostic horizon.

As the domain of the AL scores is restricted, similarly, the domain of the CAL

scores is restricted to CAL ∈ [0, 1]. A perfect CAL score of unity implies the

PDF prediction of the prognostic algorithm under evaluation lies within α−λ

interval over the entire prognostic horizon.

2.2 Load Characterization Methodologies

As discussed, several model-based prediction algorithms exist in the

literature with respective advantages and disadvantages. Model-based predic-

tion for battery RRT prediction remains an open problem, due to the necessity

of load characterization [70]. However, in the battery RRT prediction litera-

ture, characterization of uncertain loads, imposed on a mobile system via the

environment, is treated as a secondary concern to prediction. In [13], a sliding

horizon average of the power loads is used for model forecasting. However,

as discussed extensively, these techniques ignore power load transients that

remain pivotal in the electrochemical discharge process [44]. To include load

dynamics, some works [13, 29, 71, 72] have assumed full knowledge of future
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power demands. Inherent to mobile systems, however, is non-deterministic na-

ture of future loads [12, 16]. Finally, some studies have adopted stochastic load

characterization using either stationary Gaussian power loads or as Markov

models, to account for uncertainty in the power demands [19, 20, 73, 74]. Of

the existing literature, only the studies which used jump-Markov models intro-

duce transients in power demand [19, 20, 74]. However, in these studies, load

characteristics were specified a priori with no data acquired online during op-

eration. As a result, existing methods in the literature fail to characterize the

variety of power loads potentially encountered by a mobile system.

2.2.1 Load Characterization and Forecasting

Generally, the load history imposed on a battery system represents

a time series of a complex mobile system/environment stochastic process.

For a ground robotic vehicle, a purely model-based representation of power

loads would require information on upcoming terrain terremechanical proper-

ties such as terrain cohesion and internal friction angles and vehicle/terrain

interaction [75]. Resultantly, a statistical characterization of the measured

power loads provides a data-driven approximation to the overall process for

load forecasting [76].

In the literature, numerous methodologies exist for the characterization

of time series for load forecasting, e.g., regression analysis, time series model-

ing methods, discrete stochastic systems modeling, and artificial intelligence

inspired forecasting [77, 78]. Multivariable regression, typically used in the lit-
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erature for short term load forecasting [77, 79], minimizes the residual sum of

squares of a function model of data. However, online regression forecasting re-

quires a priori knowledge of expected loading structure (linear, polynomial, or

logarithmic, etc.). Unsupervised symbolic regression, where the load structure

is identified via genetic programming, has seen limited adoption [80]. However,

metaheuristic optimization approaches can converge to local optima which do

not accurately characterized the load process and thus limit the methodology

[81]. As power loads are measured online during mobile system operation,

power load data must be characterized in a self-supervised manner without

requiring an operator to specify load structure [82].

Artificial intelligence (AI) inspired methodologies, such as the ANN

[83], fuzzy logic [84] and support vector regression (SVR) [41] have also been

used for load forecasting. As compared with regression techniques, the AI

inspired algorithms allow for direct nonlinear characterization of data. Resul-

tantly, these methods can model trends independent of direct model specifica-

tion. However, ANNs are prone to model overfitting where measurement noise

influences ANN trends, which results in forecasts with high variance (in the

machine learning sense) [83, 85]. Unfortunately, a reduction in model-order,

which reduces variance, results in attenuation of load transient characteri-

zation [79]. Furthermore, ANN and SVR require high fidelity data and the

forecasting model must be retrained given newly acquired data [77, 85]. Time

series modeling, via the autoregressive moving average (ARMA) scheme, also

provides for statistical forecasting [76]. For example, for load forecasting, such
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as power grid demand analysis which exhibits seasonality, ARMA forecasting

has been shown effective [77, 86]. However, when loads remain unstructured

with transient power peaks, ARMA forecasts fail to capture transient behavior

for long term forecasting [77, 85].

2.2.2 Forecast Monitoring

For a stationary load process, a single accurate load characterization

can provide sufficient information for all future forecasting/prediction [87].

However, power load stationarity cannot be guaranteed for a mobile system

operating in an unstructured environment [21]. Resultantly, the transient load

process must be recharacterized when the forecast and measurements no longer

coincide [88].

The exponentially weighed moving-average (EWMA) control chart pro-

vides a method to determine when forecast residuals exceed an a priori spec-

ified threshold [89]. Upon exceeding the EWMA control chart threshold, the

load process can be recharacterized to abate the residual error [87]. The

EWMA chart statistic can be recursively computed as follows,

rk = λrek + (1− λr) rk−1, (2.16)

where λr ∈ (0, 1) is the EWMA forgetting factor, and rk−1 is the previous

EWMA statistic value. Furthermore, the difference between the one-step

ahead forecast and measurement provide the error function,

ek = yk − ŷk, (2.17)
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where yk is the measured load value and ŷk is the one-step ahead forecast

made at time, k − 1 [87]. The control lines, which indicate the maximum and

minimum healthy values of rk, are given by,

CL = µe ± Lσe

√

λr

2− λr

[

1− (1− λr)
2i
]

(2.18)

where µe is the mean process residual, σe is the variance of the process residual,

L is an a priori specified control bound (typically L = 3), and i is the number

of samples [89].

2.3 Dynamic Battery Models

Energy-aware control and run-time prediction for battery systems both

require dynamic models which account for variable current loading and the

associated systems-level electrochemical phenomenon. While subtle dissimi-

larities in physics and performance exist between prevalent battery chemistries,

the general operation and internal diffusion effects remain fundamentally com-

parable [7]. The following discussion notionally introduces the basics of the

battery electrochemical reaction from a systems/control perspective and mo-

tivates the selection of the equivalent circuit model abstraction.

2.3.1 Systems-level Battery Process

The foundation of the electrochemical cell results from the combination

of two electrodes, the anode and the cathode, which are divided by an elec-

trolytic separator [7]. Selection of the electrolyte and electrode constituents,
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Figure 2.9: General schematic of the battery electrochemical reaction for (a)
discharge and (b) charging [7].

also known as active materials, determines battery properties and specifies

the cell chemistry [90]. For the NiMH battery chemistry utilized in the robot

studies of this work, the electrodes are composed of nickel oxyhydroxide and a

metal hydride compound for the positive and negative terminals, respectively

[7]. Additionally, the electrolyte is some form of a hydrogen permeable alloy,

commonly potassium hydroxide [7]. Each electrode individually forms a half-

cell, which can be viewed as the solid matrix electrolytic material suspended in

additional electrolyte solution [91]. Combination of two half cells forms a full

electrochemical cell with the summation of each individual half-cell potential,

computed via the Nernst equation, providing the overall electrochemical cell

potential, or measured battery voltage [7].

Flow of internal ions dictates the process of the electrochemical system,

seen in Figure 2.9. During cell discharge, the positive electrode accepts elec-

trons, while the negative electrode loses electrons. Internally, positive ions,
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or cations, flow from the anode, which oxidizes, to the cathode resulting in

reduction [90]. For the NiMH chemistry, positively charged hydrogen atoms

join the cathode from the anode during the discharge process [7]. Similarly

for the discharge process of Li-ion chemistries, the lithium cations intercalates

into the cathode electrode from the anode [92]. The electrolytic separator pro-

vides the avenue for transport diffusion and regulation of these ions between

the electrodes [90]. Battery depletion results upon reaching a potential equi-

librium between the two half-cells [7]. For secondary, or rechargeable, cells,

the above discussion and the electrochemical reactions remain reversible. As

a result, the cation diffusion direction and oxidation-reduction reaction are

reversed, as seen in Figure 2.9.

Contrasting to the internal electrochemistry, the electronics/shutdown

conditions of a mobile system depend on the terminal voltage of the battery

cells. While cell output voltage depends on myriad factors (e.g. the electrode

and electrolyte phase potentials, reaction rates, and current densities in the

electrolyte [92]), the discharge curve, seen in Figure 2.10, simply relates the

abstract concept of state-of-charge to open circuit battery voltage. The iconic

nonlinear homeomorphism results from the change in concentration of the

active solid material in the electrolyte at the anode/cathode electrodes [44].

Given a loaded battery cell, additional discharge effects must be consid-

ered to determine the terminal battery voltage, as seen in Figure 2.11. Internal

resistance to load currents results in ohmic losses, which generally exhibits a

linear effect. Contrastingly, activation polarization provides initial resistance
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Figure 2.10: (a) Open circuit discharge curves of single cells of NiMH and Li-
ion chemistries (b) Age dependency of discharge cycles illustrated for a 3000
mA-h NiMH battery pack at 1A constant load.

to diffusion of ions at the surfaces of the electrodes. Finally, a nonlinear load

dependent resistance to ion flow through the electrolyte results in a concen-

tration polarization resistance [7]. These resistances to the diffusion process

provide for the recovery effect [44], where the terminal voltage of a battery

will recover when unloaded. Furthermore, at higher current rates, the diffu-

sion process losses efficiency resulting in the rate-capacity effect [7], where the

apparent capacity of the battery diminishes.

2.3.2 Modeling of Battery Physics

Mathematical modeling of the electrochemical process remains an ardu-

ous process due to the subtle nuances associated with the ion reactions. Con-

sequently, a spectrum of models exist which span the divide between model

fidelity and computational efficiency [72], see Figure 2.12. High fidelity mod-

els, such as those developed by [92, 93], adhere to a first principle modeling
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Figure 2.11: Battery cell polarization effects which link terminal voltage with
load current [7].

approach and utilize porous electrode theory to model the ion diffusion in the

cells. Consequentially, these physics-based models remain computationally

complex preventing real time usage [93], however, averaged electrochemical

models have been employed for online estimation with success [44].

System level battery models

Equivalent Circuit

Models

+
-

SOC Markov

Models

. . .

Fick’s Di!usion
Models

SOC = 0 SOC = q0

Discharge

C(x,t)

Figure 2.12: Systems level battery models in the literature appropriate for
run-time prediction.

For systems-level battery modeling, physical properties of the diffusion

process are selectively modeled for computational efficiency at the expense of

model accuracy [94]. The most common models presented in the literature are
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summarized in Figure 2.12. Inclusion of the rate-capacity and recovery effects

with accurate model parameters has shown to produce models with errors of

2% for predicting terminal voltage and state-of-charge [95].

One potential systems-level representation of the electrochemical dis-

charge process is to model the lumped diffusion process in the electrolyte

through a one dimensional Fick’s diffusion equation, as introduced in [71].

Under the boundary conditions and model assumptions detailed in [96], an

analytical solution exists to the partial differential that can be used to solve

for battery RRT under stochastic loading conditions. In controlled discharge

studies, the analytical Fick’s equation has been shown to accurately predict

battery RRT under a priori known piecewise constant current loads with er-

rors bounded by 2.7% [20]. However, these Fick’s diffusion models, which have

been presented in the battery RRT prediction literature [20, 29, 71, 74], have

not received widespread adoption due to the lack of capabilities to incorporate

temperature and aging effects into model parameters [74]. Furthermore, as

the parameters are not physically motivated, parameter identification remains

non-trivial [20]. Finally, the Fick’s diffusion equations, as presented, discount

the voltage-based failure associated with field battery operation [18].

Another systems-level representation of the battery discharge process

presented in the literature uses a Markov chain to model the discharge process

[97]. A chain of sequential Markov states, shown in the center of Figure 2.12,

represents the battery SOC. The Markov transition probabilities represent the

discharge and recovery processes. Run-time is assessed via a Markov chain
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forecast realization [73]. For pulsed-load discharge tests, the SOC Markov

model was shown to predict battery RRT with a bounded error of 4% [74].

While the SOC Markov chain has been presented in the research literature [73,

97–99] for small-scale wireless devices, the Markov model transition properties

are not physically motivated and remain non-trivial to identify online [20].

2.3.3 Lumped Parameter Battery Model

To model the dynamic response of the battery electrochemical reac-

tions, the equivalent circuit model utilizes the lumped parameter abstraction.

In contrast to the partial differential equations that model physical ion diffu-

sion in [93], a lumped parameter model mimics the diffusion effect via internal

model current flow, and resultantly, model accuracy suffers. To model the

various macroscopic electrochemical effects of the battery system, numerous

ECMs have been proposed and implemented in the literature for particular ap-

plications, e.g. SOC estimation [100], battery impedance modeling [72], and

health prediction [101]. A comprehensive study of the accuracy and usage of

common battery ECMs can be found in [95].

The modified Thévenin ECM, illustrated in Figure 2.13, captures the

critical rate-capacity and recovery macroscopic effects of the battery system

and hence was selected for the prediction/control algorithms of this work. Fur-

thermore, the Thévenin model provides reasonable model accuracy, with state

and output voltage errors bounded by 2% [72] without significant computa-

tional expense. As discussed earlier, the methodology, presented in the ensuing
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Figure 2.13: Modified Thévenin equivalent circuit model of a generic electro-
chemical battery system.

chapters, is not restricted to the selected model.

Remaining battery charge, qB, forms the foundation of the Thévenin

ECM. The charge indicates the remaining energy in the electrochemical system

while also explicitly dictating the battery open circuit voltage through the

discharge curve relationship, shown in Figure 2.13. The charge state was

normalized to simplify the nonlinear state equations and to generalize the

discharge curve models. Scaling the current battery charge with the maximum

battery charge, q0, provides the normalized charge,

q̄ = qB/q0 (2.19)

Additionally, the normalized charge represents the ratio of the battery charge

remaining, which colloquially is known as the battery state-of-charge,

SOC = q̄ × 100% (2.20)

Furthermore, the normalized charge and open circuit voltage, VOC, are related

through the discharge curve, expressed in this work as,

VOC = Γ(q̄) (2.21)
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As expected, the lumped parameters of the ECM model the physical

process of ion flow. The diffusion capacitance, CD, represents the inclination

of surface ions of the electrode to initially surge from the battery provided

a current load. Contrastingly, the polarization resistance, RP , models the

losses prior to the initial diffusion. Standard ohmic dissipation is captured

by the general internal resistance term, RI . The effects of RP and RI both

contribute to the polarization effects visible in Figure 2.11. Finally, internal

self-diffusion of charge, which is especially prevalent in NiCd cells [7], is given

by the internal dissipation term, RD. Combining the aforementioned terms,

the nonlinear dynamic equations for the Thévenin ECM are given as follows,

V̇D = −
1

RPCD

VD +
1

CD

IL (2.22)

˙̄q = −
1

q0RD

Γ(q̄)−
1

q0
IL (2.23)

where the nonlinear model states are VD, the diffusion voltage, and q̄, the

normalized remaining charge. Furthermore, the model input, IL, represents

the battery load current. Relating the internal model states to the battery

terminal voltage, VB, the nonlinear model output is,

VB = Γ(q̄)− VD − RIIL (2.24)

Discounted in this model are temperature and aging effects on the bat-

tery cell. The experiments conducted for this research utilize NiMH cells with

a low number of discharge cycles, and thusly temperature and aging are neg-

ligible [7]. However, extensions of the above ECM to include these effects

remains feasible, see [95].
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2.4 Probability of Mission Completion Assessment

Mobile system are deployed to accomplish objectives or to complete a

mission subject to finite onboard energy constraints. For example, an electric

vehicle is used to complete a morning commute mission subject to the uncer-

tainties of traffic without exhausting the onboard battery [102]. Furthermore,

a teleoperated ground vehicle could be deployed to travel to a hostile building

and back while conducting surveillance [12]. In each scenario, mission failure

remains undesirable and results in costly/dangerous system recovery or the

forfeiting of a mobile system [26]. However, reliability analysis of the mis-

sion/vehicle process can yield an estimate of probability of mission completion

(PoMC) to inform the driver/supervisory control algorithm of current mission

feasibility [103]. Considerable literature exists on the assessment of mobile

system reliability in terms of component failure [104, 105] and vehicle mobility

[106, 107]. Contrastingly, only recently have researchers addressed the need

to evaluated the PoMC based on whether the necessary energy for a mission

exceed the available onboard storage [21, 108]. In the following section, exist-

ing reliability methods are discussed with a particular emphasis on evaluating

PoMC for mobile vehicles.

Model-based fault prognostics methodologies for reliability/failure anal-

ysis have matured to include both online updating of probabilities and dynamic

models [109–111]. Fault prognostics methods use dynamic models for statis-

tical forecasts and assess the probability of a particular model state lying in

a failure region for reliability assessment, as seen in Figure 2.14. For mobile
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systems, model-based fault prognostics methodologies have been applied with

a particular focus on component reliability/condition-based maintenance, such

as suspension failure prognosis [112] and sensor fault prognosis [113]. Appro-

priately, considerable attention has been paid towards assessing the reliability

of the onboard energy storage system of mobile systems. In [114], battery

reliability is predicted via a model-based representation of the battery state-

of-health and cell aging. Correspondingly, several other works [13, 17] present

methodologies based on fault prognosis/reliability analysis to predict battery

remaining run-time.

Failure Surface

Performance
Measure- x2(t)

x

Predicted

Measured /

Estimated

Performance Measure - x1(t)

Figure 2.14: Dynamic fault prognostics and multivariate reliability analysis.
[109]

Mission reliability analysis/mission planning in the literature has been

address by computing the probability of the necessary mission energy exceed-

ing the available onboard energy storage [21, 115]. In [113] and [116], the avail-

able onboard energy storage serves as a hard constraint for feasible mission

planning via dynamic programming and quadratic programming, respectively.

42



Furthermore, in [108], a Tabu-search method is used to generate candidate

mission profiles from a series of tasks to minimize energy requirements for a

mobile ground vehicle. The Tabu search ensures the required mission energy

never exceeds the available battery energy [108].

Finally, in [21], a Bayesian regression methodology is used to fore-

cast mission energy requirements. A reliability integral is used to compute,

P (Em(k) > Eth), where Em is the predicted mission energy and Eth is the

energy failure threshold. However, as discussed, for battery powered systems,

the rate-capacity effect of the electrochemical discharge reaction invalidates

direct energy considerations for PoMC estimation [74]. As a result of the rate-

capacity effect, two missions with identical energy requirements, but different

time/power demands, can result with two different final battery SOC [117].

Resultantly, existing techniques proposed in the literature do not accurately

assess the PoMC of a mobile system with finite onboard energy storage.

2.5 Energy-aware Control Schemes

Energy-aware control algorithms, as presented in the literature, at-

tempt to account for constraints imposed by finite energy storage systems

[118] when issuing control commands. In the literature, a range of energy-

aware schemes exist which can be generally segregated as power load distri-

bution optimization and input/task regulation. Resulting from the explicit

constraints in limited energy source applications, researchers have advocated

for such schemes as model predictive control (MPC), dynamic programming,
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or constrained global optimization methodologies which directly account for

state restrictions. Subsequently, supervisory control has found wide adoption

in applications such as chemical process regulation [119], robot trajectory con-

trol [25], and power electronics [120] amongst other implementations.

Task-scheduling energy-aware applications have a priori knowledge of

the necessary tasks to complete and the available onboard energy. Supervi-

sory control, for these applications, determines the optimal scheduling of tasks

conditioned on the constraints of the system. For instance, in [10], the discrete

operation modes of a remote network system are chosen to minimize charge

depletion of a battery system subject to latency constraints. In essence, the

algorithm exploits the charge recovery effect [74] of the battery system provid-

ing for deeper cell discharge [37]. Others have employed similar optimization

routines with variations on the objective function for energy-aware applica-

tions such as single battery powered CMOS circuits [121] and parallel battery

packs on electric vehicles [122]. A limitation of these task-scheduling schemes

is the requirement for a priori knowledge of tasks/power loads such that the

optimization routine can schedule discharge and recovery times [123].

Contrastingly, power load distribution control takes a reversed ap-

proach. Rather than scheduling tasks conditioned on energy storage limita-

tions, the control scheme schedules the usage pattern of the stored energy given

a stream of tasks/loads. For instance in [124], supervisory control dictates the

usage of both the battery and fuel cells in a hybrid vehicle, conditioned on the

constraints of battery SOC. Similar supervisory load allocation controllers have
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been developed for plug-in hybrid electric vehicles [22]. For non-dispatchable

energy generation (e.g. wind energy), optimal allocation (and turbine control)

of generated energy to the grid and storage systems provides for near-optimal

energy generation/storage [125]. As such, supervisory control schemes can

control both the storage mechanism and the optimal load profile. However,

as discussed, small scale mobile systems commonly have only a single energy

storage mechanism [8]. Resultantly, for small unmanned ground vehicles with

battery energy storage, the load distribution techniques remain invalid.

Although supervisory control has been utilized for the control and mis-

sion planning of mobile systems given uncertainty, limited work has been done

to incorporate energy storage constraints. In [126], a differentially driven robot

followed a path trajectory via a model predictive framework with Smith predic-

tors to account for time delays. Additionally, in [25], researchers implemented

robust MPC on a robot with unknown slip for trajectory tracking. In each of

the aforementioned works, the optimization includes nonholonomic constraints

of limited lateral slip, actuator saturation, and robot velocity limits. Only re-

cently have constraints on the energy storage mechanism been considered for

mission planning via MPC. In [106], graph theory optimization is employed

to minimize energy drawn from the battery system while traversing between

waypoints. However, minimization of energy consumption does not prevent

mobile system shutdown [127, 128]. For small unmanned ground vehicles, un-

expected vehicle shutdown commonly results from transient power demands

[129].
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2.6 Summary

As an extensive review of the literature has indicated, existing methods

for mobile battery system prediction and control ignore the effects of tran-

sient loads. Power load transients, when imposed on battery systems, activate

systems-level electrochemical effects, such as the rate-capacity and recovery ef-

fects. Furthermore, algorithms, in the literature, that do incorporate transient

load structures require a priori load characterization, which restricts applica-

tions to systems with known loads. However, in areas of continued growth,

such as electric vehicles [130] and ground robotics [131], power demands remain

a priori unknown and contain significant transients due to stochastic environ-

mental demands [12]. Consequentially, considerable work remains to extend

current battery prediction/control capabilities to include online characterized

transient load structures.

Additionally, with the continued increase in deployable computational

power, work in the literature points towards online implementation of prog-

nostics routines. As such, computationally complex algorithms, such as the

particle filter, are being used for online run-time prediction. A particular in-

terest to this work is the increased application of the particle filter to battery

remaining run-time prediction [15, 132]. In the existing literature, the particle

filter run-time predictions have been made offline with simple discharge tests.

Consequentially, considerable work remains to extend the theoretical particle

filter predictor to online applications such as ground robot operating in an

unstructured environment.
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Existing conjectures in the literature have proposed the direct evalu-

ation of mission energy versus onboard energy to determine the probability

of mission successes. For battery operated systems, which account for most

mobile robotic systems [133] and 3% of the US automotive market as of 2012

(hybrid/electric vehicles) [134], the electrochemical rate-capacity effect clearly

invalidates these claims. Resultantly, the online identification of the correla-

tion between mission energy and onboard energy remains an open problem.

Finally, the methods presented in the literature for energy-aware con-

trol have not been extended to include mobile systems, such as ground robots,

which have a single onboard energy source. Existing controllers presented in

the literature optimize the energy allocation between multiple energy sources,

such as ICEs and batteries in hybrid vehicles. Other controllers optimize a

finite set of tasks to ensure completion prior to energy exhaustion. Resul-

tantly, considerable work remains to design a controller which attempts to

maintain mobile system operation when subject to potentially infinite tasks

and transient power loads.
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Chapter 3

Online Stochastic Load Characterization

Systems operating with unstructured loads inherently exhibit stochas-

ticity and probabilistic jumps/transients. This chapter introduces the mathe-

matical nomenclature required for stochastic system characterization and the

Gaussian Mixture/Jump-Markov (GMJM) algorithm. Systems of interest in

this dissertation, as discussed in Section 1.2, operate in environments without

deterministic loading conditions, and consequently model-based predictions

must account for this load uncertainty online, see Figure 3.1, without a pri-

ori information [17]. Furthermore, uncertain transient load characterization

allows for prediction utilizing nonlinear dynamic model effects, such as the

battery rate-capacity and recovery effects [44]. Finally, as discussed in Sec-

tion 1.2.2, the validation of this work was performed with multiple unmanned

ground vehicle systems. While the discussion remains tailored to these partic-

ular UGV platforms, the following discussion and methodology is generalizable

to a wide range of systems.

Successful traversement of uncertain terrain by a tele-operated/fully-

autonomous ground robot requires myriad sensors/actuators, each with varied

power demands, for obstacle detection, surveillance, and locomotion [4, 12, 82].
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Figure 3.1: Environmental and mission profile (specified by the teleopera-
tor/supervisory control) effects through periodic sensor/actuation usage on
system energy storage.

As an example, power-hungry sensors, such as light detection and ranging (LI-

DAR) or visible/infrared spectrum cameras, may remain powered for full time

navigation/terrain inspection [82], or could be employed cyclically for periodic

surveillance depending on current environmental demands [135]. Furthermore,

steady state locomotion demands vary tremendously according to the terrain

terramechanical properties, vehicle command speed, and terrain inclination

[21]. Consequently, loads are: a priori unknown, inherently transient in na-

ture, and likely non-Gaussian.

As a consequence of the a priori unknown transient nature of unstruc-

tured loads and the necessity for statistical jump characterization for dynamic

predictions, an online methodology for load characterization was developed.

Transient loads have historically been represented via the jump-Markov chain
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Figure 3.2: (a) Example transient power loads imposed on ground robot bat-
tery system. (b) Non-gaussian kernel density fit of battery power loads.

process, which models the probability of transitioning between load states (or

Markov states), with many reported successes [16, 19]. However, these exist-

ing works assume full a priori knowledge of the transition properties of the

loads and provide no methodology for online learning of load demands. The

following methodology employs unsupervised clustering algorithms which de-

termine the structure of the jump-Markov chain without human input. As a

result, a system encountering unstructured loads can “learn” power demands

and ultimately utilize the characterized loads for prediction and control.

The remaining portion of this chapter is devoted to the mathemat-

ical representation and online characterization of uncertain transient loads.

Section 3.1 introduces the jump-Markov process for transient load represen-

tation. Subsequently, Section 3.2 introduces the Gaussian mixture clustering

algorithm which performs online clustering of measured load data. For online

self-supervised implementation of the methodology, the Akaike information
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decision metric is employed, which is discussed in Section 3.3. Finally, the

integrated algorithm for load forecasting is presented in Section 3.4.

3.1 Jump Markov Process Modeling

Resulting from the uncertain transient behavior demonstrated for sys-

tems operating with unstructured loads, the jump-Markov process was em-

ployed to mathematically represent the statistics of transient load behavior.

Akin to standard Markov chain theory, the jump-Markov process represents

the probability of transitioning from a current state to any other possible

model state, see Figure 3.3.

3.1.1 Markov Chain Theory

Each model state has a given probability of realization, typically ex-

pressed in vector notation as P (Xn). As time progresses, the probability

of the current load state will conditionally depend on all previous states
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P (Xk) = P (Xk|Xk − 1), requiring knowledge of all existing states. Result-

ing from the causality enforced by reality, however, the physical load demands

abide by the Markov property [16, 77]. The Markov property states that the

conditional probability distribution of the Markov chain simplifies to rely on

only the previous probability [136]. As a result, the conditional probability

simplifies to the following,

P (Xn+1 = x|Xn = xn) = P (Xn+1 = x|Xn = xn, . . . , X1 = x1) (3.1)

whereX1,...,Xn are from stochastic (loading) process, X(t), which is defined on

the countable set S. The set, S, contains all possible load states and defines the

Markov chain order. Furthermore, assuming that the loading process is gener-

ated by some unstructured environment which can be fully characterized, the

probabilities of transition, as illustrated in Figure 3.3(a), will remain constant

for the system throughout time. Consequentially, the following assumption

implies that the unstructured terrain remains isotropic in terms of the tran-

sient load statistics [17]. As a result, however, the loading process remains

time-independent and the load Markov chain similarly remains a stationary

process [136], or generally,

P (Xn+1 = b|Xn = a) = P (Xn = b|Xn−1 = a). (3.2)

where a and b are two particular load states. Resulting from the stationary

assumption of equation (3.2) and the Markov property of equation (3.1), the

Markov chain load process can be uniquely defined by a constant square matrix

of size, S. This constant matrix, known as the transition matrix, describes the
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probability of transitioning from each prior state in set S to the subsequent

state [136]. Mathematically, the transition matrix is defined as follows,

Tij = P (Xn+1 = j|Xn = i), (3.3)

where the
∑N

j=1 Tij = 1 constraint ensures a total probability for state tran-

sition of unity for each given state and i, j ∈ S. Upon the identification of

transition characteristics of the Markov process, the computation of the con-

ditional probabilities requires only simple matrix multiplication as follows,

P (Xn+1) = P (Xn)
TTij . (3.4)

3.1.2 Jump-Markov Process Realization

For realization, the jump-Markov process prior state is uniquely known

(the input vector has the following deterministic form, Xn =
[

1 0 0
]T
,

for a three state jump-Markov process where the prior location is the first

state). Furthermore, the realization of the jump-Markov process will provide

the subsequent Markov state, which will either remain the same or transition

(or jump) to another possible state. Mathematically, the realization remains

conditionally dependent on the previous state realization, or succinctly,

xt = Xt(ω)|xt−1 = Xt−1(ω) (3.5)

where ω indicates the random process sample space, ω ∈ S, that contains

the set of all possible outcomes, xt and xt−1 are the current and previous

realization respectively, Xt is the current Markov state, and Xt−1 is the known
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prior Markov state. Weighted random number generation adequately realizes

equation (3.5) for our purposes [48].

3.1.3 Characterization of a Markov Process

Provided with a sequence of load transitions, a jump-Markov chain

that describes the transitions statistics can be ascertained via maximum like-

lihood estimation (MLE). Direct measurement of power loads on the battery

bus results in a sequence of power measurements. These measurements must

first be clustered into respective discrete load states (Markov states) which

is addressed in Section 3.2. These measured load states are expressed as,

c(L) = {c
(L)
1 , c

(L)
2 , . . . , c

(L)
n }, where the elements c

(L)
i are the power cluster data

belonging to the set, c(L) ∈ 1, 2, N which defines all possible Markov states.

MLE optimizes the likelihood function provided the aforementioned load se-

quence for a statistical model to determine the model parameters [85].

Assuming independence of observation, the joint probability of observ-

ing the cluster data, given by c(L), can be expressed via the union of conditional

probabilities of observing all individual clusters in the sequence, or succinctly

stated,

P (Xn = c(L)n ) = P (X1 = c
(L)
1 )

n
∏

t=2

P (Xt = c
(L)
t |Xt−1 = c

(L)
t−1) (3.6)

Resulting from the Markov assumption stated in equation (3.3), the

probabilities of transitioning remain constant for identical state transitions.
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Consequently, the likelihood function can be expressed as,

L(θ) = P (X1 = c
(L)
1 )

k
∏

i=1

k
∏

j=1

θ
nij

ij (3.7)

where θij and nij are the unknown state transition probabilities and number

of transitions from state i to state j respectively and k is the a priori specified

number of Markov states. Furthermore, the maximum probability of tran-

sitioning from one state to any other cannot exceed unity (
∑

j

θij = 1), and

thusly, constraints must be enforced for MLE [85]. Taking the logarithm of

equation (3.7) and enforcing the probability constraint via a Lagrange multi-

plier yields the following MLE problem,

L(θ) = logP (X1 = c
(L)
1 ) +

∑

i,j

nij log θij +

j
∑

i=1

λi(1−
∑

j

θij) (3.8)

Maximization of the log-likelihood function with respect to the model

parameters, θ, yields the following method for identifying the transition char-

acteristics,

θij = Tij =
nij

m
∑

j=1

nij

(3.9)

3.2 Gaussian Mixture Clustering

During constant system operation or steady state periods, power de-

mands have been shown to exhibit Gaussianity for robotic ground vehicles

[122]. In-house experimental power load analysis, shown in Figure 3.4, further

corroborated the above claim. For twenty-two discharge studies, the skewness
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Figure 3.4: Illustration of Gaussianity of power loads during steady state
operation of a ground vehicle in two modes: Idling and locomotion at 0.25
m/s on 25 degree inclined tile terrain.

and kurtosis of the idle power loads were −0.098 ± 0.05 and 0.064 ± 0.13,

respectively. For the forward inclined power loads, the skewness and kurto-

sis were 0.029 ± 0.06 and −0.098 ± 0.09, respectively. As a result, a priori

characterization of all expected steady state operation modes of the ground

vehicle would provide a Markov chain load characterization [19]. However,

a priori characterization of loads potentially discounts varied driving styles

between vehicle operators, unexpected/uncharacterized terrains, and extreme

operation requirements [17]. Consequently, the robotic system should iden-

tify the Markov load structure online without requirements for a priori power

measurements. Online identification of the Markov structure requires a self-

supervised clustering methodology, such that the robotic system can determine

the structure of loads without human intervention. Such a technique requires

online clustering capabilities and a decision metric to determine the number

of clusters [137].
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While numerous clustering methodologies exist in the literature, such as

hierarchical and k-means clustering [85], the Gaussianity of the steady state

loads suggests that Gaussian mixture clustering could identify load clusters

directly/autonomously. The Gaussian mixture clustering algorithm takes a

vector of measured power load data, p(L) = {p
(L)
1 , p

(L)
2 , . . . , p

(L)
n }, that is po-

tentially non-Gaussian as a whole, and determines Gaussian sub-models (a

Gaussian mixture model). This clustering process is notionally illustrated in

Figure 3.5 and 3.6.

The probability density function for the entire load sequence can be

represented via weighted sums of the Gaussian sub-models, as follows,

Pθ(x) =

M
∑

k=1

αkφ(x|µk, σ
2
k) (3.10)

where the model parameters to be found are θ̂ = [α̂k, µ̂k, σ̂
2
k], and the distri-

butions of φ(x|µk, σ
2
k) are normally distributed. The αk values are mixture

weights of the Gaussian distributions that satisfy the normalizing condition,
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∑M

k=1 αk = 1. Furthermore, M dictates the number of clusters. As with find-

ing Markov chain parameters, optimization of the mixture model likelihood

function provides the statistical model parameters, as follows,

θMLE ∈ argmax
θ∈Θ

Pθ(X|θ) (3.11)

where Pθ(X|θ̂) is the likelihood function and Θ is the parametric space. For

ease of numerical implementation and the nonlinearity of the GMM likelihood

function, the MLE for a GMM is generally computed via the expectation-

maximization (EM) algorithm [138]. The EM algorithm, which is discussed

theoretically in detail for GMMs in Appendix C, iteratively calculates succes-

sively higher likelihood parameters until reaching specified convergence prop-

erties [85]. In the expectation step, the likelihood function is computed via

equation (3.12) with the current parameter estimates.

P (Cm|xi) =
α̂mφ(xi|θ̂t)

M
∑

m=1

α̂mφ(xi|θ̂t)

(3.12)

Subsequently, during the maximization step, the parameters are up-

dated via equations (3.13), (3.14), and (3.15).

αk =
1

N

N
∑

j=1

P (Ck|xj , θt) (3.13)

N is the total number of data point and Ck are the current clusters. In a

similar fashion, the update equations for µ and σ can be computed as follows,

µk =

N
∑

j=1

xjP (Ck|xj , θt)

N
∑

j=1

P (Ck|xj , θt)

(3.14)
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σk =

N
∑

j=1

[

(xj − µk)(xj − µk)
T
]

P (Ck|xj , θt)

N
∑

j=1

P (Ck|xj , θt)

(3.15)

The nonlinearity of the GMM MLE optimization problem implies pos-

sible existence of local minima at which the algorithm could erroneously con-

verge. Reinitialization of the EM algorithm initial conditions, θ̂0, can heuristi-

cally help mitigate poor routine convergence in accordance with [85]. For the

implementation of GMM clustering, in this work, the EM algorithm is reini-

tialized five times and run with identical convergence properties, i.e. maximum

number of iterations and step size minimum threshold for the likelihood func-

tion. The five optimized likelihood functions are compared and the parameters

that demonstrate the overall maximum likelihood are selected as optimal.

Each cluster contains information on the mean, variance and associated

model weight. As a result, when load forecasting, a load realization in cluster

one will exhibit the Gaussian characteristics given by cluster one. For this
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work, the Gaussian time series characteristics are assumed to be a white noise

process [76]. Transition characteristics between load clusters is found via the

equation (3.9), which requires the load data to be clustered, see Figure 3.6.

Clustering of the load data vector, p(L) = {p
(L)
1 , p

(L)
2 , . . . , p

(L)
n }, with the GMM

routine provides the clustered load vector, c(L) = {c
(L)
1 , c

(L)
2 , . . . , c

(L)
n }. Given

the GMM model parameters and the load vector, p(L), the probabilities of each

load belonging to each cluster are computed via the posterior probability,

P (C(L)
m |p

(L)
i ) =

α̂mφ(p
(L)
i |µ̂m, σ̂

2
m)

M
∑

m=1

α̂mφ(p
(L)
i |µ̂m, σ̂2

m)

, (3.16)

where C
(L)
m are the individual mixture models. Equation 3.16 only soft clus-

ters power loads. Commonly, the maximum a posterior (MAP) classification

methodology is employed [137] to select the cluster with the highest probability

to classify each load value, see Figure 3.6. Provided the posterior probability

in equation (3.16), the MAP classification for a particular load, p
(L)
i , is given

by,

c
(L)
i = argmax

m∈{1,2,...,M}
P (C(L)

m |p
(L)
i ), (3.17)

where c
(L)
i are the classified load points. With the load cluster sequence, c(L),

MLE of the Markov transition characteristics becomes feasible.

3.3 Unsupervised Model Selection

For unsupervised identification of the GMJMmodel structure, the num-

ber of Gaussian clusters must be determined without a priori specification.
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Computationally, cluster number determination remains a NP hard problem

and typically heuristic implementations require iterative EM algorithm fitting

for different cluster numbers [85]. Relative fit metrics provide for an assessment

of tradeoff between model complexity and model fidelity. Strictly increasing

the number of mixtures of the GMM will always result in greater maximum

likelihood functions, and thus increasingly complex models must be penalized.

For relative model comparison, several decision criteria exist including

the Akaike information criterion (AIC), the Bayesian information criterion

(BIC), the minimum description length (MDL) and cross-validation (CV),

to name a few [102]. The AIC metric was chosen for this work due to the

reported successes of unsupervised identification of cluster numbers with the

GMM methodology [139], however other relative metrics are anticipated to

perform similarly. The AIC metric is typically expressed as follows,

AIC = 2k − 2 lnQ (3.18)

where k is the total number of model parameters in θ and Q is the maximized

likelihood function which results from the EM algorithm during GMM param-

eter optimization. The number of parameters, k, for the GMM is given by

3M − 1 where M is the number of clusters [140]. Given the power load vector

and parameters in θ, the maximized likelihood can be computed as follows,

Q = −

M
∑

k=1

αkφ(p
(L)|µk, σ

2
k) (3.19)

As can be seen in equation (3.18), minimization of the AIC penalizes

progressively more complex models while recompensing more accurate models.
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Figure 3.7: Unsupervised model identification via Akaike information criterion.

Global minimization of the AIC provides the GMM fit with the optimal num-

ber of mixture models [137]. As discussed above and illustrated in Figure 3.7,

sequential fitting of GMMs and evaluating the AIC provides a straightforward

method for unsupervised identification of cluster number.

However, heuristic constraints on the fitting routine must be further

imposed. In this implementation, the total cluster space is limited to a max-

imum of 15 clusters resulting from the increasing computational complexity

associated with high cluster numbers [85]. Upon reaching 15 clusters without

finding a local AIC minimum, the iterative routine will end and select the 15

cluster fit. This restriction is justified for the ground robot verification exper-

iments, in this work, due to the relative low number of power load clusters

[17]. Future implementations of this methodology should remain cognizant to

this limiting assumption and perform some power analysis prior to restricting

cluster number.

62



3.4 Integrated Algorithm

Integration of the above techniques provides a methodology for online

characterization of transient power loads referred from hence forth as the Gaus-

sian mixture jump-Markov (GMJM) algorithm. For a given load sequence,

Gaussian mixture clustering coupled with AIC can identify the number of

load regions and the Gaussian parameters that characterize the load regions.

Upon MAP clustering of the load vector into the identified load regions, c(L),

the transient characteristics of the load sequence can be identified via a MLE

fit of a jump-Markov process. Resultantly, full characterization of a transient

load process requires only the Gaussian mixture information and the jump-

Markov transition matrix. Graphically, the overall GMJM methodology is

given in Figure 3.8.

Realization of a characterized GMJM process for prediction requires a

dual realization of both the Markov chain and the associated Gaussian process.

Given the previous GMJM cluster, the probability at time k + 1 for each

cluster can be found via matrix multiplication with the transition matrix, Tij ,

see equation 3.4. A weighted number realization of the posterior probability,

P (Xk+1), yields the predicted cluster,
⌢
ck+1. Secondly, with the predicted

cluster realization, a Gaussian random variable realization from GMM cluster

⌢
ck+1 results in a predicted power load from the GMJM characterization. As

the clusters are normally distributed, a normal random number generator is

sufficient to generate the predicted load,
⌢
pk+1. Sequential realizations imply

that the predicted cluster for k + 1 becomes the prior cluster to predicted for
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tion methodology.

time k + 2.

3.4.1 Ground Vehicle Load Characterization

To illustrate the GMJM methodology, the technique is applied to bat-

tery load data acquired from a small ground robotic vehicle operating on an

unstructured terrain. The experimental setup used to acquire the transient

power demands is discussed in further detail in Section 4.4. For this particular

data set, the robot does not utilize sensor cycling, and load transients result

from only terrain/motor command differences. Terrain includes loose gravel,

inclined linoleum tile and rough surface elevated obstacles. Each terrain and

idling, as expected, requires different power demands. A sample of measured

transient data is illustrated in Figure 3.9(a).

Overall, 64.19 minutes of power data was collected for this particular

test prior to system shutdown due to power system enforced voltage shutdown.
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Figure 3.9: (a) Sample load power data and current terrain. (b) Histogram of
entire power load vector (c) Autocorrelation of power load.

A histogram of the entire sequence of load data is given in Figure 3.9(b) which

illustrates the non-Gaussianity of the overall load sequence imposed on the

robotic system. As expected, the autocorrelation of power load data illustrates

the lack of independence of the load data. The measured autocorrelation

function follows the trend of the autocorrelation of a rounded square wave,

suggesting jump-transients [76].

For the following load characterization demonstration, a transient power

vector of 5000 samples, or approximately 10 minutes of data, is used for GMJM

algorithm. The data logging system on-board the mobile robot records the bat-

tery load current and terminal voltage at a rate of 8 Hz. Cross-validation of

model integrity given a truncated sample horizon is proven in Section 3.4.2.

The GMJM algorithm begins by iteratively fitting GMMs and evaluating the

AIC to determine cluster number in a self-supervised fashion. The AIC metric

for this load sequence example is given by Figure 3.10(a). Upon identification

of the cluster number, the GMM is found. For this particular example, the
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Figure 3.10: (a) Akaike information criterion identifying five Gaussian clusters
for example unstructured load characterization. (b) Resulting Gaussian mix-
ture model provided AIC cluster number identification. Cluster two, nearly
indiscernible, appears to model high powered infrequent transients.

overall GMM and the Gaussian components are illustrated in Figure 3.10(b).

Given the identification of Gaussian regions, the load vector, p(L), can

be clustered via MAP classification to provide the clustered load vector, c(L).

This classified vector provides for the identification of the transient character-

istics of the load vector. An overlay of actual power data and classified data is

shown in Figure 3.11(a). Provided the classification of power data, MLE yields

the jump-Markov properties of the GMJM model. Figure 3.11(b) depicts the

transition matrix probabilities for the jump-Markov system.

The preceding analysis provides a full characterization of the transient

jump characteristics of a measured power load without a priori specification

of model order. For the model-based particle filter algorithm, which will be

discussed in detail in Section 4.1, the Markov transition matrix and Gaussian

cluster information is used to realize individual transient loads. Contrasting

with typical load averaging methodologies, which propagate averaged load
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Figure 3.11: (a) Classification of power data into cluster data. (b) Jump-
Markov transition characteristics.
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Figure 3.12: (a) Individual realization of the characterized GMJM load pro-
cess. Comparison of actual load process versus a single realization of the
GMJM load process as a (b) kernel density estimation function comparison
and (c) autocorrelation functions.

models, the particle filter allows for transient load propagation [17].

3.4.2 Sample horizon cross-validation

A trade-off exists between computational time for GMJM characteri-

zation and the size of the load history, or training set size. Furthermore, large

training sets result in overtraining, whereby a model lacks generalizability and

results in high prediction variance [85]. However, small training sets poten-
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Figure 3.13: Data subdivision for k-folds analysis with training data and test
data for likelihood calculation, and for each k-folds CV, the training data size
is increased. [85]

tially lack sufficient information and yield models with large prediction bias.

As a result, the GMJM model should be trained with a training set vector of

sufficient length to capture load transient information, but sufficiently short

to avoid non-stationary changes in load demands.

Model cross validation allows for analysis for the generalizability of

a statistical model [85]. To account for training set variation, K-fold cross

validation utilizes random subsets of the entire data vector to both train and

validated the statistical model, see Figure 3.13. For the GMJM process, a

subset of the entire data set, p
(L)
t , is used to characterize a GMJM model.

Using subsets of the remaining data, p
(L)
cv , the model fidelity can be evaluated

through calculation of the cross validation likelihood functions given by the

GMM and Markov chain likelihood functions [23].

Provided the example load process used Section 3.4.1, an iterative com-

parison of training set size was conducted. For a sample window ranging from
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Figure 3.14: Results of K-fold cross validation study, where both GMM and
Markov models exhibit minimal improvement beyond a sample size of ten
minutes.

60 seconds to 20 minutes in increments of 12 seconds (100 new samples), a K-

folds routine was run to identify fidelity of both the GMM and Markov models

for the validation set, p
(L)
cv . For each cross validation, fifteen K-fold sets were

used. Increasing the sample window used for GMJM model characterization

is shown to have minimal effect beyond 10 minutes, as seen in Figure 3.14.

Consequently, all future analysis in this body of work utilizes the 10 minute

sample horizon for model training. Furthermore, to ensure consistency of pre-

diction/load characterization, loads are recharacterized prior to each predic-

tion. This contrasts with potential EWMA control chart monitoring discussed

in Section 2.2.2. Online adaptive forecast monitoring is recommended for fu-

ture works.

69



Chapter 4

Battery Remaining Run-time Prediction

Online prediction of battery remaining run-time (RRT) for systems

operating in stochastic environments requires model-based prediction. As re-

viewed in Section 2.1, existing battery run-time prediction schemes fail to

incorporate either the transient prediction requirements or the electrochem-

ical battery dynamics. Load realizations from the GMJM scheme address

the need for online transient load characterization. In this chapter, both the

nonlinear battery model, from Section 2.3.3, and the GMJM load character-

ization scheme, from Chapter 3, are united with an augmented particle filter

methodology for battery RRT prediction. This integrated scheme is henceforth

referred to as the GMJM/PF prediction methodology.

The ensuing sections are arranged to first introduce the particle filter

and culminate with two experimental studies that demonstrate the predictor

efficacy. Section 2.1.3.1 introduces the mathematical notation of the particle

filter and details the necessary considerations for the battery RRT prediction

application. The prognostic metrics, introduced in Section 2.1.4, are used to

validate prediction accuracy. With these metrics, the results of a Monte Carlo

simulation study are presented in Section 4.3. These Monte Carlo simula-
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Figure 4.1: Particle filter forecasting of non-Gaussian states for battery RRT
prediction.

tions demonstrate loading conditions under which the PF methodology out-

performs existing battery RRT prediction schemes. Finally in Section 4.4,

the GMJM/PF prediction methodology is validated with two experimental

studies.

4.1 Implementing Sequential Monte Carlo

While the particle filter has been previously used for battery run-time

prediction [13, 15, 55, 132], the PF routine presented in the following section

incorporates novel GMJM load realizations for transient prediction. Further-

more, the PF implementation presented in this work utilizes the EKF battery

state estimates from Section A.3 to mitigate additional computational com-

plexity [141]. The following section details the modifications necessary to nu-

merically approximate the Chapman-Kolmogorov equation for battery RRT

prediction with the GMJM process.
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As introduced in Section 2.1.3.1, the state probability density functions

for each discrete time step can be approximated via a set of weighted values.

The summation of the particles and their corresponding weights yields the

approximation for the initial probability density function, as follows,

P (xp|V
(b)
1:p ) ≈

N
∑

i=1

w(i)
p δ(xp − x(i)

p ) (4.1)

where w
(i)
p are the particle weights, x

(i)
p are the particle values , δ(xp − x

(i)
p ) is

the dirac delta function of each particle, N is the number of particles and p is

the time of prediction initiation. As the ECM battery model presented in Sec-

tion 2.3.3 requires only two independent states, the individual state particles

are given as, x
(i)
p =

[

V
(i)
Dp

q̄
(i)
p

]T

. The sum of the weighted values effectively

models the uncertainty associated with model states, unstructured model in-

puts, and stochastic outputs. There are many varieties of the particle filter

methodology described in the literature. For prediction and fault prognostics,

the sequential importance resampling (SIR) algorithm, shown in Figure 4.2, is

used [13, 17].

Prior to prediction, the current battery model state estimate (x̂k|k, Pk|k)

from equations (A.12) and(A.13) must be approximated via weighted particles.

As the EKF returns a Gaussian state estimate for the diffusion voltage and

normalized charge, the 2 ×N particles are initialized uniformly over the 99%

confidence interval of the estimates. After generation of the initial x
(i)
p values,

the likelihood of measurement of each particle instance dictates the associated

particle weight [64]. As the measurement noise is assumed to be Gaussian, the
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measurement likelihood for each particle realization is given as,

P (V (b)
p |x(i)

p ) = (2πR)−1/2 exp

[

−
1

2R

(

V (b)
p − g(x(i)

p )
)2
]

(4.2)

where R is the measurement noise variance and g(.) is the battery measurement

process given by equation (2.24).

To improve computation efficiency of the particle filter algorithm, the

weight calculation is simplified by assuming the proposal distribution is the

prior distribution [142]. Furthermore, to avoid particle degeneracy during ini-

tialization, sufficient (N > 50) particles are realized. With the aforementioned

assumptions, the initial particle weights are given by the normalized likelihood,

w(i)
p =

P (V
(b)
p |x

(i)
p )

∑N

i=1 P (V
(b)
p |x

(i)
p )

. (4.3)
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The initially derived weights are used for weighted resampling of the particles

such that the weights become uniform and the resampled particles approach

the initial state estimates, (x̂k|k, Pk|k). Weight resampling can also be bypassed

provided the computational ability to generate normally distributed random

variable realizations [64].

The weights remain constant for the prediction interval from the time of

the final measurement, p, to the final prediction time p + n. Resultantly, the

particle filter one-step prediction only requires propagation of each particle

through the dynamic battery model, shown in Figure 2.6. Mathematically,

particle propagation is given as follows,

x
(i)
k+1 = f

[

x
(i)
k ,

⌢
p
(i)

k

]

(4.4)

where f
[

x
(i)
k ,

⌢
p
(i)

k

]

is the nonlinear battery dynamic model given by equations

(4.14) and (4.15) and
⌢
p
(i)

k a unique realization of the GMJM load process for

each particle. The summation of the particles and their associated weights

yields the predicted state distributions,

P (xk+1|V
(b)
p ) ≈

N
∑

i=1

w(i)
p f

[

x
(i)
k ,

⌢
p
(i)

k

]

. (4.5)

Likewise, the predicted probability density function for the battery terminal

voltage can be computed. The predicted state particles and GMJM load pro-

cess propagate through the battery output equation,

P (V
(b)
k+1|V

(b)
p ) ≈

N
∑

i=1

w(i)
p g

[

x
(i)
k+1,

⌢
p
(i)

k+1

]

(4.6)
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4.1.1 Particle-based Evaluation of Remaining Run-time

The prediction scheme outline in the previous section provides for long-

term forecasting of battery states. To evaluate the RRT of the battery system,

the probability of the battery terminal voltage exceeding the shutdown voltage

(the hazard zone) is computed during each prediction interval. After the dy-

namic propagation of the particles, the approximate battery terminal voltage

PDF, P (V
(b)
k+1|V

(b)
p ), is compared to the shutdown voltage distribution, shown

in Figure 4.3. The probability of shutdown at prediction step p + n is given

by the reliability integral,

P (VSD > V (b))p+n =

∞
∫

−∞

ΦSD(V )P (V
(b)
p+n)dV (4.7)

where ΦSD(V ) is the cumulative distribution function of the shutdown voltage

and P (V
(b)
p+n) is the predicted battery terminal voltage PDF given by equation

(4.6).

As the voltage and shutdown distributions are non-Gaussian, the in-

tegral in equation (4.7) must be computed numerically [109]. Kernel density

estimation was used to smooth the discrete particle estimates to a continuous

numerical PDF approximation [62]. With the numerical approximations of

the voltage PDF and the shutdown CDF, Riemann sum integration is used to

numerically compute the reliability integral of equation (4.7).

The shutdown probability is evaluated iteratively through each pre-

diction step, and resultantly, the CDF of shutdown time is numerically con-

structed, as shown in Figure 4.3. Finally, shutdown cumulative probability
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Figure 4.3: (a) Cartoon depiction of the predicted battery terminal voltage
distribution via the particle filter as compared to the shutdown voltage distri-
bution. (b) Sequential generation of the RRT cumulative distribution function.

over 99% serves as the exit condition for the particle filter prediction routine.

The resulting prediction is an empirical CDF which represents the probability

of shutdown at a given instance in time, as follows

P̂ (ts+n) = P (VSD > V
(b)
s+n) (4.8)

4.1.2 Scalar Run-time Prediction

While the GMJM/PF algorithm returns CDF run-time prediction, mo-

bile system operators or other algorithms require a scalar prediction of run-

time. Using the CDF run-time prediction from (4.8), the median occurs at

the prediction time where P̂ (ts+n) = 0.5. The predicted time at this value

is the median RRT, µ̂RRT = tk

[

P̂ (ts+n) = 0.5
]

[143]. The summation of the

predicted RRT and the current mission time, t(c), yields a prediction for the
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overall battery run-time.

µ̂RT = t(c) + tk

[

P̂ (ts+n) = 1/2
]

(4.9)

Additionally, although the GMJM/PF predicted CDFs can be non-Gaussian,

the RRT prediction can be approximated as normal if necessary for imple-

mentation with other methods. In particular, such an approximation is nec-

essary for the mission probability scheme introduced in Chapter 5. Akin to

the calculation of equation (4.9), the variance of the RRT prediction can be

approximated as follows,

σ̂2
RT = max

{

tk

[

P̂ (ts+n) = −σ
]2

, tk

[

P̂ (ts+n) = +σ
]2
}

(4.10)

where σ is the standard normal standard deviation [143]. The maximum of

the upper and lower confidence intervals ensure the variance prediction is con-

servative and does not under-approximate the uncertainty.

4.2 Battery Model for Prediction

For long term forecasts, the battery model must be reformulated with

power load inputs to ensure conservation of energy [144]. The load current in

equation (2.22) actually requires knowledge of the load impedance, or infor-

mation on both current draw and terminal voltage. As a result, the battery

system prescribes the voltage, or effort, into the system (typically into a bat-

tery protective circuit or power electronics system), and the load dictates the

current, or flow. Voltage variation over time is undesirable for normal opera-

tion of DC electronics [112], and accordingly, a DC bus line is regulated via
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switch-based power electronic systems [145]. A typical implementation of a

line regulating DC-DC boost converter, coupled with point-of-load converters

in cascade form, is illustrated in Figure 4.4 [146].

In this work, the switch-power electronics are assumed to be fast regu-

lated with dynamics on the order of 10 microseconds or faster, and thusly the

power electronics can be modeled as algebraic relationships [145]. Addition-

ally, the power converter is viewed as a lossless process (given the utilization

of only switch components and inductors/capacitors) [112]. As a result of the

voltage regulation and lossless converters, a constant current load on the bus

line will appear to the battery as a constant power load, see equation (4.11).

As the battery voltage decays, the power converter will draw higher currents

to compensate and to allow the external load to draw a constant current, but
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Figure 4.5: Battery load discharge test with robot vehicle drawing constant
current loads on the voltage bus, resulting in a constant power load on the
battery system.

conservation of energy dictates constant power draw,

PL = PM = IMVbus, (4.11)

where PL is the load power on the battery pack, PM is the load power on the

bus, Vbus is the fast regulated bus voltage which remains constant, and IM is a

bus current load. Since the loads appear as constant power loads, utilization

of currents for forecasting will result in a statistical bias, as is illustrated in

Figure 4.5.

Resultantly, the battery dynamics, given by equations (2.22) and (2.24),

must be rederived to account for power load inputs. As such, the prior equa-

tions become subject to the following constraint,

IL =
PL

VB

(4.12)
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where VB is the battery terminal voltage, given by equation (2.24). Factoring

in the explicit power load constraint and performing algebraic manipulations,

the battery terminal output voltage given an input power load is given as

follows,

VB =
1

2
[Γ(q̄)− VD] +

1

2

√

V 2
D − 2VDΓ(q̄) + Γ(q̄)2 − 4RIPL (4.13)

Incorporation of the power constraint into the battery model produces

a nonlinear output equation with a non-affine input function, PL. Substitution

of IL = PL/VB into the ECM state equations with the solution for VB given

in equation (4.13) yields the following augmented state equations,

V̇D = −
1

RPCD

VD +
2

CD

Υ(PL, VD, q̄)PL (4.14)

˙̄q = −
1

q0RD

Γ(q̄) +
2

q0
Υ(PL, VD, q̄)PL (4.15)

where the nonlinear state dependent function, Υ(PL, VD, q̄), is given as follows,

Υ(PL, VD, q̄) =

[

Γ(q̄)− VD +

√

V 2
D − 2VDΓ(q̄) + Γ(q̄)2 − 4RIPL

]−1

(4.16)

As a result of the power constraint on the battery model, the dynamic equa-

tions now exhibit regions of infeasibility in the input function, PL. The input

load power remains feasible provided membership in the subsequent subset

of R given by, PL ∈
[

−∞, 1/4RI

(

V 2
D − 2VDΓ(q̄) + Γ(q̄)2

)]

. Intuitively, the

above constrained input set implies the instantaneous load power drawn for

the battery system is limited.

80



4.3 Load Considerations for Algorithm Selection

A drawback of the proposed GMJM/PF methodology is the computa-

tional complexity of the algorithm. The particle filter computational complex-

ity is given by O(N) with N as the number of particles [54] whereas the EKF

model-based predictor is O(N2) where N is the number of model states [147].

As the PF requires considerable particle coverage for each state [147], the PF

computational complexity quickly surpasses the EKF.

Consequentially, utilization of the GMJM/PF scheme over the EKF

should yield significant improvement in prediction fidelity to justify the im-

plementation costs. As the GMJM/PF methodology was developed to over-

come existing prediction limitations associated with transient uncertain loads,

a Monte Carlo simulation study was conducted to explore the relationship be-

tween load cluster separation (and hence the magnitude of transient jumps)

and the prediction fidelity of the GMJM/PF, EKF, modified Peukert’s and

linear regression predictions. The other prediction methodologies were intro-

duced in Section 2.1.

4.3.1 Second-order Markov Load Simplification

To model the transient power loads on a battery system, a two-state

Markov jump chain was utilized, see Figure 4.6. This simple load process

was chosen for analysis as the steady state probabilities and transition rate

characteristics of the second-order Markov process can be specified directly

[148].

81



P1 P2

T21

T12

T11 T22
P

D
F

Load Power [W]
(a)

(L) (L)

(b)
Transition Properties

Cluster
Separation

P1

(L) P2

(L)

Figure 4.6: Simple loading process for algorithm evaluation.

Provided the steady state cluster probabilities and transition rates of

the second-order process, the Markov transition matrix can be explicitly found,

Tij =

[

1− π2 − λπ2 π2 + λπ2

λπ2 − π2 − λ+ 1 π2 + λ− λπ2

]

(4.17)

where π2 is the steady state probability of load two and λ is the transition

rate [148]. As the probabilities of each load sum to unity, π1 = 1 − π2. Fur-

thermore, the steady state total load is held constant such that only transient

characteristics change. As such, to ensure a constant steady state power load,

the following relationship relates the two load values,

p
(L)
2 = π−1

2

[

p̄(L) − π1p
(L)
1

]

(4.18)

where p̄(L) is the specified power load average and p
(L)
1 and p

(L)
2 are the result-

ing Markov state load values. Cluster separation is defined as the difference

between the power clusters,

∆p(L) =
∣

∣

∣
p
(L)
2 − p

(L)
1

∣

∣

∣
. (4.19)
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Figure 4.7: Basic load structure realizations with ranging cluster separation.

4.3.2 Prediction Fidelity and Load Cluster Separation

To explore the relationship between the size of transient jumps in a

loading process (cluster separation) and the prediction fidelity, a Monte Carlo

simulation study was conducted. In the simulation study, a battery model,

described by the ECM detailed in Section 4.2, is subjected to a stochastic

load and each prediction methodology is employed over the entire prognostic

horizon, introduced in Section 2.1.4.

To ensure approximate run-time consistency, the overall load process

was ensured to require identical steady state load power of p̄(L) = 16.5 W.

The battery model was subjected to second-order power load transients with

cluster separation, ∆p(L), ranging from 5 W to 47 W. Probability density

functions of the loading process as applied during the Monte Carlo simulations

are illustrated in Figure 4.7.
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Figure 4.8: GMJM/PF prediction realization with ten particle paths with a
BLS of 40W cluster separation.

The prediction methodologies are evaluated over the realizations of the

prognostic horizons at intervals of 15 minutes to 45 minutes with increments

of 5 minutes. A realization of the GMJM/PF prediction scheme at 40 minutes

with ∆p(L) = 40 W is illustrated in Figure 4.8. Furthermore, the discharge

simulation with the same load process is repeated 25 times for statistical sig-

nificance. Finally, over each prognostic horizon realization, the CRA and α−λ

metrics are evaluated. The prognostic parameters for α − λ were selected as

β = 0.35 and λ = 0.1 corresponding with [66].

As is clearly visible from the CRA results displayed in Figure 4.9, cluster

separation influences the fidelity of battery RRT predictions. The error bars

associated with each prediction methodology indicate the standard deviation

of the 150 simulations at each particular ∆p(L). In terms of the CRA metric,

the GMJM/PF predictor results in higher fidelity predictions at all power

separation magnitudes. Furthermore, the GMJM/PF predictor significantly

outperforms the other investigated methodologies particularly with ∆p(L) > 20
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Figure 4.9: Monte Carlo CRA prediction fidelity as dependent on ∆p(L).
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Figure 4.10: Monte Carlo α− λ prediction fidelity as dependent on ∆p(L).

W.

To further collaborate with the observed CRA metric trends, the α−λ

metric results with varied BLS separation is illustrated in Figure 4.10. Again,

the error bars indicate the standard deviation of the 150 simulations at each

particular ∆p(L) for the α − λ metric. Similar trends are observed where

the GMJM/PF routine significantly outperforms the other predictors when

subject to load transients of ∆p(L) > 20 W.
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4.4 Experimental Validation

To demonstrate the efficacy of the integrated GMJM/PF prediction

scheme, two separate unmanned ground vehicle studies were conducted. The

unmanned ground vehicle was chosen for validation of the methodology as

the loading profiles experienced during field operation remain stochastic and

exhibit large transient jumps. In the first study, a single discharge test was

performed with a Packbot UGV system operating in desert terrain. The re-

sults of this preliminary study were published in [17]. As the Packbot field

study only contained one full discharge test, a laboratory stochastic terrain

environment was constructed to physically simulate an unstructured environ-

ment and to allow for repeated/controlled UGV discharge tests. A modified

National Instruments DaNI robot was used for these repeated in-house ex-

periments. In both studies, no a priori knowledge of expected terrain was

presumed, and run-time predictions only used online load characterization.

4.4.1 Packbot Case Study

For our first experimental study, a Packbot UGV was deployed and

remotely controlled on generic desert terrain near Twentynine Palms, Cal-

ifornia. The Packbot used, shown in Figure 4.11, is a differentially driven

tracked vehicle which also contains flipper arms for rough terrain navigation.

To provide power during the experiments, the Packbot contained a 12 A-h

UBI-2590 Li-ion pack which operated in parallel mode to provide a nominal

pack voltage of 14.8 V. Hall-effect current sensors and voltage sensors recorded
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the power loads of the 26 V main power bus at a rate of 1 kHz. Furthermore,

the displacement of the Packbot was monitored via GPS at a rate of 1Hz. As

a modified Packbot was deployed, the results of this study do not represent

nominal Packbot performance.

Figure 4.11: Deployed Packbot maneuvering through diverse terrain during
the discharge test.

To ensure significant transient loads were encountered during operation,

the vehicle operator navigated the Packbot UGV over diverse terrain, shown

in Figure 4.11. Generally, the terrain traverse could be classified as loose sand,

organic foliage, gravel and larger stone obstacles. A predetermined course was

selected such that the Packbot would traverse each terrain type to ensure

diverse power loads. The vehicle operator remotely controlled the Packbot

via a hand-held controller and maintained direct line-of-sight observation of

the vehicle during the entire discharge test. Over the course of the discharge

test, the Packbot ultimately traversed 762 meters of desert in 55.15 minutes,

shown in Figure 4.12, on the single charge. A transient current spike of 19.65

A, resulting from attempting to breach particularly heavy foliage, ultimately

resulted in battery shutdown.
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Figure 4.12: Travel path of the Packbot UGV in desert terrain displayed with
normalized GPS measurements.

To demonstrate PF/GMJM methodology, a single load characteriza-

tion/PF prediction of the Packbot measured load is presented. As a note,

since the battery voltage/current was not directly measured, an augmented

battery/power system model was used for prediction for the Packbot case

study using the characterized battery currents. This augmented model, which

allows for direct calculation of the battery voltage, is detailed in [17]. As

expected, the measured loads of the Packbot exhibited significant load tran-

sients and stochasticity. The first fifteen minutes of measured Packbot bus

current data is illustrated in Figure 4.13 with a GMJM prediction realization

forming the rest of the displayed data. In addition to diverse track-terrain

interaction/demands, the variability of load demands seen results from the

mixed operator speed commands, which ranged from 0 to 0.38 m/s, and the

maneuver types, such as flipper use and differential steering. As such, no a
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priori characterization of this complex loading process is feasible.
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Figure 4.13: Measured Packbot bus current loads, during discharge study on
unstructured terrain, used for load forecasting and run-time prediction.

To characterize the encountered load demands online, the self-supervised

GMJM algorithm was implemented. To demonstrate the load scheme for the

Packbot, the first 15 minutes of load data are used for self-supervised load

characterization. As discussed in Section 3.3, the number of transient load

clusters must be identified online due to the lack of a priori load informa-

tion in complex mission environments. Iterative fitting of the Packbot current

load GMM models and AIC evaluation identified eight transient load clusters,

shown in Figure 4.14.

Upon the self-supervised identification of the number of load clusters,

the respective GMM load model is selected to cluster load data. For charac-

terized load of the Packbot case study at 15 minutes, the eight load cluster

statistics are given in Table 4.1 and graphically illustrated in Figure 4.15(a).

To physically motivate the self-supervised identified clusters, the GMJM al-
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Figure 4.14: Unsupervised load cluster identification of Packbot loads for the
first 15 minutes via AIC metric.

gorithm identified a low power cluster, cluster seven, with a mean of 23.66W.

This particular cluster recognized the Packbot hotel loads which corresponds

to a reported 25 W hotel load [17]. Furthermore, cluster seven has a mixture

weight of 0.15 which corresponds to the actual time spent at idle, 15.6% of the

first 15 minutes, by the Packbot.

Table 4.1: Self-supervised parameters for the GMM clusters of Packbot loads.

Mixture (k) Mean (µk) [A]
Standard

Deviation (σk) [A]
Mixture

Weight (αk)
Load Power

[W]

1 2.67 0.47 0.20 69.42
2 3.39 0.92 0.09 88.14
3 1.14 0.12 0.13 29.64
4 1.53 0.24 0.15 39.78
5 1.13 0.02 0.08 29.38
6 2.07 0.29 0.18 53.82
7 - Hotel 0.91 0.07 0.15 23.66
8 5.54 1.56 0.01 144.04

After clustering the current data into respective load clusters, the load

transition characteristics can be found via the maximum likelihood charac-
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terization of the load Markov chain. To attempt to limit the computation

requirements of the implemented particle filter routine, the prediction step

size was set at one second. As such, the measured data, originally at a rate

of 1 kHz, was resampled/clustered at 1 Hz. Given the 1 Hz cluster data, the

Markov transition characteristics for the Packbot loads were found and graph-

ically illustrated in Figure 4.15(b). Each grid square Figure 4.15(b) represents

the probability of switching from a prior load cluster to a posterior load cluster

given a time step of 1s.
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Figure 4.15: GMJM characterization of Packbot loads at 15 minutes. (a)
GMM cluster components of current loads. (b) Markov transition matrix
between load clusters.

With the characterized load presented above, the PF algorithm was

employed for RRT prediction for the Packbot system at 15 minutes. For

prediction fidelity comparison, the EKF predictor was also utilized for RRT

prediction. Using the shutdown conditions discussed in [17], the Packbot bat-

tery terminal voltage was forecast until shutdown conditions were reached for

each particle, seen in Figure 4.16. For each prediction step, the probability of
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system shutdown was evaluated via the reliability integrate discussed in Sec-

tion 4.1.1. Both the RRT PDF and CDF, predicted at 15 minutes into the

Packbot mission, are presented in Figure 4.17.
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Figure 4.16: Predicted Packbot battery voltage via the GMJM/PF scheme at
15 minutes mission time with 95% confidence intervals.
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Figure 4.17: Statistical run-time predictions made at 15 minutes into mission
as compared to the EKF. (a) PDF prediction. (b) CDF prediction.

To evaluate the prediction fidelity of the PF over the entire Packbot

mission profile, the prognostic horizon methodology introduced in Section 2.1.4

was utilized. Remaining run-time predictions were conducted at five minute

intervals over the course of the Packbot mission ranging from 10 minutes to
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50 minutes. Prior to each prediction, the statistical characteristics of the mea-

sured loads were self-characterized via the GMJM process. The PF run-time

predictions over the entire prognostic horizon were compared to the ground

truth Packbot run-time of 55.15 minutes. The prognostic horizon predictions

for both the EKF and the PF are shown in Figure 4.18 with additional 95%

confidence error bounds for the PF predictor. The EKF confidence intervals

were not included for clarity, but remained under one minute for the entire

prediction horizon.
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Figure 4.18: Prediction fidelity over the prognostics horizon for the EKF pre-
dictor and the PF/GMJM prediction scheme.

As is clearly illustrated in Figure 4.18, the EKF predictor returns con-

servative run-time predictions, as discussed in Section 2.1, and does not ap-

proach the ground truth run-time value until the final 10 minutes of vehicle

operation. Contrastingly, the PF/GMJM prediction algorithm 95% confidence

interval bounds the ground truth value over the entire prognostic horizon. Ad-

ditionally, the CRA for the Packbot implementation of the PF was 0.8767 over
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the interval of [0,1] with unity implying perfect prediction. Of course, predic-

tion accuracy results as a trade-off from computational requirements. The

PF implementation over the prediction horizon required 30.25 ± 10.41 s for

each prediction whereas the EKF only required 3.65 ± 0.23s on a 2.6 GHz

processer. Resultantly, the choice of prediction routine remains application

dependent and should be influenced by the expected load transient character-

istics, as demonstrated in Section 4.3.

4.4.2 In-house Small Ground Vehicle Test Stand Study

To provide statistical significance of the integrated GMJM/PF algo-

rithm predictions, an in-house stochastic terrain simulator was constructed

for traversal by a small ground robot. The terrain simulator allows for re-

peated discharge tests with similar power load statistics/transients, such that

multiple realizations of the UGV discharge stochastic process are generated. A

small ground robot was developed with wall following capabilities for repeated

traversal of the terrain environment. The following section introduces the

UGV system and the terrain setup with applications to run-time prediction.

4.4.2.1 DaNI Unmanned Ground Vehicle

For the repeated indoor studies, a second generation National Instru-

ments DaNI robotic ground vehicle platform was used, shown in Figure 4.19

with significant upgrades. The small UGV, weighing 3.6 kg, is differentially

driven via two geared Pitsco W39083 DC motors with peak torque of 2.12
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N-m each, with an additional rear omni-directional passive wheel for vehicle

stability. Additionally, an onboard sbRIO-9632 with a coupled 400 MHz pro-

cessor and Xilinx Spartan FPGA provides for online processing/control and

data acquisition through 6 differential analog voltage channels, respectively.

To provide power for untethered operation, the DaNI UGV is equipped with a

ten cell 12V 3000 mA-h NiMH battery pack which yields a reported operation

time of one hour with motorized locomotion. The deployed NiMH battery

packs were experimentally parameterized in studies presented in Appendix

A.1.

Figure 4.19: Small unmanned differentially driven ground vehicle, also known
as the NI DaNI UGV, used for laboratory discharge studies.

Vehicle upgrades include an additional sensor package for online power

measurements, remote distance sensors for position control, and a wireless

communications system, see Figure 4.19. For full untethered operation, the

DaNI robot system was upgraded to include onboard 802.11g wireless com-
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munication. This was achieved via an attached Linksys WRT54GL router

used for remote data logging and inter-device communication. A wireless net-

work bridge was formed with the laboratory local network to allow for online

recording of all UGV measured data at a rate of 10 Hz. Furthermore, wireless

communication between the supervisory computer, the UGV control board,

and the test stand controller provided for synchronous operation of all systems.

To monitor online power demands of the UGV, four Hall-effect current sensors

were installed for battery, motors and bus/peripheral current monitoring. Ad-

ditionally, battery terminal voltage and bus voltage measurements were logged

directly via operational amplifier voltage dividers. To ensure proper path fol-

lowing, two Parallax ultrasonic distance sensors were installed laterally left on

the front and rear of the vehicle. These distance sensors allowed for controlled

wall following. Moreover, to determine the end of the terrain assembly, two

infrared distance sensors were installed facing forward/reverse.

4.4.2.2 Automated Terrain Environment for UGV Testing

The goal of the automated terrain environment is to mimic field ter-

rain in a laboratory setting for controlled UGV discharge studies. As the size

of the indoor laboratory space was limited, the terrain environment was de-

signed for both modularity of terrains and automated terrain selection. Figure

4.20(a) schematically illustrates the terrain environment with the three terrain

modules and a turntable assembly to change terrain. To replicate the variety

of terramechanical properties encountered during the desert terrain Packbot
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study [17], three distinct terrain types were selected: loose gravel, rough shin-

gle bumps, and a smooth inclination. Loose gravel serves as a deformable

terrain that readily induces vehicle slip, whereas the rough bumps and the

inclined terrain each increase the rolling resistance and grade resistance of the

UGV, respectively [75]. The constructed terrain environment is illustrated in

Figure 4.20(b).
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Figure 4.20: (a) Schematic of the automated terrain environment assembly for
UGV run-time testing. (b) Implementation of the terrain environment.

As encountered in the Packbot field study and other experiments [82],

diverse intervals of uniform terrain exist in unstructured environments. To

experimentally replicate varied terrain intervals, the turntable assembly is ran-

domly driven by a Markov chain. The transition matrix for the Markov chain

was selected to match the rate of change of load clusters measured during the

Packbot field study [17]. Upon return of the UGV to the turntable, a realiza-

tion of the Markov chain, contingent on the previous terrain, is generated to

determine the subsequent terrain. The control of position of the turntable is

achieved via an integrated rotary encoder/DC motor assembly and a NI cRIO
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controller. The cRIO generates the realizations of the Markov chain.

The automated run-time experiment process requires the UGV to lon-

gitudinally traverse varied terrain until battery shutdown. With a charged

battery pack, the UGV travels longitudinally forward until the forward IR

sensor is triggered, after which the direction of the vehicle reverses. Upon

triggering the rear IR senor, the turntable Markov chain is realized and a new

terrain selected. Finally, to track vehicle displacement and provide for velocity

estimates, an URG-04LX LIDAR system was installed on the terrain assem-

bly to record vehicle position at a rate of 10 Hz. The LIDAR system remains

fixed to the back of the turntable assembly, such that the displacement of

the vehicle on each terrain could be recorded. The average displacement data

from the center -2.5 to 2.5 degree LIDAR cone angle was used for the vehicle

displacement value for each step in time.

Figure 4.21: Close-up of the small UGV on each terrain type: (a) Rough
shingles. (b) Loose gravel. (c) Smooth incline.
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4.4.2.3 Run-time Prediction Analysis

For analysis of the GMJM/PF prediction scheme, twenty five discharge

tests were performed with the UGV on the automated terrain environment.

While the used NiMH packs permit for 3000 mA-h of charge, UGV discharge

tests were conducted with initial battery charges of 1500 mA-h to reduce ex-

perimentation time from approximately 2.5 hours to 1.25 hours. Furthermore,

as seen in Figure 4.22, the mean, variance, skewness, and kurtosis sample

statistics for run-time converge before the twenty fifth experiments. Due to

repair costs and time constraints, convergence of these statistical moments

was deemed sufficient for statistical analysis [143]. In an attempt to miti-

gate variability between test iterations, vehicle maintenance was performed

between discharge tests to minimized uncertainty associated with hardware

deterioration. Finally, the principal contribution of uncertainty in these dis-

charge studies was the locomotion power demands as peripheral electronic

power draw required only 23.66± 0.84 W.

The results of each UGV run-time test are illustrated in Appendix B.

Provided is tabulated information on the final run-time of each test and the

final measured battery voltage which is deemed to be the shutdown voltage.

Additionally, the peak measured current for each test was noted to further

illustrate the differences in transient load demands between tests while oper-

ating on identical terrain. Furthermore, Table B.3 illustrates the breakdown

of the fraction of time spent on each terrain type.

As discussed, the individual path realizations, during each discharge
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Figure 4.22: Convergence of the mean, variance, skewness and kurtosis imply
sufficient number of experimental UGV discharge studies.

test, differ due to the a priori specified terrain Markov process which results

in unique transient power loads. Contrastingly, the steady state characteris-

tics of the measured power loads demonstrate similarity between each UGV

discharge test. Figure 4.23(a) illuminates the transient power load differences

of the first 15 minutes between experimental studies, whereas Figure 4.23(b)

demonstrates the measured battery power demands of the first three discharge

studies as normalized histograms. As a result, each of the experimental studies

serves as a realization of the UGV discharge stochastic process. Consequen-

tially, to statistically demonstrate run-time prediction fidelity, the GMJM/PF

scheme should successfully predicted run-time for each transient realization of

the test stand.

The run-time results from each discharge experiment are shown as a

histogram in Figure 4.24 with a minimum UGV run-time of 61.72 minutes

and maximum run-time of 76.03 minutes. To demonstrate individual pre-
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Figure 4.23: (a) First fifteen minutes of battery power demands for three
UGV discharge studies (b) Steady state battery power loads displayed via a
normalized histogram.

diction capabilities for the DaNI UGV study, a PF battery voltage forecast

and predicted RRT distribution are illustrated in Figure 4.25. To analyze the

accuracy of the prediction methodologies, a prognostic horizon analysis was

performed for each UGV run-time test from 10 minutes to 55 minutes with the

modified Peukert’s predictor discussed in Section 2.1, the EKF predictor, SOC

linear regression forecasting, and the proposed GMJM/PF prediction scheme.

The prognostic horizon for the first UGV run-time experiment is shown in

Figure 4.26.

To evaluate the prediction fidelity over the prognostic horizons of each

UGV run-time test, both the cumulative relative accuracy and cumulative α−λ

metrics were evaluated for each test. The CRA test, introduced in Section

2.1.4, assesses the total difference of mean run-time predictions as compared

to the ground truth runtimes and remains bounded on the interval, [0,1].

Predictions with CRA scores near unity consistently predict near the ground
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Figure 4.24: Experimental runtimes for twenty-five UGV discharge studies.
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Figure 4.25: Example GMJM/PF prediction of RRT at 20 minutes into ex-
periment one. (a) PF forecast of battery voltage as compared to measured
voltage. (b) PF predicted run-time PDF.

truth run-time. Contrastingly, the α − λ metric assesses the fidelity of the

predicted run-time PDF as compared to a shrinking confidence interval. Again,

the α − λ metric is bounded on the [0,1] interval with unity implying perfect

prediction over the entire prognostic horizon. The prognostic parameters for

α − λ were selected as β = 0.35 and λ = 0.1 corresponding with [66]. The

cumulative statistics of the CRA and α−λmetrics for all discharge experiments

are presented in Figure 4.27.
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Figure 4.26: Prognostics horizon for test one comparison of prediction method-
ologies for the in-house UGV studies.

Clearly illustrated in Figure 4.27(a) and (b) is lack of prediction fidelity

acquired with SOC regression forecasting. As the encountered power demands

exhibit significant transients, the SOC estimates do not exhibit local linear

trends and run-time predictions thusly remain inaccurate via both predic-

tion metrics. While the modified Peukert’s law/current counting methodology

prediction scheme outperforms regression, uncertainty in prediction fidelity is

high. Furthermore, inspection of the prognostic horizon for each experimental

discharge study indicates conservative prediction. Likewise, the EKF predic-

tor exhibits conservative prediction biases over the entire prognostic horizon,

as seen in Figure 4.27.

The GMJM/PF prediction scheme outperforms Peukert’s and regres-

sion by significant margins and demonstrates a statistically significant im-

provement over the EKF predictor for both the CRA and α − λ metrics. A

two-sample t-test was performed to investigate if the CRA improvement of the
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Figure 4.27: Prediction fidelity over all UGV run-time tests. (a) Cumulative
relative accuracy (b) Cumulative α− λ metric.

GMJM/PF predictor over the EKF was statistically significant. The p-value

of the null hypothesis, where the GMJM/PF and EKF predictors exhibit iden-

tical prediction characteristics, was found to be 6.36× 10−6 well below the 5%

significance level. As such, the null hypothesis is rejected and the GMJM/PF

CRA improvement is statistically significant.
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Figure 4.28: Comparison of algorithm computation times for prediction.

Gains in prediction fidelity of the GMJM/PF prediction scheme are
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not without cost, however. As illustrated in Figure 4.28, the particle filter

requires 3.39 seconds (or 2264%) more mean computation time than the EKF

prediction methodology as computed on a 2.6 GHz Intel Core i7 processor.

The significant increase in required onboard computational power potentially

invalidates the gains in prediction accuracy for small scale applications. How-

ever, as the results from the Monte Carlo study in Section 4.3 indicate, the

power transient jump range encountered in the DaNI UGV studies, a study

average of 5.98 W, are near the lower bound where the GMJM/PF benefits

become particularly apparent. The experimental results corroborate with the

lower bound found in the Monte Carlo studies. Furthermore, as was demon-

strate in the Packbot experimental case study from Section 4.4.1, the EKF

prediction significantly underperformed the GMJM/PF algorithm due to the

power cluster jumps of 120.38 W.
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Chapter 5

Online Mission Reliability Assessment

Quite often, mobile systems must achieve mission objectives using fi-

nite onboard energy. For instance, electric vehicles transport a driver from a

starting location to desired final location, and must do so without exhausting

onboard energy [149]. Unmanned ground vehicles, whether teleoperated or

strictly autonomous, are deployed with a priori specified mission objectives,

such as reconnaissance/mapping of a building [12] or extraplanetary sample

acquisition [150]. Again, the UGVs must accomplish these objective within the

constraints of the onboard energy. With the GMJM/PF prediction scheme,

a mobile system can predict the battery remaining run-time. However, the

predicted run-time PDF does not independently garner insight into the prob-

ability of successfully completing all mission objectives within the constrained

run-time.

As such, in this chapter, an online mission reliability assessment scheme

is presented which evaluates the probability of mission completion (PoMC)

based on mission objectives and energy storage. The multivariate reliability

theory methods discussed in Section 2.4 are directly applied here for com-

puting mission reliability. A mobile system can be viewed as a stochastic
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Figure 5.1: Conceptualized mobile robotic system as a general stochastic pro-
cess.

process with uncertain input power loads and mission demands, all of which

are constrained by available onboard energy storage. A generic mobile system

mission process is depicted in Figure 5.1. The mission process is comprised

of two dependent random processes, the overall mission time (OMT) and the

overall battery run-time (OBRT). The mission time random process is com-

prised of the summation of the overall time for tasks (OTT) and the overall

drive time (ODT). The OBRT results from the stochastic discharge process

detailed in Section 4.1.2. The OMT and OBRT remain correlated through the

mission process. For example, an arduous mission profile with high rates of

travel results in a decrease in the OMT, but also a decrease in OBRT due to

the higher currents necessary for travel [21]. Given a characterization of the
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mission process depicted in Figure 5.1, the PoMC can be estimated through

the probability of OMT exceeding OBRT.
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Figure 5.2: Integrated mission reliability assessment/decision algorithm.

The proposed algorithm, illustrated in Figure 5.2, adopts a piecewise

approach with two independent predictors of the marginal OMT and OBRT

processes. Prediction of the marginal OMT process statistics (µ̂MT , σ̂
2
MT ),

which is comprised of the summation of OTT statistics (µ̂t, σ̂
2
t ) and ODT

statistics (µ̂d, σ̂
2
d), is discussed in Sections 5.1.1 and 5.1.2, respectively. Predic-

tion of OBRT was discussed at length in Chapter 4. However, for bivariate dis-

tribution characterization, the correlation between each marginal distribution

must be known [143]. Using successive prediction pairs ( ¯OBRT i, ¯OMT i), how-

ever, the mission correlation estimate can be improved via recursive Bayesian

updating. Bayesian correlation updating is discussed in Section 5.2.3.
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With marginal predictions of OMT and OBRT and the estimate for

process correlation, an estimate for the bivariate mission process can be for-

mulated. Representation of the bivariate process is discussed in Section 5.2.2.

Finally, the PoMC can be estimated, as discussed in Section 5.2.4. As the

bivariate characterization only involves OMT and OBRT, the PoMC estimate

presented in this work discounts terrain traversibility and component failure

considerations. While component failure and vehicle mobility result in system

failure [151], all mobile system ultimately fail due to energy exhaustion. Re-

sultantly, only energy concerns are addressed in this work with extensions to

vehicle mobility and component failure anticipated as future work. Finally,

the experimental studies, discussed in Section 4.4, are used to demonstrate

the efficacy of the proposed methodology.

5.1 Evaluation of Overall Mission Time

Generally, a mobile system mission profile consists of time for travel

and distinct tasks. Resultantly, mission times could range from several min-

utes, in the case of mini-unmanned aircraft system performing room mapping

[152], to days for the Hyperion robot exploration of the Atacama desert [106].

While travel trajectories and necessary tasks which compose the overall mis-

sion can be specified prior to system deployment, uncertainty associated with

the environment could mandate a real-time updates of the planned path or es-

sential tasks. For example, robotic search and rescue task time depend on the

environment to search [153]. As such, the OMT prediction methodology must
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consider variable task time statistics and uncertainty associated locomotion

velocities.

5.1.1 Task Time Estimation

In this dissertation, all goals, with the exception of vehicle locomotion,

are considered mission tasks. Some tasks performed during a mission, such as

obstacle avoidance or visual surveillance, reoccur at variable intervals. Con-

trastingly, some missions entail a single task, such as sample acquisition or a

rescue operation [12]. Individual task time statistics are assumed to follow a

normal distribution for computational efficiency and to exhibit statistical in-

dependence [21]. Provided Gaussian task times and assuming that each task is

statistically independent, the overall mean mission task time estimate is found

via the summation of estimated task means, as follows,

µ̂t =

n
∑

i=1

ωiµ̂ti (5.1)

where n is the number of distinct tasks, and ωi and µ̂ti are the number of repe-

titions and the current mean estimates for the i’th task, respectively. Similarly,

the task time variance estimate is found accordingly,

σ̂2
t =

n
∑

i=1

ωiσ̂
2
ti

(5.2)

where σ̂2
ti
is the current variance estimates for the i’th task.

Task characterization prior to executing a mission provides an a priori

estimate of required time for each necessary mission objective, shown in Fig-

ure 5.3. Nevertheless, a priori characterization in a laboratory setting does
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Figure 5.3: Analytically computation of OTT via summation of normal ran-
dom variables.

not necessarily accurately characterize field task time statistics. Contrastingly,

these a priori measurements can serve as an estimate for the initial task time

distribution (an informative prior assumption) for sequential Bayesian param-

eter updating given additional online measurements of task times in the field.

Online updating of task times is reserved for future work, but the update

form is expected to take the form a recursive Bayesian update structure for a

unknown mean and variance parameters (a normal-inverse-gamma conjugate

prior distribution) [64]. Finally, particular tasks, such as obstacle traversal by

a UGV, may exhibit non-Gaussian statistics due to repeated trials required

to overcome an impediment [26]. However, the cumulative summation of all

independent mission tasks tends towards a normally distributed process, due

to the Lyapunov condition of the central limit theorem [143].
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5.1.2 Overall Travel Time Prediction

As introduced in Section 2.4, prediction of travel time remains an open

problem, in particular for automotive applications [154]. Existing methodolo-

gies utilize data-driven techniques, such as least squares regression, support

vector regression, ARIMA prediction, and neural networks to predict travel

time via historical data [155, 156] and measured travel velocities [157]. As uti-

lized in [21], an exponentially weighted moving average (EWMA) scheme, also

known as an ARMA(1,1) model, was adopted for velocity forecasting. While

other methodologies provide potential gains in forecasting fidelity and can

be investigated in future works, the EWMA was selected for computational

efficiency.

The EWMA model weights velocity data such that the recently ob-

served/estimated velocities contribute significantly to the sample mean and

variance estimates [158]. Weights on past samples decay via an exponential

forgetting factor, λv [76]. Additionally, the mean estimate can be computed

recursively,

µ̂v = λvv(k) + (1− λv)µ̂vk−1
(5.3)

where µ̂vk−1
is the previous EWMA mean estimate and v(k) is the latest ve-

locity measurement/estimate. Similarly, the EWMA variance estimate can be

computed,

σ̂2
v = (1− λv)

[

σ̂2
vk−1

+ λv

(

v(k)− µ̂vk−1

)2
]

(5.4)

where σ̂2
vk−1

is the previous EWMA variance estimate. The forgetting factor

was selected to correspond with [21] such that λv = 0.002.
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With the EWMA velocity statistics (µ̂v,σ̂
2
v), predicting the mean dis-

tance of travel for a specified time step is found via the summation over time

of the independent velocity random variables [156]. Provided a deterministic

desired mission distance, Dm, the remaining drive time statistics can be found

via the intersection of the predicted cumulative distance distribution with the

mission distance, as shown in Figure 5.5. Similar analysis can be conducted

provided uncertainty in mission distance without the benefits of analytical

tractability.
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Dm - Mission
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Ψ(m)

μd

D
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p
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e
n

t 
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]
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 - Predicted Drive Time

σd σd-+

Figure 5.4: Analytically determining remaining drive time via cumulative ve-
locity forecasting.

As seen in Figure 5.5, the mean cumulative velocity forecast intersects

the mission distance via a linear relationship, as follows,

µ̂d =
Dm

µ̂v

, (5.5)

where Dm is the current remaining mission distance and µ̂d is the predicted

mean drive time. To derive the analytical expression for mission time variance,

the intersection of standard deviations of the forecasted cumulative velocity
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statistics with the mission distance can be found, as depicted in Figure 5.5.

Mission time variance is expressed analytically as,

σ̂2
d =

σ̂2
v

4µ̂4
v

[

σ̂v +
√

4Dmµ̂v + σ̂2
v

]2

. (5.6)

Due to the nonlinear transformation associated with variance predic-

tion, the predicted drive time distribution exhibits non-zero skewness. To

analyze the significance of the non-Gaussianity of the drive time distribution,

Monte Carlo simulations were conducted of the stochastic travel process de-

picted in Figure 5.5. The simulations were performed assuming a rate of travel

of 0.25 m/s with a velocity standard deviation of 0.1 m/s with a goal distance

of 100 m. As seen in the normal probability plot in Figure 5.5, only the 1%

tails of the distribution are not approximated via the normal. Resultantly, the

analytically predicted drive time distribution is assumed to follow a normal

distribution.
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Figure 5.5: Monte Carlo simulation demonstration of normality of analytically
predicted drive-time distribution.

114



5.1.3 Characterization of Overall Mission Time

With predictions for task times (µ̂t, σ̂
2
t ) and drive times (µ̂d, σ̂

2
d), the

OMT statistics can be computed. Resulting from the assumed Gaussianity

of both task and drive statistics, the summation of the task means and drive

time means from equations (5.1) and (5.5), respectively,

µ̂MT = t(c) + µ̂d +
n

∑

i=1

µ̂ti , (5.7)

yields an estimate for the mean OMT, µ̂OMT , with t(c) as the current mission

run-time of the mobile system. Furthermore, the OMT variance estimate is

computed via direct summation of task and drive time variances given by

equations (5.2) and (5.6), respectively. The OMT variance estimate is given

by,

σ̂2
MT = σ̂2

d +
n

∑

i=1

σ̂2
ti
. (5.8)

5.2 Mission Completion Assessment

The preceding discussion has demonstrated methods for online predic-

tion of OMT and OBRT individually. Traditional univariate reliability meth-

ods, predicting the probability of OMT exceeding OBRT, disregard the inher-

ent correlation between the OMT and OBRT processes [21]. As such, a mul-

tivariate statistical representation of a combined OMT/OBRT process must

be adopted for reliability mission assessment. The following sections concep-

tually introduce the bivariate mission process and demonstrate the Bayesian

correlation estimation method.
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5.2.1 Determining a Mission Process Statistical Model

Due to the correlation between the OMT and OBRT random processes,

the overall mission random process is represented via a bivariate distribution.

Even if each marginal process displays normally distributed statistics, no guar-

antee exists to ensure the normality of the bivariate mission distribution [143].

To determine the expected structure of the multivariate mission process, Monte

Carlo discharge simulations were conducted for an UGV operating in a stochas-

tic environment using the model introduced in Section 6.2.1.

f(i)sgn vx

Rolling Resistance
Model

Throttle Command
Model

vx

f(1) f(2)

u(1) u(2)

q0

Figure 5.6: Monte Carlo simulation of simplified stochastic throttle commands
and terrain properties with deterministic battery charge.

To minimize study degrees of freedom, the simulation robot was issued

only two throttle commands (10% and 90%) as a random process defined by

a second-order Markov chain. The second-order Markov chain characteristics

are given in Section 4.3.1. As a result, the steady state probabilities for throt-

tle commands were directly specified as pi
(t)
1 = 0.3 and pi

(t)
2 = 0.7, with a

transition rate of λt = 0.99. Furthermore, the UGV traverses two terrains

with negligible slipping that have rolling resistance coefficients of 0.01 and 0.3.

Again, the terrain characteristics are defined by a second-order Markov pro-
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cess with a transition rate of λr = 0.99 and π
(r)
1 = 0.5 and π

(r)
2 = 0.5 steady

state probabilities, respectively. Each simulation UGV begins with 1500 mA-h

of charge.
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Figure 5.7: Single mission realization from the Monte Carlo simulation study.
(a) UGV Battery Voltage. (b) UGV Cumulative Distance.

Monte Carlo analysis consisted of longitudinal driving at the indicated

stochastic throttle rates over the two defined terrains until transient battery

shutdown, shown in Figure 5.7. Shutdown occurs either due to state-of-charge

exhaustion or the surpassing of the shutdown voltage by the battery terminal

voltage [17]. Additionally, assuming a desired mission distance objective of

800 meters, each Monte Carlo realization provides the time necessary to reach

the arbitrary goal. For 500 simulation realizations, the OMT and OBRT

results are shown in Figure 5.8. Also depicted in Figure 5.8 to illustrate

the importance of correlation estimation are the results from the DaNI UGV

studies. The displayed OMT values indicated the time required for the DaNI

UGV to travel 650 meters.

The Mardia normality test was employed to determine if a bivariate
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Figure 5.8: Results of a Monte Carlo simulation study of a UGV operating in
a stochastic environment.

normal approximation suites the mission random process [143]. Akin to a

univariate normality tests, the skewness and kurtosis of the multivariate data

provides for a measure of similarity to a normal distribution. Assuming a null

hypothesis of bivariate normality, the skewness and kurtosis statistics must

not demonstrate significant divergence from their parameter distributions of

the chi-squared and standard normal distributions, respectively. Provided p-

values for each statistic do not demonstrate significance, the null-hypothesis

is not rejected and the mission process is assumed to have a bivariate normal

distribution. For the skewness statistics, the 5% significance level for the chi-

squared distribution is 7.78. This value is not exceeded by the Mardia statistic

for skewness of 5.51. As such, the null hypothesis remains unrejected due to the

multivariate skewness. Likewise for the kurtosis statistic, the 5% critical value

for the standard normal is 1.28, that again is not exceeded by the magnitude

of Mardia statistic for kurtosis of 0.23. Resultantly, multivariate skewness and
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kurtosis indicate the mission process can be appropriately represented as a

bivariate normal distribution.

5.2.2 Bivariate Representation of Mission Process

A fully characterized bivariate normal distribution only requires marginal

normal distribution mean and variance parameters with the correlation coeffi-

cient for full mathematical description. The correlation coefficient determines

the correlation between both the OMT and OBRT random variables. Math-

ematically, the bivariate normal probability density function which describes

the mission process is expressed, as follows,

P (t(b), t(m)) =
1

2πσRTσMT

√

1− ρ2
exp

[

−
Q(t(b), t(m))

2 (1− ρ2)

]

, (5.9)

where σRT is the standard deviation of the overall battery run-time, σMT is

the standard deviation of the overall mission time, and ρ is the correlation

coefficient between the OMT and OBRT processes. Additionally, t(b) and t(m)

are the independent variables of time for the battery run-time and mission

time variables, respectively. The term in the exponential function is defined

in the following manner,

Q(t(b), t(m)) =

(

t(b) − µRT

)2

σ2
RT

+

(

t(m) − µMT

)2

σ2
MT

− 2ρ

(

t(b) − µRT

) (

t(m) − µMT

)

σMTσRT

,

(5.10)

where µMT and µRT are the mean overall mission time and overall battery

run-time, respectively. Displayed in Figure 5.9 is the reliability failure surface

where OMT > OBRT. As introduced in Section 2.4, PoMC is the volume of

the bivariate distribution that lies beyond the failure surface.

119



40 45 50 55 60
40

45

50

55

60

 

 

MC Simulations

95% Con!dence

Mean

Failure Surface 

Overall Battery Runtime [min]

O
v

e
ra

ll
 M

is
si

o
n

 

T
im

e
 [

m
in

]

Figure 5.9: Bivariate normal characterization of the Monte Carlo UGV study
results.

5.2.3 Online Bayesian Estimation of Correlation

Each individual OMT and OBRT prediction yields the marginal distri-

butions of the overall mission bivariate distribution. As a result, the mission

process correlation must be estimated via the OBRT/OMT prediction pairs

(µ̂MT , µ̂RT ). Furthermore, during the initial deployment of a mobile system,

few (µ̂MT , µ̂RT ) prediction pairs are available. As such, a recursive Bayesian

updating scheme was developed to incorporate each successive prediction pair

for process correlation estimation. This process is summarized in Figure 5.10.

With additional predictions, the uncertainty associated with the estimated

correlation coefficient should further diminish [64].

The posterior density function is proportional to the product of the

likelihood function and the chosen prior distribution. Mathematically, the
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posterior density for correlation is expressed as,

P (ρ|µ̂RT1:k
, µ̂MT1:k

) ∝ P (µ̂RT1:k
, µ̂MT1:k

|ρ)P (ρ), (5.11)

where µ̂RT1:k
and µ̂MT1:k

are the first through k′th mean predictions of OBRT

and OMT, respectively forming the (OBRTi, OMTi) prediction pair. Further-

more, P (µ̂RT1:k
, µ̂MT1:k

|ρ) is the likelihood function. The likelihood function

returns the probability of the observed predicted pairs conditioned on a given

correlation coefficient. Finally, P (ρ) is the prior density function for correla-

tion.

As the selected prior distribution contributes to the posterior estimate,

careful selection remains necessary to ensure the prior does not bias the pos-

terior density estimate. A common minimally informative prior distribution

scheme, which is based on Fisher information, is the Jeffery’s prior, shown in

Figure 5.11. Given known marginal variances, the Jeffery’s prior for the cor-

relation coefficient of a bivariate normal distribution is given [117], as follows,

P (ρ) ∝ σ̂RT σ̂MT

(

1− ρ2
)− 3

2 . (5.12)
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where σ̂RT and σ̂MT are the most recently predicted standard deviations for

OBRT and OMT, respectively.

−1 −0.5 0 0.5 1
0

0.002

0.004

0.006

0.008

0.01

0.012

Correlation − ρ [−1,1]

U
n

if
o

rm
a

ti
v

e
 

Je
!

e
ry

‘s
 P

ri
o

r 
P

D
F

Figure 5.11: Jeffery’s uniformative prior for Bayesian inference of correlation
with known marginals.

The likelihood function takes the bivariate normal formulation given

in equation (5.9). However, provided multiple independent predictions, the

resulting total likelihood of the prediction set, (µ̂RT1:k
, µ̂MT1:k

), is given by the

product of each individual observation [64]. It is important to note that when

not explicitly denoted as a vector of predictions, the variance or mean values

expressed in the notation represent the most recent prediction. For example,

µ̂RT1:k
indicates the vector of OBRT mean predictions, whereas µ̂RT indicates

the k’th OBRT mean prediction only. Resultantly, the prediction likelihood

function is given by,

P (µ̂RT1:k
, µ̂MT1:k

|ρ) =
[

2πσ̂RT σ̂MT

√

1− ρ2
]−k

exp

[

−
Q

(rt)
1:k +Q

(mt)
1:k + 2ρQ

(c)
1:k

2 (1− ρ2)

]

.

(5.13)

where k is the number of prediction pairs. Furthermore, the summation terms
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in the exponential are defined as follows.

Q
(rt)
1:k =

k
∑

i=1

(µ̂RTi
− µ̂RT )

2

σ̂2
RT

(5.14)

Q
(mt)
1:k =

k
∑

i=1

(µ̂MTi
− µ̂MT )

2

σ̂2
MT

(5.15)

Q
(c)
1:k =

k
∑

i=1

(µ̂RTi
− µ̂RT ) (µ̂MTi

− µ̂MT )

σ̂RT σ̂MT

(5.16)

The product of the prior distribution in equation (5.12) and the like-

lihood function in equation (5.13) yield the posterior distribution for ρ via

the Bayesian inference of equation (5.11). After algebraic simplifications, the

posterior distribution is found to be proportional to the following expression,

P (ρ|µ̂RT1:k
, µ̂MT1:k

) ∝
[

√

1− ρ2
]− 1

2
(k+3)

exp

[

−
Q

(rt)
1:k +Q

(mt)
1:k − 2ρQ

(c)
1:k

2 (1− ρ2)

]

.

(5.17)

Implementation of equation (5.17) with a single instance of the Monte Carlo

simulations from Section 5.2.2 to estimate the probability distributions of ρ̂ is

shown in Figure 5.12.

To demonstrate the statistical efficacy of the Bayesian updating scheme

for correlation estimation, the methodology was applied sequentially to the

Monte Carlo simulation results given in Figure 5.8. Beginning with a single

sample, Monte carlo realizations were added sequentially to equation (5.17)

as predicted mean pairs (µ̂RT1:k
, µ̂MT1:k

). The maximum a posteriori (MAP)

metric was chosen for the estimate of ρ [64]. Succinctly stated, the MAP
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Figure 5.12: Single Bayesian estimation of OBRT and OMT correlation via
sequential updating using single set of simulation data.

estimate of correlation is,

ρ̂k = argmax
ρ

P (ρ|µ̂RT1:k
, µ̂MT1:k

), (5.18)

where ρ̂k is the MAP estimate of correlation given k predictions. As seen in

Figure 5.13, the MAP estimate converges to the actual correlation coefficient

in under five predictions. Figure 5.13 illustrates the properties of the Bayesian

correlation estimate over 500 realizations of the mission process. Subsequently,

the confidence interval constricts given additional prediction evidence.

5.2.4 Assessment of Mission Reliability

Combination of predictions of the marginal statistics and the estimate

of correlation produce the bivariate normal approximation of the mission pro-

cess given by equation (5.9). A mission remains feasible contingent on the

battery run-time exceeding the required time for tasks and locomotion. Con-
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Figure 5.13: Mean Bayesian estimation of OBRT and OMT correlation via
sequential updating using MC simulation data.

versely, infeasibility arises when mission time exceeds battery run-time. To

compute the probability of infeasibility, or P (OMT > OBRT ), the volume

under the bivariate normal in the region of t(m) > t(b) must be found. As such,

the region of infeasibility is bounded below by the t(m) = t(b) line.
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Figure 5.14: Rotation/translations of mission random variable for mission
probability computational efficiency.

Rather than the computationally intense numerical integration of the

untransformed bivariate distribution given in equation (5.9), rotation/translation
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manipulations simplify the probability calculation. Applying a 45 degree ro-

tation transformation and zeroing translation to the mission process converts

the t(m) = t(b) line into an augmented x-axis which simplifies numerical inte-

gration, as seen in Figure 5.14. Expressing the bivariate normal distribution

of equation (5.9) in vector form yields,

P (t(b), t(m)) =
1

2π |Σ|
exp

[

−
1

2
(t− µ)TΣ−1 (t− µ)

]

(5.19)

where t = [ t(b) t(m) ]T , µ = [ σ̂RT σ̂MT ]T , and |Σ| is the determinate of

the covariance matrix, where the covariance is expressed as,

Σ =

[

σ̂2
RT ρ̂kσ̂RT σ̂MT

ρ̂kσ̂RT σ̂MT σ̂2
MT

]

. (5.20)

Normalization of the mission means illustrated in Figure 5.14 requires

finding the minimum distance between the process mean and the t(m) = t(b)

line. In vector notation, the augmented mean is expressed as,

µ̃ =
[

0 1√
2
(µ̂RT − µ̂MT )

]T

. (5.21)

Applying a univariate rotational transformation, Σ̃ = R−1ΣR, with a 45 de-

gree rotation matrix results in the following augmented covariance matrix,

Σ̃ =
1

2

[

σ̂2
RT + 2ρ̂kσ̂RT σ̂MT + σ̂2

MT σ̂2
MT − σ̂2

RT

σ̂2
MT − σ̂2

RT σ̂2
RT − 2ρ̂kσ̂RT σ̂MT + σ̂2

MT

]

. (5.22)

Integration of the region bounded below by the t(m) = t(b) line in aug-

mented notation with µ̃ and Σ̃ is expressed as,

P (OMT > OBRT ) =

∫∫

(x̃,ỹ):ỹ>0

1

2π
∣

∣

∣
Σ̃
∣

∣

∣

exp

[

−
1

2
(x̃− µ̃)T Σ̃

−1
(x̃− µ̃)

]

dx̃dỹ,

(5.23)
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where x̃ = [ x̃ ỹ ]T . As a result of variable dependence elimination, inte-

gration of the above expression only requires numerical considerations in the

augmented first and second cartesian quadrants. For implementation, Rie-

mann sum numerical integration is utilized to compute the integral in equation

(5.23).

5.2.5 Online Restructuring of Mission Objectives

Integration of equation (5.23) yields the currently selected mission prob-

ability of success contingent on remaining battery energy. However, in the

event of low probability of completion of a primary mission, a contingency

mission could be automatically adopted by a supervisory control algorithm or

recommended to a vehicle teleloperator. In the following example, a mobile

robot must travel to and accomplish three prespecified tasks, as seen in Figure

5.15.

Start

Task A
Task B

Task C

I

II

Return

Primary - 

Contingency - 

Figure 5.15: Example a priori specified mission with three tasks and two
potential mission plans: the desired mission and the contingency plan.

Before deployment of the mobile robotic system, the desired mission

plan is developed including the potential tasks and drive paths. This a priori
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specified plan is the primary mission path. Contrastingly, given any compo-

nent failures or insufficient onboard energy, a contingency return plan is also

specified. Provided implementation of the online PoMC assessment algorithm,

the probability of OMT > OBRT can be found to evaluate the primary mis-

sion viability. If the primary mission probability falls below a desired mission

success threshold, the contingency plan is adopted and the primary mission

canceled, as seen in Figure 5.16.
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Figure 5.16: Online restructuring of mission plan to adopt a contingency plan
via PoMC decision metric.

5.3 Experimental/Field Validation

To validate the efficacy of the proposed PoMC estimation algorithm,

the methodology was implemented with data from experimental studies uti-

lizing a mobile system in unstructured terrain. Again, the unmanned ground

vehicle was chosen for validation of the methodology as the loading profiles ex-

perienced during field operation remain stochastic and exhibit large transient

128



jumps. Firstly, using the DaNI UGV discharge studies discussed in detail in

Section 4.4.2, the PoMC was evaluated for a range of desired mission distances.

The PoMC of the DaNI UGV studies is discussed in Section 5.3.1.

5.3.1 In-house Small Ground Vehicle Test Stand Study

As introduced in Section 4.4.2, twenty-two discharge studies were con-

ducted with the DaNI UGV on the stochastic terrain environment. In addition

to the power loads and battery discharge characteristics, the velocities of the

UGV and the cumulative distance traveled were recorded by a fixed LIDAR

system attached to the terrain turntable. The velocity characteristics of each

discharge test are discussed in Appendix B. The PoMC estimation methodol-

ogy was utilized to compute the mission probability for each discharge test with

different desired mission distances. As a comparison, the PoMC estimates are

also computed via the conjectured method of [21] where the OMT and OBRT

process are presumed independent. The fidelity of the PoMC predictions are

evaluated via the CRA metric, introduced in Section 2.1.4

5.3.1.1 Experimental UGV Mission Process

As introduced in Section 4.4.2, the DaNI UGV traversed the stochas-

tic terrain environment until battery shutdown. Consequentially, each DaNI

UGV experiment serves as a realization of a mission process, akin to Figure

5.1. Furthermore, as the vehicle was confined to a limited operation space,

the mission distance of the DaNI UGV is given by the cumulative longitudi-
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nal displacement, measured via the fixed LIDAR system. The total distance

traversed by for each UGV experiment as given in Figure 5.17.
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Figure 5.17: Cumulative longitudinal displacement of the DaNI UGV for all
inhouse discharge studies.

Velocity of the DaNI UGV depended on the issued rate command and

the extant terrain properties. Resultantly, the vehicle velocity demonstrated

marked stochasticity, as illustrated in Figure 5.18. The experiment run times

(ground truth OBRT) ranged from 61.72 to 76.03 minutes, whereas the cu-

mulative distance traveled ranged from 562.95 to 715.27 meters. Each mission

process, with the ground truth OBRT and mission distance, is illustrated in

Figure 5.19.

While the Monte Carlo UGV simulation studies demonstrated bivariate

normality, similar analysis was conducted to ascertain if a more general pro-

cess is remains approximated via a bivariate normal distribution. Applying the

Mardia normality test, see Section 5.2.2, with a 5% significance level for both
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Figure 5.18: (a) Measured vehicle velocity of the DaNI UGV via differential
LIDAR. (b) Normalized histogram depicting the non-Gaussian velocity trends
of the first three experiments.

the skewness and kurtosis, the null hypothesis of normality is not rejected.

More concretely, the 5% significant statistic for skewness for the experimental

data is 9.49 which is not exceeded by the Mardia skewness statistic of 1.21.

Furthermore, the 5% significant statistic for kurtosis is 1.64 which remains

greater that the Mardia kurtosis statistic of 1.15. Resultantly, the experimen-

tal test data can be approximated as a bivariate normal mission process akin

to the theory discussed in Section 5.2.2.

5.3.1.2 Probability of Mission Completion Experimental Analysis

To assess the performance of the proposed PoMC algorithm, the UGV

DaNI studies are viewed as multiple realizations of a UGV mission deployment.

For an actual online implementation of the PoMC algorithm, the desired mis-

sion distance, Dm, would be specified a priori. However, for analysis of PoMC

prediction fidelity, a range of mission profiles are explored. Illustrated in Fig-
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Figure 5.19: Experimental results from UGV terrain discharge tests compar-
ing discharge time and cumulative distance traveled with a bivariate normal
distribution fit.

ure 5.20 are a range of mission profiles (Dm = [500, 700] meters) using the

DaNI UGV data. If a particular experiment failed prior to the specified mis-

sion distance, the mean velocity was used to predict the OMT as if the system

continued operating. Also displayed is the failure surface (OMT > OBRT ).

As Dm increases, the PoMC, as expected, falls.

For an individual realization of the mission process (experiment # 4),

the predicted PoMC is shown in Figure 5.21 for both Dm = 550 m and

Dm = 650 m. The mission feasibility prediction bounds result from the uncer-

tainty associated with the correlation coefficient, shown in Figure 5.13. For the

Dm = 550 m mission, the ground truth PoMC is 0.99. Correspondingly, the

PoMC prediction made over the mission run-time indicate a 95% confidence

of a PoMC greater than 0.83. Contrastingly, for the Dm = 650 m mission

with a ground truth PoMC of 0.55, the prediction indicates at the first time
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Figure 5.20: Ground truth probability of mission completion for a range (575m
to 700m) mission profiles for the DaNI UGV.

of prediction (t(c) = 5 minutes) a PoMC of 0.51 ± 0.09. While process noise

results in PoMC prediction fluctuations, the mean prediction over the predic-

tion horizon is 0.54. Consequentially, the UGV controller would be informed

to adopt the contingency plan.

To evaluate the PoMC prediction fidelity over all available experimental

DaNI UGV data sets, the mean of the PoMC predictions were compared. As

the predictions should accurately assess the ground truth PoMC, the mean

of the PoMC prediction should converge to the ground truth PoMC for each

particular mission profile, Dm. For each DaNI UGV test, the PoMC predictor

made predictions at time 5-40 minutes for Dm ranging from 475 m (ground
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Figure 5.21: Online predictions of PoMC for experiment number four given
desired mission distances of 550m and 650m over the UGV run-time.

truth PoMC = 1) to 775 m (ground truth PoMC = 0). The average of the

twenty two PoMC predictions over the experiment run-time is shown in Figure

5.22. The average PoMC for all UGV studies converges to the expected value

of the ground truth PoMC from Figure 5.21 for all Dm profiles. The offset

of the prediction for Dm = 675 is conjectured to result from the bivariate

approximation of the mission process. As the marginal distribution of the

OBRT is non-normal, the PoMC predictions are only approximate. Planned

extensions of the methodology to include reliability copulas which handle non-

normal distributions are discussed in the conclusions.

As discussed in Section 2.4, recent proposed PoMC algorithms for mo-

bile systems discount the correlation between the OMT and OBRT [21]. Con-

trastingly, available onboard energy in battery systems depends on the opera-

tion characteristics of the mission. As such, process correlation is necessary for

accurate PoMC prediction. To illustrate the necessity of correlation for PoMC
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Figure 5.22: Average PoMC for all twenty-two experiments compared to actual
mission probability rates (dashed line) for numerous desired missions.

prediction, the proposed PoMC method was compared to the assumption of

independence suggested in [21],

P̂I(OMT > OBRT ) =

∞
∫

−∞

ΦOMT (t)φOBRT (t)dt (5.24)

where ΦOMT (t) is the normal CDF of OMT and φOBRT (t) is the normal PDF

of OBRT.

The analysis conducted to generate Figure 5.22 was repeated with both

the proposed correlated PoMC method and equation (5.24). The PoMC, using

each method, was predicted at times ranging from 5 minutes to 40 minutes for

each mission profile. Displayed in Figure 5.23 are the predicted probabilities

using each method for given Dm mission profiles. The error bars indicate the

CRA standard deviation for the twenty two UGV experiments.

Clearly visible in Figure 5.23 is the lack of precision of the indepen-
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Figure 5.23: Comparison of the CRA for PoMC prediction using the Bayesian
ρ̂ estimates and assuming no process correlation (ρ = 0) for difference desired
mission profiles.

dent PoMC prediction scheme. When the mission ground truth PoMC is

certainly either failure (PoMC = 0) or success (PoMC = 1), predictions from

both methods maintain high CRA. However, as expected, the independent

scheme fails due to the underestimation/overestimation of PoMC. Near the

50% PoMC mission distance, the prediction errors of the dependent scheme

recover. This recovery results from the independent PoMC predictor transi-

tioning from overestimating to underestimating the PoMC. Furthermore, the

prediction fidelity of each scheme falls in the mission range between 675 and

725 meters. As mentioned, the conjecture is that prediction accuracy falls

as a result of the bivariate normal approximation. Future work on improving

PoMC is addressed in the conclusions. Finally, a box plot, in Figure 5.24, sum-

marizes all the CRA predictions made by both the proposed bivariate PoMC

algorithm and the independent assumption.
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Chapter 6

Energy-Aware Control

As has been emphasized in this work, mobile system shutdown fre-

quently results from transient power demands imposed by unstructured envi-

ronments as opposed to state-of-charge depletion. In the UGV experimental

studies presented, transient current loads resulted in system shutdown of the

Packbot and 81.8 % of the indoor/outdoor DaNI UGV tests. To mitigate these

transient shutdown conditions and extend mobile system life, a model pre-

dictive control (MPC) scheme has been derived which sequentially optimizes

input commands for a UGV to maintain feasible battery terminal voltages.

Furthermore, the MPC scheme uses the process model to ensure feasibility

over an entire prediction interval.

As introduced in Section 2.5, existing methodologies require a priori

knowledge of loads and all methods found in the literature do not account for

transient shutdown conditions. As such, in this chapter, preliminary work on

an energy-aware control scheme for online command regulation is presented

that mitigates transient shutdown conditions to extend system run-time. With

recent advances in the computational speed of optimization routines, model

predictive control, which accounts for hard constraints, was selected for online
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energy-aware control for mobile systems.

6.1 Energy-aware model predictive control

Model predictive control is a receding horizon control methodology that

has seen rapid increase in utilization in the past decade [119, 159]. The increase

has resulted from the development of efficient quadratic programming opti-

mization solvers which can be implemented online on a mobile system, such

as a UGV [25, 126]. The goal of the MPC presented in this work is to track a

desired command trajectory and ensure the satisfaction of the battery voltage

constraint. If the issued command will result in system shutdown within the

prediction horizon, the MPC methodology should adjust accordingly to pre-

vent system shutdown. Commands for the mobile system are assumed to be

issued either via a vehicle teleoperator or a supervisory control algorithm.
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Figure 6.1: Illustration of the energy-aware model predictive control scheme
to prevent transient shutdown conditions.

For implementation of the receding horizon scheme, at each discrete

time step, k, an optimization routine is implemented over the control horizon,

N . This optimization minimizes a cost function via selection of an optimal

139



control input vector, u∗(k : k +N). Furthermore, the MPC optimization also

provides for constraints on states, inputs and outputs, which restrict the fea-

sible set space of the optimization [160]. Provided feasibility of the constraint

set, the resulting u∗(k : k + N) provides the optimal control vector over the

control horizon. A general cost function for state regulation with a final state

cost is expressed as follows,

Jk =
N
∑

i=1

xT
k+iQixk+i + uT

k+i−1Riuk+i−1 + xT
LSxL (6.1)

where Qi is the state weight matrix, Ri is the control weight matrix, and S is

the final state weight matrix. Additionally, MPC can include constraints, as

follows,
xk ≤ xk ≤ x̄k

uk ≤ uk ≤ ūk

yk ≤ yk ≤ ȳk

(6.2)

where xk, uk, and yk are the minimum state, control and output values at time

k, respectively. Furthermore, x̄k, x̄k, and x̄k are the maximum state, control

and output values. In the MPC scheme at each time step, only the first

optimized value, u∗(k) is input into the system. Schematically, the receding

horizon control scheme is illustrated in Figure 6.2. While a standard quadratic

programming formulation is adopted for the energy-aware control scheme, the

nonlinear MPC methodology is presented as follows for clarity of notation

[161].
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Figure 6.2: Schematic depiction of the receding horizon control scheme for two
steps in time.

6.1.1 Model Formulation and Nomenclature

For online MPC implementation, the optimization routine to deter-

mine the control input must be computationally efficient and solve for control

inputs at a rate faster than the system dynamics [159]. Historically, compu-

tational limitations have restricted the MPC methodology to process control

applications with slow transients [162]. However, structuring of the MPC op-

timization as a quadratic program (QP) allows for use of efficient QP solvers

such as active set and interior point methods [160]. For linear time-invariant

systems, the QP formulation of MPC has been implemented with success in

numerous applications [163, 164]. However, the QP, by definition, requires a

linear dynamic model of the process to ensure convexity [165]. To extend

the computationally efficient QP routine to a nonlinear process, such as the
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battery/mobile system dynamics, a suboptimal time-varying MPC approach

has been adopted and implemented [160, 161]. The following discussion details

the suboptimal time-varying MPC approach for nonlinear system control with

notation following [161]. For considerations of MPC stability, which are not

discussed in this work, see [166].

A discrete-time nonlinear system and nonlinear output equation are

generally represented in state-space form as follows,

xk+1 = f(xk, uk, dk) (6.3)

yk+1 = h(xk+1, uk+1, dk+1) (6.4)

where xk are the model states, uk are the model inputs, dk are model distur-

bances which are assumed to be known at time k. As the nonlinear dynamics

are not admissible in the QP formulation of MPC, the nonlinear dynamics

can be linearized over a trajectory of the MPC horizon, N . Provided a refer-

ence control input trajectory, u0 = [uk, uk+1, . . . , uk+N ], disturbance trajectory,

d0 = [dk, dk+1, . . . , dk+N ], and an initial state, xk, nominal state and output

trajectories of the nonlinear system can computed via equation (6.3). Re-

sultantly, a nominal state trajectory, x0 = [xk, xk+1, . . . , xk+N ], and nominal

output trajectory, y0 = [yk, yk+1, . . . , yk+N ] are obtained.

Linearization of equations (6.3) over the nominal trajectory yield lin-

earized state matrices,

Ak = ∂f

∂x

∣

∣

ξk=ξ0
k

Bk = ∂f

∂u

∣

∣

ξk=ξ0
k

Ek =
∂f

∂d

∣

∣

ξk=ξ0
k

(6.5)
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where the notation ξk = {xk, uk, dk} and ξ0k = {x0
k, u

0
k, d

0
k} has been adopted

for clarity. Furthermore, the nonlinear output equations (6.3) similarly yields,

Ck =
∂h
∂x

∣

∣

ξk=ξ0
k

Dk =
∂h
∂u

∣

∣

ξk=ξ0
k

Fk =
∂h
∂d

∣

∣

ξk=ξ0
k

(6.6)

With the linearized states matrices defined above, a linear time-varying

perturbation model can be formulated that approximates equations (6.3) [167].

As a perturbation model, the linear time-varying model approximates the

variations from the nominal trajectory. As such, the state, input, output and

known disturbance variations are given by, δxk = xk − x0
k, δuk = uk − u0

k,

δyk = yk − y0k, and δdk = dk − d0k, respectively. With these perturbation

parameters, the approximate state and output time-varying equations become,

δxk+1 = Akδxk +Bkδuk + Ekδdk (6.7)

δyk = Ckδxk +Dkδuk + Fkδdk (6.8)

For clarity of notation, the perturbation variables over the MPC pre-

diction horizon, N , are expressed using bold notation. Resultantly, δx =

[δxk, δxk+1, . . . , δxk+N ], δu = [δuk, δuk+1, . . . , δuk+N ], δy = [δyk, δyk+1, . . . , δyk+N ],

and δd = [δdk, δdk+1, . . . , δdk+N ].

6.1.2 Model Predictive Control with a Time-Varying Linear Per-
turbation Model

For the linear time-varying system presented, the general cost function

in equation (6.3) can be expressed in terms of the perturbation variables. The

143



cost function in vector notation is expressed as follows,

Jk = δxT Q̂δx+ δuT R̂δu (6.9)

where Q̂ and R̂ the state and control cost matrices for each state and control

vector, respectively. Concretely, these matrices are given as follows,

Q̂ =











Q1 · · · 0 0
...

. . .
...

...
0 · · · QN−1 0
0 · · · 0 S











R̂ =







R1 · · · 0
...

. . .
...

0 · · · RN






(6.10)

To formulate the MPC objective function in QP optimization form,

the state variables, δx must be implicitly removed from the cost function.

As a result of the linear dynamics, however, the future state vectors can be

computed via only the input vector, δu and the initial state δxk [161]. Solving

recursively for the states, the augmented time-varying state equation, requiring

only inputs and the initial condition, is given as follows,

δx = Âδxk + B̂δu+ Êδd (6.11)

where the Â, B̂, Ê matrices are found recursively as follows,

Â =
[

Ak Ak+1Ak · · · Ak+NAk+N−1 . . . Ak

]T
(6.12)

B̂ =











Bk 0 · · · 0
Ak+1Bk Bk+1 · · · 0

...
...

. . . 0
Ak+N . . . Ak+1Bk Ak+N . . . Ak+1Bk+1 · · · Bk+N











(6.13)

Ê =











Ek 0 · · · 0
Ak+1Ek Ek+1 · · · 0

...
...

. . . 0
Ak+N . . . Ak+1Ek Ak+N . . . Ak+1Ek+1 · · · Ek+N











(6.14)
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Equally, the perturbation output equation can be expressed in terms of only

the input vector and the perturbation state initial conditions at time k. As

such, the output equation is given as,

δy = Ĉδxk + D̂δu+ F̂ δd (6.15)

where the recursively found Ĉ, D̂, and F̂ , matrices are expressed as follows,

Ĉ =
[

Ck Ck+1Ak · · · Ck+NAk+N−1 . . . Ak

]T
(6.16)

D̂ =















Dk 0 0 · · · 0
Ck+1Bk Dk+1 0 0 0

Ck+1Ak+1Bk Ck+2Bk+1
. . . 0 0

...
... · · · Dk+N−1 0

Ck+NAk+N−1 . . . Ak+1Bk · · · · · · Ck+NBk−N−1 Dk+N















(6.17)

F̂ =















Fk 0 0 · · · 0
Ck+1Bk Fk+1 0 0 0

Ck+1Ak+1Bk Ck+2Bk+1
. . . 0 0

...
... · · · Fk+N−1 0

Ck+NAk+N−1 . . . Ak+1Bk · · · · · · Ck+NBk−N−1 Fk+N















(6.18)

Substitution of equation (6.11) into equation (6.9) yields a QP-friendly

MPC cost function where the only variable for optimization is δu.

Jk = δuT
[

B̂T Q̂B̂ + R̂
]

δu+ 2
[

Âδxk + Êδd
]T

Q̂B̂δu (6.19)

For the energy-aware MPC scheme, the QP optimization must also in-

clude both input constraints (constraints on the PWM duty cycle) and output

constraints (the battery terminal voltage). Akin to the original optimization
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objective in equation (6.3), the QP constraints must be expressed in the form

of equation (6.2). As such, the constraints must be solely expressed in terms

of the variable of optimization, δu. Output constraints imposed on equation

(6.3), that satisfy the QP formulation, can be expressed as follows,

D̂δu ≤ ȳ − y0 − Ĉδxk − Êδd (6.20)

−D̂δu ≤ y0 + Ĉδxk + Êδd− y (6.21)

where ȳ =
[

ȳk ȳk+1 · · · ȳk+N

]T
is the vector of all output maximums over

the prediction interval and y =
[

y
k

y
k+1

· · · y
k+N

]T

is the vector of all

minimums. Finally, the control constraints in QP form are given as,

IN×Nδu ≤ ū− u0 (6.22)

−IN×Nδu ≤ ū− u0 (6.23)

where ū =
[

ūk ūk+1 · · · ūk+N

]T
is the maximum constraint on the input

vector for time k : k +N and u =
[

uk uk+1 · · · uk+N

]T
.

The QP optimization routine detailed above must be solved at each

time step k, to procure the input for the subsequent time step, δu∗
k. For

clarity, the energy-aware MPC scheme is summarized.

1. Generate trajectories for linearization, x0, with the desired command

trajectory, u0 over the MPC horizon, N

2. Linearize equations (6.3) about the x0 trajectory yielding equations (6.5)

and (6.6)
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Figure 6.3: Block diagram representation of the receding horizon control
scheme.

3. Solve the quadratic program for δu,

min
δu

. Jk = δuT
[

B̂T Q̂B̂ + R̂
]

δu+ 2
[

Âδxk + Êδd
]T

Q̂B̂δu (6.24)

subject to D̂δu ≤ ȳ − y0 − Ĉδxk − Êδd

−D̂δu ≤ y0 + Ĉδxk + Êδd−

IN×Nδu ≤ ū− u0

−IN×Nδu ≤ ū− u0

4. Apply the optimal control, δu∗
k
at time, k

6.2 Applications to Unmanned Ground Vehicles

The energy-aware MPC methodology presented above can be applied to

any mobile system with finite onboard energy. In particular, the methodology

excels where the onboard energy is stored in a rate-limited storage mechanism,
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such as an electrochemical battery. Other energy storage devices, such as

flywheels and ultra-capacitors, which do not exhibit significant rate-limits to

energy, would not benefit significantly from the proposed energy-aware scheme.

To collaborate with the other studies presented in this work, the energy-aware

control methodology is applied on a simulated UGV system operating in a

stochastic environment.

6.2.1 Longitudinal Ground Vehicle Model

To evaluate the performance of the proposed energy-aware MPC scheme,

a simple longitudinal vehicle model was developed that integrates vehicle driv-

etrain dynamics with onboard battery dynamics through a power system. The

model, schematically depicted in Figure 6.4, utilizes the same model described

in Section 2.3.3 for battery dynamics. The vehicle/drivetrain dynamics dis-

count slip and only provide for longitudinal motion with rolling resistance [75].

Conjoining the drivetrain and battery dynamics, the pulse-width modulation

(PWM) power converter provides for control of the vehicle drive train via

specification of the PWM duty cycle [0% - 100%]. As the dynamics of the bat-

tery and vehicle remain several orders of magnitude above the PWM model

(measured greater than 1 kHz switching frequency for the DaNI UGV), a fast-

average approximation for the power converter is adopted [146]. Fast averaging

of the PWM dynamics results in a buck converter approximation which relates

the input/output voltage, Vm = Vb × δ(t), and current ib = il × δ(t).

Incorporating the PWM converter relationships into the vehicle/drivetrain
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Figure 6.4: Longitudinal vehicle model for source-aware MPC algorithm as-
sessment.

dynamics, the UGV velocity and motor currents can be found via the following

expressions,

i̇m = −
Kv

rwLm

vx −
Rm

Lm

im +
1

Lm

[Γ(q̄)− VD] u(t)−
RI

Lm

imu
2(t) (6.25)

v̇x = −
bw

mvr2w
vx +

Kt

mvrw
im − gf(i)sgnvx (6.26)

where vx is the longitudinal UGV velocity , im is the drive motor current, u(t)

is the PWM duty cycle command, and id(t) are additional battery current

loads. Vehicle parameters include the vehicle mass, mv, wheel radius, rw, the

drivetrain damping, bw, and the extant terrain rolling resistance value, f(i).

Additionally, the motor parameters are defined as the motor speed constant,

Kv, the motor torque constant, Kt, the motor terminal resistance, Rm and the

motor terminal inductance, Lm. Inclusion of the PWM algebraic relationships

link the vehicle dynamics to the battery dynamics as the battery model states

in equation (6.25) clearly illustrate. The battery dynamics, with the PWM
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relationships, are given as follows,

V̇D = −
1

RpCD

VD +
1

CD

imu(t) +
1

CD

id(t) (6.27)

˙̄q = −
1

q0RD

Γ(q̄) +
1

q0
imu(t) +

1

q0
id(t) (6.28)

where the parameters and states remain identical to those introduced in Sec-

tion 2.3.3. Finally, the battery terminal voltage equations is given,

VB = Γ(q̄)− VD − RIimd(t)− RIid(t) (6.29)

P
M

F

Rolling Resistance - f(i)(t)

f(1)

f(2)

= 0.01
= 0.28

Figure 6.5: Rolling resistance stochastic load structure.

To simulate a field environment, a second-order Markov chain which

represents the transition characteristics of the terrain rolling resistance was

proposed. As the Markov process requires only two states, the nomenclature

introduced in Section 4.3.1 is adopted. Rolling resistance coefficient adopted

for this study were selected to approximate a smooth surface, f(1) = 0.01, and

rough terrain, f(2) = 0.28 [75]. Furthermore the steady state characteristics

were selected to ensure predominately smooth surface travel with transient

rough patches, π1 = 0.7 and π2 = 0.3. A rolling resistance transition rate of

2.6 transitions per minute was selected via λ = 0.95.
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6.2.2 Monte Carlo Simulation Study

In the following section, a Monte Carlo simulation study is presented

in which the control fidelity of the proposed MPC algorithm is evaluated.

As discussed, the proposed MPC algorithm is a command governing scheme

that regulates input commands (as the PWM duty cycle) from a teleoper-

ator/supervisory control algorithm contingent on the battery (or source) dy-

namics. To serve as a baseline, direct vehicle control (DVC) with no duty cycle

restrictions is employed. The experimental studies conducted all utilized the

DVC methodology where motor commands are directly implemented. For the

stochastic switching environment proposed, the energy-aware control scheme

was implemented to constrain the battery terminal voltage above a shutdown

voltage of VSD = 9.5 V. Simulation results of the MPC scheme preventing

transient shutdown are illustrated in Figure 6.6.
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Figure 6.6: Energy-aware MPC simulation study illustrating transient shut-
down prevention.
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To contrast with the energy-aware MPC scheme, a constrained PID

control methodology was also proposed as a heuristic solution to the energy-

aware control problem. Contrasting with the MPC scheme which forecasts

using the battery model, the PID methodology proposed uses only the battery

output equation to solve for duty cycle values which prevent shutdown for the

next time step, k + 1. For each time step, the PID control effort is computed

via standard numerical PID operations, after which the resulting constraint is

checked,

uk ≤
1

RIim(k)
[Γ(q̄(k))− Vmin − VD(k) +RIid(k)] (6.30)

If the constraint is violated, a Newton-Raphson solver determines the critical

duty cycle command, u
(c)
k , which results in shutdown. To ensure the voltage

constraint is not exceeded, the constrained-PID command issued is u
(c)
k − ε,

where ε is an a priori specified threshold. An example implementation of the

heuristic constrained-PID method is illustrated in Figure 6.7.

The results for the energy-aware MPC and heuristic PID schemes in

Figures 6.6 and 6.7 illustrate the methodologies over a single stochastic load

realization. To analyze the potential benefits of the energy-aware schemes,

500 realizations of each of the three control methodologies (DVC,PID,MPC)

were simulated until system shutdown. The UGV system was assumed to have

shutdown if one of the three conditions was met:

1. Exceed cutoff voltage by > 1%, where VSD = 9.5 V
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Figure 6.7: Heuristic constrained-PID for comparison to energy-aware MPC.

2. Ten second moving average of velocity drops below 25% of expected

longitudinal rate

3. Quadratic program becomes infeasible for the MPC scheme

The resulting numerical PDFs for both the cumulative distance traveled

and the total operational time for the simulations are illustrated in Figure 6.8.

Furthermore, the failure modes of each controller type are summarized in

Table 6.1. As expected, DVC failures resulted exclusively due to the battery

terminal voltage exceeding the shutdown voltage. This follows as the control

is not subject to any voltage constraint considerations. The PID scheme fails

as a result of both exceeding the voltage and velocity thresholds. While the

PID controller attempts to solve for a feasible control effort at each time step,

the heuristic constrained PID does not predict future states. Thusly, the

PID controller can implement a control action at time, k, resulting in any
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control effort at k + 1 yielding system shutdown. Finally, the energy-aware

MPC scheme was demonstrated to fail only as a result of plummeting vehicle

velocity. Over the 500 realizations of the MPC scheme, the QP optimization

was never infeasible.
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Figure 6.8: Monte Carlo comparison study results of energy-aware MPC as
compared to DVC and PID. (a) Operational Time. (b) Cumulative distance.

Table 6.1: Energy-aware shutdown conditions for each presented control style.

Control Battery Voltage Low Velocity QP Infeasible
DVC 100.0 % 0.0 % -
PID 16.0 % 84.0 % -
MPC 0.0 % 100 % 0.0 %

As can be seen in Figure 6.9, the energy-aware MPC algorithm outper-

forms both the heuristic constrained PID method and standard DVC in both

the total operational time and the cumulative distance traveled. In terms of

total operational time for all 500 simulations, the mean energy-aware MPC sys-

tem operation time was 248.16 seconds. As such, the MPC scheme remained

operational 48.96 seconds longer than the proposed heuristic PID method and
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109.05 seconds longer than DVC. Furthermore, the mean cumulative distance

traveled for the MPC scheme was 214.24 meters. Again, the MPC algorithm

allowed the simulated UGV to travel an average of 15.86 meters more than

the PID method and 52.61 additional meters over DVC.
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Figure 6.9: Box plot presentation of results of energy-aware MPC as compared
to DVC and PID. (a) Operational Time. (b) Cumulative distance.

Finally, to determine whether computational requirements of the MPC

algorithm outweighs the benefits of implementation, the computation time

required for both the constrained PID and the energy-aware MPC were mea-

sured. Computation time included method initialization until an optimal δu∗
k

is found. For the MPC algorithm, the mean computational time was found to

be 6.06 ± 0.88 ms. Contrastingly, the mean computational time for the con-

strained PID algorithm was found to be 2.53±1.78 ms. The box plot, in Figure

6.10, illustrates the quartile information of the computational time. As the

proposed PID routine must solve a Newton-Raphson, the upper computational

time bound depends on the required number of iterations for convergence. The
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QP formulation of the energy-aware MPC algorithm with a single control vari-

able, in contrast, is known to be exceedingly efficient in a computational sense

[168].
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Figure 6.10: Comparison of computational times required over all UGV sim-
ulations.
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Chapter 7

Conclusions

The goal of this work has been to extend online prediction/control

capabilities for mobile systems with finite onboard energy that operate in un-

structured environments. These mobile systems, such as ground robots and

electric vehicles, have been shown to experience significant transient power

demands that invalidate the assumptions for existing battery remaining run-

time and energy-aware control schemes. As such, the relevant literature for

run-time prediction, probability of mission completion prediction and energy-

aware control methodologies was reviewed. The GMJM/PF integrated predic-

tion scheme was proposed/developed such that existing prediction limitations

could be overcome, and experimentally demonstrated via two distinct mobile

system discharge studies, i.e. the Packbot and DaNI UGV. A reliability-based

PoMC assessment algorithm was introduced to include battery dynamics into

mission probability of completion prediction, and the methodology was demon-

strated with experimental studies involving the DaNI UGV. Finally, an online

energy-aware MPC algorithm was developed to mitigate current transient re-

lated shutdowns frequently encountered in field operations.
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7.1 Summary and Directions for Future Work

In the following section, the research presented in this dissertation is

recapitulated. Furthermore, the conclusions drawn from algorithm develop-

ment and experimental implementation are restated. Finally, any avenues for

potential future work are presented and discussed.

7.1.1 Online Unsupervised Transient Load Characterization

The novel online GMJM load characterization scheme was proposed

to address the need for online characterization of a priori unknown transient

load structures encountered by mobile systems operating in unstructured en-

vironments. As discussed battery systems remain prone to transient shutdown

conditions and the rate-capacity effect. As a result, for battery run-time pre-

diction, the transient characteristics of the battery loading process must be

preserved. The GMJM method, introduced in Chapter 3, adopts and inte-

grates existing mathematical methods to provide for an online scheme for

characterization of stochastic transient loads for load forecasting.

As the loading process for a mobile system is a priori unknown, the

transient characterization scheme must be capable of unsupervised load clus-

tering. The Gaussian mixture clustering method was adopted with the Akaike

information criterion metric to ascertain the optimal number of loading clus-

ters and cluster statistics. As cluster number identification occurs online, the

developed methodology remains self-supervised. After load cluster identifi-

cation, the transient characteristics of the loading process are fit to a jump-
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Markov process via maximum likelihood parameter estimation. The integrated

Gaussian mixtures and jump-Markov process form a fully characterized tran-

sient load process that can be used for load forecasting and battery run-time

prediction. The GMJM load characterization algorithm was experimentally

implemented and demonstrated with two UGV studies.

To improve on the GMJM transient load characterization algorithm,

the stochastic process characterization of each loading cluster could be further

modeled. In regions of identical clusters, a time series process, such as the

autoregressive moving average, can extend the model to include the spectral

characteristics of the power loads. Improvement of prediction fidelity is con-

jectured to remain minimal as a result of this improvement, as the primary

load considerations are the transient jumps. An additional improvement to

the GMJM scheme is the use of an apparent relationship between cluster sep-

aration, cluster transition rates, and the necessary data horizon for load char-

acterization. An analytical relationship between these variables would allow

for proper load horizon selection without residual evaluation for an adaptive

horizon or a priori horizon selection based on expected loads.

7.1.2 Battery Remaining Run-time Prediction via the Particle Fil-
ter

To overcome the existing limitations of battery remaining run-time pre-

diction methodologies, the model-based particle filter has begun to see adop-

tion in the literature. However, existing implementations of the particle filter
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for battery remaining run-time prediction do not account for the transient

characteristics of the loading process encountered by mobile systems operat-

ing in unstructured environments. As a result, unless the future transient

loads are a priori known, the particle filter predictor gains little over the EKF

predictor. As a result, the proposed/implemented methodology, introduced in

Chapter 4, combines the predictive power of the PF with the GMJM transient

load structure.

To predict battery remaining run-time, the PF represents all state un-

certainty as the sum of weighted particles which propagate through the non-

linear dynamic battery model. Each state particle is acted on by an individual

realization of the GMJM load. Resultantly, the battery RRT probability dis-

tribution can be predicted. Furthermore, the GMJM/PF scheme was demon-

strated to excel over existing RRT prediction methods when load transients

exceed 20W. As implementation of the GMJM/PF methodology requires two

orders of magnitude more computational power than linear model-based tech-

niques, the assessment of expected load transients provides for design consid-

erations for selecting a battery RRT scheme. Finally, the GMJM/PF method

was demonstrated to outperform all existing methods via two experimental

UGV studies.

In terms of potential future work, the GMJM/PF battery run-time

predictor computational efficiency could be further improved. As discussed,

the algorithm developed in this work required two orders of magnitude more

computational time than a linear variance (EKF) predictor. Improvement in
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computational efficiency could result from implementation of next generation

predictors, such as the Gaussian-sum filter or weighted propagation of Gaus-

sian mixtures through nonlinear systems. These non-Gaussian approaches

could offer a hybrid prediction scheme where a Gaussian-sum filter is used for

initial prediction until a maximum current results in system shutdown. After

which the PF scheme could be initialized for transient shutdown prediction.

Additional improvements in prediction fidelity could be achieved with more

accurate battery models for both online state estimation and model-based

prediction. However, these gains would come at the expense of additional

computational complexity.

7.1.3 Online Mission Reliability Assessment

A probability of mission completion algorithm was introduced in Chap-

ter 5 for online assessment of mission reliability. Most reliability analysis

methods, for mobile systems, consider mobility or component failure condi-

tions. Furthermore, posited methods, with energy constraints, fail to address

the dependency of available onboard energy on mission characteristics. To

overcome existing limitations, a method was presented for online characteri-

zation of a bivariate mission process relating overall mission time and battery

run-times. Prediction of the probability of mission completion could be found

directly by numerical quadrature of the PDF over the failure region where

mission time exceeds available battery run-time.

For online PoMC prediction, the mobile system mission process was
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modeled as a bivariate normal distribution. Battery RRT predictions via the

GMJM/PF and mission time predictions via EWMA forecasts of velocities

provide a prediction pair, (OBRT, OMT). With these prediction pairs, the

correlation is estimated via Bayesian inferencing. With the marginal distribu-

tions of battery run-time/mission time and the correlation estimate, a bivariate

formulation of the mission process is ascertained. Integration of the bivariate

distribution over the region where the mission time exceeds the battery run-

time yields the PoMC estimate. The PoMC estimator was implemented with

experimental UGV data and demonstrated to accurately predict the ground

truth mission probabilities for a range of mission profiles. Finally, the impor-

tance of mission time and battery time correlation was demonstrated via an

experimental comparison against the assumption of independence.

In terms of future work, the PoMC estimation algorithm could be

improved by incorporating the non-Gaussian RRT prediction characteristics

into the mission process characterization. Using the theory of cupolas, non-

Gaussian marginal distributions can be used to generate a multivariate non-

Gaussian distribution function [143]. As such, prediction inaccuracies result-

ing from the bivariate approximation can be mitigated. Cupola theory, how-

ever, requires numerical computation to implement and is expected to require

additional computational power over the bivariate assumption. Another av-

enue for algorithm improvement is the potential for task time updating online.

Provided repeated tasks and online measurements of task times, a Bayesian

updating scheme could be used to update task times during mobile system
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operation. Finally, the additional forecasting methodologies for the prediction

of overall mission run-time could be implemented and contrasted with the

selected EWMA scheme.

7.1.4 Transient Shutdown Prevention Control

Finally, energy-aware control was extended to include mobile systems

that operate with stochastic transient loads in Chapter 6. Model predictive

control, in the literature, has been utilized for mobile system control and en-

ergy allocation, but only in the case of mobile systems with multiple energy

sources. Contrastingly, the proposed energy-aware MPC scheme was designed

to prevent transient shutdown conditions of the sole onboard battery system.

Furthermore the proposed MPC scheme was developed to incorporate char-

acterized stochastic loads, such as the transient loads characterized by the

GMJM process.

The energy-aware MPC scheme was developed to take a command from

either a vehicle teleoperator or supervisory control system as an input. The

nonlinear battery/vehicle model is then linearized about the specified com-

mand trajectory and the system model is formulated as a linear time-varying

perturbation model. The model predictive control scheme is formulated as a

quadratic program that is then efficiently solved via an active set solver rou-

tine. The MPC routine solves for the optimal control command input that

tracks the nonlinear trajectory subject to the battery shutdown voltage con-

straint. Monte Carlo simulation realizations of the MPC scheme were shown
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to outperform direct vehicle drive and a heuristical constrained PID control

scheme.

As the presented energy-aware model predictive control scheme is only

preliminary, ample future development opportunities remain. At the writing

of this dissertation, the energy-aware algorithm was in the process of being im-

plemented on the DaNI UGV. Online implementation requires battery state-

of-charge estimation for the battery model states and disturbance estimation

as present disturbances were assumed to be known. Additional future work in-

volves extending the MPC routine to include robust MPC methods to account

for load uncertainties. Recent advances in tube-based robust model predictive

control serve as an auspicious method extension.

7.2 Significant Scientific Contributions

Several contributions have been made to the fields of battery remaining

run-time prediction, mobile system (in particular UGVs) mission reliability

analysis, experimental analysis of stochastic ground robotic processes, and

energy-aware control. The comprehensive list of contributions is presented as

follows:

1. Self-supervised Gaussian mixture jump-Markov load charac-

terization algorithm: A method for online transient load character-

ization, presented in Chapter 3 was developed. The GMJM algorithm

integrates Gaussian mixture clustering with the Akaike information cri-
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terion for self-supervised identification of the number of transient load

structures. Furthermore, the load transition rates are characterized via a

jump-Markov process. While the individual methods remain well-known,

the novel combination and application serve as a contribution of this

work.

2. Battery remaining run-time prognostics via the particle filter

with transient load forecasts: A method for battery remaining run-

time prediction, introduced in Chapter 4, was developed which inte-

grates the model-based particle filter prediction routine with the GMJM

load process. Traditional battery run-time prediction has neglected tran-

sient loads which disregard the dynamic nature of battery systems. The

GMJM/PF scheme was also extended to include uncertain battery shut-

down conditions via the reliability integral.

3. Online probability of mission completion assessment for mo-

bile systems: A method for predicting the probability of completing a

mission was presented in Chapter 5. Proposed PoMC techniques have

discounted the dependence of the battery system on the operational char-

acteristics of the mission. The method presented in this work overcomes

this limitation by performing Bayesian correlation estimation of the mis-

sion process. Standard reliability methods are used to compute the prob-

ability of the overall mission time exceeding the overall battery run-time.

4. Energy-aware model predictive control for transient shutdown
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prevention: A method for transient shutdown prevention was proposed

which utilizes receding horizon model predictive control. Existing ap-

plications of energy-aware control either control distribution of power

between energy sources (onboard generator and batteries) or prevent

battery shutdown on systems via task scheduling, such as wireless net-

works. The introduced method in Chapter 6 extends the energy-aware

MPC methodology to mobile systems with stochastic loads through an

integrated battery/vehicle system. The quadratic programming formu-

lation of MPC was adopted for real-time control.

5. Experimental stochastic terrain environment for UGV discharge

studies: An indoor experimental test stand was designed and con-

structed for repeated UGV discharge tests. In the literature, existing

run-time prediction schemes largely assess prediction fidelity with a sin-

gle discharge experiment. The developed terrain environment provided

for repeated UGV discharge studies which simulated the unstructured

power demands experienced during UGV field operation. All methodolo-

gies presented in the work were statistically demonstrated over numerous

experimental studies.
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Appendix A

Modeling, Estimation and Parameter

Identification of Dynamic Battery Systems

The following appendix details the experimental work conducted for

the parameter identification of the 12V 3000 mAh NiMH battery packs used

for the experimental studies in this work. Furthermore, the experimental work

conducted to characterize the battery protective circuitry used in the NI DaNI

ground robot is presented. Finally, while not explicitly discussed in the body

of the dissertation, the extended Kalman filter for battery SOC estimation

is presented. Online battery RRT prediction require either direct measure-

ment or estimation of battery SOC information for an accurate model-based

prediction.

A.1 Parameter Identification and Optimization

Lumped parameter models were presented for a generic battery sys-

tem throughout this work. Application of the ECM for estimation, control

and prediction requires the population of model parameters and identification

of the nonlinear discharge curve, given by equation (2.21). Electrochemical

impedance spectroscopy (EIS) has been demonstrated in the literature as an
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accurate technique for characterization of the lumped resistances and capaci-

tance of the ECM in Figure 2.13, resulting in model errors of less than±0.2%

[169]. However, impedance measurements require signal magnitude and phase

information, typically acquired via a lock-in amplifier [170] or galvanostatic

spectroscope [171], both which were beyond the budget/scope of this research.

Consequently, the parameters were optimized via nonlinear least squares

to minimize the residues of the model voltage and measured voltage [170]. Pe-

riodic discharge tests were conducted on battery packs, for load current and

measure voltage information, via a constructed current controlled discharge

test stand. In section A.1.1, the experimental discharge setup for parame-

ter identification is presented, and the experimentally ascertained open circuit

discharge curve of a 3000 mA-h NiMH battery pack is shown. The nonlinear

least squares transient parameter optimization routine is briefly discussed in

section A.1.2, followed by the optimized values.

A.1.1 Battery Discharge Experiments

Prior to the dynamic optimization of ECM parameters, discharge curve

must be identified. Since the discharge curve, equation (2.21), relates the SOC

to the open circuit voltage, the voltage measurements require a recovered un-

loaded battery for each particular charge [7]. As a result, loading the battery

periodically decreases the SOC during the loading cycle, and the unloaded

duration provides for ion diffusion recovery to the new open circuit voltage. A

current controlled discharge test stand, shown schematically in Figure A.1(a)
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Figure A.1: (a) Schematic of the current controlled discharge setup. (b) Lab-
oratory realization of the discharge setup.

and physically in Figure A.1(b), was constructed for controlled periodic dis-

charge.

A 3000 mA-h NiMH battery pack, used in all future experiments, was

subjected to a 1/20 Hz periodic discharge at 1 A. The discharge period was

selected such that the measured voltage would return within 1% of the ex-

pected open circuit voltage during the recovery phase, seen in Figure A.2(a).

A high discharge rate was desirable to minimize test time; however, hardware

limitations required discharge currents under 3A. The open circuit voltage val-

ues were found by extracting the measured terminal voltage prior to the next

discharge cycle.

A bounded general polynomial fit, given by equation (A.1), provides a

mathematical depiction of the nonlinear discharge curve,

Γ(q̄) ≈
N
∑

n=1

anx
n (A.1)

where N is the polynomial order and an are polynomial coefficients. Uti-

lizing the open circuit voltage data from two full discharge tests, a general

170



0 20 40 60 80 100
10

10.5

11

11.5

12

12.5

13

Time [s]

T
e

rm
in

a
l V

o
lt

a
g

e
 [

V
]

0 0.2 0.4 0.6 0.8 1
9

10

11

12

13

Normalized Charge [0−1]

O
p

e
n

 C
ir

cu
it

 V
o

lt
a

g
e

 [
V

]

 

 

(a) (b)

Fit

Data

Figure A.2: (a) Selection of discharge data illustrating the recovery effect
returning to the open circuit voltage. (b) Polynomial fit of the open circuit
voltage data.

Table A.1: Discharge curve polynomial fit.

Parameter Value Parameter Value

a0 9.246 a4 −1.121× 103

a1 23.856 a5 1.393× 103

a2 −143.77 a6 −930.83

a3 521.97 a7 259.60

polynomial least-squares algorithm was employed to determine the leading co-

efficients, ana0 [76]. The polynomial order was determined via a comparison of

normalized residuals [85]. Beyond the eight degree polynomial, the decrease in

the magnitude of the residual remained minimal. Consequently, the discharge

curve is represented as an eight order polynomial with the following terms:
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A.1.2 Parameter Optimization Routine

To identify the ECM lumped parameters, a constrained nonlinear least

squares optimization routine was implemented to minimize residuals between

the model prediction and experimental measurements, akin to [172]. Suc-

cinctly stated, the optimization problem takes the following form,

min
θ

. (V̂B(θ)− V
(obs)
B )T (V̂B(θ)− V

(obs)
B ) (A.2)

subject to : V̇D = f1(VD, q̄, IL, θ) (A.3)

˙̄q = f2(VD, q̄, IL, θ)

θ ∈ Θ

where V̂B is the predicted terminal voltage by the model, V
(obs)
B is the measured

terminal voltage during an experiment, θ is the set of unknown parameters to

be optimized, and Θ is the feasible set for the model parameters. The parame-

ter vector, θ, contains the set of system parameters, θ = {RP , CD, RI , RD, q0},

which serves as the variable set of optimization. The dynamic constraint equa-

tions, V̇D = f1(VD, q̄, IL, θ) and V̇D = f2(VD, q̄, IL, θ), enforce the Thévenin

ECM dynamic equations (2.22) and (2.23), respectively.

Excitation of the dynamic states, VD and q̂, was achieved via multiple

discharge tests with large transient loads [170]. Periodic discharge currents of

0-3A at a rate of 0.25 Hz and 0.5 Hz captured significant transients for opti-

mization analysis, as compared to the open circuit discharge curve discharge

experiments. Parameter optimization performed at varied SOCs and at dif-

fering discharge rates potentially avoids non-optimal parameter identification,
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Figure A.3: Comparison of simulated optimal parameters and discharge volt-
age data of a NiMH battery pack.

due to the nonlinearity (and local minima) of the optimization problem (A.2)

[172]. Furthermore, the set of parameters to be optimized are initialed with

parameters given in [173] for a NiMH battery pack. Parameters were bounded

by physically imposed constraints, e.g., no negative resistances or capacitances.

Using a generic interior point optimization routine, the optimization

problem, (A.2), was solved with multiple initializations. A particular parame-

ter identification optimization is illustrated in Figure A.3, where a simulation

of the Thévenin with optimal parameters is compared with the measured volt-

age data. Averaging the optimized system parameters provides the values

presented in Table A.2.
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Table A.2: Optimized parameters for a 3000 mA-h NiMH battery pack.

Parameter Value Description
CD 73.7F Diffusion Capacitance
RD 2.59× 103Ω Dissipation Resistance
RP 0.068Ω Polarization Resistance
RI 0.327Ω Internal Resistance
q0 9.74× 103C Initial Charge

A.2 Identification of Shutdown Conditions

During field operation, battery shutdown does not necessarily com-

mence upon full depletion of the internal charge [62]. A drained charge re-

mains intrinsically linked to the open circuit voltage of the battery cell and

the drained voltage is arbitrarily linked, typically by the manufacturer, to cell

chemistry to preserve battery endurance [7]. To enforce consistent shutdown

of the powered system and prevent cell damage resulting from deep discharge

(particularly for Li-ion cells), modern switched-mode power electronic con-

verters and battery protective circuitry supplement the battery system [174].

Resultantly, the shutdown of a mobile system powered via a battery depends

on the shutdown conditions of the protective circuitry, which ultimately de-

pend on the measured battery terminal voltage. While remaining battery

SOC contributes to terminal voltage, Figure (voltage polarization) and equa-

tion (2.24) illustrate other contributing factors, such as the diffusion voltage

and ohmic voltage drop due to the load current. Consequently, run time pre-

diction must account for voltage-based shutdown conditions, and hence these

conditions must be determined.
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Figure A.4: Battery Protective Circuitry which enforces voltage shutoff and
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Fundamentally, a battery protective circuit prevents damage to the

battery cells via shutdown in the event of two primary scenarios: over current

draw and low terminal voltage [174]. A simplified protective circuit, illustrated

in Figure A.4, terminates system operation in the event of a detected over

current or low battery terminal voltage. More complex protective system exist

which utilize additional temperature measurements for shutdown, in addition

to state-of-health monitoring and cell rebalancing [174]. For the experimental

work in this dissertation, a DC-DC boost converter (XP JCL30 series) was

used for battery protection which has a surge current shutdown condition of

4.7A. The maximum current encountered during experiments was 3.45A and

as a result, we focus on voltage shutdown conditions characterization for this

work.

Commonly, protective circuitry does not provide information on shut-

down conditions, and resultantly, the statistics of voltage shutdown must be

ascertained experimentally, with the methodology illustrated in Figure A.6.
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Substitution of a ramped voltage supply for the battery provides for a re-

peatable method for shutdown voltage measurement. Voltage supplied to the

DC-DC boost converter is decreased via a ramp function until the output of

the converter drops below 5% of the regulated output voltage (in our case, a

24V line bus). Sample experimental data is illustrated in Figure A.5.

The experiments, illustrated in Figure A.6, were repeated until the first

four statistical moments (mean, variance, skewness, and kurtosis) converged.
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Figure A.7: Experimentally measured shutdown voltage probability density
function for the XP JCL30 protective circuit.

For the XP JCL30 DC-DC boost converter, thirty experimental iterations were

required. Data and a kernel density estimation fit are illustrated in Figure A.7

with an additional Gaussian fit. Nominally, the system will shut down when

the battery terminal voltage descends below 8.22±0.277 V. Due to the minimal

variance associated with shutdown conditions, battery shut down voltage will

be a scalar value of 8.22V unless otherwise noted.

A.3 Online State-of-Charge Estimation

Remaining run time algorithms, as introduced in Section 1.2.1, require

either direct knowledge/ real-time measurements or some form of online esti-

mation of battery state-of-charge. As illustrated in Section 2.3.3 in equation

(2.21), the battery open circuit voltage depends on the battery SOC through

nonlinear discharge curve homeomorphism. Resultantly, the battery terminal

voltage depends primarily on the remaining charge in the battery cells [95].
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Given the dependency of the battery protective circuitry and power systems,

discussed in Section A.2, on the instantaneous terminal voltage of the battery,

knowledge of battery SOC remains paramount for the prediction of run time

and shutdown conditions.

A diverse spectrum of methodologies exist in the literature for SOC esti-

mation which vary significantly with regards to the hardware implementation,

algorithm and computational complexity and eventual estimation accuracy. A

review of techniques for implementable SOC estimation for devices is presented

in [175]. Direct quantization approaches, such as the physical measurement

of cell electrolyte specific gravity and impedance spectroscopy, provide accu-

rate estimations of the remaining charge (within 1%) [95]. However, each of

these methodologies requires temporary halting of current draw from the cell

for measurement, and resultantly, neither technique could be implemented for

real-time SOC estimation on a mobile system [169].

Contrastingly, system estimation algorithms, which suffer in accuracy

over physical measurements, have supplanted other direct techniques for real-

time SOC estimation on mobile devices with minimal computational power.

State estimators, such as the extended/unscented Kalman filter, require only

basic matrix manipulation computational methods and digital measurements,

and thusly, can be implemented directly on a mobile system [48]. Addition-

ally, provided an appropriate fidelity battery model, online estimation schemes

commonly report SOC estimation errors of less than ±5% [95]. Furthermore,

implementation successes for model-based SOC estimation have been reported
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with a variety of applications ranging from mobile hybrid electric vehicles to

stationary photovoltaic non-dispachable energy storage/ generation [175].

As was illustrated in Section 2.3.3, the battery ECM utilized for pre-

diction contains nonlinear components. Resultantly, the model-based estima-

tor must be capable of nonlinear state estimation. Fortunately for the sake of

brevity, the techniques discussed in the literature for nonlinear state estimation

for battery SOC remain identical to the prediction methodologies discussed in

Section 2.1. State estimation, as contrasting with state prediction, requires an

additional update step which utilizes information from a current measurement

to update the prediction from a dynamic model. While the unscented Kalman

filter [176], hybrid estimator [177], or the particle filter [55] have been shown

to be efficacious in battery SOC estimation, computationally light extended

Kalman filter demonstrates accurate estimations with errors under 10% [175].

Additionally, the Kalman filter methodology includes estimates of the covari-

ance matrix which can be incorporated in the state uncertainty for prediction.

A brief review of state estimation and the EKF is presented, followed by a dis-

cussion of the implementation of the EKF into the PF prediction methodology

of Chapter 4.

Anecdotally, the Kalman filter can be interpreted as a method of “fus-

ing” information from both real-world sensor information and first-principles

based dynamic model information. Properties of a dynamic systems, which

remain tedious or impractical to measure directly, can be estimated with in-

formation from both measurements and a dynamic model. In the case of the
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battery system, direct measurement of SOC remains unviable in mobile sys-

tems and thusly state estimation has been applied for SOC estimation with

success [44].

In the theoretic sense, the estimator takes information from measure-

ments and the output of the dynamic model and attempts to “drive” the

innovation term (residual between the model and reality) to zero, see Figure

A.8. The estimator accomplishes this convergence to zero innovation by se-

quentially updating the state estimates given new measurement information.

Furthermore, the Kalman gain (which determines the rate of change of states)

is determined by the relative “trust” of information from measurement and

the model respectively. This “trust” is represented by the covariance (or un-

certainty) associated with the states, measurement noise and model (process)

noise. For a more in depth coverage of nonlinear estimation theory, please

consult [48].

State estimation of battery SOC requires a model of the system dy-

namics. Fortunately, the equivalent circuit model given in Section 2.3.3 has

been shown accurately estimation battery SOC within a ±5% window [175].

Additionally, state estimation remains feasible given satisfaction of the ob-

servability condition [167]. The proof of observability of equations (2.22) and

(2.24) is provided in Section A.4. For the extend Kalman filter, the nonlinear

state space equations are sequentially linearized about the state trajectory,

such that the customary Kalman theory equations become applicable [48].

Linearization of the continuous nonlinear equations given by equation, yield
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Figure A.8: Overview of extended Kalman filter estimation scheme.

the following state matrices,

A =
∂f

∂x

∣

∣

∣

∣

x̂(t)

=

[

−1/RPCD 0
0 −Γ(1)(q̄0)

/

q0RD

]

(A.4)

B =
∂g

∂x

∣

∣

∣

∣

x̂(t)

=

[

1/CD

−1/q0

]

(A.5)

where Γ(1)(q̄0) = ∂Γ(q̄0)/∂q̄ which is the first derivative of the continuous

discharge curve function, which by definition is a C∞ function on the interval

q̄ ∈ [0, 1]. For extended Kalman filtering, the model output equation, see

equation (2.24), can still remain nonlinear since the output information is

only necessary for the innovation calculation. Resultantly, the innovation for

the SOC estimator is as follows,

ek = VB − Γ(ˆ̄q) + V̂D +RIIL (A.6)
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where ek is the estimator error or innovation, VB is the measured battery

terminal voltage,ˆ̄q is the estimated state of charge, V̂D is the estimated diffu-

sion voltage and IL is the measured current load. Finally, due to the relative

simplicity of the linear state equations which result from linearization, further

discretization of the matrices provides for a computationally efficient estimator

[24]. Discretization of linear state space matrices remains a straightforward

analysis of the matrix exponential as follows [48],

AD = eA∆T =

[

e∆T/CDRP 0

0 e−Γ(1)(q̄0)∆T/q0RD

]

(A.7)

BD =

[
∫ ∆T

0

eAσdσ

]

B =

[

−RP

(

e−∆T/CDRP − 1
)

RD

Γ(1)(q̄0)

(

e−Γ(1)(q̄0)∆T/q0RD − 1
)

]

(A.8)

where ∆T is the discrete time step. With the above discrete time matrices,

the extended Kalman filter can be formulated without continuous dynamics.

Resultantly, the a priori prediction equations for the state estimates and the

state covariance matrix can be expressed as follows,

x̂k|k−1 = ADx̂k−1|k−1 +BDuk−1 (A.9)

Pk|k−1 = ADPk|k−1A
T
D +Qk−1 (A.10)

where Qk is the process noise covariance which adds directly to the state

covariance matrix, and Rk is the measurement noise variance which repre-

sents uncertainty associated with the measurement process. Furthermore,

x̂k−1|k−1 =
[

V̂D(k − 1|k − 1) ˆ̄q(k − 1|k − 1)
]T

is the previous state estimate

and x̂k|k−1 is the a priori state estimate (prediction step only). Finally, uk is
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the current load on the battery, IL, and Pk|k−1 is the covariance matrix. Given

the measurement, the a priori predictions can be updated with the innovation

term in equation (A.6). The Kalman gain, which optimally updates the state

estimates to minimize the mean-square error of the states, is given as follows,

Kk = Pk|k−1B
T
D

[

BDPk|k−1B
T
D +Rk

]−1
(A.11)

Provided both the Kalman gain of equation (A.11) and the a priori

estimates of equations (A.9) and (A.10), the computation of the a posteriori

state estimates and covariance matrix remains straightforward as follows,

x̂k|k = x̂k−1|k−1 +Kkek (A.12)

Pk|k = [I −KkBD]Pk|k−1 (A.13)

where x̂k|k is the updated state estimate and Pk|k is the updated covariance

matrix, both of which are used for the prediction methodology in Section 4.1.1.

Additionally, ek comes from the measurement, shown in equation (A.6).

To confirm the efficacy of the SOC estimation algorithm discussed

above, the methodology was implemented with the ten cell 3000 mA-h NiMH

battery pack which was used for parameter identification, in Section A.1. Re-

sultantly, the parameters and discharge curve, Γ(q), used in the EKF remain

identical. A stochastic discharge current, shown in Figure A.9(b), ranging

from 0-3 amps was drawn from the battery pack via robotic vehicle which is

discussed in Section 4.4.2. This uncertain current produced a battery terminal

voltage discharge curve shown in Figure A.9(a). Implementation of the filter
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Figure A.9: (a) Battery discharge curve. (b) Stochastic current load applied
to the NiMH battery pack for 2.25 hours.

theory discussed above provides the SOC estimation for the entire time interval

of testing. The resulting state of charge mean estimate with the variance confi-

dence interval are shown in Figure A.10. As previously discussed, the variance

uncertainty associated with the SOC estimate can be directly utilized in the

PF prediction algorithm discussed in Section 4.1. Preservation of the variance

associated with estimation for prediction ensures proper representation of all

uncertainty through all algorithms, as illustrated in Figure A.8. Resultantly,

the initial uncertainty used to generate particles for prediction comes from Pq̄

which is illustrated in Figure A.11.

A.4 Nonlinear Observability of Battery Model

The feasibility of state estimation theory, discussed in Section A.3, is

contingent on the observability of the dynamic system. While the general the-

ory of observability relies on several nuanced technical definitions, colloquially,
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observability of a system implies that the internal model states can be uniquely

determined through the dynamics given a finite number of measurements.

Definition A.4.1. Observability for a continuous system ensues if and only

if for some arbitrary initial state x(0), the value of x(0) can be ascertained

uniquely via only the inputs, u(σ), and the outputs, y(σ) over the time interval

σ ∈ [0, tf ] [178].

For a nonlinear system, observability hinges on the change of the out-

put homeomorphism function as the state flows along the vector field of ẋ

[167]. Succinct analysis of nonlinear observability utilizes the Lie derivative

methodology; a thorough documentation of the technique can be found in

[167]. Standard nonlinear form of system dynamics and the output equation

in terms of the battery model are given as follows,

ẋ(t) = f(x, u) =

(

−x1/RPCD

−Γ(x2)/q0RD

)

+

(

1/CD

−1/q0

)

u (A.14)

y(t) = h(x, u) = Γ(x2) + x1 +RIu (A.15)

where x1 = VD, x2 = q̄, and u = IL. The Lie derivative methodology takes

subsequent vector derivatives of the above equations to determine the accessi-

bility of the internal model states through the output manifold. To determine

the observability, the Lie derivative is taken recursively the number of times

equivalent to one plus the number of internal states [167]. For the battery sys-

tem, given by equations (2.22) and (2.23), the Lie derivatives are calculated
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as follows,
L0
f (h) = h

L1
f (h) =

∂h
∂x
f

L2
f (h) =

∂
∂x

[

∂h
∂x
f
]

f = ∂
∂x

[

L1
f (h)

]

f

(A.16)

Execution of the methodology of equation (A.16) on the battery model

in equations (A.14) and (A.15) yields the following observability space,

GX =





L0
f (h)

L1
f (h)

L2
f (h)



 =







Γ(0)
1

CDRP
x1 −

1
q0RD

Γ(1)Γ(0)

− 1
C2

D
R2

P

x1 +
1

q20R
2
D

[

Γ2
(1)Γ(0) + Γ(2)Γ

2
(0)

]






(A.17)

where the following nomenclature is adopted for derivatives of the discharge

curve function, Γ(x); Γ(0) = Γ(x2), Γ(1) = ∂Γ(x2)/∂x2, and Γ(2) = ∂2Γ(x2)/∂x
2
2.

To determine the local observability of the battery model, the gradient of equa-

tion (A.17) must be computed. Observability is guaranteed given full rank of

the following matrix,

∇GX =









−1 Γ(1)

1
CDRP

− 1
q0RD

[

Γ2
(1)Γ(0) + Γ(2)Γ(0)

]

− 1
C2

D
R2

P

1
q20R

2
D

[

Γ3
(1) + 4Γ(2)Γ(1)Γ(0) + Γ(3)Γ(0)

]









(A.18)

Since x2 ∈ [0, 1] and Γ(x2) ∈ R
+ over this interval, the matrix in equation

(A.18) exhibits full rank except when the battery is fully discharged (x2 = 0).

Further inspection of equation (A.18) illustrates the issue with observability

of Li-ion battery chemistries. Li-ion cells, during discharge, exhibit an espe-

cially level complanate region. Resultantly, the Γ(x2) derivative functions in

equation (A.18) will correspondingly shrink. Consequently, estimation become

problematic in the complanate region as a result of error amplification.
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Appendix B

DaNI Unmanned Ground Vehicle

Experimental Results

Table B.1: Discharge process characteristics for the DaNI UGV experiments.

Exp. #
Runtime
[min]

Power
Load [W]

Max
Current

[A]

Shutdown
Voltage [V]

1 64.59 15.95 ± 2.41 2.59 0.86

2 61.89 15.78 ± 2.27 2.75 0.87

3 68.21 15.56 ± 2.16 2.77 0.86

4 64.18 16.21 ± 2.42 2.34 0.87

5 61.72 14.99 ± 2.28 4.02 0.86

6 70.20 14.75 ± 1.98 2.60 0.88

7 70.47 14.15 ± 1.87 2.55 0.84

8 74.96 14.72 ± 1.93 2.37 0.89

9 69.73 14.16 ± 1.90 2.47 0.84

10 71.14 15.23 ± 1.82 3.20 0.87

11 66.13 14.39 ± 1.92 2.71 0.87

12 68.92 15.48 ± 2.14 2.74 0.93

13 66.70 14.69 ± 1.88 2.82 0.90

14 75.24 15.43 ± 1.97 3.34 0.89

15 62.02 14.55 ± 1.71 2.78 0.92

16 71.29 15.20 ± 1.89 2.66 0.89

17 69.54 14.56 ± 1.97 2.45 0.89

18 76.03 15.07 ± 1.71 3.05 0.91

19 72.98 15.10 ± 1.89 3.20 0.89

20 72.60 14.03 ± 1.91 2.65 0.86

21 73.06 14.41 ± 1.84 2.63 0.85

22 70.93 13.89 ± 1.82 2.58 0.90
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Figure B.1: DaNI UGV Experiment # 1.
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Table B.2: Drive process characteristics for the DaNI UGV experiments.

Exp. #
Runtime
[min]

Velocity [m/s]
Cumulative
Distance [m]

1 64.59 0.165 ± 0.104 641.17

2 61.89 0.161 ± 0.100 598.22

3 68.21 0.159 ± 0.099 652.67

4 64.18 0.160 ± 0.110 616.68

5 61.72 0.159 ± 0.111 589.25

6 70.20 0.163 ± 0.106 686.13

7 70.47 0.158 ± 0.104 668.23

8 74.96 0.159 ± 0.106 713.48

9 69.73 0.155 ± 0.109 648.19

10 71.14 0.158 ± 0.107 672.22

11 66.13 0.158 ± 0.109 625.11

12 68.92 0.155 ± 0.107 640.40

13 66.70 0.151 ± 0.102 606.40

14 75.24 0.152 ± 0.106 685.92

15 62.02 0.151 ± 0.105 562.95

16 71.29 0.162 ± 0.103 690.78

17 69.54 0.162 ± 0.103 675.15

18 76.03 0.157 ± 0.101 715.27

19 72.98 0.155 ± 0.104 679.59

20 72.60 0.162 ± 0.109 706.72

21 73.06 0.158 ± 0.106 690.50

22 70.93 0.155 ± 0.105 659.65
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Table B.3: In-house UGV study terrain distribution percentages.

Exp. # Gravel [%] Incline [%] Rough [%] Idle [%]
1 16.23 25.45 37.06 21.26
2 12.89 24.48 42.12 20.51
3 12.68 21.49 45.33 20.50
4 13.72 31.10 29.97 25.22
5 16.06 28.53 28.76 26.64
6 15.72 26.37 35.20 22.71
7 12.35 24.55 40.63 22.47
8 13.77 24.87 37.86 23.51
9 0.38 19.67 40.73 39.21
10 19.39 17.20 38.96 24.46
11 17.81 22.61 33.68 25.90
12 15.63 22.45 36.15 25.77
13 11.01 22.15 42.42 24.42
14 11.83 24.58 37.29 26.30
15 12.94 21.26 40.12 25.67
16 12.95 26.77 38.61 21.67
17 14.53 24.93 39.00 21.54
18 10.06 26.27 41.53 22.13
19 12.32 24.79 38.62 24.28
20 17.06 26.54 31.79 24.62
21 14.99 24.09 36.31 24.60
22 12.32 25.23 37.58 24.86
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Figure B.2: DaNI UGV Experiment # 2.
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Figure B.3: DaNI UGV Experiment # 3.
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Figure B.4: DaNI UGV Experiment # 4.
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Figure B.5: DaNI UGV Experiment # 5.
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Figure B.6: DaNI UGV Experiment # 6.
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Figure B.7: DaNI UGV Experiment # 7.
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Figure B.8: DaNI UGV Experiment # 8.
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Figure B.9: DaNI UGV Experiment # 9.
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Figure B.10: DaNI UGV Experiment # 10.
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Figure B.11: DaNI UGV Experiment # 11.
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Figure B.12: DaNI UGV Experiment # 12.
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Figure B.13: DaNI UGV Experiment # 13.
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Figure B.14: DaNI UGV Experiment # 14.
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Figure B.15: DaNI UGV Experiment # 15.
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Figure B.16: DaNI UGV Experiment # 16.

206



0 20 40 60 80
8

10

12

14

Time [min]

B
at

te
ry

 V
ol

ta
ge

0 20 40 60 80
Gravel

Incline

Rough

Time [min]

0 20 40 60 80
−1

−0.5

0

0.5

Time [min]

V
el

oc
ity

 [m
/s

]

−0.2 0 0.2 0.4 0.6
0

2

4

6

8

P
D

F

Velocity [m/s]

0 20 40 60 80
10

15

20

25

30

Time [min]

Lo
ad

 P
ow

er
 [W

]

10 15 20 25 30
0

0.1

0.2

0.3

0.4

P
D

F

Load Power [W]

−3 −2 −1 0 1 2
0

0.5

1

1.5

P
D

F

Left Motor [A]
−3 −2 −1 0 1 2
0

0.5

1

1.5

P
D

F

Right Motor [A]

Figure B.17: DaNI UGV Experiment # 17.
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Figure B.18: DaNI UGV Experiment # 18.
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Figure B.19: DaNI UGV Experiment # 19.
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Figure B.20: DaNI UGV Experiment # 20.
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Figure B.21: DaNI UGV Experiment # 21.
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Figure B.22: DaNI UGV Experiment # 22.
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Appendix C

Univariate Gaussian Mixtures and Clustering

Simply stated, Gaussian mixture modeling approximates non-Gaussian

(potentially mulit-modal) density functions via a convex combination of Gaus-

sian densities. While density approximation alone is a potent numerical tech-

nique, data clustering via GMM provided new avenues of research and ex-

tended the practicality of the algorithm, notably in the field of machine learn-

ing. In this body of work, the GMM methodology is used to cluster load data

(training data) into a priori unknown regions. In the following appendix, the

definition of the GMM and associated properties are stated. Subsequently

the expectation-maximization algorithm, which provides the parameters for

the model, is discussed. Finally, the EM algorithm for GMMs specifically is

detailed.

C.1 Statistical Mixture Model

Since clustering in this work is restricted to univariate models, the

GMM density functions are presented in this section as univariate without

loss of generality. The overall model density function can be stated simply as
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follows,

Pθ(x) =
M
∑

k=1

αkφ(x|µk, σ
2
k) (C.1)

where the model parameters to be found are θ̂ = [α̂k, µ̂k, σ̂
2
k], the distributions

of φ(x|µk, σ
2
k) are normally distributed, and αk are mixture weights of the

Gaussian distributions which must satisfy the normalizing condition,
M
∑

k=1

αk =

1. However, to exploit mathematical properties of logarithms eventually, the

GMM is usually stated in joint multiplicative form as opposed to the additive

form of equation (C.1) as follows,

Pθ(x) =

M
∏

k=1

αzk
k φ(x|µk, σ

2
k)

zk (C.2)

where the parameters θ and data vector X remain the same. The distribution

is now expressed jointly with Z, which is a unit vector which chooses which

mixture model is currently expressed. As such, elements of Z belong to the

set 0,1. For a given a data vector X = x1, x2, ..., xn, the likelihood function

defines fit fidelity, specifically the likelihood of the data X occurring given the

parameters θ̂. To exploit logarithmic identities, commonly the log-likelihood

function is optimized.

L(θ|X) = ln
M
∏

k=1

αzk
k φ(x|µk, σ

2
k)

zk =
M
∑

k=1

lnαzk
k φ(x|µk, σ

2
k)

zk (C.3)

Additionally, since the logarithm is a monotone transform, the log-likelihood

function preserves the optima of the likelihood. Succinctly stated, to find

parameters X, one must optimize the log-likelihood function as follows,

θMLE ∈ argmax
θ∈Θ

L(θ|X) (C.4)
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Solving the optimization problem in equation (C.4) for GMMs is analytically

intractable. Resultantly, one must employ a numerical methodology to com-

pute the parameters. While numerical techniques, such as Markov chain Monte

Carlo and moment matching have been used to fit GMMs, the expectation

maximization (EM) algorithm is overwhelmingly preferred. In practical prob-

lems (low-moderate dimensionality and cluster number), the EM algorithm

demonstrates robustness and quick convergence.

C.2 Expectation-Maximization Algorithm

The standard technique for computing the maximum likelihood pa-

rameters is the expectation maximization algorithm. The EM algorithm it-

eratively calculates successively more likely parameters for the GMM until

convergence. Consequently, the algorithm does not guarantee convergence to

the global optimum due to the lack of convexity. However, mixture model

fidelity is commonly ensured via judiciously selected initial parameter esti-

mates and via cluster validation metrics, such as cluster cohesion and cluster

separation. Iterations through the EM algorithm are comprised of two steps.

Firstly in the so called expectation step or ”E-step”, the expected value of the

log-likelihood equations is compute, shown in equation (C.5). One caveat to

note, the general formulation of the EM algorithm includes a general hidden

parameter, Z. In the case of the GMM formulation, these Z parameters will

indicate the probability of each data point belonging to each cluster (so called
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soft-clustering).

Q(θ, θt) = E (lnPθ(X,Z)|θt, X = x) (C.5)

where θt is the previous iterative value of the parameters. Secondly, the com-

puted expectation of the previous step is maximized, in the so called maxi-

mization step or “M-step”.

θt+1 ∈ argmax
θ∈Θ

Q(θ, θt) (C.6)

The above equation computes the θ which is used during the next iterative

step. [138] illustrates the proof demonstrating the maximization properties of

the above algorithm. To compute the parameters for the GMM via the EM

algorithm, the log-likelihood function in equation (C.3) must be used in the

E-step. After ample manipulation, the expectation step equation reduces to

a relationship, see equation (C.7), which resembles Bayes rule. During each

step of the EM algorithm, the E-step computes the respective probability of

each data point belong to each mixture model. Since each data point exhibits

probability of belonging to each cluster, the E-step is termed a soft clustering

step.

P (Cm|xi) =
α̂mφ(xi|θ̂t)

M
∑

m=1

α̂mφ(xi|θ̂t)

(C.7)

Once the relative probabilities of the data points have been computed, the

log likelihood function must be optimized. The most straightforward method

for determining the EM algorithm recursive relationships can be derived by

maximizing the Q function generally and ensuring that the significant statistics
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of the GMM model obey the recursion [85]. The maximum of the expectation

function can be found as follows,

∂

∂θi
Q = Eθ0(Si(X,Z|X = x)−Eθ(Si(X,Z) = 0 (C.8)

Enforcing the above condition for the significant statistics of equation (C.2),

ensures that each successive iteration of the EM algorithm with increase the

maximum likelihood function. For the univariate case, the update equation

for the mixture weights is found to be,

αk =
1

N

N
∑

j=1

P (Ck|xj , θt) (C.9)

where N is the total number of data point and Ck are the current clusters. In a

similar fashion, the update equations for µ and σ can be computed as follows,

µk =

N
∑

j=1

xjP (Ck|xj , θt)

N
∑

j=1

P (Ck|xj , θt)

(C.10)

σk =

N
∑

j=1

[

(xj − µk)(xj − µk)
T
]

P (Ck|xj , θt)

N
∑

j=1

P (Ck|xj , θt)

(C.11)

The code written by the author which implements the above algorithm can

be found for download at ”https://github.com/chromodynamic/mark-meets-

gauss/blob/master/fitGMM.m” or by contacting the author through the listed

contact information.
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