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In this thesis we explore different mathematical techniques for ex-

tracting information from data. In particular we focus in machine learning

problems such as clustering and data cloud alignment. Both problems are

intractable in the "worst case", but we show that convex relaxations can

efficiently find the exact or almost exact solution for classes of "typical" in-

stances. We study different roles that optimization techniques can play in

understanding and processing data. These include efficient algorithms with

mathematical guarantees, a posteriori methods for quality evaluation of so-

lutions, and algorithmic relaxation of mathematical models. We develop

probabilistic and data-driven techniques to model data and evaluate per-

formance of algorithms for data problems.
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Chapter 1

Introduction

The problem of extracting knowledge from data is very relevant these

days. The classical statistical approach for this kind of problem consists

in the following steps (i) acquiring and processing data, (ii) formulating a

statistical model depending on a few parameters, (iii) formulating a likeli-

hood function of the parameters given the data, (iv) solving the optimiza-

tion problem (finding the best parameters that maximize the likelihood for

the given data).

The machine learning approach takes many of its techniques and

ideas from statistics, but it formulates the problems in a slightly different

way. For instance, supervised machine learning deals with large amounts

of labeled data {(di, li)}ni=1. Here di ∈D corresponds to data (for example an

image), and li ∈ L represents its label (for example ’dog’). Supervised ma-

chine learning typically has a training step, with the purpose of inferring

the best function f :D→L that adjusts to known information (di,f(di) = li).

The function f is used to predict labels for new data. In a different man-

ner, unsupervised machine learning finds hidden structures or patterns in

unlabeled data, like clusters or manifolds.
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Regardless of the approach to data modeling and processing, all these

problems, at the end, amount to solving an optimization problem that can

be expressed in the form

minimize fD(x) (1.1)

subject to x ∈ S.

where D ∈D represents the data of our problem in the universe of all pos-

sible data D, and x represents a potential answer to the question we are

asking about the data. The set of all possible answers is S which can be of

many different shapes.

Optimization problems arising from data can be intractable in many

cases. However, the computational complexity of a problem measures the

amount of time or space that it takes to solve its hardest instance. For the

problems we study in this thesis (and many other problems existing in

the literature) it turns out that even NP-hard problems can be solved in

polynomial-time for a large number of instances D ∈D. Compressed sens-

ing is a famous example of this phenomenon [21].

In this thesis we focus on two data problems: clustering and point

cloud matching. We study different approaches to their underlying opti-

mization problem that allow us to:

(i) Find the exact solution of (1.1) for a non-trivial subset of D.

(ii) Find an approximate solution of (1.1) for a larger subset of D, with

explicit approximation bounds.
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(iii) Leverage fast heuristic algorithms and mathematical proofs to develop

quasi-linear time algorithms (in D) that provide the exact solution

of (1.1) for a non-trivial subset of D.

(iv) Substitute NP-hard functions by tractable proxies that preserve many

interesting properties of the original functions.

This description may seem pretty abstract for now. A more concrete

explanation is provided in Section 1.4, where we summarize the ideas for

the specific problems. However, these techniques may be applied to seem-

ingly any data-related problem.

1.1 Clustering

Clustering is a central problem in unsupervised machine learning. It

consists of partitioning a given set P, a finite set of points of a metric space

(X,d), into k subsets such that some dissimilarity function is minimized.

The dissimilarity function is in general chosen with an application in mind.

Due to the nature of most machine learning problems, identifying similar

data is a main learning step and therefore many complex algorithms rely on

clustering subroutines.

The clustering objective known as k-means is one of the most com-

mon for data in Euclidean space, and k-medians is widely used in general

metric spaces (like tree spaces). Figure 1.1 depicts both problems.

k-means In the euclidean k-means problem, the set of points P is in Rm and

3



Figure 1.1: Illustration of k-medians and k-means
The k-medians objective (left) minimizes the sum of distances from points
to their representative data points. The k-means objective (right) minimizes
the average of the squared euclidean distances of all points within a cluster.

the distance is the Euclidean distance d(xi,xj) = ‖xi − xj‖. The goal

is to partition the finite set P = {x1, . . . ,xN} in k clusters such that the

sum of the squared euclidean distances to the average point of each

cluster (not necessarily a point in P) is minimized. Let A1,A2, . . . ,Ak

denote a partitioning of the the indices [N] = {1, . . . ,N} into k subsets; if

ct=
1

|At|

∑
j∈At xj denotes the centroid of the cluster t, then the k-means

problem reads

minimize
A1∪···∪Ak=[N]

k∑
t=1

∑
i∈At

‖xi − ct‖2

By expanding the square one obtains the identity
∑
i∈At ‖xi − ct‖

2 =

1
2
1

|At|

∑
i,j∈At ‖xi−xj‖

2, which allows us to re-express the k-means prob-
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lem as the following optimization problem:

minimize
A1∪···∪Ak=[N]

1

2

k∑
t=1

1

|At|

∑
i,j∈At

‖xi − xj‖2. (k-means)

k-medians The k-medians (also known as k-medoids) objective is defined

for general metric spaces, where the notion of centroid may not exist.

In this setting, clusters are specified by centers: k representative points

from within the set P denoted by c1,c2, . . . ,ck. The corresponding par-

titioning is obtained by assigning each point to its closest center. The

cost incurred by a point is the distance to its assigned center, and the

goal is to find k center points that minimize the sum of the costs of the

points in P:

minimize
{c1,c2,...,ck}⊂P

n∑
i=1

min
t=1,...,k

d(xi,ct) (k-medians)

Both problems can be expressed as an optimization problem of the

form (1.1) where D = P and S is a discrete set in correspondence with all

possible partitions of the points in k clusters. Unfortunately, the combina-

toric nature of the set of all possible partitions result in both problems being

NP-hard [6, 36]. However, being NP-hard is a statement about the hardest

instance of the problem; and there is a line of work that claims that cluster-

ing is not hard when data is naturally clustered [12].

In fact, the geometric nature of the k-means problem allows a sim-

ple and widely used alternating minimization algorithm known as Lloyd’s

algorithm [43]. Lloyd’s algorithm consists of the following steps:

5



1. select random data points as centers,

2. assign each point to the closest center,

3. recompute centers,

where steps 2 and 3 are repeated until convergence. Lloyd’s algorithm is

fast but it often converges to a suboptimal clustering, a local minimizer

of (k-means). Not only that, but the output of the algorithm provides no

information of how far from optimal it may be.

1.1.1 A remark on finding the number of clusters

Both the k-means and k-medians problem formulations assume that

the number of clusters k is a known parameter. Sometimes k is given by the

problem, for example in the hand-written digits data set that we study in

Section 6.5.1, the number of clusters is 10. However, in many problems the

number of clusters is not known a priori and should be estimated.

There exists a few techniques that allow us to find the number of

clusters. One of the first methods to estimate the number of clusters is the el-

bow method, that can be traced back to [60]. Informally speaking, the method

consists of computing the k-means value for different values of k and essen-

tially choosing k? to be such that one does not gain too much when setting

the number of clusters k = k? + 1 and does not lose too much when with

k= k? − 1.

Many methods have been developed since then. For example [69]

presents a semidefinite program for clustering that chooses the number of

6



clusters, and [42] presents a spectral method to find the number of clusters.

1.2 Gromov-Hausdorff distance and point cloud matching

In order to study the convergence of sequences of metric spaces,

Gromov introduced what is now called the Gromov-Hausdorff metric [30].

Roughly speaking, this metric generalizes the classic Hausdorff distance be-

tween a pair of subsets of an ambient metric space, to a distance between

a pair of arbitrary metric spaces. This is done by embedding these metric

spaces into a third space and taking an infimum over all such embeddings.

The Gromov-Hausdorff metric has been of theoretical importance in geo-

metric group theory and is at the heart of the subject of “metric geometry”.

More recently, the Gromov-Hausdorff distance has been proposed as

a basic method for comparing point clouds [48]. A point cloud is simply a

finite metric space (often presented as a subset of Rm); this is a fundamen-

tal and ubiquitous representation of data. Geometric examples, where the

point cloud represents samples from some smooth geometric object, arise

from various kinds of shape acquisition devices. Examples with less ob-

vious intrinsic geometric structure are frequently generated by biological

data (e.g., collections of gene expression vectors). Given two point clouds, a

natural question is to determine if they are related by some isometric trans-

formation; if not, one might wish to know a quantitative measure of their

difference.
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Another version of this sort of problem is known as the point reg-

istration problem (also sometimes referred to as point matching and net-

work alignment). Point registration consists in finding a correspondence

between point sets or graphs such that a certain cost function is minimized.

It appears in computer vision problems like shape matching [25], computa-

tional biology [22], and general pattern recognition problems. In some ap-

plications, registering or aligning is particularly challenging since there is

no explicit correspondence between the sets, often because deformation has

occurred or they have different numbers of points. In such cases it is natural

to consider a metric on point clouds that is defined in terms of correspon-

dences between point clouds together; the Gromov-Hausdorff distance can

be described in terms of a minimax expression over correspondences be-

tween the metric spaces, and so is potentially suitable for this purpose.

Unfortunately, exact computation of the Gromov-Hausdorff distance

is essentially intractable; it involves the solution of an NP-hard optimization

problem. As a consequence, it is natural to consider relaxations. In [47], Mé-

moli studied a relaxation referred to as the Gromov-Wasserstein distance

— this distance is closely related to distances motivated by optimal trans-

port problems [44, 59], to a “distance distribution” metric defined by Gro-

mov, and also to the cut distance of graphons. Unfortunately, computing

the Gromov-Wasserstein distance still requires solving a non-convex opti-

mization problem which does not appear to have attractive performance

characteristics in practice.
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1.3 Relax-and-round versus exact recovery

A widespread idea to tackle these combinatoric optimization prob-

lems is known as the relax and round paradigm. It consists in augmenting

the discrete domain S to a larger set S̄ where one can use optimization al-

gorithms; solve the optimization problem in the larger set, obtaining x̄ ∈ S̄;

and then round the solution of the relaxed problem into a feasible point of

the original problem x̄ 7→ x? ∈ S.

If the function fD is convex, relaxing the optimization problem into

a convex set S̄ results in a problem with a unique local minimizer, where

interior point methods [51] are guaranteed to converge to global optima of

the relaxed problem. If we provide an explicit bound for the difference ‖x̄−

x?‖ and a Lipschitz constant for fD, we obtain an approximation algorithm

for (1.1) with explicit error bounds [63].

Sometimes we may also want to relax S to a non-convex set, for

instance, a smooth manifold, where algorithms can be implemented very

efficiently [14] but a priori are only guaranteed to converge to local op-

tima (though under some hypothesis manifold optimization algorithms had

been proven to converge to global optimizers [15]).

If the solution x̄ of relaxed optimization problem in S̄ happens to be

feasible for the original problem (1.1) (i.e.: x̄ ∈ S), then x̄ is also optimal

for (1.1). In such case we say the relaxation is tight or that the relaxation has

an integral solution.

9



1.4 Main contributions
1.4.1 Relaxations of the k-means problem

As mentioned before, one can rewrite the k-means problem as

minimize
1

2
Tr(DX) (1.2)

subject to X :=

k∑
t=1

1

|At|
1At1

>
At

,

where D is an n× n matrix such that Dij = ‖xi − xj‖2, and X is a projection

matrix into the span of the indicator vectors of each cluster (i.e.: (1At)i = 1

if xi ∈At and 0 otherwise).

An equivalent formulation for k-means is the following optimization

in the set of rank kmatrices:

minimize
1

2
Tr(DYY>) (1.3)

subject to Y ∈Rn×k, YY>1= 1,

Y>Y = Ik, Y > 0.

Here the constraint Y>Y = Ik means that Y has orthonormal columns. Using

that Y > 0 entry wise, we obtain that Yij 6= 0 implies that Yik = 0 for all k 6= j,

so Y has exactly one nonnegative entry per row. The constraint YY>1 =

1 implies that the vector 1 ∈ Rn belongs to the span of the columns of Y.

Therefore if Yij 6= 0 and Ylj 6= 0 then Yij = Ylj. This shows that if Y is feasible

for (1.3) then X= YY> is feasible for (1.2).

Optimization problems (1.2) and (1.3) are equivalent to k-means, which

is an NP-hard problem [6]. A typical way to tackle such hard problems is to

10



relax the discrete feasible set to a larger set, then use analytic tools to solve

the larger problem, and finally round a solution of the larger problem into

a feasible solution for the original problem.

For instance, the spectral clustering technique is based on the follow-

ing relaxation of (1.3):

minimize
1

2
Tr(DYY>) (1.4)

subject to Y ∈Rn×k, Y>Y = Ik.

Note that the solution of (1.4) is a matrix with columns consisting of the top

k eigenvectors of D.

In general, spectral clustering algorithms replace the matrix D by a

matrix −K, where K corresponds to the Gram matrix of the points mapped

to a higher dimensional space (i.e.: Kij = 〈φ(xi),φ(xj)〉 for φ : Rn → RN.)

One particularly common implementation uses the Gaussian kernel: Kij =

exp(−‖xi − xj‖2/σ2).

Another relaxation of k-means, that we study in depth in this thesis,

is Peng and Wei’s k-means SDP [56], which solves

minimize
1

2
Tr(DX) (1.5)

subject to TrX= k, X1= 1, X> 0, X� 0,

where X� 0means that X is symmetric and positive semidefinite. Note that

the results from [23] indicate that the constraint X> 0 is strictly weaker than

the constraint Y > 0.

11



The first relaxation we will focus on is a manifold optimization re-

laxation of k-means in Chapter 3. First note that k-means can be seen as an

optimization problem in a discrete set (the constraint set of (1.3)), but if we

remove the non-negative constraint Y > 0 we obtain a compact manifold.

We consider the relaxation of (1.3) where we relax the non-negative con-

straint Y > 0 to a penalization in the objective, and restrict the minimization

to Y ∈MwhereM is a smooth submanifold of Rn×k:

minimize Tr(DYY>) + λ‖Y−‖2F (1.6)

subject to Y ∈M.

Here Y− indicates the negative entries of Y, λ is a non-negative parameter

that penalizes Y with negative entries, andM is the submanifold

M= {Y ∈Rn×k : Y>Y = Ik, YY>1= 1}. (1.7)

By removing Y > 0 from the constraint set, our discrete feasible set becomes

a smooth manifold without boundary, so we can use manifold optimization

algorithms to solve the problem.

Also note that adding the constraint YY>1 = 1 to spectral clustering

is simple and doesn’t change its spectral nature (in particular, if λ = 0 the

solution can be computed from the top k− 1 eigenvectors of the projection

of D onto {1}⊥ ⊂Rn). What makes this optimization significantly different

from spectral clustering is the term λ‖Y−‖2F in the objective.

In Chapter 3 we explain how to implement an efficient manifold op-

timization algorithm to approach problem (1.6) and we provide numerical

12



experiments that suggest that, in some settings, the algorithm converges to

the optimal solution of (k-means). Unfortunately we do not have theoreti-

cal guarantees for this algorithm yet (the objective of (1.6) is not convex and

the algorithm may converge to local minima). However, we will be able to

combine this efficient algorithm with the proofs from Chapter 4 to provide

an efficient algorithm with a certificate of optimality in Chapter 5.

1.4.2 Exact recovery of clustering solutions using convex relaxations

We consider three different convex relaxations of the k-medians and

k-means objectives, described in Figures 1.2, 1.3, and 1.4.

(i) A semidefinite programming (SDP) relaxation of k-means introduced

by Peng and Wei [56],

(ii) a linear programming (LP) relaxation of k-means,

(iii) and a standard linear programming (LP) relaxation of k-medians,

See Section 2.1.1 for a brief background in linear and semidefinite programs.

We provide deterministic conditions that if satisfied by the point set

P, imply that the corresponding convex optimization program is tight (and

therefore it recovers the exact solution of problems (k-medians) or (k-means)).

The deterministic conditions we find do not provide geometric intu-

ition a priori. Therefore, in order to evaluate their expressivity, we consider

a random point model of naturally clustered data introduce by Nellore and

Ward [50] known as the stochastic ball model depicted in Figure 1.5. The

13



minimize
X∈RN×N

1

2
trace(DX) (k-means sdp)

subject to X1= 1, trace(X) = k, X> 0, X� 0.

Figure 1.2: Peng and Wei’s semidefinite programming relaxation of (k-means)
The symmetric matrix D is defined as Dij := ‖xi − xj‖2 for xi,xj ∈ P, and X � 0
means that X is symmetric and positive semidefinite. If A1, . . .Ak is a cluster, the
corresponding projection matrix X is

∑k
t=1

1
|At|

1At1
>
At

where the indicator vector
(1At)i is 1 if xi ∈ At and 0 otherwise. Note that relaxation (k-means sdp) relaxes
the set of all cluster projection matrices into a subset of the positive semidefinite
matrices.

minimize
X∈RN×N

1

2
trace(DX) (k-means lp)

subject to X1= 1, trace(X) = k, X= X>, Xii > Xij ∀i, j ∈ [n], Xij > 0.

Figure 1.3: Linear programming relaxation of (k-means)
This linear programming relaxation replaces the semidefinite constraint from
(k-means sdp) with looser linear constraints. In general, linear programs are nu-
merically more efficient and simpler to analyze than semidefinite programs. How-
ever we prove the quality of the solution of (k-means lp) is inferior to the one
of (k-means sdp).

minimize
z∈RN×N,y∈RN

n∑
i=1

n∑
j=1

d(xi,xj)zij (k-medians lp)

subject to
n∑
i=1

zij = 1 ∀j ∈ [n], zij 6 yi ∀i, j ∈ [n],

n∑
i=1

yi = k, zij,yi ∈ [0,1].

Figure 1.4: Linear programming relaxation of (k-medians)
The relaxation (k-medians lp) consists of replacing the discrete set {0,1} by the in-
terval [0,1]. In the original optimization problem (k-medians) the variable yi indi-
cates whether the point xi is a center or not, while zij is 1 if the point xj is assigned
to xi as center, and 0 otherwise. The solution for the integer programming problem
(where {zij,yi} ∈ {0,1}) corresponds to the adjacency matrix for a graph consisting
of disjoint star-shaped graphs like the one shown in Figure 1.1.
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premise behind evaluating algorithms in this model is that a good algo-

rithm should recover the right clusters when the solution is obvious.

Figure 1.5: Stochastic ball model.
Example of an instance of the stochastic ball model in R2. Here D is the uniform
distribution in the unit ball, k= 3, n= 15, and ∆= 2.2.

Definition 1.4.1 ((D,γ,n)-stochastic ball model). Let {γa}ka=1 be ball centers

in Rm. For each a, draw i.i.d. vectors {ra,i}
n
i=1 from some rotation-invariant

distribution D whose support is the unit ball. The points from cluster a are

then taken to be xa,i := ra,i + γa. We denote ∆ := mina6=b ‖γa − γb‖2.

Note that when ∆ < 2 the the clusters overlap and the "cluster solu-

tion" is no longer well-defined. We now present informal statements of our

main results; see specific sections for more details.

Theorem 1.4.1. Under (D,γ,n)-stochastic ball model and with high probability,

Peng and Wei’s SDP relaxation of k-means (k-means sdp) recovers the clusters

up to separation ∆ >min{2
√
2(1+ 1/m), 2+ k2/m}.

Theorem 1.4.2. Under the (D,γ,n)-stochastic ball model a simple LP relaxation

for the k-means objective (k-means lp) with high probability fails to recover the
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exact clusters at separation ∆ < 4, even for k= 2 clusters.

Theorem 1.4.3. For any constant ε> 0, there exists n sufficiently large so that the

k-medians LP relaxation (k-medians lp) is tight and recovers the true clustering of

the points under the (D,γ,n)-stochastic ball model with arbitrarily high probability

as long as ∆ > 2+ ε.

The proofs of Theorems 1.4.3, 1.4.2, and 1.4.1 use the same general

technique. First, using convex duality, we provide deterministic conditions

on the data under which the convex optimization program is tight (meaning,

the solution of the respective relaxation coincides with the globally optimal

partition). We find those deterministic conditions using a technique known

as dual certificate described in Section 2.1.1.1. Using random matrix theory

we prove that under the stochastic ball model, the deterministic conditions

hold with high probability provided that the separation between the centers

is not too small.

Table 1.1 summarizes the state of the art for recovery guarantees un-

der the stochastic ball model. Theorem 1.4.3 is an improvement over [50],

where it was shown that (k-medians lp), with high probability, recovers

clusters drawn from the stochastic ball model provided the smallest dis-

tance between ball centers is ∆ > 3.75. We know that exact recovery only

makes sense for ∆ > 2 (i.e., when the balls are disjoint). Once ∆ > 4, any

two points within a particular cluster are closer to each other than any two

points from different clusters, and so in this regime, cluster recovery follows

from a simple distance thresholding.
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Theorems 1.4.3 and 1.4.2 are tight in their dependence on the clus-

ter separation ∆ and appear in [8]. Theorem 1.4.1 is proven through two

different dual certificates, the first bound corresponds to the dual certificate

from [8] and the second bound comes from the certificate from [34]. Neither

of this bounds is tight and in some regimes the certificate from [8] gives

a better guarantee than the certificate from [34] whereas in other regimes

the opposite is true. The question of what is an optimal dual certificate re-

mains open for this problem. An answer to this question could arise from

comparing both certificates with the pre-certificate defined in [62].

Under the assumptions of the theorems above, popular heuristic al-

gorithms such as Partitioning around Medoids (PAM) and Lloyd’s algorithm

(for k-medians and k-means, respectively) can fail with high probability.

Even with arbitrarily large cluster separation, variants of Lloyd’s algorithm,

such as k-means++ with overseeding by any constant factor, fail with high

probability at exact cluster recovery. See Figure 1.6 for an illustration and [8]

for details.

In our numerical experiments we observed that the k-medians linear

program (k-medians lp) is often tight, even when the data points are drawn

from a single spherical gaussian, were no cluster structure is expected. It re-

mains an open problem to understand this phenomenon [10]. The k-means

semidefinite relaxation (k-means sdp) however, is not tight for more general

data models, like mixtures of subgaussian distributions. In Section 1.4.4 we

describe an algorithm that involves solving the SDP and rounding the ob-
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Method Sufficient Condition Optimal? Reference

Thresholding ∆ > 4 Yes (simple exercise)

k-medians LP ∆> 4 No Theorem 2 in [27]
∆> 3.75 No Theorem 1 in [50]
∆ > 2 Yes Theorem 4.2.3

k-means LP ∆ > 4 Yes Theorem 4.3.2

k-means SDP ∆ > 2
√
2(1+ 1/m) No Theorem 4.1.4

∆ > 2+ k2/m No Theorem 4.1.9

Spectral k-means ∆ > ∆? Yes Theorem 14 in [34]
(k= 2)

Table 1.1: Summary of cluster recovery guarantees under the stochastic ball
model.
The second column reports sufficient separation between ball centers in order for
the corresponding method to provably give exact recovery with high probabil-
ity. The third column reports whether the sufficient condition on ∆ cannot be
improved. Here, ∆? = ∆?(D,k) denotes the smallest value for which ∆ > ∆? im-
plies that minimizing the k-means objective recovers planted clusters under the
(D,γ,n)-stochastic ball model with probability 1− e−ΩD,γ(n). In [34] we prove the
surprising result that ∆? > 2 at least in dimensionm6 2.
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Figure 1.6: Failure of Lloyd’s algorithm.
Recall the steps 1-3 in Lloyd’s algorithm. The output of the algorithm depends on
its initialization. For example, let us say we want to cluster points drawn from the
stochastic ball model, illustrated in this figure. If the initial guess has only one point
from the two balls at the left and two points from the ball in the right, then Lloyd’s
algorithm will fail to identify the correct clusters, obtaining an output similar to the
one depicted in this figure. The probability of having a bad initial guess is positive
and grows exponentially in k.

tained solution to a partition and we provide approximation guarantees for

the algorithm.

1.4.3 Fast certification of k-means optimality

On one hand we have very fast clustering algorithms like Lloyd’s [43]

or manifold optimization based algorithms, whose solutions may be far

from optimal. On the other hand we have optimization based algorithms

like k-means SDP, which are slow but provide a certificate of optimality.

What if we could combine the best of both worlds and obtain a fast algo-

rithm with a certificate of optimality?

Recently Bandeira devised a general technique to efficiently provide
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certifiably correct solutions to hard problems [9]. This technique leverages

three components:

(i) A fast non-convex solver that produces the optimal solution with high

probability (under some probability distribution of problem instances).

(ii) A convex relaxation that is tight with high probability (under the same

distribution).

(iii) A fast method of computing a certificate of global optimality for the

output of the non-convex solver in (i) by exploiting convex duality

with the relaxation in (ii).

Using Bandeira’s technique in Chapter 5 we develop a quasi-linear time

algorithm that provides certificates of k-means optimality of clusters [34],

where (i) and (ii) are chosen to be k-means++ and k-means SDP respectively.

In many useful applications the k-means SDP is not tight. In fact, in

order for Bandeira’s technique to have practical value, we need to develop

a robust version of it. In particular, a version that works even when the

relaxation is not tight. This is an open problem that basically requires an

algorithm that given an approximation solution of a convex optimization

problem, it provably provides an approximate solution of the dual problem

(faster than solving the dual problem).

The importance of this problem goes beyond clustering applications.

It could provide a practical way of measuring the quality of solutions found

by fast but maybe unreliable methods. For large datasets, problems tend to
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be intractable for higher precision methods and this certificate can be of

practical relevance.

1.4.4 Approximation guarantees

We earlier discussed that (k-means sdp), the semidefinite relaxation

of k-means, recovers the optimal clusters for the stochastic ball model. In

Chapter 6 we study its performance under the general subgaussian mixture

model, which includes the stochastic ball model and the Gaussian mixture

model as special cases.

The semidefinite program is not typically tight under this general

model, but the optimizer can be interpreted as a denoised version of the

data and can be rounded in order to produce a good estimate for the centers

(and therefore produce a good clustering).

To see this, let P denote the m ×N matrix whose columns are the

coordinates of the points we want to cluster: {xt,i}t∈[k],i∈[|At|]. Notice that

whenever the semidefinite relaxation is tight, X has the form (1.8),

Xij =

{
1

|At|
if i, j ∈At

0 otherwise
(1.8)

then for each t ∈ [k], PX has |At| columns equal to the centroid of points

assigned to At.

In particular, if X is k-means-optimal, then PX reports the k-means-

optimal centroids (with appropriate multiplicities). Next, we note that ev-

ery SDP-feasible matrix X> 0 satisfies X>1= X1= 1, and so X> is a stochas-
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tic matrix, meaning each column of PX is still a weighted average of columns

from P. Intuitively, if the SPD relaxation (k-means sdp) were close to being

tight, then the SDP-optimal X would make the columns of PX close to the

k-means-optimal centroids. Empirically, this appears to be the case (see

Figure 1.7 for an illustration). Overall, we may interpret PX as a denoised

version of the original data P, and we leverage this strengthened signal to

identify good estimates for the k-means-optimal centroids.

What follows is a summary of our relax-and-round procedure for

(approximately) solving the k-means problem (k-means):

Relax-and-round k-means clustering procedure.
Given andm×N data matrix P = [x1 · · ·xN], do:

(i) Compute distance-squared matrix D defined by
Dij = ‖xi − xj‖22.

(ii) Solve (k-means sdp), resulting in optimizer X.

(iii) Cluster the columns of the denoised data matrix
PX.

For step (iii), we find there tends to be k vectors that appear as columns

in PX with particularly high frequency, and so we are inclined to use these

as estimators for the k-mean-optimal centroids (see Figure 1.7, for example).

Running Lloyd’s algorithm for step (iii) also works well in practice. To ob-

tain theoretical guarantees, we instead find the k columns of PX for which

the unit balls of a certain radius centered at these points in Rm contain the
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(a) (b) (c) (d)

Figure 1.7: Illustration of the relax and round k-means clustering procedure
(a) Draw 100 points at random from each of three spherical Gaussians over R2.
These points form the columns of a 2× 300 matrix P. (b) Compute the 300× 300
distance-squared matrixD from the data in (a), and solve the k-means semidefinite
relaxation (k-means sdp) using SDPNAL+v0.3 [71]. (The computation takes about
16 seconds on a standard MacBook Air laptop.) Given the optimizer X, compute
PX and plot the columns. We interpret this as a denoised version of the original
data P. (c) The points in (b) land in three particular locations with particularly
high frequency. Take these locations to be estimators of the centers of the original
Gaussians. (d) Use the estimates for the centers in (c) to partition the original data
into three subsets, thereby estimating the k-means-optimal partition.

most columns of PX (see Theorem 6.5.1 for more details). An implemen-

tation of our procedure is available on GitHub [67] and an interactive web

visualization of the MNIST numerical simulation is available on [66].

In Chapter 6 we provide performance guarantees for the k-means

semidefinite relaxation (k-means sdp) when the point cloud is drawn from a

subgaussian mixture model. We adapt ideas from Guédon and Vershynin [32]

and obtain approximation guarantees comparable with the state of the art

for learning mixtures of Gaussians despite the fact that our algorithm is a

generic k-means solver and uses no model assumptions. In Section 6.5.1 we

illustrate its numerical performance on the MNIST handwritten data set.
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Recent work by Yan and Sarkar [70] adapted a similar version of our al-

gorithm for kernel matrices and proved its strong consistency. They also

prove that spectral methods are only weakly consistent, which provides

some theoretical evidence of what we observe numerically: the semidefi-

nite programming relaxation of k-means performs much better than other

algorithms at finding the k-means solution.

We summarize our approximation result in the following theorem

Theorem 1.4.4. Given x1, . . . ,xN points drawn independently from a mixture of

k subgaussian distributions in Rm. Say that the subgaussian a, for 1 6 a 6 k

has center γa, and σ2 is an upper bound on the maximum covariance. Let ∆min =

mina 6=b ‖γa − γb‖ and similarly ∆max. If kσ.∆min 6∆max . Kσ, then we have

that there exists a permutation π on {1, . . . ,k} such that

1

k

k∑
i=1

‖vi − γ̃π(i)‖22 . kK2σ2, (1.9)

where vi is what our algorithm chooses as the ith center estimate and γ̃a is the

average of the points sampled from the subgaussian a.

1.4.5 A polynomial-time relaxation for the Gromov-Hausdorff distance

In the previous sections we have summarized how to use convex

relaxations (i) to find exact solutions to clustering problems, (ii) to certify

optimality of solutions acquired by faster but sometimes unreliable algo-

rithms, and (iii) to provide approximate solutions with explicit approxima-
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tion bounds via a relax and round procedure. Now we consider a different

approach to optimization problems where we relax but do not round.

The Gromov-Hausdorff distance between finite metric spaces X and

Y, introduced in Section 1.2, can be formulated as an NP-hard optimization

problem that for now we write in the abstract form (1.10). In Chapter 7 we

consider a semidefinite relaxation of (1.10) obtaining a tractable optimiza-

tion problem of the form (1.11).

dGH(X,Y) := minimize fX,Y(z) (1.10)

subject to z ∈ S.

d̃GH(X,Y) := minimize f̃X,Y(z) (1.11)

subject to z ∈ S̃.

The relaxation (1.11) defines d̃GH, which we prove is a pseudomet-

ric on point clouds and can be computed in polynomial time. We also

show d̃GH is a lower bound for the Gromov-Hausdorff distance dGH. Our

semidefinite relaxation (1.11) also provides z ∈ S̃ that can be interpreted as

a relaxed correspondence between point clouds.

We study the topological properties of the relaxed pseudodistance

d̃GH (like convergence and compactness) and we observe that for almost

every space X there exists a small local neighborhood where the metrics

dGH and d̃GH are equivalent (see Corollary 7.2.8 and previous definitions).

In Section 7.3 we exploit the theoretical observations to propose a

non-convex optimization algorithm to approach the registration problem

efficiently. The output of this algorithm not only provides a local opti-

mum for the registration problem, but also an upper bound for the Gromov-

Hausdorff distance.
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The work in Chapter 7 appears in [68]. Note that a similar ver-

sion to our SDP was recently introduced in [38] and further studied in [45]

and [24]. Our work provides theoretical validation for some of the com-

putational phenomena observed therein and complements their theoretical

framework.
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Chapter 2

Background

"The great watershed in optimization isn’t between linearity and

nonlinearity, but convexity and nonconvexity."

– R. Tyrrell Rockafellar, in SIAM Review, 1993.

2.1 Optimization

In this section we present a small summary of optimization concepts

we use in this thesis. For more comprehensive background information we

refer the reader to the classic texts in convex optimization [51, 16] and [4]

for manifold optimization.

Consider a general optimization problem of the form

minimize fD(x) (2.1)

subject to x ∈ S.

When dealing with finite sets of data, we generally can formulate the prob-

lems as a combinatorial optimization problem, where S is a discrete set, and

our problem consists of finding an optimal object among a finite set.

Some combinatorial optimization problems can be solved efficiently
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with specialized algorithms, but a large family of them, including the ones

studied in this thesis, are NP-hard (and therefore one cannot expect to find

an efficient algorithm that solves the problem in general). A useful strategy

in this case is the relax-and-round paradigm introduced in Section 1.3.

In the convex optimization setting one relaxes the problem (2.1) to a

minimization of a convex function over a convex set. In particular we focus

in in linear programming (LP) and semidefinite programming (SDP). For

LP the convex set considered is a convex polytope (i.e. the intersection of

half spaces in Euclidean space). For SDP, the convex set is a spectahedron

(i.e. the intersection of the cone of positive semidefinite matrices with an

affine space). Both LP and SDP are particular cases of conic optimization,

which we describe in Section 2.1.1. Conic optimization problems can be effi-

ciently solved with interior point methods (and in general algorithms for LP

tend to be more efficient than algorithms for SDP [51]). Conic optimization

problems have an advantage with respect to generic convex optimization

problems: conic problems have a dual problem that can be easily expressed

in closed form. The dual problem is very useful to provide algorithms and

theoretical results

A recently popular alternative to convex optimization is manifold

optimization [4], where the set S is relaxed to a smooth convex manifold

and the geometry of the manifold is exploited to obtain efficient algorithms.

The main advantage of manifold optimization algorithms with respect to

convex optimization is that for reasonably nice manifolds, manifold opti-
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mization algorithms tend to run and converge much faster than interior

point methods. The disadvantage is that in general they converge to local

optima.

2.1.1 Cone programming

A set K ⊂ Rn is a cone if x ∈ K implies tx ∈ K for all t > 0. Let K ⊂

Rn and L ⊂ Rm be closed convex cones, consider c ∈ Rn, b ∈ Rm, and let

A : Rn→Rm be a linear operator. Then a cone programming problem is an

optimization problem of the form (P).

minimize
x

− 〈c,x〉 (P)

subject to b−Ax ∈ L

x ∈ K

For K closed convex cone, we define its dual cone as K∗ as

K∗ := {y : 〈y,x〉> 0 ∀x ∈ K}.

Then the dual problem of (P) is defined as (D):

maximize
y

− 〈b,y〉 (D)

subject to A∗y− c ∈ K∗

y ∈ L∗

where A∗ denotes the adjoint of A, while K∗ and L∗ denote the dual cones

of K and L, respectively.
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In the optimization jargon we say that (P) is the primal problem and

(D) is the dual problem. We say (P) has objective function x 7→ −〈c,x〉, and

a point x ∈Rn is said to be feasible for (P) if it satisfies the constraints in (P)

(i.e. b−Ax ∈ L and x ∈ K).

Proposition 2.1.1 (Weak duality). Let x and y be feasible points for (P) and (D)

respectively. Then −〈b,y〉6−〈c,x〉.

Proof. Since b−Ax ∈ L and y ∈ L∗ then the definition of dual cone implies

06 〈b−Ax,y〉= 〈b,y〉− 〈A∗y,x〉

then −〈b,y〉 6 −〈A∗y,x〉. The same computation with x ∈ K and A∗y− c ∈

K∗ gives −〈A∗y,x〉6−〈c,x〉which gives the result.

Weak duality says that the dual problem provides lower bounds for

the primal objective. Strong duality says that the optimal value of (P) actu-

ally equals the optimal value of (D) (see [51] for a proof).

Theorem 2.1.2 (Strong duality). The problem (P) is feasible and has bounded

optimal value α if and only if (D) is feasible and has bounded optimal value α.

2.1.1.1 Complementary slackness and dual certificates

If x and y are feasible for (P) and (D) respectively, weak duality im-

plies

−〈y,b〉6−〈y,Ax〉=−〈A∗y,x〉6−〈c,x〉
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or equivalently, 〈c−A∗y,x〉 6 0 6 〈y,b−Ax〉 . By strong duality, x and y

are optimal if and only if these inequalities are equal. That is,

〈A>y− c,x〉= 0= 〈y,b−Ax〉.

In that sense, the primal variable x is complementary to the dual

constraint A>y− c just as the dual variable y is complementary to the pri-

mal constraint b−Ax. These orthogonality relations are sometimes helpful

when expressing the optimal y (called the dual certificate) in terms of the

optimal x.

An interesting interpretation for the term dual certificate is that given

x feasible for (P), if one can find y feasible for (D) such that −〈c,x〉=−〈b,y〉

(or equivalently 〈A>y− c,x〉= 0= 〈y,b−Ax〉), then y is a proof of x’s opti-

mality for (P).

2.1.2 Manifold optimization

Let us consider an optimization problem of the form

minimize f(Y) (2.2)

subject to Y ∈M,

where f :M → R is a smooth function and M is a compact Riemannian

manifold.

For this kind of problems there is a beautiful theory [4] that allows us

to think of the optimization problem (2.2) as an unconstrained optimization
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where we replace the usual Euclidean ambient space by the Riemannian

manifoldM.

The basic gradient descent algorithm relies on gradient and retrac-

tion functions,

gradf :M→ TM, (2.3)

retrY : TYM→M. (2.4)

The gradient is computable using the Riemannian structure. The retraction

is a choice of map which should satisfy

retrY(0) = 0,
d

dt

∣∣∣∣
t=0

retrY(tV) = V . (2.5)

A canonical choice of retraction map is the exponential map for M, but this

is not always computationally feasible. If M is a submanifold of euclidean

space, Y ∈M and V ∈ TYM, then retrY(V) will be a first order approximation

to Y + V .

The algorithm consists of iteratively following the gradient of f in the

tangent space and then retracting back into the manifold:

Yn+1 = retrYn(−αngradf(Yn)).

The stepsize αn can be set to be a small constant or adaptively chosen

through a line search. Second order algorithms like trust regions have also

been adapted to the manifold optimization setting [4].
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In this thesis we restrict ourselves to first order methods, where gra-

dient descent methods with backtracking Amijo line-search are proven to

converge to a stationary point under mild hypotheses [13].

Theorem 6 in [13]. Let M a Riemannian manifold and f :M→R bounded from

below. Assume that f ◦ retrY is Lipchitz with constant L independent of Y. Then a

gradient descent onMwith backtracking Amijo line-search initialized at Y0 returns

Y∗ such that

f(Y∗)6 f(Y0) and ‖gradf(Y∗)‖6 ε

in O(1/ε2) iterations.
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Chapter 3

Manifold optimization techniques for k-means
clustering

3.1 The k-means manifold.

Recall our manifold optimization relaxation of k-means (3.1) intro-

duced in Section 1.4.1

minimize Tr(DYY>) + λ‖Y−‖2F (3.1)

subject to Y ∈M,

where λ is a non-negative parameter, Y− indicates the negative entries of Y,

andM is the submanifold

M= {Y ∈Rn×k : Y>Y = Ik, YY>1= 1}. (3.2)

The relaxation (3.1) is a constrained optimization where the set of constraints

is a Riemannian manifold, so we can use the theory described in Section 2.1.2.

This chapter is based on the publication:
Timothy Carson, Dustin G. Mixon, Soledad Villar, Rachel Ward. Manifold optimization for
k-means clustering Proceedings of the 2017 International Conference on Sampling Theory
and Applications (SampTA), 2017 (to appear)
The author contributed by designing the algorithm and its implementation.
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In order to implement the manifold optimization relaxation of k-

means we need to explicitly construct the gradient and retraction maps (2.3)

and (2.4). The tangent space toM at Y is given by

TYM = {V ∈ Rn×k : V>Y + Y>V = 0, (VY> + YV>)1 = 0}. (3.3)

Our manifold is a submanifold of a Euclidean space, and our objec-

tive function is defined on the entirety of this Euclidean space. As such, we

may compute the gradient of the objective function on our manifold by or-

thogonally projecting its gradient in Euclidean space onto the tangent space

to our manifold. That is, from the orthogonal projection ΠTYM : TYRn×k→

TYMwe can compute

gradMf (Y) = ΠTYM ◦∇f(Y)

where ∇f is the gradient of f in the ambient Euclidean space Rn×k. For our

objective function (with parameter λ),

fλ(Y) = Tr(DYY>) + λ‖Y−‖2,

the gradient is computed in Section 3.2 to be

∇fλ(Y) = 2DY + 2λ(Y)−. (3.4)

In Section 3.3 we compute the orthogonal projection. It is:

ΠTYM(W) =W − 2YΩ− (x1> + 1x>)Y, (3.5)
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where

x=
1

n
WY>1 ∈Rn,

Ω=
1

4
(W>Y + YW> − 2Y>(x1> + 1x>)Y) ∈Rk×k.

We use the following retraction:

retrY(V) = exp(B)exp(A ′)Y, (3.6)

where

A= Y>V ∈Rk×k,

A ′ = YAY> ∈Rn×n,

B= VY> − YV> − 2A ′ ∈Rn×n.

Here exp denotes the matrix exponential. We explain this retraction in Sec-

tion 3.6.

3.2 Gradient of the objective function

We compute the ambient space gradient ∇fλ(Y) of fλ. By definition

we know∇fλ(Y) =W if and only if for all V ∈ TYMwe have

〈V ,W〉=DYfλ(V) = Tr(D(VY> + YV>)) + λTr(V(Y>)− + (Y−)V
>)

where DYfλ(V) is the directional derivative of fλ. Equivalently,

Tr(WV>) = Tr(((D+D>)Y + 2λ(Y−))V
>).

Since D is symmetric we find (3.4).

36



3.3 Projection of a vector onto TYM

Let L1 :Rn×k→Rk×k
sym be L1(W) =W>Y+Y>W and let L2 :Rn×k→Rn

be L2(W)= (WY>+YW>)1. We can write the tangent space as TYM= ker(L)

where L= L1 ⊕ L2 : Rn×k→Rk×k
sym ×Rn.

We can use ker(L)⊥= im(L∗) to compute a parameterization for (TYM)⊥.

Then we will solve W − L∗(Ω,x) ∈ ker(L) for (Ω,x) to find the projection

ΠTYM(W) =W − L∗(Ω,x).

We calculate that forΩ symmetric:

〈L1W,Ω〉= 〈W>Y,Ω〉+ 〈Y>W,Ω〉= 〈W>,ΩY>〉+ 〈W,YΩ〉= 2〈W,YΩ〉,

from which we see L∗1Ω= 2YΩ. Now calculate for x ∈Rn:

〈L2W,x〉= 〈(WY> + YW>)1,x〉= 〈WY> + YW>,x1>〉= 〈W,x1>Y + 1x>Y〉,

so L∗2x= (x1> + 1x>)Y

Now we can findΩ and x so thatW − L∗1Ω− L∗2x ∈ ker(L) by solving

the system of equations: {
L1(W − L∗1Ω− L∗2x) = 0
L2(W − L∗1Ω− L∗2x) = 0

The first equation reads

W>Y + Y>W − 4Ω− 2Y>(x1> + 1x>)Y = 0

We can use this to substituteΩ in the second equation to get:

u+Bx= 0
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where u = (In − YY>)WY>1 and B = −n(In − YY>). In particular we can

choose x andΩ as below (3.5). (There is nonuniqueness in x andΩ because

the image of L is not the full stated range, but of course the projection is

unique.)

3.4 Homogenous structure ofM

Recall the Definition (3.2) ofM. LetM0 be the manifold

M0 = {YY> : Y ∈M}⊂Rn×n
sym .

The manifold M0 is the set of orthogonal projections onto a k dimensional

subspace of Rn including the vector 1n, and as such each member of M0

is determined by its image. A point in the manifold M has the additional

information of a choice of basis of the image of X= YY>.

For a subspace A ⊂ Rn, O(A) is the group of orthogonal matrices

for which Av = v for all v ∈ A⊥. Let P = {1n}
⊥ ⊂ Rn. We can see M as

a homogenous space; it has a transitive action by O(P)×O(Rk) given by

multiplication by the first factor on the left and theO(Rk) factor on the right:

M×O(P)×O(Rk)→M

(Y,Q,R) 7→QYR.

The multiplication on the right by an element of O(Rk) controls changes

which change Y but notX, which may be seen directly from the computation
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(YR)(YR)> = YRR>Y> = YY>. The multiplication on the left by Q ∈ O(P)

allows for any change in X ∈M0.

Multiplication of Y ∈M on the right by R ∈O(Rk) is always equiva-

lent to multiplication of Y on the left by R ′ = YRY>:

R ′Y = (YRY>)Y = YR(Y>Y) = YR.

The matrix (YRY>) is an orthogonal projection onto im(X) composed with

an orthogonal transformation of im(X), which may also be shown by com-

puting

R ′(I−X) = 0, R(R ′)> = X.

Recalling that X is an orthogonal projection, the first equality shows that R ′

annihilates im(X)⊥ and the second equality shows that R ′ acts as an orthog-

onal transformation of im(X) (on which X is the identity).

For each Y0 the action by O(P)×O(Rk) has a stabilizer which is de-

termined by X0 = Y0Y>0 . This is due to redundancies of the right multiplica-

tion in the left multiplication. The action byO(Rk) generates all Y ∈Mwith

the same X0:

{Y0R : R ∈O(Rk)}= {Y ∈M : YY> = Y0Y
>
0 },

but there are also elements of O(P) which fix X0 namely,

{Q ∈O(Rn) :QX0 = X0Q,Q1n = 1n}

=O(im(X))⊕O(ker(X))⊂O(P) = {Q ∈O(Rn) :Q1n = 1n}.
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3.5 Splitting the tangent space toM

We may use our understanding of M as a homogenous space to

compute a splitting of the tangent space TYM into two orthogonal parts;

those which generate changes which fix X, and its perpendicular space. Let

so(Rn) be the set of antisymmetric matrices in Rn.

The matrices in {CY : C ∈ so(Rn)} which are tangent to the direction

of fixed X (generated by O(im(X))⊕O(ker(X))) are

{C ∈ so(Rn) : CX= XC}.

This is the kernel of the linear map so(n)→Rn×n
sym given by L(C) =CX−XC.

The adjoint map L∗ :Rn×n
sym → so(n) is given by L∗(Ω) =ΩX−XΩ. Therefore

{C ∈ so(Rn) : CX= XC}⊥ = {ΩX−XΩ :Ω ∈Rn×n
sym }.

GivenV ∈ TYMwe aim to writeV =BY+YAwhereA∈ so(k), B∈ so(P) and

furthermore B =ΩX− XΩ for Ω ∈Rn×n
sym . Under this ansantz, we compute

Y>V , VY>, and YV> and use that Y>Y = Ik to find

A= Y>V , (3.7)

B=ΩX−XΩ= VY> − YV> − 2YAY>. (3.8)

Using the formula for TYM (3.3) one can check that we actually recover V as

V = BY + YA and that A ∈ so(Rk) and B ∈ so(P), i.e.

A+A> = 0, B+B> = 0, B1n = 0. (3.9)
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3.6 A retraction map

Given V ∈ TYMwe aim to find a retraction

retrY(V) ∈M

satisfying (2.5). Write V as V = BY + YA as in (3.7), (3.8). Note we may

also see V as BY + (YAY>)Y = (B+ (YAY>))Y; this is using the equivalence

between multiplication on the right byO(Rk) and multiplication on the left

by O(im(X)), mentioned in Section 3.4. Let A ′ = YAY>. Now set

retrY(V) = exp(B)exp(A ′)Y. (3.10)

The property (2.5) is straightforward given the differential equation satis-

fied by exp, but it is not as obvious that Ỹ = retrY(V) ∈M. The condition

Ỹ>Ỹ = I follows because we are performing left multiplication by orthogo-

nal matrices. To check that ỸỸ>1n = 1n we may compute,

(exp(B)exp(A ′)Y)(exp(B)exp(A ′)Y)>1n

= exp(B)exp(A ′)YY> exp(−A ′)exp(−B)1n

= exp(B)YY> exp(−B)1n

= exp(B)YY>1n = exp(B)1n = 1n.

We have used, successively, that A ′(YY>) = (YY>)A ′ = A ′ (so exp(−tA ′)

commutes with YY>), that B1n = 0 (so exp(−tB) fixes 1n) and that YY>1n =

1n. Note that the order of the matrix exponentials matters. For example,

V 7→ exp(A ′)exp(B)Y and V 7→ exp(B)Y exp(A)

are paths satisfying (2.5) but will not lie on the manifold if A ′1 6= 0.
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3.7 Numerical algorithm

The projection and retraction functions from the previous section al-

low us to implement gradient descent algorithms in Manopt. In order to

tackle the k-means problem, the algorithm we propose entails iteratively

solving the manifold optimization relaxation of k-means (3.1), increasing

the penalty λ until convergence to a k-means feasible Y. See Algorithm 1.

Algorithm 1: Manifold optimization iteration for k-means clus-
tering

1: λ0← 0

2: repeat
3: Yn+1←GradientDescent(fλ) // Initialized at Yn
4: λn+1← 2λn + 1

5: until ‖Y−‖F < ε

Theorem 6 in [13] guarantees that step 3 in the algorithm finds a sta-

tionary point of the objective. The fact that λTr(DYY>) is bounded for Y ∈M

suggests the algorithm may converge to a feasible clustering. It would be

very interesting to show that Algorithm 1 converges to the actual k-means

solution provided a good initialization.

3.8 Numerical simulations

We sample points uniformly from 4 unit balls in R4 with centers sep-

arated by 2.05 (following the stochastic ball model from Definition 1.4.1).

We sample 22, 18, 19 and 21 points from each ball respectively. We run

Algorithm 1 using Manopt to implement step 3. In Figure 3.1 we plot the
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lambda=0 lambda=6300 lambda=2.047e+05 lambda=2.6214e+07

Figure 3.1: Illustration of YYT for iterations of Algorithm 1 with successive values
of λ.
Note the first image is equivalent to a purely spectral method while the last im-
age coincides with the planted solution of the k-means problem. The algorithm is
oblivious to the planted order of points. We choose the order where the first points
belong to the first cluster, and so on, to simplify visualization.

results.

3.9 Discussion

Before manifold optimization became popular, Burer and Monteiro [20]

introduced the idea of using a low rank factorization of a matrix in order to

solve a semidefinite program of the form.

minimize Tr(CX) (3.11)

subject to Tr(AiX) = bi 16 i6m, X� 0

According to the Pataki bound [55], the solution of (3.11) is a matrixX= YY>

for some Y ∈ Rn×p with p(p+1)
2 6 m. Therefore if we replace the positive

semidefinite constraint in (3.11) by X = YY> for Y ∈ Rn×p the global mini-

mizer of both problems coincide. In their paper, Burer and Monteiro pro-

pose an augmented lagrangian iteration in X = YY>. They prove it con-

verges to a stationary point of their objective. Since the objective is not con-
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vex there is a priori no guarantee that it won’t converge to some spurious

stationary point.

Later work by Journée and collaborators [37] introduced a manifold

optimization algorithm and proved that, under somewhat restrictive con-

ditions (not satisfied by our clustering problem), it converges to the global

optimizer.

Recent work by Boumal, Voroninski and Bandeira [15] extend Journée’s

work by showing that the Bourer-Monteiro problem (i.e. the minimization

in matrices of the form YY>) is equivalent to respective SDP for some spe-

cific problems. They actually show that for those problems there are no

spurious stationary points.

Some natural questions arise: (a) How small can p be chosen with

still no spurious stationary point? In their original paper Burer and Mon-

teiro suggested that if the rank of the planted solution is k one should be

able to choose p = k+ 1 or p = k+ 2. (b) Is it possible to adapt manifold

optimization methods to singular manifolds? And in particular, (c) can a

theory like this be developed for manifolds with boundary?

To the best of our knowledge the best algorithms that can deal ef-

ficiently and reliably with semidefinite programs with non-negative con-

straints are based on interior point methods [51]. As far as we know, there

is no theory that provides convergence guarantees for matrix factorization

based algorithms in presence of non-negative constraints; nor even suc-
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cessful implementation for algorithms like that for generic SDPs with non-

negative constraints.
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Chapter 4

Finding the exact solution: tightness in convex
optimization

4.1 A semidefinite program relaxation for k-means

Recall Peng and Wei’s semidefinite relaxation (k-means sdp) of the

k-means problem (k-means).

minimize
X∈RN×N

1

2
trace(DX) (k-means sdp)

subject to X1= 1, trace(X) = k, X> 0, X� 0.

In this section we show (k-means sdp) is typically tight under the stochastic

ball model. We do it in two different ways, one appears in [8] and the other

one in [34]. The basic idea is (i) to find a deterministic condition on the set

This chapter is based on two publications:
Pranjal Awasthi, Afonso S. Bandeira, Moses Charikar, Ravishankar Krishnaswamy,
Soledad Villar, Rachel Ward. Relax, no need to round: Integrality of clustering formulations.
Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science, pp.
191-200. ACM, 2015.
Takayuki Iguchi, Dustin G. Mixon, Jesse Peterson, Soledad Villar. Probably certifiably correct
k-means clustering Mathematical Programming, 2016 (to appear).
In both of the papers the author contributed in developing the main ideas of the paper, the
mathematical proofs and numerical experiments.
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of points under which the relaxation finds the k-means-optimal solution,

and (ii) to discuss when this deterministic condition is satisfied with high

probability under the stochastic ball model.

To find the dual program to (k-means sdp) we leverage the cone pro-

gramming theory from Section 2.1.1. In our case, c = −D, x = X, and K is

simply the cone of positive semidefinite matrices (as is K∗). Before we deter-

mine L, we need to interpret the remaining constraints in (k-means sdp). To

this end, we note that Tr(X) = k is equivalent to 〈X,I〉= k, X1= 1 is equiva-

lent to having 〈
X,
1

2
(ei1

> + 1e>i )

〉
= 1 ∀i ∈ {1, . . . ,N},

and X> 0 is equivalent to having〈
X,
1

2
(eie

>
j + eje

>
i )

〉
> 0 ∀i, j ∈ {1, . . . ,N}, i6 j.

(These last two equivalences exploit the fact that X is symmetric.) As such,

we can express the remaining constraints in (k-means sdp) using a linear

operator A that sends any matrix X to its inner products with I, {12(ei1
> +

1e>i )}
N
i=1, and {12(eie

>
j + eje

>
i )}

N
i,j=1,i6j. Note that the remaining constraints in

(k-means sdp) are equivalent to having b−Ax ∈ L, where b= k⊕ 1⊕ 0 and

L = 0⊕ 0⊕R
N(N+1)/2
>0 . Writing y = z⊕ α⊕ (−β), the dual of (k-means sdp)

is then given by
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minimize
z∈R,α∈RN,β∈RN×N

kz+

N∑
i=1

αi (k-means sdp dual)

subject to Q := zI+

N∑
i=1

αi ·
1

2
(ei1

> + 1e>i ) −

N∑
i=1

N∑
j=i

βij ·
1

2
(eie

>
j + eje

>
i ) +D� 0

β> 0

For notational simplicity, from this point forward, we organize in-

dices according to clusters. For example, 1a shall denote the indicator func-

tion of the ath cluster. Also, we shuffle the rows and columns of X and D

into blocks that correspond to clusters; for example, the (i, j)th entry of the

(a,b)th block of D is given by D(a,b)
ij . We also index α in terms of clusters;

for example, the ith entry of the ath block of α is denoted αa,i. For β, we

identify

β :=

N∑
i=1

N∑
j=i

βij ·
1

2
(eie

>
j + eje

>
i ).

Indeed, when i6 j, the (i, j)th entry of β is βij. We also consider β as having

its rows and columns shuffled according to clusters, so that the (i, j)th entry

of the (a,b)th block is β(a,b)
ij .

With this notation, the following proposition characterizes all possi-

ble dual certificates of (k-means sdp):

Proposition 4.1.1. Take X :=
∑k
a=1

1
na
1a1
>
a , where na denotes the number of

points in cluster a. The following are equivalent:

(a) X is a solution to the semidefinite relaxation (k-means sdp).
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(b) Every solution to the dual program (k-means sdp dual) satisfies

Q(a,a)1= 0, β(a,a) = 0 ∀a ∈ {1, . . . ,k}.

(c) Every solution to the dual program (k-means sdp dual) satisfies

αa,r =−
1

na
z+

1

n2a
1>D(a,a)1−

2

na
e>r D

(a,a)1 ∀a ∈ {1, . . . ,k}, r ∈ a.

Proof. (a)⇔(b): By complementary slackness, (a) is equivalent to having

both

〈A∗y− c,X〉= 0 (4.1)

and

〈y,b−A(X)〉= 0. (4.2)

Since Q� 0, we have

〈A∗y− c,X〉= 〈Q,X〉=
〈
Q,

k∑
t=1

1

nt
1t1
>
t

〉
=

k∑
t=1

1

nt
1>t Q1t > 0,

with equality if and only if Q1a = 0 for every a ∈ {1, . . . ,k}. Next, we recall

that y = z⊕ α⊕ (−β), b−A(X) ∈ L = 0⊕ 0⊕R
N(N+1)/2
>0 , and b = k⊕ 1⊕ 0.

As such, (4.2) is equivalent to β having disjoint support with {〈X, 12(eie
>
j +

eje
>
i )〉}Ni,j=1,i6j, i.e., β(a,a) = 0 for every cluster a.

(b)⇒(c): Take any solution to the dual SDP (k-means sdp dual), and

note that

Q(a,a) = zI+

( k∑
t=1

∑
i∈t
αt,i ·

1

2
(et,i1

> + 1e>t,i)

)(a,a)

−β(a,a) +D(a,a)

= zI+
∑
i∈a
αa,i ·

1

2
(ei1

> + 1e>i ) +D
(a,a), (4.3)
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where the 1 vectors in the second line are na-dimensional (instead of N-

dimensional, as in the first line), and similarly for ei (instead of et,i). We

now consider each entry of Q(a,a)1, which is zero by assumption:

0= e>r Q
(a,a)1

= e>r

(
zI+

∑
i∈a
αa,i ·

1

2
(ei1

> + 1e>i ) +D
(a,a)

)
1

= z+
∑
i∈a
αa,i ·

1

2
(e>r ei1

>1+ e>r 1e
>
i 1) + e

>
r D

(a,a)1

= z+
∑
i∈a
αa,i ·

1

2
(naδir + 1) + e

>
r D

(a,a)1. (4.4)

As one might expect, these na linear equations determine the variables

{αa,i}i∈a. To solve this system, we first observe

0= 1>Q(a,a)1

= 1>
(
zI+

∑
i∈a
αa,i ·

1

2
(ei1

> + 1e>i ) +D
(a,a)

)
1

= naz+
∑
i∈a
αa,i ·

1

2
(1>ei1

>1+ 1>1e>i 1) + 1
>D(a,a)1

= naz+na
∑
i∈a
αa,i + 1

>D(a,a)1,

and so rearranging gives

∑
i∈a
αa,i =−z−

1

na
1>D(a,a)1.
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We use this identity to continue (4.4):

0= z+
∑
i∈a
αa,i ·

1

2
(naδir + 1) + e

>
r D

(a,a)1

= z+
na

2
αa,r +

1

2

∑
i∈a
αa,i + e

>
r D

(a,a)1

= z+
na

2
αa,r +

1

2

(
− z−

1

na
1>D(a,a)1

)
+ e>r D

(a,a)1,

and rearranging yields the desired formula for αa,r.

(c)⇒(a): Take any solution to the dual SDP (k-means sdp dual). Then

by assumption, the dual objective at this point is given by

kz+

k∑
t=1

∑
i∈t
αt,i = kz+

k∑
t=1

∑
i∈t

(
−
1

nt
z+

1

n2t
1>D(t,t)1−

2

nt
e>i D

(t,t)1

)

=−

k∑
t=1

1

nt
1>D(t,t)1

=−Tr(DX),

i.e., the primal objective (k-means sdp) evaluated at X. Since X is feasible in

the primal SDP, we conclude that X is optimal by strong duality.

Remark 4.1.1 (Pointed out by Xiaodong Li on our preprint [33]). The state-

ment Q(a,a)1= 0 implies Q1= 0.

Proof. Let a∈ {1, . . . ,k} and let R be aN×N symmetric positive semidefinite

matrix with blocks R(a,a) = 1a1
>
a , R(b,b) = Ib, R(b,a) = 0 for all b 6= 0. Then L :=

R>QR is a symmetric positive semidefinite matrix where L(a,a)= 0, therefore

for every (a,b) we have L(b,a) = 0, but note that L(b,a) =Q(b,a)1a1
>
a .
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The following subsection will leverage Proposition 4.1.1 to identify a

condition on D that implies that the SDP (k-means sdp) relaxation is tight.

4.1.1 Dual certificate from separation condition

Based on numerical observations we now present a guess for the ma-

trix Q that satisfies the required constraints. We set for all a 6= b

e>r Q
(a,b)es =

1

n
e>r D

(a,b)1+
1

n
1>D(a,b)es − e

>
r D

(a,b)es −
1

n2
1>D(a,b)1. (4.5)

Observe that the above definition essentially combines (for two points r,s

in clusters a,b respectively) (i) the average distance of r to the cluster b,

the average distance of s to cluster a, the distance between r and s, and the

average distance between the two clusters.

Note that Q(a,b)1= 0 and Q(b,a)1=Q(a,b)>1= 0. By definition of Q

we will require for all r,s, that

e>r Q
(a,b)es =

1

n
e>r D

(a,b)1+
1

n
1>D(a,b)es −D

(a,b)
rs −

1

n2
1>D(a,b)1

=−z
1

n
+
1

2n

[(
1

n
1>D(a,a)1− 2e>r D

(a,a)1

)
+

(
1

n
1>D(b,b)1− 2e>s D

(b,b)1

)]
−
1

2
β
(a,b)
rs +D

(a,b)
rs . (4.6)

This is satisfied for non-negative β’s precisely when

2D
(a,b)
rs −

1

n
e>r D

(a,b)1−
1

n
1>D(a,b)es +

1

n2
1>D(a,b)1 (4.7)

>
e>r D

(a,a)1

n
+
e>s D

(b,b)1

n
−
1

2

(
1>D(a,a)1

n2
+
1>D(b,b)1

n2

)
+
1

n
z, ∀a 6=b∀r,s.
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It remains to ensure that Q � 0. By construction, Q(a,b)1 = 0 ∀a,b

so we just need to ensure that, for all x perpendicular to the subspace Λ

spanned by {1(a)}ka=1 that

x>Qx > 0. (4.8)

Since in particular x ⊥ 1, as a consequence of (4.3) and (4.5) the expression

greatly simplifies to:

zx>x+ 2x>(
∑
a

D(a,a))x− x>Dx > 0, (4.9)

which means that we simply need

z >
x>Dx

x>x
−
2x>(

∑
aD

(a,a))x

x>x
, ∀x⊥Λ. (4.10)

Now, we can decompose the squared euclidean distance matrixD as

D= ν1> − 2Φ>Φ+ 1ν>,

where ν is theN×1 vector whose (a, i)th entry is ‖xa,i‖22, andΦ is them×N

matrix whose (a, i)th column is xa,i. Since Φ>Φ is positive semidefinite

then (4.10) can be stated as

z > 4max
a

max
x⊥1

x>Φ(a)>Φ(a)x

x>x
(4.11)

Since we need the existence of a z to satisfy both (4.11) and (4.7) we

need that ∀a6=b∀r,s,

2D
(a,b)
rs −

1

n
e>r D

(a,b)1−
1

n
1>D(a,b)es+

1

n2
1>D(a,b)1>

e>r D
(a,a)1

n
+
e>s D

(b,b)1

n

−
1

2

(
1>D(a,a)1

n2
+
1>D(b,b)1

n2

)
+
1

n

(
4max

a
max
x⊥1

∣∣∣∣∣x>Φ(a)>Φ(a)x

x>x

∣∣∣∣∣
)

(4.12)
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This gives us the main Lemma of this section:

Lemma 4.1.2. If, for all clusters a 6= b and for all indices r,s we have

2D
(a,b)
rs −

1

n
e>r D

(a,b)1−
1

n
1>D(a,b)es+

1

n2
1>D(a,b)1>

e>r D
(a,a)1

n
+
e>s D

(b,b)1

n

−
1

2

(
1>D(a,a)1

n2
+
1>D(b,b)1

n2

)
+
1

n

(
4max

a
max
x⊥1

∣∣∣∣∣x>Φ(a)>Φ(a)x

x>x

∣∣∣∣∣
)

(4.13)

then the k-means SDP has a unique solution and it coincides with the intended

cluster solution.

Definition 4.1.1 (Average separation condition). For cluster c define xc =∑
y∈cy the mean of the cluster. A clustering instance satisfies average sepa-

ration if, for all clusters a 6= b and for all indices r,swe have

2‖xr − xs‖2 − ‖xr − xb‖2 − ‖xs − xa‖2

− ‖xr − xa‖2 − ‖xs − xb‖2 + ‖xa − xb‖2 >

1

n

(
4max

a
max
x⊥1

∣∣∣∣∣x>Φ(a)>Φ(a)x

x>x

∣∣∣∣∣
)

(4.14)

Note that (4.13) and (4.14) are equivalent due the parallelogram iden-

tity. Hence, we have proved the following theorem.

Theorem 4.1.3. If a euclidean clustering instance satisfies the average separation

condition from Definition 4.1.1, then the corresponding k-means SDP for the in-

stance has unique integral solution equal to the k-means optimal solution, and

corresponding to this clustering.
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Now we state that under the stochastic ball model, under separation

of at least 2
√
2(1+ 1/m), average separation is satisfied for large enough n.

We obtain the following theorem:

Theorem 4.1.4. Under the (D,γ,n)-stochastic ball model in Rm, if

∆ >

√
8

(
1+

3

logn
+

1

(logn)2

)
θ

m
+ 8

where θ= E(‖xa,r−γa‖2)< 1. There is a universal constant c > 0 such that with

probability exceeding 1− 4mkexp
(

−cn
(logn)2m∆2

)
the k-means SDP has a unique

integral solution which coincides with the intended cluster solution.

Remark 4.1.2. In the limit n→∞, the probability of success goes to 1 and the

separation distance goes to 2
√
2(1+ θ

m).

In the rest of this section we prove Theorem 4.1.4.

Lemma 4.1.5. Under the same hypothesis as before, then the LHS of (4.14) for fixed

a,b, with probability at least 1−mexp(−cnε2/∆2) (with c an absolute constant)

has minimum at least {
∆2/2− 4− ε if ∆6 4
(∆− 2)2 − ε if ∆ > 4

(4.15)

In particular it is positive for center separation ∆ > 2
√
2 with high probability.

Proof. Without loss of generality assume γa=(0, . . . ,0)∈Rm and γb=(∆,0, . . . ,0)∈

Rm. First we search for

min 2‖xr − xs‖2 − ‖xr − γb‖2 − ‖xs − γa‖2

− ‖xr − γa‖2 − ‖xs − γb‖2 + ‖xa − γb‖2
(4.16)

subject to ‖xr − γa‖2 6 1, ‖xs − γb‖2 6 1
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This is a calculus exercise one can solve using Lagrange multipliers.

If ∆6 4 then the minimum is attained at points such that xr(1) =∆/4, xs(1) =

∆/2 and xr(i) = xs(i) for all i= 2, . . . ,m. When ∆> 4 the minimum is attained

in xr = (1,0, . . . ,0), xs = (∆− 1,0, . . . ,0).

Let ra,i ∼ xa,i − γa. Now expanding the squares and using Cauchy-

Schwarz we observe that the difference between (4.16) and the LHS of (4.14)

in absolute value is at most

2

∥∥∥∥∥ 1n
n∑
i=1

ra,i

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ 1n
n∑
i=1

rb,i

∥∥∥∥∥
2

+C∆

∥∥∥∥∥ 1n
n∑
i=1

ra,i

∥∥∥∥∥+C∆
∥∥∥∥∥ 1n

n∑
i=1

rb,i

∥∥∥∥∥
with C an absolute constant.

Since Er= 0 and ‖r‖22 6 1 almost surely, one may lift

Xa,i :=

[
0 r>a,i
ra,i 0

]
and apply the Matrix Hoeffding inequality [61] to conclude that

Pr
(∥∥∥∥ n∑

i=1

ra,i

∥∥∥∥
2

> t

)
6me−t

2/8n.

Taking ε= cn
∆ ε gives us the result.

Proof of Theorem 4.1.4. We bound the RHS of (4.14). Given our distributional

model, we can then write Φ = Φ̃+ C where Φ̃ has independent and iden-

tically distributed columns drawn from µ, and C is a rank k matrix whose

columns are constant within any cluster: the ((a,r),(b,s))th column is the

shift xb − xa, and the ((a,r),(a,s))th column is zero.
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Recall that Λ is the k-dimensional subspace spanned by {1(a)}ka=1.

Since C>z= 0 for z⊥Λwe have,

1

n

[
4max
z⊥Λ

z>Φ(a)>Φ(a)z

z>z

]
=
1

n

[
4max
z⊥Λ

z>Φ̃(a)>Φ̃(a)z

z>z

]
6
4

n
σmax(Φ̃

(a))2.

The columns of Φ̃ are the centered points, x̃a,r. Let θ be the expected value

θ = E(‖x̃a,r‖2). The columns of
√
m
θ Φ̃ are independent isotropic random

vectors and ‖
√
m
θ x̃a,r‖26

√
m/θ. We use quantitative bounds on the spectra

of such matrices. By Theorem 5.41 of [64], we have that for every t> 0,

P

[
σmax

(√
m

θ
Φ̃(a)

)
>
√
n+ t

√
m

θ

]
6 2mexp(−ct2), (4.17)

where c>0 is an absolute constant. Taking t= s
√
nθ
m , we find that 4nσmax(Φ̃

(a))26

4θ(1+ s)2 1m with probability at least 1− 2mexp(−cns2/m).

By a union bound, we have that

1

n

(
4max

a
max
z⊥1

z>Φ(a)>Φ(a)z

z>z

)
6 4θ(1+ s)2

1

m
(4.18)

with probability exceeding 1− 2mkexp(−cns2/m)

Combining the bound of the LHS in (4.14) from Lemma 4.1.5 with (4.18)

we obtain that the sufficient condition for integrality of the k-means SDP is

satisfied with probability exceeding 1−2mkexp(−cns2/m)−mkexp(−c ′nε2/∆2)

if
∆2

2
− 4− ε > 4(1+ s)2

θ

m

which holds once the centers of the clusters are separated by euclidean dis-

tance∆>
√
8(1+ s)2 θm + ε+ 8. Fixing the parameter s= 1

logn and ε= 8θ
m logn

the above analysis proves Theorem 4.1.4.
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4.1.2 Dual certificate from spectral condition

In this section we derive a completely different dual certificate for the

k-means SDP. Recall Proposition 4.1.1, who characterizes acceptable dual

certificates (z,α,β) but unfortunately fails to uniquely determine a certifi-

cate. In the previous section we presented a dual certificate based on a

separation condition. In this subsection, we will motivate the application

of additional constraints on dual certificates so as to identify certifiable in-

stances.

We start by reviewing the characterization of dual certificates (z,α,β)

provided in Proposition 4.1.1. In particular, α is completely determined by

z, and so z and β are the only remaining free variables. Indeed, for every

a,b ∈ {1, . . . ,k}, we have( k∑
t=1

∑
i∈t
αt,i ·

1

2
(et,i1

> + 1e>t,i)

)(a,b)

=
∑
i∈a
αa,i ·

1

2
ei1
> +
∑
j∈b
αb,j ·

1

2
1e>j

=−
1

2

(
1

na
+
1

nb

)
z+
∑
i∈a

(
1

n2a
1>D(a,a)1−

2

na
e>i D

(a,a)1

)
1

2
ei1
>

+
∑
j∈b

(
1

n2b
1>D(b,b)1−

2

nb
e>j D

(b,b)1

)
1

2
1e>j ,

and so since

Q= zI+

k∑
t=1

∑
i∈t
αt,i ·

1

2
(et,i1

> + 1e>t,i) −
1

2
β+D,
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we may write Q= z(I− E) +M−B, where

E(a,b) :=
1

2

(
1

na
+
1

nb

)
11> (4.19)

M(a,b) :=D(a,b) +
∑
i∈a

(
1

n2a
1>D(a,a)1−

2

na
e>i D

(a,a)1

)
1

2
ei1
>

+
∑
j∈b

(
1

n2b
1>D(b,b)1−

2

nb
e>j D

(b,b)1

)
1

2
1e>j (4.20)

B(a,b) =
1

2
β(a,b)

for every a,b ∈ {1, . . . ,k}. The following is one way to formulate our task:

GivenD and a clustering X (which in turn determines E andM), determine

whether there exist feasible z and B such that Q � 0; here, feasibility only

requires B to be symmetric with nonnegative entries and B(a,a) = 0 for every

a ∈ {1, . . . ,k}. We opt for a slightly more modest goal: Find z = z(D,X) and

B= B(D,X) such that Q� 0 for a large family of D’s.

Before determining z and B, we first analyze E:

Lemma 4.1.6. Let E be the matrix defined by (4.19). Then rank(E) ∈ {1,2}. The

eigenvalue of largest magnitude is λ> k, and when rank(E) = 2, the other nonzero

eigenvalue of E is negative. The eigenvectors corresponding to nonzero eigenvalues

lie in the span of {1a}ka=1.

Proof. Writing

E=

k∑
a=1

k∑
b=1

1

2

(
1

na
+
1

nb

)
1a1
>
b =

1

2

( k∑
a=1

1

na
1a

)
1> +

1

2
1

( k∑
b=1

1

nb
1b

)>
,
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we see that rank(E)∈ {1,2}, and it is easy to calculate 1>E1=Nk and Tr(E) =

k. Observe that

λ= sup
x∈RN

‖x‖2=1

x>Ex>
1

N
1>E1= k,

and combining with rank(E) 6 2 and Tr(E) = k then implies that the other

nonzero eigenvalue (if there is one) is negative. Finally, any eigenvector of E

with a nonzero eigenvalue necessarily lies in the column space of E, which

is a subspace of span{1a}ka=1 by the definition of E.

When finding z and B such that Q = z(I − E) +M − B � 0, it will

be useful that I − E has only one negative eigenvalue. Let v0 denote the

corresponding eigenvector. Then combining Lemma 4.1.6 and Remark 4.1.1

we know v0 is also an eigenvector ofM−B. Since

0= (Q1b)a

=
(
(z(I− E) +M−B)1b

)
a

=−zE(a,b)1+M(a,b)1−B(a,b)1

=−z
na +nb
2na

1+M(a,b)1−B(a,b)1, (4.21)

then, in order for there to exist a vector B(a,b)1> 0 that satisfies (4.21), zmust

satisfy

z
na +nb
2na

6 min(M(a,b)1),

and since z is independent of (a,b), we conclude that

z6 min
a,b∈{1,...,k}

a 6=b

2na

na +nb
min(M(a,b)1). (4.22)
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Now it is time to make a choice for the dual certificate. In order

to ensure z(I− E) +M− B � 0 for as many instances of D as possible, we

intend to choose z as large as possible. We choose B which satisfies (4.21)

for every (a,b), even when z satisfies equality in (4.22). Indeed, we define

u(a,b) :=M
(a,b)1− z

na +nb
2na

1, ρ(a,b) := u
>
(a,b)1,

B(a,b) :=
1

ρ(b,a)
u(a,b)u

>
(b,a) (4.23)

for every a,b∈ {1, . . . ,k} with a 6= b. Then by design, B immediately satisfies

(4.21). Also, note that ρ(a,b) = ρ(b,a), and so B(b,a) = (B(a,b))>, meaning B is

symmetric. Finally, we necessarily have u(a,b) > 0 (and thus ρ(a,b) > 0) by

(4.22), and we implicitly require ρ(a,b) > 0 for division to be permissible. As

such, we also have B(a,b) > 0, as desired.

Now that we have selected z and B, it remains to check thatQ� 0. By

construction, we already have Λ = span{1a}ka=1 in the nullspace of Q, and

so it suffices to ensure

0� PΛ⊥QPΛ⊥ = PΛ⊥
(
z(I− E) +M−B

)
PΛ⊥ = zPΛ⊥ + PΛ⊥(M−B)PΛ⊥ .

Here, PΛ⊥ denotes the orthogonal projection onto the orthogonal comple-

ment of Λ. Rearranging then gives the following result:

Theorem 4.1.7. Take X :=
∑k
t=1

1
nt
1t1
>
t , where nt denotes the number of points

in cluster t. ConsiderM defined by (4.20), pick z so as to satisfy equality in (4.22),

take B defined by (4.23), and let Λ denote the span of {1t}kt=1. Then X is a solution
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to the semidefinite relaxation (k-means sdp) if

PΛ⊥(B−M)PΛ⊥ � zPΛ⊥ . (4.24)

The next subsection leverages this sufficient condition to establish

that the Peng–Wei SDP (k-means sdp) is typically tight under the stochastic

ball model.

4.1.3 Integrality of the relaxation under the stochastic ball model

We first note that our sufficient condition (4.24) is implied by

‖PΛ⊥MPΛ⊥‖+ ‖PΛ⊥BPΛ⊥‖6 z

since PΛ⊥ |Λ⊥ = zIΛ⊥ andΛ⊂ ker(PΛ⊥(B−M)PΛ⊥). By further analyzing the

left-hand side above (see Section 4.1.3.1), we arrive at the following corol-

lary:

Corollary 4.1.8. Take X :=
∑k
t=1

1
nt
1t1
>
t , where nt denotes the number of points

in cluster t. Let Ψ denote the m×N matrix whose (a, i)th column is xa,i − ca,

where

ca :=
1

na

∑
i∈a
xa,i

denotes the empirical center of cluster a. ConsiderM defined by (4.20), pick z so as

to satisfy equality in (4.22), and take ρ(a,b) defined by (4.23). Then X is a solution

to the semidefinite relaxation (k-means sdp) if

2‖Ψ‖2 +
k∑
a=1

k∑
b=a+1

‖P1⊥M(a,b)1‖2‖P1⊥M(b,a)1‖2
ρ(a,b)

6 z.
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In Section 4.1.3.2, we leverage the stochastic ball model to bound

each term in Corollary 4.1.8, and in doing so, we identify a regime in which

the data points typically satisfy the sufficient condition given in Corollary 4.1.8:

Theorem 4.1.9. The k-means semidefinite relaxation (k-means sdp) recovers the

planted clusters in the (D,γ,n)-stochastic ball model with probability 1−e−ΩD,γ(n)

provided ∆ > 2+ k2/m.

When k = o(m1/2), Theorem 4.1.9 is near-optimal, and in this sense,

it’s a significant improvement over the sufficient condition in the previous

section

∆ > 2

√
2(1+

1

m
) (4.25)

given in [8]. However, there are regimes (e.g., k = m) for which (4.25) is

much better, leaving open the question of what the optimal bound is.

4.1.3.1 Proof of Corollary 4.1.8

It suffices to have

‖PΛ⊥MPΛ⊥‖+ ‖PΛ⊥BPΛ⊥‖6 z. (4.26)

We will bound the terms in (4.26) separately and then combine the bounds

to derive a sufficient condition for Theorem 4.1.7. To bound the first term

in (4.26), recall D = ν1> − 2Φ>Φ+ 1ν> were ν is the N× 1 vector whose

(a, i)th entry is ‖xa,i‖22, and Φ is the m×N matrix whose (a, i)th column is
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xa,i. With this, we appeal to the blockwise definition ofM (4.20):

‖PΛ⊥MPΛ⊥‖= ‖PΛ⊥DPΛ⊥‖= ‖PΛ⊥(ν1
> − 2Φ>Φ+ 1ν>)PΛ⊥‖

= 2‖PΛ⊥Φ
>ΦPΛ⊥‖= 2‖ΦPΛ⊥‖

2 = 2‖Ψ‖2.

For the second term in (4.26), we first write the decomposition

B=

k∑
a=1

k∑
b=a+1

(
H(a,b)(B

(a,b)) +H(b,a)(B
(b,a))

)
,

where H(a,b) : Rna×nb → RN×N produces a matrix whose (a,b)th block is

the input matrix, and is otherwise zero. Then

PΛ⊥BPΛ⊥ =

k∑
a=1

k∑
b=a+1

PΛ⊥
(
H(a,b)(B

(a,b)) +H(b,a)(B
(b,a))

)
PΛ⊥

=

k∑
a=1

k∑
b=a+1

(
H(a,b)(P1⊥B

(a,b)P1⊥) +H(b,a)(P1⊥B
(b,a)P1⊥)

)
,

and so the triangle inequality gives

‖PΛ⊥BPΛ⊥‖6
k∑
a=1

k∑
b=a+1

‖H(a,b)(P1⊥B
(a,b)P1⊥) +H(b,a)(P1⊥B

(b,a)P1⊥)‖

=

k∑
a=1

k∑
b=a+1

‖P1⊥B
(a,b)P1⊥‖,

where the last equality can be verified by considering the spectrum of the

square:(
H(a,b)(P1⊥B

(a,b)P1⊥) +H(b,a)(P1⊥B
(b,a)P1⊥)

)2
=H(a,a)

(
(P1⊥B

(a,b)P1⊥)(P1⊥B
(a,b)P1⊥)

>
)

+H(b,b)

(
(P1⊥B

(a,b)P1⊥)
>(P1⊥B

(a,b)P1⊥)
)

.
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At this point, we use the definition of B (4.23) to get

‖P1⊥B
(a,b)P1⊥‖=

‖P1⊥u(a,b)‖2‖P1⊥u(b,a)‖2
ρ(a,b)

.

Recalling the definition of u(a,b) (4.23) and combining these estimates then

produces the result.

4.1.3.2 Proof Theorem 4.1.9

In this section, we apply the certificate from Corollary 4.1.8 to the

(D,γ,n)-stochastic ball model (see Definition 1.4.1) to prove our main result.

We will prove Theorem 4.1.9 with the help of several lemmas.

Lemma 4.1.10. Denote

ca :=
1

n

n∑
i=1

xa,i, ∆ab := ‖γa − γb‖2, Oab :=
γa + γb
2

.

Then the (D,γ,n)-stochastic ball model satisfies the following estimates:

‖ca − γa‖2 < ε w.p. − e−Ωm,ε(n) (4.27)∣∣∣∣ 1n
n∑
i=1

‖ra,i‖22 − E‖r‖22

∣∣∣∣< ε w.p. − e−Ωε(n) (4.28)

∣∣∣∣ 1n
n∑
i=1

‖xa,i −Oab‖22 − E‖r+ γa −Oab‖22

∣∣∣∣< ε w.p. 1− e−Ω∆ab,ε(n) (4.29)

Proof. Since Er= 0 and ‖r‖22 6 1 almost surely, one may lift

Xa,i :=

[
0 r>a,i
ra,i 0

]
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and apply the Matrix Hoeffding inequality [61] to conclude that

Pr
(∥∥∥∥ n∑

i=1

ra,i

∥∥∥∥
2

> t

)
6me−t

2/8n.

Taking t := εn then gives (4.27). For (4.28) and (4.29), notice that the random

variables in each sum are iid and confined to an interval almost surely, and

so the result follows from Hoeffding’s inequality.

Lemma 4.1.11. Under the (D,γ,n)-stochastic ball model, we haveD(a,b)1−D(a,a)1=

4np+ q, where

pi := r
>
a,i(γa −Oab) +

∆2ab
4

qi := 2n(xa,i −Oab)
>
(
(ca − cb) − (γa − γb)

)
+

( n∑
j=1

‖xb,j −Oab‖22 −
n∑
j=1

‖xa,j −Oab‖22
)

and |qi|6 (6+ 2∆ab)nε with probability 1− e−Ωm,∆ab,ε(n).

Proof. Add and subtract Oab and then expand the squares to get

e>i (D
(a,b)1−D(a,a)1) =

n∑
j=1

‖xa,i − xb,j‖22 −
n∑
j=1

‖xa,i − xa,j‖22

= n

(
− 2(xa,i −Oab)

>(cb −Oab) +
1

n

n∑
j=1

‖xb,j −Oab‖22
)

−n

(
− 2(xa,i −Oab)

>(ca −Oab) +
1

n

n∑
j=1

‖xa,j −Oab‖22
)

= 2n(xa,i −Oab)
>(ca − cb) +

( n∑
j=1

‖xb,j −Oab‖22 −
n∑
j=1

‖xa,j −Oab‖22
)

.
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Add and subtract γa − γb to ca − cb and distribute over the resulting sum

to obtain

e>i (D
(a,b)1−D(a,a)1) = 2n(xa,i −Oab)

>(γa − γb) + q

= 4n
(
ra,i + (γa −Oab)

)>
(γa −Oab) + q.

Distributing and identifying ‖γa −Oab‖22 = ∆2ab/4 explains the definition

of p. To show |qi| 6 (6+ 2∆ab)nε, apply triangle and Cauchy–Schwarz to

obtain

|qi|6

∣∣∣∣2n(xa,i −Oab)
>
(
(ca − cb) − (γa − γb)

)∣∣∣∣
+

∣∣∣∣ n∑
j=1

‖xb,j −Oab‖22 −
n∑
j=1

‖xa,j −Oab‖22

∣∣∣∣
6 2n

(
‖ra,i‖2 + ‖γa −Oa,b‖2

)(
‖ca − γa‖2 + ‖cb − γb‖2

)
+

∣∣∣∣ n∑
j=1

‖xb,j −Oab‖22 −
n∑
j=1

‖xa,j −Oab‖22

∣∣∣∣
6 2n

(
1+

∆ab
2

)(
‖ca − γa‖2 + ‖cb − γb‖2

)
+

∣∣∣∣ n∑
j=1

‖xb,j −Oab‖22 −
n∑
j=1

‖xa,j −Oab‖22

∣∣∣∣.
To finish the argument, apply (4.27) to the first term while adding and sub-

tracting

E‖r+ γa −Oab‖22 = E‖r+ γb −Oab‖22,

from the second and apply (4.29).

Lemma 4.1.12. Under the (D,γ,n)-stochastic ball model, we have∣∣∣∣ 1n1>D(a,a)1− 2nE‖r‖22

∣∣∣∣6 4nε w.p. 1− e−Ω∆ab,ε(n).
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Proof. Add and subtract γa and expand the square to get

1

n
e>i D

(a,a)1=
1

n

n∑
j=1

‖xa,i − xa,j‖22 = ‖ra,i‖22 − 2r>a,i(ca − γa) +
1

n

n∑
j=1

‖ra,j‖22.

The triangle and Cauchy–Schwarz inequalities then give∣∣∣∣ 1n1>D(a,a)1− 2nE‖r‖22

∣∣∣∣
=

∣∣∣∣ n∑
i=1

(
‖ra,i‖22 − 2r>a,i(ca − γa) +

1

n

n∑
j=1

‖ra,j‖22
)
− 2nE‖r‖22

∣∣∣∣
6 n

∣∣∣∣ 1n
n∑
i=1

‖ra,i‖22 − E‖r‖22

∣∣∣∣+ 2 n∑
i=1

|r>a,i(ca − γa)|+n

∣∣∣∣ 1n
n∑
j=1

‖ra,j‖22 − E‖r‖22

∣∣∣∣
6 n

∣∣∣∣ 1n
n∑
i=1

‖ra,i‖22 − E‖r‖22

∣∣∣∣+ 2 n∑
i=1

‖ca − γa‖2 +n
∣∣∣∣ 1n

n∑
j=1

‖ra,j‖22 − E‖r‖22

∣∣∣∣
6 4nε,

where the last step occurs with probability 1− e−Ω∆ab,ε(n) by a union bound

over (4.28) and (4.27).

Lemma 4.1.13. Under the (D,γ,n)-stochastic ball model, we have

1>D(a,b)1− 1>D(a,a)1> n2∆2ab − (6+ 4∆ab)n
2ε w.p. 1− e−Ωm,∆ab,ε(n).

Proof. Lemma 4.1.11 gives

1>D(a,b)1− 1>D(a,a)1= 1>(4np+ q)

> 4n
n∑
i=1

(
r>a,i(γa −Oab) +

∆2ab
4

)
− (6+ 2∆ab)n

2ε

> 4n

(
n(ca − γa)

>(γa −Oab) +
n∆2ab
4

)
− (6+ 2∆ab)n

2ε.

Cauchy–Schwarz along with (4.27) then gives the result.
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Lemma 4.1.14. Under the (D,γ,n)-stochastic ball model, there exists C = C(γ)

such that

min
a,b∈{1,...,k}

a 6=b

min(M(a,b)1)> n∆(∆− 2) +Cnε w.p. 1− e−Ωm,γ,ε(n),

where ∆ := min
a,b∈{1,...,k}

a6=b

∆ab.

Proof. Fix a and b. Then by Lemma 4.1.11, the following holds with proba-

bility 1− e−Ωm,∆ab,ε(n):

min
(
D(a,b)1−D(a,a)1

)
> 4n min

i∈{1,...,n}

(
r>a,i(γa −Oab) +

∆2ab
4

)
− (6+ 2∆ab)nε

> n∆2ab − 2n∆ab − (6+ 2∆ab)nε,

where the last step is by Cauchy–Schwarz. Taking a union bound with

Lemma 4.1.12 then gives

min(M(a,b)1)

= min
(
D(a,b)1−D(a,a)1

)
+
1

2

(
1

n
1>D(a,a)1−

1

n
1>D(b,b)1

)
> min

(
D(a,b)1−D(a,a)1

)
−
1

2

(∣∣∣∣ 1n1>D(a,a)1− 2nE‖r‖22

∣∣∣∣+ ∣∣∣∣ 1n1>D(b,b)1− 2nE‖r‖22

∣∣∣∣)
> n∆ab(∆ab − 2) − (10+ 2∆ab)nε

with probability 1−e−Ω∆ab,ε(n). The result then follows from a union bound

over a and b.
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Lemma 4.1.15. Suppose ε6 1. Then there exists C= C(∆ab,m) such that under

the (D,γ,n)-stochastic ball model, we have

‖P1⊥M
(a,b)1‖22 6

4n3∆2ab
m

+Cn3ε

with probability 1− e−Ωm,∆ab,ε(n).

Proof. First, a quick calculation reveals

e>i M
(a,b)1= e>i D

(a,b)1− e>i D
(a,a)1+

1

2

(
1

n
1>D(a,a)1−

1

n
1>D(b,b)1

)
,

1

n
1>M(a,b)1=

1

n
1>D(a,b)1−

1

2

(
1

n
1>D(a,a)1+

1

n
1>D(b,b)1

)
,

from which it follows that

e>i P1⊥M
(a,b)1= e>i M

(a,b)1−
1

n
1>M(a,b)1

=

(
e>i D

(a,b)1−
1

n
1>D(a,b)1

)
−

(
e>i D

(a,a)1−
1

n
1>D(a,a)1

)
= e>i P1⊥(D

(a,b)1−D(a,a)1).

As such, we have

‖P1⊥M
(a,b)1‖22 = ‖P1⊥(D

(a,b)1−D(a,a)1)‖22

= ‖D(a,b)1−D(a,a)1‖22 − ‖P1(D(a,b)1−D(a,a)1)‖22. (4.30)

To bound the first term, we apply the triangle inequality over Lemma 4.1.11:

‖D(a,b)1−D(a,a)1‖2 6 4n‖p‖2 + ‖q‖2 6 4n‖p‖2 + (6+ 2∆ab)n
3/2ε. (4.31)
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We proceed by bounding ‖p‖2. To this end, note that the pi’s are iid random

variables whose outcomes lie in a finite interval (of width determined by

∆ab) with probability 1. As such, Hoeffding’s inequality gives∣∣∣∣ 1n
n∑
i=1

p2i − Ep21

∣∣∣∣6 ε w.p. 1− e−Ω∆ab,ε(n).

With this, we then have

‖p‖22 = n
(
1

n

n∑
i=1

p2i − Ep21 + Ep21

)
6 nEp21 +nε (4.32)

in the same event. To determine Ep21, first take r1 := e>1 r. Then since the

distribution of r is rotation invariant, we may write

p1 = r
>
a,1(γa −Oab) + ‖γa −Oab‖22 =

∆ab
2
r1 +

∆2ab
4

,

where the second equality above is equality in distribution. We then have

Ep21 = E

(
∆ab
2
r1 +

∆2ab
4

)2
=
∆2ab
4

Er21 +
∆4ab
16

. (4.33)

We also note that 1> E‖r‖22 =mEr21 by linearity of expectation, and so

Er21 6
1

m
. (4.34)

Combining (4.31), (4.32), (4.33) and (4.34) then gives

‖D(a,b)1−D(a,a)1‖2

6

(
4n3∆2ab
m

+n3∆4ab + 16n
3ε

)1/2
+ (6+ 2∆ab)n

3/2ε. (4.35)
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To bound the second term of (4.30), first note that

‖P1(D(a,b)1−D(a,a)1)‖2 =
1√
n

∣∣∣1>D(a,b)1− 1>D(a,a)1
∣∣∣. (4.36)

Lemma 4.1.13 then gives∣∣∣1>D(a,b)1− 1>D(a,a)1
∣∣∣> 1>D(a,b)1− 1>D(a,a)1

> n2∆2ab − (6+ 4∆ab)n
2ε (4.37)

with probability 1− e−Ωm,∆ab,ε(n). Using (4.30) to combine (4.35) with (4.36)

and (4.37) then gives the result.

Lemma 4.1.16. There exists C = C(γ) such that under the (D,γ,n)-stochastic

ball model, we have

ρ(a,b) > n
2
(
∆2ab −∆(∆− 2)

)
−Cn2ε w.p. 1− e−ΩD,γ,ε(n).

Proof. Recall from (4.23) that

ρ(a,b) = u
>
(a,b)1= 1

>M(a,b)1−nz

= 1>M(a,b)1−n min
a,b∈{1,...,k}

a 6=b

min(M(a,b)1). (4.38)

To bound the first term, we leverage Lemma 4.1.13:

1>M(a,b)1= 1>D(a,b)1−
1

2
(1>D(a,a)1+ 1>D(b,b)1)

=
1

2

(
1>D(a,b)1− 1>D(a,a)1

)
+
1

2

(
1>D(b,a)1− 1>D(b,b)1

)
> n2∆2ab − (6+ 4∆ab)n

2ε
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with probability 1− e−Ωm,∆ab,ε(n). To bound the second term in (4.38), note

from Lemma 4.1.12 that

min(M(a,b)1)

= min
(
D(a,b)1−D(a,a)1

)
+
1

2

(
1

n
1>D(a,a)1−

1

n
1>D(b,b)1

)
6 min

(
D(a,b)1−D(a,a)1

)
+
1

2

(∣∣∣∣ 1n1>D(a,a)1− 2nE‖r‖22

∣∣∣∣+ ∣∣∣∣ 1n1>D(b,b)1− 2nE‖r‖22

∣∣∣∣)
6 min

(
D(a,b)1−D(a,a)1

)
+ 4nε

with probability 1− e−Ω∆ab,ε(n). Next, Lemma 4.1.11 gives

min
(
D(a,b)1−D(a,a)1

)
6 n∆2ab + (6+ 2∆ab)nε+ 4n min

i∈{1,...,n}
r>a,i(γa −Oab).

By assumption, we know ‖r‖2 > 1− ε with positive probability regardless

of ε > 0. It then follows that

r>(γa −Oab)6−
∆ab
2

+ ε

with some (ε-dependent) positive probability. As such, we may conclude

that

min
i∈{1,...,n}

r>a,i(γa −Oab)6−
∆ab
2

+ ε w.p. 1− e−ΩD,ε(n).

Combining these estimates then gives

min(M(a,b)1)6 n∆2ab − 2n∆ab + (10+ 2∆ab)nε w.p. 1− e−ΩD,∆ab,ε(n).

Performing a union bound over a and b then gives

min
a,b∈{1,...,k}

a6=b

min(M(a,b)1)6 n∆2 − 2n∆+ (10+ 2∆)nε w.p. 1− e−ΩD,γ,ε(n).

Combining these estimates then gives the result.
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Lemma 4.1.17. Under the (D,γ,n)-stochastic ball model, we have

‖Ψ‖6
(
(1+ ε)σ√

m
+ ε

)√
N w.p. 1− e−Ωm,k,σ,ε(n),

where σ2 := E‖r‖22 for r ∼ D.

Proof. Let R denote the matrix whose (a, i)th column is ra,i. Then

Ψ= R−
[
(c1 − γ1)1

> · · · (ck − γk)1>
]
,

and so the triangle inequality gives

‖Ψ‖6 ‖R‖+
∥∥∥[(c1 − γ1)1> · · · (ck − γk)1>]∥∥∥6 ‖R‖+(n k∑

a=1

‖ca − γa‖22
)1/2

where the last estimate passes to the Frobenius norm. For the first term,

since D is rotation invariant, we may apply Theorem 5.41 in [64]:

‖R‖6 (1+ ε)σ

√
N

m
w.p. 1− e−Ωm,σ,ε(n).

For the second term, apply (4.27). The union bound then gives the result.

Proof of Theorem 4.1.9. First, we combine Lemmas 4.1.15, 4.1.16 and 4.1.17:

For every δ > 0, there exists an ε > 0 such that

2‖Ψ‖2 +
k∑
a=1

k∑
b=a+1

‖P1⊥M(a,b)1‖2‖P1⊥M(b,a)1‖2
ρ(a,b)

6 2

(
1+ ε√
m

+ ε

)2
nk+

k∑
a=1

k∑
b=a+1

4n3∆2ab/m+Cn3ε

n2(∆2ab −∆(∆− 2)) −Cn2ε

6 n

(
2k

m
+
4

m

k∑
a=1

k∑
b=a+1

∆2ab
∆2ab −∆(∆− 2)

+ δ

)
(4.39)
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with probability 1− e−ΩD,γ,ε(n). Next, the uniform bound ∆ab > ∆ implies

∆2ab
∆2ab −∆(∆− 2)

=
1

1−∆(∆− 2)/∆2ab
6

1

1−∆(∆− 2)/∆2
=
∆

2
.

Combining this with (4.39) and considering Lemma 4.1.14, it then suffices

to have
2k

m
+
4

m
·
(
k

2

)
· ∆
2
< ∆(∆− 2).

Rearranging then gives

∆ > 2+
2k

m∆
+
k(k− 1)

m
,

which is implied by the hypothesis since ∆> 2.

4.2 Integrality for the k-medians LP relaxation

Recall the k-medians linear programming formulation (k-medians lp).

Using the techniques explained in Chapter 2 we compute its dual linear pro-

gram, which is given in (k-medians lp dual). In this section we construct a

dual certificate and we use it to prove that the k-medians LP recovers the

planted clusters if they satisfy certain deterministic conditions (that we call

separation and center dominance). We then prove that the deterministic

conditions are satisfied for the stochastic ball model under minimal separa-

tion with high probability.

In this section we use the following notation: P= {x1, . . . ,xN} is a sub-

set of a metric space (X,d). Letters p,q,s will denote points in P. A1, . . . ,Ak
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will denote the planted clusters with respective k-medians centers c1, . . . ,ck.

With this notation we have the linear programs (k-medians lp) and (k-medians lp dual).

minimize
z∈RN×N,y∈RN

∑
p∈P

∑
q∈P

d(p,q)zpq (k-medians lp)

subject to
n∑
p=1

zpq = 1 ∀q ∈ P, zpq 6 yp ∀p,q ∈ P,

∑
p∈P

yp = k, zpq,yp ∈ [0,1].

maximize
ξ∈R,α∈RN,β∈N×N

∑
q∈P

αq − kξ (k-medians lp dual)

subject to αq 6 βpq + d(p,q) ∀p,q ∈ P∑
q∈P

βpq 6 ξ ∀p ∈ P, βpq > 0 ∀p,q ∈ P

The solution z ∈RN×N of (k-medians lp) is a clustering if and only if

it is integral (i.e. zpq are integers for all p,q ∈ P). In this setting the variable

yp ∈ {0,1} indicates whether the point p ∈ P is a center or not. The variable

zpq ∈ {0,1} for p,q ∈ P indicates whether or not the point p is the center for

the point q. Each point has a unique center, and a cluster is the set of points

sharing the same center.

Note that the solution of (k-medians lp) and (k-medians) are gener-

ically unique since no constraint is parallel to the objective function, hence

motivating the following definitions.
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Definition 4.2.1. For At ⊆ P, let ct the center of At

ct = argmin
p∈At

∑
q∈At

d(p,q), and OPTt = min
p∈At

∑
q∈At

d(p,q).

We prove optimality of a particular integral solution to (k-medians lp)

by showing there exists a dual feasible solution to (k-medians lp dual) whose

dual objective value matches the primal objective value of the intended inte-

gral solution - a so-called dual certificate. When the solution of (k-medians lp)

is integral, it is also degenerate, since most of the variables are zero. In fact

we experimentally observed that the dual has multiple solutions. Indeed,

motivated by this observation and experimental evidence, we can essen-

tially enforce an extra constraint in the dual by asking that the variables α

be constant within each cluster. Given α’s as such, the β’s and ξ’s are then

easily identified. We now formulate a sufficient condition for integrality

based on these observations:

Lemma 4.2.1. Consider sets A1, . . . ,Ak with n1, . . . ,nk points respectively. If

∃α1, . . . ,αk s.t for each s ∈A1 ∪ . . .∪Ak,

1

k

 k∑
t=1

ntαt − min
p∈At

∑
q∈At

d(p,q)

>

∑
q∈A1

(α1 − d(s,q))+ + . . .+
∑
q∈Ak

(αk − d(s,q))+ , (4.40)

then the k-medians LP (k-medians lp) is integral and the partition in clusters

A1, . . . ,Ak is optimal.
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Proof. By strong duality, the intended cluster solution is optimal if the cor-

responding LP objective value

min
p∈A1

∑
q∈A1

d(p,q) + . . .+ min
p∈Ak

∑
q∈Ak

d(p,q)

is less than or equal to the dual objective for some feasible dual variables.

By restricting the dual variables αq to be constant within each cluster, and

by setting ξ to be equal to the RHS of the Lemma statement, a computation

verifies that the dual objective is at least the cost of the intended clustering.

Moreover, it is also easy to see that for this setting of ξ and αq’s, the dual

constraints are trivially satisfied.

Note that the sufficient condition in Lemma 4.2.1 is similar to the

sufficient condition considered in [50], but turns out to be more useful since

it allows us to get down to optimal cluster separation ∆ = 2+ ε (whereas

in [50] the authors prove the result for ∆> 3.75).

A possible interpretation for the dual variables (which has been ex-

ploited by the primal-dual based approximation algorithms for the k-medians

problem in [8]) is as distance thresholds. In the RHS of equation (4.40) in∑
q∈At(αt − d(s,q))+ a point s ∈ P gets positive contribution from points

q ∈At that are at a distance smaller than αt. In this sense, a point in the set

At can only "see" other points within a distance αt.

Following this intuition, one way to prove that inequality (4.40) holds

is to show that we can choose feasible dual variables α1, . . . ,αk to satisfy
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• Each center sees exactly its own cluster i.e. (αt − d(ct,q))+ > 0 if and

only if q ∈At.

• The RHS of (4.40) attains its maximum in the centers c1, . . . ,ck.

• Each of the terms ntαt − minp∈At
∑
q∈At d(p,q) in the average in the

LHS of (4.40) are the same.

Our strategy is to provide a set of conditions in our data points that

guarantee such feasible dual variables exist. Assume the sets A1, . . . ,Ak are

contained in disjoint balls Br1(c1), . . . ,Brk(ck) respectively (where we use

the notation Br(c) to indicate a ball of radius r centered at c). Here we do a

slight abuse of notation, the points c1, . . . ,ck do not need to be the k-medians

centers (they could be the k-medians centers, centroids, or any point in the

cluster that satisfies the conditions). However we will prove that the k-

medians centers can be chosen to be such c1, . . . ,ck.

Suppose that α1, . . . ,αk, αt > rt, are such that for all a 6= b, Bαa(ca)∩

Bαb(cb) = ∅. Given the α’s there exist τ1, . . . ,τk > 0 sufficiently small that

any x ∈ Bτt(ct) is seen only by points in its own ball (see Definition 4.2.3 for

a precise statement). We now define conditions on the sets A1, . . . ,Ak which

imply integrality of the linear programming relaxation (k-medians lp). Note

the conditions can be expressed for generic radius and number of points,

but for simplicity, we assume for the remainder of the sectionn1= . . .=nk=

n and r1 = . . . = rk = 1 (as in the stochastic ball model). Roughly speaking,

our conditions ask that (a) The clusters are separated, being contained in
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disjoint balls, (b) Outside of a certain neighborhood of the center, no point is

a good center for its own cluster and (c) No point gets too much contribution

from any other cluster. More precisely, we require the following separation

and center dominance conditions:

Definition 4.2.2 (Separation). Let the sets A1, . . . ,Ak in X, such that

OPT1 6 . . .6 OPTk

We say such sets satisfy the separation condition if they are included in k

disjoint balls: A1 ⊂ B1(c1), . . . , Ak ⊂ B1(ck), d(ca,cb) = 2 + δab for a 6= b

where δab > 0, and the distance between ca and cb satisfies:

Θ := min
16a,b6k

δab >
OPTk−OPT1

n
(4.41)

Remark 4.2.1. The expression OPTk−OPT1
n provides a way of measuring how

different the clusters are from each other. For example, if the clusters are

symmetric, then OPTk−OPT1
n = 0. This condition requires bigger separation

when clusters are different.

We also require a center dominance condition. Consider the contribu-

tion function P(α1,...,αk) : X→ R as the sum of all contributions that a point

can get:

P(α1,...,αk)(y) =

k∑
i=1

∑
x∈At

(αt − d(y,x))+.

The center dominance condition essentially says that the contribution func-

tion attains its maximum in a small neighborhood of the center of each ball,

as long as the parameters α are chosen from some small interval.
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Definition 4.2.3 (Center dominance). A1, . . . ,Ak satisfy center dominance in

the interval (a,b)⊂ (1,1+Θ) if

b− a >
OPTk−OPT1

n
(4.42)

and for all α1, . . . ,αk ∈ (a,b) there exist τ1, . . . ,τk > 0 such that for all x ∈

Bτt(ct), t= 1, . . . ,k

Bαa(x)∩Bra(ca) =
{
Brt(ct) if a= t

∅ otherwise
(4.43)

max
y∈At\Bτt(ct)

P(α1,...,αk)(y)< max
y∈Bτt(ct)

P(α1,...,αk)(y) (4.44)

Theorem 4.2.2 states deterministic conditions that if satisfied by P,

(k-medians lp) recovers the planted clusters. The proof of this theorem is in

Section 4.2.2.

Theorem 4.2.2. If A1, . . . ,Ak are k sets in a metric space (X,d) satisfying sepa-

ration and center dominance, then there is an integral solution of (k-medians lp)

and it corresponds to separating P =A1 ∪ . . .∪Ak in the clusters A1, . . . ,Ak.

Indeed, a broad class of distributions are likely to satisfy these con-

ditions. The following theorem shows that with high probability under the

stochastic ball model. The proof specifically requires that the probability of

any ball containing 0 is positive.

Theorem 4.2.3. If points are drawn from a (µ,γ,n)-stochastic ball model with

∆ > 2 then, for all γ < 1, there exists N0 such that, if n >N0, then the solution of

(k-medians lp) is integral with probability at least γ.
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The proof of this theorem is in Section 4.2.1. The main idea is that

given k balls with the same continuous probability distribution, for large

values of n, the separation condition is just a consequence of the weak law

of large numbers. And one can prove that center dominance holds in expec-

tation, so it will hold with high probability if the number of points n is large

enough due concentration of measure. Note that the condition that all mea-

sures are the same and rotationally symmetric can be dropped as long as

the expectation of the contribution function attains its maximum in a point

close enough to the center of the ball and limn→∞ OPTk−OPT1
n < d(ca,cb) − 2

for all a 6= b.

4.2.1 Proof of Theorem 4.2.2

Proof. Recall Lemma 4.2.1. We need to show there exists α1, . . . ,αk such that

for each s ∈A1 ∪ . . .∪Ak equation (4.40) holds:

1

k

n1α1 − min
p∈A1

∑
q∈A1

d(p,q) + . . .+nkαk − min
p∈Ak

∑
q∈Ak

d(p,q)

>

∑
q∈A1

(α1 − d(s,q))+ + . . .+
∑
q∈Ak

(αk − d(s,q))+

First, note that by the center dominance property (Definition 4.2.3),

that among all points within a cluster At, the maximum RHS is attained for

s ∈ Bτt(ct), i.e., for s in a small ball around ct. Moreover, from the separa-

tion property (Definition 4.2.2), it is easy to see that points in Bτt(ct) don’t

receive any contribution (in the LHS) from points in other clusters, therefore
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the following holds:

max
s∈At

∑
q∈A1

(α1 − d(s,q))++ . . .+
∑
q∈Ak

(αk − d(s,q))+

= max
s∈Bτt(ct)

∑
q∈At

αt − d(s,q)

= ntαt −
∑
q∈At

d(s,q)

6 ntαt − min
p∈At

∑
q∈At

d(p,q)

= ntαt − OPTt

Now, the RHS of (4.40) maximizes s over all clusters t, so we addi-

tionally enforce that every element in the average on the LHS is the same:

n1α1 − OPT1 = n2α2 − OPT2 = . . .= nkαk − OPTk (4.45)

Under this condition, it is easy to see that (4.40) holds for all s∈A1∪ . . .∪Ak.

Since the points and the sets are given, this is a system of linear equations

with one degree of freedom.

4.2.2 Proof of Theorem 4.2.3

Proof sketch. The proof of this theorem consists of showing that separation

and central dominance conditions holds with high probability when the

points are drawn from the stochastic ball model.

Step 0 Let ct = γt the geometric center of the ball. For z ∈
k⋃
t=1

B1(ct) and
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(α1, . . . ,αk) ∈Rk let the random variable

P(α1,...,αk)(z) =

k∑
t=1

∑
xt,i∈At

(αt − d(z,xt,i))+ =

n∑
i=1

P
(α1,...,αk)
i (z) where

P
(α1,...,αk)
i (z) =

k∑
t=1

(αt − d(z,xt,i))+

We need to show that for some α1, . . . ,αk satisfying (4.45) the maxi-

mum of
{
P(α1,...,αk)(xt,i)

}n
i=1

is attained in some xt,i ∈Bτt(ct) for every

t= 1, . . . ,k with high probability.

Step 1 First we show that for certainα=α1= . . .=αk, the function EP
(α,...,α)
i (z)

restricted to z ∈ B1(ct) attains its maximum at z= ct for all t= 1, . . . ,k.

The proof is done in Lemma 4.2.4. This is the step where we use that

the measure is rotationally symmetric. In fact, this assumption is not

strictly needed: any continuous probability distribution that satisfies

the thesis of Step 1 and has positive probability in every neighborhood

of the center would guarantee asymptotic recovery.

Step 2 In Lemma 4.2.5 we use that P(α1,...,αk)
i (z) is continuous with respect

to (α1, . . . ,αk) and µt is continuous with respect to the Lebesgue mea-

sure to show that there exists some υ > 0with the following property:

if α1, . . . ,αk ∈ (α − υ,α + υ) then the maximum of EP
(α1,...,αk)
i (z) re-

stricted to B1(ct) is attained at z= ct.

Step 3 The weak law of large numbers implies that for all a,b ∈ {1, . . . ,k},
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the random variable OPTa−OPTb
n converges to zero in probability, i.e.:

For every ν > 0, lim
n→∞Pr

(∣∣∣∣OPTa−OPTb
n

∣∣∣∣< ν)= 1

For every γ0 < 1 if we have n large enough, we can assure that with

probability greater than γ0, α1, . . . ,αk can be chosen to be in (α −

υ,α+ υ). In particular for (α1, . . . ,αk) satisfying (4.45) the maximum

of EP
(α1,...,αk)
i (z) restricted to B1(ct) is attained at z= ct.

Step 4 In Lemma 4.2.6 we use concentration inequalities to convert the claim

in Step 3 about EP
(α1,...,αk)
i (z) to the claim we need to show about

P(α1,...,αk)(z) with high probability. Given γ1 < 1 if the number of

points n is large enough, and the probability of having a point close

to the center of the ball is greater than zero, then with probability

greater than γ1, the maximum of
{
P(α1,...,αk)(xt,i)

}n
i=1

is attained in

some xt,i ∈ Bτt(ct) for every t= 1, . . . ,k. Which proves the theorem.

Lemma 4.2.4. In the hypothesis of Theorem 4.2.3 there exists α > 1 such that for

all j= 1, . . . ,k, EP(α,...,α)(z) restricted to z∈B1(cj) attains its maximum in z= cj.

Proof. Let z ∈ B1(cj). Note that

EP(α,...,α)(z) = nEP
(α,...,α)
i (z)

= n

∫
B1(cj)∩Bα(z)

α− d(x,z)dµjx+
∑
t 6=j

∫
B1(ct)∩Bα(z)

α− d(x,z)dµtx

 .
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Defineα(z)>1 the maximum value of alpha such thatBα(z)∩
⋃
t 6=jB1(ct)

can be copied isometrically inside B1(cj) along the boundary without inter-

secting each other and without intersecting Bα(z) as demonstrated in Figure

4.1. Let α = max{α(z) : z ∈ ∪kj=1B1(cj)}. We know α > 1 since the balls are

separated: d(ct,cj)> 2 whenever t 6= j.

Figure 4.1: Illustration for proof of Lemma 4.2.4.
Let the circles B1(ct) be represented by the solid lined circles and the dashed lined
circle be Bα(z). In the left image, α = 1. Since the circles B1(ct) do not intersect
each other, then we can consider Bα(z) ∩

⋃
t 6=jB1(ct) copied symmetrically along

the boundary inside B1(cj) without intersecting each other or Bα(z) as in the left
image. By continuity that can also be done for slightly bigger alphas. Let α(z) the
biggest value of α for which that can be done. For the value of z in this example
and the position of the ballsB1(ct), we haveα(z)≈ 1.1, and the intersections copied
inside B1(cj) are represented in the image at the right.

Let τj = τj(α, . . . ,α). For every z ∈ Bτj(cj) it only sees its own clus-

ter and nothing of the rest. Let v ∈ Rm, ‖v‖ = 1 and consider the partial
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derivative with respect to t along the line z= cj + tv : t ∈ (−τj,τj).

EP
(α,...,α)
i (cj + tv) =

∫
B1(cj)

α− d(x,cj + tv)dµjx

∂

∂t
EP

(α,...,α)
i (cj + tv) =

> 0 if −τj < t < 0

= 0 if t= 0

< 0 if 0 < t < τj

(4.46)

Then cj = argmaxz∈Bτj(cj)
EP(α,...,α)(z). And because of the way α was cho-

sen, since the measures µt are translations of the same rotationally symmet-

ric measure, if z ∈ B1(cj)\Bτj(cj) we have

EP
(α,...,α)
i (z) =

∫
B1(cj)∩Bα(z)

α− d(x,z)dµjx+
∑
i 6=j

∫
B1(ci)∩Bα(z)

α− d(x,z)dµix

<

∫
B1(cj)

α− d(x,cj)dµjx= EP
(α,...,α)
i (cj).

This proves the claim in Step 1.

Lemma 4.2.5. There exists some υ > 0 with the property: if α1, . . . ,αk ∈ (α −

υ,α+ υ) then the maximum of EP
(α1,...,αk)
i (z) restricted to B1(cj) is attained at

z= cj.

Proof. By continuity of EP(α1,...,αk)(z) with respect to the parametersα1, . . . ,αk

given ε > 0 there exists υ > 0 such that if α − υ < αj < α + υ for all j =

1, . . . ,k, then argmaxz∈B1(cj)EP
(α1,...,αk)
i (z) ∈ Bε(cj). Let choose ε > 0 and

υ > 0 small enough such that it is also true that ε < τj(α1, . . . ,αk) for all

α1 . . . ,αk ∈ (α− υ,α+ υ). Then the derivative computation (4.46) applies,
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and can conclude that for all α1, . . . ,αk ∈ (α− υ,α+ υ)

argmaxz∈B1(cj)EP
(α1,...,αk)
i (z) = cj.

Lemma 4.2.6. Let α1, . . . ,αk be such that argmaxz∈B1(cj)EP(α1,...,αk)(z) = cj.

Let also assume there exists some xj,i ∈ Bτ(cj) where τ < τj. Then the maximum

of P(α1,...,αk)(xj,1), . . . ,P(α1,...,αk)(xj,n) is attained for an xj,s in Bτj(cj) with proba-

bility at least β(n) where limnβ(n) = 1.

Proof. Let M such that 0 < P(α1,...,αk)
i (z) <M. Then we use Hoeffding’s in-

equality,

Pr
(
|P(α1,...,αk)(z) − EP(α1,...,αk)(z)|> r

)
< 2exp

(
−2r2

nM2

)
We know argmaxz∈B1(cj)EP(α1,...,αk)(z) = cj then by continuity there

exists 0 < τ ′ < τj such that

inf
z∈Bτ ′(cj)

EP(α1,...,αk)(z)> sup
z∈B1(cj)\Bτ ′(cj)

EP(α1,...,αk)(z).

Without loss of generality say τ ′ = τj. Every point inside Bτj(cj) sees exactly

its own cluster, the function EP(α1,...,αk)(z) is rotationally symmetric since

the measure is rotationally symmetric, and if we consider z = cj + te1 then

it is increasing in t for t ∈ (−τj,0) and decreasing for t ∈ (0,τj).

Let r and n satisfy

nEP
(α1,...,αk)
i (τje1 + cj) − r < nEP

(α1,...,αk)
i (τe1 + cj) + r (i.e. r < Cn),(4.47)

2exp
(
−2r2

nM2

)
< 1−β (i.e. r > C ′

√
n).(4.48)
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With high probability, the bigger P(α1,...,αk)(z) is for z outside Bτj(cj),

the smaller the same function can be for z ∈ Bτ(cj). In other words, if x ∈

Bτ(cj) and x ′ ∈ B1(cj)\Bτj(cj)

Pr
(
|P(αA,αB)(x)> P(αA,αB)(x ′)|

)
> β.

This completes the proof of Theorem 4.2.3.

4.3 An integrality gap for the k-means LP relaxation

We now show that, in contrast to the LP relaxation for the k-medians

clustering problem, the natural LP relaxation for k-means does not attain in-

tegral solutions for the stochastic ball model unless the separation between

cluster centers exceeds∆= 4. This is a negative result because for separation

∆> 4 the clustering problem becomes trivial. Every point is closer to points

in its cluster than points in other clusters, therefore a simple thresholding

algorithm will find the planted clusters.

Using the same notation than in the previous section, the LP re-

laxation for (k-means) is given by (k-means lp) below, whose dual LP is

(k-means lp dual):
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minimize
z∈Rn×n

∑
p,q∈P

d2(p,q)zpq (k-means lp)

subject to
∑
q∈P

zpq = 1 ∀p ∈ P, zpq 6 zpp ∀p,q ∈ P,

∑
p∈P

zpp = k, zpq ∈ [0,1]

maximize
α∈Rn,ξ∈R
β∈Rn×n

∑
p∈P

αp − kξ (k-means lp dual)

subject to αp 6 d
2(p,q) +βpq ∀p,q ∈ P,∑

q∈P
βpq = ξ ∀p ∈ P, βpq > 0

In an integral solution to (k-means lp), the variable zpq = 1/|C| if p,q

belong to the same clusterC in an optimal clustering, and zpq = 0 otherwise.

It is easy to see that such a solution satisfies all the constraints, and that

the objective exactly measures the sum of average distances within every

cluster. The following theorem shows the LP relaxation cannot recover the

optimum k-means cluster solution if the distance between any two points

in the same cluster is smaller than the distance between any two points in

different clusters.

Theorem 4.3.1. Given a set of points P=A1∪ . . .∪Ak, if the solution of (k-means lp)

is integral and divides the set P in k clustersA1, . . . ,Ak then for all p,q in the same

cluster Ai and r in a different cluster Aj,

d(p,q)< d(p,r). (4.49)
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Proof. If the solution of (k-means lp) is integral and divides the set P in the

clusters A1, . . . ,Ak, complementary slackness tells us that

αp = d
2(p,q) +βpq if p,q are in the same cluster (4.50)

βpr = 0 if p,r are in different clusters (4.51)

if and only if α,β are corresponding optimal dual variables. Combining

(k-means lp dual), (4.50) and (4.51), since βpq > 0 we obtain that if p,q are

in the same cluster and r is in a different cluster,

d2(p,q) +βpq = αp 6 d2(p,r) (4.52)

The result in Theorem 4.3.1 is tight in the sense of our distributional

model. The following theorem shows separation ∆ = 4 is a threshold for

cluster recovery via k-means LP.

Theorem 4.3.2. Consider points drawn from the (D,γ,n)-stochastic ball model.

If n is sufficiently large, then the solution of (k-means lp) does not coincide with

the planted clusters with high probability for ∆ < 4 and it does coincide for ∆ > 4.

Proof. For ∆ < 4 the result in Theorem 4.3.1 implies that the solution of the

LP will not be the planted clustering with high probability if enough points

are provided.

For∆>4we show zpq=

{
1/|C| if p,q belong to the same cluster C
0 otherwise

is the solution of (k-means lp).
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For α’s and β’s feasible for the dual problem we have
∑
q∈Pβpq = ξ

for all p ∈ P implies
∑
p,q∈Pβpqzpq = kξ; we also have (as a consequence of

(4.50) and the definition of zpq) that αp =
∑
q∈P(d

2(p,q) +βpq)zpq. Then for

any dual feasible solution we have

∑
p,q∈P

d2(p,q)zpq =
∑
p∈P

αp − kξ.

Therefore, the existence of a feasible solution for the dual implies that our

planted solution is optimal. Then it remains to show that there exists a

feasible point for the dual. The solution is generically unique because no

constraint in (k-means lp) is parallel to the objective function.

Existence of feasible solution of the dual

A feasible solution of the dual is {αp}p∈P, {βpq}p,q∈P such that (4.50),

(4.51) are satisfied together with βpq > 0 for all p,q ∈ P and
∑
q∈Pβpq = ξ

for all p ∈ P. For p ∈ P let Cp its cluster, |Cp| = n, then summing (4.50) in

q ∈ Cp we get

nαp =
∑
q∈Cp

d2(p,q) + ξ.

Let avg(p) := 1
n

∑
q∈Cp d

2(p,q) andαp := avg(p)+ ξ
n , and definemin(p) :=

maxq∈Cp d
2(p,q) and mout(p) := minr6∈Cp d

2(p,r). Assuming there exists a

feasible point for the dual we know the solution for the LP is integral (i.e.

our planted clustering) then we know (4.52) holds. In other words:

min(p)6 αp 6mout(p) for all p ∈ P
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Equivalently,

min(p) − avg(p)6
ξ

n
6mout(p) − avg(p) for all p ∈ P (4.53)

Then, a feasible solution for the dual problem exists if there exists ξ that

satisfies (4.53) for all p ∈ P. A sufficient condition is:

max
r∈P

min(r) − avg(r)6 min
s∈P

mout(s) − avg(s)

Since this condition does not depend on the position of the cluster we can

assume that the cluster Cr where the LHS is maximized is centered in 0. Let

f(r) =min(r) − avg(r) = 1
n

∑
l∈Cr ‖r−min(r)‖2 − ‖r− l‖2. In order to find

its maximum consider

∂f

∂r
=
1

n

∑
l∈Cr

2(r−min(r)) − 2(r− l) =
1

n

∑
l∈Cr

−2min(r) since Cr has mean 0

But min(r) 6= 0 for all r ∈ P since the center of the cluster cannot maximize

the distance square (unless the trivial case where all the points in the cluster

coincide with the center). Then f is maximized in the boundary of the unit

ball. Then we need

4− min
r∈∂C

avg(r)6 (∆− 2)2 − max
s∈∂C

avg(s)

which holds for ∆ > 4 with high probability when n→∞ since the points

come from a rotationally symmetric distribution.
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Chapter 5

Efficiently certifying exact solutions

As mentioned in the introduction Lloyd’s algorithm and its vari-

ants [7, 54] are fast but may converge to local minima of the k-means ob-

jective (e.g., see Figure 1.6 and section 5 of [8]). Furthermore, the output of

Lloyd’s algorithm does not indicate how far it is from optimal. In fact, most

non-convex optimization methods fail to produce a certificate of global op-

timality. However, if a non-convex problem enjoys a convex relaxation, then

solving the dual of this relaxation will produce a certificate of (approximate)

optimality.

In the previous chapter we show that under the stochastic ball model,

the convex relaxation (k-means sdp) is tight with high probability, that is,

every solution to the relaxed problem (k-means sdp) identifies an optimal

clustering. As such, in this high-probability event, one may solve the dual

This chapter is based on the publication:
Takayuki Iguchi, Dustin G. Mixon, Jesse Peterson, Soledad Villar. Probably certifiably correct
k-means clustering Mathematical Programming, 2016 (to appear).
The author contributed in developing the main ideas of the paper, the mathematical proofs
and numerical experiments.
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program to produce a certificate of optimality. However, semidefinite pro-

gramming (SDP) solvers are notoriously slow. For example, running MAT-

LAB’s built-in implementation of Lloyd’s algorithm on 64 points in R6 will

take about 0.001 seconds, whereas a CVX implementation [29] of the dual

of (k-means sdp) for the same data takes about 20 seconds. Also, Lloyd’s al-

gorithm scales much better than SDP solvers, and so one should expect this

runtime disparity to only increase with larger datasets. Overall, while the

SDP relaxation theoretically produces a certificate in polynomial time (e.g.,

by an interior-point method [51]), it is far too slow to wait for in practice.

We combine the best of both worlds to obtain a new sort of algorithm,

recently introduced by Bandeira in [9]:

Definition 5.0.1. Let P be an optimization problem that depends on some

input, and let D denote a probability distribution over possible inputs. Then

a probably certifiably correct (PCC) algorithm for (P,D) is an algorithm

that on input D ∼ D produces a global optimizer of P with high probability,

and furthermore produces a certificate of having done so.

As mentioned in the introduction, the general technique to certify

global optimality leverages several components simultaneously:

(i) A fast non-convex solver that produces the optimal solution with high

probability (under some reasonable probability distribution of prob-

lem instances).
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(ii) A convex relaxation that is tight with high probability (under the same

distribution).

(iii) A fast method of computing a certificate of global optimality for the

output of the non-convex solver in (i) by exploiting convex duality

with the relaxation in (ii).

In the context of k-means, one might expect Lloyd’s algorithm and the

Peng–Wei SDP (k-means sdp) to be suitable choices for (i) and (ii), respec-

tively. For (iii), one might adapt Bandeira’s original method in [9] based on

complementary slackness (see Figure 5.1 for an illustration). In this chapter,

we provide a theoretical basis for each of these components in the context

of k-means.

Note that when we proved tightness of the SDP in Section 4.1 we

accomplished component (ii) in Bandeira’s PCC technique, we tackle com-

ponent (iii) next. For this, we recall Theorem 4.1.7, and express it in the

following terms:

Theorem. 4.1.7. Take X a cluster projection matrix, and let PΛ⊥ denote the

orthogonal projection onto the orthogonal complement of the span of {1At}
k
t=1. Then

there exists an explicit matrix Z= Z(D,X) and scalar z= z(D,X) such that X is a

solution to the semidefinite relaxation (k-means sdp) if

PΛ⊥ZPΛ⊥ � zPΛ⊥ . (5.1)
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Figure 5.1: Complementary slackness and probably certifiably correct algorithms
(left) Depiction of complementary slackness. The horizontal axis represents a vector space
in which we consider a cone program (e.g., a linear or semidefinite program), and the fea-
sibility region of this program is highlighted in green. The dual program concerns another
vector space, which we represent with the vertical axis and feasibility region highlighted
in red. The downward-sloping line represents all pairs of points (x,y) that satisfy comple-
mentary slackness. Recall that when strong duality is satisfied, we have that x is primal-
optimal and y is dual-optimal if and only if x is primal feasible, y is dual feasible, and (x,y)
satisfy complementary slackness. As such, the intersection between the blue Cartesian
product and the complementary slackness line represents all pairs of optimizers. (right)
Bandeira’s probably certifiably correct technique [9]. Given a purported primal-optimizer
x, we first check that x is primal-feasible. Next, we select y such that (x,y) satisfies comple-
mentary slackness. Finally, we check that y is dual-feasible. By complementary slackness,
y is then a dual certificate of x’s optimality in the primal program, which can be verified
by comparing their values (a la strong duality).
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Now we consider the matrix

A :=
z

N
11> + PΛ⊥ZPΛ⊥ , (5.2)

where z and Z come from Theorem 4.1.7. Since the all-ones vector 1 lies in

the span of {1At}
k
t=1, we have that 1 spans the unique leading eigenspace

of A precisely when PΛ⊥ZPΛ⊥ ≺ zPΛ⊥ , which in turn implies that X is a k-

means optimal clustering by Theorem 4.1.7. As such, component (iii) can be

accomplished by solving the following fundamental problem from linear

algebra:

Problem. Given a symmetric matrix A ∈ Rn×n and an eigenvector v of A,

determine whether the span of v is the unique leading eigenspace, that is,

the corresponding eigenvalue λ has multiplicity 1 and satisfies |λ| > |λ ′| for

every other eigenvalue λ ′ of A.

Interestingly, this same problem appeared in Bandeira’s original PCC

theory [9], but it was left unresolved. In this chapter, we fill this gap by de-

veloping a so-called power iteration detector, which applies the power iter-

ation to a random initialization on the unit sphere. Due to the randomness,

the power iteration produces a test statistic that allows us to infer whether

(A,v) satisfies the desired leading eigenspace condition. In Section 5.1, we

pose this as a hypothesis test, and we estimate the associated error proba-

bilities. In addition, we show how to leverage the structure of A defined

by (5.2) and Theorem 5.1 to compute the matrix–vector multiplication Ax
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for any given x in onlyO(kmN) operations, thereby allowing the test statis-

tic to be computed in linear time (up to the spectral gap ofA and the desired

confidence for the hypothesis test). Overall, the power iteration detector

will deliver a highly confident inference on whether (A,v) satisfies the lead-

ing eigenspace condition, which in turn certifies the optimality of X up to

the prescribed confidence level. Of course, one may remove the need for

a confidence level by opting for deterministic spectral methods, but we do

not know how to accomplish this in linear or even near-linear time.

5.1 A fast test for k-means optimality

In this section, we leverage the certificate (4.24) to test the optimality

of a candidate k-means solution. We first show how to solve a more general

problem from linear algebra, and then we apply our solution to devise a fast

test for k-means optimality (as well as fast test for a related PCC algorithm).

5.1.1 Leading eigenvector hypothesis test

This subsection concerns Problem 5. To solve this problem, one might

be inclined to apply the power method:

Proposition 5.1.1 (Theorem 8.2.1 in [28]). LetA∈Rn×n be a symmetric matrix

with eigenvalues {λi}ni=1 (counting multiplicities) satisfying

|λ1|> |λ2|> · · ·> |λn|,

and with corresponding orthonormal eigenvectors {vi}
n
i=1. Pick a unit-norm vec-
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tor q0 ∈ Rn and consider the power iteration qj+1 := Aqj/‖Aqj‖2. If q0 is not

orthogonal to v1, then

(v>1 qj)
2 > 1−

(
(v>1 q0)

−2 − 1
)(λ2
λ1

)2j
.

Notice that the above convergence guarantee depends on the quality

of the initialization q0. To use this guarantee, draw q0 at random from the

unit sphere so that q0 is not orthogonal to v1 almost surely; one might then

analyze the statistics of v>1 q0 to produce statistics on the time required for

convergence. The power method is typically used to find a leading eigen-

vector, but for our problem, we already have access to an eigenvector v, and

we are tasked with determining whether v is the unique leading eigenvec-

tor. Intuitively, if you run the power method from a random initialization

and it happens to converge to v, then this would have been a remarkable

coincidence if vwere not the unique leading eigenvector. Since we will only

run finitely many iterations, how do we decide when we are sufficiently

confident? The remainder of this subsection answers this question.

Given a symmetric matrix A ∈ Rn×n and a unit eigenvector v of A,

consider the hypotheses

H0 : span(v) is not the unique leading eigenspace of A,

H1 : span(v) is the unique leading eigenspace of A.
(5.3)

To test these hypotheses, pick a tolerance ε > 0 and run the power iteration

detector (see Algorithm 2). This detector terminates either by accepting H0

or by rejecting H0 and accepting H1. We say the detector fails to reject H0 if
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it either accepts H0 or fails to terminate. Before analyzing this detector, we

consider the following definition:

Algorithm 2: Power iteration detector
Input: Symmetric matrix A ∈Rn×n, unit eigenvector v ∈Rn,

tolerance ε > 0
Output: Decision of whether to accept H0 or to reject H0 and

accept H1 as given in (5.3)
1 λ← v>Av
2 Draw q uniformly at random from the unit sphere in Rn

3 while no decision has been made do
4 if |q>Aq|> |λ| then
5 Print accept H0
6 else if (v>q)2 > 1− ε then
7 Print reject H0 and accept H1

8 q←Aq/‖Aq‖2

Definition 5.1.1. Given a symmetric matrix A ∈Rn×n and unit eigenvector

v of A, put λ= v>Av, and let λ1 denote a leading eigenvalue of A (i.e., |λ1|=

‖A‖). We say (A,v) is degenerate if

(a) the eigenvalue λ of A has multiplicity > 2,

(b) −λ is an eigenvalue of A, or

(c) −λ1 is an eigenvalue of A.

Theorem 5.1.2. Consider the power iteration detector (Algorithm 2), let qj de-

note q at the jth iteration (with q0 being the initialization), and let πε denote the

probability that (e>1 q0)
2 < ε.
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(i) (A,v) is degenerate only if H0 holds. If (A,v) is non-degenerate, then the

power iteration detector terminates in finite time with probability 1.

(ii) The power iteration detector incurs the following error rates:

Pr
(

reject H0 and accept H1
∣∣∣ H0 )6 πε,

Pr
(

fail to reject H0
∣∣∣ H1 )= 0.

(iii) If H1 holds, then

min
{
j : (v>qj)

2 > 1− ε
}
6
3 log(1/ε)
2 log |λ1/λ2|

+ 1

with probability > 1− πε, where λ2 is the second largest eigenvalue (in ab-

solute value).

Proof. Denote the eigenvalues of A by {λi}
n
i=1 (counting multiplicities), or-

dered in such a way that |λ1| > · · · > |λn|, and consider the corresponding

orthonormal eigenvectors {vi}ni=1, where v= vp for some p.

For (i), first note that H1 implies that (A,v) is non-degenerate, and

so the contrapositive gives the first claim. Next, suppose (A,v) is non-

degenerate. If H1 holds, then (v>qj)
2 → 1 by Proposition 5.1.1 provided

q0 is not orthogonal to v, and so the power iteration detector terminates

with probability 1. Otherwise, H0 holds, and so the non-degeneracy of

(A,v) implies that the eigenspace corresponding to λ1 is the unique leading
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eigenspace of A, and furthermore, |λ1| > |λ|. Following the proof of Theo-

rem 8.2.1 in [28], we also have

q>j Aqj =
q>0 A

2j+1q0

q>0 A
2jq0

=

∑n
i=1(v

>
i qj)

2λ
2j+1
i∑n

i=1(v
>
i qj)

2λ
2j
i

.

Putting r := min{i : |λi|< |λ1|}, then

|q>j Aqj − λ1|=

∣∣∣∣∣
∑n
i=1(v

>
i qj)

2λ
2j
i (λi − λ1)∑n

i=1(v
>
i qj)

2λ
2j
i

∣∣∣∣∣
6

|λ1 − λn|

‖Pλ1q0‖22

n∑
i=r

(v>i qj)
2

(
λi
λ1

)2j
6 |λ1 − λn|

(
1− ‖Pλ1q0‖22
‖Pλ1q0‖22

)(
λr

λ1

)2j
,

where Pλ1 denotes the orthogonal projection onto the eigenspace correspond-

ing to λ1. As such, |q>j Aqj|→ |λ1|> |λ| provided Pλ1q0 6= 0, and so the power

iteration detector terminates with probability 1.

For (ii), we first consider the case of a false positive. Taking v= vp for

p 6= 1, note that (v>qj)2 > 1− ε implies

ε > 1− (v>qj)
2 = ‖qj‖22 − (v>p qj)

2 =

n∑
i=1
i 6=p

(v>i qj)
2 > (v>1 qj)

2.

Also, since ‖Ax‖2 6 |λ1|‖x‖2 for all x ∈Rn, we have that (v>1 qj)
2 monotoni-

cally increases with j:

(v>1 qj+1)
2 =

(
v>1

Aqj

‖Aqj‖2

)2
=

(λ1v
>
1 qj)

2

‖Aqj‖22
>

(v>1 qj)
2

‖qj‖2
= (v>1 qj)

2.

As such, ε > (v>1 qj)
2 > (v>1 q0)

2. Overall, when H0 holds, the power itera-

tion detector rejectsH0 only if q0 is initialized poorly, i.e., (v>1 q0)
2<ε, which
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occurs with probability πε (since q0 has a rotation-invariant probability dis-

tribution). For the false negative error rate, note that Proposition 5.1.1 gives

thatH1 implies convergence (v>qj)
2→ 1 provided q0 is not orthogonal to v,

i.e., with probability 1.

For (iii), we want j such that (v>qj)2 > 1− ε. By Proposition 5.1.1, it

suffices to have (
(v>1 q0)

−2 − 1
)(λ2
λ1

)2j
< ε.

In the event that (v>1 q0)
2 > ε (which has probability 1− πε), it further suf-

fices to have

ε−2
(
λ2
λ1

)2j
< ε.

Taking logs and rearranging then gives the result.

To estimate ε and πε, first note that q0 has a rotation-invariant prob-

ability distribution, and so linearity of expectation gives

E
[
(e>1 q0)

2
]
=
1

n

n∑
i=1

E
[
(e>i q0)

2
]
=
1

n
E‖q0‖22 =

1

n
.

Thus, in order to make πε small, we should expect to have ε� 1/n. The

following lemma gives that such choices of ε suffice for πε to be small:

Lemma 5.1.3. If ε> n−1e−2n, then πε 6 3
√
nε.

Proof. First, observe that (e>1 q0)
2 is equal in distribution to Z2/Q, where Z

has standard normal distribution and Q has chi-squared distribution with
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n degrees of freedom (Z and Q are independent). The probability density

function of Z has a maximal value of 1/
√
2π at zero, and so

Pr
(
Z2 < a

)
6

√
2a

π
.

Also, Lemma 1 in [39] gives

Pr
(
Q> n+ 2

√
nx+ 2x

)
6 e−x ∀x > 0.

Therefore, picking a= 5nε and x= n, the union bound gives

Pr
(
(e>1 q0)

2 < ε
)
= Pr

(
Z2

Q
< ε

)
6 Pr

(
Z2 < 5nε

)
+ Pr

(
Q> 5n

)
6

√
10nε

π
+ e−n 6 3

√
nε.

Overall, if we take ε = n−(2c+1) for c > 0, then if H0 is true, our de-

tector will produce a false positive with probability O(n−c). On the other

hand, if H1 is true, then with probability 1−O(n−c), our detector will reject

H0 after Oδ(c logn) power iterations, provided |λ2|6 (1− δ)|λ1|.

5.1.2 Testing optimality with the power iteration detector

In this subsection, we leverage the power iteration detector to test k-

means optimality. Note that the sufficient condition (4.24) holds if and only

if v := 1√
N
1 is a leading eigenvector of the matrix

A :=
z

N
11> + PΛ⊥(B−M)PΛ⊥ =

z

N
11> + PΛ⊥(B−D)PΛ⊥ . (5.4)

(The second equality follows from distributing the PΛ⊥ ’s and recalling the

definition of M in (4.20).) As such, it suffices that (A,v) satisfy H1 in (5.3).
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Overall, given a collection of points {xi}
N
i=1 ⊆ Rm and a proposed parti-

tion A1 t ·· · t Ak = {1, . . . ,N}, we can produce the corresponding matrix

A (defined above) and then run the power iteration detector of the previ-

ous subsection to test (4.24). In particular, a positive test with tolerance ε

will yield > 1− πε confidence that the proposed partition is optimal under

the k-means objective. Furthermore, as we detail below, the matrix–vector

products computed in the power iteration detector have a computationally

cheap implementation.

Given anm×na matrixΦa = [xa,1 · · ·xa,na] for each a ∈ {1, . . . ,k}, we

follow the following procedure to implement the corresponding function

x 7→Ax as defined in (5.4):

STEPS IN COMPUTATION OF x 7→Ax. cost in operations

1: Compute νa ∈Rna such that (νa)i = ‖xa,i‖22 for every a ∈ {1, . . . ,k}.

Let ν ∈RN denote the vector whose ath block is νa. O(mN)

2: Define the function (a,b,x) 7→D(a,b)x such that

D(a,b) = νa1
> − 2Φ>aΦb + 1ν

>
b . O(m(na +nb))

3: Define the function x 7→Dx such that D= ν1> − 2Φ>Φ+ 1ν>,

whereΦ= [Φ1 · · ·Φk]. O(mN)

4: Compute µa= 1
2(

1
n2a
11>− 2

na
I)D(a,a)1 for every a∈ {1, . . . ,k}. O(mN)

5: Define the function (a,b,x) 7→M(a,b)x such that

M(a,b) =D(a,b) + µa1
> + 1µ>b . O(m(na +nb))
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6: Compute z= mina 6=b 2na
na+nb

min(M(a,b)1). O(kmN)

7: Compute u(a,b) =M
(a,b)1 − zna+nb2na

1 for every a,b ∈ {1, . . . ,k}, a 6= b.

O(kmN)

8: Compute ρ(a,b)=u
>
(a,b)1 for every a,b∈ {1, . . . ,k}, a 6=b. O(kN)

9: Define the function x 7→ Bx such that the ath block of the output

is given by (Bx)a =

k∑
b=1
b 6=a

u(a,b)u
>
(b,a)xb

ρ(b,a)
. O(kmN)

10: Define the function x 7→PΛ⊥x such that PΛ⊥ = I−
∑k
a=1

1
na
1a1
>
a . O(N)

11: Define the function x 7→ Ax such that A = z
N11

> + PΛ⊥(B −D)PΛ⊥ .

O(kmN)

Overall, after O(kmN) operations of preprocessing, one may com-

pute the function x 7→ Ax for any given x in O(kmN) operations. (Observe

that this is the same complexity as each iteration of Lloyd’s algorithm.)

At this point, we take a short aside to illustrate the utility of the

power iteration detector beyond k-means clustering. The original problem

for which a PCC algorithm was developed was community recovery under

the stochastic block model [9]. For this random graph, there are two com-

munities of vertices, each of size n/2, and edges are drawn independently

at random with probability p if the pair of vertices belong to the same com-

munity, and with probability q < p if they come from different communi-

ties. Given the random edges, the maximum likelihood estimator for the
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communities is given by the vertex partition of two sets of size n/2with the

minimum cut. Given a partition of the vertices, let X denote the correspond-

ing n×nmatrix of±1s such that Xij= 1 precisely when i and j belong to the

same community. Given the adjacency matrix A of the random graph, one

may express the cut of a partition X in terms of Tr(AX). Furthermore, X sat-

isfies the convex constraints Xii = 1 and X� 0, and so one may relax to these

constraints to obtain a semidefinite program and hope that the relaxation is

typically tight over a large region of (p,q). Amazingly, this relaxation is typ-

ically tight precisely over the region of (p,q) for which community recovery

is information-theoretically possible [2].

Given A, let B := 2A− 11> + I, and given a vector x ∈Rn, define the

corresponding n× n diagonal matrix Dx by (Dx)ii := xi
∑n
j=1Bijxj. In [9],

Bandeira observes that, given a partition matrix X by some means (such

as the fast algorithm provided in [3]), then X = xx> is SDP-optimal if both

x>1 = 0 and the second smallest eigenvalue of Dx − B is strictly positive,

meaning the partition gives the maximum likelihood estimator for the com-

munities. However, as Bandeira notes, the computational bottleneck here is

estimating the second smallest eigenvalue of Dx − B, and he suggests that

a randomized power method–like algorithm might suffice, but leaves the

investigation for future research.

Here, we show how the power iteration detector fills this void in the

theory. First, we note that in the interesting regime of (p,q), the number

of nonzero entries in A is O(n logn) with high probability [2]. As such,
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the function x 7→ Bx can exploit this sparsity to take only O(n logn) opera-

tions. This in turn allows for the computation of the diagonal of Dx to cost

O(n logn) operations. Next, note that

‖Dx −B‖6 ‖Dx‖+ ‖2A− 11>‖+ ‖I‖

6 ‖Dx‖+ ‖2A− 11>‖F + 1= max
i

|(Dx)ii|+n+ 1=: λ,

and that λ can be computed in O(n) operations after computing the diag-

onal of Dx. Also, it takes O(n) operations to verify x>1 = 0. Assuming

x>1= 0, then the second smallest eigenvalue of Dx −B is strictly positive if

and only if x spans the unique leading eigenspace of λI−Dx+B. Thus, one

may test this condition using the power iteration detector, and furthermore,

each iteration will take only O(n logn) operations, thanks to the sparsity of

A.
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Chapter 6

Approximation guarantees for relax and round
algorithms

The results we present in this chapter appear in [49]. That paper has

two main results. First, it presents a relax-and-round algorithm for k-means

clustering that well-approximates the centers of sufficiently separated sub-

gaussians. Second, it provides a conditional result on the minimum sepa-

ration necessary for Gaussian center approximation by k-means clustering.

The first result establishes that the k-means SDP (k-means sdp) performs

well with noisy data (despite not being tight), and the second result helps

to illustrate how sharp our analysis is.

In this thesis we only include the first result of the paper, regarding

the approximation guarantees. We refer the reader to [49] for the conditional

lower bound for learning mixtures of Gaussians using k-means. At the end

This chapter is based on the publication:
Dustin G. Mixon, Soledad Villar, Rachel Ward. Clustering subgaussian mixtures by semidefi-
nite programming. Information and Inference: A Journal of the IMA, 2017 (to appear).
The author contributed in developing the main ideas of the paper, the mathematical proofs
and numerical experiments.
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of this chapter we apply our algorithm to the MNIST dataset [40]. See [66]

for an interactive visualization of the numerical experiment.

6.1 The relax-and-round algorithm

As we mentioned earlier in the introduction and we further explain

in Section 6.4, our relax-and-round algorithm relies on the interpretation of

the matrix X as a relaxation of projection, and the matrix PX as a denoised

version of the points P. The algorithm we propose consists of the following

steps:

Relax-and-round k-means clustering procedure.
Given andm×N data matrix P = [x1 · · ·xN], do:

(i) Compute distance-squared matrix D defined by
Dij = ‖xi − xj‖22.

(ii) Solve (k-means sdp), resulting in optimizer X.

(iii) Cluster the columns of the denoised data matrix
PX.

For step (iii), we find there tends to be k vectors that appear as columns

in PX with particularly high frequency, and so we are inclined to use these

as estimators for the k-mean-optimal centroids (see Figures 1.7 and 6.1, for

example). Running Lloyd’s algorithm for step (iii) also works well in prac-

tice. To obtain theoretical guarantees, we instead find the k columns of PX
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for which the unit balls of a certain radius centered at these points in Rm

contain the most columns of PX (see Theorem 6.5.1 for more details).

6.2 Performance guarantee for the k-means SDP

Our relax-and-round performance guarantee consists of three steps.

Step 1: Approximation. We adapt an approach used by Guédon and

Vershynin to provide approximation guarantees for a certain semidefinite

program under the stochastic block model for graph clustering [32].

Given the points xt,1, . . . ,xt,nt drawn independently from Dt, con-

sider the squared-distance matrix D and the corresponding minimizer XD

of the SDP (k-means sdp). We first construct a “reference" matrix R such

that the SDP (k-means sdp) is tight when D = R with optimizer XR. To this

end, take ∆ab := ‖γa − γb‖2, let XD denote the minimizer of (k-means sdp),

and let XR denote the minimizer of (k-means sdp) when D is replaced by

the reference matrix R defined as

(Rab)ij := ξ+∆
2
ab/2+ max

{
0,∆2ab/2+ 2〈ra,i − rb,j,γa − γb〉

}
(6.1)

where rt,i := xt,i−γt, and ξ>0 is a parameter to be chosen later. Indeed, this

choice of reference is quite technical, as an artifact of the entries in D being

statistically dependent. Despite its lack of beauty, our choice of reference

enjoys the following important property:

Lemma 6.2.1. Let 1a ∈ RN denote the indicator function for the indices i corre-

sponding to points xi drawn from the ath subgaussian. If γa 6= γb whenever a 6= b,
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then XR =
∑k
t=1(1/nt)1t1

>
t .

Proof. Let X be feasible for the the SDP (k-means sdp). Replacing D with

R in (k-means sdp), we may use the SDP constraints X1 = 1 and X > 0 to

obtain the bound

Tr(RX) =
N∑
i=1

N∑
j=1

RijXij >
N∑
i=1

N∑
j=1

ξXij =

N∑
i=1

ξ

N∑
j=1

Xij =Nξ= Tr(RXR)

Furthermore, since γa 6= γb whenever a 6= b, and since X > 0, we have that

equality occurs precisely for the X such that (Xab)ij equals zero whenever

a 6= b. The other constraints on X then force XR to have the claimed form

(i.e., XR is the unique minimizer).

Now that we know that XR is the planted solution, it remains to

demonstrate regularity in the sense that XD ≈ XR provided the subgaussian

centers are sufficiently separated. For this, we use the following scheme:

• If 〈R,XD〉 ≈ 〈R,XR〉 then ‖XD −XR‖2F is small (Lemma 6.3.1).

• If D ≈ R (in some specific sense) then 〈R,XD〉 ≈ 〈R,XR〉 (Lemmas 6.3.2

and 6.3.3).

• If the centers are separated by O(kσmax), then D≈ R.

What follows is the result of this analysis:

Theorem 6.2.2. Given x1, . . . ,xN points drawn independently from a mixture of

k subgaussian distributions in Rm. Say that the subgaussian a, for 1 6 a 6 k
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has center γa, maximum covariance σ2a, and na points have been drawn from

it. Let nmax := max16a6kna and similarly nmin and σmax. Let XD the mini-

mizer of (k-means sdp) for D such that Dij = ‖xi − xj‖2 and XR the minimizer

of (k-means sdp) forD= R the reference matrix defined in (6.1) (which coincides

with the planted clusters as a consequence of Lemma 6.2.1). Fix ε,η > 0. There

exist universal constants C,c1,c2,c3 such that if

α= nmax/nmin . k.m and N>max{c1m,c2 log(2/η), log(c3/η)},

then ‖XD −XR‖2F 6 ε with probability > 1− 2η provided

∆2min >
C

ε
k2ασ2max

where ∆min = mina6=b ‖γa − γb‖2 is the minimal cluster center separation.

See Section 6.3 for the proof. Note that if we remove the assumption

α. k.m, we obtain the result ∆2min > C
ε (min{k,m}+α)kασ2max.

Step 2: Denoising. Suppose we solve the SDP (k-means sdp) for

an instance of the subgaussian mixture model where ∆min is sufficiently

large. Then Theorem 6.2.2 ensures that the solutionXD is close to the ground

truth. At this point, it remains to convert XD into an estimate for the centers

{γt}t∈[k]. Let P denote the m×N matrix whose (a, i)th column is xa,i. Then

PXR is an m ×N matrix whose (a, i)th column is γ̃a, the centroid of the

ath cluster, which converges to γa as N→∞, (and does not change when i

varies, for a fixed a), and so one might expect PXD to have its columns be
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close to the γt’s. In fact, we can interpret the columns of PXD as a denoised

version of the points (see Figure 1.7).

To illustrate this idea, assume the points {xa,i}i∈[n] come from N(γa,σ2Im)

in Rm for each a ∈ [k]. Then we have

E

[
1

N

k∑
a=1

n∑
i=1

‖xa,i − γa‖22
]
=mσ2. (6.2)

Letting ca,i denote the (a, i)th column of PXD (i.e., the ith estimate of

γa), in Section 6.4 we obtain the following denoising result:

Corollary 6.2.3. If kσ. ∆min 6 ∆max . Kσ, then

1

N

k∑
a=1

n∑
i=1

‖ca,i − γ̃a‖22 . K2σ2

with high probability as n→∞.

Note that Corollary 6.2.3 guarantees denoising in the regime K�
√
m. This is a corollary of a more technical result (Theorem 6.4.1), which

guarantees denoising for certain configurations of subgaussians (e.g., when

the γt’s are vertices of a regular simplex) in the regime k�m.

At this point, we comment that one might expect this level of denois-

ing from principal component analysis (PCA) when the mixture of subgaus-

sians is sufficiently nice. To see this, suppose we have spherical Gaussians

of equal entrywise variance σ2 centered at vertices of a regular simplex.

Then in the large-sample limit, we expect PCA to approach the (k − 1)-

dimensional affine subspace that contains the k centers. Projecting onto this
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affine subspace will not change the variance of any Gaussian in any of the

principal components, and so one expects the mean squared deviation of

the projected points from their respective Gaussian centers to be (k− 1)σ2.

By contrast, we find that in practice, the SDP denoises substantially

more than PCA does. For example, Figures 1.7 and 6.1 illustrate cases in

which PCA would not change the data, since the data already lies in (k− 1)-

dimensional space, and yet the SDP considerably enhances the signal. In

fact, we observe empirically that the matrix XD has low rank and that PXD

has repeated columns. This doesn’t come as a complete surprise, consid-

ering SDP optimizers are known to exhibit low rank [58, 11, 55]. Still, we

observe that the optimizer tends to have rank O(k) when clustering points

from the mixture model. This is not predicted by existing bounds, and we

did not leverage this feature in our analysis, though it certainly warrants

further investigation.

Step 3: Rounding. In Section 6.5, we present a rounding scheme that

provides a clustering of the original data from the denoised results of the

SDP (Theorem 6.5.1). In general, the cost of rounding is a factor of k in the

average squared deviation of our estimates. Under the same hypothesis as

Corollary 6.2.3, we have that there exists a permutation π on {1, . . . ,k} such

that
1

k

k∑
i=1

‖vi − γ̃π(i)‖22 . kK2σ2, (6.3)

where vi is what our algorithm chooses as the ith center estimate. Much like

the denoising portion, we also have a more technical result that allows one
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to replace the right-hand side of (6.3) with k2σ2 for sufficiently nice config-

urations of subgaussians. As such, we can estimate Gaussian centers with

mean squared error O(k2σ2) provided the centers have pairwise distance

Ω(kσ). In the next section, we indicate that model order–dependence can-

not be completely removed when using k-means to estimate the centers.

Before concluding this section, we want to clarify the nature of our

approximation guarantee (6.3). Since centroids correspond to a partition of

Euclidean space, our guarantee says something about how “close” our k-

means partition is to the “true” partition. By contrast, the usual approxima-

tion guarantees for relax-and-round algorithms compare values of the ob-

jective function (e.g., the k-means value of the algorithm’s output is within

a factor of 2 of minimum). Also, the latter sort of optimal value–based ap-

proximation guarantee cannot be used to produce the sort of optimizer-

based guarantee we want. To illustrate this, imagine a relax-and-round al-

gorithm for k-means that produces a near-optimal partition with k = 2 for

data coming from a single spherical Gaussian. We expect every subspace

of co-dimension 1 to separate the data into a near-optimal partition, but the

partitions are very different from each other when the dimension m > 2,

and so a guarantee of the form (6.3) will not hold.

6.3 Proof of Theorem 6.2.2

By the following lemma, it suffices to bound Tr(R(XD −XR)):
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Lemma 6.3.1. ‖XD −XR‖2F 6
5

nmin∆
2
min

Tr(R(XD −XR)).

Proof. First, by Lemma 6.2.1, we have ‖XR‖2F = k. We also claim that ‖XD‖2F 6

k. To see this, first note that XD1= 1 and XD > 0, and so the ith entry of XDv

can be interpreted as a convex combination of the entries of v. Let v be an

eigenvector of XD with eigenvalue µ, and let i index the largest entry of

v (this entry is positive without loss of generality). Then µvi = (XDv)i 6

vi, implying that µ 6 1. Since the eigenvalues of XD lie in [0,1], we may

conclude that ‖XD‖2F 6 Tr(XD) = k. As such,

‖XD −XR‖2F = ‖XD‖2F + ‖XR‖2F − 2Tr(XDXR)

6 2k− 2Tr(XDXR)

= 2k+ 2Tr((XR −XD)XR) − 2‖XR‖2F

= 2Tr((XR −XD)XR). (6.4)

We will bound (6.4) in two different ways, and a convex combination of

these bounds will give the result. For both bounds, we let Ω denote the in-

dices in the diagonal blocks, and Ωc the indices in the off-diagonal blocks,

and Ωt ⊂ Ω denote the indices in the diagonal block for the cluster t. In

particular, AΩ denotes the matrix that equals A on the diagonal blocks

and is zero on the off-diagonal blocks. For the first bound, we use that

RΩ = ξ(11>)Ω, and that (XR − XD)Ω(11T )Ω has non-negative entries (since

both XR and XD have non-negative entries, XR1=XD1= 1, and XR = (XR)Ω).
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Recalling that RΩ = ξ, we have

2Tr((XR −XD)XR) =
k∑
t=1

2Tr
(
(XR −XD)(11

>)Ωt
1

nt

)
>

2

nmax
Tr
(
(XR −XD)(11

>)Ω

)
=−

2

ξnmax
Tr((XD −XR)RΩ) (6.5)

For the second bound, we first write

nminXR = 11
> − (11>)Ωc −

k∑
t=1

(
1−

nmin

nt

)
(11>)Ωt .

Since XR1= 1= XD1, we then have

2Tr((XR −XD)XR)

=
2

nmin
Tr

(
(XD −XR)

(
(11>)Ωc +

k∑
t=1

(
1−

nmin

nt

)
(11>)Ωt − 11

>

))

=
2

nmin
Tr

(
(XD −XR)

(
(11>)Ωc +

k∑
t=1

(
1−

nmin

nt

)
(11>)Ωt

))

6
2

nmin
Tr((XD −XR)(11

>)Ωc)

=
2

nmin
Tr(XD(11>)Ωc),

where the last and second-to-last steps use that (XR)Ωc = 0. Next, XD > 0

and RΩc > (ξ+∆2min/2)(11
>)Ωc , and so we may continue:

2Tr((XR −XD)XR)6
2

nmin(ξ+∆
2
min/2)

Tr(XDRΩc)

=
2

nmin(ξ+∆
2
min/2)

Tr((XD −XR)RΩc), (6.6)
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where again, the last step uses the fact that (XR)Ωc = 0. At this point, we

have bounds of the form x > ay1 with a < 0 and x 6 by2 with b > 0 (ex-

plicitly, (6.5) and (6.6)), and we seek a bound of the form x6 c(y1 + y2). As

such, we take the convex combination for a,b such that a−1/(a−1+b−1)< 0

and b−1/(a−1 + b−1)> 0

x6
a−1

a−1 + b−1
ay1 +

b−1

a−1 + b−1
by2 =

1

a−1 + b−1
(y1 + y2).

Taking a = −2/(ξnmax) and b = 2/(nmin(ξ+∆
2
min/2)) and combining with

(6.4) then gives

‖XD −XR‖2F 6 2Tr((XR −XD)XR)

6
(ξ
2
(nmin −nmax) +

nmin

4
∆2min

)−1
Tr((XD −XR)(RΩ + RΩc)),

choosing ξ > 0 sufficiently small and simplifying yields the result.

We will bound Tr(R(XD − XR)) in terms of the following: For each

N×N real symmetric matrixM, let F(M) denote the value of the following

program:

F(M) = maximum |Tr(MX)| (6.7)

subject to Tr(X) = k, X1= 1, X> 0, X� 0

Lemma 6.3.2. Let D̃ := P1⊥DP1⊥ and R̃ := P1⊥RP1⊥ . Then

Tr(R(XD −XR))6 2F(D̃− R̃).
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Proof. Since XD and XR are both feasible in (6.7), we have

−Tr(D̃XD) + Tr(R̃XD)6 |Tr((D̃− R̃)XD)|6 F(D̃− R̃),

Tr(D̃XR) − Tr(R̃XR)6 |Tr((D̃− R̃)XR)|6 F(D̃− R̃),

and adding followed by reverse triangle inequality gives

2F(D̃− R̃)>
(

Tr(D̃XR) − Tr(D̃XD)
)
+
(

Tr(R̃XD) − Tr(R̃XR)
)

. (6.8)

WriteX
D̃
:=P1⊥XDP1⊥ . Note thatXD1=(XD)

T1 impliesXD=X
D̃
+(1/N)11>,

and so

Tr(D̃XD) = Tr(DX
D̃
) = Tr

(
D
(
XD − (1/N)11>

))
= Tr(DXD) +

1

N
1>D1.

Similarly, Tr(D̃XR) = Tr(DXR) + 1
N1
>D1, and so

Tr(D̃XR) − Tr(D̃XD) = Tr(DXR) − Tr(DXD)> 0,

where the last step follows from the optimality of XD. Similarly, Tr(R̃XD) −

Tr(R̃XR) = Tr(R(XD −XR)), and so (6.8) implies the result.

Now it suffices to bound F(D̃− R̃). For an n1×n2 matrix X, consider

the matrix norm

‖X‖1,∞ :=

n1∑
i=1

max
16j6n2

|Xi,j|=

n1∑
i=1

‖Xi,.‖∞.

The following lemma will be useful:

Lemma 6.3.3. F(M)6 min {‖M‖1,∞, min{k,r}‖M‖2→2} where r= rank(M).
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Proof. The first bound follows from the classical version of Hölder’s in-

equality (recalling that Xi,j > 0 and X1= 1 by design):

|Tr(MX)|6
N∑
i=1

N∑
j=1

|Mi,jXi,j|6
N∑
i=1

‖Mi,.‖∞
 N∑
j=1

|Xi,j|

 =

N∑
i=1

‖Mi,.‖∞

The second bound is a consequence of Von Neumann’s trace inequal-

ity: if the singular values of X and M are respectively α1 > . . . > αN and

β1 > . . .> βN then

|Tr(MX)|6
N∑
i=1

αiβi

Since X is feasible in (6.7) we have α1 6 1 and
∑N
i=1αi6 k. Using that

rank(M) = rwe get

|Tr(MX)|6
k∑
i=1

βi 6 min{k,r}‖M‖2→2

Proof of Theorem 6.2.2. Write xt,i = rt,i + γt. Then

(Dab)ij = ‖xa,i − xb,j‖22

= ‖(ra,i + γa) − (rb,j + γb)‖22

= ‖ra,i − rb,j‖22 + 2〈ra,i − rb,j,γa − γb〉+ ‖γa − γb‖22.

Furthermore,

‖ra,i − rb,j‖22 = ‖ra,i‖22 − 2〈ra,i,rb,j〉+ ‖rb,j‖22 = ((µ1> +G>G+ 1µ>)ab)ij,
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where G is the matrix whose (a, i)th column is ra,i, and µ is the column

vector whose (a, i)th entry is ‖ra,i‖22. Recall that

(Rab)ij = ξ+∆
2
ab/2+ max

{
0,∆2ab/2+ 2〈ra,i − rb,j,γa − γb〉

}
.

Then P1⊥(D− R)P1⊥ = P1⊥G
>GP1⊥ + P1⊥FP1⊥ where

(Fab)ij=

{
∆2ab/2+ 2〈ra,i − rb,j,γa − γb〉 if 2〈ra,i − rb,j,γa − γb〉6−∆2ab/2

0 otherwise.

Considering Lemma 6.3.3 and that rank(G>G)6m we will bound

F(M)6 min{k,m}‖P1⊥G
>GP1⊥‖2→2 +

1

nmin
‖P1⊥FP1⊥‖1,∞. (6.9)

For the first term we observe ‖P1⊥G>GP1⊥‖2→2 6 ‖G>G‖2→2 = ‖G>‖22→2.

Note that if the rows X(t)
i , i = 1, . . .nt of G> come from a distribution with

second moment matrix Σt, then X(t)
i has the same distribution as Σ1/2t g,

where g is an isotropic random vector. Then ‖G>‖ 6 σmax‖G̃>‖ where the

rows of G̃> are isotropic random vectors.

By Theorem 5.39 in [64], we have that there exist c1 and c2 constants

depending only on the subgaussian norm of the rows of G such that with

probability > 1− η:

‖G>‖2→2 6 σmax

(√
N+ c1

√
m+

√
c2 log(2/η)

)
.

Note that by Corollary 3.35, when the rows of G> are Gaussian ran-

dom vectors we have the result for c1 = 1 and c2 = 2.

For bounding the second term in (6.9), the triangle inequality gives

‖P1⊥FP1⊥‖1,∞6 4‖F‖1,∞. In order to get a handle on ‖F‖1,∞ we first compute
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the expected value of its entries using that |2〈ra,i − rb,j,γa − γb〉| obeys a

folded subgaussian distribution, coming from a subgaussian with variance

at most 8σ2max∆
2
ab:

E|(Fab)ij|

6
(
∆2ab/2+ E|2〈ra,i − rb,j,γa − γb〉|

)
P
(
2〈ra,i − rb,j,γa − γb〉<−∆2ab/2

)
6

(
∆2ab
2

+
4σmax∆ab√

π

)
exp

(
−

∆2ab
64σ2max

)

6 ∆2ab exp

(
−

∆2ab
64σ2max

)
assuming ∆2min > 16kσ

2
max, k> 2

6 ∆2ab
642σ4max

∆4ab
using e−x 6

1

x2
for x > 0.

6−
256σ2max
k

using again ∆2min > 16kσ
2
max, k> 2

=O(σ2max/k)

Now we can write F = 2(L − L>) where La,i := (Lab)ij ∈ {〈ra,i,γa − γb〉,0}

has independent rows, and E|(Lab)ij|6 E|(Fab)ij|=O(σ
2
max/k). We can then

bound

‖F‖1,∞ 6 4‖L‖1,∞ 6 ‖Lsmall‖1,1

where Lsmall ∈RN×k is a submatrix of distinct columns.

Then we have a high-probability estimate:

P(‖Lsmall‖1,1 > t)6 P

(
2k

k∑
a=1

na∑
i=1

|La,i|> t

)

6 P

(
k∑
a=1

na∑
i=1

(|La,i|− E|La,i|)>
t

2k
− c3σ

2
maxnmax

)
.
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Using that La,i are independent subgaussian random variables, we

know there exist constants c4,c5 > 0 such that

P

(
k∑
a=1

na∑
i=1

(|La,i|− E|La,i|)> u

)
6 c4 exp

(
−c5

u2

N

)
.

So, choosing t= 2c3knmaxσ
2
max +

√
N
c5

log c4η , we get that with proba-

bility at least 1− η

‖P1⊥FP1⊥‖1,∞ 6 8c3knmaxσ
2
max + 4

√
N

c5
log

c4
η

Putting everything together, we get that there exist constantsC1,C2,C3

such that with probability at least 1− 2η

‖XD −XR‖2F 6
5

nmin∆
2
min

Tr(R(XD −XR))

6
10

nmin∆
2
min

F(D̃− R̃)

6 C1
min{k,m}

(√
N+ c1

√
m+

√
c2 log(2/η)

)2
σ2max

nmin∆
2
min

+C2
knmaxσ

2
max

nmin∆
2
min

+C3

√
N logc4/η
nmin∆

2
min

.

If additionally we require N>max{c1m,c2 log(2/η), log(c4/η)}, we get

‖XD −XR‖2F 6 C
kασ2max(α+ min{k,m})

∆2min
.

Rearranging gives the result.
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6.4 Denoising

In the special case where each Gaussian is spherical with the same

entrywise variance σ2 and the same number n of samples, Theorem 6.2.2

says:

‖XD −XR‖2F .
k2σ2

∆2min

with high probability as n→∞.

Let P denote the m×N matrix whose (a, i)th column is xa,i. Then

PXR is an m×N matrix whose (a, i)th column is γ̃a, a good estimate of γa,

and so one might expect PXD to have its columns be close to the γ̃a’s. This

is precisely what the following theorem gives:

Theorem 6.4.1. Suppose σ . ∆min/
√
k. Let P denote the m×N matrix whose

(a, i)th column is xa,i, and let ca,i denote the (a, i)th column of PXD. Then

1

N

k∑
a=1

n∑
i=1

‖ca,i − γ̃a‖22 .
‖Γ‖22→2
∆2min

· kσ2

with high probability as n→∞. Here, the ath column of Γ is γ̃a − 1
k

∑k
b=1 γ̃b.

The proof can be found at the end of this section. For comparison,

E

[
1

N

k∑
a=1

n∑
i=1

‖xa,i − γa‖22
]
=mσ2, (6.10)

meaning the ca,i’s serve as “denoised” versions of the xa,i’s provided ‖Γ‖2→2

is not too large compared to ∆min. The following lemma investigates this

provision:
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Lemma 6.4.2. For every choice of {γ̃a}ka=1, we have

‖Γ‖22→2
∆2min

>
1

2
,

with equality if {γ̃a}ka=1 is a simplex. More generally, if the following are satisfied

simultaneously:

(i)
∑k
a=1 γ̃a = 0,

(ii) ‖γ̃a‖2 � 1 for every a ∈ {1, . . . ,k}, and

(iii) |〈γ̃a, γ̃b〉|. 1/k for every a,b ∈ {1, . . . ,k} with a 6= b,

then
‖Γ‖22→2
∆2min

. 1.

See the end of the section for the proof. Plugging these estimates

for ‖Γ‖22→2/∆2min into Theorem 6.4.1 shows that the ca,i’s in this case exhibit

denoising to an extent that them in (6.10) can be replaced with k:

1

N

k∑
a=1

n∑
i=1

‖ca,i − γ̃a‖22 . kσ2.

For more general choices of {γ̃a}ka=1, one may attempt to estimate ‖Γ‖2→2 in

terms of ∆max, but this comes with a bit of loss in the denoising estimate:

Corollary 6.4.3. If kσ. ∆min 6 ∆max . Kσ, then

1

N

k∑
a=1

n∑
i=1

‖ca,i − γ̃a‖22 . K2σ2

with high probability as n→∞.
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Indeed, this doesn’t guarantee denoising unless k . K 6
√
m. To

prove this corollary, apply the following string of inequalities to Theorem 6.4.1:

‖Γ‖22→2 6 ‖Γ‖2F 6 k∆2max . kK
2σ2,

where the second inequality uses the following lemma:

Lemma 6.4.4. If
∑k
a=1 γ̃a = 0, then ‖γ̃a‖2 6 ∆max for every a.

Proof. Fix a. Then

min
b 6=a

〈
γ̃b,

γ̃a

‖γ̃a‖2

〉
6

1

k− 1

k∑
b=1
b 6=a

〈
γ̃b,

γ̃a

‖γ̃a‖2

〉

=
1

k− 1

〈 k∑
b=1

γ̃b − γ̃a,
γ̃a

‖γ̃a‖2

〉
=−

1

k− 1
‖γ̃a‖2.

Let b(a) denote the minimizer. Then Cauchy–Schwarz gives

∆max > ‖γ̃a − γ̃b(a)‖2 >
〈
γ̃a − γ̃b(a),

γ̃a

‖γ̃a‖2

〉
> ‖γ̃a‖2 + 1

k−1‖γ̃a‖2 > ‖γ̃a‖2.

Proof of Theorem 6.4.1. Without loss of generality, we have
∑k
a=1 γ̃a= 0. Write

k∑
a=1

n∑
i=1

‖ca,i − γ̃a‖22 = ‖P(XD −XR)‖2F 6 ‖P‖22→2‖XD −XR‖2F. (6.11)

Decompose P= Γ ⊗ 1>+G, where 1 is n-dimensional andG has i.i.d. entries

from N(0,σ2). Observe that

‖Γ ⊗ 1>‖22→2 = ‖(Γ ⊗ 1>)(Γ ⊗ 1>)>‖2→2 = ‖nΓΓ>‖2→2 = n‖Γ‖22→2. (6.12)
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Also, Corollary 5.35 in [64] gives that

‖G‖2→2 . (
√
N+
√
m)σ.

√
Nσ (6.13)

with probability > 1 − e−Ωm(N). The result then follows from estimating

‖P‖2→2 with (6.12) and (6.13) by triangle inequality, plugging into (6.11),

and then applying Theorem 6.2.2.

Proof of Lemma 6.4.2. Since ‖Γx‖2 6 ‖Γ‖2→2‖x‖2 for every x, we have that

‖Γ‖22→2 >
‖γ̃a − γ̃b‖22

2

for every a and b, and so

‖Γ‖22→2
∆2min

>
1

2
· ∆

2
max

∆2min
>
1

2
.

For the second part, let {γ̃a}
k
a=1 be a simplex. Without loss of general-

ity, {γ̃a}ka=1 is centered at the origin, each point having unit 2-norm. Then

〈γ̃1, γ̃2〉=−1/(k− 1), and so

∆2min = ‖γ̃1 − γ̃2‖22 = ‖γ̃1‖22 + ‖γ̃2‖22 − 2〈γ̃1, γ̃2〉=
2k

k− 1
.

Next, we write

Γ>Γ =
k

k− 1
I−

1

k− 1
11>,

and conclude that ‖Γ‖22→2 = ‖Γ>Γ‖2→2 = k/(k − 1). Combining with our

expression for ∆2min then gives the result. For the last part, pick a and b

such that ∆min = ‖γ̃a − γ̃b‖2. Then

∆2min = ‖γ̃a‖22 + ‖γ̃b‖22 − 2〈γ̃a, γ̃b〉& 2− 2/k.
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Also, Gershgorin implies

‖Γ‖22→2 = ‖Γ>Γ‖2→2 . 1+ (k− 1)/k,

and so combining these estimates gives the result.

6.5 Rounding

Theorem 6.5.1. Take ε < ∆min/8, suppose

#
{
(a, i) : ‖ca,i − γ̃a‖2 > ε

}
<
n

2
,

and consider the graph G of vertices {ca,i}
n
i=1,

k
a=1 such that ca,i↔ cb,j if ‖ca,i −

cb,j‖2 6 2ε. For each i= 1, . . . ,k, select the vertex vi of maximum degree (breaking

ties arbitrarily) and update G by removing every vertex w such that ‖w− vi‖2 6

4ε. Then there exists a permutation π on {1, . . . ,k} such that

‖vi − γ̃π(i)‖2 6 3ε

for every i ∈ {1, . . . ,k}.

Proof. LetB(x,r) denote the closed 2-ball of radius r centered at x. For each i,

we will determine π(i) at the conclusion of iteration i. Denote R1 := {1, . . . ,k}

and Ri+1 := Ri \ {π(i)} for each i = 2, . . . ,k− 1. We claim that the following

hold at the beginning of each iteration i:

(i) < n/2 vertices lie outside
⋃
a∈Ri

B(γ̃a,ε),
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(ii) > n/2 vertices lie inside B(vi,2ε), and

(iii) there exists a unique a ∈ Ri such that ‖vi − γ̃a‖2 6 3ε.

First, we show that for each i, (i) and (ii) together imply (iii). Indeed,

there are enough vertices inB(vi,2ε) that one of them must reside inB(γ̃a,ε)

for some a ∈ Ri. Furthermore, this a is unique since ε < ∆min/6. By triangle

inequality, we have ‖vi − γ̃a‖2 6 3ε, and so we put π(i) := a.

We now prove (i) and (ii) by induction. When i = 1, we have (i) by

assumption. For (ii), note that each B(γ̃a,ε) contains > n/2 of the vertices,

and by triangle inequality, each has degree > n/2 − 1 in G. As such, the

vertex v1 of maximum degree will have degree > n/2− 1, thereby implying

(ii).

Now suppose (i), (ii) and (iii) all hold for iteration i < k. By trian-

gle inequality, (iii) implies B(γ̃π(i),ε) ⊆ B(vi,4ε). As such, the ith iteration

removes all vertices in B(γ̃π(i),ε) so that (i) continues to hold for iteration

i+ 1. Next, ε < ∆min/8 and (iii) together imply that the removal of vertices

in B(vi,4ε) preserves the vertices in B(γ̃a,ε) for every a ∈ Ri+1, and their

degrees are still > n/2− 1 by the same triangle argument as before. Thus,

(ii) holds for iteration i+ 1.

Corollary 6.5.2. Suppose k .m, and denote S := ‖Γ‖2→2/∆min. Pick ε � Skσ.

Perform the rounding scheme of Theorem 6.5.1 to columns of PXD. Then with high

probability, {vi}ki=1 satisfies

‖vi − γ̃π(i)‖2 . Skσ
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for some permutation π, provided σ. ∆min/(Sk).

By Lemma 6.4.2, we have S. 1 in the best-case scenario. In this case,

our rounding scheme works in the regime σ.∆min/k. (Note that denoising

is guaranteed in the regime σ. ∆min/
√
k). In general, the cost of rounding

is a factor of k in the average squared deviation of our estimates:

1

N

k∑
a=1

n∑
i=1

‖ca,i − γ̃a‖22 . S2kσ2, whereas
1

k

k∑
i=1

‖vi − γ̃π(i)‖22 . S2k2σ2.

On the other hand, we are not told which of the points in {ca,i}
n
i=1,

k
a=1 cor-

respond to any given γ̃a, whereas in rounding, we know that each vi corre-

sponds to a distinct γ̃a.

Proof of Corollary 6.5.2. Draw (a, i) uniformly from {1, . . . ,k}× {1, . . . ,n} and

take X to be the random variable ‖ca,i − γ̃a‖22. Then Markov’s inequality

and Theorem 6.4.1 together give

#
{
(a, i) : ‖ca,i − γ̃a‖2 > ε

}
=N ·P(X > ε2)

6
N

ε2
· 1
N

k∑
a=1

n∑
i=1

‖ca,i − γ̃a‖22 .
N

ε2
· S2kσ2 . n

2
.

For Theorem 6.5.1 to apply, it suffices to ensure ε < ∆min/8, which follows

from σ. ∆min/(Sk).

6.5.1 Numerical example: Clustering the MNIST dataset

In this section, we apply our clustering algorithm to the NMIST hand-

written digits dataset [40]. This dataset consists of 70,000 different 28× 28
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grayscale images, reshaped as 784× 1 vectors; 55,000 of them are consid-

ered training set, 10,000 are test set, and the remaining 5,000 are validation

set.

Clustering the raw data gives poor results (due to 4’s and 9’s being

similar, for example), so we first learn meaningful features, and then cluster

the data in feature space. To simplify feature extraction, we used the first

example from the TensorFlow tutorial [1]. This consists of a one-layer neural

network y(x) = σ(Wx+ b), where σ is the softmax function,W is a 784× 10

matrix to learn, and b is a 10× 1 vector to learn. As the tutorial shows, the

neural network is trained for 1,000 iterations, each iteration using batches

of 100 random points from the training set.

Training the neural network amounts to finding W and b that fit the

training set well. After selecting these parameters, we run the trained neu-

ral network on the first 1,000 elements of the test set, obtaining {y(xi)}
1000
i=1 ,

where each y(xi) is a 10× 1 vector representing the probabilities of being

each digit. Since y(xi) is a probability vector, its entries sum to 1, and so the

feature space is actually 9-dimensional.

For this experiment, we cluster {y(xi)}
1000
i=1 with two different algo-

rithms: (i) MATLAB’s built-in implementation of k-means++, and (ii) our

relax-and-round algorithm based on the k-means semidefinite relaxation (k-means sdp).

(The results of the latter alternative are illustrated in Figure 6.1.)

Since each run of k-means++ uses a random initialization that im-
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pacts the partition, we ran this algorithm 100 times. In fact, the k-means

value of the output varied quite a bit: the all-time low was 39.1371, the all-

time high was 280.4174, and the median was 108.2358; the all-time low was

reached in 34 out of the 100 trials. Since our relax-and-round alternative

has no randomness, the outcome is deterministic, and its k-means value

was 39.1371, i.e., identical to the all-time low from k-means++. By compar-

ison, the k-means value of the planted solution (i.e., clustering according to

the hidden digit label) was 103.5430, and the value of the SDP (which serves

as a lower bound on the optimal k-means value) was 38.5891. As such, not

only did our relax-and-round alternative produce the best clustering that

k-means++ could find, it also provided a certificate that no clustering has a

k-means value that is 1.5% better.

Recalling the nature of our approximation guarantees, we also want

to know well the relax-and-round algorithm’s clustering captures the ground

truth. To evaluate this, we determined a labeling of the clusters for which

the resulting classification exhibited a minimal misclassification rate. (This

amounts to minimizing a linear objective over all permutation matrices,

which can be relaxed to a generically tight linear program over doubly

stochastic matrices.) For k-means++, the all-time low misclassification rate

was 0.0971 (again, accomplished by 34 of the 100 trials), the all-time high

was 0.4070, and the median was 0.2083. As one might expect, the relax-and-

round output had a misclassification rate of 0.0971.
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(a) (b) (c)

Figure 6.1: Clustering MNIST with k-means SDP.
(a) After applying TensorFlow [1] to learn a 9-dimensional feature space of MNIST
digits [40], determine the features of the first 1,000 images in the MNIST test set,
compute the 1000× 1000 matrix D of squared distances in feature space, and then
solve the k-means semidefinite relaxation (k-means sdp) using SDPNAL+v0.3 [71].
(The computation takes about 6 minutes on a standard MacBook Air laptop.) Con-
vert the SDP-optimizer X to a grayscale image such that white pixels denote zero
entries. By inspection, this matrix is not exactly of the form (1.8), but it looks close,
and it certainly appears to have low rank. (b) Letting P denote the 9× 1000 matrix
whose columns are the feature vectors to cluster, compute the denoised data PX
and identify the 10most popular locations in R9 (denoted by red circles) among the
columns of PX (denoted by black dots). For the plot, we project the 9-dimensional
data onto a random 2-dimensional subspace. (c) The 10 most popular locations
form our estimates for the centers of digits in feature space. We plot these locations
relative to the original data, projected in the same 2-dimensional subspace as (b).
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Chapter 7

Polynomial-time lower bound of NP-hard
functions

We begin by recalling the definition of the Gromov-Hausdorff dis-

tance introduced in Section 1.2; for this, we start with the Hausdorff dis-

tance. Let (Z,d) a compact metric space and C(Z) the collection of all com-

pact sets in Z. If A,B ∈ C(Z), the Hausdorff distance between A and B can

be expressed as

dZH(A,B) = inf
R∈R(A,B)

sup
(a,b)∈R

d(a,b)

where R(A,B) is the set of correspondences in R⊂A×B such that every el-

ement a∈A is related to at least one element in B and every element b∈B is

related at least one element in A. For many theoretical and practical appli-

cations it is common to relax such distance to the Wasserstein distance [65].

In that setting, one endows C(Z) with a measure,

Cw(Z) = {(A,µA) : A ∈ C(Z), supp(µA) =A},

This chapter is based on the article:
Soledad Villar, Afonso S. Bandeira, Andrew Blumberg, Rachel Ward. A polynomial-time
relaxation of the Gromov-Hausdorff distance, 2016 (submitted).
The author was the main contributor to the entire article.
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and relaxes the set of correspondences R(A,B) to the set of transportation

plans

M(µA,µB) = {µ : µ(A0 ×B) = µA(A0), µ(A×B0) = µB(B0),

for all Borel sets A0 ⊂A, B0 ⊂ B}.

Then, for A,B ∈ Cw(Z), the Wasserstein distance is defined for 16 p6∞ as

dZW,p(A,B) = inf
µ∈M(µA,µB)

(∫
A×B

dp(a,b)dµ(a,b)
)1/p

for 16 p <∞
dZW,∞(A,B) = inf

µ∈M(µA,µB)
sup

(a,b)∈supp(µ)
d(a,b).

For A,B finite sets this distance can be efficiently computed by a linear pro-

gram.

The Hausdorff distance suffices to compare metric spaces embedded

in a common ambient metric space; Gromov’s idea to extend this to com-

pare arbitrary metric spaces is simply to consider the infimum over all iso-

metric embeddings into a common metric space [31]. Specifically, if X,Y are

compact metric spaces, the Gromov-Hausdorff distance is defined as

dGH(X,Y) = inf
Z,f,g

dZH(f(X),g(Y))

where f : X→ Z and g : Y → Z are isometric embeddings into Z, a metric

space. Unfortunately, it is an NP-hard problem to compute this distance.

Since the Hausdorff distance becomes computationally tractable when

relaxed to the Wasserstein distance, one might consider a transport-based

relaxation of the Gromov-Hausdorff distance that works in the setting of
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metric measure spaces. In a series of articles [47, 46, 48] Mémoli considers

different equivalent expressions for the Gromov-Hausdorff distance, and

by relaxing them and considering them in the measure metric space set-

ting, he obtains different gromovizations of the Wasserstein distance, called

Gromov-Wasserstein distances. A particularly natural relaxation is based

on the observation that the Gromov-Hausdorff distance can be expressed

as:

dGH(X,Y) =
1

2
inf

R∈R(X,Y)
sup
x,x ′∈X
y,y ′∈Y

(x,y),(x ′,y ′)∈R

ΓX,Y(x,y,x ′,y ′) (7.1)

where ΓX,Y(x,y,x ′,y ′) = |dX(x,x ′) − dY(y,y ′)|. For 1 6 p 6∞ Mémoli then

defines Gromov-Wasserstein relaxations of the Gromov-Hausdorff distance

as

Dp(X,Y)=
1

2
inf

µ∈M(µX,µY)

(∫
X×Y

∫
X×Y

(
ΓX,Y(x,y,x ′,y ′)

)p
µ(dx× dy)µ(dx ′ × dy ′)

)1/p
(7.2)

D∞(X,Y) =
1

2
inf

µ∈M(µX,µY)
sup
x,x ′∈X
y,y ′∈Y

(x,y),(x ′,y ′)∈supp(µ)

ΓX,Y(x,y,x ′,y ′) (7.3)

In his work, Mémoli studies topological properties of the different

distance relaxations and how they compare with each other and with the

Gromov-Hausdorff distance. He also proposes an algorithm to approxi-

mate Dp, but due the non-convexity of its objective function, no perfor-

mance guarantees are provided. Recent work [57] has provided efficient

heuristic algorithms based on optimal transportation to approximate the
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Gromov-Wasserstein distance for alignment applications. An efficient spec-

tral interpretation of the Gromov-Hausdorff distance has been recently pro-

posed for matching surfaces [5] as well.

Remark 7.0.1. Gromov considered another metric on the set of metric mea-

sure spaces defined in terms of the convergence of all distance matrix dis-

tributions (i.e., the distributions induced by taking the pushforward of the

measure to a collection of n points and applying the metric to all pairs).

It turns out that this metric is closely related to the Gromov-Wasserstein

distance [59, 3.7]. Moreover, these metrics induce the same notion of con-

vergence as arises in the theory of dense graph sequences and graphons.

Specifically, we can regard a graph as a metric measure space; the underly-

ing metric space has points the set of vertices and pairwise distances 12 if the

points are connected and 1 otherwise, and the measure assigns equal mass

to each point. (See [26] for further discussion of this point).

7.1 Semidefinite programming relaxations of
Gromov-Wasserstein and Gromov-Hausdorff distances

Consider the setting where X and Y are finite metric spaces (or metric

measure spaces), say X = {x1, . . . ,xn} and Y = {y1, . . . ,ym} (with measures

µX(xi) = νi and µY(yj) = λj). Let us abbreviate ΓX,Y(xi,yj,xi ′ ,yj ′) as Γij,i ′j ′ for

i, i ′ = 1, . . . ,n and j, j ′ = 1, . . . ,m. The formulation of the Gromov-Hausdorff

distance given in equation (7.1) can be expressed as a quadratic assignment
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(Remark 3 in [46]):

dGH(X,Y) =
1

2
min
µ

max
ij,i ′j ′

Γij,i ′j ′µijµi ′j ′ (7.4)

subject to µij ∈ {0,1},
m∑
j=1

µij > 1,
n∑
i=1

µij > 1

and the expressions (7.2) and (7.3) can be written as (7.5) and (7.6) respec-

tively:

Dp(X,Y) =
1

2
min

µ∈Rn×m

 n∑
i,i ′=1

m∑
j,j ′=1

µijµi ′j ′Γ
p
ij,i ′j ′

1/p (7.5)

subject to 06 µij 6 1,
n∑
i=1

µij = λj,
m∑
j=1

µij = νi

D∞(X,Y) =
1

2
min

µ∈Rn×m
max
i,i ′,j,j ′

µijµi ′j ′ 6=0

Γij,i ′j ′ (7.6)

subject to 06 µij 6 1,
n∑
i=1

µij = λj,
m∑
j=1

µij = νi

In order to approach non-convex optimization problems like (7.4), (7.5)

or (7.6), one standard technique is to linearize the objective by lifting µijµi ′j ′

and µij to a symmetric variable Z ∈ Rnm+1×nm+1 whose entries entries are

indexed by pairs (ij, i ′j ′),(ij,nm + 1), (nm + 1, i ′j ′) and (nm + 1,nm + 1)

with i, i ′ = 1, . . .n and j, j ′ = 1, . . . ,m.

Z =

[
Ẑ z
z> 1

]
. (7.7)
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Then note that, for instance, the problems (7.5) and (7.6) are equiva-

lent to problems (7.8) and (7.9) respectively:

Dp(X,Y) =
1

2

(
min

Z
Trace(Γ (p)Ẑ)

)1/p
subject to Z ∈ S (7.8)

D∞(X,Y) =
1

2
min

Z
max

i,i ′,j,j ′ : Z 6=0
Γij,i ′j ′ subject to Z ∈ S (7.9)

where S= {Z∈Rnm+1×nm+1 :
∑
iZij,nm+1= λj,

∑
jZij,nm+1=νi, Z=Z>, Z>

0, rank(Z) = 1} and Γ (p) denotes the p-th power of the matrix Γ entrywise.

The constraint rank(Z) = 1 can be relaxed to the convex constraint

Z � 0 (which means Z is symmetric and positive semidefinite) and addi-

tional linear constraints satisfied by the rank 1 matrix can be added to make

the relaxation tighter.

Using this recipe we can construct the following family of semidef-

inite programming relaxations of the Gromov-Wasserstein and Gromov-

Hausdorff distances.

d̃A,p(X,Y) =
1

2

(
1

n2
min

Z
Trace(Γ (p)Ẑ)

)1/p
subject to Z ∈A (7.10)

d̃A,∞(X,Y) =
1

2
min

Z
max

i,j,i ′,j ′ : Z 6=0
Γij,i ′j ′ subject to Z ∈A (7.11)

where we can consider different convex sets A as relaxing to different dis-

tances.

a. For a relaxation of the Gromov-Hausdorff distance (or Gromov-Wasserstein

for uniform weights λj = νi = 1/max{n,m} for all j = 1, . . . ,m and
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i= 1, . . . ,n)2 consider

A= GH : = {Z ∈Rnm+1×nm+1 :
∑
i

Zij,nm+1 > 1,
∑
j

Zij,nm+1 > 1,∑
i,i ′

Zij,i ′j ′ > 1,
∑
j,j ′

Zij,i ′j ′ > 1, Ẑ1 = max{n,m}z, 06 Z 6 1, Z� 0}.

Relaxation (7.11) provides a lower bound for the Gromov-Hausdorff

distance, since every element of R(X,Y) induces, up to normalization,

a feasible Z. In fact, if the optimal solution of equation (7.1) corre-

sponds to R ∈ R(X,Y) such that (xi,yj),(xi,yj ′) ∈ R for some j 6= j ′, the

solution of equation (7.10) may split the mass in a way so Zij,nm+1 +

Zij ′,nm+1 = 1 instead of having Zij,nm+1 = Zij ′,nm+1 = 1.

b. If |X| = |Y| we may want to restrict the set of all correspondences be-

tween X and Y (where every element of X is related to at least one

element in Y and vice versa) to the set of all bijective correspondences.

In that case we can consider a tighter relaxation, that relaxes the regis-

tration problem and is similar to the one in [38].

A= Reg : = {Z ∈Rn2+1×n2+1 :
n∑
i=1

Zij,n2+1 = 1,
n∑
j=1

Zij,n2+1 = 1,

Zn2+1,n2+1 = 1,
n∑

i,i ′=1

Zij,i ′j ′ = 1,
n∑

j,j ′=1

Zij,i ′j ′ = 1, Zij,ij ′ = 0 if j 6= j ′,

Zij,ij ′ = 0 if i 6= i ′, Trace(Z) = n+ 1, Ẑ1 = nz, 06 Z 6 1, Z� 0}

2By appropriately choosing the right hand side of the equality constraints in GH one
can obtain a semidefinite relaxation of Gromov-Wasserstein distance for any weights.
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c. The registration relaxation can be extended to finite metric spaces with

different numbers of points. Let as before |X| = n and |Y| =m. First,

without loss of generality assume that n>m. Now consider the prob-

lem (7.1) where the set R(X,Y) is restricted to surjective functions X→

Y. Then relax the feasible set to the convex set:

A= Sur : = {Z ∈Rnm+1×nm+1 :

n∑
i=1

Zij,nm+1 > 1,
m∑
j=1

Zij,nm+1 = 1,

Znm+1,nm+1 = 1,
n∑

i,i ′=1

Zij,i ′j ′ > 1,
m∑

j,j ′=1

Zij,i ′j ′ = 1,

Zij,ij ′ = 0 if j 6= j ′, Trace(Z) = n+ 1, Ẑ1 = nz, 06 Z 6 1, Z� 0}

Note that the set of constraints assumes that i, i ′ = 1, . . .n, j, j ′ = 1, . . .m

and n >m and it is not symmetric with respect to i and j. Also note

that under this relaxation, there exist sets that dGH(X,Y) = 0 but the

relaxed distance (7.10) with A = Sur satisfies d̃Sur,p(X,Y) 6= 0 (and the

same phenomena occurs for A = Reg). For instance X = {x,x,y} and

Y = {x,y,y}. This is an artifact of only allowing surjective functions

instead of all possible relations in R(X,Y).

Remark 7.1.1. Even though the max objective in equation (7.11) is convex,

it is not smooth, which we observe to significantly hurt the performance of

the numerical implementations. This is one reason to consider the p-norm

approach to this relaxation and define the family of SDP relaxations (7.10)

for 16 p <∞.
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Remark 7.1.2. Note that linear constraints in the sets A are not linearly in-

dependent and the extra variable z is redundant. However, one can easily

choose alternative sets of constraints (even with fewer constraints or where

the extra constraint is not redundant) with the same objectives in mind: (i)

the relaxation is tight when the spaces are isometric (ii) the corresponding

objective value satisfies the triangle inequality when |X|= |Y|.

We are primarily interested in the semidefinite programming relax-

ations of the Gromov-Hausdorff distance for finite metric spaces, namely

d̃A,p, 16 p6∞ for A = GH,Reg,Sur. In figure 7.1, we extend a diagram of

Mémoli’s to situate the SDP relaxations we study in this thesis.

(C(Z),dZH) (Cw(Z),dZW,p)

(G,dGH) (Gw,Dp)

(G or Gw, d̃GH,p)

gromovization

relaxation

SDP relaxation

relaxation

gromovization

SDP relaxation

Figure 7.1: Diagram relating the different structures and distances
Here G is the collection of all compact metric spaces and Gw the collection of all met-
ric measure spaces. The horizontal arrows represent the relaxation on the notion of
correspondences. The gromovization arrows represent the process of getting rid of
the ambient space.

144



7.2 Topological properties of the relaxed distances

In this section, we prove the main theoretical results. We begin by

showing that the distances obtained by semidefinite relaxation are in fact

pseudometrics on suitable subsets of the set of isometry classes of finite

metric spaces; i.e., these distances satisfy all the axioms for a metric except

that there exist distinct finite metric spaces such that the relaxed distance

between them is 0. We then study various properties of the induced topol-

ogy, proving analogues of the standard results about the topology induced

on the set of isometry classes of compact metric spaces by the Gromov-

Hausdorff distance.

7.2.1 Pseudometrics

Let G<∞ the set of all finite metric spaces. First, we observe that d̃A,∞
is a pseudometric in G<∞. However, if the spaces X,Y,Z have different num-

bers of points we cannot expect the triangle inequality to hold for d̃A,p. That

is because the triangle inequality does not even hold for tight solutions of

equation (7.10) (i.e., rank 1 solutions, corresponding to elements of R(X,Y)).

This is an artifact of replacing the max with a sum.

In order to illustrate that fact we consider a simple example. Let

dGH,1 be the optimal of (7.10) for p = 1 and A the domain of (7.4) (i.e. the

solutions corresponding to elements of R(X,Y) ). Then consider X = {x,y},

Y = {x,x,y}, Z= {y}, and observe that triangle inequality is not satisfied since

dGH,1(X,Y) = 0, dGH,1(Y,Z) = 2d(x,y) and dGH,1(X,Z) = d(x,y).
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Nonetheless, if we consider the set of metric spaces with n points,

which we denote by Gn, we will show that d̃A,p for 1 6 p <∞ is a pseu-

dometric on Gn. The most interesting part of this verification is the trian-

gle inequality, which we prove in Theorem 7.2.1 below. In contrast to the

situation with the Gromov-Hausdorff distance, passing to isometry classes

of finite metric spaces does not suffice to produce an actual metric. Of

course, if X and Y are isometric spaces then d̃A,p(X,Y) = 0. By construc-

tion d̃A,p(·, ·)> 0 and the isometry between X and Y induces a feasible solu-

tion for equation (7.10) with objective value 0. However, there exists non-

isometric spacesX,Y such that d̃A,p(X,Y)= 0. Examples of that phenomenon

can be constructed by observing that the graph isomorphism problem can

be reduced to deciding whether the Gromov-Hausdorff distance is zero.

Given a graph G= (V ,E) one then constructs a metric space X(G) where

d(v,v ′) =
{

1 if (v,v ′) ∈ E
K� |V | otherwise.

(7.12)

Therefore, given two graphs G,G ′ we have that G,G ′ are isomorphic if

and only if dGH(X(G),X(G ′)) = 0. There exist explicit examples in the lit-

erature of graphs where any SDP relaxation on |V |2 × |V |2 matrices cannot

distinguish between two non-isomorphic graphs [53]. For such examples,

d̃A,p(X(G),X(G ′)) = 0 (see Figure 7.2).

Theorem 7.2.1. Consider d̃A,p and d̃A,∞ defined in equations (7.10) and (7.11)

respectively for A= GH,Reg,Sur. Then we have:

a. For X,Y,W ∈ Gn, and 16 p <∞, d̃A,p satisfies the triangle inequality.
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Figure 7.2: Two non-isometric metric spaces that have relaxed distance 0.
We consider 3XOR instances with 5 variables and 4 equations and we construct the
reduction from 3XOR to graph isomorphism from [53]. The left and middle figures
represent corresponding adjacency graphs obtained after the reduction from the
following system of equations in Z2:

x1 ⊕ x2 ⊕ x5 = b1
x1 ⊕ x2 ⊕ x5 = b2
x1 ⊕ x3 ⊕ x4 = b3
x2 ⊕ x3 ⊕ x4 = b4

, with


b1
b2
b3
b4

=


1

1

0

1

 (left), and


b1
b2
b3
b4

=


0

0

0

0

 (middle).

Each graph has 26 vertices. We construct finite metric spaces X and Y according
to (7.12) and we use SDPNAL+ [71] to compute the the relaxed distance, obtaining
d̃Reg,1(X,Y) = 0. The minimizer Z of (7.10) is rank 16. The figure in the right shows a
soft assignment between X and Y obtained from Z by computing Ẑ1 and rearranging
accordingly.
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b. For X,Y,W ∈ G<∞, d̃A,∞ satisfies the triangle inequality.

Proof. We begin by proving part (a). Note that it suffices to show that for

p> 1,

d̃A,p(X,W)p 6 d̃A,p(X,Y)p + d̃A,p(Y,W)p. (7.13)

This follows from the fact that for a,b > 0 and p > 1 we have ap + bp 6

(a+ b)p and therefore if equation (7.13) holds we have:

d̃A,p(X,W)6 p

√
d̃A,p(X,Y)p + d̃A,p(Y,W)p 6 d̃A,p(X,Y) + d̃A,p(Y,W).

Now let Z and V the minimizers in equation (7.10) for X,Y and Y,W

respectively in A. From Z and V we construct T feasible for X,W in equa-

tion (7.10) and we show the objective function in T is smaller or equal to

d̃A,p(X,Y) + d̃A,p(Y,W).

If xi,xi ′ ∈ X, yj,yj ′ ∈ Y and wk,wk ′ ∈W let T the unique feasible ma-

trix in A that satisfies

T̂ik,i ′k ′ : =
∑
j,j ′

Ẑij,i ′j ′V̂jk,j ′k ′ . (7.14)

To see that T is well-defined, observe that it is straightforward to

check that T satisfies the linear and inequality constraints of A using the fact

that Z and V belong to A. In order to verify that T is positive semidefinite,

consider the Cholesky decompositions of Z and V. Then

Ẑij,i ′j ′ = z>ijzi ′j ′ , V̂jk,j ′k ′ = v
>
jkvj ′k ′
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where z and v do not necessarily correspond to the last column in equa-

tion (7.7). In fact z is a r× n2 matrix where r is the rank of Ẑ and zij is the

column of z indexed by i= 1, . . . ,n and j= 1, . . . ,n. Then note

T̂ik,i ′k ′ =
∑
j,j ′

Ẑij,i ′j ′V̂jk,j ′k ′ =

〈∑
j

zij ⊗ vjk,
∑
j ′

zi ′j ′ ⊗ vj ′k ′
〉

therefore T̂ is PSD since it is a Gram matrix, and T is PSD since it has the

same rank as T̂.

For the triangle inequality we need to show

∑
i,i ′

∑
k,k ′

Tik,i ′k ′ |dX(xi,xi ′) − dW(wk,wk ′)|6∑
i,i ′

∑
j,j ′

Zij,i ′j ′ |dX(xi,xi ′) − dY(yj,yj ′)|

+
∑
j,j ′

∑
k,k ′

Vjk,j ′k ′ |dX(xj,xj ′) − dW(wk,wk ′)|. (7.15)

In the case we are dealing with, where |X|= |Y|= |W|, the constraints∑
i,i ′

Zij,i ′j ′ > 1 and
∑
k,k ′

Vjk,j ′k ′ > 1

are tight, meaning that equality holds, so for all j, j ′, we can multiply by 1

and rewrite the RHS of equation (7.15) as

∑
i,i ′

∑
j,j ′

Zij,i ′j ′ |dX(xi,xi ′) − dY(yj,yj ′)|
∑
k,k ′

Vjk,j ′k ′

+
∑
j,j ′

∑
k,k ′

Vjk,j ′k ′ |dX(xj,xj ′) − dW(wk,wk ′)|
∑
i,i ′

Zij,i ′j ′

=
∑
i,i ′

∑
k,k ′

∑
j,j ′

Zij,i ′j ′Vjk,j ′k ′(|dX(xi,xi ′)−dY(yj,yj ′)|+ |dY(yj,yj ′)−dW(wk,wk ′)|)
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Now it is clear that equation (7.15) follows from the triangle inequality in

R, which completes the verification of part (a).

In order to prove part (b), now we let X,Y,Z to be finite metric spaces

with arbitrary number of points. And we let Z and V the minimizers in

equations (7.11) for X,Y and Y,W respectively as before. We define T as in

equation (7.14). We know T is feasible for equation (7.11) so the remaining

step to prove is

max
T 6=0

Γik,i ′k ′ 6 max
Z 6=0

Γij,i ′j ′ + max
V6=0

Γjk,j ′k ′ (7.16)

Let (ik, i ′k ′) the argmax of the left hand side of equation (7.16). Since Tik,i ′k ′ 6=

0 and Tik,i ′k ′ =
∑
j,j ′Zij,i ′j ′Tkj,k ′j ′ then there exists j, j ′ such that Zij,i ′j ′ 6= 0

and Tkj,k ′j ′ 6= 0. Then we have

d̃A,∞(X,W)6 max
T 6=0

Γik,i ′k ′ = |dX(xi,xi ′) − dW(wk,wk ′)|

6 |dX(xi,xi ′) − dY(yj,yj ′)|+ |dY(yj,yj ′) − dW(wk,wk ′)|

6 max
Z6=0

Γij,i ′j ′ + max
V 6=0

Γjk,j ′k ′ = d̃A,∞(X,Y) + d̃A,∞(Y,W). (7.17)

Remark 7.2.1. The same argument will show that d̃GW,p satisfies triangle in-

equality as long as we add the constraint Ẑ1 = nz, where n= |X|= |Y|= |W|

and the measure of each of the points is equal 1/n.

150



7.2.2 Monotonicity and continuity properties

The following lemma shows the monotonicity of d̃A,p with respect to

p. The second part of the lemma proves continuity of d̃A,p at infinity.

Proposition 7.2.2. For any X,Y finite metric spaces we have:

a. If 16 p6 q <∞ then d̃A,p(X,Y)6 d̃A,q(X,Y)6 d̃A,∞(X,Y).

b. limp→∞ d̃A,p(X,Y) = min
Z∈T̃

max
i,j,i ′,j ′ : Z6=0

Γij,i ′j ′ = d̃A,∞(X,Y).

Proof. Let Z ∈ A optimal for equations (7.11) or (7.10) for some value of p.

Then 1>Ẑ1 = n2. The weighted power mean inequality implies 1

n2

∑
ij,i ′j ′

Γ
p
ij,i ′j ′Zij,i ′j ′

1/p 6
 1

n2

∑
ij,i ′j ′

Γ
q
ij,i ′j ′Zij,i ′j ′

1/q 6 max
i,j,i ′,j ′ : Zij,i ′j ′ 6=0

Γij,i ′j ′

and taking the infimum in Z we obtain (a).

Now for fixed Z let Γ∗Z = max{Γij,i ′j ′ : Zij,i ′j ′ 6= 0}, then using the stan-

dard calculus argument

lim
p→∞

 1

n2

∑
ij,i ′j ′

Γ
p
ij,i ′j ′Zij,i ′j ′

1/p = Γ∗Z lim
p→∞

∑
ij,i ′j ′

(
Γij,i ′j ′

Γ∗Z

)p Zij,i ′j ′
n2

1/p = Γ∗Z.

and taking infimum in Z we obtain (b).

Proposition 7.2.2 holds for metric spaces X and Y with possibly dif-

ferent number of points and it says that even though d̃A,p may not satisfy

the triangle inequality, it does in the limit p→∞.
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7.2.3 Extension of the distance to compact infinite sets

Every compact metric space X is the limit of a sequence of finite met-

ric spaces in the Gromov-Hausdorff topology, denoted here by τGH (see for

instance [19, Example 7.4.9]). In fact, by taking εn→ 0 and choosing a finite

εn-net Sn in X for every n, we get Sn
GH→ X because

dGH(X,Sn)6 dH(X,Sn)6 εn.

This property inspires the following definition of an actual distance

between compact metric spaces.

Definition 7.2.1. Let X,Y compact metric spaces. Given εn → 0, let Xn,Yn

respective εn-nets of X and Y, with the same number of points N. Define

d̂A,p(X,Y) = inf
εn, Xn Yn

lim sup
n→∞ d̃A,p(Xn,Yn) (7.18)

Note that limsup exists because for all nwe have

d̃A,p(Xn,Yn)6 d̃A,∞(Xn,Yn)6
1

2
max(diam(X),diam(Y)).

Also, note the triangle inequality holds for this limit, which also implies that

d̂A,p and d̃A,p may not agree.

To illustrate how the right hand side of (7.18) behaves, let’s say that

|X|< |Y| and for some n the εn-net Yn of Y has at least N points and |X|<N,

then consider Xn to be X with some repeated points and run the SDP (7.10)

or (7.11) to compute d̃A,p(Xn,Yn) so that |Yn|= |Xn|=N. Note that this is well
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defined and when d̃A,p(Xn,X) exists (i.e. A=GH,Sur) we have d̃A,p(Xn,X)=

0 because the matrix Z corresponding to the surjective function Xn→ X is

in A and has objective value 0.

7.2.4 Comparison with the Gromov-Hausdorff distance

Let X denote the set of isometry classes of compact metric spaces.

Definition 7.2.1 extends the relaxed distances (7.10) and (7.11) to X, obtain-

ing the function d̂A,p : X×X→R.

Lemma 7.2.3. For X,Y ∈ X we have for 16 p6∞
d̂A,p(X,Y)6 dGH(X,Y)

Proof. First assumeX,Y are finite and let R∈R(X,Y) the minimizer in (7.1). If

|R|=N let XN,YN the ε-net so that every element of X appears in XN as many

times as it appears in R (and the same for YN). Then the bijective function

between XN and YN corresponding to R induces a feasible Z, proving the

result in the finite case. For the remaining case consider a εn-net where

εn→ 0.

Now consider X,Y finite metric spaces. First observe that A= GH in-

cludes the Z induced by all elements in R(X,Y), which together with Propo-

sition 7.2.2 implies

d̃GH,p(X,Y)6 d̃GH,∞(X,Y)6 dGH(X,Y).
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Since Sur⊂ GHwe have

d̃GH,p(X,Y)6 d̃Sur,p(X,Y),

and if |X|= |Y| we can consider that Reg⊂ Sur therefore

d̃GH,p(X,Y)6 d̃Sur,p(X,Y)6 d̃Reg,p(X,Y).

Also, the smaller the set A, the more likely is the relaxation to produce a

tight solution (a rank 1 solution, corresponding with an element of R(X,Y)).

Note that neither d̃Sur,p nor d̃Reg,p are comparable with dGH.

7.2.5 Topologies induced by relaxed distances

Any metric or pseudometric d defines a topology τ characterized by

the property that given a sequence Xn, we have convergence Xn
τ→ X if and

only if d(Xn,X)→ 0. In particular, the Gromov-Hausdorff distance induces

a topology on the set of isometry classes of compact metric spaces. The

Gromov-Hausdorff topology is a fairly weak topology; for example, there

are many compact sets. Proposition 7.4.12 in [19] characterizes the Gromov-

Hausdorff convergence in terms of ε-nets, implying that if a sequence {Xn}

converges in the Gromov-Hausdorff topology, then for all ε > 0, the car-

dinality of ε-nets is uniformly bounded over Xn. Therefore if a class X of

metric spaces is pre-compact (i.e. any sequence of elements of X has a con-

vergent subsequence) in the Gromov-Hausdorff topology, then for every

ε > 0 the size of a minimal ε-net is uniformly bounded over all elements of

X. The analysis in [19] shows that this property of X, along with the fact
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that the diameters of its members are uniformly bounded (what is called to-

tally boundedness, Definition 7.2.2), is sufficient for pre-compactness (The-

orem 7.2.5).

Let τ̂A,p (1 6 p 6 ∞), and τ̃A,∞ denote the topologies induced by

the pseudometrics d̂A,p (1 6 p 6∞) and d̃A,∞, respectively. We obtain an

analogous characterization of pre-compact sets in the topology for τ̂A,p for

16 p6∞ in Corollary 7.2.6 below.

Proposition 7.2.4. (Proposition 7.4.12 in [19]) For compact metric spaces X and

{Xn}
∞
n=1, Xn

τGH−→ X if and only if the following holds. For every ε > 0 there exist

a finite ε-net S in X and an ε-net Sn in each Xn such that Sn
τGH−→ S. Moreover

these ε-nets can be chosen so that, for all sufficiently large n, Sn have the same

cardinality as S.

Note that by construction (Definition 7.2.1) the characterization of

convergence by ε-nets from Proposition 7.2.4 is also true when substituting

τGH by τ̂A,p, 16 p6∞.

Definition 7.2.2. (Definition 7.4.14 in [19]) A class X of compact metric spaces

is totally bounded if

a. There exists a constant D such that for all X ∈ X, diam(X)<D.

b. For every ε > 0 there exists a number Nε such that every X ∈ X con-

tains an ε-net consisting of at most Nε points.
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Theorem 7.2.5. (Theorem 7.4.15 in [19]) Any uniformly totally bounded class X

of compact metric spaces is pre-compact in the Gromov-Hausdorff topology.

By Theorem 7.2.5, we know that if X is totally bounded and {Xn}
∞
n=1

is a sequence in X then it contains a convergent subsequence in X. Since

d̂A,p 6 dGH, that subsequence is also convergent in τ̂A,p, which immediately

implies the following corollary:

Corollary 7.2.6. Any uniformly totally bounded class X of compact metric spaces

is pre-compact in the topology τ̂A,p for 16 p6∞.

7.2.6 Local topological properties

In the space of compact metric spaces we know dGH(X,Y) = 0 if and

only if X and Y are isometric. The example at the beginning of Section 7.2.1

shows that this is not true for d̃A,p in general. However, in this section we

show it is true for most finite X.

Definition 7.2.3. Let X a finite metric space. We say that X is generic if

X ∈ G<∞ and all pairwise distances in X are different and non-zero.

The name generic is justified in the following sense: if X ∈ Gn is not

generic, for all ε > 0 there exists Y ∈ Gn such that dGH(X,Y) < ε and Y is

generic. Also, if X ∈ Gn is generic there exists ε > 0 such that for all Y ∈ Gn

that satisfy dGH(X,Y) < ε we have that Y is also generic. Which proves the

following remark:
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Remark 7.2.2. The set of generic metric spaces is dense in τGH|G<∞ and open

in τGH|Gn .

Lemma 7.2.7. If X and Y are generic and d̃A,p(X,Y) = 0 then X and Y are isomet-

ric.

Proof. Assume without loss of generality |X| > |Y| and d̃A,p(X,Y) = 0. Let Z

the solution of (7.10) for X,Y with objective value 0. Note that the constraint∑
j,j ′Zij,i ′j ′ = 1 for all i, i ′ implies that, given i 6= i ′ there exists j, j ′ such

that Zij,i ′j ′ > 0. Since the objective value is 0, that implies that dX(xi,xi ′) =

dY(yj,yj ′). Since all pairwise distances in X are different, that completely

determines all distances in Y and in particular it implies |X| = |Y|, X and Y

are isometric, and the unique solution of (7.10) corresponds to the isometry

between X and Y.

Corollary 7.2.8. If X ∈ Gn is generic there exists a neighborhood of X in Gn such

that for all Y in that neighborhood

dGH(X,Y) =
1

2
max
i,j=1...n

|dX(xi,xj) − dY(yi,yj)|

(Y is a small enough perturbation of a metric space isometric with X where we label

the points such that the isometry is xi 7→ yi for all i). In particular we can think

of the neighborhood where that property holds as the neighborhood of X with radius

∆/n where ∆ is the smallest non-zero entry of the matrix Γ(X,X). In this setting

we have that

d̃A,p(X,Y) =
1

2

 1

n2

∑
i,j

|dX(xi,xj) − dY(yi,yj)|p

1/p
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in the neighborhood of X of radius ∆p/n. And, in the neighborhood of X of radius

∆ we have

d̃A,∞(X,Y) = dGH(X,Y).

This implies that the topologies τGH|Gn and τ̃GH,p|Gn are equivalent for all

finite n and p. And we have d̃A,∞ and dGH are generically locally the same.

Corollary 7.2.8 says that the metrics d̃A,∞ and dGH are locally the

same (while d̃A,p and dGH are locally equivalent), whereas the discussion

in Section 7.2.1 implies that d̃A,∞ and dGH are not globally the same. Since

the metric dGH is intrinsic in X [35] (i.e.: the distance between two points

coincide with the infimum of the lengths of path between the two points),

then it is implied that neither d̃A,∞ nor d̃A,p are intrinsic metrics.

7.3 GHMatch: a rank-1 augmented Lagrangian approach to-
wards the registration problem

In the previous sections, we have studied an approach to the problem

of computing the Gromov-Hausdorff distance (equation (7.4)) via semidef-

inite optimization. Here we first lift the variable µ ∈ Rnm to a symmetric

variable Z ∈ Rnm+1×nm+1 such that rank(Z) = 1. We then relax the non-

convex rank constraint to the convex constraint Z� 0.

There are many attractive properties of the semidefinite relaxations.

For one thing, there are many software packages that efficiently provide

global solutions to semidefinite programs (e.g., SDPNAL+ [71]). Moreover,

158



there is a great deal of research energy directed at producing more efficient

SDP solvers; the field is rapidly evolving and solvers are getting more effi-

cient every day. Furthermore, SDP relaxations have the advantage of often

being tight: in our situation, we have observed numerically that the solution

Z frequently has rank 1. In this case, the semidefinite optimization finds the

global solution of the original problem, and also provides a certificate of its

optimality. This property has recently been exploited to efficiently produce

certificates of optimality of solutions found by fast non-convex algorithms

that typically may converge to local optima [9, 34].

On the other hand, the semidefinite relaxations have the disadvan-

tage that they square the number of variables of the original problem: even

with efficient solvers, this expansion makes these problems intractable for

large sets of points. Also, when the SDP is not tight, it may produce a high

rank solution Z that may not be easily rounded to a feasible µ.

Motivated by these concerns, in this section we propose a non-convex

optimization approach for the registration problem. Here we trade the

global optimality guarantee and the pseudometric the semidefinite opti-

mization provides for computational efficiency and a guarantee of a true

(albeit not necessarily globally optimal) correspondence.

We will assume that |X|= |Y|= n. By restricting equation (7.4) to this

case and replacing the infinity norm by the p-norm formulation we obtain

the following non-convex optimization problem, where y ∈Rn2 is indexed
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by a pair of variables ijwhere i, j= 1, . . . ,n.

min
y
〈Γ (p),yy>〉 subject to

n∑
i=1

yij = 1,
n∑
j=1

yij = 1, 06 yij 6 1 (7.19)

Now, instead of considering a semidefinite relaxation as we did pre-

viously, we propose a greedy method to directly solve (7.19). LetA∈R2n×n2

such that Ay = 1 if and only if
∑n
i=1yij = 1 and

∑n
j=1yij = 1 and let b = 1 ∈

R2n. Then equation (7.19) is equivalent to the following quadratic optimiza-

tion problem with linear and box constraints.

min
y

y>Γ (p)y subject to Ay = b, 06 y 6 1 (7.20)

In order to solve problem (7.20), we use a projected augmented La-

grangian approach (e.g., see [52, Algorithm 17.4]).

L(y,λ,σ) = y>Γ (p)y − λT (Ay − b) +
σ

2
‖Ay − b‖22 (7.21)

We propose the algorithm GHMatch (see Algorithm 3). Theoretical

convergence analysis for GHMatch is left for future work. In the next sec-

tion, we describe numerical experiments that indicate the performance of

the algorithm. In the experiments we conducted, we found that this proce-

dure converges to a local minimum of equation (7.19). That solution may be

rounded to an actual correspondence between the point sets ȳ, and therefore

the value 〈Γ , ȳȳ>〉 is an upper bound for the Gromov-Hausdorff distance.
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Algorithm 3: GHMatch

1 y0← 1
n1 ∈Rn2 ;

2 λ0← 1 ∈R2n;
3 σ0← 5;
4 µ← 10;
5 for k= 0,1,2, . . . do
6 y← argmin06y61L(y,λk,σk) ; // Use yk as initial point for

this minimization

7 λk+1← λk − σk(Ayk+1 − b);
8 σk+1← µσk;

9 for i= 1, . . . ,n ; // To find the map corresponding with yT
10 do
11 map(i) = argmaxj=1,...,nyT (1+ (i− 1)n : in);

7.4 Numerical performance

In this section, we describe the results of a number of numerical ex-

periments to explore the applications of our new distance and the perfor-

mance of our augmented Lagrangian approach.

7.4.1 Classification using the distance d̃GH

In order to validate our distance numerically we compare with the

numerical experiments described in [17], using data and algorithms avail-

able on Yaron Lipman’s personal website [41]. As we describe below, we

find that our procedure produces results that are competitive with this pro-

cedure.

In [17] the authors propose an algorithm to automatically quantify
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Figure 7.3: Visual comparison between dGH and d̃GH,1 on a real data set.
(Left) Distance matrix obtained from computing the best rigid transformation that
maps the corresponding labeled landmarks from the teeth dataset described in
Section 7.4.1. (Right) Distance matrix obtained from computing the SDP distance
d̃GH,p with p = 1. Darker color corresponds to smaller distance. We observe the
same distance patterns in both matrices even though the scales are different.

the geometric similarity of anatomical surfaces based on a distance inspired

by the Gromov-Wasserstein distance which is invariant under conformal

maps. They experiment with a real dataset coming from surfaces of teeth of

different species; they compare the results of their algorithm with a method

based on an expert selecting 16 landmarks on each tooth and then finding

the best rigid transformation to match the labeled landmarks. Specifically,

they work with a dataset consisting of 116 teeth. For each tooth, they find

the closest tooth according to each distance, and then see whether they are

in the same category.

We perform the same experiment on 115 of the teeth (since one of

them seems to be in a different scale), but without providing our algorithm

with the correspondence between the landmarks. To be precise, we consider

the metric spaces

Xi = {pi1, . . .p
i
16}, i= 1. . .115.
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The points of these metric spaces are the landmarks chosen by the expert,

and the metric is given by the euclidean distance between the landmarks.

We compare the distance matrix d̃GH,p(Xi,Xj) with the distance obtained by

the software from [41] that finds the best rigid transformation that sends the

n-th point of Xi to the n-th point of Xj for n = 1, . . .16. See Figure 7.3 for a

visual comparison of the distance matrices.

When running the nearest-neighbor classification test as described

above, we obtain very similar performance: 0.85 frequency of success in

our distance against 0.91 for the conformal Wasserstein distance proposed

in [17] and 0.92 for the landmark comparison algorithm that uses the a priori

known correspondence. We find this result very encouraging given that our

algorithm does not make any geometric assumptions about the teeth (e.g.,

we do not assume they are smooth surfaces), in contrast to [17].

7.4.2 Performance of GHMatch

In order to evaluate our non-convex optimization formulation of the

registration problem, we consider the 3D models from [18] and we sample

random points from each model. We run the rank 1 augmented lagrangian

optimization from Algorithm 3, using Matlab’s implementation of the re-

flective trust region algorithm to run the step

y← arg min
06y61

L(y,λk,σk).

In Figure 7.5 we depict the resulting map between corresponding figures.
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Figure 7.4: Convergence of GHMatch
This is the value of convergence of yk for different parameters σ0 and µ, for n= 30.
All these y satisfy the linear constraint Ay = b but the choice of the parameters
determine how close the vector y is to a feasible vector with entries in {0,1}.
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Figure 7.5: Matching surfaces with GHMatch
We run GHMatch on 50 points sampled at random from the surfaces, and 60 points
for the dogs. The pairwise distances we consider in each figure are the geodesic
distances in the mesh. Images that are horizontally aligned correspond to differ-
ent angles of the same correspondence between the 3D models. Note that for the
dogs, the correspondence matches the left legs of one dog with the right legs of the
other one (this is a consequence of the symmetry). Also note that there are small
imperfections, like the tail of one dog matching with one leg of the other one (this
is a consequence of randomly sampling and obtaining different number of points
from different dogs tails). The algorithm with 50 sample points runs in less than 6
minutes on a standard 2013 MacBook Air.
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By design we know σk →∞ as k increases, which guarantees that

‖Ayk − b‖→ 0. However, there is no theoretical guarantee that yk will con-

verge to a sparse vector with entries in {0,1}. However, we have observed in

our numerical simulations that yk converges to a fairly sparse vector where

most of the entries are close to 0 or 1 provided a good choice of the pa-

rameters µ and σ0 (see Figure 7.4). Moreover, regardless of the choice of

the parameters, we find that our thresholding step in the algorithm often

obtains a map that is bijective.

Remark 7.4.1. As an alternative to the selection of parameters σ0 and λ, a

thresholding step could be introduced inside the main iteration (lines 5 to

9) to enforce sparsity of the resulting y.
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