Copyright by Christopher Hing Lu 2012 The Thesis Committee for Christopher Hing Lu Certifies that this is the approved version of the following thesis:

Determination of Fission Product Yields of ²³⁵U Using Gamma Ray Spectroscopy

APPROVED BY

SUPERVISING COMMITTEE:

Steven Biegalski, Supervisor

Sheldon Landsberger

Determination of Fission Product Yields of ²³⁵U Using Gamma Ray Spectroscopy

by

Christopher Hing Lu, B.S.Phy.

THESIS

Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2012

This work is dedicated to the men and women of the United States Armed Forces who have given some or all of their lives to maintain the freedom that most take for granted.

The LORD bless you and keep you; the LORD make his face to shine on you and be gracious to you; the LORD turn his face toward you and give you peace.

- Numbers 6:24-26

Acknowledgments

As I reflect on the short time I spent in graduate school, I realize that there are many people deserving of recognition for what has ultimately become a Master's Degree in Nuclear and Radiation Engineering.

First and foremost, I wish to acknowledge my God, His Son, the Lord Jesus Christ, and the Holy Spirit, the triune being that has made me all that I am. Without their compassion, their conviction, and their mercy, I would be nothing. Yet, they have loved when I did not deserve it and blessed me with a peace in my most trying times. Without their grace, none of this would have been possible.

The LORD is righteous in all his ways and kind in all his works. The LORD is near to all who call on him, to all who call on him in truth. He fulfills the desire of those who fear him; he also hears their cry and saves them. The LORD preserves all who love him, but all the wicked he will destroy. My mouth will speak the praise of the LORD, and let all flesh bless his holy name forever and ever.

- Psalm 145: 17-21

I must give thanks to my adviser, Professor Steven Biegalski, for all the technical assistance and funding that he has given. Throughout the time I've been in graduate school, he has shown patience with me and with my work. He always seemed to have an answer or something new to try to get things to work out.

I would also like to acknowledge Professor Sheldon Landsberger for his

continued guidance throughout my undergraduate and graduate careers. His professional advice and technical knowledge have been invaluable. He was never one to hold back in correcting, criticizing, and motivating me when I needed it. I cannot thank him enough for that. I also wish to extend my thanks to him for his role as one of my supervising committee members and readers.

I would like to recognize the staff at the Nuclear Engineering Teaching Laboratory: Tracy Tipping, who helped me greatly when it came to the standards used; Mike Whaley, who spent hours acquainting me with OrigenArp; Larry Welch, who always seemed to know why the detectors weren't behaving properly; Dana Judson, who was always on top of administrative matters; and all of the reactor operators who spent more time starting up the reactor and preparing the pneumatic tube for my samples than I spent doing the actual runs. I give thanks to all of them.

I would also like to give thanks to Admiral Bobby Ray Inman, who was willing to take time out of his schedule to provide career counseling and professional advice. He was a great inspiration to me during my final semester.

I must also give many thanks to those who have given immense technical advice, as well as their friendship: Bonnie Canion, Robert Chin, Ph.D., Kenny Dayman, Christie Egnatuk, Ph.D., Alex Fay, Joseph Graham, Steven Horne, Franziska Klingberg, Donald Millsap, Carlos Rios-Perez, and Joshua J. Yi, Ph.D., Esq. Each one provided a unique inspiration, reassurance, and, above all, friendship to me while I've been in graduate school.

Finally, I give my great thanks to my family. To my parents, David and Hazel Lu, my sister, Desiree Alvarado, and to my brothers and sisters in Christ, thank you from the bottom of my heart. Your encouragement, prayers, and confidence in me have kept me going through the many long hours. Thank you for your love.

Christopher H. Lu December 2012 Austin, Texas

The grace of the Lord Jesus Christ be with all. Amen.

Determination of Fission Product Yields of ²³⁵U Using Gamma Ray Spectroscopy

Christopher Hing Lu, M.S.E. The University of Texas at Austin, 2012

Supervisor: Steven Biegalski

It is important to have a method of experimentally calculating fission product yields. Statistical calculations and simulations produce very large uncertainties. Experimental calculations, depending on the methods used, tend to produce lower uncertainties. This work set up a method to calculate fission product yields using gamma ray spectroscopy. In order to produce a method that was theoretically sound, a simulation was set up using OrigenArp to calculate theoretical concentrations of fission products from the irradiation of natural uranium. From these concentrations, the fission product yields were calculated to verify that they would agree with expected values. Moving forward in the work, the total flux at the point of irradiation, in the pneumatic transfer system, was calculated and determined to be 3.9070E+11 \pm 6.9570E+10 $\frac{n}{cm^2s}$ at 100 kW. Once the flux was calculated, the method for calculating fission product yields was implemented and yields were calculated for 10 fission products. The yields calculated were in very good agreement (within 10.04%) with expected values taken from the ENDF-349 library. This method has strong potential in nuclear forensics as it can provide a means for developing a library of experimentally-determined fission product yields, as well as rapid post-nuclear detonation analysis.

Table of Contents

Ackno	wledg	ments	\mathbf{v}					
Abstra	act		viii					
List of Tables xii								
List of	Figu	res	xiii					
Chapte	er 1.	Introduction	1					
1.1	Ba	ckground of Nuclear Terrorism	1					
1.2	Nu	clear Forensics	2					
	1.2.1	Acquisition	3					
	1.2.2	Analysis	3					
	1.2.3	Characterization	4					
1.3	Im	portance of Determining Fission Product Yields	5					
1.4	Go	als of This Work	7					
Chapte	er 2.	Theory	9					
2.1	Fis	sion	9					
	2.1.1	Process	9					
	2.1.2	Cross-Section	9					
	2.1.3	FP Yield	9					
2.2	Ga	mma Ray Interactions	10					
	2.2.1	Photoelectric Effect	11					
	2.2.2	Compton Scattering	11					
	2.2.3	Pair Production	11					
2.3	Hig	gh-Purity Germanium Detectors	12					
	2.3.1	Detector Efficiency	13					
2.4	Set	ting up the Problem	14					
	2.4.1	Equations for Fission Product Yield Determination	14					
	2.4.2	Equations for Activation and Neutron Flux Calculation	18					
2.5	Ori	igenArp Analysis	19					
2.6	Eva	aluated Nuclear Data File Library	21					

Chapter 3. Experiment	2	22
3.1 Sample Preparation	· · · · · · · · · · · · · · · · · · ·	22
3.2 TRIGA Mark II Research Reactor	· · · · · · · · · · · · · · · · · · ·	26
3.3 Counting \ldots	· · · · · · · · · · · · · · · · · · ·	26
3.4 Flux Analysis		29
Chapter 4. Results and Discussion	3	31
4.1 OrigenArp Analysis		31
4.2 Detector Efficiency		33
4.3 Flux Calculations		37
4.4 Fission Product Yield		38
4.5 Sources of Error		39
4.5.1 Reducing Error	4	42
Chapter 5. Conclusion	4	13
5.1 Summary of Work	4	13
5.2 Suggestions for Further Work	4	14
Appendices	4	15
Appendix A. MCNP5 Input Deck	4	l6
Appendix B. OrigenArp Input File	7	$^{\prime}2$
Appendix C. Validity Analysis Using Orige	enArp 7	'6
Appendix D. Maple [™] 15 Worksheets	8	32
D.1 Normalizing Flux to ^{131}I	8	32
D.2 95 Zr	8	34
D.3 97 Zr	8	36
D.4 99 Mo	8	38
D.5 103 Ru) 0
D.6 131 I		92
D.7 140 Ba		94
D.8 143 Ce		96
D.9 144 Ce		98
D.10 145 Pr)0
D.11 147 Nd)2

References

Vita

104

110

List of Tables

2.1	Uranium Composition for OrigenArp Analysis	20
2.2	FP Yields for Nuclides Calculated in This Experiment	21
3.1	Specifications of Sample	26
3.2	Decay and Acquisition Times for Sample Counting	28
3.3	Weighted Cross-Sections for Reactions	30
4.1	OrigenArp Calculation Results	33
4.2	Efficiency for Detector Counting Flux Wires at Position D $\ .\ .$.	34
4.3	Efficiency for Detector Counting FP Samples at Position A	34
4.4	Calculated Fluxes for Sample	38
4.5	Data Use for FP Yield Calculations	41
4.6	FP Yield Results	41

List of Figures

1.1	²³⁵ U Fission Product Yield Curve for Thermal and 14 MeV Neutrons	5
1.2	Fission Product Yield Curve for Various Fissile Isotopes	6
1.3	Line of Stability	7
2.1	Beta Decay Scheme of ¹³⁷ Cs	0
2.2	Graph of Gamma Ray Interactions	2
2.3	HPGe Detector Cross-Section	3
2.4	Solid Angle Subtended by Detector	4
2.5	3-Series Fission Decay Chain	5
3.1	CRM 129-A	2
3.2	Small Vial with Sample	3
3.3	Heat Sealing Small Vial 2	3
3.4	Sample to be Placed in Medium Vial	4
3.5	NIST SRM 953 2	4
3.6	SRM 953 on Sample Vial	5
3.7	Sample to be Placed in Large Vial	5
3.8	The HPGe Detector Setup	7
3.9	Counting Position A	7
3.10	Counting Position D	8
3.11	Flux Profile of PNT in TRIGA Mark II Reactor	9
4.1	Multi-Gamma Source Spectra Used to Calibrate the Efficiency for the Detector Used to Count Flux Wires at Position D	5
4.2	Efficiency Curve for the Detector Used to Count Flux Wires at Position D	5
4.3	Multi-Gamma Source Spectra Used to Calibrate the Efficiency for the Detector Used to Count FP Samples at Position A	6
4.4	Efficiency Curve for the Detector Used to Count FP Samples at Position A	6
4.5	Spectra for Measuring Flux	7
4.6	Sample Spectra at 86220 s	9
4.7	Sample Spectra at 435960 s	0

4.8	Sample Spectra at 775200 s																						4	10	ļ
-----	----------------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	----	---

Chapter 1

Introduction

1.1 Background of Nuclear Terrorism

Terrorists have never been shy about revealing their ambitions to the world. After the attacks on September 11, 2001, the notion of nuclear terrorism has made its way into political debate, particularly when Osama bin Laden received a *fatwa* stating that the use of a nuclear weapon against American civilians would be permissible, nay mandatory, if it stopped United States actions against Muslims [1].

During the Cold War, there was a steady proliferation of fissile material throughout the world, particularly highly enriched uranium (HEU). Since the first critical mass quantities of HEU were created, there has been a theoretical risk of nuclear terrorism or clandestine attack. Terrorist organizations, or even nation states intending to proliferate, would require approximately 50 kilograms of HEU to be able to improvise a nuclear weapon [2]. HEU is of particular concern since many facilities containing HEU, mostly in former Soviet states, are believed to lack adequate security [3]. Since the 1950s, there have been warnings by U.S. national intelligence agencies that have considered the possibility of clandestine transfer of nuclear weapons by foreign nuclear states [2].

Former U.S. Defense Secretaries Robert Gates, Donald Rumsfeld, William Perry, and Robert McNamara, as well as former Vice President Dick Cheney have warned that the risk of a nuclear weapon detonation on U.S. targets is at 50% within the next decade [2]. Current U.S. policy is "to hold fully accountable any state, terrorist group, or other non-state actor that supports or enables terrorist efforts to obtain or use weapons of mass destruction, whether by facilitating, financing, or providing expertise or safe haven for such efforts" [4]. In the extremely unfortunate event that a nuclear device detonation does occur, it is important to swiftly and accurately determine the source of the weapon [5–7]. For this reason, Congress passed the Nuclear Forensics and Attribution Act and several U.S. agencies, national laboratories, and universities have been rapidly expanding their capacities to study and enhance the field of nuclear forensics and hasten the attribution process [2, 5, 8, 9].

1.2 Nuclear Forensics

Nuclear forensics dates back to at least 1949 when high-altitude, airborne debris collected off the coast of China was analyzed to determine that the Soviet Union had, in fact, detonated their first nuclear weapon [10]. This specialized subset of forensic science is the comprehensive analysis and characterization of pre- and post-detonation nuclear and radiological materials, devices, and debris, as well as prompt effects from nuclear detonation [11–13]. The analysis and characterization is used to determine the physical, chemical, elemental, and isotopic characteristics of the nuclear and radiological material in question [14]. The general process is to acquire samples, analyze them, and characterize the signatures by comparing analysis results against samples of known material from reactors, weapons, and enrichment facilities, as well as from medical, academic, commercial, and other facilities that contain such materials, throughout the world [8]. Acquisition and analysis of samples must be completed rapidly (within hours to days) [11, 15]. Nuclear forensics provides the technical and scientific analysis that provides the basis for prevention, mitigation, and attribution of a nuclear or radiological incident [13, 16, 17]. Attribution is the identification of the nature, source, perpetrator, and pathway of a nuclear or radiological attack, whether attempted or realized [13, 18]. Attribution includes the rapid and comprehensive coordination of law enforcement, intelligence, and forensics, along with other relevant information, to evaluate a nuclear adversary's capabilities, resources, supporters, and method of operation [13].

1.2.1 Acquisition

The first step in the nuclear forensics process is to acquire samples. In a predetonation interception of nuclear material, the acquisition process is done through the confiscation of the material itself. The process differs for post-detonation nuclear forensics. Under this constraint, acquisition involves collecting debris in the immediate and downwind regions of the detonation point, as well as samples from the radioactive cloud drifting with the prevailing winds [15]. It is important to note that isotopes will transport through the environment differently, whether they are solid, liquid, or gas [19]. These samples can then be moved through to the next step in the nuclear forensics process [15].

1.2.2 Analysis

When nuclear weapons were first introduced into the world almost 70 years ago, nuclear and radiochemistry techniques were used to characterize nuclear weapons developed by the United States and other countries [15, 20]. The characterization included weapon yield, materials used, and weapon design. These techniques of analyzing samples can still be used today, but those techniques, primarily radiochemical techniques, take weeks to complete [15]. New techniques, such as gamma ray spectroscopy are required to reduce the analysis timeline down to hours or days [15, 21]. In the case of a post-detonation analysis, debris collected will contain fission products representative of the fuel used in the device. Analyzing the sample will provide signatures characteristic to the device that can be compared with those of known samples [15, 22, 23].

1.2.3 Characterization

Comparing the signatures of a device with those of known samples through databases, sample archives, and device modeling allows for the characterization of the device [15, 22]. Characterization of the material provides the material "fingerprint" that allows intelligence agencies to determine the material's origin, production process, and weapon design [24]. The characterization leads to attribution which allows an explosion to be traced back to its originators [15, 25].

Assuming a nuclear device detonation event, following the acquisition, analysis, and characterization method, it should be possible to answer the following questions [15]:

What was the yield?

What was the isotopic composition of the fuel used?

Was the device crude or sophisticated?

Does the debris match that from known weapons tests?

What was the most probable device design, and does it match any existing designs?

What other materials were used in the construction of the device that may suggest a place of origin?

1.3 Importance of Determining Fission Product Yields

Fission products (FPs) are the stable and radioactive isotopes produced by the fission of heavy nuclides, e.g., ²³⁵U, ²³⁹Pu, etc. Each fissionable isotope contains a unique pattern of FP production that depends on the incident neutron energy, as Figures 1.1 and 1.2 demonstrate [18]. The FP yield is the probability of a particular isotope being formed per thermal neutron fission [26].

Figure 1.1: The fission product yield curve for 235 U with thermal and 14 MeV incident neutrons. Adapted without permission [27].

While all fissile nuclides generally follow similar double-peak curves for thermal neutron-induced fission, yielding the same FPs, the concentrations will vary depending on the fuel used [29, 30]. Therefore, the concentration of a given FP within a sample of fissioned fuel is very unique to the composition of the fuel

Figure 1.2: The fission product yield curve for various fissile isotopes. Adapted without permission [28].

itself [30]. In other words, determining what FPs and how much of each were produced can give the previously mentioned characteristic "fingerprint" for various properties of the fuel, i.e., age and composition [7, 31]. Previously, during the era of U.S. nuclear testing, it was considered a security concern that classified information could be revealed through the isotopic ratios of released fission products [32].

Many FPs that are produced are far from the line of stability (see Figure 1.3), and generally decay either through beta emission or delayed neutron emission [31]. Upon emission of a beta particle, the daughter nuclide is usually unstable and will emit a gamma ray unique to the particular isotope to stabilize itself [33–35]. Thus, by measuring the gamma rays from a sample, the bulk composition and relative abundances of FPs present can be determined [21]. As FPs undergo beta decay, they set up a decay chain of FPs that follow a general trend of increasing half lives as they approach stability [36]. Gamma ray spectroscopy following irradiation can determine which FPs are present in the sample [37].

Figure 1.3: Black squares represent stable nuclides. The general trend line that follows the black squares up the chart of nuclides is known as the line of stability. Adapted without permission [38].

Through gamma ray spectroscopy and sample preparation and measurement techniques, a database of empirically-derived FP yields can be developed [10, 16]. Through coordination of databases, ensuring continuity of data, these can be important tools used to attribute the fuel [10, 16, 39]. If this database were to be used, it would be important to have the necessary sample preparation and measurement equipment functioning, calibrated, and ready to use [16]. This work is concerned with measuring the gamma rays associated with those FPs that decay through beta emission using gamma ray spectroscopy.

1.4 Goals of This Work

This work was conducted with the following three goals in mind:

- 1. To test the theoretical validity of this method of calculating FP yields using OrigenArp.
- 2. To determine the flux in the pneumatic transfer system of the TRIGA Mark II research reactor at The University of Texas J.J. Pickle Research Campus.
- To set up a method of determining FP yields by using gamma ray spectroscopy. Calculated FP yields will be compared with the ENDF-349 FP yield library.

Chapter 2

Theory

2.1 Fission

2.1.1 Process

Fission is a process by which a heavy nucleus splits into two or more smaller nuclei. The fission of interest in this work is the thermal fission of 235 U. That is, fission induced by neutrons of thermal energy (0.0253 eV) [40].

 235 U is considered a fissile nuclide, which means a 235 U nucleus can fission with any incident neutron energy [40].

2.1.2 Cross-Section

The extent to which a specific reaction will occur when a neutron interacts with a nucleus is known as the cross-section. The cross-section can be thought of as the probability of interaction per effective cross-sectional area of the target nucleus. Thus, the cross-section has units of $\left[\frac{1}{cm^2}\right]$ [40]. In the case of thermal fission of ²³⁵U, the target is a ²³⁵U nucleus.

2.1.3 FP Yield

Upon fission of ²³⁵U, the remaining nuclei formed from the fission are called fission products (FPs). All FPs have a unique probability of being produced from the fission process [30].

Nearly all FPs produced are neutron-rich, and therefore undergo beta decay

in an effort to stabilize themselves [41]. That is, a down quark is converted to an up quark through via the weak interaction which results in an electron and electron antineutrino being ejected from the nucleus [33].

2.2 Gamma Ray Interactions

As the FPs undergo beta decay, it is likely that they will decay to an energetic state of the daughter nucleus. Therefore, they will emit one or more gamma rays to bring the daughter nucleus down to the ground state, as Figure 2.1 demonstrates [34, 42]. The energies of these gamma rays tend to be specific to the given nuclide emitting them. These gamma rays can be measured using a high-purity germanium (HPGe) detector [42].

Figure 2.1: A decay scheme that shows the gamma ray emitted following the beta decay of the FP 137 Cs. Adapted without permission [34].

2.2.1 Photoelectric Effect

When a photon strikes an electron bound to an atom, that photon may impart all of its energy and momentum to the electron, thus releasing the electron from the atom. The ejected photoelectron has a kinetic energy equal to the energy of the incident photon less the binding energy of the electron. This is known as the photoelectric effect (PEE) [40]. Note that the PEE is dominant at low photon energy in high Z materials, as can be seen in Figure 2.2 [42].

2.2.2 Compton Scattering

When a photon of higher energy strikes an unbound electron, it may undergo an elastic scattering event by which part of the photon energy and momentum is transferred to the electron. The lower energy photon may continue on to undergo another Compton scattering (CS) or PEE event [40]. CS is dominant for moderate energies [42].

2.2.3 Pair Production

When a photon of sufficiently high energy (>1.022 MeV) travels through a Coulomb field (usually that of a nucleus), there is a possibility that the photon will transform into an electron-positron pair, conserving energy and momentum. This is known as pair production (PP). The energy threshold is due to the mass-energy relationship, where the rest-mass energy of one electron or positron is 0.511 MeV [40]. PP is the dominant effect for high energy photons and high Z absorbing materials [42].

Figure 2.2: A graph that depicts PEE, CS, and PP regions in a material. Note that the energy is the photon energy and the Z is for the absorbing material. Adapted without permission [42].

2.3 High-Purity Germanium Detectors

For this experiment, semiconductor detectors were used, where the detection material is manufactured from ultrapure germanium crystals. These detectors, known as high-purity germanium (HPGe) detectors, have impurity levels as low as $10^9 \frac{atoms}{cm^3}$. The HPGe detector type was chosen because it has excellent energy resolution [42]. When photons (specifically gamma rays and X-rays) interact with the HPGe crystal, they will undergo PEE, CS, or PP. All of these interactions produce free electrons, also known as charge carriers. When a high voltage is applied across the coaxial configuration of the detector, as shown in Figure 2.3, the charge carriers are accelerated to the electronic system to be counted as a pulse at a given channel. The program used to count these pulses can be calibrated such that each channel will correspond to a particular energy [34, 42].

Figure 2.3: A cross-section of the HPGe detector. Adapted without permission [34].

2.3.1 Detector Efficiency

Since gamma rays are emitted from the source isotropically, only a fraction of those emitted will ever reach the detector (see Figure 2.4). The gamma rays that reach the detector must undergo PEE, CS, or PP with the detector before detection is possible. Some gamma rays must travel long distances before they interact. This fact, coupled with geometry restrictions, restrict detectors to often being less than 100% efficient. The absolute efficiency of the detector can be calculated using Equation 2.1. It is necessary to note that the solid angle subtended by the detector from the source position is an implicit factor in the calculation [34].

$$\varepsilon_{abs} = \frac{\text{number of pulses recorded by the detector}}{\text{number of radiation quanta emitted by the source}}$$
(2.1)

where ε_{abs} is the absolute efficiency of the detector.

Figure 2.4: The solid angle subtended by the detector.

2.4 Setting up the Problem

2.4.1 Equations for Fission Product Yield Determination

Once spectra are collected, equations can be set up to calculate the FP yields. The following three assumptions and restrictions are used for these calculations:

- An overwhelming majority of fissions were thermal neutron-induced fission of ²³⁵U.
- 2. Neutron absorption by FPs is negligible.
- 3. A series of three nuclides in the decay chain and, where appropriate, their respective metastable states are used in this model, as shown in Figure 2.5.

To describe the system during production, the following coupled differential equations are used:

$$\frac{dN_1(t)}{dt} = \phi \sigma_f N_{25} \chi_1 - \lambda_1 N_1(t) \tag{2.2}$$

$$\frac{dN_2(t)}{dt} = \phi \sigma_f N_{25} \chi_2 + \lambda_1 N_1(t) - \lambda_2 N_2(t)$$
(2.3)

Figure 2.5: A model of the series of three nuclides in a decay chain produced from fission.

$$\frac{dN_3(t)}{dt} = \phi \sigma_f N_{25} \chi_3 + \lambda_2 N_2(t) - \lambda_3 N_3(t)$$
(2.4)

where the following apply:

 N_1, N_2, N_3 refer to the fission product atom numbers

 ϕ is the neutron flux $\left[\frac{n}{cm^2s}\right]$

 σ_f is the cross-section for the thermal fission of $^{235}\mathrm{U}$

 N_{25} is the atom number of $^{235}\mathrm{U}$ in the sample

 χ_1, χ_2, χ_3 are the cumulative FP yields

 $\lambda_1, \lambda_2, \lambda_3$ are the decay constants for each FP $[s^{-1}]$

Converting to the LaPlace domain and rearranging to solve for N_1 , N_2 , N_3 , noting that initial concentrations of FPs are 0:

$$N_1(s) = \frac{\phi \sigma_f N_{25} \chi_1}{s(s+\lambda_1)} \tag{2.5}$$

$$N_2(s) = \frac{\phi \sigma_f N_{25} \chi_2}{s(s+\lambda_2)} + \frac{\lambda_1 N_1(s)}{(s+\lambda_2)}$$
(2.6)

$$N_3(s) = \frac{\phi \sigma_f N_{25} \chi_3}{s(s+\lambda_3)} + \frac{\lambda_2 N_2(s)}{(s+\lambda_3)}$$
(2.7)

Now converting back to the time domain:

$$N_1(t) = \frac{\phi \,\sigma_f N_{25} \chi_1 \left(1 - \mathrm{e}^{-\lambda_1 t}\right)}{\lambda_1} \tag{2.8}$$

$$N_{2}(t) = \frac{\phi \sigma_{f} N_{25}}{\lambda_{2} (\lambda_{1} - \lambda_{2})} \left((-\chi_{2} \lambda_{1} + \chi_{2} \lambda_{2} - \lambda_{1} \chi_{1}) e^{-\lambda_{2} t} - \lambda_{2} \left(\chi_{2} + \chi_{1} \left(1 - e^{-\lambda_{1} t} \right) \right) \right) + \frac{\phi \sigma_{f} N_{25}}{\lambda_{2} (\lambda_{1} - \lambda_{2})} \left(\lambda_{1} \left(\chi_{2} + \chi_{1} \right) \right)$$

$$(2.9)$$

$$N_{3}(t) = \frac{\phi \sigma_{f} N_{25}}{(\lambda_{1} - \lambda_{3}) (\lambda_{1} - \lambda_{2}) (\lambda_{2} - \lambda_{3}) \lambda_{3}} (A + B + C)$$

$$A = (-\chi_{3}\lambda_{1}\lambda_{2} + \chi_{3}\lambda_{1}\lambda_{3} - \chi_{1}\lambda_{2}\lambda_{1} + \chi_{3}\lambda_{3}\lambda_{2} + \chi_{2}\lambda_{2}\lambda_{3} - \chi_{3}\lambda_{3}^{2} - \chi_{2}\lambda_{2}\lambda_{1})$$

$$e^{-\lambda_{3}t} (\lambda_{1} - \lambda_{2})$$

$$B = \lambda_{3} (\chi_{1}\lambda_{2} (\lambda_{3} - \lambda_{2}) e^{-\lambda_{1}t} + (\lambda_{1} - \lambda_{3}) (\chi_{1}\lambda_{1} - \chi_{2}\lambda_{2} + \chi_{2}\lambda_{1}) e^{-\lambda_{2}t})$$

$$C = (\chi_{1} + \chi_{2} + \chi_{3}) (\lambda_{1} - \lambda_{3}) (\lambda_{2} - \lambda_{3}) (\lambda_{1} - \lambda_{2})$$
(2.10)

Similarly, after irradiation, the following equations describe the decay of the FPs that have been produced (note that t_i is the irradiation time):

$$\frac{dN_1(t)}{dt} = -\lambda_1 N_1(t) \tag{2.11}$$

$$\frac{dN_2(t)}{dt} = \lambda_1 N_1(t) - \lambda_2 N_2(t)$$
(2.12)

$$\frac{dN_3(t)}{dt} = \lambda_2 N_2(t) - \lambda_3 N_3(t)$$
(2.13)

Again, converting to the LaPlace domain, rearranging to solve for the concentrations, and converting back to the time domain, the following equations

give the FP concentrations as a function of time:

$$N_1(t) = \frac{\phi \sigma_f N_{25} \left(1 - e^{-\lambda_1 t i}\right) e^{-\lambda_1 t} \chi_1}{\lambda_1}$$
(2.14)

$$N_{2}(t) = \phi \,\sigma_{f} N_{25} \left(\frac{\left(1 - e^{-\lambda_{2} t i}\right) e^{-\lambda_{2} t} \left(\lambda_{1} \chi_{1} - \chi_{2} \lambda_{2} + \chi_{2} \lambda_{1}\right)}{\lambda_{2} \left(\lambda_{1} - \lambda_{2}\right)} + \frac{\left(1 - e^{-\lambda_{1} t i}\right) e^{-\lambda_{1} t} \chi_{1}}{\lambda_{2} - \lambda_{1}} \right)$$
(2.15)

$$N_{3}(t) = \frac{\phi \sigma_{f} N_{25}}{\lambda_{3}} (A + B + C)$$

$$A = \chi_{3} e^{-\lambda_{3}t} (1 - e^{-\lambda_{3}t})$$

$$B = \frac{\lambda_{2} e^{-\lambda_{3}t} (\lambda_{1} - \lambda_{2}) (\chi_{2}\lambda_{1} + \chi_{1}\lambda_{1} - \chi_{2}\lambda_{3}) (1 - e^{-\lambda_{3}t_{i}})}{(\lambda_{1} - \lambda_{3}) (\lambda_{1} - \lambda_{2}) (\lambda_{2} - \lambda_{3})}$$

$$C = \frac{\lambda_{3}\lambda_{2} (\lambda_{2} - \lambda_{3}) \chi_{1} e^{-\lambda_{1}t} (1 - e^{-\lambda_{1}t_{i}})}{(\lambda_{1} - \lambda_{3}) (\lambda_{1} - \lambda_{2}) (\lambda_{2} - \lambda_{3})}$$

$$+ \frac{\lambda_{3} (\lambda_{1} - \lambda_{3}) e^{-\lambda_{2}t} (\chi_{2}\lambda_{2} - \chi_{2}\lambda_{1} - \chi_{1}\lambda_{1}) (1 - e^{-\lambda_{2}t_{i}})}{(\lambda_{1} - \lambda_{3}) (\lambda_{1} - \lambda_{2}) (\lambda_{2} - \lambda_{3})}$$

$$(2.16)$$

It is assumed that FPs N_1 and N_2 are too short-lived to measure. Therefore, their FP yields (χ_1 and χ_2) are taken from the ENDF library, leaving FP N_3 as the only one to be measured [43].

The number of decays during an acquisition period can be calculated by integrating the activity $(A = \lambda N)$ over the acquisition time (from the end of the decay time, t_d , to the end of the acquisition time, $t_d + t_a$). The decay time is defined as the time after irradiation until the beginning of acquisition.

$$Decays_3(t) = \int_{t_d}^{t_d+t_a} \lambda_3 N_3(t) \,\mathrm{d}t \tag{2.17}$$

The number of counts to be measured by the detector is determined by multiplying the decays by the detector efficiency and gamma ray yield at the particular energy being measured.

$$Counts_3(t) = \varepsilon_3 \gamma_3 Decays_3(t) \tag{2.18}$$

Note that the $Decays_3(t)$ term contains the FP yield variable χ_3 . Therefore, inserting the detector efficiency (ε_3), gamma ray yield γ_3 , and counts at the measured peak energy, Equation 2.18 can be rearranged to solve for χ_3 .

2.4.2 Equations for Activation and Neutron Flux Calculation

Knowing the neutron flux at the point of irradiation is vital to the FP yield calculations. In general, a neutron density monitor wire can be used to determine the flux. The National Institute of Standards and Technology (NIST) uses Standard Reference Material (SRM) 953 that is composed of ²⁷Al and ⁵⁹C [44]. Both of these nuclides, while under irradiation, will undergo radiative capture reactions to produce ²⁸Al and ⁶⁰Co, respectively. The gamma radiation emitted from both of these products can be measured to determine the neutron flux. The following procedure uses the Al component, but the same procedure can be used with Co to determine the flux.

During irradiation:

$$\frac{dN_{28}}{dt} = \phi \sigma_c N_{27} - \lambda_{28} N_{28}(t) \tag{2.19}$$

where:

 N_{27} is the original number of 27 Al atoms

 N_{28} is the atom number of 28 Al

 ϕ is the neutron flux $\left[\frac{n}{cm^2s}\right]$

 σ_c is the radiative capture cross-section of $^{27}{\rm Al}~[cm^2]$ weighted for the flux of the reactor used

 λ_{28} is the decay constant of $^{28}\mathrm{Al}~[s^{-1}]$

Converting to the LaPlace domain, rearranging to solve for the $N_{28}(s)$, and then converting back to the time domain:

$$N_{28}(t) = \frac{\phi \sigma_c N_{27} \left(1 - e^{-\lambda_{28} t}\right)}{\lambda_{28}}$$
(2.20)

After irradiation, $t = t_i$:

$$N_{28}(0) = \frac{\phi \sigma_c N_{27} \left(1 - e^{-\lambda_{28} t_i}\right)}{\lambda_{28}}$$
(2.21)

$$\frac{dN_{28}(t)}{dt} = -\lambda_{28}N_{28}(t) \tag{2.22}$$

Therefore, at time t, the number of ²⁸Al atoms in the sample are:

$$N_{28}(t) = \frac{\phi \sigma_c N_{27} \left(1 - e^{-\lambda_{28} t_i}\right) e^{-\lambda_{28} t}}{\lambda_{28}}$$
(2.23)

The decays can be calculated by integrating the activity over the acquisition period:

$$Decays_{28}(t) = \frac{\phi \sigma_c N_{27}}{\lambda_{28}} \left(1 - e^{-\lambda_{28} t_i} \right) \left(e^{-\lambda_{28} t_d} \right) \left(1 - e^{-\lambda_{28} t_a} \right)$$
(2.24)

The number of counts can then be calculated:

$$Counts_{28} = \frac{\varepsilon_{28}\gamma_{28}\phi\sigma_c N_{27}}{\lambda_{28}} \left(1 - e^{-\lambda_{28}t_i}\right) \left(e^{-\lambda_{28}t_d}\right) \left(1 - e^{-\lambda_{28}t_a}\right)$$
(2.25)

Rearranging and solving for the neutron flux:

$$\phi = \frac{\lambda_{28} Counts_{28}}{\varepsilon_{28} \gamma_{28} \sigma_c N_{27}} \frac{1}{(1 - e^{-\lambda_{28} t_i}) (e^{-\lambda_{28} t_d}) (1 - e^{-\lambda_{28} t_a})}$$
(2.26)

2.5 OrigenArp Analysis

To test the theoretical integrity of this method of experimentation, an analysis was conducted using OrigenArp. A sample pressurized water reactor (PWR) core was simulated in a 14x14 geometry using the composition given in Table 2.1.

Table 2.1: Composition of uranium for analysis using OrigenArp.

Mass	$^{234}{ m U}$	$^{238}{ m U}$	Irradiation	
(g)	Concentration	Concentration	Concentration	Time (s)
0.09988	5.4934E-06	7.1914E-04	9.9155E-02	10

The program was set to simulate irradiation for 10 seconds and decay for 3,000,000 seconds. FP concentrations were reported at the following intervals (in seconds) after irradiation: 0, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100, 150, 300, 750, 1000, 1250, 1500, 30000, 7500, 100000, 125000, 300000, 750000, 1000000, 1250000, 1500000, 3000000. The output of the code gives the mass of each FP nuclide at each given time step. The mass can then be converted to number of atoms using Equation 2.27. From here, the calculations given above can be used to determine the FP yield. This will be explained in more detail in Section 4.1. The OrigenArp code used for this analysis is given in Appendix B.

$$N = \frac{m}{A} N_A \tag{2.27}$$

where the following apply:

N is the number of atoms of a particular nuclide

m is the mass in grams of the nuclide within the sample as given in the output of OrigenArp

 ${\cal A}$ is the atomic mass of the nuclide

 N_A is Avogadro's number (6.022E+23 $\frac{atoms}{mole}$).

2.6 Evaluated Nuclear Data File Library

Calculated FP yields will be compared to those given in the Evaluated Nuclear Data File (ENDF)-349 library as compiled by the Lawrence Berkeley National Laboratory. Literature values for cumulative FP yields for nuclides calculated in this experiment are given in Table 2.2. Note that the uncertainties could not be found for these values [43].

Fission Product	Cumulative Yield
95 Zr	0.0650
⁹⁷ Zr	0.0598
⁹⁹ Mo	0.0611
$^{103}\mathrm{Ru}$	0.0303
¹³¹ I	0.0289
¹⁴⁰ Ba	0.0621
$^{143}\mathrm{Ce}$	0.0596
$^{144}\mathrm{Ce}$	0.0550
145 Pr	0.0393
¹⁴⁷ Nd	0.0225

Table 2.2: FP yields for nuclides calculated in this experiment [43].

Chapter 3

Experiment

3.1 Sample Preparation

A small vial (0.20 cm³) was cut in half to hold the sample. Samples used were prepared from Certified Reference Material (CRM) 129-A, shown in Figure 3.1. CRM 129-A has a certified composition of $0.72087 \pm 0.00039\%^{235}$ U and $99.27382 \pm 0.00039\%^{238}$ U [45]. 0.1005 grams of CRM 129-A was placed in the small vial and the lid was heat-sealed on, as depicted in Figures 3.2 and 3.3, to prevent FP gases from escaping. The small vial containing the sample was then placed in the center of a medium vial (1.57 cm³) using halves of a small vial as spacers, shown in Figure 3.4, to center the sample and prevent movement within the vial. The medium vial's lid was then heat-sealed on.

Figure 3.1: CRM 129-A.

Figure 3.2: A small vial cut in half and filled with 0.1005 g of CRM 129-A.

Figure 3.3: Heat sealing the small vial with CRM 129-A inside.

After heat-sealing the medium vial, the NIST SRM 953 neutron density monitor wire, shown in Figure 3.5, was taped to the outside of the medium vial, shown in Figure 3.6. The composition of the wire was certified to be 99.884 \pm 0.002% ²⁷Al and 0.116 \pm 0.002% ⁵⁹Co [44]. Upon irradiation, the ²⁷Al and ⁵⁹Co will undergo radiative capture reactions to form ²⁸Al and ⁶⁰Co with half lives of 2.2414 minutes and 1925.1 days, respectively. ²⁷Al can also undergo an

Figure 3.4: Small vial to be placed in the medium vial using halves of another small vial as spacers to center the sample.

 (n,α) reaction to produce ²⁴Na with a half life of 14.959 hours [46]. The neutron flux at the point of irradiation can be determined by measuring the activity of to ²⁸Al, ⁶⁰Co, or ²⁴Na. The wire was measured to be the same length of the small vial containing the sample to be irradiated.

Figure 3.5: The NIST SRM 953 neutron density monitor wire.

The medium vial was then placed in the center of a large vial (8.84 cm^3) ,

Figure 3.6: SRM 953 taped to the outside of the medium vial.

again using halves of a medium vial as spacers to center the sample and prevent movement inside the vial, shown in Figure 3.7. Table 3.1 gives the specifications for the sample used in this experiment.

Figure 3.7: Medium vial to be placed in the large vial using halves of another medium vial as spacers to center the sample.

Mass of	Mass of	Mass of	Mass of	Mass of
CRM 129-A	$^{235}\mathrm{U}$	Flux Wire	^{27}Al	$^{59}\mathrm{Co}$
(g)	(g)	(g)	(g)	(g)
0.1005	7.245E-04	0.00371	0.00371	4.30E-06
± 0.0001	\pm 8.205 E-07	± 0.00001	\pm 9.99 E-06	\pm 7.51E-08

Table 3.1: The mass of CRM 129-A, the mass of 235 U, the mass of the SRM 953 flux wire, the mass of 27 Al, and the mass of 59 Co for the sample [45].

3.2 TRIGA Mark II Research Reactor

The TRIGA Mark II research reactor at The University of Texas at Austin J.J. Pickle Research Campus is a General Atomics-designed research reactor rated to 1 MW. The reactor was designed with in-core irradiation facilities as well as five beam ports [47]. For this experiment, the manual pneumatic transfer system (PNT) was used for in-core irradiation of the sample.

3.3 Counting

Following irradiation, the sample was allowed to decay for about 30 minutes and carried to the detector in a lead container to adhere to the principles of ALARA (As Low As Reasonably Achievable). The sample was then placed on the detector shown in Figure 3.8 at position A (1.0 cm from the face of the detector, Figure 3.9), raised up into the shielding, and then counted in normal mode approximately one, five, and nine days after irradiation. Note that the shielding is present to minimize the background radiation interactions the detector. Table 3.2 shows the acquisition time for each count following irradiation.

The flux wire was counted at position D (9.0 cm from the face of the detector, Figure 3.10) on a separate HPGe detector for five minutes to determine the flux. At Position D, the wire appears as a point source to the detector.

Figure 3.8: The HPGe detector setup.

Figure 3.9: Position A on the detector is 1.0 cm from the face of the detector.

Decay Time	Acquisition
(s)	Time (s)
86220	28800
435960	86400
775200	259200

Table 3.2: The decay and acquisition times for sample counting.

Figure 3.10: Position D on the detector is 9.0 cm from the face of the detector.

The flux was also calculated by normalizing to 131 I. The previous method of determining the yield of 131 I was used while keeping the flux as an unknown variable, and then back-calculated using the expected FP yield of 131 I to determine the flux. The values calculated using the flux wire were inconsistent with the values from normalizing to 131 I. Therefore, for the rest of this work, the flux calculated by normalizing to 131 I will be used.

3.4 Flux Analysis

To determine the weighted cross-sections of the reactions used in this experiment, a Monte Carlo N-Particle (MCNP) analysis of the PNT was conducted using the MCNP5 code shown in Appendix A. The code simulates the neutron transport in the TRIGA reactor using 1,000,000 neutrons per effective multiplication factor (k_{eff}) cycle for 60 cycles, skipping 10 cycles to let the code converge and initialize the k_{eff} calculation. The output gives the flux per energy bin. The energy bin structure was chosen to match the CINDER'90 63-group cross-sections [48]. Dividing the flux by the width of the energy bin and graphing that against the energy, the flux profile at the point of irradiation in the PNT can be developed, as is demonstrated in Figure 3.11.

Figure 3.11: Flux profile of the PNT in the TRIGA Mark II reactor.

Once the flux profile has been determined, the weighted cross-section for each reaction can be calculated using Equation 3.1. Table 3.3 gives the weighted cross-sections calculated for each reaction.

$$\bar{\sigma} = \frac{\sum_{i=1}^{63} \phi_i \sigma_i}{\sum_{i=1}^{63} \phi_i} \tag{3.1}$$

where the following apply:

 $\bar{\sigma}$ refers to the weighted cross-section for a particular nuclear reaction

 ϕ_i is the flux in energy bin i

 σ_i is the cross-section in energy bin *i*

The sums are indexed over the 63 neutron group energy bins given in the CINDER'90 cross-section library [48]

Both total and thermal cross-sections were included for 235 U and 238 U to prove the first assumption, given in Section 2.4.1, that an overwhelming majority of fissions were from thermal neutron-induced fissions of 235 U. The results show that 95.9% of fissions were due to thermal neutron-induced fission of 235 U. Note that the total cross-section is the sum of the thermal, epithermal, and fast fission cross-sections.

	Weighted Cross-
Reaction	Section (cm^2)
27 Al(n, γ) ²⁸ Al	1.0109E-25
59 Co(n, γ) 60 Co	1.7177E-23
235 U(n,f) [Total]	2.7284E-22
235 U(n,f) [Thermal]	2.6766E-22
238 U(n,f) [Total]	4.75556E-26
$^{238}U(n,f)$ [Thermal]	9.50482E-30

Table 3.3: The weighted cross-sections for the nuclear reactions used for this work.

Chapter 4

Results and Discussion

4.1 OrigenArp Analysis

The OrigenArp input, given in Appendix B, was used to analyze the theoretical integrity of this method for multiple nuclides using assumed decay and acquisition times. The analysis was conducted using a simplified mathematical model on the simulated burnup scenario given in Section 2.5 with activation parameters similar to those used in the sample (see Table 2.1). The yield of each nuclide was calculated without considering the effects of their parents and then compared to values given in ENDF-349. Because the model was simplified to only consider the nuclide for which the FP yield was being calculated, the same basic steps given in Section 2.4 were used considering only N_1 . Therefore, Equation 4.1 was used to calculate the FP yield of each nuclide. Note that the counts were calculated by inserting Equation 4.2 into Equation 4.3, which simulated counting the sample on a detector. The results of the analysis are given in Appendix C.

$$\chi = \frac{\lambda Counts}{\varepsilon \gamma_1 \phi \sigma_f N_{25} \left(1 - e^{-\lambda t_i}\right) \left(e^{\lambda t_d}\right) \left(1 - e^{-\lambda t_a}\right)} \tag{4.1}$$

where, again, the following apply:

 χ is the FP yield

 λ is the decay constant

Counts is the number of counts simulated using Equation 4.3

 ε is the efficiency of the detector at the decay energy

 γ is the gamma ray yield at the decay energy

 ϕ is the flux

 σ_f is the weighted fission cross-section

 N_{25} is the number of 235 U atoms

 t_i, t_d , and t_a are the irradiation, decay, and acquisition times, respectively

$$Decays = N\left(1 - e^{-\lambda t_a}\right) \tag{4.2}$$

where N is derived from Equation 2.27.

$$Counts = \varepsilon \gamma Decays \tag{4.3}$$

As can be seen from the results, the validity of the equations given in Chapter 2 hold for many FPs. In fact, since the rest of this work was completed using the more complex model given in Chapter 2, the accuracy of this method is increased for the analysis of the sample. Table 4.1 shows the results of the OrigenArp analysis on the nuclides given in Table 2.2.

There were some limitations in this analysis. When there is a metastable state that is shorter-lived than its ground state, this method of analysis fails for all nuclides further down in the chain. It is uncertain the reasons why other nuclides failed this test.

	Expected	OrigenArp	Ratio
Nuclide	Cumulative	Cumulative	Calculated/
	Yield	Yield	Expected
$^{95}\mathrm{Zr}$	0.0650	0.0624	0.9600
$^{97}\mathrm{Zr}$	0.0598	0.0589	0.9849
⁹⁹ Mo	0.0611	0.0605	0.9902
103 Ru	0.0303	0.0342	1.1287
^{131}I	0.0289	0.0260	0.8997
^{140}Ba	0.0621	0.0609	0.9807
$^{143}\mathrm{Ce}$	0.0596	0.0574	0.9631
145 Pr	0.0393	0.0390	0.9913
¹⁴⁷ Nd	0.0225	0.0226	1.0044

Table 4.1: Expected cumulative FP yield taken from ENDF library, cumulative yield calculated with OrigenArp results, and ratio of agreement for nuclides calculated in this work.

4.2 Detector Efficiency

To determine the efficiency of the HPGe detectors used to count samples and flux wires, a multi-gamma source was placed on each detector and counted for two hours. The multi-gamma source is composed of 9 nuclides providing 11 distinct gamma ray peaks. The ratio of the count rate as measured by the detector at a given energy with the activity at the time of measurement gives the efficiency of the detector at that particular energy. Tables 4.2 and 4.3 show the gamma rays, their peak energies, their activities at the time of measurement, the number of counts measured, and the detector efficiency at that peak.

Once the efficiencies have been found at multiple energies, an efficiency curve can be created and fitted with a polynomial trendline to develop an equation to estimate the detector efficiency at any energy. Figures 4.1 and 4.3 give the spectra and Figures 4.2 and 4.4 give the efficiency curves for the two detectors used. Equations 4.4 and 4.5 give the efficiency (ε) equations for the detectors used to count the flux wires and FP samples, respectively. Note that E = LOG(Energy).

Table 4.2: Peak energy, activity at time of measurement, counts measured, and detector efficiency for each nuclide in the multi-gamma source on the detector used to count at Position D.

	Peak	Activity at	Counts	Detector
Nuclide	Energy	Measurement	Under	Efficiency
	(keV)	(Bq)	Peak	%
²¹⁰ Pb	46.5	441.42 ± 18.10	31605 ± 200	0.99 ± 0.04
²⁴¹ Am	59.5	325.82 ± 11.40	23929 ± 176	1.02 ± 0.04
¹⁰⁹ Cd	88.0	216.56 ± 10.39	14338 ± 151	0.92 ± 0.05
⁵⁷ Co	122.1	70.97 ± 2.98	4547 ± 105	0.89 ± 0.04
¹³⁹ Ce	165.9	30.39 ± 1.22	1169 ± 62	0.53 ± 0.04
¹¹³ Sn	391.7	26.56 ± 1.06	774 ± 53	0.41 ± 0.03
^{137}Cs	661.7	285.42 ± 11.70	6039 ± 91	0.29 ± 0.01
⁸⁸ Y	898.0	51.62 ± 2.06	688 ± 41	0.19 ± 0.01
⁶⁰ Co	1173.2	474.44 ± 18.98	6574 ± 91	0.19 ± 0.01
⁶⁰ Co	1332.5	474.52 ± 18.98	6013 ± 84	0.18 ± 0.01
⁸⁸ Y	1836.1	54.69 ± 2.19	503 ± 30	0.13 ± 0.01

Table 4.3: Peak energy, activity at time of measurement, counts measured, and detector efficiency for each nuclide in the multi-gamma source on the detector used to count at Position A.

	Peak	Activity at	Counts	Detector
Nuclide	Energy	Measurement	Under	Efficiency
	(keV)	(Bq)	Peak	%
²¹⁰ Pb	46.5	441.09 ± 18.08	310835 ± 610	9.79 ± 0.40
²⁴¹ Am	59.5	325.81 ± 11.40	237228 ± 524	10.11 ± 0.35
$^{109}\mathrm{Cd}$	88.0	213.76 ± 10.26	154747 ± 419	10.05 ± 0.48
⁵⁷ Co	122.1	69.41 ± 2.92	43516 ± 228	8.71 ± 0.37
¹³⁹ Ce	165.9	29.09 ± 1.16	13947 ± 143	6.66 ± 0.27
113 Sn	391.7	25.20 ± 1.01	6094 ± 102	3.36 ± 0.15
^{137}Cs	661.7	285.27 ± 11.70	43979 ± 222	2.14 ± 0.09
⁸⁸ Y	898.0	48.79 ± 1.95	5350 ± 103	1.52 ± 0.07
⁶⁰ Co	1173.2	472.95 ± 18.92	42390 ± 215	1.24 ± 0.05
⁶⁰ Co	1332.5	473.04 ± 18.92	38033 ± 199	1.12 ± 0.05
⁸⁸ Y	1836.1	51.68 ± 2.07	3179 ± 60	0.85 ± 0.04

Figure 4.1: Multi-gamma source spectra used to calibrate the efficiency for the detector used to count flux wires at Position D.

Figure 4.2: Efficiency curve for the detector used to count flux wires at Position D.

Figure 4.3: Multi-gamma source spectra used to calibrate the efficiency for the detector used to count FP samples at Position A.

Figure 4.4: Efficiency curve for the detector used to count FP samples at Position A.

$$\varepsilon_{FluxWire} = 10^{1.1331E^5 - 14.219E^4 + 70.506E^3 - 172.73E^2 + 208.62E - 101.16} \tag{4.4}$$

$$\varepsilon_{FD} = 10^{0.5851E^5 - 8.2686E^4 + 46.236E^3 - 128.02E^2 + 174.97E - 96.187} \tag{4.5}$$

4.3 Flux Calculations

As mentioned in the previous chapter, the NIST SRM 953 neutron density monitor wire was used to calculate the neutron flux at the point of irradiation. The weighted cross-section for the radiative capture of ²⁷Al was $\sigma_c = 1.0310 \times 10^{-25}$ cm^2 . The gamma ray energy measured was 1778.85 keV, which has a gamma ray yield of $\gamma_{28} = 1.00$. The detector efficiency at this energy was $\varepsilon_{28} = 0.0016674$. Table 4.4 shows the flux calculated for the sample given the spectra in Figure 4.5.

Figure 4.5: 28 Al spectra used to calculate the flux at the point of irradiation for the sample.

Table 4.4: Reactor power, irradiation time, decay time, acquisition time, counts measured, and calculated flux for the sample.

Reactor				Counts	
Power	t_i	t_d	t_a	Under	Flux
(kW)	(s)	(s)	(s)	Peak	$\left(\frac{n}{cm^2s}\right)$
100	10	109	300	78138	1.6850E + 12
				± 285	$\pm 3.0746E{+}11$

The flux to normalize to ¹³¹I was calculated to be $3.9070E+11 \pm 6.9570E+10$ $\frac{n}{cm^2s}$. This is in line with expected values that were previously calculated for the PNT at the Nuclear Engineering Teaching Laboratory [47]. The MapleTM15 worksheet used to perform this calculation can be found in Appendix D. As can be seen from the worksheet, all variables are given, including the FP yield of ¹³¹I, while keeping the flux unknown. The calculation was carried out in the same manner as shown in Section 2.4.1; however, rather than calculating the FP yield, the flux was calculated.

It is unclear at this time why the flux wire calculation was approximately four times greater than the normalizing calculation. For the rest of this work, the normalizing flux will be used.

4.4 Fission Product Yield

The normalized flux was inserted into the equations given in the Theory section and FP yields calculated. The spectra given in Figures 4.6, 4.7, and 4.8 were used to determine the counts and their uncertainties for each nuclide in Table 2.2 for decay times of 86220, 435960, and 775200 seconds, respectively. Probabilities of decay to and from a metastable state were taken from the JEFF 3.1.1 nuclear data library [49]. Data used for each FP in the calculations are given in Table 4.5. These data were entered into MapleTM15 worksheets to calculate the FP yield of each nuclide using the method prescribed in Chapter 2. These worksheets are given in Appendix D. Table 4.6 gives the calculated cumulative FP yields and their ratio of agreement with expected values from the ENDF library.

Figure 4.6: The spectra taken from the sample with decay and acquisition times of 86220 and 28800 seconds, respectively.

As can be seen from these data, the FP yields that were calculated align very well with the expected values from the ENDF library. Note that ¹³¹I fits the expected value exactly because that is the FP to which the flux was normalized.

4.5 Sources of Error

One of the largest sources of error originated from the MCNP5 analysis. Because of the relatively low number of particles used, errors in the weighted flux per energy bin ranged from 3.12% to 16.77%. The large range of error is due to

Figure 4.7: The spectra taken from the sample with decay and acquisition times of 435960 and 86400 seconds, respectively.

Figure 4.8: The spectra taken from the sample with decay and acquisition times of 775200 and 259200 seconds, respectively.

Table 4.5: Half-life, decay constant, peak energy, efficiency, gamma ray yield, and decay time for FP yield calculations. Note that the acquisition times for each nuclide can be inferred using Table 3.2.

	Half-	Decay	Peak	Efficiency	Gamma Ray	Decay
Nuclide	Life	Constant	Energy	at Peak	Yield	Time
	(s)	(s^{-1})	(keV)	(%)	(%)	(s)
95 Zr	5531328	1.2531E-07	756.7	2.62 ± 0.13	99.81	435960
⁹⁷ Zr	60480	1.1461E-05	743.4	2.68 ± 0.13	98.23	435960
⁹⁹ Mo	237427	2.9194E-06	739.5	2.69 ± 0.13	12.13	775200
103 Ru	3392928	2.0429E-07	497.1	3.62 ± 0.17	91.00	435960
¹³¹ I	694656	9.9783E-07	364.5	4.55 ± 0.22	81.70	86220
¹⁴⁰ Ba	1101600	6.2922E-07	537.3	3.42 ± 0.16	24.39	86220
¹⁴³ Ce	119232	5.8134E-06	293.3	5.35 ± 0.26	42.80	435960
^{144}Ce	24589440	2.8189E-08	133.5	9.35 ± 0.45	11.09	775200
$^{145}\mathrm{Pr}$	21528	3.2198E-05	121.2	2.67 ± 0.13	52.50	86220
¹⁴⁷ Nd	948672	7.3065E-07	531.0	3.45 ± 0.17	13.09	775200

Table 4.6: Expected cumulative FP yield taken from ENDF library, calculated cumulative yield, and ratio of agreement for nuclides calculated in this work.

	Expected	Calculated	Ratio
Nuclide	Cumulative	Cumulative	Calculated/
	Yield	Yield	Expected
⁹⁵ Zr	0.0650	0.0674 ± 0.0166	1.0364
⁹⁷ Zr	0.0598	0.0637 ± 0.0157	1.0655
⁹⁹ Mo	0.0611	0.0577 ± 0.0142	0.9441
¹⁰³ Ru	0.0303	0.0295 ± 0.0073	0.9750
¹³¹ I	0.0289	0.0289 ± 0.0071	1.0000
¹⁴⁰ Ba	0.0621	0.0600 ± 0.0148	0.9654
$^{143}\mathrm{Ce}$	0.0596	0.0574 ± 0.0142	0.9634
^{144}Ce	0.0550	0.0502 ± 0.0127	0.9129
145 Pm	0.0393	0.0365 ± 0.0090	0.8996
¹⁴⁷ Nd	0.0225	0.0365 ± 0.0050	0.9292

the energy bin structure that was chosen. Some energy bins were smaller than others. Therefore, when the MCNP5 code was run, it calculated fewer particles in the smaller energy bins, and, as a result, there is a higher standard error associated with those energy bins. Another source of error came from determining the efficiencies of the detectors used in this work, which can be found in Tables 4.2 and 4.3. This was dependent on both the number of counts for each nuclide in the multi-gamma source and the uncertainty in initial activity given in the calibration of the source, both of which are also given in Tables 4.2 and 4.3. A third source of error stems from the uncertainty in the isotopic composition of the CRM 129-A uranium used in the sample, given in Section 3.1. Finally, there was uncertainty from the calculation of the flux from both the NIST SRM 953 neutron density monitor wire and the normalization to ¹³¹I, though it was necessary to produce these errors through propagating other sources of error.

4.5.1 Reducing Error

In order to reduce the error created by the MCNP5 analysis, it would be necessary to increase one or more of the following: the range of the energy bins, the number of particles per cycle, and the number of k_{eff} cycles. This would increase the statistical accuracy of the simulation, thus reducing the error to which the MCNP5 analysis contributed. Increasing the count times for the flux wire and sample would increase the number of counts and reduce the error given by the counting statistics.

Chapter 5

Conclusion

5.1 Summary of Work

During the course of this work, three goals were to be accomplished.

The first goal was to assess the theoretical integrity of determining FP yields via the method given in Chapter 2. This method was validated through analyzing an output given by OrigenArp. A simulated irradiation for 10 seconds of 14x14 PWR fuel with composition similar to that of the physical sample was conducted by OrigenArp. The program output gave the masses of various FPs in grams. From there, the FP yields were calculated through a simplified model using the method provided in Section 4.1. Upon validating the method, the weighted flux of the TRIGA Mark II reactor at the point of irradiation needed to be determined.

Before the flux could be calculated for the point of irradiation, it was necessary to determine the weighted radiative capture cross-sections for ²⁷Al and ⁵⁹Co, as well as the total and thermal fission cross-sections for ²³⁵U and ²³⁸U. This was done by developing the neutron flux profile using the MCNP5 code with an input deck that simulated the neutron flux at the PNT in the reactor. After the cross-sections were calculated, the total flux was calculated using a flux wire and also by normalizing to the FP yield of ¹³¹I. These values were inconsistent with one another; therefore, the rest of the work was completed using the flux normalized to ¹³¹I. This accomplished the second goal. At that time, the FP yields could be calculated.

The normalized flux along with other parameters were used with the method given in Chapter 2, and FP yields were calculated after decay times of approximately 1, 5, and 9 days. Of the FPs used in this work, the yields were all within 10.04% of the expected values from the ENDF library. This completed the third goal of setting up a method of determining FP yields using gamma ray spectroscopy.

5.2 Suggestions for Further Work

It would be necessary to conduct an in-depth study to develop an empirical flux profile of the TRIGA Mark II reactor at the PNT. This would allow calculation of the flux at the point of sample irradiation without normalizing to a FP within the sample itself. With the newly determined flux, more FP yields can be calculated using this method. It is important to note that this work set up the method of determining FP yields using gamma ray spectroscopy and proved its viability. More studies must be done to determine the yields of more FPs, particularly those that are shorter-lived.

Appendices

Appendix A

MCNP5 Input Deck

The following MCNP5 input deck was used to analyze the flux at the point of irradiation in the PNT to provide a means for determining the flux-weighted cross-sections for ²⁷Al, ⁵⁹Co, ²³⁵U, and ²³⁸U.

----- UT-TRIGA - Core Model - 12/16/2011 -----с Coordinate origin on core axis at core midplane - Experiment tubes, empty beam ports, empty RSR с - Central thimble fixed and flooded with no sample - Core fully fuelled Edited on 10/01/2012 by Christopher Lu to analyze с flux at PNT с Beginning of Cell Card Specification c ----_____ c Core region 1099 1 -1.0 -202 +206 -231 +232 -233 +234 -235 +236 -241 +242 -243 +244 -245 +246 +5000 +5001 +5002 +5003 +5004 +5005 +5006 +5007 +5008 +5009 +5010 +5011 +5012 +5013 +5014 +5015 +5016 +5017 +5018 +5019 +5020 +5021 +5022 +5023 +5024 +5025 +5026 +5027 +5028 +5029 +5030 +5031 +5032 +5033 +5034 +5035 +5036 +5037 +5038 +5039 +5040 +5041 +5042 +5043 +5044 +5045 +5046 +5048 +5049 +5050 +5051 +5052 +5053 +5054 +5055 +5056 +5057 +5058 +5059 +5060 +5061 +5062 +5063 +5064 +5065 +5066 +5067 +5068 +5069 +5070 +5071 +5072 +5075 +5076 +5077 +5078 +5079 +5080 +5081 +5082 +5083 +5084 +5085 +5086 +5087 +5088 +5089 +5090 +5091 +5092 +5093 +5094 +5095 +5096 +5097 +5098 +5099 +5100 +5102 +5103 +5104 +5105 +5106 +5107 +5108 +5109 +5110 +5112 +5113 +5114 +5117 +5119 +5120+1963 +1964 +1965 +1966 \$ Mapping experiment +1940 \$ 3L +2000 +2001 +2002 +2003 +2004 +2005 +2006 \$ PNT +5118 с 520 -201 +207 -1963 fill=101 (10) \$ 0 Flux mapping water cells 521 0 -201 +207 -1964 fill=101 (11) 522 0 -201 +207 -1965 fill=101 (12) 523 0 -201 +207 -1966 fill=101 (13) с -110 +120 -5000 fill=82 (100) \$ A1 - CT -110 +120 -5001 fill=8 (101) \$ B1 600 0 601 0 602 0 -110 +120 -5002 fill=8 (102) \$ B2 603 0 -110 +120 -5003 fill=8 (103) \$ B3 604 -110 +120 -5004 fill=8 (104) \$ B4 0 605 -110 +120 -5005 fill=8 (105) \$ B5 0 606 0 -110 +120 -5006 fill=8 (106) \$ B6 (107) \$ C1 607 -110 +120 -5007 fill=7 CR(T) 0 608 0 -110 +120 -5008 fill=8 (108) \$ C2 -110 +120 -5009 609 0 fill=8 (109) \$ C3 610 -110 +120 -5010 fill=8 (110) \$ C4 611 0 -110 +120 -5011 fill=8 (111) \$ C5 -110 +120 -5012 fill=8 612 0 (112) \$ C6 613 0 -110 +120 -5013 fill=9 (113) \$ C7 - CR(R)

615	~	-110 +120 -5014	fill=8	(114) \$ C8
619	0	-110 +120 -5015	fill=8	(115) \$ C9
616	0	-110 +120 -5016	fill=8	(116) \$ C10
617	0	-110 +120 -5017	fill=8	(117) \$ C11
618	0	-110 +120 -5018	fill=8	(118) \$ C12
619	0	-110 +120 -5019	fill=8	(119) \$ D1
620	0	-110 +120 -5020	fill=8	(120) \$ D2
621	0	-110 +120 -5021	fill=8	(121) \$ D3
622	0	-110 +120 -5022	fill=8	(122) \$ D4
623	0	-110 +120 -5023	fill=8	(123) \$ D5
624	0	-110 +120 -5024	fill=9	(124) \$ D6 - CR(S1)
625	0	-110 +120 -5025	fill=8	(125) \$ D7
626	0	-110 +120 -5026	fill=8	(126) \$ D8
627	0	-110 +120 -5027	fill=8	(127) \$ D9
628	0	-110 +120 -5028	fill=8	(128) \$ D10
629	0	-110 +120 -5029	fill=8	(129) \$ D11
630	0	-110 +120 -5030	fill=8	(130) \$ D12
631	0	-110 +120 -5031	fill=8	(131) \$ D13
632	0	-110 +120 -5032	fill=9	(132) \$ D14 - CR(S2)
633	0	-110 +120 -5033	fill=8	(133) \$ D15
634	0	-110 +120 -5034	fill=8	(134) \$ D16
635	0	-110 +120 -5035	fill=8	(135) \$ D17
636	0	-110 +120 -5036	fill=8	(136) \$ D18
637	0	-110 +120 -5037	fill=8	(137) \$ E1
638	0	-110 +120 -5038	fill=8	(138) \$ E2
639	0	-110 +120 -5039	fill=8	(139) \$ E3
640	0	-110 +120 -5040	fill=8	(140) \$ E4
641	0	-110 +120 -5041	fill=8	(141) \$ E5
642	0	-110 +120 -5042	fill=8	(142) \$ E6
643	0	-110 +120 -5043	fill=8	(143) \$ E7
644	0	-110 +120 -5044	fill=8	(144) \$ E8
645	0	-110 +120 -5045	fill=8	(145) \$ E9
646	0	-110 +120 -5046	fill=8	(146) \$ E10
c 647	0	-110 +120 -5047	fill=8	(147) \$ E11 - 3L
648	0	-110 +120 -5048	fill=8	(148) \$ E12
649	0	-110 +120 -5049	fill=8	(149) \$ E13
650	0	-110 +120 -5050	fill=8	(150) \$ E14
651	0	-110 +120 -5051	fill=8	(151) \$ E15
652	0	-110 +120 -5052	fill=8	(152) \$ E16
653	ő	-110 +120 -5053	fill=8	(153) \$ E17
654	0	-110 +120 -5054	fill=8	(154) \$ E18
655	ő	-110 +120 -5055	fill=8	(155) \$ E19
656	0	-110 +120 -5056	fill=8	(156) \$ E20
657	õ	-110 +120 -5057	fill=8	(157) \$ 521
658	õ	-110 +120 -5058	fill=8	(158) \$ F22
659	0	-110 +120 -5059	fill=8	(159) \$ F23
660	0	-110 +120 -5060	fill=8	(160) \$ E20
661	0	-110 +120 -5061	fill=8	(160) \$ E1
660	0	-110 +120 -5062	fill=0	(101) ¢ F1 (160) ¢ F0
002	0	-110 +120 -5063	fill=8	(162) \$ F2
	0	-110 +120 -5064	fill=8	(163) \$ 15
664	0	110 120 3004	1111-0	
664 665	0	-110 +120 -5065	fill=8	(165) \$ F5
664 665	0	-110 +120 -5065	fill=8	(164) \$ F4 (165) \$ F5 (166) \$ F6
663 664 665 666	0 0 0	-110 +120 -5065 -110 +120 -5066 -110 +120 -5067	fill=8 fill=8	(164) \$ F4 (165) \$ F5 (166) \$ F6 (167) \$ F7
663 664 665 666 667	0 0 0	-110 +120 -5065 -110 +120 -5066 -110 +120 -5067 -110 +120 -5068	fill=8 fill=8 fill=8 fill=8	(164) \$ F4 (165) \$ F5 (166) \$ F6 (167) \$ F7 (169) \$ F8
663 664 665 666 667 668	0 0 0 0	-110 +120 -5065 -110 +120 -5066 -110 +120 -5067 -110 +120 -5068	fill=8 fill=8 fill=8 fill=8 fill=8	(164) \$ F4 (165) \$ F5 (166) \$ F6 (167) \$ F7 (168) \$ F8
663 664 665 666 667 668 669	0 0 0 0 0	-110 +120 -5065 -110 +120 -5066 -110 +120 -5067 -110 +120 -5068 -110 +120 -5069	fill=8 fill=8 fill=8 fill=8 fill=8 fill=8	(165) \$ F5 (165) \$ F5 (166) \$ F6 (167) \$ F7 (168) \$ F8 (169) \$ F9 (159) \$ F9
663 664 665 666 667 668 669 670 671	0 0 0 0 0	-110 +120 -5065 -110 +120 -5066 -110 +120 -5067 -110 +120 -5068 -110 +120 -5068 -110 +120 -5070 -110 +120 -5071	fill=8 fill=8 fill=8 fill=8 fill=8 fill=8 fill=8	(164) \$ F4 (165) \$ F5 (166) \$ F6 (167) \$ F7 (168) \$ F8 (169) \$ F9 (170) \$ F10 (171) \$ F11
663 664 665 666 667 668 669 670 671	0 0 0 0 0 0 0 0	-110 +120 -5065 -110 +120 -5066 -110 +120 -5067 -110 +120 -5068 -110 +120 -5069 -110 +120 -5070 -110 +120 -5071 -110 +120 -5072	fill=8 fill=8 fill=8 fill=8 fill=8 fill=8 fill=8 fill=8	(165) \$ F5 (166) \$ F5 (167) \$ F7 (168) \$ F8 (169) \$ F9 (170) \$ F10 (171) \$ F11 (172) \$ F12
663 666 667 668 669 670 671 672		-110 +120 -5065 -110 +120 -5066 -110 +120 -5067 -110 +120 -5068 -110 +120 -5069 -110 +120 -5070 -110 +120 -5071 -110 +120 -5072 -110 +120 -5072	fill=8 fill=8 fill=8 fill=8 fill=8 fill=8 fill=8 fill=8 fill=8	(162) * F4 (165) * F5 (166) * F6 (167) * F7 (168) * F8 (169) * F9 (170) * F10 (171) * F11 (172) * F12 (172) * F12 = 21
664 665 666 667 668 669 670 671 672 c 673 c 673		-110 +120 -5065 -110 +120 -5066 -110 +120 -5067 -110 +120 -5069 -110 +120 -5078 -110 +120 -5070 -110 +120 -5071 -110 +120 -5072 -110 +120 -5073	<pre>fill=8 fill=8 fill=8</pre>	(162) * F4 (165) * F5 (166) * F6 (167) * F7 (168) * F8 (169) * F9 (170) * F10 (171) * F11 (172) * F12 (173) * F13 - 3L (172) * F14 - 31
664 665 666 667 668 669 670 671 671 672 c 673 c 674 675		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>fill=8 fill=8 fill=8</pre>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
653 664 665 666 667 668 669 670 671 672 c 673 c 673 c 674 675		$\begin{array}{c} -110 \ +120 \ -5065 \\ -110 \ +120 \ -5066 \\ -110 \ +120 \ -5068 \\ -110 \ +120 \ -5068 \\ -110 \ +120 \ -5076 \\ -110 \ +120 \ -5071 \\ -110 \ +120 \ -5071 \\ -110 \ +120 \ -5073 \\ -110 \ +120 \ -5075 \\ -110 \ +120 \ -5075 \\ -110 \ +120 \ -5075 \end{array}$	<pre>fill=8 fill=8 fill=8</pre>	(105) * F4 (165) * F5 (166) * F6 (167) * F7 (168) * F8 (169) * F9 (170) * F10 (171) * F11 (172) * F12 (173) * F13 - 3L (174) * F14 - 3L (175) * F15 (176) * F16
663 666 665 666 667 668 669 670 671 672 c 673 c 674 675 676 675		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>fill=8 fill=8 fill=8</pre>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
663 664 665 666 667 668 669 670 671 672 c 673 c 674 675 675 675		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>fill=8 fill=8 fill=8</pre>	(162) + F4 (165) + F5 (166) + F6 (167) + F7 (168) + F8 (169) + F8 (170) + F10 (171) + F11 (172) + F12 (173) + F13 - 3L (174) + F14 - 3L (175) + F15 (176) + F16 (177) + F17 (172) + F12
663 664 665 666 667 668 669 670 671 672 c 673 c 674 675 676 677 678 677		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>fill=8 fill=8 fill=8</pre>	(102) * F4 (165) * F5 (166) * F6 (167) * F7 (168) * F8 (169) * F9 (170) * F10 (171) * F11 (172) * F12 (173) * F13 - 3L (174) * F14 - 3L (175) * F15 (176) * F16 (177) * F17 (178) * F18
663 666 667 668 669 670 671 672 c 673 c 674 675 676 677 678 678		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>fill=8 fill=8 fill=8</pre>	(105) * F4 (165) * F5 (166) * F6 (167) * F7 (168) * F8 (169) * F9 (170) * F10 (171) * F11 (172) * F12 (173) * F13 - 3L (174) * F14 - 3L (175) * F15 (176) * F16 (177) * F17 (177) * F18 (179) * F18 (179) * F18
653 664 665 666 667 668 669 670 671 672 c 673 c 673 c 674 675 677 678 677 678 677 678 677 678 677 678 677 678 677 678 677 678 679 689 679 689 679 689 679 689 679		$\begin{array}{c} -110 \ +120 \ -5065 \\ -110 \ +120 \ -5066 \\ -110 \ +120 \ -5067 \\ -110 \ +120 \ -5069 \\ -110 \ +120 \ -5070 \\ -110 \ +120 \ -5070 \\ -110 \ +120 \ -5072 \\ -110 \ +120 \ -5072 \\ -110 \ +120 \ -5075 \\ -110 \ +120 \ -5076 \\ -110 \ +120 \ -5077 \\ -110 \ +120 \ -5077 \\ -110 \ +120 \ -5077 \\ -110 \ +120 \ -5077 \\ -110 \ +120 \ -5077 \\ -110 \ +120 \ -5078 \\ -110 \ +120 \ -5078 \\ -110 \ +120 \ -5080 \\ -100 \ +$	<pre>fill=8 fill=8 fill=8</pre>	(105) \$ F4 (165) \$ F5 (166) \$ F6 (167) \$ F7 (168) \$ F8 (169) \$ F9 (170) \$ F10 (171) \$ F11 (172) \$ F12 (173) \$ F13 - 3L (174) \$ F14 - 3L (175) \$ F15 (176) \$ F15 (176) \$ F16 (177) \$ F17 (178) \$ F18 (179) \$ F19 (180) \$ F20 (181) \$ F20
663 666 667 668 669 670 671 672 c 673 c 674 675 676 677 678 679 680 680 681		$\begin{array}{c} -110 +120 -5065 \\ -110 +120 -5066 \\ -110 +120 -5068 \\ -110 +120 -5068 \\ -110 +120 -5069 \\ -110 +120 -5070 \\ -110 +120 -5071 \\ -110 +120 -5072 \\ -110 +120 -5073 \\ -110 +120 -5075 \\ -110 +120 -5075 \\ -110 +120 -5076 \\ -110 +120 -5077 \\ -110 +120 -5078 \\ -110 +120 -5078 \\ -110 +120 -5081 \\ -110 +120 -5081 \\ -10 +10 +120 -5081 \\ -10 +10 +10 +10 \\ -10 +10 +10 +10 \\ -10 +10 +10 \\ -10 +10 +10 \\ -10 +10 +10 \\ -10 +10 +10 \\ -10 +10 +10 \\ -10 $	<pre>fill=8 fill=8 fill=8</pre>	(102) * F4 (165) * F5 (166) * F6 (167) * F7 (168) * F8 (169) * F9 (170) * F10 (171) * F11 (172) * F12 (173) * F13 - 3L (174) * F14 - 3L (175) * F15 (176) * F16 (177) * F17 (178) * F18 (179) * F19 (180) * F20 (181) * F21
653 664 665 666 667 668 669 670 671 672 c 673 c 674 675 676 677 678 679 681 682 682 682 682 682 682 683 683 683 683 683 683 683 683 683 683 683 683 683 683 683 683 683 685 685 685 685 687 675 676 677 678 679 683 685		$\begin{array}{c} -110 \ +120 \ -5065 \\ -110 \ +120 \ -5066 \\ -110 \ +120 \ -5067 \\ -110 \ +120 \ -5068 \\ -110 \ +120 \ -5069 \\ -110 \ +120 \ -5070 \\ -110 \ +120 \ -5071 \\ -110 \ +120 \ -5072 \\ -110 \ +120 \ -5074 \\ -110 \ +120 \ -5076 \\ -110 \ +120 \ -5076 \\ -110 \ +120 \ -5076 \\ -110 \ +120 \ -50778 \\ -110 \ +120 \ -5078 \\ -110 \ +120 \ -5078 \\ -110 \ +120 \ -5078 \\ -110 \ +120 \ -5080 \\ -110 \ +120 \ -5081 \\ -110 \ +120 \ -5082 \\ -110 \ +120 \ -5082 \\ -110 \ +120 \ -5082 \\ -110 \ +120 \ -5082 \\ -10 \ +10 \ -5082 \\ -10 \ +10 \ -5082 \\ -10 \ +10 \ -5082 \\ -10 \ +10 \ -5082 \\ -10 \ +10 \ -5082 \\ -500 \ +10 \ +10 \ -5082 \\ -500 \ +10 \ +10 \ -5082 \\ -500 \ +10 \ +10 \ -5082 \\ -500 \ +10 \ +10 \ -5082 \\ -500 \ +10 \ +10 \ -5082 \\ -500 \ +10 \ +10 \ -5082 \\ -500 \ +10 \ +10 \ -5082 \\ -500 \ +10 \ +10 \ -5082 \\ -500 \ +10 \ +10 \ -5082 \\ -500 \ +10 \ +10 \ -5082 \\ -500 \ +10 \ +10 \ -5082 \\ -500 \ +10 \ +10 \ +10 \ -5082 \\ -500 \ +10 $	<pre>fill=8 fill=8 fill=8</pre>	(105) \$ F4 (165) \$ F5 (166) \$ F6 (167) \$ F7 (168) \$ F8 (169) \$ F9 (170) \$ F10 (171) \$ F11 (172) \$ F12 (173) \$ F13 - 3L (174) \$ F14 - 3L (175) \$ F15 (176) \$ F16 (177) \$ F15 (176) \$ F16 (177) \$ F17 (178) \$ F18 (179) \$ F18 (179) \$ F18 (181) \$ F21 (182) \$ F22 (182) \$ F22
653 664 665 666 667 668 669 670 671 672 c 673 c 673 c 674 675 675 677 678 677 678 679 680 681 682 682 682 682 682 682 682 682 682 682 682 682 682 682 682 682 683 682 683 682 683 682 683 682 683 682 683 682 683 682 683		$\begin{array}{c} -110 \ +120 \ -5065 \\ -110 \ +120 \ -5066 \\ -110 \ +120 \ -5067 \\ -110 \ +120 \ -5068 \\ -110 \ +120 \ -5070 \\ -110 \ +120 \ -5071 \\ -110 \ +120 \ -5071 \\ -110 \ +120 \ -5072 \\ -110 \ +120 \ -5075 \\ -110 \ +120 \ -5076 \\ -110 \ +120 \ -5076 \\ -110 \ +120 \ -5076 \\ -110 \ +120 \ -5076 \\ -110 \ +120 \ -5076 \\ -110 \ +120 \ -5076 \\ -110 \ +120 \ -5078 \\ -110 \ +120 \ -5078 \\ -110 \ +120 \ -5080 \\ -110 \ +120 \ -5081 \\ -110 \ +120 \ -5083 \\ -110 \ +120 \ -5083 \\ -110 \ +120 \ -5083 \\ -110 \ +120 \ -5083 \\ -110 \ +120 \ -5083 \\ -110 \ +120 \ -5083 \\ -10 \ +100 \ -5083 \\ -10 \ +100 \ -5083 \\ -10 \ +100 \ -5083 \\ -10 \ +100 \ -5083 \\ -500 $	<pre>fill=8 fill=8 fill=8</pre>	$ \begin{array}{c} (162) & 5 \ F4 \\ (165) & 5 \ F5 \\ (166) & 5 \ F6 \\ (167) & 5 \ F7 \\ (168) & 5 \ F8 \\ (169) & 5 \ F9 \\ (170) & 5 \ F10 \\ (171) & 5 \ F11 \\ (172) & 5 \ F12 \\ (173) & 5 \ F13 \ - \ 3L \\ (174) & 5 \ F13 \ - \ 3L \\ (174) & 5 \ F14 \ - \ 3L \\ (175) & 5 \ F15 \\ (176) & 5 \ F15 \\ (176) & 5 \ F16 \\ (177) & 5 \ F17 \\ (178) & 5 \ F18 \\ (179) & 5 \ F19 \\ (180) & 5 \ F20 \\ (181) & 5 \ F21 \\ (182) & 5 \ F22 \\ (182) & 5 \ F22 \\ (183) & 5 \ F23 \\ (142) & 5 \ F26 \\ ($
664 666 666 667 668 669 671 672 c 673 c 674 675 676 677 678 679 678 679 680 681 682 683 684 682		$\begin{array}{c} -110 +120 -5065\\ -110 +120 -5067\\ -110 +120 -5067\\ -110 +120 -5068\\ -110 +120 -5069\\ -110 +120 -5070\\ -110 +120 -5071\\ -110 +120 -5072\\ -110 +120 -5073\\ -110 +120 -5075\\ -110 +120 -5076\\ -110 +120 -5076\\ -110 +120 -5076\\ -110 +120 -5078\\ -110 +120 -5078\\ -110 +120 -5081\\ -110 +120 -5081\\ -110 +120 -5083\\ -110 +120 -5083\\ -110 +120 -5084\\ -110 +100 -508\\ -110 +100 -508\\ -110 +100 -508\\ -110 +100 -508\\ -100 -508\\ -100 -508\\ -100 -508\\ -100 -508\\ -100 -508\\ -100 -508\\ -100 -508\\ -100 -508\\ -100 -508\\ -100 -508\\ -100 -508\\ -100 -508\\ -100 -508\\ -100 -508\\ -100 -508$	<pre>fill=8 fill=8 fill=8</pre>	$ \begin{array}{c} (162) & 5 \ F2 \\ (166) & $ \ F6 \\ (167) & $ \ F7 \\ (168) & $ \ F8 \\ (169) & $ \ F9 \\ (170) & $ \ F10 \\ (171) & $ \ F11 \\ (172) & $ \ F12 \\ (173) & $ \ F13 \ -3L \\ (174) & $ \ F14 \ -3L \\ (175) & $ \ F15 \\ (176) & $ \ F16 \\ (177) & $ \ F17 \\ (178) & $ \ F18 \\ (179) & $ \ F19 \\ (180) & $ \ F20 \\ (181) & $ \ F21 \\ (182) & $ \ F22 \\ (183) & $ \ F23 \\ (184) & $ \ F24 \\ (185) & $ \ F26 \\ (185) & $ \ F26$
653 664 665 666 667 668 669 671 672 c 673 c 674 675 676 677 678 679 680 681 682 683 684 684 684		$\begin{array}{c} -110 \ +120 \ -5065 \\ -110 \ +120 \ -5066 \\ -110 \ +120 \ -5068 \\ -110 \ +120 \ -5068 \\ -110 \ +120 \ -5070 \\ -110 \ +120 \ -5070 \\ -110 \ +120 \ -5071 \\ -110 \ +120 \ -5075 \\ -110 \ +120 \ -5075 \\ -110 \ +120 \ -5076 \\ -110 \ +120 \ -5076 \\ -110 \ +120 \ -5077 \\ -110 \ +120 \ -5077 \\ -110 \ +120 \ -5078 \\ -110 \ +120 \ -5081 \\ -110 \ +120 \ -5081 \\ -110 \ +120 \ -5083 \\ -110 \ +120 \ -5083 \\ -110 \ +120 \ -5084 \\ -110 \ +120 \ -5084 \\ -110 \ +120 \ -5085 \\ -110 \ +120 \ -5085 \\ -110 \ +120 \ -5085 \\ -110 \ +120 \ -5085 \\ -110 \ +120 \ -5085 \\ -110 \ +120 \ -5085 \\ -110 \ +120 \ -5085 \\ -110 \ +120 \ -5085 \\ -10 \ +10 \ -5085 \\ -10 \ +10 \ -5085 \\ -10 \ +10 \ -5085 \\ -10 \ +10 \ -5085 \\ -10 \ +10 \ -5085 \\ -500 \ $	<pre>fill=8 fill=8 fill=8</pre>	$ \begin{array}{c} (162) & 5 \ F4 \\ (165) & 5 \ F5 \\ (166) & 5 \ F6 \\ (167) & 5 \ F7 \\ (168) & 5 \ F8 \\ (169) & 5 \ F9 \\ (170) & 5 \ F10 \\ (171) & 5 \ F11 \\ (172) & 5 \ F12 \\ (173) & 5 \ F13 \ - \ 3L \\ (174) & 5 \ F14 \ - \ 3L \\ (175) & 5 \ F15 \\ (176) & 5 \ F16 \\ (177) & 5 \ F16 \\ (177) & 5 \ F17 \\ (176) & 5 \ F18 \\ (179) & 5 \ F18 \\ (179) & 5 \ F18 \\ (180) & 5 \ F20 \\ (181) & 5 \ F21 \\ (182) & 5 \ F22 \\ (184) & 5 \ F23 \\ (184) & 5 \ F25 \\ (186) & 5 $
653 664 665 666 667 668 669 670 671 672 c 673 c 673 c 674 675 675 676 677 678 679 680 681 682 683 684 682 683 684 682 685 685 685 685 685 685 685 685 685 685 686 682 683 684 685		$\begin{array}{c} -110 \ +120 \ -5065 \\ -110 \ +120 \ -5066 \\ -110 \ +120 \ -5067 \\ -110 \ +120 \ -5068 \\ -110 \ +120 \ -5069 \\ -110 \ +120 \ -5070 \\ -110 \ +120 \ -5071 \\ -110 \ +120 \ -5072 \\ -110 \ +120 \ -5074 \\ -110 \ +120 \ -5076 \\ -110 \ +120 \ -5076 \\ -110 \ +120 \ -5076 \\ -110 \ +120 \ -5076 \\ -110 \ +120 \ -5076 \\ -110 \ +120 \ -5078 \\ -110 \ +120 \ -5078 \\ -110 \ +120 \ -5088 \\ -110 \ +120 \ -5083 \\ -110 \ +120 \ -5083 \\ -110 \ +120 \ -5084 \\ -110 \ +120 \ -5086 \\ -100 \ +100 \ +100 \ -5086 \\ -500 \ +100 \ +100 \ -500 \ +10$	<pre>fill=8 fill=8 fill</pre>	$ \begin{array}{c} (162) & 5 \ F4 \\ (165) & 5 \ F5 \\ (166) & 5 \ F6 \\ (167) & 5 \ F7 \\ (168) & 5 \ F8 \\ (169) & 5 \ F9 \\ (170) & 5 \ F10 \\ (171) & 5 \ F10 \\ (171) & 5 \ F11 \\ (172) & 5 \ F13 \\ (174) & 5 \ F13 \\ (174) & 5 \ F13 \\ (174) & 5 \ F15 \\ (176) & 5 \ F15 \\ (177) & 5 \ F17 \\ (178) & 5 \ F18 \\ (179) & 5 \ F19 \\ (180) & 5 \ F20 \\ (181) & 5 \ F21 \\ (182) & 5 \ F22 \\ (183) & 5 \ F23 \\ (184) & 5 \ F24 \\ (185) & 5 \ F25 \\ (186) & 5 \ F26 \\ (187) & 5 \ F27 \\ \end{array} $
653 666 667 668 669 671 672 c 672 c 674 675 676 677 678 677 678 679 680 681 682 683 684 685 686 687 683 684 685 686 687 686 683 684 685 686 687 686 687 686 683 684 685 686 687 686 687 686 683 686 687 686 687 683 686 685 686 686 687 686 687 682 683 686 686 687 686 686 687 686 686 686 686 687 686 687 686 686 686 687 686 686 687 686 687 686 686 687 686 687 686 687 686 687 686 687 686 687 686 687 686 687		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>fill=8 fill=8 fill</pre>	$ \begin{array}{c} (162) & 5 \ F2 \\ (165) & 5 \ F5 \\ (166) & 5 \ F6 \\ (167) & 5 \ F7 \\ (168) & 5 \ F8 \\ (169) & 5 \ F9 \\ (170) & 5 \ F10 \\ (171) & 5 \ F11 \\ (172) & 5 \ F12 \\ (173) & 5 \ F13 \ -3L \\ (174) & 5 \ F14 \ -3L \\ (175) & 5 \ F15 \\ (176) & 5 \ F16 \\ (177) & 5 \ F15 \\ (176) & 5 \ F16 \\ (177) & 5 \ F17 \\ (178) & 5 \ F18 \\ (179) & 5 \ F19 \\ (180) & 5 \ F20 \\ (181) & 5 \ F22 \\ (183) & 5 \ F23 \\ (184) & 5 \ F24 \\ (186) & 5 \ F26 \\ (187) & 5 \ F27 \\ (186) & 5 \ F26 \\ (187) & 5 \ F27 \\ (146) & 5 \ F26 \\ (187) & 5 \ F27 \\ (167) & 5 \ F26 \\ (187) & 5 \ F27 \\ (167) & 5 \ F27 \\ (177) & 5 \ F27 $
653 666 667 668 669 670 671 672 c 673 c 674 675 676 677 678 677 678 679 680 681 682 683 684 685 686 684 685 686 687 688 682 683 684 685 686 687 688		$\begin{array}{c} -110 \ +120 \ -5065 \\ -110 \ +120 \ -5066 \\ -110 \ +120 \ -5068 \\ -110 \ +120 \ -5068 \\ -110 \ +120 \ -5070 \\ -110 \ +120 \ -5070 \\ -110 \ +120 \ -5071 \\ -110 \ +120 \ -5075 \\ -110 \ +120 \ -5075 \\ -110 \ +120 \ -5076 \\ -110 \ +120 \ -5076 \\ -110 \ +120 \ -5077 \\ -110 \ +120 \ -5077 \\ -110 \ +120 \ -5078 \\ -110 \ +120 \ -5078 \\ -110 \ +120 \ -5081 \\ -110 \ +120 \ -5081 \\ -110 \ +120 \ -5083 \\ -110 \ +120 \ -5088 \\ -110 \ +120 \ -5086 \\ -110 \ +120 \ -5086 \\ -110 \ +120 \ -5088 \\ -110 \ +120 \ -5088 \\ -110 \ +120 \ -5088 \\ -110 \ +120 \ -5088 \\ -110 \ +120 \ -5088 \\ -110 \ +120 \ -5088 \\ -110 \ +120 \ -5088 \\ -110 \ +120 \ -5088 \\ -110 \ +120 \ -5088 \\ -110 \ +120 \ -5088 \\ -110 \ +120 \ -5088 \\ -110 \ +120 \ -5088 \\ -110 \ +120 \ -5088 \\ -110 \ +120 \ -5088 \\ -110 \ +120 \ -5088 \\ -110 \ +120 \ -5088 \\ -110 \ +120 \ -5088 \\ -110 \ +120 \ -5088 \\ -100 \ +100 \ -5088 \\ -100 \ +100 \ -5088 \\ -100 \ +100 \ -5088 \\ -100 \ +100 \ -5088 \\ -100 \ +100 \ -5088 \\ -100 \ +100 \ -5088 \\ -100 \ +100 \ -5088 \\ -100 \ +100 \ -5088 \\ -100 \ +100 \ -5088 \\ -100 \ +100 \ -5088 \\ -100 \ +100 \ -5088 \\ -100 \ +100 \ -5088 \\ -100 \ +100 \ +100 \ -5088 \\ -100 \ +100 \ +100 \ -5088 \\ -100 \ +100 \ +100 \ -5088 \\ -100 \ +100 \ +100 \ -5088 \\ -100 \ +100 \ +100 \ -5088 \\ -100 \ +100 \ +100 \ -5088 \\ -100 \ +10$	<pre>fill=8 fill=8 fill</pre>	(165) \$ F5 (166) \$ F6 (167) \$ F7 (168) \$ F8 (169) \$ F8 (169) \$ F8 (170) \$ F10 (171) \$ F11 (172) \$ F12 (173) \$ F13 - 3L (174) \$ F14 - 3L (175) \$ F14 - 3L (175) \$ F15 (176) \$ F16 (177) \$ F17 (178) \$ F18 (179) \$ F19 (180) \$ F20 (181) \$ F21 (182) \$ F22 (183) \$ F23 (184) \$ F24 (185) \$ F25 (186) \$ F26 (187) \$ F27 (188) \$ F28
653 664 665 666 667 670 671 672 c 673 c 673 c 674 675 676 677 678 679 680 681 682 683 684 685 686 686 687 688		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>fill=8 fill=8 fill</pre>	$ \begin{array}{c} (162) & 5 \ F4 \\ (165) & 5 \ F5 \\ (166) & 5 \ F6 \\ (167) & 5 \ F7 \\ (168) & 5 \ F8 \\ (169) & 5 \ F9 \\ (170) & 5 \ F10 \\ (171) & 5 \ F10 \\ (171) & 5 \ F11 \\ (172) & 5 \ F12 \\ (173) & 5 \ F13 \ -3L \\ (174) & 5 \ F13 \ -3L \\ (174) & 5 \ F14 \ -3L \\ (175) & 5 \ F15 \\ (176) & 5 \ F16 \\ (177) & 5 \ F15 \\ (176) & 5 \ F16 \\ (177) & 5 \ F17 \\ (178) & 5 \ F18 \\ (179) & 5 \ F18 \\ (178) & 5 \ F20 \\ (181) & 5 \ F21 \\ (182) & 5 \ F22 \\ (183) & 5 \ F23 \\ (186) & 5 \ F26 \\ (187) & 5 \ F27 \\ (188) & 5 \ F28 \\ (189) & 5 $
653 666 667 668 669 671 672 c 674 672 c 674 675 676 677 678 677 678 679 680 681 682 683 684 685 686 687 688 688 688 689 689 680 681 682 683 684 685 686 687 688 688 688 688 689 689 689 680 680 681 682 683 684 685 686 687 688 688 688 688 689 689 689 680 682 686 687 688 688 688 688 689 689 689 689 689 680 686 687 688 688 688 689 689 689 680 686 687 688 688 688 689 689 690 700		$\begin{array}{c} -110 + 120 - 5065 \\ -110 + 120 - 5067 \\ -110 + 120 - 5067 \\ -110 + 120 - 5068 \\ -110 + 120 - 5078 \\ -110 + 120 - 5070 \\ -110 + 120 - 5071 \\ -110 + 120 - 5071 \\ -110 + 120 - 5077 \\ -110 + 120 - 5075 \\ -110 + 120 - 5075 \\ -110 + 120 - 5076 \\ -110 + 120 - 5076 \\ -110 + 120 - 5078 \\ -110 + 120 - 5078 \\ -110 + 120 - 5081 \\ -110 + 120 - 5081 \\ -110 + 120 - 5083 \\ -110 + 120 - 5084 \\ -110 + 120 - 5088 \\ -110 + 120 - 5088 \\ -110 + 120 - 5088 \\ -110 + 120 - 5088 \\ -110 + 120 - 5088 \\ -110 + 120 - 5088 \\ -110 + 120 - 5088 \\ -110 + 120 - 5088 \\ -110 + 120 - 5088 \\ -110 + 120 - 5088 \\ -110 + 120 - 5088 \\ -110 + 120 - 5088 \\ -110 + 120 - 5089 \\ -110 + 120 - 5099 \\ -110 + 120 - 5099 \\ -110 + 120 - 5099 \\ -110 + 120 - 5090 \\ -110 + 120 - 5090 \\ -110 + 120 - 5090 \\ -110 + 120 - 5090 \\ -110 + 120 - 5090 \\ -110 + 120 - 5090 \\ -110 + 120 - 5090 \\ -110 + 120 - 5090 \\ -110 + 120 - 5090 \\ -110 + 120 - 5090 \\ -110 + 120 - 5008 \\ -110 + 120 - 5008 \\ -110 + 120 - 5089 \\ -110 + 120 - 508 \\ -10 + 120 - 508 \\ -10 + 120 - 508 \\ -10 + 120 - 508 \\ -10 + 10 + 100 \\ -10 + 10 + 100 \\ -10 + 10 + 100 \\ -10 + 10 + 100 \\ -10 + 10 + 10 \\ -10 + 10 + 10 \\ -10 + 10 + 10 \\ -10 + 10 + 10 \\ -10 + 10 + 10 \\ -10 + 10 + 10 \\ -10 + 10 + 10 \\ -10 + 10 \\ -10 + 10 \\ -10 + 10 \\ -10 + 10 \\ -10 + 10 \\ -10 + 10 \\ -10 + 10 \\ -10 + 10 \\ -10 + 10 \\ -10 + 10 \\ -10 + 10 \\ -10 + 10 \\ -10 + 10 \\ -10 + 10 \\ -10 + 10 \\ -10 + 10 \\ -10 + 10 \\$	<pre>fill=8 fill=8 fill</pre>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
653 666 667 668 669 670 671 672 c 673 c 674 675 676 677 678 677 678 679 680 681 682 683 684 685 684 685 686 687 688 689 699 690 691 692 693 693 694 693 693 694 693		$\begin{array}{c} -110 \ +120 \ -5065 \\ -110 \ +120 \ -5066 \\ -110 \ +120 \ -5068 \\ -110 \ +120 \ -5068 \\ -110 \ +120 \ -5069 \\ -110 \ +120 \ -5070 \\ -110 \ +120 \ -5071 \\ -110 \ +120 \ -5075 \\ -110 \ +120 \ -5075 \\ -110 \ +120 \ -5076 \\ -110 \ +120 \ -5076 \\ -110 \ +120 \ -5077 \\ -110 \ +120 \ -5077 \\ -110 \ +120 \ -5078 \\ -110 \ +120 \ -5078 \\ -110 \ +120 \ -5083 \\ -110 \ +120 \ -5083 \\ -110 \ +120 \ -5088 \\ -110 \ +120 \ -5086 \\ -110 \ +120 \ -5088 \\ -110 \ +120 \ -5088 \\ -110 \ +120 \ -5088 \\ -110 \ +120 \ -5088 \\ -110 \ +120 \ -5088 \\ -110 \ +120 \ -5088 \\ -110 \ +120 \ -5088 \\ -110 \ +120 \ -5088 \\ -110 \ +120 \ -5088 \\ -110 \ +120 \ -5088 \\ -110 \ +120 \ -5088 \\ -110 \ +120 \ -5088 \\ -110 \ +120 \ -5089 \\ -110 \ +120 \ -5091 \\ -10 \ +120 \ -5091 \\ \end{array}$	<pre>fill=8 fill=8 fill=8</pre>	(105) \$ F5 (166) \$ F6 (167) \$ F7 (168) \$ F8 (169) \$ F8 (169) \$ F8 (170) \$ F10 (171) \$ F11 (172) \$ F12 (173) \$ F13 - 3L (174) \$ F14 - 3L (175) \$ F14 - 3L (175) \$ F15 (176) \$ F16 (177) \$ F17 (178) \$ F18 (179) \$ F19 (180) \$ F20 (181) \$ F21 (182) \$ F22 (183) \$ F23 (184) \$ F24 (185) \$ F25 (186) \$ F26 (187) \$ F27 (188) \$ F28 (189) \$ F29 (190) \$ F30 (191) \$ C2 - Graphite
653 664 665 666 667 670 671 672 c 674 675 676 677 678 679 680 681 682 683 684 683 684 685 686 687 688 686 687 688 689 699 690 691 692		$\begin{array}{c} -110 \ +120 \ -5065\\ -110 \ +120 \ -5066\\ -110 \ +120 \ -5068\\ -110 \ +120 \ -5068\\ -110 \ +120 \ -5070\\ -110 \ +120 \ -5070\\ -110 \ +120 \ -5071\\ -110 \ +120 \ -5073\\ -110 \ +120 \ -5075\\ -110 \ +120 \ -5075\\ -110 \ +120 \ -5076\\ -110 \ +120 \ -5076\\ -110 \ +120 \ -5078\\ -110 \ +120 \ -5078\\ -110 \ +120 \ -5080\\ -110 \ +120 \ -5080\\ -110 \ +120 \ -5080\\ -110 \ +120 \ -5080\\ -110 \ +120 \ -5080\\ -110 \ +120 \ -5080\\ -110 \ +120 \ -5080\\ -110 \ +120 \ -5083\\ -110 \ +120 \ -5083\\ -110 \ +120 \ -5088\\ -110 \ +120 \ -5086\\ -110 \ +120 \ -5086\\ -110 \ +120 \ -5086\\ -110 \ +120 \ -5088\\ -110 \ +120 \ -5088\\ -110 \ +120 \ -5088\\ -110 \ +120 \ -5089\\ -110 \ +120 \ -5089\\ -110 \ +120 \ -5090\\ -110 \ +120 \ -5090\\ -110 \ +120 \ -5092\\ \end{array}$	<pre>fill=8 fill=8 fill=8</pre>	(105) \$ F5 (166) \$ F5 (166) \$ F6 (167) \$ F7 (168) \$ F8 (169) \$ F9 (170) \$ F10 (171) \$ F11 (171) \$ F13 - 3L (174) \$ F13 - 3L (174) \$ F14 - 3L (175) \$ F15 (176) \$ F15 (176) \$ F15 (176) \$ F15 (177) \$ F17 (178) \$ F18 (179) \$ F19 (180) \$ F20 (181) \$ F21 (182) \$ F22 (183) \$ F23 (184) \$ F23 (184) \$ F24 (185) \$ F25 (186) \$ F26 (187) \$ F27 (188) \$ F28 (189) \$ F28 (189) \$ F29 (190) \$ F30 (191) \$ C2 - Graphite (192) \$ C3
653 664 665 666 667 668 669 671 672 c 674 675 676 677 678 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693		$\begin{array}{c} -110 + 120 - 5065 \\ -110 + 120 - 5066 \\ -110 + 120 - 5068 \\ -110 + 120 - 5068 \\ -110 + 120 - 5078 \\ -110 + 120 - 5070 \\ -110 + 120 - 5071 \\ -110 + 120 - 5071 \\ -110 + 120 - 5073 \\ -110 + 120 - 5075 \\ -110 + 120 - 5075 \\ -110 + 120 - 5076 \\ -110 + 120 - 5076 \\ -110 + 120 - 5078 \\ -110 + 120 - 5078 \\ -110 + 120 - 5081 \\ -110 + 120 - 5081 \\ -110 + 120 - 5083 \\ -110 + 120 - 5083 \\ -110 + 120 - 5084 \\ -110 + 120 - 5088 \\ -110 + 120 - 5088 \\ -110 + 120 - 5088 \\ -110 + 120 - 5088 \\ -110 + 120 - 5088 \\ -110 + 120 - 5088 \\ -110 + 120 - 5088 \\ -110 + 120 - 5089 \\ -110 + 120 - 5098 \\ -110 + 120 - 5099 \\ -110 + 120 - 5099 \\ -110 + 120 - 5099 \\ -110 + 120 - 5093 \\ -110 + 120 - 5093 \\ -110 + 120 - 5093 \\ -110 + 120 - 5093 \\ -110 + 120 - 5093 \\ -110 + 120 - 5093 \\ -110 + 120 - 5093 \\ -10 + 10 + 10 + 50 \\ -10 + 10 + 10 + 50 \\ -10 + 10 + 10 + 50 \\ -10 + 10 + 10 + 50 \\ -10 + 10 + 10 + 50 \\ -10 + 10 + 10 + 50 \\ -10 + 10 + 10 + 50 \\ -10 + 10 + 10 + 50 \\ -10 + 10 + 10 + 50 \\ -10 + 10 + 10 + 50 \\ -10 + 10 + 10 + 50 \\ -1$	<pre>fill=8 fill=8 fill</pre>	<pre>(104) \$ F2 (165) \$ F5 (166) \$ F6 (167) \$ F7 (168) \$ F8 (169) \$ F9 (170) \$ F10 (171) \$ F11 (172) \$ F12 (173) \$ F13 - 3L (174) \$ F14 - 3L (175) \$ F15 (176) \$ F16 (177) \$ F17 (178) \$ F18 (179) \$ F19 (180) \$ F20 (181) \$ F21 (182) \$ F22 (183) \$ F23 (184) \$ F24 (185) \$ F25 (186) \$ F26 (187) \$ F27 (188) \$ F28 (189) \$ F28 (189) \$ F29 (190) \$ F30 (191) \$ G2 - Graphite (192) \$ G3</pre>
653 666 667 668 669 670 671 672 c $673c$ $674675676677678679689680681682683684685686687688689699690691692693694$		$\begin{array}{c} -110 \ +120 \ -5065\\ -110 \ +120 \ -5066\\ -110 \ +120 \ -5068\\ -110 \ +120 \ -5068\\ -110 \ +120 \ -5069\\ -110 \ +120 \ -5070\\ -110 \ +120 \ -5071\\ -110 \ +120 \ -5075\\ -110 \ +120 \ -5075\\ -110 \ +120 \ -5076\\ -110 \ +120 \ -5076\\ -110 \ +120 \ -5076\\ -110 \ +120 \ -5076\\ -110 \ +120 \ -5078\\ -110 \ +120 \ -5078\\ -110 \ +120 \ -5081\\ -110 \ +120 \ -5081\\ -110 \ +120 \ -5083\\ -110 \ +120 \ -5083\\ -110 \ +120 \ -5088\\ -110 \ +120 \ -5088\\ -110 \ +120 \ -5088\\ -110 \ +120 \ -5088\\ -110 \ +120 \ -5088\\ -110 \ +120 \ -5088\\ -110 \ +120 \ -5088\\ -110 \ +120 \ -5088\\ -110 \ +120 \ -5088\\ -110 \ +120 \ -5088\\ -110 \ +120 \ -5088\\ -110 \ +120 \ -5088\\ -110 \ +120 \ -5089\\ -110 \ +120 \ -5093\\ -110 \ +120 \ -5093\\ -110 \ +120 \ -5093\\ -110 \ +120 \ -5093\\ -110 \ +120 \ -5093\\ -110 \ +120 \ -5093\\ -110 \ +120 \ -5093\\ -110 \ +120 \ -5094\\ \end{array}$	<pre>fill=8 fill=8 fill</pre>	(105) \$ F5 (166) \$ F6 (167) \$ F7 (168) \$ F8 (169) \$ F8 (169) \$ F8 (170) \$ F10 (171) \$ F11 (172) \$ F12 (173) \$ F13 - 3L (174) \$ F14 - 3L (175) \$ F14 - 3L (175) \$ F15 (176) \$ F16 (177) \$ F17 (178) \$ F18 (179) \$ F19 (180) \$ F20 (181) \$ F21 (182) \$ F22 (183) \$ F23 (183) \$ F23 (184) \$ F24 (185) \$ F25 (186) \$ F26 (186) \$ F26 (187) \$ F27 (188) \$ F28 (189) \$ F29 (190) \$ F30 (191) \$ C2 - Graphite (192) \$ G3 (193) \$ C4
653 664 665 666 667 668 669 670 671 672 c 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 699 690 691 692 695		$\begin{array}{c} -110 \ +120 \ -5065\\ -110 \ +120 \ -5066\\ -110 \ +120 \ -5068\\ -110 \ +120 \ -5068\\ -110 \ +120 \ -5070\\ -110 \ +120 \ -5071\\ -110 \ +120 \ -5071\\ -110 \ +120 \ -5073\\ -110 \ +120 \ -5075\\ -110 \ +120 \ -5075\\ -110 \ +120 \ -5076\\ -110 \ +120 \ -5076\\ -110 \ +120 \ -5078\\ -110 \ +120 \ -5078\\ -110 \ +120 \ -5080\\ -110 \ +120 \ -5080\\ -110 \ +120 \ -5080\\ -110 \ +120 \ -5080\\ -110 \ +120 \ -5080\\ -110 \ +120 \ -5080\\ -110 \ +120 \ -5080\\ -110 \ +120 \ -5080\\ -110 \ +120 \ -5083\\ -110 \ +120 \ -5088\\ -110 \ +120 \ -5088\\ -110 \ +120 \ -5086\\ -110 \ +120 \ -5088\\ -110 \ +120 \ -5088\\ -110 \ +120 \ -5088\\ -110 \ +120 \ -5088\\ -110 \ +120 \ -5089\\ -110 \ +120 \ -5090\\ -110 \ +120 \ -5093\\ -110 \ +120 \ -5093\\ -110 \ +120 \ -5093\\ -110 \ +120 \ -5093\\ -110 \ +120 \ -5093\\ -110 \ +120 \ -5093\\ -110 \ +120 \ -5093\\ -110 \ +120 \ -5093\\ -110 \ +120 \ -5093\\ -110 \ +120 \ -5093\\ -110 \ +120 \ -5093\\ -110 \ +120 \ -5093\\ -110 \ +120 \ -5093\\ -110 \ +120 \ -5093\\ -110 \ +120 \ -5093\\ -110 \ +120 \ -5095\\ -100 \ +120 \ -5005\\ -100 \ +120 \ -5005\\ -100 \ +120 \ -5005\\ -100 \ +120 \ -5005\\ -100 \ +120 \ -5005\\ -100 \ +120 \ -5005\\ -100 \ +120 \ -5005\\ -100 \ +120 \ -5005\\ -100 \ +120 \ -5005\\ -100 \ +120 \ -5005\\ -100 \ +120 \ -5005\\ -100 \ +120 \ -5005\\ -100 \ +120 \ -5005\\ -100 \ +120 \ -5005\\ -100 \ +120 \ -5005\\ -100 \ +120 \ -5005\\ -100 \ +120 \ -5005\\ -100 \ +120 \ -5005\ +100\ +120 \ -5005\ +100\ $	<pre>fill=8 fill=8 fill</pre>	(105) \$ F5 (166) \$ F6 (167) \$ F7 (168) \$ F8 (169) \$ F8 (169) \$ F8 (170) \$ F10 (171) \$ F11 (171) \$ F13 - 3L (174) \$ F14 - 3L (174) \$ F14 - 3L (177) \$ F15 (176) \$ F16 (177) \$ F17 (177) \$ F17 (177) \$ F18 (177) \$ F18 (177) \$ F18 (177) \$ F18 (177) \$ F19 (180) \$ F20 (181) \$ F21 (182) \$ F22 (183) \$ F23 (184) \$ F24 (185) \$ F25 (186) \$ F26 (187) \$ F27 (188) \$ F28 (189) \$ F29 (190) \$ F30 (191) \$ C2 - Graphite (192) \$ C3 (193) \$ C4 (194) \$ C5
		$\begin{array}{c} -110 + 120 - 5065 \\ -110 + 120 - 5067 \\ -110 + 120 - 5068 \\ -110 + 120 - 5068 \\ -110 + 120 - 5078 \\ -110 + 120 - 5070 \\ -110 + 120 - 5071 \\ -110 + 120 - 5071 \\ -110 + 120 - 5073 \\ -110 + 120 - 5075 \\ -110 + 120 - 5076 \\ -110 + 120 - 5076 \\ -110 + 120 - 5076 \\ -110 + 120 - 5078 \\ -110 + 120 - 5078 \\ -110 + 120 - 5081 \\ -110 + 120 - 5081 \\ -110 + 120 - 5083 \\ -110 + 120 - 5083 \\ -110 + 120 - 5088 \\ -110 + 120 - 5088 \\ -110 + 120 - 5088 \\ -110 + 120 - 5088 \\ -110 + 120 - 5088 \\ -110 + 120 - 5088 \\ -110 + 120 - 5088 \\ -110 + 120 - 5088 \\ -110 + 120 - 5088 \\ -110 + 120 - 5088 \\ -110 + 120 - 5089 \\ -110 + 120 - 5099 \\ -110 + 120 - 5099 \\ -110 + 120 - 5093 \\ -110 + 120 - 5093 \\ -110 + 120 - 5093 \\ -110 + 120 - 5093 \\ -110 + 120 - 5093 \\ -110 + 120 - 5095 \\ -110 + 120 - 5096 \\ -110 + 120 - 508 \\ -110 + 120 - 508 \\ -110 + 120 - 508 \\ -110 + 120 - 508 \\ -110 + 120 - 508 \\ -110 + 120 - 508 \\ -110 + 120 - 508 \\ -110 + 120 - 508 \\ -110 + 120 - 508 \\ -110 + 120 - 508 \\ -110 + 120 - 508 \\ -10 + 10 + 10 \\ -10 + 10 \\ -10 + 10 + 10 \\ -10 + 1$	<pre>fill=8 fill=8 fill</pre>	<pre>(102, 3 F4 (165) \$ F5 (166) \$ F6 (167) \$ F7 (168) \$ F8 (169) \$ F9 (170) \$ F10 (171) \$ F11 (172) \$ F12 (173) \$ F13 - 3L (174) \$ F14 - 3L (175) \$ F15 (176) \$ F16 (177) \$ F17 (178) \$ F18 (179) \$ F19 (180) \$ F20 (181) \$ F21 (182) \$ F22 (181) \$ F21 (182) \$ F22 (183) \$ F23 (184) \$ F24 (185) \$ F25 (186) \$ F26 (187) \$ F27 (188) \$ F28 (189) \$ F29 (190) \$ F30 (191) \$ G2 - Graphite (192) \$ G3 (193) \$ G4 (195) \$ G6 (195) \$ G6</pre>

698 -110 +120 -5098 fill=8 (198) \$ G10 0 699 0 -110 +120 -5099 fill=8 (199) \$ G11 -110 +120 -5100 fill=8 (200) \$ G12 700 0 c 701 0 -110 +120 -5101 fill=6 (201) \$ G14 702 0 -110 +120 -5102 fill=8 (202) \$ G15 -110 +120 -5103 (203) \$ G16 - Graphite 703 0 fill=6 704 0 -110 +120 -5104 fill=8 (204) \$ G17 705 0 -110 +120 -5105 fill=8 (205) \$ G18 706 -110 +120 -5106 fill=6 (206) \$ G20 - Graphite 0 707 0 -110 +120 -5107 fill=8 (207) \$ G21 708 0 -110 +120 -5108 fill=8 (208) \$ 622 -110 +120 -5109 fill=8 709 (209) \$ G23 710 0 -110 +120 -5110 fill=6 (210) \$ G24 - Graphite -110 +120 -5111 fill=8 (211) \$ G26 c 711 0 712 0 -110 +120 -5112 fill=8 (212) \$ G27 713 0 -110 +120 -5113 fill=8 (213) \$ G28 714 -110 +120 -5114 fill=8 (214) \$ G29 0 c 715 0 -110 +120 -5115 fill=8 (215) \$ G30 -110 +120 -5116 fill=8 (216) \$ G32 - Source -110 +120 -5117 fill=6 (217) \$ G33 - Graphite c 716 0 717 0 0 -110 +120 -5118 fill=8 (218) \$ G34 - PNT 0 -110 +120 -5119 fill=6 (219) \$ G35 - Graphite c 718 719 0 -110 +120 -5120 fill=6 (220) \$ G36 - Graphite 720 с c 750 0 -110 +120 -1940 fill=96 (50) \$ Sleeve irradiator с c 751 0 -110 +120 -961 fill=40 (20) \$ 3L(Mat) irradiator с 751 0 -110 +120 -1940 fill=45 (50) \$ 3L(Cd) irradiator с 752 0 -110 +120 -5118 fill=30 (218) \$ tPNT irradiator с c 752 0 -110 +120 -5118 fill=35 (218) \$ ePNT irradiator с c Lower grid plate region c --1 2 -2.7 -206 +207 -211 +212 -213 +214 -215 +216 -221 +222 -223 +224 -225 +226 +5000 +5001 +5002 +5003 +5004 +5005 +5006 +5007 +5008 +5009 +5010 +5011 +5012 +5013 +5014 +5015 +5016 +5017 +5018 +5019 +5020 +5021 +5022 +5023 +5024 +5025 +5026 +5027 +5028 +5029 +5030 +5031 +5032 +5033 +5034 +5035 +5036 +5037 +5038 +5039 +5040 +5041 +5042 +5043 +5044 +5045 +5046 +5048 +5049 +5050 +5051 +5052 +5053 +5054 +5055 +5056 +5057 +5058 +5059 +5060 +5061 +5062 +5063 +5064 +5065 +5066 +5067 +5068 +5069 +5070 +5071 +5072 +5075 +5076 +5077 +5078 +5079 +5080 +5081 +5082 +5083 +5084 +5085 +5086 +5087 +5088 +5089 +5090 +5091 +5092 +5093 +5094 +5095 +5096 +5097 +5098 +5099 +5100 +5102 +5103 +5104 +5105 +5106 +5107 +5108 +5109 +5110 +5112 +5113 +5114 +5117 +5119 +5120+1963 +1964 +1965 +1966 \$ Mapping experiment +1940 \$ 3L +5118\$ PNT +5111 +5115 с с +5039 +5040 +5063 +5064 +5065 +5093 +5094 \$ Elements in 6L с +961\$ 3L с c ---c Upper grid plate region с 2 2 -2.7 -203 -201 +202 +5000 +5001 +5002 +5003 +5004 +5005 +5006 +5007 +5008 +5009 +5010 +5011 +5012 +5013 +5014 +5015 +5016 +5017 +5018 +5019 +5020 +5021 +5022 +5023 +5024 +5025 +5026 +5027 +5028 +5029 +5030 +5031 +5032 +5033 +5034 +5035 +5036 +5037 +5038 +5039 +5040 +5041 +5042 +5043 +5044 +5045 +5046 +5048 +5049 +5050 +5051 +5052 +5053 +5054 +5055 +5056 +5057 +5058 +5059 +5060 +5061 +5062 +5063 +5064 +5065 +5066 +5067 +5068 +5069 +5070 +5071 +5072 +5075 +5076 +5077 +5078 +5079 +5080 +5081 +5082 +5083 +5084 +5085 +5086 +5087 +5088 +5089 +5090 +5091 +5092 +5093 +5094 +5095 +5096 +5097 +5098 +5099 +5100+5102 +5103 +5104 +5105 +5106 +5107 +5108 +5109 +5112 +5113 +5114 +5117 +5110 +5119 +5120 +1963 +1964 +1965 +1966 \$ Mapping experiment +1940 \$ 3L +5118 \$ PNT с +5111 +5115 +5039 +5040 +5063 +5064 +5065 +5093 +5094 \$ Elements in 6L с с +961 \$ 3L с

c c Re	act	or core	e struct	ture			
c							
c In	ner	core s	shroud				
10	2	-2.7	-300	+302	-303	+202	\$ Alignment ring
11	2	-2.7	-300	-202	+352		\$ Alignment ring
			(+231:	-232:	+241:	-242:	
			+233:	-234:	+243:	-244:	
12	2	-2.7	+305	-306	+307	-240)	\$ Shroud load ring
	-		(-311	+312	-321	+322	*8
			-313	+314	-323	+324	
10	~	0.7	-315	+316	-325	+326)	• • • • • • • • • • • • • • • • • • •
13	2	-2.7	-301	-352	+304	-342.	\$ Alignment ring
			+333:	-334:	+343:	-344:	
			+335:	-336:	+345:	-346)	
14	2	-2.7	+231	-331	-233	+236	<pre>\$ Reflector plate</pre>
15	2	-2.7	-352 -232	+332	+234	-235	<pre>\$ Beflector plate</pre>
10	~	2	-352	+306	201	200	+ Molicouol place
16	2	-2.7	+241	-341	-343	-345	<pre>\$ Reflector, bp3</pre>
47	~	0.7	-352	+306	+363	.040	A D CI · · · · · ·
17	2	-2.7	-242	+342	+344	+346	<pre>% Reflector plate</pre>
18	2	-2.7	+233	-333	-331	-343	<pre>\$ Reflector plate</pre>
			-352	+306			*
19	2	-2.7	-234	+334	+332	+344	<pre>\$ Reflector plate</pre>
00	~	0.7	-352	+306		245	A D-flt
20	2	-2.7	+235	-335 +306	+332	-345	\$ Reflector plate
21	2	-2.7	-236	+336	-331	+346	<pre>\$ Reflector plate</pre>
			-352	+306			-
22	2	-2.7	+243	-343	-241	-233	\$ Reflector plate
23	2	-2 7	-352	+306	+242	+234	<pre>\$ Reflector plate</pre>
20	~	2	-352	+306		. 201	+ Molicouol place
24	2	-2.7	+245	-345	-241	-235	<pre>\$ Reflector plate</pre>
	~		-352	+306			
25	2	-2.7	-246	+346	+242	+236	<pre>% Reflector plate</pre>
26	2	-2.7	+241	-363	+364	-360	<pre>\$ Reflector BP3</pre>
27	2	-2.7	-361	+362	-100		<pre>\$ Reflector BP1&5</pre>
с							
c		ctor of	tor sh	roud st	tructu		
c							
30	2	-2.7	-355	+361			<pre>\$ Reflector cylin</pre>
	~		-350	+351	-352	+353	
31	2	-2.7	+355	+363	-352	+353	<pre>\$ Reflector cylin</pre>
32	2	-2.7	-370	+371	-372	+373	\$ Cvlinder, top
33	2	-2.7	-374	-375	+376		\$ Cylinder, bot
			(+331:	-332:	+341:	-342:	
			+333:	-334:	+343:	-344:	
34	2	-2.7	+335:	-330: +374	+345:	-346) +377	\$ Beflector edge ring
35	2	-2.7	-352	-371	+380	+381	\$ Reflector RSR unit
36	2	-2.7	-380	+300	+381	-382	<pre>\$ Reflector RSR unit</pre>
37	2	-2.7	-352	+301	-300	+381	<pre>\$ Reflector RSR unit</pre>
38	1	-1.0	+370	-351	-377	+120	<pre>\$ Edge ring error</pre>
c							
c Re	fle	ctor gi	aphite	modera	ator		
c							
40	4	-2.25	-400) +40	1 -402	2 +403	<pre>% Reflector graphite</pre>
-11	-1	2.20	(+41)	1: -41	2: +42	1: -422:	
			+413	3: -414	4: +423	3: -424:	
			+415	5: -410	6: +42	5: -426)	• • • • • • • • •
40	4	-0.05	#(-36)	1 +40	5) 2 + 271	+404 +262	\$ Graphite, bp1&5
72	-	2.20	(+411	1: -412	2: +42:	1: -422:	
			+413	3: -414	4: +423	3: -424:	
			+415	5: -410	6: +428	5: -426))	
40	<u> </u>	4.45	#(-406	5 +408) #(-4(07 +409)	<pre>\$ Graphite, bp3 \$ Graphite</pre>
43 44	о 8	-1.15e-	-3 (+3/1	1 -351 1 -40:	-313 - 3 +37!	-404 +361	φ Graphite Vold?????
	2		(+33)	1: -332	2: +34:	1: -342:	
			+333	3: -334	4: +343	3: -344:	
45	0	-1.45	+335	5: -336	6: +34	5: -346)) #41	<pre>\$ graphite void</pre>
4D	0	1.196-	(+33)	1: -33	2: +34:	1: -342:	

+333: -334: +343: -344: +335: -336: +345: -346)) #42 \$ graphite void 46 8 -1.15e-3 -304 +403 -301 (+331: -332: +341: -342: +333: -334: +343: -344: +335: -336: +345: -346) \$ graphite void 47 8 -1.15e-3 +301 -371 +403 -381 \$ graphite void с c ---c Pool coolant water c -----50 1 -1.0 -203 +201 -110 \$ Above upper grid plate +5000 +5001 +5002 +5003 +5004 +5005 +5006 +5007 +508 +5009 +5010 +5011 +5012 +5013 +5014 +5015 +5016 +5017 +5018 +5019 +5020 +5021 +5022 +5023 +5024 +5025 +5026 +5027 +5028 +5029 +5030 +5031 +5032 +5033 +5034 +5035 +5036 +5037 +5038 +5039 +5040 +5041 +5042 +5043 +5044 +5045 +5046 +5048 +5049 +5050 +5051 +5052 +5053 +5054 +5055 +5056 +5057 +5058 +5059 +5060 +5061 +5062 +5063 +5064 +5065 +5066 +5067 +5068 +5069 +5075 +5076 +5077 +5078 +5079 +5070 +5071 +5072 +5070 +5071 +5072 +5075 +5076 +5077 +5078 +5079 +5080 +5081 +5082 +5083 +5084 +5085 +5086 +5087 +5088 +5089 +5090 +5091 +5092 +5093 +5094 +5095 +5096 +5097 +5098 +5099 +5102 +5103 +5104 +5105 +5106 +5107 +5108 +5109 +5100 +5110 +5112 +5113 +5114 +5117 +5119 +5120 +1940 \$ 3L +5118 \$ PNT +5111 +5115 с +5039 +5040 +5063 +5064 +5065 +5093 +5094 \$ Elements in 6L с с +961 \$ 3L с -1.0 +203 -302 +202 -110 -1.0 +302 -300 +303 -110 -1.0 -305 -306 +307 51 1 -1.0 \$ Upper gridplate 52 1 1 \$ Upper gridplate 53 \$ Lower gridplate +5000 +5001 +5002 +5003 +5004 +5005 +5006 +5007 +5008 +5009 +5010 +5011 +5012 +5013 +5014 +5015 +5016 +5017 +5018 +5019 +5020 +5021 +5022 +5023 +5024 +5025 +5026 +5027 +5028 +5029 +5030 +5031 +5032 +5033 +5034 +5035 +5036 +5037 +5038 +5039 +5040 +5041 +5042 +5043 +5044 +5045 +5046 +5048 +5049 +5050 +5051 +5052 +5053 +5054 +5055 +5056 +5057 +5058 +5059
 +5060
 +5061
 +5062
 +5064
 +5065
 +5066
 +5067
 +5068

 +5070
 +5071
 +5072
 +5075
 +5076
 +5077
 +5078
 +5079

 +5080
 +5081
 +5082
 +5083
 +5084
 +5085
 +5086
 +5087
 +5088
 +5089
 +5090 +5091 +5092 +5093 +5094 +5095 +5096 +5097 +5098 +5099 +5100 +5102 +5103 +5104 +5105 +5106 +5107 +5108 +5109 +5112 +5113 +5114 +5110 +5117 +5119 +5120+1940 \$ 3I. \$ PNT +5118 +5111 +5115 c c +5039 +5040 +5063 +5064 +5065 +5093 +5094 \$ Elements in 6L с +961 \$ 3L с 54 1 -1.0 -307 +120 \$ Lower gridplate (-311 +312 -321 +322 -313 +314 -323 +324 -315 +316 -325 +326) +5000 +5001 +5002 +5003 +5004 +5005 +5006 +5007 +5008 +5009 +5010 +5011 +5012 +5013 +5014 +5015 +5016 +5017 +5018 +5019 +5020 +5021 +5022 +5023 +5024 +5025 +5026 +5027 +5028 +5029 +5030 +5031 +5032 +5033 +5034 +5035 +5036 +5037 +5038 +5039 +5040 +5041 +5042 +5043 +5044 +5045 +5046 +5048 +5049 +5048 +5049 +5050 +5051 +5052 +5053 +5054 +5055 +5056 +5057 +5058 +5059 +5060 +5061 +5062 +5063 +5064 +5065 +5066 +5067 +5068 +5069 +5070 +5071 +5072 +5075 +5076 +5077 +5078 +5079 +5080 +5081 +5082 +5083 +5084 +5085 +5086 +5087 +5088 +5089 +5090 +5091 +5092 +5093 +5094 +5095 +5096 +5097 +5098 +5099 +5100 +5102 +5103 +5104 +5105 +5106 +5107 +5108 +5109 +5110+5112 +5113 +5114 +5117 +5119 +5120 +1940 \$ 3L +5118 \$ PNT +5111 +5115 c c +5039 +5040 +5063 +5064 +5065 +5093 +5094 \$ Elements in 6L с +961 \$ 31. с 55 1 -1.0 -207 \$ Lower gridplate +306 (-231 +232 -241 +242 -233 +234 -243 +244 -235 +236 -245 +246) +5000 +5001 +5002 +5003 +5004 +5005 +5006 +5007 +5008 +5009 +5010 +5011 +5012 +5013 +5014 +5015 +5016 +5017 +5018 +5019 +5020 +5021 +5022 +5023 +5024 +5025 +5026 +5027 +5028 +5029 +5030 +5031 +5032 +5033 +5034 +5035 +5036 +5037 +5038 +5039

+5040 +5041 +5042 +5043 +5044 +5045 +5046 +5048 +5049 +5050 +5051 +5052 +5053 +5054 +5055 +5056 +5057 +5058 +5059 +5060 +5061 +5062 +5063 +5064 +5065 +5066 +5067 +5068 +5069 +5070 +5071 +5072 +5075 +5076 +5077 +5078 +5079 +5080 +5081 +5082 +5083 +5084 +5085 +5086 +5087 +5088 +5089 +5090 +5091 +5092 +5093 +5094 +5095 +5096 +5097 +5098 +5099 +5100 +5102 +5103 +5104 +5105 +5106 +5107 +5108 +5109 +5112 +5113 +5114 +5119 +5110+5117+5120 \$ 3L +1940 \$ PNT +5118+5111 +5115 с с +5039 +5040 +5063 +5064 +5065 +5093 +5094 \$ Elements in 6L с +961 \$ 3L с 56 1 -1.0 -206 +207 (+211: -212: +221: -222: \$ Lower gridplate +213: -214: +223: -224: +215: -216: +225: -226) (-231 +232 -241 +242 -233 +234 -243 +244 -235 +236 -245 +246) 57 1 -1.0 -351 +371 +372 -110 \$ Upper reflector 58 1 -1.0 -374 -376 +120 \$ Lower reflector (+311: -312: +321: -322: +313: -314: +323: -324: +315: -316: +325: -326) 59 1 -1.0 +306 -376 \$ Lower reflector (+331: -332: +341: -342: +333: -334: +343: -344: +335: -336: +345: -346) (-311 +312 -321 +322 -313 +314 -323 +324 -315 +316 -325 +326) с c ----c Pool coolant water 950 8 -1.15e-3 -150 +160 -165 *TRCL (-60.00 00.00 00.00 00 90 90 90 00 90) \$NP 951 8 -1.15e-3 -150 +160 -165 *TRCL (57.96 -15.53 00.00 00 90 90 90 00 90) \$NPP 952 8 -1.15e-3 -150 +160 -165 *TRCL (42.43 42.43 00.00 00 90 90 90 00 90) \$FC 60 1 -1.0 +350 -355 +361 (-100 -110 +120) #950 #951 \$ Beam ports 1&5 61 1 -1.0 +350 +355 +363 (-100 -110 +120) #950 #952 #(-406 +408) #(-407 +409) \$ Beam ports 2&4 62 1 -1.0 -363 +364 +360 -100 63 1 -1.0 -350 +351 +352 -110 \$ Reflector BP3
\$ Reflector cylinder 64 1 -1.0 1 -1.0 -350 +351 -353 +120 \$ Reflector cylinder 65 -370 +374 -377 +120 \$ Reflector edgering +300 -371 +303 -110 +370 -351 -375 +377 1 -1.0 \$ RSR removal 66 2 -2.7 2 -2.7 67 \$ edge ring error -351 +370 -372 +373 68 \$ edge ring error ----c --c BP2, BP4 structure c -----
 71
 2
 -2.7
 (-406
 +430)
 +350
 +355
 -100

 72
 2
 -2.7
 (-407
 +440)
 +350
 +355
 -100
 \$ Reflector BP2 \$ Reflector BP4 с c ----c BP3 structure c -----73 2 -2.7 +461 -462 -464 -463 +464 +461 -100 \$ Reflector BP3 74 2 -2.7 \$ Reflector BP3 1 -1.0 +241 -364 -461 75 \$ Reflector BP3 76 1 -1.0 +463 -364 +461 -100 \$ Reflector BP3 с c ----c BP1, BP3, BP5 cavity c -----77 8 -1.15e-3 +450 -362 -451 \$ Reflector BP1 78 8 -1.15e-3 +462 -464 -453 \$ Reflector BP3 79 8 -1.15e-3 -450 -362 +455 с c ----c BP1, BP2, BP3, BP4, BP5 cavity -----81 8 -1.15e-3 +451 -362 -100 #95 VOL=1 \$ Reflector BP1 82 8 -1.15e-3 (-430 +408) +350 -100 #96 VOL=1 \$ Reflector BP2 83 8 -1.15e-3 +453 -464 -100 #97 VOL=1 \$ Reflector BP3 84 8 -1.15e-3 (-440 +409) +350 -100 #98 VOL=1 \$ Reflector BP4

```
85 8 -1.15e-3 -455 -362 -100
                                       #99 VOL=1 $ Reflector BP5
с
95 8 -1.15e-3 -171
    8 -1.15e-3 -172
96
97
    8 -1.15e-3 -173
98
    8 -1.15e-3 -174
99
    8 -1.15e-3 -175
c
c -----
c Rotary specimen rack (RSR) unit
c -
90 8 -1.15e-3 +300 -303 +352 -371
                                                 $ RSR unit
91 8 -1.15e-3 +300 +304 -352 -380
                                                 $ RSR unit
92 8 -1.15e-3 +300 -304 -380 +382
                                                 $ RSR unit
       vol=1
c -----
c Fill universe for reactor core grid
c Graphite reflector elements, U=6
100 1 -1 0
                 #101 #102 #103
                 #104 #105 #106
                                         u=6
101 2 -2.7
                 -623
                       -609
                             +206
                                         u=6
                                                  $ lower fitting
102 2 -2.7
                 -605
                      -620
                             +621
                                         u=6
                                                  $ end closure
102 2 2.7
103 4 -2.25
104 2 -2.7
105 2 -2.7
                 -605
                      -621
                             +622
                                         u=6
                                                  $ graphite
                 -605
                      -622
                             +623
                                         u=6
                                                  $ end closure
                       -609
                             -201
                                                  $ upper fitting
$ element clad
                 +620
                                         u=6
                             -620
                                  +623 u=6
106 2 -2.7
                 +605
                      -607
с
c -
c Transient control rod, U=7
                 #111 #112 #113 #114
110 1 -1.0
                 #115 #116 #117
                                         u=7
                                                  $ end plug
$ spacer plug
111 2 -2.7
                 -500 -510 +511
                                         u=7
112 2 -2.7
                 -500
                       -511
                             +512
                                         u=7
113 6 -2.52
                 -500
                      -512
                             +513
                                         u=7
                                                  $ absorber
114 2 -2.7
115 8 -1.15e-3
                 -500 -513 +514
                                         u=7
                                                  $ spacer plug
$ air follower
                                         u=7
                 -500
                       -514 +515
116 3 -7.8
117 3 -7.8
                                                  $ end plug
$ element clad
                 -500
                       -515
                             +516
                                         u=7
                 +500 -502
                             -510 +516 u=7
с
c -----
c Standard triga fuel element, U=8
c -----
c Temperature in fuel rod assumed 600 K at full power
                 #121 #122 #123
120 1 -1.0
                 #124 #125 #126
                 #127 #128 #129
                                         u=8
                                                  $ element clad
121 3 -7.8
                                         u=8
                                                  $ lower fitting
                 -615 -603
                             +206
122 3 -7.8
123 4 -2.25
                 -600 -610 +611
                                         u=8
                                                  $ end closure
                 -600
                      -611
                             +612
                                         u=8
                                                  $ graphite
                                                TMP1=5.1702E-8 $ fuel at 600K
124 5 -6.05
                 -600 -612
                             +613
                                  +650 u=8
125 7 -6.49
                 -650 -612 +613
                                         u=8
                                                 $ Zr rod
126 4 -2.25
                                                  $ graphite
$ end closure
                 -600
                       -613
                             +614
                                         11=8
 127
     3 -7.8
                 -600
                      -614
                             +615
                                         u=8
128 3 -7.8
                 +610 -603 -201
                                         u=8
                                                  $ upper fitting
129 3 -7.8
                 +600 -602 -610 +615 u=8
                                                  $ element clad
с
c -----
c Fuel follower control rods (reg, shim1, shim2), U=9
с
c Temperature assumed 300 C at full power
130 1 -1.0 #131 #132 #133 #134 #135
                  #136 #137
                             #138 #139
                                          #140
                  #141 #142 #143
                                           11=9
                  -505
131 3 -7.8
                        -520
                              +521
                                           u=9
                                                    $ end plug
132 8 -1.15e-3 -505
                        -521
                              +522
                                            u=9
                                                    $ top space
     2 -2.7
133
                 -505
                              +523
                                                    $ spacer plug
                        -522
                                           u=9
        -1.15e-3 -505
                              +524
                                                    $ void gap
 134
      8
                        -523
                                            u=9
      6 -2.52
135
                 -505
                        -524
                              +525
                                           11=9
                                                    $ absorber
     2 -2.7
                  -505
136
                        -525
                              +526
                                           u=9
                                                    $ spacer plug
                                                void gap
TMP1=5.1702E-8 $ fuel follower
 137
      8 -1.15e-3 -505
                        -526
                              +527
                                            u=9
      5 -6.05
138
                 -505
                        -527
                              +528 +550
                                           11=9
      7 -6.49
                  -550
139
                        -527
                              +528
                                           u=9
                                                    $ Zr rod
 140
     2 -2.7
                  -505
                        -528
                              +529
                                            u=9
                                                    $ spacer plug
     8 -1.15e-3 -505
3 -7.8 -505
141
                        -529
                              +530
                                           11=9
                                                    $ bot space
 142
                        -530
                              +531
                                            u=9
                                                    $ end plug
143 3 -7.8
                  +505
                        -507
                              -520 +531
                                                    $ element clad
                                           u=9
с
с
c Modifications and experiment components
```

C -----

300 1 -1.0 #301 #302 #303 #304 #305 #306 #307 #308 U=30 \$ Water surrounding PTS -910 +911 +933 \$ Al transport tube 301 2 -2.7 U=30 302 8 -1.15e-3 -911 +912 +933 U=30 \$ Air gap \$ Al sample tube 303 2 -2 7 -912 +913 +915 U=30 8 -1.15e-3 -913 U=30 304 +915 #308 \$ Sample location 305 2 -2.7 -910 +934 -933 U=30 \$ Al transport tube bottom 2 -2 7 -2.7 -912 +931 -915 -1.15e-3 +933 -931 -912 306 U=30 \$ Al sample tube bottom \$ Air gap beneath sample tube 307 8 U=30 308 8 -1.15e-3 -908 +909 -907 U=30 \$ Sample location for tally с с c Pneumatic transfer system (PTS) with Cd, U=35 - JDB - 4/13/2007 с c 350 1 -1.0 #351 #352 #353 #354 #355 #356 #357 #358 #359 #360 с U=35 \$ Water surrounding PTS с c 351 -910 +911 +933 U=35 \$ Al transport tube 2 -2.7 c 352 8 -1 15e-3 -911 +914 +933 U=35 \$ Air gap c 353 10 -8.65 -914 +912 +931 U=35 \$ Cd liner c 354 2 -2.7 -912 +913 +915 U=35 \$ Al sample tube c 355 8 -1.15e-3 -913 +915 #360 U=35 \$ Sample location c 356 2 -2.7 -910 +934 -933 U=35 \$ Al transport tube bottom c 357 2 -2.7 -912 +931 -915 U=35 \$ Al sample tube bottom 10 -8.65 -914 -931 +932 U=35 c 358 \$ Cd liner beneath sample c 359 8 -1.15e-3 +933 -932 -914 U=35 \$ Air gap beneath sample tube c 360 8 -1.15e-3 -908 +909 -907 U=35 \$ Sample location for tally c 3-element irradiator with Cd, U=40 $\,$ c -400 1 -1.0 #401 #402 #403 #404 #405 #406 #407 #408 #409 #410 11=40 \$ Water 401 2 -2.7 -920 +921 -958 +959 u=40 \$ Al outer 402 8 -1.15e-3 -921 +924-958 +959 11=40 \$ Air gap
\$ Pb liner 403 10 -8.65 -924 +922 -958 +959 u=40 404 2 -2.7 -922 +923 -958 +959 u=40 \$ Al liner 8 -1.15e-3 -923 405 +965 \$ Air in sample location -963 u=40 \$ Air above sample location 406 8 -1.15e-3 -923 -958 +963 u=40 407 2 -2.7 2 -2.7 -962 -957 +958 u=40 \$ Upper end cap \$ Lower end cap 408 -920 -959 +960 u=40 2 -2.7 409 -923 -965 +966 u=40 410 10 -8.65 -923 -966 +95911=40 с с c 3-element irradiator with Cd, U=45 с c 450 1 -1.0 #451 #452 #453 #454 \$ #461 #462 #463 #465 #455 #456 #457 #458 с #459 #460 U=45 \$ Water с c 451 1 -1.0 -920 +921 -958 +959 U=45 \$ Al outer c 452 1 -1.0 c 453 1 -1.0 U=45 -922 +923-958 +959 \$ Al liner -958 +959 U=45 \$ Cd liner +922 -924 \$ Air gap c 454 1 -1.0 -921 +924 -958 +959 II=45 c 455 1 -1.0 -963 +965 U=45 \$ Air in sample location -923 c 456 1 -1.0 -923 -958 +963 u=45 \$ Air above sample location 1 -1.0 1 -1.0 c 457 -962 -957 +958 11=45 \$ Upper end cap \$ Lower end cap c 458 +960 u=45 -920 -959 c 459 1 -1.0 c 460 1 -1.0 -965 +966 u=45 -923 -923 -966 +959 11=45 с 450 1 -1.0 #451 #452 #453 #454 \$ #461 #462 #463 #465 #455 #456 #457 #458 #459 #460 U=45 \$ Water 451 2 -2.7 -920 +921 -958 +959 II=45 \$ Al outer 452 2 -2.7 453 11 -11.34 -958 +959 U=45 \$ Al liner -922 +923 -958 +959 U=45 +922 -924 \$ Pb liner \$ Air gap
\$ Air in sample location 454 8 -1.15e-3 -921 +924 -958 +959 U=45 455 8 -1.15e-3 -923 -958 +959 U=45 vol=1452 456 8 -1.15e-3 -923 -958 +963 11=45 \$ Air above sample location 450 0 1.13e 457 2 -2.7 458 2 -2.7 459 2 -2.7 460 11 -8.65 -957 +958 u=45 -962 \$ Upper end cap
\$ Lower end cap -920 -959 +960 u=45 -923 -965 +966 11=45 -923 -966 +959 u=45 \$ Changed to Pb c 461 2 -2.7 +1956 -957 -1941 +1942 U=45 \$ Al outer c 462 11 -11.4 -958 -1942 +1943 U=45 +1955 \$ Pb in sleeve c 463 2 -2.7 c 464 2 -2.7 -957 -1943 +1944 u=45 -957 -1942 +1943 u=45 +1956 \$ Al inner \$ Al donut top (lid) +958

c Pneumatic transfer system (PTS) without Cd, U=30 - JDB - 4/13/2007

```
с
c -----
c 3-element irradiator (unlined), U=50
c -
 490 8 -1.15e-3 #491 #492 #493 #494 U=50
+955 U=50
                                                                          $ T3 can cylinder
                        +922 -924 -950 +955 U=50
                                                                          $ T3 can liner
                                                             U=50
                                                                          $ T3 can upper
                                                             U=50
                                                                          $ T3 can lower
c
c -----
c Water cells for mapping experiment, u=101
c ------
                                _____
 515 1 -1.0 #516
516 1 -1.0 -754 +782 -750
                                                          u=101
                                                          u=101
c
c -----
c Large irradiator with cadmium sleeve, u=96
c -
                            #812 #813 #814 #815
#816 #817 #818 #819
 811 1 -1.0
                               #820 #821
                                                                    u=96
                                                                                $ Water outside of 7L

        812
        2
        -2.7
        -1941
        +1942
        -1951
        +1955

        813
        8
        -1.15e-3
        -1942
        +1947
        -1951
        +1955

        821
        10
        -8.65
        -1947
        +1943
        -1951
        +1955

                                                                    u=96
                                                                                $ Al clad outer, sleeve
                                                                  u=96
                                                                                $ Air. sleeve
                             -1947 +1943 -1951 +1955
                                                                    u=96
                                                                                 $ Cadmium, sleeve
        2 -2.7
2 -2.7
                             -1943 +1944 -1951 +1955
-1945 +1946 -1951 +1955
 814
                                                                    u=96
                                                                                 $ Al clad inner, sleeve
                                                                                $ Al clad, can
 815
                                                                    u=96
                             -1946 -1951 +1955
-1950 +1951 -1941 +1944
-1955 +1956 -1941 +1944
        8 -1.15e-3 -1946
 816
                                                                    u=96
                                                                                 $ Air inside can
       2 -2.7
2 -2.7
2 -2.7
2 -2.7
 817
                                                                    u=96
                                                                                 $ Al lid, sleeve, upper
                                                                    u=96
                                                                                $ Al lid, sleeve, lower
$ Al lid, can, upper
 818
 819
                             -1950 +1951 -1945
                                                                     u=96
 820 2 -2.7
                            -1955 +1956 -1945
                                                                    u=96
                                                                                $ Al lid, can, lower
с
c -----
c 1-inch detector
c -----

    1740
    1
    -1.0
    #1741
    #1742

    1741
    8
    -1.15e-3
    -638
    -639
    +640
    #1742

    1742
    8
    -1.15e-3
    -638
    -641
    +642

                                                                 U=81
                                                                               $ element clad
                                                                 U=81
                                                                 U=81
                                                                               $ flux tally for 1" dia FC
с
c ----
c Central thimble (CT), u=82 - JDB
 1750 1 -1.0 #1751 #1752
                                                        u=82

        1751
        2
        -2.7
        -442
        +443
        +207

        1752
        1
        -1.0
        -446
        +447
        -445

                                                         u=82
                                                         u=82
с
c -----
c Photon Radial Profile Holes
c -----
 1800 1 -1.0 -2000
 1801 1 -1.0 -2001
 1802 1 -1.0 -2002
 1803 1 -1.0 -2003
1804 1 -1.0 -2004
 1805 1 -1.0 -2005
1806 1 -1.0 -2006
с
c -----
c Outside world
 2999 0
                          +100: +110: -120
с
c -----
                                                      _____
с
                          End of Cell Card Specification
с
с -----
                                                                    ------
                 Beginning of Surface Card Specification
с
c -----
c Hexagonal cell lattice surfaces
 101
            ΡX
                         +2.17678
                                                           $ Fuel lattice hex-prism
                         -2.17678
                                                            $ Fuel lattice hex-prism
 102
            РΧ

        Px
        -2.1678
        stuel lattice nex-prism

        P
        +1
        1.73205
        0
        +4.35356
        $ Fuel lattice nex-prism

        P
        +1
        1.73205
        0
        -4.35356
        $ Fuel lattice nex-prism

        P
        -1
        1.73205
        0
        -4.35356
        $ Fuel lattice hex-prism

        P
        -1
        1.73205
        0
        -4.35356
        $ Fuel lattice hex-prism

        P
        -1
        1.73205
        0
        -4.35356
        $ Fuel lattice hex-prism

        CZ
        +2.51353
        $ Maximum lattice diagona
        $ Maximum lattice diagona

 103
 104
 105
 106
 107
                                                           $ Maximum lattice diagonal radius
с
 108
                         5.65531
            ру
```

-5.65531

109

ру

+1956 -1955 -1942 +1943 u=45 \$ Al donut bottom

c 465 2 −2.7

c ----c Axial and radial domain с 100 CZ. +75 \$ Upper bound \$ Lower bound 110 ΡZ +100 120 ΡZ -75 150 CZ +5.08 \$ Detector Cylinder ΡZ 160 +10 \$ Detector Lower 165 ΡZ +30 \$ Detector Upper c 171 s 60.000 -36.000 -6.985 2.5 \$ BP1 172 60.000 36.000 -6.985 2.5 \$ BP2 s 173 s 0.000 70.000 -6.985 2.5 \$ BP3 174 -60.000 36.000 -6.985 2.5 \$ BP4 s 175 -60.000 -36.000 -6.985 2.5 \$ BP5 s с c ---c Reactor core grid plate surfaces c ----200 1.91135 \$ Grid plate element holes CZ \$ Upper grid plate region \$ Upper grid plate region 201 P7. +32.3850 202 ΡZ +30.7975 203 CZ 27.6225 \$ Upper grid plate diameter - effective core diameter 205 CZ 1.5875 \$ Grid plate coolant holes 206 ΡZ -33.17875 \$ Lower grid plate region 207 211 ΡZ -36.35375 \$ Lower grid plate region +26.1216 ΡX \$ Lower grid plate edge 212 РХ -26.1216 \$ Lower grid plate edge 0.57735 0 +29.0240 \$ Lower grid plate edge 0.57735 0 -29.0240 \$ Lower grid plate edge 0.57735 0 +29.0240 \$ Lower grid plate edge 213 P P +1 214 +1 215 Ρ 216 221 Р -1 0.57735 0 -29.0240 \$ Lower grid plate edge +25.1360 РҮ \$ Lower grid plate edge 222 РҮ -25.1360 \$ Lower grid plate edge 1.73205 0 +1 0 +52.2432 \$ Lower grid plate edge 0 -52.2432 \$ Lower grid plate edge 223 Ρ 224 P +1 1.73205 225 Р -1 1.73205 0 +52.2432 \$ Lower grid plate edge 226 Ρ -1 1.73205 0 -52.2432 \$ Lower grid plate edge 26.6700 \$ Core shroud inside surface 231 +26.6700 РΧ 232 РХ -26.6700 \$ Core shroud inside surface +1 0.57735 0 +29.2100 \$ Core shroud inside surface 233 Ρ 234 0.57735 0 -29.2100 \$ Core shroud inside surface Ρ +1 235 236 Р -1 0.57735 0 +29.2100 \$ Core shroud inside surface 0.57735 0 -29.2100 \$ Core shroud inside surface Р -1 +25.4000 \$ Core shroud inside surface 241 ΡY 242 ΡY -25.4000\$ Core shroud inside surface 243 +1 1.73205 0 +54.9275 \$ Core shroud inside surface Р 1.73205 0 -54.9275 \$ Core shroud inside surface 244 Ρ +1 0 +54.9275 \$ Core shroud inside surface 0 -54.9275 \$ Core shroud inside surface 245 Ρ -1 1.73205 246 1.73205 Р -1 с c ----c Core structure surfaces c ---c Reflector inner shroud с -300 CZ. 30.083125 \$ Grid plate alignment ring 29.765625 301 CZ. \$ Grid plate alignment ring 302 CZ 27.9400 \$ Grid plate alignment ring \$ Grid plate alignment ring
\$ Grid plate alignment ring 303 ΡZ +33,9725 ΡZ +26.3525 304 с c ----c Shroud load ring 27,9400 305 CZ. \$ Reflector shroud load ring \$ 24.7650 -37.30625 \$ Reflector shroud load ring 306 ΡZ 307 ΡZ -39.52875 \$ Reflector shroud load ring с 311 +29.2100 РХ \$ Reflector shroud support \$ Reflector shroud support \$ Reflector shroud support 312 ΡX -29.2100 0.57735 0 +32.385 +1 313 Ρ 314 Ρ +1 0.57735 0 -32.385 \$ Reflector shroud support 315 Ρ -1 0.57735 0 +32.385 \$ Reflector shroud support -32.385 \$ Reflector shroud support \$ Reflector shroud support 0.57735 0 316 Ρ -1 321 ΡY +27.9400 -27,9400 322 ΡY \$ Reflector shroud support 1.73205 0 323 +1 +59.3725 \$ Reflector shroud support 324 Р +1 1.73205 0 -59.3725 \$ Reflector shroud support 325 Р -1 1.73205 0 +59.3725 \$ Reflector shroud support 326 1.73205 0 -59.3725 \$ Reflector shroud support Р с 331 +27.3050 РΧ \$ Core shroud plate exterior

с

332		РХ		-27.3050		\$ Core shroud plate exterior
333		P	+1	0.57735	0	+29.8450 \$ Core shroud plate exterior
334		P	+1	0.57735	0	-29.8450 \$ Core shroud plate exterior
335		P	-1	0.5//35	0	+29.8450 \$ Core shroud plate exterior
2/1		P DV	-1	+26 0250	0	-29.8450 \$ Core shroud plate exterior
342		PY		-26.0350		\$ Core shroud plate exterior
343		P	+1	1.73205	0	+56.5150 \$ Core shroud plate exterior
344		P	+1	1.73205	0	-56.5150 \$ Core shroud plate exterior
345		P	-1	1.73205	Ő	+56.5150 \$ Core shroud plate exterior
346		Р	-1	1.73205	0	-56.5150 \$ Core shroud plate exterior
с						1
c						
c Ref	lect	or o	oute	er shroud		
c						
350		CZ		+54.76875		\$ Reflector outer shroud
351		CZ		+53.49875		\$ Reflector outer shroud
352		PZ		+28.8925		\$ Uuter shroud upper edge
353		PZ DV		-32.0675		\$ Outer shroud lower edge
355		PI		0.0		\$ core shroud section plane
c						
c Ref	lect	or b	beam	ports		
c						
360		РҮ		+55.5625		<pre>\$ Radial penetrating beam port</pre>
361		C/X		-35.2552	-6	.985 7.62 \$ Tangential thru beam port
362		C/X		-35.2552	-6	.985 6.9088 \$ Tangential thru beam port
363		C/Y		0.0	-6	.985 10.160 \$ Radial penetrating beam port
364		C/Y		0.0	-6	.985 9.525 \$ Radial penetrating beam port
с						
370		CZ		53.3400		<pre>\$ Reflector top shroud</pre>
371		CZ		37.4650		\$ Reflector top shroud
372		ΡZ		+29.5275		<pre>\$ Reflector top shroud</pre>
373		ΡZ		+28.2575		<pre>\$ Reflector top shroud</pre>
374		CZ		52.0700		\$ Reflector inner shroud base
375		PZ		-27.9400		\$ Reflector inner shroud base
376		PZ		-29.5275		\$ Reflector inner shroud base
3//		PΖ		-36.8300		\$ Reflector shroud edge ring
с с ===						
c RSR	eyr	erin	nent	system		
0 10010	onp	.01 11				
C						
c 380		CZ.		+37.1475		\$ RSR cavity outer ring
c 380 381		CZ PZ		+37.1475		<pre>\$ RSR cavity outer ring \$ RSR cavity base</pre>
c 380 381 382		CZ PZ PZ		+37.1475 +6.9850 +7.3025		<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base</pre>
c 380 381 382 c		CZ PZ PZ		+37.1475 +6.9850 +7.3025		<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base</pre>
c 380 381 382 c c		CZ PZ PZ		+37.1475 +6.9850 +7.3025		<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base .</pre>
c 380 381 382 c c c Gra	 phit	CZ PZ PZ	efle	+37.1475 +6.9850 +7.3025 ector surfa	ace	<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base </pre>
c 380 381 382 c c c Gra c	 phit	CZ PZ PZ	efle	+37.1475 +6.9850 +7.3025	ace:	<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base </pre>
c 380 381 382 c c c Gra c 400	 phit	CZ PZ PZ ce re	efle	+37.1475 +6.9850 +7.3025 ector surf: 53.0225	ace:	<pre>% RSR cavity outer ring % RSR cavity base % RSR cavity base % Graphite reflector outer radius</pre>
c 380 381 382 c c c Gra c 400 401	 phit	CZ PZ ce re CZ CZ	efle	+37.1475 +6.9850 +7.3025 ector surf: 53.0225 37.7825	ace:	<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base \$ Graphite reflector outer radius \$ Graphite reflector inner radius</pre>
c 380 381 382 c c c Gra c 400 401 402	 phit	CZ PZ PZ ce re CZ CZ PZ		+37.1475 +6.9850 +7.3025 	ace:	<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base \$ Graphite reflector outer radius \$ Graphite reflector inner radius \$ Graphite reflector upper section \$ Graphite reflector upper section \$ Graphite reflector upper section \$ Graphite reflector upper section \$ Graphite reflector \$ Graphite \$ Graphite reflector \$ Graphite \$ Graphite \$ Graphite reflector \$ Graphite \$ Graph</pre>
c 380 381 382 c c c Gra c 400 401 402 403	 phit	CZ PZ PZ ce re CZ CZ PZ PZ PZ		+37.1475 +6.9850 +7.3025 ector surfs 53.0225 37.7825 27.6225 6.3500		<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base \$ \$ Graphite reflector outer radius \$ Graphite reflector inner radius \$ Graphite reflector upper section \$ Graphite reflector section plane \$ Graphite reflector section plane</pre>
c 380 381 382 c c c Gra c 400 401 402 403 404	 phit	CZ PZ PZ ce re CZ CZ PZ PZ PZ PZ	 efle	+37.1475 +6.9850 +7.3025 ector surf: 53.0225 37.7825 27.6225 6.3500 -20.32 -25.2552		<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base \$ Graphite reflector outer radius \$ Graphite reflector inner radius \$ Graphite reflector section \$ Graphite reflector section plane \$ Graphite reflector section plane</pre>
c 380 381 382 c c c Gra c 400 401 402 403 404	 phit 	CZ PZ PZ CZ CZ PZ PZ PZ PY PY		+37.1475 +6.9850 +7.3025 ector surf3 53.0225 37.7825 27.6225 6.3500 -20.32 -35.2552 0.0		<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base \$ Graphite reflector outer radius \$ Graphite reflector inner radius \$ Graphite reflector upper section \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Beam port penetration 965_10.160\$ Padial penetrating beam port_bp3</pre>
c 380 381 382 c c Gra c 400 401 402 403 404 405 c C	 phit 	CZ PZ PZ CZ CZ PZ PZ PY PY C/Y C/Y		+37.1475 +6.9850 +7.3025 	 	<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base \$ Graphite reflector outer radius \$ Graphite reflector inner radius \$ Graphite reflector upper section \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Beam port penetration 985 J 10.160 \$ Radial penetrating beam port, bp3 \$ Targettial thru beam port _ bp155</pre>
c 380 381 382 c c c Gra c Gra c Gra 400 401 402 403 404 405 c c 406	 phit 	CZ PZ PZ CZ CZ CZ CZ PZ PZ PY PY C/Y C/X CY		+37.1475 +6.9850 +7.3025 +7.3025 		<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base \$ Graphite reflector outer radius \$ Graphite reflector inner radius \$ Graphite reflector upper section \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Beam port penetration 985 10.160</pre>
c 380 381 382 c c Gra c 400 401 402 403 404 405 c 406 407	 phit 2 4	CZ PZ PZ CZ CZ CZ CZ PZ PZ PY PY C/Y C/X CY		+37.1475 +6.9850 +7.3025 	 -6 -6	<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base \$ Graphite reflector outer radius \$ Graphite reflector inner radius \$ Graphite reflector upper section \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Beam port penetration 985 10.160</pre>
c 380 381 382 c c Gra c 400 401 402 403 404 405 c 406 407 408	 phit 2 4 2	CZ PZ PZ CZ CZ CZ CZ PZ PZ PY PY C/Y C/X CY CY PY	∍fl€	+37.1475 +6.9850 -53.0225 37.7825 27.6225 0.0 -20.32 -35.2552 0.62 -35.2552 7.62 7.62 0.0		<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base \$ RSR cavity base \$ Graphite reflector outer radius \$ Graphite reflector upper section \$ Graphite reflector upper section \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Beam port penetration 985 7.62 \$ Tangential thru beam port, bp3 \$ Tangential beam port, bp2 \$ Tangential beam port, bp2</pre>
c 380 381 382 c c c Gra c 400 401 402 403 404 405 c c 406 407 408 409	 phit 2 4 2 4	CZ PZ PZ PZ CZ CZ CZ PZ PZ PY PY C/Y C/X CY PY PY	efle	+37.1475 +6.9850 +7.3025 +7.3025 	 6	<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base \$ RSR cavity base \$ Craphite reflector outer radius \$ Graphite reflector inner radius \$ Graphite reflector upper section \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Beam port penetration 985 10.160 \$ Radial penetrating beam port, bp3 985 7.62 \$ Tangential thru beam port, bp1&5 \$ Tangential beam port, bp2 \$ Radial beam port, bp4 \$ Radial beam port, bp4</pre>
c 380 381 382 c c Gra c 400 401 402 403 404 405 c c 406 407 408 409 411	2 4 2 4	CZ PZ PZ CZ CZ CZ CZ PZ PZ PY PY C/Y C/X CY PY PY PX		+37.1475 +6.9805 +7.3025 	 6	<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base \$ RSR cavity base \$ Graphite reflector outer radius \$ Graphite reflector inner radius \$ Graphite reflector upper section \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Beam port penetration 985 10.160 \$ Radial penetrating beam port, bp3 985 7.62 \$ Tangential thru beam port, bp1&5 \$ Tangential beam port, bp2 \$ Radial beam port, bp4 \$ Tangential beam port, bp4 \$ Tangential beam port, bp4 \$ Graphite inner surface</pre>
c 380 381 382 c c c Gra c 400 401 402 403 404 405 c c c 406 407 408 409 411 412	2 4 2 4	CZ PZ PZ CZ CZ CZ PZ PZ PY PY C/Y C/X CY PY PY PX	⇒fl€	+37.1475 +6.9850 +7.3025 +7.3025 +7.3025 27.6225 6.3500 -20.32 -35.2552 7.62 7.62 0.0 0.0 0.0 0.27.78125 -27.78125		<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base \$ RSR cavity base \$ Graphite reflector outer radius \$ Graphite reflector upper section \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Beam port penetration 985 10.160 \$ Radial penetrating beam port, bp3 985 7.62 \$ Tangential thru beam port, bp4 \$ Tangential beam port, bp2 \$ Radial beam port, bp4 \$ Tangential beam port, bp4 \$ Graphite inner surface \$ Graphite inner surface \$ Graphite inner surface \$ Graphite inner surface</pre>
c 380 381 382 c c c Graa c 400 401 402 403 404 405 c c 406 407 408 409 411 412 413	2 4 2 4	CZ PZ PZ CZ CZ CZ PZ PY PY PY C/Y C/X CY CY PY PY PX PX P	 efle + +	+37.1475 +6.9850 +7.3025 +7.3025 	6 -6 -6	<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base \$ RSR cavity base \$ Graphite reflector outer radius \$ Graphite reflector inner radius \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Beam port penetration 985 10.160 \$ Radial penetrating beam port, bp3 985 7.62 \$ Tangential thru beam port, bp1 \$ Tangential beam port, bp2 \$ Radial beam port, bp4 \$ Tangential beam port, bp4 \$ Tangential beam port, bp4 \$ Graphite inner surface \$ Graphite inner surface +31.00875 \$ Graphite inner surface +1</pre>
c 380 381 382 c c Grac c 400 401 402 403 404 405 c c 406 407 408 409 411 412 413	2 4 2 4	CZ PZ PZ CZ CZ CZ CZ CZ CZ PZ PY PY PY PY PY PX PX P	 efle +1 +1	+37.1475 +6.9850 +7.3025 		<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base \$ Graphite reflector outer radius \$ Graphite reflector inner radius \$ Graphite reflector upper section \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Beam port penetration 985 10.160</pre>
c 380 381 382 c c 400 401 402 c dra 403 404 405 c 406 407 408 409 411 412 413 414	2 2 4 2 4	CZ PZ PZ CZ CZ CZ CZ PZ PY PY PY C/Y CY CY CY PY PY PX PX P P P P P P	 efle +1 +1 +1 -1	+37.1475 +6.9850 +7.3025 +7.3025 +7.3025 27.6225 6.3500 -20.32 -35.2552 7.62 0.0 -0.5 27.78125 -27.78125 0.57735 0.57735		<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base \$ RSR cavity base \$ Graphite reflector outer radius \$ Graphite reflector upper section \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Beam port penetration 985 10.160 \$ Radial penetrating beam port, bp3 985 7.62 \$ Tangential thru beam port, bp4 \$ Tangential beam port, bp2 \$ Radial beam port, bp4 \$ Tangential beam port, bp4 \$ Tangential beam port, bp4 \$ Graphite inner surface \$ Graphite inner surface +1 -31.00875 \$ Graphite inner surface +1 +31.00875 \$ Graphite inner surface +1</pre>
c 380 381 382 c c Graa c 400 401 402 403 404 405 c c 406 407 408 409 411 412 413 414 415 416	2 2 4 2 4	CZ PZ PZ CZ CZ CZ CZ PZ PY PY PY C/Y C/X CY PY PY PX PX P P P P P	+1 +1 -1 -1	+37.1475 +6.9850 53.0225 37.7825 27.6225 37.7825 27.625 -20.32 -35.2552 7.62 7.62 7.62 0.0 0.27.78125 27.78125 27.78125 0.57735 0.57735	6 -6 -6 0 0 0	<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base \$ RSR cavity base \$ Graphite reflector outer radius \$ Graphite reflector upper section \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Beam port penetration 985 7.62 \$ Tangential thru beam port, bp3 \$ Tangential beam port, bp2 \$ Radial beam port, bp4 \$ Tangential beam port, bp2 \$ Radial beam port, bp4 \$ Graphite inner surface \$ Graphite inner surface \$ Graphite inner surface +1 -31.00875 \$ Graphite inner surface +1</pre>
c 380 381 382 c c Gra c 400 401 402 403 404 404 404 404 404 404 404	2 4 2 4	CZ PZ CZ CZ CZ CZ PZ PY PY C/Y C/X CY PY PY PX PX P P P P P P	 efle +1 +1 +1 -1 -1 -1	+37.1475 +6.9850 +7.3025 +7.3025 	6 -6 -6 0 0 0	<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base \$ RSR cavity base \$ Graphite reflector outer radius \$ Graphite reflector inner radius \$ Graphite reflector upper section \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Beam port penetration 985 10.160 \$ Radial penetrating beam port, bp3 985 7.62 \$ Tangential thru beam port, bp1 \$ Tangential beam port, bp2 \$ Radial beam port, bp4 \$ Tangential beam port, bp2 \$ Radial beam port, bp4 \$ Graphite inner surface \$ Graphite inner surface \$ Graphite inner surface +1 -31.00875 \$ Graphite inner surface +1 \$ Graphite inner</pre>
c 380 381 382 c c Graa c c Gra 400 401 402 404 405 c c 406 407 408 409 411 412 414 415 414 415 422	2 4 2 4	CZ PZ CZ CZ CZ CZ PZ PY PY PY C/X CY PY PY PX PX P P P P P P P	+1 +1 -1 -1	+37.1475 +6.9850 +7.3025 +7.3025 +7.3025 -20.32 -35.2522 0.0 -35.2552 7.62 0.0 -35.2552 7.62 0.0 0.0 0.0 0.0 0.0 0.57735 0.57735 0.57735 -26.431875	-6 -6 -6	<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base \$ RSR cavity base \$ Graphite reflector outer radius \$ Graphite reflector upper section \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Beam port penetration 985 10.160 \$ Radial penetrating beam port, bp3 985 7.62 \$ Tangential thru beam port, bp1 \$ Radial beam port, bp2 \$ Radial beam port, bp4 \$ Tangential beam port, bp2 \$ Radial beam port, bp4 \$ Graphite inner surface \$ Graphite inner surface +1 -31.00875 \$ Graphite inner surface =1 -31.00875 \$ Graphite inner surface =1 \$ Graphite inner surface \$ Graphite inner surf</pre>
c 380 381 382 c c c c Graa c c Gra 400 401 402 403 404 405 c c 406 407 408 407 408 407 408 404 411 412 413 414 415 416 422 423 422 423	2 4 2 4	CZ PZ PZ CZ CZ CZ PZ PY PY PY PY PY PY PY PY PY PY PY PY PY	+1 +1 +1 -1 -1 +1	+37.1475 +6.9850 +7.3025 +7.3025 +7.3025 27.7825 27.6225 6.5200 -20.32 -35.2552 7.62 0.0 0.27.78125 0.57735 0.57735 0.57735 0.57735 0.57735 0.57735 1.73205	-6 -6 -6 0 0 0	<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base \$ RSR cavity base \$ Graphite reflector outer radius \$ Graphite reflector upper section \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Beam port penetration 985 10.160 \$ Radial penetrating beam port, bp3 985 7.62 \$ Tangential thru beam port, bp4 \$ Tangential beam port, bp2 \$ Radial beam port, bp4 \$ Tangential beam port, bp4 \$ Graphite inner surface \$ Graphite inner surface +31.00875 \$ Graphite inner surface +1 -31.00875 \$ Graphite inner surface +1 -31.00875 \$ Graphite inner surface +1 -31.00875 \$ Graphite inner surface +1 \$ Graphite inner surface +1 \$</pre>
c 380 381 382 c c Graa c c Graa c c Graa 400 401 402 404 404 405 c 406 407 408 409 411 412 413 414 415 414 415 416 416 417 417 418 418 418 418 418 418 418 418	2 4 2 4	CZ PZ PZ CZ CZ CZ CZ CZ CZ CZ CZ CY PY PY PY PY PY PY PY PY PY PY PY PY PY	+1 +1 +1 -1 +1 +1 +1	+37.1475 +6.9850 +7.3025 +7.3025 	6 -6 -6 0 0 0 0	<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base \$ RSR cavity base \$ Graphite reflector outer radius \$ Graphite reflector upper section \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Beam port penetration 985 10.160 \$ Radial penetrating beam port, bp3 985 7.62 \$ Tangential thru beam port, bp4 \$ Tangential beam port, bp2 \$ Radial beam port, bp4 \$ Tangential beam port, bp4 \$ Graphite inner surface \$ Graphite inner surface +31.00875 \$ Graphite inner surface +1 -31.00875 \$ Graphite inner surface +1 -57.30875 \$ Graphite inner</pre>
c 380 381 382 c c Gra- c c Gra- 400 401 402 403 404 405 c c Gra- 400 401 402 403 404 404 405 404 415 414 415 416 415 416 415 415 415 415 415 415 415 415	2 4 2 4	CZ PZ PZ CZ CZ CZ PZ PZ PY PY PY PY PY PY PY PY P P P P	+1 +1 +1 +1 +1 +1 +1	+37.1475 +6.9850 +7.3025 +7.3025 	-6 -6 -6 0 0 0 0 0	<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base \$ RSR cavity base \$ Graphite reflector outer radius \$ Graphite reflector inner radius \$ Graphite reflector upper section \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Beam port penetration 985 10.160 \$ Radial penetrating beam port, bp3 985 7.62 \$ Tangential thru beam port, bp4 \$ Tangential beam port, bp2 \$ Radial beam port, bp4 \$ Tangential beam port, bp2 \$ Radial beam port, bp4 \$ Tangential beam port, bp2 \$ Radial beam port, bp4 \$ Graphite inner surface \$ Graphite inner surface +1 -31.00875 \$ Graphite inner surface +1 -57.30875 \$ Graphite inner surface +1 +57.30875 \$ Graphite inn</pre>
c 380 381 382 c c Gra- 400 401 402 403 404 404 405 c c c 406 407 408 409 411 412 413 414 415 416 422 422 422 426	2 4 2 4	CZ PZ PZ CZ CZ PZ PZ PZ PY PY C/Y C/Y C/X CY PY PY PY P P P P P P P P P P	+11 +11 +11 +11 +11 +11 +11 -1 -1	+37.1475 +6.9850 +7.3025 +7.3025 	6 -6 -6 0 0 0 0 0 0 0 0	<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base \$ RSR cavity base \$ Graphite reflector outer radius \$ Graphite reflector upper section \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Beam port penetration 985 10.160 \$ Radial penetrating beam port, bp3 985 7.62 \$ Tangential thru beam port, bp4 \$ Tangential beam port, bp2 \$ Radial beam port, bp4 \$ Tangential beam port, bp4 \$ Graphite inner surface \$ Graphite inner surface +1 -31.00875 \$ Graphite inner surface +1 -57.30875 \$ Graphite</pre>
c 380 381 382 c c Gra c Gra c c Gra 400 401 402 403 404 405 c c c c 406 407 408 409 411 412 413 414 414 414 414 414 416 422 423 424 426 c 227 427 427 427 427 427 427 427	 phit 2 4 2 4	CZ PZ PZ CZ CZ CZ PZ PZ PY PY C/X CY CY CY CY PY PY PY PY PY P P P P P P	+1 +1 +1 +1 +1 +1 +1 +1 +1 -1 -1	+37.1475 +6.9850 53.0225 37.7825 27.6225 37.7825 27.625 0.0 -20.32 -35.2552 7.62 7.62 7.62 0.0 0.0 -25.2552 7.62 7.62 0.0 0.57735 0.57735 20.57735 26.431875 -26.431875 -26.431875 1.73205 1.73205	6 -6 -6 0 0 0 0 0 0 0 0 0	<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base \$ RSR cavity base \$ Graphite reflector outer radius \$ Graphite reflector upper section \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Beam port penetration 985 7.62 \$ Tangential thru beam port, bp3 985 7.62 \$ Tangential thru beam port, bp4 \$ Tangential beam port, bp2 \$ Radial beam port, bp4 \$ Tangential beam port, bp2 \$ Radial beam port, bp4 \$ Graphite inner surface \$ Graphite inner surface +1 -31.00875 \$ Graphite inner surface +1 -31.00875 \$ Graphite inner surface +1 -31.00875 \$ Graphite inner surface +1 -57.30875 \$ Graphite inner surface +1 -57.</pre>
c 380 381 382 c c Gra- 400 401 402 403 404 403 404 403 404 403 404 404	2 4 2 4	CZ PZ PZ CZ CZ CZ CZ PZ PY PY PY PY PY PY PY P P P P P P P	+1 +1 +1 +1 +1 +1 -1 -1 -1 -1	+37.1475 +6.9850 +7.3025 	-6 -6 -6 0 0 0 0 0 0 0	<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base \$ Graphite reflector outer radius \$ Graphite reflector inner radius \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Beam port penetration 985 10.160 \$ Radial penetrating beam port, bp3 985 7.62 \$ Tangential thru beam port, bp1 \$ Radial beam port, bp2 \$ Radial beam port, bp4 \$ Tangential beam port, bp2 \$ Radial beam port, bp4 \$ Graphite inner surface \$ Graphite inner surface +31.00875 \$ Graphite inner surface +1 -31.00875 \$ Graphite inner surface +1 -31.00875 \$ Graphite inner surface +1 -31.00875 \$ Graphite inner surface +1 -57.30875 \$ Graphite inne</pre>
c 380 381 382 c c Gra- 400 401 402 403 404 405 c c 406 407 408 409 411 412 413 414 415 416 421 422 423 424 425 426 c 430 440 463 463 463 463 463 463 463 463	2 4 2 4 2 4	CZ PZ PZ CZ CZ CZ CZ PZ PY PY PY PY PY PY PY PY P P P P P P	+1 +1 -1 -1 +1 +1 -1 -1 -1	+37.1475 +6.9950 +7.3025 +7.3025 +7.3025 -20.225 37.7825 27.6225 6.3500 -20.32 -35.2552 7.62 0.0 -35.2552 7.62 0.0 0.0 -27.78125 2.7.78125 0.57735 0.57735 0.57735 2.6.431875 1.73205 1.73205 1.73205 1.73205 1.73205 1.73205 1.73205 0.9088 6.9088 6.9088	-6 -6 -6 0 0 0 0 0 0 0	<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base \$ RSR cavity base \$ Graphite reflector outer radius \$ Graphite reflector upper section \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Beam port penetration 985 10.160 \$ Radial penetrating beam port, bp3 985 7.62 \$ Tangential thru beam port, bp4 \$ Tangential beam port, bp2 \$ Radial beam port, bp4 \$ Tangential beam port, bp4 \$ Tangential beam port, bp4 \$ Craphite inner surface \$ Graphite inner surface +1 -31.00875 \$ Graphite inner surface +1 -31.00875 \$ Graphite inner surface +1 -31.00875 \$ Graphite inner surface +1 -57.30875 \$ Graphite inner sur</pre>
c 380 381 382 c c Gra c Gra c c Gra 400 401 402 403 404 404 404 405 c c c 406 407 411 412 413 414 415 416 411 412 413 414 415 416 6 6 6 6 6 6 6 6 6 6 6 6 6	2 4 2 4 2 4	CZ PZ PZ CZ CZ CZ CZ CZ CZ CZ CZ CY PY PY PY PY PY PY PY PY PY PY PY PY PY	+1 +1 +1 +1 +1 +1 -1 -1	+37.1475 +6.9850 53.0225 37.7825 27.6205 -20.32 -35.2552 7.62 -20.32 -35.2552 7.62 0.0 0.27.78125 27.78125 0.57735 0.57735 0.57735 20.431875 26.4318755 26.4318755 26.4318755 26	6 -6 0 0 0 0 0 0 0	<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base \$ RSR cavity base \$ Graphite reflector outer radius \$ Graphite reflector upper section \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Beam port penetration 985 7.62 \$ Tangential thru beam port, bp3 985 7.62 \$ Tangential thru beam port, bp4 \$ Tangential beam port, bp2 \$ Radial beam port, bp4 \$ Graphite inner surface \$ Graphite inner surface \$ Graphite inner surface +1 -31.00875 \$ Graphite inner surface +1 -31.00875 \$ Graphite inner surface +1 -31.00875 \$ Graphite inner surface +1 -57.30875 \$ Graphite inner s</pre>
c 380 381 382 c c Gra- 400 401 402 403 404 402 403 404 404 404 402 403 404 404 404 404 404 404 404	2 4 2 4	CZ PZ PZ CZ CZ CZ CZ CZ CZ CY PY PY PY PY PY PY P P P P P P P P P	+1 +1 +1 +1 +1 +1 +1 -1 -1	+37.1475 +6.9850 53.0225 37.7825 27.6225 6.35025 37.7825 27.625 0.0 -20.32 -35.2552 0.0 -23.2527 .62 7.62 0.0 0.0 -27.78125 -27.78125 -26.431875 1.73205 1.73205 1.73205 1.73205	-6 -6 -6 0 0 0 0 0 0 0 0	<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base \$ RSR cavity base \$ Graphite reflector outer radius \$ Graphite reflector upper section \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Beam port penetration 985 7.62 \$ Tangential thru beam port, bp3 985 7.62 \$ Tangential thru beam port, bp2 \$ Radial beam port, bp4 \$ Tangential beam port, bp2 \$ Radial beam port, bp4 \$ Graphite inner surface * 31.00875 \$ Graphite inner surface +1 -31.00875 \$ Graphite inner surface +1 -31.00875 \$ Graphite inner surface +1 -\$ 31.00875 \$ Graphite inner surface +1 -\$ 31.00875 \$ Graphite inner surface +1 -\$ 31.00875 \$ Graphite inner surface +1 -\$ 57.30875 \$ Graphi</pre>
c 380 381 382 c c Gra- 400 401 402 403 404 403 404 403 404 405 407 408 407 408 409 401 411 412 413 414 415 414 415 422 423 424 425 426 c 430 401 402 403 404 405 407 407 408 407 408 409 401 402 403 404 405 407 407 407 407 407 407 407 407	2 2 4 2 4 2 4	CZ PZ PZ CZ CZ CZ PZ PZ PY PY C/X CY C/X CY PY PY PY PY PY PY PY PY PY PY PY PY CY CY CY CY CY CY CY CY CY CY CZ CZ CZ CZ CZ CZ CZ CZ CZ CZ CZ CZ CZ	+1 +1 +1 +1 +1 -1 -1 -1	+37.1475 +6.9850 -6.9850 -20.32 -35.2522 -35.2522 -35.2552 -0.0 -35.2552 -7.62 -7.62 -7.62 -7.62 -27.78125 0.57735 0.57735 -26.431875 1.73205 1.73205 1.73205 1.73205 1.73205 1.73205 -	-6 -6 -6 0 0 0 0 0 0 0 0	<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base \$ RSR cavity base \$ Graphite reflector outer radius \$ Graphite reflector upper section \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Beam port penetration 985 10.160</pre>
c 380 381 382 c c Gra- 400 401 402 403 404 405 406 407 408 409 407 408 409 401 402 403 404 405 414 415 416 422 423 424 425 426 c c c Cra- 400 401 402 403 404 405 406 407 407 407 407 407 407 407 407	2 4 2 4 2 4	CZ PZ PZ CZ CZ PZ PZ PZ PZ PZ PZ PZ C/Y C/Y C/Y C/Y CY PY PY PY P P P P P P P P P P P P CY CY CY CY CY CY CY CY CY CY CY CY CY	+11 +11 -1 +11 -1 -1 -1 -1	+37.1475 +6.9950 +7.3025 +7.3025 +7.3025 -20.32 -35.2552 7.62 -35.2552 7.62 0.0 -35.2552 7.62 0.57735 0.57735 0.57735 0.57735 0.57735 1.73205 1.73205 1.73205 1.73205 1.73205 1.73205 1.73205 1.73205 1.73205 -26.431875 -27.44185 -27.441875 -27.44185 -27.44185 -27.44185 -27.44185 -27.4418	-6 -6 -6 0 0 0 0 0 0 0	<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base \$ RSR cavity base \$ Graphite reflector outer radius \$ Graphite reflector upper section \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Beam port penetration 985 10.160 \$ Radial penetrating beam port, bp3 985 7.62 \$ Tangential thru beam port, bp4 \$ Tangential beam port, bp2 \$ Radial beam port, bp4 \$ Tangential beam port, bp4 \$ Graphite inner surface \$ Graphite inner surface +1 -31.00875 \$ Graphite inner surface +1 -57.30875 \$ Graphite</pre>
c 380 381 382 c c Gra- 400 401 402 403 404 402 403 404 404 404 404 404 404 404 404 404 404 404 404 404 404 404 404 405 c c Gra- 400 401 402 403 404 404 404 405 406 407 408 409 401 402 403 404 404 405 407 407 407 408 409 407 407 408 409 407 407 408 409 407 407 408 409 407 407 408 409 407 407 408 409 409 400	2 4 2 4 2 4 1 1 1	CZ PZ PZ CZ CZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ	+1 +1 +1 +1 -1 -1 -1 -1 -1	+37.1475 +6.9850 53.0225 37.7825 27.6225 37.7825 27.625 0.0 -20.32 -35.2552 7.62 7.62 0.0 0.27.78125 0.57735 0.57735 0.57735 26.431875 -27.78205 -1.73205 -1	-6 -6 -6 0 0 0 0 0 0	<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base \$ RSR cavity base \$ Graphite reflector outer radius \$ Graphite reflector upper section \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Beam port penetration 985 7.62 \$ Tangential thru beam port, bp3 985 7.62 \$ Tangential thru beam port, bp4 \$ Tangential beam port, bp2 \$ Radial beam port, bp4 \$ Graphite inner surface \$ Graphite inner surface *31.00875 \$ Graphite inner surface +1 -31.00875 \$ Graphite inner surface +1 -31.00875 \$ Graphite inner surface +1 -51.00875 \$ Graphite inner surface +1 -57.30875 \$ Graphite</pre>
c 380 381 382 c c Gra- 400 401 402 403 404 403 404 403 404 403 404 403 404 403 404 404	2 4 2 4 2 4	CZ PZ PZ CZ CZ PZ PZ PZ PZ PZ C/Y C/Y C/Y C/Y C/Y CY PY PY PY PP P P P P P P P P CY CY CY CY CY CY CY CZ CZ CZ CZ CZ CZ CZ CZ CZ CZ CZ CZ CZ	+1 +1 +1 +1 +1 +1 -1 -1 -1 -1 -1	+37.1475 +6.9850 53.0225 53.0225 27.6225 6.3500 -20.32 -35.2552 7.62 7.62 7.62 7.62 0.0 0.57735 0.57735 0.57735 0.57735 1.73205 1.7350 1.7350 1.7350 1.7350 1.7350 1.7350 1.7350 1.7350 1.7350 1.7350 1.7350 1.7350 1.7350 1.7350 1.7350 1.7350 1.7350 1.7350 1.7350 1.75500 1.75500 1.75500 1.75500 1.75500 1.75500 1.75500 1.75500 1.75500 1.755000 1.755000 1.75500000000000000000000000000000000000	6 -6 -6 0 0 0 0 0 0 0 0	<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base \$ RSR cavity base \$ Graphite reflector outer radius \$ Graphite reflector upper section \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Beam port penetration 985 10.160 \$ Radial penetrating beam port, bp3 985 7.62 \$ Tangential thru beam port, bp4 \$ Tangential beam port, bp2 \$ Radial beam port, bp4 \$ Graphite inner surface * 31.00875 \$ Graphite inner surface * 31.00875 \$ Graphite inner surface +1 -31.00875 \$ Graphite inner surface +1 -31.00875 \$ Graphite inner surface +1 -31.00875 \$ Graphite inner surface +1 -57.30875 \$ Graphite inner surface +1 -</pre>
$\begin{array}{c} c &\\ 380\\ 381\\ 382\\ c\\ c\\ c\\ c\\ c\\ c\\\\ c\\ c\\\\ c\\ c\\ c\\ c\\\\ c\\ c\\ c\\\\ c\\ c\\ c\\ c\\\\ c\\ c\\ c\\ c\\ c\\ c\\\\ c\\ c\\$	2 4 2 4 2 4 2 4	CZ PZ PZ CZ CZ PZ PZ PZ PY PY PY PY PY PY PY PY PY PY PY PY PY	+1 +1 +1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	+37.1475 +6.9950 +7.3025 +7.3025 +7.3025 -20.32 -35.2522 7.62 6.3500 -0.0 -35.2552 7.62 0.0 -35.2552 7.62 0.0 0.0 -35.2552 7.62 0.57735 0.57735 0.57735 26.431875 1.73205 1.73205 1.73205 1.73205 6.9088 6.9088 6.9088 0.0 -1.57 1.525 1.73205	6 -6 -6 0 0 0 0 0 0 0 0	<pre>\$ RSR cavity outer ring \$ RSR cavity base \$ RSR cavity base \$ RSR cavity base \$ Graphite reflector outer radius \$ Graphite reflector upper section \$ Graphite reflector section plane \$ Graphite reflector section plane \$ Beam port penetration 985 10.160</pre>

445 446 447		CZ PZ PZ	1.185 2.5 -2.5	\$ \$ \$	Central thimble sample holder ID Central thimble upper sample hodler Central thibmle lower sample holder
с	bea	m port	tally surfaces	5 I	bp1&5 and bp3
451		РХ	+10.16	\$	BP1
453		PY	+40.90	\$	BP3
455		PX	-10.16	\$	BP5
0 161	poo	DV Struc	ture pipe, bp	2	¢ Padial paratrating been part ba?
462		PV	+26.235		<pre>% Radial penetrating beam port, bp3</pre>
463		C/Y	0.0 -6.985	5	7 62 \$ Badial penetrating beam port, bp3
464		C/Y	0.0 -6.985	5	6 9088 \$ Radial penetrating beam port, bp3
c		0/1	0.00 0.000		onooco + Maarar ponooraoring boam poro, spo
c					
c Cor	itro	l eleme	ent surfaces		
c					
500		CZ	1.5113	\$	Control element - absorber surface, radius
502		CZ	1.5875	\$	Control element - clad outer surface
505		CZ	1.6637	\$	Control element - absorber surface, radius
507		CZ	1.7145	\$	Control element - clad outer surface
с					
510	7	ΡZ	+24.765	5	\$ Control element - element plug, end
511	7	ΡZ	+24.13	5	\$ Control element - magneform plug, upper
512	7	PZ	+19.05	ŝ	<pre>\$ Control element - absorber surface,length/2</pre>
513	7	ΡŻ	-19.05	5	<pre>\$ Control element - absorber surface,length/2</pre>
514	7	PZ	-21.59	ę	\$ Control element - magneform plug, lower
515	7	PZ	-70.8025	-	<pre>\$ control element - air follower section</pre>
516	7	ΡZ	-72.7075	5	<pre>\$ Control element - element plug, end</pre>
C 517		n-7	+75		
01 <i>1</i> 510		pz	-75		
510 510		pz cz	1.5875		
532		67	1 71/15		
c 002		02	1./145		
520	7	PZ.	+34,925	5	\$ Control element - element plug, end
521	7	PZ	+31.115	5	\$ Control element - void gap
522	7	PZ	+20.6375	5	\$ Control element - magneform plug, upper
523	7	PZ	+19.3675	5	\$ Control element - void gap
524	7	PZ	+19.05	5	\$ Control element - absorber surface, length/2
525	7	ΡZ	-19.05	5	\$ Control element - absorber surface, length/2
526	7	ΡZ	-20.32	5	\$ Control element - magneform plug, lower
527	7	ΡZ	-20.955	5	\$ Control element - void gap
528	7	PZ	-59.055	5	\$ Control element - fuel follower section
529	7	PZ	-61.595	5	\$ Control element - void gap
530	7	ΡZ	-74.93	5	\$ Control element - magneform plug, bottom
531	7	ΡZ	-74.99	5	\$ Control element - element plug, end
с					
550		CZ	0.28575	\$	Zirconium rod
с					
c		 , , ,			
C Fue	а а	na moae 	erator element		uriaces
600		CZ.	1.816	\$	Fuel element - fuel region surface, radius
602		CZ	1.867	\$	Fuel element - clad outer surface
603		CZ	1.5306	\$	Fuel - adapter effective radius, lower
604		CZ	1.9426	\$	Fuel - adapter effective radius, upper
605		CZ	1.816	\$	Graphite element - element surface, radius
606		CZ	1.867	\$	Graphite element - clad outer surface
607		CZ	1.867	\$	Graphite element - clad outer surface
608		CZ	1.9426	\$	Graphite - adapter effective radius, upper
609		CZ	1.5306	\$	Graphite - adapter effective radius, lower
c					
610		PZ	+28.5877	\$	Fuel element - element end region, upper
611		PZ	+27.7368	\$	Fuel element - graphite end region, upper
612		PZ	+19.05	\$	Fuel element - fuel surface, length/2
613		PZ	-19.05	\$	Fuel element - fuel surface, length/2
614		PZ	-27.7368	\$	Fuel element - graphite end region, lower
615		РZ	-28.58/7	\$	ruer element - element end region, lower
600		D7	+08 5977	Ф	Graphito alement - alement and upper
621		P7	+27 7368	φ	Graphite element - graphite and upper
622		P7.	-27,7368	φ \$	Graphite element - graphite end lover
622		P7.	-28.5877	φ \$	Graphite element - element and lower
c 220			20.0011	Ψ	
635		PZ	15.24		<pre>\$ Flux Tally</pre>
636		PZ	-15.24		\$ Flux Tally
637		CZ	0.4		\$ Flux Tally hole for the KSU detector
638		CZ	1.27		
639		ΡZ	7.7851		
640		PZ	-7.7851		
641		PZ	6.35		
642		ΡZ	-6.35		
c		07	0.00000		
650		CZ	0.28575		

5 660	C7	1 5306		<pre>\$ Flement adapter effective radius</pre>
661	C7	1 867		\$ Element clad outer surface
662	P7	+32 3850		\$ Unper grid plate top
663	P7	+28 5877		\$ Flement and region upper
664	P7	-28 5877		<pre>\$ Element end region, upper</pre>
665	P7	-33 17875		\$ Lover grid plate top
666	67	1 91135		\$ Hower grid plate holes
	02	1.01100		* opper grid pidte noies
:				
Bound	aries f	or large irradi	ator	
701	PX	+8.70712		
703	PX	+10.8839		
708	PX	+19.59102		
710	PX	21.7678		
712	PX	19.59102		
/1/	PX	10.8839	~	00.10100
702	P	-1 1.73205	0	-26.12136
704	r D	1 1 73205	0	4 35356
706	P	-1 1 73205	0	-26 12136
707	P	1 1.73205	ő	8,70712
709	P	1 1.73205	õ	4.35356
711	P	-1 1.73205	0	-43.5356
713	Р	-1 1.73205	0	-47.88916
714	Р	1 1.73205	0	-13.06068
715	Р	-1 1.73205	0	-43.5356
716	Р	1 1.73205	0	-17.41424
718	Р	1 1.73205	0	-13.06068
:				
c React	or core	e modifications		
c c Cente	r tube	irradiations		
c				
900	CZ	1.905		\$ Center tube outer radius
901	CZ	1.69418		\$ Center tube inner radius
905	CZ	1.5		\$ Sample radius
907	PZ	+0.5		\$ Sample length
908	CZ DZ	0.5		<pre>\$ Sample radius (PIS) \$ Sample length</pre>
	12	0.5		Dampie rengen
:				
ς ΡΝΙ τ ς	ube din	ensions		
910	CZ	+1.74625		\$ Al transport tube outer radiu
911	CZ	+1.53543		\$ Al transport tube inner radiu
912	CZ	+1.11125		\$ Al sample tube outer radius
913	CZ	+0.86995		\$ Al sample tube inner radius
914	CZ DZ	+1.16205		\$ Cd two layer liner
915	P2 D7	-10 00105		\$ PIS Sample Stop
910	P2 D7	-10.09125		5 Cd absorber end Cd absorber disk upper edge
918	P7	-21.1204591		Cd absorber disk, upper edge \$ Cd absorber disk lower edge
919	P7.	-30,32125		\$ PTS bottom section
931	PZ	-2.94775		\$ Al sample tube bottom
932	PZ	-2.99855		\$ Bottom of Cd liner
933	ΡZ	-3.37193		\$ Top of Al transport tube
934	ΡZ	-3.58275		<pre>\$ Bottom of Al transport tube</pre>
: 				
c 3-ele	ment in	radiator with C	d or	РЪ
Bofor		louor mid rl-		
. легет 920	c/z	0 0 +2.3812	се - 5	\$ Al can outer radius
921	c/z	0 0 +2.2339	3	\$ Al can inner radius
922	c/z	0 0 +2.0637	5	\$ Al sleeve outer radius
923	c/z	0 0 +1.9392	9	\$ Al sleeve inner radius
924	c/z	0 0 +2.16535		<pre>\$ Cd liner outer radius</pre>
930	c/z	0 -0 +0.476	25	\$ Al structure rod
c 940	PZ	-30.xxxx		\$ Al bearing section
950	PZ	+2.54		\$ Al upper end cap
951	PZ	+2.5908		\$ Al upper end cap
955	PZ	-2.54		\$ Al lower end cap
320 920	РZ	-2.5908		<pre>\$ A1 lower end cap</pre>
957	pz	+99.82125		\$ Al upper end cap, top
	pz	+96.82125		\$ Al upper end cap, bottom
958				
958 963	pz	+30.7975		\$ Bottom of upper grid plate
958 963 959	pz pz	+30.7975 -26.19375		<pre>\$ Bottom of upper grid plate \$ Al lower end cap, top </pre>
958 963 959 960	pz pz pz	+30.7975 -26.19375 -31.27385		<pre>\$ Bottom of upper grid plate \$ Al lower end cap, top \$ Al lower end cap, bottom \$ Al lower end cap, bottom</pre>

c
961 c/z -15.23746 -8.79856 +3.0099 с \$ Top of Al in Al sleeve 965 pz -25.55875 -26.09215 \$ Top of Cd liner in sleeve 966 pz 967 pz -26 19375 \$ Top of lower end cap с c ---c Large irradiator surfaces with cadmium sleeve c ---c 1940 c/z 15.23746 -11.31062 5.27939 \$ Center of irradiator +10.8839 +8.79856 2.4 c 1940 c/7 \$ Center of 3L irradiator -15.24 -8.80 +2.4 \$ Center of 3L irradiator 1940 c/z 1941 cz 5.08 1942 4.7625 cz 1943 3.81 cz 3.4925 1944 cz 1945 cz 3.175 1946 cz 2.8575 2.0000 1947 cz c 1950 +32.3850 pz \$ Al upper end cap 1951 +32.22625 \$ Al upper end cap pz pz \$ Al lower end cap 1955 -33.02 1956 pz -33.17875 \$ Al lower end cap с -c ----c Surfaces for flux mapping with Ni wire - JDB с -----1963 c/z2.17678 -1.2573 +0.16 \$ A 15.23746 -1.2573 19.59102 -1.2573 1964 c/z +0.16 \$ K 1965 c/z +0.16 \$ L 1966 c/z 23.94458 -1.2573 +0.16 \$ M с 750 cz 0.15875 0.16 32.385 751 cz 754 pz 782 pz -36.35375 с с c Photon Radial Profile Holes c ----2000 +0.0 +2.51353 +0.0 0.3175 s 2001 +0.0 +5.020706 +0.0 0.3175 s 2002 s +0.0 +10.05412 +0.0 0.3175 2003 +12.56765 0.3175 +0.0 +0.0 s +0.0 +17.59470 +0.0 +20.10823 2004 s +0.0 0.3175 2005 +0.0 0.3175 s 2006 +0.0 +25.0 +0.0 0.3175 s с с с ----c Upper grid plate holes c -5000 c/z +0.00000 +0.00000 +1.91135 \$ Upper grid plate hole, A1 c/z +4.35356 +0.00000 +1.91135 \$ Upper grid plate hole, B1
\$ Upper grid plate hole, B2 5001 5002 +2.17678 -3.76936 +1.91135 c/z 5003 c/z -2.17678 -3.76936 +1.91135 \$ Upper grid plate hole, B3 +0.00000 +1.911355004 c/z -4.35356 \$ Upper grid plate hole, B4 5005 -2.17678 +3.76936 +1.91135 \$ Upper grid plate hole, B5 c/z c/z +2.17678 c/z +8.70712 \$ Upper grid plate hole, B6
\$ Upper grid plate hole, C1 5006 +3.76936 +1.91135 +0.00000 +1.91135 5007 -3.76936 +1.91135 -7.54126 +1.91135 5008 +6.53034 \$ Upper grid plate hole, C2 c/z c/z +4.35356 5009 \$ Upper grid plate hole, C3 5010 -0.00000 -7.54126 +1.91135 \$ Upper grid plate hole, C4 c/z 5011 c/z -4.35356 -7.54126 +1.91135 \$ Upper grid plate hole, C5 5012 c/z -6.53034 -3.76936 +1.91135 \$ Upper grid plate hole, C6 -8.70712 +0.00000 +1.91135 5013 c/z \$ Upper grid plate hole, C7 5014 c/z -6.53034 +3.76936 +1.91135 \$ Upper grid plate hole, C8 c/z -4.35356 +7.54126 +1.91135 \$ Upper grid plate hole, C9 5015 -0.00000 +7.54126 +1.91135 \$ Upper grid plate hole, C10 5016 c/z 5017 c/z +4.35356 +7.54126 +1.91135 \$ Upper grid plate hole, C11 c/z +6.53034 +3.76936 +1.91135 5018 \$ Upper grid plate hole, C12 5019 c/z +13.06068 +0.00000 +1.91135 \$ Upper grid plate hole, D1 5020 c/z +10.88390 -3.76936 +1.91135 \$ Upper grid plate hole, D2 c/z +8.70712 -7.54126 +1.91135 5021 \$ Upper grid plate hole, D3 5022 c/z +6.53034 -11.31062 +1.91135 \$ Upper grid plate hole, D4 \$ Upper grid plate hole, D5
\$ Upper grid plate hole, D6 5023 c/z +2.17678 -11.31062 +1.91135 5024 c/z -2.17678 -11.31062 +1.91135 5025 c/z -6.53034 -11.31062 +1.91135 \$ Upper grid plate hole, D7 5026 c/z -8.70712 -7.54126 +1.91135 \$ Upper grid plate hole, D8 c/z -10.88390 -3.76936 +1.91135 \$ Upper grid plate hole, D9 5027 c/z -13.06068 +0.00000 +1.91135 \$ Upper grid plate hole, D10 c/z -10.88390 +3.76936 +1.91135 \$ Upper grid plate hole, D11 5028 5029

5020	- /-	0 70710	17 54106	11 01125	ሐ	TT		-1-+-	h - 1 -	D10
5030	c/z	-8.70712	+7.54126	+1.91135	\$	upper	gria	piate	noie,	D12
5031	c/z	-6.53034	+11.31062	+1.91135	\$	Upper	grid	plate	hole,	D13
5032	c/z	-2.17678	+11.31062	+1.91135	\$	Upper	grid	plate	hole,	D14
5033	c/7	+2 17678	+11 31062	+1 01135	¢	Uppor	arid	nlato	holo	D15
5000	0/2	12.17070	111.01002	11.01100	Ψ	opper	grid	prace	1010,	DIG
5034	c/z	+6.53034	+11.31062	+1.91135	\$	upper	gria	plate	noie,	D16
5035	c/z	+8.70712	+7.54126	+1.91135	\$	Upper	grid	plate	hole,	D17
5036	c/z	+10.88390	+3.76936	+1.91135	\$	Upper	grid	plate	hole,	D18
5037	c/7	+17 41424	+0.00000	+1.91135	\$	Unner	grid	nlate	hole	E1
5000	-/-	115 02746	2 76026	11 01125	÷.	Unana		-1-+-	h-1-	FO
5036	C/2	+13.23/40	-3.70930	+1.91135	φ	opper	grid	prace	nore,	EZ RO
5039	c/z	+13.06068	-7.54126	+1.91135	\$	Upper	grid	plate	hole,	E3
5040	c/z	+10.88390	-11.31062	+1.91135	\$	Upper	grid	plate	hole,	E4
5041	c/z	+8.70712	-15.08252	+1.91135	\$	Upper	grid	plate	hole.	E5
E040	-/-	+4 25256	-15 09050	+1 01125	÷	Uppor	amid	plata	holo	EC
3042	C/2	+4.30300	-15.06252	+1.91135	φ	opper	gria	prace	nore,	E0
5043	c/z	-0.00000	-15.08252	+1.91135	\$	Upper	grid	plate	hole,	E7
5044	c/z	-4.35356	-15.08252	+1.91135	\$	Upper	grid	plate	hole,	E8
5045	c/z	-8.70712	-15.08252	+1.91135	\$	Upper	grid	plate	hole.	E9
5046	c/7	-10 88390	-11 31062	+1 91135	\$	Upper	grid	nlate	hole	F10
5047	0/2	10.00000	7 54402	1.01100	÷	opper	BT TO	prace	1010,	DIO DIA
5047	c/z	-13.06068	-7.54126	+1.91135	\$	upper	gria	plate	noie,	EII
5048	c/z	-15.23746	-3.76936	+1.91135	\$	Upper	grid	plate	hole,	E12
5049	c/z	-17.41424	+0.00000	+1.91135	\$	Upper	grid	plate	hole,	E13
5050	c/7	-15 23746	+3.76936	+1.91135	\$	Unner	grid	nlate	hole	E14
5050	- /-	12.00000	17 54106	11.01100	÷	Upper	BLIG	-1-+-	h.l.	DIT
5051	C/Z	-13.06066	+7.54120	+1.91135	Φ	opper	grid	prate	noie,	E15
5052	c/z	-10.88390	+11.31062	+1.91135	\$	Upper	grid	plate	hole,	E16
5053	c/z	-8.70712	+15.08252	+1.91135	\$	Upper	grid	plate	hole,	E17
5054	c/7	-4.35356	+15.08252	+1.91135	\$	Unner	grid	nlate	hole	E18
FOFF	-/-	0.00000	115 00050	11 01125	÷.	Unana		-1-+-	h-1-	E10
5055	C/2	-0.00000	+15.06252	+1.91135	φ	opper	grid	prace	nore,	E19
5056	c/z	+4.35356	+15.08252	+1.91135	\$	Upper	grid	plate	hole,	E20
5057	c/z	+8.70712	+15.08252	+1.91135	\$	Upper	grid	plate	hole,	E21
5058	c/z	+10.88390	+11.31062	+1.91135	\$	Upper	grid	plate	hole.	E22
5059	-/- c/-	+13 06068	+7 5/126	+1 01135	é	Uppor	arid	plato	holo	E03
5055	0/2	115.00000	11.54120	11.31133	Ψ	opper	grid	prace		520
5060	c/z	+15.23746	+3.76936	+1.91135	\$	Upper	grid	plate	hole,	E24
5061	c/z	+21.76780	+0.00000	+1.91135	\$	Upper	grid	plate	hole,	F1
5062	c/z	+19.59102	-3.76936	+1.91135	\$	Upper	grid	plate	hole.	F2
5063	c/7	+17 /1/2/	=7 54126	+1 01135	¢	Uppor	arid	nlato	holo	E3
5005	0/2	117.41424	1.04120	11.01100	Ψ	opper	grid	prace	1010,	10
5064	c/z	+15.23/46	-11.31062	+1.91135	\$	upper	gria	plate	noie,	r4
5065	c/z	+13.06068	-15.08252	+1.91135	\$	Upper	grid	plate	hole,	F5
5066	c/z	+10.88390	-18.85188	+1.91135	\$	Upper	grid	plate	hole,	F6
5067	c/7	+6 53034	-18 85188	+1 91135	\$	Unner	grid	nlate	hole	F7
50001	0/2	10.00004	10.00100	1.01100	÷	opper	BT TO	prace	1010,	TO 1
5068	c/z	+2.1/6/8	-18.85188	+1.91135	\$	upper	gria	plate	noie,	FØ
5069	c/z	-2.17678	-18.85188	+1.91135	\$	Upper	grid	plate	hole,	F9
5070	c/z	-6.53034	-18.85188	+1.91135	\$	Upper	grid	plate	hole,	F10
5071	c/7	-10.88390	-18.85188	+1.91135	\$	Unner	grid	nlate	hole	F11
5072	0/2	-12 06069	-15 09252	+1 01125	÷	Uppor	amid	plate	holo,	E10
5072	c/z	-13.06066	-15.06252	+1.91135	Φ	opper	grid	prate	noie,	r12
5073	c/z	-15.23746	-11.31062	+1.91135	\$	Upper	grid	plate	hole,	F13
5074	c/z	-17.41424	-7.54126	+1.91135	\$	Upper	grid	plate	hole,	F14
5075	c/z	-19.59102	-3.76936	+1.91135	\$	Upper	grid	plate	hole.	F15
5076	-/- c/-	-21 76780	+0.00000	+1 01135	é	Uppor	arid	plato	holo	F16
5070	C/2	21.70700	10.00000	11.31133	Ψ	opper	grid	prace	1010,	F10
5077	c/z	-19.59102	+3.76936	+1.91135	\$	upper	gria	plate	noie,	F17
5078	c/z	-17.41424	+7.54126	+1.91135	\$	Upper	grid	plate	hole,	F18
5079	c/z	-15.23746	+11.31062	+1.91135	\$	Upper	grid	plate	hole,	F19
5080	c/7	-13.06068	+15.08252	+1.91135	\$	Unner	grid	nlate	hole	F20
5081	c/7	-10 88390	+18 85188	+1 01135	é	Uppor	grid	plate	holo,	F21
5001	0/2	10.00000	10.00100	11.31135	Ψ	opper	grid	prace		121
5082	c/z	-6.53034	+18.85188	+1.91135	\$	Upper	grid	plate	hole,	F22
5083	c/z	-2.17678	+18.85188	+1.91135	\$	Upper	grid	plate	hole,	F23
5084	c/z	+2.17678	+18.85188	+1.91135	\$	Upper	grid	plate	hole,	F24
5085	c/7	+6.53034	+18.85188	+1.91135	\$	Unner	grid	nlate	hole	F25
ENOC	0/2	+10 99200	±10 0E100	+1 01125	÷	Uppor	amid	plate	holo,	FOR
5060	C/2	+10.00390	+10.00100	+1.91135	φ	opper	grid	prace	nore,	F20
5087	c/z	+13.06068	+15.08252	+1.91135	\$	Upper	grid	plate	hole,	F27
5088	c/z	+15.23746	+11.31062	+1.91135	\$	Upper	grid	plate	hole,	F28
5089	c/z	+17.41424	+7.54126	+1.91135	\$	Upper	grid	plate	hole,	F29
5090	c/7	+19.59102	+3,76936	+1,91135	\$	Upper	grid	plate	hole	F30
5001	c/7	+23 01/150	-3 76034	+1 91135	¢	Uppor	arid	nlate	holo,	62
5031	0/2	123.34430	5.70350	11.31133	Ψ	opper	grid	prace		92
5092	c/z	+21./6/80	-1.54126	+1.91135	\$	upper	grıd	piate	nole,	GJ
5093	c/z	+19.59102	-11.31062	+1.91135	\$	Upper	grid	plate	hole,	G4
5094	c/z	+17.41424	-15.08252	+1.91135	\$	Upper	grid	plate	hole.	G5
5095	c/7	+15 23746	-18 85188	+1 91135	\$	Unner	grid	nlate	hole	66
5000	- /-	10.20740	00.60100	11.01100	÷	Upper	BLIG	-late	h.l.	00
2030	c/Z	+0./0/12	22.02124	CT 91130	Φ	opper	Br.1q	Prate	nore,	00
5097	c/z	+4.35356	-22.62124	+1.91135	\$	Upper	grid	plate	hole,	G9
5098	c/z	-0.00000	-22.62124	+1.91135	\$	Upper	grid	plate	hole,	G10
5099	c/z	-4.35356	-22.62124	+1.91135	\$	Upper	grid	plate	hole.	G11
5100	c/7	-8 70710	-22 62124	+1 0113F	¢	Uppor	arid	nlato	holo	612
5100	c/2	_15_02742	_10 05100	1.01100	ቀ	opper	grid	prace	hel	014
2101	c/z	-15.23/46	-10.05108	+1.91135	\$	upper	grıd	piate	noie,	614
5102	c/z	-17.41424	-15.08252	+1.91135	\$	Upper	grid	plate	hole,	G15
5103	c/z	-19.59102	-11.31062	+1.91135	\$	Upper	grid	plate	hole,	G16
5104	c/7	-21.76780	-7.54126	+1,91135	\$	Upper	grid	plate	hole	G17
5105	-/-	-23 04450	-3 76020	±1 0112F	÷	Unnor	aris a	nla+c	holo,	C19
0100	c/Z	23.34458	-3.10930	r1.91135	Φ	opper	Brig	Prate	nore,	910
911C	- /	-23.94458	+3.76936	+1.91135	\$	upper	grid	pıate	noie,	G20
	c/z		17 54106	+1.91135	\$	Upper	grid	plate	hole.	G21
5107	c/z c/z	-21.76780	+1.54120						,	022
5107 5108	c/z c/z c/z	-21.76780 -19.59102	+11.31062	+1.91135	\$	Upper	grid	plate	hole,	G22
5107 5108 5109	c/z c/z c/z	-21.76780 -19.59102 -17.41424	+11.31062	+1.91135	\$ \$	Upper	grid	plate	hole,	G22 G23
5107 5108 5109	c/z c/z c/z c/z	-21.76780 -19.59102 -17.41424	+11.31062 +15.08252	+1.91135	\$ \$ 6	Upper Upper	grid grid	plate plate	hole, hole,	G22 G23
5107 5108 5109 5110	c/z c/z c/z c/z c/z	-21.76780 -19.59102 -17.41424 -15.23746	+7.54126 +11.31062 +15.08252 +18.85188	+1.91135 +1.91135 +1.91135	\$ \$ \$	Upper Upper Upper	grid grid grid	plate plate plate	hole, hole, hole,	G22 G23 G24
5107 5108 5109 5110 5111	c/z c/z c/z c/z c/z c/z	-21.76780 -19.59102 -17.41424 -15.23746 -8.70712	+7.54126 +11.31062 +15.08252 +18.85188 +22.62124	+1.91135 +1.91135 +1.91135 +1.91135	\$ \$ \$ \$ \$	Upper Upper Upper Upper	grid grid grid grid	plate plate plate plate	hole, hole, hole, hole,	G22 G23 G24 G26
5107 5108 5109 5110 5111 5112	c/z c/z c/z c/z c/z c/z c/z c/z	-21.76780 -19.59102 -17.41424 -15.23746 -8.70712 -4.35356	+7.54126 +11.31062 +15.08252 +18.85188 +22.62124 +22.62124	+1.91135 +1.91135 +1.91135 +1.91135 +1.91135	\$ \$ \$ \$ \$	Upper Upper Upper Upper Upper	grid grid grid grid grid	plate plate plate plate plate	hole, hole, hole, hole, hole,	G22 G23 G24 G26 G27
5107 5108 5109 5110 5111 5112 5113	c/z c/z c/z c/z c/z c/z c/z c/z	-21.76780 -19.59102 -17.41424 -15.23746 -8.70712 -4.35356 +4.35356	+7.54126 +11.31062 +15.08252 +18.85188 +22.62124 +22.62124 +22.62124	+1.91135 +1.91135 +1.91135 +1.91135 +1.91135 +1.91135 +1.91135	\$ \$ \$ \$ \$ \$	Upper Upper Upper Upper Upper Upper	grid grid grid grid grid grid	plate plate plate plate plate plate	hole, hole, hole, hole, hole, hole,	G22 G23 G24 G26 G27 G29

5114	c/7	-0.00000	+22.62124	+1.91135	\$ Upper	grid	plate	hole
E11E	0/2	+9 70710	+00 60104	+1 01125	¢ Uppor	amid	plate	holo
5115	C/Z	+0.70712	+22.02124	+1.91135	\$ Upper	grid	prate	nore
5116	c/z	+15.23746	+18.85188	+1.91135	\$ Upper	grid	plate	hole
5117	c/z	+17.41424	+15.08252	+1.91135	\$ Upper	grid	plate	hole.
5118	c/7	+10 50102	+11 31062	+1 01135	¢ Uppor	arid	plato	holo
5110	C/2	+19.59102	+11.31002	+1.91135	\$ opper	grid	prace	nore.
5119	c/z	+21.76780	+7.54126	+1.91135	\$ Upper	grid	plate	hole
5120	c/z	+23.94458	+3.76936	+1.91135	\$ Upper	grid	plate	hole
c						0	•	
0								
c								
c Cut	plane	es for tal	lies					
c	·							
2000								
6000	pz	+32						
6001	pz	+31						
6002	- n7	+30						
6002	P2	100						
6003	pz	+29						
6004	pz	+28						
6005	pz.	+27						
6006	r-	+06						
0000	pz	+20						
6007	pz	+25						
6008	pz	+24						
6009	n7	+23						
0009	pz	+23						
6010	pz	+22						
6011	pz	+21						
6012	- n7	+20						
6012	P2	110						
6013	pz	+19						
6014	pz	+18						
6015	nz.	+17						
6016	r-	110						
6016	pz	+16						
6017	pz	+15						
6018	pz.	+14						
6010	r-	+12						
6019	pz	+13						
6020	pz	+12						
6021	pΖ	+11						
6000	r-	+10						
6022	pz	+10						
6023	pz	+9						
6024	pΖ	+8						
6025	- n7	+7						
0020	p2							
6026	pz	+6						
6027	pz	+5						
6028	n7	+4						
0020	P2							
6029	pz	+3						
6030	pz	+2						
6031	nz	+1						
60001	P.							
6032	pz	+0						
6033	pz	-1						
6034	pΖ	-2						
6025	r-	_2						
0035	pz	-3						
6036	pz	-4						
6037	pz	-5						
6038	r-	-6						
0000	pz	0						
6039	pz	-7						
6040	pz	-8						
6041	nz	-9						
6040	P.	10						
6042	pz	-10						
6043	pz	-11						
6044	pΖ	-12						
6045	n7	-13						
00-10	P2	10						
6046	pz	-14						
6047	pz	-15						
6048	pz.	-16						
6040	r-	_17						
0043	pz	10						
6050	pz	-18						
6051	pz	-19						
6052	pz.	-20						
00002	P2	20						
6055	pz	-21						
6054	pz	-22						
6055	pΖ	-23						
COEC	r-	-24						
0050	pz	-24						
6057	pz	-25						
6058	pz	-26						
6059	n7	-27						
0000	P2	21						
0000	pz	-28						
6061	pz	-29						
6062	p7.	-30						
60002	P2	-21						
0003	pz	-31						
6064	pz	-32						
6065	pz	-33						
6066	1 - D7	-34						
0000	PZ	05						
6067	pz	-35						
6068	pz	-36						
c	-							
7000	-	120 001						
1000	pz	+30.861						
7001	pz	+27.305						
7002	p7	+25 781						
	· -							

G28 G30 G32 G33 G34 G35 G36

```
7004
      pz
            +20.701
7005
      pz
pz
7006
            +15.621
7007
       pz
            +12.065
7008
      pz
pz
            +10.541
7009
             +6.985
7010
      pz
             +5.461
7011
             +1.905
      pz
pz
7012
             +0.381
      pz
pz
7013
             -3.175
7014
             -4.699
7015
             -8.255
      pz
7016
      pz
pz
             -9.779
7017
            -13.335
7018
7019
            -14.859
      pz
            -18.415
      pz
7020
      pz
            -19.939
7021
7022
            -23.495
      pz
            -25.019
      pz
7023
            -28.575
      pz
7024
      pz
            -30.099
7025
            -33.655
      pz
7026
      pz
            -35.179
с
                                      $ Bottom of upper grid plate region
$ Top of graphite region
$ Top of fuel region
8000
              +30.7975
      pz
8001
              +27.7368
      pz
              +19.05
8002 pz
8003 pz
              -19.05
                                      $ Bottom of fuel region
8004
      pz
              -27.7368
                                      $ Bottom of graphite region
8005 pz
              -33.17875
                                      $ Top of lower grid plate region
с
c -----
              End of Surface Card Specification
с
с
с
с
            Beginning of Material Card Specification
c -----
c Beam tube transformations
c ----
c tr1: Through port, small, BP1
c tr2: Tangential port, small, BP2
c tr3: Radial port, large, BP3
c tr4: Radial port, small, BP4
c tr5: Through port, large, BP5
с
*tr1 0.0
                -35.255 -6.985
                                   00
                                      90
                                           90
                                                 90
                                                     00 90
*tr2 +35.255 -06.222 -6.985
*tr3 0.0 +25.600 -6.985
*tr4 -22.871 +13.216 -6.985
                                   30 120 90
00 90 90
                                                 60 30 90
                                                 90
                                                     00 90
                                   60 30
                                           90
                                                 150
                                                      60
                                                         90
*tr5 0.0
                -35.255 -6.985
                                   00 90
                                           90
                                                 90
                                                     00
                                                          90
с
c the '*' just makes the transformation in degrees
с
-
c -----
c Control rod transformations
c -----
c Shutdown condition - 000 units
c Low power critical - 525 units
c Design high power - 700 units
c Full out condition - 960 units
с
tr6 0 0 00.00
                     100 010
tr7 0 0 15.00
tr8 0 0 27.78
                     100010
                                                   $ Formerly 19.05, 8.33, 12.37
     0 0 38.10
tr9
                      100 010
с
c -----
c Mapping experiment transformations
c ---
              ____
tr10
        +2.17678 -1.2573 0.0
       +15.23746 -1.2573 0.0
+19.59102 -1.2573 0.0
 tr11
tr12
tr13 +23.94458 -1.2573 0.0
с
c ----
c Irradiation facility transformations
c -----
tr20 -15.23746 -8.79856 0.0
                                       $ Center of 3L irradiator
c tr50 +15.23746 -11.31062 0.0
                                       $ Center of 6L irradiator
c tr50 +10.8839 +8.79856 0.0
tr50 -15.24 -8.80 0.0
                                       $ Center of 3L irradiator
                                       $ Center of 3L irradiator
```

7003

pz

+22.225

c Grid	plate hole	transforma	tions		
c	_0_00000	+0 00000		¢	A 1
tr101	+4 35356	+0.00000	0.0	φ s	R1
tr102	+2.17678	-3.76936	0.0	\$	B2
tr103	-2.17678	-3.76936	0.0	\$	B3
tr104	-4.35356	+0.00000	0.0	\$	B4
tr105	-2.17678	+3.76936	0.0	\$	B5
tr106	+2.17678	+3.76936	0.0	\$	B6
tr107	+8.70712	+0.00000	0.0	\$	C1
tr108	+6.53034	-3.76936	0.0	\$	C2
tr109	-0.00000	-7.54126	0.0	Ф \$	C4
tr111	-4.35356	-7.54126	0.0	\$	C5
tr112	-6.53034	-3.76936	0.0	\$	C6
tr113	-8.70712	+0.00000	0.0	\$	C7
tr114	-6.53034	+3.76936	0.0	\$	C8
tr115	-4.35356	+7.54126	0.0	\$	C9
tr116	-0.00000	+7.54126	0.0	\$	C10
tr11/	+4.35356	+7.54126	0.0	\$ ¢	C11
tr110	+13 06068	+0.00000	0.0	φ ¢	D1
tr120	+10.88390	-3.76936	0.0	\$	D2
tr121	+8.70712	-7.54126	0.0	\$	D3
tr122	+6.53034	-11.31062	0.0	\$	D4
tr123	+2.17678	-11.31062	0.0	\$	D5
tr124	-2.17678	-11.31062	0.0	\$	D6
tr125	-6.53034	-11.31062	0.0	\$	D7
tr126	-8.70712	-7.54126	0.0	\$	D8
tr128	-13 06068	+0 00000	0.0	φ s	D9
tr120	-10.88390	+3.76936	0.0	\$	D11
tr130	-8.70712	+7.54126	0.0	\$	D12
tr131	-6.53034	+11.31062	0.0	\$	D13
tr132	-2.17678	+11.31062	0.0	\$	D14
tr133	+2.17678	+11.31062	0.0	\$	D15
tr134	+6.53034	+11.31062	0.0	\$	D16
tr135	+8.70712	+7.54126	0.0	\$	D17
tr130	+17 41424	+0.00000	0.0	ф \$	D10 F1
tr138	+15.23746	-3.76936	0.0	\$	E2
tr139	+13.06068	-7.54126	0.0	\$	E3
tr140	+10.88390	-11.31062	0.0	\$	E4
tr141	+8.70712	-15.08252	0.0	\$	E5
tr142	+4.35356	-15.08252	0.0	\$	E6
tr143	-0.00000	-15.08252	0.0	\$	E7
tr144	-4.35356	-15.08252	0.0	\$	E8 E0
tr145	-0.70712	-15.06252	0.0	¢ ¢	E9 E10
tr147	-13.06068	-7.54126	0.0	\$	E11
tr148	-15.23746	-3.76936	0.0	\$	E12
tr149	-17.41424	+0.00000	0.0	\$	E13
tr150	-15.23746	+3.76936	0.0	\$	E14
tr151	-13.06068	+7.54126	0.0	\$	E15
tr152	-10.88390	+11.31062	0.0	\$	E16
tr153	-8.70712	+15.08252	0.0	\$	E17
01154 tr155	-0 00000	+15 08252	0.0	¢.	E10
tr156	+4.35356	+15.08252	0.0	Ψ \$	E20
tr157	+8.70712	+15.08252	0.0	\$	E21
tr158	+10.88390	+11.31062	0.0	\$	E22
tr159	+13.06068	+7.54126	0.0	\$	E23
tr160	+15.23746	+3.76936	0.0	\$	E24
tr161	+21.76780	+0.00000	0.0	\$	F1
tr162	+19.59102	-3.76936	0.0	\$	F2
tr163	+17.41424	-7.54126	0.0	\$	F3
tr164	+12.23/46	-11.31062	0.0	\$ ¢	r4 55
tr166	+10.88300	-18.85189	0.0	Ф \$	rə F6
tr167	+6.53034	-18.85188	0.0	9 \$	F7
tr168	+2.17678	-18.85188	0.0	\$	F8
tr169	-2.17678	-18.85188	0.0	\$	F9
tr170	-6.53034	-18.85188	0.0	\$	F10
tr171	-10.88390	-18.85188	0.0	\$	F11
tr172	-13.06068	-15.08252	0.0	\$	F12
tr173	-15.23746	-11.31062	0.0	\$	F13
tr174	-10.50100	-7.54126	0.0	\$	F14
tr176	-19.59102	-3.76936	0.0	\$ ¢	r15
tr177	-19,59102	+3.76936	0.0	\$ \$	r16 F17
	10.00102			÷	1
tr178	-17.41424	+7.54126	0.0	\$	F18
tr178 tr179	-17.41424 -15.23746	+7.54126	0.0	\$ \$	F18 F19

```
tr180 -13.06068 +15.08252 0.0
                                           $ F20
 tr181 -10.88390 +18.85188 0.0
tr182 -6.53034 +18.85188 0.0
                                           $
                                               F21
                                               F22
                                           $
           -2.17678 +18.85188
                                               F23
 tr183
                                   0.0
                                            $
 tr184
           +2.17678 +18.85188
                                   0.0
                                            $
                                               F24
           +6.53034 +18.85188
                                               F25
 tr185
                                   0.0
                                            $
         +10.88390 +18.85188
+13.06068 +15.08252
 tr186
                                   0.0
                                               F26
 tr187
                                   0.0
                                           $
                                               F27
         +15.23746 +11.31062
+17.41424 +7.54126
                                               F28
 tr188
                                   0.0
                                            $
 tr189
                                   0.0
                                            $
                                               F29
         +19.59102 +3.76936
+23.94458 -3.76936
+21.76780 -7.54126
 tr190
                                  0.0
                                           $
                                               F30
                                   0.0
                                               G2
 tr191
                                            $
 tr192
                                   0.0
                                            $
                                               GЗ
         +19.59102 -11.31062
 tr193
                                  0.0
                                           $
                                               G4
 tr194
          +17.41424 -15.08252
                                   0.0
                                            $
                                               G5
 tr195
         +15.23746 -18.85188
+8.70712 -22.62124
                                   0.0
                                            $
                                               G6
G8
                                  0.0
                                           $
 tr196
 tr197
           +4.35356 -22.62124
                                   0.0
                                            $
                                               G9
          -0.00000 -22.62124
-4.35356 -22.62124
                                               G10
G11
 tr198
                                   0.0
                                            $
 tr199
                                   0.0
                                            $
         -8.70712 -22.62124
-15.23746 -18.85188
 tr200
                                   0.0
                                               G12
                                            $
 tr201
                                   0.0
                                            $
                                               G14
         -17.41424 -15.08252
 tr202
                                   0.0
                                               G15
                                            $
         -19.59102 -11.31062
-21.76780 -7.54126
 tr203
                                   0.0
                                            $
                                               G16
 tr204
                                   0.0
                                            $
                                               G17
 tr205
          -23.94458 -3.76936
                                   0.0
                                               G18
                                            $
         -23.94458 +3.76936
-21.76780 +7.54126
 tr206
                                   0.0
                                            $
                                               G20
                                               G21
 tr207
                                   0.0
                                            $
          -19.59102 +11.31062
                                               G22
 tr208
                                   0.0
                                            $
 tr209
         -17.41424 +15.08252
-15.23746 +18.85188
                                   0.0
                                            $
                                               G23
                                   0.0
                                               G24
 tr210
                                            $
 tr211
           -8.70712 +22.62124
                                   0.0
                                               G26
 tr212
          -4.35356 +22.62124
                                   0.0
                                           $
                                               G27
           +4.35356 +22.62124
                                               G29
 tr213
                                   0.0
                                            $
         -0.00000 +22.62124
+8.70712 +22.62124
+15.23746 +18.85188
 tr214
                                   0.0
                                               G28
                                            $
 tr215
                                  0.0
                                           $
                                               G30
 tr216
                                   0.0
                                            $
                                               G32
 tr217 +17.41424 +15.08252
                                  0.0
                                            $
                                               G33
 tr218 +19.59102 +11.31062
tr219 +21.76780 +7.54126
                                  0.0
                                           $
                                               G34
                                   0.0
                                           $
                                               G35
 tr220 +23.94458 +3.76936
                                  0.0
                                           $
                                               G36
с
c ----
c Reactor component materials
c -----
c m1 - water
c m2 - aluminum (structural) type 6061
c m3 - stainless steel (structural) type 304
c m4 - graphite (carbon)
c m5 - fresh U-ZrH fuel
c m6 - B4C (boron carbide)
c m7 - zirconium (rod)
c m8 - air
c m10 - cadmium (neutron absorber liner)
c m11 - lead (neutron absorber liner)
c m54 - ar cme
 m1 1001
                       0.66667
       8016
                      0.33333
mt1 lwtr.60t
                                      $294K cme
c mpn1 0 0
 m2 13027
                      -0.9685
      26000.50c
                      -0.0070
      29000.50c
                      -0.0025
      14000.60c
                      -0.0060
      12000.66c
                      -0.0110
      24000.50c
                      -0.0035
      25055
                      -0.0015
c mpn2 0 0 0 0 0 0 0
                     -0.6785
 m3 26000.50c
       6000
                      -0.0080
      14000.60c
                      -0.0100
      24000 50c
                      -0.1800
      28000.50c
                      -0.0980
      25055
                      -0.0180
      15031
                      -0.0045
      16000.66c
                      -0.0030
c mpn3 00000000
 m4 6000
                       1.0
mt4 grph.60t
                                         $ 294K cme
c mpn4 0
 m5 40090.71c
                          -0.462589265
      40091.71c
                          -0.100879525
      40092.71c
40094.71c
                          -0.154196422
-0.156264362
```

1001.71c -0.0158955 92238.71c -0.068170 92235.71c -0.016830 c mpn5 0 0 82208 82208 mt5 zr/h.62t \$600K cme h/zr.62t \$600K cme m6 0.1584 5010 0.6416 5011 6000 0.2 c mpn6 000 m7 40090 51.45 40091 11.22 40092 17.15 40094 17.38 40096 2.8 c mpn7 0 m8 8016 -0.23 7014 -0.77 c mpn8 00 m10 48000.42c 1.0 c mpn10 0 m11 82000.42c -1.0 c mpn11 0 (n,p) a/o 68.0 m12 28058 1 \$ nickel m13 28064 nickel (n,g) a/o 0.9 \$ 1 m14 79197 1 \$ gold (n,g) a/o 100.0 29063 m15 1 \$ copper (n,g) a/o 69.1 26058 m16 \$ iron a/o 0.2 (n,g) 1 m17 26054 1 \$ iron (n,p) a/o 5.8 42098 (n,g) (n,g) a/o 24.1 m18 1 \$ molvbdenum m19 27059 \$ cobalt a/o 100.0 m20 13027 \$ aluminum (n,g) a/o 100.0 1 18036 0.003365 \$cme c m54 18038 0.000632 с с 18040 0.996003 18037 1e-36 с с 18039 1e-36 с 18041 1e-36 18042 1e-36 с 18043 1e-36 с 17037 1e-36 с 19039 1e-36 с 19041 1e-36 c с с c Tallies c ---с (1752<u=82) c f14:n Flux tally for CT 0.50e-6 1.00e-2 1.50e+1 T c fc14 c e14 f24:n (1752<u=82) Flux tally for CT spectrum 1.000E-11 5.000E-09 1.000E-08 1.500E-08 2.000E-08 2.500E-08 fc24 e24 3.000E-08 3.500E-08 4.200E-08 5.000E-08 5.800E-08 6.700E-08 8.000E-08 1.000E-07 1.520E-07 2.510E-07 4.140E-07 6.830E-07 1.125E-06 1.855E-06 3.059E-06 5.040E-06 8.315E-06 1.371E-05 2.260E-05 3.727E-05 6.144E-05 1.013E-04 1.670E-04 2.754E-04 4.540E-04 7.485E-04 1.234E-03 2.035E-03 2.404E-03 2.840E-03 3.355E-03 5.531E-03 9.119E-03 1.503E-02 1.989E-02 2.554E-02 4.087E-02 6.738E-02 1.111E-01 1.832E-01 3.020E-01 3.887E-01 4.979E-01 6.392E-01 8.208E-01 1.108 1.353 1.737 2.231 2.865 3.678 4.965 6.065 10.0 14.91 16.90 20.00 25.00 T с f74:n \$(455<u=45) this is old input с 455 Flux tally for 3L(Pb) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 c fc74 c fs74 c fq74 s f c f84:n (308<u=30) \$PNT tally fc84 Flux tally for PNT(Pb) spectrum 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 c fs84 1.000E-11 5.000E-09 1.000E-08 1.500E-08 2.000E-08 2.500E-08 e84 3.000E-08 3.500E-08 4.200E-08 5.000E-08 5.800E-08 6.700E-08 8 000E-08 1 000E-07 1 520E-07 2 510E-07 4 140E-07 6 830E-07 1.125E-06 1.855E-06 3.059E-06 5.040E-06 8.315E-06 1.371E-05 2.260E-05 3.727E-05 6.144E-05 1.013E-04 1.670E-04 2.754E-04 4.540E-04 7.485E-04 1.234E-03 2.035E-03 2.404E-03 2.840E-03 3.355E-03 5.531E-03 9.119E-03 1.503E-02 1.989E-02 2.554E-02 4.087E-02 6.738E-02 1.111E-01 1.832E-01 3.020E-01 3.887E-01 4.979E-01 6.392E-01 8.208E-01 1.108 1.353 1.737

40096.71c

-0.025174926

65

```
2.231 2.865 3.678 4.965 6.065 10.0
            14.91 16.90 20.00 25.00 T
с
 f15:n -15.24 -8.8 -22.0 0
                                                                                                  $Point detector at Flux Wire
         Point detector at middle of 3L
1.000E-11 5.000E-09 1.000E-08 1.500E-08 2.000E-08 2.500E-08
 fc15
  e15
           3.00E-08 3.500E-08 4.200E-08 5.000E-08 5.800E-08 6.700E-08
8.000E-08 1.000E-07 1.520E-07 2.510E-07 4.140E-07 6.830E-07
1.125E-06 1.855E-06 3.059E-06 5.040E-06 8.315E-06 1.371E-05
            2.260E-05 3.727E-05 6.144E-05 1.013E-04 1.670E-04 2.754E-04
            4.540E-04 7.485E-04 1.234E-03 2.035E-03 2.404E-03 2.840E-03
            3.355E-03 5.531E-03 9.119E-03 1.503E-02 1.989E-02 2.554E-02
            4.087E-02 6.738E-02 1.111E-01 1.832E-01 3.020E-01 3.887E-01
            4.979E-01 6.392E-01 8.208E-01 1.108 1.353 1.737
            2.231 2.865 3.678 4.965 6.065 10.0
            14.91 16.90 20.00 25.00 T
с
c f25:n
           -15.24 -8.8 0 2.4
                                                                                               $Ring detector at middle of 3L
c fc25
           Ring detector at middle of 3L
1.000E-11 5.000E-09 1.000E-08 1.500E-08 2.000E-08 2.500E-08
   e25
с
             3.000E-08 3.500E-08 4.200E-08 5.000E-08 5.800E-08 6.700E-08
8.000E-08 1.000E-07 1.520E-07 2.510E-07 4.140E-07 6.830E-07
с
с
             1.125E-06 1.855E-06 3.059E-06 5.040E-06 8.315E-06 1.371E-05
с
с
             2.260E-05 3.727E-05 6.144E-05 1.013E-04 1.670E-04 2.754E-04
с
             4.540E-04 7.485E-04 1.234E-03 2.035E-03 2.404E-03 2.840E-03
             3.355E-03 5.531E-03 9.119E-03 1.503E-02 1.989E-02 2.554E-02
с
             4.087E-02 6.738E-02 1.111E-01 1.832E-01 3.020E-01 3.887E-01
             4.979E-01 6.392E-01 8.208E-01 1.108 1.353 1.737
с
             2.231 2.865 3.678 4.965 6.065 10.0
с
             14.91 16.90 20.00 25.00 T
c
c f35:n -15.24 -8.8 -26.19375 0
c fc35 Point Detector at bottom of 3L
c f45:n -15.24 -8.8 -19 0
c fc45 Point detector at bottom of fuel in 3L
c f55:n -15.24 -8.8 +19 0
c fc55 Point detector at top of fuel in 3L
c f65:n -15.24 -8.8 +30.7975 0
c fc65 Point detector at top of 3L
c f114:n 92
c fc114
             Flux tally for RSR
c fs114
             6022
             0.50e-6 1.00e-2 1.50e+1 T
c e114
 f124:n
            92
 fc124
            Flux tally for RSR spectrum
           6022 $ 2nd segment is approx. sample location
1.000E-11 5.000E-09 1.000E-08 1.500E-08 2.000E-08 2.500E-08
 fs124
 e124
           3.000E-08 3.500E-08 4.200E-08 5.000E-08 5.800E-08 6.700E-08
8.000E-08 1.000E-07 1.520E-07 2.510E-07 4.140E-07 6.830E-07
            1.125E-06 1.855E-06 3.059E-06 5.040E-06 8.315E-06 1.371E-05
            2.260E-05 3.727E-05 6.144E-05 1.013E-04 1.670E-04 2.754E-04 4.540E-04 7.485E-04 1.234E-03 2.035E-03 2.404E-03 2.840E-03
            3.355E-03 5.531E-03 9.119E-03 1.503E-02 1.989E-02 2.554E-02
            4.087E-02 6.738E-02 1.111E-01 1.832E-01 3.020E-01 3.887E-01 4.979E-01 6.392E-01 8.208E-01 1.108 1.353 1.737
            2.231 2.865 3.678 4.965 6.065 10.0
            14.91 16.90 20.00 25.00 T
с
 f184:n
                                                                                                 $TRIGA Fuel
              (124<u=8)
             Flux tally for TRIGA Fuel spectrum
1.000E-11 5.000E-09 1.000E-08 1.500E-08 2.000E-08 2.500E-08
 fc184
 e184
            3.000E-08 3.500E-08 4.200E-08 5.000E-08 5.800E-08 6.700E-08
8.000E-08 1.000E-07 1.520E-07 2.510E-07 4.140E-07 6.830E-07
            1.125E-06 1.855E-06 3.059E-06 5.040E-06 8.315E-06 1.371E-05
            2.260E-05 3.727E-05 6.144E-05 1.013E-04 1.670E-04 2.754E-04 4.540E-04 7.485E-04 1.234E-03 2.035E-03 2.404E-03 2.840E-03
            3.355E-03 5.531E-03 9.119E-03 1.503E-02 1.989E-02 2.554E-02
            4.087E-02 6.738E-02 1.111E-01 1.832E-01 3.020E-01 3.887E-01
            4.979E-01 6.392E-01 8.208E-01 1.108 1.353 1.737
            2.231 2.865 3.678 4.965 6.065 10.0
            14.91 16.90 20.00 25.00 T
c f134:n
             (516<u=101)
             Flux tally for mapping experiment profile
7001 7003 7005 7007 7009 7011 7013 7015 7017 7019 7021 7023 7025
c fc134
c fs134
c fq134
             s f
c f204:n
             (124<u=8) T
             Total fission power tally for fuel elements
c fc204
c fm204
             -3.84962E+02 5 -6
             fs
c fq204
```

6	
c f01/.n	(138/::=9) T
- f-014	(ISONU-9) I
c 1c214	lotal fission power tally for fuel followers
c fm214	-3.21529E+02 5 -6
c fq214	fs
c	
c f224:n	(124 <u=8) t<="" td=""></u=8)>
c fc224	Total flux for fuel elements
c fq224	fs
с	
c f234:n	(138 <u=9) t<="" td=""></u=9)>
c fc234	Total flux for fuel followers
c fq234	fs
c	
c f244:n	(124 <u=8) (138<u="9)" t<="" td=""></u=8)>
c fc244	Total flux for fuel
c fa244	f s
c 14211	
c f21/1m	(1750/00-90)
c 1314.11	(1/52×u=62) Reputien mate tally for CT
C 1C314	
c IM314	(1 14 102)
с	(
c 1394:n	(455 <u=45)< td=""></u=45)<>
c fc394	Reaction rate tally for 3L(Cd) profile
c fs394	6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057
c fm394	(1 12 103)
с	(1 13 102)
с	(1 14 102)
с	(1 15 102)
с	(1 16 102)
с	(1 17 103)
с	(1 18 102)
с	(1 19 102)
- C	(1 20 102)
c fa394	s f
C 14004	
c f414.n	92
c fc/1/	Reaction rate tally for BSP
414	cooo
C 18414	0022
C 1M414	(1 12 103)
с	(1 14 102)
с	(1 19 102)
c fq414	s f
с fq414 с	s f
c fq414 c c f434:n	s f (516 <u=101)< td=""></u=101)<>
c fq414 c c f434:n c fc434	s f (516 <u=101) Reaction rate tally for mapping experiment</u=101)
c fq414 c c f434:n c fc434 c fm434	s f (516 <u=101) Reaction rate tally for mapping experiment (1 12 103)</u=101)
c fq414 c c f434:n c fc434 c fm434 c fm434 c fs434	s f (516 <u=101) Reaction rate tally for mapping experiment (1 12 103) 7001 7003 7005 7007 7009 7011 7013 7015 7017 7019 7021 7023 7025</u=101)
c fq414 c c f434:n c fc434 c fm434 c fm434 c fs434 c fq434	<pre>s f (516<u=101) (1="" 103)="" 12="" 7001="" 7003="" 7005="" 7007="" 7009="" 7011="" 7013="" 7015="" 7017="" 7019="" 7021="" 7023="" 7025="" experiment="" f<="" for="" mapping="" pre="" rate="" reaction="" s="" tally=""></u=101)></pre>
c fq414 c c f434:n c fc434 c fm434 c fs434 c fg434 c	s f (516 <u=101) Reaction rate tally for mapping experiment (1 12 103) 7001 7003 7005 7007 7009 7011 7013 7015 7017 7019 7021 7023 7025 s f</u=101)
c fq414 c c f434:n c fc434 c fm434 c fs434 c fs434 c fq434 c c f504:n	<pre>s f (516<u=101) (1="" 103)="" 12="" 7001="" 7003="" 7005="" 7007="" 7009="" 7011="" 7013="" 7015="" 7017="" 7019="" 7021="" 7023="" 7025="" 95="" 96="" 97="" 98="" 99<="" experiment="" f="" for="" mapping="" pre="" rate="" reaction="" s="" tally=""></u=101)></pre>
c fq414 c f434:n c fc434 c fm434 c fs434 c fs434 c fq434 c f504:n c f504	<pre>s f (516<u=101) (1="" 103)="" 12="" 7001="" 7003="" 7005="" 7007="" 7009="" 7011="" 7013="" 7015="" 7017="" 7019="" 7021="" 7023="" 7025="" 95="" 96="" 97="" 98="" 99="" bp="" by="" energy="" experiment="" f="" flux="" for="" groups<="" mapping="" neutron="" pre="" rate="" reaction="" s="" tally="" three=""></u=101)></pre>
c fq414 c f434:n c fc434 c fm434 c fs434 c fs434 c fq434 c c fo504:n c fc504	<pre>s f (516<u=101) (1="" 0.50e-6="" 1.00e-2="" 1.50e+1="" 103)="" 12="" 7001="" 7003="" 7005="" 7007="" 7009="" 7011="" 7013="" 7015="" 7017="" 7019="" 7021="" 7023="" 7025="" 95="" 96="" 97="" 98="" 99="" bp="" by="" energy="" experiment="" f="" flux="" for="" groups="" mapping="" neutron="" pre="" rate="" reaction="" s="" t<="" tally="" three=""></u=101)></pre>
c fq414 c c f434:n c fc434 c fm434 c fs434 c fq434 c c fq434 c c f504:n c f504:n c e504 c	<pre>s f (516<u=101) (1="" 0.50e-6="" 1.00e-2="" 1.50e+1="" 103)="" 12="" 7001="" 7003="" 7005="" 7007="" 7009="" 7011="" 7013="" 7015="" 7017="" 7019="" 7021="" 7023="" 7025="" 95="" 96="" 97="" 98="" 99="" bp="" by="" energy="" experiment="" f="" flux="" for="" groups="" mapping="" neutron="" pre="" rate="" reaction="" s="" t<="" tally="" three=""></u=101)></pre>
c fq414 c c f434:n c fc434 c fm434 c fs434 c fs434 c fs434 c c fs04:n c fc504 c c f504:n c fc504 c c fo24:p	<pre>s f (516<u=101) (1="" (455<u="45)</pre" 0.50e-6="" 1.00e-2="" 1.50e+1="" 103)="" 12="" 7001="" 7003="" 7005="" 7007="" 7009="" 7011="" 7013="" 7015="" 7017="" 7019="" 7021="" 7023="" 7025="" 95="" 96="" 97="" 98="" 99="" bp="" by="" energy="" experiment="" f="" flux="" for="" groups="" mapping="" neutron="" rate="" reaction="" s="" t="" tally="" three=""></u=101)></pre>
c fq414 c f434:n c f434 c fr434 c fr434 c fa434 c f3434 c f504:n c f5504 c e504 c e504 c f624:p c f624:p c f624	<pre>s f (516<u=101) (1="" (455<u="45)" 0.50e-6="" 1.00e-2="" 1.50e+1="" 103)="" 12="" 3l(cd)="" 7001="" 7003="" 7005="" 7007="" 7009="" 7011="" 7013="" 7015="" 7017="" 7019="" 7021="" 7023="" 7025="" 95="" 96="" 97="" 98="" 99="" bp="" by="" energy="" experiment="" f="" flux="" for="" groups="" mapping="" neutron="" photon="" pre="" profile<="" rate="" reaction="" s="" t="" tally="" three=""></u=101)></pre>
c fq414 c f434:n c fc434 c fm434 c fg434 c fq434 c fq504:n c f504:n c e504 c c f624:p c f624:p c f6624	<pre>s f (516<u=101) (1="" (455<u="45)" 0.50e-6="" 1.00e-2="" 1.50e+1="" 103)="" 12="" 3l(cd)="" 6002="" 6007="" 6012="" 6027="" 6032="" 6037="" 6042="" 6047="" 6052="" 6057<="" 7001="" 7003="" 7005="" 7007="" 7009="" 7011="" 7013="" 7015="" 7017="" 7019="" 7021="" 7023="" 7025="" 95="" 96="" 97="" 98="" 99="" bp="" by="" energy="" experiment="" f="" flux="" for="" groups="" mapping="" neutron="" photon="" pre="" profile="" rate="" reaction="" s="" t="" tally="" three=""></u=101)></pre>
c fq414 c c f434:n c fc434 c fm434 c fs434 c fq434 c c fq434 c c f504:n c fc504 c e504 c c f624:p c fc624 c fs624 c fs624	<pre>s f (516<u=101) (1="" (455<u="45)" 0.50e-6="" 1.00e-2="" 1.50e+1="" 103)="" 12="" 3l(cd)="" 6002="" 6007="" 6012="" 6017="" 6022="" 6027="" 6032="" 6037="" 6042="" 6047="" 6052="" 6057="" 7001="" 7003="" 7005="" 7007="" 7009="" 7011="" 7013="" 7015="" 7017="" 7019="" 7021="" 7023="" 7025="" 95="" 96="" 97="" 98="" 99="" bp="" by="" energy="" experiment="" f="" f<="" flux="" for="" groups="" mapping="" neutron="" photon="" pre="" profile="" rate="" reaction="" s="" t="" tally="" three=""></u=101)></pre>
c fq414 c f434:n c f434;n c fc434 c fr434 c fa434 c fq434 c f504:n c f504:c c f504 c e504 c f624:p c f624; c fs624 c fs624 c fs624 c	<pre>s f (516<u=101) (1="" (455<u="45)" 0.50e-6="" 1.00e-2="" 1.50e+1="" 103)="" 12="" 3l(cd)="" 6002="" 6007="" 6012="" 6017="" 6022="" 6027="" 6032="" 6037="" 6042="" 6047="" 6052="" 6057="" 7001="" 7003="" 7005="" 7007="" 7009="" 7011="" 7013="" 7015="" 7017="" 7019="" 7021="" 7023="" 7025="" 95="" 96="" 97="" 98="" 99="" bp="" by="" energy="" experiment="" f="" f<="" flux="" for="" groups="" mapping="" neutron="" photon="" pre="" profile="" rate="" reaction="" s="" t="" tally="" three=""></u=101)></pre>
c fq414 c c f434:n c fc434 c fm434 c fs434 c fq434 c f504:n c f504:n c f504 c c f624:p c f624:p c f624 c fq624 c c fq624 c c f644.n	<pre>s f (516<u=101) (1="" (455<u="45)</pre" 0.50e-6="" 1.00e-2="" 1.50e+1="" 103)="" 12="" 3l(cd)="" 6002="" 6007="" 6012="" 6017="" 6022="" 6027="" 6032="" 6037="" 6042="" 6047="" 6052="" 6057="" 7001="" 7003="" 7005="" 7007="" 7009="" 7011="" 7013="" 7015="" 7017="" 7019="" 7021="" 7023="" 7025="" 95="" 96="" 97="" 98="" 99="" bp="" by="" energy="" experiment="" f="" flux="" for="" groups="" mapping="" neutron="" photon="" profile="" rate="" reaction="" s="" t="" tally="" three=""></u=101)></pre>
c fq414 c c f434:n c fc434 c fm434 c fm434 c fa434 c fq434 c c f504:n c fc504 c e504 c c f624:p c fc624 c fg624 c fq624 c c f644:n c c f644:n	<pre>s f (516<u=101) (1="" (455<u="45)" 0.50e-6="" 1.00e-2="" 1.50e+1="" 103)="" 12="" 3l(cd)="" 6002="" 6007="" 6012="" 6017="" 6022="" 6027="" 6032="" 6037="" 6042="" 6047="" 6052="" 6057="" 7001="" 7003="" 7005="" 7007="" 7009="" 7011="" 7013="" 7015="" 7017="" 7019="" 7021="" 7023="" 7025="" 95="" 96="" 97="" 98="" 99="" <="" by="" elux="" energy="" ep="" experiment="" f="" flux="" for="" groups="" mapping="" neutron="" photon="" pre="" profile="" rate="" reaction="" s="" t="" tally="" three=""></u=101)></pre>
c fq414 c f434:n c f434: c fa434 c fa434 c fa434 c f504:n c f504:n c f504 c c f504 c c f624: p c fc624 c fa624 c fa624 c c f644:n c f644:n c c f644:	<pre>s f (516<u=101) (1="" (455<u="45)" 0.50e-6="" 1.00e-2="" 1.50e+1="" 103)="" 12="" 3l(cd)="" 6002="" 6007="" 6012="" 6017="" 6022="" 6027="" 6032="" 6037="" 6042="" 6047="" 6052="" 6057="" 7001="" 7003="" 7005="" 7007="" 7009="" 7011="" 7013="" 7015="" 7017="" 7019="" 7021="" 7023="" 7025="" 95="" 96="" 97="" 98="" 99="" bp="" by="" energy="" experiment="" f="" f<="" flux="" for="" groups="" mapping="" neutron="" photon="" pre="" profile="" rate="" reaction="" s="" t="" tally="" three=""></u=101)></pre>
c fq414 c c f434:n c fc434 c fm434 c fs434 c fs434 c fs04:n c f504:n c f504: c c f624:p c f624:p c f624: c c f624 c c f624 c c f624 c c f624 c c f6644 c c f6644 c c f6644	<pre>s f (516<u=101) (1="" (455<u="45)" 0.50e-6="" 1.00e-2="" 1.50e+1="" 103)="" 12="" 3l(cd)="" 6002="" 6007="" 6012="" 6017="" 6022="" 6027="" 6032="" 6037="" 6042="" 6047="" 6052="" 6057="" 7001="" 7003="" 7005="" 7007="" 7009="" 7011="" 7013="" 7015="" 7017="" 7019="" 7021="" 7023="" 7025="" 95="" 96="" 97="" 98="" 99="" <="" bp="" by="" energy="" experiment="" f="" flux="" for="" groups="" mapping="" neutron="" photon="" pre="" profile="" rate="" reaction="" s="" t="" tally="" three=""></u=101)></pre>
c fq414 c c f434:n c f434 c fm434 c fm434 c fa434 c fq434 c c f504:n c f504:n c f504 c e504 c c f624:p c f624:p c f624; c f624 c fq624 c fq644:n c fc644:n	<pre>s f (516<u=101) (1="" (455<u="45)" 0.50e-6="" 1.00e-2="" 1.50e+1="" 103)="" 12="" 3l(cd)="" 6002="" 6007="" 6012="" 6017="" 6022="" 6027="" 6032="" 6037="" 6042="" 6047="" 6052="" 6057="" 7001="" 7003="" 7005="" 7007="" 7009="" 7011="" 7013="" 7015="" 7017="" 7019="" 7021="" 7023="" 7025="" 95="" 96="" 97="" 98="" 99="" bp="" by="" energy="" experiment="" f="" flux="" for="" groups="" mapping="" neutron="" photon="" pre="" profile="" rate="" reaction="" s="" t="" t<="" tally="" three=""></u=101)></pre>
c fq414 c c f434:n c f434;n c f434 c fs434 c fs434 c f504:n c f504:n c f504 c c f504 c c f624:p c fc624 c f624;2 c f624:c c f644:n c f644:n c f6644 c e644 c e644	<pre>s f (516<u=101) (1="" (455<u="45)" 0.50e-6="" 1.00e-2="" 1.50e+1="" 103)="" 12="" 3l(cd)="" 6002="" 6007="" 6012="" 6017="" 6022="" 6027="" 6032="" 6037="" 6042="" 6047="" 6052="" 6057="" 7001="" 7003="" 7005="" 7007="" 7009="" 7011="" 7013="" 7015="" 7017="" 7019="" 7021="" 7023="" 7025="" 95="" 96="" 97="" 98="" 99="" <="" bp="" by="" energy="" experiment="" f="" flux="" for="" groups="" mapping="" neutron="" photon="" pre="" profile="" rate="" reaction="" s="" t="" tally="" three=""></u=101)></pre>
c fq414 c c f434:n c f434 c fm434 c fs434 c fs434 c f504:n c f504:n c f504 c c f624:p c f624:p c f624:c c f624:c c f624:c c f624:c c f6644 c fs644 c fs644 c fs644:n c f564:n c f f654:n c f f54:n c f f654:n c f f54:n c f f554:n c f f556:n c f55	<pre>s f (516<u=101) Reaction rate tally for mapping experiment (1 12 103) 7001 7003 7005 7007 7009 7011 7013 7015 7017 7019 7021 7023 7025 s f 95 96 97 98 99 BP Neutron Flux Tally by Three Energy Groups 0.50e-6 1.00e-2 1.50e+1 T (455<u=45) Photon tally for 3L(Cd) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 s f (455<u=45) Flux tally for 3L(Cd) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 0.50e-6 1.00e-2 1.50e+1 T (455<u=45) Cl Nummer Talle for Colorection for the for Colorection for the former talle for Colorection for the former former former for the former former talle for Colorection for the former form</u=45) </u=45) </u=45) </u=101) </pre>
c fq414 c c f434:n c f434;n c fr434 c fr434 c fa434 c fq434 c c f504:n c f504:n c f504 c e504 c c f624:p c f624;p c f624 c f6644:n c f6644:n c f654:n c f654:n c f654:n c f654:n	<pre>s f (516<u=101) (1="" (455<u="45)" (kerma)="" 0.00="" 0.50e="" 0.50e-6="" 1.00="" 1.00e-2="" 1.50e+1="" 103)="" 12="" 1<="" 3l="" 3l(cd)="" 6002="" 6007="" 6012="" 6017="" 6022="" 6027="" 6032="" 6037="" 6042="" 6047="" 6052="" 6057="" 7001="" 7003="" 7005="" 7007="" 7009="" 7011="" 7013="" 7015="" 7017="" 7019="" 7021="" 7023="" 7025="" 95="" 96="" 97="" 98="" 99="" and="" bp="" by="" calculation="" dose="" energy="" experiment="" f="" flux="" for="" groups="" mapping="" neutron="" of="" photon="" profile="" rate="" reaction="" s="" t="" tally="" td="" three=""></u=101)></pre>
c fq414 c c f434:n c f434;n c fa434 c fs434 c fs434 c f504:n c fc504 c c f504;p c fc624;p c fc624;p c fc624 c fs624;c c f624:n c f6644:n c fc644;n c f654:n c fc654;n c fc654;	<pre>s f (516<u=101) Reaction rate tally for mapping experiment (1 12 103) 7001 7003 7005 7007 7009 7011 7013 7015 7017 7019 7021 7023 7025 s f 95 96 97 98 99 BP Neutron Flux Tally by Three Energy Groups 0.50e-6 1.00e-2 1.50e+1 T (455<u=45) Photon tally for 3L(Cd) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 s f (455<u=45) Flux tally for 3L(Cd) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 0.50e-6 1.00e-2 1.50e+1 T (455<u=45) 3L Neutron Tally for Calculation of Neutron Dose (Kerma) 2.50E-08 1.00E-07 1.00E-06 1.00E-06 1.00E-04 1.00E-03</u=45) </u=45) </u=45) </u=101) </pre>
c fq414 c c f434:n c f434;n c f434 c fs434 c fs434 c f504:n c f504:n c f504 c c f624:p c f624:p c f624:c c f624:c c f624:c c f6644 c c f6644 c c f654:n c f654:n c c f654:n c c f654:c c c f654:c	<pre>s f (516<u=101) Reaction rate tally for mapping experiment (1 12 103) 7001 7003 7005 7007 7009 7011 7013 7015 7017 7019 7021 7023 7025 s f 95 96 97 98 99 BP Neutron Flux Tally by Three Energy Groups 0.50e-6 1.00e-2 1.50e+1 T (455<u=45) Photon tally for 3L(Cd) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 s f (455<u=45) Flux tally for 3L(Cd) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 0.50e-6 1.00e-2 1.50e+1 T (455<u=45) SL Neutron Tally for Calculation of Neutron Dose (Kerma) 2.50E-08 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 5.00E-01 1 2 2.5 5 7 10 14 20 0.00E-02 0.00E-01 0.00E-01 1 2 0.00E-04 1.00E-03</u=45) </u=45) </u=45) </u=101) </pre>
c fq414 c c f434:n c f434;n c fr434 c fr434 c fa434 c f3434 c f504:n c f504:n c f504;c c f624:p c f624;p c f624;c c f624;c c f644:n c f5644 c f3644 c f3644 c f3644 c f3654;n c f654;n c f654;n c f654;n c f654;n	<pre>s f (516<u=101) (1="" (455<u="45)" (kerma)="" 0.50e-6="" 1="" 1.00e-02="" 1.00e-03="" 1.00e-04="" 1.00e-06="" 1.00e-07="" 1.00e-2="" 1.50e+0="" 1.50e+1="" 10="" 103)="" 12="" 14="" 2="" 2.5="" 2.50e-08="" 20="" 3.67e-06="" 3.76e-06="" 3l="" 3l(cd)="" 4.18e-06="" 4.46e-06="" 5="" 6002="" 6007="" 6012="" 6017="" 6022="" 6027="" 6032="" 6037="" 6042="" 6047="" 6052="" 6057="" 7="" 7001="" 7003="" 7005="" 7007="" 7009="" 7011="" 7013="" 7015="" 7017="" 7019="" 7021="" 7023="" 7025="" 95="" 96="" 97="" 98="" 99="" <="" bp="" by="" calculation="" dose="" energy="" experiment="" f="" flux="" for="" groups="" mapping="" neutron="" of="" photon="" pre="" profile="" rate="" reaction="" s="" t="" tally="" three=""></u=101)></pre>
c fq414 c c f434:n c f434;n c fa434 c fs434 c fs434 c f504:n c fc504 c c f504:n c fc504 c c f624:p c fc624 c f624:d c f624:n c f6644:n c f6644;n c f654:n c fc654;n c fc654 c de654 c	<pre>s f (516<u=101) Reaction rate tally for mapping experiment (1 12 103) 7001 7003 7005 7007 7009 7011 7013 7015 7017 7019 7021 7023 7025 s f 95 96 97 98 99 BP Neutron Flux Tally by Three Energy Groups 0.50e-6 1.00e-2 1.50e+1 T (455<u=45) Photon tally for 3L(Cd) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 s f (455<u=45) Flux tally for 3L(Cd) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 0.50e-6 1.00e-2 1.50e+1 T (455<u=45) 3L Neutron Tally for Calculation of Neutron Dose (Kerma) 2.50E-08 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 5.00E-01 1 2 2.5 5 7 10 14 20 3.67E-06 3.67E-06 4.46E-06 4.54E-06 4.18E-06 3.76E-06 3.56E-06 2.17E-05 9.26E-05 1.32E-04 1.43E-04 1.25E-04</u=45) </u=45) </u=45) </u=101) </pre>
c fq414 c c f434:n c f434;n c f434 c fs434 c fs434 c f504:n c f504:n c fc504 c c f624:p c f624:p c f624:c c f624:c c f624:n c fc624 c fs644 c fs644 c fs644 c c f654:n c f654:c c df654 c	<pre>s f (516<u=101) Reaction rate tally for mapping experiment (1 12 103) 7001 7003 7005 7007 7009 7011 7013 7015 7017 7019 7021 7023 7025 s f 95 96 97 98 99 BP Neutron Flux Tally by Three Energy Groups 0.50e-6 1.00e-2 1.50e+1 T (455<u=45) Photon tally for 3L(Cd) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 s f (455<u=45) Flux tally for 3L(Cd) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 0.50e-6 1.00e-2 1.50e+1 T (455<u=45) 3L Neutron Tally for Calculation of Neutron Dose (Kerma) 2.50E-08 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 1 2 2.5 5 7 10 14 20 3.67E-06 3.67E-06 4.46E-06 4.54E-06 4.18E-06 3.76E-06 3.56E-06 2.17E-05 9.26E-05 1.32E-04 1.43E-04 1.42E-04 1.56E-04 1.47E-04 1.47E-04 2.08E-04 2.27E-04</u=45) </u=45) </u=45) </u=101) </pre>
c fq414 c fq414 c fq434:n c fq434 c fs434 c fs434 c fs434 c fs504:n c f5504:n c f5504 c c f504 c fs624 c fs624 c fs624 c fs624 c fs644:n c fs644 c c fs644 c c fs654 c c f654 c c f654 c c f654	<pre>s f (516<u=101) Reaction rate tally for mapping experiment (1 12 103) 7001 7003 7005 7007 7009 7011 7013 7015 7017 7019 7021 7023 7025 s f 95 96 97 98 99 BP Neutron Flux Tally by Three Energy Groups 0.50e-6 1.00e-2 1.50e+1 T (455<u=45) Photon tally for 3L(Cd) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 s f (455<u=45) Flux tally for 3L(Cd) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 0.50e-6 1.00e-2 1.50e+1 T (455<u=45) SL Neutron Tally for Calculation of Neutron Dose (Kerma) 2.50E-08 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00Ce-01 5.00E-01 1 2 2.5 5 7 10 14 20 3.67E-06 3.67E-06 4.46E-06 4.54E-06 4.18E-06 3.76E-06 3.56E-06 2.17E-05 9.26E-05 1.32E-04 1.43E-04 1.25E-04 1.56E-04 1.47E-04 1.47E-04 2.08E-04 2.27E-04 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057</u=45) </u=45) </u=45) </u=101) </pre>
c fq414 c c f434:n c f434;n c fa434 c fs434 c fs434 c f504:n c fc504 c c f504;p c fc624;p c fc624;p c fc624 c fs624;p c fc624 c fs624;c c f644:n c fc644;n c fc644;c c f654:n c fc654;c c de654 c c f654;c c f654;	<pre>s f (516<u=101) Reaction rate tally for mapping experiment (1 12 103) 7001 7003 7005 7007 7009 7011 7013 7015 7017 7019 7021 7023 7025 s f 95 96 97 98 99 BP Neutron Flux Tally by Three Energy Groups 0.50e-6 1.00e-2 1.50e+1 T (455<u=45) Photon tally for 3L(Cd) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 s f (455<u=45) Flux tally for 3L(Cd) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 0.50e-6 1.00e-2 1.50e+1 T (455<u=45) 3L Neutron Tally for Calculation of Neutron Dose (Kerma) 2.50E-08 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 5.00E-01 1 2 2.5 5 7 10 14 20 3.67E-06 3.67E-06 4.46E-06 4.54E-06 4.18E-06 3.76E-06 3.56E-06 2.17E-05 9.26E-05 1.32E-04 1.43E-04 1.25E-04 1.56E-04 1.47E-04 1.47E-04 2.08E-04 2.27E-04 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 s f</u=45) </u=45) </u=45) </u=101) </pre>
c fq414 c c f434:n c f434;n c f434 c fs434 c fs434 c f504:n c f504:n c f504;p c f624:p c f624:p c f624;c c f624:c c f624:c c f644:n c f5644 c c f654:n c f654:n c f654 c c f654 c c f654 c c c c f654 c c c f654 c c c f654 c c c c f654 c c c f654 c c c f654 c c c c f654 c c c c f654 c c c c c c c c c c c c c c c c c c c	<pre>s f (516<u=101) Reaction rate tally for mapping experiment (1 12 103) 7001 7003 7005 7007 7009 7011 7013 7015 7017 7019 7021 7023 7025 s f 95 96 97 98 99 BP Neutron Flux Tally by Three Energy Groups 0.50e-6 1.00e-2 1.50e+1 T (455<u=45) Photon tally for 3L(Cd) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 s f (455<u=45) Flux tally for 3L(Cd) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 0.50e-6 1.00e-2 1.50e+1 T (455<u=45) SL Neutron Tally for Calculation of Neutron Dose (Kerma) 2.50E-08 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 5.00E-01 1 2 2.5 5 7 10 14 20 3.67E-06 3.67E-06 4.46E-06 4.54E-06 4.18E-06 3.76E-06 3.56E-06 2.17E-05 9.26E-05 1.32E-04 1.43E-04 1.25E-04 1.56E-04 1.47E-04 1.47E-04 2.08E-04 2.27E-04 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 s f</u=45) </u=45) </u=45) </u=101) </pre>
c fq414 c fq414 c fq434:n c fq434 c fs434 c fs434 c fs434 c fs04:n c fc504 c fc504 c fc624:p c fc624 c fs624 c fs624 c fs624 c fs644:n c fc654 c c f654:n c fc654 c c fs654 c c fs654 c c fs654 c c fs654 c c fs654;p c fc664:p	<pre>s f (516<u=101) Reaction rate tally for mapping experiment (1 12 103) 7001 7003 7005 7007 7009 7011 7013 7015 7017 7019 7021 7023 7025 s f 95 96 97 98 99 BP Neutron Flux Tally by Three Energy Groups 0.50e-6 1.00e-2 1.50e+1 T (455<u=45) Photon tally for 3L(Cd) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 s f (455<u=45) Flux tally for 3L(Cd) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 0.50e-6 1.00e-2 1.50e+1 T (455<u=45) 3L Neutron Tally for Calculation of Neutron Dose (Kerma) 2.50E-08 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 5.00E-01 1 2 2.5 5 7 10 14 20 3.67E-06 3.67E-06 4.46E-06 4.54E-06 4.148E-06 3.76E-06 3.56E-06 2.17E-05 9.26E-05 1.32E-04 1.43E-04 1.25E-04 1.56E-04 1.47E-04 1.47E-04 2.08E-04 2.27E-04 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 s f (455<u=45)< pre=""></u=45)<></u=45) </u=45) </u=45) </u=101) </pre>
c fq414 c c f434:n c f434;n c f434 c fs434 c fs434 c f504:n c fc504 c c f504:n c fc504 c c f624:p c fc624 c f624:p c fc624 c f624:c c f644:n c fc644 c c f654:n c fc654 c de654 c c f654:p c fc654 c c f654:p c f c664 c c f6664;p c fc664;p c fc664;p c fc664;p c fc664	<pre>s f (516<u=101) Reaction rate tally for mapping experiment (1 12 103) 7001 7003 7005 7007 7009 7011 7013 7015 7017 7019 7021 7023 7025 s f 95 96 97 98 99 BP Neutron Flux Tally by Three Energy Groups 0.50e-6 1.00e-2 1.50e+1 T (455<u=45) Photon tally for 3L(Cd) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 s f (455<u=45) Flux tally for 3L(Cd) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 0.50e-6 1.00e-2 1.50e+1 T (455<u=45) 3L Neutron Tally for Calculation of Neutron Dose (Kerma) 2.50E-08 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 5.00E-01 1 2 2.5 5 7 10 14 20 3.67E-06 3.67E-06 4.46E-06 4.54E-06 4.18E-06 3.76E-06 3.56E-06 2.17E-05 9.26E-05 1.32E-04 1.43E-04 1.25E-04 1.56E-04 1.47E-04 1.47E-04 2.08E-04 2.27E-04 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 s f (455<u=45) 3L Photon Tally for Calculation of Photon Dose (Kerma)</u=45) </u=45) </u=45) </u=45) </u=101) </pre>
c fq414 c c f434:n c f434;n c f434 c fs434 c fs434 c fs434 c fs04:n c fc504 c fc624;p c fc624 c fs624;p c fc624 c fs624 c fs624 c fs644 c fs644 c fs644 c de654 c c f654;n c fc654 c de654 c c f654;c c fc664;p c fc664;p c fc664;p c fc664;c c fc664;p c fc664;p	<pre>s f (516<u=101) Reaction rate tally for mapping experiment (1 12 103) 7001 7003 7005 7007 7009 7011 7013 7015 7017 7019 7021 7023 7025 s f 95 96 97 98 99 BP Neutron Flux Tally by Three Energy Groups 0.50e-6 1.00e-2 1.50e+1 T (455<u=45) Photon tally for 3L(Cd) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 s f (455<u=45) Flux tally for 3L(Cd) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 0.50e-6 1.00e-2 1.50e+1 T (455<u=45) SL Neutron Tally for Calculation of Neutron Dose (Kerma) 2.50E-08 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 1 2 2.5 5 7 10 14 20 3.67E-06 3.67E-06 4.46E-06 4.54E-06 4.18E-06 3.76E-06 3.56E-06 1.47E-04 1.47E-04 2.08E-04 2.27E-04 1.56E-04 1.47E-04 1.47E-04 2.08E-04 2.27E-04 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 s f (455<u=45) 3L Photon Tally for Calculation of Photon Dose (Kerma) 1.00E-02 3.00E-02 5.00E-02 7.00E-02 1.00E-01 1.50E-01</u=45) </u=45) </u=45) </u=45) </u=101) </pre>
c fq414 c fq414 c fq434:n c fq434 c fs434 c fs434 c fs434 c fs434 c fs504:n c fc504 c fs624:p c fc624 c fs624 c fs624 c fs624 c fs644:n c fc644: c c f654:n c fc654 c c f654: c c f654: c c f654: c c f664: p c fc664 c c f6664; p c fc664 c c f6664; c c f6666; c c f6664; c c f6664; c c f666; c c c f666; c c f66; c c f666; c c f666; c c c	<pre>s f (516<u=101) Reaction rate tally for mapping experiment (1 12 103) 7001 7003 7005 7007 7009 7011 7013 7015 7017 7019 7021 7023 7025 s f 95 96 97 98 99 BP Neutron Flux Tally by Three Energy Groups 0.50e-6 1.00e-2 1.50e+1 T (455<u=45) Photon tally for 3L(Cd) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 s f (455<u=45) Flux tally for 3L(Cd) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 o.50e-6 1.00e-2 1.50e+1 T (455<u=45) 3L Neutron Tally for Calculation of Neutron Dose (Kerma) 2.50E-08 1.00E-07 1.00E-06 1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.02E-04 1.43E-04 1.25E-04 1.56E-06 2.17E-05 9.26E-05 1.32E-04 1.43E-04 1.25E-04 1.56E-06 1.14TE-04 1.47E-04 2.08E-04 2.27E-04 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 s f (455<u=45) 3L Photon Tally for Calculation of Photon Dose (Kerma) 1.00E-02 3.00E-02 5.00E-02 1.00E-01 1.50E-01 2.00E-01 2.50E-01 3.00E-01 0.35 0.4 0.45 0.5 0.55 0.6</u=45) </u=45) </u=45) </u=45) </u=101) </pre>
c fq414 c c f434:n c f434;n c f434 c fs434 c fs434 c f504:n c fc504 c c f504:n c fc504 c c f624:p c f624:p c f624; c f624; c f624; c f624; c f6644:n c fc644 c c f654:n c fc654; c de654 c c f654; c c f664; p c fc664 c c f664; p c fc664 c c f6664; c c f666; c c c f666; c c c f666; c c c f666; c c c c c c f666; c c c c c c c c c c c c c c c c	<pre>s f (516<u=101) Reaction rate tally for mapping experiment (1 12 103) 7001 7003 7005 7007 7009 7011 7013 7015 7017 7019 7021 7023 7025 s f 95 96 97 98 99 BP Neutron Flux Tally by Three Energy Groups 0.50e-6 1.00e-2 1.50e+1 T (455<u=45) Photon tally for 3L(Cd) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 s f (455<u=45) Flux tally for 3L(Cd) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 0.50e-6 1.00e-2 1.50e+1 T (455<u=45) 3L Neutron Tally for Calculation of Neutron Dose (Kerma) 2.50E-08 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 5.00E-01 1 2 2.5 5 7 10 14 20 3.67E-06 3.67E-06 4.46E-06 4.54E-06 4.18E-06 3.76E-06 3.56E-06 2.17E-05 9.26E-05 1.32E-04 1.43E-04 1.25E-04 1.56E-04 1.47E-04 1.47E-04 2.08E-04 2.27E-04 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 s f (455<u=45) 3L Photon Tally for Calculation of Photon Dose (Kerma) 1.00E-02 3.00E-02 5.00E-02 7.00E-02 1.00E-01 1.50E-01 2.00E-01 2.50E-01 3.00E-01 0.35 0.4 0.45 0.5 0.6 0.6 0.65 0.7 0.8 1.0 1.4 1.8 2.2 2.6 2.8 3.25 3.75 4.25 4.75</u=45) </u=45) </u=45) </u=45) </u=101) </pre>
c fq414 c c f434:n c f434;n c f434 c fs434 c fs434 c fs434 c f504:n c fc504 c fc624;p c f624;p c f624;p c f624;p c f624;c c f644:n c fc644 c fs644 c c f654;n c f654;n c f654;f c c f654;c c f664;p c fc664;p c fc664;c c f664;p c fc664;c c fc664;c c f664;p c fc664;c c f664;c c f664;c	<pre>s f (516<u=101) Reaction rate tally for mapping experiment (1 12 103) 7001 7003 7005 7007 7009 7011 7013 7015 7017 7019 7021 7023 7025 s f 95 96 97 98 99 BP Neutron Flux Tally by Three Energy Groups 0.50e-6 1.00e-2 1.50e+1 T (455<u=45) Photon tally for 3L(Cd) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 s f (455<u=45) Flux tally for 3L(Cd) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 0.50e-6 1.00e-2 1.50e+1 T (455<u=45) SL Neutron Tally for Calculation of Neutron Dose (Kerma) 2.50E-08 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 5.00E-01 1 2 2.5 5 7 10 14 20 3.67E-06 3.67E-06 4.46E-06 4.54E-06 4.18E-06 3.76E-06 3.56E-06 1.47E-04 1.47E-04 2.08E-04 2.27E-04 1.56E-04 1.47E-04 1.47E-04 2.08E-04 2.27E-04 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 s f (455<u=45) 3L Photon Tally for Calculation of Photon Dose (Kerma) 1.00E-02 3.00E-02 5.00E-02 7.00E-02 1.00E-01 1.50E-01 2.00E-01 2.50E-01 3.00E-01 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.8 1.0 1.4 1.8 2.2 2.6 2.8 3.25 3.75 4.25 4.75 5.0 5.25 5.75 6.25 6.75 7.5 9.0 11.0 13.0 15.0</u=45) </u=45) </u=45) </u=45) </u=101) </pre>
c fq414 c fq414 c fq434:n c fq434 c fs434 c fs434 c fs434 c fs434 c fs604:n c fc504 c fc624:p c fc624 c fg624 c fg624 c fg624 c fs624 c fs624 c fs644:n c fc644:n c fc654 c df654 c c fs654 c c f664:p c fc664:p c fc664 c c fc664 c c fc664	<pre>s f (516<u=101) Reaction rate tally for mapping experiment (1 12 103) 7001 7003 7005 7007 7009 7011 7013 7015 7017 7019 7021 7023 7025 s f 95 96 97 98 99 BP Neutron Flux Tally by Three Energy Groups 0.50e-6 1.00e-2 1.50e+1 T (455<u=45) Photon tally for 3L(Cd) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 s f (455<u=45) Flux tally for 3L(Cd) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 o.50e-6 1.00e-2 1.50e+1 T (455<u=45) 3L Neutron Tally for Calculation of Neutron Dose (Kerma) 2.50E-08 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 5.00E-01 1 2 2.5 5 7 10 14 20 3.67E-06 3.67E-06 4.46E-06 4.54E-06 4.16E-06 3.76E-06 3.56E-06 2.17E-05 9.26E-05 1.32E-04 1.43E-04 1.25E-04 1.56E-04 1.47E-04 1.47E-04 2.08E-04 2.27E-04 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 s f (455<u=45) 3L Photon Tally for Calculation of Photon Dose (Kerma) 1.00E-02 3.00E-02 5.00E-02 7.00E-02 1.00E-01 1.50E-01 2.00E-01 2.50E-01 3.01E-01 0.3 5.4 0.45 0.5 0.55 0.6 0.65 0.7 0.8 1.0 1.4 1.8 2.2 2.6 2.8 3.25 3.75 4.25 4.75 5.0 5.25 5.75 6.25 6.75 7.5 9.0 11.0 13.0 15.0 3.96E-06 5.82E-07 2.90E-07 2.58E-07 2.83E-07 3.79E-07</u=45) </u=45) </u=45) </u=45) </u=101) </pre>
c fq414 c fq434:n c fq434:n c fq434 c fs434 c fs434 c fs434 c fs04:n c fc504 c fc624:p c fc624 c fs624 c fs654:n c fc654:n c fc654:c c fs654 c fs654 c fs654 c fs654 c fs654 c fs654 c fs654 c fs654 c fs664 c	<pre>s f (516<u=101) Reaction rate tally for mapping experiment (1 12 103) 7001 7003 7005 7007 7009 7011 7013 7015 7017 7019 7021 7023 7025 s f 95 96 97 98 99 BP Neutron Flux Tally by Three Energy Groups 0.50e-6 1.00e-2 1.50e+1 T (455<u=45) Photon tally for 3L(Cd) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 s f (455<u=45) Flux tally for 3L(Cd) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 0.50e-6 1.00e-2 1.50e+1 T (455<u=45) 3L Neutron Tally for Calculation of Neutron Dose (Kerma) 2.50E-08 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 5.00E-01 1 2 2.5 5 7 10 14 20 3.67E-06 3.67E-06 4.46E-06 4.54E-06 4.18E-06 3.76E-06 3.56E-06 2.17E-05 9.26E-05 1.32E-04 1.43E-04 1.25E-04 1.56E-04 1.47E-04 1.47E-04 2.08E-04 2.27E-04 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 s f (455<u=45) 3L Photon Tally for Calculation of Photon Dose (Kerma) 1.00E-02 3.00E-02 5.00E-02 7.00E-02 1.00E-01 1.50E-01 2.00E-01 2.50E-01 3.00E-01 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.8 1.0 1.4 1.8 2.2 2.6 2.8 3.25 3.75 4.25 4.75 5.0 5.25 5.75 6.25 6.75 7.5 9.0 11.0 13.0 15.0 3.96E-06 5.82E-07 2.90E-07 2.83E-07 3.79E-07 5.01E-07 6.31E-07 7.58E-07 9.85E-07 1.08E-06</u=45) </u=45) </u=45) </u=45) </u=101) </pre>
c fq414 c c f434:n c f434:n c f434 c fs434 c fs434 c fs434 c f504:n c fc504 c c f624:p c f624:p c f624:c c f624:c c f624:c c f664:n c f6644 c c f654:n c f654:n c f654:c c df654 c c f654:c c f654:c c f664:p c fc664 c c c df664 c c c df664 c c c df664 c	<pre>s f (516<u=101) Reaction rate tally for mapping experiment (1 12 103) 7001 7003 7005 7007 7009 7011 7013 7015 7017 7019 7021 7023 7025 s f 95 96 97 98 99 BP Neutron Flux Tally by Three Energy Groups 0.50e-6 1.00e-2 1.50e+1 T (455<u=45) Photon tally for 3L(Cd) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 s f (455<u=45) Flux tally for 3L(Cd) profile 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 0.50e-6 1.00e-2 1.50e+1 T (455<u=45) 3L Neutron Tally for Calculation of Neutron Dose (Kerma) 2.50E-06 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.02E-03 3.67E-06 3.67E-06 4.46E-06 4.54E-06 4.18E-06 3.76E-06 3.56E-06 1.17E-05 9.26E-05 1.32E-04 1.43E-04 1.25E-04 1.56E-04 1.47E-04 1.47E-04 2.08E-04 2.27E-04 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 s f (455<u=45) 3L Photon Tally for Calculation of Photon Dose (Kerma) 1.00E-02 3.00E-02 5.00E-02 7.00E-02 1.00E-01 1.50E-01 2.00E-01 2.50E-01 3.00E-01 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.8 1.0 1.4 1.8 2.2 2.6 2.8 3.25 3.75 4.25 4.75 5.0 5.25 5.75 6.25 6.75 7.5 9.0 11.0 13.0 15.0 3.96E-06 5.82E-07 2.90E-07 2.88E-07 2.88E-07 3.79E-07 5.01E-07 6.31E-07 7.59E-07 8.78E-07 2.88E-07 3.79E-07 5.01E-07 6.31E-07 7.59E-07 8.78E-07 2.88E-07 3.79E-07 5.01E-07 6.31E-07 1.59E-07 8.78E-07 2.83E-07 3.79E-07 5.01E-07 6.31E-07 1.59E-07 8.78E-07 2.88E-07 3.79E-07 5.01E-07 6.31E-07 7.59E-07 8.78E-07 2.83E-07 3.79E-07 5.01E-07 6.31E-07 1.59E-07 8.78E-07 2.88E-07 1.08E-06</u=45) </u=45) </u=45) </u=45) </u=101) </pre>

с		4.41E-06	4.83E-06	5.23E-06	5.60E-06	5.80E-06	6.01E-06	
с		6.37E-06	6.74E-06	7.11E-06	7.66E-06	8.77E-06	1.03E-05	
с		1.18E-05	1.33E-05					
с	fs664	6002 600	7 6012 603	17 6022 60	027 6032 (6037 6042	6047 6052	2 6057
с	fq664	s f						
с	-							
с	f674:n	(455 <u=4< td=""><td>5)</td><td></td><td></td><td></td><td></td><td></td></u=4<>	5)					
с	fc674	3L Neutr	on Tally :	for Calcul	lation of	Hardness	Factor	
с	de674	1.03E-10	1.08E-10	1.13E-10	1.18E-10	1.24E-10	1.31E-10	1.39E-10
с		1.46E-10	1.55E-10	1.65E-10	1.75E-10	1.85E-10	1.95E-10	2.05E-10
с		2.15E-10	2.25E-10	2.35E-10	2.48E-10	2.63E-10	2.75E-10	2.90E-10
с		3.10E-10	3.30E-10	3.50E-10	3.70E-10	3.90E-10	4.13E-10	4.38E-10
с		4.63E-10	4.88E-10	5.13E-10	5.38E-10	5.63E-10	5.88E-10	6.15E-10
с		6.45E-10	6.75E-10	7.05E-10	7.40E-10	7.80E-10	8.20E-10	8.60E-10
с		9.00E-10	9.40E-10	9.80E-10	1.03E-09	1.08E-09	1.13E-09	1.18E-09
с		1.24E-09	1.31E-09	1.39E-09	1.46E-09	1.55E-09	1.65E-09	1.75E-09
с		1.85E-09	1.95E-09	2.05E-09	2.15E-09	2.25E-09	2.35E-09	2.48E-09
с		2.63E-09	2.75E-09	2.90E-09	3.10E-09	3.30E-09	3.50E-09	3.70E-09
с		3.90E-09	4.13E-09	4.38E-09	4.63E-09	4.88E-09	5.13E-09	5.38E-09
с		5.63E-09	5.88E-09	6.15E-09	6.45E-09	6.75E-09	7.05E-09	7.40E-09
с		7.80E-09	8.20E-09	8.60E-09	9.00E-09	9.40E-09	9.80E-09	1.03E-08
с		1.08E-08	1.13E-08	1.18E-08	1.24E-08	1.31E-08	1.39E-08	1.46E-08
с		1.55E-08	1.65E-08	1.75E-08	1.85E-08	1.95E-08	2.05E-08	2.15E-08
c		2.25E-08	2.35E-08	2.48E-08	2.63E-08	2.75E-08	2.90E-08	3.10E-08
c		3.30E-08	3.50E-08	3.70E-08	3.90E-08	4.13E-08	4.38E-08	4.63E-08
c		4.88E-08	5.13E-08	5.38E-08	5.63E-08	5.88E-08	6.15E-08	6.45E-08
c		6.75E-08	7.05E-08	7.40E-08	7.80E-08	8.20E-08	8.60E-08	9.00E-08
с		9.40E-08	9.80E-08	1.03E-07	1.08E-07	1.13E-07	1.18E-07	1.24E-07
- C		1.31E-07	1.39E-07	1.46E-07	1.55E-07	1.65E-07	1.75E-07	1.85E-07
c		1.95E-07	2.05E-07	2.15E-07	2.25E-07	2.35E-07	2.48E-07	2.63E-07
c		2.75E-07	2.90E-07	3.10E-07	3.30E-07	3.50E-07	3.70E-07	3.90E-07
c		4.13E-07	4.38E-07	4.63E-07	4.88E-07	5.13E-07	5.38E-07	5.63E-07
c		5.88E-07	6.15E-07	6.45E-07	6.75E-07	7.05E-07	7.40E-07	7.80E-07
c		8.20E-07	8.60E-07	9.00E-07	9.40E-07	9.80E-07	1.03E-06	1.08E-06
c		1.13E-06	1.18E-06	1.24E-06	1.31E-06	1.39E-06	1.46E-06	1.55E-06
c		1.65E-06	1.75E-06	1.85E-06	1.95E-06	2.05E-06	2.15E-06	2.25E-06
c		2.35E-06	2.48E-06	2.63E-06	2.75E-06	2.90E-06	3.10E-06	3.30E-06
с		3.50E-06	3.70E-06	3.90E-06	4.13E-06	4.38E-06	4.63E-06	4.88E-06
c		5.13E-06	5.38E-06	5.63E-06	5.88E-06	6.15E-06	6.45E-06	6.75E-06
c		7.05E-06	7.40E-06	7.80E-06	8.20E-06	8.60E-06	9.00E-06	9.40E-06
c		9.80E-06	1.03E-05	1.08E-05	1.13E-05	1.18E-05	1.24E-05	1.31E-05
c		1.39E-05	1.46E-05	1.55E-05	1.65E-05	1.75E-05	1.85E-05	1.95E-05
c		2.05E-05	2.15E-05	2.25E-05	2.35E-05	2.48E-05	2.63E-05	2.75E-05
- C		2.90E-05	3.10E-05	3.30E-05	3.50E-05	3 70E-05	3.90E-05	4.13E-05
c		4.38E-05	4.63E-05	4.88E-05	5.13E-05	5.38E-05	5.63E-05	5.88E-05
c		6.15E-05	6.45E-05	6.75E-05	7.05E-05	7.40E-05	7.80E-05	8.20E-05
c		8.60E-05	9.00E-05	9.40E-05	9.80E-05	1.03E-04	1.08E-04	1.13E-04
c		1.18E-04	1.24E-04	1.31E-04	1.39E-04	1.46E-04	1.55E-04	1.65E-04
c		1.75E-04	1.85E-04	1.95E-04	2.05E-04	2.15E-04	2.25E-04	2.35E-04
с		2.48E-04	2.63E-04	2.75E-04	2.90E-04	3.10E-04	3.30E-04	3.50E-04
с		3.70E-04	3.90E-04	4.13E-04	4.38E-04	4.63E-04	4.88E-04	5.13E-04
c		5.38E-04	5.63E-04	5.88E-04	6.15E-04	6.45E-04	6.75E-04	7.05E-04
с		7.40E-04	7.80E-04	8.20E-04	8.60E-04	9.00E-04	9.40E-04	9.80E-04
с		1.03E-03	1.08E-03	1.13E-03	1.18E-03	1.24E-03	1.31E-03	1.39E-03
с		1.46E-03	1.55E-03	1.65E-03	1.75E-03	1.85E-03	1.95E-03	2.05E-03
с		2.15E-03	2.25E-03	2.35E-03	2.48E-03	2.63E-03	2.75E-03	2.90E-03
с		3.10E-03	3.30E-03	3.50E-03	3.70E-03	3.90E-03	4.13E-03	4.38E-03
с		4.63E-03	4.88E-03	5.13E-03	5.37E-03	5.63E-03	5.88E-03	6.15E-03
с		6.45E-03	6.75E-03	7.05E-03	7.40E-03	7.80E-03	8.20E-03	8.60E-03
с		9.00E-03	9.40E-03	9.80E-03	1.03E-02	1.08E-02	1.13E-02	1.18E-02
с		1.24E-02	1.31E-02	1.39E-02	1.46E-02	1.55E-02	1.65E-02	1.75E-02
с		1.85E-02	1.95E-02	2.05E-02	2.15E-02	2.25E-02	2.35E-02	2.48E-02
с		2.63E-02	2.75E-02	2.90E-02	3.10E-02	3.30E-02	3.50E-02	3.70E-02
с		3.90E-02	4.13E-02	4.38E-02	4.63E-02	4.88E-02	5.13E-02	5.38E-02
с		5.63E-02	5.88E-02	6.15E-02	6.45E-02	6.75E-02	7.05E-02	7.40E-02
с		7.80E-02	8.20E-02	8.60E-02	9.00E-02	9.40E-02	9.80E-02	0.1025
с		0.1075	0.1125	0.1175	0.12375	0.13125	0.13875	0.14625
с		0.155	0.165	0.175	0.185	0.195	0.205	0.215
с		0.225	0.235	0.2475	0.2625	0.275	0.29	0.31
с		0.33	0.35	0.37	0.39	0.4125	0.4375	0.4625
с		0.4875	0.5125	0.5375	0.5625	0.5875	0.615	0.645
с		0.675	0.705	0.74	0.78	0.82	0.86	0.9
с		0.94	0.98	1.05	1.15	1.25	1.35	1.45
с		1.55	1.65	1.75	1.85	1.95	2.05	2.15
с		2.25	2.35	2.45	2.55	2.65	2.75	2.85
с		2.95	3.05	3.15	3.25	3.35	3.45	3.55
c		3.65	3.75	3.85	3.95	4.05	4.15	4.25
с		4.35	4.45	4.55	4.65	4.75	4.85	4.95
c		5.05	5.15	5.25	5.35	5.45	5.55	5.65
с		5.75	5.85	5.95	6.05	6.15	6.25	6.35
с		6.45	6.55	6.65	6.75	6.85	6.95	7.05
с		7.15	7.25	7.35	7.45	7.55	7.65	7.75
с		7.85	7.95	8.05	8.15	8.25	8.35	8.45
с		8.55	8.65	8.75	8.85	8.95	9.05	9.15

с		9.25	9.35	9.45	9.55	9.65	9.75	9.85
с		9.95	10.05	10.15	10.25	10.35	10.45	10.55
с		10.65	10.75	10.85	10.95	11.05	11.15	11.25
c		12.05	12.15	12.25	12.35	12.45	12.55	12.65
c		12.75	12.85	12.95	13.05	13.15	13.25	13.35
с		13.45	13.55	13.65	13.75	13.85	13.95	14.05
с		14.15	14.25	14.35	14.45	14.55	14.65	14.75
с		14.85	14.95	15.05	15.15	15.25	15.35	15.45
с		15.55	15.65	15.75	15.85	15.95	16.05	16.15
с		16.25	16.35	16.45	16.55	16.65	16.75	16.85
c		17 65	17.05	17.15	17.25	18 05	18 15	18 25
c		18.35	18.45	18.55	18.65	18.75	18.85	18.95
c		19.05	19.15	19.25	19.35	19.45	19.55	19.65
с		19.75	19.85	19.95				
с	df674	1.5471	1.5117	1.4764	1.445	1.4081	1.3668	1.3294
с		1.2948	1.2575	1.2189	1.1834	1.1511	1.1225	1.0945
с		1.0678	1.0447	1.0217	0.99545	0.96654	0.94426	0.91947
c		0.00930	0.00102	0.60201	0.67559	0.79319	0.64626	0.7407
c		0.61669	0.60274	0.58979	0.57569	0.56079	0.54754	0.53445
c		0.52212	0.51126	0.50044	0.48942	0.47822	0.46705	0.45713
с		0.44546	0.43241	0.42057	0.40964	0.39784	0.38565	0.37444
с		0.36422	0.35519	0.34632	0.33791	0.3306	0.32333	0.31504
с		0.30591	0.29887	0.29105	0.28154	0.27283	0.26492	0.2577
с		0.25113	0.24438	0.23706	0.23072	0.22458	0.21911	0.21391
с		0.20908	0.20461	0.19992	0.19525	0.19082	0.18672	0.18225
c		0.15125	0.14773	0.14461	0.14084	0.13677	0.13295	0.1295
c		0.12577	0.12187	0.11834	0.11522	0.11215	0.10936	0.10684
с		0.10435	0.10215	9.95E-02	9.66E-02	9.43E-02	9.19E-02	8.89E-02
с		8.61E-02	8.36E-02	8.13E-02	7.92E-02	7.70E-02	7.47E-02	7.27E-02
с		7.08E-02	6.90E-02	6.74E-02	6.59E-02	6.45E-02	6.31E-02	6.16E-02
с		6.03E-02	5.90E-02	5.77E-02	5.62E-02	5.48E-02	5.35E-02	5.23E-02
c		5.12E-02 4 35E-02	5.02E-02	4.91E-02 4 12E-02	4.80E-02	4.69E-02	4.59E-02 3.76E-02	4.47E-02 3.65E-02
c		3.56E-02	3.47E-02	3.39E-02	3.31E-02	3.24E-02	3.16E-02	3.07E-02
c		3.00E-02	2.92E-02	2.82E-02	2.74E-02	2.65E-02	2.57E-02	2.51E-02
с		2.44E-02	2.37E-02	2.31E-02	2.25E-02	2.19E-02	2.14E-02	2.09E-02
с		2.05E-02	2.00E-02	1.96E-02	1.91E-02	1.87E-02	1.83E-02	1.78E-02
с		1.74E-02	1.70E-02	1.66E-02	1.62E-02	1.59E-02	1.55E-02	1.52E-02
с		1.48E-02	1.45E-02	1.41E-02	1.37E-02	1.33E-02	1.29E-02	1.26E-02
c		1.22E-02	1.18E-02	9 71E-03	9 50F-03	9 24F-03	1.07E-02 8 92F-03	1.05E-02 8 64F-03
c		8.36E-03	8.12E-03	7.90E-03	7.68E-03	7.48E-03	7.27E-03	7.07E-03
с		6.89E-03	6.74E-03	6.59E-03	6.44E-03	6.30E-03	6.16E-03	6.03E-03
с		5.89E-03	5.76E-03	5.61E-03	5.48E-03	5.36E-03	5.24E-03	5.12E-03
с		5.00E-03	4.89E-03	4.79E-03	4.69E-03	4.59E-03	4.47E-03	4.35E-03
с		4.24E-03	4.13E-03	4.01E-03	3.88E-03	3.76E-03	3.65E-03	3.55E-03
c		3.46E-03	3.38E-03	3.31E-03	3.24E-03	3.16E-03	3.06E-03	3.00E-03
c		2.37E-03	2.31E-03	2.25E-03	2.19E-03	2.14E-03	2.10E-03	2.05E-03
c		2.00E-03	1.96E-03	1.91E-03	1.87E-03	1.82E-03	1.78E-03	1.73E-03
с		1.69E-03	1.65E-03	1.62E-03	1.58E-03	1.55E-03	1.52E-03	1.48E-03
с		1.45E-03	1.41E-03	1.37E-03	1.33E-03	1.29E-03	1.25E-03	1.22E-03
с		1.32E-03	2.30E-03	3.42E-03	5.14E-03	7.47E-03	9.81E-03	1.21E-02
c		1.50E-02	1.72E-02 3.63E-02	1.88E-02	2.07E-02	2.41E-02	2.85E-02	3.25E-02
c		5.88E-02	6.22E-02	6.56E-02	6.89E-02	7.21E-02	7.53E-02	7.87E-02
c		8.35E-02	8.90E-02	9.40E-02	9.84E-02	0.1028	0.10719	0.11159
с		0.1168	0.12285	0.1289	0.13495	0.14249	0.15156	0.16064
с		0.16972	0.17996	0.19106	0.20215	0.21324	0.22433	0.2355
с		0.24679	0.25808	0.26937	0.28343	0.3002	0.31377	0.32985
c		0.35143	0.3/2/9	0.39399	0.41513	0.43618	0.45989	0.48723
c		0.71492	0.74514	0.77536	0.80966	0.84755	0.88541	0.92327
c		0.96113	0.99898	1.036	1.0762	1.121	1.1658	1.2108
с		1.2701	1.3422	1.4141	1.4853	1.5655	1.6551	1.7385
с		1.8209	1.9007	1.9792	2.0501	2.1161	2.1808	2.2613
с		2.3631	2.4527	2.5568	2.6896	2.8231	2.9491	2.9958
с		3.6977	3.2342	3.0268	2.8203	2.4702	1.847	1.4987
c		41.95 6.3106	11.453	6.0401	5.8443	5.6119	0.0319 5.4173	0.0950 5.1978
c		4.876	4.4319	3.9828	3.3528	2.5526	1.8707	1.3509
c		4.3232	19.048	64.493	114.1	111.28	91.836	78.667
с		69.75	64.073	58.46	54.959	52.558	51.326	50.237
с		49.28	50.095	49.722	52.107	51.897	52.654	53.508
с		55.405	57.416	77.958	124.55	58.334	52.618	55.29
c		56./67	59.302	64.575	87.944	136.8	18.336	ö/./81
c		105.98	163.02	78.342	129.21	129.4	95.218	106.92
c		105.49	102.82	118.92	131.19	115.67	106.91	135.04
с		98.845	120.2	131.5	118.02	113.87	119.06	111.27

69.524 115.13 108.84 134.34 131.64 108.71 164.41 с с 134.86 140.92 138.38 158.64 185.61 160.67 145.5 с 149.16 170.31 145.7 120.15 116.98 145.6 152.07 180.05 164.7 137.1 153 127.71 175.38 150.09 с с 139.27 119.27 150.92 162.25 146.89 141.77 161.1 168.43 167.05 с 139.16 169.27 162.91 170.31 174.8 с 175.34 186.4 165 154.43 158.42 162.02 166.61 146.75 с 165.83 163.86 160.22 177.57 174 58 153.88 150.69 164.41 161.96 166.21 169.82 156.1 164.06 с с 164.49 166.21 168.63 163.36 164.67 154.76 154.6 с 155.51 159 162.91 160.05 158.75 155.61 159.52 165.38 165.79 166.03 168.62 166.62 165.46 165.66 с 168.17 167.95 167.71 167.47 167.22 167.27 167.6 с с 167.94 168.28 168.62 168.66 168.39 168.11 167.83 167.53 167.16 166.73 166.29 165.86 165.4 165.54 с 166.34 167.14 167.94 168.73 169.21 169.37 169.52 с 169.66 169.79 169.93 170.09 с 170.25 170.4 170.56 с 170.72 170.86 171.32 173.63 176.3 177.74 177.89 178.03 178.18 178.32 178.27 178.01 177.76 177.5 с 180.67 177.49 178.28 179.08 179.88 181.24 с 177.24 181.58 181.91 182.24 182.59 182.94 183.28 183.62 с c 183.97 184.31 184.45 184.37 184.28 184.2 184 11 184 183.88 183.75 183.63 183.51 183.38 183.25 с 183.12 183 182.87 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 c fs674 c fq674 s f c *f694:n (455<u=45) c fc694 3L Neutron Tally for Calculation of Average Neutron Energy c fs694 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 c fq694 s f c *f704:p (455<u=45) 3L Photon Tally for Calculation of Average Photon Energy c fc704 c fs704 6002 6007 6012 6017 6022 6027 6032 6037 6042 6047 6052 6057 c fq704 s f c f714:p (1752<u=82) c fc714 CT Photon Tally c f724:p (1752<u=82) CT Photon Tally for Calculation of Photon Dose (Kerma) c fc724 1.00E-02 3.00E-02 5.00E-02 7.00E-02 1.00E-01 1.50E-01 c de724 2.00E-01 2.50E-01 3.00E-01 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.8 1.0 1.4 1.8 2.2 2.6 2.8 3.25 3.75 4.25 4.75 c 5.0 5.25 5.75 6.25 6.75 7.5 9.0 11.0 13.0 15.0 с 3.96E-06 5.82E-07 2.90E-07 2.58E-07 2.83E-07 3.79E-07 5.01E-07 6.31E-07 7.59E-07 8.78E-07 9.85E-07 1.08E-06 c df724 c 1.17E-06 1.27E-06 1.36E-06 1.44E-06 1.52E-06 1.68E-06 1,98E-06 2,51E-06 2,99E-06 3,42E-06 3,82E-06 4,01E-06 4.41E-06 4.83E-06 5.23E-06 5.60E-06 5.80E-06 6.01E-06 с c 6.37E-06 6.74E-06 7.11E-06 7.66E-06 8.77E-06 1.03E-05 1.18E-05 1.33E-05 с c *f734:p (1752<u=82) CT Photon Tally for Calculation of Average Photon Energy c fc734 с c f804:p 1800 1801 1802 1803 1804 1805 1806 c fc804 Photon Tally for Radial Profile c f824.n (124 < 11 = 8)Neutron flux tally for peaking factors in fuel pins 6015 6017 6019 6021 6023 6025 6027 6029 6031 6033 6035 6037 6039 6041 6043 6045 6047 6049 T c fc824 c fs824 c fq824 s f c f17:n $(124 \le 10)$ c fc17 Fission energy deposition averaged over a cell [MeV/g] c fs17 6015 6017 6019 6021 6023 6025 6027 6029 6031 6033 6035 6037 6039 6041 6043 6045 6047 6049 T с c fq17 s f c c Criticality calculation \sim c 100000 n/cycle, 1.000 as initial guess, skip 10, total of 60 keff cycles, c automatic plotting of three combined keff tally c kcode 1000000 1.000 10 60 4500 0 6500 1 mplot freq 10 kcode 16 scales 2 ksrc -4.5 21.8 13 0 21.8 13 4.5 21.8 13 -11 -6.5 18.0 13 -2 18.0 13 2.0 18 13 6 18 13 6.5 18 13
 -6.5
 18.0
 13
 -2
 18.0
 13
 2.0
 18
 13

 11
 18
 13
 -17.5
 14.3
 13
 -13
 14.3
 13

 -4.5
 14.3
 13
 0
 14.3
 13
 4.5
 14.3
 13
 -9 9 14.3 13

14.3 13

13 14.3 13 -19.5 10.5 13 -15.5 10.5 13 -11 10.5 13 -6.5 10.5 13 2 10.5 15.5 10.5 13 19.5 10.5 10.5 13 6.5 10.5 13 11 10.5 13 15.5 10.5 13 -22 6.8 13 -17.5 6.8 13 6.8 13 -9 6.8 13 -4.5 6.8 13 0 6.8 13 -13 17.5 4.5 6.8 13 9 6.8 13 13 6.8 13 6.8 13 -6.5 -19.5 2.8 13 -15.5 2.8 13 -11 2.8 13 2.8 13 -2 2.8 13 2 2.8 13 6.5 2.8 13 11 2.8 13 15.5 2.8 13 19.5 2.8 13 -22 -17.5 -0.8 -0.8 13 13 13 -4.5 -0.8 13 4.5 -0.8 -0.8 13 13 -13 -0.8 13 17.5 -0.8 13 22 -0.8 13 -24 -4.6 13 -19.5 -4.6 13 -15.5 -4.6 13 -11 2 -4 2 -4.6 13 -6.5 -4.6 13 -2 -4.6 13 15.5 -4.6 13 6.5 -4.6 13 11 -4.6 13 2 -4.6 13 19.5 -4.6 13 -22 -8.3 13 -9 -8.3 13 -4.5 -8.3 13 4.5 -8.3 13 9 0 -8.3 13 -8.3 13 13 -8.3 13 17.5 -8.3 -6.5 -12 13 22 -8.3 13 -11 -12 13 13 2 -12 13 6.5 -12 13 11 -12 13 15.5 -12 13 13 -17.5 -15.9 13 -13 -15.9 13 19.5 -12 -9 -15.9 9 -15.9 -9 13 -4.5 -15.9 13 0 -15.9 13 4.5 -15.9 13 13 -11 -19.7 13 6.5 -19.7 13 11 -19.7 13 -4.5 -23.5 13 0 4.5 -23.5 -23.5 13 13 с c KCODE nsrck rkk ikz kct msrk knrm mrkp kc8 c nsrck - number of source histories per cycle (def=1000)
c rkk - initial guess for keff (def=1.0) - number of cycles to be skipped before beginning tally accumulation ikz с - number of cycles to be done (def=ikz+100) с kct - number of source points for which to allocate storage (def=4500) c msrk - controls normalization of tallies knrm с knrm=0, normalization by weight (def) knrm=1, normalization by number of histories с mrkp - maximum number of cycle values on MCTAL or RUNTPE (def=6500) с - controls the number of cycles over which summary and tally info с kc8 с are averaged kc8=0, averaged over all cycles с kc8=1, averaged over all active cycles (def) с c PIKMT 1001 0 5010 0 5011 0 6000 0 7014 0 8016 0 12000 0 13027 0 14000 0 15031 0 16000 0 24000 0 с 26000 26054 0 26058 0 27059 25055 0 0 0 28000 0 с 28058 0 28064 0 29000 0 29063 0 30000 0 40090 0 40091 0 40092 0 40094 0 40096 0 42098 0 48000 -1 с 79197 0 82000 0 92235 0 92238 0 с thtme 0 \$ time in shakes (1e-8 sec) at which thermal temperatures... mode n p phys:p 100 0 0 0 1 -102 \$ -102, Analog sampling, models only, multigroup + line emission imp:n 1 301r 0 1 301r 0 imp:p print c BURN TIME=T1,T2,T3... - duration of burn step i (days) с PFRAC=F1,F2,F3... - power fraction of each time step POWER=P - power level (MW) MAT=M1,M2,M3... - list of material numbers to include in the burn с с с MIT-11, N1, I11, I12... J2, N2, I21, I22... AFMIN=A - atom frac. min. below which the atom frac. is set to zero BOPT=B1, B2, B3... - B1 - Q value multiplier с с с B2 - burn table output frequency, ordering, content flag c tmesh c cmesh1:n c coral 0 44i 45 c corb1 -45 59i 45 c corc1 1 358i 360 c endmd

Appendix B

OrigenArp Input File

Below is the input file entered into OrigenArp to conduct the validity test. The example simulated 0.09988 grams of naturally-enriched actce14x14 fuel irradiated at a thermal flux of $1.5266E+09 \frac{n}{cm^2s}$ and allowed to decay, providing output FP masses (in grams), at the following time steps (in seconds): 0, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100, 150, 300, 750, 1000, 1250, 1500, 30000, 75000, 100000, 125000, 150000, 300000, 750000, 1000000, 1250000, 3000000, 1250000, 1500000, 3000000.

'This SCALE input file was generated by 'OrigenArp Version 6.1 Compiled on Thu Oct 7 11:31:00 2010 =arp actce14x14 1.0 0.0001157407 1.5266e+09 1.0 ft33f001 end#origens 0\$\$ a4 33 a11 71 e t actce14x14 3\$\$ 33 a3 1 0 a16 2 a33 0 e t 35\$\$ 0 t 56\$\$ 10 10 1 a6 1 a10 0 a13 3 a14 1 a15 3 a18 1 e 57** 0 a3 1e-05 1 e 95\$\$ 1 t Case 1 0.09988 grams 59** 1.5266e+09 60** 1 2 3 4 5 6 7 8 9 10 66\$\$ a1 2 a5 2 a9 2 e 73\$\$ 922350 922380 922340 74** 0.000719136 0.09915537 5.4934e-06 75\$\$ 2 2 2 56\$\$ 0 0 a10 1 e t 56\$\$ 0 0 a10 2 e t 56\$\$ 0 0 a10 3 e t 56\$\$ 0 0 a10 4 e t 56\$\$ 0 0 a10 5 e t 6 e t 56\$\$ 0 0 a10 56\$\$ 0 0 a10 56\$\$ 0 0 a10 7 e t 8 e t 56\$\$ 0 0 a10 9 e t 56\$\$ 0 0 a10 10 e t 54\$\$ a8 1 a11 0 e 56\$\$ a2 10 a6 1 a10 10 a14 1 a15 3 a17 4 e 57** 0 a3 1e-05 e 95\$\$ 1 t Case 2 0.09988 grams 60** 0 0.001 0.003 0.01 0.03 0.1 0.3 1 3 10 61** f5e-06 65\$\$ Grams Curies Watts-All Watts-Gamma 'Gram-Atoms
 3z
 1
 0
 0
 3z
 3z
 3z
 6z

 3z
 1
 0
 0
 3z
 3z
 6z

 3z
 1
 0
 0
 3z
 3z
 6z
 3z 1 0 0 3z 3z 3z 6z ŧ.

```
56$$ 0 0 a10 2 e t
56$$ 0 0 a10 3 e t
56$$ 0 0 a10
                   4 e t
56$$ 0 0 a10 5 e t
56$$ 0 0 a10
                   6 e t
7 e t
56$$ 0 0 a10
56$$ 0 0 a10 8 e t
56$$ 0 0 a10 9 e t
56$$ 0 0 a10 10 e t
54$$ a8 1 a11 0 e
56$$ a2 10 a6 1 a10 10 a14 1 a15 3 a17 4 e
57** 10 a3 1e-05 e
95$$ 1 t
Case 3
0.09988 grams
60** 30 100 150 300 750 1000 1250 1500 3000 7500
61** f0.05
65$$
                  Grams Curies Watts-All Watts-Gamma
 'Gram-Atoms
 3z 1 0 0 3z 3z 3z 6z
3z 1 0 0 3z 3z 3z 6z
 3z 1 0 0 3z
                                 3z 3z
                                                6z
t
56$$ 0 0 a10 1 e t
56$$ 0 0 alv 1 -
56$$ 0 0 al0 2 e t
=6$$ 0 0 al0 3 e t
56$$ 0 0 a10
56$$ 0 0 a10
                   4 e t
56$$ 0 0 a10
                    5 e t
56$$ 0 0 a10
56$$ 0 0 a10
                    6 e t
                    7 e t
56$$ 0 0 a10
                    8 e t
56$$ 0 0 a10 9 e t
56$$ 0 0 a10 10 e t
54$$ a8 1 a11 0 e
56$$ a2 10 a6 1 a10 10 a14 1 a15 3 a17 4 e
57** 7500 a3 1e-05 e
95$$ 1 t
Case 4
0.09988 grams
60** 10000 12500 15000 30000 75000 100000 125000 150000 300000 750000
61** f0.05
65$$

        Gram-Atoms
        Grams
        Curies
        Watts-All
        Watts-Gamma

        3z
        1
        0
        3z
        3z
        6z

        3z
        1
        0
        3z
        3z
        6z

 3z 1 0
                   0 3z
                                 3z
                                        3z
                                                6z
t
56$$ 0 0 a10 1 e t
56$$ 0 0 a10 2 e t
56$$ 0 0 a10 3 e t
56$$ 0 0 a10
                    4 e t
56$$ 0 0 a10
                   5 e t
56$$ 0 0 a10
                   6 e t
56$$ 0 0 a10
                   7 e t
56$$ 0 0 a10
                   8 e t
56$$ 0 0 a10
                   9 e t
56$$ 0 0 a10 10 e t
54$$ a8 1 a11 0 e
56$$ a2 4 a6 1 a10 10 a14 1 a15 3 a17 4 e
57** 750000 a3 1e-05 e
95$$ 1 t
Case 5
0.09988 grams
60** 1000000 1250000 1500000 3000000
61** f0.05
65$$
 'Gram-Atoms
                  Grams Curies Watts-All Watts-Gamma

        3z
        1
        0
        0
        3z
        3z
        3z
        6z

        3z
        1
        0
        0
        3z
        3z
        3z
        6z

 3z
       1 0
                   0
                         3z
                                 3z
                                        3z
                                                6z
t
t
56$$ 0 0 a10 1 e t
56$$ 0 0 a10 2 e t
56$$ 0 0 a10 3 e t
56$$ 0 0 a10 4 e t
56$$ f0 t
end
=opus
LIBUNIT=33
TYPARAMS=NUCLIDES
UNITS=GRAMS
SYNUC-AGP-106 Ag-107 Ag-108 Ag-108 Ag-109 Ag-109 Ag-110 Ag-110 Ag-111 Ag-111 Ag-111 Ag-112 Ag-113 Ag-113 Ag-114 Ag-115 Ag-115 Ag-116 Ag-116M
```

56\$\$ 0 0 a10 1 e t

Br-90 Br-91 Br-92 Br-93 Br-94 Br-95 Br-96 C-14 Cd-108 Cd-109 Cd-110 Cd-111 Cd-111M Cd-112 Cd-113 Cd-113M Cd-114 Cd-115 Cd-115M Cd-116 Cd-117 Cd-117M Cd-118 Cd-119 Cd-119M Cd-120 Cd-121 Cd-122 Cd-123 Cd-124 Cd-125 Cd-126 Cd-127 Cd-128 Cd-129 Cd-130 Cd-131 Cd-132 Ce-139 Ce-140 Ce-141 Ce-142 Ce-143 Ce-144 Ce-145 Ce-146 Ce-147 Ce-148 Ce-149 Ce-150 Ce-151 Ce-152 Ce-153 Ce-154 Ce-155 Ce-156 Ce-157 Co-72 Co-73 Co-74 Co-75 Cs-132 Cs-133 Cs-134 Cs-134M Cs-135 Cs-135M Cs-136 Cs-137 Cs-138 Cs-138M Cs-139 Cs-140 Cs-141 Cs-142 Cs-143 Cs-144 Cs-145 Cs-146 Cs-147 Cs-148 Cs-149 Cs-150 Cu-66 Cu-67 Cu-72 Cu-73 Cu-74 Cu-75 Cu-76 Cu-77 Cu-78 Cu-79 Cu-80 Cu-81 Dy-160 Dy-161 Dy-162 Dy-163 Dy-164 Dy-165 Dy-165M Dy-166 Er-166 Er-167 Er-167M Er-168 Er-169 Er-170 end NRANK=200 LIBTYPE=FISS TIME=SEC NPOSITION=11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 end end =opus LIBUNIT=33 TYPARAMS=NUCLIDES UNITS=GRAMS SYMNUC=Er-171 Er-172 Eu-149 Eu-150 Eu-151 Eu-152 Eu-152M Eu-153 Eu-154 Eu-155 Eu-156 Eu-157 Eu-158 Eu-159 Eu-160 Eu-161 Eu-162 Eu-163 Eu-164 Eu-165 Ga-69 Ga-70 Ga-71 Ga-72 Ga-73 Ga-74 Ga-75 Ga-76 Ga-77 Ga-78 Ga-79 Ga-80 Ga-81 Ga-82 Ga-83 Ga-84 Ga-85 Gd-152 Gd-153 Gd-154 Gd-155 Gd-155M Gd-156 Gd-157 Gd-158 Gd-159 Gd-160 Gd-161 Gd-162 Gd-163 Gd-164 Gd-165 Ge-70 Ge-71 Ge-71M Ge-72 Ge-73 Ge-73M Ge-74 Ge-75 Ge-75M Ge-76 Ge-77 Ge-77M Ge-78 Ge-79 Ge-80 Ge-81 Ge-82 Ge-83 Ge-84 Ge-85 Ge-86 Ge-87 Ge-88 H-3 Ho-165 Ho-166 Ho-166M I-127 I-128 I-129 I-130 I-130M I-131 I-132 I-133 I-133M I-134 I-134M I-135 I-136 I-136M I-137 I-138 I-139 I-140 I-141 I-142 I-143 I-144 I-145 In-113 In-113M In-114 In-114M In-115 In-115M In-116 In-116M In-117 In-117M In-118 In-118M In-119 In-119M In-120 In-120M In-121 In-121M In-122 In-122M In-123 In-123M In-124 In-125 In-125M In-126 In-127 In-127M In-128 In-129 In-130 In-131 In-132 In-133 In-134 Kr-79 Kr-80 Kr-81 Kr-81M Kr-82 Kr-83 Kr-83M Kr-84 Kr-85 Kr-85M Kr-86 Kr-87 Kr-88 Kr-89 Kr-90 Kr-91 Kr-92 Kr-93 Kr-94 Kr-95 Kr-96 Kr-97 Kr-98 La-138 La-139 La-140 La-141 La-142 La-143 La-144 La-145 La-146 La-147 La-148 La-149 La-150 La-151 La-152 La-153 La-154 La-155 Li-6 Li-7 Mo-100 Mo-101 Mo-102 Mo-103 Mo-104 Mo-105 Mo-106 Mo-107 Mo-108 Mo-109 Mo-110 Mo-111 Mo-112 Mo-113 Mo-114 Mo-115 Mo-95 Mo-96 Mo-97 Mo-98 end NRANK=200 LIBTYPE=FISS TIME=SEC NPOSITION=11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 end end =opus LIBUNIT=33 TYPARAMS=NUCLIDES UNTTS=GRAMS SYMNUC=Mo-99 Nb-100 Nb-100M Nb-101 Nb-102 Nb-103 Nb-104 Nb-105 Nb-106 Nb-107 Nb-108 Nb-109 Nb-110 Nb-111 Nb-112 Nb-91 Nb-92 Nb-93 Nb-93M Nb-94 Nb-94M Nb-95 Nb-95M Nb-96 Nb-97 Nb-97M Nb-98 Nb-98M Nb-99 Nb-99M Nd-141 Nd-142 Nd-143 Nd-144 Nd-145 Nd-146 Nd-147 Nd-148 Nd-149 Nd-150 Nd-151 Nd-152 Nd-153 Nd-154 Nd-155 Nd-156 Nd-157 Nd-158 Nd-159 Nd-160 Nd-161 Ni-66 Ni-72 Ni-73 Ni-74 Ni-75 Ni-76 Ni-77 Ni-78 Pd-102 Pd-104 Pd-105 Pd-106 Pd-107 Pd-107M Pd-108 Pd-109 Pd-109M Pd-110 Pd-111 Pd-111M Pd-112 Pd-113 Pd-114 Pd-115 Pd-116 Pd-117 Pd-118 Pd-119 Pd-120 Pd-121 Pd-122 Pd-123 Pd-124 Pd-125 Pd-126 Pm-145 Pm-146 Pm-147 Pm-148 Pm-148M Pm-149 Pm-150 Pm-151 Pm-152 Pm-152M Pm-153 Pm-154 Pm-154M Pm-155 Pm-156 Pm-157 Pm-158 Pm-159 Pm-160 Pm-161 Pm-162 Pr-139 Pr-140 Pr-141 Pr-142 Pr-142M Pr-143 Pr-144 Pr-144M Pr-145 Pr-146 Pr-147 Pr-148 Pr-149 Pr-150 Pr-151 Pr-152 Pr-153 Pr-154 Pr-155 Pr-156 Pr-157 Pr-158 Pr-159 Rb-100 Rb-101 Rb-85 Rb-86 Rb-86 Rb-87 Rb-88 Rb-89 Rb-90 Rb-90M Rb-91 Rb-92 Rb-93 Rb-94 Rb-95 Rb-96 Rb-97 Rb-98 Rb-99 Rh-102 Rh-103 Rh-103M Rh-104 Rh-104M Rh-105 Rh-105M Rh-106 Rh-106M Rh-107 Rh-108 Rh-108M Rh-109 Rh-109M Rh-110 Rh-110M Rh-111 Rh-112 Rh-113 Rh-114 Rh-115 Rh-116 Rh-117 Rh-118 Rh-119 Rh-120 Rh-121 Rh-122 Rh-123 Ru-100 Ru-101 Ru-102 Ru-103 Ru-104 Ru-105 Ru-106 Ru-107 Ru-108 Ru-109 Ru-110 Ru-111 Ru-112 Ru-113 Ru-114 Ru-115 Ru-116 Ru-117 Ru-118 Ru-119 Ru-120 Ru-99 end NRANK=200 LIBTYPE=FISS TIME=SEC NPOSITION=11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 end

74

=opus LIBUNIT=33 TYPARAMS=NUCLIDES UNTTS=GRAMS SYMNUC=Sb-121 Sb-122 Sb-122M Sb-123 Sb-124 Sb-124M Sb-125 Sb-126 Sb-126M Sb-127 Sb-128 Sb-128M Sb-129 Sb-130 Sb-130M Sb-131 Sb-132 Sb-132M Sb-133 Sb-134 Sb-134M Sb-135 Sb-136 Sb-137 Sb-138 Sb-139 Se-76 Se-77 Se-77M Se-78 Se-79 Se-79M Se-80 Se-81 Se-81M Se-82 Se-83 Se-83M Se-84 Se-85 Se-85M Se-86 Se-87 Se-88 Se-89 Se-90 Se-91 Se-92 Se-93 Sm-145 Sm-146 Sm-147 Sm-148 Sm-149 Sm-150 Sm-151 Sm-152 Sm-153 Sm-154 Sm-155 Sm-156 Sm-157 Sm-158 Sm-159 Sm-160 Sm-161 Sm-162 Sm-163 Sm-164 Sm-165 ${\rm Sn-114~Sn-115~Sn-116~Sn-117~Sn-117M~Sn-118~Sn-119~Sn-119M~Sn-120~Sn-121}$ Sn-121M Sn-122 Sn-123 Sn-123M Sn-124 Sn-125 Sn-125M Sn-126 Sn-127 Sn-127M Sn-128 Sn-129 Sn-129M Sn-130 Sn-131 Sn-132 Sn-133 Sn-134 Sn-135 Sn-136 Sr-100 Sr-101 Sr-102 Sr-103 Sr-104 Sr-86 Sr-87 Sr-87M Sr-88 Sr-89 Sr-90 Sr-91 Sr-92 Sr-93 Sr-94 Sr-95 Sr-96 Sr-97 Sr-98 Sr-99 Tb-159 Tb-160 Tb-161 Tb-162 Tb-162M Tb-163 Tb-163M Tb-164 Tb-165 Tc-100 Tc-101 Tc-102 Tc-102M Tc-103 Tc-104 Tc-105 Tc-106 Tc-107 Tc-108 Tc-109 Tc-110 Tc-111 Tc-112 Tc-113 Tc-114 Tc-115 Tc-116 Tc-117 Tc-118 Tc-98 Tc-99 Tc-99M Te-122 Te-123 Te-123M Te-124 Te-125 Te-125M Te-126 Te-127 Te-127M Te-128 Te-129 Te-129M Te-130 Te-131 Te-131M Te-132 Te-133 Te-133M Te-134 Te-135 Te-136 Te-137 Te-138 Te-139 Te-140 Te-141 Te-142 Tm-169 Tm-170 Tm-170M Tm-171 Tm-172 Xe-126 Xe-127 Xe-128 Xe-129 Xe-129M Xe-130 Xe-131 Xe-131M Xe-132 Xe-133 Xe-133M Xe-134 Xe-134M Xe-135 Xe-135M Xe-136 end NRANK=200 LIBTYPE=FISS TIME=SEC NIN DISC 101-11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 end end =opus LIBUNIT=33 TYPARAMS=NUCLIDES UNITS=GRAMS SYMNUC=Xe-137 Xe-138 Xe-139 Xe-140 Xe-141 Xe-142 Xe-143 Xe-144 Xe-145 Xe-146 Xe-147 Y-100 Y-101 Y-102 Y-103 Y-104 Y-105 Y-106 Y-107 Y-89 Y-89M Y-90 Y-90M Y-91 Y-91M Y-92 Y-93 Y-94 Y-95 Y-96 Y-97 Y-98 Y-99 Yb-168 Yb-169 Yb-170 Yb-171 Yb-172 Zn-66 Zn-67 Zn-68 Zn-69 Zn-69M Zn-70 Zn-71 Zn-71M Zn-72 Zn-73 Zn-74 Zn-75 Zn-76 Zn-77 Zn-78 Zn-79 Zn-80 Zn-81 Zn-82 Zn-83 Zr-100 Zr-101 Zr-102 Zr-103 Zr-104 Zr-105 Zr-106 Zr-107 Zr-108 Zr-109 Zr-90 Zr-90M Zr-91 Zr-92 Zr-93 Zr-94 Zr-95 Zr-96 Zr-97 Zr-98 Zr-99 end NRANK=79 LIBTYPE=FISS TIME=SEC NPOSITION=11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 end end =opus LTBUNTT=33 TYPARAMS=NUCLIDES UNITS=GRAMS SYMNUC=Np-239 U-234 U-235 U-236 U-238 U-239 end NRANK=6 LIBTYPE=ALL TIME=SEC NPOSITION=11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 end end #shell copy ft71f001 "C:\Users\Christopher\Desktop\Christopher's Documents\University of Texas\Research\PIXIE\Analysis\OrigenArp Analysis\N0523.f71" del ft71f001

end

end

Appendix C

Validity Analysis Using OrigenArp

The following tables show the results of the OrigenArp analysis on the validity of the method of determining FP yields used in this work. Note that the efficiency can be calculated using Equation 4.5, and the half lives and gamma ray yields were taken from the Korea Atomic Energy Research Institute [46]. * These values were taken from the OrigenArp output. ** These values were taken from the ENDF-349 library [43].

	Half Life	Gamma	Efficiency		Initial	Decays	Expected	Cumulative	Expected	Experimental/
Nuclide	(s)	Energy	at Peak	γ_i	Mass	From	Counts	χ_i	Cumulative	Expected
797~	и -	0017E	0.0022	0.420	0 405E 91	10 10 10 10 10 10 10 10 10 10 10 10 10 1	0 05	2 497E OK	2 KOLT OK	0.0579
780.9	7 U0	61040	0.0333	0.439	9.400E-21	12.01	1756	3.42/E-03	3.350E-03	0.9012
1800	5000	019-220	0.0750	0.06	9.40E-10	1846.01	132.86	1 015E-04	2 080E-04	0.02070 0.02070
2000	5772 O	613 80	0.0336	0.00	0.9795.90	608 96	19.67	1 880F 04	2.000E-04	0.806.0
a707.	4.0110	00.002	0.0006	0 212	3.41E-21	02020 96.95	10.21	1 8/1F_05	2.100E-04	1 1994
1921	100	164 70	0.6700	710.0	0.40315-21	07-07 20 VCZ	10.04	1.051E-00	1.870F-03	1 0422
4000	101	100.58	0.1637	0.914	9.573E-10	1063.20	68.76	9 636E-04	4 910E-04	0.6969
79 As	270	95.50	0.1755	0.0928	4.700E-19	3586.30	58.42	4.145E-04	4.470F-04	0.9272
79Se-m	233.4	95.73	0.1753	0.0962	1.163E-19	887.45	14.97	8.438F-04	4.470E-04	1.8876
79Br-m	4.86	207.20	8660.0	0.764	6.277F-27	4.79F-05	3.65E-06	9.082E-12	1.040F-11	0.8733
80Zn	0.55	719.53	0.0202	0.451	3.526F-22	20120	3 49E-02	3 385E-06	2.420F_06	1 3988
80Ga	1.68	659.14	0.0314	102.0	3.804F-20	286.57	7.02	1.214E-04	1.190E-04	1.0204
80Ge	29.5	256.36	0.0811	0.27	1.176E-18	8860.60	194.08	1.005E-03	1.150E-03	0.8738
80 As	16	666.20	0.0311	0.42	3 727E-19	2808 22	36.65	1 282E-03	1 280E-03	1 0015
8100 81Ga	1 22	916.47	0.0057	0.374	9.13E-20	157 21	5.63	9 058E-05	8 180E-05	1 1073
8100	7.6	335 98	0.0616	0.5893	1 050E-18	7813.16	283 75	0.000E-00	1 350E-03	0.8010
81 As	33	467.70	0.0440	6 0	1.531E-18	11393.28	100.18	1.574E_03	1 960E-03	0.8031
81Se-m	3438	103 01	0.1692	0.13	1 431E-10	1061 76	23.36	1 110E-04	6 930E-05	1 6014
8150	0111	275.03	0.0753	0.0067	2.1211 18	15389.83	7 7 7	1 719E-03	2.040E_03	0.8300
0008	0.607	1348.07	0.0169	10001	7 002E-21	10002.00 58 73	0.05	6 789E-05	6 270F-05	1 0816
0708	1.00.00	10.0100	0.0107		0.045E-10	66.18.27	130.82	0.102E-00	0.210E-03	0.0840
824 c-m	19.4	654 40	0.0316	0.151	2.057E-19	9173 50	10.37	9 798E-04	2.710E-03	1 0394
87 Ac	10.1	654 40	0.0316	101.0	2.301E-19	15730 43	358.00	2.136E-04	2.1 10E-03	1.0024 0 8136
07420 0700	- T	004.40	01000	71.0	2.140E-10 9 169E 10	04-00/01	00.000	2.113E-U3	2.000E-03	0010.0
9500	1. T. A.	10.000	1100.0	1 0	2.1001-19	10/0.09	100.34	0.944E-04	4.000E-04	1.4000
83AS	13.4	743.60	0.0280	0.43	3.498E-18	25402.42	305.99	3.287E-U3	3.400E-03	0.9067
83Se-m	70.2	356.69	0.0580	0.175	2.473E-18	17960.16	182.15	2.562E-03	2.510E-03	1.0206
83Se	1338	356.70	0.0580	0.7	2.961E-18	21504.25	872.37	2.293E-03	2.650E-03	0.8654
83Br	8640	529.64	0.0388	0.012	2.515E-18	16453.83	7.67	2.348E-03	5.360E-03	0.4380
84 As	5.5	1454.55	0.0150	0.89	1.078E-18	7734.77	103.30	1.376E-03	2.260E-03	0.6088
84Se	198	408.20	0.0505	1	1.289E-17	92498.81	4668.68	9.846E-03	9.660E-03	1.0192
84Br-m	360	424.00	0.0486	1	2.010E-19	1442.41	70.04	1.471E-04	1.670E-04	0.8808
84Br	1908	881.60	0.0239	0.416	1.090E-17	78218.13	778.66	1.039E-02	9.850E-03	1.0552
85Ge	0.25	101.90	0.1702	0.05	2.802E-21	19.86	0.17	5.578E-05	2.130E-05	2.6189
85 As	2.03	1111.50	0.0194	0.0348	1.089E-18	7721.44	5.20	2.754E-03	2.190E-03	1.2577
85Se	39	345.20	0.0599	0.46	1.169E-17	82896.04	2285.54	9.143E-03	5.560E-03	1.6445
85 Br	172.2	802.41	0.0261	0.0256	1.102E-17	78151.05	52.16	1.204E-02	1.280E-02	0.9410
85Kr-m	16128	151.20	0.1313	0.7498	1.557E-17	78396.41	7720.26	1.177E-02	1.290E-02	0.9125
85 Kr	$3.384E \pm 0.8$	514.00	0.0400	0.0043	3.768E-18	1.58	2.74E-04	2.701E-03	2.830E-03	0.9543
86Se	15	207.50	0.0996	0.0778	1.364E-17	95595.90	741.34	1.211E-02	1.370E-02	0.8842
86Br	55.5	1564.92	0.0139	0.64	1.455E-17	101980.13	909.93	1.594E-02	1.600E-02	0.9960
87Se	5.8	242.50	0.0857	0.37	6.440E-18	44613.30	1415.08	7.723E-03	7.600E-03	1.0162
87Br	55.9	1419.71	0.0154	0.22	2.220E-17	153805.00	520.02	1.870E-02	2.030E-02	0.9211
$87 \mathrm{Kr}$	4572	402.59	0.0512	0.496	3.270E-17	223692.72	5679.81	2.397E-02	2.560E-02	0.9362
87Sr-m	10116	388.53	0.0531	0.821	3.070E-24	1.83E-02	7.98E-04	2.149E-09	2.510E-09	0.8563
88Se	1.5	159.20	0.1260	1	1.200E-18	8218.22	1035.32	3.876E-03	3.920E-03	0.9887
88Br	16.4	775.28	0.0269	0.63	1.910E-17	130817.65	2220.60	1.620E-02	1.780 E-02	0.9102
88 Kr	10224	2392.11	0.0084	0.346	4.690E-17	275666.30	799.04	3.279E-02	3.550E-02	0.9237
88Rb	1062	1836.00	0.0117	0.214	3.760E-18	25756.32	64.70	1.849E-02	3.570E-02	0.5180
89Br	4.37	1097.82	0.0196	0.064	8.680E-18	58780.03	73.66	1.185E-02	1.090E-02	1.0868
89 Kr	189	220.95	0.0939	0.201	5.690E-17	385358.66	7270.35	4.112E-02	4.510E-02	0.9118
89Rb	924	1031.92	0.0207	0.629	4.030E-17	272950.60	3557.67	4.857E-02	4.720 E-02	1.0291
89Sr	4364928	908.96	0.0233	9.560E-05	6.420E-17	1984.20	4.41E-03	4.402E-02	4.730E-02	0.9308
89Y-m	15.7	908.96	0.0233	0.9916	1.910E-24	1.29E-02	2.99E-04	1.623E-09	4.730E-06	0.0003
90Br	1.9	707.05	0.0294	0.38	2.680E-18	17946.01	200.30	6.792E-03	5.640E-03	1.2042
90Rh-m	32.3 958	1115.09 831.60	0.0559	0.39	5.87UE-17	393119.74 86307 11	2990.38	4.421E-UZ	4.800E-U2	0.9097
2010/01-111	007	20.1CO	7070.0	0.200	1.430E-11	TT' / 2000	0T-10T7	1.10/E-U4	1.44UE-U4	0.3000

	LIGHT TIGU	Gamma	Efficiency		Initial	Decays	Expected	Cumulative	Expected	Experimental/
Nuclide	(s)	Energy	at Peak	γ_i	Mass	From	Counts	χ_i	Cumulative	Expected
ang h	156	831.60	0.0959	0 300	3 000E-17	01 01 01 01 01 01 01 01 01 01 01 01 01 0	9602 00	4 303E-09	$\chi_i * *$ 4 FOOR-OD	0 0563
A06	230688	2186,24	0.0095	1.400E-06	2.052E-20	11.39	1.51E-07	1.141E-01	5.780E-02	1.9738
91Br	0.54	262.70	0.0792	1	3.800E-19	2516.51	199.23	3.267E-03	2.240E-03	1.4584
$91 \mathrm{Kr}$	8.6	506.59	0.0406	0.1914	3.390E-17	224524.94	1744.00	3.304E-02	3.550E-02	0.9307
91Rb	58	93.63	0.1770	0.338	5.580E-17	369600.10	22113.82	4.463E-02	5.580 E - 02	0.7999
91Sr	34200	1024.30	0.0209	0.335	8.150E-17	238712.96	1668.38	5.537E-02	5.830 E - 02	0.9497
91Y	5054400	1204.77	0.0180	0.0026	7.960E-17	24408.08	1.14	5.549E-02	5.830 E-02	0.9519
92Br	0.34	769.00	0.0271	1	4.290E-20	280.99	7.63	5.798E-04	2.680 E - 04	2.1633
92 Kr	1.84	142.31	0.1376	0.641	7.040E-18	46118.41	4068.54	1.798E-02	1.670E-02	1.0768
92Rb	4.48	814.98	0.0257	0.33	3.360E-17	220125.98	1868.71	4.390E-02	4.820E-02	0.9109
92Sr	9756	1383.93	0.0158	0.9	8.480E-17	483809.43	6860.27	5.654E-02	5.940 E - 02	0.9518
92Y	12744	934.47	0.0227	0.139	3.600E-17	186628.58	588.55	5.388E-02	6.010E-02	0.8965
93Br	0.176	117.00	0.1575	1	3.459E-21	22.41	3.53	9.273E-05	3.090E-05	3.0009
93 Kr	1.29	253.42	0.0821	0.4116	1.720E-18	11145.70	376.50	6.110E-03	4.890 E - 03	1.2494
93Rb	5.85	432.61	0.0476	0.202	3.090E-17	200253.69	1924.41	3.464E-02	3.550 E - 02	0.9759
93Sr	444	590.24	0.0349	0.68	8.630E-17	559332.80	13279.46	5.967E-02	6.240 E - 02	0.9562
93Y	36720	266.90	0.0779	0.0732	8.780E-17	238656.96	1361.18	5.781E-02	6.350 E - 02	0.9104
93Zr	4.73E+13	30.77	0.1540	1	9.276E - 17	2.54E-04	3.91E-05	6.072E-02	6.350E-02	0.9563
94 Kr	0.21	629.20	0.0328	1	7.790E-20	499.41	16.39	1.721E-03	8.700E-04	1.9779
94 Rb	2.71	836.90	0.0251	0.871	1.081E-17	69307.26	1515.36	1.946E-02	1.650E-02	1.1793
94Sr	75	1427.70	0.0153	0.942	7.942E-17	509253.48	7332.07	5.536E-02	6.060 E - 02	0.9136
94Y	1122	918.74	0.0230	0.56	7.782E-17	499014.03	6439.20	6.085E-02	6.450E-02	0.9434
95Rb	0.377	352.00	0.0587	0.49	7.650E-19	4852.91	139.70	9.028E-03	7.700E-03	1.1725
95Sr	25.1	685.60	0.0302	0.226	6.970E-17	442200.00	3022.03	5.113E-02	5.270 E - 02	0.9702
95Y	618	954.00	0.0223	0.158	8.350E-17	529788.26	1863.54	6.020E-02	6.380 E-02	0.9435
95Zr	5531328	756.73	0.0276	0.5446	9.720E-17	2221.82	33.35	6.237E-02	6.500E-02	0.9595
95Nb-m	311904	204.12	0.1012	0.416	5.120E-20	20.14	0.85	3.834E-04	6.510E-04	0.5890
95Nb	3021408	756.81	0.0276	0.9981	2.150E-17	898.37	24.71	3.509E-02	6.500E-02	0.5398
96Rb	0.199	815.00	0.0257	0.78	1.500E-19	941.58	18.89	3.324E-03	2.060E-03	1.6136
96Sr	1.06	122.28	0.1531	0.765	9.370E-18	58825.22	6890.74	3.893E-02	3.760 ± 0.02	1.0355
96Y	5.3	1750.40	0.0124	0.0235	3.490E-17	219116.75	63.76	4.521E-02	6.000 ± 0.02	0.7536
97Rb	0.169	167.10	0.1210	0.26	1.750E-20	108.71	3.42	4.52E-04	3.800E-04	1.1900
97Sr	0.42	1905.00	0.0112	0.25	1.820E-18	11307.62	31.80	1.888E-02	1.750 E-02	1.0788
97Y	3.76	1103.00	0.0195	0.0507	2.130E-17	132347.37	130.76	2.944E-02	4.890 E - 02	0.6020
97 Zr	60480	743.36	0.0280	0.9306	9.370E-17	163685.24	4268.44	5.888E-02	5.980E-02	0.9846
97Nb-m	58.1	743.40	0.0280	1	8.700E-20	540.63	15.15	4.455E-01	5.630 E-02	7.9121
9NV6	4428	657.94	0.0314	0.9823	5.390E-18	33125.17	1023.25	3.543E-02	6.000 E - 02	0.5905
98Rb	0.114	144.22	0.1362	0.2448	3.810E-21	23.43	0.78	1.447E-04	3.990E-05	3.6275
98Sr	0.65	119.35	0.1555	0.73	1.510E-18	9285.57	1054.17	1.001E-02	8.120E-03	1.2330
98Y	0.59	1223.00	0.0177	0.36	3.190E-18	19617.79	125.13	2.331E-02	1.920E-02	1.2138
98Nb-m	3060	787.36	0.0266	0.934	5.310E-18	32611.34	808.98	3.302E-03	3.860E-04	8.5553
98Nb	2.9	787.40	0.0266	0.13	6.310E-18	38809.82	134.00	1.126E-01	5.750 E-02	1.9579
99Sr	0.269	125.12	0.1508	0.161	1.528E-19	930.08	22.59	2.484E-03	1.330E-03	1.8675
99Y	1.47	121.76	0.1535	0.469	8.188E-18	49844.14	3589.41	2.407E-02	2.080 E - 02	1.1570
99 Zr	2.2	469.14	0.0438	0.552	2.591E-17	157739.11	3816.22	5.261E-02	5.630E-02	0.9344
99Nb-m	156	97.79	0.1736	0.0679	3.609 E - 17	219725.43	2589.99	2.372E-02	2.100E-02	1.1295
9006	15	137.72	0.1410	0.906	3.860E-17	235006.97	30025.57	3.405E-02	3.970E-02	0.8576
99 Mo	237427	739.50	0.0282	0.1213	7.345E-17	36062.90	123.18	6.048E-02	6.110E-02	0.9899
99Tc-m	21636	322.40	0.0643	0.0262	6.130E-18	22488.61	37.88	9.283E-02	5.380 E-02	1.7256
99Tc	6.623E + 12	89.50	0.1803	6.500E-06	9.832E-17	1.80E-03	2.11E-09	6.046E-02	6.110E-02	0.9895
100Rb	0.053	129.20	0.1476	1	6.921E-21	41.70	6.15	5.581E-04	3.480 E-04	1.6036
100Sr	0.201	963.85	0.0221	0.22	3.648E-20	219.82	1.07	7.683E-04	4.290E-04	1.7909
100Y	0.73	212.53	0.0974	0.73	1.653E-18	9961.56	708.36	9.563E-03	6.100E-03	1.5677
TUUZI	1.'.	504.25 797.67	0.0408	12.0	5.841E-17	352034.53	4449.32	5.570E-02	5.580E-02	0.9982
100Nb	1.5 1.5	535.67	0.0384	0.457	1.153E-17	10345.35 69493.30	1219.42	2.200E-02	3.110E-02	1.6720

Experimental/	Expected	0.8563	3.9202	1.8139	1.0469	0.8973	0.9803	24.0291	2.7888	1.1382	1.0534	0.0019	13.4691	7.6707	1.5833	1 2482	10796	001011	1160.1	00711	4.9853	0.9007	1.1873	1.2314	1.3468	1.4379	1.4401	5.8657	1.6915	1 3158	0.0102	061620	7100-10	2200.0	0162.2	0.6964	0.5911	0.9309	0.9246	1.3967	0.8985	0.6575	2.0694	1.2840	1.1011	0.8143	1.0111	0.3302	0.8541	4.0648	1.5019	1.0518	0.7881	0.9543	0.9716	0.9539	1.0556	2.2154	0.7383
Expected	Cumulative $Y_{i} * *$	5.590E-08	4.490 E-05	2.830E-03	3.070E-02	4.990 E - 02	5.170E-02	1.730E-06	2.680E-03	2.050E-02	4.280 E - 02	4.290E-02	2.240E-03	2.580E-05	5.010E-03	1 910F-02	9 050E 09	70-2002.7	20-3060 6	3.U3UE-U2	8.340E-04	6.550E-03	1.790E-02	1.880E-02	9.160E-03	9.640E-03	9.640E-03	1.570F-04	3.750E-03	4 020E-03	0 720F 04	3.120E-04	1 1000-000	1.420E-02	3.33UE-U3	2.490E-04	9.060E-03	2.560E-02	4.120E-03	2.550E-02	2.890E-02	4.050E-04	6.230E-05	5.980E-03	1.160E-02	1.600E-02	4.300E-02	4.310E-02	7.380E-10	1.710E-06	1.380E-03	2.400E-02	3.990E-02	3.060 ± 0.02	6.700E-02	1.890 E - 03	6.700E-02	1.770E-04	7.310E-03
Cumulative	χ_i	4.787E-08	1.760E-04	5.133E-03	3.214E-02	4.477E-02	5.068E-02	4.157E-05	7.474E-03	2.333E-02	4.509 E - 02	8.170E-05	3.017E-02	1.979E-04	$7.932 E_{-03}$	9 384E_02	2 180E 00	20-11201.0	4.4001-02	3.420E-02	4.158E-03	5.899E-03	2.125E-02	2.315E-02	1.234E-02	1.386E-02	1.388E-02	9.209E-04	6.343F-03	5 289F_03	8 036F 04	60.330E-04	0.200E-U0	7.992E-03	7.431E-U3	1.734E-04	5.355E-03	2.383E-02	3.810E-03	3.562E-02	2.597E-02	2.663E-04	1.289E-04	7.679E-03	1.277E-02	1.303E-02	4.348E-02	1.423E-02	6.304E-10	6.951E-06	2.073E-03	2.524E-02	3.144E-02	2.920E-02	6.510E-02	1.803E-03	7.072E-02	3.921E-04	5.397E-03 1
Expected	Counts	1.03E-03	0.69	161.25	567.13	4346.28	2304.36	0.18	39686.72	419.35	1600.55	2.27	124.03	8.53	1230.35	GEG EE	14104.98	07'F0TFT	00.6011	14.14	73.98	1732.37	281.72	9705.27	4808.97	2331.11	1168.69	155.37	1887.57	1688.06	3 07	0.01 1E70 DE	40/0/04	96.1611	1/09.83	0.48	1124.19	2325.89	24.03	727.82	327.33	6.19E-02	1.25	2087.29	7596.75	2751.76	2341.18	312.11	6.74E-06	1.24E-04	11.20	2049.62	3734.45	9026.33	4536.27	9.59	1352.24	0.84	1.15
Decays	From t_A to t_a	0.38	27.22	3102.58	92548.72	274857.68	488096.01	4.00	3835.92	87739.49	430715.63	798.33	3294.96	73.30	14650.33	50554 33	200411 58	00.112002	1001 0E	1960.90	7092.29	30899.69	177043.06	188869.45	104865.72	108429.88	86053.27	1313.23	42749 45	39294.05	360.97	17.600	00900.09	40UL0.23	06/109/90	67.66	49862.52	223837.76	5590.67	87954.89	7068.44	25.82	36.70	69798.33	109467.88	127228.81	29236.89	10198.20	2.19E-04	1.78	4226.42	243117.74	291429.32	217616.90	134342.66	1031.67	19074.75	581.39	6160.47
Initial	Mass (g)*	6.380E-23	4.563E-21	5.200E-19	1.551E-17	4.606E-17	8.179E-17	6.766E-22	6.493E-19	1.485 E - 17	7.289E-17	1.351E-19	5.576E-19	1.253E-20	2.504E-18	8 640E-18	1 062E 17	11-1000-1	11-3000-1 11-300 1	11-300/.0	1.224E-18	5.332E-18	3.055E-17	3.259E-17	1.827E-17	1.889E-17	2.102E-17	2.310E-19	7.519F-18	6 911F-18	7 067E 20	1 21 10 12-20	1.01410-17	9.927E-18	1.448E-17	1.471E-20	1.084E-17	4.866E-17	7.726E-18	1.912E-17	5.424E-17	2.924E-19	8.041E-21	1.529E-17	2.398E-17	2.787E-17	9.360E-17	2.449E-18	1.367E-24	3.930E-22	9.329E-19	5.366E-17	6.448E-17	4.803E-17	1.267E-16	2.274E-18	9.765E-17	1.293E-19	1.370E-18
	γ_i	0.07	0.17	0.3	0.061	0.21	0.1162	0.53	79	0.139	0.038	0.0657	0.87	0.88	-	0.34		121	0.17.0	1.91	0.061	1	0.01	0.89	0.25	0.157	0.473	-		0.558	0.77	0.7050	0.1023	- -	T 0000	0.8645	0.86	0.462	0.0383	0.1820	0.817	0.0195	0.6174	0.492	1	0.99	0.88	0.987	0.9938	0.005	0.12	0.43	0.5528	0.624	0.87	0.1	0.38	0.06	0.011
Efficiency	at Peak	0.0381	0.1483	0.1732	0.1005	0.0753	0.0406	0.0853	0.1310	0.0344	0.0978	0.0433	0.0433	0.1323	0.0840	0.0382	0.0486	10100	1800.0	0.0414	0.1710	0.0561	0.1591	0.0577	0.1834	0.1369	0.0287	0.1183	0.0442	0.0770	01100	7110.0	0.0000	0.0250	0.0204	0.0082	0.0262	0.0225	0.1122	0.0455	0.0567	0.1230	0.0551	0.0608	0.0694	0.0218	0.0910	0.0310	0.0310	0.0140	0.0221	0.0196	0.0232	0.0665	0.0388	0.0929	0.1866	0.0242	0.0170
Gamma	Energy (keV)	539.59	128.34	98.21	205.70	276.10	505.92	243.80	151.73	599.60	211.66	475.00	475.20	149.80	247.60	538 50	192.00	10.07	040.00	497.00	100.90	368.40	115.00	358.00	85.40	143.26	724.30	171.55	465.70	270.10	1005 17	100 50	192.30	839.40 700 40	193.40	2434.03	798.50	943.40	182.25	452.32	364.49	163.93	374.70	340.53	299.20	973.90	228.16	667.72	667.72	1560.90	962.18	1096.22	912.67	312.08	529.87	223.22	81.00	872.19	1279.01
Half Life	(s)	16	0.115	0.43	2.1	7.1	876	0.068	0.36	2.9	678	264	5.3	0.26	1.3	1	67.9	0.10	9000000	0767600	1.2	4.8	60	1092	36	456	15984	-	8	36	000	67.0	777	390	2304	0.28	56	1380	116640	1500	694656	1030000	0.2	40	168	252	281664	8208	559440	0.18	1.44	150	3324	744	74880	189216	452995.2	1.04	0.8
	Nuclide	100 Tc	101Sr	101Y	101Zr	101Nb	101Mo	102Sr	102Y	102 Zr	$102M_{\odot}$	102Tc-m	102Tc	103Y	103Zr	103Nb	10210	DIMIGNI	1001C	nuent	104Zr	104Nb	104Mo	104Tc	105Mo	105Tc	105Ru	106Nb	106Mo	106Tc	13015	11001	TICUCT	13050-m	00001	131In	131Sn	131Sb	131'le-m	1311e	1311	131Xe-m	132In	132Sn	132Sb-m	132Sb	132Te	132I	132Cs	133In	133Sn	133Sb	133Te-m	133Te	1331	133Xe-m	133Xe	134Sn	134Sb

	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_			_		_	_		_	_	_	_	_		_	_		_		_	_		_	_	_		_	_
Experimental/ Expected	0.9784	0.9698	0.7787	1 7015	1.7910	1.9966	0.1402	0.7813	1.2182	1.0139	1.0065	0.9847	0.0000	1.1630	0.9682	0.8734	0.8700	1.2248	0.9464	0.8759	1.0608	1.5975	1.0278	0.9611	0.9800	0.3675	1.1892	0.9650	0.9454	0.8704	0.9696	1.3247	0.9786	1 0164	1.8550	1.1140	0.9002	0.9676	0.9627	0.8423	0.9913	1.0231	1.2465	1.0036	1.0403	0000 U	31 2500	2.2268	1.2856	1.0068	0.9099	1.0664	1.0788
Expected Cumulative $\chi_i * *$	6.970E-02	3.640E-03	7.830E-02	3.190E-04	1.400E-03	6.280E-02	1.100E-02	6.540E-02	1.340E-02	2.640E-02	6.130E-02	6.190 E - 02	5.850E-02	1.490E-02	6.300 E-02	2.230E-03	6.710E-02	7.780E-03	5.040E-02	6.350E-02	6.410E-02	1.540E-03	3.650E-02	5.720E-02	6.210E-02	6.220E-02	1.250E-02	4.170E-02	5.830E-02	5.850E-02	5.850E-02	4.390E-03	2.720E-02	5.750E-02	5.300E-04	1.450E-02	5.550E-02	5.920E-02	5.960E-02	5.960E-02	3.930E-02	2.460E-03	8.890E-03	1.890E-02	2.200E-02	20-00-0-2	2.250E-02 1 310E-07	2.220E-04	3.590E-03	1.590E-02	1.670E-02	7.780E-03	1.070E-02
Cumulative χ_i	6.819E-02	3.530E-03	6.097E-02	2.151E-04	2 5 2 8 F - 0 2	6.259E-02	1.543E-03	5.110E-02	1.632E-02	2.677E-02	6.170E-02	6.095E-02	1.145E-06	1.733E-02	6.100E-02	1.948E-03	5.838E-02	9.529E-03	4.770E-02	5.562E-02	6.800E-02	2.460E-03	3.751E-02	5.497E-02	6.086E-02	2.286E-02	1.487E-02	4.024E-02	5.511E-02	5.092E-02	5.672E-02	5.815E-U3	2.662E-02	5.046E-02	9.831E-04	1.615E-02	4.996E-02	5.728E-02	5.738E-02	5.020E-02	3.896E - 02	2.517E-03	1.108E-02	1.897E-02	20000-002	20-00-01-00-0	2.024E-02 4 094E-06	4.944F-04	4.615E-03	1.601E-02	1.520E-02	8.297E-03	1.154E-02
Expected Counts	5365.33	2081.00	7376.36	12.2	20.0 2780 22	1738.33	478.26	9167.20	1555.57	2190.55	6264.59	1.01	0.31	2067.30	14878.06	13.08	5118.90	1156.61	22892.55	679.45	12606.26	148.81	1512.69	6683.16	100.97	90.41	199.47	577.78	25352.83	8699.13	253.23	363.83	1046.72 8057 06	6007 50	127.12	184.68	9548.52	405.19	2504.88	2.37 E - 04	136.43	42.56	983.70	869.38	1400.40 92 46	07.070 0	2.0/E-04	25.59	508.60	1931.41	3701.23	830.35	1160.26
$\begin{array}{c} \text{Decays} \\ \text{From} \\ t_{d} \ \text{to} \ t_{a} \end{array}$	668461.08	34411.46	311447.01	60.91	92/9/20 99/671 90	351636.55	15212.66	122353.10	133447.99	198186.18	444684.28	37.99	11.08	105487.97	586856.21	18902.94	336827.32	29679.55	431063.14	483361.00	436416.89	2996.99	290853.35	371863.15	10813.66	6937.46	35727.77	338235.28	510685.18	329764.91	3881.24	10093.97	66956.23 52555 41	303973 50	706.54	40077.19	391815.95	520387.29	82629.28	7027.11	9331.01	3202.93	52257.29	156080.75	00.0218/1	17.16	47.10 0.87	451.43	7233.78	147248.02	88179.15	45368.71	95875.63
Initial Mass (g)*	1.487E-16	7.652E-18	6.938E-17	1.977E-20	1.400E-10 6 557E-17	1.382E-16	3.408E-18	6.007E-17	3.012E-17	4.473E-17	1.011E-16	1.372E-16	2.520E-21	2.416E-17	1.344E-16	4.329 E-18	7.714E-17	6.847E-18	9.944E-17	1.115E-16	1.026E-16	6.964E-19	6.758E-17	8.640E-17	1.399E-16	1.253E-17	8.361E-18	7.915E-17	1.195E-16	1.017E-16	1.282E-16	2.379E-18	1.578E-17	1.204E-10 0.528E-17	1.677E-19	9.512E-18	9.299 E - 17	1.235E-16	1.272E-16	9.878E-17	3.719E-18	7.815E-19	1.275 E - 17	3.808E-17	4.3/UE-1/ 5 4945 17	1 760 D 17	4./00E-1/ 9.145E-99	1.109E-19	1.777E-18	3.617E-17	2.166E-17	1.122E-17	2.371E-17
γ_i	0.295	0.7914	0.954	T	1/0.0	0.287	0.805	0.9	0.188	0.667	0.312	0.851	0.9011	0.56	0.315	0.0037	1	1	0.56	0.083	0.2372	0.906	0.2	0.525	0.2439	0.954	0.24	0.0466	0.46	1.64	0.482	Т 0	0.272	60Z-0	1	0.0680	0.249	0.0234	0.428	1.200E-06	0.525	0.11	0.12	0.072	0.1200	9 SEDE DE	2.000E-U0	0.292	0.556	0.1700	0.61	0.337	0.099
Efficiency at Peak	0.0272	0.0764	0.0248	0.0101	0.0349	0.0172	0.0391	0.0832	0.0620	0.0166	0.0452	0.0313	0.0313	0.0350	0.0805	0.1873	0.0152	0.0390	0.0948	0.0169	0.1218	0.0548	0.0260	0.0342	0.0383	0.0137	0.0233	0.0366	0.1079	0.0161	0.1354	0.0360	0.0575	0.0322	0.1799	0.0677	0.0979	0.0333	0.0708	0.0281	0.0279	0.1208	0.1569	0.0774	0.0287	01540	0.1381	0.1941	0.1265	0.0772	0.0688	0.0543	0.1222
Gamma Energy (keV)	767.20	272.10	847.03	545.9U	603 70	1260.41	526.56	249.79	333.99	1313.02	455.49	661.66	661.66	588.83	258.41	79.90	1436.00	527.70	218.59	1283.23	165.86	376.66	805.52	602.35	537.26	1596.21	909.23	561.63	190.33	1354.52	145.44	571.26	359.60	641 20	00.00	306.42	211.48	620.30	293.27	742.10	748.28	167.40	117.72	268.80	514.00	70.101	141 70	56.08	158.47	269.52	301.70	380.00	165.08
Half Life (s)	2520	222	3156	121	1/1	23652	918	32760	17.5	83.4	229.2	$9.514E \pm 0.8$	153.12	6.5	846	174	1932	2.3	39.7	558	5025.6	0.86	13.6	63.6	1101600	144979.2	1.72	24.9	1098	14040	2808000	1.22	1.8 213	042 5544	0.51	1.78	14.3	846	119232	1172448	21542.4	0.892	4.02	56 804	019679	710076	07110920	0.64	1.1	56	136.2	5.2	138
Nuclide	134 Te	134I-m	1341	134Ae-m	135Te	1351	135Xe-m	135 Xe	136 Te	1361	137 Xe	137Cs	137Ba-m	1381	138 Xe	138Cs-m	138Cs	139I	139 Xe	139Cs	139Ba	140I	$140 \mathrm{Xe}$	140 Cs	140Ba	140 La	141 Xe	141 Cs	141Ba	141La	141Ce	142Xe	142Cs	142Ba 149La	143 Xe	143Cs	143Ba	143La	143Ce	143Pr	145 Pr	147Ba	147La	147Ce	147NA	147D	147 F m 148 Cs	148Ba	148La	148Ce	148Pr	149Ce	149Pr

		_	_	_	_		_	_	_	_	_			_	_		_	_		_			_				_
Experimental/ Exnected		1.0535	1.0470	0.8333	0.8695	1.1118	1.1273	1.1122	6.7989	1.7697	1.0871	1.1671	1.8214	1.1473	1.9016	1.4058	1.0879	1.2021	1.6110	1.3181	0.9462	1.3895	0.8606	2.0438	0.7119	1.4735	1.4364
Expected	$\chi_i * *$	1.080E-02	1.080E-02	6.210E-03	3.000E-07	3.390E-03	4.180E-03	4.190E-03	2.060E-04	1.230E-03	2.640E-03	1.390E-05	2.660E-03	1.360E-12	3.850E-04	1.490E-03	1.580E-03	1.580E-03	5.110E-05	6.310E-04	5.410E-05	6.860E-04	1.940E-09	1.820E-04	3.080E-04	3.210E-04	3.210E-04
Cumulative V.	<i>11</i>	1.138E-02	1.131E-02	5.175E-03	2.608E-07	3.769 E-03	4.712E-03	4.660E-03	1.401E-03	2.177E-03	2.870E-03	1.622E-05	4.845 E - 03	1.560E-12	7.321E-04	2.095E-03	1.719E-03	1.899 E-03	8.232E-05	8.317E-04	5.119E-05	9.532E-04	1.670E-09	3.720E-04	2.193E-04	4.730E-04	4.611E-04
Expected		2521.55	22.44	1400.89	0.10	121.93	2480.37	106.54	442.77	452.27	593.54	10.61	137.76	2.86E-07	192.95	50.63	327.80	105.63	4.84	122.04	0.87	10.19	7.03E-09	289.39	51.11	501.14	3.41E-02
Decays	t_d to t_a	99400.81	9958.74	29827.43	2.26	30898.37	40379.73	7780.14	2779.60	8807.18	27425.58	159.39	5715.85	6.94E-06	3599.02	15014.86	12215.37	2096.36	257.10	7167.12	496.07	4624.29	1.22E-06	2557.94	1904.61	3995.89	0.61
Initial Mass	(g)*	2.560E-17	2.483E-17	7.426E-18	6.427E-22	7.744E-18	1.012E-17	1.099E-17	7.013E-19	2.22E-18	6.919E-18	4.021E-20	1.442E-18	3.896E - 27	9.140E-19	3.813E-18	3.102E-18	4.716E-18	6.572E-20	1.832E-18	1.268E-19	1.182E-18	4.224E-24	6.581E-19	4.900E-19	1.028E-18	1.174E-18
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	12	0.259	0.031	0.32	0.68	0.093	0.3897	0.225	1	0.418	0.29	0.7835	0.157	0.6854	0.5	0.0685	0.18	0.298	0.152	0.13	0.1159	0.088	0.2011	1	1	0.746	0.307
Efficiency at Peak		0.0979	0.0727	0.1468	0.0620	0.0424	0.1576	0.0609	0.1593	0.1229	0.0746	0.0850	0.1535	0.0601	0.1072	0.0492	0.1491	0.1691	0.1239	0.1310	0.0152	0.0250	0.0287	0.1131	0.0268	0.1681	0.1826
Gamma Finerøv	(keV)	211.31	285.95	130.23	333.92	484.50	116.80	340.08	114.80	164.10	278.56	244.70	121.80	344.28	191.70	418.34	127.30	103.18	162.40	151.70	1439.94	839.36	723.31	180.57	778.60	104.32	86.55
Half Life (s)	(2)	6192	191116.8	6.2	9648	18.9	744	102211.2	1.4	3.2	684	450	246	33480	4.3	32	324	166665.6	2.3	25.9	162	102	2.712E + 08	8.9	42	1332	1.498E + 08
Nuclide		149Nd	149Pm	150 Pr	150 Pm	151 Pr	151Nd	151Pm	152Ce	152 Pr	152Nd	152Pm-m	152 Pm	152Eu-m	153 Pr	153Nd	153 Pm	$153 \mathrm{Sm}$	154 Pr	154Nd	154Pm-m	154 Pm	154Eu	155Nd	155 Pm	155 Sm	155 Eu

## Appendix D

## $Maple^{TM}15$ Worksheets

### D.1 Normalizing Flux to ¹³¹I

The following is the Maple  $^{\rm TM}15$  worksheet used to calculate the flux normalized to  $^{131}{\rm I.}$ 

```
> restart:
> with(inttrans);
#Solve for FP yields (chi1, chi2, chi3). For FPs that are too short-lived to be determined, use values for chi from ENDF library;
> ti := 10;
> td := 86220;
> ta := 28800;
> NULL:
> sigma := 0.272841e-21;
> N25 := 1.856157129*10^18;
#131 Decay Chain (131Sb -> 131Te-m & 131Te -> 131I). chi_Sb, chi_Te-m, chi_Te taken from ENDF library;
> lambda1 := 0.502281e-3;
> 'λ2m' := 0.594262e-5;
> lambda2 := 0.462098e-3;
> lambda3 := 0.997828e-6;
#Probabilities taken from JEFF 3.1.1 (2007);
> P := 0.801e-1;
> Q := .21;
> chi1 := 0.256e-1:
> 'χ2m' := 0.412e-2;
> chi2 := 0.255e-1;
> chi3 := 0.289e-1;
 > epsilon3 := 0.45463803e-1;
> gamma3 := .817;
#During irradiation;
#P is the probability that FP3 will decay to the metastable state of FP4;
#Q is the probability that FP4m will decay to the ground state of FP4;
> ode1 := diff(N1i(t), t) = phi*sigma*N25*chi1-lambda1*N1i(t);
> ode2 := diff(N2i(t), t) = phi*sigma*N25*chi;2m'+P*lambda1*N1i(t)-'λ2m'*N2mi(t);
> ode2 := diff(N2i(t), t) = phi*sigma*N25*chi2+(1-P)*lambda1*N1i(t)+Q*'λ2m'*N2mi(t)-lambda2*N2i(t);
> ode3 := diff(N3i(t), t) = phi*sigma*N25*chi3+lambda2*N2i(t)+(1-Q)*'λ2m'*N2mi(t)-lambda3*N3i(t);
#Laplace transform;
> L1 := laplace(ode1, t, s);
> Lp1 := subs(laplace(Nii(t), t, s) = N1i(s), L1);
> L2m := laplace(ode2m, t, s);
> Lp2m := subs(laplace(N2mi(t), t, s) = N2mi(s), L2m);
> L2 := laplace(ode2, t, s);
> Lp2 := subs(laplace(N2i(t), t, s) = N2i(s), L2);
> L3 := laplace(ode3, t, s);
> Lp3 := subs(laplace(N3i(t), t, s) = N3i(s), L3);
> solve(Lp1, N1i(s));
 > solve(Lp2m, N2mi(s));
> solve(Lp2, N2i(s));
> solve(Lp3, N3i(s));
> N2i(0) := 0;
> N3i(0) := 0;
```

```
#Convert back to time domain;
> N1i(t):=invlaplace(solve(Lp1,N1i(s)),s,t):
> N2mi(t):=invlaplace(solve(Lp2m,N2mi(s)),s,t):
> N2i(t):=invlaplace(solve(Lp2,N2i(s)),s,t):
> N3i(t):=invlaplace(solve(Lp3,N3i(s)),s,t):
1.377059276*10^36*exp(-0.5022810000e-3*ti)-6.702936365*10^33*exp(-0.594262000e-5*ti));
> N3(0) := 1.886415335*10^(-63)*phi*(2.263240100*10^64-2.301083977*10^64*exp(-9.978280000*10^(-7)*ti)
+1.861859321*10^62*exp(-0.4620980000e-3*ti)-1.450147772*10^62*exp(-0.5022810000e-3*ti)+3.372676191*10^62*exp(-0.5942620000e-5*ti));
#Post irradiation FP decay & buildup;
> ode1 := diff(N1(t), t) = -lambda1*N1(t);
> ode2 := diff(N2m(t), t) = P*lambda1*N1(t)-'λ2m'*N2m(t);
> ode2 := diff(N2(t), t) = (1-P)*lambda1*N1(t)+Q*'λ2m'*N2m(t)-lambda2*N2(t);
> ode3 := diff(N3(t), t) = lambda2*N2(t)+(1-Q)*'λ2m'*N2m(t)-lambda3*N3(t);
#Laplace transform;
> L1 := laplace(ode1, t, s);
> Lp1 := subs(laplace(N1(t), t, s) = N1(s), L1);
> Lpr := subs(laplace(N1(t), t, s) = N1(s), L1),
> L2m := laplace(ode2m, t, s);
> Lp2m := subs(laplace(N2m(t), t, s) = N2m(s), L2m);
> L2 := laplace(ode2, t, s);
> Lp2 := subs(laplace(N2(t), t, s) = N2(s), L2);
> L3 := laplace(ode3, t, s);
> Lp3 := subs(laplace(N3(t), t, s) = N3(s), L3);
#Convert back to time domain;
> N1(t):=invlaplace(solve(Lp1,N1(s)),s,t):
> N2m(t):=invlaplace(solve(Lp2m,N2m(s)),s,t):
> N2(t):=invlaplace(solve(Lp2,N2(s)),s,t):
> N3(t):=invlaplace(solve(Lp3,N3(s)),s,t):
#Define Activity (A_i=lambda_i*N_i). Calculate for FP5 because that is the only one that can be seen in the spectra;
> A3 := lambda3*N3(t);
#Calculate decays during acquisition from td to (td+ta). Integrate activity over acquisition period;
> Decays3 := int(A3, t = td .. td+ta);
#Calculate counts (Counts_i=epsilon_i*gamma_i*Decays_i);
> Counts3 := epsilon3*gamma3*Decays3;
#Solve for chi_5 using counts from spectra;
> phi := 'phi';
> phi := solve(Counts3 = 157824, phi);
```

#### **D.2** ⁹⁵Zr

The following is the MapleTM15 worksheet used to calculate the FP yield of  95 Zr.

```
> restart:
> with(inttrans);
#Solve for FP yields (chi1, chi2, chi3). For FPs that are too short-lived to be determined, use values for chi from ENDF library;
#95 decaychain (95Sr -> 95Y -> 95Zr). chi_Sr, chi_Y taken from ENDF library;
> ti := 10;
> td := 435960;
> ta := 86400;
> phi := 3.985675764*10^11;
  sigma := 0.272841e-21;
> N25 := 1.856157129*10^18;
> lambda1 := 0.27615426e-1;
> lambda2 := 0.1121597e-2;
> lambda3 := 0.125313e-6;
> chi1 := 0.527e-1:
> chi2 := 0.638e-1;
> epsilon3 := 0.26442698e-1;
> gamma3 := .5446;
#During irradiation
NULL;
NoL5,
> ode1 := diff(N1i(t), t) = phi*sigma*N25*chi1-lambda1*N1i(t);
> ode2 := diff(N2i(t), t) = phi*sigma*N25*chi2+lambda1*N1i(t)-lambda2*N2i(t);
> ode3 := diff(N3i(t), t) = phi*sigma*N25*chi3+lambda2*N2i(t)-lambda3*N3i(t);
#Laplace transform;
> L1 := laplace(ode1, t, s);
> Lp1 := subs(laplace(Nii(t), t, s) = Nii(s), L1);
> L2 := laplace(ode2, t, s);
> Lp2 := subs(laplace(N2i(t), t, s) = N2i(s), L2);
> L3 := laplace(ode3, t, s);
> Lp3 := subs(laplace(N3i(t), t, s) = N3i(s), L3);
#No FP present prior to irradiation;
> N1i(0) := 0;
> N2i(0) := 0;
> N3i(0) := 0;
#Convert back to time domain:
> N1i(t):=invlaplace(solve(Lp1,N1i(s)),s,t):
> N2i(t):=invlaplace(solve(Lp2,N2i(s)),s,t):
> N3i(t):=invlaplace(solve(Lp3,N3i(s)),s,t):
#After irradiation. t=ti:
whites fildelation, t--i,
> N1(0) := 3.851990471*10^8-3.851990471*10^8*exp(-0.2761542600e-1*ti);
> N2(0) := 4.015061689*10^8*exp(-0.2761542600e-1*ti)-2.136749849*10^10*exp(-0.1121597000e-2*ti)+2.096599232*10^10;
> N3(0) := 1.876532689*10^141.610757673*10^15*chi3-9.888827206*10^(-17)*exp(-0.2761542600e-1*ti)*(4.891363918*10^16*chi3
+1.647386648*10^23)+1.500376049*10^(-14)*exp(-0.1121597000e-2*ti)*(3.258638405*10^15*chi3+1.424302001*10^24)
-1.288355711*10^{(-16)}*exp(-1.253130000*10^{(-7)}*ti)*(1.250242972*10^{3}1*chi3+1.456698805*10^{3}0);
#Laplace transform;
> L1 := laplace(ode1, t, s);
> Lp1 := subs(laplace(N1(t), t, s) = N1(s), L1);
> L2 := laplace(ode2, t, s);
> Lp2 := subs(laplace(N2(t), t, s) = N2(s), L2);
> L3 := laplace(ode3, t, s);
> Lp3 := subs(laplace(N3(t), t, s) = N3(s), L3);
#Convert back to time domain:
> N1(t):=invlaplace(solve(Lp1,N1(s)),s,t):
> N2(t):=invlaplace(solve(Lp2,N2(s)),s,t):
> N3(t):=invlaplace(solve(Lp3,N3(s)),s,t):
#Define Activity (A_i=lambda_i*N_i). Calculate only for FP5 because that is what is being measured;
> A3 := lambda3*N3(t);
```

#Calculate decays during acquisition from td to (td+ta). Integrate activity over acquisition period;

> Decays3 := int(A3, t = td .. td+ta);
>

- % #Calculate counts (Counts_i=epsilon_i*gamma_i*Decays_i); > Counts3 := epsilon3*gamma3*Decays3; >

- > chi3 := 'chi3'; > chi3 := solve(Counts3 = 54493, chi3); >
- > Ratio3 := chi3/(0.65e-1);

#### $D.3 \quad {}^{97}Zr$

The following is the MapleTM15 worksheet used to calculate the FP yield of  97 Zr.

```
> restart:
> with(inttrans);
#Solve for FP yields (chi1, chi2, chi3). For FPs that are too short-lived to be determined, use values for chi from ENDF library;
#97 decaychain (97Sr -> 97Y -> 97Zr). chi_Sr, chi_Y taken from ENDF library;
> ti := 10;
> td := 435960;
> ta := 86400;
>
> phi := 3.985675764*10^11;
     sigma := 0.272841e-21;
> N25 := 1.856157129*10^18;
 > lambda1 := 1.65035043;
> lambda2 := .184347654;
> lambda3 := 0.114608e-4;
> chi1 := 0.175e-1:
> chi2 := 0.489e-1;
> epsilon3 := 0.26805241e-1;
> gamma3 := .9306;
#During irradiation
NULL;
NoL5,
> ode1 := diff(N1i(t), t) = phi*sigma*N25*chi1-lambda1*N1i(t);
> ode2 := diff(N2i(t), t) = phi*sigma*N25*chi2+lambda1*N1i(t)-lambda2*N2i(t);
> ode3 := diff(N3i(t), t) = phi*sigma*N25*chi3+lambda2*N2i(t)-lambda3*N3i(t);
#Laplace transform;
> L1 := laplace(ode1, t, s);
> Lp1 := subs(laplace(Nii(t), t, s) = Nii(s), L1);
 > L2 := laplace(ode2, t, s);
> Lp2 := subs(laplace(N2i(t), t, s) = N2i(s), L2);
> L3 := laplace(ode3, t, s);
> Lp3 := subs(laplace(N3i(t), t, s) = N3i(s), L3);
 > solve(Lp1, N1i(s));
> solve(Lp2, N2i(s));
> solve(Lp3, N3i(s));
 #No FP present prior to irradiation;
> N1i(0) := 0;
> N2i(0) := 0;
> N3i(0) := 0;
#Convert back to time domain;
> N1i(t):=invlaplace(solve(Lp1,N1i(s)),s,t):
> N2i(t):=invlaplace(solve(Lp2,N2i(s)),s,t):
 > N3i(t):=invlaplace(solve(Lp3,N3i(s)),s,t):
#After irradiation, t=ti;
which interface in the second interface in the second interface interfa
+1.343346919*10^25)+6.423429413*10^(-20)*exp(-.1843476540*ti)*(4.942287523*10^17*chi3+1.169436574*10^27)
-5.873963578*10^(-16)*exp(-0.1146080000e-4*ti)*(2.998334990*10^28*chi3+1.991021858*10^27);
#Post irradiation FP decay & buildup;
> ode1 := diff(N1(t), t) = -lambda1*N1(t);
> ode2 := diff(N2(t), t) = lambda1*N1(t)-lambda2*N2(t);
> ode3 := diff(N3(t), t) = lambda2*N2(t)-lambda3*N3(t);
#Laplace transform;
> L1 := laplace(ode1, t, s);
> Lp1 := subs(laplace(N1(t), t, s) = N1(s), L1);
> L2 := laplace(ode2, t, s);
> Lp2 := subs(laplace(N2(t), t, s) = N2(s), L2);
 > L3 := laplace(ode3, t, s);
> Lp3 := subs(laplace(N3(t), t, s) = N3(s), L3);
 #Convert back to time domain;
> N1(t):=invlaplace(solve(Lp1,N1(s)),s,t):
> N2(t):=invlaplace(solve(Lp2,N2(s)),s,t):
 > N3(t):=invlaplace(solve(Lp3,N3(s)),s,t):
```

 $\texttt{#Define Activity (A_i=lambda_i*N_i). Calculate only for FP5 because that is what is being measured;}$ 

> A3 := lambda3*N3(t);

```
>
#Calculate decays during acquisition from td to (td+ta). Integrate activity over acquisition period;
> Decays3 := int(A3, t = td .. td+ta);
#Calculate counts (Counts_i=epsilon_i*gamma_i*Decays_i);
> Counts3 := epsilon3*gamma3*Decays3;
> chi3 := chi3';
> chi3 := solve(Counts3 = 27842, chi3);
> Ratio3 := chi3/(0.598e-1);
```

### D.4 ⁹⁹Mo

The following is the MapleTM15 worksheet used to calculate the FP yield of  99 Mo.

```
> restart:
> with(inttrans);
#Solve for FP vields (chi1, chi2, chi3). For FPs that are too short-lived to be determined, use values for chi from ENDF library:
> ti := 10;
> td := 775200;
> ta := 259200;
> phi := 3.985675764*10^11;
> sigma := 0.272841e-21
> N25 := 1.856157129*10^18;
#99 Decay Chain (99Zr -> 99Nb-m & 99Nb -> 99Mo). chi_Zr, chi_Nb-m, chi_Mo taken from ENDF library;
> lambda1 := .3150669;
> 'λ2m' := 0.4443251e-2;
> lambda2 := 0.46209812e-1;
> lambda3 := 0.291941e-5;
#P is the probability that FP1 will decay to the metastable state of FP2;
#Q is the probability that FP2m will decay to the ground state of FP2;
#Probabilities taken from JEFF 3.1.1 (2007);
> P := .368;
> Q := 0.2e-1;
> chi1 := 0.563e-1;
> 'χ2m' := 0.21e-1;
> chi2 := 0.397e-1;
> epsilon3 := 0.26911889e-1;
> gamma3 := .1213;
#During irradiation;
#UUTINg irradiation;
> ode1 := diff(N1i(t), t) = phi*sigma*N25*chi1-lambda1*N1i(t);
> ode2m := diff(N2mi(t), t) = phi*sigma*N25*(χ2m(+P*lambda1*N1i(t)-(λ2m(*N2mi(t);
> ode2 := diff(N2i(t), t) = phi*sigma*N25*chi2+(1-P)*lambda1*N1i(t)+Q*(λ2m(*N2mi(t)-lambda2*N2i(t);
> ode3 := diff(N3i(t), t) = phi*sigma*N25*chi3+lambda2*N2i(t)+(1-Q)*(λ2m(*N2mi(t)-lambda3*N3i(t);
#Laplace transform;
> L1 := laplace(ode1, t, s);
> Lp1 := subs(laplace(Nii(t), t, s) = N1i(s), L1);
> L2m := laplace(ode2m, t, s);
> Lp2m := subs(laplace(N2mi(t), t, s) = N2mi(s), L2m);
> L2 := laplace(ode2, t, s);
> Lp2 := subs(laplace(N2i(t), t, s) = N2i(s), L2);
> L3 := laplace(ode3, t, s);
> Lp3 := subs(laplace(N3i(t), t, s) = N3i(s), L3);
> solve(Lp1, N1i(s));
> solve(Lp2m, N2mi(s));
> solve(Lp2, N2i(s));
> solve(Lp3, N3i(s));
#No FP present prior to irradiation;
> N1i(0) := 0;
> N2mi(0) := 0;
> N2i(0) := 0;
> N3i(0) := 0;
#Convert back to time domain;
> N1i(t):=invlaplace(solve(Lp1,N1i(s)),s,t):
 > N2mi(t):=invlaplace(solve(Lp2m,N2mi(s)),s,t):
> N2i(t):=invlaplace(solve(Lp2,N2i(s)),s,t):
> N3i(t):=invlaplace(solve(Lp3,N3i(s)),s,t):
#After irradiation, t=ti;
> N1(0) := 3.606882138*10^7-3.606882138*10^7*exp(-.3150669000*ti);
> N2m(0) := 1.895191643*10^{-9} - 1.908654835*10^{-9} + \exp(-0.4443251000e^{-2*ti}) + 1.346319179*10^{-7} + \exp(-.3150669000*ti);
> N2(0) := 3.324818247*10^8-4.060967623*10^6*exp(-0.4443251000e-2*ti)-3.551298779*10^8*exp(-0.4620981200e-1*ti)
+2.670902085*10^7*exp(-.3150669000*ti);
> N3(0) := 8.089414824*10^12+6.914029763*10^13*chi3+1.067698893*10^(-23)*exp(-0.4620981200e-1*ti)*(7.657106684*10^22*chi3
+3.326334024*10°31)+1.562717610*10°(-23)*exp(-0.4443251000e-2*ti)*(3.739192889*10°23*chi3+1.224772380*10°32)
-4.825056999*10°(-22)*exp(-.3150669000*ti)*(4.426814218*10°20*chi3+8.504416198*10°27)-2.119551523*10°(-26)
*exp(-0.2919410000e-5*ti)*(3.262024862*10^39*chi3+3.817637721*10^38);
#Post irradiation FP decay & buildup;
> ode1 := diff(N1(t), t) = -lambda1*N1(t);
> ode2m := diff(N2m(t), t) = P*lambda1*N1(t)-'λ2m'*N2m(t);
```

```
> ode2 := diff(N2(t), t) = (1-P)*lambda1*N1(t)+Q*'λ2m'*N2m(t)-lambda2*N2(t);
> ode3 := diff(N3(t), t) = lambda2*N2(t)+(1-Q)*'λ2m'*N2m(t)-lambda3*N3(t);
>
#Laplace transform;
#Laplace transform;
> L1 := Laplace(ode1, t, s);
> Lp1 := subs(laplace(N1(t), t, s) = N1(s), L1);
> L2m := laplace(ode2m, t, s);
> Lp2m := subs(laplace(N2m(t), t, s) = N2m(s), L2m);
> L2 := laplace(ode2, t, s);
> Lp2 := subs(laplace(N2(t), t, s) = N2(s), L2);
13 := laplace(od2, t, s);
> L3 := laplace(ode3, t, s);
> Lp3 := subs(laplace(N3(t), t, s) = N3(s), L3);
 >
#Convert back to time domain;
> N1(t):=invlaplace(solve(Lp1,N1(s)),s,t):
> N2m(t):=invlaplace(solve(Lp2m,N2m(s)),s,t):
> N2(t):=invlaplace(solve(Lp2m,N2m(s)),s,t):
> N3(t):=invlaplace(solve(Lp3,N3(s)),s,t):
#Define Activity (A_i=lambda_i*N_i). Calculate for FP5 because that is the only one that can be seen in the spectra;
> A3 := lambda3*N3(t);
#Calculate decays during acquisition from td to (td+ta). Integrate activity over acquisition period; > Decays3 := int(A3, t = td .. td+ta);
#Calculate counts (Counts_i=epsilon_i*gamma_i*Decays_i);
> Counts3 := epsilon3*gamma3*Decays3;
% #Solve for chi_3 using counts from spectra;
> chi3 := 'chi3';
> chi3 := solve(Counts3 = 63566, chi3);
```

> Ratio3 := chi3/(0.611e-1);

## **D.5** ¹⁰³**Ru**

The following is the MapleTM15 worksheet used to calculate the FP yield of  103 Ru.

```
> restart:
> with(inttrans);
#Solve for FP vields (chi1, chi2, chi3). For FPs that are too short-lived to be determined, use values for chi from ENDF library:
#103 decaychain (103Mo -> 103Tc -> 103Ru). chi_Mo, chi_Tc taken from ENDF library;
> ti := 10;
> td := 435960;
> ta := 86400;
>
> phi := 3.985675764*10^11;
   sigma := 0.272841e-21;
> N25 := 1.856157129*10^18;
> lambda1 := 0.1022341e-1;
> lambda2 := 0.12836059e-1;
> lambda3 := 0.204292e-6;
> chi1 := 0.295e-1;
> chi2 := 0.303e-1;
> epsilon3 := 0.36177727e-1;
> gamma3 := .91;
#During irradiation
NULL;
NoL5,
> ode1 := diff(N1i(t), t) = phi*sigma*N25*chi1-lambda1*N1i(t);
> ode2 := diff(N2i(t), t) = phi*sigma*N25*chi2+lambda1*N1i(t)-lambda2*N2i(t);
> ode3 := diff(N3i(t), t) = phi*sigma*N25*chi3+lambda2*N2i(t)-lambda3*N3i(t);
#Laplace transform;
> L1 := laplace(ode1, t, s);
> Lp1 := subs(laplace(Nii(t), t, s) = Nii(s), L1);
> L2 := laplace(ode2, t, s);
> Lp2 := subs(laplace(N2i(t), t, s) = N2i(s), L2);
> L3 := laplace(ode3, t, s);
> Lp3 := subs(laplace(N3i(t), t, s) = N3i(s), L3);
> solve(Lp1, N1i(s));
> solve(Lp2, N2i(s));
> solve(Lp3, N3i(s));
#No FP present prior to irradiation;
> N1i(0) := 0;
> N2i(0) := 0;
> N3i(0) := 0;
#Convert back to time domain;
> N1i(t):=invlaplace(solve(Lp1,N1i(s)),s,t):
> N2i(t):=invlaplace(solve(Lp2,N2i(s)),s,t):
> N3i(t):=invlaplace(solve(Lp3,N3i(s)),s,t):
#After irradiation, t=ti;
%n100 i= 5.824418517*10^8-5.824418517*10^8*exp(-0.1022341000e-1*ti);
> N2(0) := -2.279120484*10^9*exp(-0.1022341000e-1*ti)+1.338756872*10^9*exp(-0.1283605900e-1*ti)+9.403636119*10^8;
> N3(0) := 5.908485305*10^13+9.880410212*10^14*chi3+2.323070742*10^(-13)*exp(-0.1283605900e-1*ti)*(4.329263219*10^13*chi3)
-5.762967761*10°21)-3.662149373*10°(-11)*exp(-0.1022341000e-1*ti)*(3.609960976*10°11*chi3-7.814043684*10°19)
-5.968383627*10°(-14)*exp(-2.042920000*10°(-7)*ti)*(1.655458300*10°28*chi3+9.899895781*10°26);
#Post irradiation FP decay & buildup;
> ode1 := diff(N1(t), t) = -lambda1*N1(t);
> ode2 := diff(N2(t), t) = lambda1*N1(t)-lambda2*N2(t);
> ode3 := diff(N3(t), t) = lambda2*N2(t)-lambda3*N3(t);
#Laplace transform;
> L1 := laplace(ode1, t, s);
> Lp1 := subs(laplace(N1(t), t, s) = N1(s), L1);
> L2 := laplace(ode2, t, s);
> Lp2 := subs(laplace(N2(t), t, s) = N2(s), L2);
> L3 := laplace(ode3, t, s);
> Lp3 := subs(laplace(N3(t), t, s) = N3(s), L3);
#Convert back to time domain;
> N1(t):=invlaplace(solve(Lp1,N1(s)),s,t):
> N2(t):=invlaplace(solve(Lp2,N2(s)),s,t):
> N3(t):=invlaplace(solve(Lp3,N3(s)),s,t):
```

 $\texttt{#Define Activity (A_i=lambda_i*N_i). Calculate only for FP5 because that is what is being measured;}$ 

> A3 := lambda3*N3(t);

```
>
#Calculate decays during acquisition from td to (td+ta). Integrate activity over acquisition period;
> Decays3 := int(A3, t = td .. td+ta);
#Calculate counts (Counts_i=epsilon_i*gamma_i*Decays_i);
> Counts3 := epsilon3*gamma3*Decays3;
> chi3 := chi3';
> chi3 := solve(Counts3 = 95026, chi3);
> Ratio3 := chi3/(0.303e-1);
```

### **D.6** 131 **I**

The following is the MapleTM15 worksheet used to calculate the FP yield of  $^{131}\text{I}.$ 

```
> restart:
> with(inttrans);
#Solve for FP vields (chi1, chi2, chi3). For FPs that are too short-lived to be determined, use values for chi from ENDF library:
> ti := 10;
> td := 86220;
> ta := 28800:
> phi := 3.985675764*10^11;
> sigma := 0.272841e-21
> N25 := 1.856157129*10^18;
#131 Decay Chain (131Sb -> 131Te-m & 131Te -> 131I). chi_Sb, chi_Te-m, chi_Te taken from ENDF library;
> lambda1 := 0.502281e-3;
> 'λ2m' := 0.594262e-5;
> lambda2 := 0.462098e-3;
> lambda3 := 0.997828e-6;
#Probabilities taken from JEFF 3.1.1 (2007);
> P := 0.801e-1;
> Q := .21;
> chi1 := 0.256e-1;
> 'χ2m' := 0.412e-2;
> chi2 := 0.255e-1;
> epsilon3 := 0.45463803e-1;
> gamma3 := .817;
#During irradiation;
#P is the probability that FP3 will decay to the metastable state of FP4;
Wi is the probability that FP4m will decay to the metadade state of FP4;
> ode1 := diff(N1i(t), t) = phi*sigma*N25*chi1-lambda1*N1i(t);
> ode2m := diff(N2mi(t), t) = phi*sigma*N25*chi1-lambda1*N1i(t)-'λ2m'*N2mi(t);
> ode2 := diff(N2i(t), t) = phi*sigma*N25*chi2+(1-P)*lambda1*N1i(t)+Q*λ2m'*N2mi(t)-lambda2*N2i(t);
> ode3 := diff(N3i(t), t) = phi*sigma*N25*chi3+lambda2*N2i(t)+(1-Q)*'λ2m'*N2mi(t)-lambda3*N3i(t);
#Laplace transform;
> L1 := laplace(ode1, t, s);
> Lp1 := subs(laplace(Nii(t), t, s) = N1i(s), L1);
> L2m := laplace(ode2m, t, s);
> Lp2m := subs(laplace(N2mi(t), t, s) = N2mi(s), L2m);
> L2 := laplace(ode2, t, s);
> Lp2 := subs(laplace(N2i(t), t, s) = N2i(s), L2);
> L3 := laplace(ode3, t, s);
> Lp3 := subs(laplace(N3i(t), t, s) = N3i(s), L3);
> solve(Lp1, N1i(s));
> solve(Lp2m, N2mi(s));
> solve(Lp2, N2i(s));
> solve(Lp3, N3i(s));
#No FP present prior to irradiation;
> N1i(0) := 0;
> N2mi(0) := 0;
> N2i(0) := 0;
> N3i(0) := 0;
#Convert back to time domain;
> N1i(t):=invlaplace(solve(Lp1,N1i(s)),s,t):
 > N2mi(t):=invlaplace(solve(Lp2m,N2mi(s)),s,t):
> N2i(t):=invlaplace(solve(Lp2,N2i(s)),s,t):
> N3i(t):=invlaplace(solve(Lp3,N3i(s)),s,t):
#After irradiation, t=ti;
> N1(0) := 1.028772984*10^10-1.028772984*10^10*exp(-0.5022810000e-3*ti);
> N2m(0) := 8.339134114*10^8*exp(-0.5022810000e-3*ti)-2.104250705*10^11*exp(-0.5942620000e-5*ti)+2.095911571*10^11;
> N2(0) := -1.396842185*10^11*exp(-0.4620980000e-3*ti)+1.182686041*10^11*exp(-0.5022810000e-3*ti)
-5.756810532*10^8*exp(-0.5942620000e-5*ti)+2.199129551*10^10;
*exp(-0.4620980000e-3*ti)*(8.499638448*10^17*chi3+6.834089963*10^25);
#Post irradiation FP decay & buildup;
> ode1 := diff(N1(t), t) = -lambda1*N1(t);
```

```
> ode2 := diff(N2(t), t) = (1-P)*lambda1*N1(t)+Q*'λ2m'*N2m(t)-lambda2*N2(t);
> ode3 := diff(N3(t), t) = lambda2*N2(t)+(1-Q)*'λ2m'*N2m(t)-lambda3*N3(t);
>
#Laplace transform;
#Laplace transform;
> L1 := Laplace(ode1, t, s);
> Lp1 := subs(laplace(N1(t), t, s) = N1(s), L1);
> L2m := laplace(ode2m, t, s);
> Lp2m := subs(laplace(N2m(t), t, s) = N2m(s), L2m);
> L2 := laplace(ode2, t, s);
> Lp2 := subs(laplace(N2(t), t, s) = N2(s), L2);
13 := laplace(od2, t, s);
> L3 := laplace(ode3, t, s);
> Lp3 := subs(laplace(N3(t), t, s) = N3(s), L3);
 >
#Convert back to time domain;
> N1(t):=invlaplace(solve(Lp1,N1(s)),s,t):
> N2m(t):=invlaplace(solve(Lp2m,N2m(s)),s,t):
> N2(t):=invlaplace(solve(Lp2m,N2m(s)),s,t):
> N3(t):=invlaplace(solve(Lp3,N3(s)),s,t):
#Define Activity (A_i=lambda_i*N_i). Calculate for FP5 because that is the only one that can be seen in the spectra;
> A3 := lambda3*N3(t);
#Calculate decays during acquisition from td to (td+ta). Integrate activity over acquisition period; > Decays3 := int(A3, t = td .. td+ta);
#Calculate counts (Counts_i=epsilon_i*gamma_i*Decays_i);
> Counts3 := epsilon3*gamma3*Decays3;
% #Solve for chi_5 using counts from spectra;
> chi3 := 'chi3';
> chi3 := solve(Counts3 = 157824, chi3);
```

> Ratio3 := chi3/(0.289e-1);

#### **D.7** ¹⁴⁰**Ba**

The following is the MapleTM15 worksheet used to calculate the FP yield of  $^{140}\mathrm{Ba.}$ 

> restart: > with(inttrans); #Solve for FP vields (chi1, chi2, chi3). For FPs that are too short-lived to be determined, use values for chi from ENDF library: #140 decaychain (140Xe -> 140Cs -> 140Ba). chi_Xe, chi_Cs taken from ENDF library; > ti := 10; > td := 86220; > ta := 28800; > phi := 3.985675764*10^11; sigma := 0.272841e-21; > N25 := 1.856157129*10^18; > lambda1 := 0.50966704e-1; > lambda2 := 0.10898541e-1; > lambda3 := 0.629219e-6; > chi1 := 0.365e-1; > chi2 := 0.572e-1; > epsilon3 := 0.3416916e-1; > gamma3 := .2439; #During irradiation NULL; NoL5, > ode1 := diff(N1i(t), t) = phi*sigma*N25*chi1-lambda1*N1i(t); > ode2 := diff(N2i(t), t) = phi*sigma*N25*chi2+lambda1*N1i(t)-lambda2*N2i(t); > ode3 := diff(N3i(t), t) = phi*sigma*N25*chi3+lambda2*N2i(t)-lambda3*N3i(t); #Laplace transform; > L1 := laplace(ode1, t, s); > Lp1 := subs(laplace(Nii(t), t, s) = Nii(s), L1); > L2 := laplace(ode2, t, s); > Lp2 := subs(laplace(N2i(t), t, s) = N2i(s), L2); > L3 := laplace(ode3, t, s); > Lp3 := subs(laplace(N3i(t), t, s) = N3i(s), L3); #No FP present prior to irradiation; > N1i(0) := 0; > N2i(0) := 0: > N3i(0) := 0; #Convert back to time domain: > N1i(t):=invlaplace(solve(Lp1,N1i(s)),s,t): > N2i(t):=invlaplace(solve(Lp2,N2i(s)),s,t): > N3i(t):=invlaplace(solve(Lp3,N3i(s)),s,t): #After irradiation. t=ti: > N3(0) := 3.005827814*10^13+3.207927229*10^14*chi3-1.681043319*10^(-15)*exp(-0.1089854100e-1*ti)*(3.597688613*10^14*chi3 -1.141776926*10~24)-1.967717665*10~(-14)*exp(-0.5096670400e-1*ti)*(1.642769315*10~13*chi3+1.988223949*10~21)  $-2.289094299*10^{\circ}(-17)*exp(-6.292190000*10^{\circ}(-7)*ti)*(1.401395840*10^{\circ}31*chi3+1.313190034*10^{\circ}30);$ #Laplace transform; > L1 := laplace(ode1, t, s); > Lp1 := subs(laplace(N1(t), t, s) = N1(s), L1); > L2 := laplace(ode2, t, s); > Lp2 := subs(laplace(N2(t), t, s) = N2(s), L2); > L3 := laplace(ode3, t, s); > Lp3 := subs(laplace(N3(t), t, s) = N3(s), L3); #Convert back to time domain: > N1(t):=invlaplace(solve(Lp1,N1(s)),s,t): > N2(t):=invlaplace(solve(Lp2,N2(s)),s,t): > N3(t):=invlaplace(solve(Lp3,N3(s)),s,t): #Define Activity (A_i=lambda_i*N_i). Calculate only for FP5 because that is what is being measured; > A3 := lambda3*N3(t);

#Calculate decays during acquisition from td to (td+ta). Integrate activity over acquisition period;
% #Calculate counts (Counts_i=epsilon_i*gamma_i*Decays_i); > Counts3 := epsilon3*gamma3*Decays3; >

- > chi3 := 'chi3'; > chi3 := solve(Counts3 = 43968, chi3); >
- > Ratio3 := chi3/(0.621e-1);

### **D.8** ¹⁴³Ce

The following is the MapleTM15 worksheet used to calculate the FP yield of  $^{143}\mathrm{Ce.}$ 

> restart: > with(inttrans); #Solve for FP vields (chi1, chi2, chi3). For FPs that are too short-lived to be determined, use values for chi from ENDF library: #143 decaychain (14Ba -> 143La -> 143Ce). chi_Ba, chi_La taken from ENDF library; > ti := 10; > td := 435960; > ta := 86400; > phi := 3.985675764*10^11: sigma := 0.272841e-21; > N25 := 1.856157129*10^18; > lambda1 := 0.48471831e-1; > lambda2 := 0.819323e-3; > lambda3 := 0.581343e-5; > chi1 := 0.555e-1; > chi2 := 0.592e-1; > epsilon3 := 0.53494008e-1; > gamma3 := .428; #During irradiation NULL; NoL5, > ode1 := diff(N1i(t), t) = phi*sigma*N25*chi1-lambda1*N1i(t); > ode2 := diff(N2i(t), t) = phi*sigma*N25*chi2+lambda1*N1i(t)-lambda2*N2i(t); > ode3 := diff(N3i(t), t) = phi*sigma*N25*chi3+lambda2*N2i(t)-lambda3*N3i(t); #Laplace transform; > L1 := laplace(ode1, t, s); > Lp1 := subs(laplace(N1i(t), t, s) = N1i(s), L1); > L2 := laplace(ode2, t, s); > Lp2 := subs(laplace(N2i(t), t, s) = N2i(s), L2); > L3 := laplace(ode3, t, s); > Lp3 := subs(laplace(N3i(t), t, s) = N3i(s), L3); #No FP present prior to irradiation; > N1i(0) := 0; > N2i(0) := 0; > N3i(0) := 0; #Convert back to time domain: > N1i(t):=invlaplace(solve(Lp1,N1i(s)),s,t): > N2i(t):=invlaplace(solve(Lp2,N2i(s)),s,t): > N3i(t):=invlaplace(solve(Lp3,N3i(s)),s,t): #After irradiation. t=ti: white: lifediation, t--i, > N1(0) := 2.31159368*10^8-2.311159368*10^8*exp(-0.4847183100e-1*ti); > N2(0) := 2.825755668*10^10+2.350896753*10^8*exp(-0.4847183100e-1*ti)-2.849264636*10^10*exp(-0.8193230000e-3*ti); > N3(0) := 3.982513956*10^12+3.472113301*10^13*chi3-1.786559448*10^(-17)*exp(-0.4847183100e⁻i*ti)*(1.020428918*10^16*chi3 +2.224507606*10^23)-6.296894541*10^(-14)*exp(-0.8193230000e-3*ti)*(4.696136915*10^13*chi3-4.557207968*10^23) -8.725645133*10^(-16)*exp(-0.5813430000e-5*ti)*(3.979205260*10^28*chi3+4.597031141*10^27); #Laplace transform; > L1 := laplace(ode1, t, s); > Lp1 := subs(laplace(N1(t), t, s) = N1(s), L1); > L2 := laplace(ode2, t, s); > Lp2 := subs(laplace(N2(t), t, s) = N2(s), L2); > L3 := laplace(ode3, t, s); > Lp3 := subs(laplace(N3(t), t, s) = N3(s), L3); #Convert back to time domain: > N1(t):=invlaplace(solve(Lp1,N1(s)),s,t): > N2(t):=invlaplace(solve(Lp2,N2(s)),s,t): > N3(t):=invlaplace(solve(Lp3,N3(s)),s,t): #Define Activity (A_i=lambda_i*N_i). Calculate only for FP5 because that is what is being measured; > A3 := lambda3*N3(t);

#Calculate decays during acquisition from td to (td+ta). Integrate activity over acquisition period;

- % #Calculate counts (Counts_i=epsilon_i*gamma_i*Decays_i); > Counts3 := epsilon3*gamma3*Decays3; >

- > chi3 := 'chi3'; > chi3 := solve(Counts3 = 250275, chi3); >
- > Ratio3 := chi3/(0.596e-1);

#### **D.9** ¹⁴⁴**Ce**

The following is the MapleTM15 worksheet used to calculate the FP yield of  $^{144}\mathrm{Ce.}$ 

> restart: > with(inttrans); #Solve for FP vields (chi1, chi2, chi3). For FPs that are too short-lived to be determined, use values for chi from ENDF library: #144 decaychain (144Ba -> 144La -> 144Ce). chi_Ba, chi_La taken from ENDF library; > ti := 10; > td := 775200; > ta := 259200; > phi := 3.985675764*10^11: sigma := 0.272841e-21; > N25 := 1.856157129*10^18; > lambda1 := 0.60802384e-1; > lambda2 := 0.17030643e-1; > lambda3 := 0.281888e-7; > chi1 := 0.44e-1; > chi2 := 0.547e-1; > epsilon3 := 0.93516338e-1; > gamma3 := .1109; #During irradiation NULL; NoL5, > ode1 := diff(N1i(t), t) = phi*sigma*N25*chi1-lambda1*N1i(t); > ode2 := diff(N2i(t), t) = phi*sigma*N25*chi2+lambda1*N1i(t)-lambda2*N2i(t); > ode3 := diff(N3i(t), t) = phi*sigma*N25*chi3+lambda2*N2i(t)-lambda3*N3i(t); #Laplace transform; #Laplace transform, > L1 := laplace(ode1, t, s); > Lp1 := subs(laplace(N1i(t), t, s) = N1i(s), L1); > L2 := laplace(ode2, t, s); > Lp2 := subs(laplace(N2i(t), t, s) = N2i(s), L2); > L3 := laplace(ode3, t, s); > Lp3 := subs(laplace(N3i(t), t, s) = N3i(s), L3); #No FP present prior to irradiation; > N1i(0) := 0; > N2i(0) := 0; > N3i(0) := 0; #Convert back to time domain: > N1i(t):=invlaplace(solve(Lp1,N1i(s)),s,t): > N2i(t):=invlaplace(solve(Lp2,N2i(s)),s,t): > N3i(t):=invlaplace(solve(Lp3,N3i(s)),s,t): #After irradiation. t=ti: > N1(0) := 1.460691172*10^8-1.460691172*10^8*exp(-0.6080238400e-1*ti); > N2(0) := 1.37270365*10^3*exp(-0.1703064300e-1*ti)+2.02014691*10^8*exp(-0.6080238400e-1*ti)+1.169802226*10^9; > N3(0) := 7.067517630*10^14+7.160605498*10^15*chi3-3.150683647*10^(-16)*exp(-0.1703064300e-1*ti)*(9.007657717*10^15*chi3 -4.356851151*10^24)-6.327980344*10^(-15)*exp(-0.6080238400e-1*ti)*(5.604289280*10^13*chi3*8.981124340*10^21)  $-1.403242167*10^{(-15)}*\exp(-2.818880000*10^{(-8)}*ti)*(5.102900743*10^{-3}0*chi3+5.036572413*10^{-29});$ #Laplace transform; > L1 := laplace(ode1, t, s); > Lp1 := subs(laplace(N1(t), t, s) = N1(s), L1); > L2 := laplace(ode2, t, s); > Lp2 := subs(laplace(N2(t), t, s) = N2(s), L2); > L3 := laplace(ode3, t, s); > Lp3 := subs(laplace(N3(t), t, s) = N3(s), L3); #Convert back to time domain: > N1(t):=invlaplace(solve(Lp1,N1(s)),s,t): > N2(t):=invlaplace(solve(Lp2,N2(s)),s,t): > N3(t):=invlaplace(solve(Lp3,N3(s)),s,t): #Define Activity (A_i=lambda_i*N_i). Calculate only for FP5 because that is what is being measured; > A3 := lambda3*N3(t);

#Calculate decays during acquisition from td to (td+ta). Integrate activity over acquisition period;

- > Ratio3 := chi3/(0.55e-1);

### **D.10** ¹⁴⁵**Pr**

The following is the MapleTM15 worksheet used to calculate the FP yield of  $^{145}\mathrm{Pr.}$ 

```
> restart:
> with(inttrans);
#Solve for FP vields (chi1, chi2, chi3). For FPs that are too short-lived to be determined, use values for chi from ENDF library:
#145 decaychain (145La -> 145Ce -> 145Pr). chi_La, chi_Ce taken from ENDF library;
> ti := 10;
> td := 86220;
> ta := 28800;
> phi := 3.985675764*10^11;
   sigma := 0.272841e-21;
> N25 := 1.856157129*10^18;
> lambda1 := 0.28881133e-1;
> lambda2 := 0.3850818e-2;
> lambda3 := 0.321975e-4;
> chi1 := 0.385e-1;
> chi2 := 0.393e-1;
> epsilon3 := 0.26670653e-1;
> gamma3 := .525;
#During irradiation
NULL;
NoL5,
> ode1 := diff(N1i(t), t) = phi*sigma*N25*chi1-lambda1*N1i(t);
> ode2 := diff(N2i(t), t) = phi*sigma*N25*chi2+lambda1*N1i(t)-lambda2*N2i(t);
> ode3 := diff(N3i(t), t) = phi*sigma*N25*chi3+lambda2*N2i(t)-lambda3*N3i(t);
#Laplace transform;
> L1 := laplace(ode1, t, s);
> Lp1 := subs(laplace(N1i(t), t, s) = N1i(s), L1);
> L2 := laplace(ode2, t, s);
> Lp2 := subs(laplace(N2i(t), t, s) = N2i(s), L2);
> L3 := laplace(ode3, t, s);
> Lp3 := subs(laplace(N3i(t), t, s) = N3i(s), L3);
#No FP present prior to irradiation;
> N1i(0) := 0;
> N2i(0) := 0;
> N3i(0) := 0;
#Convert back to time domain:
> N1i(t):=invlaplace(solve(Lp1,N1i(s)),s,t):
> N2i(t):=invlaplace(solve(Lp2,N2i(s)),s,t):
> N3i(t):=invlaplace(solve(Lp3,N3i(s)),s,t):
#After irradiation. t=ti:
#After irradiation, t=\i;
> N1(0) := 2.690746841*10^8-2.690746841*10^8*exp(-0.2888113300e-1*ti);
> N2(0) := -4.388524488*10^9*exp(-0.3850818000e-2*ti)+4.078053695*10^9+3.104707925*10^8*exp(-0.2888113300e-1*ti);
> N3(0) := 4.877348418*10^11+6.269085372*10^12*chi3-1.918004656*10^(-(-16)*exp(-0.2888113300e-1*ti)*(2.275884930*10^16*chi3);
> N3(0) := 4.877348418*10^11+6.269085372*10^12*chi3-1.918004656*10^(-(-16)*exp(-0.2888113300e-1*ti)*(2.275884930*10^16*chi3);
+2.160699113*10^23)-4.347045387*10^(-14)*exp(-0.3850818000e-2*ti)*(1.452552117*10^14*chi3-1.018054071*10^23)
-7.048254291*10^(-12)*exp(-0.3219750000e-4*ti)*(8.894522123*10^23*chi3+6.982139215*10^22);
#Laplace transform;
> L1 := laplace(ode1, t, s);
> Lp1 := subs(laplace(N1(t), t, s) = N1(s), L1);
> L2 := laplace(ode2, t, s);
> Lp2 := subs(laplace(N2(t), t, s) = N2(s), L2);
> L3 := laplace(ode3, t, s);
> Lp3 := subs(laplace(N3(t), t, s) = N3(s), L3);
#Convert back to time domain:
> N1(t):=invlaplace(solve(Lp1,N1(s)),s,t):
> N2(t):=invlaplace(solve(Lp2,N2(s)),s,t):
> N3(t):=invlaplace(solve(Lp3,N3(s)),s,t):
#Define Activity (A_i=lambda_i*N_i). Calculate only for FP5 because that is what is being measured;
> A3 := lambda3*N3(t);
```

#Calculate decays during acquisition from td to (td+ta). Integrate activity over acquisition period;

- % #Calculate counts (Counts_i=epsilon_i*gamma_i*Decays_i); > Counts3 := epsilon3*gamma3*Decays3; >

- > chi3 := 'chi3'; > chi3 := solve(Counts3 = 122347, chi3); > Ratio3 := chi3/(0.393e-1);

### D.11 ¹⁴⁷Nd

The following is the MapleTM15 worksheet used to calculate the FP yield of  $^{147}\mathrm{Nd.}$ 

```
> restart:
> with(inttrans);
#Solve for FP vields (chi1, chi2, chi3). For FPs that are too short-lived to be determined, use values for chi from ENDF library:
#147 decaychain (147Ce -> 147Pr -> 147Nd). chi_Ce, chi_Pr taken from ENDF library;
> ti := 10;
> td := 775200;
> ta := 259200;
>
> phi := 3.985675764*10^11;
   sigma := 0.272841e-21;
> N25 := 1.856157129*10^18;
> lambda1 := 0.12377628e-1;
> lambda2 := 0.862123e-3;
> lambda3 := 0.73065e-6;
> chi1 := 0.225e-1:
> chi2 := 0.225e-1;
> epsilon3 := 0.34464409e-1:
> gamma3 := .130851;
#During irradiation
NULL;
NoL5,
> ode1 := diff(N1i(t), t) = phi*sigma*N25*chi1-lambda1*N1i(t);
> ode2 := diff(N2i(t), t) = phi*sigma*N25*chi2+lambda1*N1i(t)-lambda2*N2i(t);
> ode3 := diff(N3i(t), t) = phi*sigma*N25*chi3+lambda2*N2i(t)-lambda3*N3i(t);
#Laplace transform;
> L1 := laplace(ode1, t, s);
> Lp1 := subs(laplace(N1i(t), t, s) = N1i(s), L1);
 > L2 := laplace(ode2, t, s);
> Lp2 := subs(laplace(N2i(t), t, s) = N2i(s), L2);
> L3 := laplace(ode3, t, s);
> Lp3 := subs(laplace(N3i(t), t, s) = N3i(s), L3);
 > solve(Lp1, N1i(s));
> solve(Lp2, N2i(s));
> solve(Lp3, N3i(s));
#No FP present prior to irradiation;
> N1i(0) := 0;
> N2i(0) := 0;
> N3i(0) := 0;
#Convert back to time domain;
> N1i(t):=invlaplace(solve(Lp1,N1i(s)),s,t):
> N2i(t):=invlaplace(solve(Lp2,N2i(s)),s,t):
> N3i(t):=invlaplace(solve(Lp3,N3i(s)),s,t):
#After irradiation, t=ti;
%1101 if= 3.669200365*10^8-3.669200365*10^8*exp(-0.1237762800e-1*ti);
> N1(0) := 3.669200365*10^8-3.669200365*10^8*exp(-0.1237762800e-1*ti);
> N2(0) := 3.943899740*10^8*exp(-0.1237762800e-1*ti)+1.053585096*10^10-1.093024093*10^10*exp(-0.8621230000e-3*ti);
> N3(0) := 1.243166966*10^13+2.762593257*10^14*chi3-7.618457782*10^(-14)*exp(-0.1237762800e-1*ti)*(7.451604125*10^12*chi3);
+3.605921295*10^20)-4.677424231*10^(-14)*exp(-0.8621230000e-3*ti)*(5.650371538*10^14*chi3-2.338789820*10^23)
-3.851226547*10^(-13)*exp(-7.306500000*10^(-7)*ti)*(7.173281611*10^26*chi3+3.230810120*10^25);
#Post irradiation FP decay & buildup;
> ode1 := diff(N1(t), t) = -lambda1*N1(t);
> ode2 := diff(N2(t), t) = lambda1*N1(t)-lambda2*N2(t);
> ode3 := diff(N3(t), t) = lambda2*N2(t)-lambda3*N3(t);
#Laplace transform;
> L1 := laplace(ode1, t, s);
> Lp1 := subs(laplace(N1(t), t, s) = N1(s), L1);
> L2 := laplace(ode2, t, s);
> Lp2 := subs(laplace(N2(t), t, s) = N2(s), L2);
> L3 := laplace(ode3, t, s);
> Lp3 := subs(laplace(N3(t), t, s) = N3(s), L3);
 #Convert back to time domain;
> N1(t):=invlaplace(solve(Lp1,N1(s)),s,t):
> N2(t):=invlaplace(solve(Lp2,N2(s)),s,t):
> N3(t):=invlaplace(solve(Lp3,N3(s)),s,t):
```

 $\texttt{#Define Activity (A_i=lambda_i*N_i). Calculate only for FP5 because that is what is being measured;}$ 

> A3 := lambda3*N3(t);

>

```
% #Calculate decays during acquisition from td to (td+ta). Integrate activity over acquisition period;
> Decays3 := int(A3, t = td .. td+ta);
>
```

#Calculate counts (Counts_i=epsilon_i*gamma_i*Decays_i); > Counts3 := epsilon3*gamma3*Decays3;

> chi3 := 'chi3'; > chi3 := solve(Counts3 = 58193, chi3); > Ratio3 := chi3/(0.225e-1);

## References

- Matthew Bunn and Anthony Weir. The seven myths of nuclear terrorism. *Current History*, 104(681):153–161, May 2005.
- [2] Devabhaktuni Srikrishna, Amalavoyal Narasimha Chari, and Thomas Tisch. Nuclear detection: History and facts. Technical report, January 2008.
- [3] Jonathan Medalia. Nuclear Terrorism: A Brief Review of Threats and Responses. Congressional Research Service, February 2005.
- [4] Department of Homeland Security. National technical nuclear forensics center. http://www.dhs.gov/national-technical-nuclear-forensics-center.
- [5] J. Miller. Analytical Inverse Model for Post-Event Attribution of Plutonium.
   PhD thesis, Texas A & M University, Colle, December 2008.
- [6] Nuclear forensics and attribution. http://www.dtra.mil/missions/ NuclearDetectionForensics/Forensics.aspx.
- [7] Dr. Y. Nuclear forensics | ScienceWonk. https://www.fas.org/blogs/ sciencewonk/2012/04/nuclear-forensics/, April 2012.
- [8] 111th Congress. Public law 111-140, February 2010.
- [9] M.R. Scott. Nuclear forensics: attributing the source of spent fuel used in an RDD event. PhD thesis, Texas A & M University, College Station, TX, May 2005.

- [10] William Dunlop and Harold Smith. Who did it? using international forensics to detect and deter nuclear terrorism. Arms Control Today, 36(8):6–10, October 2006.
- [11] Matthew Allen. Nuclear forensics: How strong is the new foundation of nuclear deterrence?, 2007.
- [12] Gene Aloise. Nuclear forensics: Comprehensive interagency plan needed to address human capital issues. Technical Report GAO-09-527R, Government Accountability Office, Washington, DC, April 2009.
- [13] Chemical Office of the Assistant Secretary of Defense for Nuclear and Biological Defense Programs. *The Nuclear Matters Handbook*. Office of the Assistant Secretary of Defense for Nuclear, Chemical, and Biological Defense Programs, Washington, DC, 2011.
- [14] Alexander Glaser and Tom Bielefeld. Nuclear forensics capabilities, limits, and the "CSI effect", July 2008.
- [15] Michael May, Reza Abedin-Zadeh, Donald Barr, Albert Carnesale, Philip E. Coyle, Jay Davis, William Dorland, William Dunlop, Steve Fetter, Alexander Glaser, Ian D. Hutcheson, Francis Slakey, and Benn Tannenbaum. Nuclear Forensics Role, State of the Art, and Program Needs. American Association for the Advancement of Science, Washington, DC, 2008.
- [16] Committee on Nuclear Forensics; National Research Council. Nuclear Forensics: A Capability at Risk (Abbreviated Version). The National Academies Press, Washington, DC, 2010.

- [17] Iulia Iliut. Nuclear forensics: Key to ensuring nuclear security. http://www.iaea.org/newscenter/news/2012/nuclearforensics.html, April 2012.
- [18] Preventing Nuclear Smuggling Program. Nuclear forensics attribution terms, 2012.
- [19] A.W. Ajlouni, Y.S. Almasa'efa, and M. Abdelsalam. Nuclear fission products: From source to environment. Journal of Environmental Science and Technology, 3(4):182–194, April 2010.
- [20] A. J. Fahey, C. J. Zeissler, D. E. Newbury, J. Davis, and R. M. Lindstrom. Postdetonation nuclear debris for attribution. *Proceedings of the National Academy of Sciences*, November 2010.
- [21] Suraya Omar. Nuclear forensics and attribution. Technical report, Stanford University, Stanford, CA, March 2012.
- [22] G. Nicolaou. Identification of unknown irradiated nuclear fuel through its fission product content. Journal of Radioanalytical and Nuclear Chemistry, 279(2):503–508, February 2009.
- [23] Kenton J. Moody, Ian D. Hutcheon, and Patrick M. Grant. Nuclear Forensic Analysis. CRC Press, Boca Raton, FL, 2005.
- [24] Reza Abedin-Zadeh. Nuclear Forensics Support. Vienna, Austria, 2006.
- [25] K. Mayer, M. Wallenius, and T. Fanghnel. Nuclear forensic scienceFrom cradle to maturity. *Journal of Alloys and Compounds*, 444445:50–56, October 2007.

- [26] W.E. Grummitt and G. Wilkinson. Fission products of u²³⁵: Abstract : Nature. Nature, 158:163, August 1946.
- [27] U.S. Department of Energy. Uranium-235 fission yield vs. mass number. http://nuclearpowertraining.tpub.com/h1019v1/css/h1019v1_81.htm.
- [28] Rod Adams. Another isotope has been found at minute concentrations at the vermont yankee leak site. http://atomicinsights.com/2010/04/anotherisotope-has-been-found-at-minute-concentrations-at-the-vermont-yankee-leaksite.html, April 2010.
- [29] G. P. Ford, J. S. Gilmore, D. P. Ames, J. P. Balagna, J. W. Barnes, A. A. Comstock, G. A. Cowan, P. B. Elkin, D. C. Hoffman, G. W. Knobeloch, E. J. Lang, M. A. Melnick, C. O. Minkkinen, B. D. Pollock, J. E. Sattizshn, C. W. Stanley, and B. Warren. Mass yields from fission by neutrons between thermal and 14.7 MeV. Technical report, Los Alamos National Laboratory, Los Alamos, NM, February 1956.
- [30] Bin Li. Analysis of fission products a method for verification of a CTBT during OnSite inspections. Science & Global Security, 7(2):195–207, 1998.
- [31] David Hamilton. Case study: Fission yield module and the oklo nuclear geyser, September 2006.
- [32] J. H. Warren. Fission product security problem. Technical report, U.S. Atomic Energy Commission, Richland, WA, February 1964.
- [33] Carl R. Nave. Nuclear fission fragments. http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/fisfrag.html, 2012.

- [34] G. F. Knoll. G. F. Knoll's Radiation Detection 3rd (Third) edition(Radiation Detection and Measurement [Hardcover]. John Wiley & Sons, Inc., Hoboken, NJ, 3rd edition edition, 2000.
- [35] E. T. Jurney, P. J. Bendt, and T. R. England. Fission product gamma spectra. Informal Report LA-7620-MS, January 1979.
- [36] K. Way, E. P. Wigner, and U.S. Atomic Energy Commission. Radiation from fission products. United States Atomic Energy Commission. MDDC-48. Technical Information Division, Atomic Energy Commission, Oak Ridge, TN, 1946.
- [37] R.E. Marrs, E.B. Norman, J.T. Burke, R.A. Macri, H.A. Shugart, E. Browne, and A.R. Smith. Fission-product gamma-ray line pairs sensitive to fissile material and neutron energy. *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 592(3):463–471, 2008.
- [38] European Atomic Energy Community. Nuclide explorer. http://www.nucleonica.net/Application/NuclideExplorerForm.aspx, 2012.
- [39] International Atomic Energy Agency. Compilation and evaluation of fission yield nuclear data. Technical Report IAEA-TECDOC-1168, International Atomic Energy Agency, Vienna, Austria, December 2000.
- [40] John R. Lamarsh and Anthony J. Baratta. Introduction to Nuclear Engineering. Prentice-Hall, Inc., Upper Saddle River, NJ, 3rd edition edition, 2001.

- [41] Kaye & Laby Online. Nuclear fission 4.7.1. http://www.kayelaby.npl.co.uk/ atomic_and_nuclear_physics/4_7/4_7_1.html, 2012.
- [42] Ian Rittersdorf. Gamma ray spectroscopy. Technical report, University of Michigan, Ann Arbor, MI, May 2007.
- [43] T.R. England and B.F. Rider. ENDF-349 evaluation and compilation of fission product yields 1993, October 1994.
- [44] W. Meinke. Certificate of analysis standard reference material 953 neutron density monitor wire (Cobalt in aluminum), March 1969.
- [45] John Neuhoff. Certificate of analysis CRM 129-a uranium oxide  $(U_3O_8)$  assay and isotopic standard, November 2003.
- [46] Nuclear Data Center. Table of nuclides. http://atom.kaeri.re.kr/, 2000.
- [47] Faculty Innovation Center. TRIGA reactor. http://nuclear.engr.utexas.edu/ index.php?option=com_content&view=article&id=49&Itemid=55, 2010.
- [48] W.B. Wilson, T.R. England, and K.A. Van Riper. Status of CINDER'90 codes and data, 1999.
- [49] M.A. Kellett, O. Bersillon, and R.W. Mills. The JEFF-3.1/-3.1.1 radioactive decay data and fission yields sub-libraries. Organisation for Economic Cooperation and Development, Issy-les-Moulineaux, France, 2009.
- [50] M.I. Taskaeva. Certificate of calibration standard radionuclide source 84310-598 point source in tape on 2 inch aluminum ring, May 2011.

# Vita

Christopher Hing Lu was born in Wheat Ridge, Colorado, the son of David Trunghuu Lu and Hazel Jean Lu and brother of Desiree Yun Alvarado (née Lu). He enlisted in the United States Navy after high school in the Naval Nuclear Propulsion Program. Having been selected for the Seaman to Admiral-21 commissioning program, he received a Bachelor of Science in Physics with a concentration in Nuclear and Radiation Physics from The University of Texas at Austin (UT) in 2010, and subsequently received a commission as a U.S. Naval Officer. Christopher continued in the nuclear propulsion pipeline until he was honorably discharged from the Navy in 2011, at which point he went back to UT to pursue a graduate degree in Nuclear Engineering.

Email address: christopher.h.lu@gmail.com

[†] $\square$ T_EX is a document preparation system developed by Leslie Lamport as a special version of Donald Knuth's T_EX Program.