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CHAPTER 1 
INTRODUCTION 

 

1.1 BACKGROUND 

The United States produces a total of 2.7 billion metric tons of aggregates 

valued at $14.2 billion per year (Tepordei 2001). The aggregates are utilized in a 

variety of applications, including road base courses, railway ballast layers, 

drainage systems, water filter systems, erosion control systems, and most 

importantly as a component of Portland Cement Concrete (PCC) and Hot Mix 

Asphalt (HMA). Stone aggregates represent 70 to 85 percent of PCC and 90 to 95 

percent of HMA by weight (National Stone Association 1993). Considering the 

fact that PCC and HMA are major construction materials, it would not be difficult 

to imagine the enormous magnitude of influence that construction aggregates may 

have on the quality of such civil engineering structures as buildings, bridges, 

airports, highways, dams, etc. 

The characteristics of aggregates are crucial to the lifespan of the structure 

where they are used. As the wide range of aggregate usages may imply, it is 

important to select aggregates that have proper characteristics for each specific 

application. Examples show numerous failures traceable directly to improper 

aggregate selection and use, such as inappropriate design of aggregate base course 

that led to premature breakup of pavements, rapid deterioration of PCC caused by 

nondurable aggregates, rapid pavement erosion from using unacceptable 
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aggregate in asphalt concrete construction, and so on (National Stone Association 

1993).     

Particle morphological characteristics such as size, shape, angularity, and 

texture are key properties that are frequently used to characterize aggregates. 

They are known to have a significant impact on the performance of PCC and 

HMA (Ahlrich 1996, Barksdale and Samir 1989, Kuo et al. 1998, and National 

Stone Association 1993). However, it is difficult to conduct aggregate 

characterization in a timely manner using standard aggregate test methods. For 

example, the sieve analysis (ASTM C 136) and the standard test method for index 

of aggregate particle shape and texture (ASTM D 3398) require a significant 

amount of time and human intervention. Similarly, the proportional caliper 

method for flat and elongated particles (ASTM D 4791) and the standard test 

method for determining the percentage of fractured particles in coarse aggregate 

(ASTM D 5821) require labor-intensive, manual measurements of individual 

aggregate particles. Moreover, there is a strong need for well-defined particle 

descriptors to provide accurate and objective quantification of particle 

characteristics, which goes beyond the current standardized methods. 

In aggregate producing plants, PCC plants, HMA plants, or even large 

construction sites, a fast, accurate, and reliable way to characterize aggregate is 

needed. Based on the resulting information, prompt, necessary actions could then 

be taken to improve the quality of the product. In an aggregate producing plant, 

the equipment setup could be changed on a real time basis if unacceptable product 

was being produced. In PCC and HMA plants, the proportions of different 
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aggregates could be adjusted. In large construction sites, a decision on whether to 

accept the supplied aggregate could be easily made. 

Increased awareness of the importance of aggregate properties and 

increased expectation of high quality aggregate products are motivating new 

developments in aggregate characterization. In particular, recent technological 

advances in computer technology, along with a trend to tighten specifications for 

aggregate properties (Kennedy et al. 1994), indicate a strong need to develop 

automated methods to determine aggregate properties (Kruse 1999). 

 

1.2 RESEARCH OBJECTIVES 

The main objective of this research is to develop a three-dimensional (3D) 

measurement method for characterizing aggregates in a faster, more accurate, and 

more reliable manner than those methods currently available. Four subobjectives 

include:  

1. Development of a 3D particle data acquisition system: As a first step, it is 

crucial to obtain high quality particle surface data. Laser profiling 

techniques are used to produce sufficient 3D data. 

2. Development of a robust particle segmentation algorithm: To accurately 

determine particle size and shape parameters, each particle data should be 

isolated and identified as a unique region so that it can be processed 

individually. Consequently, it is necessary to develop an efficient particle 

segmentation algorithm that can work well with the 3D laser-based data. 
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3. Development of a particle measurement algorithm: This subobjective aims 

to develop an algorithm that provides particle shape and size parameters 

that correlate to results of ASTM D 4791 (Standard test method for flat 

particles, elongated particles, or flat and elongated particles in coarse 

aggregate) and ASTM C 136 (Standard test method for sieve analysis of 

fine and coarse aggregates). 

4. Development of 3D particle descriptors: To accurately identify and 

quantify critical aggregate characteristics, well-defined particle descriptors 

are essential. Then, based on this quantified data, better design and 

construction methods can be developed, especially in terms of aggregate 

selection and production. This subobjective aims to develop 3D particle 

descriptors to characterize morphological properties of particles in an 

objective, comprehensive, and generalized manner. 

 

1.3 HYPOTHESIS 

The underlying hypothesis of this research is that 3D measurement tools 

can improve the speed, accuracy, and capability of automated aggregate 

characterization, beyond that of conventional methods or 2D analysis. 

 

1.4 RESEARCH SCOPE AND METHODOLOGY 

This study focused on laser profiling techniques as a 3D data acquisition 

method and digital image analysis (DIA) as a way to analyze the obtained data, in 

order to automate aggregate characterization. This research direction was 
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determined, as shown in Figure 1.1, based on the research hypothesis, literature 

review, site visits to aggregate, PCC, and HMA plants, and interviews with 

experts. This research also focused on characterizing aggregates ranging in size 

from a no. 8 mesh (2.36 mm) sieve to 50 mm, which covers the vast majority of 

coarse aggregates produced. Once this objective is achieved, it could be easily 

modified to cover larger or smaller particles by changing the resolutions of the 

data acquisition hardware.  

After a prototype system was developed using the selected technologies, it 

was first applied to the determination of dimensional ratios of aggregates such as 

elongation and flatness ratios. The results were compared with those of the 

proportional caliper measurements (ASTM D 4791). Second, the system was 

applied to the characterization of size distribution of aggregates, where the results 

were compared with those of the conventional sieve analyses (ASTM C 136). 

Finally, aggregates� morphological properties such as shape, angularity, and 

texture were quantified by the system. Since there is no proper standardized way 

of measuring these morphological properties directly, the system�s results were 

compared with human visual perception to be verified. The overall research steps 

are shown in Figure 1.1.  

 

1.5 ORGANIZATION OF THE REPORT 

Chapter 2 presents the current standardized methods and five different 

alternative methods of measuring aggregate particle properties that were 

identified as candidates for the prototype rapid aggregate characterization device.  
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Chapter 2 also shows how the alternative methods were evaluated and compared 

with each other using analytical analytical hierarchy process and how laser 

profiling and digital image analysis were selected as best suited for this research. 

Chapter 3 presents the work on building the 3D data acquisition device. 

The chapter begins by a discussion of the laser profiling mechanism followed by 

descriptions of the hardware system architecture. Next, an image creation method 

for effectively storing the 3D data is described. 

Chapter 4 describes the developed segmentation algorithm. It first 

establishes the need for a good particle segmentation method, and provides 

background information. Subsequently, the developed algorithm is presented with 

a step by step graphical example. 

The particle measurement methodologies for determining size and shape 

parameters are reported in Chapter 5. This chapter first shows how the shape of a 

particle is measured using the so-called �virtual caliper� method. Then, the so-

called �virtual sieve� method is introduced to determine particle size parameter. 

Experimental results of these �virtual� methods are compared with those of the 

standardized methods to verify their validity.  

In Chapter 6, the motivation for development of new 3D particle 

descriptors is first established. Then, possible technologies that can be used for 

developing particle descriptors are reviewed with the main focus on wavelet 

transform. Finally, the descriptors are defined, and their physical meanings are 

discussed along with verification test results. 
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Chapter 7 addresses several issues related to the implementation of a fast 

aggregate characterization system including a modular system architecture that 

involves the idea of ubiquity of the data acquisition units. It also presents a simple 

economic feasibility study that demonstrates the justification of the purchase of 

the developed aggregate characterization system. 

In chapter 8, conclusions and contributions are identified, and potential 

benefits of the developed system are also drawn. Finally, future research is 

recommended. 
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CHAPTER 2 
BACKGROUND 

The main objective of this chapter is to establish a foundation for the 

development of an automated aggregate characterization system. Section 2.1 

presents the current standardized particle measurement methods including the 

conventional sieve analysis, proportional caliper analysis, visual methods, and 

indirect methods, while section 2.2 examines the feasibility of using various 

different technologies as an alternative way of characterizing aggregate particles. 

Finally, section 2.3 shows how laser profiling and digital image analysis are 

chosen through analytical hierarchy process as the technologies best suited for the 

research objectives.  

 

2.1 STANDARD METHODS FOR PARTICLE CHARACTERIZATION 

2.1.1 Sieve Analysis 

The conventional sieve analysis (ASTM C 136) is the industry-accepted 

practice for determining particle size parameters. After a series of sieves are 

nested in order of decreasing sieve opening size from top to bottom, the aggregate 

sample is placed on the top sieve. Then, the sieves are agitated by hand or a 

mechanical apparatus (sieve shaker) for a sufficient amount of time so that the 

aggregate particles are sorted into different size brackets defined by the opening 

sizes of the sieves. If it is deemed that no more than one percent by mass of the 

material retained on any individual sieve will pass that sieve during one more 

 9



minute of continuous sieving, the sieving is finished, and the mass of each size 

bracket is measured on a scale. In this way, percentages passing, total percentages 

retained, or percentages in various size fractions on the basis of the total mass of 

the initial aggregate sample can be calculated. If the particle weights are 

accumulated as they proceed from smallest to largest mesh size and expressed as 

a percentage, the cumulative particle size distribution (gradation curve) is 

obtained. Aggregate gradation is key to controlling the quality of the mixed 

product such as portland cement concrete, hot mix asphalt, etc. Since the 

proportion of different grain sizes in a mixture is critical to the workability, 

strength, and durability of the product, the gradation is used in a variety of 

construction related specifications. The optimum gradation for most construction 

applications is approximately the particle size distribution that allows the 

maximum amount of aggregate to be included in a unit volume of mixture 

(National Stone Association 1993). 

However, this conventional sieve test is time-consuming. Even automatic 

mechanical shakers need up to 20 minutes of shaking time to sufficiently separate 

a mixed sample of mineral aggregate into a nested stack of sieves of progressively 

smaller opening sizes (Aljassar 1993). In addition, manual checking and brief 

hand sieving are required to make sure that all particles retained on a sieve are 

bigger than the sieve apertures because not all particles retained on a sieve are 

really larger than the sieve apertures (Mora et al. 1998). Consequently, sieve 

testing is generally not fast enough for real-time adjustments of the aggregate mix 

 10



so that the production of large quantities of improperly graded material may be 

prevented.   

 

2.1.2 Proportional Caliper Method 

The shape of coarse aggregate particles may be characterized in a number 

of ways, but a widely used technique involves evaluating elongation and flatness 

ratios based on the three principal dimensions of a particle as specified in ASTM 

D 4791. If a particle is circumscribed in a virtual rectangular prism of minimum 

size as indicated in Figure 2.1, then the length, width, and thickness of the prism 

correspond to the longest, intermediate, and shortest dimensions of the particle, 

respectively. The principal dimensions can be measured using a conventional 

vernier caliper as shown in Figure 2.2 (a), or an electronic caliper (Jahn 2000). 

Elongation is then defined as the ratio of the longest to the intermediate 

dimension, while flatness is defined as the ratio of the intermediate to the shortest 

dimension.  

 

 

 

Width

Thickness 

Length

 

Thickness
WidthFlatness =    

Width
LengthElongation =  

Figure 2.1: Principal dimensions of an aggregate particle and definition of 
dimensional ratios. 
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To manually characterize the flatness and elongation of an aggregate 

sample, each particle is evaluated individually with a proportional caliper, which 

is shown in Figure 2.2 (b). Upon inspecting each particle, a technician must 

visualize the orientation corresponding to the smallest rectangular box that would 

circumscribe the particle. The technician then sets one side of the proportional 

caliper to the particle length. If the rotated particle will pass through the smaller 

opening on the caliper using the width, the particle is then classified as elongated 

according to the dimensional ratio set on the caliper. If the technician wants to 

determine the particle�s flatness ratio, the same process is repeated using the 

width and thickness of the particle. Also, if the particle has a ratio of length to 

thickness greater than the specified value, it is called flat and elongated. In this 

way, each particle can be classified as to whether or not it is flat, elongated, or flat 

and elongated. The proportional caliper must be reset and the test repeated to 

determine how many particles in the sample are categorized according to a 

different limiting dimensional ratio. As the above description indicates, this 

manual shape measurement method is a tedious, labor intensive, and costly 

process. 

It is generally recognized that cubic particles are desired to develop 

aggregate interlock, which increases the shear strength of hot mix asphalt (HMA) 

and unbound aggregate base material (National Stone Association 1993). 

Relatively flat or elongated particles are also known to contribute to segregation 

and aggregate breakdown during compaction of HMA (Kennedy et al. 1994). This 
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is why the use of flat and elongated particles is limited to a maximum of 10 % in 

the Superior Performing Asphalt Pavements (Superpave) mix design method.  

 

 

 
(a) 

 

 
(b) 

Figure 2.2: (a) A vernier caliper; (b) a proportional caliper conforming to ASTM 
D 4791. 

 

2.1.3 Visual Methods 

It is more difficult to measure particle properties such as angularity and 

texture, because they need to be measured based on finer scales than the scale 

used for the measurement of size or shape. As a result, ASTM D 2488 (Standard 

practice for description and identification of soils) and ASTM D 5821 (Standard 

test method for determining the percentage of fractured particles in coarse 

aggregate) both rely on human visual perception to measure coarse aggregate 
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angularity. ASTM D 2488 describes aggregate particles as angular, subangular, 

subrounded, or rounded in accordance with the following criteria:  

• Angular: particles have sharp edges and relatively plane sides with 
unpolished surfaces 

• Subangular: particles are similar to angular particles but have rounded 
edges 

• Subrounded: particles have nearly plane sides but have well-rounded 
corners and edges 

• Rounded: particles have smoothly curved sides and no edges 

In a slightly different manner, ASTM D 5821 specifies the way the particle 

angularity is determined. It begins with defining �fractured face� as an angular, 

rough, or broken surface of an aggregate particle created by crushing, by other 

artificial means, or by nature. Then, any particle with at least the minimum 

number of fractured faces specified (usually one or two) is considered a fractured 

particle. The Superpave guideline recommends the use of fractured particles in 

hot mix asphalt mixes because those angular particles ensure an adequate 

aggregate skeleton to resist shear forces that cause rutting (Kennedy et al. 1994).  

These standardized methods are examples that show the efforts expended 

in order to enhance the life of construction structures through the selection of the 

most suitable aggregate mix. However, the above methods are labor-intensive, 

time-consuming, and subject to human errors. Moreover, important properties of 

aggregates may not be captured using these simple measurement methods. 

 

2.1.4 Indirect Methods 

In an effort to avoid the laborious particle by particle measurement for the 

determination of aggregate morphological properties, some indirect methods have 
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been used. ASTM D 3398 and ASTM C 1252 represent two examples. ASTM D 

3398 (Standard test method for index of aggregate particle shape and texture) 

makes use of the phenomenon that the shape and texture of aggregates of almost 

equal size affect the initial void ratio and the changed void ratio after being 

compacted in a specified way. The particle index defined in ASTM D 3398 tends 

to be bigger with crushed and rough particles. In a similar way, ASTM C 1252 

(Standard test method for uncompacted void content of fine aggregate (as 

influenced by particle shape, surface texture, and grading)) was developed based 

on the concept that aggregate properties such as shape, texture, and gradation are 

closely related to the loose uncompacted void content. Studies concluded that 

decreasing aggregate angularity and smoother surface textures decrease the loose 

uncompacted void content (Ahlrich 1996). This testing method was also expanded 

to coarse aggregate measurement. Ahlrich (1996) modified and enlarged the test 

apparatus used in ASTM C 1252 to test particles in the range of 4.75 to 19 mm. 

These indirect methods have clear advantages over such tedious direct 

particle measurement methods as ASTM D 4791, ASTM D 5821, etc. As a result, 

the Superpave design method specifies ASTM C 1252 as a standard way of 

measuring fine aggregate angularity. However, the very indirectness in those 

methods is not that advantageous to the production or mixing of aggregates. For 

example, if a group of aggregate turns out to be not suitable for a specific 

application, the characteristics of the aggregate need to be changed by most likely 

adding another group of aggregates that has the right properties to compensate for 

the improper characteristics of the original aggregate. For this purpose, it is 

 15



important to be able to identify positive or negative properties of aggregate 

particles that can increase or decrease the strength of the structure in which they 

are used. However, since the indirect methods only permit the use of the overall 

characteristic (the combined result of aggregate shape, angularity, texture, 

gradation, etc.), it is not easy to pinpoint the specific property that needs to be 

either suppressed or replaced. In this case, the indirect methods will have to yield 

to direct particle measurement methods.  

 

2.2 REVIEW OF RAPID PATICLE CHARACTERIZATION TECHNOLOGIES 

2.2.1 Automated Sieve Analysis 

One of the straightforward options in automating particle size gradation is 

to automate the industry-standard sieve analysis. One advantage to this technique 

is that it remains within the accepted practice of utilizing standard sieves of 

various mesh sizes to determine grain size distribution. 

The Gradex 2000 Particle Size Analyzer (Figure 2.3), manufactured by 

Rotex Inc., and the Automatic Gradation Unit, manufactured by Pavement 

Technology Inc., are two examples of automated sieve analysis devices. Both 

devices automate the process of performing a sieve analysis from shaking a sieve 

stack to the calculation of grain size distribution from the cumulative weight 

retained on individual sieves. They incorporate a sieve shaker, an arm to empty 

the sieve into a cumulative weighing pan, a brush operated through air pressure to 

clean off the sieves, and an electronic scale. The process yields a particle size 

distribution curve on a personal computer coupled with the machine. 

 16



There are some drawbacks to using an automated sieving apparatus to 

rapidly characterize aggregates. First, no information on particle shape or surface 

texture is obtained with this technique. Second, the method works in a batch mode 

which is not a good approach for continuous sampling and analysis of aggregates. 

Finally, maintenance of the parts that physically contact with others is a potential 

problem. For example, sieves need to be replaced on a regular basis because they 

contact with aggregates. 
 
 

 

Figure 2.3: Gradex 2000 automatic sieve analyzer (Rotex, Inc. 1997). 
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2.2.2 Fractionating Water Column 

Another automated method of determining particle size distribution 

involves differentiating between settling times in a fluid, assuming that larger 

particles have proportionally larger mass. The basis for a fractionating water 

column is that particles will reach a terminal settling velocity in a medium 

(generally water) as the force due to their weight is counteracted by the force due 

to drag on the particle surface. Force due to weight is proportional to diameter 

cubed; whereas the force due to drag is proportional to diameter squared, thus as 

particle size increases the settling velocity increases. 

An automated version of the hydrometer has been developed by 

Micromeritics Corporation and is called the SediGraph (Figure 2.4). This device 

can determine grain size distributions for particles between 0.1 and 300 µm 

(Coakley and Syvitski 1991). The SediGraph machine utilizes x-rays to detect the 

changing concentration with time of fine particles settling in an aqueous 

suspension. Analysis time is reduced through a controlled upward movement of 

the x-ray detector with time (Coakley and Syvitski 1991).  Aljassar (1993) 

developed a prototype of a fractionating water column to determine gradations of 

particles ranging from .075 mm (no. 200 sieve) to 2.38 mm (no. 8 sieve). It 

involved a 1.6 m tall clear sedimentation cylinder with light sensing photocells 

used to measure light blockage from settling particles. The device can measure a 

grain size distribution that very closely matches conventional sieve analysis, after 

establishing empirical correlation to properly calibrate the setup.   
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Figure 2.4: SediGraph (Micromeritics Corporation 1999). 

 

There are several disadvantages of applying this technique to aggregate 

characterizations. First, as in the case of automated sieve analysis, no information 

on particle shape or surface texture can be obtained with this technique. Second, a 

constant temperature must be maintained for measuring the settling velocity 

accurately. Third, particles larger than 2 mm are difficult to be measured because 

they do not have steady settling velocities as they instigate turbulent flow in the 

column. Finally, the water in the column must be changed when it gets cloudy.  

 

2.2.3 Laser Diffraction 

Used extensively in determining the homogeneity of fine powders and 

gels, laser diffraction analysis has recently been used to study fine soil gradation. 

This technique involves a laser directed through a gas or fluid suspension of 

particles to create a diffraction pattern of particle shadows. The resulting 
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diffraction pattern is interpreted using a combination of Fraunhofer and Mie light 

scattering theories (Agrawal et al. 1991). 

Most laser diffraction equipment currently available is geared towards 

grading particles of much more uniformity than a typical soil. Nevertheless, 

Loizeau et al. (1994) and Buurman et al. (1997) have conducted studies to 

evaluate the potential of such devices to determine soil gradation. Buurman et al. 

(1997) concluded that laser diffraction cannot replace conventional sieving and 

hydrometer techniques as long as correlation between the methods have not been 

established for many different soils. 

Several companies market laser diffraction equipment including CILAS 

and Beckman Coulter, Inc. The CILAS Model CILAS 940 (Figure 2.5) and the 

Coulter Model LS200 are reported to be capable of grading particles from 

approximately 0.5 µm up to 2 mm in diameter or particles in the medium sand 

range (Beckman Coulter 1999, CILAS 2000). As this particle size range indicates 

along with the above discussion, the laser diffraction technique has almost the 

same disadvantages as those of the fractionating water column method.  

 

2.2.4 Digital Image Technology 

Two-dimensional (2D) digital image analysis (DIA) appears to be the 

technology most often studied for automating the characterization of coarse 

aggregates. In this technique, images of particles obtained by a camera are 

digitized so that a computer can analyze the shape and size of each particle. To 
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extract size information from each particle from the digitized image, image 

segmentation and size measurement related algorithms are used. 

 

 

 
 

Figure 2.5: CILAS 940 laser diffraction device (CILAS 2000). 

 

There have been many efforts to apply digital image analysis to 

characterization of particles. Kennedy and Mazzulo (1991) developed a semi-

automatic image analysis system where the operator points to a particle on the 

computer screen and its size is automatically determined. Although this technique 

is more accurate than a completely automated system, it is more selective and 

therefore slower.  

In Sweden, Fernlund (1998) used digital image analysis to show that 

particle form had a substantial influence on sieve analysis results. Also, Persson 
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(1998) used a scanning electron microscope to do image analysis of shape and 

size of fine aggregates. Persson sorted the sample into groups of similar size, 

scanning the groups at different magnifications, and found that sample 

preparation and segmentation methods are primary sources of error. The problems 

associated with measuring the distribution of widely differing sizes of particles 

have also been addressed by Dearnley (1985). 

Several DIA based devices are commercially available for the 

determination of particle size distribution. With minor differences, all of these 

commercial machines rely on 2D DIA. In these devices, particles are arranged in 

a single layer and dropped in a controlled manner with the aid of a vibrating 

channel or chute. When these particles fall vertically, a shadow image of them 

cast by a backlight is obtained with either a linear Charge Coupled Device (CCD) 

scanning camera or a matrix CCD scanning camera. The particles� images 

obtained in this manner are processed to establish the principal dimensions and 

volume of each constituent using various algorithms. One of the most important 

assumptions in this technique is that particles� accurate volumetric information 

(which can convert to the weight based particle size distribution) can be extracted 

from the 2D image. A comprehensive review of commercially available grading 

machines can be found in Browne (2001). 

Using digital image analysis to rapidly grade aggregates has the advantage 

of obtaining data on particle shape, and potentially texture, in addition to size. 

However, there are obstacles that need to be overcome to make this approach 

feasible. First, it is difficult to discern particles that are touching each other in 
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digital images. Second, it is necessary to separate particles to a degree before 

scanning. That is, some sample preparation may be needed to ensure that particles 

do not adhere to one another to form larger clumps. Third, analyzing a broad 

range of material sizes with a single camera setup is very challenging because a 

camera has a limited number of CCD cells. Finally, a sophisticated algorithm is 

needed to accurately convert the 2D data to 3D volumes and a weight-based 

gradation. 

 

2.2.5 Laser Profiling  

Laser profiling, also termed �structured lighting� or �active stereopsis�, 

provides 3D data of an object�s surface by illuminating the scene with patterned 

lighting such as stripes, dots, and color and by capturing the illuminated image. In 

a typical application, an active light source projects a light stripe onto the object�s 

surfaces. A laser beam, or a focused beam of ordinary light, can be used as a 

source in this technique. The fact that lasers have parallel, monochromatic, and 

coherent characteristics has resulted in the widespread use of lasers as the lighting 

source.  

Cheung and Ord (1990) made use of a light stripe projected onto the 

surface of rock fragments on a conveyor belt. Video images captured by a CCD 

camera were processed so that the 3D profile of the surface could be obtained by 

triangulation. However, it was reported that their final system not only could not 

detect particles smaller than 5 mm, but that it also produced results different from 

those given by manual screening (Dumitru et al. 1999). 
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One clear potential advantage of laser profiling is that far more accurate 

particle characterization is possible with the aid of the 3D data as opposed to 2D 

data. To illustrate how much difference the 3D measurement can make compared 

to a typical 2D image based approach, Figure 2.6 shows four regular shaped 

objects represented both in 3D and 2D manners. If the objects were scanned by 

the laser profiling, they would be represented as close to their actual sizes, shapes, 

and volumes as the resolution of the laser scanner allows (Figure 2.6 (a)). 

However, if they were scanned by a 2D camera from the above, then, no matter 

how good the resolution of the camera might be, they would all be represented as 

the same flat circle as shown in Figure 2.6 (b). That is, only one projected image 

of the object would end up being used, losing all other information. Therefore, it 

is natural that the four clearly different objects should have the same volume, size, 

and shape information in the 2D image approach. This is problematic not only in 

the determination of particle volume but also in measuring all other 

morphological properties of an object. For example, if shape or angularity of the 

object is to be measured in the 2D approach, one cannot choose but use the 

outline of the 2D circle, a small fragment of the entire particle information, which 

may lead to inaccurate analysis results.  

Most of the difficulties mentioned previously regarding the application of 

2D DIA to particle characterization also pertain to laser profiling because there 

exist many similarities between them such as using a camera as a data acquisition 

device. However, there exist unique disadvantages in laser profiling such as 

complex computational procedures necessary to handle the 3D data.  
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Figure 2.6: Comparison of 3D and 2D representations of regular shaped solids (a 
cylinder, a cone, a sphere, and a circular plate): (a) 3D 
representations; (b) 2D representation. 
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2.3 SELECTION OF BEST TECHNOLOGY FOR RAPID CHARACTERIZATION OF 
AGGREGATES 

The Analytical Hierarchy Process (AHP) (Saaty 1980) was used to get 

expert input in order to choose the best technology through a systematic approach 

of selecting, weighting and applying criteria. All four members of the research 

team of the ICAR (International Center for Aggregate Research) project 503, 

�Rapid Test to Establish Grading of Unbound Aggregate Products� participated in 

this technology selection process. Laser profiling technology was divided into two 

different options: an off-the-shelf laser profiler and a customized laser profiler. 

This was decided because the two options could have huge differences in terms of 

cost, accuracy, etc. The AHP criteria for rapid characterization of aggregates can 

vary widely depending on the needs of the specific application. The criteria used 

in this research to judge the most promising technology include:  

• Accuracy and Reliability � Demonstrated accuracy when compared to 
results from standard ASTM C 136 sieve analysis and ASTM D 4791 
proportional caliper method, and reliability of results given variations in 
the material being processed (within the applicable range). 

• Processing period per sample � The time required to acquire, prepare, and 
analyze a sample, then report data and clean-up for the next sample. 

• Applicable Range � Ability to measure particles from a no. 8 mesh (2.36 
mm) sieve to 50 mm in size. 

• Costs � Initial equipment costs, maintenance and operation costs. 
• Shape � Potential for measuring such characteristics as particle shape, 

angularity, and surface texture. 
• Degree of Automation � Degree of operator intervention required, 

potential for continuous testing on a production line. 
• Material Preparation - Degree to which material must be processed to 

separate particles, etc., prior to testing. 
• Robustness � Likelihood that the test equipment could be designed to 

operate in an aggregate plant with little maintenance. 
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• Potential for distributed deployment � Adaptability to building a 
distributed network of scanning sensors at multiple locations in a 
production facility. 

The AHP begins by weighing each criterion against each other using a 

Criterion vs. Criterion Matrix (Table 2.3). Reading across a row, each criterion is 

compared with the others designated by the column headings. Table 2.1 shows 

relative weighting values and their associated meaning for criteria comparison. 

For example, in Table 2.3 consider Accuracy and Reliability compared to Costs. 

Since it was felt that accuracy and reliability were weakly more important than 

cost, a weight of 3 is entered in row 1 (Accuracy and Reliability), column 4 

(Cost). Each time a weight is recorded in a row cell, its reciprocal value is 

recorded in the corresponding column cell; thus in column 1, row 4, a weight of 

1/3 is recorded. Next, each row is summed up, and the number is converted to a 

relative decimal value (criteria weighting). A criterion such as �accuracy and 

reliability� is considered to be more important in selecting the best technology 

method, as evidenced by a relatively high decimal value in the last column of 

Table 2.3. 

 

Table 2.1: Weighting values for criteria comparison. 

If row item is � as (than) column, Weight number 
Equally important 1 

Weakly more important 3 
Strongly more important 5 

Very strongly more important 7 
Absolutely more important 9 
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Next, in consideration of each criterion, the technology options are 

compared with each other by considering how likely each will be able to 

successfully fulfill the criterion. For each criterion, a matrix is created with all of 

the technology options on both the vertical and horizontal axes as shown in 

Tables 2.4 through 2.12. Table 2.2 shows the relative weighting values for 

technology comparison under each criterion. From this weighting, the relative 

decimal value (option rating) is obtained in the last column. 

 

Table 2.2: Weighting values for technology comparison. 

If row item is � as (than) column, Weight number 
Equally likely to satisfy criterion 1 

Weakly more likely to satisfy criterion 3 
Strongly more likely to satisfy criterion 5 

Very strongly more likely to satisfy criterion 7 
Absolutely more likely to satisfy criterion 9 

 

Finally, overall ranking is performed by combining all criteria and 

technology options into a summary matrix. All criteria are listed on the horizontal 

axis (column headings), while all technology options are listed on the vertical 

axis. In each matrix cell, �criteria weighting� of each criterion is multiplied by the 

�option rating�, producing an �option score�. Each option score is added across 

all criteria for a row total. Then, each row total is divided by the grand total and 

converted to the final decimal value. The final results are tabulated in Table 2.14. 
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Table 2.3: Criterion vs. criterion. 

                      Criteria 
Criteria 1 2 3 4 5 6 7 8 9 

Row 
Total 

Relative 
Value 

1 Accuracy and Reliability  1     3    3    3    7    5    3     3     5     33.00 0.27
2 Processing period per sample  1/3 1    3    1    3    5    1     1     5     20.33 0.17
3 Applicable Range   1/3  1/3 1    1    1    3    1     1     3     11.67 0.10
4 Costs  1/3 1    1    1    1    5    3     1     3     16.33 0.13
5 Shape  1/3  1/3 1    1    1    3    1     1     1     9.67 0.08
6 Degree of Automation  1/5  1/5  1/3  1/5  1/3 1    1      1/3 1     4.60 0.04
7 Material Preparation  1/3 1    1     1/3 1    1    1     1     1     7.67 0.06
8 Robustness  1/3 1    1    1    1    3    1     1     3     12.33 0.10
9 Potential for deployment  1/5  1/5  1/3  1/3 1    1    1      1/3 1     5.40 0.04
         Grand Total 121.00 1

 

Table 2.4: Option vs. each criterion (accuracy and reliability). 

Accuracy and Reliability  A B C D E F 
Row 
Total 

Relative 
Value 

A Automated Sieve Analysis 1     1/3 1     1/3 1    5    8.67 0.13
B Laser Spectroscopy 5    1    3    1    3    5    18.00 0.27
C Digital Image Analysis 1     1/3 1     1/3 1    5    8.67 0.13
D Off-the-shelf Laser 3    1    3    1    5    7    20.00 0.30
E Customized Laser 1     1/3 1     1/5 1    5    8.53 0.13
F Water Column  1/5  1/5  1/5  1/7  1/5 1    1.94 0.03
      Grand Total 65.81 1

 

Table 2.5: Option vs. each criterion (processing period per sample). 

Processing period per sample A B C D E F 
Row 
Total 

Relative 
Value 

A Automated Sieve Analysis 1     1/5  1/9  1/7  1/7  1/3 1.93 0.02
B Laser Spectroscopy 5    1     1/3 1     1/3 1    8.67 0.11
C Digital Image Analysis 9    5    1    3    3    7    28.00 0.35
D Off-the-shelf Laser 7    1     1/3 1    1    5    15.33 0.19
E Customized Laser 7    3     1/3 1    1    5    17.33 0.22
F Water Column 5    1     1/7  1/3  1/3 1    7.81 0.10
      Grand Total 79.07 1
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Table 2.6: Option vs. each criterion (applicable range). 

Applicable Range  A B C D E F 
Row 
Total 

Relative 
Value 

A Automated Sieve Analysis 1    7    5    7    5    5    30.00 0.39
B Laser Spectroscopy  1/7 1     1/5  1/5  1/5  1/3 2.08 0.03
C Digital Image Analysis  1/5 7    1    3    1    5    17.20 0.22
D Off-the-shelf Laser  1/5 5     1/3 1    1    3    10.53 0.14
E Customized Laser  1/5 5    1    1    1    1    9.20 0.12
F Water Column  1/5 5     1/3  1/3 1    1    7.87 0.10
      Grand Total 76.88 1

 

Table 2.7: Option vs. each criterion (costs). 

Costs A B C D E F 
Row 
Total 

Relative 
Value 

A Automated Sieve Analysis 1    7    3    5    3    3    22.00 0.34
B Laser Spectroscopy  1/5 1     1/5  1/3  1/5  1/5 2.13 0.03
C Digital Image Analysis  1/3 5    1    3    1    1    11.33 0.17
D Off-the-shelf Laser  1/5 5     1/3 1     1/3  1/3 7.20 0.11
E Customized Laser  1/3 5    1    3    1    1    11.33 0.17
F Water Column  1/3 5    1    3    1    1    11.33 0.17
      Grand Total 65.33 1

 

Table 2.8: Option vs. each criterion (shape). 

Shape A B C D E F 
Row 
Total 

Relative 
Value 

A Automated Sieve Analysis 1    1     1/7  1/9  1/9 1    3.37 0.03
B Laser Spectroscopy 1    1     1/7  1/9  1/7 1    3.40 0.03
C Digital Image Analysis 7    7    1     1/5  1/5 5    20.40 0.20
D Off-the-shelf Laser 9    9    7    1    3    9    38.00 0.38
E Customized Laser 9    9    5     1/3 1    7    31.33 0.31
F Water Column 1    1     1/5  1/9  1/7 1    3.45 0.03
      Grand Total 99.95 1
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Table 2.9: Option vs. each criterion (degree of automation). 

Degree of Automation A B C D E F 
Row 
Total 

Relative 
Value 

A Automated Sieve Analysis 1    1     1/5  1/5  1/5  1/3 2.93 0.04
B Laser Spectroscopy 1    1     1/5  1/5  1/5 1    3.60 0.05
C Digital Image Analysis 7    5    1    1    1    5    20.00 0.30
D Off-the-shelf Laser 5    5    1    1    1    3    16.00 0.24
E Customized Laser 5    5    1    1    1    5    18.00 0.27
F Water Column 3    1     1/5  1/3  1/3 1    5.87 0.09
      Grand Total 66.40 1

 

Table 2.10: Option vs. each criterion (material preparation). 

Material preparation A B C D E F 
Row 
Total 

Relative 
Value 

A Automated Sieve Analysis 1    1     1/3  1/3  1/3  1/3 3.33 0.06
B Laser Spectroscopy 1    1     1/5  1/5  1/5  1/3 2.93 0.06
C Digital Image Analysis 3    5    1    1    1    1    12.00 0.23
D Off-the-shelf Laser 3    5    1    1    1    1    12.00 0.23
E Customized Laser 3    5    1    1    1    1    12.00 0.23
F Water Column 3    3    1    1    1    1    10.00 0.19
      Grand Total 52.27 1

 

Table 2.11: Option vs. each criterion (robustness). 

Robustness A B C D E F 
Row 
Total 

Relative 
Value 

A Automated Sieve Analysis 1    3    1    3    1    3    12.00 0.27
B Laser Spectroscopy  1/3 1     1/3 1    1    1    4.67 0.11
C Digital Image Analysis 1    3    1    3    1    3    12.00 0.27
D Off-the-shelf Laser  1/3 1     1/3 1    1    1    4.67 0.11
E Customized Laser 1    1    1    1    1    1    6.00 0.14
F Water Column  1/3 1     1/3 1    1    1    4.67 0.11
      Grand Total 44.00 1
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Table 2.12: Option vs. each criterion (potential for deployment). 

Potential for deployment A B C D E F 
Row 
Total 

Relative 
Value 

A Automated Sieve Analysis 1    1     1/5  1/3  1/5 1    3.73 0.06
B Laser Spectroscopy 1    1     1/5  1/5  1/5  1/3 2.93 0.04
C Digital Image Analysis 5    5    1    3    1    5    20.00 0.30
D Off-the-shelf Laser 5    5     1/3 1    1    5    17.33 0.26
E Customized Laser 5    5    1    1    1    5    18.00 0.27
F Water Column 1    3     1/5  1/5  1/5 1    5.60 0.08
      Grand Total 67.60 1
 

Table 2.13: Summary matrix (options vs. all criteria). 

1 2 3 4 5 6 7 8 9 Row               Criteria (Weight) 
Options 0.27 0.17 0.10 0.13 0.08 0.04 0.06 0.10 0.04 Total 
A Automated Sieve Analysis 0.13 0.02 0.39 0.34 0.03 0.04 0.06 0.27 0.06  
B Laser Spectroscopy 0.27 0.11 0.03 0.03 0.03 0.05 0.06 0.11 0.04  
C Digital Image Analysis 0.13 0.35 0.22 0.17 0.20 0.30 0.23 0.27 0.30  
D Off-the-shelf Laser 0.30 0.19 0.14 0.11 0.38 0.24 0.23 0.11 0.26  
E Customized Laser 0.13 0.22 0.12 0.17 0.31 0.27 0.23 0.14 0.27  
F Water Column 0.03 0.10 0.10 0.17 0.03 0.09 0.19 0.11 0.08  
A Criteria weight x Option Value 0.04 0.00 0.04 0.05 0.00 0.00 0.00 0.03 0.00 0.16
B Criteria weight x Option Value 0.07 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.12
C Criteria weight x Option Value 0.04 0.06 0.02 0.02 0.02 0.01 0.01 0.03 0.01 0.22
D Criteria weight x Option Value 0.08 0.03 0.01 0.01 0.03 0.01 0.01 0.01 0.01 0.22
E Criteria weight x Option Value 0.04 0.04 0.01 0.02 0.03 0.01 0.01 0.01 0.01 0.18
F Criteria weight x Option Value 0.01 0.02 0.01 0.02 0.00 0.00 0.01 0.01 0.00 0.09
          Sum 1.00

 

Table 2.14: Conclusion. 

Technologies Value
Automated Sieve Analysis 0.16
Laser Spectroscopy 0.12
Digital Image Analysis 0.22
Off-the-shelf Laser 0.22
Customized Laser 0.18
Water Column 0.09
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The assigned weights shown in Tables 2.3 through 2.12 were obtained by 

having all four members of the research team individually assign weights. This 

process began with a group discussion to clarify the definitions of the criteria and 

choices. The weights suggested for each item were averaged to resolve 

differences among the four evaluators. For example, if two of the weights were 3 

and the other two were 7, the weight became 5. If two of the weights were 1 and 

the other two were 1/9, the weight became 1/5. If the average was exactly in the 

middle of two weight numbers, the weight became the larger one. For example, if 

two of the weights were 3 and the other two were 5, the weight became 5. 

The AHP procedure formalizes selection of the �best� technology for the 

stated criteria. By selecting the various weights when comparing only two 

technologies with respect to one criterion, one is forced to focus on making a 

rational, unbiased judgment. The AHP procedure then leads to a ranked listing of 

best choices.  

The result of the rankings ranged from a low of 0.09 for the fractionating 

water column method to a high of 0.22 for both digital image analysis and laser 

profiling (the customized laser profiler option). These conclusions seemed to be 

consistent with current research in the field, where most development efforts are 

centered around digital image analysis. Relatively less attention has been given to 

the use of a laser profiler, but the judgments indicated that this technology shows 

significant promise, especially in 3D measurement of morphological properties of 

aggregates. Since this research aimed to measure not only size parameters but also 
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other morphological parameters such as shape, angularity, and surface texture, 

laser profiling was chosen to acquire accurate 3D data of aggregates.  
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CHAPTER 3 
LASER-BASED AGGREGATE SCANNING SYSTEM (LASS) 

In an attempt to achieve accurate and rapid measurements of aggregate 

properties, a laser-based aggregate scanning system was developed (Figure 3.1). 

The Laser-based Aggregate Scanning System (LASS) is designed to provide 

maximum flexibility for the study of different lighting schemes, scanner 

velocities, and so on while repeatedly scanning the same field of aggregates 

spread out on a table. This chapter begins with the discussion of the laser profiling 

mechanism followed by a description of the hardware system architecture. Next, a 

3D image creation method is introduced that is designed to store 3D particle data 

effectively without losing critical information.  

 

 

Figure 3.1: The Laser-based Aggregate Scanning System (LASS). 
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3.1 THE LASER PROFILING MECHANISM 

Figure 3.2 shows a simple representation of how laser profiling works. 

Laser profiling, also termed �structured lighting� or �laser triangulation�, is 

similar to a passive stereo vision system with one of the cameras replaced by a 

laser source (Caspi and Kiryati 1998). With a laser source projecting a stripe on 

the surface of the object to be measured, a camera captures a digital image of the 

reflection on the image plane of the Charge Coupled Device (CCD). If the 

position and orientation of the laser source and camera are known, a laser plane 

can be defined geometrically and a mathematical line can also be defined that 

connects a point on the stripe of the object�s surface with a CCD cell through the 

camera�s focal point. Then, through the intersection of the laser plane and the 

image line, one 3D coordinate along the laser stripe on the surface of the object 

can be determined (Valkenburg and McIvor 1998). It is worth noting that the laser 

projection allowed this technique to avoid the correspondence problem in a 

passive stereo vision system, where it is not clear which point from one image 

corresponds to a point in a second image (Sonka et al. 1999). Collectively, the 

datum points along one stripe define a cross-sectional profile of the object; 

combining successive profiles then defines the three dimensional shape of the 

object�s top surface. 
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Figure 3.2: Schematic of laser profiling. 

 

3.2 HARDWARE SYSTEM ARCHITECTURE 

The LASS consists of a laser line scanner, a horizontal gantry system, and 

a personal computer (Figure 3.3). The laser scanner, which is mounted on the 

gantry system, passes over an aggregate sample, scanning it with a vertical laser 

plane. The laser line scanner can move approximately 1.5 m along the Y axis with 

a scan width of 120 mm and a scan height (Z axis) of 220 mm. Thus, anything 

that is within the range defined by the scanner travel distance, scan width, and 

scan height, can be scanned. From the accuracies of the horizontal gantry and the 

laser scanner, the LASS can also have resolutions of 0.3 mm, 0.1 mm, and 0.5 

mm in X, Y, Z axes, respectively. 
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Figure 3.3: The LASS hardware architecture. 

 

Detailed descriptions of the principal components are as follows: 

• A computer-controlled, belt-driven, linear motion slide with a platform for 
mounting the scanner: This device is about 2.5 m long and can achieve 
controlled speeds up to 2.5 m/sec over a horizontal travel distance of about 
1.5 m. The platform can move with an accuracy of 0.1 mm. This device 
was manufactured by Parker � Daedal Division. 

• A laser line scanner: This scanner has a scan rate of 25 scans per second, 
scan width of 120 mm, scan height of 220 mm, 0.3 mm of X axis 
resolution, and 0.5 mm of Z axis resolution. This device was manufactured 
by MEL (Mikroelektronik GMBH, Germany). 

• A personal computer: This computer is to interface with the scanning and 
motion control equipment.  

• Customized software for integrated control of the linear motion slide and 
the laser line scanner: This software was written using the C++ 
programming language, LabView (a graphical programming language), 
the IMAQ Vision image processing tool, and the Wavelet and Filter Bank 
Design Toolkit. LabView, IMAQ Vision, and the Wavelet and Filter Bank 
Design Toolkit are all manufactured by National Instruments (Austin, 
Texas). 
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The scanner used for the LASS consists of a laser source and a camera in 

one unit.  After an aggregate sample is spread across the scanning platform, the 

laser line scanner is passed over the sample to measure the profiles of the 

aggregate particles. Given the velocity of the scanner, relatively accurate shape 

data can be obtained by integrating the profiles. 

The LASS has a 120 mm scan width, which means that as long as the 

aggregate particles are spread within that range, simultaneous scanning of 

multiple particles is possible. With a resolution of approximately 0.5 mm in three 

orthogonal directions, the LASS can scan 15 aggregate particles per second, 

assuming that the aggregate particles are less than 10 mm in their longest 

dimensions.  

 

3.3 THREE-DIMENSIONAL (3D) IMAGE CREATION 

3.3.1 Data Acquisition and Image Creation 

The data acquisition routine in the LASS is composed of the following 

three subroutines: 

• Linear motion slide control subroutine: This controls the motion of the 
linear motion slide platform, which is characterized by inputs describing 
the moving distance, speed, and direction. 

• Laser scanner control subroutine: Using this subroutine, 566 height datum 
points are obtained from the scanner in every 1/25 second. A noise-
canceling filter is used to eliminate excessively random noise in the raw 
data. This filter uses laser reflectance intensity as a criterion to evaluate 
the validity of each coordinate point. Invalid data are replaced by the base 
level value (zero height), and then examined and corrected using the non-
linear filter and void filling process, which is described later. 

• Subroutine for synchronizing scanning with the linear motion slide: This 
subroutine enables the scanner and the linear motion slide to start and stop 

 39



at the same time. Based on the amount of time that the linear motion slide 
is expected to operate, this subroutine calculates the number of scans 
needed to fill the travel distance. Through this subroutine, it is possible to 
obtain a uniform resolution in the data acquired along the direction of the 
scanner movement. 

Because it is computationally more efficient to manipulate 2D data, it is 

beneficial to temporarily transform the 3D laser scan data into a 2D image format 

for some operations. Once the raw data are transformed into the �3D image�, 

where the grayscale of each pixel represents the height of the datum point, 

conventional digital image analysis techniques can be applied. However, careful 

conversion from 3D raw data to 2D image format is required to prevent the loss of 

important data, with some adjustments of the raw 3D data required for true 

volumetric representations. 

 

3.3.2 Image Adjustments and Corrections 

In typical 2D digital image analyses, the horizontal ( ∆ X) and vertical 

( Y) physical dimensions of a pixel are constants. In the LASS data, however, 

the X of each pixel is variable and depends on the pixel�s height value (Z 

coordinate), while the Y is a constant determined by the scanning rate and the 

speed of the linear motion slide. Figure 3.4 (a) is a schematic that shows the 

scanning range and data points obtained with the laser scanner. Without 

adjustment, the resulting 3D image would be distorted along the X direction, as 

seen in Figure 3.4 (b), because of differences in the height of surface points in the 

image. To adjust for distortion and obtain an image like the one represented by 

Figure 3.4 (c), the following algorithm is used to adjust X of each pixel: 

∆

∆

∆

∆

 40



 

 
Scan width

Scan
depth

X

Z

X
Y

X
Y

∆X

∆XBase

(a)

(b)

(c)

Object

 

Figure 3.4: Effect of X adjustment: (a) scanning range that shows different 
Xs depending on the heights of the datum points; (b) image of the 

object before X adjustment; (c) image of the object after ∆ X 
adjustment. 
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1. Calculate X for the pixel assuming that there exists a linear relationship 

between the height and X.  

∆

∆

2. Calculate the difference between the calculated X and the base level 

X. 

∆

∆

3. Calculate the X direction distance (number of pixels) of the pixel from the 

center of the image. 

4. Multiply the difference in X (calculated in step 2) by the X direction 

distance from the center (calculated in step 3). 

∆

5. Move the pixel toward the center of the image in the X direction by the 

number obtained in step 4. 

6. If two adjacent pixels� adjusted locations have more than one pixel 

interval, the interval is filled with the grayscale value of the pixel that is 

located farther from the center than the other. This is to prevent the 

interval from being left unfilled with proper grayscale values. 

7. Repeat steps 1 to 6 for all image pixels. 

The Xs at a certain height are also variable, but the differences are negligible 

and it is assumed that all of the Xs at the same height are equal. 

∆

∆

Since the data acquisition filter assigns a base level height value to invalid 

pixels, there can be some discontinuities in some regions of the image. Also, some 

noisy pixels that were not screened in the data acquisition process may exist in the 

grayscale image. To assign reasonable height values to the noisy pixels, a non-

linear filter (Sonka et al. 1999) is used to assign the median height value of the 
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surrounding pixels. By choosing a proper number of neighboring pixels to 

consider, noisy data can be replaced by more reasonable height values. 
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CHAPTER 4 
PARTICLE SEGMENTATION METHOD 

In digital imaging of discrete particles, such as stone aggregates, 

segmentation is one of the most important processes. To accurately determine 

particle size and shape parameters, each particle region must be isolated and 

processed individually. Here, a method for segmenting a particle image acquired 

from laser profiling is developed using a Canny edge detector and a watershed 

transformation. Section 4.1 presents an overview of particle segmentation 

techniques while section 4.2 introduces the background relevant for the 

development of a particle segmentation algorithm including the Canny edge 

detector and the watershed transformation. Finally, section 4.3 presents the 

particle segmentation algorithm developed. 

 

4.1 INTRODUCTION 

Digital image analysis (DIA) is probably the most widely studied method 

for automated characterization of stone aggregate particles (Browne et al. 2001). 

In DIA, particle images are typically captured by one or more cameras, and the 

images are digitized and processed by computer to determine size distribution 

(gradation), shape parameters, and so on. In general, to determine gradation and 

shape parameters, each particle region in a digital image must be separated from 

the others so that the particle, or the region of interest (ROI), can be processed 

 44



individually. Without a robust segmentation technique, analyzing the data 

properly is almost impossible. 

There are many ways of segmenting particles. Particles can be physically 

separated before they are captured in an image. In fact, several commercial 

grading devices that rely on 2D DIA utilize the natural separation of falling 

particles to minimize overlap. However, there are situations where this falling 

particle method is not feasible. For example, the camera or scanning device may 

not be fast enough to capture the falling particles. Moreover, while particles fall, 

they may tend to change orientation or rotate, an effect that may lead to 

inaccuracies. There also remains the potential for particles to overlap in a falling 

curtain arrangement. 

Recently, three research efforts have applied computational particle 

segmentation to the area of civil engineering. Kemeny et al. (1993) developed a 

procedure for automatically segmenting rock fragments in 2D images. The 

procedure takes advantage of the background region between particles and the 

large grayscale differences that occur along the edges of touching fragments. 

Their algorithm analyzes the shapes of the background regions between particles 

and searches for large gradient paths in the region ahead of sharp convexities in 

the background region. That is, this method assumes that touching particles tend 

to form sharp convex regions that point in the direction of edges. 

Wang (1998) developed an algorithm to separate touching aggregate in a 

binary 2D image. The algorithm first applied �polygonal approximation� to 

smooth particle boundaries on a certain scale and obtain significant concave 
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points. Second, the concave points were classified into different categories based 

on their probability of being part of the particle boundary. Lastly, the particle 

separation line was determined using a function in which a variable, such as 

shortest distance, is estimated from the identified concave points. Ghalib and 

Hryciw (1999) suggested watershed transformation, which will be explained later, 

as a way of segmenting soil particles in a digital image. 

All three approaches were successful in their respective applications. 

However, none of them directly applies to images generated via laser profiling, 

which is being used to extract 3D particle information in this research. In many 

cases, it was found that touching particles in an image do not have sharp 

convexity or significant concavity. In addition, self-occlusion (Sonka et al. 1999), 

which can take place in laser profiling, makes the segmentation more difficult due 

to potential data loss. 

 

4.2 BACKGROUND 

This section reviews such image processing techniques as thresholding, 

convolution process, mathematical morphology, the Canny edge detector, and the 

watershed transformation.  

 

4.2.1 Thresholding 

If particles are spread in such a way that they do not touch each other in a 

digital image, a simple thresholding method can effectively separate particles. In 
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symbolic logic, a simple thresholding algorithm could be written as (Sonka et al. 

1999): 

 

0)(1)()( ==> pIELSEpITHENThresholdpIIF    (4.1) 

 

where  is the grayscale level of pixel )( pI p , and  is a specified 

grayscale value. Unfortunately, physical separation of particles is often 

impractical. For instance, if particles were to be separated manually, the labor and 

time required would exceed the benefits gained from the automated system. On 

the other hand, sophisticated and costly machinery would be needed to perfectly 

separate every particle mechanically. 

Threshold

 

4.2.2 Edges in Digital Images 

Since digital images are typically expressed as a 2D array of pixels with 

certain grayscale values, edges in digital images can be defined as pixels with 

grayscale values that are significantly different than those of their neighboring 

pixels. As a way of evaluating the grayscale differential, the following gradient 

operator (Sonka et al. 1999), which shows the rate of change in grayscale levels, 

can be used. 
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where x  and  are orthogonal coordinates, and y I  is the grayscale value of 

the pixel. However, a digital image is made up of discrete pixel values, so the 

gradient operator needs to be approximated as (Parker 1997): 

 

)1,()1,(),(
),1(),1(),(

−−+=∇
−−+=∇
yxIyxIyxI

yxIyxIyxI

y

x     (4.3) 

 

Then, the magnitude of the gradient is determined as (Sonka et al. 1999): 

 
22

),( 







∂
∂+








∂
∂=∇

y
I

x
IyxI     (4.4) 

 

Next, according to a specified threshold value, it can be determined whether the 

pixel is part of an edge. The direction of the gradient, which is perpendicular to 

the edge direction, is also determined as (Sonka et al. 1999): 

 

I
I

∇
∇=n        (4.5) 

where is a unit vector that represents the direction of the gradient. Figure 4.1 

shows an image where the contour lines represent the same grayscale values. It is 

shown that gradient directions have 90° difference with edge directions. 

n
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Figure 4.1: Edges in digital images. 

 

4.2.3 Convolution and Gaussian Filter 

The work of finding edges are conducted with a process called 

convolution (Sonka et al. 1999) defined as follows: 

 

∫ ∫
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where  is a transformed image, M  is a convolution mask or filter, I is an 

original image. This formula represents the idea of replacing all pixel values in 

the original image with a weighted sum of its neighbors. Each coefficient of a 

convolution mask is the weight which will be multiplied by its corresponding 

pixel value in the original image during the convolution process. Also, the size of 

'I
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the convolution mask determines the size of neighborhood pixels that are included 

in the weighted sum. Figure 4.2 shows a convolution process where a 3 by 3 

convolution mask is used to transform the original image. All the pixels in the 
image obtain new grayscale levels in the way the  is transformed into .  jiI , jiI ,'

⋅,lk I

,1 −+ ji

jiM ,1+

1,1 ++ ji
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Figure 4.2: 2D convolution process. 

 

A Gaussian filter (Sonka et al. 1999) is a type of convolution filter, which 

is generally used to suppress noisy pixels in an image. As the name, Gaussian, 
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indicates, the coefficients of the convolution mask have a normal distribution as 

shown in Figure 4.3. Thus, this method places bigger weights on the pixels that 

are close to the pixel of interest. This filter is represented as follows: 

 








 +−= 2

22

2
exp

σ
yxG      (4.7) 

 

4.2.4 Mathematical Morphology 

Mathematical morphology (Dougherty 1993) in DIA refers to processes 

where the image is transformed based on non-linear algebra. Two basic 

morphological operations are binary dilation and erosion. Binary dilation means 

vector addition of two binary images of which pixel values are either 0 or 1. For 

example, if image X  is the collection of pixels (0,0), (1,0), (0,1), and, (0,2), and 

image B  is the collection of pixels (0,0), (0,1), then the transformed image  

is {(0,0), (1,0), (2,0), (0,1), (1,1), (0,2), (1,2)} as shown in Figure 4.4 (a). 

Mathematically, the dilation operator can be defined as (Sonka et al. 1999): 

'X

 

{ }BbXxbxppBX ∈∈+==⊕ and,|           (4.8) 

 

where p is a pixel that has horizontal and vertical coordinates, and  is the 

dilation operator. In contrast, the erosion operator means vector subtraction of two 

binary images. As shown in Figure 4.4 (b), when the two images are same as the 

above example, the transformed image becomes {(0,0)}. In mathematical 

morphology, the erosion operator can be defined as (Sonka et al. 1999): 

⊕
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7 Gaussian filter: (a) 2D representation; (b) 3D representation. 
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Figure 4.4: Mathematical Morphology: (a) binary dilation; (b) binary erosion. 
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{ }BbXbppBX ∈=+∈=Θ every for ,|2ε   (4.9) 

 

where  is the erosion operator. Since, depending on the shape of the small 

image 

Θ

B , various transforming effects can be made, image B  is called the 

�structuring element�. These binary dilation and erosion operators are effectively 

used to define the watershed transformation which is explained in the next 

section. 

 

 

4.2.5 The Canny Edge Detector 

Canny (1986) proposed the following three performance criteria to design 

a high-quality edge detector: 

•  Good detection: Important edges should be detected. 
•  Good localization: The location of the detected edge should be close to the 

true edge. 
•  Minimum spurious edges: Multiple responses to a single edge should be 

minimized.  

Canny derived an edge detection filter based on the above three criteria, and 

found that the filter could be effectively approximated by the gradient of a 

Gaussian filter, expressed as: 
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where  is the gradient of the Gaussian filter . The gradient direction  

can be estimated as: 

nG G n
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)*(
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IG
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where * denotes convolution. The Gaussian convolution makes edges clearer by 

suppressing noise in the image. Since edge pixels can be considered to be local 

maxima in the image convolved with the operator , the edge location can be 

found from the following equation: 
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By substituting for  from Equation (4.10), Equation (4.12) becomes: nG
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     (4.13) 

 

Equation (4.13) shows that the edge location can be found by convoluting the 

image with the second derivative of the operator  in the direction n . This 

operation is often called �non-maximum suppression� in the sense that pixels that 

are not local maxima are ignored. That is, a pixel can become an edge pixel if it 

has a larger gradient than its neighbors in the direction of the gradient. After the 

edge pixel is located, its magnitude is estimated as: 

G
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Given the pixel magnitudes from Equation (4.14), a specified threshold value can 

be used to determine whether or not each pixel is an edge. However, Canny 

suggested so-called �hysteresis thresholding� as an improved way of selecting 

edge pixels. Hysteresis thresholding has two threshold values: a high threshold 

value (T ) and a low threshold value (T ). Any pixel with a gradient larger than 

 becomes an edge pixel, and any pixel with a gradient larger than  that is 

connected to an edge pixel becomes an edge pixel. In other words, an edge line 

proceeds from the pixel that has a gradient higher than T  in the gradient 

direction obtained from Equation (4.11), and ends when it meets a pixel that has a 

gradient lower than . This procedure minimizes spurious edges. In this 

research, an off-the-shelf Canny edge detection routine in the IMAQ Vision 

image processing tool was used. 
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4.2.6 Watershed Transformation 

Following the introduction of the watershed transformations by Beucher 

and Lantuejoul (1979), a lot of effort has gone into improving the performance of 

the method (Vincent and Soille 1991; Moga 1998; Pratikakis et al. 1999; Bleau 

and Leon 2000) and to apply it to various applications (Beucher 1991; Subers et 

al. 1997; Ghalib and Hryciw 1999). In the watershed transformation, digital 

images are considered to be topographic maps that have ridges or crest lines 
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dividing depressions or drainage areas. In this regard, grayscale images can be 

compared to 3D terrain mapping (Huber and Hebert 1999). The basic idea behind 

the watershed transformation is to use watersheds identified in the terrain map as 

boundaries that separate different regions. 

In general, light-intensity based images, which are typically acquired from 

optical cameras, cannot be directly used with watershed transformations because 

they do not provide sufficient topographic relief as required to segment different 

regions. Therefore, to obtain images with good relief, either a gradient image or a 

distance map is typically used. While the gradient image is an image transformed 

by Equation (4.4), the distance map is an image made by a criterion of how far 

each pixel of a region of interest (ROI) is from other regions. For example, if the 

ROI is a circle and other regions in the image are background, the boundary of the 

ROI, (i.e., all the pixels that adjoin the background) will have a pixel value of 1. 

The closer the pixel is to the center of the ROI, the higher values it will have. This 

distance transformation (distance operator) is simply expressed using a binary 

erosion operator as (Sonka et al. 1999): 

 

{ )(|min)(, nBXpnpDXp X Θ∉=∈∀ }     (4.15) 

 

where X  is the ROI,  is the distance function of the ROI XD X  that 

designates the distance value of pixel p  from other regions,  is 0 or a 

positive integer, 

n

B  is a structuring element with one unit radius, and  is 

the image transformed by the erosion operator n  times with the structuring 

nBX Θ
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element B . In other words, the distance transformation obtains the minimum 

number of erosions of the ROI X  with the structuring element B  that does not 

contain the pixel p . 

Figure 4.5 (a) shows a distance map of a binary image of two touching 

particles. Figure 4.5 (b) is the cross-sectional view of Figure 4.5 (a) with distances 

shown as depths, where geographic concepts such as a catchment basin, regional 

minimum, plateau, and watershed are displayed. A catchment basin is a container 

that receives or holds water, and a regional minimum is the lowest part in the 

catchment basin. A watershed is then a line that divides two connected catchment 

basins. A technique suggested by Beucher (1991) called �immersion simulation� 

can locate watersheds in a digital image. Imagine that all regional minima are 

pierced, and the whole geographic surface is immersed into a lake at a slow 

constant speed. The water entering through the pierced holes will then start 

flooding the catchment basins. When the water in the two minima reaches the 

level of the plateau between the two catchment basins, the plateau will become 

inundated. Considering that the water levels will merge at the center of the 

plateau, it is reasonable to assume the location of merging as a border that divides 

the two adjacent regions. 
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Figure 4.5: Watershed transformation: (a) distance map; (b) cross sectional view 
of the distance map (a); and (c) segmented image. 
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A regional minimum is defined with the introduction of a non-ascending 

path expressed as:  

 

)()(,, 11 ++ ≥∀ iiii pIpIpp     (4.16) 

 

That is, if any two adjacent pixels in a specified path exist where the level of the 

first pixel is larger than or equal to that of the next pixel, the path is non-

ascending. A regional minimum is then defined as pixels that do not have a non-

ascending path starting from them. 

Once regional minima are determined, watersheds can be found by the 

following algorithm expressed in the pseudo C programming code: 

 

While ( h  =  to ) { maxh minh

While (until  is filled where ) { p∀ hpI D ==)(

           ;         BZi ⊕∀

 Set ∀  as Watershed where ;  } }    (4.17) p 1)( ==pD
iZ

 

where  is a pixel value,  is the transformed distance map, is a region 

connected to a regional minimum,  is the binary dilation operator, and  is 

a distance operator of the ROI  from other regions or the original background 

regions. This algorithm enables all of the identified regional minima to grow until 

they meet adjoining regions or the original background regions. In this research, 

the watershed transform routine was implemented using the C programming 

h DI iZ

⊕
iZD

iZ
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language in conjunction with the distance map operator of the IMAQ vision 

image processing tool. 

 

4.3 DEVELOPED SEGMENTATION ALGORITHM 

Particle segmentation is a difficult and challenging process, especially 

when irregular materials like stone aggregates are the objects to be segmented. 

Since they vary greatly in terms of size, shape, and even surface texture, a 

systematic approach should be taken to obtain correct segmentation results. 

Moreover, in laser profiling, an algorithm needs to be incorporated into the 

segmentation method that recovers data loss that can be caused by self-occlusion, 

which is explained later in this section. 

One way to increase the possibility of correct segmentation is to include as 

much useful information as possible. For example, while a distance map provides 

particle shape information, it does not show gradients of the image. On the other 

hand, while Canny edges are entirely relevant to the image gradients, they are not 

strongly related to particle shape. It is possible to obtain better segmentation 

results by combining these two non-redundant bits of information. In fact, this 

data fusion concept has been widely used as a way of reducing error in robotic 

and automated sensing systems. As an example, Haas (1990) integrated laser 

range data and video data for a fully automated road crack detection system. 

To develop an effective segmentation method using a data fusion strategy, 

the following four criteria are first established: 
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1. Minimize over-segmentation: Minimize the situation where one particle is 

separated into multiple particles.  

2. Minimize under-segmentation: Minimize the situation where multiple 

particles are grouped as one. 

3. Minimize missing particles: Minimize the situation where a particle is 

erased during segmentation because the particle region does not have its 

own regional minimum. 

4. Minimize incorrect border locations: Minimize the situation where a 

border between particle regions differs from where it should be. 

The first three criteria relate to identifying appropriate regional minima so that 

only one regional minimum exists in a particle region. For example, if there are 

multiple minima in a particle region, this directly leads to over-segmentation. On 

the other hand, if there is only one regional minimum where multiple particles 

exist, under-segmentation or even particle loss can occur. As mentioned 

previously, regional minima are defined as pixels that do not have a non-

ascending path. However, when this strict mathematical definition is applied to a 

digital image, too many or too few regional minima can be identified. Figure 4.6 

(a) shows an example where two regional minima are located in a particle region. 

To avoid this situation, the idea of a search window with varying size is used. 

In this method, the pixel of interest is compared with its neighboring 

pixels to determine whether it is a regional minimum or not. If the pixel�s value is 

larger than any of its neighboring pixel values, it becomes a regional minimum. 

However, it remains a question of how to determine the appropriate size of the 
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search window. If the number of neighboring pixels (search window) is too large, 

under-segmentation can occur. Conversely, if the search window is too small, the 

possibility of over-segmentation increases. In the algorithm developed, as a 

reasonable way of determining the size of the search window, the pixel�s height 

value is used. This approach can be expressed in symbolic logic as: 

 

)](5.0),(5.0[
)](5.0),(5.0[

0),(1),()),(),((

CHKyCHKyb
CHKxCHKxa

yxIELSEyxITHENbaIyxIIF DDDD

+××++××−∈∀
+××++××−∈∀

==∀≥
 (4.18) 

 

where  is the distance value of the pixel ( , ),( yxI D ), yx K  and  are 

constants, and 

C

H is the height value of the pixel . That is, by using the 

search window of size , proper regional minima can be obtained. 

Figure 4.6 depicts examples where mathematical regional minima are ignored 

because of the selected search window. 

)y,(x

CHK +×

 The method of selecting regional minima by varying the size of search 

windows is a simple and effective method. However, it is easy to encounter a 

situation where the approach can lead to incorrect segmentation results. For 

example, if a particle is relatively flat, it is likely to have multiple minima because 

the search windows for the particle region will be smaller than needed, because 

the search window size depends on height data. On the other hand, if particles are 

densely grouped together and if the segmentation is based only on the distance 

map that is transformed from the binary image, then it may be difficult to extract 

accurate borders that correctly divide particles. These are why the edges detected  
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Figure 4.6: Method for finding appropriate regional minima: (a) distance map; 
(b) cross-sectional view showing heights of regional minima  
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by the Canny edge detection algorithm need to be fused with the watershed 

transformation. 

The segmentation method developed in this section begins by first 

satisfying the fourth criterion by creating edges with the Canny edge detector with 

relatively rigorous high threshold value (T ) and low threshold value (T ). Since 

this rigorous standard is used, it is likely that only prominent grayscale 

discontinuities will be detected. Since it is also likely that the prominent gradients 

take place along the borders of touching particles rather than within a particle, the 

edge image is used to draw a rough outline of particles on the binary image that 

will be transformed into a distance map. This process can be expressed as: 

H L

 

0)()255)(( == pIpCannyIF BH    (4.19) 

 

where is the value of pixel )( pCannyH p  in the edge image transformed by the 

Canny edge detector with relatively high  and T , 255 is the indication of an 

edge pixel in an 8 bit grayscale digital image, and  is the binary value of 

the pixel 

HT L

I B )( p

p  in the binary image  obtained from thresholding the original 

grayscale image. 

BI

Second, to minimize over-segmentation, watersheds are compared with 

Canny edges detected with relatively low T  and . Since this generous 

standard is used, it is likely that almost all particle borders will be displayed in the 

edge image. Therefore, if there is a significant difference between the watershed 

and the Canny edge in terms of location, the watershed can be regarded as an 

H LT
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incorrect border that causes over-segmentation. Practically, this operation can be 

implemented as follows: 

 

]5.0,5.0[
]5.0,5.0[

),()0),((

SySyb
SxSxa

RyxIbaCannyIF WL

×+×−∈∀
×+×−∈∀

==∀
   (4.20) 

 

where  is the value of pixel  in the edge image transformed 

by the Canny edge detector with relatively low  and T , 0 is the indication of 

no edge,  is the pixel of interest of the watershed image, 

),( baCannyL

),( yxIW

),( ba

HT L

R  is the 

identification value of any particle regions adjacent to the pixel, and  is the 

dimension of a search window. That is, if a pixel on watershed lines is close to the 

corresponding Canny edges, the pixel is considered to be on a real border. 

Otherwise, the pixel is allocated to any one of the adjacent regions, which results 

in merging of the different regions. 

S

Figure 4.7 shows the overall flowchart of the segmentation algorithm. 

First, randomly spread particles (Figure 4.8 (a)) are scanned and thresholded into 

a binary image (Figure 4.8 (b)) using Equation (4.1). As seen in Figure 4.8 (b), 

several particles are connected, such that multiple particles appear as one. To 

draw rough particle outlines on the binary image, Canny edges (Figure 4.8 (c)) 

detected with a 5 by 5 Gaussian filter, and high  and T  are used. After the 

�edge outlining� is conducted, the binary image is transformed into a distance 

map (Figure 4.8 (d)). This distance map is considered to be more representative of 

particle shapes than the one obtained directly from the binary image.  

HT L
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Figure 4.7: The segmentation algorithm developed. 
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    (a)                                (b)

    (c)                                (d) 

Figure 4.8: Images of each step of the segmentation method: (a) original particle 
picture; (b) thresholded image; (c) Canny edges with high  and 

; (d) distance map. 
HT

TL
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    (e)                                (f)

    (g)                                (h) 

Figure 4.8 (Cont�d): Images of each step of the segmentation method: (e) 
regional minima; (f) segmented image with watersheds; (g) Canny 
edges with low  and T ; (h) segmented image. HT L
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Subsequently, regional minima of the distance map are identified with the varying 

search window approach (Figure 4-8 (e)). As mentioned previously, the sizes of 

the search windows are determined based on the grayscale of the pixel of interest. 

Next, the regional minima are given unique labels by a region labeling process 

(Sonka et al. 1999), and they grow using a binary dilation process until they meet 

other regions including the original background regions in Figure 4.8 (b). When 

they meet other regions, the border becomes a watershed as shown in Figure 4.8 

(f). Note that some of the particle regions are over-segmented. To check the 

validity of the watersheds, Canny edges are now detected with low  and T  

values (Figure 4.8 (g)). Through the comparison of the watersheds and the Canny 

edges, some over-segmented particle regions are merged.  

HT L

After the region merging phase is finished, the particle void filling process 

starts. Figure 4.9 shows a situation where the reflected laser is blocked from 

reaching the image plane of the CCD cell detector by the shape and orientation of 

the object being scanned. If an object were a square pyramid with relatively steep 

slopes, as depicted in Figure 4.9 (a), the resulting grayscale image would be as 

shown in Figure 4.9 (b). This problem, called �self occlusion�, is unavoidable 

with laser profiling, since the image plane and the laser source must be offset to 

provide sufficient accuracy. Even a short-range, single-axis laser ranging device 

will encounter this limitation, because this device uses the triangulation principle 

described earlier. To obtain Figure 4.9 (c), which is a more accurate 3D 

representation of the object, the void in Figure 4.9 (b) must be filled in a 

reasonable and robust manner. The void filling process marks the pixels that need  
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Figure 4.9: Self occlusion: (a) The situation where a reflected laser cannot reach 
the detector; (b) grayscale image of a square pyramid with an 
apparent void due to blocked laser reflections; (c) ideal grayscale 
image of the square pyramid. 
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to be assigned height values using a convex algorithm which creates the smallest 

region that contains the object, such that any two points of the region can be 

connected by a straight line, all points of which belong to the region (Sonka et al. 

1999). As Figure 4.10 shows, compared to the actual particle image (Figure 4.10 

(a)), the acquired binary image has artificial voids (Figure 4.10 (b)). To 

compensate for this, the voids are filled as in Figure 4.10 (c). However, since this 

void filling process can have an unintended effect on quantifying particle 

angularity and texture, for the application of wavelet-based particle descriptors in 

chapter 6, particles are scanned twice in opposite directions and the two images 

are merged to minimize the possible data loss. 

Finally, after the void filling process, particle splitting follows. During the 

void filling process, it is possible for some particle regions to be expanded to the 

degree of meeting other particle regions. The particle splitting process separates 

the merged particles again by creating borders where two different particle ROIs 

meet. The completed segmented image is illustrated in Figure 4.8 (h). Comparing 

Figures 4.8 (a) and 4.8 (h), the algorithm appears to achieve reasonably correct 

segmentation. Comprehensive tests were conducted in conjunction with �virtual 

sieve� method, which is explained in the next chapter, in order to verify the 

validity of the segmentation algorithm and its assumptions. 
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       (a)                (b)                (c)          

Figure 4.10: Void filling: (a) original particle picture; (b) binary image before 
void filling; (c) binary image after void filling. 
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CHAPTER 5 
VIRTUAL PARTICLE MEASUREMENT METHODS 

This chapter presents particle measurement algorithms to produce analysis 

results comparable to those of the proportional caliper method (ASTM D 4791) 

and sieve analysis (ASTM C 136). Since the algorithms developed resemble the 

standardized methods in the way a particle is measured in a digital space, they are 

termed �virtual caliper� and �virtual sieve�. Section 5.1 introduces previous 

research efforts to measure 3D particle shape. Section 5.2 then presents the virtual 

particle measurement and analysis methods developed given that a segmented 

particle image is now available by either the segmentation algorithm discussed in 

chapter 4 or a simple thresholding method. Experimental results and an evaluation 

are given in section 5.3. 

 

5.1 BACKGROUND 

A number of researchers have studied digital image analysis as a means of 

automating aggregate tests. Digital image analysis techniques usually rely on a 

single 2D image of each particle, where volume and thickness (the shortest 

dimension) are inferred from a 2D particle outline, as illustrated in Figure 2.6. 

Consequently, such systems cannot provide direct measurements of the three 

dimensions of an aggregate particle. To overcome this shortcoming in 2D digital 

image analysis different methodologies have been proposed. 
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Kuo et al. (1996; 1998) attached aggregate particles to transparent plastic 

trays with two perpendicular faces. After the initial projected particle images were 

captured, the sample trays were rotated 90° so that the particles were 

perpendicular to their original orientation. The dimensions of the aggregates in the 

new projected images were then captured and matched to the first orthogonal 

image. The longest, intermediate, and shortest particle dimensions obtained in this 

manner provide direct measures of the flatness and elongation ratio of the 

particles. Brzezicki and Kasperkiewicz (1999) used shadows of aggregate 

particles. With the particles placed on a special cylindrical carrier, a camera and 

two lighting sources were used to acquire an image of the perpendicular shadows 

of each particle. The perpendicular shadow images were processed to obtain the 

three principal dimensions of each particle. 

Another approach for capturing 3D data involves the use of multiple 

digital cameras. Maerz and Lusher (2001) paraded individual particles on a mini-

conveyor belt past two orthogonally oriented, synchronized cameras. Rao and 

Tutumluer (2000) also used particles on a conveyor belt, but employed three 

cameras. They argued that two camera images could miss important particle 

information that would lead to inaccurate assessments of shape for some particles. 

While both of these efforts were successful in capturing 3D data on particle shape, 

the scanning rate in these systems is limited by the need to arrange the aggregate 

particles in a single line, so that two or three images of a given particle can be 

taken simultaneously. In all cases, even when using three camera views, 

inferences must be made based on 2D projections of 3D objects. 
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In Sweden, Illerstrom (1998) and Tolppanen et al. (1999) built a device 

that can provide exceptionally detailed information on individual particles. They 

used a laser line scanner mounted on a three-axis coordinate-measuring machine. 

The particle being measured was flipped over manually to scan its underside. 

Although high-resolution data could be obtained with the scanner moving around 

a particle, considerable time and computing power were required to characterize 

just one particle with this system. 

 

5.2 THE PARTICLE MEASUREMENT ALGORITHMS (VIRTUAL CALIPER AND 
VIRTUAL SIEVE) 

The LASS particle measurement software architecture is outlined in 

Figure 5.1. The software converts the acquired data into a 3D image as discussed 

in Chapter 3, and various digital image processing algorithms are used to extract 

particle size and shape information from the image. Note in Figure 5.1 that before 

the image is segmented, the height data are stored separately. This is to preserve 

the height data essential to calculate volume and thickness of particles because the 

3D grayscale image loses all its height data in the process of being segmented.  
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Figure 5.1: The LASS software architecture for the determination of shape and 
size parameters. 
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5.2.1 The Virtual Caliper 

In the image segmentation process, the 3D image is segmented into 

particle regions with each particle being identified as a region of interest (ROI). 

The ROI data is used for length, width, and thickness measurements (Figure 2.1). 

An underlying assumption, which has been verified by manual inspection and the 

results presented later, is that particles overwhelmingly tend to fall flat when 

scattered on the scanning platform. Accordingly, the largest height value of the 

ROI can be considered as the thickness of the particle. Once the thickness is 

obtained, calculating length and width becomes a 2D problem. The assumption 

that the largest height value of the pixels that belong to the particle lying on the 

scanning bed corresponds to the particle thickness, conserves significant 

computing power because it transforms a 3D problem into a much simpler 2D 

problem. 

First, the particle ROI is extracted creating a new image. The volume and 

thickness of the particle are then calculated using the previously stored height 

data. Next, the length and width of the particle are calculated by rotating the ROI 

incrementally to find the circumscribing rectangle with the smallest width. 

Finally, the three primary dimensions are reordered to find the longest, 

intermediate, and shortest dimensions in case the particle does not rest flat, and 

elongation and flatness ratios are calculated (Figure 2.1). 

Just as one pixel corresponds to a unit square area in a 2D digital image, a 

volume element in a 3D image (called a �voxel�) corresponds to a unit volume. A 

pixel has an associated grayscale value whereas a voxel has a binary value. It is 
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either full or not full. Thus, calculation of the volume requires counting the 

number of full voxels that correspond to the particle ROI. The algorithm for the 

volume and thickness calculations is as follows: 

1. Find the height value of each pixel in the particle ROI by referring to the 

stored height data. If the pixel is within a void as discussed in Chapter 4, 

use the height of the closest pixel in the horizontal X direction in the 

image. In this way, Figure 4.9 (c) can be inferred from the acquired image, 

Figure 4.9 (b). The search for the closest pixel is conducted only within 

the particle�s ROI. 

2. Multiply the pixel�s height value in each full voxel by the unit volume of 

the voxel in  (3mm ZYX ∆×∆×∆ ), and add the calculated number to the 

accumulated volume. 

3. Compare the pixel�s height value with the measured maximum height 

value so far. If the pixel�s height value is larger than the maximum height 

value, it becomes the new maximum height value. 

4. Repeat steps 1 through 3 for all pixels in the particle ROI. After all the 

pixels in the ROI have been considered, the accumulated volume and the 

maximum height value become the volume and the thickness of the 

particle, respectively. 

 

As described in Chapter 2, the manual method for determining flatness 

and elongation ratios (ASTM D 4791) requires rotating each particle to determine 

whether the particle fits into the current caliper configuration. The LASS �length 
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and width calculation� algorithm simulates this manual procedure. One difference 

is that since the X and the Y may be different every time the particle region 

is rotated, an updated X and Y are calculated after each incremental 

rotation. The algorithm for length and width calculation is as follows: 

∆ ∆

∆ ∆

∆ ∆

1. Rotate the particle ROI by 5°. 

2. Calculate the new X and Y using the following formulae: 
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where X∆  and Y∆  are the new X and Y, respectively,  is 

X at zero rotation angle,  is Y at zero rotation angle, and 

∆

∆

∆ 0X∆

∆ 0Y∆ θ  is 

the current rotation angle. 

3. Find the circumscribing rectangle. 

4. Calculate the width and length of the rectangle by multiplying the new 

X and Y by the horizontal and the vertical pixel dimensions, 

respectively. If the width turns out to be longer than the length, they are 

interchanged. 

∆ ∆

5. Compare the rectangle�s width with the minimum width measured so far. 

If the rectangle�s width value is smaller than the minimum width, it 

becomes the new minimum rectangle width, and the length and the width 

are both stored. The new rotation angle θ  is also stored in order to be 

used in the �virtual sieve� which is explained later. 
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6. Repeat steps 1 through 5 until the accumulated rotation angle is larger than 

90°. Then, the selected minimum rectangle�s dimensions become the 

width and the length. 

 

5.2.2 The Virtual Sieve 

If machine vision or laser imaging is used for gradation measurements, the 

data on a given particle must be analyzed to determine two parameters:  

1. The smallest square mesh opening through which the particle could pass 

in any possible orientation.  

2. The weight of the particle, which is generally computed from an estimate 

of particle volume and the average specific gravity of the aggregate 

material. 

This correlation is depicted schematically in Figure 5.2. The smallest mesh 

opening through which a particle can pass is governed by the particle�s smallest 

two dimensions, the width and thickness. Since the thickness information cannot 

be directly obtained in 2D DIA, correlation factors are generally used to make the 

results close to those of sieve analyses (Mora et al. 1998, Ghalib and Hryciw 

1999).  
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Figure 5.2: Relationship between the smallest two main dimensions of a particle 
and sieve data. 

 

As illustrated in Figure 5.2, each particle�s projected image along the 

longest dimension direction can be used to determine the equivalent sieve opening 

size through which the particle can pass. Just as the virtual caliper rotates the 

projected image of the particle along the shortest dimension�s axis incrementally, 

virtual sieve analysis rotates the projected image along the length�s axis. This 

approach conserves significant computing power again because it transforms a 3D 

problem into a far simpler 2D problem. The algorithm for the calculation of the 

equivalent sieve opening size is as follows: 
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1. Rotate the particle ROI by the stored angle θ  in the virtual caliper 

process. 

2. Calculate the new X and Y using Equations (5.1) and (5.2), 

respectively. 

∆ ∆

∆ ∆

3. Project all the height data, which were separately stored, of the ROI along 

the longest dimension direction creating a new binary image. Define the 

horizontal direction of the new image as the X direction, and the vertical 

direction as the Z direction. 

4. Put a label on the particle region of the new projected image, identifying 

the region as a new ROI. 

5. Rotate the new ROI by 5°. 

6. Calculate the new X and Z using the following formulae: 
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where X∆  and Z∆  are the new X and ∆ Z, respectively,  is 

X at zero rotation angle,  is Z at zero rotation angle, and 

∆

∆

0X∆

∆ 0Z∆ θ  is 

the current rotation angle. 

7. Find the circumscribing square 

8. Calculate the dimension of the square by multiplying the new ∆ X or ∆ Z 

by the pixel dimension of the square. 
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9. Compare the square�s dimension with the minimum square dimension 

measured so far. If the square�s dimension value is smaller than the 

minimum dimension, it becomes the new minimum square dimension. 

10. Repeat steps 5 through 9 until the accumulated rotation angle is larger than 

90°. Then, the selected minimum square�s dimension becomes the 

equivalent mesh size. 

However, in many cases a particle that cannot pass a certain mesh size in 

this computerized method can actually pass through that opening size in a slightly 

different orientation as shown in Figure 5.3. This is because the computerized 

method only uses projected images of particles, without attempting a complete 

random-vibration based sieve simulation for computational efficiency. The fact 

that particles� projected images rotate at every 5° interval instead of every 1° 

interval in the virtual sieve method also tends to make the equivalent sieve 

opening size a little bigger than the actual size. To correct for this effect, 

approximately 3000 particles were randomly selected from four different quarry 

sources (limestone river gravel, crushed traprock, crushed quartzite, and crushed 

granite), and their calculated equivalent mesh sizes were compared with those 

obtained from manual sieve analyses. A reduction factor (0.85), which was 

determined from these preliminary testing results, is used to estimate the actual 

mesh size through which the particle can pass. 
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Figure 5.3: A particle passing through a mesh opening size by changing its 
orientation.
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5.2.3 Analysis of Dimensional Ratios and Gradation 

In Elongation and Flatness Ratio (EFR) and gradation tests, the percentage 

of particles in an aggregate sample that exceed or fall under a limiting ratio, or 

that fall under a size bracket is determined. To provide the weight-based 

information, which is preferred in both tests, the average specific gravity of the 

sample needs to be multiplied by each particle�s volume. This is an attempt to 

match the results of the automated process with those of the standard methods. 

However, the volume-based representation of aggregates is more desirable 

because it provides a more rational indication of how aggregate particles interact 

with each other in three dimensions. 

Figure 5.4 shows the relationship between measured and real volumes. 

The bottom of each particle cannot be scanned by the LASS, so the measured 

volumes (  and  in Figure 5.4) are larger than the real volumes 

(  and  in Figure 5.4). To obtain exact volumes, the hidden bottom 

portions (  and  in Figure 5.4) should be estimated and subtracted from 

the measured volumes. However, since only the particle percentage information is 

required in EFR and gradation tests, it is possible to characterize an aggregate 

sample without estimating the volume of the hidden part for each particle. This 

only requires the reasonable assumption that on average the volume of the hidden 

bottom of the particle is proportional to its actual volume, as indicated in Figure 

5.4. 

DU AA +
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To illustrate, if an aggregate sample is divided into two groups, one with 

ratios larger than a :1 and the other with ratios smaller than :1, the total 

measured volume can be expressed as follows: 

a
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where  is the total measured volume, Va  is the measured volume of 

particles with ratios smaller than :1, and Vb  is the measured volume of 

particles with ratios equal to or larger than :1. If the two groups have almost the 

same proportion of hidden volume, the total measured volume can be expressed 

as follows: 
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where  is the real volume of particles with ratios smaller than :1,  is 

the real volume of particles with ratios equal to or larger than :1, and 

RiVa a RiVb

a P  is  

the average proportion of the particles hidden from the scanner. Consequently, the 

percentage of particles with ratios smaller than :1 can be expressed with the 

measured volumes as follows: 
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where  is the total real volume. The validity of this assumption is verified in 

the next section. 
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Figure 5.4: Depiction of the bottom portion of each particle (  and ) that 
is hidden from the laser scanner. 
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5.3 VERIFICATION 

5.3.1 EFR Tests 

To check the basic accuracy of particle dimensions determined by the 

laser scanner, a machined rectangular prism measuring 10 mm by 30 mm by 60 

mm was scanned by the LASS. The observed errors in the determined longest, 

intermediate, and shortest dimensions were 3.0%, 3.3%, and -0.9%, respectively. 

The error in the measured volume was 0.01%. Note that the determination of the 

three primary dimensions of a particle requires finding the correct orientation for 

the smallest circumscribing rectangle. The search for this rectangle can introduce 
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some additional error into the LASS measurements, which probably explains the 

larger error associated with the measured longest and intermediate dimensions of 

the machined rectangular prism in this test. 

To verify the applicability of the LASS results, a collection of stone 

particles were measured with a vernier caliper so that the LASS results could be 

compared with direct manual measurements. Altogether, 200 particles were 

numbered and measured, each with a longest dimension between 7 and 26 mm. 

The number of particles was selected to yield statistically valid results given that 

some variability, related to the positioning and orientation of particles in a 

particular scan, is expected. To get test samples with a range of particle colors and 

surface textures, aggregates were procured from four different quarries located 

across the United States. From each source, fifty particles were randomly selected 

to obtain a total of 200 particles. The four different aggregate sources and a 

description of the general characteristics of each material are given in Table 5.1. 
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Table 5.1: Summary of the shape characteristics of the tested particles. 

Longest dimension 
(mm) 

Shortest dimension 
(mm) Particle 

No. Source Description 
MAX MIN AVE MAX MIN AVE 

1~50 CA 
Angular, medium gray 

granite with some black 
and white particles 

23.74 8.83 14.09 8.98 4.08 5.98 

51~100 SD Very light red, angular 
quartzite 18.55 7.39 11.55 9.60 3.12 5.52 

101~150 TX 
Natural river gravel � 

various types of angular 
and rounded material 

25.73 7.18 11.92 8.40 2.57 5.27 

151~200 VA Angular, dark gray 
traprock 23.26 8.81 14.74 9.12 3.22 5.62 

 

To manually measure the three primary dimensions of each particle, the 

vernier caliper shown in Figure 2.2 (a) was used. The caliper had a 0.025 mm 

precision. Although these vernier caliper measurements are reasonably accurate, 

the 200 particles were also measured with the proportional caliper shown in 

Figure 2.2 (b) to permit direct comparisons with the standard ASTM D 4791 

method. Measurements of the 200 particles with the vernier caliper required 

approximately four hours (approximately 50 particles per hour), with the aid of a 

computer spreadsheet program to calculate the elongation and flatness ratios. In 

comparison, measurements with the ASTM standard proportional caliper took 

four and a half hours. 

To obtain a direct measurement of particle volume, a graduated cylinder 

with 0.1 ml (100 mm3) divisions was used. Each particle was submerged in water 

in the cylinder to obtain the particle volume from the volume of displaced water. 
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Approximately seven hours were required to measure the 200 particle volumes in 

this manner. 

After the manual measurements were completed, the 200 numbered 

particles were randomly spread on the LASS scanning bed, with some 

adjustments to ensure that no two particles touched one another. The particles 

were then scanned with the LASS and the data were processed using the virtual 

caliper method. Note that in this EFR test, the 3D image was segmented using a 

simple thresholding method because the particles were already well separated 

manually. The resolutions for the X, Y, and Z directions were 0.3 mm, 0.3 mm, 

and 0.5 mm, respectively. It took 70 seconds to scan all 200 particles, and 40 

seconds to calculate elongation and flatness ratios (approximately 6000 particles 

per hour). Hence, the LASS device was approximately 150 times faster than the 

manual measurements with the ASTM D 4791 proportional caliper for this 

example. 

Correlation analyses were then conducted to see how the LASS results 

compared to the manual measurements for the 200 test particles. Correlation 

coefficients obtained by correlation analyses show the degree to which two 

variables are linearly related. For example, if a correlation coefficient is 1, it 

means that there exists perfect positive linear relationship between the two 

variables, whereas a coefficient of zero means that there is no relationship 

between the two variables (Cangelosi et al. 1983). Comparisons of the three 

primary dimensions, elongation ratio, flatness ratio, and volume are shown in 

Figures 5.5 to 5.8. The correlation coefficients for the longest, intermediate, and 
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shortest dimensions were 0.98, 0.91, and 0.92, respectively (Figure 5.5). All three 

statistics show that there exists very strong correlation between the vernier caliper 

and the LASS measurements. Note that the correlation for the longest dimension 

is relatively higher than for the intermediate and shortest dimensions. This result 

was unexpected considering that, for the machined prism, the measurement error 

was the lowest for the shortest dimension. One possible explanation for this may 

be that it is more difficult to manually measure the intermediate and shortest 

dimensions of a particle than to measure the longest dimension. Consider that one 

must visualize the smallest rectangular prism that circumscribes the particle 

before measuring the three primary dimensions by hand. In the manual 

measurements, the technician typically measures the longest dimension of the 

particle first, and then tries different orientations to measure the intermediate and 

shortest dimensions. In rotating the particle, the circumscribing rectangular prism 

originally visualized by the technician may become skewed, which will lead to 

errors in the measured intermediate and shortest dimensions. In other words, the 

measurement error may reside with the technician rather than the LASS. 

The flatness ratios and elongation ratios obtained from the LASS also 

correlated strongly with the manual measurements. As seen in Figure 5.6, the 

correlation coefficients based on the vernier caliper measurements were 0.89 and 

0.92 for the flatness ratios and elongation ratios, respectively. The correlation for 

the flatness ratio is relatively lower because the measured intermediate and 

shortest dimensions, which had the slightly lower correlation than the measured 

longest dimension, are used to calculate the flatness ratio. 
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In comparison, the LASS measurements of the flatness and elongation 

ratios correlated relatively poorly with the ASTM proportional caliper 

measurements, as indicated in Figure 5.7. This is expected because the 

proportional caliper provides data only on selected, limiting ratios, and does not 

directly determine the actual dimensional ratios of each particle. 

As can be seen in Figure 5.8, the volume measurements obtained from the 

LASS correlate strongly with the manual measurements (correlation coefficient of 

0.96). As mentioned previously, the graduated cylinder that was used for the 

manual volume measurements had 100 mm3 (0.1 ml) divisions. Considering that 

the average volume of the 200 particles was 325 mm3, the precision of these 

manual measurements are fairly low, which should contribute to a significantly 

lower correlation. However, the comparatively strong correlation observed for the 

volume measurements may result from the fact that there is no need to find a 

virtual circumscribing rectangular prism, a requirement that makes it more 

difficult to accurately assess the primary particle dimensions. 

In addition, the strong correlation with the manual measurements of 

particle volume provides strong support for the appropriateness of the assumption 

made with regard to the hidden bottom portion of each particle. As discussed in 

reference to Figure 5.4, the LASS algorithm assumes that every particle has 

approximately the same proportion hidden from the scanner. If this assumption 

were not valid, the strong correlation in the volume measurements would not have 

been obtained. 
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From the particle shape data obtained, a variety of statistics can be 

calculated to express the shape characteristics of an aggregate sample. For 

example, the percentage of particles whose flatness ratios are larger than 5:1 can 

be calculated. Also, the percentage of particles whose flatness ratios are between 

5:1 and 4:1 can be obtained. However, the true nature of the shape characteristics 

of the sample can be best represented by a continuous ratio curve. Figures 5.9 

show examples of a continuous flatness ratio curve (a) and a continuous 

elongation ratio curve (b). Using the continuous ratio curves, one can better 

comprehend the true profile of the shape characteristics of the sample and extract 

needed information. The ability to develop a continuous ratio curve like those 

obtained with the LASS is another advantage of performing automated 

measurements. It is worth noting that the LASS measurements correlate strongly 

with the manual measurements of the elongation ratio and the flatness ratio in 

Figure 5.9. 

As previously mentioned, many efforts have been made to develop an 

automated method to measure particle dimensional ratios. While the previous 

research methods were successful capturing and analyzing particle data, the LASS 

has the following advantages over other approaches: much less human 

intervention, the capability of measuring multiple particles at a time, and the high 

level of accuracy of the measurement, which is inherent to true 3D measurement 

technique. These advantages make the LASS very promising.  
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5.3.2 Gradation Tests 

To verify the applicability of the LASS in determining particle size 

distribution, ten aggregate samples were manually sieved in order to compare the 

results with those from the LASS. The evaluation test samples were formed using 

aggregate from the four material sources listed in Table 5.1. The ten samples were 

prepared to three different gradations. The test samples were obtained by sieving 

larger quantities of stone into distinct size ranges, then manually re-mixing them 

to achieve the desired gradations. The sample designations and details are given 

in Tables 5.2 and 5.3.  

After the aggregate particles were manually spread on the platform, they 

were scanned and processed to determine the grading of each sample. Note that 

unlike the elongation and flatness ratio test, a fairly large number of particles need 

to be tested to provide one gradation result. This makes it almost impossible to 

manually spread particles, such that no two particles touch one another. 

Therefore, particles were roughly spread on the platform, and the segmentation 

algorithm discussed in Chapter 4 was used to separate particles. Scanning and 

sizing took approximately 5 to 8 minutes per kg of sample. Figure 5.10 shows the 

results of the comparison between the LASS and the sieve analysis data. As can 

be seen from the figure, excellent agreement is exhibited between the manual 

sieve and the LASS analyses. Note also that the LASS provides a continuous 

gradation curve across the full range of particle sizes, as opposed to the discrete 

sieve data representing only the quantity of particles in given size ranges. 
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Table 5.2: Description of aggregate samples for gradation tests. 

Material source Gradation 
designation Description of gradation 

Sample 
size 
(kg) TX VA CA SD 

C-STD Coarse standard, with most particles 
larger than 4.75 mm ( no. 4 mesh) 6.0 •  •  •  •  

C-SM Similar to C-STD but with 
proportionally more smaller particles 6.0 •  •  •  •  

C-LG Similar to C-STD but with particles 
up to 38 mm (1.5 inch) 15.0 •     

C-RND Same as C-LG but with mostly 
rounded particles 15.0 •     

 

Table 5.3: Gradations of the test samples. 

Cumulative percent passing (%) Sieve opening C-LG / C-RND C-SM C-STD 
1.5� (38.1mm) 100.0 100.0 100.0

1.25" (31.8mm) 93.3 100.0 100.0
1� (25.4mm) 73.3 100.0 100.0

3/4" (19.1mm) 46.7 90.0 83.3
1/2" (12.7mm) 20.0 56.7 31.7
3/8� (9.53mm) 10.0 31.7 11.7

No. 4 (4.75mm) 3.3 6.7 1.7
No. 8 (2.36mm) 0.0 0.0 0.0

 

The CANWE (Cumulative And Normalized Weighted Error) statistic, 

based on a weighted mean of the errors observed across the full range of particle 

sizes in a sample, was developed by Browne, one of the research team members 

of the ICAR project 503, �Rapid Test to Establish Grading of Unbound Aggregate 

Products�, to give a better indication of machine accuracy (Browne 2001). 

CANWE is defined as: 
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where 

•  N: Number of sieve size fractions used in the analysis (e.g., if a stack of 
six sieves are used in a conventional test with a pan to capture the finest 
material, then N = 6 + 1 = 7) 

•  fs: Percent by weight retained in a sieve fraction, as measured in a standard 
sieve test 

•  fm: Percent by weight retained in a sieve fraction, as measured by a rapid 
gradation machine  

•  dmin: Smallest sieve opening size corresponding to the lower limit of a 
sieve fraction 

•  dmax: Largest sieve opening size corresponding to the upper limit of a sieve 
fraction 

•  dmed: Median sieve opening size in a sieve fraction, dmed = ½ (dmin + dmax) 

  

In this measure of gradation accuracy, the absolute value of the error f m � fs  in 

each size fraction is weighted by two factors. The particle count weighting factor, 

(fm/dmed
3), was derived by assuming that the particles in a given size range are 

spherical with a uniform diameter equal to the median mesh size. This weighting 

factor gives more weight to errors in size fractions with more particles, which 

tends to emphasize errors in the smaller size ranges where many more particles 

are required to form a given percentage of the sample weight. The second 

weighting factor in Equation 5.8 is (dmax � dmin), which gives more weight to 

measurement errors over more widely spaced size fractions. In a typical sieve 
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analysis, where more widely spaced mesh sizes are used at the larger size 

fractions, this weighting factor will tend to emphasize errors in characterizing the 

largest sample particles. Multiplying the two weighting factors tends to 

compensate for these effects at both ends of the sample size range. CANWE is 

also normalized with respect to the weighting factors to obtain a dimensionless 

statistic (Browne 2001). 

The CANWE statistic was used to compare the accuracy of the LASS to 

the 2D DIA based commercial grading machines listed in Table 5.4. The same 

aggregate test samples used for the LASS were transported to various locations 

for testing the five commercial grading machines. The commercial machine tests 

were conducted mainly by Browne between July 2000 and January 2001. New 

test samples were prepared or re-mixed for evaluating each device, to ensure that 

the benchmark sample gradations were consistent for all tests. The weight of 

material in each sample met the minimum requirements set forth in ASTM C136 

(1999). More detailed information on how those commercial grading machines 

were tested can be found in Browne (2001). The results are plotted in Figure 5.11. 

Note that CANWE is an error statistic, such that smaller values indicate better 

accuracy. In Figure 5.11, the magnitude of CANWE is plotted downward to 

enhance the perception that shorter bars (closer to zero) indicate better 

performance. The conclusion reached from Figure 5.11 is that the LASS shows 

the best performance in almost every case, with a few exceptions. 

 

 103



Table 5.4: Commercial grading machines evaluated. 

Device Developer U.S. Sales Representative

VDG-40 Videograder Laboratoire Central des 
Ponts et Chaussées, France 

Emaco (Canada) 
Ltd./LTEE 

Computerized Particle 
Analyzer (CPA) Haver & Boecker W.S. Tyler 

OptiSizer PSDATM 
5400 Danfoss Videk Co. Micromeritics Instrument 

Corp. 
Video Imaging System 

(VIS) John B. Long Co. John B. Long Co. 

Particle Size 
Distribution Analyzer 

(PSDA) 
Clarkson University Buffalo Wire Works Co., 

Inc. 
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Figure 5.11: Comparison of machine accuracies based on CANWE statistic. 
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CHAPTER 6 
WAVELET-BASED 3D DESCRIPTORS OF AGGREGATE 

PARTICLES 

Morphological characteristics of stone aggregates, including particle 

shape, angularity, and surface texture, have a significant impact on the 

performance of HMA materials. To accurately identify and quantify these critical 

aggregate characteristics, well-defined particle descriptors are essential. 

Moreover, because a large number of irregular particles must be assessed to 

adequately characterize an aggregate material, descriptors that can be quantified 

with automated machines are preferred. In processing true 3D data from a laser 

scanner, wavelet-based 3D particle descriptors are developed as a way to 

characterize individual stone particles. Although there is a variety of ways to 

explain wavelets, a wavelet may be best described as a function with finite length 

designed to measure variations in a signal. By comparing the wavelet with each 

part of the signal, the level of fluctuation in the signal can be obtained. Most 

importantly, the size of the wavelet can be changed to measure different scales of 

fluctuations in the signal. Aided by this multi-resolution analysis feature of the 

wavelet transform, the developed descriptors provide a generalized, 

comprehensive, and objective way of describing aggregates. This chapter first 

establishes the motivation for development of new 3D particle descriptors along 

with the introduction of related prior research efforts in section 6.1. Sections 6.2 

and 6.3 then review the technologies that can be used for developing particle 

descriptors with the main focus on wavelet transform. Next, the descriptors are 

 108



defined, and their physical meanings are discussed in section 6.4. Finally, the 

descriptors are applied to various properties of aggregates to demonstrate their 

applicability to particle characterization in section 6.5. 

 

6.1 INTRODUCTION 

Studies (Ahlrich 1996, Barksdale and Samir 1989, Kuo et al. 1998, 

National Stone Association 1993) have shown that the performance of hot mix 

asphalt (HMA) materials is significantly impacted by the aggregate's 

morphological properties, including particle shape, angularity, and surface 

texture. It is generally recognized that aggregates with equidimensional, angular 

shapes and rough surfaces increase the strength and durability of HMA. These 

concepts were incorporated into the current Superpave specification. For example, 

flatness and elongation ratios (ratios of principal particle dimensions) are used to 

quantify the shape of coarse aggregate using the ASTM D 4791 test method. For 

quantifying coarse aggregate angularity, the number of fractured faces on the 

aggregate particles is used (ASTM D 5821). These standardized methods were 

selected for their simplicity and the availability of the needed tools. However, 

these test procedures are labor-intensive, time-consuming, and subject to human 

errors. Above all, important properties of aggregates may not be captured using 

these simple measurement methods. 

Much research has been conducted to address this problem. Several 

investigators have utilized 2D DIA to extract various aggregate shape 

characteristics (Wang et al. 1997, Mora et al. 1998, Ghalib and Hryciw 1999, Kuo 

 109



and Freeman 2000, Masad et al. 2000, Masad et al. 2001). These studies have 

shown that DIA is a promising technique that can identify connections between 

morphological properties and HMA performance. Some researchers have 

attempted to extract 3D information from 2D particle images to gain a more 

comprehensive understanding of the morphological properties (Kuo et al. 1998, 

Brzezicki and Kasperkiewicz 1999, Rao and Tutumluer 2000, Maerz and Lusher 

2001). This is accomplished by capturing and analyzing one or more orthogonal 

2D images of the aggregate particles. However, these studies were focused on 3D 

shape (dimensional ratios) information rather than a complete 3D characterization 

of angularity and surface texture.  

Figure 6.1 shows the process of design and construction improvement, 

motivated by technological advancements. The technological advancements 

initiate the process by enabling the discovery of new properties or objective 

quantification of already known properties in construction materials. This leads to 

research efforts to establish correlation between the new quantified properties and 

performances of the construction materials or structures in which they are used. If 

it turns out that strong correlation exists, new design and construction methods 

can be developed based on the research results. Since it is now possible to identify 

positive and negative characteristics, even a new way of producing construction 

materials can be established to ensure the production of materials with only 

positive characteristics. As previously mentioned, morphological properties are 

known to have a great impact on HMA mixes. However, it is not still clear how 

they do as evidenced by the conflicting results in the literature (Kuo et al. 1998). 
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Therefore, there is a strong need for well-defined particle descriptors that can 

accurately identify and quantify critical aggregate characteristics, in order to 

initiate this design and construction improvement process in HMA. 

 

 

 

 Technological 
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Figure 6.1: Design and construction method improvement process. 

 

6.2 TEXTURE QUANTIFICATION METHODS 

In the machine vision field, texture is defined as �something consisting of 

mutually related elements� (Sonka et al. 1999). Namely, texture can mean a 

combination of texture elements and the relation between each element. In an 

attempt to identify the best method that can be used to objectively quantify the 
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morphological properties of aggregate particles, the following machine-vision-

based texture quantification (or classification) methods were investigated: 

1. Statistical moments: Each pixel of the image is represented by one of the 

statistical moments in a region. Statistical moments include mean 

grayscale level, the standard deviation, skewness, and kurtosis, which are 

the first, second, third, and fourth order moment, respectively (Parker 

1997). This is one of the simplest texture classification methods. 

2. Co-occurrence: The co-occurrence matrix method of texture description is 

based on the repeated occurrence of some grayscale level configuration in 

the texture (Sonka et al. 1999). Various texture descriptors can be 

extracted from the co-occurrence matrices such as maximum probability, 

moments, contrast, homogeneity, entropy, and so on. Gotlieb and Kreyszig 

(1990) combined several representative co-occurrence descriptors and 

showed the usefulness of the combined descriptors. Argenti et al. (1990) 

developed a fast algorithm for the co-occurrence matrix to alleviate the 

problem of high computational cost. It is known that the co-occurrence 

matrix does not consider primitive (texture element) shape (Sonka et al. 

1999). 

3. Edges: Since a texture has large numbers of primitives, it is possible to 

characterize the texture based on some properties of the primitives. Edge 

is one of the primitive properties. Direction and the grayscale level 

gradient of the edge are widely used to segment textures (Parker 1997). 
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Almost all edge detectors can be used for texture segmentation (Sonka et 

al. 1999). 

4. Laws� Energy: Laws devised a collection of convolution masks to 

distinguish between different textures. Laws� texture energy measures are 

derived from three simple vectors, L = (1,2,1), E= (-1,0,1), and S = (-1,2,-

1), which represent average grayscale level, edges, and spots, respectively 

(Wu et al. 1992). By convoluting each of the three vectors with itself or 

with each other, five vectors of length 5 are obtained. Then, Laws� 5 by 5 

convolution masks can be obtained by multiplying the column vectors of 

length 5 by row vectors of the same length (Wu et al. 1992). By 

convoluting the Laws� masks with a texture image and calculating energy 

statistics, a feature vector is derived that can be used for texture 

description (Sonka et al. 1999). 

5. Surfaces: This method is based on a view of the grayscale level image as a 

3D surface, so that each pixel has its own small surface. The normal to 

each plane is a vector, and the normals� direction distribution about the 

local mean normal characterizes the texture (Parker 1997). Peet and 

Sahota (1985) used a polynomial surface to better approximate the image. 

6. Fractal: Fractal geometry has been used to discriminate between textures. 

Pentland (1984) showed that a correlation exists between texture 

coarseness and fractal dimension. However, Wu et al. (1992) 

demonstrated that a single fractal dimension is not sufficient for 

description of textures. Thus, Fractal description of textures is typically 

 113



based on determination of two factors: fractal dimension and a second-

order statistic called lacunarity (Sonka et al. 1999).  

7. Mathematical morphology: In order to quantify a particle surface texture, 

Kuo and Freeman (2000) used the ratio between the perimeter and the 

convex perimeter. The convex perimeter is the perimeter of the bounding 

polygon, which is the approximation of feature boundary without surface 

texture. Such morphological operations as binary erosion and dilation 

were also used to quantify particle surface texture (Masad 2001). 

8. Fourier transform: The Fourier spectrum is ideally suited for describing 

the directionality of periodic or almost periodic two-dimensional patterns 

in an image (Gonzalez and Wintz 1987). Day and Rogers (1996) applied 

the Fourier transform to the analysis of a bread slice. Features extracted 

from the spectrum were shown to correlate with measures used in the 

baking community for describing the crumb grain of bread. Taylor and 

Costello (1999) applied the Fourier transform to the image taken of the 

cytoplasm of human lenses, and concluded that some nuclear cataracts do 

not contain large spatial fluctuations in the cytoplasm. 

 

Some of the texture quantification methods are considered as data 

compression methods. For example, the discrete cosine transform, which is 

similar to the Fourier transform, forms the basis of the Joint Photographic Experts 

Group (JPEG) image compression method (Sonka et al. 1999). The discrete 

cosine transform uses cosine functions as its base functions, instead of 
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combinations of sine and cosines functions as in the Fourier transform, to convert 

a signal in time (space) domain into that of frequency domain. Typically, data 

compression starts with this kind of linear time-frequency transform process. 

Then, the data in the frequency domain are rounded off to a set of predefined 

values. At this stage, some information can be lost, but they are, in general, not 

recognizable by human perception. Finally, the transformed data are codified such 

that more frequently used grayscale values (or symbols) are expressed with 

shorter code words while less frequently used ones are expressed with longer code 

words. In this way, the data can be represented in a more reduced form. A 

comprehensive treatment of data compression methods can be found in Mallat 

(1999). 

 

6.3 WAVELET TRANSFORM 

A wavelet transform decomposes a signal into a group of linear 

combinations with each combination having different resolutions. This transform 

is conducted using a finite length of a basis function called a �mother wavelet�. 

When compared to the signal being analyzed, the length and location of the 

mother wavelet are changed (dilation and translation) to find where and how 

much each dilated and translated version of the mother wavelet coincides with the 

signal. The dilation and translation mechanism of the mother wavelet enables not 

only the production of localized information in space and frequency domains, but 

also provides an effective representation of the signal, making the wavelet 

transform superior to other texture quantification methods in particle 
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characterization. The following sections review 1D and 2D wavelet analyses and 

are based on the work presented in Bachman et al. (2000), Blatter (1998), Burrus 

et al. (1998), Chui (1992), Daubechies (1992), Mallat (1999), Newland (1993), 

Oppenheim et al. (1999), and Rao and Bopardikar (1998). 

 

6.3.1 One-dimensional Wavelet Transform 

Wavelet analysis can best be explained with the intrinsic characteristic of 

Multiple-Resolution Analysis (MRA). Figure 6.2 shows a schematic of how a 

wavelet transform decomposes a signal into a group of linear combinations. , 

, and  are vector spaces such that V  is a subspace of , and V  is a 

subspace of V .  and W  are �difference� vector spaces between V  and 

, and  and V , respectively. These relationships can be expressed as:  
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100 VWV =⊕      (6.1) 

211 VWV =⊕      (6.2) 

 

where  represents vector addition. ⊕
Figure 6.2 also shows that the vector spaces V , , and W  are 

mutually orthogonal. If all of the available vector spaces are shown in Figure 6.2, 

the most accurate approximation of a signal  can be obtained by projecting 

it on V , which is . Likewise, if more approximations are needed for the 

signal,  and  (projections on V  and V , respectively) would minimize 

the information loss. This implies that the signal can be represented with various 

0 0W 1

)(tf

0

2

f
2Vf
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levels of approximation, minimizing possible information loss in each. That is, 

depending on the degree of accuracy required, various levels of the difference 

vector ( , , and so on) can be added to the initial approximation  to 

better represent the signal. As an example, the signal can be expressed as: 
0Wf

0Vf

(,0 k

1Wf

f

0Vf

2Vf

, )(k t

ϕ

,0 kϕ

ψ

 

1002 WWVV ffff ++=      (6.3) 

 

Expansion of the vector spaces can generalize Equation (6.3) to: 

 

∑
∞
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0
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j
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fftf     (6.4) 

 
Since  and  can also be represented as a linear combination of basis 

functions, Equation (6.4) can be expressed as:  
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∞
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+=
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,,0,0 )()(
j k

jkj
k

kk dtctf ψϕ     (6-5) 

 

where )t  and  are basis functions and their corresponding coefficients 

for , respectively, and 

kc ,0

0Vf )(, tkjψ  and  are basis functions and their 

corresponding coefficients for , respectively. Here, the basis function 
kjd ,

jWf )(t  

for the initial approximation of a signal is called the �scaling function�, and the 
basis function )(t,kj  for the difference vectors is called the �wavelet�. Note 

that as the level of difference vector space increases, better resolution is obtained 

in Figure 6.2. This implies that as j increases, the length over which the wavelet 
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)(, tkjψ  exists is reduced. This is the multi-resolution aspect of wavelet analysis, 

which enables an efficient representation of a signal in the sense that high 

frequency parts of the signal are represented with better resolution than low 

frequency parts. 

By expanding the area of j to negative infinity, Equation (6.5) becomes: 

 

∑ ∑
∞

−∞=

∞

−∞=

=
j k

kjkj tdtf )()( ,, ψ      (6.6) 

 
Therefore, if wavelets )(, tkjψ  are orthonormal to each other, wavelet 

coefficients  are expressed as: 
kjd ,

 

∫
∞

∞−

>==< dtttfttfd kjkjkj )()()(),( ,,, ψψ     (6.7) 

 

where <x, y> means the inner product of x and y. Equation (6.7) is called the 

wavelet transform. 

Wavelets are obtained by scaling and translating the so-called �mother 

wavelet� in the following manner: 

 








 −=
j
kt

j
tkj ψψ 1)(,      (6.8) 

 

where ψ  is the mother wavelet, and j and k are scale and translation coefficients, 

respectively. The mother wavelet can be compared with any part of the signal 
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with any expanded format by choosing various j�s and k�s. In Equation (6.8), 
j

1  

is used to make the norm of )(, tkjψ  equal to 1. Also, note that j is the inverse 

concept of frequency. The mother wavelet is a compactly supported (finite length) 

function that has the following properties: 

(∫
∞

∞−

tψ

ψ

<

tkj )(,ψ

 

0) =dt       (6.9) 

1=      (6.10) 

 
where x  is the norm of x ; i.e., >xx, . In most cases of discrete wavelet 

transform, the mother wavelet is transformed and dilated as follows: 

 
( ktjj −= 22 2/ ψ    (6.11) )

 

where j and k are integers. These compactly supported wavelets enable wavelet 
coefficients  to drop off rapidly, thereby allowing for efficient representation 

of the signal. In conclusion, wavelet analysis transforms a 1D signal into a 2D 

time (space)�frequency domain showing where and how much the dilated and 

translated versions of the mother wavelet correlate with the signal. 

kjd ,
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Figure 6.2: Decomposition of a signal  using wavelet transform. )(tf

 

6.3.2 Two-dimensional Wavelet Transform 

Two-dimensional wavelet analysis begins by defining 2D basis functions 

as the tensor product of scaling functions )(xϕ  and )(yϕ . Then, from the 

orthonormal characteristic of the 2D basis functions, a signal  (2D 

image) can be represented as: 

),( yxf
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in . Since  in Equation (6.12) is a 1D signal and can be 

represented as a sum of the approximation in  and the difference vector in 

, it becomes: 
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Substituting Equation (6.13) in Equation (6.12),: 
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Likewise, if   and  in Equation (6.14) 

are decomposed into their approximations and difference vectors,: 
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Thus, by adding an infinite number of difference vectors to the initial 

approximation,  is obtained as follows: ),( yxf
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Therefore, using the orthonormal characteristic of 2D basis functions, wavelet 

coefficients can be obtained as follows: 
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where , , and  

. 

)2()2(0,,, kyjxW ii
kji −−= −− ψϕ

)2()2( kyjx ii −−= −− ψψ

)2()2(1,,, kyjxW ii
kji −−= −− ϕψ

2,,,W kji

 

6.3.3 Computation of Wavelet Transform 

In practical discrete wavelet transform calculations, a signal is passed 

through a High Pass Filter (HPF) and a Low Pass Filter (LPF), with coefficients 

that are associated with each wavelet system. If the output signal passed through 

the HPF is down-sampled by two (i.e., only alternate samples are retained), the 
remaining signal corresponds to  in Equation (6.5). Likewise, if the outputs 

of the LPF are down-sampled by 2, the results become  in Equation (6.5).  

That is, it is possible to calculate wavelet coefficients without directly dealing 

with wavelet and scaling functions. This signal processing scheme is expressed 

as: 

kd ,0

kc ,0

 
∑ +−=

m
mjkj cmklc ,1, ]2[      (6.18) 

∑ +−=
m

mjkj cmkhd ,1, ]2[      (6.19) 

 

where  is the LPF, and  is the HPF. As Equations (6.18) and 

(6.19) imply, this is a recursive way of calculating wavelet coefficients. Thus, a 

signal can be decomposed into various resolutions of detail by repeating this 

process. 

]2[ mkl − ]2[ mkh −

 A 1D wavelet transform using Finite Impulse Response (FIR) filters can 

be extended to a 2D wavelet transform explained in the previous section. First, all 

 123



the rows of the 2D signal (image) are passed through a HPF and a LPF, and 

down-sampled by two. This divides the image into two sub-images.  Second, all 

columns of each sub-image are filtered using the HPF and LPF and down-

sampled by two. That is, a 2D wavelet transform is conducted by treating each 

row and column of the image as a 1D signal. As shown in Figure 6.3, the image is 

divided into four different sub-images by one-level decomposition of the 2D 
wavelet transform. While  is simply an approximation of the image, , 

, and  show vertical, horizontal, and diagonal edge information at the 

corresponding resolution, respectively. As in the 1D case, by decomposing the 

sub-image  repeatedly, MRA results can be obtained. Figure 6.4 shows a 

three-level decomposition of an image. 
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Figure 6.3: One-level wavelet transform of a 2D signal  using signal 
processing. 
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Figure 6.4: Three-level decomposition of a 2D signal  using wavelet 
transform. 
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6.4 THE PARTICLE DESCRIPTION METHOD DEVELOPED 

6.4.1 Coordinate Conversion Algorithm 

The 3D Cartesian coordinate data obtained with the LASS is converted 

into polar coordinates, which allows for a generalized description of 3D particle 

data, using a coordinate conversion algorithm. This algorithm also interpolates 

missing data such as the bottom portion of each particle, which is hidden from the 

scanner. As shown in Figure 6.5, the horizontal angle (α ) spans from 0° to 360°, 

while the vertical angle ( β ) ranges from -90° to +90°, both with a resolution of 
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one degree. Thus, the polar coordinate domain can be considered a 181 by 361 2D 

array of which elements represent radius values at different horizontal and vertical 

angles. The algorithm is briefly explained subsequent to the definition of the 

following five conditions:  

•  Condition A: The element of interest, ),( βαf  is zero, where α  is the 
horizontal angle and β  is the vertical angle. 

•  Condition B: There exists at least one non-zero element within certain 
horizontal and vertical angle distances from the element of interest. 
Determination of an appropriate range for the distances considers that as 
the vertical angle is close to either -90° or +90°, the number of datum 
points per unit area tends to be relatively high. 

•  Condition C: β  of the element of interest is larger than or equal to 0. 
•  Condition D: When the element of interest is ),( βαf , )1,( +βαf  is 

nonzero. 
•  Condition E: )2/(sin)1,( ThicknessParticlef >+ ββα  when condition 

D is met (Figure 6.6 (c)). 

 

α β

x
y

z
r

),,(),,( rzyx βα=
 

Figure 6.5: Relationship between Cartesian coordinate and polar coordinate 
system. 
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1. After initializing all the elements of the polar coordinate domain to zero, 

transform the recorded data in the Cartesian coordinate domain into the 

polar coordinate domain using the relationship depicted in Figure 6.5. The 

center point of the particle length, width, and height is chosen as the origin 

for the polar coordinate domain. 

2. Fill all the elements that have 90 β , )90,(αf , with a transformed value 

that has the highest β .  

3. Fill all the elements that have negative 90 β , )90,( −αf , with the value of 

. )2/( ThicknessParticle

4. Make all the elements with 0α , ),0( βf , the same as their corresponding 

elements with 360α , )360( , βf . 

5. If condition A is true and the element of interest, ),( βαf , is within a 

horizontal angle distance of  from the horizontally closest 

transformed element, then 

2/x

),( βαf  is filled with the value of the 

transformed element, where 
)cos(β

Cx =  and C is an integer value based 

on the data resolution of the Cartesian coordinate system. This takes into 

account the effect mentioned in condition B. 

6. If conditions A, B, and D are true, fill ),( βαf

)1, +

 with a linearly 

interpolated value calculated based on ( βαf  and the non-zero 

value from condition B. 

7. If conditions A, C, and D are true and B is false, then: 
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)cos(
)1cos(

)1,(),(
β

ββαβα +
+= ff     (6.20) 

 

This operation is based on the assumption that ),( βαf  is part of a 

vertical wall (Figure 6.6 (a)). 

8. If condition A and D are true and B, C, and E are false, then: 

 

)2,(),( γβαβα += ff      (6.21) 

 

where γ  is the vertical angle difference between β  and the lowest 

vertical angle at which a nonzero transformed element, ),( γβα +f , 

exists. The hidden underside of a particle that is not scanned is given the 

values of its symmetrical surface counterparts by this operation (Figure 

6.6 (b)). 

9. If condition A, D, and E are true and B and C are false, fill ),( βαf

)1,( +

 with 

a linearly interpolated value calculated based on βαf  and 

)90,( −αf . This operation keeps the vertical projection of ),( βαf  

within the range of half the particle thickness. 
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Figure 6.6:
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 Strategies for filling zero elements in the coordinate conversion 
algorithm: (a) Step seven; (b) Step eight; (c) Condition E. 
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6.4.2 Wavelet-based 3D Particle Descriptors 

Most of the research on individual particle characterization has involved 

attempts to measure particle properties on different scales. For example, surface 

texture is measured on the finest scale while angularity and shape are measured 

on moderate and coarse scales, respectively. However, there have been significant 

inconsistencies in the way properties on different scales are measured. In general, 

smoothness of the particle surface texture has been determined by the uniformity 

of the measured values. Elongation and flatness ratios (EFR), widely used 

indicators of particle shape, only measure proportions of the three principal 

dimensions of a particle and disregard all other information. To overcome this 

shortcoming and to provide a more generalized approach to 3D particle 

characterization, wavelet-based 3D particle descriptors are developed. Essentially, 

these morphological parameters make use of the degree of correlation between 

wavelets on different scales and the particle to be inspected in order to measure 

particle shape, angularity, and surface texture. 

If the polar coordinate system (Figure 6.5) is used, 3D particle data can be 

expressed as: 
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where i indicates different decomposition levels, j are scale coefficients, k are 

translation coefficients, W ,  )2()2(0,,, kj ii
kji −−= −− βψαϕ =1,,, kjiW
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)2()2( kj ii −− −− βϕαψ , , and )2()2(2,,, kjW ii
kji −−= −− βψαψ ),( βαf  is the 

length of the radius vector at angle α  and β . Wavelet coefficients are then 

obtained as follows: 
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As described previously, the wavelet transform compares a mother 

wavelet to the signal to determine how well the signal coincides with dilated and 

translated versions of the mother wavelet. As a result, coefficients obtained using 

fine scale wavelets represent particle surface texture, whereas coefficients from 

larger scale wavelets correspond to either angularity or shape, depending on the 

expansion degree of the mother wavelet. Therefore, by measuring the magnitude 

of the wavelet coefficients on each scale, particle shape, angularity, and surface 

texture can be quantified in a consistent way. The following descriptors are thus 

defined:  

 

    (6.24) 

    (6.25) 

    (6.26) 
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where E means energy (summation of absolute values of all the elements) and 
 are wavelet coefficients at a decomposition level i. The above descriptors 

are based on the assumption that the raw 3D particle data are available at every 

degree interval. For the shape quantification, the energy of the first and second 
decomposition level wavelet coefficients (  and , respectively) are 

added together. Angularity is measured with the summation of the energy of the 
next two finer level wavelet coefficients,  and d . Finally, the finest 

two levels of wavelet coefficients,  and , are used to quantify the 

texture of the particle surface in the same manner. In other words, after six levels 

of wavelet transforms are conducted, the two coarsest levels of coefficients are 

used for shape, the two middle levels for angularity, and the two finest levels for 

surface texture. If a perfectly smooth sphere were measured with this method, all 

the descriptors would be zero because there would be no variation in the radius 

vectors on any scale, that would be captured by wavelets. 

lkjid ,,,

lkjd ,,,0

lkjd ,,,2

d

lkjd ,,,1

lkj ,,,3

lkjd ,,,4 lkj ,,,5

Differences in the concept of data resolution in different coordinate or 

dimensional spaces deserve consideration. Here, "resolution" is used to express 

the separation between adjacent points on the surface of a particle. In 2D DIA, 

resolution is typically defined as the number of pixels in a unit length or unit area, 

such as 10 pixels/mm or 100 pixels/mm2. Similarly, resolution in a 3D Cartesian 

coordinate system can be expressed as the number of datum points (voxels) in a 

unit volume. In a polar coordinate system, however, resolution is not so easily 

defined because the distance between surface data points varies with the 

associated angle and radial distance. 
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Note that the wavelet-based descriptors are computed using angles 

(degrees) and that the average particle radius is used to normalize all three 

descriptors. Using a polar coordinate system to define the indices provides several 

advantages over using a Cartesian coordinate system. First, different resolutions 

are automatically determined with respect to the size of each particle. It is evident 

that characterizing small particles will require higher resolutions than larger 

particles. For example, the resolution needed to characterize a golf ball should be 

much higher than that required to characterize the moon.  Since the distance 

between two adjacent data points on the surface depends on the particle�s size in 

the polar coordinate system, the wavelet-based descriptors are applicable to 

characterizing any size particle without changing the index definitions. However, 

care must be exercised in converting the raw 3D data, acquired in a Cartesian 

coordinate system, to those in a polar coordinate system. The resolution of the 

raw 3D data must be high enough to validate the converted polar coordinate data. 

Second, the same number of decomposition levels can be used irrespective 

of particle size. The aforementioned ability to determine the proper resolution 

according to the particle size also allows for the use of the same decomposition 

levels. However, it remains to be seen if the six levels of decomposition are 

sufficient to adequately capture the particle properties desired. More or fewer 

decomposition levels may be needed to produce meaningful interpretations of 

particle properties. It may also be necessary to use the six different levels of 

particle information separately for more complete particle characterization. 
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Questions of this kind can only be answered with more research aimed at 

connecting the quantified particle characteristics to the behavior of HMA mixes.  

Finally, the average radius used to normalize the particle indices yields 

particle properties that are independent of size. It is likely that large particles have 

more variations in their radius data than small particles. As a result, if the indices 

were not normalized by the average radius, the large particles would tend to have 

higher particle indices than small particles. Thus, it is essential to normalize the 

indices to eliminate the impact related to particle size. Figure 6.7 shows this 

particle characterization scheme in a 2D manner. Note that Figure 6.7 serves only 

as a schematic explanation of the developed descriptors; the number of wavelets 

used in the developed descriptors is much larger than depicted and only every 

third wavelet is described. As shown in Figure 6.7, the area that the mother 

wavelet covers from one location is expanded as the scale goes up, which enables 
larger scale measurements. Theoretically, , , , , 

, and  are obtained on every interval of 2, 4, 8, 16, 32, and 64 

degrees, respectively, due to the down-sampling process. However, in practical 

applications, to convolute the first or last part of the signal with a finite impulse 

response (FIR) filter, the signal may be extended depending on the length of the 

FIR filter. The developed method uses Daubechies� D4 wavelet (Daubechies 
1992), which is known to work well with natural images. As a result,  is 

obtained on approximately every 35°. 

lkjd ,,,5 lkjd ,,,4 lkjd ,,,3 lkjd ,,,2

lkj ,,,0

lkjd ,,,1 lkjd ,,,0

d
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          (a)                       (b)  

 

  

          (c)                       (d) 

 

Figure 6.7: A particle characterization scheme with wavelet transform: (a) 
Daubechies� D4 mother wavelet; (b) Surface measurement; (c) 
Angularity measurement; (d) Shape measurement. 
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The wavelet-based particle descriptors developed enable more 

representative characterization of an individual particle, in the sense that the 

original particle data can be reconstructed with the wavelet coefficients. These 

descriptors also establish a consistent way of measuring particle characteristics, 

irrespective of the type of property, by always measuring the energy of the 

wavelet coefficients at each scale. In addition, virtually all particle information is 

incorporated into these descriptors because all consecutive levels of wavelet 

coefficients are used. Figure 6.8 illustrates the comprehensiveness of the particle 

descriptors developed. The three indices � texture, angularity, and shape � cover 

the entire particle information (although it is theoretically impossible to represent 

the exact particle surface), while the Elongation and Flatness Ratios (EFR) and 

the spatially sampled texture index cover just a small portion of what they are 

supposed to cover. The EFR may be a more intuitive measure, but their capacity 

to absorb the shape information is confined to a certain measurement scale as 

shown in Figure 6.8. (Note that the EFR span over the entire space range in 

Figure 6.8 because the three principal dimensions (length, width, and thickness) 

required to calculate the EFR circumscribe the entire particle.) As a result, if the 

corresponding angularity index does not incorporate the shape information that is 

not covered by the EFR, some important shape information can be lost. In the 

same manner, if a small portion of the particle surface is spatially sampled to 

calculate the texture index, the index may not be representative of the entire 

particle surface texture. Therefore, both the EFR and the sampled index can be 

considered arbitrary enough to miss other important particle information. This is 
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why the wavelet-based particle descriptors are developed in order to produce 

generalized, comprehensive, and accurate particle characterizations. In 

conjunction with the average radius of the particle, they are expected to quantify 

particle characteristics objectively. 

 

6.5 EXPERIMENTAL RESULTS 

The LASS was used to obtain 3D data on stone particles taken from 

samples of rounded limestone river gravel, crushed limestone, crushed quartzite, 

and crushed granite. The size of the particles used for these tests ranged from 22 

to 58 mm in their longest dimension. Each tested particle was scanned twice in 

opposite directions by the LASS; the two data sets were then merged to minimize 

possible data loss resulting from self occlusion (as discussed in Chapter 4). For 20 

particles, it took approximately 7 to 10 minutes for the data acquisition and 

merging process and approximately 25 seconds to analyze the data. A 0.3 

mm/pixel resolution was obtained and signal noise was not removed in order to 

keep the raw data as intact as possible. The 3D particle data obtained in this way 

were analyzed using custom software developed with the C programming 

language, LabView (a graphical programming language sold by National 

Instruments), and the Wavelet and Filter Bank Design Toolkit (a wavelet analysis 

toolkit sold by National Instruments). Properties of the test particles were 

quantified using the wavelet-based 3D particle descriptors (i.e., shape, angularity, 

and texture indices) to verify their applicability in characterizing aggregate 

materials. 
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Figure 6.8: A particle information represented by the developed particle 
descriptors, elongation and flatness ratios, and a sampled texture 
index. 
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First, to test the shape index (Equation 6.24), the three principal 

dimensions of a particle were used to visually classify particles in terms of shape. 

Twenty particles were identified as equidimensional and another 20 particles as 

flat or elongated. The average flatness and elongation ratios of the 

equidimensional group were both 1.3 and 1.3, while those for the flat or elongated 

group were 2.5 and 2.2, respectively. Figure 6.9 (a) and (b) show a particle of the 

equidimensional group and a particle of the flat or elongated group, respectively. 

After the wavelet transform was conducted on data from the 40 particles, the 

shape indices were calculated for each particle. Figure 6.10 shows excellent 

correlation between the wavelet shape indices and the visual classifications based 

on the flatness and elongation criteria. To test the angularity index (Equation 

6.25), 20 round particles and 20 angular particles were selected. Particles that had 

sharp edges and relatively plane sides with unpolished surfaces (as defined in 

ASTM D 2488) were classified as angular, whereas particles with no apparent 

edge were considered round. Figure 6.11 (a) and (b) show a round particle and an 

angular particle, respectively. As can be seen in Figure 6.12, the angularity 

indices show strong agreement with this visual perception of angularity. The same 

approach was taken in evaluating the surface index (Equation 6.26). Based on the 

visual inspections with such criteria as the degree of fineness and uniformity, two 

groups of 20 particles each were formed: one was smooth and the other was 

rough. Figure 6.13 (a) and (b) show a smooth particle and a rough particle, 

respectively. Figure 6.14 also shows high correlation between the surface indices 
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and visual classifications, demonstrating that the wavelet-based descriptor is a 

promising tool to measure particle surface texture. 

One feature that is common to Figures 6.10, 6.12, and 6.14 is that there are 

large ranges of particle indices that belong to one group of particles. For example, 

as can be seen in Figure 6.9, the largest angularity index (3918) in the angular 

particle group is twice as high as the smallest angularity index (1954) in the same 

group. This implies that although all these particles were visually classified as 

angular, big differences exist in angularity. While the angularity index appears to 

capture this variation, it is difficult to rank the particles using only human visual 

perception. This indicates that the developed indices can quantify properties that 

are not recognizable by human visual perception.  

 

 140



 

     

            (a)                         (b) 

Figure 6.9: Test samples for shape index: (a) An equidimensional particle; (b) A 
flat and elongated particle. 
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            (a)                         (b) 

Figure 6.11: Test samples for angularity index: (a) A round particle; (b) A angular 
particle 
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            (a)                         (b) 

Figure 6.13: Test samples for texture index: (a) A smooth particles; (b) A rough 
particles 
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CHAPTER 7 
IMPLEMENTATION STRATEGIES 

In this chapter, several aspects of implementing a rapid aggregate 

characterization system are addressed. Section 7.1 first reviews common layouts 

of aggregate, asphalt, and concrete plants to develop a better idea of how fast 

aggregate characterization technology could be incorporated with conventional 

processing equipment. Section 7.2 then suggests a modular system architecture 

that provides the flexibility needed to easily integrate an automated 

characterization system into a wide variety of plant applications, while section 7.3 

identifies advantageous locations for obtaining aggregate samples and positioning 

data acquisition units in different aggregate handling plants. Finally, this chapter 

discusses several advantages of a fast aggregate characterization system in section 

7.4.  

 

7.1 DISCUSSION OF AGGREGATE, ASPHALT, AND CONCRETE PLANTS 

7.1.1 Aggregate Plants 

There is no single distinctive arrangement for aggregate crushing and 

sorting plants. Configurations of these plants depend on the quarry site 

environment, properties of aggregate material, selection of equipment, and so on. 

An example of a segmented fractionating plant, which can produce 500 tons per 

hour (tph) is illustrated as a flow diagram in Figure 7.1. A fractionating plant is 

designed to produce separate aggregate piles with nearly equal aggregate sizes in 

 144



each pile. A fractionating plant is one of the better processing alternatives for 

controlling segregation (National Stone Association, 1993). 

As seen in Figure 7.1, the raw aggregate, obtained through either quarry 

blasting or natural aggregate extraction, goes through a vibrating grizzly feeder 

where unsound material is separated. Particles that pass through the grizzly feeder 

proceed to a jaw crusher at the primary station. Then, the aggregates go though a 

series of screening and crushing units to separate and produce particles of 

different sizes. Aggregates are transported from one station to another using belt 

conveyors, elevators, and/or screw conveyors. 

Several surge piles and surge bins are shown in Figure 7.1. The purpose of 

an in-process surge pile is to isolate the systems on both sides from each other. 

Without a surge pile, the erratic production rate coming from the primary station 

can at moments exceed the secondary station�s capacity, and later feed it nothing 

(National Stone Association 1993). 
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Figure 7.1: Segmented fractionating plant for producing graded, unbound 
aggregate (National Stone Association 1993). 
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Selection of the crusher type can be customized according to the aggregate 

material, the size of aggregate product, the production rate, and so on. There are 

basically four types of crushers: jaw crushers, gyratory crushers, roll crushers, and 

impact crushers. Basically, jaw, gyratory, and roll crushers are compression-type 

machines that apply a compressive force to rock trapped between their crushing 

surfaces, whereas impact crushers apply a high speed impact force to the feed 

rock. It is generally conceded that impact and gyratory crushers can provide 

relatively cubic products that are favored in the construction industry. 

Aggregate processing usually includes washing to remove salt, clay, dirt, 

or crusher dust particles. In general, high-pressure spray nozzles are used 

effectively to rinse coarse aggregate over a vibrating, inclined screen. When 

rinsing alone is insufficient to clean the aggregate, screw washers, log washers, or 

rotary scrubbers can be used.  

 

7.1.2 Hot-Mix Asphalt Plants 

There are three basic types of hot-mix asphalt plants currently in use in the 

United States: batch plants, drum mix plants, and continuous plants. As depicted 

in Figure 7.2, asphalt concrete batch plants consist of five major components: 

aggregate feed system, aggregate dryer, asphalt cement supply system, mixing 

tower, and emission-control system. The aggregate feed system begins with cold 

bins containing batches of aggregate in various size ranges. The contents of each 

bin are proportioned into the mix by the size of the cold feed gate opening at the 

base of the bins or by use of a variable-speed belt feeder. The combined 
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aggregates taken from the cold bins go to the cold elevator that carries the mix up 

to the dryer. After the aggregate passes through the dryer, the material is fed via a 

hot elevator to screening units, where the aggregates are separated into the hot 

bins according to size. Next, the correct proportion of each aggregate is fed into 

the weigh box, and the aggregates go to the pugmill where they are mixed with 

asphalt cement. 

 

 

Figure 7.2: Batch asphalt concrete plant (Asphalt Institute 1986). 

 

Figure 7.3 shows a continuous mix plant. This type of plant is similar to 

the batch plant except that the aggregate is continuously removed from the hot 

bins and transported to the pugmill, without a weigh box.  
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Figure 7.3: Continuous mix asphalt concrete plant (Asphalt Institute 1986). 

 

A drum mix plant (Figure 7.4) does not have hot aggregate screens, hot 

bins, or a pugmill mixer. The components of this plant include a cold feed system, 

a rotating drum dryer, an asphalt proportioning and dispensing system, and a mix 

surge silo. The aggregate is dried, heated, and mixed with asphalt cement in the 

drum mixer. As shown in Figure 7.4, aggregates of selected sizes are taken from 

the cold feed bins and transferred to the cold feed conveyor for transport to the 

drum mixer. Proportioning of different aggregate sizes in the mix is controlled by 

the rate of withdrawal from each cold feed bin. The feed material is not 

thoroughly mixed prior to entering the drum mixer. The weight and speed of the 

moving aggregates are measured on the charging conveyor to compute the 

production rate. Elimination of aggregate screens, hot bins, and the pugmill mixer 

is to increase productivity significantly (Asphalt Institute 1986).  
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Figure 7.4: Drum mix asphalt concrete plant (from Asphalt Institute, 1986) 

 

7.1.3 Portland Cement Concrete Plants 

There are many ways to classify portland cement concrete plants. First, 

concrete plants can be categorized into mass concrete, paving concrete, ready-mix 

concrete, or concrete products plants, based on the material produced. Second, 

whether or not the concrete is mixed before discharge into vehicles divides 

concrete plants into dry plants (truck mix plants) (Figures 7.5 and 7.6) and wet 

plants (central mix plants) (Figure 7.7). Dry plants feed the batched materials to 

truck mixers where water is added and mixed, whereas wet plants produce 

thoroughly mixed concrete. Third, plants can be divided into permanent and 

mobile plants. Finally, depending on the location of the aggregate bins in the 

plant, concrete plants are classified as gravity plants (tower plants) (Figure 7.5) or 

low-profile plants (Figures 7.6 and 7.7). In gravity plants, materials flow 

continuously downward as they are processed, whereas in low-profile plants, the 

aggregates are elevated by conveyor after proportioning (Dobrowolski 1998). 
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Figure 7.5: Gravity fed dry portland cement concrete plant (Capital Aggregates 
of Austin, Texas 1999). 
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Figure 7.6: A low profile dry concrete mix plant (Vince Hagen Company 1999). 

 

Figure 7.7: A low profile wet concrete mix plant (Concrete Equipment Company 
1999). 
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7.2 MODULAR SYSTEM ARCHITECTURE 

Automated characterization systems should be designed to allow for 

optimum performance in a variety of aggregate plant installations. Efforts should 

be focused on developing components with enough flexibility to allow simple 

customization to a given plant configuration. The sampling process also seems to 

be essential in order to effectively characterize the whole aggregate which is 

transported by conveyor belts at a speed of up to 80 m per minute (National Stone 

Association 1993). A good approach would be to design a system based on a Data 

Acquisition Unit (DAU) that incorporates the sample preparation and scanning 

functions in one unit. As indicated in Figure 7.8, the sample acquisition and data 

analysis functions would be accomplished outside of the DAU. This basic 

architecture is used in the PPMS system built by Scientific Industrial Automation 

(Dumitru and Browne 1999). 

In an industrial application, aggregate samples would be acquired from a 

selected position and delivered to the DAU. The arrangement of the sample 

acquisition and delivery system will depend on the plant configuration, but can be 

easily designed and customized using off-the-shelf aggregate equipment. For 

example, a simple diversion chute could be used to capture periodic samples of 

material being transferred from one conveyor belt to another. Alternatively, a belt 

sweep sampler might be used. Because sample acquisition and delivery is handled 

separately, the DAU could be more readily incorporated into the unique 

constraints of a wide variety of potential industrial applications. Furthermore, the 
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same DAU could be easily adapted for use in the laboratory with samples 

obtained manually. 
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Figure 7.8: Schematic overview of a rapid system for measuring aggregate 
properties based on the concept of DAU. 

 

Inside the DAU box, the aggregate sample would be processed and 

scanned as suggested in the conceptual design shown in Figure 7.9. Material 

would enter the DAU through a chute, possibly dried, spread out for scanning, 

passed before the scanning device, and dumped into a discharge chute. In Figure 

7.9, scanners are shown in two possible locations for scanning material spread out 

on a conveyor belt or scanning material as it drops through the air. Only one 

scanner location would probably be used in a given DAU but the choice of the 
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equipment layout may depend on the type of scanner used and the range in size of 

the particles being scanned. 
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Figure 7.9: Conceptual design of a DAU showing two possible arrangements for 
rapidly scanning aggregate particles. 
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One may need two different DAU designs; one optimized for scanning 

fine aggregates and a second optimized for scanning coarse aggregates. The basic 

layout of these two DAUs may be very similar, or may incorporate two different 

types of scanners. For example, the LASS can be used for the quality control of 

coarse aggregates where dimensional ratios of the aggregates need to be 

monitored, while a 2D digital image based system can be used to mainly control 

the size of fine aggregates. If one needs to determine the gradation of mixed 

aggregate products, two separate DAUs could be installed side-by-side, with a 

simple screening device used to split the material by size between the two DAUs. 

The resulting data could then be re-combined automatically to yield the composite 

grain size distribution. 

As indicated in Figure 7.10, data from multiple DAUs at different 

locations in a plant would be transmitted to a single computer to perform the data 

analysis and reporting. The result would be a distributed network of devices, with 

a central data collection/processing unit to monitor various sectors of a plant. In 

Figure 7.10, a network of three DAUs at a mixing plant is depicted. Here, the 

DAUs are positioned to measure the gradation of material being delivered to three 

charge bins. This conceptual system would also have the capability to actively 

control and adjust the mixed product by controlling the ratios of material being 

withdrawn from each charge bin. 
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Figure 7.10: A distributed network of three DAUs used to actively adjust the 
mixture of material from three aggregate charge bins. 
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7.3 SAMPLING LOCATION 

As pointed out above, it may not be feasible to design a single DAU that 

can accurately scan aggregates over a very wide range of particle size. Hence, 

when a rapid characterization device is needed to scan the range of material 

produced by a crusher, it may be necessary to first split the sample into 

appropriate size ranges and feed this material into two or more DAUs working in 

parallel. On the other hand, many aggregate plants, as well as most portland 

cement concrete and asphalt concrete plants, use a weight batching system to 

control the gradation of a given mixed product. As long as the weight or flow rate 

(weight per time) of a certain constituent is known, the desired mix can be 

achieved by controlling the blend of the different constituents. Hence, these plants 

process aggregates that have been sorted into somewhat narrow ranges of particle 

size. In these operations, an automated characterization device can take advantage 

of the narrower size ranges found in the sorted material being processed. 

Given a very wide variety of layouts for different aggregate processing 

plants, the two most advantageous sampling locations appear to be:  

•  after final screening as unbound aggregates are sent to sorted stockpiles, 
and 

•  where sorted aggregates are fed to a mix plant, either from stockpiles or 
charge bins. 

These potential sampling locations in an aggregate sorting plant, a ready-mix 

concrete plant, and a hot-mix asphalt plant are depicted in Figure 7.11.  
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Having aggregate samples that are already sorted into somewhat narrow 

size ranges is advantageous to the design of a DAU. That is, knowing the material 

will be in some particular size range allows one to design and calibrate the test 

equipment for optimum scan resolution and speed. In addition, if the aggregate 

products are adequately rinsed in the production process prior to being sampled, 

the washing process can be omitted from the DAU operations. Furthermore, the 

highlighted sampling locations would yield data that could be used for real-time 

quality control of the plant production by helping to identify problems in the plant 

operation. Also, scanning the material before it is fully mixed would allow for 

real-time adjustments to the mix proportions to achieve better control of the final 

aggregate characteristics. 

 

7.4 ACCURACY OF RAPID CHRACTERIZATION DATA 

One can surmise that rapid measurements are likely to yield 

characterization data that is less precise than that obtained using such 

conventional methods as sieves and proportional calipers. This is mainly because 

they are the standardized methods to which other methods need to be compared. 

However, to be practical, a rapid characterization of particles must have a 

comparable degree of overall accuracy. For example, while the precision of an 

automated system may not be as high as a sieve analysis, the capability to 

characterize grain size in a fast manner may lead to a more representative 

measurement of aggregate gradation. Three reasons why a rapid measurement 
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system may yield a better overall measure of grain size are illustrated in Figure 

7.12 and discussed below. 

As depicted in Figure 7.12 (a), rapid measurements facilitate more 

frequent sampling of the product stream, which permits better tracking of 

variations in aggregate characteristics. Changes in the parent material 

composition, production rates, and plant machinery can all contribute to variations 

in the produced aggregate characteristics (National Stone Association 1993). To 

monitor changes in aggregate quality resulting from these variations, sampling 

must be carried out with sufficient frequency. According to ASTM E 122 (1997), 

the minimum random sample size needed to determine gradation to within a 

desired accuracy is proportional to the estimated variation within a given material 

lot. Hence, when the standard deviation is large, the sample size should be 

increased to obtain the equivalent level of accuracy. If the gradation of the 

product stream is changing with respect to time, as indicated in Figure 7.12 (a), 

more frequent sampling is needed to track these changes. Thus, rapid 

measurements can be seen to yield a more accurate picture of varying product 

gradation. 

Rapid measurements also make it feasible to test much larger aggregate 

samples. As illustrated in Figure 7.12 (b), a larger sample size leads to an 

increased confidence that the measured gradation is in fact representative of the 

entire population. This concept is embodied by the central limit theorem: if all 

samples of size  are selected from a population with a finite mean u  and 

standard deviation , then as  is increased, the distribution of sample means  

n

s n
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Figure 7.12: Conceptual depiction of why a rapid gradation device will yield 
better information than can be obtained from conventional sieve 
analyses. 
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will tend toward a normal distribution with a mean of  and a standard deviation 

equal to 

n

ns /  (Cangelosi et al. 1983).  That is, the larger the sample size, the 

narrower the confidence interval becomes. Hence, as indicated in Figure 7.12 (b), 

the grain size distribution of a 500-lb sample will be closer to the actual gradation 

of the population than the gradation obtained from a 20-lb sample. 

A third advantage associated with rapid techniques is illustrated in Figure 

7.12 (c). Here, a more precise measure of gradation is obtained because each 

particle is individually sized, instead of grouping particles that fall between two 

sieve sizes. Grain size distribution is usually expressed as a percent by weight of 

the total quantity of aggregate tested that passes a series of standard sieve sizes. In 

a sieve analysis, data is obtained only for each discrete sieve opening size and 

interpolation is used to draw the gradation curve. However, no data is obtained on 

the size of particles lying between two adjacent sieves and the actual gradation is 

unknown within the boxes shown in Figure 7.12 (c). In contrast, rapid gradation 

techniques generally involve scanning individual particles and estimating their 

equivalent size and shape. While these estimated particle dimensions also have 

some associated uncertainty, measuring the size of each particle yields a more 

precise determination of the overall gradation, as depicted in Figure 7.12 (c). 

A new aggregate characterization system provides an efficient way to 

characterize construction aggregates. The LASS can measure various aggregate 

properties such as size, shape, angularity, and texture in a fast, accurate, and 

reliable manner. When implemented in aggregate plants, HMA plants, concrete 

plants, or large construction sites, this ability to automatically analyze multiple 
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characteristics of an aggregate sample is expected to have the following potential 

benefits:  

•  Improved reliability in the measured aggregate properties as a result of 
testing more frequent and larger samples of the product stream 

•  Reduced labor costs relating to all aspects of aggregate testing  
•  Improved worker safety from reducing the need to be exposed to 

chemically harmful stone material  
•  Decreased production of unacceptable material through prompt adjustment 

of the production process based on real-time measurements  
•  Tighter control of aggregate quality based on accurate and complete 

information  
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CHAPTER 8 
CONCLUSIONS AND RECOMMENDATIONS 

This chapter summarizes the accomplishments of the research objectives 

and presents conclusions. The contributions and the recommendations for future 

research are then discussed. 

 

8.1 SUMMARY 

The main objective of this research was to develop a method to measure 

various morphological characteristics of construction aggregates in a fast, 

accurate, and reliable manner. For this purpose, the focus of this research was on 

laser profiling based hardware, 3D image creation, particle segmentation 

algorithms, particle measurement algorithms, and generalized 3D particle 

descriptors.  

Chapter 3 described the LASS hardware system architecture along with a 

discussion of the laser profiling mechanism. It also explained how all the 

components of the LASS are controlled and integrated with customized software. 

In addition, a simple 3D image creation algorithm was presented that allows for 

efficient data storage without critical information loss. 

In Chapter 4, an algorithm for segmenting a particle image acquired 

through laser profiling was developed using a Canny edge detector and a 

watershed transformation. Canny edges with rigorous and liberal threshold values 

were used to outline particle boundaries on a binary image and to check the 
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validity of the watersheds, respectively. To find appropriate regional minima in 

the watershed transformation, a varying search window method was used, where 

the number of neighboring pixels being compared with the pixel of interest was 

determined from the height value of the pixel. When implemented in automated 

systems that are designed to rapidly assess size and shape characteristics of stone 

particles, this technique can increase the accuracy of the analysis results as well as 

save time required for aggregate preparation. 

Chapter 5 described a virtual particle measurement method to provide 

particle shape and size parameters that correlate to results of ASTM D 4791 

(Standard test method for flat particles, elongated particles, or flat and elongated 

particles in coarse aggregate) and ASTM C 136 (Standard test method for sieve 

analysis of find and coarse aggregates). In the �virtual caliper� and �virtual sieve� 

methods developed, the 3D data captured on each particle are rotated about 

different axes to determine dimensional ratios and the smallest mesh opening size 

through which the particle can pass. Comparisons between the manual 

measurements of the standardized methods and the results from the LASS showed 

excellent agreement. 

Chapter 6 presented the development of wavelet-based 3D particle 

descriptors. Aided by the multi-resolution analysis feature of the wavelet 

transform, these descriptors provide generalized, comprehensive, and objective 

ways of describing aggregate particles. Tests with this method produced data that 

shows strong correlation between the particle descriptors and visual perception of 

the aggregate�s morphological properties. These results demonstrate that the 
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wavelet-based approach is a promising tool for quantifying such important 

aggregate properties as size, shape, angularity, and surface texture. 

In Chapter 7, several issues related to the implementation of a fast 

aggregate characterization system were addressed. A modular system architecture 

that provides the flexibility needed to easily integrate an automated testing system 

into a wide variety of plant applications was suggested. This chapter also 

discussed such issues as potential sampling locations in aggregate handling plants, 

advantages gained from a distributed network of data acquisition units and from 

scanning large and frequent product samples, and economics. 

 

8.2 CONCLUSIONS 

Based on the work, the following four conclusions can be made.  

1. The shape analysis algorithm developed to measure particle dimensional 

ratios such as elongation ratio and flatness ratio, is computationally 

efficient and accurate. 

2. The 3D particle indices measured from various properties of aggregate 

particles correlate well with human visual perceptions. 

3. The segmentation algorithm that was developed can separate irregular 

particles in an image acquired from laser profiling in a robust manner. 

4. The laser based 3D measurement method can provide fast and accurate 

automated aggregate characterization, despite the computationally 

complex procedure required to handle the 3D data. 
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8.3 CONTRIBUTIONS 

The physical outcome of this study is the Laser-based Aggregate Scanning 

System (LASS) that can characterize aggregate particles in a fast, accurate, and 

reliable manner. The main contributions of this research to the body of knowledge 

are as follows:  

1. This study provided guidelines for designing and developing 3D 

automated particle measurement systems, from the selection of hardware 

components to algorithm development. 

2. The proposed generalized 3D particle descriptors provide a comprehensive 

framework through which various morphological properties of a particle 

can be objectively defined and accurately quantified. 

3. The 3D image creation algorithm demonstrated that 3D laser scan data 

could be stored in a 2D image format without losing critical information. 

4. The particle shape analysis algorithm (virtual caliper) demonstrated that 

fast and accurate measurement of a particle shape is possible by 

converting a computationally expensive 3D problem into a simpler 2D 

problem. 

The LASS can also be applicable to other industries such as mining, food, 

pharmaceuticals, plastics, steel, etc. where particles need to be characterized for 

product quality control. For example, the steel industry needs continuous and 

accurate measurement of sinter and coke to optimize steel production (Dumitru et 

al. 1999). The research steps in this report can serve as a model for developing 
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automated quality control systems for those industries, in addition to the 

aggregate industry.  

 

8.4 RECOMMENDATIONS 

In this report, 200 particles, 10 aggregate samples (eight 6 kg samples and 

two 15 kg samples), and 120 particles were used to evaluate the validity of the 

particle shape measurement algorithm (virtual caliper), the particle gradation 

algorithm (virtual sieve) and the particle segmentation algorithm, and the particle 

descriptors, respectively. In the future, however, the applicability of those 

algorithms to aggregate characterization should be validated with more aggregate 

testing and related quantitative experiments. For thorough repeatability tests, the 

same aggregate samples need to be measured several times by different operators 

using the LASS with some time interval between each test. In particular, more 

rigorous evaluations of the descriptors are recommended to prove their size 

invariant characteristics. Artificial particles with properties that are easy to 

quantify may be effectively used for this purpose.  

There are many interesting avenues for continued research. A few of them 

are listed in the following sections. 

  

8.4.1 Artificial Intelligence Based Quality Control 

If the LASS application is primarily concerned with variations in the 

product stream rather than complete characterization, a much faster method could 

be devised. For example, in aggregate production plants, the gradation of 
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aggregates is monitored based on variations in the percent passing a specified 

sieve size (National Stone Association 1993). Thus, by monitoring variances, 

plant operators can know whether the production process needs to be adjusted. 

The method of extracting only the variance information is likely to facilitate faster 

analysis because it does not require the complete particle characterization process 

of measuring all particles including the digital segmenting process.  

If a group of aggregates is scanned and the acquired data is converted into 

a digital image, 2D wavelet transform can be effectively applied to the image. 

Such features as energies (summation of absolute values of all the elements) of 

wavelet coefficients at different decomposition levels could be obtained for the 

whole image. If the group of aggregate is out-of-specification, it is likely that the 

group�s wavelet-based features would be different from those of an in-

specification group. Therefore, by comparing those features between in-

specification and out-of-specification images, any aggregate group with out-of-

specification properties could be detected as unacceptable. Fuzzy logic based 

neural networks (neuro-fuzzy classifier) could be effectively used to classify the 

aggregates (Tsoukalas and Uhrig 1997). 

 

8.4.2 Group Texture Analysis 

Here, to distinguish the proposed research idea from particle surface 

texture, the word �group� is used with �texture analysis�. The main objective of 

performing a sieve analysis is to see how well a group of particles can be 

compacted. To determine this property, the aggregate is divided into small size 
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ranges, using computational or physical division. Ideally, one would characterize 

a group of aggregates by the way it looks without going through the division 

process. This is because the way aggregate particles interact with each other as a 

group will eventually affect the construction structure. Developing a group texture 

quantification method that can correlate to performance of structure would be a 

worthwhile research. 

 

8.4.3 Correlation of the 3D Particle Descriptors with Hot Mix Asphalt and 
Portland Cement Concrete Performance 

The next stage of this research would be an effort to correlate the 

aggregate properties quantified using the laser-based approach with the behavior 

of hot mix asphalt (HMA) and portland cement concrete (PCC) mixes. By 

establishing strong correlation between them, it would be possible to identify 

positive and negative characteristics of aggregate particles, which could lead to 

better design and construction methods. For HMA mixes, such properties as 

resilient modulus, tensile strength, stability, etc. can be investigated, whereas 

compressive strength, tensile strength, elasticity modulus, shrinkage, creep, etc. 

can be tested for PCC mixes. As a prerequisite, the modified ASTM C 1252 for 

coarse aggregate is recommended to be used in order to get an understanding of 

the relationship between the uncompacted void content and the particle indices. 

For this particular purpose, a laser scanner that has two cameras on both 

sides of the laser source is recommended. This would eliminate the need to scan 

the same particles twice in opposite directions and to merge the two images for 
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the purpose of minimizing data loss, leading to much faster and accurate particle 

characterization.  

 

8.4.4 Comprehensive Economic Feasibility Study 

As previously mentioned, the benefits of implementing automated 

aggregate characterization system most likely derive from gains in productivity 

through optimized plant operations and strategic gains due to an improved 

product quality. It would be useful to develop a simulation method or a predictive 

model that can estimate the potential productivity increase or the improved 

quality to some tangible economic gains. It is recommended that this proposed 

study also investigate the benefit of applying the LASS to other industries such as 

mining, food, pharmaceuticals, plastics, steel, and so on. 

 

8.4.5 Commercialization 

To commercialize the LASS, several hardware and software 

improvements are recommended. First, as visualized in the data acquisition unit in 

Chapter 7, a conveyor belt system can be added to the LASS. This belt system 

could be combined with a certain type of mechanical vibrator that can spread 

particles, such that each particle will have a good chance of being fully scanned. It 

would also be important to optimize the software to be more user-friendly, more 

rapid, and more robust. 
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