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Abstract 

 

Genetic Dissection of An Amygdala CRF Circuit for Fear and Anxiety 

 

Matthew Brian Pomrenze, Ph.D. 

The University of Texas at Austin, 2018 

 

Supervisors:  Robert O. Messing and Michela Marinelli 

 

Fear and anxiety are ethological responses to threats and danger in the environment. The 

central amygdala (CeA) is a brain structure important for fear responses to discrete cues 

that predict threat. Recent findings indicate that the CeA also contributes to states of 

sustained apprehension in the absence of discrete cues that characterize anxiety, although 

less is known about the neural circuitry involved. The stress neuropeptide corticotropin 

releasing factor (CRF) is anxiogenic and produced by subpopulations of neurons in the 

CeA and the dorsolateral bed nucleus of the stria terminalis (dlBNST), a structure with 

strong connections to the CeA. Early models of the neurobiology of fear and anxiety 

proposed that the CeA promotes fear behaviors but not anxiety behaviors, and the BNST 

mediates anxiety but not fear. Furthermore, these models also hypothesized that a CRF 

pathway from the CeA to the dlBNST could be important for anxiety behavior, but this 

prediction remained untested. Here, the function of CeA CRF (CeACRF) neurons in fear and 

anxiety was investigated using Cre-dependent viral-genetic tools and male rats that express 

Cre recombinase from a Crh promoter. CeACRF neurons mediated both stress-induced 

anxiety and fear behaviors, both of which were dependent on CRF signaling. Additionally, 

the neuropeptide dynorphin, but not neurotensin, produced by CeACRF neurons was critical 
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for fear and anxiety behaviors. Neurotensin release had no effect on anxiety but dampened 

fear learning. GABA release from these neurons played a major role in setting the level of 

anxiety in the basal state. Finally, the CeACRF pathway to the dlBNST was tested for its role 

in anxiety and was found to be critical for these behaviors. This pathway also recruited 

CRF signaling and local CRF neurons in the dlBNST to engage anxiety-like behaviors. 

Collectively, these findings suggest that CeACRF neurons promote both fear and anxiety via 

the release of GABA and different neuropeptides and a projection to the dlBNST. The data 

presented here refine early neuroanatomical models of fear and anxiety and provide 

mechanistic support for recent human primate data suggesting that the CeA and BNST act 

together to generate negative emotional states. 
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INTRODUCTION 

Fear and anxiety 

In nature, animals constantly assess their environments to ensure their own survival. 

Animals must identify and seek stimuli that promote survival, such as food, social 

interaction, and potential mates, which are perceived as rewarding and reinforcing. 

Additionally, animals must learn to avoid stimuli that threaten survival, such as predators, 

toxicities, and painful agents. When animals encounter aversive stimuli, they experience 

negative emotional states that energize behavioral processes that promote proper defensive 

action. If this does not happen, the probability of survival is greatly diminished.  

 When faced with a threat, animals typically experience negative emotional states 

characteristic of fear and anxiety. Fear is a subjective feeling of fright and apprehension 

precipitated by the detection of a real threat or imminent danger. The fear response is 

complex with many different components but is typically characterized by a short duration 

and a rapid induction by a discrete and threatening stimulus (Anderson and Adolphs, 2014; 

LeDoux, 2000, 2014; Tovote et al., 2015). In other words, fear is phasic and induced by a 

dangerous stimulus that is in close proximity and/or easily detected. In contrast, anxiety is 

apprehension and anticipation of danger that persists for extended periods of time and is 

present in environments where there is no direct evidence of danger or a threat is 

ambiguous or uneasily detected (Anderson and Adolphs, 2014; Davis and Shi, 2000; Grupe 

and Nitschke, 2013; LeDoux, 2000; Tovote et al., 2015). One useful analogy is to imagine 

riding a roller coaster. As one is climbing the track to the highest point, the anticipation of 

a scary drop could be considered anxiety, and the feeling during the actual drop is fear. 
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Both of these behavioral programs are essential to survival but may be engaged in 

different contexts. A direct encounter with a threat should precipitate a fear response 

because the animal must take behavioral action before it is harmed or killed. Anxiety is 

important so that animals avoid situations or environments in which safety could be 

threatened. Anxiety in a location where an animal was previously attacked is adaptive and 

healthy. This negative emotional state serves as a reminder of what happened in the past 

and that it could again, despite no direct evidence of a threat at the current time. Despite 

some behavioral and circumstantial differences, fear and anxiety evoke similar biological 

effects. They are both regarded as brain states caused by external or internal stimuli that 

underlie a specific set of measurable behavioral, physiological, hormonal, and autonomic 

actions (Tovote et al., 2015). Additionally, they both stimulate the hypothalamic-pituitary-

adrenal (HPA) axis leading to the secretion of glucocorticoids and drive central limbic 

systems so emotional and behavioral action is properly executed. Therefore, fear and 

anxiety are conserved emotional and behavioral states that ensure animals’ survival in 

nature.  

 

Fear and anxiety disorders 

Despite being adaptive states, fear and anxiety can persist and become maladaptive over 

time (Deisseroth, 2014). Fear responses should be short-lived and dissipate when fear-

evoking stimuli have vanished. Anxiety should be experienced in places where threat or 

danger was previously detected or could be detected. When fear and anxiety become 

persistent, generalized, or exaggerated, well-being can be compromised and survival 

ability can be impaired. Unfortunately, anxiety disorders comprise some of the most 

prevalent neuropsychiatric disorders in humans (American Psychiatric Association., 2016; 
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Baxter et al., 2013). Anxiety disorders present with an estimated lifetime morbid risk (the 

proportion of people who will eventually develop the disorder at some time in their life 

whether or not they have a lifetime history at the time of assessment) of 41.7% and a 

lifetime prevalence of 33.4% with a 12-month prevalence of 22.2% (Kessler et al., 2012). 

The DSM-5 has divided these disorders into three categories, anxiety disorders, obsessive-

compulsive disorders, and trauma and stress-related disorders (American Psychiatric 

Association. and American Psychiatric Association. DSM-5 Task Force., 2013). Anxiety 

disorders include generalized anxiety disorder, panic disorders, and phobias. Trauma and 

stress-related disorders include post-traumatic stress disorder (PTSD), acute stress 

disorder, and disinhibited social engagement disorder. It is well known that acute and 

chronic stress can lead to anxiety states in animals and humans. The class of “anxiety 

disorders” may have more heritable epidemiologies and thus possess genetic components. 

However, environmental stress can lead to their expression or exacerbation. Despite the 

sources of these disorders being different, the emotional and behavioral manifestations are 

similar. In addition, anxiety disorders are highly co-morbid with a host of other psychiatric 

states, including depression, schizophrenia, and substance use disorders.  

 Since anxiety phenotypes are so common, a substantial amount of work has gone 

into understanding and treating these disorders. Currently available pharmacotherapies, 

such as benzodiazepines or serotonin reuptake inhibitors are inconsistently effective or 

suffer from adverse side effects (Bystritsky, 2006; Griebel and Holmes, 2013; Insel, 2012). 

Cognitive behavioral therapies are also effective strategies for treating anxiety disorders. 

However, even with co-incident pharmaceutical administration many patients fail to 

achieve remission or relapse. Therefore, there is a clear need for a better understanding of 

brain circuits that control the experience and expression of fear and anxiety. 
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Neurobiology of fear and anxiety 

Classic neuroscientific methods for understanding how specific brain regions contribute to 

behaviors in animal models include electrolytic lesions and pharmacological manipulation. 

Researchers used these methods to ablate a particular brain region and then test animal 

subjects for a behavior of interest. Studies evaluating the neurobiological basis of fear and 

anxiety relied on experimental designs that modeled fear and anxiety-like behaviors in 

animals. Since one cannot ask an animal if it is feeling fearful or anxious (subjective states), 

we must use models that produce measurable behaviors that represent manifestations of 

emotions like fear and anxiety that are objective in nature (Anderson and Adolphs, 2014). 

Perhaps the most important model for the study of fear and learning has been Pavlovian 

fear conditioning (Maren, 2001). In this procedure, a rodent is placed into a small chamber 

and presented with a neutral stimulus or cue, such as a discrete tone or light. As the cue 

terminates, the floor is briefly electrified and the rodent is footshocked, co-incident with 

termination of the cue (termed delay conditioning in the literature). Here, the animal learns 

to associate the aversive footshock (the unconditioned stimulus) with the previously neutral 

stimulus cue (which becomes the conditioned stimulus as the association is formed). After 

several pairings of the shock with the cue, the rodent learns to associate the cue with the 

‘fear’ of experiencing the shock. If tested again later, the rodent will exhibit a fear response 

to the conditioned stimulus in the absence of any shocks. The behavior that is typically 

used as a readout of fear in rodents is freezing. It should be noted that in more naturalistic 

settings, imminent danger can also elicit other fear behaviors (e.g. attempts to flee and seek 

shelter, fighting, increased heartrate, respiration, etc.) (Blanchard et al., 1990), which can 

depend on sex (Jones and Monfils, 2016). Using these measurable behaviors as a proxy for 



 
 

5 

fear, the fear conditioning model has served as a fundamental tool for studying the 

neuroscience of aversive learning. 

 Anxiety is modeled differently in rodents. Some of the most reliable tests for 

anxiety in rodents rely on their natural behaviors and tendencies. Rodents are cautious 

animals and prefer to be active in environments that are dark and protected. Hence, they 

exhibit thigmotaxis, or a preference for staying near walls or enclosed spaces (Treit and 

Fundytus, 1988). A test called the elevated plus maze (EPM) test takes advantage of this 

phenomenon. This is an elevated platform in the shape of a “+” with two arms configured 

with high walls (closed arms) and two arms completely exposed (open arms). In this test, 

rodents spend most of their time in the closed arms and tend to avoid the open arms. Thus, 

time spent on the open arms is a measure of a rodent’s anxiety levels. Another useful test 

is the open field (OF) test. This consists of an open topped arena in the shape of a square 

or circle with walls outlining the perimeter. Rodents will spend most of their time near the 

walls and tend to avoid exploring the center of the arena. These tests have excellent 

validities since drugs that decrease anxiety in humans, such as benzodiazepines, increase 

rodents’ time on the open arms of the EPM and time spent in the center of the OF (Hazim 

et al., 2014). In addition, anxiogenic treatments (stress, yohimbine, etc.) reduce exploration 

of exposed areas (Cai et al., 2012; McCall et al., 2015). There are several other models for 

testing anxiety in rodents, such as social interaction time, novelty-induced suppression of 

feeding, light-dark box, and defensive burying (Bailey and Crawley, 2009). Altogether, 

fear conditioning and the aforementioned anxiety tests are reliable models for testing the 

neurobiology of fear and anxiety in animals. 

 Studies evaluating the neurobiology of fear was pioneered Joe Ledoux and 

colleagues. These researchers utilized brain site-specific lesions and pharmacological 
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silencing (via GABAergic agonists like muscimol and glutamatergic antagonists like 

CNQX and AP-5) in conjunction with fear conditioning procedures. It was soon clear that 

the acquisition and expression of fear behavior depends on activity in the amygdala 

complex, a small brain region in the temporal forebrain with a long-known role in emotion 

and aggression (LeDoux, 2003). Ledoux and colleagues demonstrated that synaptic 

plasticity within and across different subregions of the amygdala was critical to the learning 

and expression of fear behavior (Bauer et al., 2001; Clugnet and LeDoux, 1990). An 

anatomical model soon emerged where the lateral and basolateral amygdala (BLA) sends 

excitatory projections to the lateral central nucleus of the amygdala (CeA) which modulates 

activity of medial CeA neurons who send their axons to the midbrain periaqueductal gray 

(PAG) (Haubensak et al., 2010; Maren and Fanselow, 1996). Changes in neuronal activity 

in the PAG promotes defensive behaviors such as freezing, the main, but not sole, readout 

of fear in rodents (Tovote et al., 2016).  

A massive amount of work went into the neurobiology of fear, but where in the 

brain anxiety was generated was less clear. Davis and colleagues were able to dissociate 

fear and anxiety by using fear and anxiety-like behavioral models (such as fear 

conditioning and acoustic startle reflex procedures) together and classic brain lesions and 

pharmacological inactivation. In rats, lesions of the amygdala reduced fear responses but 

had no effect on anxiety-like responses in the startle response test (Davis, 1992, 1997; 

Davis et al., 1994a). In contrast, lesioning of the bed nucleus of the stria terminalis (BNST), 

a forebrain structure nested between the striatum and septum and above the preoptic areas, 

significantly attenuated anxiety responses while leaving fear responses intact (Lee and 

Davis, 1997; Walker and Davis, 1997b, 2008; Walker et al., 2009b; Walker et al., 2003). 

From these data, Davis and colleagues developed an anatomical framework which 
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proposed that fear and anxiety were mediated by these two distinct brain structures, the 

amygdala and BNST, respectively (Davis et al., 2010). As these studies were replicated, it 

became an accepted principle in the neurobiology of fear and anxiety that the amygdala 

and BNST were dedicated to these two different aversive behaviors. 

 

Fear, anxiety and CRF 

In order to evoke anxiety in rats, investigators modified acoustic startle reflex procedures 

by shining a bright light. This generated enhanced startle responses that were characteristic 

of anxiety (since there was no real reason for the startle to be enhanced - brightly lit 

conditions only make the detection of predators more uncertain) (Walker and Davis, 

1997a). This treatment also enhances anxiety-like behavior in the EPM and OF tests. In 

addition, administration of the stress-responsive neuropeptide corticotropin releasing 

factor (CRF) directly into the brain enhanced startle responses (Liang et al., 1992b). This 

peptide was infused because it was originally discovered as a critical gate of the HPA axis 

and thus played a major role in reactions to stress. 

CRF is a 41 amino acid neuropeptide that has potent effects on behavior and 

physiology (Brown et al., 1982; Spiess et al., 1981). It is known to regulate both the 

neuroendocrine and emotional responses to stress, playing significant roles in behaviors of 

negative valence such as fear, anxiety, depression-like phenotypes, and stress-induced drug 

relapse (Heinrichs et al., 1995; Koob et al., 1990). A large population of neurons in the 

paraventricular nucleus of the hypothalamus express and release CRF into the anterior 

pituitary gland which stimulates corticotropic cells to release adrenocorticotropic hormone 

(ACTH) into circulation. ACTH then acts in the adrenal gland to stimulate the release of 
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glucocorticoids into the bloodstream. Thus, CRF serves as a critical component of the 

neuroendocrine stress response.  

In addition to its expression in the hypothalamus, CRF is expressed at high levels 

across the brain in structures such as the CeA, the dorsal and ventral BNST, cortex, and 

many regions of the brainstem (Olschowka et al., 1982). CRF binds two receptors, the CRF 

1 and 2 receptors (both Gs-coupled), that are widely expressed throughout the brain in many 

regions important for emotional and motivated behavior (Potter et al., 1994). CRF neurons, 

like all neuropeptide neurons, also secrete fast-acting neurotransmitters like glutamate or 

GABA (van den Pol, 2012). Furthermore, some CRF populations have been shown to co-

express other neuropeptides. CRF neurons of the CeA (CeACRF neurons) also express 

neuropeptides like dynorphin, neurotensin, somatostatin, and neurokinin B (Kim et al., 

2017; Marchant et al., 2007). Interestingly, some of these neuropeptides also regulate fear 

and anxiety-like states, but the precise roles of these neuropeptides sourced from CeACRF 

neurons have yet to be investigated. 

With this functional anatomy in mind, it is easy to predict that CRF enhances 

behaviors associated with negative emotional states. Several subsequent studies 

determined that anxiety-like startle responses were suppressed with CRF antagonists 

(Walker et al., 2009a) and that inhibition of the BNST prevented CRF-induced anxiety 

behaviors (Lee and Davis, 1997). One study reported that CRF infusion into the dorsal 

BNST produces anxiety on the EPM and that this effect is blocked by co-administration of 

a CRF1 receptor, but not CRF2 receptor, antagonist into the dorsal BNST (Sahuque et al., 

2006). This paper is also consistent with a study that found that intra-BNST infusion of 

CRF enhances startle responses (Lee and Davis, 1997). Data from these studies provided 

strong evidence that the BNST mediated anxiety-like behaviors that were generated by 
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stressful environments and CRF. In addition to a role in anxiety, other groups determined 

that CRF played critical roles in the acquisition of fear behaviors (Butler et al., 1990; 

Hikichi et al., 2000; Pitts et al., 2009; Sanford et al., 2017; Takahashi, 2001). Therefore, 

CRF plays critical roles in both fear and anxiety-like behavioral states. 

In addition to behavior, CRF’s effects on neurophysiology have been investigated. 

In the BNST, CRF enhances the frequency of spontaneous excitatory post-synaptic 

currents (EPSCs) via increasing presynaptic glutamate release (Kash et al., 2008; Nobis et 

al., 2011; Pliota et al., 2018; Silberman et al., 2013) and is primarily excitatory in the 

hippocampus (Blank et al., 2002). It has also been reported to enhance inhibitory post-

synaptic currents (IPSCs) in some cells in the amygdala (Kash and Winder, 2006). Since 

few effects on EPSC or IPSC amplitudes are reported, it is thought that CRF typically 

exerts its effects by binding CRF receptors on presynaptic terminals. Therefore, in the 

BNST, it is predicted that CRF will enhance the release of glutamate to excite BNST cells 

and energize anxiety-like behaviors. 

 

Gaps in knowledge 

Despite the anatomical segregation of fear and anxiety, Davis and colleagues made another 

prediction. Since the CeA contains a large population of CRF neurons, and it was known 

that these neurons project strongly to the BNST (Sakanaka et al., 1986), it was 

hypothesized that a CeACRF neuron projection to the BNST was important for anxiety-like 

states (Davis et al., 2010). This hypothesis remained in the literature unproven. It was most 

likely never addressed because the tools to design the appropriate experiments were still in 

their infancy. The use of the classic neuroscience methods, such as lesions, were clearly 

invaluable for understanding the neurobiology of fear and anxiety. However, these methods 
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lack the spatial and temporal resolution to identify and functionally characterize individual 

circuit elements and their interactions with large brain-wide networks. As new genetic tools 

were produced, capitalizing on Cre recombinase activity and the Cre-lox system, discrete 

manipulation of genetically defined cells and pathways became possible. One achieves this 

specificity by injecting a Cre-dependent construct packaged into an adeno-associated virus 

(AAV) into a mutant animal that expresses Cre recombinase in a population of genetically-

defined cells. Since Cre expression is controlled by the endogenous gene promoter, such 

as Crh, the AAV payload will only express in Cre+ cells. Tools of this kind were essential 

to testing the hypothesis proposed by Davis and colleagues. 

As the use of these viral-genetic tools in Cre driver animals became widespread, 

many groups started studying the roles of genetically-defined CeA neurons in fear and 

anxiety. It became clear that not only does the CeA control fear, but it could also modulate 

anxiety (Ahrens et al., 2018; Botta et al., 2015; McCall et al., 2015; Pliota et al., 2018; 

Regev et al., 2012). Thus, the nuanced and finely tuned manipulations of specific neuronal 

cell-types demonstrated the anatomical segregation of fear and anxiety as inaccurate. As 

time moved on, several groups began to investigate the function of CeACRF neurons. These 

recent studies demonstrated that indeed these cells play important yet complex roles in fear 

(Fadok et al., 2017; Regev et al., 2012; Sanford et al., 2017). These results were not 

surprising considering manipulations of CRF itself, whether through pharmacology or 

genetic knockdown, also affected fear learning (Gafford et al., 2012; Pitts et al., 2009; 

Sanford et al., 2017). However, few studies on anxiety were conducted. One very recent 

paper showed that stimulating CeACRF neurons led to increased passive coping and anxiety 

responses on the EPM (Pliota et al., 2018), and another demonstrated that reducing GABA 

signaling in CeACRF neurons enhanced anxiety-like behavior (Gafford et al., 2012). 



 
 

11 

Additionally, since essentially all studies using genetic tools to manipulate CeACRF neurons 

were performed in mice, it begged the question of whether the same effects occurred in 

other species. This was particularly important since nearly all studies performed by Davis 

and colleagues and the early studies dissecting amygdala plasticity after fear conditioning 

were performed in rats. Therefore, several knowledge gaps in the literature were apparent. 

These gaps included whether rat CeACRF neurons modulate fear and anxiety, and whether 

the CeACRF projection to the BNST are important for anxiety states.  

In addition to the complex roles these neurons most likely play in fear and anxiety 

behaviors, it was known for some time that these neurons were not only CRFergic (as 

mentioned above). The observation of co-expressed neuropeptides, especially some of 

which modulate fear and anxiety as well, suggests that these neurons release multiple 

neurotransmitters to promote specific behavioral states. However, similar to problems with 

pathway-specific manipulations, the tools to perform these types of studies did not exist. 

The notion of a neuron releasing multiple neurotransmitters and neuropeptides to control 

behavior has never been investigated to date. 

In this dissertation, the gaps in knowledge described above have been addressed. 

Based on the previous data described in the literature, several important questions were 

generated: 1) do CeACRF neurons control fear and anxiety-like behaviors in rats? 2) if so, 

which neurotransmitters do they release to evoke any effects on fear and anxiety? and 3) 

does the CeACRF neuron projection to the dlBNST mediate anxiety-like behaviors? Discrete 

manipulations of the CeACRF neuron population in rats was achieved by using Cre-

dependent AAV constructs in combination with transgenic Crh-Cre rats. These rats express 

Cre recombinase from a Crh promoter and thus Cre-dependent constructs will only express 

in Cre+ CRF neurons. The first chapter of this dissertation describes the generation and 
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utility of this rat, as well as some useful neuroanatomy that is consistent with previous 

literature while providing some new data. The subsequent chapters use the Crh-Cre rat with 

Cre-dependent viral-genetic tools to selectively manipulate CeACRF neurons and their 

projections to the dlBNST. In addition, Cre-dependent RNA interference tools were 

generated to disrupt the release of different neurotransmitters selectively in CeACRF 

neurons. The following data provide strong evidence that CeACRF neurons play versatile 

roles in fear and anxiety-like behaviors through the release of numerous neurotransmitters 

and the pathway to the dlBNST. These findings help confirm a previously untested, yet 

important hypothesis in the fear and anxiety literature, and provide novel information about 

how CeACRF neurons contribute to both fear and anxiety-like states.  
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CHAPTER 1: A TRANSGENIC RAT FOR INVESTIGATING THE 
ANATOMY AND FUNCTION OF CORTICOTROPIN RELEASING 

FACTOR CIRCUITS* 

ABSTRACT 

Corticotropin-releasing factor (CRF) is a 41 amino acid neuropeptide that coordinates 

adaptive responses to stress. CRF projections from neurons in the central nucleus of the 

amygdala (CeA) to the brainstem are of particular interest for their role in motivated 

behavior.  To directly examine the anatomy and function of CRF neurons, we generated a 

BAC transgenic Crh-Cre rat in which bacterial Cre recombinase is expressed from the Crh 

promoter.  Using Cre-dependent reporters, we found that Cre expressing neurons in these 

rats are immunoreactive for CRF and are clustered in the lateral CeA (CeL) and the oval 

nucleus of the BNST.  We detected major projections from CeA CRF (CeACRF) neurons to 

parabrachial nuclei and the locus coeruleus, dorsal and ventral BNST, and more minor 

projections to lateral portions of the substantia nigra, ventral tegmental area, and lateral 

hypothalamus.  Optogenetic stimulation of CeACRF neurons evoked GABAergic responses 

in 11% of non-CRF neurons in the medial CeA (CeM) and 44% of non-CRF neurons in 

the CeL. Chemogenetic stimulation of CeACRF neurons induced Fos in a similar proportion 

of non-CRF CeM neurons but a smaller proportion of non-CRF CeL neurons.  The CRF1 

receptor antagonist R121919 reduced this Fos induction by two thirds in these regions.  

These results indicate that CeACRF neurons provide both local inhibitory GABA and 

excitatory CRF signals to other CeA neurons and demonstrate the value of the Crh-Cre rat 

as a tool for studying circuit function and physiology of CRF neurons.  
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*Portions of this chapter have previously been published in Frontiers in Neuroscience. 

Pomrenze MB, Millan EZ, Hopf FW, Keiflin R, Maiya R, Blasio A, Dadgar J, Kharazia V, 

De Guglielmo G, Crawford E, Janak PH, George O, Rice KC, Messing RO. 2015. A 

transgenic rat for investigating the anatomy and function of corticotrophin releasing factor 

circuits. Frontiers in Neuroscience. 9:487. doi: 10.3389/fnins.2015.00487. Copyright © 

2015 All rights reserved. 
  



 
 

15 

INTRODUCTION 

Corticotropin-releasing factor (CRF) is a central regulator of endocrine, autonomic, and 

behavioral responses to stressors (Koob, 2009).  Although CRF cell bodies are distributed 

in several brain regions, they are particularly concentrated in the central amygdala (CeA), 

the bed nucleus of the stria terminalis (BNST), and the paraventricular hypothalamic 

nucleus (PVN) (Wang et al., 2011). In the PVN CRF acts as a hormone to regulate the 

hypothalamic-pituitary-adrenal (HPA) axis and trigger the endocrine stress response 

(Rivier and Vale, 1983).   Outside of the PVN CRF modulates synaptic transmission within 

specific circuits of the central nervous system (Gallagher et al., 2008). CRF neurons of the 

CeA are of particular interest, since they contribute to stress-related arousal, conditioned 

fear, and negative emotional states associated with drug withdrawal (Koob, 2009; Kravets 

et al., 2015; Walker et al., 2009b). 

In the rat, the CeA subpopulation that expresses CRF resides in the lateral CeA 

(CeL) where another, mostly non-overlapping subpopulation expresses enkephalin (Day et 

al., 1999; Veinante et al., 1997).  Approximately 60% of CeACRF neurons are also 

immunoreactive for dynorphin (Marchant et al., 2007).  Anatomical studies have shown 

strong projections from the CeL as a whole to the medial CeA (CeM), the brainstem 

(parabrachial nucleus, reticular formation, locus coeruleus, nucleus of the solitary tract and 

dorsal vagal complex) and the BNST, with more modest projections to the lateral 

hypothalamus, lateral one-third of the substantia nigra pars compacta and an adjacent 

lateral part of the retrorubral field (Bourgeais et al., 2001; Dong et al., 2001; Petrovich and 

Swanson, 1997; Zahm et al., 1999). For CeACRF neurons in particular, tract-tracing studies 

have identified CRF projections from the rat CeA to the locus coeruleus (Reyes et al., 2011; 

Van Bockstaele et al., 1998), parabrachial nuclei (Moga and Gray, 1985), the midbrain 
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central gray (Gray and Magnuson, 1992), the dorsal vagal complex (including the nucleus 

tractus solitarius) (Gray and Magnuson, 1987), the pontine reticular nucleus (Fendt et al., 

1997), the mesencephalic trigeminal nucleus (Sakanaka et al., 1986), and the BNST 

(Sakanaka et al., 1986).  Whether CeACRF neurons also project locally within the CeA is 

not clear, and although some CRF immunoreactive fibers have been observed in the CeM 

(Veening et al., 1984), their source and functional significance are not known. Several 

recent studies have helped clarify CRF architectures and functions using Crh-Cre mouse 

lines (Gafford et al., 2014; Gafford et al., 2012; McCall et al., 2015; Wamsteeker Cusulin 

et al., 2013), but thorough characterization of CRF circuits across brain structures, and 

moreover across species, is still lacking. 

Here, we describe a transgenic Crh-Cre rat that permits genetic access to CRF 

neurons, thereby allowing direct investigation of their anatomy and roles in physiology and 

behavior. To examine CRF cell localization and projection targets, we crossed Crh-Cre 

rats with a DsRed2/GFP-reporter rat, or infected the CeA with AAVs that express Cre-

dependent mCherry, channelrhodopsin (ChR2)-eYFP, or hDM3q-mCherry. We found that 

Cre-expressing CeA neurons are immunoreactive for CRF and project to several brain 

regions in the brainstem and diencephalon. Using the Crh-Cre rat to investigate CeA 

circuitry, we provide new evidence that CeACRF neurons act as local interneurons to provide 

both inhibitory and excitatory signals to the CeL and CeM.  
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MATERIALS AND METHODS 

Development of Crh-Cre rats 

All animal studies were approved by the Institutional Animal Use and Care Committees of 

the Ernest Gallo Clinic and Research Center at the University of California San Francisco, 

the Scripps Research Institute and of The University of Texas at Austin, and were 

performed in adherence with the NIH Guide for Care and Use of Laboratory Animals. 

Studies utilized male and female Crh-Cre rats. 

We identified the BAC clone CH230-206D8 from the CHORI-230 Rat 

(BN/SsNHsd/MCW) BAC library, which was derived from an inbred female brown 

Norway rat (Osoegawa et al., 2004), as containing the promoter region and exons 1 and 2 

of the rat Crh gene on chromosome 2.  The BAC clone has ~80 kb 3’ of the Crh ATG and 

~143 kb of DNA 5’ of the ATG.   BAC recombineering was performed as described (Cotta-

de-Almeida et al., 2003) with vectors and bacterial host cell lines kindly provided by Dr. 

Scott Snapper (Harvard Medical School). 

A ~2.7Kb modified/enhanced Cre metallothionein-1 polyadenaylation (CREM) 

fragment was PCR amplified from the plasmid p210 pCMV-CREM [Addgene # 8395; 

(Kaczmarczyk and Green, 2001)].  This fragment contains a modified human beta-globin 

intron within the Cre coding sequence to prevent expression of Cre recombinase in 

prokaryotes, thereby making it suitable for interim work in bacteria with plasmids 

containing loxP sites. The fragment was sub-cloned into the conditional replicon vector 

pBSB-171 and confirmed by sequencing. The plasmid pBSB-171 allows the cloning of the 

fragments of interest and contains a floxed aminoglycoside kinase (aph) gene cassette. A 

c-myc tag (EQKLISEEDL) was inserted (QuikChange II XL Site Directed Mutagenesis 
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kit, Agilent Technologies) immediately before the Cre “stop” codon, and confirmed by 

sequencing.  The completed construct is referred to as CREM-myc pBSB-171. 

We designed a forward PCR primer (P1) containing 58 bp homologous to the rat 

Crh sequence immediately adjacent to the ATG of CRF followed by 31 bp of CREM-myc 

pBSB-171 vector sequence, and a backward PCR primer (P2) containing 23 bp of CREM-

pBSB-171 vector sequence followed by 64 bp homologous to the sequence immediately 

adjacent to the Crh stop codon.  We then amplified a fragment containing the CREM-myc-

floxed aph cassette with rat Crh homology ends by PCR with CREM-myc pBSB-171 and 

primers P1, P2.  Lambda red-driven recombination between this PCR product and the BAC 

clone CH230-206D8 generated recombinants in which the endogenous Crh coding 

sequence was replaced with the CREM-myc-floxed aph fragment.   

This recombineered CH230-206D8 BAC was transformed with the bacterial Cre 

expression plasmid 706-Cre;tet (Gene Bridges Gmbh, Heidelberg, Germany) to remove 

the floxed aph cassette. The recombineered circular BAC DNA without the aph cassette 

was purified (Bimboim and Doly, 1979) using a NucleoBond BAC 100 kit (Clontech # 

740579).  This DNA was sent to The University of Michigan Transgenic Animal Model 

Core for pronuclear injection into Hdr:W1 ES cells and implantation (Filipiak and 

Saunders, 2006).  Rat-tail DNA from resulting progeny was purified using DNeasy 

(Qiagen # 69506), screened by PCR, and confirmed by sequencing to identify a total of 3 

founder transgenic rats.  Cre-expressing cells were identified by crossing Crh-Cre rats with 

the reporter rat line W-Tg(CAG-DsRed2/GFP) 15Jms (NBRP-Rat Number 0282), which 

was obtained from the National BioResource Project-Rat in Kyoto, Japan. The reporter rat 

has a DsRed coding region flanked by LoxP sites followed by a GFP sequence, all under 
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control of a CAG promoter. Cre recombination leads to excision of the DsRed coding 

region and expression of GFP. 

 

Surgery and histology 

We microinjected 0.8-1.2 μL/side (100 nL/min) of one of the following: AAV-Ef1α-DIO-

eYFP, AAV-Ef1α-DIO-ChR2-eYFP (Zhang et al., 2010), AAV-hSyn-DIO-mCherry 

(UNC Vector Core, Chapel Hill, NC), AAV-hSyn-DIO-hM3Dq-mCherry, or AAV-hSyn-

DIO-hM4Di-mCherry (Krashes et al., 2011).   Coordinates for the CeA were AP 2.40, ML 

+/-4.85, DV -8.40 from the skull in adult rats, or AP -2.0, ML +/-4.3, DV -7.9 from the 

skull in adolescent rats weighing 200-220 g.  Coordinates for the dlBNST were AP +0.00, 

ML +/-3.5, DV -6.8 with a 16-degree angle in adolescent rats weighing 200-220 g.  After 

injection, we waited 10 min for virus to diffuse into the tissue before retracting the injector 

needle.  We used adolescent rats in several experiments to facilitate transduction down 

axons for efficient labeling of neuronal projections.  After 2-4 months, rats were deeply 

anaesthetized with sodium pentobarbital (100 mg/kg, i.p.) and perfused transcardially with 

phosphate buffered saline (PBS) followed by 4% paraformaldehyde in PBS. Brains were 

immediately removed, placed into the same fixative overnight, and then transferred to a 

30% sucrose solution at 4°C before sectioning at 40 μm on a cryostat. 

We detected co-localization of eYFP or mCherry fluorescence with CRF, 

prodynorphin, preproenkephalin, somatostatin, protein kinase C delta (PKCδ), or Fos 

immunoreactivity using immunofluorescent histochemistry. Sections were washed three 

times in PBS with 0.2% Triton X-100 (PBST) for 10 min at room temperature and then 

incubated in blocking solution made of PBST with 3% normal donkey serum (Jackson 

ImmunoResearch, number 017-000-121) or normal goat serum (Jackson ImmunoResearch, 
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number 005-000-121) for 1 hr. Sections were then incubated in one or more of the 

following primary antibodies: rabbit anti-cFos (1:2000, Santa Cruz Biotechnology, sc-52), 

goat anti-cFos (1:2000, Santa Cruz Biotechnology, sc-52-G), mouse anti-tyrosine 

hydroxylase (TH) (1:2000, Immunostar, 22941), mouse anti-tryptophan hydroxylase 

(TPH) (1:1000, Sigma Aldrich, T0678), goat anti-CRF (1:500-1000, Santa Cruz 

Biotechnology, sc-1761 Lot# B0315), rabbit anti-neurotensin (1:1000, ImmunoStar, 

Hudson, WI, Cat. No. 20072), guinea pig anti-prodynorphin (1:500, Neuromics, 

GP10110), rabbit preproenkephalin (1:100, Neuromics, RA14124), or rabbit anti-PKCδ 

(1:2000, Santa Cruz Biotechnology, sc-213) with or without mouse anti-NeuN (1:2000, 

Millipore, MAB377 clone A60) in blocking solution rotating at 4º C for 18-20 h. After 

three 10-min washes in PBST, sections were incubated in species-specific secondary 

antibodies Alexa Fluor 488, 568, or 647 (1:700, Thermo-Fisher Scientific, A-21206, 

A11067, A-11055, A-21202, A- 21208, A-11073, A-21447, A-31573) in blocking solution 

for 1 hr at room temperature. Finally, sections were washed four times in PBS, then 

mounted in 0.2% gelatin water onto SuperFrost Plus glass slides (Fisherbrand, 12-550-15) 

and coverslipped with Fluoromount-G (Southern Biotech, 0100-01). Slides were stored in 

the dark before microscopy and image acquisition.  

For somatostatin staining, sections were pretreated with 50% ethanol twice for 10 

minutes each and washed three times in PBS and then blocked in 10% normal donkey 

serum at room temperature for 10 minutes. The sections were then incubated with rat anti-

somatostatin antibody (Millipore, MAB354) diluted 1:100 in PBS containing 0.05% 

Triton-X-100 and incubated for 20 hours at 4º C with shaking. Sections were washed for 

10 minutes three times in PBS and then incubated with 2% NDS for 10 minutes. Primary 

antibody staining was visualized by incubating with Alexa Fluor 488-conjugated anti-rat 
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secondary antibody (1:700 dilution in PBS) for 2 hours. Sections were washed four times 

in PBS and prepared for imaging as described above. 

Peroxidase immunohistochemistry was performed using 3,3’-diaminobenzidine 

tetrahydrochloride (DAB). Sections were first washed for 30 min each in 0.1 M sodium 

phosphate buffer, pH 7.2 (PB), followed sequentially by 50% ethanol, 50% ethanol with 

3% H2O2, and then 5% normal donkey serum (NDS) in PB. Sections were then incubated 

in mouse antiserum against GFP (1:1500, Invitrogen or 1:1000, Abcam) in PB with 2% 

NDS and 0.2% Triton X-10 (PBTX; 48 h at 4°C). The sections were then washed with PB 

and incubated in PBTX containing biotinylated donkey anti-mouse IgG (1:1000, Jackson 

Immunoresearch Laboratories) for 24 hrs at 4°C. Finally, sections were washed in PB, 

incubated with peroxidase-conjugated avidin (ExtrAvidin, Sigma-Aldrich) in PB (1:2500; 

2 hrs at RT), washed again, and then incubated in DAB (ImmPACT DAB, Vector 

Laboratories). Sections were then mounted with PB containing 1% gelatin, dehydrated, 

cleared in xylene and coverslipped with DEPEX mounting medium (Electron Microscopy 

Sciences).  

 

Confocal acquisition & 3D analysis 

Three-dimensional stacks of Images were acquired with a Zeiss 780 Laser Scanning 

Confocal microscope using either a 20x (1 μm image slice), 40x (0.6 μm image slice) or 

63x (0.2 μm image slice) objective. The system is equipped with a stitching stage and Zen 

software to reintegrate the tiled image stacks. Stitched z series images of the entire CeA 

were imported into Imaris software (Bitplane-Andor, Inc.) for quantitation. The eYFP 

(green), and the CRF-A568 fluorescent labels (red) were first three dimensionally traced 

using the iso-surfacing module to obtain a clean outline of the neuronal cell body and 
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branches, which was then rendered solid using a control-based threshold. The isosurfaced 

eYFP signal was then used to create a new channel to determine how much red signal was 

present within green iso-surfaced regions. This assay was further corroborated using the 

colocalization module to confirm the extent and location of overlapping signals. The 

filament tracer module was used to identify the origin of disjointed axons and outline the 

neural branches of the same neuron. An alternative analysis of green fluorescent signals 

within red iso-surfaced neurons was performed for comparison. This use of multiple 

methods of analysis allowed us to quantify the location and extent of CRF-like 

immunoreactivity throughout eYFP positive cell bodies and axons. This approach was used 

on 1-3 sections per rat from 5 rats. 

 

Cell counting 

Immunostained sections were imaged on a Zeiss 710 LSM confocal microscope, Zeiss 

Imager M2 microscope or a Zeiss Axio Zoom stereomicroscope. Quantification of Fos and 

co-localization of mCherry or eYFP with neuropeptides in the CeA were performed on 

alternate sections from Bregma -1.90 to -3.00 (6-12 sections per rat) using Fiji (Schindelin 

et al., 2012). 

 

Electrophysiology and optogenetics 

To measure ChR2-evoked GABA IPSCs, we expressed ChR2-eYFP in Cre-expressing 

neurons and recorded light-evoked IPSCs as in recent work (Seif et al., 2013), with the 

following exceptions: rats were perfused intracardially with a glycerol-based aCSF (in 

mM: 252 glycerol, 2.5 KCl, 1.25 NaH2PO4, 1 MgCl2, 2 CaCl2, 25 NaHCO3, 1 L-

ascorbate, and 11 glucose), and then brain slices were cut in the same solution. A CsCl 
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internal solution (CsCl, 135; HEPES, 10; MgATP, 4; GTP, 0.3; MgCl2, 2; EGTA, 0.5 and 

QX-314, 5; pH 7.23, Maylor et al., 2010), with DNQX in the bath to block AMPARs, was 

used for measuring GABA IPSCs.  

To distinguish small, evoked IPSCs from spontaneous IPSCs (sIPSCs), we 

recorded ~20 traces where a ChR2-eYFP+ terminal was stimulated once with blue light at 

111 msec into a 1000 msec sweep. The sIPSC frequency was typically low (0.67 ± 0.13 

Hz), and thus the likelihood of observing a spontaneous IPSC exactly at the time of ChR2 

stimulation in more than a few of the 20 traces was very low. If an IPSC was observed at 

the time of ChR2 stimulation in only one or two of the 20 traces in a given cell, we did not 

consider this a cell responding to ChR2 stimulation. Of note, sIPSCs displayed variability 

in amplitude within the same cell as reported by others (Delaney and Sah, 2001), making 

the relative amplitude of evoked versus spontaneous IPSCs a less reliable measure.  For 

spatial mapping, we used live visualization of the electrode tip and its exact location within 

the CeA instead of biocytin filling. Had we used biocytin in these experiments, there would 

have been many neurons filled within the same slice, including neurons where patch-

clamping was attempted for several minutes but failed to achieve stable recording.  

 

Chemogenetics and Fos mapping 

Crh-Cre rats were microinjected bilaterally with AAV-hSyn-DIO-hM3Dq-mCherry, 

AAV-hSyn-DIO-hM4Di-mCherry, or AAV-hSyn-DIO-mCherry into the CeA. After 2-4 

months, rats were administered intraperitoneally 2 mg/kg clozapine-N-oxide (CNO; NIMH 

Chemical Synthesis and Drug Supply Program) and perfused 120 min later for Fos 

immunohistochemistry. To inhibit CRF1 receptors, we administered 10 mg/kg R121919 

(Chen et al., 2004) subcutaneously to rats 30 min before administration of CNO. 
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Data analysis 

Data are shown as mean ± SEM values and were analyzed by two-tailed t-tests or by 

ANOVA with post-hoc Tukey’s tests using GraphPad Prism v6.0.  

 

RESULTS 

Neurons that express Cre in Crh-Cre rats are immunoreactive for CRF 

Cre-expressing cells in Crh-Cre rats were first identified by crossing Crh-Cre rats with W-

Tg(AG-DsRed2/GFP)15Jms reporter rats and then immunostaining brain sections from 

bigenic progeny with anti-GFP antibody.  There were clusters of immunoreactive neurons 

in the CeL and in the dorsolateral BNST (Figure 1.1A and 1.1B). We confirmed the 

presence of Cre activity in mature CeL and BNST neurons by microinjecting AAV-hSyn-

DIO-mCherry into the CeA or the dorsal BNST of 6-week old rats and then examining 

brain slices for the presence of mCherry fluorescence 8 weeks later (Figure 1.1C and 1.1D). 

Surprisingly we did not detect Cre recombination in the ventral BNST or in the 

paraventricular hypothalamic nucleus, even following microinjection of a large volume 

(1.2μl) of Cre-dependent AAV into the hypothalamus.   

To determine if Cre-expressing neurons also express CRF, we microinjected 

colchicine (4μg in 0.8μL) into the CeA 4 weeks after injection of AAV-Ef1α-DIO-eYFP 

and 72h prior to perfusion to allow CRF to accumulate in the cell soma (Merchenthaler, 

1984). We found that 94.6 ± 1.2% eYFP+ neurons were immunoreactive for CRF, while 

77.1 ± 2.1% of CRF immunoreactive neurons expressed eYFP (Figure 1.1E; n = 3 rats, 12 

amygdala sections/rat).   
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We also examined colocalization of ChR2-eYFP and CRF immunoreactivity in 

Crh-Cre rats microinjected with AAV-Ef1α-DIO-ChR2-eYFP and not treated with 

colchicine. ChR2-eYFP was present in the cell membrane of neuronal cell bodies and 

processes while CRF immunoreactivity was mainly scattered within neural processes.  

Because CRF is mainly localized in neural processes, quantification of colocalization in 

cell bodies using bright-field microscopy at 40x resulted in only a small percentage (16.5 

± 2.7%) of eYFP+ neurons being colocalized with CRF. However, confocal analysis at 63x 

followed by 3D reconstruction of the neuronal cell bodies and branches using Imaris 3D 

software revealed that all eYFP+ neurons contained CRF immunoreactivity in the cell soma 

or branches (Figure 1.1F). Out of 155 neurons analyzed, 100 ± 0% of eYFP+ neurons were 

positive for CRF, while 99.4 ± 0.6% of CRF+ neurons were positive for eYFP. 

Using hSyn-DIO-mCherry to identify CRF neurons, we examined co-expression of 

other neuropeptides in the CeA (Figure 1.2).  We found that about 63.4 ± 3.6% of CRF 

neurons expressed neurotensin. We also found that about 54.2 ± 2.8% of CRF neurons 

were immunoreactive for dynorphin while there was almost no colocalization with 

enkephalin, as described previously (Day et al., 1999; Marchant et al., 2007; Veinante et 

al., 1997).  A population of neurons in the CeA expresses somatostatin (SOM), and recent 

studies demonstrate an active role for CeA SOM+ neurons in conditioned fear in mice (Li 

et al., 2013; Penzo et al., 2015). We determined that approximately 44.2 ± 0.7% of CeACRF 

neurons co-localize with SOM+ neurons. In addition to SOM+ neurons, there is a distinct 

GABAergic subpopulation of CeA neurons in mice that expresses protein kinase C delta 

(PKCδ), but not CRF, and suppresses fear conditioning (Ciocchi et al., 2010; Haubensak 

et al., 2010).  We similarly found that CRF and PKCδ are present in distinct populations 

in the rat amygdala with only approximately 9.2 ± 1.1% of CRF neurons co-expressing 
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PKCδ. Also, CRF-expressing cells were consistently more medial than PKCδ-expressing 

cells in the CeL (Figure 1.2A). 
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Figure 1.1. Crh-Cre rats express Cre recombinase activity in the CeA and dlBNST 
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(A-B) Bigenic progeny of a Crh-Cre X DsRed2/GFP cross display robust GFP labeling in 

the CeA and dlBNST. Scale bars, 200 μm.  (C-D) Cre-dependent mCherry expression in 

Cre-expressing neurons of the CeA and dlBNST. Scale bars, 100 μm in (C); 200 μm in 

(D). (E) Cre-dependent eYFP co-localizes with CRF immunoreactivity in the CeL. Scale 

bar, 200 μm. (F) Rendered isosurface analysis demonstrates co-localization of CRF 

immunoreactivity within CeL neurons that also express Cre-dependent eYFP. AC = 

anterior commissure, AMY = amygdala, BLA = basolateral amygdala, CeC = capsular 

central amygdala, CeM = medial central amygdala, cst = commissural stria terminalis, Hip 

= Hippocampus, IC = internal capsule, LV = lateral ventricle, OT = optic tract, Str = 

Striatum, Th = Thalamus.
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Figure 1.2. Co-expression of other neuropeptides in CeACRF neurons 
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(A) A large percentage of CRF neurons identified by expression of Cre-dependent mCherry 

are immunoreactive for neurotensin, dynorphin, and somatostatin, while few express 

enkephalin or PKCδ. Scale bars, 100 μm.  Medial is to the left.  (B) Quantification of 

mCherry expression with neuropeptide immunoreactivity; CRF n = 3 rats, 12 amygdala 

sections/rat; neurotensin n = 5 rats, 6-8 amygdala sections/rat; dynorphin n = 4 rats, 6 

amygdala sections/rat; somatostatin n = 4 rats, 6 amygdala sections/rat; enkephalin n = 4 

rats, 6 amygdala sections/rat; PKCδ, n = 6 rats, 10-12 amygdala sections/rat. 
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Projections from CeACRF neurons outside the CeA  

We examined neuronal projections from CeACRF neurons using mCherry or ChR2-eYFP as 

a histological marker (Figures 1.3-1.6). We detected projections to several regions 

identified previously in nonselective tract tracing studies of the CeA (Bourgeais et al., 

2001; Dong et al., 2001; Petrovich and Swanson, 1997; Veinante and Freund-Mercier, 

1998; Zahm et al.).  The largest and densest were to the PBN and the LC (Figure 1.3).  

Fibers were present in both the lateral and medial PBN and in the mesencephalic trigeminal 

nucleus and extended caudally within the medial PBN to the LC.  CRF fibers there 

appeared to be interdigitated and orthogonal to the dorsolateral LC dendritic field (Figure 

1.3D). 

We also observed a substantial projection from the CeA to the dorsolateral and 

especially the ventral BNST (Figure 1.4A-1.4C). Dorsolateral CRF fibers appeared to 

cluster around the oval nucleus and also extend into the adjacent dorsal striatum. In 

addition, a small projection was detected slightly ventrolateral to the ventral BNST in the 

substantia innominata and ventral pallidum (Figure 1.4C). Caudal to the BNST, CRF 

projections were present in the most lateral portion of the lateral hypothalamus (LH) along 

its entire anterior-posterior axis traveling through the nigrostriatal bundle (Figure 

1.4D).   Most of these appeared to be fibers of passage with small projections extending 

laterally into the LH. Caudal to the hypothalamus, we observed CRF fibers coursing into 

the ventrolateral periaqueductal gray, and eventually into the caudal aspect of the 

serotonergic dorsal raphe nucleus (Figure 1.4E).  Deep in the brainstem caudal to the LC, 

we detected a small projection to the nucleus tractus solitarius (NTS) throughout much of 

its anterior-posterior axis (Figure 1.4F-1.4I).  At the most anterior aspect, CRF fibers were 

localized to the lateral NTS and overlapped with tyrosine hydroxylase positive processes 
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but not somata (Figure 1.4F).  Further posterior, CRF fibers clustered within the medial 

NTS as it coursed towards the 4th ventricle (Figure 1.4G), and fibers eventually terminated 

in the caudal ventrolateral NTS around noradrenergic cell bodies (Figures 1.4H and 1.4I).  

CRF signaling in the dopaminergic ventral tegmental area (VTA) has garnered 

much attention due to its significant role in relapse to drug seeking (Shalev et al., 2010).  

However, the source of CRF in the VTA has remained controversial (Grieder et al., 2014; 

Zhao-Shea et al., 2015). CRF fibers from the CeA were present traveling through the 

dorsolateral substantia nigra pars compacta, most likely as fibers of passage on their way 

to the brainstem (Figure 1.5A-1.5D). However, upon closer examination we detected minor 

collateral projections within the rostral VTA (Figure 1.5E). 
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Figure 1.3. CeACRF neurons project strongly to brainstem nuclei 

(A) After injection of AAV-hSyn-DIO-mCherry into the CeA, mCherry expressing fibers 

were detected in the lateral and medial parabrachial nuclei (Bregma -9.0). Scale bar, 500 

μm.  (B) mCherry expressing fibers were also detected in the medial parabrachial nucleus 

just lateral to the locus coeruleus (Bregma -9.6). Red = mCherry, Green = Tyrosine 

Hydroxylase. Scale bar, 500 μm.  (C-D) High-magnification examples of mCherry fibers 

from the CeL and noradrenergic LC neurons. CeACRF fibers appear to run orthogonally to 

noradrenergic dendrites extending laterally from the LC core into the medial parabrachial 
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nucleus. Scale bars, 100 μm in (C); 20 μm in (D). MPBN = medial parabrachial nucleus, 

LPBN = lateral parabrachial nucleus, LC = locus coeruleus. 
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Figure 1.4. CeACRF neurons provide inputs to other limbic brain structures 
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(A-B) A dense bundle of mCherry expressing fibers from the CeA were observed in the 

dorsolateral and ventral BNST. (A) Rostrally, fibers clustered mainly in the oval nucleus 

of the dorsal bed nucleus and in the subcommisural zone of the ventral bed nucleus 

(Bregma -0.12). (B) Caudally, dense fibers of the stria terminalis were present in the dorsal 

region (Bregma -0.6). Scale bars, 200 μm. (C) Less dense projections were detected ventral 

and lateral to the ventral BNST in the substantia innominata and the ventral pallidum 

(Bregma -0.12). Scale bar, 200 μm. (D) Fibers were detected throughout the lateral 

hypothalamus (Bregma -4.20) within the nirgrostriatal bundle. Scale bar, 200 μm.  (E) 

Fibers also projected dorsomedially into the caudal dorsal raphe nucleus and ventrolateral 

periaqueductal gray (Bregma -7.7). TPH = tryptophan hydroxylase. Scale bar, 200 μm. (F-

I) Some fibers projected as far as the nucleus tractus solitarius where they came in close 

contact to noradrenergic processes and cell bodies in the most caudal regions. (Bregma (-

12.9) – (-14.0). TH = tyrosine hydroxylase. Scale bars, 200 μm in (F); 200 μm in (G); 100 

μm in (H); 100 μm in (I). ac = anterior commissure, ic = internal capsule, Str = striatum, 

st = stria terminalis, VP = ventral pallidum, SIB = substantia innominata, cp = cerebral 

peduncle, pLH = posterior lateral hypothalamus, Aq = central aqueduct, vlPAG = 

ventrolateral periaqueductal gray, DRL = lateral dorsal raphe nucleus, DRV = ventral 

dorsal raphe nucleus, 4V = fourth ventricle. 
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Figure 1.5. CeACRF projections to the substantia nigra and VTA 
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(A) Representative example of CeACRF fibers in the rostral VTA and substantia nigra pars 

compacta (SNc) (Bregma -5.0). Scale bar, 500 μm. (B) CeACRF fibers were observed 

projecting through the SNc, but not contacting the VTA slightly more caudally (Bregma -

5.5). Scale bar, 500 μm. (C) CeACRF fibers were present at the most caudal aspects of the 

VTA and SNc (Bregma -6.1).  Scale bar, 500 μm.  (D) CeACRF fibers course through the 

most dorsolateral region of the SNc. Scale bar, 100 μm. (E) Low density collaterals were 

present in the rostral VTA surrounding dopamine neurons. Scale bar, 100 μm. Green = 

tyrosine hydroxylase. 
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Projections from CeACRF neurons within the CeA  

Since the CeL sends dense projections to the CeM (Petrovich and Swanson, 1997), we 

investigated whether CeACRF neurons situated in the CeL contribute to these projections. 

Surprisingly, following microinjection of AAV-hSyn-DIO-mCherry into the CeA, we 

detected very few mCherry-expressing projections from the CeL to the adjacent CeM 

(Figure 1.1C and Figure 1.6A). We next used AAV-Ef1α-DIO-ChR2-eYFP to express 

ChR2-eYFP in CeACRF neurons (Figure 1.6B) and to detect light-evoked inhibitory 

postsynaptic currents (IPSCs) in CeA neurons that did not express ChR2-eYFP.  To 

compare data across animals and brain slices, we mapped the spatial position of each 

recorded neuron to a common reference frame. First, we established a scale using the 

intermediate capsule between the BLA and CeA as a guide.  We defined the distance 

between where the intermediate capsule meets the external capsule and the ventral border 

of the BLA as equal to 100 relative units (Figure 1.6A).  We then mapped the position of 

each cell onto a common Cartesian coordinate system with the Y axis parallel to the 

intermediate capsule and the origin at the most ventral part of the ovoid cluster of CeACRF 

cell bodies (Figure 1.6A and 1.6E). The position of each neuron was expressed as relative 

units along both axes.  To assess the accuracy of this method, we mapped the position and 

size of the CRF cell body cluster in slices from 12 rats. We found that the coordinates of 

points defined by the intersection of the oval border of the CeACRF cell body cluster with 

its maximal dorsal-ventral and medial-lateral diameters were consistent across slices 

(Figure 1.6E).  The borders of the CeACRF cell body cluster were also consistent when 

expressed in relative units using the bottom of the intermediate capsule as the origin for 

the coordinate system (bottom X: 22.9 ± 2.2, Y: 19.7 ± 1.8; top X: 27.0 ± 2.0, Y: 55.0 ± 

1.8; medial edge X: 35.5 ± 2.1, Y: 44.0 ± 1.5; lateral edge X: 13.7 ± 1.4, Y: 41.3 ± 1.3). 
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Stimulation of ChR2 evoked IPSCs in 8 of 18 (44.4%) non-CRF CeL neurons. In 

contrast only 8 of 71 (11.3 %) of CeM neurons demonstrated an IPSC, concurring with our 

histological findings of sparse mCherry fluorescence and eYFP immunoreactivity of fibers 

within the CeM (Figures 1.1C and 1.6A). Picrotoxin (100 μM) blocked light-evoked IPSCs 

more than 97.7 ± 0.9% (n = 4; Figure 1.6C), as well as blocking spontaneous IPSCs (Figure 

1.6D), which is consistent with previous studies demonstrating that CeACRF neurons are 

GABAergic (Cassell et al., 1999; Day et al., 1999; Veinante and Freund-Mercier, 1998).  

The CeM neurons exhibiting light-evoked IPSCs were scattered rather than clustered in a 

subregion of the CeM (Figure 1.6E). The IPSC amplitudes were not different between CeM 

and CeL neurons at 2 versus 1 mW of LED illumination (Figure 1.6F), indicative of a weak 

input-output relationship for ChR2 as described (Stuber et al., 2011).  Together, these 

results suggest that CeACRF neurons target a small subset of CeM neurons.  Nearly all CeM 

neurons showed spontaneous ISPCs that were greatly inhibited by picrotoxin (Figure 

1.6D), demonstrating that most CeM neurons can respond to synaptically released GABA. 

Many cells also exhibited electrically evoked IPSCs, with kinetics similar to those seen for 

spontaneous IPSCs and ChR2-evoked IPSCs (Table 1.1) and previously reported for CeA 

IPSCs (Delaney and Sah, 2001; Naylor et al., 2010). Thus, our optogenetic results indicate 

that CeACRF neurons send GABAergic projections to almost half of their neighboring non-

CRF neurons in the CeL, but only to a small number of neurons in the CeM. 



 
 

41 

 

Figure 1.6. ChR2 stimulation of CeACRF terminals evokes IPSCs in a subset of CeA 
neurons 
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(A) Coronal section through the CeA with superimposed reference frame to identify the 

location of recorded neurons across slices. (B) Example of live CeL neurons (Scale bar, 10 

μm) and fibers (Scale bar, 10 μm) expressing ChR2-eYFP. C, Examples of IPSCs evoked 

after stimulation of ChR2 in CeACRF neurons, which were blocked by picrotoxin. (D) 

Picrotoxin also blocked spontaneous IPSCs.  (E) Diagram showing distribution of recorded 

cells relative to the cluster of CRF cell bodies and dendrites in the CeL (dotted blue circle). 

Filled symbols represent neurons with IPSC responses; open symbols are neurons without 

evoked IPSC responses. One CeL neuron with an IPSC response was found outside the 

cluster of CRF cell bodies and dendrites but within the confines of the CeL.  (F) Similar 

magnitude of evoked IPSCs in CeL and CeM neurons and at two different LED intensities. 

BLA = basolateral amygdala, CeL = lateral central amygdala, CeM = medial central 

amygdala, LA = lateral amygdala. 
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ChR2-evoked IPSC Spontaneous 
IPSC 

Electrically-evoked 
IPSC 

Rise tau (msec) 0.79 ± 0.06 0.89 ± 0.06 0.97 ± 0.13 

Decay tau (msec) 8.39 ± 1.25 10.01 ± 0.98 10.79 ± 1.34 

Half-width (msec) 9.22 ± 0.60 9.77 ± 0.84 11.31 ± 1.16 

Peak amplitude 
(pA) 

159.6 ± 65.0 78.3 ± 11.3 196.1 ± 39.0 

Area under the 
curve 

1787 ± 425 885 ± 136 2433 ± 514 

 

Table 1.1. IPSC kinetics for spontaneous and evoked IPSCs in CeM neurons 

The kinetic values for each IPSC event in a given cell were determined and then all events 

for that cell were averaged. No significant differences were observed between the three 

classes of IPSCs for any measure (one-way ANOVA). Data shown are from 8 CeM cells 

with ChR2-evoked currents and 10 additional cells with electrically evoked IPSCs <200 

pA (peak amplitude approximately matching those of ChR2-evoked currents, since larger 

IPSCs exhibit longer half-widths), with spontaneous IPSCs determined from IPSC events 

in the same traces except at the time of evoked IPSCs (at 111 msec into the 1 sec sweep). 
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Chemogenetic activation of CeACRF neurons induces CRF1 receptor-dependent c-
Fos expression in the CeA 

Since the Fos promoter is rapidly induced in strongly activated neurons, Fos mRNA and 

Fos protein are commonly used as surrogate markers of recent neuronal activation 

(Kaczmarek and Chaudhuri, 1997). To identify patterns of activation downstream of 

CeACRF neurons, we examined Fos immunoreactivity following activation of Designer 

Receptors Exclusively Activated by Designer Drugs (DREADDs) expressed in CeACRF 

neurons. Systemic administration of clozapine-N-oxide (CNO; 2 mg/kg, i.p.) induced Fos 

expression (Figure 1.7A and 1.7B) in CeACRF neurons expressing hM3Dq-mCherry, but 

not in CeACRF neurons expressing hM4Di-mCherry or mCherry alone [F(2,10) = 351, P < 

0.0001].  These results suggest that CeACRF neurons are relatively inactive at baseline.  We 

also found substantial induction of Fos in non-CRF neurons (Figure 1.7C and 1.7D) 

throughout the CeL [F(2,10) = 27, P < 0.0001] and in some cells of the CeM [F(2,10) = 

43, P < 0.0001].  In the CeL, the proportion that expressed Fos was less than the proportion 

that exhibited IPSCs after ChR2 stimulation, while in the CeM these proportions were 

similar (compare Figures 1.7F and 1.6E).    

Since CeACRF neurons are GABAergic, we were surprised to find that DREADD 

stimulation excited subpopulations of CeA neurons.  We hypothesized that CRF released 

onto local CRF1 receptors was responsible, since CRF1 receptors are expressed in the CeA 

(Van Pett et al., 2000), and in the mouse CeA CRF1 receptor activation enhances 

spontaneous glutamate release (Silberman and Winder, 2013). To test this hypothesis, we 

treated rats with 10 mg/kg of the selective CRF1 receptor antagonist R121919 (Chen et al., 

2004) prior to activation of hM3Dq. This treatment reduced Fos expression in non-CRF 

neurons in both CeL and CeM [Fdrug(1,14) = 40.13, P < 0.0001] (Figure 1.7E and 1.7F). 

Importantly, the proportion of hM3Dq-mCherry positive CRF neurons expressing Fos was 
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similar between R121919 and vehicle-treated groups, indicating that the hM3Dq-driven 

activity of CeACRF neurons was not impaired by CRF1 receptor blockade [t(7) = 0.282, P 

= 0.786, unpaired t-test, Figure 1.7H]. These results demonstrate that stimulation of CeACRF 

neurons with hM3Dq excites a subpopulation of non-CRF neurons in the CeL and CeM in 

a CRF1 receptor-dependent manner, presumably through local release of CRF. 
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Figure 1.7. CeACRF neurons activate non-CRF neurons in the CeL and CeM 
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(A) Representative overlay images of Fos immunoreactivity and mCherry fluorescence in 

control, hM4Di, and hM3Dq-expressing CeL neurons. Scale bar, 100 μm. Insets show 

high-magnification examples of mCherry expressing neurons immunostained for Fos. (B) 

Percentage of mCherry+ neurons co-expressing Fos following administration of CNO. (C-

D) Fos induction in non-CRF neurons of the CeL (C) and the CeM (D) after administration 

of CNO.  ****P < 0.001 compared with Control or hM4Di, n = 4-5 rats, 10 sections/rat, 

Tukey’s multiple comparisons test.  (E) Representative overlay images of Fos 

immunoreactivity and native mCherry fluorescence in hM3Dq-expressing cells from 

vehicle- or R121919-treated rats. Scale bar, 100 μm. (F) Percentage of Fos+ neurons in the 

CeL and CeM after administration of R121919.  (G) Total neuron counts per amygdala 

section are equivalent between groups. (H) Percentage of hM3Dq neurons expressing Fos 

after administration of CNO is equivalent between groups.  ***P < 0.001, *P < 0.05, n = 

4-5 rats, 10-12 sections/rat, Tukey’s multiple comparisons test. 
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Figure 1.8. Sagittal rat brain schematic of CeACRF neuron projections 

BNST = bed nucleus of the stria terminalis, CeL = lateral central amygdala, DRN = dorsal 

raphe nuclei, LC = locus coeruleus, LH = lateral hypothalamus, NTS = nucleus tractus 

solitarius, PBN = parabrachial nucleus, SIB = Substantia innominata, SNc = substantia 

nigra pars compacta, vlPAG = ventrolateral periaqueductal gray, VP = ventral pallidum. 
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DISCUSSION 

Until recently our knowledge about the anatomy of CRF systems has rested on traditional 

neuroanatomical methods and inferences about CRF function through administration of 

drugs that act at CRF receptors.  To gain more direct access to CRF neurons to study their 

functional neuroanatomy we generated a novel BAC transgenic Crh-Cre rat. Using Cre-

dependent reporters we found Cre recombinase expression in neurons of the lateral CeA 

and the dorsolateral BNST.  There was strong concordance of Cre-dependent transgene 

expression and CRF immunoreactivity in the CeL, indicating lack of ectopic expression of 

Cre recombinase in this area. CeACRF projections were similar to targets of CRF cells 

identified in previous neuroanatomical studies.  However, little is known about their local 

projections within the CeA, and we found that CeACRF neurons projected to other non-CRF 

CeL cells, and also to a smaller number of CeM neurons. These intra-CeACRF projections 

exhibited both inhibitory effects, indicated by evoked GABA currents, and excitatory 

effects, indicated by increased Fos expression, which were prevented by blocking CRF1 

receptors. These findings indicate that CeACRF neurons are a mixed population of 

interneurons and projection neurons that encode both inhibitory and excitatory 

information. 

Although we found CRF neurons in the CeL and dorsal BNST, CRF cells were 

absent from the ventral BNST, PVN, and other brainstem and forebrain regions where CRF 

neurons have been reported (Merchenthaler, 1984; Wang et al., 2011).  Thus, despite the 

size of our BAC vector (~224 kb), Cre expression was limited to two major CRF cell 

populations, possibly due to incomplete capture of all regulatory elements in the integrated 

BAC transgene.  Although we do not know the precise reason for restricted CRF expression 

in our animals, it is notable that CRF neurons of the dorsolateral BNST and the CeL share 
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several common features, including medium spiny neuron morphology (Cassell and Gray, 

1989; Phelix and Paull, 1990; Sun and Cassell, 1993), expression of the phosphatase STEP 

(Dabrowska et al., 2013b), and production of GABA (Cassell et al., 1999; Dabrowska et 

al., 2013b; Day et al., 1999). In contrast, PVN CRF neurons produce glutamate (Dabrowska 

et al., 2013a) and ventral BNST CRF neurons may also be glutamatergic (Dabrowska et 

al., 2013a).  The Crh gene also is regulated differently in these populations of neurons.  For 

example, while corticosterone suppresses CRF expression in the PVN, it up-regulates 

expression in the CeA and dorsolateral BNST (Makino et al., 1994; Swanson and 

Simmons, 1989).  This differential regulation could involve PKC signaling since we 

previously found that production of pro-CRF mRNA and protein in the CeA, but not in the 

PVN, is impaired in PKC epsilon knockout mice (Lesscher et al., 2008).  Additionally, a 

recent study identified novel CRF expressing neurons in the VTA, but this expression was 

only detectable in animals undergoing nicotine withdrawal (Grieder et al., 2014). The 

detailed mechanisms responsible for heterogeneity in phenotypic characteristics and 

control of CRF expression among subpopulations of CRF neurons remain to be explored, 

but the present findings suggest our Crh-Cre rats may prove useful for selective study of 

one major subtype of CRF neurons.   

Using viral delivery of Cre-dependent reporters to identify CeACRF neurons, we 

found robust CRF projections from CeA to the brainstem, terminating in the medial and 

lateral PBN and the LC.  There were also extensive projections to the diencephalon, 

terminating in the dorsal and ventral BNST and the LH. This pattern of connectivity 

concurs with previously reported CeACRF projections in the rat (Moga and Gray, 1985; 

Reyes et al., 2011; Sakanaka et al., 1986; Van Bockstaele et al., 1998).  We did not, 

however, observe projections to the pontine reticular nuclei, as reported in earlier 
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neuroanatomical tracing studies (Fendt et al., 1997; Gray and Magnuson, 1992).  A 

previous study of neuropeptide afferents from the CeA found CRF neurons in the CeL that 

contained retrograde tracer after injections into the dorsal vagal complex (Gray and 

Magnuson, 1987).  Our results refine this finding by demonstrating that CeACRF fibers 

specifically innervate the NTS. Since the NTS provides noradrenergic input to the extended 

amygdala that plays a role in drug withdrawal and anxiety (Smith and Aston-Jones, 2008), 

it will be interesting to determine whether a reciprocal connection between CeACRF neurons 

and the NTS exists, and whether this circuit is recruited during withdrawal states. 

Within the CeA, despite extensive CeL innervation of the CeM (Petrovich and 

Swanson, 1997), we surprisingly found few CeACRF projections to the CeM.  Instead, we 

found that CeACRF neurons preferentially innervate other CeL neurons.  Given the 

sparseness of projections to CeM, we speculate that CeACRF projection neurons act in 

parallel with CeM projection neurons to regulate behavior, and that the small number of 

direct CeACRF projections to the CeM, and potentially more extensive indirect projections 

via non-CRF neurons in the CeL, coordinate the actions of CeL and CeM systems on 

behavior. Interesting questions for the future are whether individual CeACRF neurons 

project to many or a restricted set of targets and whether the same or different CeACRF 

neurons serve as interneurons and projection neurons. Future studies using Crh-Cre rats 

and Cre-dependent tracing tools and actuators should allow us to unravel this circuitry in 

greater detail. 

Despite CeACRF neurons being GABAergic, activation of the excitatory DREADD 

hM3Dq in these neurons induced expression of Fos in several non-CRF neurons of the CeL 

and CeM.  Thus, CeACRF neurons can generate both excitatory (Fos) and inhibitory (GABA 

IPSCs) responses in CeL and CeM neurons.  Fos induction following activation of CeACRF 
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neurons involved CRF release since it was substantially reduced by administration of a 

CRF1 receptor antagonist.  Depending on the synapse, activation of CRF1 receptors can 

activate neurons by enhancing glutamatergic transmission.  For example, in the rat lateral 

capsular CeA, CRF acting at CRF1 receptors enhances glutamatergic transmission from 

parabrachial efferents (Ji et al., 2013), and CRF increases the frequency of spontaneous 

EPSCs in the mouse CeL through actions at CRF1 and CRF2 receptors (Silberman and 

Winder, 2013). The actions of CRF on excitatory neurotransmission in the rat CeL have 

yet to be determined.  

Given our limited knowledge of intra-CeA circuitry, we can envision several 

mechanisms by which activating CeACRF neurons could generate both inhibitory and 

excitatory responses. First, GABA and CRF may affect different target neurons, with 

GABA released at synapses and CRF released non-synaptically to signal via local volume 

transmission that results in excitation of CeA neurons through convergent disinhibition and 

CRF signaling.  A somewhat similar situation has been recently described for innervation 

of the cerebral cortex and striatum by histaminergic neurons of the hypothalamus that also 

release GABA (Yu et al., 2015).  Alternatively, excitatory effects of CRF may be partly 

suppressed by concurrent GABA release, for example where CRF acting at CRF1 receptors 

enhances GABA release, as has been demonstrated in the rat CeM (Herman et al., 2013).  

On the other hand, in cells having a depolarized Cl- reversal potential, activation of GABAA 

receptors could synergize with CRF to directly activate postsynaptic neurons (Staley and 

Proctor, 1999), although this may be more speculative for adult neurons. Finally, stimulus 

intensity and duration may affect GABA and CRF release differently, leading to a range of 

inhibitory and excitatory responses on the same target neuron population. Future 

optogenetic and chemogenetic studies using Crh-Cre rats could help to determine if the 
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actions of GABA and CRF occur at the same or at different neurons and to elucidate 

mechanisms by which these transmitters act. 

The generation of several Crh-Cre mouse lines has facilitated our understanding of 

CRF circuits and their roles in several behavioral states. At least three Crh-Cre mouse lines 

have been reported, and have been used to demonstrate roles for CRF neurons in fear 

conditioning (Gafford et al., 2014), fear extinction (Gafford et al., 2012), anxiety and 

avoidance behaviors (Gafford et al., 2012; McCall et al., 2015), and binge-like alcohol 

consumption (Pleil et al., 2015). However, a recent review (Chen et al., 2015) indicates 

that two of these lines, the Crh-BAC transgenic (Alon et al., 2009) and CRFp3.0Cre 

(Martin et al., 2010) exhibit ectopic Cre transgene expression, whereas Crh-IRES-Cre mice 

(Taniguchi et al., 2011) express Cre with high fidelity to endogenous CRF across the brain.  

Since our current rat line is a BAC transgenic, our determination of Cre and CRF fidelity 

in the amygdala (Figure 1.1) was critically important. Although our rat shows limited 

expression of Cre, it provides a tool to study the role of GABAergic CRF neurons of the 

amygdala and dorsolateral BNST to not only complement work done with Crh-Cre mice, 

but to permit investigation of more complex behaviors such as operant conditioning and 

sophisticated learning tasks that cannot easily be studied using mice.  

The anatomy of projections from CeL to CeM has been examined recently in mouse 

models of fear conditioning (Ciocchi et al., 2010; Haubensak et al., 2010; Li et al., 2013), 

although without a focus on CeACRF neurons or employing Crh-Cre mice. An anatomical 

framework has emerged in which fear-related cues excite BLA neurons, which in turn 

enhance firing in a CeL cell subpopulation termed ‘On-cells’ that inhibit a separate CeL 

subpopulation termed ‘Off-cells’, the net result of which is to disinhibit CeM neurons. The 

subsequent increase in CeM activity mediates conditioned fear via projections downstream 
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to somatic and autonomic brainstem nuclei.  In mice the PKCδ neuron subpopulation in 

the CeL represents ‘Off-cells’ (Haubensak et al., 2010), which tonically suppress CeM 

neurons to inhibit fear responses.  ‘On-cells’ in mice are at least partially SOM+ (Li et al., 

2013). In contrast, the role of CeACRF neurons in this fear control circuit has been largely 

overlooked. Here we provide evidence consistent with rat CRF neurons being mostly a 

subpopulation of ‘On-cells’ based on co-expression of SOM in about 40% of CRF neurons 

and sparse projections to the CeM. Future challenges will be to dissect the relative 

contribution of CeACRF neurons (SOM+ and SOM-) to fear-related circuitry and behavior, 

and to determine whether CRF neurons with unique neuropeptide co-expression profiles 

provide distinct inputs to local and distant projection targets.  

In summary, we present a novel transgenic Cre driver rat line that permits selective 

targeting of CRF-expressing GABAergic neurons of the extended amygdala. The Crh-Cre 

rat will be an important tool for dissecting extended amygdala CRF systems in the control 

of fear and anxiety, as well as stress-sensitive behaviors, such as feeding and drug seeking. 

Furthermore, species-specific phenotypic differences can be evaluated by comparing Crh-

Cre rats with Crh-Cre mice, which should help unify conclusions about CRF circuits across 

rodent species. 
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CHAPTER 2: CENTRAL AMYGDALA CRF NEURONS REGULATE 
FEAR AND ANXIETY BEHAVIORS 

ABSTRACT 

The central amygdala (CeA) and the stress-related neuropeptide CRF have well-established 

roles in fear and anxiety. The CeA contains a large population of CRF neurons, yet the role 

of these neurons in fear and anxiety has only recently begun to be addressed using mouse 

models. We directly investigated the contribution of CeA CRF (CeACRF) neurons to fear 

and anxiety-like behaviors using Crh-Cre rats and chemogenetic tools. We find that acute 

immobilization stress produces an anxiety-like state which is prevented by chemogenetic 

inhibition or genetic ablation of CeACRF neurons. In a non-stressed state, inhibition of these 

cells did not alter anxiety behavior but excitation generated an anxiety state similar to stress 

that was normalized by administration of the CRF1 receptor antagonist R121919. 

Chemogenetic silencing of CeACRF neurons during fear conditioning did not affect shock-

induced freezing but disrupted contextual and cued freezing during retrieval testing. 

Silencing immediately after conditioning or prior to fear expression trials had no effect, 

demonstrating that CeACRF neurons contribute selectively to fear learning. Finally, 

excitation of CeACRF neurons prevented fear extinction, an effect that was also dependent 

on CRF1 receptor signaling. These findings indicate that CeACRF neurons contribute to both 

fear and anxiety behaviors, most likely through the release of CRF acting at CRF1 

receptors. 



 
 

56 

INTRODUCTION 

Fear and anxiety are evolutionarily conserved emotional and behavioral states. When faced 

with a threat, animals experience fear and anxiety to help ensure survival in dangerous 

environments. Fear responses are transient and occur when an animal is in close proximity 

to a threat or a discrete cue stimulus that predicts danger. Anxiety responses are 

characterized by more persistent states of apprehension in ambiguous environments when 

the threat of danger is uncertain or uneasily detectable. The differences in fear and anxiety 

phenotypes has led to the hypothesis that the underlying neurobiology is also different. 

However, recent studies have challenged this notion by demonstrating overlapping roles of 

brain structures that mediate behaviors associated with these two emotional states. 

Early lesion and pharmacological inactivation studies quickly suggested the central 

amygdala (CeA) as a structure critical to the induction and expression of fear behaviors, 

but not those associated with anxiety (Davis et al., 2010; Walker and Davis, 1997b, 2008; 

Walker et al., 2003). In contrast, lesion studies proposed the bed nucleus of the stria 

terminalis (BNST) as the anatomical substrate for persistent anxiety states, but not those 

characteristic of phasic fear (Davis et al., 2010; Walker and Davis, 2008; Walker et al., 

2009b; Walker et al., 2003). Thus, an anatomical framework was developed that segregated 

the neurobiology of fear and anxiety. However, the ability to target discrete populations of 

neurons with genetic tools has led to new data that opposes this framework. Manipulation 

of different CeA neuron populations can affect both fear and anxiety-like behaviors in mice 

(Ahrens et al., 2018; Botta et al., 2015; McCall et al., 2015; Pliota et al., 2018; Regev et 

al., 2012; Sanford et al., 2017). Hence, the CeA, depending on the specific neurons within, 

can contribute to both fear and anxiety. 
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Along these same lines, it was discovered that the stress-responsive neuropeptide 

CRF is anxiogenic when delivered into the brain (Lee and Davis, 1997; Liang et al., 1992b; 

Swerdlow et al., 1986) and is a potent modulator of fear learning (Gafford et al., 2012; Pitts 

et al., 2009; Sanford et al., 2017). The CeA contains a large population of CRF neurons 

(Pomrenze et al., 2015, Chapter 1), and thus it is possible that this population controls both 

fear and anxiety behaviors. In mice, these neurons are essential to fear learning and passive 

coping behaviors in unfamiliar environments (Pliota et al., 2018; Sanford et al., 2017), and 

are important for stress-induced anxiety (Regev et al., 2012). However, it is not known 

whether CeACRF neurons control fear and anxiety behaviors in rats. This represents an 

important step forward since essentially all early lesion and inactivation studies 

demonstrating the anatomical segregation of fear and anxiety were performed in rats. 

In this study, we utilized Crh-Cre rats to gain genetic access to the CeACRF neuron 

population and test its causal contributions to fear and anxiety. We find that inhibition of 

CeACRF neurons with Cre-dependent viral-genetic tools prevents anxiety produced by stress 

and that stimulation generates an anxiety state that is dependent on CRF1 receptor 

activation. Inhibition of these cells prevents fear learning, but not fear expression, and 

stimulation blocks the development of fear extinction that is also dependent on CRF1 

receptors. Together these data demonstrate that the rat CeA does indeed contribute to both 

fear and anxiety-like behavioral states, and these effects can at least in part be attributed to 

the local CRF neuron population. 
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MATERIALS AND METHODS 

Subjects  

All experiments and procedures were approved by the University of Texas at Austin 

Institutional Animal Care and Use Committee and were performed in accordance with the 

guidelines described in the US National Institutes of Health Guide for the Care and Use of 

Laboratory Animals. We used male heterozygous Crh-Cre rats (Pomrenze et al., 2015) 

outcrossed to wild-type Wistar rats (Envigo, Houston, TX), aged 5-6 weeks at the start of 

the surgical procedures and 10-14 weeks at the start of experimental procedures. Rats were 

group housed and maintained on a 12-h light:dark cycle (lights on 4AM to 4PM) with food 

and water available ad libitum. Rats prepared with guide cannulas were singly housed. All 

experiments were done between 9AM and 3PM. Rats were randomly assigned to either 

experimental or control groups within each litter.  

 

Drugs and viral vectors  

Clozapine-N-oxide (CNO) was supplied through the NIMH Chemical Synthesis and Drug 

Supply Program. CNO (2 mg/kg body weight) was dissolved in 5% dimethyl sulfoxide 

(DMSO) and then diluted to 2 mg/mL with 0.9% saline. The selective CRF1 receptor 

antagonist R121919 (3-[6-(dimethylamino)-4-methyl-pyrid-3-yl]-2,5-dimethyl-N,N-

dipropyl-pyrazolo[2,3-a]pyrimidin-7-amine, NBI 30775, was a gift from Dr. Kenner Rice 

( Chemical Biology Research Branch, Drug Design and Synthesis Section, National 

Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, 

Rockville, MD) and dissolved in a 1:1 solution of 0.9% saline and 1N HCl before adding 

25% hydroxypropyl-β-cyclodextrin (HBC) to yield a final concentration of 10mg/mL 
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R121919 in 20% HBC, pH 4.5. All systemic injections were administered at 1 mL/kg, 

except for R121919 which was administered at 2 mL/kg. 

Cre-dependent adeno-associated viral vectors AAV8-hSyn-DIO-hM3Dq-mCherry, 

AAV8-hSyn-DIO-hM4Di-mCherry, AAV8-hSyn-DIO-mCherry, AAV5-EF1α-DIO-

eYFP, and AAV2-Ef1α-flex-taCaspase3-TEVp were obtained from the University of 

North Carolina Viral Vector Core and were injected at 4-6 × 1012 infectious units per mL.  

 

Stereotaxic surgery  

At the start of surgical procedures, rats were anesthetized with isoflurane (5% v/v) and 

placed in a stereotaxic frame (David Kopf Instruments, Tujunga, CA, USA). Viruses were 

injected into the CeA (AP: -2.1; ML: ± 4.5; DV: -8.0 from skull) or dlBNST (AP: -0.0; 

ML: ± 3.5; DV: -6.8 from skull, 16° angle) at a rate of 150nL min-1 over 5 min (750-800nL 

total volume per hemisphere) with a custom 32-gauge injector cannula coupled to a pump-

mounted 2μL Hamilton syringe. Injectors were slowly retracted after a 5 min diffusion 

period. Rats were 190-220 g at the time of viral injection. Virus-injected rats were group 

housed to recovery for 1-2 months before behavioral or histological examination.  

 

Immobilization stress (IMS) 

Rats were transferred to an experimental room distinct from the behavioral testing room 

and placed in ventilated plastic Decapicone bags (Braintree Scientific, Braintree, MA, 

USA) for 30 min. Each rat was monitored every 5 min to ensure sufficient immobilization 

and respiration rate. Rats were tested for anxiety-like behavior 10 min later. Some rats 

received injections of the CRF1 receptor antagonist R121919 (20mg/kg, s.c.) 60 min prior 

to stress. Separate groups of rats received CNO (2mg/kg, i.p.) 60 min prior to stress. 
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Behavior 

Anxiety 

We used three assays to evaluate anxiety-like behavior: the elevated plus maze (EPM), the 

open field test (OF) and the social interaction test. Anxiety testing occurred in a room that 

was different than the one used to immobilize and administer drugs. The elevated plus 

maze consisted of two open arms (50 x 10 cm) and two enclosed arms (50 x 10 x 40 cm) 

connected by a central area measuring 10 x 10 cm, 50 cm above the floor. At the beginning 

of each trial, rats were placed in the center facing one open arm. Trials lasted for 6 min and 

were performed under red lighting to promote exploration. The open field consisted of an 

open topped arena (100 x 100 x 50 cm) situated on the floor. The center area was designated 

as a central zone measuring 55 x 55 cm. Rats were placed into a corner of the arena at the 

beginning of each trial. Each test lasted for 10 min and was performed under red lighting 

to promote exploration of the center. Social interaction was measured by placing a novel 

juvenile rat (4-5 weeks) into a 70 x 70 cm arena and then placing an experimental adult rat 

into the arena. The adult rat was allowed to interact with the juvenile rat for 5 min under 

red lighting. Exploratory behaviors such as allogrooming, sniffing, and pinning initiated 

by the adult rat were considered interactions (Christianson et al., 2010). All testing 

equipment was cleaned with 70% ethanol between trials. Behaviors were tracked with 

EthoVision (Noldus Information Technology, Leesburg, VA, USA). 

 

Fear conditioning 

Rats were subjected to a typical fear conditioning protocol with 3 CS-US (tone-shock) 

pairings (75 dB, 5 kHz, 20 s tones co-terminating with 0.7 mA, 500 ms shocks, variable 

ITI (average 180 s)) for delay conditioning (Monfils et al., 2009; Schafe et al., 1999). 
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Twenty-four hrs later rats were tested for contextual fear retrieval by being placed back 

into the original context for 5 min. Twenty-four hrs later rats were tested for cued fear 

retrieval in a distinct context with the presentation of 4 CS tones. The distinct context 

consisted of pinstripe and checkered walls, smooth tactile floors, and the presence of 1% 

acetic acid. For fear extinction testing, rats were fear conditioned and then subjected to 18 

tone cues within the same trial on the same variable ITI schedule for mass extinction. In 

this experiment, rats were injected with CNO (2 mg/kg, i.p.) 1 hr prior to extinction trials. 

Other groups of rats (expressing hM3Dq) were administered R121919 (20 mg/kg, s.c.) 30 

min prior to a CNO injection. 

 

Chemogenetic manipulations 

Crh-Cre rats were microinjected bilaterally in the CeA with AAV8-hSyn-DIO-hM3Dq-

mCherry, AAV8-hSyn-DIO-hM4Di-mCherry, or AAV8-hSyn-DIO-mCherry. After 4-6 

weeks of recovery, rats were injected with CNO (2 mg/kg, i.p.) and subjected to 

immobilization stress or behavioral tests 60 min later. Rats tested for fear learning were 

administered the same dose of CNO and fear conditioned 60 min later. Separate rats were 

fear conditioned and then administered the same dose of CNO either immediately after 

conditioning or 60 min prior to fear expression tests. Finally, rats tested during fear 

extinction were administered the same dose of CNO 60 min prior to extinction training. 

 

Brain slice electrophysiology 

Rats were injected with AAV-hSyn-DIO-hM4Di-mCherry or AAV-hSyn-DIO-hM3Dq-

mCherry into the CeA. After 2-3 months, rats were anesthetized with pentobarbital (100 

mg/kg, i.p.) and decapitated, and brain slices containing the CeA were cut in an ice-cold 
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glycerol-based solution (in mM: 252 glycerol, 2.5 KCl, 1.25 NaH2PO4, 1 MgCl2, 2 CaCl2, 

25 NaHCO3, 1 L-ascorbate, and 11 glucose, bubbled with carbogen). Slices recovered at 

32°C in carbogen-bubbled aCSF (containing, in mM: 126 NaCl, 2.5 KCl, 1.2 NaH2PO4, 

1.2 MgCl2, 2.4 CaCl2, 18 NaHCO3, 11 glucose, pH 7.2–7.4, mOsm 302–305) for at least 

30 min before experiments, with 1mM ascorbic acid added just before the first slice. During 

experiments, slices were submerged and perfused (2 mL/min) with aCSF at 31–32°C. 

CNO-related changes in firing or membrane potential were recorded in current-clamp 

mode using Clampex 10.1 and an Axon Multiclamp 700A patch amplifier (Molecular 

Devices, Sunnyvale, CA). All experiments used whole-cell recording with infrared-DIC 

visualization and 2.5–3.5 MW electrodes that were filled with a potassium-

methanesulfonate-based internal solution (in mM: 130 KOH, 105 methanesulfonic acid, 17 

HCl, 20 HEPES, 0.2 EGTA, 2.8 NaCl, 2.5 mg/ml Mg-ATP, 0.25 mg/ml GTP, pH 7.2–7.4, 

278–287 mOsm).  

 

Corticosterone measurement 

Rats were microinjected with AAV8-hSyn-DIO-hM4Di-mCherry into the CeA. After 

recovery rats were injected with CNO (2 mg/kg, i.p.) or vehicle and 60 min later 

immobilized for 30 min. Rats were then immediately euthanized for trunk blood collection. 

Blood corticosterone concentrations were measured using an enzyme immunoassay kit 

(900-097, Enzo Life Sciences).  

 

Histology 

All rats were checked for virus expression and implanted cannula locations after behavioral 

studies were completed. For immunofluorescence, rats were anesthetized with isoflurane 
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and perfused transcardially with 1X PBS followed by 4% paraformaldehyde in PBS, pH 

7.4. Brains were extracted, allowed to postfix overnight in the same fixative and 

cryoprotected in 30% sucrose in PBS at 4º C. Each brain was sectioned at 40 μm on a 

cryostat (Thermo Scientific) and collected in PBS. Staining for injected viruses was 

omitted due to strong native fluorescence.  

For immunohistochemistry, free-floating sections were washed three times in PBS 

with 0.2% Triton X-100 (PBST) for 10 min at room temperature. Sections were then 

incubated in blocking solution made of PBST with 3% normal donkey serum (Jackson 

ImmunoResearch, number 017-000-121) for 1 hr. Sections were next incubated in primary 

antibodies goat anti-CRF (1:1000, Santa Cruz Biotechnology, sc1761, Lot #B0315) in 

blocking solution rotating at 4º C for 18-20 h. After three 10 min washes in PBST, sections 

were incubated in species-specific secondary antibodies Alexa Fluor 488, 594, or 647 

(1:700, Life Technologies, A-21206, A-11055, A-21208, A11073, A-21447, A-31573) in 

blocking solution for 1 hr at room temperature. Finally, sections were washed three times 

for 10 min in 1X PBS. Sections were then mounted in 0.2% gelatin water onto SuperFrost 

Plus glass slides (Fisherbrand, 12-550-15), coverslipped with Fluoromount-G with DAPI 

(Southern Biotech, 0100-20), and stored in the dark. Fluorescent images were collected on 

a Zeiss 710 LSM confocal microscope or a Zeiss Axio Zoom stereo microscope. 

Quantification of fluorescence was performed on 3-6 sections per rat from 5 rats spanning 

the rostral-caudal axis of the CeA (from approximately Bregma -1.90 to -3.00) using the 

cell-counter plugin in Fiji (Schindelin et al., 2012). 

 

Statistical analyses 
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We calculated sample sizes of n = 8-12 animals per condition using SD values measured 

in pilot studies of IMS-induced anxiety-like behavior, α = 0.05, and power = 0.80, with the 

goal of detecting a 25-35% difference in mean values for treated and control samples, using 

the program G*Power (Faul et al., 2007). Studies were performed with the experimenter 

blind to the identity of the drugs that were administered. All results were expressed as mean 

± S.E.M. values and analyzed using Prism (GraphPad Software, San Diego, CA). Data 

distribution and variance were tested using Shapiro-Wilk normality tests. Normally 

distributed data were analyzed by unpaired, two-tailed t-tests, or one or two factor ANOVA 

with post-hoc Tukey’s multiple comparisons tests. In one case, where only one direction 

of change was expected, we used a one-tailed t-test (Figure 2.2B, percentage of total 

distance in the center of the OF). Data that were not normally distributed were analyzed by 

Mann-Whitney U tests when comparing two conditions. Differences were considered 

significant when P < 0.05. 

 

RESULTS 

CeACRF neurons regulate anxiety-like behavior 

To evoke anxiety, we subjected Wistar rats to 30 min of immobilization stress (IMS), 

which is a commonly used procedure that reliably increases anxiety-like behavior 

(Buynitsky and Mostofsky, 2009; Pare and Glavin, 1986) through a process mediated by 

CRF (Regev et al., 2012). We measured subsequent behavior in the elevated plus maze 

(EPM) and open field (OF), which are commonly used to assess anxiety-like behavior in 

rodents. IMS reduced the percentage of time spent on the open arms and percentage of 

open arm entries on the EPM without affecting closed arm entries (Figures 2.1A and 2.2A). 
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IMS also reduced the time spent in the center of the OF (Figure 2.1A). Although IMS also 

reduced the total distance traveled in the OF (Figure 2.2A), the percentage of total distance 

traveled in the center of the OF was significantly lower in stressed rats (Figure 2.2A). 

Consistent with a role for CRF in stress-induced anxiety, systemic administration of a 

selective CRF1 receptor antagonist, R121919 (Chen et al., 2004) (20 mg/kg, s.c., 

administered 1 hr before IMS), prevented the IMS-induced reduction in percentages of 

open arm time and entries without affecting the number of closed arm entries on the EPM 

(Figures 2.1B and 2.2B). R121919 also prevented IMS-induced reductions in the time spent 

and distance traveled in the center of the OF without altering the total distance traveled 

(Figures 2.1B and 2.2B). 

One central question is whether CRF neurons in the CeA (CeACRF neurons) mediate 

anxiety-like behavior in the rat like they do in the mouse (McCall et al., 2015; Pliota et al., 

2018; Regev et al., 2012). To manipulate neuronal activity, we used BAC transgenic Crh-

Cre Wistar rats, which express Cre recombinase in the CeA under control of the Crh 

promoter (Pomrenze et al., 2015). We bilaterally transduced CeACRF neurons with an AAV 

encoding a Cre-dependent inhibitory hM4Di designer receptor with an mCherry reporter 

(Sternson and Roth, 2014). In Crh-Cre rats, nearly all CeA neurons expressing Cre 

recombinase produce CRF (Pomrenze et al., 2015). In acute brain slices, cells expressing 

hM4Di displayed hyperpolarization when treated with the designer receptor agonist 

clozapine-N-oxide (CNO) (Figure 2.1D). CNO (2 mg/kg, i.p., 1 hr before IMS) also 

reduced anxiety-like behavior in rats expressing hM4Di when compared with control 

animals expressing mCherry. CNO increased the percentage of open arm time and the 

percentage of open arm entries on the EPM without changing the number of closed arm 

entries (Figures 2.1E and 2.2C). CNO also increased the time spent and distance traveled 
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in the center of the OF without altering the total distance traveled (Figures 2.1E and 2.2C). 

In addition, CNO increased social interaction time in rats that expressed hM4Di compared 

with control rats that expressed mCherry (mCh) in CeACRF neurons (Figure 2.1E).  

To further explore the role of CeACRF neurons in anxiety-like behavior, we used a 

different approach in which we genetically ablated neurons with a Cre-dependent Caspase3 

(Yang et al., 2013) instead of inhibiting them with hM4Di. Bilateral Caspase3-mediated 

ablation of CeACRF neurons increased the percentage of open arm time and the percentage 

of open arm entries in the EPM without affecting the number of closed arm entries (Figure 

2.3A). Caspase3-mediated ablation also increased the time spent and the percentage of total 

distance traveled in the center of the OF without altering the total distance traveled (Figure 

2.3B). These results indicate that genetic ablation of CeACRF neurons, like DREADD 

inhibition, reduces IMS-induced anxiety-like behavior. 

The CeA regulates hypothalamic-pituitary-adrenal (HPA) axis activity via its 

projections to the brainstem (Schwaber et al., 1982; van der Kooy et al., 1984). To 

determine whether CeACRF neurons affect stress-induced activation of the HPA axis, we 

examined circulating corticosterone levels. Inhibiting hM4Di-expressing CeACRF neurons 

with CNO did not affect circulating corticosterone levels in stressed rats [Veh: 766.9 ± 

46.9 ng/mL, CNO: 849.5 ± 84.4 ng/mL: t(7) = 0.9061, P = 0.395, n = 5 Control, 4 CNO, 

unpaired t-test, data not shown). This result indicates that CeACRF neurons mediated stress-

induced anxiety-like behavior independent of the HPA axis.   

Since activity of CeACRF neurons was required for stress-induced anxiety, we next 

investigated whether activating CeACRF neurons is sufficient to induce anxiety-like 

behavior, and whether inhibiting CeACRF neurons reduces baseline anxiety-like behavior in 

the absence of stress. We injected the CeA of Crh-Cre rats with AAVs encoding Cre-
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dependent excitatory (hM3Dq) or inhibitory (hM4Di) designer receptors fused to an 

mCherry reporter, or an mCherry control (Figures 2.1C and 2.1F). CNO (2 mg/kg, i.p.) 

evoked anxiety-like behavior in rats expressing hM3Dq in CeACRF cells but had no effect 

in rats that expressed hM4Di or mCherry alone.  In rats that expressed hM3Dq, CNO 

reduced the percentage of time spent on the open arms and the percentage of open arm 

entries on the EPM without affecting the number of closed arm entries (Figures 2.1F and 

2.2D). Activation of hM3Dq with CNO reduced the time spent in the center of the open 

field and the number of entries into the center (Figures 2.1F and 2.2D). The total distance 

traveled in the OF was unaffected by hM3Dq activation [F(2,23) = 0.4411, P = 0.6487, 

one-way ANOVA, data not shown]. 

An important question is how CeACRF neurons promote anxiety. One parsimonious 

explanation is through the release of CRF. To evaluate whether CRF signaling is critical, 

we performed a similar anxiety experiment in which groups of rats were injected with Cre-

dependent hM3Dq into the CeA but some received a systemic injection of the CRF1 

receptor antagonist R121919 (20 mg/kg, s.c.) just prior to a CNO injection (2 mg/kg, i.p.). 

We observed that rats treated with CNO exhibited anxiety in both assays, but those 

pretreated with R121919 showed less anxiety in the EPM test but not in the OF test (Figure 

2.4). Importantly, rats without hM3Dq stimulation of CeACRF neurons that were injected 

with R121919 showed minimal changes in baseline anxiety, aside from a modest increase 

in OF center entries, confirming the absence of CRF signaling effects on anxiety in a non-

stressed state. These data suggest that CRF release promotes anxiety on the EPM but not 

in the OF. 

These findings demonstrate that activation of CeACRF neurons was sufficient to 

increase anxiety-like behavior in non-stressed rats through activation of CRF1 receptors, 
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but inhibition of these neurons did not alter baseline anxiety-like behavior, suggesting that 

CeACRF neurons act specifically under conditions of stress. These findings also indicate that 

CNO induction of anxiety-like behavior in rats expressing hM3Dq was specific for 

activation of the hM3Dq DREADD and not due to an off-target effect of CNO or its 

metabolite clozapine (Gomez et al., 2017). 
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Figure 2.1. CeACRF neurons promote anxiety 

(A) Top, protocol for immobilization stress (IMS)-induced anxiety. Bottom, 30 min of IMS 

reduced the percentage of time spent on the open arms of the EPM [t(13) = 3.28, **P = 

0.006, unpaired t-test] and time spent in the center of the OF [t(13) = 5.19, ***P = 0.0002; 
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n = 7 control, 8 IMS, unpaired t-test]. (B) Top, experimental protocol for administration of 

R121919 before IMS. Bottom, blockade of CRF1 receptors with R121919 (20 mg/kg, s.c.) 

prevented IMS-induced reduction in percentage of time spent on open arms of the EPM 

[t(20) = 4.324, ***P = 0.0003, unpaired t-test] and in the center of the OF [U = 29, *P = 

0.04, Mann-Whitney test]. (C) Injection schematic and image of AAV-DREADD-mCherry 

expression in CeACRF neurons. Scale bar, 500 μm. Boxed region is enlarged in inset (scale 

bar, 200 μm). (D) Representative traces showing that bath application of CNO (2 μM) had 

no effect in a neuron not expressing a DREADD (Left), induced hyperpolarization of a 

neuron expressing DIO-hM4Di (Center), and promoted depolarization and spontaneous 

firing in a neuron expressing DIO-hM3Dq (Right). Quantification of changes in resting 

membrane potential in CeA neurons during CNO application [F(2,12) = 111.9, P < 0.0001, 

one-way ANOVA; n = 4-6 cells per condition 10 rats total; ****P < 0.0001 compared with 

control (no-DREADD) cells by Dunnett’s test]. (E) Top, experimental protocol for 

administration of CNO before IMS. Bottom, CNO (2 mg/kg, i.p.) increased the percentage 

of time spent in the open arms of the EPM [t(20) = 4.273, ***P = 0.004, unpaired t-test], 

time spent in the center of the OF [t(14) = 2.354, *P = 0.037, unpaired t-test], and social 

interaction time [t(14) = 2.923, **P = 0.01, n = 9 each group, unpaired t-test] in rats that 

expressed hM4Di compared with control rats that expressed mCherry (mCh) in CeACRF 

neurons. (F) Top, Protocol for anxiety testing. Bottom, in rats that expressed hM3Dq in 

CeACRF neurons, CNO (2 mg/kg, i.p.) reduced the percentage of time spent on the open 

arms of the elevated plus maze [F(2,26) = 8.061, P = 0.0019, one-way ANOVA, **P = 

0.0013 compared with mCherry (mCh) by Dunnett’s test], and reduced the time spent in 

the center of the open field [F(2,23) = 6.205, P = 0.007, one-way ANOVA, **P = 0.0091 

compared with mCherry by Dunnett’s test]. In contrast, activation of hM4Di had no effect 
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on anxiety-like behavior when compared with mCherry control animals. Data are 

represented as mean ± SEM. 
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Figure 2.2. Effects of immobilization stress and DREADDs on other measures of 
anxiety-like behavior 

(A) IMS reduced the percentage of open arm entries on the EPM [t(13) = 6.164, ****P < 

0.0001, n = 7 no IMS, 8 IMS, unpaired t-test] without affecting closed arm entries [t(13) = 
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0.3344, P = 0.7434, n = 7 no IMS, 8 IMS, unpaired t-test]. Although IMS reduced the total 

distance traveled in the OF [t(13) = 4.749, ***P = 0.0004, n = 7 no IMS, 8 IMS, unpaired 

t-test], the percentage of total distance traveled in the center of the OF was significantly 

lower in stressed rats [t(13) = 3.791, **P = 0.0022, n = 7 no IMS, 8 IMS, unpaired t-test]. 

(B) Systemic administration of the CRF1 receptor antagonist R121919 prevented IMS-

induced reductions in the percentage of open arm entries [t(20) = 7.280, ****P < 0.0001, 

n = 11 both groups, unpaired t-test] without affecting the number of closed arm entries on 

the EPM [t(20) = 1.618, P = 0.1213, n = 11 both groups, unpaired t-test].  R121919 also 

prevented IMS-induced reductions in the distance traveled in the center of the OF [t(20) = 

2.072, P = *0.0275, n = 11 both groups, unpaired t-test] without altering the total distance 

traveled [t(20) = 0.5164, P = 0.6112, n = 11 both groups, unpaired t-test]. (C) Top, 

experimental protocol. Bottom, activation of hM4Di with CNO (2 mg/kg, i.p.) during IMS 

increased the percentage of open arm entries on the EPM [t(20) = 7.610, ****P < 0.0001, 

n = 9 mCherry (mCh), 13 hM4Di, unpaired t-test] without changing the number of closed 

arm entries [t(20) = 1.312, P = 0.2044, n = 9 mCh, 13 hM4Di, unpaired t-test] . Activation 

of hM4Di during IMS increased distance traveled in the center of the OF [t(14) = 2.923, 

*P = 0.0111; n = 8 both groups, unpaired t-test] but did not alter the total distance traveled 

[t(14) = 0.1652, P = 0.8711, n = 8 both groups, unpaired t-test]. (D) Activation of CeACRF 

neurons with hM3Dq reduced the percentage of open arm entries on the EPM [F(2,26) = 

23.75, P < 0.0001, n = 12 mCh, 8 hM4Di, 9 hM3Dq, one-way ANOVA; ****P < 0.0001 

compared with mCh by Dunnett’s test] without affecting the number of closed arm entries 

[F(2,26) = 2.982, P = 0.0682, n = 12 mCh, 8 hM4Di, 9 hM3Dq, one-way ANOVA]. 

hM3Dq tended to reduce the distance traveled in the center of the OF [F(2,23) = 1.973, P 

= 0.1618, n = 9 mCh, 10 hM4Di, 7 hM3Dq, one-way ANOVA] but significantly reduced 
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the number of entries into the center OF [F(2,23) = 4.038, P = 0.0314, n = 9 mCh, 10 

hM4Di, 7 hM3Dq, one-way ANOVA; *P = 0.0424 compared with mCh by Dunnett’s test]. 

The total distance traveled in the OF was unaffected by hM3Dq activation [F(2,23) = 

0.4411, P = 0.6487, n = 9 mCh, 10 hM4Di, 7 hM3Dq, one-way ANOVA] (data not shown). 

Data are represented as mean ± SEM. 
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Figure 2.3. Genetic ablation of CeACRF neurons prevents stress-induced anxiety 

(A) Top, experimental protocol. Bottom, bilateral caspase3-mediated ablation of CeACRF 

neurons increased the percentage of time spent on the open arm [U = 7, **P = 0.0070, 

Mann-Whitney test] and percentage of open arm entries [t(14) = 3.909, **P = 0.0016, 

unpaired t-test] during the EPM test without affecting the number of closed arm entries 

[t(14) = 0.6754, P = 0.5104, n = 8 both groups, unpaired t-test]. (B) Time spent [U = 7, *P 

= 0.0126, n = 7 eYFP, 8 Caspase, Mann-Whitney test] and the percentage of total distance 

traveled in the center of the OF [U = 6, **P = 0.0084, n = 7 eYFP, 8 Caspase, Mann-

Whitney test] were also increased without altering the total distance traveled [t(13) = 1.415, 

P = 0.1807, n = 7 eYFP, 8 Caspase, unpaired t-test]. (C) Example of CRF immunoreactivity 

in the CeA of control animal microinjected with eYFP+PBS (top) versus animal 

microinjected with eYFP+Caspase3 (bottom). Scale bar, 200 μm. Data are represented as 

mean ± SEM. 
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Figure 2.4. Systemic blockade of CRF1 receptors prevents EPM but not OF anxiety 
after hM3Dq stimulation of CeACRF neurons 

(A) Left, example of image of hM3Dq-mCherry expression in CeACRF neurons. Right, 

experimental design. (B) CNO activation of hM3Dq reduced open arm time [FCNO x R12 

(1,31) = 7.292, *P = 0.0111, two-way ANOVA, n = 8-10; **P = 0.002 for Veh:Veh 

compared with CNO:Veh and ***P = 0.0003 for CNO:Veh compared with CNO:R12 by 

Tukey’s tests] and open arm entries [FCNO x R12 (1,31) = 12.92, **P = 0.0011, two-way 
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ANOVA, n = 8-10; **P = 0.0017 for Veh:Veh compared with CNO:Veh and ****P < 

0.0001 for CNO:Veh compared with CNO:R12 by Tukey’s tests] on the EPM in a CRF1 

receptor-dependent manner. Marginal effects on closed arm entries were detected [FCNO x 

R12 (1,31) = 4.812, *P = 0.0359, two-way ANOVA, n = 8-10; no significant comparisons 

by Tukey’s tests]. (C) CNO activation of hM3Dq also reduced time spent in [FCNO x R12 

(1,35) = 0.0395, P = 0.8437; FCNO (1,35) = 21.29, ****P < 0.0001; FR12 (1,35) = 0.6647, P 

= 0.4204,  two-way ANOVA, n = 8-12] and entries into the center [FCNO x R12 (1,35) = 7.329, 

*P = 0.0104, two-way ANOVA, n = 8-12; P = 0.6455 for Veh:Veh compared with 

CNO:Veh and P = 0.9523 for CNO:Veh compared with CNO:R12 by Tukey’s tests] of the 

open field, but these effects were not affected by CRF1 receptor blockade. R121919 

however did increase entries into the center in rats without hM3Dq activation via CNO. 

No effects on locomotion were detected [FCNO x R12 (1,35) = 0.06212, P = 0.8046, two-way 

ANOVA, n = 8-12]. Data are presented as mean ± SEM. 
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CeACRF neurons regulate fear learning 

CRF neurons of the CeA mediate fear learning in mice (Sanford et al., 2017). We confirmed 

this effect in rats by injecting the inhibitory designer receptor hM4Di into the CeA of Crh-

Cre to silence the activity of CeACRF neurons. Rats were injected with CNO (2 mg/kg, i.p.) 

either prior to fear conditioning, immediately after fear conditioning, or prior to retrieval 

trials (Figures 2.5). All rats exhibited shock-induced freezing, however only those whose 

neurons were silenced during conditioning showed reduced freezing during both contextual 

and cued retrieval trials (Figure 2.5B). Rats with CeACRF neuron inhibition immediately 

after conditioning or prior to retrieval trials exhibited no differences in contextual or cued 

freezing (Figure 2.5C and 2.5D). These data help confirm the hypothesis that CeACRF 

neurons contribute to fear learning, and are relatively dispensable during expression tests 

once fear associations have been formed. 

Since CeACRF neurons promoted fear learning, we next asked whether stimulation 

these neurons could have an opposite effect on fear behavior. To do so, we decided to 

evaluate fear extinction during CeACRF neuron stimulation since freezing to cues decreases 

as more cues are presented in the absence of shock. Rats were injected with hM4Di, 

hM3Dq, or mCherry into the CeA and fear conditioned. Twenty-four hrs after conditioning, 

rats were presented with 18 tone cues for massed extinction. Rats expressing hM4Di or 

mCherry extinguished freezing, yet rats expressing hM3Dq failed to exhibit reductions in 

freezing, indicative of minimal extinction learning (Figure 2.6A). In a retrieval trial 24 hrs 

after extinction training, hM3Dq rats froze more to the tone cues (Figure 2.6B). This result 

shows that stimulation of CeACRF neurons can disrupt normal fear extinction, and further 

indicates that these neurons promote fear behavior. To determine whether CRF release is 

an important factor for disrupting extinction learning, we repeated the same hM3Dq 
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experiment but administered some rats the CRF1 receptor antagonist R121919 (20 mg/kg, 

s.c.). Blockade of CRF1 receptors prevented the CeACRF neuron-induced disruption in 

extinction learning (Figures 2.6C and 2.6D). Altogether, these data demonstrate that 

CeACRF neurons promote fear learning and can oppose fear extinction, most likely through 

the release of CRF acting at central CRF1 receptors. 
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Figure 2.5. CeACRF neurons mediate fear learning, but not fear expression 
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(A) Injection schematics and example of viral expression in CeACRF neurons for hM4Di 

DREADD inhibition (left) and shRNA knockdown (right). Scale bar, 200 μm. (B) Top, 

experimental protocol for fear conditioning. Bottom, chemogenetic inhibition of CeACRF 

neurons with hM4Di and CNO (2 mg/kg, i.p.) did not affect shock-induced freezing during 

fear conditioning but disrupted contextual fear retrieval during the first minute [U = 1, 

***P = 0.0003, n = 8 for both groups, Mann-Whitney test] as well as cued fear retrieval 

[t(14) = 4.846, ***P = 0.0003, n = 8 for both groups, unpaired t-test]. (C) Top, 

experimental protocol. Bottom, inhibition of CeACRF neurons immediately after 

conditioning did not affect contextual [t(14) = 0.2019, P = 0.8429, n = 8 for both groups, 

unpaired t-test] or cued fear retrieval [t(14) = 1.165, P = 0.2636, n = 8 for both groups, 

unpaired t-test]. (D). Top, experimental protocol. Bottom, inhibition of CeACRF neurons 

before retrieval trials did not affect contextual [t(13) = 0.6246, P = 0.5431, n = 7 mCherry, 

8 hM4Di, unpaired t-test] or cued [t(13) = 0.2142, P = 0.8337, n = 7 mCherry, 8 hM4Di, 

unpaired t-test] freezing. Yellow shading indicates times when CNO is on board. Data are 

presented as mean ± SEM. 
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Figure 2.6. Stimulation of CeACRF neurons interferes with fear extinction 

(A) Top, experimental protocol for fear conditioning and extinction. Bottom left, 

chemogenetic stimulation of CeACRF neurons with hM3Dq and CNO (2 mg/kg, i.p.) 

disrupted cued fear extinction [FTime x Virus (36,450) = 3.586, ****P < 0.0001, two-way RM 

ANOVA, n = 9-10; *P < 0.05 for hM3Dq compared with hM4Di starting at the 3rd tone 

and hM3Dq compared with mCherry starting at the 8th tone by Tukey’s tests]. Bottom right, 

extinction memory 24 hrs later is reduced in rats expressing hM3Dq, reflected as increased 

freezing during the extinction retrieval test [F(2,25) = 8.781, P = 0.0013, one-way 

ANOVA; n = 9-10; **P = 0.0017 hM3Dq compared with mCherry by Dunnett’s test]. (B) 

Top, experimental protocol. Bottom left, blockade of CRF1 receptors with R121919 (20 

mg/kg, s.c.) prevented hM3Dq-induced disruptions in extinction performance [FTime x Virus 
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(54,504) = 2.152, ****P < 0.0001, two-way RM ANOVA, n = 8; *P < 0.05 for Veh + 

CNO compared with Veh + Veh starting at the 5th tone and Veh + CNO compared with 

R12 + Veh and R12 + CNO at the 12th tone by Tukey’s tests]. Bottom right, blockade of 

CRF1 receptors marginally prevented deficits in extinction memory 24 hrs later [FCNO x R12 

(1,28) = 3.340, P = 0.0783, two-way ANOVA, n = 8; **P = .0049 for Veh + CNO 

compared with Veh + Veh, and P = .0935 for Veh + CNO compared with R12 + CNO, by 

Tukey’s tests]. Yellow shading indicates times when CNO is on board. Data are presented 

as mean ± SEM. 
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DISCUSSION 

Canonical models of fear and anxiety circuitry propose that the CeA is a critical structure 

for fear-like behaviors but not those related to anxiety (Davis, 1992, 1997; Davis et al., 

2010; Liang et al., 1992a). Since these were done with crude inactivation methods such as 

lesions and pharmacology (infusions of GABA receptor agonists like muscimol), the 

precise roles of different co-existing neuronal populations were not addressed. In this 

study, we demonstrate overlapping roles for a discrete population of CeA neurons, those 

expressing and releasing CRF, in both fear and anxiety behaviors in rats. CeACRF neurons 

mediated immobilization stress-induced anxiety and were capable of generating an 

anxiogenic state when stimulated with hM3Dq designer receptors. These neurons also 

mediated fear learning to both contexts and cues and disrupted fear extinction when 

stimulated. These effects were most likely due to the release of CRF acting at CRF1 

receptors since blockade with R121919 prevented evoked fear and anxiety when CeACRF 

neurons were stimulated. Therefore, these data challenge early models of fear and anxiety 

circuitry by showing that CeACRF neurons contribute to both of these behaviors. 

Acute immobilization stress produces anxiety in rodents (Buynitsky and 

Mostofsky, 2009; Pare and Glavin, 1986). We were able to prevent this anxiety by 

suppressing the activity of CeACRF neurons either by hM4Di-mediated silencing or 

Caspase3-medaited ablation. These data suggest that these neurons are engaged by stress 

and help orchestrate anxiety responses that stress produces. Stimulation with hM3Dq 

recapitulated stress effects on anxiety, and this effect was blocked by CRF1 receptor 

antagonism. Since CRF1 receptors also blocked stress-induced anxiety in wild-type rats, it 

is likely that a critical source of CRF released by stress is the CeA. This is consistent with 

a previous report (Regev et al., 2012) and is similar to the effects we observed during fear 
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conditioning. It is likely that CRF release is involved with the induction of fear learning 

and can interrupt extinction of fear associations (Gafford et al., 2012; Pitts et al., 2009; 

Sanford et al., 2017). Based on these findings, CeACRF neurons likely exert their influences 

over fear and anxiety states through the release of CRF. However, this is most likely not 

the full story.  

CeACRF neurons are heterogenous. They express several other neuropeptides aside 

from CRF (neurotensin, dynorphin, somatostatin, etc.) and at least some are projection 

neurons that send axons to many brain structures implicated in fear and anxiety states (Kim 

et al., 2017; Marchant et al., 2007; Pomrenze et al., 2015). These features suggest that 

CeACRF neurons can promote fear and anxiety through several mechanisms. For instance, 

these neurons could co-release multiple peptides when stimulated by stress, footshocks, or 

hM3Dq, leading to complex neurophysiology effects downstream and a fine-tuning of 

behavioral outputs. Dynorphin is involved in aversive features of stress and drug 

withdrawal (Ahrens et al., 2018; Anderson and Becker, 2017; Koob, 2008) and neurotensin 

mediates chronic stress-induced plasticity in the BNST (Normandeau et al., 2018b) but is 

rewarding when signaling in the CeA (Laszlo et al., 2010). Thus, a mixture of peptides was 

most likely released in our experiments, all with presumably different effects that led to a 

net effect of pro-fear and pro-anxiety. However, the effects of these peptides in isolation 

will need to be tested in the future. 

Among all the brain regions that CeACRF neurons project to, the BNST stands out 

as a promising candidate for mediating anxiety. The dorsal BNST has been implicated in 

anxiety states (Crowley et al., 2016; Davis et al., 2010; Kim et al., 2013; Normandeau et 

al., 2018b), has strong connectivity with the CeA (Li et al., 2012; Chapter 1), and exhibits 

strong physiological responses to CRF, dynorphin, and neurotensin (Crowley et al., 2016; 
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Kash et al., 2008; Kash et al., 2015; Normandeau et al., 2018a; Normandeau et al., 2018b). 

Thus, it is possible that CeACRF neurons target the dorsal BNST to mediate acute stress-

induced anxiety behaviors. The role of the different neuropeptides CeACRF neurons express, 

and the role of their projection targets should be the focus of future investigations. 

Why do lesions and pharmacological inactivation of the CeA have no effects on 

anxiety? It is becoming increasingly clear that intermingled subpopulations of genetically-

defined neurons can exhibit opposing functions (Daniel and Rainnie, 2016; Fadok et al., 

2017; Fadok et al., 2018; Kim et al., 2017). The ability to target a given brain region with 

cellular precision has helped generate a new understanding of how the brain controls 

behavior. As such, global inactivation of the CeA could inhibit the function of pro-anxiety 

and anti-anxiety cells that antagonize each other, leading to a null net effect. By 

manipulating discrete cell-types, we can begin to understand 1) what brain structures are 

capable of doing and 2) how they carry out these functions on the circuit and systems levels. 

Thus, despite this not being the first example of this methodology, manipulating CeACRF 

neurons here has provided insight into how the CeA contributes to both fear and anxiety. 

Our data demonstrate that the CeA has a role in fear and anxiety states, and that there are 

most likely counter-circuits within the CeA that oppose or modulate these states.  

In summary, we have demonstrated how CeACRF neurons can control fear and 

anxiety behaviors in rats using viral-genetic tools and pharmacology. Our data identify this 

cell population as critical to both aversive states through the release of the primary 

neuropeptide CRF. In addition, we challenge the anatomical segregation of fear and anxiety 

and suggest a more versatile role for the CeA, and most likely other brain regions as well. 

These data will hopefully also be informative to the development of new therapeutic 

strategies for treating human fear and anxiety disorders. 
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CHAPTER 3: GABA AND NEUROPEPTIDES FROM CENTRAL 
AMYGDALA CRF NEURONS PLAY DISTINCT ROLES IN FEAR 

AND ANXIETY 

ABSTRACT 

Central amygdala CRF neurons regulate fear and anxiety-like behaviors in rats and mice. 

These neurons release GABA and co-express several neuropeptides other than CRF that 

play important roles in a variety of behaviors. Genetic tools have allowed for precise 

manipulations of these CRF cells, but few studies have determined which neurotransmitters 

or neuropeptides are released to control behavior. Here we dissect the relative roles GABA, 

CRF, dynorphin, and neurotensin play in fear and anxiety-like behaviors by disrupting their 

expression and release potential with Cre-dependent RNA interference tools in Crh-Cre 

rats. We find that GABA release, but not neuropeptide release, regulates baseline anxiety-

like behavior. We also observed that chemogenetic stimulation of central amygdala CRF 

neurons evokes anxiety-like behavior that is dependent on expression of CRF and 

dynorphin, but not neurotensin. Finally, expression of CRF and dynorphin promote fear 

learning whereas neurotensin expression dampens fear. These results demonstrate 

differential roles of different neuropeptides released from the same neurons in fear and 

anxiety-like behaviors. 
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INTRODUCTION 

The field of neuroscience has been transformed by the advent of genetic tools that permit 

access to specific neuronal cell types (Roth, 2016; Yizhar et al., 2011). Cell-type and 

pathway-specific targeting of fluorescent tracers and effector proteins has provided 

unprecedented insight into how neural circuits control behavior. Cre-driver mouse lines 

and viral genetic tools are typically used to manipulate the activity of neuronal 

subpopulations (Daigle et al., 2018; Harris et al., 2014; Madisen et al., 2015; Taniguchi et 

al., 2011). However, a pitfall in this approach lies in the temptation to attribute the actions 

of the subpopulation to the peptide or neurotransmitter whose promoter was used to drive 

Cre recombinase expression, thereby overlooking the contributions of other signaling 

molecules released by the targeted neurons. 

Neuropeptides are interesting and elusive signaling molecules with unique 

properties. Essentially all neurons that express neuropeptides express more than one, and 

also release a fast-acting amino acid neurotransmitter such as glutamate or GABA (van den 

Pol, 2012). Compared with fast-acting neurotransmitters, neuropeptides may require higher 

frequency stimulation and larger increases in intracellular calcium for release. 

Neuropeptides can also signal over longer distances due to extrasynaptic release, local 

diffusion, and the requirement of extracellular proteolytic cleavage as opposed to local 

reuptake for signal termination. A particularly interesting question is how multiple peptides 

released by a single neuron interact, particularly when they evoke initially opposing 

responses. Are they released from different dense-core vesicles that respond to different 

patterns of stimulation, or if co-released do they bind to receptors with different latencies 

or durations of action? Or do they bind receptors expressed on different target neurons 

within a circuit that generates a synergistic effect?  
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One brain structure rich with neuropeptides is the central amygdala (CeA). The 

CeA contains a large population of cells that express the stress-responsive neuropeptide 

corticotropin releasing factor (CRF). CeA CRF (CeACRF) neurons release GABA and co-

express numerous neuropeptides, including dynorphin and neurotensin, and have been 

found to promote anxiety-like behavior and fear learning (Asok et al., 2018; McCall et al., 

2015; Pliota et al., 2018; Sanford et al., 2017). Interestingly, some of the neuropeptides 

expressed in CeACRF neurons have been shown to play distinct roles in fear and anxiety-

like phenotypes. CRF and dynorphin promote fear and anxiety-like behaviors, whereas 

neurotensin has been reported to play a minimal role in anxiety and dampens fear learning 

(Asok et al., 2018; Crowley et al., 2016; Knoll et al., 2007; Knoll et al., 2011; Laszlo et al., 

2010; McCall et al., 2015; Pitts et al., 2009; Prus et al., 2014; Regev et al., 2012; Sanford 

et al., 2017; Steele et al., 2017; Toda et al., 2014; Yamada et al., 2010). Despite having 

established roles in fear and anxiety, the contribution of other neurotransmitters released 

from CeACRF neurons to fear and anxiety-like behaviors has never been explored. 

In this study, we examined the question of how neurons control and fine-tune 

behavior through the release of diverse signaling molecules predicted to have opposing 

actions. Here we used a rat line that expresses Cre recombinase under control of the 

corticotropin releasing factor (CRF) promoter (Pomrenze et al., 2015). Using RNA 

interference, we dissected the roles of CRF, GABA, and the co-expressed neuropeptides 

dynorphin and neurotensin in modulating anxiety-like behavior and fear learning. Our 

results demonstrate that this subpopulation of amygdala neurons plays a multimodal role 

in regulating different behaviors through the coordinate actions of different 

neurotransmitters and neuromodulators. These findings highlight the importance of 
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considering the spectrum of signaling molecules expressed by a subpopulation of neurons 

when studying brain physiology and behavior. 
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MATERIALS AND METHODS 

Subjects 

All procedures were approved by the University of Texas at Austin Institutional Animal 

Care and Use Committee. We used male hemizygous Crh-Cre rats (Pomrenze et al., 2015) 

outcrossed to wild-type Wistar rats (Envigo, Houston, TX), aged 5-6 weeks at the start of 

the surgical procedures and 10-14 weeks at the start of experimental procedures. Rats were 

group housed and maintained on a 12-h light:dark cycle with food and water available ad 

libitum. Cre+ rats were randomly assigned to either experimental or control groups within 

each litter.  

 

Drugs and viral vectors 

Clozapine-N-oxide (CNO) was supplied through the NIMH Chemical Synthesis and Drug 

Supply Program. CNO (2 mg/kg body weight) was dissolved in 5% dimethyl sulfoxide 

(DMSO) and then diluted to 2 mg/mL with 0.9% saline. Systemic injections were 

administered at 1 mL/kg. The selective CRF1 receptor antagonist 3-[6-(dimethylamino)-4-

methyl-pyrid-3-yl]-2,5-dimethyl-N,N-dipropyl-pyrazolo[2,3-a]pyrimidin-7-amine 

(R121919) was provided by Dr. Kenner Rice (Drug Design and Synthesis Section, NIDA, 

Bethesda, MD) and dissolved in a 1:1 solution of 0.9% saline and 1N HCl before adding 

25% hydroxypropyl-β-cyclodextrin (HBC; Sigma Aldrich, St. Louis, MO) to yield a final 

concentration of 10 mg/mL R121919 in 20% HBC, pH 4.5. 

The Cre-dependent viral vector AAV8-hSyn-DIO-hM3Dq-mCherry was obtained 

from Addgene (Cambridge, MA). AAV constructs containing shRNAs targeting proCrh, 

proDynorphin, Neurotensin, and a scrambled control were packaged by the University of 

North Carolina Chapel Hill viral vector core. All AAVs were injected at 4-6 ´ 1012 
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infectious units per mL. Canine adeno virus 2 (CAV2) carrying a flex-ZsGreen reporter 

expressed from the CAG promoter (CAV2-CAG-flex-ZsGreen) was a gift from Dr. Larry 

Zweifel (University of Washington, Seattle, WA) and was injected at 2 × 1012 infectious 

units per mL. 

 

Stereotaxic surgery 

Rats weighing 200-250 g were anesthetized with isoflurane (5% v/v) and secured in a 

stereotaxic frame (David Kopf Instruments, Tujunga, CA). Viruses were injected 

bilaterally into the CeA (AP: -2.2; ML: ± 4.5; DV: -8.0 from skull) at a rate of 150 nL  

min-1 for 5 min (750-800nL total volume per hemisphere) with a custom 32-gauge injector 

cannula coupled to a pump-mounted 2μL Hamilton syringe. Injectors were slowly retracted 

after a 5-min diffusion period. Rats were group housed to recover for 4-6 weeks before 

experiments began. 

 

Generation of shRNAs 

Three shRNA oligonucleotides targeting the 3’-untranslated region (UTR) of proCrh, 

proDynorphin, or Neurotensin were generated and subcloned into a pPRIME lentiviral 

transfer vector (Addgene #11663). Constructs containing shRNAS along with a cDNA 

encoding each peptide with the respective 3’-UTR were transfected into HEK293 cells. 

Seventy-two hrs after transfection, cells were harvested, lysed and assayed by western blot 

(in vitro validation of shCrh and shDyn) or qPCR (in vitro validation of shNts). The shRNA 

for each peptide with the greatest and most consistent knockdown was chosen and 

subcloned into a pAAV vector containing a previously validated Cre-dependent (flex) 

shRNA targeting the 3’-UTR of the vesicular GABA transporter (Vgat) within a modified 
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microRNA (miR30) cassette (a gift from Dr. William Wisden - Imperial College, London, 

UK; Yu et al., 2015), replacing the shVgat sequence. Thess constructs and a control hairpin 

construct were packaged into AAV8 by the UNC Viral Vector Core. AAV8-hSyn-flex-

eGFP-shCrh (shCrh), AAV8-hSyn-flex-eGFP-shDynorphin (shDyn), AAV8-hSyn-flex-

eGFP-shNeurotensin (shNts), and AAV8-hSyn-flex-eGFP-shControl (shCon - sequence 

targeting luciferase) were injected at 2-3 ´ 1012 particles per mL into the CeA. Knockdown 

in vivo was verified using RT-qPCR from AAV-infected CeA tissue punches. 

 

RT-qPCR 

Crh-Cre rats were bilaterally injected into the CeA with AAVs carrying shCrh, shDyn, 

shNts, or shCon. After 4 weeks rats were euthanized and their brains flash frozen in 

isopentane on dry ice and stored at -80°C. Brains were then equilibrated to -20°C in a 

cryostat for 1 hr and the CeA sectioned coronally at 250 μm and mounted onto cold 

Superfrost Plus slides (Fisher Scientific). Tissue punches (2 mm diameter) spanning the 

CeA from both hemispheres were collected onto dry ice and snap frozen in liquid nitrogen. 

RNA was extracted immediately using RNeasy Lipid Tissue Mini Kit (Qiagen, Hilden, 

Germany). Purified RNA samples were reverse transcribed by using the High Capacity 

cDNA Synthesis Kit (Invitrogen, Carlsbad, CA). Quantitative real-time PCR was 

performed using a TaqMan Gene Expression Assay Kit (Applied Biosystems, Foster City, 

CA). All TaqMan probes were purchased from Applied Biosystems: Crh, Dynorphin, 

Neurotensin, GusB and Hprt1. Target amplification was performed by using ViiA 7 Real-

Time PCR System (Applied Biosystems). Relative mRNA expression levels were 

calculated via a comparative threshold cycle (Ct) method using GusB as an internal control: 
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DCt = Ct (gene of interest) – Ct (GusB). The gene expression fold change was normalized 

to the control sample and then was calculated as 2-DDCt. 

 

Western blotting 

shRNA-mediated knockdown was tested in vitro using HEK293T cells. Cells were plated 

at a density of 3 x 105 cells/well in 12-well plates. Twenty-four hours after plating, cells 

were co-transfected with the pPRIME vector plus a transgene encoding CRF or DYN 

(including their 3’-UTRs) using Lipofectamine 2000 (Life Technologies). 60 hrs after 

transfection, media was aspirated and cells were lysed by incubating with 200 μl of ice-

cold RIPA buffer at 4ºC for 30 min. The lysate was then centrifuged at 10,000 x g for 15 

min at 4ºC. Supernatant was collected and protein concentrations were measured using the 

bicinchonnic assay method (Life Technologies). 40 μg of protein was resolved on a 10% 

SDS Polyacrylamide gel and transferred on to a nitrocellulose membrane. After transfer, 

the membrane was blocked with 5% milk in Tris-buffered saline containing 0.01% Tween-

20 (TBST). The blot was probed with 1:200 dilution of goat anti-CRF antibody (Santa Cruz 

Biotechnology, sc-1761) or 1:1000 dilution of guinea pig anti-DYN antibody (Neuromics, 

GP10110) in 5% milk overnight at 4ºC with shaking. Blots were washed three times in 1X 

TBST and probed with 1:2500 dilution (in 5% milk) of horseradish peroxidase conjugated 

anti-goat or anti-guinea pig secondary antibodies (Jackson Immunoresearch) for 1 hr at 

room temperature followed by chemiluminescent detection (Super-signal West, Life 

Technologies). Blots were stripped (Restore buffer, Life Technologies) and probed with 

anti-rabbit GAPDH (1:10,000 dilution in 5% milk, Cell Signaling Technologies, 5174S). 

Immunoreactive bands were quantified using Image J. CRF and DYN levels were 

normalized to GAPDH and percent knockdown was calculated.   
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Behavior 

Anxiety 

We used two assays to evaluate anxiety-like behavior: the elevated plus maze (EPM) and 

the open field test (OF). The EPM consisted of two open arms (50 x 10 cm) and two 

enclosed arms (50 x 10 x 40 cm) connected by a central area measuring 10 x 10 cm, 50 cm 

above the floor. At the beginning of each trial, rats were placed in the center facing one 

open arm. Trials lasted for 5 min and were performed under red lighting. The OF consisted 

of an open topped arena (100 x 100 x 50 cm) situated on the floor. The center zone 

measured 55 x 55 cm. Rats were placed into a corner of the arena at the beginning of each 

trial. Each trial lasted 10 min and was performed under red lighting. All testing equipment 

was cleaned with 70% ethanol between trials. Behaviors were tracked with EthoVision 

(Noldus Information Technology, Leesburg, VA, USA). 

 

Fear conditioning 

Rats were subjected to a typical fear conditioning protocol with 3 CS-US (tone-shock) 

pairings (75 dB, 5 kHz, 20 s tones co-terminating with 0.7 mA, 500 ms shocks, variable 

ITI (average 180 s)) for delay conditioning (Monfils et al., 2009; Schafe et al., 1999). 

Twenty-four hrs later rats were tested for contextual fear retrieval by being placed back 

into the original context for 5 min. Twenty-four hrs later rats were tested for cued fear 

retrieval in a distinct context with the presentation of 4 CS tones. The distinct context 

consisted of pinstripe and checkered walls, smooth tactile floors, and the presence of 1% 

acetic acid.  

 

Histology 
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Rats were anesthetized with isoflurane and perfused transcardially with PBS followed by 

4% paraformaldehyde in PBS, pH 7.4. Brains were extracted, postfixed overnight in the 

same fixative and cryoprotected in 30% sucrose in PBS at 4º C. Brains were sectioned at 

40 μm on a cryostat and collected in PBS. Free-floating sections were washed three times 

in PBS with 0.2% Triton X-100 (PBST) for 10 min and then incubated in PBST with 3% 

normal donkey serum (Jackson ImmunoResearch, West Grove, PA, Cat. No. 017-000-121) 

for 1 hr. Sections were next incubated in goat anti-cFos (1:2000, Santa Cruz 

Biotechnology, Dallas, TX, Cat. No. sc-52-G), guinea pig anti-proDynorphin (1:500, 

Neuromics, Edina, MV, Cat. No. GP10110), rabbit anti-neurotensin (1:1000, ImmunoStar, 

Hudson, WI, Cat. No. 20072), and/or rabbit anti-PKCδ (1:2000, Santa Cruz 

Biotechnology, Cat. No. sc-213) in blocking solution rotating at 4ºC for 18-20 hr. After 

three 10 min washes in PBST, sections were incubated in species-specific secondary 

antibodies Alexa Fluor 488, 594, or 647 (1:700, Life Technologies, Carlsbad, CA, Cat. 

Nos. A-21206, A-11055, A-21208, A11073, A-21447, A-31573) in blocking solution for 

1hr at room temperature. Finally, sections were washed three times for 10 min in 1X PBS, 

mounted in 0.2% gelatin onto SuperFrost Plus glass slides, and coverslipped with 

Fluoromount-G with DAPI (Southern Biotech, Birmingham, AL, Cat. No. 0100-20). 

Fluorescent images were collected on a Zeiss 710 confocal microscope or a Zeiss 

AxioZoom stereo microscope. Quantification of fluorescence was performed on 3-6 

sections per rat from 5 rats from approximately Bregma -1.90 to -3.00 in the CeA and 

Bregma +0.2 to -0.2 in the BNST using the cell-counter plugin in Fiji (Schindelin et al., 

2012).  

 

Fluorescence in situ hybridization 
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Coronal sections were processed for fluorescent in situ hybridization by RNAscope 

according to manufacturer’s guidelines. Genes examined in the CeA were Crh (ACDBio 

cat# 318931) and egfp (ACDBio cat# 409971) and hybridization was performed using 

RNAscope Fluorescent Multiplex Kit (Advanced Cell Diagnostics). Slides were 

coverslipped with Fluoromount-G with DAPI (Southern Biotech, 0100-20) and stored at 

4°C in the dark before imaging. 

 

Statistical Analyses 

We calculated sample sizes of n = 8-12 animals per condition using SD values measured 

in pilot studies of IMS-induced anxiety-like behavior, α = 0.05, and power = 0.80, with the 

goal of detecting a 25-35% difference in mean values for treated and control samples, using 

G*Power (Faul et al., 2007). All results were expressed as mean ± S.E.M. values and 

analyzed using Prism 7.0 (GraphPad Software, San Diego, CA). Data distribution and 

variance were tested using Shapiro-Wilk normality tests. Normally distributed data were 

analyzed by unpaired, two-tailed t-tests, or one or two factor ANOVA with post-hoc 

Tukey’s or Bonferroni’s tests. Data that were not normally distributed were analyzed by 

Mann-Whitney U tests when comparing two conditions or were transformed to square root 

values before performing a two-factor ANOVA. Differences were considered significant 

when P < 0.05. 
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RESULTS 

CeACRF neuron neuropeptides and baseline anxiety 

We have shown previously that rat CeACRF neurons co-localize with several other 

neuropeptides (Pomrenze et al., 2015), consistent with previous reports in rats and mice 

(Kim et al., 2017; Marchant et al., 2007). Pharmacological studies suggest that CRF and 

dynorphin are anxiogenic (Ahrens et al., 2018; Arborelius et al., 1999; Bruchas et al., 2009; 

Crowley et al., 2016), raising the question of how these co-expressed signaling molecules 

interact to set the level of baseline anxiety-like behavior. To examine this question, we 

designed Cre-dependent short hairpin RNAs (shRNAs) targeting the 3’-UTRs of the pro-

peptides for CRF, dynorphin, and neurotensin. These sequences were cloned into the vector 

pPRIME-GFP and transfected into HEK-293 cells together with cDNAs encoding open 

reading frames plus 3’-UTRs for these peptides. Three days later, we measured the 

abundance of CRF and dynorphin by western blot analysis and neurotensin mRNA by 

qPCR (Figures 3.1A and 3.1B). The most effective shRNA sequences were packaged into 

AAV8 vectors and injected bilaterally into the CeA of Crh-Cre rats. After 4 weeks we 

verified in vivo knockdown of respective mRNAs by qPCR (Figures 3.2C and 3.2D). 

We then injected a new cohort of rats and after 4-6 weeks tested them for baseline 

anxiety-like behavior in elevated plus maze (EPM) and open field (OF) assays. Compared 

with rats expressing a control construct, knockdown of each peptide modestly increased 

the percentage of open arm entries, but did not alter the percentage of time in the open arms 

(Figure 3.2B) or the number of closed arm entries (Figure 3.6A). Knockdown also did not 

alter the time spent in the center or the number of entries into the center of the OF (Figure 

3.2C). Locomotion in the OF was not affected (Figure 3.6B). These findings suggest that 
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CRF, dynorphin, and neurotensin from CeACRF neurons play a minor role in setting the 

level of baseline anxiety-like behavior. 
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Figure 3.1. Validation of shRNAs targeting Crh, Dyn, or Nts 

(A) Top, schematic of initial lentiviral vector containing shRNAs and interaction with 

mRNA transcripts of interest. Bottom, western blots demonstrating shRNA knockdown of 

Crh or Dyn in HEK293 cells. (B) Western blot and qPCR results for in vitro knockdown. 

shRNAs targeting Crh or Dyn were validated by western blot [shCon compared with 

shCrh1: t(5) = 9.965, ***P = 0.0002; shCon compared with shDyn1: t(5) = 12.86, ****P 

< 0.0001, unpaired t-tests; n = 3-4] and shRNAs targeting Nts were validated using qPCR 

(due to lack of validated antibodies for neurotensin) [shCon compared with shNts1: t(4) = 

4.373, *P = 0.0119]. (C) Injection schematic and experimental design of in vivo validation 

of shRNAs after packaging into AAV. (D) qPCR validation of shCrh [t(4) = 2.855, *P = 

0.0462; n = 3], shDyn [t(4) = 2.804, *P = 0.0486; n = 3], and shNts [t(8) = 3.286, *P = 
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0.011; n = 5] after bilateral tissue punches of AAV-infected CeA in Crh-Cre rats. Data are 

presented as mean ± SEM. 
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Figure 3.2. Knockdown of Vgat, but not Crh, Dyn, or Nts in CeACRF neurons produces 
an anxiogenic state 

(A) Injection schematic and representative image of egfp mRNA from AAV containing 

shRNA co-localizing with Crh mRNA. Scale bar, 200 µm. (B) Knockdown of Crh, Dyn, 

or Nts leads to no changes in time spent in the open arms of the elevated plus maze [F(3,39) 

= 0.5965, P = 0.6211, one-way ANOVA, n = 13 shCon, 11 shCrh, 10, shDyn, 9 shNts] but 

does increase the number of entries into the open arms [F(3,39) = 2.139, P = 0.0092, one 

way ANOVA, n = 13 shCon, 11 shCrh, 10, shDyn, 9 shNts; *P < 0.05 compared with 

shCon by Dunnett’s test]. (C) Knockdown of Crh, Dyn, or Nts led to no changes in baseline 

anxiety-like behavior in the open field [time in the center: F(3,39) = 1.610, P = 0.2026, 
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one-way ANOVA; entries into the center: F(3,39) = 1.477, P = 0.2356, one-way ANOVA, 

n = 13 shCon, 11 shCrh, 10, shDyn, 9 shNts]. (D) Knockdown of Vgat in CeACRF neurons 

reduces time spent in the open arms [t(22) = 3.158, **P = 0.0046; n = 12 both groups, 

unpaired t-test] and entries into the open arms [t(22) = 7.858, ****P < 0.0001, n = 12 both 

groups, unpaired t-test] on the elevated plus maze. (E) Knockdown of Vgat also reduces 

time spent in the center [t(22) = 2.156, *P = 0.0423, n = 12 both groups, unpaired t-test] 

and entries into the center [t(22) = 2.407, *P = 0.0249, n = 12 both groups, unpaired t-test] 

of the open field. Data are presented as mean ± SEM. 
  



 
 

105 

GABA release from CeACRF neurons regulates baseline anxiety 

CeACRF neurons, like other neurons of the CeA, release GABA (Dabrowska et al., 2013a; 

Pomrenze et al., 2015; Veinante et al., 1997). An important question is whether GABA and 

neuropeptide release from these neurons cooperate to regulate behavior or play different 

roles. Since CRF is anxiogenic, we hypothesized that GABA relase from CeACRF neurons 

would synergize with CRF to generate anxiety-like behavior. To test this hypothesis, we 

reduced GABA release potential in these neurons by viral delivery of a Cre-dependent 

shRNA that targets the 3’-UTR of the transcript encoding the vesicular GABA transporter 

(Vgat). This shRNA has previously been extensively validated using single-cell qPCR and 

behavioral analysis (Yu et al., 2015). This construct was injected into the CeA of Crh-Cre 

rats and after 4-6 weeks to allow for expression and knockdown, rats were tested for 

baseline anxiety-like behavior. Surprisingly, we observed increased anxiety-like behavior 

in both the EPM and OF tests in animals with Vgat knockdown compared with animals 

expressing the control construct (Figures 3.12D and 3.2E). No effects on locomotion in 

either test were found (Figures 3.6C and 3.6D). This finding suggests that GABA release 

from CeACRF neurons is anxiolytic under baseline conditions, a role distinct from CRF, 

dynorphin, and neurotensin.  

Knockdown of Vgat in CeACRF neurons could promote anxiety through 

disinhibition of downstream circuits. To investigate this possibility, we challenged a 

separate group of rats with Vgat knockdown by placing them in the OF for 10 min and used 

Fos as a readout for neural activity engaged by OF exposure (Figure 3.3A;(Heisler et al., 

2007). Control rats exposed to the OF showed low levels of Fos in the CeA and in the oval 

BNST, a structure that is known to modulate anxiety and is strongly connected with the 

CeA as part of the “extended amygdala”. In contrast to controls, rats with Vgat knockdown 
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displayed a large induction of Fos in both structures (Figures 3.3B-3.3E). Several Fos+ 

neurons in the CeA and oval BNST expressed PKCδ, a marker for a subpopulation of non-

CRF neurons that when activated can drive anxiety-like behaviors in mice (Botta et al., 

2015). Together, these data suggest that CeACRF neurons release GABA to dampen baseline 

anxiety-like behavior through inhibition of other subpopulations of neurons in the extended 

amygdala.  

Since CeACRF neurons appeared to disinhibit neurons of the dlBNST, we wondered 

whether the specific neurons that project to this region express dynorphin or neurotensin. 

Injection of the retrograde virus CAV2 carrying a Cre-dependent ZsGreen reporter 

construct resulted in substantial labeling of CRF neurons in the CeA. Using ZsGreen 

expression as a proxy for CRF, we next performed immunohistochemistry against 

dynorphin or neurotensin in ZsGreen infected CeA sections. We observed considerable co-

staining of ZsGreen+ neurons with dynorphin (Figure 3.4B) and neurotensin (Figure 3.4C). 

These results demonstrate that several CeACRF neurons targeting the dlBNST express 

dynorphin or neurotensin, and suggest that these neurons 1) may regulate anxiety through 

the dlBNST and 2) might release these neuropeptides in the dlBNST. 
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Figure 3.3. Suppression of GABA release from CeACRF neurons disinhibits the 
extended amygdala after open field exposure 
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(A) Right, viral injection schematic. Left, experimental protocol. (B) Top, knockdown of 

Vgat in CeACRF neurons promotes Fos expression in the CeA after open field exposure [F 

shVgat x OF (1,11) = 5.604, P = 0.0212, two-way ANOVA, n = 3-4; **P = 0.0025 for 

shVgat:HC compared with shVgat:OF and **P = 0.0015 for shCon:OF compared with 

shVgat:OF by Tukey’s tests]. Bottom, several Fos+ neurons also expressed PKCδ. (C) 

Representative images demonstrating increased Fos induction in the CeA of rats expressing 

shVgat in CeACRF neurons. Scale bars, 200 μm. Boxed region is enlarged in inset (scale 

bar, 50 μm). (D) Top, knockdown of Vgat in CeACRF neurons promotes Fos expression in 

the oval BNST after open field exposure [F shVgat x OF (1,12) = 5.604, P = 0.0356, two-way 

ANOVA, n = 4 for all groups; ***P = 0.0009 for shVgat:HC compared with shVgat:OF 

and **P = 0.0011 for shCon:OF compared with shVgat:OF by Tukey’s tests]. Bottom, 

several Fos+ neurons also expressed PKCδ. (E) Representative images demonstrating 

increased Fos induction in the oval BNST of rats expressing shVgat in CeACRF neurons. 

eGFP+ axons emerging from CeACRF neurons are clearly visible in the oval nucleus. Scale 

bars, 200 μm. Data are presented as mean ± SEM.  



 
 

109 

 

Figure 3.4. CeACRF neurons that project to the dorsolateral BNST express dynorphin 
and neurotensin 

(A) Experimental design and injection schematic of CAV2 carrying Cre-dependent 

ZsGreen construct for retrograde labeling of CeACRF neurons. (B) Example of dynorphin 

expression in dlBNST-projecting CeACRF neurons. Scale bar, 200 μm. (C) Example of 

neurotensin expression in dlBNST-projecting CeACRF neurons. Scale bar, 200 μm. 
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Activation of CeACRF neurons promotes anxiety through CRF and dynorphin 

CeACRF neurons can promote anxiety-like behavior when stimulated (McCall et al., 2015; 

Pliota et al., 2018) Chapter 2) and overexpression of CRF in the CeA of rats and primates 

is anxiogenic (Flandreau et al., 2012; Kalin et al., 2016; Keen-Rhinehart et al., 2009). 

Therefore, we investigated whether CRF is necessary for the increased anxiety-like 

behavior observed when CeACRF neurons are activated. To stimulate CeACRF neurons, we 

transduced them with a cocktail of the Cre-dependent excitatory designer receptor hM3Dq 

and the shRNA against Crh. Our previous work showed that hM3Dq stimulation of CeACRF 

neurons can increase anxiety-like behavior in EPM and OF assays (Chapter 2), consistent 

with a recent report in mice (Pliota et al., 2018). All animals received an injection of CNO 

(2 mg/kg, i.p.) and shortly after were placed on the EPM or in the OF. Rats with Crh 

knockdown showed less anxiety-like behavior in the EPM test compared with controls, but 

no differences in the OF test (Figures 3.5B and 3.5C). These data suggest that CRF release 

promotes anxiety on the EPM but not in the OF, similar to the results obtained using 

hM3Dq and the CRF1 receptor antagonist R121919 (Figure 2.4, Chapter 2).  

Many CeACRF neurons express dynorphin, and it has been reported that the 

anxiogenic effects of central CRF administration are dependent on dynorphin/kappa opioid 

receptor signaling (Bruchas et al., 2009). To investigate whether stimulation of CeACRF 

neurons and the resulting anxiety-like behavior depends on release of dynorphin, we 

repeated the hM3Dq experiment above but injected rats with an shRNA targeting Dyn 

instead of Crh. Compared with control animals, rats with Dyn knockdown showed reduced 

anxiety-like behavior in both the EPM and OF tests (Figures 3.5D and 3.5E). Injections of 

neurotensin into the CeA do not modulate anxiety-like behavior (Laszlo et al., 2010). To 

determine whether neurotensin release from CeACRF neurons contributes to evoked anxiety, 
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we repeated this same experiment once again but with knockdown of Nts. Disrupting Nts 

expression in CeACRF neurons lead to no detectable differences in either the EPM or OF 

tests after stimulation with hM3Dq (Figures 3.5F and 3.5G). Altogether, these results 

indicate that CRF and dynorphin, but not neurotensin expression in CeACRF neurons 

regulate anxiety-like behavior. 
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Figure 3.5. CeACRF neurons promote anxiety with CRF and dynorphin, but not 
neurotensin 
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(A) Top, example image of dual infection of CeACRF neurons with cocktail of AAVs 

carrying shRNAs and hM3Dq. Scale bar, 200 μm. Bottom, experimental protocol. (B) 

Knockdown of Crh lead to more time spent on the open arms [t(17) = 3.613, **P = 0.0021, 

n = 9 shCon, 10 shCrh, unpaired t-test] and more entries into the open arms [t(17) = 6.468, 

****P < 0.0001, n = 9 shCon, 1 shCrh, unpaired t-test] of the elevated plus maze after 

activation of CeACRF neurons with hM3Dq and CNO (2 mg/kg, i.p.). (C) Knockdown of 

Crh did alter anxiety-like behavior in the open field [center time: t(17) = 0.854, P = 0.5669, 

unpaired t-test; center entries: t(17) = 0.208, P = 0.8376, n = 9 shCon, 10 shCrh, unpaired 

t-test] after activation of CeACRF neurons with hM3Dq and CNO (2 mg/kg, i.p.). (D) 

Knockdown of Dyn also lead to more time spent on the open arms [t(18) = 5.151, ****P < 

0.0001, n = 9 shCon, 11 shDyn, unpaired t-test] and more entries into the open arms [t(18) 

= 5.589, ****P < 0.0001, n = 9 shCon, 11 shDyn, unpaired t-test] of the elevated plus maze 

after activation of CeACRF neurons. (E) Knockdown of Dyn lead to more time spent in the 

center [U = 15, **P = 0.0074, n = 9 shCon, 11 shDyn, Mann-Whitney test] and more entries 

into the center [U = 17.5, *P = 0.013, n = 9 shCon, 11 shDyn, unpaired t-test] of the open 

field after activation of CeACRF neurons. (F) Knockdown of Nts did not change the time 

spent on the open arms [t(17) = 0.4315, P = 0.6716, n = 10 shCon, 9 shNts, unpaired t-test] 

or entries into the open arms [t(17) = 0.5536, P = 0.5871, n = 10 shCon, 9 shNts, unpaired 

t-test] of the elevated plus maze after activation of CeACRF neurons. (G) Knockdown of Nts 

did not change the time spent in the center [U = 30, P = 0.2428, n = 10 shCon, 9 shNts, 

Mann-Whitney test] and more entries into the center [t(17) = 1.319, P = 0.2046, n = 10 

shCon, 9 shNts, unpaired t-test] of the open field after activation of CeACRF neurons. Data 

are presented as mean ± SEM.  
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Figure 3.6. Locomotor data for anxiety testing after gene knockdown in CeACRF 
neurons 
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(A) Neuropeptide knockdown had no effects on baseline closed-arm entries [F(3,39) = 

0.9954, P = 0.64051, one-way ANOVA, n = 13 shCon, 11 shCrh, 10, shDyn, 9 shNts] or 

distance traveled [F(3,39) = 0.2879, P = 0.8338, one-way ANOVA, n = 13 shCon, 11 

shCrh, 10, shDyn, 9 shNts] on the EPM. (B) Neuropeptide knockdown had no effect on 

baseline locomotion in the OF [F(3,39) = 1.516, P = 0.2255, one-way ANOVA, n = 13 

shCon, 11 shCrh, 10, shDyn, 9 shNts]. (C) Vgat knockdown had no effects on baseline 

closed-arm entries [t(22) = 0.271, P = 0.789, n = 12 both groups, unpaired t-test] or distance 

traveled [t(22) = 1.382, P = 0.181, n = 12 both groups, unpaired t-test] on the EPM. (D) 

Vgat knockdown had no effect on baseline locomotion in the OF [t(22) = 1.01, P = 0.323, 

n = 12 both groups, unpaired t-test]. (E) Knockdown of Crh in hM3Dq-stimulated CeACRF 

neurons reduced closed-arm entries [t(17) = 4.005, ***P = 0.0009; n = 9 shCon, 10 shCrh, 

unpaired t-test] but did not affect locomotion [t(17) = 0.7922, P = 0.391; n = 9 shCon, 10 

shCrh, unpaired t-test] on the EPM. (F) Knockdown of Crh in hM3Dq-stimulated CeACRF 

neurons had no effect on locomotor activity [t(17) = 0.4322, P = 0.06711; n = 9 shCon, 10 

shCrh, unpaired t-test] in the OF. (G) Knockdown of Dyn in hM3Dq-stimulated CeACRF 

neurons had no effect on closed-arm entries [t(18) = 1.992, P = 0.0618; n = 9 shCon, 11 

shDyn, unpaired t-test] or locomotion t(18) = 1.142, P = 0.2685; n = 9 shCon, 11 shDyn, 

unpaired t-test] on the EPM. (H) Knockdown of Dyn in hM3Dq-stimulated CeACRF neurons 

had no effect on locomotor activity [t(18) = 0.3223, P = 0.7509; n = 9 shCon, 11 shDyn, 

unpaired t-test] in the OF. (I) Knockdown of Nts in hM3Dq-stimulated CeACRF neurons 

had no effect on closed-arm entries [t(17) = 0.4389, P = 0.6663; n = 10 shCon, 9 shNts, 

unpaired t-test] or locomotion [t(17) = 0.5074, P = 0.6184; n = 10 shCon, 9 shNts, unpaired 

t-test] on the EPM. (J) Knockdown of Nts in hM3Dq-stimulated CeACRF neurons had no 

effect on [t(17) = 1.043, P = 0.3118; n = 10 shCon, 9 shNts, unpaired t-test] in the OF.   
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CRF, dynorphin, and neurotensin, but not GABA release from CeACRF neurons 
modulates fear learning 

The contribution of CRF in the CeA to fear learning appears somewhat inconsistent. In 

mice, knockdown of Crh in the CeA had little effect on fear behavior (Regev et al., 2012), 

yet Crh knockout via Cre-mediated gene deletion disrupted fear acquisition (Sanford et al., 

2017). Knockdown of Crh in rat CeA lead to deficits in contextual fear memory 

consolidation (Pitts et al., 2009). Using our Cre-dependent shRNA targeting Crh, we 

observed no effects on shock-induced freezing during the conditioning session of a 

standard fear learning procedure (Figure 3.7B). However, freezing to the fear context and 

tone cues was significantly reduced in rats with Crh knockdown (Figure 3.7C). These data 

are consistent with previous studies done in rats. Similar to CRF, blockade of kappa opioid 

receptors in the amygdala decreased conditioned fear in rats (Knoll et al., 2011). Crh-Cre 

rats with Dyn knockdown in CeACRF neurons exhibited similar disruptions in contextual 

and cued fear retrieval (Figure 3.7C). 

Neurotensin signaling has also been reported to regulate fear behaviors. 

Neurotensin 1 receptor knockout mice displayed enhanced fear expression and neurotensin 

receptor agonists reduced conditioned footshock-induced ultrasonic vocalizations in rats 

(Prus et al., 2014; Steele et al., 2017; Yamada et al., 2010). Additionally, neurotensin 

receptor antagonists enhance whereas agonists dampen conditioned fear when injected into 

the CeA (Toda et al., 2014). Crh-Cre rats with Nts knockdown in CeACRF neurons showed 

no differences in shock-induced freezing or contextual fear expression. However, cued 

freezing was significantly enhanced by lack of neurotensin in these neurons. These data 

suggest that different neuropeptides secreted by CeACRF neurons play distinct roles in 

regulating fear behaviors. 
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The data presented above demonstrate the necessity of CeACRF neuron secretion of 

CRF, dynorphin, and neurotensin in the modulation of fear learning. We next asked 

whether GABA transmission from these neurons plays a similar role. Crh-Cre rats were 

injected with AAV carrying the shVgat construct and subjected to fear conditioning. 

Surprisingly, knockdown of Vgat in CeACRF neurons had little effect on fear learning or 

expression (Figure 3.7C). Together, these data demonstrate the differential roles of 

neuropeptides and GABA from CeACRF neurons in fear learning. 
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Figure 3.7. CeACRF neurons differentially modulate fear learning with CRF, 
dynorphin, and neurotensin 

(A) Injection schematics and example of viral expression in CeACRF neurons for shRNA 

knockdown. Scale bar, 200 μm. (B) Top, experimental protocol. Bottom, shRNA-mediated 

knockdown of Crh and Dyn, but not Nts in CeACRF neurons blunted contextual fear 

retrieval during the first minute [F(3,38) = 12.53, P < 0.0001, one-way ANOA, n = 13 

shCon, 11 shCrh, 9 shDyn, 9 shNts; ***P < 0.0001 shCrh compared with shCon; **P = 
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0.0054 shDyn compared with shCon by Dunnett’s test]. Knockdown of Crh and Dyn also 

reduced cued freezing, yet knockdown of Nts enhanced cued freezing [F(3,39) = 34.13, P 

< 0.0001, one-way ANOVA, n = 13 shCon, 11 shCrh, 10 shDyn, 9 shNts; ****P < 0.0001 

shCrh compared with shCon; ****P < 0.0001 shDyn compared with shCon; *P = 0.0115 

shNts compared with shCon by Dunnett’s test]. (C) Knockdown of Vgat in CeACRF neurons 

did not affect contextual [t(13) = 0.6684, P = 0.5156, n = 8 shCon, 7 shVgat, unpaired t-

test] or cued fear learning [t(13) = 0.0125, P = 0.9902, n = 8 shCon, 7 shVgat, unpaired t-

test]. Data are presented as mean ± SEM. 
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DISCUSSION 

We have demonstrated that CRF neurons of the central amygdala release different 

neurotransmitters to differentially regulate fear and anxiety-like behaviors. We show that 

at baseline under non-stressful conditions, the expression of CRF, dynorphin, and 

neurotensin and presumably their release contributes minimally to anxiety-like behavior, 

implying minimal neuropeptide tone in the non-stressed state. However, the release of 

GABA, as determined by knockdown of Vgat in these neurons, is critically important in 

maintaining a low baseline level of anxiety as measured by the EPM and OF tests. We 

further find that in rats with chemogenetic stimulation of CeACRF neurons, the evoked 

anxiety-like behavior is prevented by knockdown of Crh and Dyn, but not Nts. Together 

these results suggest that different neurotransmitters released from CeACRF neurons 

regulate anxiety behavior through divergent signaling mechanisms. 

At baseline, a tonic and anxiolytic GABA tone from CeACRF neurons may help 

balance microcircuits local to the CeA and remotely in the oval BNST. In this manner 

GABA released from CeACRF neurons could act as a gate of neuronal output that promotes 

anxiety. The absence of neuropeptide release under non-stressful conditions is consistent 

with previous studies showing that neuropeptide receptor antagonists block stress-induced 

behaviors but not those at baseline (Berridge and Dunn, 1987; Bruchas et al., 2009; 

Normandeau et al., 2018b). This is also consistent with the idea that high frequency 

neuronal stimulation is required for neuropeptide release (van den Pol, 2012). We used the 

stimulatory designer receptor hM3Dq to drive the activity of CeACRF neurons, a procedure 

that has been demonstrated as being anxiogenic (Pliota et al., 2018)Chapter 2). Under this 

condition, we were able to prevent anxiety-like behavior with knockdown of Crh or Dyn. 

These data are supported by previous studies evaluating the role of these peptides in anxiety 
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(Crowley et al., 2016; Knoll et al., 2007; Knoll et al., 2011; McCall et al., 2015; Regev et 

al., 2012) and help confirm the hypothesis that CRF and dynorphin synergize to modulate 

anxiety (Bruchas et al., 2009). Interestingly, knockdown of Nts had no detectable effects 

on hM3Dq-evoked anxiety. Consistent with this result, neurotensin signaling in the CeA 

has been reported to play minimal roles in baseline anxiety-like behavior (Laszlo et al., 

2010), but does mediate chronic stress-induced anxiety in the oval BNST (Normandeau et 

al., 2018b). This suggests that neurons might release different neurotransmitters to achieve 

a ‘balanced’ effect on behavioral output. How a neuron coordinates the release of different 

peptides for different purposes, and how the co-release of multiple peptides coordinates 

downstream signaling to achieve a common goal is most likely complex and should be the 

focus of future studies.  

One interesting observation was the effect of disrupting CeACRF release on evoked 

anxiety behavior. Both Crh knockdown and blockade of CRF1 receptors with R121919 

(Figure 2.4) prevented induced anxiety on the EPM, but not in the OF test. However 

knockdown of Dyn prevented anxiety in both assays. It is possible that differences in the 

two tests could explain this divergent result. The plus maze could be considered a less 

stressful and anxiogenic apparatus since the closed arms represent ‘safety’ areas, whereas 

the open field offers less protection and could lead to behaviors more characteristic of 

despair, aversion, and helplessness. In the open field, other peptides, such as dynorphin, 

could wash out the effects of CRF due to its relative inescapable properties. As such, there 

have been reports of brain manipulations having effects in certain anxiety tests and not 

others (Schmidt and Duman, 2010). Future studies should dissect the role of different 

peptides in different anxiety tests and determine where in the brain these might be 

mediated. 
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We used the inhibitory designer receptor hM4Di to inhibit all CeACRF neurons 

during a standard fear conditioning procedure. These neurons mediated fear learning 

during the conditioning session when shocks were delivered since inhibition at other time 

points (immediately after conditioning or before retrieval trials) had no effects. This is 

consistent with previous studies done in mice (Sanford et al., 2017) and rats (Asok et al., 

2018). We next asked which neurotransmitters were responsible for CeACRF neuron 

contributions to fear learning. Knockdown of Crh or Dyn in these neurons disrupted 

contextual and cued fear responses during retrieval trials, whereas knockdown of Nts 

enhanced cued fear responding. Since gene knockdown is a chronic manipulation, it is 

typically unclear how the genes of interest contribute to learned behaviors since there could 

be effects on learning and/or expression. Our experiment with hM4Di demonstrates CeACRF 

neurons as critical to conditioning, but not expression. Thus, it is likely that the CeA-

derived peptides we assessed are contributing to fear learning and not fear expression.  

Our data are supported by previous reports showing that in the CeA, CRF and 

dynorphin promote fear behaviors (Fanselow et al., 1991; Knoll et al., 2007; Knoll et al., 

2011; Pitts et al., 2009; Sanford et al., 2017), whereas neurotensin signaling dampens fear 

(Prus et al., 2014; Steele et al., 2017; Yamada et al., 2010). Therefore, using the CRF gene 

as a cellular entry point, we have demonstrated that the same population of central 

amygdala neurons can play multimodal roles fear and anxiety behaviors. Future efforts 

should determine which signaling molecules released from CeACRF neurons play critical 

roles in other emotional behaviors, such as those associated with reward, pain, and feeding. 

Our results suggest opposing roles of different peptides in aversive learning. This 

could explain why stimulation of CRF neurons can lead to both appetitive (Dedic et al., 

2018; Kim et al., 2017) and aversive behavioral outputs. Thus, when CeACRF neurons are 
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stimulated, the release of multiple neuropeptides could lead to complex behavioral results 

depending on the testing environment. It is paradoxical that animals will self-stimulate 

neurons that also mediate negative emotions and learning (Asok et al., 2018; Kim et al., 

2017; Sanford et al., 2017). However, this is relatively unsurprising given that key 

components of these behaviors involve arousal and attention, which may drive self-

stimulation independent of its rewarding components. In addition, parallel antagonistic 

circuits nested within the CRF system may control behaviors with different emotional 

valence (Dedic et al., 2018). In any case, all of the studies discussed so far have led us to 

the conclusion that CeACRF neurons contribute globally to behavioral responses associated 

with extreme valence (whether positive or negative). 

Our study has demonstrated the versatility of CeACRF neurons in regulating fear and 

anxiety at the level of their released neurotransmitters. CRF and dynorphin promote fear 

and anxiety, whereas neurotensin and GABA play more complex roles in these behaviors. 

Our data show that amygdala neurons are not dedicated to subserving just one type of 

process. Furthermore, our findings suggest that CRF neurons, and perhaps the CRF system 

as whole, interacts strongly with other neuropeptide systems. This property could account 

for the negative results obtained in clinical trials evaluating CRF receptor antagonists in 

the treatment of stress-induced alcohol craving and negative emotions associated with 

PTSD. Our results should contribute to a more fundamental understanding of how brain 

systems interact to regulate behavior and to developing more effective therapeutic 

strategies for neuropsychiatric disorders associated with both positive and negative 

emotional states. 
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CHAPTER 4: CENTRAL AMYGDALA CRF NEURONS INTERACT 
WITH BNST CRF NEURONS TO REGULATE ANXIETY 

ABSTRACT 

The central amygdala (CeA) is important for fear responses to discrete cues. Recent 

findings indicate that the CeA also contributes to states of sustained apprehension that 

characterize anxiety, although little is known about the neural circuitry involved. The stress 

neuropeptide corticotropin releasing factor (CRF) is anxiogenic and is produced by 

subpopulations of neurons in the lateral CeA and the dorsolateral BNST (dlBNST).  Here 

we investigated the function of these CRF neurons in stress-induced anxiety using 

chemogenetics in rats that express Cre recombinase from a Crh promoter. Anxiety-like 

behavior was mediated by CRF projections from the CeA to the dlBNST and depended on 

activation of CRF1 receptors and CRF neurons within the dlBNST. These findings identify 

a CeACRF→dlBNSTCRF circuit for generating anxiety-like behavior and provide mechanistic 

support for recent human and primate data suggesting that the CeA and BNST act together 

to generate states of anxiety. 
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INTRODUCTION 

Threatening environments evoke fear and anxiety, which are two ethologically different 

defensive behavioral responses that are driven by conserved brain circuits and promote 

survival (LeDoux and Brown, 2017; Panksepp, 2011). Fear responses are acute and 

generated when animals are presented with an imminent threat or a cue that predicts the 

threat. In contrast, environments providing ambiguous or diffuse cues for threat prediction 

promote a sustained state of avoidance, apprehension, and risk-assessment, i.e. anxiety. 

Both of these behavioral profiles are adaptive and essential to survival, yet exaggerated 

and persistent fear and anxiety reactions can be maladaptive and hinder survival. 

Unfortunately, anxiety disorders are prevalent psychiatric conditions that cause substantial 

morbidity worldwide (Baxter et al., 2013). 

The neuronal circuitry underlying fear has been extensively studied and the 

amygdala has emerged as a critical component. The circuits governing anxiety are less 

understood but were originally considered to be independent of the amygdala. An 

influential conceptual framework that emerged from early lesion and inactivation studies 

proposed that the central nucleus of the amygdala (CeA) mediates fear responses to discrete 

threats, while the bed nucleus of the stria terminalis (BNST), a forebrain structure with 

strong connections to the amygdala (together referred to as the extended amygdala), 

mediates states of anxiety (Walker et al., 2003). However, with the advent of new tools 

allowing access to genetically-defined neuronal populations, recent work has demonstrated 

the CeA as a potent driver of anxiety-like behavior in mice (Ahrens et al., 2018; Botta et 

al., 2015; McCall et al., 2015; Pliota et al., 2018) and rats (Chapters 2 and 3).  

A role for the neuropeptide corticotropin releasing factor (CRF) in anxiety has been 

suspected because of its control over neuroendocrine responses to stress (Bale and Vale, 
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2004; Binder and Nemeroff, 2010; Koob, 2009) and its high expression in the extended 

amygdala (Asan et al., 2005; Nguyen et al., 2016; Pomrenze et al., 2015; Sanford et al., 

2017). In agreement with this hypothesis, CRF administration into the ventricles or the 

dorsolateral BNST (dlBNST) in rats generates anxiety-like behaviors (Lee and Davis, 

1997; Liang et al., 1992b; Sahuque et al., 2006; Swerdlow et al., 1986) that are reduced by 

CRF1 receptor antagonists injected into the BNST, but not into the CeA (Lee and Davis, 

1997; Sahuque et al., 2006). Thus, the BNST appears to orchestrate anxiety-like responses 

that are dependent on CRF.  

The source of CRF that acts in the BNST to generate anxiety is not certain. One 

possibility is the population of CRF neurons that reside within the BNST. Another source 

could be CeACRF neurons since activation of those neurons can produce anxiety-like 

behavior in mice (McCall et al., 2015; Pliota et al., 2018; Regev et al., 2012) and rats 

(Chapters 2 and 3), and in rats a considerable portion of CRF in the dorsolateral BNST 

(dlBNST) originates from CeACRF neurons (Sakanaka et al., 1986). In addition, 

neuropeptides that have been reported to be anxiogenic in the BNST, such as dynorphin 

and neurotensin (Crowley et al., 2016; Normandeau et al., 2018b) are co-expressed in 

CeACRF neurons (Figure 3.4, Chapter 3). However, a role for CeACRF projections to the 

BNST in anxiety has not yet been demonstrated.  

Here, we provide evidence in rats that stress-induced anxiety is critically dependent 

on CeACRF projections to the dlBNST and on activation of CRF1 receptors and CRF 

neurons in the dlBNST.  Our findings identify a circuit by which CRF neurons in the CeA 

and BNST cooperate in series to generate anxiety. These results support recent human and 

primate data suggesting that the CeA and BNST work together as a functional unit to 

generate anxiety (Gungor and Paré, 2016; Shackman and Fox, 2016).  



 
 

128 

MATERIALS AND METHODS 

Subjects  

All experiments and procedures were approved by the University of Texas at Austin 

Institutional Animal Care and Use Committee. We used male heterozygous Crh-Cre rats 

(Pomrenze et al., 2015) outcrossed to wild-type Wistar rats (Envigo, Houston, TX), aged 

5-6 weeks at the start of the surgical procedures and 10-14 weeks at the start of 

experimental procedures. Rats were group housed and maintained on a 12 hr light:dark 

cycle (lights on 4AM to 4PM) with food and water available ad libitum. Rats prepared with 

guide cannulas were singly housed. All experiments were done between 9AM and 3PM. 

Rats were randomly assigned to either experimental or control groups within each litter.  

 

Drugs and viral vectors  

Clozapine-N-oxide (CNO) was supplied through the NIMH Chemical Synthesis and Drug 

Supply Program. CNO (2 mg/kg body weight) was dissolved in 5% dimethyl sulfoxide 

(DMSO) and then diluted to 2 mg/mL with 0.9% saline. For intracerebral administration, 

CNO was dissolved in 0.5% DMSO and then diluted to 1mM in aCSF (Harvard Apparatus, 

Holliston, MA) (Mahler et al., 2014). The selective CRF1 receptor antagonist R121919 (3-

[6-(dimethylamino)-4-methyl-pyrid-3-yl]-2,5-dimethyl-N,N-dipropyl-pyrazolo[2,3-

a]pyrimidin-7-amine, NBI 30775, was a gift from Dr. Kenner Rice (Chemical Biology 

Research Branch, Drug Design and Synthesis Section, National Institute on Drug Abuse 

and National Institute on Alcohol Abuse and Alcoholism, Rockville, MD) and dissolved 

in a 1:1 solution of 0.9% saline and 1N HCl before adding 25% hydroxypropyl-β-

cyclodextrin (HBC) to yield a final concentration of 10mg/mL R121919 in 20% HBC, pH 

4.5. For intracerebral infusion, R121919 was prepared in 4% kolliphor RH 40 in aCSF, pH 
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5. Salvinorin B (SalB; Apple Pharms, Asheville, NC) was dissolved in 100% DMSO at 15 

mg/mL, followed by 5 min of sonication. SalB was administered at 15 mg/kg body weight. 

All systemic injections were administered at 1mL/kg, except for R121919 which was 

administered at 2 mL/kg. 

Cre-dependent adeno-associated viral vectors AAV8-hSyn-DIO-hM3Dq-mCherry, 

AAV8-hSyn-DIO-hM4Di-mCherry, AAV8-hSyn-DIO-mCherry, AAV5-EF1α-DIO-

eYFP, AAV2-Ef1α-flex-taCaspase3-TEVp, and AAV9-hSyn-DIO-KORD-IRES-

mCitrine were obtained from the University of North Carolina Viral Vector Core and were 

injected at 4-6 × 1012 infectious units per mL. Canine adeno virus 2 (CAV2) carrying a 

flex-ZsGreen reporter expressed from the CAG promoter (CAV2-CAG-flex-ZsGreen) was 

a gift from Dr. Larry Zweifel (University of Washington, Seattle, WA) and was injected at 

2 × 1012 infectious units per mL.  

 

Stereotaxic surgery  

At the start of surgical procedures, rats were anesthetized with isoflurane (5% v/v) and 

placed in a stereotaxic frame (David Kopf Instruments, Tujunga, CA, USA). Viruses were 

injected into the CeA (AP: -2.1; ML: ± 4.5; DV: -8.0 from skull) or dlBNST (AP: -0.0; 

ML: ± 3.5; DV: -6.8 from skull, 16° angle) at a rate of 150nL min-1 over 5 min (750-800nL 

total volume per hemisphere) with a custom 32-gauge injector cannula coupled to a pump-

mounted 2μL Hamilton syringe. Injectors were slowly retracted after a 5-min diffusion 

period. Rats were 190-220 g at the time of viral injection. Virus-injected rats were group 

housed to recovery for 1-2 months before behavioral or histological examination.  

Two to three months after viral injection, rats used for intracerebral targeting were 

bilaterally implanted with stainless steel guide cannulas (Plastics One) directed to the 
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dlBNST (AP: -0.2; ML: ± 3.55; DV: -5.1 from skull, 18° angle; injector tips emerged 2 

mm from the cannula tips). Cannulas were affixed to the skull with stainless steel screws 

and dental acrylic (H00325, Coltene, Altstätten, Switzerland). Cannula-implanted rats 

were administered the antibiotic cefazolin (100 mg/kg, s.c.) and singly housed during a 1-

2 week recovery period before experiments. 

 

Immobilization stress (IMS) 

Rats were transferred to an experimental room distinct from the behavioral testing room 

and placed in ventilated plastic Decapicone bags (Braintree Scientific, Braintree, MA, 

USA) for 30 min. Each rat was monitored every 5 min to ensure sufficient immobilization 

and respiration rate. Rats were tested for anxiety-like behavior 10 min later. Some rats 

received injections of the CRF1 receptor antagonist R121919 (20 mg/kg, s.c.) 60 min prior 

to stress. Separate groups of rats received CNO 1mM in 0.3μL (300 pmol) via cannula 5 

min prior to stress. 

 

Behavior 

We used three assays to evaluate anxiety-like behavior: the elevated plus maze (EPM), the 

open field test (OF) and the social interaction test. Anxiety testing occurred in a room that 

was different than the one used to immobilize and administer drugs. The elevated plus 

maze consisted of two open arms (50 x 10 cm) and two enclosed arms (50 x 10 x 40 cm) 

connected by a central area measuring 10 x 10 cm, 50 cm above the floor. At the beginning 

of each trial, rats were placed in the center facing one open arm. Trials lasted for 6 min and 

were performed under red lighting to promote exploration. The open field consisted of an 

open topped arena (100 x 100 x 50 cm) situated on the floor. The center area was designated 
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as a central zone measuring 55 x 55 cm. Rats were placed into a corner of the arena at the 

beginning of each trial. Each test lasted for 10 min and was performed under red lighting 

to promote exploration of the center. Social interaction was measured by placing a novel 

juvenile rat (4-5 weeks) into a 70 x 70 cm arena and then placing an experimental adult rat 

into the arena. The adult rat was allowed to interact with the juvenile rat for 5 min under 

red lighting. Exploratory behaviors such as allogrooming, sniffing, and pinning initiated 

by the adult rat were considered interactions (Christianson et al., 2010). All testing 

equipment was cleaned with 70% ethanol between trials. Behaviors were tracked with 

EthoVision (Noldus Information Technology, Leesburg, VA, USA). 

 

Chemogenetic manipulations 

Crh-Cre rats were microinjected bilaterally in the CeA with AAV8-hSyn-DIO-hM3Dq-

mCherry, AAV8-hSyn-DIO-hM4Di-mCherry, or AAV8-hSyn-DIO-mCherry. To 

manipulate CeACRF projections to dlBNST, we bilaterally injected AAV8-hSyn-DIO-

hM4Di-mCherry, AAV8-hSyn-DIO-hM3Dq-mCherry, or AAV8-hSyn-DIO-mCherry into 

the CeA and after 8-10 weeks implanted bilateral guide cannulas directed at the dlBNST. 

After 1-2 weeks of recovery, we administered CNO (1mM in 0.3μL) through the BNST 

cannulas prior to immobilization stress and behavioral testing. To inhibit CRF1 receptors, 

we administered R121919 systemically at 20 mg/kg s.c., 30 min prior to administering 

CNO, or into the dlBNST at 1μg in 0.3μL, 5 min prior to injecting CNO. 

To investigate the interdependence of CeACRF and dlBNSTCRF neurons, we 

unilaterally injected AAV8-hSyn-DIO-hM3Dq-mCherry into the CeA and AAV9-hSyn-

DIO-KORD-IRES-mCitrine that expresses the inhibitory kappa opioid receptor DREADD 

(KORD) into the ipsilateral dlBNST, counterbalanced with respect to the injected 
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hemisphere. After a 4-6-week recovery rats were administered CNO (2 mg/kg, i.p.), SalB 

(15 mg/kg, s.c.) or CNO plus SalB (separate injections), and tested for anxiety-like 

behavior 15 min later.  

 

CRF circuit disconnection 

Rats were unilaterally injected with a 1:2 ratio of AAV5-EF1α-DIO-eYFP and AAV2-

Ef1α-flex-taCaspase3-TEVp into the CeA and the contralateral dlBNST. Control rats were 

injected with eYFP+Caspase3 into the CeA of one side and eYFP+PBS into the 

contralateral dlBNST. Additional controls received eYFP+Caspase3 in the dlBNST of one 

side and eYFP+PBS into the contralateral CeA. A final group was injected with 

eYFP+Caspase3 into the CeA and the ipsilateral dlBNST. eYFP was diluted (1:2) in sterile 

PBS for controls so an equivalent volume of eYFP was injected into the CeA and dlBNST 

in all animals. All injections were counterbalanced with respect to injected hemispheres. 

The experiment in Figure 4.6E had similar viral injection parameters for bilateral CeA 

injection (controls received eYFP+PBS). After 4-6 weeks recovery rats were subjected to 

IMS and tested for anxiety-like behavior. 

 

Histology 

All rats were checked for virus expression and implanted cannula locations after behavioral 

studies were completed. For immunofluorescence, rats were anesthetized with isoflurane 

and perfused transcardially with 1X PBS followed by 4% paraformaldehyde in PBS, pH 

7.4. Brains were extracted, allowed to postfix overnight in the same fixative and 

cryoprotected in 30% sucrose in PBS at 4º C. Each brain was sectioned at 40 μm on a 
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cryostat (Thermo Scientific) and collected in PBS. Staining for injected viruses (except 

KORD-IRES-mCitrine) was omitted due to strong native fluorescence.  

For immunohistochemistry, free-floating sections were washed three times in PBS 

with 0.2% Triton X-100 (PBST) for 10 min at room temperature. Sections were then 

incubated in blocking solution made of PBST with 3% normal donkey serum (Jackson 

ImmunoResearch, number 017-000-121) for 1 hr. Sections were next incubated in primary 

antibodies rabbit anti-GFP (1:1000, Abcam, ab290, Lot #GR135929-1) or rabbit anti-

PKCδ (1:2000, Santa Cruz Biotechnology, sc-213, Lot #D2210) in blocking solution 

rotating at 4º C for 18-20 hr. After three 10 min washes in PBST, sections were incubated 

in species-specific secondary antibodies Alexa Fluor 488, 594, or 647 (1:700, Life 

Technologies, A-21206, A-11055, A-21208, A11073, A-21447, A-31573) in blocking 

solution for 1 hr at room temperature. Finally, sections were washed three times for 10 min 

in 1X PBS. Sections were then mounted in 0.2% gelatin water onto SuperFrost Plus glass 

slides (Fisherbrand, 12-550-15), coverslipped with Fluoromount-G with DAPI (Southern 

Biotech, 0100-20), and stored in the dark. Fluorescent images were collected on a Zeiss 

710 LSM confocal microscope or a Zeiss Axio Zoom stereo microscope. Quantification of 

fluorescence was performed on 3-6 sections per rat from 5 rats spanning the rostral-caudal 

axis of the CeA (from approximately Bregma -1.90 to -3.00) using the cell-counter plugin 

in Fiji (Schindelin et al., 2012). 

 

Fluorescence in situ hybridization 

For examination of gene expression in the dlBNST, coronal sections were processed for 

fluorescent in situ hybridization by RNAscope according to manufacturer’s guidelines. 

Genes examined in the dlBNST were Crh (ACDBio cat# 318931) and proEnkephalin 
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(ACDBio cat# 417431) and hybridization was performed using RNAscope Fluorescent 

Multiplex Kit (Advanced Cell Diagnostics). Slides were coverslipped with Fluoromount-

G with DAPI (Southern Biotech, 0100-20) and stored at 4°C in the dark before imaging. 

 

Statistical analyses 

We calculated sample sizes of n = 8-12 animals per condition using SD values measured 

in pilot studies of IMS-induced anxiety-like behavior, α = 0.05, and power = 0.80, with the 

goal of detecting a 25-35% difference in mean values for treated and control samples, using 

the program G*Power (Faul et al., 2007). Studies were performed with the experimenter 

blind to the identity of the drugs that were administered. All results were expressed as mean 

± S.E.M. values and analyzed using Prism (GraphPad Software, San Diego, CA). Data 

distribution and variance were tested using Shapiro-Wilk normality tests. Normally 

distributed data were analyzed by unpaired, two-tailed t-tests, or one or two factor ANOVA 

with post-hoc Tukey’s or Bonferroni’s multiple comparisons tests. Data that were not 

normally distributed were analyzed by Mann-Whitney U tests when comparing two 

conditions, or were transformed to square root values, as noted, before performing a two-

factor ANOVA. Differences were considered significant when P < 0.05. 
  



 
 

135 

RESULTS 

CeACRF neurons project their axons to the BNST 

If the CRF that mediates stress-induced anxiety originates in the CeA (Chapters 2 and 3) 

and signals in the BNST, then CeACRF projections should be present in the BNST. Using 

an AAV to express Cre-dependent mCherry (Figure 4.1A), we identified CeACRF fibers in 

the dorsolateral oval and ventral fusiform nuclei of the BNST on the same side (Figures 

4.1B and 4.2E). Importantly, CeACRF axons were clustered in a region of the dlBNST in 

which local dlBNSTCRF neurons were concentrated (Figure 4.1B), along with PKCδ- or 

enkephalin-expressing cells, which are distinct from CRF neurons (Figures 4.2B-D). In 

addition, injection of the retrograde tracer canine adenovirus 2 (CAV2) encoding flex-

ZsGreen into the dlBNST (Figure 4.1C) labeled 46.1% of 1465 CeACRF neurons spanning 

the entire rostral-caudal axis of the CeA (Figures 4.1D and 4.1E), indicating that roughly 

half of CeACRF neurons project to and have terminals within the dlBNST. There was no 

labeling of contralateral CeA neurons. 
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Figure 4.1. CeACRF neurons target the dlBNST 

(A) Configuration of dual viral injections into the dlBNST and CeA of Crh-Cre rats for 

anterograde tracing. (B) A dense plexus of mCherry+ CeACRF fibers was detected in the 

dlBNST in the vicinity of eYFP+ dlBSTCRF neurons. Scale bar, 200 μm. LV, lateral 

ventricle. Str, striatum. ac, anterior commissure. (C) Configuration of dual viral injections 

into the dlBNST and CeA of Crh-Cre rats for retrograde tracing. (D) Many mCherry+ CRF 

neurons in the CeA were retrogradedly labeled with CAV2-packaged ZsGreen. Scale bar, 

200 μm. Boxed region is enlarged in inset (scale bar, 50 μm). (E) Quantification of ZsGreen 

expressed in CeA cell bodies revealed that approximately 46.1% (total of 1465 neurons 

counted from 3-6 BNST sections from 5 rats) of CeACRF (mCh+) neurons project to the 

dlBNST.  
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Figure 4.2. Anatomy of CeACRF inputs to neurons of the dlBNST 

(A) Dual AAV injection into the extended amygdala. (B) CeACRF inputs cluster around 

PKCδ neurons in the oval nucleus. Scale bar, 200 μm. dlBNSTCRF neurons are distinct from 

PKCδ neurons (Scale bar, 200 μm) (C) and from cells expressing proenkephalin (Scale 

bar, 50 μm) (D). (E) CeACRF projections are mainly found in the oval and fusiform nuclei 
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of the BNST. Scale bar, 200 μm. LV, lateral ventricle. Str, striatum. ac, anterior 

commissure. 
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CeACRF projections to the dlBNST promote anxiety 

Since CeACRF neurons projected to a region of the dlBNST containing CRF neurons, we 

next investigated whether CeACRF projections within the dlBNST are important for stress-

induced anxiety. We expressed hM4Di in CeACRF neurons and targeted guide cannulas to 

the dlBNST for delivery of CNO (Figure 4.3A). We used a dose of CNO (1mM in 0.3μL; 

300 pmol) previously reported to be effective in activating DREADDs in nerve terminals 

(Mahler et al., 2014). In Crh-Cre rats that expressed hM4Di in CeACRF neurons, silencing 

CeACRF terminals in the dlBNST with CNO at this dose suppressed IMS-induced anxiety-

like behavior (Figures 4.3B and 4.4A).  CNO increased the percentage of time spent on the 

open arms of the EPM and the percentage of open arm entries on the EPM without affecting 

the number of closed arm entries (Figures 4.3B and 4.4A). CNO also increased time spent 

and distance traveled in the center of the OF after IMS without altering the total distance 

traveled (Figures 4.3B and 4.4A). 

Next, to investigate whether CeACRF inputs to the dlBNST were sufficient to 

enhance anxiety, we expressed hM3Dq in CeACRF neurons and directed guide cannulas to 

the dlBNST to activate CeACRF terminals (Wang et al., 2015) (Figure 4.3A). Microinfusion 

of CNO (1mM in 0.3μL; 300 pmol) into the dlBNST (Figures 4.3D and 4.4B) reduced the 

percentage of time spent on the open arms of the EPM, which was prevented with local 

injection of R121919 (1μg in 0.3μL). Likewise, microinfused CNO reduced the percentage 

of open arm entries on the EPM, which was also prevented by administration of R121919 

in the dlBNST (Figure 4.4B).  Similar results were observed in the OF test. CNO reduced 

time spent in the center of the OF, which was prevented by local blockade of CRF1 receptor 

(Figure 4D). CNO also reduced the percentage of total distance traveled that was in the 

center of the OF, and this was also prevented by R121919 (Figure 4.4B). CNO modestly 
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reduced the total distance traveled in the OF in animals that expressed hM3Dq in CeACRF 

neurons, but R121919 in the dlBNST had no effect on this measure (Figure 4.4B). Finally, 

CNO infusion into the dlBNST reduced social interaction time, which was also reversed 

by R121919 infusion (Figure 4.3D). To ensure that the dose of CNO we used did not 

produce off-target effects, we implanted guide cannulas over the dlBNST of non-transgenic 

Wistar rats and found no effect of 300 pmol CNO on IMS-induced anxiety (Figure 4.4C). 

Importantly, these findings indicate that CeACRF inputs to the dlBNST are necessary and 

sufficient for increasing anxiety-like behavior, likely through release of CRF and activation 

of CRF1 receptors in the dlBNST. 

Since systemic administration of R121919 inhibited IMS-induced anxiety-like 

behavior (Figure 2.2, Chapter 2), we investigated whether R121919 could also block 

anxiety-like behavior induced by activation of CeACRF inputs to the dlBNST. Systemic 

administration of R121919 (20 mg/kg, s.c.) prevented anxiety like behavior induced by 

microinfusion of CNO into the dlBNST in rats that expressed hM3Dq in CeACRF neurons. 

CNO decreased the percentage of time in the open arms and the percentage of open arm 

entries on the EPM, without altering the number of closed arm entries (Figure 4.5A). 

Likewise, CNO microinfusion decreased the percentage of time spent in the OF and this 

effect was prevented by systemic R121919 (Figure 4.5B). CNO also reduced the distance 

traveled in the center of the OF and this effect was prevented by systemic R121919 (Figure 

4.5B). Since both systemic and local administration of R121919 into the dlBNST reversed 

anxiety-likely behavior induced by activation of CeACRF inputs to the dlBNST, it is likely 

that that systemic R121919 inhibits anxiety-like behavior through actions at CRF1 

receptors in the dlBNST. 
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Figure 4.3. CeACRF projections to dlBNST mediate anxiety 

(A) AAV encoding Cre-dependent inhibitory hM4Di or excitatory hM3Dq was injected 

into the CeA with guide cannulas directed to the dlBNST for targeted CNO microinjection. 

Left image, CeACRF fibers targeting the dlBNST. Scale bar, 200 μm. Boxed region is 

enlarged in inset (scale bar, 20 μm). Right image, dlBNST-projecting CeACRF neurons. 

Scale bar, 500 μm. Boxed region is enlarged in inset (scale bar, 20 μm). (B) Top, 



 
 

142 

experimental protocol. Bottom, inhibition of CeACRF terminals in the dlBNST with CNO 

(1mM in 0.3μL) increased the percentage of time spent on the open arms of the EPM [U = 

20, **P = 0.0065, n = 11 both groups, Mann-Whitney test] and time spent in the center of 

the OF after IMS [U = 21, **P = 0.0081, n = 11 both groups, Mann-Whitney test]. (C) 

Representative ink injection demonstrating targeted microinjection into the dlBNST. (D) 

Top, experimental protocol. Bottom, activation of CeACRF terminals in the dlBNST with 

CNO (1mM in 0.3μL) reduced the percentage of time spent on the open arms of the EPM, 

which was prevented with local injection of R121919 (1μg in 0.3μL) [FhM3Dq x R12 (1,31) = 

9.83, **P = 0.0037, two-way ANOVA, n = 8-12; ***P = 0.0012 mCh:Veh compared with 

hM3:Veh; ****P < 0.0001 hM3:Veh compared with hM3:R12 by Tukey’s test]. Activation 

of terminals also reduced time spent in the center of the OF, which was prevented by local 

blockade of CRF1 receptors [FhM3Dq x R12 (1,32) = 6.224, *P = 0.0180, two-way ANOVA, n 

= 8-12; ****P = 0.0001 for mCh:Veh compared with hM3:Veh and ***P = 0.0009 for 

hM3:Veh compared with hM3:R12 by Tukey’s tests]. Terminal activation reduced social 

interaction time, which was CRF1 receptor-dependent [FhM3Dq x R12 (1,33) = 24.22, ****P < 

0.0001, two-way ANOVA, n = 8-12; ****P < 0.0001 for mCh:Veh compared with 

hM3:Veh and for hM3:Veh compared with hM3:R12 by Tukey’s tests]. Data are 

represented as mean ± SEM. 
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Figure 4.4. Effects of DREADD manipulation of CeACRF fibers in dlBNST on other 
measures of anxiety-like behavior 

(A) hM4Di was expressed in CeACRF fibers projecting to the dlBNST. CNO (1mM in 

0.3μL) administration in the dlBNST during IMS increased the percentage of open arm 
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entries on the EPM [t(20) = 5.647, ****P < 0.0001, n = 11 both groups, unpaired t-test] 

without affecting the number of closed arm entries [U = 57, P = 0.8451, n = 11 both groups, 

Mann-Whitney test]. CNO also increased distance traveled in the center of the OF [U = 24, 

*P = 0.0153, n = 11 both groups, Mann-Whitney test] without altering the total distance 

traveled in the OF [t(20) = 0.4655, P = 0.6466, n = 11 both groups, unpaired t-test]. (B) 

hM3Dq was expressed in CeACRF fibers projecting to the dlBNST. CNO administration in 

the dlBNST CNO also reduced the percentage of total distance traveled that was in the 

center of the OF, which was prevented by R121919 [FhM3Dq x R12 (1,32) = 6.56, P = 0.0153, 

n = 8-12, two-way ANOVA; ***P = 0.002 for mCh:Veh compared with hM3:Veh, and 

***P = 0.003 for hM3:Veh compared with hM3:R12 by Tukey’s test]. CNO modestly 

reduced the total distance traveled in the OF in animals that expressed hM3Dq in CeACRF 

neurons, while R121919 in the dlBNST had no effect [FhM3Dq x R12 (1,33) = 0.65, P = 0.426, 

n = 8-12, two-way ANOVA; FhM3Dq (1,32) = 14.77, P = 0.0005; FR12 (1,32) = 1.645, P = 

0.209]. (C) Left, experimental configuration. Right, WT wistar rats were cannulated in the 

dlBNST and microinjected with CNO (1mM in 0.3μL) prior to stress. CNO administration 

in the dlBNST in the absence of DREADD expression in CeACRF terminals had no effects 

time spent in the open arms [t(13) = 0.2981, P = 0.7703, n = 7 Veh, 8 CNO, unpaired t-

test], entries into the open arms [t(13) = 0.4071, P = 0.6906, n = 7 Veh, 8 CNO, unpaired 

t-test], or entries into the closed arms of the EPM [t(13) = 0.2089, P = 0.8378, n = 7 Veh, 

8 CNO, unpaired t-test]. CNO also lead to no changes in time spent in the center [t(13) = 

0.2022, P = 0.8429, n = 7 Veh, 8 CNO, unpaired t-test], distance traveled in the center [U 

= 26, P = 0.8665, n = 7 Veh, 8 CNO, Mann-Whitney test], or total distance traveled in the 

OF [t(13) = 1.573, P = 0.1397, n = 7 Veh, 8 CNO, unpaired t-test]. Data are represented 

as mean ± SEM. 
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Figure 4.5. Systemic CRF1 receptor blockade prevents anxiety produced by 
CeACRF terminal stimulation in the dlBNST 

(A) Top, experimental protocol. Bottom, systemic administration of R121919 prevented 

hM3Dq-induced decreases in the percentage of time in the open arms [FCNO x R12 (1,37) = 

4.678, *P = 0.0371, two-way ANOVA, n = 9-11; *P = 0.0282 for Veh:Veh compared with 

Veh:CNO, and *P = 0.0378 for Veh:CNO compared with R12:CNO by Tukey’s test] and 

the percentage of open arm entries [FCNO x R12 (1,37) = 25.69, ****P < 0.0001, two-way 

ANOVA, n = 9-11; ****P < 0.0001 compared with other conditions by Tukey’s test], 

without altering the number of closed arm entries [FCNO x R12 (1,37) = 0.2072, P = 0.6517, 

two-way ANOVA, n = 9-11]. (B) Systemic administration of R121919 also prevented 

hM3Dq-induced decreases in the percentage of time spent in the OF [FCNO x R12 (1,37) = 

5.999, *P = 0.0192, two-way ANOVA, n = 9-11; **P = .0086 for Veh:CNO compared 
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with  R12:CNO by Tukey’s test] and the distance traveled in the center [FCNO x R12 (1,37) = 

5.886, *P = 0.0203, two-way ANOVA, n = 9-11; *P = .0212 for Veh:CNO compared with 

R12:CNO by Tukey’s test] without affecting total distance traveled in the OF. Data are 

represented as mean ± SEM. 
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CeACRF neurons and dlBNSTCRF neurons act within a common network to regulate 
anxiety 

Since activation of CeACRF inputs to the dlBNST can drive anxiety-like behavior and the 

dlBNST also contains neurons that produce CRF, we investigated whether CeACRF and 

dlBNSTCRF neurons act within a common network to drive anxiety. We infected the CeA 

of Crh-Cre rats with the excitatory designer receptor hM3Dq on one side of the brain and 

infected the ipsilateral dlBNST with a Cre-dependent KORD-IRES-mCitrine (kappa 

opioid receptor DREADD), a complementary inhibitory designer receptor (Figures 4.6A 

and 4.6B). Unstressed rats were administered CNO followed by the KORD-specific ligand 

salvinorin B (SalB - 15 mg/kg, s.c.), and then were tested for anxiety-like behavior. Rats 

given CNO to excite CeACRF neurons displayed significant anxiety-like behavior on the 

EPM and in the OF. Importantly, co-administration of SalB to inhibit dlBNSTCRF neurons 

blocked the anxiety-like behaviors evoked by activating CeACRF neurons (Figures 4.6C). 

As expected, systemic administration of CNO (2 mg/kg, i.p.) decreased in the percentage 

of open arm time in the EPM and this effect was prevented by inhibiting dlBNSTCRF 

neurons with SalB (Figure 4.6C). CNO also reduced the percentage of open arm entries on 

the EPM and co-administration of SalB also prevented this effect, while no effect on the 

number of closed arm entries was detected (Figure 4.6C). SalB also prevented CNO-

induced decreases in time spent in the center of the OF, and in the distance traveled in the 

center, without affecting the total distance traveled in the OF (Figure 4.6D). These results 

are consistent with the hypothesis that CeACRF neurons engage dlBNSTCRF neurons to drive 

anxiety-like behavior. They also demonstrate that unilateral activation of CeACRF neurons 

is sufficient to increase anxiety-like behavior. 

Since dlBNSTCRF neurons were necessary for the anxiety-like behaviors produced 

by activating CeACRF neurons, we next examined whether this CRF-to-CRF cell network 
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interaction was important for anxiety induced by stress. We disconnected this postulated 

CRF network by injecting Cre-dependent Caspase3, which lesions neurons, into the CeA 

of one side of the brain and into the contralateral dlBNST (Figure 4.7A). This 

disconnection procedure prevented IMS-induced anxiety in the EPM and social interaction 

tests, while unilateral ablation in either the CeA or dlBNST alone, or ablation of CRF 

neurons in the CeA and dlBNST of the same side, had no effect on stress-induced anxiety 

(Figure 4.7C). Expression of Caspase3 in contralateral CeACRF and dlBNSTCRF neurons 

increased the percentage of time spent on the open arms of the EPM (Figure 4.7C).  

Expression of Caspase3 in contralateral CeACRF and dlBNSTCRF neurons also increased the 

percentage of open arm entries on the EPM without significantly affecting the number of 

closed arm entries (Figure 4.7C). Finally, expression of Caspase3 in contralateral CeACRF 

and dlBNSTCRF neurons reduced time spent in social interaction (Figure 4.7C). Together, 

these results indicate that CeACRF and dlBNSTCRF neurons function within a common 

network to mediate stress-induced anxiety-like behavior in rats. 
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Figure 4.6. Extended amygdala CRF network for eliciting anxiety 

(A) AAV encoding Cre-dependent KORD was injected into the dlBNST and AAV 

encoding Cre-dependent hM3Dq was injected into the ipsilateral CeA. (B) Example of 

antibody-amplified mCitrine fluorescence in dlBNSTCRF neurons and native mCherry in 

CeACRF neurons. Scale bars, 200 μm. (C) Top, experimental protocol. Bottom, inhibition 

of dlBNSTCRF neurons with SalB prevented CNO-induced decreases in the percentage of 

time in the open arms of the EPM [FCNO x SalB (1,34) = 10.33, **P = 0.0029, two-way 

ANOVA, n = 9-10; **P = 0.0011 for Veh:Veh compared with Veh:CNO and **P = 0.0023 
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for Veh:CNO compared with SalB:CNO by Tukey’s tests]. CNO also reduced the 

percentage of open arm entries on the EPM but co-administration of SalB prevented this 

effect [FCNO x SalB (1,33) = 24.54, ****P < 0.0001, two-way ANOVA, n = 9-10; ****P < 

0.0001 compared with other conditions by Tukey’s test]. No effect on the number of closed 

arm entries were detected [FCNO x SalB (1,33) = 2.610, P = 0.1155, two-way ANOVA, n = 9-

10]. (D) SalB prevented CNO-induced decreases in time spent in the center of the OF [FCNO 

x SalB (1,32) = 5.751, *P = 0.0225, two-way ANOVA, n = 8-10; *P = 0.0113 for Veh:Veh 

compared with Veh:CNO and *P = 0.0203 for Veh:CNO compared with SalB:CNO by 

Tukey’s tests]. CNO also reduced the distance traveled in the center but co-administration 

of SalB prevented this effect [FCNO x SalB (1,32) = 6.475, *P = 0.0160, two-way ANOVA, n 

= 8-10; **P = 0.0042 for Veh:Veh compared with Veh:CNO, and *P = .0275 for Veh:CNO 

compared with SalB:CNO by Tukey’s test] without affecting the total distance traveled in 

the OF [FCNO x SalB (1,32) = 2.718, P = 0.1090, two-way ANOVA, n = 8-10]. Data are 

represented as mean ± SEM. 
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Figure 4.7. Caspase3-mediated CRF circuit disconnection disrupts stress-induced 
anxiety 

(A) AAV carrying flex-Caspase3 was injected into the dlBNST and the contralateral CeA 

for disconnection of the extended amygdala CRF network. (B) Caspase3 ablates CeACRF 

neurons and their fibers in the BNST. Example image of CeACRF terminal eYFP expression 

in the dlBNST of animal injected with eYFP+PBS (Control) in the left CeA and 

eYFP+Caspase3 in the right CeA. Scale bar, 500 μm. Inset shows eYFP expression in the 

respective CeA for each side. Scale bar, 200 μm. (C) Top, experimental protocol. Bottom, 

expression of Caspase3 in contralateral CeACRF and dlBNSTCRF neurons increased the 

percentage of time spent on the open arms of the EPM [F(3,30) = 9.675, ***P = 0.0001, 

one-way ANOVA, n = 7-11; **P = 0.0015 for contralateral ablation compared with either 

eYFP group and ***P = .0009 for contralateral ablation compared with ipsilateral ablation, 

by Tukey’s test] and increased the percentage of open arm entries on the EPM [F(3,30) = 

18.49, P < 0.0001, one-way ANOVA, n = 7-11; ****P < 0.0001 compared with other 
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conditions by Tukey’s test] without significantly affecting locomotion [F(3,30) = 2.424, P 

= 0.0852, one-way ANOVA, n = 7-11]. CRF circuit disconnection also increased social 

interaction in time [F(3,30) = 15.07, ****P < 0.0001, one-way ANOVA, n = 7-11 rats; 

***P = 0.0002 for contralateral ablation compared with either eYFP group and ****P < 

0.0001 for contralateral ablation compared with ipsilateral ablation by Tukey’s test]. Data 

are represented as mean ± SEM. 
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DISCUSSION 

Here we demonstrate the existence of a CeACRF to dlBNSTCRF neuronal network that drives 

stress-induced anxiety-like behavior in rats. This network involves CeACRF inputs to the 

dlBNST and activation of CRF1 receptors and CRF neurons in the dlBNST. Importantly, 

our findings indicate that CRF neurons in the CeA and BNST cooperate to generate a state 

of anxiety following stress, which concurs with recent evidence of CeA and BNST 

coupling in humans and nonhuman primates exhibiting anxiety (Gungor and Paré, 2016; 

Shackman and Fox, 2016).  

Two previous studies have suggested a role for CeACRF neurons in driving anxiety-

like behaviors in mice. In one, CRF knockdown in the CeA reduced stress-induced anxiety 

(Regev et al., 2012), and in the other, optogenetic stimulation of CeACRF terminals in the 

brainstem evoked anxiety-like behavior (McCall et al., 2015). Our study adds important 

new findings to the evolving literature on anxiety circuitry by demonstrating in rats that 

CeACRF projections to the dlBNST and functional coupling of CeACRF and dlBNSTCRF 

neurons are necessary and sufficient for expression of stress-induced anxiety. One caveat 

is that optogenetic or chemogenetic activation may provide stronger drive than occurs 

endogenously, and the sufficiency of activating a given cell type to cause anxiety does not 

imply that other circuit elements are not also important with respect to endogenous activity 

of the CRF system. In this regard, since stimulation of CeACRF projections to the locus 

coeruleus (LC) (McCall et al., 2015) or the dlBNST (the current study) can generate 

anxiety-like behavior, one interesting and important question is whether these two 

pathways originate from the same or different CeACRF neurons. Thus, future studies are 

needed to determine whether subpopulations of CRF neurons have different projection 

targets, and how different CeACRF outputs could interact to drive anxiety-like behaviors. 
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Another important question is how CRF released from CeACRF neurons affects 

dlBNST circuitry to increase anxiety. We detected CeACRF fibers throughout the dlBNST 

but most were clustered in the oval nucleus (Figures 4.1B and 4.2B), which contains GABA 

neurons that promote anxiety, possibly through negative regulation of an anxiolytic 

anterodorsal subregion identified in mice (Kim et al., 2013). In rats, dlBNSTCRF neurons 

cluster in the oval nucleus (Pomrenze et al., 2015), and are therefore more likely to be 

components of this circuitry than in mice where CRF neurons are scattered in the dlBNST 

(Nguyen et al., 2016). It is also likely that CeACRF neurons engage dlBNSTCRF neurons that 

project to remote regions, such as the hypothalamus or ventral tegmental area, to modulate 

anxiety (Dedic et al., 2018; Marcinkiewcz et al., 2016).  

We found that anxiety-like behaviors driven by CeACRF neuron activation (via 

hM3Dq) were dependent on dlBNSTCRF neurons being active in the same hemisphere, 

supporting a cooperative role of the CeA and the BNST in stress-induced anxiety. How 

CeACRF neurons engage dlBNSTCRF neurons is not known. A simple explanation could be 

that dlBNSTCRF neurons express CRF1 receptors and are excited directly by CRF. 

However, only presynaptic effects of CRF in the dlBNST have been reported. In mice, 

CRF acting at CRF1 receptors can enhance glutamatergic neurotransmission in the dlBNST 

(Kash et al., 2008; Nobis et al., 2011; Silberman et al., 2013). Thus, CRF release from CeA 

terminals in the dlBNST might stimulate dlBNSTCRF neurons by enhancing excitatory 

inputs onto those neurons. In addition, CeACRF neurons project their axons to other 

structures that also project to the dlBNST, such as the parabrachial nucleus and LC (McCall 

et al., 2015; Pomrenze et al., 2015). Thus, since our CNO injections were systemic, it is 

possible that ipsilateral network effects indirectly recruited dlBNSTCRF neurons. For 

example, recent findings (McCall et al., 2015; Nobis et al., 2011) support a positive 
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feedforward circuit model (Koob, 1999) involving noradrenergic and CRF interactions in 

the LC, CeA and BNST that drive stress-related anxiety. Thus, regardless of the 

mechanism, the serial interaction of CeACRF and dlBNSTCRF neurons that we have identified 

likely promotes anxiety-like behavior through actions within a larger circuit.    

Additional evidence indicates that local circuits within the lateral CeA can 

contribute to anxiety-like behavior. We previously found that rat CeACRF neurons form 

inhibitory synapses with nearly half of non-CRF neurons in the lateral CeA (Pomrenze et 

al., 2015). A major subpopulation of non-CRF neurons expresses PKCδ, and in mice, 

optogenetic stimulation of CeA PKCδ neurons promotes anxiety-like behavior (Botta et 

al., 2015). Because many mouse PKCδ neurons express CRF1 receptors (Sanford et al., 

2017), local release of CRF might activate CRF1 receptors on rat PKCδ neurons to promote 

anxiety. Another subpopulation of non-CRF neurons in the lateral CeA expresses the 

neuropeptide somatostatin. Compared with PKCδ neurons, somatostatin neurons show 

greater connectivity with CeACRF neurons (Fadok et al., 2017) and a larger proportion 

express CRF1 receptors in mice (Sanford et al., 2017). These characteristics agree with 

recent findings that CeA somatostatin neurons promote anxiety-like behavior through a 

circuit mechanism that recruits dlBNST somatostatin neurons (Ahrens et al., 2018). 

Additionally, a recent study reported that chemogenetic activation of CeACRF neurons in 

mice decreased locomotor activity and increased freezing on the EPM, which are behaviors 

proposed to model passive coping to environmental threats (Pliota et al., 2018). In that 

report, bath application of CRF increased the frequency of spontaneous excitatory 

postsynaptic currents in CeA somatostatin neurons when tested in brain slices. These 

findings suggest that active CRF neurons can modulate local circuits in the CeA to 

orchestrate anxiety and other defensive behaviors in addition to the critical role that their 
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dlBNST projections play in stress-induced anxiety, as demonstrated here. It will be 

interesting in future studies to uncover how local and distant CeACRF projections interact to 

generate anxiety-like behaviors. 

In addition to CRF and GABA, CeACRF neurons express other neuropeptides (Kim 

et al., 2017; Pomrenze et al., 2015). Neurotensin in the rat oval BNST can promote chronic 

stress-induced anxiety and cooperates with CRF to modulate synaptic transmission 

(Normandeau et al., 2018b). In mice, the anxiogenic actions of dynorphin involve 

activation of kappa opioid receptors and inhibition of glutamate release from basolateral 

amygdala terminals in the anterodorsal BNST (Crowley et al., 2016). Since several CeACRF 

neurons express dynorphin or neurotensin (Pomrenze et al., 2015), they could be the source 

of dynorphin involved in these effects. Indeed, a recent paper reports a population of 

dlBNST-projecting CeA neurons as integral to a genetic model of anxiety in mice via 

dynorphin release (Ahrens et al., 2018). In addition, since a considerable portion of 

dlBNST-projecting CeACRF neurons express dynorphin or neurotensin (Figure 3.4), the 

release of these peptides in the dlBNST after terminal stimulation with hM3Dq could 

contribute to the observed effects on anxiety. The contribution of other neuropeptides 

released from CeACRF neurons, and their coordinated effects on synaptic physiology both 

locally in the CeA and remotely in the BNST should be a major focus of future 

investigation. 

The availability of modern imaging and genetic tools has allowed discoveries that 

challenge previous notions about the dissociable roles of CeA and BNST neurons in 

mediating fear and anxiety. Our results strongly support the hypothesis that both CeACRF 

and dlBNSTCRF neurons are important for generating stress-induced anxiety-like behavior. 

In addition, our findings support the growing realization that the CeA and BNST can 
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interact as a tightly coupled functional unit (Shackman and Fox, 2016), and suggest that 

dysfunction of the CeACRF→BNST circuit could contribute to anxiety disorders in humans. 
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GENERAL DISCUSSION 

The objective of this dissertation was to determine whether CRF neurons of the rat central 

amygdala significantly contribute to fear and anxiety-like behaviors. Additionally, based 

on observations that CeACRF neurons co-express multiple other neuropeptides and release 

GABA, it was important and interesting to determine which of these neurotransmitters 

were involved in the impact that CeACRF neurons have on fear and anxiety. The final major 

focus was to establish whether the CRF projection from the CeA to the dorsolateral BNST 

was important for anxiety-like behaviors. These experiments were designed to challenge a 

long-standing neuroanatomical framework for fear and anxiety, and investigate an 

important hypothesis that remained unproven in the literature (Davis et al., 2010). The data 

collected and presented in this dissertation have demonstrated that the early anatomical 

model proposed by Davis and colleagues is not completely accurate, but the neurocircuit 

hypothesis is correct. Furthermore, these new data expand on the role of CeACRF neuron 

contributions to fear and anxiety by showing that different neurotransmitters released from 

these neurons play distinct roles in these phenotypes, and that these neurons recruit the 

population of CRF neurons in the dlBNST to orchestrate anxiety responses. Altogether, the 

data presented here determine novel roles for CeACRF neurons in anxiety, confirm a role for 

these neurons in fear learning, and confirm the previously untested hypothesis that the 

CeACRF projection to the dlBNST is critical for anxiety. 

 

Amygdala and BNST dichotomy 

Fear and anxiety behaviors are highly investigated topics in the field of neuroscience. This 

is because 1) they represent evolutionarily conserved processes essential to survival, 2) 

they are mediated by well conserved neurobiological systems, and 3) are central to some 
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of the most prevalent neuropsychiatric disorders in humans (Baxter et al., 2013). 

Neuroscientists and clinicians alike are interested in how these emotional states are 

generated and regulated by specific brain circuits. The earliest studies on the neurobiology 

of fear and anxiety used the best methods available (electrolytic or pharmacological lesions 

and pharmacological inactivation) to determine important brain regions. The massive body 

of work by Davis and colleagues laid the groundwork for understanding how the brain 

produces fear and anxiety-like emotional states. They determined that the canonical 

amygdala complex, including the CeA, was critical to the induction and expression of 

conditioned fear responses in rats, and that the BNST was critical to anxiety-like behaviors, 

but not vice versa (Davis, 1997; Davis et al., 1994b; Davis et al., 2010; Liang et al., 1992a; 

Walker and Davis, 1997b, 2008; Walker et al., 2009b; Walker et al., 2003). This allowed 

for the development of an anatomical framework that suggested that these two emotional 

states were mediated by two distinct brain regions, fear in the amygdala and anxiety in the 

BNST. Additionally, a role for the stress neuropeptide CRF was incorporated into the 

model since central CRF administration enhanced anxiety in a fear-potentiated startle 

procedure which was disrupted by CRF antagonists (Liang et al., 1992a; Liang et al., 

1992b; Walker and Davis, 2008; Walker et al., 2009b).  

Years of data supported this parsimonious framework. But shortly after, the advent 

of genetic tools that permitted cell-type and pathway specific interrogation of brain 

structures began to suggest this hypothesis was not entirely accurate. Studies manipulating 

discrete cell-types in the CeA revealed that some neuronal populations indeed were 

involved in anxiety-like behaviors in mice (Ahrens et al., 2018; Botta et al., 2015; McCall 

et al., 2015; Pliota et al., 2018; Regev et al., 2012). These findings countered the concept 

that Davis and colleagues proposed, implicating lesions as a less than ideal method to study 
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a given brain structure. These studies also highlight a mismatch in the literature. The 

anatomical segregation of fear and anxiety was assessed in rats, while essentially all studies 

evalutaing specific cell-types the CeA in fear and anxiety were performed in mice. Thus, 

the current set of experiments set out to determine whether a specific population of neurons 

in the CeA could modulate anxiety-behaviors in rats. Since CRF was known to contribute 

to anxiety, and the CeA harbors a large population of CRF neurons (Chapter 1), a simple 

hypothesis was that CeACRF neurons played a role in this anxiety. Indeed this was the case. 

Chemogenetic activation of CeACRF neurons generated an anxiogenic state and inhibiton 

prevented stress-induced anxiety (Chapter 2). These data demonstrate that the rat CeA can 

play a role in anxiety behavior (similar to recent studies in mice) and CeACRF neurons may 

be the source of CRF in the early Davis and colleagues studies. These findings, collected 

with genetic tools with cellular precision, strongly challenge the early anatomical 

framework of fear and anxiety and suggest that 1) the rat CeA plays important roles in both 

fear and anxiety and 2) the coarseness of lesion studies can overlook important and subtle 

aspects of brain regions’ roles in specific phenotypes. Interestingly, it is now acknowledged 

that there are multiple subpopulations of neurons in many brain regions that antagonize 

each other’s activity within a common circuit (Daniel and Rainnie, 2016). Although lesions 

studies have been important for much of the early progress on neuroanatomy and behavior, 

it is clear that this type of manipulation obfuscates many interesting and important features 

of brain function. 

Despite not changing anxiety-like behaviors, lesions and inactivation studies in the 

CeA drastically affected fear behaviors (Davis, 1997; Liang et al., 1992a). A large body of 

literature shows the amygdala and all of its regions as essential to fear learning and 

expression (LeDoux, 2003, 2007; Sigurdsson et al., 2007). It was also established that CRF 
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in the CeA was important for fear learning, but not the expression of fear (Asok et al., 

2018; Pitts and Takahashi, 2011; Pitts et al., 2009; Sanford et al., 2017). We determined 

that CeACRF neurons in rats were part of this process. Similar to mice (Sanford et al., 2017), 

chemogenetic inhibition of CeACRF neurons did not affect shock-induced freezing but 

prevented fear learning (Chapter 2). This result was further supported by data showing that 

inhibition of these neurons at later time points, either immediately after fear conditioning 

or before fear retrieval trials, had no effect on freezing (Chapter 2). Therefore, CeACRF 

neurons are critical to fear learning in rats, which is consistent with the large body of 

previous literature in both rats and mice. This result is not surprising, but strongly suggests 

and perhaps proves that these neurons are capable of mediating multiple negative 

emotional states. Therefore the anatomical model of Davis and colleagues was only 

partially correct. In addition, we now know that CRF neurons are important for generating 

both of these negative emotional states and should be the topic of future investigations into 

how pathological fear and anxiety are produced and regulated by the brain. It will be 

interesting in future studies to examine the role of these neurons and their projections to 

remote brain regions in regulating these emotional states. It will also be intriguining to 

study the role of these neurons in other negative emotions, such as those evoked by drug 

withdrawal and other forms of stress. Altogether, the data discussed so far prove that 

CeACRF neurons take on versatile roles in negative emotional states, a concept previously 

unidentified in previous studies. 

 

Co-released transmitters 

It has been long-known that neurons can release multiple neurotransmitters. This is perhaps 

most pronounced in neuropeptide neurons, where essentially all neurons that release 
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neuropeptides also release fast acting neurotransmitters such as glutamate or GABA (van 

den Pol, 2012). Most studies to date chose a gene that identifies a neuron based upon its 

released neurotransmitter, such as Vgat for GABA cells, Vglut2 for glutamate cells, 

Dat1/Slc6a3 for dopamine cells, and so on. Achieved with Cre driver mouse lines and Cre-

dependent viral genetic tools, most experiments manipulate neurons and their axons and 

determine the impacts on behavior (Daigle et al., 2018; Harris et al., 2014; Madisen et al., 

2015; Taniguchi et al., 2011). Recent studies have started using antagonists to determine if 

the transmitter of interest is truly mediating the observed effects, like in one study on 

oxytocin’s effects in the VTA (Hung et al., 2017). However, the presence of other 

neurotransmitters with potential for release and influence on behavior or physiology often 

is overlooked. Since we determined that CeACRF neurons are GABAergic and co-express 

several other neuropeptides (Chapter 1) and manipulating these neurons had effects on fear 

and anxiety (Chapter 2), we sought out to determine which transmitters were responsible 

for the observed effects. 

 We found that GABA, CRF, dynorphin, and neurotensin from CeACRF neurons play 

distinct roles in fear and anxiety behaviors (Chapter 3). GABA, but not CRF, dynorphin, 

or neurotensin regulates baseline anxiety. When stimulated, CRF and dynorphin release is 

contributing to evoked anxiety behavior, but not neurotensin. When fear conditioned, 

CeACRF cells release CRF and dynorphin to promote learning, but appear to release 

neurotensin to regulate or dampen cued fear learning. This is one of the first studies to 

examine different signaling molecules released from a specific neuronal population in 

isolation. The observed effects are consistent with the literature such that CRF and 

dynorphin promote fear and anxiety (Asok et al., 2018; Crowley et al., 2016; Knoll et al., 

2007; Knoll et al., 2011; McCall et al., 2015; Pitts et al., 2009; Regev et al., 2012; Sanford 
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et al., 2017) and neurotensin has minimal effects on anxiety (Laszlo et al., 2010) and 

dampens fear (Prus et al., 2014; Steele et al., 2017; Toda et al., 2014; Yamada et al., 2010). 

It is fascinating that specific neurons can release neurotransmitters that have opposing roles 

on behavior. This process could be to coordinate signaling downstream to properly gate 

the flow of information through specific circuitries. Indeed, there is recent evidence that 

neurotensin and dynorphin bidirectionally modulate inhibitory transmission in the oval 

BNST (Normandeau et al., 2018a). In this manner, these neurons could fine-tune 

behavioral outputs that are appropriate for a given environmental context or challenge. 

Future studies should determine how these different peptides, in isolation and in 

combination, influence physiology and plasticity in the extended amygdala and its 

projection targets. In addition, they should evaluate how a history of stress or aversive 

learning modifies how these peptides signal in these structures. 

 We chose to employ RNA interference techniques instead of pharmacology to 

understand which neuropeptides were important for CeACRF contributions to fear and 

anxiety. Although antagonists are extremely useful agents, it remains unclear whether the 

inhibited signal is truly coming from the manipulated neurons in question. For example, 

administering a kappa opioid receptor antagonist while stimulating CeACRF neurons could 

have an effect but since there may be other dynorphin neurons nearby, it is possible that 

indirect effects could lead to dynorphin release from other neuronal populations. In this 

case stimulating CeACRF neurons does recruit a dynorphin signal to drive behavior, but it 

may not be derived from the CeACRF neurons. shRNAs allows one to directly inhibit the 

release of a transmitter from a known population of cells. Since we used Cre-dependent 

shRNAs, it is almost guaranteed that we are preventing the signaling of different 

neuropeptides specifically from CeACRF neurons. Thus, our experimental design could be 
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considered ‘cleaner’ than pharmacology studies. Altogether, Chapter 3 of this dissertation 

demonstrates that CeACRF neurons release multiple transmitters to properly modulate fear 

and anxiety behaviors in rats, and highlights a complex neurological process that most 

likely common across many different neuronal populations and brain regions. 

 

CeACRF→dlBNST circuit 

Eventually the neuroanatomical framework developed by Davis and colleagues was 

expanded to incorporate CRF signaling (Davis et al., 2010). Using the fear-potentiated 

startle model, investigators were able to generate anxiety-like responses in rats. This was 

typically done with bright lighting in the test chamber, or the administration of CRF itself 

into the lateral ventricles (Liang et al., 1992b; Walker et al., 2009b). When CRF antagonists 

were administered into the ventricles or into the BNST, anxiety-like responses were 

abolished (Lee and Davis, 1997; Walker and Davis, 2008; Walker et al., 2009b), thus 

establishing a critical role for CRF acting at CRF1 receptors in anxiety. In agreement with 

these studies, CRF administration into the ventricles or the dlBNST in rats generates 

anxiety-like behaviors (Lee and Davis, 1997; Liang et al., 1992b; Sahuque et al., 2006; 

Swerdlow et al., 1986) that were reduced by CRF1 receptor antagonists injected into the 

BNST, but not into the CeA (Lee and Davis, 1997; Sahuque et al., 2006). Thus, the BNST, 

but not the CeA, appeared to orchestrate anxiety-like responses that are dependent on CRF. 

At this point in time, there was little knowledge of specific neural circuits that could 

be mediating anxiety. However, it was known that many neurons of the CeA express CRF, 

and that a strong CRF pathway from the CeA to the BNST existed (Sakanaka et al., 1986); 

replicated in Chapter 1). Due to the anatomy and pharmacology data, Davis and colleagues 

proposed that a potential pro-anxiety circuit might be the CeACRF pathway to the BNST. 
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However, this intriguing hypothesis remained untested in the literature. Only recently with 

the ability to target genetically-defined populations of neurons has this pathway been able 

to be examined in isolation. One study reported that disconnecting the CeA from the BNST 

with contralateral lesions prevented stress-induced anxiety on the elevated plus maze (Cai 

et al., 2012). However, no pathway specific manipulations have been performed in the 

context of anxiety behavior. The experiments presented in Chapter 3 are the first examples 

of pathway and cell-type specific manipulations of the CeACRF→dlBNST circuit. 

Chemogenetic inhibition of this pathway, achieved with infection of CeACRF neurons with 

Cre-dependent hM4Di and targeted microinjections of CNO into the dlBNST, prevented 

stress-induced anxiety. Chemogenetic activation of these same axon terminals in the 

dlBNST generated an anxiety state to a similar to that of stress. These results are the first 

demonstration of this pathway’s critical role in anxiety, proving the CRF pathway 

hypothesis proposed by Davis and colleagues as correct.  

It is still unknown exactly how CeACRF inputs to the dlBNST affect local 

neurophysiology. Since CeACRF cells are GABAergic, there are most likely inhibitory 

synapses connecting CeACRF cells to dlBNST cells. However, there is evidence from 

studies performed in other brain structures that peptide release may be the preferential 

signaling mechanism. In mouse, CeACRF projections to the locus coeruleus do not form 

many inhibitory synapses, but high frequency stimulation with channelrhodopin2 elicited 

increases in spontaneous activity of postsynaptic neurons, indicating evoked neuropeptide 

release (McCall et al., 2015). It has been reported that CRF enhanced glutamate release in 

the dlBNST that is dependent on CRF1 receptors (Kash et al., 2008; Nobis et al., 2011; 

Silberman et al., 2013). In addition, dynorphin can inhibit incoming anxiolytic terminals 

from the BLA (Crowley et al., 2016) and neurotensin can modulate GABAergic 
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transmission in the oval BNST (Normandeau et al., 2018b). Therefore, CRF, and perhaps 

dynorphin and neurotensin release from CeACRF terminals could influence the 

excitatory/inhibitory balance in the dlBNST, leading to a net physiological effect that 

promotes anxiety. Considering CeACRF terminals mostly target the oval nucleus, an 

anxiogenic subregion (Kim et al., 2013) that houses most of the dlBNSTCRF neurons 

(Chapter 1), this scenario is likely. It will be important for future studies to dissect the 

microcircuitry of the dlBNST and determine how CRF from the CeA modulates local 

circuit function as well as consequences downstream in remote brain regions to promote 

anxiety. 

It is also interesting that CeACRF terminals cluster in the oval nucleus where 

dlBNSTCRF neurons are. The final piece of data in this report shows dlBNSTCRF neurons as 

essential to CeACRF neuron-induced anxiety. This was determined with a chemogenetic 

disconnection procedure (Figure 4.6) and a Caspase-mediated disconnection during 

immobilization stress (Figure 4.7). In both cases, the data suggest that CeACRF neurons 

promote anxiety with the help of dlBNSTCRF neurons. This is a novel finding that implies 

a CRF-to-CRF “chaining” that promotes anxiety. However, since the experiments did not 

employ pathway-specific manipulations, it is possible that indirect circuit mechanisms lead 

to the dependence on dlBNSTCRF neurons. As discussed in Chapter 4, CeACRF projections 

to the locus coeruleus or other brainstem regions could lead to feed-forward effects in the 

dlBNST. Indeed, neurons of the dlBNST respond to and become activated by 

norepinephrine (Nobis et al., 2011). Thus, it cannot be said for certain that CeACRF inputs 

directly activate dlBNSTCRF neurons. It is likely the case that both mechanisms exist, but 

future studies will need to determine if and when each one occurs, and whether CeACRF 

terminals can directly influence the activity of dlBNSTCRF neurons in brain slice.  
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The CRF-to-CRF cell chaining finding is similar to a recent study reporting that 

CeA somatostatin neurons promote anxiety by recruiting dlBNST somatostatin neurons 

(Ahrens et al., 2018). In that study, the authors found that dynorphin release was a major 

component linking the CeA to the dlBNST in its provocation of anxiety. Since a 

considerable portion of CeACRF neurons express somatostatin and dynorphin (Chapter 1), 

it is likely that CRF neurons are part of that story.  This concept is also consistent with 

recent studies done in non-human primates. In models of anxiety in monkeys, brain 

imaging analysis consistently shows that anxious temperament and behaviors are 

associated with simultaneous activity in the CeA and BNST (Fox et al., 2018; Fox and 

Shackman, 2017; Shackman and Fox, 2016; Shackman et al., 2017). Furthermore, 

overexpression of CRF in the primate CeA generates anxious temperments (Kalin et al., 

2016). Therefore, it is proposed that the CeA and BNST function as a coupled unit to 

properly regulate anxiety-like responses in several species, and that CRF is a critical 

signaling molecule. Altogether the findings presented here demonstrate the 

CeACRF→dlBNST pathway as an essential component of anxiety behaviors, and suggest 

that this circuit could be disrupted in human anxiety disorders. Future investigations should 

evaluate how this circuit adapts after stress exposure and is modified in neuropsychiatric 

disease. 

  

CRF systems in health and disease 

The original purpose of a brain system like CRF circuitry in the extended amygdala was 

for ensuring survival ability in a dangerous environment. Since animals need to learn about 

and avoid predation and other threats, brain circuits are dedicated to this process. The 

amygdala receives external and internal information from many sensory modalities and 
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must integrate these signals to help execute a required behavioral response. Strong 

connectivity with and similar genetics to the BNST imply that these structures are related 

and communicate with each other for important purposes. Based on the literature and the 

original data presented here, it might be the case the CeA transmits information related to 

the stress state of an animal to the BNST for an appropriate behavioral response. A simple 

model is that CeA informs the BNST of a threat or an environmental stressor and the BNST 

comes online to orchestrate an anxiety-like behavior. This is an unproven hypothesis, but 

the data here suggest that this could be true. Future experimentation that focuses on 

ethologically relevant stressors or threats and utilizes different combinations of cell-type 

specific manipulations could lead to a definitive answer. For now, it remains clear that the 

extended amygdala systems are critical to negative emotional states related to stress, fear, 

and anxiety. 

 Like any complex system, there are many opportunities for processes to go wrong. 

As outlined above, persistent fear and exaggerated anxiety are hallmarks of some of the 

most prevalent neuropsychiatric disorders in humans (Baxter et al., 2013). There is much 

preclinical evidence that the extended amygdala is involved in many symptoms of anxiety 

disorders, and more and more clinical data suggests this is true in humans (Fox and 

Shackman, 2017; Shackman and Fox, 2016). Dysregulated activity in the CeA or BNST, 

whether CRF neurons or not, could be a large contributing factor to anxiety disorders. Since 

the preclinical evidence for CRF is so striking, there is much interest in the CRF1 receptor 

as a clinical target (Sanders and Nemeroff, 2016; Zorrilla and Koob, 2004). Hence, several 

small molecule CRF1 receptor antagonists with good brain penetrance have been created 

and tested in clinical trials for effects on stress-induced craving in alcoholism and anxiety 

symptoms in PTSD (Dunlop et al., 2017; Kwako et al., 2015; Schwandt et al., 2016). 



 
 

169 

Unfortunately, each of these trials failed to show improvements of symptoms with the 

antagonists compared with placebo (Discussed in Pomrenze et al., 2017). It is unclear why 

this is, considering the effects in animals are so strong. But the data presented here may 

give some clues.  

 As discussed above, CeACRF neurons express and most likely release several 

neuropeptides all with strong effects on emotional behavior. It is not hard to predict that 

many of these neuropeptide systems interact and work together to evoke an emotion or a 

behavioral output. It has already been reported that CRF and dynorphin synergize in the 

amygdala to regulate anxiety behavior (Bruchas et al., 2009). In addition, CRF and 

neurotensin cooperate in the oval BNST to regulate synaptic transmission and stress-

induced anxiety (Normandeau et al., 2018b). These examples show that neuropeptide 

signaling is interactive and complex, and may depend on the circuit architecture it is acting 

on. Therefore, inhibiting only one receptor from one of these systems may be insufficient 

for reversing psychiatric states in humans. Future studies should evaluate how these 

neuropeptide systems interact in the extended amygdala, and those results should inform a 

new wave of clinical trials in humans aimed at ameliorating symptoms of psychiatric 

disorders characterized by negative emotional states. 

 The data in this dissertation have helped refine old psychological models of fear 

and anxiety. In addition, they have validated an old hypothesis while incorporating new 

features. We now know that the CeACRF→dlBNST pathway is critically involved in anxiety 

behavior, and this process involves CRF neurons of the dlBNST and most likely other 

neuropeptide modulators. Many new questions and experiments can be generated from 

these data, but overall, they represent another step forward in understanding how a 

primitive, yet complex brain system contributes to adaptive and maladaptive emotional 
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states. The data presented here should help inform future preclinical studies on the 

neurobiology of fear and anxiety and set the stage for the development of more innovative 

therapeutic strategies for fear and anxiety-related disorders in humans. 
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