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Abstract 

 

Response of Asphalt Matrix under Multi-axial Stress State 

 

Nazmus Sakib, M.S.E 

The University of Texas at Austin, 2014 

 

Supervisor:  Amit Bhasin 

 

The pavement system is subjected to complex stress states under vehicular loading. A 

combination of axial and shear stress has been identified as a potential cause of top down 

cracking (or more precisely near surface cracking) in asphalt surface. Therefore, in terms 

of modeling the material response a pertinent question is whether the typical one-

dimensional viscoelastic properties of the material are affected by a multi-axial stress 

state. Such changes are referred to as interaction non-linearity. The objective of this study 

was to evaluate whether or not asphalt composites are susceptible to such interaction 

effects. The study was conducted using fine aggregate matrix (FAM), which comprises 

graded sand and asphalt binder. 

To provide multi-modal loading, the rectangular prismatic FAM specimens were used 

with the Arcan apparatus. This apparatus ensures low bending stress and offers 

adjustments in the setup to provide different proportions of axial and shear stress. Finite 

element modeling was done to evaluate the stress state for different orientations of the 

sample in the Arcan apparatus.  For measurement of strain, the study used digital image 

correlation (DIC), which is an optical, non-contact measurement technology. The strain 

thus measured was used to compute shear compliance. Fitting parameters of the shear 

compliances were estimated for power-law and Prony series for different loading 
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orientations. When compared, the measured shear compliances do not show perceivable 

variation with respect to different proportion of axial stress applied in conjunction. 

However, further testing with different temperatures and other magnitudes of shear stress 

is necessary. This study is the first step to allow modeling of stress and crack propagation 

behavior near the pavement surface where complex stress state is present. 
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Chapter 1: Introduction 

SCOPE OF WORK 

Asphalt mixture is a heterogeneous composite comprising different sizes of aggregates 

and asphalt binder along voids filled with air. The coarser fraction of the aggregate makes 

up bulk of the volume and imparts strength to the mix while the binder acts as a glue to 

adhere the granular parts of the asphalt mix. The fine portion of aggregates and the binder 

with air can be defined as the mortar or matrix of the composite in which the coarse 

particles are embedded. Under vehicular loading, this composite helps transfer the load to 

the lower layers of the pavement. 

Being heterogeneous in nature, the study of asphalt mixtures poses several challenges. 

The main components of the mix, aggregates and binder, are two very different types of 

material, the former being elastic and the latter being viscoelastic. As a viscoelastic 

material, asphalt binder is sensitive to temperature and rate of loading. For these reasons, 

the study of the asphalt pavement requires diligent attention to the properties of the 

constituent materials of the asphalt composite as well as the properties of the asphalt 

itself with respect to factors such as loading rate, temperature, and state of stress within 

the pavement.  As a heterogeneous mixture of particulate nature, asphalt can show 

anisotropy or directional variation of properties. Confining stresses and deviator stresses 

within the pavement can contribute to the variance of material properties exhibited by 

asphalt composite. 
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Traditionally, flexural tensile stress was thought to be responsible for load-induced 

pavement cracking. The strength of the material, combined with the tensile stress at the 

bottom of the asphalt layer in a pavement structure is typically used to evaluate the 

capacity and performance of the pavement system. In other words, flexure causes tensile 

stress at the bottom of pavement layer and tensile fatigue, caused by the repetition of 

tensile stress, is responsible for classic bottom-up cracking. 

However, researchers have also reported that cracks do not necessarily start opening up 

from the bottom of the asphalt layer; cracks can initiate and propagate starting from the 

top of the pavement layer as well. This phenomenon was termed as Top Down Cracking 

(TDC). In fact, in the more recent studies, TDC has been shown to originate not from the 

top surface of the pavement, but from slightly beneath the top surface. Hence, it is 

referred as Near Surface Cracking as well. 

Researchers have identified several causes for TDC while attributing overall elevated 

state of stress at the point of crack origin as the most important factor. The term ‘state of 

stress’ indicates localized combination of stresses (axial and shear) near the pavement 

surface. Combinations of the stresses can cause tensile stress of such magnitude which 

can initiate and propagate cracks, as found in some studies. These types of cracks are 

referred to as Type I cracks, being tensile in nature. Importantly, TDC is also identified 

by some researchers as a Type III crack indicating a mixed mode cracking type 

(combination of tensile and shear) (Ozer et al., 2011). 

As mentioned before, the coarse portion of the asphalt mix (coarse aggregates) imparts 

strength and volume to the mix while asphalt binder, in combination with fine aggregates, 
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provides the mortar to bind the aggregates as a matrix of the composite. The fine 

aggregate matrix (FAM or sand-aggregate mix or asphalt mortar) is vulnerable to 

damages related to its viscoelastic nature. As the coarse aggregates carry the major 

portion of the load by mechanical interlocking, they are subjected to displacement under 

loading. FAM stays within the inter-aggregate space bonding the coarse aggregate 

particles.   

Numerous studies were conducted to evaluate the direct tensile strength of asphalt mix 

and FAM. These studies are applicable for predicting Type I cracks’ initiation and 

propagation. However, material properties of asphalt mix and FAM under mixed mode 

loading are not readily available due to lack of studies.  

PROBLEM STATEMENT 

The state of the art recognizes the presence of mixed mode stress in pavement. In 

addition, creation of near surface cracks due to such stress scenarios is also 

acknowledged. However, in current practice, asphalt composite under mixed mode state 

of stress is assumed to exhibit the same stress-strain relationship (creep compliance) as it 

would do in the case of pure tensile or shear loading.  

Interestingly, a few studies (Motamed et al., 2011, 2012) show that the behavior of the 

binder is altered to some extent in the presence of mixed mode loading. For this reason, 

characterizing the behavior of asphalt mix under mixed mode loading is essential.   

As FAM has a higher proportion of viscoelastic binder than for a full asphalt composite, 

any change of the material property due to the mixed mode stress would be more notable. 
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For asphalt with coarse aggregates, the granular structure of the coarse aggregates can 

vary from specimen to specimen and exhibit variation of strength. Hence, the effect of 

stress state on material properties may be masked under the specimen-wise variation of 

strength. FAM provides more material uniformity than the asphalt and specimen-wise 

strength variation should be comparatively small. Therefore, evaluating the strain 

response of FAM in the form of creep compliance would help to identify the presence of 

possible alteration under mixed mode stress. 

HYPOTHESIS 

The purpose of the test would be to identify the variation in shear creep compliance of 

FAM, if any, for different combinations of shear and axial stresses. For a constant value 

of shear stress (σxy) in the FAM specimen, the magnitude of axial stresses (σxx and σyy) 

would be altered and corresponding shear strains (τxy) would be measured. Thus, any 

change of creep compliance for shear for different axial stresses but same shear stress 

would indicate that FAM is sensitive to mixed mode of stress.  

OBJECTIVE OF THE STUDY 

The objective of the study is to identify variation of shear strain with respect to different 

magnitudes of axial stresses. To achieve this overall objective, the following specific 

targets have to be accomplished:   

 Choosing a specimen geometry such that a sufficient gauge length with a uniform 

stress profile exists 
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 Developing a test setup/apparatus which enables mixed mode loading on the 

specimen 

 Creating a finite element model of the test to obtain the stress tensor in a given 

location of the sample 

 Adopting a practical and accurate strain measurement technique considering data 

requirements and specimen geometry 

 Conducting a single cycle loading-unloading/creep recovery test and comparing 

the measured strain profiles and resultant creep compliances for different loading 

scenarios 

THESIS OUTLINE 

The study is divided into five sections. After the current section defining the scope of the 

research, a literature review is conducted. The literature review touches on the causes of 

TDC, and discusses the significance of the complex stress state in this case. In this 

section, previous studies focusing on the existence of variable shear compliance for 

different axial stress is discussed in detail. This section also contains a discussion on 

FAM and available mixed-mode loading techniques. A comparatively new technology 

for strain measurement using optical techniques, called Digital Image Correlation (DIC), 

is also discussed. In Chapter 3, the narrative includes the preparation of the FAM 

specimen, detailed discussion of the testing apparatus and strain measurement technique. 

Chapter 4 is focused on developing a finite element model and from the model, marking 

out the zones of uniform stress in the specimen for two different specimen geometries. 
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The chapter touches on the relative preference between these two geometries and 

establishes the loading parameters to be implemented during the actual test. The 

penultimate chapter contains a brief discussion on the test and details the findings from 

the test. Finally, concluding remarks are made while identifying the limitations of the 

current study and potential future research topics.   
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Chapter 2: Literature Review 

In this chapter, the discussion on the complex stress states in the asphalt pavement 

precedes a discourse on the material behavior. Different theories on Top Down Cracking 

(TDC) initiation and propagation are presented followed by the relation between TDC 

and complex stress states.  This is followed by a discussion on the methodologies used to 

investigate the influence of multi-axial stress state on the properties of asphalt mortar and 

the findings from this investigation. Then, studies involving the choice of test material 

are overviewed along with the available testing apparatuses, which enables mixed-mode 

loading on asphalt samples. Finally, strain measurement techniques are discussed and 

choice of digital image correlation is validated.  

CAUSES OF TOP DOWN CRACKING 

Traditionally, bottom up or flexure cracking was thought as the primary fatigue distress 

in the asphalt pavements. Flexure cracking is a well-researched and a relatively easy 

mechanism to understand. However, researchers found the evidence that not all cracks 

are related to bottom-up cracking. A different type of cracking, called Top Down or Near 

Surface Cracking, is identified and correlated with the complex stress state within the 

pavement structure. 

Gerritsen et al., (1987)observed cracks to originate from near the surface and appear 3 to 

5 years after construction. Similar observation was also made by Dauzats and Rampal 

(1987)identifying thermal stress as a potential cause of such cracking. Matsuno and 



 8 

Nishizawa (1992) observed surface cracking in Japan. They identified that the cracks are 

in proximity to the wheel path. They also identified that the temperature of the pavement 

can be a contributing factor as cracking was not observed under overpasses or tunnels, 

i.e. the areas without sunlight. 

Researchers from University of  Florida conducted comprehensive tests on eight 

pavement sections, aged 5 to 10 years(Myers et al., 1998). It was observed that the cracks 

were 3 to 4 mm wide at the surface. The observation indicated tensile mode of failure 

(Type I fracture) as found by Matsuno and Nishizawa (1992).Studies conducted by Ann 

Myers et al. (2001) and Roque et al. (2010)stated poor fracture resistance as a factor 

responsible for TDC. 

Uhlmeyer et al. (2000) conducted field observation of selected cracked pavements in 

Washington State. The authors concluded that occurrence of TDC more frequent in 

thicker pavements and they identified 160 mm thickness as the cutoff for such 

phenomena to occur. However, Matsuno and Nishizawa (1992) and Myers et al.(1998) 

did not find any such relation between cracking and thickness of pavement. 

Other researchers included pavement construction, aggregate grading, truck tire grooving 

etc. as potential cause of top down cracking. The factors can be subdivided into load –

induced factors (tension, shear), material aging, construction related factors (segregation 

and joints) and thermal stress (Baladi et al., 2003). However, most of the researchers 

agree that localized stresses are important contributors to TDC initiation and propagation. 



 9 

EFFECT OF STRESS-STATE IN THE PAVEMENT ON TDC 

As researchers understood the significance of localized stress, they focused on identifying 

the specific type of stress that causes TDC. Laboratory tests as well finite element 

modelling techniques were employed for this purpose. 

Tensile stress under the ribs of radial tires are identified as a cause of TDC (Myers et al., 

1998). In other words, TDC was seen as a Type I fracture. It was found that a secondary 

tensile stress may be generated by dilation of asphalt under shear loading (Wang et al., 

2003). In another study, it was found that vertical shear strain near the edges of a tire 

causes a more severe stress condition and thus it has the potential to initiate top down 

cracking (Wang and Al-Qadi, 2010). The study identified high temperature as an 

important factor and found that the cracks can initiate between dual tires near the surface.  

Researchers has also pointed out that the current approximation of uniformity of stress 

under tires is not applicable for TDC analysis. They observed significant stress increases 

due to the pressure of ribs in tires. Wang (2009)observed that consideration of the rib 

effect on contact stress will cause much higher stress levels in pavement.  Using finite 

element modelling, it was found that the magnitude of maximum vertical stress when 

considering rib effects (non-uniformity) is about two times higher than that when only 

considering uniform vertical loading. This phenomenon is more pronounced in the top 

half inch of AC layers but becomes uniform with depth.  

Wang (2011) used FEM to demonstrate that load distribution under a tire is dependent on 

load, tire inflation pressure, vehicle maneuvering (breaking, acceleration, cornering), and 

rolling condition (slip angle, friction). Different tires can produce different stress states in 
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the pavement. Wang (2009) identified that the location of maximum (principle) tensile 

and shear stress and their magnitude varied with the type of tire. 

In the above mentioned studies of Wang (2009) and Wang (2011), development of mixed 

mode stress state (tension with shear) was prominent. Figure 2.1 is a graphical 

representation of spatial variation of the stress state near the surface of the pavement 

when subjected to wheel load from a ribbed tire. Intuitively, the presence of mixed mode 

stress states in the pavement elements can be understood from this figure, which shows 

various combinations of tensile, compressive and shear stresses at different locations in 

the pavement under the tire. 

 

Figure 2.1: Multi Axial Stress State under Tires 

More importantly, Ozer et al. (2011) identified mixed mode fracture (Type III) as a 

critical case. They conducted 3D finite element modeling (FEM) of a typical pavement 

structure with thick bituminous layer and inserted different shapes of crack within this 

model. They also mentioned that the tensile mode of failure can be found at 30-60 degree 

planes (crack angels) and at about 60 mm depth from the surface. The researchers also 

found that the most critical orientation of cracks appears to be in the 45 to 60 degree 



 11 

range with the vertical plane. The researchers concluded that tensile mode of fracture 

cannot properly predict the TDC scenarios. For this reason, they identified 

mixed/complex mode (shear with compression) as the prominent contributor to near 

surface damage of the pavement.  

MATERIAL BEHAVIOR UNDER COMPLEX STRESS-STATE 

Under a complex multi-axial stress state (tension/compression-shear combination), the 

material properties of an asphalt mix can be different from the properties measured under 

uniaxial tension/compression or shear. Some materials are known to possess interaction 

non-linearity, which refers to the variation of material properties with respect to state of 

stress within the material.  

An example of interaction nonlinearity can be seen in Polymethyl Methacrylate, which 

exhibits a different shear compliance for different states of stress (Lu and Knauss, 1998). 

Polymethyl Methacrylate is a thermoplastic, commonly known as acrylic glass or 

Plexiglass or Perspex. In the mentioned study, pure shear creep was measured at different 

temperatures. These tests were repeated with the same shear load along with an additional 

compressive or tensile load. The study indicated “a marked influence” of the axial loads 

on shear creep. The study found that the positive invariant (tension with shear) produces 

higher creep compliance than negative (compression with shear). Figure 2.2 shows this 

difference. 
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Figure 2.2: Creep Compliance for Torsion with Tension and Shear (adopted from Lu and 

Knauss, 1988) 

When subjected to similar complex stress states, asphalt binder exhibited similar behavior 

(Motamed et al., 2011, 2012) . The test data indicated that a compressive normal force 

was generated during the application of torsional shear. The dynamic shear modulus was 

found to reduce corresponding with an increase in the normal stress. In this study, 

researchers conducted a stress sweep test on PG 82-22 binder at 40ºC. The binder was 

placed between a fixed bottom plate and a rotating top cone plate and was subjected to 

sinusoidal oscillation at0.1 Hz. A slower loading rate was chosen to exaggerate the time 

dependent properties of the binder. Stress amplitudes were varied from 100 Pa to 48.1 

kPa. Other studies have shown that the binder behaves linearly at this stress level 
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(Delgadillo, 2008; Huang, 2008). Motamed et al. (2011, 2012) observed the generation of 

a normal force when the specimen was confined in the vertical direction. It was also 

noted that the complex modulus varied with stress levels as shown in Figure 2.3. 

 

Figure 2.3: Variation of Shear Modulus and shear strain w.r.t Shear Stress Amplitude 

Figure 2.3 shows that there is slight deviation from linearity as the shear stress increases. 

The researchers considered two possible causes: the Poynting effect due to geometric 

nonlinearity (Poynting, 1909) and interaction non-linearity. The researchers concluded 

that the Poynting effect could only partially explain the observed normal force, but that 

the dilation of the binder due to the shear stress also contributed to the normal force. The 

presence of the normal force/stress combined with the applied shear stress resulted in a 

corresponding change in the shear modulus attributed to Interaction non-linearity.  
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CHOICE OF FINE AGGREGATE MATRIX 

As the asphalt binder is used with aggregates to create HMA, it is practical to identify the 

presence of non-linearity for HMA. However, the use of HMA specimen (full mix) 

present some challenges for this specific purpose. One of the primary concern is the 

degree of heterogeneity in HMA. While the heterogeneity is also present in asphalt binder 

at solution or suspension level, full mix asphalt is heterogeneous at a length scale that is 

directly relevant for material and pavement structural design. The presence of coarse 

angular aggregates would create local stresses of unpredictable nature. This highly 

localized stresses would invalidate the test as we seek to understand strain caused by 

known combination of stresses. In addition, testing of HMA mix requires a large sample 

and testing apparatus that was not efficient for use in this preliminary study. Importantly, 

fatigue or stress related damage in pavement usually initiates in asphalt matrix and 

typically not in coarse aggregates (of good mechanical properties). Hence, excluding the 

coarser portion of HMA is a logical and meaningful compromise as a first step to develop 

a better understanding of material behavior. The resulting composite is effectively the 

asphalt matrix or fine aggregate matrix (FAM) also referred as sand-asphalt mortar. FAM 

consists of binder and fine aggregates. 

The results obtained by testing full scale specimens of asphalt mix and FAM specimens 

indicates that the FAM microstructure closely resembles the microstructure of  FAM 

within a full asphalt mix (Izadi et al., 2011). For this reason, we can expect FAM 

specimens that are designed and produced in the laboratory to exhibit behavior 

comparable to the asphalt matrix holding coarse aggregates together as in the case of a 
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full-mix. The mentioned study also states that FAM is less sensitive to percentage of 

fines than binder content. 

FAM offers some advantages over full-scale asphalt mix testing. Since cracking or 

damage is concentrated in the sand-asphalt mortar, evaluating FAM in isolation can 

provide a closer look into the failure mechanism. FAM excludes larger aggregates and 

thereby reduces the heterogeneity of the mix.  In addition to that, FAM enables us to 

reduce the amount of material required and consequently reduces the requirement of 

high-capacity equipment due to the small-scale for testing. These qualities render FAM to 

be a more economical material. For these reasons, FAM received preference over the 

full-mix asphalt for the current study. 

 While previous studies have demonstrated that asphalt binder exhibits interaction non-

linearity (Motamed et al., 2011, 2012), the same cannot be conclusively said about 

asphalt mortar.  The behavior of asphalt mortar can be different from that of the asphalt 

binder due to the heterogeneity of the mortar. In addition, the stiffness of the mortar is 

usually much higher than that of the binder. Since cracks usually propagate through the 

asphalt mortar within an asphalt mixture, it is critical to understand the response of 

asphalt mortar subjected to multi-axial stresses as the first step to better understand the 

behavior and performance of full asphalt mixtures. To the knowledge of the author, no 

previous research has addressed the interaction non-linearity in asphalt mortar.  
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TESTING OF ASPHALT SPECIMENS IN MIXED MODE STRESS-STATES 

Testing of asphalt specimens under complex loading condition requires special test set-

ups. In past, several researchers developed and conducted tests on asphalt samples where 

shear was a prime consideration. There are several devices that are able to apply direct 

shear to test specimens. Among these test procedures, some of the more notable ones are 

Layer Parallel Direct Shear Test, Florida DOT device, bond torque test and pull-off test. 

However, none of these tests can apply a geometrically controlled mixed mode loading 

on the test specimen.  

To fulfill this need, different agencies developed various test equipment, which were 

capable of imparting axial load along with shear. One of these devices is Ancona Shear 

Testing Research and Analysis (ASTRA), developed by Polytechnic University of 

Marche. The device is effectively a direct shear test device similar to the device used for 

soil shear testing. A specimen is placed into two box shaped grips facing each other 

which are able to move horizontally in opposite directions. One of the grips can be loaded 

with weight to produce a normal compressive force (Canestrari et al., 2005). This system 

allows the sample to fail in shear along a predetermined plane in presence of a 

compressive load. 

Romanoschi and Metcalf (2001) conducted direct shear tests at four levels of normal 

loading using a specialized setup. Using a single loading frame and by sample alignment, 

the authors were able to conduct shear fatigue tests where the shear stress was half the 

normal stress. Figure 2.4 illustrates the principle of this test. Though this test setup is 

capable of applying a combination of shear and normal force, the ratio of these two 
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stresses has to be kept constant. This apparatus also loads the sample along a 

predetermined plane.  

 

Figure 2.4: Direct Shear with Normal Load Test Setup by Romanoschi and Metcalf 

(2001) 

The test device that could apply a multi axial stress state that also gained the most 

attention was the Superpave Shear Tester (SST). This device was used to measure the 

complex shear modulus and the permanent deformation characteristics of asphalt mix in 

shear. Figure 2.5 shows the schematic of the SST. The bottom attachment is able to 
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produce shear loading while the top attachment to the sample produces normal loading. 

This apparatus is able to produce different combinations of mixed mode loading without 

a predetermined failure/loading plane. Also due to the size of the sample, there would be 

bending effects caused by shear which would negate the pure shear assumption. Owing to 

high cost and complexity of operation and maintenance the SST was not widely adopted 

for routine use or even as a research tool.  

 

Figure 2.5: Basic schematic of Superpave Shear tester 

The aforementioned setups are capable of applying mixed mode loading to some extent. 

However, for the purpose of this study, these setups were not advantageous because they 

cannot provide mixed mode loading with varying magnitudes without causing bending of 

sample. In addition, all setups except the SST apply load on a specified plane, rather than 
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a gauge region. Thus, deformation is forcibly limited to a predefined plane of small 

thickness with high spatial variation of stresses and hence unsuitable for this study.  On 

the other hand, SST would result in a bending effect. 

To counter the disadvantages with the available options, two other setups were 

considered; namely, the Iosipescu and Arcan configurations. Both of these are used for 

smaller scale samples and more common in the polymer and composite industry. The 

advantage of these two setups is that they result in a more uniform shear stress on the 

specimen. Maintaining the uniformity of stress over the gauge length is important to 

establish the relationship between stress and strain, which is the primary objective of 

these kinds of tests.  Variation of stress within the gauge region would result in 

corresponding variations in strain and hence the measured deformation would not be 

proportionate to actual strain. As a result, obtaining accurate strain and correlating stress-

strain would be difficult. Uniformity of stress over a larger section of the test specimen 

would allow the use of a larger gauge length and subsequently reduce measurement 

errors related to strain gauges and local irregularities. 

The Iosipescu configuration (Iosipescu, 1967) is a setup which involves a double V-notch 

specimen subjected to four-point bending. The Iosipescu configuration has been widely 

used to study composite behavior. However, for the current study, the Arcan specimen 

(Arcan et al., 1978) was used, which has some similarity to the Iosipescu specimen. The 

Arcan specimen is preferable to the Isoipescu specimen because of its low bending effect 

and the possibility of using multiple orientations of the setup (Hung and Liechti, 1999). 

This geometry also enables the application of multi-axial loading when used in 
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combination with UTM, a widely available device. The Arcan setup does not include any 

bearings and hence there is less possibility of friction related error. These benefits allow 

the user to achieve a mixed-state loading and a homogeneous stress region for analysis. A 

commonly used schematic of the Arcan setup is shown in Figure 2.6. 

 

Figure 2.6: Schematic of the Arcan Test Setup 
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MEASUREMENT OF STRAIN 

As stated before, this study involves measurement of strain under complex stress states to 

evaluate change in material properties, if any, under such stress states. Hence the ability 

to measure strains accurately was critical to the success of this study. 

Commonly used strain measurement techniques are extensiometers and strain gauges. 

Due to the small size of the FAM specimen (smallest dimension is 10 mm), these 

techniques were not suitable. Additionally, heterogeneity of the specimen, the 

requirement of at least three strain gauges (strain rosette) for measuring shear and axial 

strain components, and possible misalignment and localized damage during placement of 

the gauges makes the use of such techniques less preferable. 

For these reasons, full field no-contact strain measurement techniques present a better 

alternative. Some of these techniques are interferometry, Moiré interference, and brittle 

coating. However, a relatively new technology, Digital Image Correlation (DIC), was 

employed in this study. DIC was first proposed around 1980s (Schreier et al., 2009; 

Sutton et al., 2000) but has become increasingly popular in recent years due to the 

availability of high speed desktop computers. Despite being a full field technique, DIC is 

capable of point measurement of strain similar to strain gauges. For this study, a DIC-

based commercially available optical measurement software, VIC-3D™, was used. 

According to the literature, the 3D DIC technique provides dependable strain and 

displacement measurements (Sutton et al. 2000). The system used for this study was 

capable of measuring from 50 micro-strains to 2000% strain for specimen sized less than 

1 mm to more than 10 mm (Correlated Solutions, 2013). 
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Utilization of DIC along with the Arcan setup provides a favorable setup for strain 

measurement. If the uniformity of stress over a region on the specimen can be confidently 

established and identified, strain measurement by DIC would be more consistent. Having 

a uniform stress region would produce results that are more dependable as well as 

identification of possible discontinuity in the specimen and localized irregularity.
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Chapter 3: Experimental Setup 

This section describes the experimental procedure that was used to measure the response 

of an asphalt matrix under complex stress states. In this section, discussion on the 

preparation of asphalt matrix is followed by the description of the loading apparatus, the 

Arcan apparatus. Preparation of the specimen is also discussed. In this research, a 

relatively new technology of strain measurement based on digital image correlation is 

utilized. A discussion on this technology is included in this chapter.  

PREPARATION OF ASPHALT MIX 

All tests in this study were conducted on asphalt mortar or fine aggregate matrix (FAM). 

FAM comprises of asphalt binder and fine aggregates. For the binder, we selected PG 67-

22 grade bitumen. The fine aggregate originated from a limestone quarry in Bryan, 

Texas. These aggregates pass through ASTM Sieve no. 16 (smaller than 1.18 mm). Table 

3.1 shows the gradation of the fine aggregates.  

Sieve Size (mm) 1.18 0.6 0.3 0.15 0.075 0 Ret. 

% Sieve Number (#) #16 #30 #50 #100 #200 -200/ Pan 

% of Aggregates Retained 0.00 21.0 12.0 9.0 10.5 10.5 63.0 

Table 3.1: FAM mix proportions 

For this gradation, 63% of the total aggregates pass through ASTM Sieve no. 16 and the 

remaining portion retains on the sieve, hence excluded from the FAM mix. This 
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gradation represents the fine aggregate portion of a dense graded asphalt mix. In other 

words, proportions of the different aggregate sizes and binder in the FAM correspond to 

the dense graded asphalt mix without coarse particles (larger than 1.18 mm). FAM has 

the same binder content (weight ratio of the binder to the available fine aggregates) as the 

full asphalt mix, excluding the binder absorbed by coarse aggregates in the case of the 

full asphalt mix (Izadi et al., 2011).  

After mixing the binder and aggregates at 200ºC, a Super-pave Gyratory Compactor was 

used to compact the mix to 150 mm diameter and 75 mm high cylindrical specimens. A 

finished cylinder was cut into 10 mm slices along the normal of the cylindrical axis. 

Figure 3.1 shows 10 mm thick slices. The 10 mm slices from the finished cylinder were 

then cut to the required specimen size using a rotating blade. Figure 3.2 shows the cutting 

process and Figure 3.3 shows the finished specimens.  

 

Figure 3.1: 10 mm thick slices from FAM cylinder 
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Figure 3.2: Specimen cutting process 

 

Figure 3.3: Finished FAM specimens 
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ARCAN APPARATUS  

This study involves obtaining material properties from observation of the stress-strain 

behavior under a multi-axial stress state. Ensuring the uniformity of stress within a 

reasonable gauge length would result in a more reliable measurement of the stress-strain 

behavior and consequently a more reliable estimate of the constitutive relationship for the 

material. 

An Arcan specimen is usually butterfly shaped with notches at the ends to ensure 

uniformity of stress. Notches can be V-shaped, rounded V, or semi-circular. In this study, 

we used rectangular-shaped specimen. The specimen was 10 mm wide and 10 mm deep 

with an end-to-end length of 23 mm.  

The decision to exclude the notch was made in order to simplify specimen preparation 

and reduce damage to the specimen. Trial specimens of FAM with notch showed 

problems with replicating the geometry and development of cracks in the corners during 

creation of the notch. Initially, 5 mm diameter semicircular notch was put on the 

specimen ends using a punch specially made for this purpose. However, generated force 

and vibration during punching process caused the edges of the notch to crack and 

disintegrate. After that, a core drill of 5 mm external diameter with diamond bit was used 

to make the notch. In this case, the edges did not disintegrate as much as the punching 

process. However, the heat produced during the drilling made the notch edge quite soft 

and deformed the shape of the specimen. Observing the difficulty of notch creation, a 

study was conducted to see the potential of excluding the notch but maintaining a 

uniform stress region. In the following chapter of this thesis, a comparative study shows 
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that the uniformity in stress distribution over the gauge length was not significantly 

affected by removing the notch.  

A high strength epoxy was used to glue the Arcan specimen to the loading apparatus. 

Figure 3.4 demonstrates the glued specimen mounted on the butterfly-shaped frame in 

preparation for the Arcan Setup.  

 

Figure 3.4: Specimen glued on the butterfly setup 

The epoxy presented a particular problem, as it does not adhere to asphalt binder very 

well. As FAM has higher binder content, the adhesion was not as good as the full asphalt 

mix where epoxy can bond with coarse aggregate surfaces. However, this particular 

thixotropic epoxy (DEVCON® 5 Minute® Epoxy Gel) was fast setting (10-15 minute) 

and rapid hardening (1.5 hour for functional cure). During testing, there are several cases 

of stripping of epoxy from the FAM specimen. This has been a critical factor for limiting 

the magnitude of load application. This problem was identified at later stages of study. 

However, a possible solution is to use a silicon-based epoxy which takes 2 days to cure. 
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This alternative was not chosen due to limited time and required number of the required 

butterfly-frames. This is because the specimen would occupy the butterfly frame for 

longer duration and would require larger number of butterfly frames to utilize time 

efficiently. 

The loading apparatus consists of semi-circular aluminum plates with holes around the 

edges, which facilitate attaching to the Universal Testing Machine (UTM). The Arcan 

specimen connects the two parts of the Arcan apparatus. The final setup looks like a 

circular shaped disk consisting of the two parts of the apparatus with an Arcan specimen 

placed in between. The disk can be rotated with respect to the UTM grips to achieve 

different combinations of axial and shear loading. Figure 3.5 shows a test-ready Arcan 

setup with a notched specimen aligned at 45º with the loading axis of UTM. 

 

Figure 3.5: The Arcan setup with a notched specimen 
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STRAIN MEASUREMENT 

As discussed in literature review, measurement of strain through the digital image 

correlation method is critical to this experiment. A well-known DIC software package by 

Correlated Solutions, Inc., VIC-3D™ is employed for strain measurement.   

The complete DIC system consists of two tripod-mounted cameras and VIC-3D™ 

software. It can provide full field, 3D measurements. The principle of 3D DIC relies on 

the principle of binocular stereovision (Luo et al., 1993).  The system comprises two 

digital cameras for stereoscopic image acquisition and a post processor for image 

analysis. The sample to be imaged is generally textured using a speckle pattern with high 

contrast. The digital cameras capture images of the textured surface at predetermined 

time intervals. A region of interest (ROI) is defined in the post-processing software to 

conduct analysis and obtain strain fields. By comparing the location of a specific point/set 

in consecutive photos during loading, the software establishes the displacement of that 

point/set. After calculating the relative movements of several points in the ROI, the 

software computes the strain at those points. A 2D DIC can also be used for planer 

surfaces with a single camera. However, a 3D DIC enables use of rough surfaces and 

irregular shapes.  

DIC technology is perfectly suited for the purpose of this study. Due to the small 

specimen size, the measurement of strain using conventional methods was not feasible. 

Space constraints make it hard to place traditional strain gages on the specimen. In 

addition, traditional strain gages can track the strains only along a limited number of 

directions. Moreover, any localized discrepancy or specimen irregularity would not be 



 30 

pronounced for traditional strain gages. As FAM is a heterogeneous material, localized 

discontinuity is natural. DIC helps to fully monitor such an experiment where we do not 

know spatial heterogeneity a priori (Hild and Roux, 2006).   

The post-processing software requires sufficient texture to identify and track the 

deformation in the ROI. For this reason, we painted the surface of the specimen in black 

and sprayed white paint to incorporate sufficient texture. Figure 3.6 shows the 3D DIC 

arrangement.  Figure 3.4 also shows the FAM specimen with white and black texture. A 

screenshot of the VIC-3D™ program showing the mounted specimen being analyzed for 

strain and displacement is presented in Figure 3.7. 

 

Figure 3.6: A 3-D two-camera DIC setup and loading frame (Instron 8872 UTM) 
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Figure 3.7: A screenshot of strain analysis in DIC 

VIC CALIBRATION 

Before analyzing any image sequence for deformation in VIC-3D™ system, it requires 

calibration for a given set of focus, line of sight, and spatial location of the cameras. 

Calibration is required anytime the system is moved or re-focused. As the specimen is 

very small, the cameras were placed close to the specimen as seen in Figure 3.6. After 

that, a calibration target (of known dimensions and texture, provided by the 

manufacturers of DIC system) is placed in the UTM machine where the Arcan setup 

would be placed and the focus is adjusted. Figure 3.8 shows a target placed in the 

apparatus.  

Some photos (about 15 to 20) are taken with different orientations of the calibration 

target with varying rotations and positions within the lenses’ depth of field. These images 
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are used for calibration. The whole calibration process is done as per the suggestion of 

the developers of VIC-3D™ (Correlated Solutions, 2005). This calibration helps the 

software to understand the relative location of the individual cameras in space and their 

line of sight along with focal properties. Figure 3.9 shows the screen shot of the 

calibration target (focused and analyzed) in the software. Typical information related to 

the placement of the camera obtained from the calibration is presented in Table 3.2. 

Camera Intrinsics 

 Camera 1 Camera 2 

Center (X) 1525.853 +/- 1513.963 1525.853 +/- 1513.963 

Center (Y) 1000.537 +/- 965.420 1000.537 +/- 965.420 

Focal Length (X) 7036.361 +/- 3008.333 7036.361 +/- 3008.333 

Focal Length (X) 7014.402 +/- 2990.308 7014.402 +/- 2990.308 

Skew: 5.687 +/- 4.840 5.687 +/- 4.840 

Kappa 1: -0.324 +/- 0.000 -0.324 +/- 0.000 

Camera Extrinsics 

Angles 

X -0.023 +/- 0.000 

Y 12.951 +/- 0.002 

Z -0.298 +/- 0.000 

Distances 

X -41.552 +/- 0.066 

Y 0.001 +/- 0.009 

Z 0.685 +/- 2.902 

Table 3.2: Camera placement and orientation information 
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Figure 3.8: Calibration target at the probable location of the test specimen 

 

Figure 3.9: Calibration Analysis (screen shot) 
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Chapter 4: Finite Element Modeling of the Experiment 

Finite element modeling was utilized to understand the distribution of stress within the 

specimen. The model was used to identify a suitable region of interest (ROI) for analysis 

of stress and strain by identifying regions of uniform stress. The amount of deviation 

caused by the use of a rectangular specimen versus a notched specimen was quantified 

and is discussed here in detail. The analysis helped to measure the required load to 

achieve target stresses in the specimen for any given orientation of loading apparatus. 

MODELING OF THE TEST SETUP 

The finite element software Abaqus FEA 6.13 was used for performing finite element 

analysis. Abaqus is commercially available and developed by Dassault Systems. In the 

preprocessing part, the geometry of the specimen was modeled in Abaqus/CAE. Two 

models were created to represent the rectangular and notched geometry of the specimens. 

The models are done in two dimensions. As the load is symmetric with respect to depth, a 

2-D model was considered to be adequate. However, there might be some deviation along 

the depth of the specimen due to Poisson’s effect, which was assumed to be negligible. 

This assumption is valid as the material was unrestrained for the deformation along the 

direction of depth. For this reason, no significant stress component along the specimen 

depth would be present on the specimen surface. The strain component along the depth 

measured from the actual test also supports this approximation. 
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In addition to the specimen, the loading apparatus was also modeled in Abaqus/CAE. To 

represent the Arcan apparatus, two parts of the half-circular apparatus were modeled. 

Then, the top and bottom part of the Arcan apparatus and the specimen in between were 

assembled to imitate the actual test setup. The final geometry of the setup for the notched 

specimens can be seen in Figures 4.1.  

 

Figure 4.1: FEM model of notched specimen 

For this analysis, it is assumed that the material was purely elastic without any time 

dependent behavior. Since the objective of this analysis was to obtain the spatial 

distribution of stresses across the Arcan test specimen, it was adequate to assign a unit 

elastic modulus as the material property. The Arcan apparatus (except the specimen) was 

considered as rigid. This consideration is valid since elastic modulus of aluminum (the 

material of the Arcan apparatus) is very high compared to that of FAM.  
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The applied load in FEA was kept at unity. The effect of the gravity and weight of the 

apparatus was also ignored for this analysis. The load was provided in 15º intervals; that 

is, the Arcan apparatus was rotated around the loading train so that the position of the 

load varied with respect to the specimen for different tests. If the load is in vertical 

position (at 90º with the horizontal) the result would be shear force and if the position of 

the load is 0º with the horizontal, then pure tension force is ensued. The loading positions 

in between 0º and 90º, such as, 15º, 30 º, 45º, 60 º, and 75º, result in a combination of 

tensile and shear load with varying proportions. With the increase of loading angle from 

0º, the proportion of the shear force increases and no tensile force is present in the 90º 

position. However, even in absence of the external tensile force, tensile stress can be 

generated in the specimen due to the Poisson’s effect and it can be also said for the 

generation of shear stress despite the absence of an external shear force. 

The specimen geometry was modelled using a very fine mesh to ensure accurate spatial 

analysis of stress. The size of mesh was 1/20th of the smallest sample dimension. A total 

of 377 elements are generated for the rectangular specimen and 301 elements are 

generated for the notched specimen. The element chosen for this analysis was a plane 

stress 4-node bilinear plane stress quadrilateral element. This is a very regular and 

dependable choice of element. 

The bonding between the specimen and the apparatus in FEM was considered as tied 

which is fixed, non-slip. This consideration is also realistic as we utilized epoxy for the 

test which provides rigid bonding between these surfaces.  
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FEM VALIDATION OF STRESS UNIFORMITY 

After conducting elastic analysis, the principle and shear stresses were evaluated for each 

of the two types of specimen. With respect to the specimen geometry, σyy represents the 

‘vertical’ directional axial stress, σxx is axial stress in horizontal direction and σxy is shear 

stress in the XY plane. 

For the simplicity of the representation, we only considered three locations of load: shear 

only (90º with vertical), 60º mixed mode of stress and 0º tensile stress condition. Results 

for other loading angles were what one would expect by interpolating between these three 

values.   

In Figure 4.2, a vertical section across the middle of the specimens is taken and 

corresponding σxx are presented without normalization. Each specimen contributes three 

curves for three loading positions; 90º, 60º and 0º. It should be noted that, in Figure 4.2 

(and Figures 4.3-4.7), mid-points of the two specimens (notched and rectangular) are 

superimposed (on X-axis representing specimen dimension); hence the curves generated 

from the notched specimens started after and ended before the rectangular specimen due 

to smaller length of the notched specimen. We can observe that at least the central 1/3 

portion of the curves is reasonably flat for both curve sets indicating constant tensile 

stress in the XX direction. In Figure 4.3 and Figure 4.4, σyy and σxy are respectively 

presented for the same vertical sections for the two types of specimens. Figure 4.5, 4.6 

and 4.7 show the σxx, σyy and σxy stress states in a central horizontal cross section, 

respectively. We can observe that stress is higher near the edges but quickly reduces and 

flattens.   
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Figure 4.2: σxx in vertical cut of notched and rectangular specimen 

 

Figure 4.3: σyy in vertical cut of notched and rectangular specimen 
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Figure 4.4: σxy in vertical cut of notched and rectangular specimen 

 

Figure 4.5: σxx in horizontal cut of notched and rectangular specimen 
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Figure 4.6: σyy in horizontal cut of notched and rectangular specimen 

 

Figure 4.7: σxy in horizontal cut of notched and rectangular specimen 
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It can be conclude that stresses are reasonably uniform in the central 1/3 portion of the 

specimen when σxx and σxy are considered (Figure 4.2, 4.4, 4.5 and 4.7). On the other 

hand, there is significant curvature for σyy in both vertical and horizontal section (Figure 

4.3 and 4.6) for both type of specimens (notched and rectangular). However, closer 

inspection reveals that the magnitude of such curvature is low in rectangular specimen 

having lower stress than the notched specimen. In addition, measurement of strain in the 

middle portion of the specimen would fall within the plateau of the curve, where there is 

less curvature. Additionally, inspection of strain in DIC is kept limited within a small 

central square portion (ROI) of 2 mm x 2 mm. Due to these reasons, curvature in the 

stress profile of σyy would not cause significant deviation from the assumption of stress 

uniformity in the central portion of the specimen. Hence, strain measurements near the 

middle of specimen should be consistent. As a result, measurement for numerous points 

can be taken at this region without considering the variation of strain or stress within the 

gage zone.  

As mentioned before, we can observe better uniformity and higher stress in the notched 

specimen. Understandably, higher stress is due to the reduced specimen size of the 

notched specimen. Though better stress uniformity can be obtained in a notched 

specimen within a smaller length, uniform strain area is not necessary near the ends, but 

in the middle which was also the ROI for the analysis. We can see that both specimens 

provide this advantage. Hence, for the simplicity of specimen preparation and causing 

minimal damage during the specimen fabrication, we opted for rectangular specimen.  
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MEASUREMENT OF TEST PARAMETERS FROM FEM 

As a unit load is applied in the FEM model along each loading direction (0º, 15º, 30º, 45º, 

60º, 75º, and 90º). The spatial distribution of stresses so obtained from the analysis for 

any given loading direction could then be scaled with the actual load applied during the 

experiment to obtain actual stress distribution in the ROI of the test specimen. That is, for 

a given test load, we can measure the actual stress by multiplying the magnitude of the 

applied load with the stress obtained from FEA for the unit load. On the other hand, if it 

is required to develop a certain axial or shear stress in a specific orientation of load, the 

required test load can be obtained by dividing target stress by the stress from FEA for that 

same loading orientation.  

It was noted at Chapter 3 that adhesion of FAM with epoxy posed a problem of stripping. 

For this reason, numerous specimens were tested to evaluate the load capacity of the 

epoxy bond of FAM with the aluminum Arcan setup. As the test primarily focuses on the 

effect of axial stresses on shear stress, a 45º load orientation is critical. This is because 

the applied loading contributes more to axial deformation than to shear below this angle 

(90º for full shearing load and 0º for full normal load). Hence, testing for load angles of 

below 45º (30º, 15º and 0º) would require a higher load for maintaining the same shear 

stress. For this reason, load capacity of the bond was evaluated for the 45º load 

orientation and shear stress was calculated for that load. The designated shear stress is 

0.446 MPa and the corresponding load is 70 N. Table 4.1 summarizes the stresses for 

different loading orientations with constant σxy. Required loads to maintain the given 

stresses are also included in the table.  
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An interesting observation is that the amount and proportion of change in σyy is 

considerably smaller than the changes in σxx. When the load acts in the YY direction 

(90º), it mainly produces shear stress due to the arrangement of the Arcan setup. While 

the load is in the XX direction (0º), it contributes to σxx. The orientations of loading in 

between 90º and 0º produce different combinations of shear and σxx, with no direct load 

component contributing to σyy. Generation of σyy can be primarily attributed to Poisson’s 

effect. Figure 4.8 shows the variation of σxx and σyy for a unit loading for all loading 

orientations. Figure 4.9 shows the variation of σxx and σyy for the adjusted loading to 

maintain a 0.446 MPa shear stress. 

Angle σxx  (MPa) σyy  (MPa) σxy  (MPa) Required Load (N) 

Shear (90º) -0.025 0.042 0.446 51.1 

75º 0.080 0.066 0.446 52.7 

60º 0.197 0.096 0.446 57.8 

45º 0.364 0.115 0.446 70.0 

30º 0.654 0.179 0.446 98.7 

15º 1.421 0.348 0.446 190.0 

Tension (0º) -256.787 -60.764 0.446 -32769.0 

Table 4.1: Stresses at the ROI of specimen at different orientations for corresponding 

loads 
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Figure 4.8: Stress vs. loading orientation (for unit loading) 

 

Figure 4.9 Stress vs. loading angle of Arcan Apparatus (for respective test loading) 
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Chapter 5: Testing and Results 

The following discussion includes a comparative study of the shear strain for same shear 

stress but for different axial stresses for and a 45 second loading period followed by a 45 

second unloading period.  

As discussed in the previous chapter, results from the FEA were used to determine the 

applied load such that the resulting shear stress in the ROI was always the same, 

irrespective of the direction of loading. This was done to ensure that any observed 

nonlinearity could only be attributed to interaction and not inherent nonlinearity.  Load 

orientation was changed by rotating the Arcan setup to different angles. In addition, the 

load magnitude for each setup orientation was altered to produce the same shear stress at 

the central portion of the specimen. The shear stress was of the magnitude 0.446 MPa 

while the magnitude of the axial stresses (σxx and σyy) varied as provided in Table 4.1 of 

the previous chapter. Table 4.1 also contains the required load that is to be provided by 

the UTM for different loading orientations to maintain the given stress levels. 

Among the available loading orientations, 90º, 60º, and 45º were tested. Other loading 

orientations were not considered, as they would provide smaller ratios of shear stress 

compared to axial stresses as seen in Table 4.1. This would necessitate higher load and 

might cause damage to the epoxy bond between specimen and the aluminum Arcan frame 

as discussed in Chapter 3. In fact, we observed several bond failures at a load of 0.15-0.2 

kN. Hence, we tried to ensure that the required load was kept below that level.  
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At the same time, we had to ensure that the amount of strain was high enough to 

overcome the machine noise. During trial runs, several specimens were tested at lower 

load magnitude compared to the test load. While the DIC system is capable of measuring 

smaller strains accurately, the UTM and the bolted parts of the Arcan apparatus may 

cause some very low amplitude vibrations. Such vibrations along with other mechanical 

and electrical noise can mask the actual strain at lower load magnitudes in the range of 

0.005-0.02 kN. Hence, the Required Load column of Table 4.1 represents a ‘checks and 

balances’ action between the choices of the bond capacity and generation of a significant 

magnitude of strain. This was the rationale for selecting the loads presented in Table 4.1. 

After the painted specimen was glued on the Arcan setup, the whole system was mounted 

on the Universal Testing Machine (UTM). An Instron UTM with a capacity of 25 kN was 

used. After that, we set the loading regimes as per Table 4.1 and conducted the test. The 

test was conducted at room temperature, which is kept at 26º±1ºC. 

The testing was done for a single cycle of two steps: loading and unloading. After 2 

seconds of zero loading, the load was raised to the specified level (as per Table 4.1) very 

quickly with rise time of 0.1 seconds. Then, the loading was sustained for 45 seconds. 

The load was again brought back to zero in 0.2 seconds. The recovery was monitored for 

another 45 seconds. After that, the test was brought to an end and the specimen was 

removed from the Arcan apparatus. The load vs. time relation is presented in Figure 5.1.  

Only one test was conducted on each specimen. Thus, the damage incurred during the test 

did not propagated into future tests. However, the use of fresh specimens for each test 

required very accurate specimen preparation to ensure repeatability. 
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Figure 5.1: Load applied on Arcan setup from UTM for a 45º loading orientation 
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RESULTS OF THE ANALYSIS 

Figure 5.2 demonstrates the strain profile for shear loading (90º loading orientation); that 

is, no axial load was provided. Test data from four specimens are presented. The strain 
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and σyy, respectively. Each set of four specimens underwent the same orientation in the 

Arcan setup and the same magnitude of loading. As we can see, they are reasonably 

similar to each other indicating the accuracy and repeatability of these tests. 

Figure 5.3 and Figure 5.4 shows the strain profiles for 60º and 45º load orientation, 

respectively. For both cases, four specimens were tested and shear stress was kept 

constant at 0.446 MPa. However, the loads were gradually higher for 60º and 45º, 57.82 

N and 70 N respectively. Respective axial stresses were also increased. σxx increased 

from 0.20 to 0.36 MPa when the loading angle changed from 60 to 45 degrees.  σyy was 

also increased from 0.09 to 0.11 MPa for the same change in loading orientation.  

 

Figure 5.2: Shear strain at 90º loading orientation 

-0.012

-0.010

-0.008

-0.006

-0.004

-0.002

0.000

0 20 40 60 80 100

St
ra

in
 (

m
m

/m
m

)

Time (sec)

Specimen 1 at 90

Specimen 2  at 90

Specimen 3 at 90

Specimen 4 at 90



 49 

 

Figure 5.3: Shear Strain at 60º orientation 

 

Figure 5.4: Shear strain at 45º loading orientation 
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Each of the shear strain values are then divided by the shear stress (0.446 MPa) to acquire 

shear compliance, represented by J(t). The average value of shear (creep) compliance is 

also measured for each loading orientation. Figure 5.5, 5.6 and 5.7 shows the shear 

compliances for the 90º, 60º, and 45º loading cases, respectively, along with 

corresponding averages. The average shear compliances are combined in Figure 5.8 

which provides a fair picture about the differences between the three loading orientations.  

The average values of shear compliance are then fitted to two types of commonly used 

formulations. One is the power-law model and another is a three term Prony (Direchlet) 

series. The equations are presented below: 

Power Law model: 𝐽(𝑡) = 𝐽0𝑡𝑚       [1] 

Prony (Direchlet) Series: 𝐽(𝑡) = 𝐽0 + 𝐽1(1 − 𝑒
−𝑡

𝑚1⁄ ) + 𝐽2(1 − 𝑒
−𝑡

𝑚2⁄ ) +  𝐽3(1 −

𝑒
−𝑡

𝑚3⁄ )            [2] 

Here, 

𝐽0= Glassy Compliance 

𝐽𝑖= Compliance for Springi 

𝑚𝑖 = retardation times 

𝑡 = loading time 

𝑖 = 1, 2, 3 

Microsoft® excel Solver is used for curve fitting. For equation 1, two parameters were 

estimated for each of the three average shear compliance curves. For equation 2, glassy 
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modulus was discounted and six parameters were estimated. The resultant fitted curves 

along with the average curves are plotted in Figure 5.9, 5.10 and 5.11 for 90º, 60º, and 

45º loading cases, respectively. The estimated parameters are provided in Table 5.1. 

 

Figure 5.5: Shear Compliance for 90º 

 

Figure 5.6: Shear compliance at 60º 
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Figure 5.7: Shear Compliance at 45º 

 

Figure 5.8: Average shear compliance for different loading orientations 
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Figure 5.9: Curve fitting for average shear compliance at 90º 

 

Figure 5.10: Curve fitting for average shear compliance at 60º 
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Figure 5.11: Curve fitting for average shear compliance at 45º 

Load 

Orient. 

Power Law Model Prony Series 

J1 m J1 m2 J2 m2 J3 m3 
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01 
52.64856 -0.21597 45.15966 0.008084 3.816718 

45º 1.82E-03 0.696063 
2.92E-

01 
44.46075 -0.24473 36.91352 0.011798 5.65873 

Table 5.1: Estimated parameters of shear compliance from curve fitting 

DISCUSSION OF THE RESULTS 
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some variation in the unloading portion. Among the three compliances, the 90º 

orientation (shear) showed maximum recovery. As we can see, the difference in shear 

compliance is not significant for different types of mixed mode loading. The parameters 

obtained from the curve fitting are close to each other and no systemic change of 

parameters was observed with respect to changing magnitudes of axial stresses. This 

suggests that interaction non-linearity is not apparent in the FAM tested. 

However, the several limitations of the study have to be taken into account. Firstly, the 

experiment was conducted for a fixed temperature (26º±1ºC). As asphalt is temperature 

sensitive, tests conducted at a different temperature might exhibit a different behavior. 

Another important factor was that the test was done for only one shear stress magnitude 

(0.446 MPa). Just like the temperature effect, it also limits the applicability of this study.  

It was observed during the strain analysis using digital image correlation, that higher 

strain provides results that are more consistent. On the other hand, a higher degree of 

strain requires higher stress and hence greater loading. The specimen was relatively small 

and the epoxy bond of aluminum with FAM was not sufficient. This factor caused bond 

rupture at higher load magnitudes. Similarly, application of a very low amount of load 

(<0.1 kN) has a higher degree of uncertainty due to the significant proportion of machine 

vibration at apparatus joints from the Instron UTM which has a 25 kN operation ceiling. 

In addition, the variation in the distribution of fine aggregates and asphalt in FAM would 

be more pronounced in a small specimen. A larger specimen can accommodate higher 

stresses and results would be more consistent. However, this would require a scaled up 

reconstruction of the Arcan setup geometry. 
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One of the most important concerns about the Arcan setup originates from the analysis of 

the fitted curves. While the fitted shear compliance curves shown in Figures 5.9-5.11 are 

reasonably good, they are not perfect. It should be noted that the curve-fitting was done 

using all data points; that is, points from the loading and unloading portions of the curve. 

However, if the curves are fitted only using loading or the unloading portion of the 

compliance, they render a perfect fit for the respective portion of the curve. The average 

compliance curves along with the three types of fitted curves for the Power Law model 

(loading + unloading points, only loading points, only unloading points) for each of the 

three loading orientations (90º, 60º, and 45º) are shown in Figure 5.12, 5.13 and 5.14, 

respectively. 

When all points are used, the fitted curve show a reasonable match with the average 

curve with some deviation, indicating that the same parameters can express the loading 

and unloading portion of the compliance with reasonable accuracy. Hence, the curve 

fitting validates the test results.  

The curves fitted using only loading points show a very good match at the loading 

portion, but indicates better recovery than the actual test. This phenomenon indicates that 

either the sample was highly damaged or there might be another stress component, which 

was not null during the unloading period. A probable source of stress is the Arcan 

apparatus. The Arcan setup is separated in two semi-circular aluminum-made parts, 

which are attached to the UTM load train by means of a pin for each part. The specimen, 

which attaches the two semicircles, transmits the load from the top half to the bottom half 

and support. During the unloading, the actuator of UTM does not provide any load and 
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hence the top half of the Arcan disk puts its weight through the specimen. This weight is 

a constant but it is difficult to eliminate or compensate for it. Hence, the specimen would 

not be in zero load during unloading and as seen in the test results, creep effects would be 

more pronounced for this reason (Arzoumanidis & Liechti, 2003). 

The presence of interaction non-linearity was not detected for this experiment as shear 

compliance for pure shear and mixed-mode stress are similar. However, several 

limitations of the test such as the single shear stress magnitude and the single temperature 

used may be contributing factors that need to be considered in the evaluation. 

 

Figure 5.12: Curve fitting with loading and recovery portion at 90º 
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Figure 5.13: Curve fitting with loading and recovery portion at 60º 

 

Figure 5.14: Curve fitting with loading and recovery portion at 45º 
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Chapter 6: Conclusions and Recommendations 

This thesis addresses probable behavior alteration of fine aggregate mortar (FAM) of hot 

mix asphalt in shear due to the presence of axial stress. A creep-recovery test was 

performed on fine aggregate matrix specimens that are effectively fine aggregates and 

asphalt binder. The loading scenarios ensured that the specimen is subjected to different 

proportions of shear and axial stresses while keeping shear stress constant. Comparisons 

were made among shear compliance for different mixed mode conditions to identify any 

difference.  

Mixed mode of stresses (the combination of shear and axial stress) is a significant 

contributor to top down cracking in pavement. Truck tires and rib effects contribute to the 

creation of mixed mode of stress near the surface of the pavement. Interlocked angular 

coarse aggregates can generate a mixed mode of stress on the FAM due to the 

aggregates’ position (relative to FAM) and movement under wheel loads. 

Researchers identified that asphalt binder can generate normal force when subjected to 

shear. They also found that the complex modulus of binder changed with the stress levels. 

However, the variation was not tested for the asphalt mortar. It created the opportunity to 

verify whether such variation in stress-strain relation is also present in FAM.  

A special loading train, called Arcan apparatus, was used to provide the load. This 

apparatus, used in combination with a universal testing machine, provided the means to 

generate shear stress without significant bending. This system also rendered the ability to 
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provide axial stress along with shear. The Arcan apparatus can be rotated which provides 

the capability to conduct tests in different shear and axial stress combinations.  

Finite element modeling was conducted to understand the magnitude of stress inside the 

specimen when mounted on an Arcan apparatus. The model helped to measure the shear 

and axial stresses; hence, required loading for each rotated loading position can be 

calculated while keeping the shear stress constant.  

Digital image correlation, an optical measurement method, was implemented for strain 

measurement. This system provided the means to measure strain for the small FAM 

specimen without necessitating strain gages. This measurement system offers no-contact 

measurement with good accuracy and was thus suitable for the research objective. 

The test was conducted for three loading orientations of Arcan to provide a constant 

0.466 MPa shear stress combined with three different amounts of axial stresses. The tests 

were conducted at a temperature 26±1ºC. The measured strain profiles (with respect to 

time) are divided with shear stress to obtain shear compliance. Shear compliances are 

fitted with two types of commonly used models (power law and Prony series). After that, 

the shear compliances for different mixed-modes of stress are compared with each other.  

After evaluating the test results, we can conclude that FAM does not appear to exhibit 

any perceivably significant interaction non-linearity at the stress magnitude applied in 

this test. The variation of the shear compliance in different specimens can be attributed to 

the natural variability among the specimens and non-linearity present in asphalt binder. It 

is understood that the interaction non-linearity of the asphalt binder might not be 
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significant enough to alter FAM properties perceivably at the test temperature and stress 

levels evaluated.  

In light of the presented research, a few recommendations can be made for the future 

research: 

 The current study was done at a temperature of 26±1ºC. Since asphalt is very 

temperature sensitive, shear compliance for other temperatures should be 

evaluated. 

 Tests should be done in higher and lower magnitudes of shear stress than 0.446 

MPa. However, this would require a more sensitive universal testing machine and 

dependable epoxy to bond FAM and aluminum. 

 It is necessary to work on weight reduction of the Arcan apparatus while enabling 

it to take larger specimens. 

 The effect of shear stress variation on the tensile compliance of FAM should also 

be evaluated.  

 Further research is required to specify the cause of variation of recovery shear 

compliance for different stress combinations.  
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