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Along with the growth of electronic commerce has come an interest in devel-

oping autonomous trading agents. Often, such agents must interact directly with

other market participants, and so the behavior of these participants must be taken

into account when designing agent strategies. One common approach is to build a

model of the market, but this approach requires the use of historical market data,

which may not always be available. This dissertation addresses such a case: that of

an agent entering a new market in which it has no previous experience. While the

agent could adapt by learning about the behavior of other market participants, it

would need to do so in an online fashion. The agent would not necessarily have to

learn from scratch, however. If the agent had previous experience in similar mar-

kets, it could use this experience to tailor its learning approach to its particular

situation.

This dissertation explores methods that a trading agent could use to take

advantage of previous market experience when adapting to a new market. Two dis-

tinct learning settings are considered. In the first, an agent acting as an auctioneer

iv



must adapt the parameters of an auction mechanism in response to bidder behav-

ior, and a reinforcement learning approach is used. The second setting concerns

agents that must adapt to the behavior of competitors in two scenarios from the

Trading Agent Competition: supply chain management and ad auctions. Here, the

agents use supervised learning to model the market. In both settings, methods of

adaptation can be divided into four general categories: i) identifying the most sim-

ilar previously encountered market, ii) learning from the current market only, iii)

learning from the current market but using previous experience to tune the learning

algorithm, and iv) learning from both the current and previous markets. The first

contribution of this dissertation is the introduction and experimental validation of

a number of novel algorithms for market adaptation fitting these categories. The

second contribution is an exploration of the degree to which the quantity and na-

ture of market experience impact the relative performance of methods from these

categories.
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Chapter 1

Introduction

The growth of electronic commerce in recent years has been extremely rapid.

For example, North American online retail sales were expected to reach $329 billion

in 2010, up from $39 billion in 20001, and business-to-business sales are estimated

at many times this amount. One of the most impressive successes of e-commerce

has been the online auction site eBay, which recorded $57.2 billion in sales from

2.9 billion item listings in 20092. While most e-commerce transactions currently

involve at least one human participant, autonomous trading agents are likely to

represent an increasingly large portion of e-commerce participants in the future,

and the development of such agents has become an important area of research.

In some cases, agents are able to operate independently of other market

participants. For example, a “price bot” (an agent that searches the Internet for the

lowest posted price for a given item) may not need to take into account the actions

of other shoppers. In many cases, however, an agent must interact directly with

other participants in the market and may need to reason about these participants.

For instance, an agent bidding in an auction should take into account the possible

actions of other bidders, while an agent managing an online store should consider

the preferences of customers and the prices of competitors. Thus, the development

of trading agents generally falls under the subfield of Artificial Intelligence (AI)

known as Multiagent Systems (MAS).

1http://en.wikipedia.org/wiki/Business-to-consumer
2http://www.annualreports.com/HostedData/AnnualReports/PDFArchive/ebay2009.pdf
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One common approach to designing strategies for trading agents is an em-

pirical one. When sufficient historical market data is available, it may be possible

to learn a model that captures the behavior of market participants and allows the

optimal strategy with respect to this behavior to be determined. For instance,

data mining is often applied to the extensive database of completed eBay auctions

to determine the auction settings that will maximize seller revenue for a given

item [92].

An alternative approach to designing agent strategies, both for market ap-

plications in particular and within MAS in general, is through the use of game

theory. Given assumptions about agent preferences over various outcomes (which

may themselves be based on empirical data), an agent or agent designer could

identify a strategy profile (a set of strategies for all participating agents) that rep-

resents an equilibrium, i.e., one from which no agent has an incentive to unilaterally

deviate. Behaving according to the strategy specified for the agent would thus be

optimal in expectation, so long as all other agents do the same. In some cases, how-

ever, there may be multiple equilibria, leaving an agent unsure of which strategy to

choose. Also, identifying an equilibrium may be intractable in sufficiently complex

domains. Even when a unique equilibrium can be found, there is no guarantee that

all agents will behave as specified by the equilibrium. Agents may deviate from

their expected behavior for many reasons, including incorrect assumptions about

the preferences of other agents and simple irrationality. Experiments in the field

of experimental economics frequently reveal what appears to be irrational behavior

in many scenarios, including market settings (e.g., [50]).

The problem addressed in this dissertation, however, is that of an agent en-

tering a new market in which it has no previous experience and for which no past

data is available. (In this dissertation, a reference to a specific market indicates a

particular group of interacting buyers and sellers of some specific product or cate-

gory of products.) This situation might arise if the agent is selling a new product
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that does not directly compare to any existing product, for example. An agent in

this situation might choose not to use the game-theoretic approach (perhaps due to

lack of assumptions about the preferences of other market participants) and would

be unable to use the empirical approach described above (due to the lack of existing

data). The agent could still take a learning approach, but the learning would need

to come in the form of adapting to the behavior of other market participants in an

online fashion.

Existing implementations of agents that can adapt in a new market typically

involve learning from scratch. If the agent truly has no previous experience or

knowledge of any kind, then there may be no alternative. In some cases, however,

an agent may have experience in different markets prior to its entry into the new

market. In other cases, the agent may have an idea of what types of behavior might

be exhibited by other market participants, raising the possibility of generating

simulated experience. In either situation, the agent should be able to use the

additional information to tailor the learning algorithm to the situation and do

better than learning from scratch. This dissertation will answer the question of

how this information can be used:

How can adaptive trading agents take advantage of previous ex-

perience (real or simulated) in other markets, while remaining robust in

the face of novel situations in a new market?

Within the context of a specific market scenario, the answer to this question

depends on the following four questions:

1. What does the agent need to learn about to adapt?

2. What sources of previous market experience are available? More specifically:

• If using existing data from other markets, which markets are relevant?
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• If using simulation, what behaviors will be used by the simulated market

participants?

3. What form of learning will be used to adapt?

4. How will this previous market experience be used to improve the adaptive

approach?

The answers to the first three questions depend on the particular market scenario

being considered. This dissertation will cover three distinct scenarios for which the

answers to these questions differ. In particular, two distinct forms of learning will

be considered:

• Reinforcement Learning: By observing the results of its own actions, the

agent directly learns a policy that maps states to actions [102].

• Supervised Learning: The agent learns a model of the market from its expe-

rience. The outputs of this model are then used as inputs to an optimization

routine that chooses actions. The agent may choose to model the aggregate

effect of the other market participants or to model each market participant

individually.

Additional details on the three market scenarios will be presented in Section 1.3.

The goal of this dissertation will be to provide answers to the fourth question

by presenting methods that can be used to improve the performance of specific

learning algorithms in a domain-independent way. The following section discusses

these approaches at a high level.

1.1 Categorization of Adaptive Approaches

The methods that an agent could use to adapt to a new market can be

divided into four basic approaches (which are not necessarily mutually exclusive
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and may be combined in some cases):

A. Learn from the new market only.

B. Attempt to identify the market, or maintain a distribution over possible mar-

kets, from a space of possible markets. In this case, information about previ-

ous or simulated markets helps us choose this space, while information from

the new market is used to identify the market.

C. Choose a learning method that considers only information from the new market,

but is tuned through experience in previous markets. This tuning could take

a variety of forms, such as choosing initial parameters or the structure of a

model.

D. Learn from both the new market and the previous markets.

D.1. Learn using a combination of data from all sources.

D.2. Learn using a combination of models from all sources.

The first can be described as “combine the data, then model it”, while the

second can be described as “model the data, then combine the models”. In

both cases, the challenge is to identify which data/models are relevant, and

then determine how to perform the combination.

The effectiveness of each approach depends on the attributes of the problem to

which it is applied. Among the attributes of market adaptation problems that will

be considered in this dissertation, and their possible impacts on the effectiveness

of the adaptive approaches, are:

1. Whether the problem presents an exploration-exploitation tradeoff. If the

agent can choose its own training examples through its actions but is re-

warded based on the actions chosen, then the tradeoff between exploration
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and exploitation needs to be addressed. Different approaches to using previ-

ous experience may offer different clues about which actions offer both high

reward and useful information. Approach B allows the possibility of taking

actions that help differentiate between possible markets, while approach C

could involve choosing a suitable exploration method.

2. How similar the previous and new markets are. The greater the differences,

the less useful past experience will be, and the more likely it is that approach

A is best. If the new market is greatly dissimilar to the previous markets,

approach B may fail. In approach C, the fact that the learning method is

biased for a particular set of markets may slow initial learning, but it may

still be possible to learn effectively.

3. The amount of experience available (in both the previous markets and the

new market). Once sufficient experience in the new market is available, it is

unlikely that any approach could do better than approach A, but different

approaches might be effective at different points before this. If only a little

experience is available in a previous market, approach D.1 might be more

effective than approach D.2, since the models in approach D.2 might have

low accuracy. Limited experience in a previous market might also reduce the

ability to either accurately identify the market (approach B) or effectively

tune the learning approach (C). Another way that experience in previous

markets can be measured is by the number of previous markets from which

this experience comes. Increasing the number of markets could improve the

performance of approaches B, C, and D, but could also introduce additional

challenges.

4. Whether (or to what degree) the new market is nonstationary. If the market

is nonstationary, then in a sense this is similar to perpetually having little
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experience in the current state of the new market, making previous experi-

ence more valuable. If the same type of nonstationarity is also present in

the previous markets, then it may be possible to identify the nature of the

nonstationarity (approach B), or tune the learning method to the type of

nonstationarity expected (approach C).

One contribution of this dissertation will be experimenting to confirm the

degree to which these problem attributes impact the effectiveness of the different

adaptive approaches.

1.2 Contributions

In this dissertation, I will present adaptive trading agents in three distinct

market scenarios. The specific contributions of the dissertation within each scenario

can be divided as follows:

Contribution 1 A complete specification of an autonomous trading agent de-

signed for the scenario, with experimental verification that the agent performs

well.

Contribution 2 Learning methods the agent can use to adapt to other agents,

and experimental verification that this adaptation is beneficial.

Contribution 3 Multiple approaches for making use of previous market experi-

ence, including approaches from the categories described above.

Contribution 4 Experiments showing the effectiveness of the adaptive approaches

under different conditions, including those described above, along with con-

clusions about when each approach is best.
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To summarize the results that will be presented as part of Contribution 4,

for each of two different learning settings (reinforcement learning and supervised

regression), one approach will be identified that performs particularly well across a

variety of conditions. In the reinforcement learning setting, this approach will be

a metalearning approach to setting learning parameters of a particular reinforce-

ment learning algorithm, fitting category C above. In the supervised regression

setting, this approach will be a boosting algorithm (2-Stage TrAdaBoost.R2) that

can effectively make use of training data from multiple sources, fitting category

D.1 above. These learning approaches are generally applicable (i.e., not specific to

market domains), and their introduction and experimental verification represents

the central achievement of this dissertation.

1.3 Organization

The first market scenario I will discuss is one in which an auctioneer running

multiple auctions in one market (such as an eBay seller with multiple identical

items) must adapt an auction mechanism in response to bidder behavior in order to

maximize some objective function such as total revenue. Here the auctioneer faces

an active learning problem and must handle the tradeoff between exploring different

mechanisms and exploiting the mechanism currently believed to be best. For this

reason RL methods are likely to be effective, although it is also possible to attempt

to directly model bidders. In this scenario, it is assumed that the auctioneer has

some idea of behaviors that are likely to be exhibited by bidders and can therefore

simulate a range of plausible bidder populations, and these simulations represent

the available previous market experience.

The next two market scenarios come from the Trading Agent Competition

(TAC), a series of annual competitions that has covered several different market sce-

narios. One barrier to trading agent research is that it can be difficult to benchmark
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automated strategies in a live business environment due to both the proprietary na-

ture of the systems and the high cost of errors. TAC provides testbeds for studying

and prototyping agents by providing a competitive environment in which indepen-

dently created agents can be tested against each other over the course of many

simulations in an open academic setting. A particularly appealing feature of TAC

is that, unlike in many simulation environments, the other agents are externally-

developed profit-maximizing agents with incentive to perform well, rather than

strawman benchmarks. In addition, after each year’s competition, binaries of most

competing agents are released, making it possible to perform controlled experiments

after the fact. Within each of the two TAC scenarios considered in this dissertation

I will present a winning agent and then show how making use of previous market

experience can further improve the performance of this agent.

The first TAC scenario I discuss is the Supply Chain Management scenario

(TAC SCM). In TAC SCM, six agents compete as computer manufacturers and

must purchase computer components, assemble computers, and sell the computers

to customers. Performing these tasks effectively requires making predictions about

quantities such as future prices, and these quantities can depend heavily on the

competing agents. Thus for the TAC SCM scenario, adaptation takes the form of

learning predictors for a specific market (i.e., combination of opponents) through

the use of supervised learning methods for regression problems. Previous market

experience comes in the form of games played against different sets of agents.

The second TAC scenario I discuss is the Ad Auctions scenario (TAC AA). In

TAC AA, eight agents compete as advertisers to see who can make the most profit

from selling a limited range of home entertainment products. Agents negotiate with

a search engine to have their ads shown alongside search results by bidding in an

auction each time a search is performed (known as a keyword auction). As in TAC

SCM, an effective agent must be able to make predictions about a number of factors.

In TAC AA, adaptation takes the form of learning models of the bidding patterns
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Market Scenario sell in sequential auctions TAC SCM TAC AA

Learning Setting reinforcement learning supervised learning (regression)

What to Learn auction parameters product prices bidding models

Who Learned for bidder population set of opponents single agent

Previous Experience simulated bidders sets of games in different markets

Table 1.1: Market scenarios considered

of each individual opponent. Again, supervised learning methods for regression

problems are used, and previous market experience comes in the form of games

against different opponents.

Table 1.1 shows a summary of the learning approaches taken for the three

different market scenarios considered in this dissertation.

The remainder of this dissertation is organized as follows. I first present

work on the sequential auction scenario. Chapter 2 describes the scenario in de-

tail and presents an agent that can learn auction parameters in response to bidder

behavior. Chapter 3 discusses improvements to the agent that allow it to make

use of prior experience in the form of simulated bidders. I then describe the two

TAC scenarios. Chapter 4 introduces TAC SCM and presents our winning agent.

Chapter 5 then goes into detail on how the agent can use machine learning to make

predictions about computer and component prices. Chapter 6 describes TAC AA

and presents our winning agent. Chapter 7 then discusses a method by which an

agent can estimate the bids of other agents, including the use of machine learn-

ing to model bidding patterns. Next, I present methods of using previous market

experience that can be used by both TAC agents. Chapter 8 addresses the gen-

eral problem of transfer learning for regression problems and introduces several

algorithms for this problem. Chapter 9 then further explores the use of these algo-

rithms within the TAC scenarios. Table 1.2 maps out how the content of Chapters

2 through 9 satisfies the contributions promised in the previous section. Alterna-

tively, Table 1.3 lists a division of these chapters into four topics (adaptive auction
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sell in sequential auctions TAC SCM TAC AA

Chapter 2 Contribution 1 + 2
Chapter 3 Contribution 3 + 4
Chapter 4 Contribution 1
Chapter 5 Contribution 2
Chapter 6 Contribution 1
Chapter 7 Contribution 2
Chapter 8 Contribution 3
Chapter 9 Contribution 4

Table 1.2: Contributions in each chapter

Topic Chapters to Read

Adaptive Auction Mechanisms Chapters 2 and 3
The TacTex Agent for TAC SCM Chapters 4 and 5
The TacTex Agent for TAC AA Chapters 6 and 7
Transfer Learning for Regression Chapters 8 and 9

(Reading Chapters 5 and 7 will give
background on the data sets used,
but is not required.)

Table 1.3: Stand-alone topics

mechanisms, the TacTex agent for TAC SCM, the TacTex agent for TAC AA, and

transfer learning for regression) that can be read about independently. Chapter

10 discusses related work, including both work on the specific e-commerce settings

studied in this dissertation and work related to the general learning methods used

for agent adaptation. Chapter 11 concludes with a summary of the dissertation

and a discussion of areas for future work.
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Chapter 2

Adaptive Auction Mechanisms

Auction mechanism design has traditionally been a largely analytic process,

relying on assumptions such as fully rational bidders. In practice, however, bidders

often exhibit unknown and variable behavior, making them difficult to model and

complicating the design process. To address this challenge, in the next two chapters

I explore the use of an adaptive auction mechanism: one that learns to adjust its

parameters in response to past empirical bidder behavior so as to maximize an

objective function such as the seller’s revenue. In this chapter, I give an overview

of the general approach and then present instantiations in two specific sequential

auction settings. Results indicate that the adaptive mechanism has the potential

to outperform any single fixed mechanism.

An adaptive auction mechanism can be viewed as an autonomous agent

designed to trade through selling in sequential auctions, and as such the learning

approach presented in this chapter fulfills Contributions 1 and 2 for the sequen-

tial auction scenario, as outlined in Section 1.2. In the next chapter, I will show

how prior knowledge of possible bidder behavior can be incorporated into the adap-

tive mechanism to substantially improve performance under varying circumstances,

fulfilling Contributions 3 and 4.

2.1 Introduction

Recent years have seen the emergence of numerous auction platforms that

cater to a variety of markets such as business to business procurement and consumer

12



to consumer transactions. Many different types of auction mechanisms defining

the rules of exchange may be used for such purposes. Varying parameters of the

auction mechanism, such as auctioneer fees, minimum bid increments, and reserve

prices, can lead to widely differing results depending on factors such as bidder

strategies and product types. This chapter addresses the possibility of learning

auction parameters so as to maximize an objective function, such as auctioneer

revenue, as a function of empirical bidder behavior.

Mechanism design has traditionally been largely an analytic process. As-

sumptions such as full rationality are made about bidders, and the resulting prop-

erties of the mechanism are analyzed in this context [76]. Even in large-scale

real-world auction settings such as the FCC Spectrum auctions, game theorists

have convened prior to the auction to determine the best mechanism to satisfy a

set of objectives. Historically, this process has been incremental, requiring several

live iterations to iron out wrinkles, and the results have been mixed [30, 109]. An

important component of this incremental design process involves reevaluating the

assumptions made about bidders in light of auction outcomes. In particular, these

assumptions pertain to bidders’ intrinsic properties and to the manner by which

these properties are manifested in bidding strategies. In general, assumptions are

often made about

• Bidders’ motivating factors such as valuation distributions and risk aversion;

• Information that is available to the bidders; and

• Bidder rationality.

Even when the assumptions about bidders can be successfully revised based

on their past behavior, the process requires human input and is time consuming,

undermining the efficiency with which changes can be made to the mechanism.
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In the case of the FCC spectrum auctions, months or years elapse between each

iteration, leaving time for the experts to reconvene and update the mechanism. But

in e-commerce settings in which a large number of auctions for similar goods may

be held within a short time frame, such as auctions on eBay or keyword auctions,

this inefficiency is a serious drawback. Perhaps the biggest challenge results from

the fact that, in practice, bidders are not able to attain full rationality in complex,

real-world settings [49]. Rather, they employ heuristic strategies that are in general

opaque to the seller, certainly a priori, and often even after the auction.

One method of addressing these challenges that has received recent attention

is the use of machine learning algorithms to revise auction parameters in response

to observed bidder behavior. For instance, [16] and [17] consider the problem of

maximizing seller revenue in a specific type of online auction (similar to a posted

price mechanism) through the use of online learning algorithms for combining “ex-

pert” advice. Such approaches differ significantly from the traditional approach

to mechanism design in that few or no assumptions are made about bidders, and

auction mechanisms are evaluated based on worst-case performance.

In this dissertation, I discuss somewhat of an intermediate approach. In

this chapter, I present an adaptive mechanism that changes in response to ob-

served bidder behavior through the use of a learning algorithm, similar to the

methods described in the previous paragraph. In particular, I present an adaptive

mechanism in which a continuous parameter (or parameters) defining the mecha-

nism is dynamically adjusted over time, thus enabling a parameter optimization

approach. In the next chapter, however, I will assume that reasonable predictions

about a range of possible bidder behaviors can be made (possibly through previous

experience in different markets), and I will show how to choose the learning algo-

rithm in such a way that expected performance is optimized with respect to these

predictions.
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2.2 Adaptive Auction Mechanisms

To motivate the problem under consideration, I begin with an illustrative ex-

ample that I will refer to throughout the next two chapters. Consider the challenge

faced by a seller auctioning off items through an auction service such as eBay. For

each auction, the seller must set various parameters defining the particular auction

mechanism to be used. (In the case of eBay auctions, these parameters include the

start time and duration, start price and reserve price, and possibly a buy-it-now

price.) The behavior of bidders depends heavily on the type of item being sold; for

instance, buyers of rare coins and buyers of video games are likely distinct popu-

lations with very different approaches to bidding. As a result, the mechanism that

works best for one type of item may not be appropriate for a different item.

The goal of the seller is to identify the auction parameters that will result

in the highest revenue for each item sold. When extensive historical data on past

auctions of identical items is available (as is the case with eBay), it may be possible

for the seller to estimate the optimal parameters by analyzing this data (e.g., [92]).

This approach is not always possible, however. If the seller is introducing a new

item to the market, no such data will be available. Alternatively, if there is a sudden

change in demand for an item, past data may not accurately reflect the behavior of

current bidders. In such cases, the seller must guess which auction parameters will

work best. If the seller has multiple identical items to sell, however, then it may

be possible for the seller to learn from its own experience about the effectiveness

of various parameter values.

This situation illustrates the general problem considered in this chapter.

While the effectiveness of an auction mechanism can vary drastically as a function

of the behavior of bidders, this behavior is often difficult to predict when choosing

the mechanism. In settings in which a large number of similar auctions are held, it

may be reasonable to assume that although bidders’ behaviors may change, they re-
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main somewhat consistent for a period of time, suggesting the possibility of learning

about bidder behavior through experience. For example, the bidders on a particular

Google keyword may remain the same for some time, and identical items on eBay

will likely attract similar buyers. For such settings, this chapter proposes an adap-

tive auction mechanism, an online empirical process whereby the mechanism adapts

to maximize a given objective function based on observed outcomes. Because we

allow for situations in which bidder behavior cannot be predicted beforehand, this

process must be performed online during interactions with real bidders. (In this

chapter and the next, the term “online” refers to the fact that adaptation takes

place during the course of actual auctions, and not the fact that auctions take place

electronically–although that may also be the case.)

Our view of adaptive mechanism design is illustrated in Figure 2.1. A pa-

rameterized mechanism is defined such that the seller can use an adaptive algorithm

to revise parameters in response to observed results of previous auctions, choos-

ing the most promising parameters to be used in future auctions. Upon execution,

the parameterized mechanism clears one or more auctions involving a population of

bidders with various, generally unknown, bidding strategies. The results of the auc-

tion are then taken as input to the adaptive algorithm as it revises the mechanism

parameters in an effort to maximize an objective function such as seller revenue.

Any number of continuous or discrete auction parameters may be considered, such

as reserve prices, auctioneer fees, minimum bid increments, and whether the close

is hard or soft. (For an extensive parameterization of the auction design space,

see [112].)

The adaptive algorithm is essentially an online machine learning algorithm

aiming to characterize the function from mechanism parameters to expected rev-

enue (or any other observable objective function). Because the seller can select its

own training examples (by choosing which set of auction parameters to try next),

and because the target output is, in general, continuous, the problem is an active
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Figure 2.1: A high-level illustration of the concept of adaptive auction mechanisms.
From the point of view of the seller, the bidder behaviors are unknown aspects of
the environment.

learning [85] regression problem. A key characteristic is that the learning is all

done online, so that excessive exploration can be costly.

The bidders in Figure 2.1 may use a variety of different bidding strategies,

including heuristic, analytic, and learning-based approaches. For the latter to make

sense, the same bidders must interact repeatedly with the mechanism, leading to a

potential co-evolutionary scenario in which the bidders and mechanism continue to

adapt in response to each other [77]. However, our approach does not depend on

repeated interactions with the same bidders. The only required assumption about

the bidders is that their behavior is somewhat consistent (e.g., bidders associated

with a particular industry tend to bid similarly) for a sufficient period of time to

allow for prediction of auction results as a function of the mechanism, at least in

expectation.
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In the remainder of this section, I formally state the general learning prob-

lem the seller faces and introduce an appropriate adaptive algorithm to use in an

adaptive auction mechanism.

2.2.1 Learning Problem

Consider a seller who has n identical items to be auctioned off in a series of

sequential auctions, which will be referred to as an episode. The seller’s objective is

to maximize its total utility over the course of an episode. The seller’s utility may

defined in terms of any observable auction outcome of interest, such as the seller’s

revenue or bidder participation. Henceforth, it is assumed that the seller’s objec-

tive is to maximize total revenue over the course of the episode, unless otherwise

stated. To improve its revenue, the seller may revise the parameters of the auction

mechanism. We assume that no prior knowledge is available that would enable

complete specification of the bidding strategies individual bidders will exercise. In

the absence of an explicit formulation of bidders’ behaviors, we are interested in

learning a function F that maps auction parameters from a space X to the expected

revenue (in R). The seller is able to learn the function over time by experimenting

with different parameter values.

For simplicity of exposition, assume for now that that the auction mecha-

nism is determined by a single, discrete parameter with k possible values (i.e., X is

a finite set and |X| = k). The resulting problem can be mapped to the multi-armed

bandit problem, a classic reinforcement learning problem [102]: a gambler has to

decide which of k slot machines to play in a sequence of trials so as to maximize

the overall reward. Each unique parameter value chosen for an auction during

the episode corresponds to a slot machine in the bandit problem. Because the

expected revenues from different parameter values (i.e., F ) are not known a priori,

these revenues can only be learned through experience. Given the seller’s objec-

tive, consider the following two extreme strategies. The first is a greedy exploitation
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strategy, where for each auction the seller selects the parameter value estimated at

that time to be best. If the seller’s estimation is accurate, this strategy guarantees

maximizing the seller’s expected revenue. However, when the seller’s estimation

is imprecise, this strategy might select suboptimal parameter values. Also, an ex-

ploitation strategy will not result in additional information about parameter values

other than the one currently believed to be best. The other extreme approach is

pure exploration: selecting different parameter values throughout the course of the

episode so as to improve the seller’s estimation of F as much as possible. Such se-

quential exploration may help to ultimately identify the optimal parameter value,

but this strategy can also be costly to the seller because many suboptimal param-

eter values may be tried repeatedly, resulting in low total revenue for the episode.

Thus, when selecting the parameter value for each auction, the auctioneer faces

a tradeoff between exploring to improve its estimation and and exploiting the pa-

rameter value currently estimated to be best.

2.2.2 Bandit Adaptive Algorithm

To manage this tradeoff, the seller must choose an adaptive algorithm to

determine how the parameter value should be selected in response to prior auction

outcomes. One algorithm commonly used for bandit problems is softmax action

selection [102] using the Boltzmann distribution, which combines the exploitation

and exploration strategies discussed above. In this approach, the average result

for each choice of parameter value x, avgx, is recorded, and at each step the prob-

ability of choosing x at time step t is given by (eavgx/τt)/(
∑k

y=1 eavgy/τt), where

τ represents a temperature determining the extent to which exploitation trumps

exploration. Note that the larger the temperature, the more the resulting distri-

bution will resemble a uniform distribution, encouraging exploration. As a result,

the temperature is often lowered over time to favor increasing exploitation due to

the fact that estimates of the revenue from each choice improve in accuracy with
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experience. To maintain a record of the average revenue for each choice, for each

choice we must track both the average revenue so far, avgx, and the number of

times that choice has been tried, countx.

In order to implement softmax action selection, we must choose values for

each τ parameter and initial values for each avg and count. We vary the temper-

ature throughout an episode by choosing starting and ending temperatures, τstart

and τend, and interpolating linearly. Although the straightforward approach to

initializing averages and counts would be to set them all to zero, one common tech-

nique, known as optimistic initialization [102] is to set all counts to a small value

and all initial averages to a value higher than the predicted highest possible result.

Each choice is therefore likely to be explored at least once near the beginning of

the episode. I will refer to these initial values as prior experience, as they have the

same effect as beginning with a certain set of experience. (They also serve a role

somewhat similar to a Bayesian prior.) For the experiments of this chapter, all

of these values will be chosen through limited experimentation to give reasonable

performance. In the next chapter, I will show how these values can be tuned more

effectively when additional information about bidders is available. Pseudocode for

this adaptive algorithm, which will be referred to as the bandit adaptive algorithm,

is shown as Algorithm 1.

2.2.3 Regression Adaptive Algorithm

The approach just described is limited by the fact that it can only handle

a discrete set of auction parameters. In addition, it assumes that the expected

revenue from each choice is independent, meaning that information obtained about

one parameter value tells us nothing about other parameter values. In reality,

many of the auction parameters we might wish to tune are continuous. As a result,

it is likely that the expected revenues of nearby choices will be similar, and thus

experience could be profitably shared between choices. To address this issue, I now
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Algorithm 1 Bandit Adaptive Algorithm

Input a finite set X of size k of possible auction parameter values, the number of
auctions to run n, τstart and τend, ∀x ∈ X : countx and avgx

For 0 ≤ t < n:
1. τt = τstart + (τend − τstart) ·

t
n

2. Draw a parameter value from the distribution P(x) =
(eavgx/τt)/(

∑k
y=1 eavgy/τt).

3. Run an auction and obtain outcome o.
4. avgx ← (avgx · countx + o)/(countx + 1)
5. countx ← countx + 1

introduce an enhanced approach that I will call the regression adaptive algorithm.

As the name suggests, we perform regression over past auction results to derive

a function mapping the parameter value to the expected revenue. In particular,

we perform locally weighted quadratic regression (LWQR) [3], a form of instance-

based regression. This approach combines the simplicity of classical least-square

regression with the flexibility of non-parametric modeling. To predict the expected

revenue for a given choice of parameter value x, the weight of each existing data

point (i.e., previous auction outcome) in a data set D is determined by taking its

distance d from x and applying a Gaussian kernel of width w: ed/w2

. Parameters

are then found specifying the quadratic that minimizes the weighted sum of squared

errors, and the quadratic is then evaluated at x. This process is repeated for each

choice for which we want an estimate of expected revenue.

Because we can now predict the expected revenue of any choice of parameter

value, even if we have no experience at that choice, we are no longer restricted to

considering a finite number of choices as in the bandit approach. We continue

to discretize the range of choices for computational reasons–doing so allows us

to implement an incremental version of LWQR and also to use softmax action
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selection without modification. However, we are able to effectively use much finer

discretizations than before. In fact, in the experiments below we observed no benefit

from increasing beyond 100 choices, so we treat the degree of discretization as a

fixed parameter for the regression approach, and reinterpret k as described below.

The parameters for the regression adaptive algorithm are almost the same

as those of the bandit adaptive algorithm. We allow the temperature to vary as

before. The concept of optimistic initialization remains similar. As we are now

dealing with a continuous parameter space, we may choose to begin with prior

experience at any auction parameter values we wish. We choose parameter values

pi for 0 ≤ i < k that are uniformly spaced values over the range of the parameter.

We then populate the initial data set D with k tuples of the form (pi, avgi, counti),

where avgi refers an outcome which has been observed for parameter value pi,

and counti refers to the number of times that outcome has been observed. When

LWQR is performed, the weight of each data point is multiplied by count. As

we observe real auction outcomes, we add additional tuples to D. It should be

noted that for the regression adaptive algorithm, k is used only to specify the

number of points used as prior experience, and is independent of whatever degree of

discretization is used for selection of auction parameter values. The only additional

learning parameter is the kernel width w used in the weighting function. Observe

that this approach generalizes easily to settings with multiple continuous auction

parameters, as LWQR can easily be extended to multiple regression. Pseudocode

for the regression adaptive algorithm is shown as Algorithm 2.

2.3 Auction Settings

In this section I introduce two distinct auction settings that will be used

as experimental domains. These settings are distinguished by both the auction

parameter that is to be tuned and the behavior of bidders. Both settings involve
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Algorithm 2 Regression Adaptive Algorithm

Input a continuous parameter space X and a discretization of this space X ′, the
number of auctions to run n, τstart and τend, kernel width w, and an initial data set D

For 0 ≤ t < n:
1. τt = τstart + (τend − τstart) ·

t
n

2. Apply LWQR to data set D with kernel width w to induce the mapping
F : X → R

3. Draw a parameter value x from the distribution P(x) =
(eF (x)/τt)/(

∑

y∈X′ eF (y)/τt).
4. Run an auction and obtain outcome o.
5. Add the new experience to the data set: D ← D ∪ (x, o, 1)

an English (ascending, open-cry) auction in which the bidders have independent,

private (i.e., unknown to other bidders) values for the goods being sold. Bidders

submit ascending bids until no incremental bids are made above the winning bid.

Again, the seller auctions the n identical items one at a time to bidders from a

given population through a series of auctions.

2.3.1 Reserve Price Setting

The first setting involves setting a reserve price for each auction indicating

the minimum acceptable bid. In the absence of any bid higher than the reserve

price, no transaction occurs. It has been shown that when bidders are rational, the

optimal reserve price should be higher than the seller’s valuation of the item [73];

however, a reserve price of 0 is often seen in practice.

Dodonova and Khoroshilov explain this phenomenon by bidders’ loss aver-

sion [36]. Loss aversion violates the rationality assumption because the utility from

a gain is lower than the disutility from a loss of the same magnitude. Specifically, if

the marginal utility from winning an auction is x, then the marginal disutility from
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losing the same object is αx, where α > 1. A bidder considers that it is “losing”

an item if it was the high bidder at some point in the auction, but then does not

win the item. Thus, in practice, a loss-averse bidder bids more aggressively after

having had the highest bid at any point during the auction.

We assume that the bidders are, to varying degrees, loss averse. Note that

if α = 1 we arrive at the traditional loss neutral bidders as a degenerate case.

Under these assumptions and model setup, Dodonova and Khoroshilov derive the

equilibrium as follows. Assuming two loss averse bidders, a first mover submits a

bid in the beginning of the auction if its valuation is higher than the reserve price.

The second bidder responds by submitting an increment above the current winning

bid only if by doing so the bidder can guarantee a positive expected utility. In

particular, this will be the case only if
∫ v2

r

(v2 − αv1)f(v1)dv1 > 0

where r is the reserve price, v2 is the second bidder’s valuation, and f is the

(known) probability distribution function over valuations. Intuitively, the second

bidder recognizes that loss aversion may lead it to pay more than his valuation if

the first bidder’s valuation is sufficiently high, making it more reluctant to enter

the auction. With only one active bidder, the auctioneer’s revenue is decreased.

If all bidders participate, the auction continues as a standard ascending

price English auction until a bidder’s marginal utility from losing the object is less

than the (potential) winning bid, i.e., the losing bidder will bid up to α times its

valuation and then drop out. This equilibrium can cause the seller’s optimal reserve

price to be 0 under certain conditions. For instance, if f is a uniform distribution,

a reserve of 0 will maximize the seller’s revenue for values of α above 1.3. The

equilibrium can also result in a non-convex revenue as a function of reserve price,

with one maximum close to zero and another at a much higher reserve price, as

shown in Figure 2.2. Thus the auctioneer has potential incentives to set both a low

24



reserve price and a high reserve price, a conflict that must be taken into account

when choosing a method of searching for the optimal reserve price.

In this setting, the seller interacts repeatedly with bidders drawn from a

fixed population (characterized by distributions over valuations and α). For the

sake of simplicity and to allow the use of the equilibrium strategy as presented

in the previous section, we assume that exactly two bidders participate in each

auction, and that these bidders participate in no other auctions (The next auction

setting described will relax these assumptions.) The seller sets a reserve price

for each auction, thus restricting the possible bids available to the bidders and

indirectly affecting the auction’s outcome. The seller’s goal is to set the reserve

price for each auction so that the total revenue obtained from all the auctions is

maximized. If a complete model of the behavior of the population of bidders were

available, the seller could determine the optimal reserve price analytically by solving

for the reserve price maximizing expected revenue under this model. However, we

assume that the seller does not have such a complete model, perhaps because it is

a new item. Thus, the seller must identify the optimal reserve price through online

experimentation guided by an adaptive mechanism.

A bidder is characterized by i) an independent, private value v for the sold

item, and ii) a degree of loss-aversion α. A given bidder assigns the same value to

any one of the items sold, and the population of bidders does not change over time.

Thus, the behavior exhibited by bidders is the same for each auction in expectation,

allowing the seller to draw inferences from past auction results.

In our experiments, we are interested in evaluating our adaptive auction

mechanism over a wide range of different bidder populations. We therefore follow a

method of generating bidder populations that amounts to specifying a probability

distribution over populations and drawing a population from this distribution for

each episode to be simulated. We generate an individual bidder population in our
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experiments as follows. For each episode, we randomly generate a distribution for

valuations by taking a Gaussian with a mean chosen uniformly from [vmin, vmax]

and a variance of 10x with x chosen uniformly from [-2, 1], and then normalize the

distribution so that the portion over the range [vmin, vmax] represents a PDF. We

then generate a distribution for α in the same way, choosing variance as before and

using a range of [αmin, αmax] for both the mean and the entire distribution. For

the experiments of this chapter, we use the values n = 1000 auctions, vmin = 0,

vmax = 1, αmin = 1, and αmax = 2.5.

We simulate bidder behavior by having bidders follow the equilibrium strat-

egy described above under the assumption that the other bidder has the same α

(because this is the situation to which the equilibrium solution applies). Thus

for each auction in an episode, we draw two values from the valuation distribution,

draw a single α from the α distribution, randomly assign one bidder to be the initial

bidder, and then have both bidders bid as specified in the equilibrium strategy.

Figure 2.2 helps illustrate the task faced by the seller. The left side shows

the average revenue as a function of reserve price for three different populations.

(The mean of v, variance of v, mean of α, and variance of α are 0.8, 0.01, 1, and

0.1 respectively for population A; 0.3, 1, 1.75, and 1 for population B; and 0.4, 0.1,

1.5, and 0.01 for population C.) In each case, the function has a different shape

and a different maximum. On the right side of Figure 2.2, average results are

shown for 10,000 bidder populations, generated randomly as described above. The

solid line represents the average revenue for each choice of reserve. A reserve price

of 0.54 yields the highest average revenue, 0.367. If we were required to select a

single reserve price for the seller to use, we would choose this price. However, we

know that for each individual bidder population there is a distinct choice of reserve

that yields the highest average revenue. In particular, the dotted line shows the

number of times that each reserve (tested at intervals of 0.01 between 0 and 1) was

optimal. Two important observations can be made: i) despite the variety in bidder
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Figure 2.2: The graph on the left shows the average revenue for each reserve price
for three different populations. The graph on the right shows results for 10,000
populations. The solid line represents the average revenue for each reserve price,
while the dotted line represents the number of times each price was optimal.

populations, the optimal reserve price is frequently in one of two small regions

(including near zero, as is expected with loss averse bidders); ii) nevertheless, most

choices of reserve are optimal for some population. It is the second observation

that motivates our use of an adaptive mechanism.

2.3.2 BIN Price Setting

The previous auction setting involved the simplifying assumptions that ex-

actly two bidders participate in each auction, that these bidders participate in no

other auctions, and that they bid according to a known equilibrium. In the sec-

ond auction setting, these assumptions are relaxed. As before, we consider English

auctions in which bidders have independent private values. However, we now allow

bidders to arrive at any time during an auction and to keep bidding in auctions

until they either win or choose to drop out. In addition, both bidders and the seller

are now time-sensitive (but not loss averse). Instead of choosing a reserve price,

the seller now chooses a buy-it-now (BIN) price at which a bidder may claim the

27



item at any time, ending the auction. (The BIN price remains valid throughout the

auction, in contrast to some implementations of BIN auctions.) Setting the BIN

price too low can reduce revenue from the auction, while setting it correctly may

actually induce impatient bidders to accept a BIN price higher than the price they

might pay if the auction ran to completion. Finally, we assume the seller has only

100 items to sell (n = 100), and that a new auction begins as soon as the previous

one has completed.

To simulate auctions in continuous time, we divide each auction into 10

periods and allow bidders to submit or revise bids once per period, with all bids

submitted simultaneously and processed in random order. In each period, the

number of new bidders arriving is drawn from a Poisson distribution with parameter

λ representing the expected number. Each bidder’s type consists of a valuation v in

[0,1] and a cost per period c in [0.0001, 0.001]. This cost represents a participation

cost (actual or perceived) paid by the bidder for each period it remains active.

The seller also has a cost per period of 0.02, giving it an incentive to set the BIN

price low enough to shorten auctions. The final element needed to run our auction

simulations, the strategy used by bidders, is described below.

To generate a bidder population, we first choose λ uniformly from [0.5, 2].

We then choose a distribution over valuations by taking a Gaussian with a mean

chosen uniformly from [0.2, 0.8] and a standard deviation chosen uniformly from

[0.05, 0.3], and normalizing the distribution so that the portion restricted to the

range [0, 1] represents a PDF. Finally, we choose a distribution over costs per period

by taking a Gaussian with a mean chosen uniformly from [0.0002, 0.0009] and a

standard deviation chosen uniformly from [0.0001, 0.0005], and normalizing the

distribution so that the portion restricted to the range [0.0001, 0.001] represents

a PDF. As before, this method of generating bidder populations can be seen as

implicitly defining a distribution over populations.
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In the previous auction scenario, we assumed that bidders behaved in ac-

cordance with a known equilibrium. We now demonstrate that in the absence of

theoretical or empirical knowledge about bidder behavior, it is possible to use learn-

ing to generate the strategy to be used by bidders in simulation. In particular, we

use a process of competitive coevolution to evolve neural networks that take the

information available to a bidder as input and output the actions of the bidder.

The eleven inputs to the network represent the following information: the current

winning price, whether the bidder is currently winning, the number of periods left,

whether this is the last period, the total number of periods in which the bidder has

participated, the BIN price, the winning price of the previous auction, the average

and standard deviation of the last five winning prices, and the bidder’s valuation

and cost per period. The two outputs are the bid to place (accepted only if it is

higher than the previous bid) and whether the bidder wishes to stop participating

in auctions (the current winner cannot stop participating, and the final winner of

each auction automatically stops). The networks are evolved using NeuroEvolution

of Augmenting Topologies (NEAT) [97], a genetic algorithm for evolving both the

topologies and weights of neural networks. We use the ANJI 2.0 implementation of

NEAT with default parameters. The process is initialized with 500 random neural

networks representing the first generation. In each generation, a fitness score for

each network is determined by having the network participate in a number of auc-

tion episodes, as described below. Then a new generation of 500 networks is created

by combining pairs of networks from the current generation (known as crossover)

and then slightly modifying the results (mutation). A few of the top networks are

copied unchanged into the new generation (elitism). The probability of a network

being chosen to “reproduce” during this step is determined primarily by its fitness

score. This process continues for 500 generations, although the behavior of the top

networks tends to stabilize in around half of this time. At the end, we chose one

network to represent the bidding strategy that will be used in our experiments: one
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that was successful over the last several generations, rather than simply the best

performer in the final generation.

Within each generation, we determine the fitness of each network as follows.

We begin by simulating 500 episodes, drawing a different bidder population in each

episode. We simulate auctions using a non-adaptive seller that simply chooses

auction parameters (the BIN price) randomly from a reasonable range, ensuring

that networks are tested under a variety of situations. (The next chapter will

explore the effects of using an adaptive seller during the evolutionary process.)

Each time a new bidder arrives, it is randomly assigned a network as its bidding

strategy. At the end of the 500 episodes, for each network we determine the average

utility of all bidders to which it was assigned. While we could stop at this point,

instead we remove those networks that had an average utility below the average

of all networks, and with the remaining networks we perform another round of

500 episodes. We continue this process of elimination until fewer than 5 networks

remain. Each network is then assigned a fitness as follows: if the network reached

the nth round of this process, and had an average utility u in that round, its fitness

is given by 10(n−1) +10nu. The reason for performing multiple rounds is that many

of the networks in each generation can have very poor performance. The first

few rounds may therefore represent situations in which the behavior of bidders is

unrealistic, and so we should not place much emphasis on the performance of a

network in these rounds. Instead, we favor networks that can survive the early

rounds and then perform well in the final round, against other strong networks.

In fact, by the final round, it is possible that several simultaneously active bidders

may be using the same network, and it is important to evaluate networks in this

situation given that we use a single network in our experiments. Finally, note

that simply evaluating each network against itself is not a valid alternative, as

collusion becomes possible - a network might always bid zero and obtain a high

average utility. Our use of competitive coevolution prevents such a network from
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Figure 2.3: The graph on the left shows the average profit for each BIN price for
two different populations. The graph on the right shows the number of times each
price was optimal over 1000 populations.

performing well.

The network chosen to represent bidder strategies appears to result in rea-

sonable behavior–bidders with low valuations drop out early, highly time sensitive

bidders often accept the BIN option, etc.

Figure 2.3 shows how the BIN price can affect profits for different bidder

populations. The graph on the left shows the average profit (the seller’s revenue

minus its time cost) when each price is used in all 100 auctions for two different

populations. The graph on the right shows how often each BIN price was optimal

out of 1000 randomly generated populations. Most prices were optimal for at least

one population, illustrating the need for learning.

2.4 Experiments

This section presents the results of experiments in the two auction settings

described above. For both settings, the results of adaptive auction mechanisms are

compared against using the best fixed auction parameter for the distribution over
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bidder populations used in the simulations (which would not actually be known to

the seller).

2.4.1 Reserve Price for Loss Averse Bidders

For the setting in which the seller must set a reserve price and interacts with

loss averse bidders, we implemented both the bandit and the regression adaptive

algorithms. For both algorithms, we set k = 13. In the case of the bandit approach,

this meant that 13 discrete auction parameter values could be used by the seller, and

so we chose 13 uniformly spaced values over the range of the reserve price, i.e., [0, 1].

We used these same values for the reserve prices of the prior experience (initial data

points) for the regression approach. For averages and counts, we used a somewhat

optimistic value of 0.6 for each avgi and a value of 1 for each counti. τstart and

τend were set to 0.1 and 0.01, respectively, and for the regression approach a kernel

width of 0.1 was used. With the exception of k, all of these learning parameters

were chosen through limited experimentation to give reasonable performance–these

represent parameters that a knowledgeable practitioner with little prior information

about the setting might choose. As the value of k is especially important to the

performance of the bandit approach (because it restricts the auction parameter

values available to the seller), we experimented with many values of k and found 13

to be optimal for the bandit approach given the other learning parameters chosen.

The regression approach was much less sensitive to the choice of k, as would be

expected. As a result, these experimental conditions are relatively favorable for the

bandit approach.

We measured the average revenue per episode for both adaptive algorithms

over 10,000 episodes. A different bidder population was drawn for each episode.

For each approach tested, the random number generator used in generating all

bidder parameters received the same seed, ensuring identical bidder behavior. The

average revenues per auction are shown in Table 2.1, while a plot of the average
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Adaptive algorithm Avg. revenue

best fixed reserve price (0.54) 0.367
bandit adaptive algorithm 0.374
regression adaptive algorithm 0.385

Table 2.1: Average revenue per auction for each adaptive algorithm over 10,000
populations. Differences are statistically significant at the 99% confidence level
according to paired t-tests.

revenue for each auction over an entire episode is shown in Figure 2.4. The average

total revenue in each case is higher than the revenue resulting from using the

best fixed reserve price, 0.54, indicating that the use of an adaptive mechanism

is indeed worthwhile in this scenario. The difference observed between each pair

of approaches is statistically significant at the 99% confidence level according to

paired t-tests comparing results for the same bidder population. From Figure 2.4

we can see that both adaptive algorithms approach the same revenue by the last

auction in an episode, suggesting that being limited to a discrete set of auction

parameter values is not a serious disadvantage to the bandit approach. However,

the regression approach performs much better early on, suggesting that the main

drawback to the bandit approach is its implicit assumption about the independence

of different parameter values. In fact, the regression adaptive algorithm requires

far fewer than 1000 auctions to be beneficial (i.e., obtain a higher revenue sum than

the fixed reserve).

2.4.2 BIN Price for Time Sensitive Bidders

For the setting in which the seller must set a BIN price and interacts with

time sensitive bidders, we implemented the regression adaptive algorithm using

optimistic initial parameters (k = 10, τstart = 0.01, τend = 0.001, each counti = 1,

each avgi = 1, and kernel width 0.1). Again, these learning parameters were cho-

sen through limited experimentation to give reasonable performance. We generated
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Figure 2.4: Average revenue per auction over the course of an episode for each
adaptive algorithm when setting reserve prices.

10,000 bidder populations and evaluated both the regression adaptive algorithm and

the fixed BIN price with the highest expected profit (0.73). Figure 2.5 shows the

average profit for each auction for each approach. Overall, the average profit per

auction was 0.4884 for the fixed BIN price and 0.4711 for the regression adaptive

algorithm, and these differences are statistically significant with 99% confidence

according to paired t-tests. The regression adaptive algorithm was eventually able

to identify a good BIN price, but its early exploration was so costly that it under-

performed the fixed price overall. However, if the number of items to auction off

were higher, as in the previous set of experiments for the reserve price setting, then

using an adaptive auction mechanism would be worthwhile in this setting as well.

It should also be noted that the best fixed BIN price is not in fact known to the

seller.

2.5 Summary

This chapter introduced the concept of adaptive auction mechanisms for

sellers who wish to auction off many identical items sequentially. An adaptive auc-

tion mechanism makes use of an adaptive algorithm to revise auction parameters
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Figure 2.5: Average revenue per auction over the course of an episode when setting
BIN prices.

in response to observed bidder behavior in order to maximize an objective such as

total revenue. The main contribution of this chapter is the regression adaptive algo-

rithm, which can learn continuous auction parameters online using a combination

of the softmax action selection algorithm from the reinforcement learning literature

and Locally Weighted Quadratic Regression. In two distinct auction settings char-

acterized by different auction parameters and bidder behaviors, this approach was

able to learn auction parameters that were better than the best fixed parameter

value. However, it often took many auctions to reach that point, and a number of

learning parameters need to be set to ensure reasonable performance. In the next

chapter, I show how both of these issues can be addressed if the seller has some

amount of prior knowledge about bidder behavior.
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Chapter 3

Adaptive Auction Mechanisms with Prior

Knowledge

Chapter 2 introduced the idea of adaptive auction mechanisms. In this

chapter, I show how prior knowledge of bidder behavior can be used to improve

the performance of an adaptive auction mechanism. After the nature of this prior

knowledge is specified in Section 3.1, Section 3.2 presents two improvements to the

regression adaptive algorithm of Chapter 2 that can make use of this knowledge, ful-

filling Contribution 3 for the sequential auction scenario as outlined in Section 1.2.

Section 3.3 contains experiments testing these algorithms under various conditions,

fulfilling Contribution 4.

3.1 Prior Knowledge of Bidder Behavior

There are a number of forms that prior knowledge of bidder behavior could

take. As one illustrative example, suppose that our seller has a large number of

copies of a newly published book to be sold through a series of auctions. As the

books are new, there are no previous auction results available to guide the choice

of auction parameters. The seller is not completely in the dark, however, because

auction results for books by similar authors or on similar topics are available, and

these books likely attract bidder populations with characteristics similar to those

of potential bidders on the new book. If the seller wanted to choose a single set

of auction parameters, a reasonable choice might be the parameters that were best

for the most similar book, or an average of the best parameters for several similar
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books. If instead the seller wishes to use an adaptive mechanism and needs to

choose the adaptive algorithm for it, it makes similar sense for the seller to choose

an adaptive algorithm that would have worked well for these similar books. To

determine how well an adaptive algorithm would have worked for a particular book,

the seller could attempt to simulate the behavior of the population of bidders for

that book using the past auction data, and apply the adaptive algorithm to these

simulated bidders.

Alternatively, suppose that the seller receives marketing information sug-

gesting valuations that buyers might have for the book, along with information

suggesting bidding strategies that bidders tend to use in such auctions. Again, if

the seller wishes to use an adaptive auction mechanism, it makes sense to choose

an adaptive algorithm that would work well if this information is correct. The

seller could again evaluate an adaptive algorithm by simulating a number of bidder

populations that are plausible given the information available and applying the

algorithm to each population.

In both cases, we have a seller that wishes to choose an adaptive algorithm

in order to implement an adaptive auction mechanism, and the seller is able to

make predictions concerning possible bidder behavior that allow it to simulate a

number of possible bidder populations. The goal of the seller is to choose an adap-

tive algorithm that performs well with the actual bidder population it encounters,

but as this population is unknown in advance, the seller attempts to identify an

adaptive algorithm that performs well under simulation. Therefore, in this chapter,

prior knowledge will be represented as the ability to simulate some plausible range

of bidder behavior. In fact, this ability amounts to specifying a probability distri-

bution over bidder populations, as was done in the experiments of Chapter 2. One

goal of the experiments in this chapter will be to see how much the performance

of the proposed adaptive algorithms depends on the similarity between the dis-

tribution over simulated populations and the distribution over actual encountered
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populations. (The terms “simulated” and “encountered” will be used throughout

this chapter to distinguish the two types of populations.)

3.2 Algorithms

In Section 1.1 of the introduction, I outlined four general approaches to

adaptation that could be taken when previous market experience–in this scenario,

the prior knowledge of bidder behavior–is available. The first approach, learning

from only the new market only, was covered in Chapter 2. Below, I describe

two algorithms representing implementations (and in one case, a combination) of

the remaining three approaches. These algorithms represent modifications of the

regression adaptive approach described in Chapter 2.

3.2.1 Metalearning

One of the general approaches to using prior knowledge is to learn from

both the simulated and encountered markets. In Section 1.1, this approach was

subdivided into two possibilities: combining data, or combining models. For the

regression adaptive approach, it turns out that no distinction to the two needs to

be made, because we are using an instance-based learner–LWQR–to perform the

regression, and in essence, the data is the model. The remaining question thus

becomes how to combine data generated during simulation with data generated

from the encountered population. Simply generating a large amount of prior ex-

perience (auction parameter values and the resulting outcomes) in simulation and

using this with the regression adaptive algorithm is not likely to work well, because

this prior experience will dwarf actual experience. As a result, when the regression

adaptive algorithm favors exploitation of the parameter value believed to be best,

that value will tend to be the value that was best for the distribution of simulated
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populations, not the encountered population.

An alternative approach is to learn from only the encountered population,

but to use prior knowledge to tune the learning parameters. For example, the

regression adaptive algorithm requires a kernel width to be set. A reasonable value

would be one that worked well when applied in simulation. In fact, this general

approach makes sense for setting all learning parameters, and so this approach

amounts to finding the set of learning parameters that would have performed best

for the distribution over simulated bidder populations. This approach could be

viewed as an instance of metalearning [107]. In metalearning, the goal is to improve

the performance of a learning system for a particular task through experience with

a family of related tasks. In our case, the learning system is the regression adaptive

algorithm, and the family of related tasks is the set of different bidder populations

generated during simulation.

The metalearning approach also resolves the problem of how to handle prior

experience, because prior experience can itself be viewed as a parameter to the

regression adaptive algorithm. Therefore, metalearning can be used to find the

prior experience that results in the best performance in simulation. To illustrate

how effective prior experience might be chosen, consider Figure 2.2 from Chapter

2 (shown again here as Figure 3.1). Again, the dotted line shows the number of

times that each reserve (tested at intervals of 0.01 between 0 and 1) was optimal

over 10,000 simulated populations. Despite the variety in bidder populations, the

optimal reserve price is frequently in one of two small regions (including near zero,

as is expected with loss averse bidders). A proper choice of prior experience (data

points representing either good outcomes in those regions or bad outcomes outside

of it) could encourage the regression adaptive algorithm to focus early exploration

on those regions.

Determining the set of learning parameters that work best for the distribu-

tion over simulated bidder populations can be viewed as an optimization problem.
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Figure 3.1: Results for different reserve prices for 10,000 populations. The solid
line represents the average revenue for each reserve price, while the dotted line
represents the number of times each price was optimal.

The objective function to be maximized is the expected revenue (or any other auc-

tion outcome) during an episode for that distribution. For any given set of learning

parameters, we can obtain an estimate of the expected revenue from an episode

by sampling a population of bidders and running an episode using those parame-

ters. This estimate will be highly noisy, due to the large number of random factors

involved in the process, and so we are faced with a stochastic optimization task.

To solve this task, we use Simultaneous Perturbation Stochastic Approxi-

mation (SPSA) [95], a method of stochastic optimization based on gradient approx-

imation. At each step, two estimates of the expected episode revenue are taken for

slight perturbations of the current learning parameters (the same bidder population

is used for each estimate), a gradient approximation is found, and the parameters

are updated in the direction of the gradient. For reference, all learning parameters

for the regression adaptive algorithm are described in Table 3.1. Ideally, the pa-

rameter k (representing the number of auction parameter values for which we have

previous experience) would be part of the search process as well, but as our search

method requires the dimensionality of the search space to be fixed (i.e., the number
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Parameter Description

avgi, 0 ≤ i < k average initial revenue at auction parameter value i
counti, 0 ≤ i < k weight of prior experience at auction parameter value i
τstart initial temperature
τend final temperature
w kernel width for regression

Table 3.1: Parameters of the regression adaptive algorithm found through met-
alearning.

of learning parameters must be determined in advance), in each experiment below

we have chosen what appears to be the best value of k after running searches for

several values.

It should be noted that although this process of searching for the optimal

parameters can be time consuming (in our experiments, a number of hours were

required for the search to converge), the process takes place in offline simulation

before the actual auctions begin. When the regression adaptive algorithm is applied

during actual auctions with the encountered population using the resulting learning

parameters, each choice of a new auction parameter value takes only a small fraction

of a second.

3.2.2 Bayesian Approach

A different general approach to using prior knowledge that was outlined in

Section 1.1 is attempting to identify the market from a space of possible markets. In

the sequential auction scenario with prior knowledge considered here, that approach

amounts to matching the encountered bidder population with one of the bidder

populations from simulation. In Chapter 2, bidder populations were simulated by

specifying a bidding strategy to be used by all bidders and then drawing specific

parameters specifying the type of each individual bidder from some population-

specific distribution. Under this setup, identifying a bidder population amounts to
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determining this population-specific distribution. For example, for the reserve price

setting with loss averse bidders described in Section 2.3.1, the behavior of a bidder

population is specified completely by four parameters: the mean and variance of

the valuations, and the mean and variance of α values. If these four parameters

could be determined, it would be possible to directly determine the optimal reserve

price for any bidder population encountered.

As identifying the exact population parameters from a small number of

auctions is likely not possible, we implement the following approach: using Bayesian

inference to maintain a joint probability distribution over these parameters. This

joint distribution represents our current beliefs about those parameters as a result of

observed auction outcomes. Specifically, we maintain a joint distribution P (b) over

possible bidder populations (for convenience of both notation and implementation

we assume this is a discrete set). Initially, we set P (b) to our prior, i.e., the

distribution over simulated populations. Each observed auction outcome is used to

update this probability as follows: P (b)← P (b) ·P (o|x, b)/Z, where P (o|x, b) is the

probability that an auction outcome o is observed given auction parameter value x

and population b, and where Z is a normalizing constant, to create a distribution

in accordance with Bayes’ rule.

Bayesian inference allows us to estimate the revenue for any auction parame-

ter value x:
∑

b∈B P (b)O(x, b), where O(x, b) is the expected revenue for population

b. However, Bayesian inference does not tell us what parameter value to try next

in our sequential auction scenario. A number of algorithms exist for action se-

lection in Bayesian settings, but to allow for the most direct possible comparison

between Bayesian inference and the adaptive algorithms described previously, we

apply softmax action selection using the estimated revenues. Thus, the Bayesian

approach is essentially the regression adaptive algorithm with the output of LWQR

replaced by our new revenue estimate. The pseudocode for the Bayesian approach

is presented in Algorithm 1.
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Algorithm 1 Bayesian Approach

Input a continuous parameter space X and a discretization of this space X ′, the
number of auctions to run n, τstart and τend, kernel width w, a discrete set B
of possible bidder populations, and a prior distribution P (b) over these populations

For 0 ≤ t < n:
1. τt = τstart + (τend − τstart) ·

t
n

2. ∀x ∈ X ′ compute expected outcome E(x) =
∑

b∈B P (b)O(x, b)
3. Draw a parameter value x from the distribution Q(x) =
(eE(x)/τt)/(

∑

y∈X′ eE(y)/τt).
4. Run an auction and obtain outcome o.
5. ∀b ∈ B, P (b)← P (b) · P (o|x, b)/Z for normalizing constant Z

To this point, we have assumed that we have access to the functions O(x, b)

and P (o|x, b). However, our bidder model is only a generative one–that is, we

have a full model of all relevant factors affecting bidder behavior and can thus

sample bidding outcomes, but we cannot analytically express the relationship be-

tween the population parameters and the quantities of interest, i.e., outcomes and

their probabilities. Additionally, the distributions over bidder populations that we

will simulate are continuous, not discrete. To address these issues, we precom-

pute approximations to O(x, b) and P (o|x, b) by discretizing the range of possible

population parameters, auction parameters, and outcomes, and using simulation

to fill in a table of values. As this process is very computationally intensive, we

experiment with the Bayesian approach in only the reserve price setting, and not

the BIN price setting.

For the reserve price setting, we use 10 uniformly spaced values for each

population parameter (for a total of 10, 000 possible populations), along with 30

uniformly spaced values for both reserve prices and outcomes. For each choice of

population and reserve price, the probability that the resulting revenue is closest
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to each outcome value is estimated through simulation of auctions. Increasing

the granularity of discretization beyond this level does not appear to significantly

improve the results of applying these approximate probabilities. We represent our

beliefs about the bidder population as a probability distribution over all (10, 000)

possible populations, initialized uniformly in keeping with the method of generating

a population described in Section 2.3.1. After each auction, the nearest of the 30

discrete reserve and outcome values are identified, and these are the values used to

update the probability distribution.

3.3 Experiments

This section presents the results of experiments using the approaches dis-

cussed: the best fixed auction parameter, the regression adaptive algorithm with

optimistic parameters (which will be referred to as optimistic regression), the re-

gression adaptive algorithm with metalearned parameters (which will be referred

to as metalearned regression), and the Bayesian approach. These approaches are

evaluated under a variety of different circumstances, first in the reserve price setting

and then in the BIN price setting.

3.3.1 Reserve Price Setting

For the reserve price setting in which bidders are loss averse, the experiments

cover the case where prior knowledge is correct, two cases where prior knowledge

is incorrect, and a non-stationary case.

3.3.1.1 Correct Prior Knowledge

The first experiment considers the best case scenario, in which the seller’s

prior knowledge of bidder behavior is perfect. In other words, the same distribu-
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Figure 3.2: Metalearned parameters. Circles represent prior experience. Each
circle’s height represents the initial value of avg at its position, while the size
represents the initial value of count. τstart = .0081, τend = .0013, kernel width =
.138

tion over bidder populations is used for both the simulated populations and the

encountered populations, meaning that the metalearned regression and Bayesian

approaches should both perform well.

During the metalearning step, we began the search process using the same

values used for optimistic initialization in Chapter 2: 0.6 for each avgi and 1 for

each counti. τstart and τend were set to 0.1 and 0.01, respectively, and the kernel

width was 0.1. Increasing k beyond 11 did not appear to provide any benefit,

and so results are presented for k = 11. The learned parameters are presented in

Figure 3.2. Prior experience is displayed visually by plotting a circle for each avgi

with area proportional to counti. The largest circle represents a count value of

about 4.2. This prior experience appears reasonable given Figure 3.1. The values

of count are similar in most cases, but the values of avg are higher in the more

promising regions, encouraging initial exploration of those auction parameters. The

reasons for such small count values at 0.7 and 0.8 are not immediately clear. The

search results appear stable in that repeated runs result in parameters that are

fairly similar and provide nearly identical expected revenue per episode, and modest

changes to the initial parameters do not significantly affect the search results.

45



Adaptive algorithm Avg. revenue

Bayesian approach 0.407
metalearned regression 0.405
optimistic regression 0.385
best fixed reserve price (0.54) 0.367

Table 3.2: Average revenue per auction for each adaptive algorithm over 10,000
populations. Differences are statistically significant at the 99% confidence level
according to paired t-tests.

As in Chapter 2, we found the average revenue per adaptive algorithm over

10,000 randomly sampled bidder populations. These average revenues are shown

in Table 3.2, while a plot of the average revenue for each auction over an entire

episode is shown in Figure 3.3. The difference observed between each pair of meth-

ods is statistically significant at the 99% confidence level according to paired t-tests

comparing results for the same bidder population. From these results it is clear

that the metalearning process is highly effective at identifying effective learning

parameters. Metalearned regression learns much faster initially than optimistic re-

gression. In fact, the average revenue reached on the 100th auction by metalearned

regression is not reached until after at least 500 auctions by optimistic regression.

Thus, the metalearned parameters are effective at focusing initial exploration, pro-

viding sufficient prior experience to permit a higher initial degree of exploitation,

or both.

The Bayesian approach produces the highest average revenue per auction

in this experiment by a small but statistically significant amount. This result is

not surprising considering that this approach relies on much stronger assumptions

about bidder behavior than the other approaches. It is interesting to note the slight

decrease in the performance of the Bayesian approach after around 100 auctions. It

may be the case that Bayesian approach converges to slightly suboptimal auction

parameters because we consider a discretized space of bidder populations.
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Figure 3.3: Average revenue per auction over the course of an episode for each
adaptive algorithm when setting reserve prices.

3.3.1.2 Incorrect Prior Knowledge - Random Bidders

Although adaptive auction mechanisms have been proposed as a means of

dealing with unknown bidder behavior, in the previous experiment we evaluated

adaptive algorithms on the same distribution of bidder populations used in sim-

ulation. The next two experiments investigate the effects when the encountered

bidder population differs from these simulated populations.

We first consider the case where the bidders’ strategy differs from the ex-

pected strategy. As an alternative to the equilibrium bidding strategy described

in Section 2.3.1, consider a strategy in which a bidder simply chooses a value uni-

formly at random from the range [0, 1.2] and bids this value regardless of any other

factors. This behavior is clearly different from that present in any of the possible

bidder populations considered previously. If bidders using such a strategy were to

participate in auctions based on an adaptive mechanism developed using the sim-

ulated bidder populations, the adaptive mechanism might not produce the results

expected.

To explore the effect of unexpected bidder behavior, we consider populations

in which bidders follow this alternate strategy with probability p, and follow the
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previous equilibrium strategy with probability 1−p. We consider values of p ranging

from 0 to 1 in order to measure the effect of increasingly unexpected behavior.

Figure 3.4 shows the results for all values of p. Because the alternate bid-

ding strategy results in higher bids on average, average revenue increases along

with p. As the probability of bidders using the alternate strategy increases, the

performance of optimistic regression improves relative to the other two methods,

and the Bayesian approach is worst in many cases. This result can be explained

by the fact that the regression approach with optimistic parameters makes use of

no assumptions about bidder behavior, while the Bayesian approach makes very

strong assumptions. With a high value of p, the Bayesian approach is never able

to identify the optimal reserve price because it is unable to match the population’s

behavior with one of the populations it believes to be possible. Metalearned regres-

sion is eventually able to identify the optimal reserve price, but often much later

than optimistic regression, due to the fact that it is concentrating its early explo-

ration in areas that are now less likely to contain the optimal value. Nevertheless,

metalearned regression is never the worst approach, and it is also never more than

0.0065 behind the best approach, while the other approaches fall more than twice

as far behind the best approach for some values of p.

3.3.1.3 Incorrect Prior Knowledge - Parameter Ranges

Next, we consider the case where the strategy used by the encountered

bidders remains the same as before (the equilibrium strategy), but the distributions

from which we draw valuations and α values are changed. Recall that these two

bidder parameters were previously assumed to fall within the ranges v ∈ [0, 1]

and α ∈ [1, 2.5]. We now use the narrower ranges of v ∈ [.3, .7] and α ∈ [1.5, 2]

when generating an encountered population (but not the simulated populations

used in developing the adaptive algorithms). Distributions within these ranges are

generated as before (see Section 2.3.1). Such a situation could arise if the seller
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Figure 3.4: Results when some fraction of bidders choose a bid randomly.

was unsure of the actual ranges of v and α and intentionally used conservative

estimates of these ranges when developing the adaptive algorithm.

Table 3.3 shows the results. In this case, the performance of metalearned

regression is again much better then optimistic regression, suggesting that the

behavior of bidders remains sufficiently similar to make metalearning useful in this

scenario. The performance of the Bayesian approach suffers even more than in

the previous experiment, however. Again, this approach is often unable to match

the encountered population’s behavior with one of the populations it believes to

be possible. This problem appears to be particularly severe when the optimal

reserve price is near zero–in many such cases the population’s behavior most closely

resembles the behavior of populations for which a much higher reserve price is

optimal, and so the Bayesian approach consistently tries a suboptimal reserve price.

The results of the last two experiments show that there is a clear tradeoff in

the use of prior knowledge but suggest that this tradeoff can be managed effectively.

An approach that relies on specific knowledge of bidders’ behaviors to adapt is able

to identify effective auction parameter values more quickly than a purely data-

driven approach when the seller’s prior knowledge is correct, but it may seriously
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Adaptive method Avg. revenue

best fixed reserve price (0.54) 0.335
Bayesian approach 0.414
optimistic regression 0.575
metalearned regression 0.593

Table 3.3: Average revenue per auction for each adaptive algorithm when bidder
parameters are drawn from modified distributions. Differences are statistically
significant at the 99% confidence level according to paired t-tests.
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Figure 3.5: Average revenue per auction over the course of an episode for each
adaptive algorithm with an unexpected population parameter distribution.

suffer if this knowledge is incorrect. On the other hand, an approach that learns

only from experience with the encountered population is unable to exploit prior

knowledge to reduce costly exploration; however, this approach can eventually learn

effective auction parameter values regardless of the correctness of this knowledge.

Overall, metalearned regression appears to strike a useful balance between using

prior knowledge and learning directly from experience.

3.3.1.4 Non-stationary Bidders

In the previous experiments, the behavior of the bidder population remained

constant over the entire episode. Such consistency is unlikely in the real world.
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Possible causes of shifts in bidder behavior include changes in the preferences of

bidders and changes in the strategies employed by bidders. Bidder preferences may

change gradually, such as when valuations decrease over time for outdated products,

or they may change quickly, such as when a new type of bidder suddenly enters

the marketplace. Changes in bidder strategies may be the result of the bidders

themselves adapting by learning from past experiences.

This section presents modifications to metalearned regression to cope with

a gradually changing bidder population. Dealing with more sudden changes would

likely require more extensive modifications, such as attempting to determine pre-

cisely when a change has occurred, and is beyond the scope of this dissertation.

Recall that the behavior of our simulated bidder population is controlled by four

parameters: the mean and variance of the valuations, and the mean and variance

of α values. We now allow each of these parameters to vary according to a ran-

dom walk: after each auction, each parameter is either increased or decreased by

one percent of the total range for that parameter, within the bounds specified in

Section 2.3.1. Bidder populations are initialized as before.

Under this scenario, the probability of a particular set of population pa-

rameter values occurring during an auction is essentially the same as before, and

therefore the optimal fixed reserve remains 0.54, with an average revenue of 0.367.

Using metalearned regression with the previously metalearned parameters results

in an average revenue of 0.379, still a significant improvement over the fixed reserve

but well below the 0.405 obtained previously.

One way of dealing with a changing bidder population is to weight recent

experience more heavily than older (and possibly more inaccurate) experience. We

implement this modification by choosing a decay rate γ by which the weight of all

past experience (including the prior experience) is multiplied at each step. Recall

that LWQR assigns a weight to each past experience, ed/w2

, where d is the distance
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to the auction parameter value for which revenue is to be predicted. To discount

older outcomes, the weight assigned to an auction outcome which occurred at

time l is now given by ed/w2

γt−l, where t is the current auction number. Because

observations with lower weights will have less impact on LWQR’s prediction, these

weights cause older experiences to have a lower effect on the seller’s estimations of

expected revenue When using a decay rate of 0.99, chosen manually after limited

experimentation, the average revenue per auction increases to 0.383, a modest

improvement over the previous 0.379.

Another possible means of improving performance with a non-stationary

population is to increase the temperature τ used in selecting reserve prices for each

auction. Recall that τ controls the degree of exploration when using softmax action

selection, and that in the previous experiments τ was gradually decreased over time

to encourage increased exploitation once reasonable estimates of auction outcomes

had been learned. Because these estimates may become inaccurate as the bidder

population changes, maintaining a higher degree of exploration by decreasing τ

more slowly might be a way to improve performance of the adaptive mechanism.

For this particular scenario, however, experiments show that the average revenue

remains almost unchanged when τ is decreased more slowly (with or without the

decay of experience), suggesting that the gains from increased exploration are offset

by the losses from reduced exploitation. (With the stationary bidder population

considered previously, decreasing τ more slowly results in a significant reduction in

average revenue, so it is not simply the case that τ is unimportant.)

If the seller is aware of the specific way in which the population can change,

then the seller can make use of this information by performing the metalearning

step using the non-stationary population in simulation. Although the learned pa-

rameters that result (prior experience, temperatures, kernel width, and decay rate)

are fairly similar to those used previously–the most notable changes are a decrease

in the decay rate to 0.985 and an increase in kernel width to 0.154–the average
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Adaptive method Avg. revenue

best fixed reserve price (0.54) 0.367
previous metalearned parameters 0.379
previous metalearned parameters, experience decay 0.383
new metalearned parameters, exp. decay 0.389
new metalearned parameters, no initial exp. decay 0.394

Table 3.4: Average revenue per auction for each adaptive method with a non-
stationary population. Differences are statistically significant at the 99% confidence
level according to paired t-tests.

revenue increases to 0.389.

The method of decaying past experience described above includes the decay

of the prior experience (the values stored before actual experience is obtained). The

prior experience could instead be handled separately and have its weight remain

unchanged. For reserve prices with little recent experience, the predicted revenue

would then be based largely on the initial values, potentially encouraging periodic

re-exploration of reserve prices previously determined to be suboptimal. For a non-

stationary population, such re-exploration could possibly be beneficial. When using

this approach and applying metalearning with full knowledge of how the population

changes, the average revenue obtained reaches 0.394.

The results of this section, summarized in Table 3.4, demonstrate that met-

alearned regression can be applied in situations in which bidder populations vary

over time, at least when such change is gradual. When knowledge of how the pop-

ulation might change is available, this knowledge can be usefully incorporated into

the process of metalearning optimal learning parameters.

3.3.2 BIN Price Setting

The remaining experiments confirm the effectiveness of metalearned regres-

sion in the BIN price setting with time-sensitive bidders with both correct and

incorrect prior knowledge.
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3.3.2.1 Correct Prior Knowledge

As before, the first experiment in this setting considers the best case sce-

nario, in which the seller’s prior knowledge of bidder behavior is perfect. Using

the distribution over bidder populations described in Section 2.3.2 and performing

metalearning using the optimistic learning parameters as the starting point of the

search (τstart = 0.01, τend = 0.001, each counti = 1, each avgi = 1, and kernel width

0.1) resulted in the learning parameters shown in Figure 3.6. Again, the height of

each circle represents the profit, and the area represents the weight–the largest

circle has weight 3.11, and the smallest 0.02. Increasing k (the number of auction

parameter values with prior experience) beyond 11 did not appear to provide any

benefit.

The prior experience shown in shown in Figure 3.6 makes sense given the

nature of BIN prices. When the BIN price is set too low, there can be a large loss

in profit due to the fact that the BIN price acts as an upper bound on revenue, but

setting the BIN price too high is essentially the same as having no BIN price, which

is only moderately harmful. Therefore, a good exploration policy is to begin with

a high BIN price and then reduce it until the optimal price is found, and this is

essentially the exploration policy induced by the prior experience. While it is likely

that a human designing these auctions would have observed this fact and been

able to implement such a strategy by hand, it is reassuring that the metalearning

process was able to learn this behavior, and it is possible that in other auction

settings there would be other factors that would be picked up by the metalearning

process but not by a human auction designer.

Table 3.5 shows the average profit per auction (revenue - seller’s time cost)

for each algorithm over 10,000 episodes, and Figure 3.7 plots the average over the

course of an episode. Metalearned regression performs as well as the best fixed BIN

price from the start of each episode and identifies a nearly optimal BIN price in
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Figure 3.6: Metalearned parameters. Circles represent prior experience. Each
circle’s height represents the initial value of avg at its position, while the size
represents the initial value of count. τstart = .013, τend = .002

Adaptive method Avg. profit

best fixed BIN price (0.73) 0.4884
optimistic regression 0.4711
metalearned regression 0.5254

Table 3.5: Average profit per auction for each adaptive algorithm for the BIN
price setting. Differences are statistically significant at the 99% confidence level
according to paired t-tests.
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Figure 3.7: Average profit per auction over the course of an episode for each adap-
tive algorithm when setting BIN prices.

only a few auctions.
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Figure 3.8: Number of times each BIN price was optimal out of 1000 populations
considered for the two kinds of bidders.

3.3.2.2 Incorrect Prior Knowledge - Exponential Discounting

The next experiment considers the case that the seller’s prior knowledge in-

cludes incorrect assumptions about the nature of bidders’ time sensitivity. Instead

of having a cost per period, the encountered bidders discount their surplus expo-

nentially. Thus, a bidder with discount factor γ and surplus s that participated for

n periods would view its reward as γns. Bidder populations are generated just as

before, except that instead of choosing a distribution over costs per period for each

population, we choose a distribution over discount factors by taking a Gaussian

with a mean chosen uniformly from [0.992, 0.998] and a standard deviation chosen

uniformly from [0.001, 0.004], and then normalizing the distribution so that the

portion restricted to the range [0.99, 1] represents a PDF. The bidding strategy is

learned as before using competitive coevolution, and the bidder behavior that re-

sults appears somewhat different from the behavior of the cost per period bidders.

Figure 3.8 shows that the distribution over optimal BIN prices is slightly changed.

We used the same optimistic and metalearned learning parameters as before

and ran simulations with 10,000 populations of exponential discounting bidders.
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Adaptive method Avg. profit

best fixed BIN price (0.73) 0.5093
optimistic regression 0.5239
metalearned regression 0.5504

Table 3.6: Average profit per auction for each adaptive algorithm for the BIN price
setting with exponential discounting bidders. Differences are statistically significant
at the 99% confidence level according to paired t-tests.
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Figure 3.9: Average profit per auction over the course of an episode for each adap-
tive algorithm with exponential discounters.

Table 3.6 shows the average profit per auction for each algorithm, and Figure 3.9

plots the average over the course of an episode. Again, the metalearned regres-

sion resulted in the highest overall profit. It appears that the exploration strategy

induced by the prior experience remains effective when bidders are exponential

discounters. Still, optimistic regression ultimately found a better BIN price, on av-

erage, than metalearned regression. It appears that metalearned regression reduced

its exploration early and settled on a particular BIN price, and while this prevented

the approach from finding a better BIN price, the lack of costly exploration still

helped metalearned regression outperform optimistic regression.

57



3.3.2.3 Best-response Bidders

Up to this point, we have assumed that the behavior of bidders is inde-

pendent of the adaptive strategy used by the seller. That is, bidders respond to

the information available about the particular auction in which they are bidding,

but are unaware that the auction parameter values chosen by the seller for future

auctions may be dependent on the bidders’ actions in the current auction. In cases

in which bidders may remain active for several consecutive auctions before winning

or giving up, and especially in cases where bidders experience recurring demand

and may return to participate in future auctions, bidders may have an incentive

to act in ways designed to influence the future actions of the seller. (For instance,

by refusing to accept a high BIN price in early auctions, bidders could induce the

seller to offer lower BIN prices in later auctions.) Bidders could gradually learn

such responsive strategies through their interactions with the seller, or could even

employ strategies specifically designed to be used with the seller if they knew the

seller’s adaptive strategy in advance. We explore the latter case, as it is essentially

the worst case scenario for the seller.

We can use the coevolutionary process introduced in this chapter to develop

this type of responsive bidder strategy. Instead of using the random seller strat-

egy as before when evaluating bidder strategies, we use the regression adaptive

algorithm with metalearned parameters. In addition to the information previously

available to bidders, bidders are now also told which auction number (between 1

and 100) is currently running. Each bidder strategy is used several times through-

out an episode, allowing a strategy to be rewarded for causing the seller to choose

favorable auction parameter values in later auctions. Bidders are modeled as having

a cost per period as before.

The results of evaluating our adaptive algorithms with the final bidder strat-

egy evolved in this way are similar to the previous results for the case of exponential
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Adaptive method Avg. profit

best fixed BIN price (0.73) 0.3967
optimistic regression 0.3912
metalearned regression 0.4135

Table 3.7: Average profit per auction for each adaptive algorithm for the BIN price
setting with best-response bidders. Differences are statistically significant at the
99% confidence level according to paired t-tests.

discounting bidders: although the encountered bidder population behaves some-

what differently than expected, metalearned regression is still effective at quickly

learning profitable BIN prices. Table 3.7 shows the average profit per auction for

each algorithm, and Figure 3.10 shows the average over the course of an episode.

One interesting observation is that the average profit per auction is about 0.1 less

than before for all three algorithms. It appears that bidders tend to drop out of

the auctions earlier, reducing competition. One possible explanation for this result

is that when the random seller strategy is used during evolution, bidders learn to

hang around in the hopes that they can take advantage of an abnormally low BIN

price, but such opportunities are rarer when a more intelligent seller strategy is

used. In any case, these results are reassuring in that, at least for this setting,

they suggest that adaptive auction mechanisms do not open the seller to exploita-

tion by the bidders. These results also serve as further evidence that metalearned

regression can still be effective when bidders behave in an unexpected fashion.

3.4 Summary

This chapter introduced two extensions to the regression adaptive algorithm

described in Chapter 2 that can be used when the seller has sufficient prior knowl-

edge about bidders that it can simulate a range of plausible bidder behaviors: using

metalearning to find the optimal learning parameters in simulation, and a Bayesian

approach to identifying which simulated population the encountered bidder popu-
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Figure 3.10: Average profit per auction over the course of an episode for each
adaptive algorithm with learning bidders.

lation is most similar to. The Bayesian approach is able to learn effective auction

parameters very quickly when the encountered population does come from the space

of simulated populations. When bidders in the encountered population behave in

unexpected ways, however, this approach may be unable to adapt.

The metalearning regression approach, on the other hand, is robust under

a variety of circumstances. When the encountered population is similar to the

simulated populations, metalearning regression is able to perform nearly as well

as the Bayesian approach. When confronted with unexpected bidder behavior,

metalearning regression is still able to find effective auction parameters and con-

tinues to outperform optimistic regression in most cases. In addition, this chapter

has shown how metalearning regression can be successfully applied in the case of

non-stationary bidders, and there is evidence that metalearning regression remains

effective even when bidders know that an adaptive auction mechanism will be used.
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Chapter 4

The TacTex Agent for Supply Chain

Management

I now move on to a new setting, the Trading Agent Competition (TAC).

Within this setting I consider two scenarios: Supply Chain Management (SCM)

and Ad Auctions (AA). Discussion of this setting is spread over six chapters. In the

first four chapters, I describe the two scenarios and present our winning agent in

each. The purpose of these chapters is to place the learning problem in the context

of a full agent and motivate the need for adapting to opponent behavior.

This chapter covers the TacTex agent for TAC SCM. I give a summary of the

scenario, describe the design of the TacTex agent, and then present experimental

results highlighting the importance of various agent components. This chapter

fulfills Contribution 1 for TAC SCM, as outlined in Section 1.2. In the following

chapter, I will address the use of machine learning to further improve performance.

4.1 TAC SCM Overview

In today’s industrial world, supply chains are ubiquitous in the manufac-

turing of many complex products. Traditionally, supply chains have been cre-

ated through the interactions of human representatives of the various compa-

nies involved. However, recent advances in autonomous agent technologies have

sparked an interest, both in academia and in industry, in automating the pro-

cess [62] [86] [26]. Creating a fully autonomous agent for supply chain management

is difficult due to the large number of tasks such an agent must perform. In general,
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the agent must procure resources for, manage the assembly of, and negotiate the

sale of a completed product. To perform these tasks intelligently, the agent must

be able to plan in the face of uncertainty, schedule the optimal use of its resources,

and adapt to changing market conditions.

TAC SCM provides a unique testbed for studying and prototyping supply

chain management agents by providing a competitive environment in which inde-

pendently created agents can be tested against each other over the course of many

simulations in an open academic setting. In a TAC SCM game, each agent acts as

an independent computer manufacturer in a simulated economy. The agent must

procure components such as CPUs and memory, decide what types of computers

to manufacture from these components as constrained by its factory resources, bid

for sales contracts with customers, and decide which computers to deliver to whom

and by when.

4.2 TAC SCM Specification

I now present a summary of the TAC SCM scenario. Full details are available

in the official specification document [28].

In a TAC SCM game, six agents act as computer manufacturers in a sim-

ulated economy that is managed by a game server. The length of a game is 220

simulated days, with each day lasting 15 seconds of real time. At the beginning

of each day, agents receive messages from the game server with information con-

cerning the state of the game, such as the customer requests for quotes (RFQs) for

that day, and agents have until the end of the day to send messages to the server

indicating their actions for that day, such as making offers to customers. The game

can be divided into three parts: i) component procurement, ii) computer sales, and

iii) production and delivery as expanded on below and illustrated in Figure 4.1.
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Figure 4.1: The TAC SCM Scenario [28].

4.2.1 Component Procurement

The computers are made from four components: CPUs, motherboards,

memory, and hard drives, each of which come in multiple varieties. From these

components, 16 different computer configurations can be made. Each component

has a base price that is used as a reference point by suppliers making offers.

Agents wanting to purchase components send requests for quotes (RFQs)

to suppliers indicating the type and quantity of components desired, the date on

which they should be delivered, and a reserve price stating the maximum amount

the agent is willing to pay. Agents are limited to sending at most 5 RFQs per

component per supplier per day. Suppliers respond to RFQs the next day by

offering a price for the requested components if the request can be satisfied. Agents
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may then accept or reject the offers.

Suppliers have a limited capacity for producing components, and this ca-

pacity varies throughout the game according to a random walk. Suppliers base

their prices offered in response to RFQs on the fraction of their capacity that is

currently free. When determining prices for RFQs for a particular component, a

supplier simulates scheduling the production of all components currently ordered

plus those components requested in the RFQs as late as possible. From the pro-

duction schedule, the supplier can determine the remaining free capacity between

the current day and any future day. The price offered in response to an RFQ is

equal to the base price of the component discounted by an amount proportional to

the fraction of the supplier’s capacity free before the due date. Agents may send

zero-quantity RFQs to serve as price probes. Due to the nature of the supplier

pricing model, it is possible for prices to be as low when components are requested

at the last minute as when they are requested well in advance. Agents thus face an

interesting tradeoff : they may either commit to ordering while knowledge of future

customer demand is still limited (see below), or wait to order and risk being unable

to purchase needed components.

To prevent agents from driving up prices by sending RFQs with no intention

of buying, each supplier keeps track of a reputation rating for each agent that

represents the fraction of offered components that have been accepted by the agent.

If this reputation falls below a minimum acceptable purchase ratio (75% for CPU

suppliers, and 45% for others), then the prices and availability of components are

affected for that agent. Agents must therefore plan component purchases carefully,

sending RFQs only when they believe it is likely that they will accept the offers

received.
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4.2.2 Computer Sales

Customers wishing to buy computers send the agents RFQs consisting of

the type and quantity of computer desired, the due date, a reserve price indicating

the maximum amount the customer is willing to pay per computer, and a penalty

that must be paid for each day the delivery is late. Agents respond to the RFQs

by bidding in a first-price auction: the agent offering the lowest price on each RFQ

wins the order. Agents are unable to see the prices offered by other agents or even

the winning prices, but they do receive a report each day indicating the highest

and lowest price at which each type of computer sold on the previous day.

Each RFQ is for between 1 and 20 computers, with due dates ranging from

3 to 12 days in the future, and reserve prices ranging from 75% to 125% of the base

price of the requested computer type. (The base price of a computer is equal to

the sum of the base prices of its parts.)

The number of RFQs sent by customers each day depends on the level of

customer demand, which fluctuates throughout the game. Demand is broken into

three segments, each containing about one third of the 16 computer types: high,

mid, and low range. Each range has its own level of demand. The total number of

RFQs per day ranges between roughly 80 and 320, all of which can be bid upon by

all six agents. It is possible for demand levels to change rapidly, limiting the ability

of agents to plan for the future with confidence.

4.2.3 Production and Delivery

Each agent manages a factory where computers are assembled. Factory

operation is constrained by both the components in inventory and assembly cycles.

Factories are limited to producing roughly 360 computers per day (depending on

their types). Each day an agent must send a production schedule and a delivery

schedule to the server indicating its actions for the next day. The production
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schedule specifies how many of each computer will be assembled by the factory,

while the delivery schedule indicates which customer orders will be filled from the

completed computers in inventory. Agents are required to pay a small daily storage

fee for all components in inventory at the factory. This cost is sufficiently high to

discourage agents from holding large inventories of components for long periods.

4.3 Overview of TacTex

Given the detail and complexity of the TAC SCM scenario, creating an

effective agent requires the development of tightly coupled modules for interacting

with suppliers, customers, and the factory. The fact that each day’s decisions must

be made in less than 15 seconds constrains the set of possible approaches.

TacTex is a fully implemented agent that operates within the TAC SCM

scenario. In this section, I present a high-level overview of the agent. TacTex was

developed over a number of years, with incremental improvements each year. The

basic agent design described in this section was first present in the 2005 agent (the

first version of TacTex to win an annual TAC SCM tournament) and has remained

unchanged since then. In the remaining sections of this chapter, I describe the

components that were present in the 2005 agent (Sections 4.4 and 4.5), which rely

on a number of heuristics to make predictions. The description of the learning

based predictors that were added in later years is left to the following chapter.

4.3.1 Agent Components

Figure 4.2 illustrates the basic components of TacTex and their interaction.

There are five basic tasks a TAC SCM agent must perform:

1. Sending RFQs to suppliers to request components;

2. Deciding which offers from suppliers to accept;
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3. Bidding on RFQs from customers requesting computers;

4. Sending the daily production schedule to the factory;

5. Delivering completed computers.

We assign the first two tasks to a Supply Manager module, and the last three to

a Demand Manager module. The Supply Manager handles all planning related to

component inventories and purchases, and requires no information about computer

production except for a projection of future component use, which is provided

by the Demand Manager. The Demand Manager, in turn, handles all planning

related to computer sales and production. The only information about components

required by the Demand Manager is a projection of the current inventory and future

component deliveries, along with an estimated replacement cost for each component

used. This information is provided by the Supply Manager.

We view the tasks to be performed by these two managers as optimization

tasks: the Supply Manager tries to minimize the cost of obtaining the components

required by the Demand Manager, while the Demand Manager seeks to maximize

the profits from computer sales subject to the information provided by the Supply

Manager. In order to perform these tasks, the two managers need to be able to

make predictions about the results of their actions and the future of the economy.

TacTex uses three predictive models to assist the managers with these predictions:

a predictive Supplier Model, a predictive Demand Model, and an Offer Acceptance

Predictor.

The Supplier Model keeps track of all information available about each sup-

plier, such as TacTex’s outstanding orders and the prices that have been offered

in response to RFQs. Using this information, the Supplier Model can assist the

Supply Manager by making predictions concerning future component availability

and prices.
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Figure 4.2: An overview of the main agent components

The Demand Model tracks the customer demand in each of the three market

segments, and tries to estimate the underlying demand parameters in each segment.

With these estimates, it is possible to predict the number of RFQs that will be

received on any future day. The Demand Manager can then use these predictions

to plan for future production.
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• Record information received from the server and update prediction modules

• The Supply Manager takes the supplier offers as input and performs the following:

– decide which offers to accept

– update projected future inventory

– update replacement costs

• The Demand Manager takes customer RFQs, current orders, projected inventory,
and replacement costs as input and performs the following:

– predict future customer demand using the Demand Model

– use the Offer Acceptance Predictor to generate acceptance functions for RFQs

– schedule production several days into the future

– extract the current day’s production, delivery, and bids from the schedule

– update projected future component use

• The Supply Manager takes the projected future component use as input and per-
forms the following:

– determine the future deliveries needed to maintain a threshold inventory

– use the Supplier Model to predict future component prices

– decide what RFQs need to be sent on the current day

Table 4.1: Overview of the steps taken each day by TacTex.

When deciding what bids to make in response to customer RFQs, the De-

mand Manager needs to be able to estimate the probability of a particular bid

being accepted (which depends on the bidding behavior of the other agents). This

prediction is handled by the Offer Acceptance Predictor. Based on past bidding re-

sults, the Offer Acceptance Predictor produces a function for each RFQ that maps

bid prices to the predicted probability of winning the order.

The steps taken each day by TacTex as it performs the five tasks described

previously are presented in Table 4.1.
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4.4 The Demand Manager

The Demand Manager handles all computation related to computer sales

and production. This section describes the Demand Manager, along with the De-

mand Model and the Offer Acceptance Predictor upon which it relies. The Offer

Acceptance Predictor described here was present in the 2005 agent; Section 5.1 of

the following chapter describes an improved version used in later years.

4.4.1 Demand Model

When planning for future computer production, the Demand Manager needs

to be able to make predictions about future demand in each market segment. For

example, if more RFQs are expected for high range than low range computers, the

planned production should reflect this fact. The Demand Model is responsible for

making these predictions.

In order to explain its operation, further detail is required about the cus-

tomer demand model. The state of each demand segment (high, mid, and low range

computers) is represented by parameters Qd and τd (both of which are internal to

the game server). Qd represents the expected number of RFQs on day d, and τd

is the trend in demand (increasing or decreasing) on day d. The actual number of

RFQs is generated randomly from a Poisson distribution with Qd as its mean. The

next day’s demand, Qd+1, is set to Qdτd, and τd+1 is determined from τd according

to a random walk.

To predict future demand, the Demand Manager estimates the values of

Qd and τd for each segment using a grid-based filtering approach first used by the

agent DeepMaize in 2003 [57]. Basically, this is a Bayesian approach that involves

maintaining a probability distribution over (Qd, τd) pairs for each segment. The

number of RFQs received each day from the segment represents information that

can be used to update this distribution, and the distribution over (Qd+1, τd+1) pairs
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can then be generated based on the game’s demand model. By repeating this last

step, the expected value of Qi can be determined for any future day i and used

as the number of RFQs predicted on that day. Full details of the approach are

available in [57].

4.4.2 Offer Acceptance Predictor

In order to bid on customer RFQs, the Demand Manager needs to be able

to predict the orders that will result from the offers it makes. A simple method of

prediction would be to estimate the winning price for each RFQ, and assume that

any bid below this price would result in an order. Alternatively, for each RFQ the

probability of winning the order could be estimated as a function of the current bid.

This latter approach is the one implemented by the Offer Acceptance Predictor. For

each customer RFQ received, the Offer Acceptance Predictor generates a function

mapping the possible bid prices to the probability of acceptance. (The function can

thus be viewed as a cumulative distribution function.) The approach used in the

2005 agent involves two components: a linear heuristic for generating a function,

and an adaptive means of revising the heuristic’s predictions.

The linear heuristic is based on one used by the agent Botticelli in 2003 [10]

whereby the CDF generated for each RFQ depends only on the type of computer

requested and is generated using linear regression on six data points. Specifically,

for each of the past five days, the average price bid by TacTex for the given type

of computer is determined, along with the fraction of offers accepted on that day.

Each pair results in one data point, and the sixth point represents the highest

winning price reported for the given type of computer on the previous day along

with an acceptance rate of zero. (Unlike [11], we do not add a point representing

the lowest reported winning price, because it only takes a single agent significantly

underbidding on a single RFQ to make this point a poor representative of the true

function.) These points are fit using least squares linear regression to generate a
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linear function that will be used for all RFQs requesting the given computer type.

The linear function is modified using values we call day factors, which are

designed to measure the effect of the due date on offer acceptance. The due dates for

RFQs range from 3 to 12 days in the future, and a separate day factor is learned

for each day in this range. Each day factor is set to the ratio of actual orders

received to orders expected based on the linear heuristic, for all recent offers made.

When an offer is made on an RFQ, the Offer Acceptance Predictor computes the

probability of an order by multiplying the initial prediction by the corresponding

day factor. The day factors therefore serve both as a means of gauging the impact

of due dates on computer prices and as a mechanism for ensuring that the number

of orders received is roughly the number expected.

4.4.3 Demand Manager

The Demand Manager is responsible for bidding on customer RFQs, produc-

ing computers, and delivering them to customers. All three tasks can be performed

using the same production scheduling algorithm. As these tasks compete for the

same resources (components, completed computers, and factory cycles), the De-

mand Manager begins by planning to satisfy existing orders, and then uses the

remaining resources in planning for RFQs. The latest possible due date for an

RFQ received on the current day is 12 days in the future, meaning the production

schedule for the needed computers must be sent within the next 10 days. The

Demand Manager thus always plans for the next 10 days of production. Each day,

the Demand Manager i) schedules production of existing orders, ii) schedules pro-

duction of predicted future orders, and then iii) extracts the next day’s production

and delivery schedule from the result. The production scheduling algorithm, these

three steps, and the means of predicting production beyond 10 days are described

in the following sections.
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4.4.3.1 Production Scheduling Algorithm

The goal of the production scheduler is to to take a set of orders and deter-

mine the 10-day production schedule that maximizes profit, subject to the available

resources. The resources provided are:

• A fixed number of factory cycles per day;

• The components in inventory;

• The components projected to be delivered; and

• Completed computers in inventory.

The profit for each order is equal to its price (if it could be delivered) minus any

penalties for late delivery and the replacement costs for the components involved

as specified by the Supply Manager.

The scheduling algorithm used by the Demand Manager is a greedy algo-

rithm that attempts to produce each order as late as possible. Orders are sorted

by profit, and the scheduler tries to produce each order using cycles and compo-

nents from the latest possible dates. If any part of the order cannot be produced,

the needed computers will be taken from the existing inventory of completed com-

puters, if possible. The purpose of scheduling production as late as possible is to

preserve resources that might be needed by orders with earlier due dates. A record

is kept of what production took place on each day and how each order was filled.

It should be noted that the scheduling problem at hand lends itself to the

use of linear programming to determine an optimal solution. We initially exper-

imented with this approach, using a linear program similar to one designed for a

slightly simplified scenario by [10]. However, due to the game’s time constraints

(15s allowed per simulated day), the need to use the scheduler multiple times per
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day (and in a modified fashion for bidding on customer RFQs, as described be-

low), and the fact that the greedy approach is nearly optimal (observed in our own

experiments and confirmed by [9]), we chose to use the greedy approach.

4.4.3.2 Handling Existing Orders

The Demand Manager plans for the production of existing orders in two

steps. Before starting, the production resources are initialized using the values

provided by the Supply Manager. Then the production scheduler is applied to the

set of orders due in one day or less. All orders that can be taken from inventory

(hopefully all of them to avoid penalties) are scheduled for delivery the next day.

The production scheduler is next applied to the remaining orders. No deliveries

are scheduled for these orders, because there is no reward for early delivery.

4.4.3.3 Bidding on RFQs and Handling Predicted Orders

The goal of the Demand Manager is now to identify the set of bids in

response to customer RFQs that will maximize the expected profit from using the

remaining production resources for the next 10 days, and to schedule production

of the resulting predicted orders. The profit depends not only on the RFQs being

bid on on the current day, but also on RFQs that will be received on later days

for computers due during the period. If these future RFQs were ignored when

selecting the current day’s bids, the Demand Manager might plan to use up all

available production resources on the current RFQs, leaving it unable to bid on

future RFQs. One way to address this issue would be to restrict the resources

available to the agent for production of the computers being bid on (as in [10]).

Instead, the Demand Manager generates a predicted set of all RFQs, using the

levels of customer demand predicted by the Demand Model, that will be received

for computers due during the period, and chooses bids for these RFQs at the same

time as the actual RFQs from the current day.
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Once the predicted RFQs are generated, the Offer Acceptance Predictor

is used to generate an acceptance prediction function for every RFQ, both real

and predicted. The Demand Manager then considers the production resources

remaining, the set of RFQs, and the set of acceptance prediction functions and

simultaneously generates a set of bids on RFQs and a production schedule that

produces the expected resulting orders, using the following modification of the

greedy scheduler.

If we were considering only a single RFQ and had no resource constraints,

the expected profit resulting from a particular bid price would be:

Expected profit = P (order|price) ∗ (price− cost) (4.1)

The optimal bid would be the value that maximized this quantity.

Computing the expected profit from a set of bids when resource constraints

are considered is much more difficult, however, because the profit from each RFQ

cannot be computed independently. For each possible set of orders in which it is

not possible to fill all orders, the profit obtained depends on the agent’s produc-

tion and delivery strategy. For any nontrivial production and delivery strategy,

precise calculation of the expected profit would require separate consideration of

a number of possible outcomes that is exponential in the number of RFQs. If we

were guaranteed that we would be able to fill all orders, we would not have this

problem. The expected profit from each RFQ could be computed independently,

and we would have:

Expected profit =
∑

i ǫ all RFQs

P (orderi|pricei) ∗ (pricei − costi) (4.2)

Our bidding heuristic is based on the assumption that the expected number

of computers ordered for each RFQ will be the actual number ordered. In other

words, we pretend that it is possible to win a part of an order, so that instead of
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winning an entire order with probability p, we win a fraction p of an order with

probability 1. This assumption greatly simplifies the consideration of filling orders,

since we now have only one set of orders to consider, while leaving the formulation

of expected profit unchanged. As long as it is possible to fill the partial orders, (4.2)

will hold, where the probability term now refers to the fraction of the order won.

It would appear that this approach could lead to unfilled orders when the agent

wins more orders than expected, but in practice, this is not generally a problem.

Most of the RFQs being bid on are the predicted RFQs that will be received on

future days, and so the agent can modify its future bidding behavior to correct

for an unexpectedly high number of orders resulting from the current day’s RFQs.

TacTex indeed tends to have very few late or missed deliveries using this bidding

strategy.

By using this notion of partial orders, we can transform the problem of bid

selection into the problem of finding the most profitable set of partial orders that

can be filled with the resources available, and we can solve this problem using the

greedy production scheduler. All bids are initially set to be just above the reserve

price, which means we begin with no orders. The scheduler then chooses an RFQ

and an amount by which its bid will be lowered, resulting in an increased partial

order for that RFQ. The scheduler simulates filling this increase by scheduling

its production as described previously. This process is repeated until no more

production is possible or no bid can be reduced without reducing the expected

profit.

Because we are working with resource constraints, the goal of the greedy

production scheduler at each step is to obtain the largest possible increase in profit

using the fewest possible production resources. At each step, the scheduler considers

each RFQ and determines the bid reduction that will produce the largest increase

in profit per additional computer. The scheduler then selects the RFQ for which

this value is the largest. In many cases, however, the most limited resource is
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Algorithm 1 Bidding Heuristic

Input a set of RFQs and available resources (free cycles, components in inventory,
and expected component deliveries) over the desired range of days

• For each RFQ, compute both the probability of winning and the expected
profit as a function of price

• Set the bid for each RFQ to be just above the reserve price

• Repeat until no RFQs are left in the list of RFQs to be considered:

1. For each RFQ, find the bid lower than the current bid that produces
the largest increase in profit per additional computer ordered (or per ad-
ditional cycle required during periods of high factory utilization)
2. Choose the RFQ and bid that produce the largest increase.
3. Try to schedule production of the partial order resulting from lowering
the bid. If it cannot be scheduled, remove the RFQ from the list.
4. If the production was scheduled, but no further decrease in the bid will
lead to an increase in profit, remove the RFQ from the list.

• Return the final bid for each RFQ.

production cycles, and not components. In such cases, the increase in profit per

cycle used is a better measure of the desirability of a partial order than the increase

in profit per additional computer, so we divide the latter quantity by the number

of cycles required to produce the type of computer requested by the RFQ and use

the resulting values to choose which RFQ should be considered next. We consider

cycles to be the limiting factor whenever the previous day’s production used more

than 90% of the available cycles.

The range of possible bid prices is discretized for the sake of efficiency.

Even with fairly fine granularity, this bidding heuristic produces a set of bids in

significantly less time than the 15 seconds allowed per simulated game day. The

complete bidding heuristic is summarized in Algorithm 1.
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4.4.3.4 Completing Production and Delivery

After applying the production scheduler to the current orders and RFQs,

the Demand Manager is left with a 10-day production schedule, a record of how

each order was filled, and a set of bids for the actual and predicted RFQs. The

bids on actual RFQs can be sent directly to customers in their current form, and

computers scheduled for delivery can be shipped. The Demand Manager then

considers modifications to the production schedule to send to the factory for the

next day. If there are no cycles remaining on the first day of the 10-day production

schedule, the first day can be sent unchanged to the factory. Otherwise, the Delivery

Manager shifts production from future days into the first day so as to utilize all

cycles, if possible.

4.4.3.5 Production Beyond 10 Days

The components purchased by the Supply Manager depend on the compo-

nent use projected by the Demand Manager. If we want to allow the possibility of

ordering components more than 10 days in advance, the Demand Manager must be

able to project its component use beyond the 10-day period for which it plans pro-

duction. One possibility we considered was to extend this period and predict RFQs

farther into the future. Another was to predict future computer and component

prices by estimating our opponents’ inventories and predicting their future behav-

ior. Neither method provided accurate predictions of the future, and both resulted

in large swings in projected component use from one day to the next. The Demand

Manager thus uses a simple and conservative prediction of future component use.

The Demand Manager attempts to predict its component use for the period

between 11 and 40 days in the future. Before 11 days, the components used in the

10-day production schedule are used as the prediction, and situations in which it

is advantageous to order components more than 40 days in advance appear to be
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rare. The Demand Model is used to predict customer demand during this period,

and the Demand Manager assumes that it will win, and thus need to produce, some

fraction of this demand. This fraction ranges from zero during times of low demand

to 1/6 during times of moderate or high demand, although the Demand Manager

will not predict a higher level of component use than is possible given the available

factory cycles.

4.5 The Supply Manager

The Supply Manager is responsible for purchasing components from sup-

pliers based on the projection of future component use provided by the Demand

Manager, and for informing the Demand Manager of expected component deliveries

and replacement costs. In order to be effective, the Supply Manager must be able

to predict future component availability and prices. The Supplier Model assists in

these predictions.

4.5.1 Supplier Model

The Supplier Model keeps track of all information sent to and received from

suppliers. This information is used to model the state of each supplier, allowing

predictions to be made. The Supplier Model performs three main tasks: predicting

component prices, tracking reputation, and generating probe RFQs to improve its

models.

4.5.1.1 Price Prediction

To assist the Supply Manager in choosing which RFQs to send to suppliers,

the Supplier Model predicts the price that a supplier will offer in response to an

RFQ with a given quantity and due date. The Supplier Model requires an estimate

of each supplier’s existing commitments in order to make this prediction.
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Algorithm 2 Supplier Free Capacity Estimation

Initialization: Create an array freeCapacity of size 220 (the number of game
days) to store estimates, with all entries set to 1 (all capacity free), and record the
component’s base price base.
Each day:
1. Input the current day d and a set of n offers sorted by due date. For 1 ≤
x ≤ n, offer x is represented by due date duex and price pricex.
2. Compute freex = 2(1 − pricex/base). This is the free capacity from today
until duex based on the pricing equation. Also, let free0 = 0 and due0 = d;
3. For x = 1 to n, compute free′x = freex(duex−d−1)−freex−1(duex−1−d−1)

duex−duex−1

. This is
the fraction of free capacity between days duex−1 and duex − 1.

4. For x = 1 to n, compute estimatex =

∑duex−1

i=duex−1
freeCapacity[i]

duex−duex−1

. This is our
estimate of that free capacity fraction.
5. Correct the daily estimates: For x = 1 to n:

For i = duex−1 to duex − 1, freeCapacity[i]+=free′x − estimatex

Recall that the price offered in response to an RFQ requesting delivery on

a given day is determined entirely by the fraction of the supplier’s capacity that

is committed through that day. As a result, the Supplier Model can compute this

fraction from the price offered. If two offers with different due dates are available,

the fraction of the supplier’s capacity that is committed in the period between

the first and second date can be determined by subtracting the total capacity

committed before the first date from that committed before the second. With

enough offers, the Supplier Model can form a reasonable estimate of the fraction

of capacity committed by a supplier on any single day.

For each supplier and supply line, the Supply Manager maintains an estimate

of free capacity, and updates this estimate daily based on offers received. Using

this estimate, the Supplier Model is able to make predictions on the price a supplier

will offer for a particular RFQ. The update process for each supplier and supply

line is summarized in Algorithm 2.
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4.5.1.2 Reputation

When deciding which RFQs to send, the Supply Manager needs to be care-

ful to maintain a good reputation with suppliers. Each supplier has a minimum

acceptable purchase ratio, and the Supply Manager tries to keep this ratio above

the minimum. The Supplier Model tracks the offers accepted from each supplier

and informs the Supply Manager of the quantity of offered components that can

be rejected from each supplier before the ratio falls below the minimum.

4.5.1.3 Price Probes

The Supply Manager will often not need to use the full five RFQs allowed

each day per supplier line. In these cases, the remaining RFQs can be used as

zero-quantity price probes to improve the Supplier Model’s estimate of a supplier’s

committed capacity. For each supplier line, the Supplier Model records the last

time each future day has been the due date for an offer received. Each day, the

Supply Manager informs the Supplier Model of the number of RFQs available per

supplier line to be used as probes. The Supplier Model chooses the due dates for

these RFQs by finding dates that have been used as due dates least recently.

4.5.2 Supply Manager

The Supply Manager’s goal is to obtain the components that the Demand

Manager projects it will use at the lowest possible cost. This process is divided

into two steps: first the Supply Manager decides what components will need to be

delivered, and then it decides how best to ensure the delivery of these components.

These two steps are described below, along with an alternative means of obtaining

components.
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4.5.2.1 Deciding What to Order

The Supply Manager seeks to keep the inventory of each component above

a certain threshold. This threshold (determined experimentally) is 800, or 400 in

the case of CPUs, and decreases linearly to zero between days 195 and 215. Each

day the Supply Manager determines the deliveries that will be needed to maintain

the threshold on each day in the future. Starting with the current component

inventory, the Supply Manager moves through each future day, adding the deliveries

from suppliers expected for that day, subtracting the amount projected to be used

by the Demand Manager for that day, and making a note of any new deliveries

needed to maintain the threshold. The result is a list of needed deliveries that we

call intended deliveries. When informing the Demand Manager of the expected

future component deliveries, the Supply Manager adds these intended deliveries to

the actual deliveries expected from previously placed component orders. The idea

is that although the Supply Manager has not yet placed the orders guaranteeing

these deliveries, it intends to, and is willing to make a commitment to the Demand

Manager to have these components available.

Because prices offered in response to short term RFQs can be very unpre-

dictable, the Supply Manager never makes plans to send RFQs requesting delivery

in less than five days. (One exception is discussed later.) As discussed previously,

no component use is projected beyond 40 days in the future, meaning that the

intended deliveries fall in the period between five and 40 days in the future.

4.5.2.2 Deciding How to Order

Once the Supply Manager has determined the intended deliveries, it must

decide how to ensure their delivery at the lowest possible cost. We simplify this task

by requiring that for each component and day, that day’s intended delivery will be

supplied by a single order with that day as the due date. Thus, the only decisions
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left for the Supply Manager are when to send the RFQ and which supplier to send

it to. For each individual intended delivery, the Supply Manager predicts whether

sending the RFQ immediately will result in a lower offered price than waiting for

some future day, and sends the RFQ if this is the case.

In order to make this prediction correctly, the Supply Manager would need

to know the prices that would be offered by a supplier on any future day. Although

this information is clearly not available, the Supplier Model does have the ability

to predict the prices that would be offered by a supplier for any RFQ sent on

the current day. To enable the Supply Manager to extend these predictions into

the future, for the 2005 agent we made the simplifying assumption that the price

pattern predicted on the current day will remain the same on all future days. In

other words, if an RFQ sent on the current day due in i days would result in a

certain price, then sending an RFQ on any future day d due on day d + i would

result in the same price. This assumption is not entirely unrealistic due to the

fact that agents tend to order components a certain number of days in advance,

and this number generally changes slowly. Essentially, we are saying, “Given the

current ordering pattern of other agents, prices are lowest when RFQs are sent x

days in advance of the due date, so plan to send all RFQs x days in advance.” (In

Section 5.2 of the next chapter, I will discuss the addition of learning to predict

changes in component prices.)

The resulting procedure followed by the Supply Manager is as follows. For

each intended delivery, the Supplier Model is asked to predict the prices that would

result from sending RFQs today with various due dates requesting the needed

quantity. A price is predicted for each due date between 5 and 40 days in the

future. If there are two suppliers, the lower price is used. If the intended delivery

is needed in i days, and the price for ordering i days in advance is lower than that

of any smaller number of days, the Supply Manager will send the RFQ. Any spare

RFQs will be offered to the Supplier Model to use as probes.
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The final step is to predict the replacement cost of each component. The

Supply Manager assumes that any need for additional components that results

from the decisions of the Demand Manager will be felt on the first day on which

components are currently needed, i.e., the day with the first intended delivery.

Therefore, for each component’s replacement cost, the Supply Manager uses the

lowest price found when considering the first intended delivery of that component,

even if no RFQ was sent.

For each RFQ, a reserve price somewhat higher than the expected offer price

is used. Because the Supply Manager believes that the RFQs it sends are the ones

that will result in the lowest possible prices, all offers are accepted. If the reserve

price cannot be met, the Supplier Model’s predictions will be updated accordingly

and the Supply Manager will try again the next day.

4.5.2.3 2-Day RFQs

As mentioned previously, the prices offered in response to RFQs requesting

near-immediate delivery are very unpredictable. If the Supply Manager were to

wait until the last minute to send RFQs in hopes of low prices, it might frequently

end up paying more than expected or be unable to buy the components at all.

To allow for the possibility of getting low priced short-term orders without risk,

the Supply Manager sends RFQs due in 2 days, the minimum possible, for small

quantities in addition to what is required by the intended deliveries. If the prices

offered are lower than those expected from the normal RFQs, the offers will be

accepted.

The size of each 2-day RFQ depends on the need for components, the repu-

tation with the supplier, and the success of past 2-day RFQs. Because the Supply

Manager may reject many of the offers resulting from 2-day RFQs, it is possible

for the agent’s reputation with a supplier to fall below the acceptable purchase

ratio. The Supplier Model determines the maximum amount from each supplier

84



that can be rejected before this happens, and the quantity requested is kept below

this amount.

The Supply Manager decides whether to accept an offer resulting from a

2-day RFQ by comparing the price to the replacement cost and the prices in offers

resulting from normal RFQs for that component. If the offer’s price is lower than

any of these other prices, the offer is accepted. If the quantity in another, more

expensive offer is smaller than the quantity of the 2-day RFQ, then that offer may

safely be rejected.

The 2-day RFQs enable the agent to be opportunistic in taking advantage

of short-term bargains on components without being dependent on the availability

of such bargains.

4.6 2005 Competition Results

Out of 32 teams that initially entered the 2005 TAC SCM competition, 24

advanced past a seeding round to participate in the finals, held over three days at

IJCAI 2005. On each day of the finals, half of the teams were eliminated, until

six remained for the final day. Game outcomes depended heavily on the six agents

competing in each game, as illustrated by the progression of scores over the course

of the competition. In the seeding round, TacTex won with an average score of

$14.9 million, and several agents had scores above $10 million. Making a profit was

much more difficult on the final day of competition, however, and TacTex won with

an average score of only $4.7 million. The second highest average score was $1.6

million, and three agents (each of which averaged at least $6 million in the seeding

round) lost money. Scores of the final round are shown in Table 4.2.

Due to the complexity of the TAC SCM scenario and the vast number of de-

cisions that must be made during a single game, it is difficult to isolate the factors

that contributed to TacTex’s success by analyzing game results. When comparing
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Rank Agent Average Profit

1 TacTex-05 $4.74M
2 Southampton-SCM $1.60M
3 Mertacor $0.55M
4 DeepMaize -$0.22M
5 MinneTAC -$0.33M
6 Maxon -$1.99M

Table 4.2: Results of the 2005 final round

purchases of individual component types or sales of individual computer types on a

day-by-day basis1, it does not appear that TacTex obtained significantly lower pur-

chase prices or significantly higher sales prices than other competitive agents. This

fact suggests the possibility that TacTex was better able to focus on the types of

computer that were most profitable at any point in time given the component and

computer prices then present in the market. Two observations potentially related

to this hypothesis are that TacTex tends to carry smaller component inventories

throughout the game than many of its competitors, and also appears more flexible

in its choice of when to buy components, showing a willingness to purchase com-

ponents only a short time in advance of their use. An agent that buys components

at the last possible moment may be better able to match its purchases to current

customer demand. There is the risk, however, that the agent might wait too long

and be unable to purchase components at a reasonable price, or at all. This trade-

off, and other possible factors related to TacTex’s success, are explored in the next

section.

4.7 Experiments

I now present the results of controlled experiments designed to measure the

impact of individual components of TacTex on its overall performance. In each

1using the CMieux toolkit [8]
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experiment, two versions of TacTex compete: one unaltered agent (which I will call

the base agent) that matches the description provided previously, and one agent

that has been modified in a specific way. Each experiment includes 30 games.

The other four agents competing–Mertacor-05, MinneTAC-05, GoBlueOval, and

RationalSCM–are taken from the TAC Agent Repository2, a collection of agents

provided by the teams involved in the competition.

Experimental results are shown in Table 4.3. Each experiment is labeled

with a number. The columns represent the averages over the 30 games of the total

score (profit) along with standard deviations, percent of factory utilization over

the game (which is closely correlated with the number of computers sold), revenue

from selling computers to customers, component costs, storage costs, penalties for

late deliveries, and the percent of the games in which the altered agent outscored

the base agent. The final column indicates whether the difference in score observed

between the two agents is statistically significant with 99% confidence according

to a paired t-test. The first row, experiment 0, is provided to give perspective to

the results of other experiments. In experiment 0, two base agents are used, and

all numbers represent the actual results obtained. In all other rows, the numbers

represent the differences between the results of the altered agent and the base

agent (from that experiment, not from experiment 0). In general, the results of the

base agents are close to those in experiment 0, but there is some variation due to

differences between games (e.g. customer demand), and due to the effects of the

altered agent on the economy.

I first present experiments designed to measure the importance of prediction

accuracy in our predictive planning approach. Then I examine the sensitivity of

our agent to some of its parameters, particularly those related to the important

decision of when to purchase components.

2http://www.sics.se/tac/showagents.php
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Exp. # Score Util. Revenue Costs Storage Penalties Win % Sig.?

0 $2.54M 89% $111.25M $106.14M $1.91M $.36M - -

1 -2.46 ± 2.65 -1% -2.25 -5.4 +.70 -.20 0% Y

2 -.19 ± .68 0% -.08 +.17 +.01 -.08 30% N

3 -.75 ± 1.23 -3% -4.57 -3.56 +.07 -.30 20% Y

4 +.05 ± 1.28 +1% +2.45 +2.36 +.01 +.02 40% N

5 +.65 ± .99 +2% +2.09 +1.58 -.14 +.03 87% Y

6 -2.36 ± 2.75 -5% -7.01 -4.18 -.54 +.06 7% Y

7 -3.88 ± 4.74 -44% -52.24 -47.97 -.81 +.50 7% Y

8 +.10 ± 1.65 -28% -31.80 -31.41 -.69 +.33 53% N

9 +1.29 ± 1.73 -10% -12.23 -13.07 -.49 +.17 87% Y

10 -1.66 ± 1.99 +4% +4.65 +5.84 +.45 -.11 10% Y

11 -2.70 ± 3.02 +4% +5.89 +7.62 +.86 -.18 3% Y

12 -4.34 ± 4.53 +6% +6.40 +10.12 +.58 -.20 0% Y

13 -2.13 ± 3.23 -31% -40.01 -38.55 -.24 +.95 13% Y

14 -.46 ± 3.83 -18% -25.94 -25.88 -.08 +.51 50% N

15 -.18 ± .80 0% -.54 -.43 -.03 +.12 40% N

16 -.20 ± .83 +1% +1.51 +1.70 +.04 -.02 37% N

17 -1.25 ± 1.74 +4% +5.47 +6.63 +.22 -.19 10% Y

18 +.03 ± 3.92 -15% -22.42 -22.65 -.04 +.23 70% N

19 +.78 ± 1.76 -9% -12.26 -13.15 +.03 +.12 73% Y

20 +.46 ± .88 -2% -3.14 -3.58 -.04 +.01 73% Y

21 -.41 ± .89 +1% +1.18 +1.51 +.04 +.02 40% Y

22 +.11 ± 2.73 -19% -24.85 -24.64 -.45 +.26 66% N

23 -6.76 ± 8.00 -48% -66.96 -60.52 -.38 +.57 0% Y

24 -2.05 ± 2.29 -4% -5.62 -3.54 -.12 +.06 0% Y

Table 4.3: Experimental results for one altered and one unaltered version of Tac-
Tex in 30 games. Columns include the total score (with standard deviations), how
often the altered agent outscored the unaltered agent, and an indicator of statistical
significance. Numbers represent millions of dollars. In experiment 0, provided to
provide perspective, no alteration is made to TacTex, and numbers represent the
actual results. In all other experiments, numbers represent the difference between
the altered and unaltered agent.

4.7.1 The Three Predictor Modules

The first three sets of experiments probe the sensitivity of the agent to

changes in the predictor modules.
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4.7.1.1 Offer Acceptance Predictor

Recall that for each customer RFQ a function is generated mapping a price

offered to the probability of acceptance. This function is generated by multiplying

the result of linear regression by a day factor. In experiment 1, no day factors are

used, and the score decreases considerably. In experiment 2, day factors are used,

but instead of using linear regression to find probabilities across prices, a single

price is chosen at which the RFQ is expected to be won. The price chosen is the

greater of 95% of the previous day’s high price for the computer type, and the

previous day’s low price. This quantity corresponds roughly to the average selling

price of a computer. For any offer below this price, the prediction is made that

the offer will be accepted with probability 1, before the day factor is applied. The

results show a small, non-significant difference between the use of this heuristic and

the use of linear regression.

It appears that the use of day factors is the key to the success of the Offer

Acceptance Predictor. The day factors serve two roles, however: measuring the

impact of due date on offer acceptance, and serving as a feedback mechanism to

ensure that the number of orders received is in line with the predictions. To measure

the relative importance of these two roles, I replace the day factors in experiment

3 with a single multiplier to be used regardless of an RFQ’s due date. Like an

all-inclusive day factor, the multiplier represents the ratio between all actual and

expected orders (i.e. those predicted from the previous days). Linear regression

is used as before. The results show the single multiplier to be less effective than

the day factors, but much more effective than nothing at all, as in experiment 1.

Thus, while considering due dates is of some value in predicting offer acceptance,

it appears the feedback role is the more important aspect of the day factors.
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4.7.1.2 Demand Model

In experiment 4, I investigate the value of the Demand Model by ignoring

its predictions and instead assuming that the number of RFQs received on any

day in the future will be the same as the number received on the current day.

Surprisingly, this has an insignificant effect on performance, and we have been

unable to determine why. It may be the case that demand changes slowly enough

that accurate predictions are not necessary.

4.7.1.3 Supplier Model

The predictions of prices that will be offered in response to RFQs cannot

simply be “turned off” as the predictions were in the previous experiments, because

the behavior of the Supply Manager is dependent upon comparisons of prices.

Instead, in experiment 5 I measure the impact of accuracy in the predictions of

component offer prices by the Supplier Model by adding noise to the predictions.

Each predicted offer price for a particular RFQ under consideration is multiplied by

a number chosen randomly between 0.9 and 1.1. Amazingly, this actually improves

performance.

One explanation for this result is that component costs tend to decrease over

the course of a game. Recall that the Supply Manager will only order components

due on day d if there is no n for which waiting to order on day d − n is predicted

to result in a lower price. Because the Supplier Model assumes that price patterns

will remain the same in the future, it is likely to overestimate the cost of waiting to

purchase components. The presence of noise makes it less likely that a long-term

request would be predicted to result in the lowest offer price–for some value of n,

the added noise will possibly make waiting until day d−n appear more attractive.

This explanation is supported by the results of Section 5.2, in which I explore the

addition of learning to predict changes in future component prices.
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Another explanation is that by waiting longer to order components, TacTex

may have a better idea of what components it actually needs. This explanation is

supported by the results of the next section.

4.7.2 Experiments with the Supply Manager

The results to this point highlight the importance of the Offer Acceptance

Predictor within TacTex and demonstrate that the Demand Predictor is, at least

in the economy under consideration, not important. The results of experiment

5, along with the hypothesis in the discussion of the competition that TacTex’s

success may be related to its choice of when to purchase components, suggest

further experiments into the strategy used by the Supply Manager. I now present

experiments that examine TacTex’s sensitivity to several parameters in the Supply

Manager.

4.7.2.1 2-day RFQs

In experiment 6, 2-day RFQs are not used, preventing the agent from taking

advantage of bargains on components requested in the short term. The resulting

decrease in score indicates that 2-day RFQs are an important factor in the agent’s

ability to acquire components at low prices. In addition, the decrease in factory

utilization suggests that components purchased from 2-day RFQs do not simply

take the place of components that would otherwise have been purchased further

in advance. Apparently the prices obtained are sufficiently low to make additional

production profitable.

4.7.2.2 Inventory Threshold

The next set of experiments examines the impact of the inventory threshold

used. Normally, the Supply Manager attempts to maintain an inventory of at least
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800 components of each type beyond the projected use. In experiments 7, 8, 9, 10,

and 11, inventory thresholds of 100, 200, 400, 1200, and 1600 are used, respectively.

An agent able to perfectly predict future component needs and availability would

have no need to maintain surplus inventory, and could plan so that component

deliveries would arrive just in time to be used. Maintaining a large inventory can

therefore be seen as a way of dealing with inaccuracies in predictions, preventing

the lost revenue and penalties that can come from component shortages at the

cost of higher storage costs and possibly unnecessary component purchases. This

tradeoff is clearly seen in the results. As the inventory threshold increases, factory

utilization and revenue increases and penalties decrease, but storage costs increase,

and the additional production is not necessarily profitable.

This last fact is somewhat surprising, because it is not immediately clear

why simply holding a larger inventory would cause an agent to sell computers at a

loss. One possible explanation is that component costs tend to decrease over the

course of a game, as mentioned above, and therefore an agent that builds up a

large surplus inventory early in the game is buying these components at their most

expensive, but this cannot account for the entire difference. An analysis of the

game logs shows that for the agents using a threshold below the standard 800, the

reduced factory utilization is usually caused by a shortage of components, and not a

voluntary decision to not produce. Component shortages can only occur when the

agent is unable to obtain components that it had planned to buy, indicating that

predictions of component availability were too high. In this situation, predicted

replacement costs would be too low, possibly causing the agent to sell computers

when it is not actually profitable to do so. This idea is supported by the observation

that during times when the base agent is producing computers and the altered agent

is not, the base agent’s score is often decreasing. The results of this experiment

thus suggest that improvements to the component price predictions may be needed

in certain situations.

92



Of the inventory thresholds tried in this experiment (as well as the default

800), 400 clearly resulted in the highest profits. In succeeding years’ agents, this

parameter was tuned more carefully, and a threshold of around 400 was generally

found to be optimal.

4.7.2.3 Reduced RFQ Flexibility

As mentioned previously, flexibility in the choice of how far in advance

to buy components appears to be a distinguishing characteristic of TacTex. In

experiments 12, 13, and 14, I remove this flexibility and consider three simple

alternative methods of deciding when components should be ordered. In experiment

12, no attempt is made to wait for the best day to send RFQs, and RFQs are sent

for all needed components immediately. In experiment 13, components are always

requested ten days in advance of anticipated need. In experiment 14, components

are requested five days in advance. None of these strategies appear effective. In

experiment 12, components are purchased in higher quantities and at higher prices

than usual, resulting in a very poor score. In experiments 13 and 14, the game logs

show that the prices paid for components are not much higher than the prices paid

by the base agent. Good prices can apparently be found on these dates much of the

time, but not always, as indicated by the decreased factory utilization. Somewhat

surprisingly, component availability appears higher when components are requested

five days in advance rather than ten, and the relatively small decrease in score

in experiment 14 despite the large decrease in factory utilization suggests that

the situations in which production is reduced may be those in which it is least

profitable, similar to the effect observed with the previous set of experiments.

4.7.2.4 Range of Days Considered

As the choice of when to request components appears important, the next

two sets of experiments are designed to measure the effect of restricting the number
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of days in advance in which the Supply Manager can plan to request components,

although to a lesser degree than the previous experiments. Recall that the Supply

Manager will normally request components at least five days in advance of antic-

ipated need, and at most 40 days in advance. In experiments 15, 16, and 17, the

minimum number of days is changed to four, seven, and ten, respectively, and in

experiments 18, 19, 20, and 21, the maximum number of days is changed to 10,

20, 30, and 50, respectively. From experiments 15, 16, and 17, it appears that the

best prices can often be found by waiting until fewer than ten days remain. The

results of experiments 18 through 21 are somewhat more surprising. It appears

that ordering too far in advance, in particular beyond 20 days, is detrimental to

performance. This could be due either to incorrectly predicting long term prices (as

suggested by experiment 5), or buying unneeded components due to incorrect pro-

jected future component use. Data from the game logs suggests the latter. Prices

paid do not seem to differ significantly between the base agent and altered agents.

It appears that similarly good prices can be found when ordering either a long or

short distance in advance, and that the agents that are restricted from ordering

far in advance are able to make purchases that better reflect the current customer

demand. Unlike the experiments involving inventory thresholds, it appears that

the reduction in factory utilization is planned (not due to component shortages)

and occurs during periods of low customer demand, while the base agent is busy

using components it purchased in advance before demand decreased.

The success of the changes made in experiments 9 and 19 prompt experiment

22, in which an inventory threshold of 400 and a maximum request distance of

20 days are used. From the result, it appears that these two changes are not

complementary, and that an agent that is unable to request components far in

advance may need a larger inventory threshold to offset the risk of being unable to

regularly obtain components.
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4.7.2.5 The Effect of Opponent Strategies

Based on the previous experiments, it is tempting to conclude that any

change that results in TacTex buying components a shorter distance in advance

of their use will be beneficial. Even the simple agent in experiment 15 that is

required to request all components exactly five days in advance performs nearly

as well as the base agent. It is important to consider that the attractiveness of

short term purchasing may simply be a feature of the set of agents competing.

If all six agents attempted to use such a short term strategy, would it remain

effective? To test this, we replaced the four additional agents previously used with

four copies of TacTex modified to request components at most ten days in advance.

In experiment 23, the agent restricted to requesting all components five days in

advance is tested in this environment, and in experiment 24, the agent limited

to requesting components at most 20 days in advance is tested. In both cases,

the results are much worse than the results against the previously used group of

agents. Thus, there must be some value in maintaining the option of long-term

component requests. Based on these experiments and experiment 22, in succeeding

years’ agents we retained the 40 day ordering window.

4.8 Summary

This chapter presented the TacTex agent for TAC SCM. TacTex operates

by making predictions about various quantities (prices, customer demand, compo-

nent deliveries, etc.) and then optimizing with respect to those predictions. This

chapter focused on the optimization aspects, which have remained mostly the same

since 2005. The predictive methods described in this chapter were largely heuris-

tic in nature. Competition and experimental results show that these methods are

sufficient for strong agent performance, but there is nevertheless significant room

for improvement, as will be shown in the following chapter.
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Chapter 5

Learning for Price Prediction in TAC SCM

Chapter 4 described the TacTex agent for TAC SCM. As shown in the

experiments of that chapter, the price predictions made by the Offer Acceptance

Predictor and Supplier Model are important to the performance of TacTex, but

there is room for improvement, particularly in the area of predicting how prices

will change in the future. In this chapter I describe improvements to these two

agent components based on using machine learning to model price changes. I also

present a comparison of TacTex’s prediction accuracy to the accuracy of other

agents and explore the importance of the choice of training data. This chapter

fulfills Contribution 2 for TAC SCM, as outlined in Section 1.2.

5.1 Learning for Computer Price Prediction

This section describes improvements to computer price prediction, which

were the main improvements in the 2006 agent.

5.1.1 Particle Filter for Price Distribution Estimation

Recall that the Offer Acceptance Predictor from the 2005 agent described in

Chapter 4 uses a heuristic to obtain a linear function representing the probability

of an offer on an RFQ being accepted at a given price. This function is in fact the

cumulative distribution function corresponding to a probability density function

that is uniform over some range and represents the probability of a given price

being the lowest bid of any competing manufacturer (not including TacTex). An
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inspection of each day’s low bids for each type of computer in a typical completed

game suggests that these prices instead tend to follow a normal distribution. We

developed an improved version of the Offer Acceptance Predictor that estimates

these distributions using all available information on computer prices.

To estimate these distributions during a game, the Offer Acceptance Pre-

dictor makes use of a separate particle filter (specifically a Sampling Importance

Resampling filter [1]) for each computer type. A particle filter is a sequential Monte

Carlo method that tracks the changing state of a system by using a set of weighted

samples (called particles) to estimate a posterior density function over the possible

states. The weight of each particle represents its relative probability, and particles

and weights are revised each time an observation (conditioned on the current state)

is received (see Section 7.1.2 for more information on particle filtering). In this case,

each of the 100 particles used per filter represents a normal distribution (indicating

the probability that a given price will be the winning price on the computer) with

a particular mean and variance. At the beginning of each game, weights are set

equally and each particle is assigned a mean and variance drawn randomly from a

distribution that is generated by analyzing the first day prices from a large data set

of past games. (The source of this data set will be described below.) Each succeed-

ing day, a new set of particles is generated from the old. For each new particle to be

generated, an old particle is selected at random based on weight, and the new par-

ticle’s estimate of mean and variance are set to those of the old particle plus small

changes, drawn randomly from the distribution of day-to-day changes seen in the

data set of past games. The new particles are then reweighted, with the weight of

each particle set to the probability of the previous day’s price-related observations

occurring according to the distribution represented. These observations consist of

the reported highest and lowest winning prices and the acceptance or rejection of

each offer made to a customer by TacTex for the given type of computer. Finally,

the weights are normalized to sum to one. The distribution of winning prices pre-

97



dicted by the particle filter is simply the weighted sum of the individual particles’

distributions, and from this distribution the function mapping each possible bid

price to a probability of acceptance can be determined.

5.1.2 Future Price Changes

In order to maximize revenue from the computers sold, the Demand Manager

needs to consider not only the prices it will offer in response to the current day’s

RFQs, but also what computers it will wish to sell on future days. As described in

Section 4.4, the Demand Manager plans ahead for 10 days and considers future as

well as current RFQs when making offers. It is therefore important for the Offer

Acceptance Predictor to be able to predict future changes in computer prices. To

illustrate why this is important, Figure 5.1 shows the prices at which one type

of computer sold during a single game of the 2006 finals. For each day, points

representing one standard deviation above and below the average price are plotted.

On most days, there is clearly little variance among the winning prices, but prices

often change drastically over the course of a few days. This fact suggests that

it may be even more valuable to be able to predict future changes in price than

to predict the distribution of winning prices on a single day. By simply selling a

computer a few days earlier or later, it might be possible for the Demand Manager

to significantly increase the price it obtains.

To make these predictions of price changes, the Offer Acceptance Predictor

performs machine learning on data from past games. Each training instance con-

sists of 31 features representing data available to the agent during the game, such

as the date, estimated levels of customer demand and demand trend, and current

and recent computer prices. The full list of features is shown in Table 5.1. All

prices are expressed as a fraction of the base price. One instance is generated for

each computer type and game day. The label for each instance is the amount by

which the average price changes in ten days. Once the Offer Acceptance Predic-
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Figure 5.1: Average prices at which one type of computer sold during one game of
the 2006 finals. One standard deviation above and below the average is shown.

tor has learned to predict this quantity, it can predict the change in average price

for any day between zero and ten days in the future through linear interpolation.

(This approach appears to work as well as trying to learn price changes for each

day individually, and reduces learning time.) No effort is made to predict changes

in the shape of the distribution, i.e., the variance. Thus, to generate an offer ac-

ceptance function for a future RFQ, the Offer Acceptance Predictor simply shifts

the predicted distribution over winning prices up or down depending on the pre-

dicted change in average price, and bases the acceptance function on this modified

distribution.

In order to train the price change prediction model, a learning algorithm

and source of training data must be chosen. After experimenting with various

algorithms from the WEKA machine learning package [110], we selected additive

regression with decision stumps, an iterative method in which a decision stump is
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• current date

• demand (in computer’s segment)

• trend (in computer’s segment)

• predicted demand in 10 days

• demand (10, 20) days ago

• predicted change in demand in
10 days

• change in demand from (10, 20)
days ago

• total demand (in all segments)

• total trend (in all segments)

• predicted total demand in 10
days

• total demand (10, 20) days ago

• predicted change in total de-
mand in 10 days

• change in total demand from (10,
20) days ago

• predicted price today

• price 10 days ago

• change in price over (1, 5, 10)
days

• predicted average price (all com-
puters)

• average price 10 days ago

• change in average price over (1,
5, 10) days

• predicted price in 10 days using
linear regression over last (5, 10)
days

• daily price change using linear
regression over last (5, 10) days

Table 5.1: Features for learning changes in computer prices.

repeatedly fit to the residual from the previous step1. For training data, we could

have used data from games in the competition, but instead we ran a large number

of games of our own using both variations of TacTex-06 and other agents taken

from the TAC Agent Repository. This decision was based on the fact that there

is limited data available for training during the competition, while generalization

1M5P trees gave nearly identical performance, but we chose to use additive regression as the
models it generated were significantly smaller. For the work described in later chapters, we
switched to M5P trees for this learning problem due to their better performance when paired
with other algorithms such as boosting.
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Rank Agent Average Profit

1 TacTex-06 $5.85M
2 PhantAgent $4.15M
3 DeepMaize $3.58M
4 Maxon $1.75M
5 Botticelli $0.48M
6 MinneTAC -$2.70M

Table 5.2: Results of the 2006 final round

between models trained on different groups of agents appeared to be reasonably

good in our testing. I will revisit this decision in Section 5.4.

5.1.3 2006 Competition Results

Out of 21 teams that participated in the final round of the 2006 TAC SCM

competition, held over three days at AAMAS 2006, six advanced to the final day

of competition. After 16 games between these agents, TacTex had the highest av-

erage score, followed closely by PhantAgent and DeepMaize. Scores are shown in

Table 5.2. Both PhantAgent and DeepMaize were much improved over their 2005

counterparts, and would very likely have beaten the previous year’s champion,

TacTex-05, if it had competed unchanged. It thus appears that the improvements

present in TacTex-06 were an important part of its victory. Although it is diffi-

cult to assign credit for an agent’s performance in the competition to particular

components, we can make some observations that support this hypothesis.

Figure 5.2 shows the average, over all 16 games on the final day of the

competition, of the profit earned per game day for the top three agents. Daily

profit is computed by determining what computers were delivered to customers

each day and which components in inventory went into those computers, and then

subtracting costs from revenue. TacTex-06 clearly had the highest daily profits

over the first 70 days of the game, and after this point profits were roughly equal

for all three agents. The difference in profits appears to be accounted for by higher
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Figure 5.2: Daily profits for the top three agents on the final day of the 2006
competition, averaged over all 16 games.

revenue per computer. During the first 70 days of each game, TacTex-06 sold about

as many computers as PhantAgent and DeepMaize while paying roughly the same

costs for components, but TacTex-06 almost always had a much higher average

sales price for each type of computer. After day 70, TacTex-06 still had somewhat

higher average computer prices, but these were offset by higher component costs

than the other two agents paid.

The ability of TacTex-06 to sell computers at higher prices appears to be due

to its attempt to predict future changes in computer prices and react accordingly.

During the competition, TacTex-06 could often be seen building up its inventory of

completed computers before prices rose or selling off its inventory as prices peaked,

while such behavior among other agents was less visible. This behavior can explain

not only the fact that TacTex-06 sold computers at higher prices, but also the fact

that the advantage was especially large in the first portion of each game. To see

why, consider Figure 5.1. For this particular game and computer type, prices began

very high, then fell rapidly before recovering somewhat. This pattern is actually
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very common. Agents begin with no components or computers in inventory, and the

supply of computers is thus much smaller than the demand in the beginning of each

game. As agents obtain components and begin selling computers, prices usually

drop rapidly. Due to the rapid changes in computer prices and the predictability

of this pattern, the attempts by TacTex-06 to predict and exploit changes in prices

are particularly effective in this period of the game.

5.1.4 Computer Price Prediction Experiments

I now present the results of controlled experiments designed to measure the

impact of individual components of TacTex on its overall performance. As before,

in each experiment two versions of TacTex compete: one unaltered agent that

matches the description provided previously, and one agent that has been modified

in a specific way. Each experiment involves 30 games. The other four agents

competing–Mertacor, DeepMaize, MinneTAC, and PhantAgent (all versions from

2005)–are taken from the TAC Agent Repository. (Experiments against different

combinations of agents appear to produce qualitatively similar results.)

Experimental results are shown in Table 5.3. Each experiment is labeled

with a number. The columns represent the averages over the 30 games of the total

score (profit), percent of factory utilization over the game, revenue from selling

computers to customers, component costs, and the percentage of games in which

the altered agent outscored the unaltered agent. In every experiment, the differ-

ence between the altered and unaltered agent is statistically significant with 99%

confidence according to a paired t-test.

As before, the first row, experiment 0, is provided to give perspective to the

results of other experiments. In experiment 0, two unaltered agents are used, and

all numbers represent the actual results obtained. In all other rows, the numbers

represent the differences between the results of the altered agent and the unaltered
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Exp. # Description Score Util. Revenue Costs Win %

0 no changes $7.28M 83% $104.7M $94.5M -

1 no computer price change prediction -3.51 -1% -4.50M -.70M 0%

2 no particle filter -1.97 -7% -10.05M -8.03M 0%

3 no particle filter or prediction -3.93 -6% -10.99M -6.83M 0%

4 heuristic price change prediction -1.74 0% -1.14M -.64M 13%

Table 5.3: Experimental results for one altered and one unaltered version of Tac-
Tex. Columns represent the total score, percent of factory utilization, revenue from
customers, component costs, and how often the altered agent outscored the unal-
tered agent. Numbers represent millions of dollars. In experiment 0, provided to
place other experiments’ results in perspective, no alteration is made to TacTex,
and numbers represent the actual results. In all other experiments, numbers rep-
resent the difference between the altered and unaltered agent. In each experiment,
the difference between the altered and unaltered agent is statistically significant.

agent (from that experiment, not from experiment 0). Again, the results of the

unaltered agents are close to those in experiment 0, although there is some variation.

In experiment 1, the altered agent always predicts that future computer

prices will remain unchanged. Not surprisingly, the result is a large decrease in

revenue and score. The decrease in score is almost twice as large as the margin of

victory for TacTex-06 in the 2006 competition ($1.8 million), adding more weight

to the claim that the prediction of future price changes played a large role in the

winning performance.

In experiment 2, the particle filter used to generate predictions of offer ac-

ceptance is replaced with the linear heuristic that was used in TacTex-05. The

experiment shows that the particle filter approach is an improvement over this

heuristic. The large drop in factory utilization in the altered agent is surprising.

Experiment 3 shows the result when the changes of experiments 1 and 2 are com-

bined: the agent makes no predictions of future price changes and uses the linear

heuristic instead of the particle filter. The score is only slightly worse than in

experiment 1, suggesting that the benefits of using the particle filter are more pro-
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nounced when price changes are predicted. It is possible that the more detailed

and precise predictions of offer acceptance generated from the particle filter are

necessary for the agent to effectively make use of the predictions of future price

changes.

In experiment 4, the learned model of price changes is replaced with a heuris-

tic that performs linear regression on the average computer price over the last ten

days, and extrapolates the trend seen into the future to predict price changes. Al-

though the heuristic’s predictions are reasonably accurate, the performance of the

altered agent is about midway between that of the unaltered agent and that of the

agent from experiment 1 that makes no predictions at all, demonstrating the value

of learning an accurate model.

5.2 Learning for Component Price Prediction

Recall that the Supply Manager needs to predict the price of placing an

order m days from now due in m + n days for various values of m and n. The

Supplier Model described in Section 4.5.1 makes this prediction by estimating the

prices for placing an order on the current day due in n days and assuming that

this price does not change (thus ignoring m). As with computer prices, we can use

machine learning on data from past games to predict changes in component prices.

In this case, we perform learning using 29 features representing data available to

the agent during the game, including information about dates and past prices. The

full list of features is shown in Table 5.4. All prices are expressed as a fraction of the

base price. One instance is generated for each RFQ sent to a supplier, excluding 2-

day RFQs. The label for each instance is the difference between the original price

prediction and the true offer price. Again, we experimented with the regression

algorithms available in WEKA, and in this case M5P model trees were the best

performing algorithm.
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• current date

• due date

• date RFQ will be sent - date

• due date - date RFQ will be sent

• predicted price

• change in predicted price over
last 20 days

• how many days in advance low-
est price expected

• if lowest price expected for order-
ing now

• total demand

• total demand trend

• change in total demand over last
20 days

• predicted change in total de-
mand over next 20 days

• sum of demand for computers us-
ing component

• sum of demand trends for com-
puters using component

• fraction of all demand using this
component

• if component is a CPU

• last reported supplier capacity

• predicted prices for orders due in
(5, 10, 15, 20, 30, 40) days

• change over last 20 days in pre-
dicted prices for orders due in (5,
10, 15, 20, 30, 40) days

Table 5.4: Features for learning changes in component prices.

Exp. # Description Score Util. Revenue Costs Win %

1 no component price change prediction -1.07 +0% +.05M +.96M 3%

Table 5.5: Experimental results for the component price change predictor.

We trained models for predicting component price changes on the same

games used to train the computer price model, and performed an experiment

against the same set of agents used in the experiments of Section 5.1.4. The re-

sults are shown in Table 5.5, with the same columns as the experiments of the

previous section. In this case both agents included the improvements to the Offer

Acceptance Predictor of the previous section, but one agent did not predict changes
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in component prices. This agent had nearly identical revenue and utilization, but

paid almost $1 million more for components. The difference was statistically signif-

icant with 99% confidence according to a paired t-test. Thus, predicting changes in

component prices can significantly reduce the prices an agent pays for components.

This experiment also supports the hypothesis of Section 4.7 that inaccurate

component price predictions were in large part responsible for the problems with

long term procurement in the experiments of that section. Indeed, after adding the

predictor, both randomly perturbing price predictions and reducing the ordering

window from the 40 day limit harm agent performance.

As the experiments on TacTex thus far have demonstrated, predicting prices

accurately is an important part of successful supply chain management. Not sur-

prisingly, many agents designed for TAC SCM depend on similar price predictions.

In the next section, I discuss a side-competition to the main SCM competition that

we designed to compare the accuracy of the price predictions of different agents.

5.3 The SCM Prediction Challenge

To be competitive in TAC SCM, an agent must be able to successfully per-

form a number of interrelated tasks. While this fact contributes to the complexity

and realism of the scenario, it can also make it difficult to determine the relative

effectiveness of agent components in isolation. To address this issue, in 2007 two

challenges were introduced and run in addition to the full SCM game, each designed

to measure an agent’s performance on one specific task: a Procurement Challenge,

and a Prediction Challenge. This section focuses on the Prediction Challenge,

which we designed. I first give the specification of this challenge. Then I present

the 2007 results, along with an analysis of how the predictions of the challenge

107



participants compare to each other. Finally, I briefly discuss the 2008 results.2

5.3.1 Challenge Specification

While the methods used by different SCM agents to manage the supply

chain vary considerably, many of these agents share a similar design at a high

level - they divide the full problem into a number of smaller tasks and then solve

these tasks using decision theoretic approaches based on maximizing utility given

various predictions about the economy. The success of an agent thus depends on

both the accuracy of the many kinds of predictions it makes and the manner in

which these predictions are used, making it difficult to assign credit to individual

agent components. To give a concrete example, suppose that based on available

statistics from past games and the current one, agent A predicts that it will be able

to sell one type of computer for $2000 on day 45, and agent B predicts that it will

be able to sell that computer for $1900. They then make component purchases,

plan manufacturing, and commit to customer orders based on these and other

predictions. Ultimately, agent A wins. Is it safe to draw conclusions about the

accuracy of these predictions based on this outcome? No.

The goal of the Prediction Challenge is to allow a head to head comparison

of agents’ prediction accuracy without concern for how these predictions are used.

In the example above, if we had recorded the predictions and then observed on day

45 that the specific type of computer sold for an average price of $1870, we could

say that agent B made a more accurate prediction. This is exactly what takes

place in the Prediction Challenge. There are many quantities for which agents may

make predictions, such as customer demand, the probability that a particular offer

to a customer will be accepted, and supplier capacities. However, the Prediction

Challenge focuses only on those predictions that can be expressed in the form of

2Software, results, and the complete specifications are available from the Prediction Challenge
website: http://www.cs.utexas.edu/~TacTex/PredictionChallenge
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a price, namely component prices and computer prices. As agents need to be

able to make predictions about future prices as well as current prices in order to

plan effectively, the accuracy of predictions for both current and future prices is

measured. There are thus four prediction categories in the Prediction Challenge:

current and future computer prices, and current and future component prices.

Instead of making predictions about live TAC SCM games in which they are

participating, participants in the challenge make predictions on behalf of another

agent called the SCMPredictionAgent (or PAgent for short). (For clarity, I will

refer to the manufacturing agents that participate in SCM games as agents, and

the prediction agents participating in the Prediction Challenge as participants.)

Before the competition, the organizers of the challenge run a number of games in

which PAgent competes against other agents. The identities of these other agents

and the resulting game logs are not made available to participants until after the

competition. During the competition, participants connect to a game server which

re-plays these games from the game logs. For each day of each game, participants

receive the exact messages sent to PAgent (incoming messages), as well as the

messages it sent to the game server in response (outgoing messages)–exactly the

same information that would be available to an agent during a live game. In

addition to these incoming and outgoing messages, each participant is also given a

set of predictions that must be made before the information for the following day

will be sent.

There are a number of benefits to running the competition using logs from

completed games instead of using live games. First, there is no restriction on the

number of participants that may compete head to head at one time. Second, each

participant receives exactly the same information about the state of each game and

is asked to make the same predictions. Finally, in live games there would be an

incentive for participants to behave differently than in normal TAC SCM games,

such as by manipulating prices in order to make past predictions come true.
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Although predictions could be made on behalf of any agent from a completed

game, the use of a single agent (PAgent) for which source code is available simplifies

the task of participants by helping them to understand exactly what behavior to

expect from the agent. PAgent was designed to be as simple as possible and to

behave in a consistent and predictable manner while still exhibiting reasonable

behavior. (We developed the PAgent as an extension of our TacTex Starter Agent3,

which is in turn a simplified version of TacTex made available for educational

purposes.)

The exact predictions that are made by each participant are as follows:

• Current computer prices: The price at which each RFQ sent from cus-

tomers on the current day will be ordered (i.e., the lowest price that will be

offered by any manufacturer for that RFQ). These predictions are required

on all but the first day and the last two days of each game, when few or no

computers are sold. If the RFQ does not result in an order, the prediction

will be ignored when accuracy is evaluated. Therefore, participants do not

need to be concerned with whether an order will result, only what the price

will be if there is an order.

• Future computer prices: For each of the 16 types of computers, the me-

dian price at which it will sell 20 days in the future. These predictions are

required on all but the last 22 days of each game (thus the last day on which

current computer price predictions are required is the last day for which fu-

ture computer price predictions are required). If no computers of a certain

type are sold, the prediction for that type will be ignored when accuracy is

evaluated.

3http://www.cs.utexas.edu/~TacTex/starterAgent
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• Current component prices: The price that will be offered for each RFQ

sent by the PAgent to a supplier on the current day. The PAgent sends RFQs

to suppliers on all but the last 10 days of each game. If an RFQ results in no

offer (due to the reserve price) or an offer (or offers) with modified quantity

or due date, the prediction for that RFQ will be ignored when accuracy is

evaluated.

• Future component prices: The price that will be offered for each of a

number of provided RFQs that will be sent by the PAgent to suppliers in 20

days. For each of the 16 pairs of a supplier and a component that it supplies,

a zero-quantity RFQ is provided that will be sent by the PAgent in 20 days

with a due date chosen at random between 5 and 30 (or the number of days

remaining, if less than 30) days after the date the RFQ is sent. Because the

PAgent sends no RFQs during the last 10 days of a game, predictions for

future RFQs do not need to be made during the last 30 days of the game.

To test the ability of participants to make predictions for games with various

agents, each participant is required to make predictions for 3 sets of games. In each

set, the PAgent will have run against a different group of five competitors chosen at

random from the TAC agent repository. Each set contains 16 games, meaning that

participants have a chance to improve their predictions through repeated experience

with the same group of competitors. Participants make predictions for one game

at a time, and must complete the predictions for one game day before receiving

information for the next day. Unlike the standard SCM game, participants do not

need to compete simultaneously, so they may connect to the game server at any

time and make predictions at their own pace. There is, however, an eight hour

time limit.

Performance is evaluated separately for each of the four prediction cate-
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gories. Root mean squared error is used as the scoring metric4, and all errors are

measured as a fraction of the base price of the computer/component. Participants

are ranked in each category, and the overall winner is the agent with the highest

average rank over all four categories.

5.3.2 Prediction Methods

Four participants competed in the 2007 Prediction Challenge: Botticelli

(Brown University), DeepMaize (University of Michigan), Kshitij (Indian Institute

of Technology Kharagpur), and TacTex. TacTex and DeepMaize have been among

the top three agents in nearly every full SCM competition, and Botticelli has been

a regular finalist. Here I describe the prediction methods used by the top two

agents. The methods used by Botticelli and Kshitij have not been published or

made known.

TacTex uses the price prediction methods used above, including the use of

learning to adjust its future predictions, with a few small changes. During the full

TAC SCM game, TacTex uses the distributions generated by its particle filters to

estimate the probability of winning an order given a certain offer price. In the

Prediction Challenge, for each current computer RFQ TacTex predicts that the

sales price will be the mean of the distribution for that computer, or the price

offered by the PAgent if that is lower. For predicting future computer prices,

TacTex learns a model of price changes over 20 days, rather than the 10 days

used previously, as this is what it is required to predict. For predicting future

component prices, TacTex learns using the same features as before, but since only

4In general, RMS error is used as the loss function for all TAC-related predictions in this
dissertation. While we are ultimately concerned with how these predictions affect agent perfor-
mance, directly measuring this quantity is quite time consuming and is performed only in specific
cases. The choice of RMS error is based on the fact that i) it is not apparent that errors in a
particular direction are more harmful, at least in the aggregate, and ii) small errors are likely not
serious, while a few large errors could potentially be catastrophic.
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the changes in prices over 20 days are of interest, all training instances use only 20

as the number of days in which the RFQ will be sent. Training data is generated

by playing a large number of games including a variety of agent groups from the

TAC agent repository, with the PAgent included in each game.

DeepMaize [55] makes predictions for current and future computer prices

using a k-nearest neighbors algorithm. For each prediction to be made, similar

situations from a data set of previous games are identified, and the prediction is

based on the prices observed in those situations. Predictions can be made about

both the probability of winning an order at a given price and the expected winning

price. Situations are chosen and weighted using Euclidean distance between a set of

state features such as the date, estimated levels of supplier capacity and customer

demand, and observed computer prices. Each neighbor is chosen from a different

past game to provide sufficient diversity. DeepMaize uses two separate data sets,

one from past TAC SCM tournament data and one from self-play, and updates the

weighting of each set online based on past accuracy.

DeepMaize tracks component prices by recording the prices offered by each

supplier over a number of recent days (five days in the full SCM competition, but

only one day in the Prediction Challenge). The price for a component request with

a given due date can then be predicted by taking the recorded price for that due

date, if one exists, or by linearly interpolating between prices offered on different due

dates if not. To improve the resulting predictions, DeepMaize also uses the reduced

error pruning tree from WEKA, a form of regression tree, to learn the difference

between actual observed prices in a data set of past games and the predictions of

the linear interpolation method. This is essentially the same as the procedure used

by TacTex to adjust future component price predictions.
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Name Error

1. TacTex 0.0455

2. DeepMaize 0.0468

3. Botticelli 0.0471

4. Kshitij 0.0487

Table 5.6: Current computer prices

Name Error

1. TacTex 0.0916

2. DeepMaize 0.0959

3. Botticelli 0.1024

4. Kshitij 0.1109

Table 5.7: Future computer prices

Name Error

1. DeepMaize 0.0392

2. Botticelli 0.0417

3. TacTex 0.0428

4. Kshitij 0.1333

Table 5.8: Current component prices

Name Error

1. DeepMaize 0.0943

2. Botticelli 0.0970

3. TacTex 0.1034

4. Kshitij 0.1389

Table 5.9: Future component prices

5.3.3 2007 Results

Tables 5.6-5.9 show the prediction accuracy of each participant in each pre-

diction category in terms of RMS error. Table 5.10 shows the overall place and

average rank of each participant. Table 5.11 shows the five agents against which the

PAgent competed in each of the three sets of 16 games. The winning participant,

DeepMaize, had the lowest error on both current and future component price pre-

dictions, while TacTex had the lowest error on both current and future computer

price predictions. For each category, the difference between the top agent and other

agents is statistically significant with at least 98% confidence according to paired

t-tests comparing the RMS errors for each of the 48 games. A few observations can

be made from these results.

First, in each prediction category, the difference between the best and third

best RMS error was fairly small, at most 12%. This fact suggests that the prediction

methods used by the top three participants are all reasonably effective, and that

there may be limited room for improvement. At the same time, the magnitudes

of these errors are significant, suggesting that making predictions in TAC SCM is

inherently difficult. To give perspective to these results, the agents in the final
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Place Name Avg. rank

1 DeepMaize 1.5

2 TacTex 2

3 Botticelli 2.5

4 Kshitij 4

Table 5.10: Overall placing and average rank of each participant

Set Agents

A Maxon06, MinneTAC05, DeepMaize05, Foreseer05, PhantAgent06

B GoBlueOval05, GeminiJK05, RationalSCM05, PhantAgent05, TacTex06

C PhantAgent06, Maxon06, RationalSCM05, Tiancalli06, PhantAgent05

Table 5.11: Agents in each of the three sets of games

round of the 2007 TAC SCM competition had average profit margins between 1%

and 7.5%, so prediction errors of these (similar) magnitudes could conceivably have

a significant impact on agent performance.

Also, for both computers and component prices, the ranking of participants

is the same for both current and future predictions. This is perhaps not surprising,

as it seems reasonable that a participant able to make better short term predictions

would have an advantage in making long term predictions. As expected, errors for

future price predictions are much higher than errors for current price predictions,

roughly by a factor of two.

5.3.4 Average Daily Errors

I begin my analysis by looking at how prediction errors vary across time.

Figures 5.3-5.6 show the average RMS errors in each prediction category over all 48

games for each game day. (To improve visibility only the top three participants are

shown; Kshitij’s errors are consistently higher without displaying notably different

patterns.) The most obvious feature of these graphs is that errors are usually very

high at the beginning and end of games. Making predictions at the beginning

of games can be difficult because there is little or no information about previous
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prices, and because prices can change rapidly as agents place large component

orders (driving component prices up) and begin selling computers as components

arrive (driving computer prices down). Computer prices are often unpredictable at

the ends of games when agents are trying to sell off their remaining inventory–for

each computer type, prices may suddenly become very high or low depending on

inventory levels and thus competition. TacTex appears to suffer the most from

errors at the start and end of games, especially when predicting component prices,

while DeepMaize has particularly low errors in initial component price predictions

and is roughly the same as Botticelli elsewhere. Occasional large errors such as

these can be very damaging to a participant’s overall performance due to the fact

that RMS error, and not mean absolute error, is used in scoring.

In some cases, sudden error spikes can be attributed to the behavior of a

specific agent. The spike in current component price errors on day 201 (and thus

in future component price errors on day 181) occurs only in the games in Set A and

is caused by MinneTAC05 sending large requests for components on that date but

not accepting the resulting offers, presumably with the goal of driving up prices

for other agents. It is interesting to note that Botticelli and TacTex recovered

completely (returned to the previous low error level) in two days, while DeepMaize

recovered in three days, suggesting that such spikes will only confuse agents for a

short period of time.

The timing of the distinct jumps in late-game current computer price pre-

diction errors observable in Figure 5.3 can also be traced to specific agents. The

jump at day 202 occurs only in games from set C and is caused by Tiancalli06

suddenly dropping the prices it offers, while the jump at day 209 occurs only in

games from set B and is caused by GeminiJK05 doing the same. The final rise over

the last few days appears to be caused by widely varying (often very high) prices

resulting from reduced competition to sell certain types of computers.
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Figure 5.3: Current computer prices
(avg. over all games)
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Figure 5.4: Future computer prices
(avg. over all games)
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Figure 5.5: Current component prices
(avg. over all games)
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Figure 5.6: Future component prices
(avg. over all games)

Compared to the starting and ending errors, average prediction errors dur-

ing the middle of games tend to be much lower, and they are more consistent both

over time and between participants. Still, there are some notable patterns. TacTex

consistently has slightly lower errors for current computer price and current com-

ponent price predictions and significantly lower errors for future computer price
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predictions, but errors for future component price predictions are generally a little

higher than those of Botticelli or DeepMaize. DeepMaize suffers early on from

higher errors for current computer price predictions, while Botticelli likewise has

higher errors for future computer price predictions over the first portion of games,

but otherwise the two participants have extremely similar patterns of errors.

The level of errors for current component prices remains nearly constant

throughout games, while errors for future computer prices undergo notable swings

for reasons that are unclear. These swings appear to some degree when each of

the three sets of games is considered alone, although the swings occur at differ-

ent times and scales for each set. While somewhat consistent, errors for current

computer prices tend to be lower in the early parts of games for TacTex and Bot-

ticelli (probably due to the fact that competition tends to remain strong across all

computer types while agents work through the components ordered at the start of

each game), and errors for future component prices drop near the ends of games

for Botticelli and DeepMaize (probably due to the fact that component orders, and

thus changes in supplier prices, tend to dwindle during this period).

It is important to note that these observations do not necessarily hold when

individual games are analyzed. Figures 5.7-5.10 show the daily RMS errors for

a single representative game, game 3 from Set A. The most striking difference is

the fact that for both current and future computer price predictions, errors vary

considerably between the participants. Errors also show more variance across time,

except for current component prices, where there are only occasional spikes that

are likely caused by unusually heavy component requests.

In the remainder of this analysis, I will ignore errors over the first and last

20 days for which predictions are required for each prediction category. Doing so

removes the highly variable effects (start and end game conditions, and the spike

in component price errors caused by MinneTAC05) that can obscure patterns that
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Figure 5.7: Current computer prices
(game A-3)
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Figure 5.8: Future computer prices
(game A-3)
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Figure 5.9: Current component prices
(game A-3)
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Figure 5.10: Future component prices
(game A-3)

would otherwise be visible. Table 5.12 shows how the elimination of these errors

affects the results.
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Name Current computer prices Future computer prices

start mid end start mid end

DeepMaize 0.0562 0.0403 0.0947 0.0965 0.0913 0.1356

TacTex 0.0771 0.0342 0.1026 0.1473 0.0774 0.1262

Botticelli 0.0665 0.0381 0.0984 0.1240 0.0952 0.1408

Name Current component prices Future component prices

start mid end start mid end

DeepMaize 0.0484 0.0341 0.0810 0.0920 0.0951 0.0936

TacTex 0.0868 0.0313 0.0797 0.1219 0.0992 0.1210

Botticelli 0.0505 0.0365 0.0858 0.0965 0.0975 0.0969

Table 5.12: RMS errors over the first 20 days, last 20 days, and middle portion of
the prediction interval for each category (lowest error in bold)

5.3.5 Differences Between Participants Across Games

To get a better view of how prediction error varies across games, I now

compare the performance of participants on each game individually. Figures 5.11-

5.14 show the errors for TacTex in each game plotted against those for DeepMaize.

Each figure shows a different prediction category. Figures 5.15-5.18 show the same

information for Botticelli and DeepMaize, and Figures 5.19-5.22 compare TacTex

to Botticelli. For each figure, the correlation coefficient r is given. The dotted line

in each figure is the line y = x, meaning that a point below the line represents a

game for which the participant on the y-axis had lower error.

I begin by looking at the current computer price predictions. Figure 5.19

shows that the errors of TacTex and Botticelli are highly correlated, with Botticelli’s

errors being higher than TacTex’s by a similar amount in each game. Comparing

either participant to DeepMaize (Figures 5.11 and 5.15) paints a different picture.

While there is still a strong correlation between errors, it appears that as the

difficulty of making predictions in a game increases, the performance of DeepMaize

increases relative to the performance of the others, to the point that DeepMaize

has the lowest errors of any participant on the most difficult games. One possible
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(each game, TT / DM, r=.92)
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Figure 5.12: Future computer prices
(each game, TT / DM, r=.70)
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Figure 5.13: Current component prices
(each game, TT / DM, r=.97)
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Figure 5.14: Future component prices
(each game, TT / DM, r=.87)

explanation for this result is that the prediction methods of other participants (the

particle filter in the case of TacTex) are highly tuned for “typical” games and thus

suffer as computer prices behave more atypically, while DeepMaize’s use of a kNN-

based predictor allows it to better handle unusual situations by matching them

with similar situations from its data set. This prediction category is the only one in
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(each game, Bot. / DM, r=.87)
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Figure 5.16: Future computer prices
(each game, Bot. / DM, r=.85)
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Figure 5.17: Current component prices
(each game, Bot. / DM, r=.93)
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Figure 5.18: Future component prices
(each game, Bot. / DM, r=.95)

which such a phenomenon occurs, and this fact is particularly interesting because

it makes it difficult to state that one participant’s method of prediction is best

(in expectation) under all circumstances. An agent with access to the prediction

methods of all participants might choose to use TacTex’s method in most cases but

to use DeepMaize’s method in certain games where prediction appeared particularly
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Figure 5.19: Current computer prices
(each game, TT / Bot., r=.97)
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Figure 5.20: Future computer prices
(each game, TT / Bot., r=.49)
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Figure 5.21: Current component prices
(each game, TT / Bot., r=.94)
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Figure 5.22: Future component prices
(each game, TT / Bot., r=.87)

difficult.

Errors for future computer prices (Figures 5.12, 5.16, and 5.20) exhibit a

different pattern. Here there is some correlation between the errors of DeepMaize

and Botticelli, but very little between the errors of either of these two participants

and those of TacTex. In fact, for Set C, the errors of TacTex appear completely
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unrelated to those of the other two participants. This low correlation suggests

that the difficulties experienced by DeepMaize and Botticelli are not related to a

particular set of games or common to all games, but have to do with particular

situations that can occur in all three sets of games and that TacTex is able to

handle correctly. In the case of DeepMaize, these situations may be different from

those encountered in the data set used by the kNN-based predictor, or the distance

metric used by the predictor may be unable to distinguish these situations from

unrelated ones in the data set. The fact that DeepMaize and Botticelli have a

higher degree of correlation suggests that they may have difficulties under some of

the same circumstances.

The pattern of errors for current component prices (Figures 5.13, 5.17, and

5.21) is much clearer. Here there is a high degree of correlation between the errors

of different participants, with the errors of one participant differing from the errors

of another by a fairly consistent amount. It should be noted that the reason why

TacTex has the lowest errors in these figures, but the third lowest error in Table

5.8, is the exclusion of the beginning of each game, where TacTex had very high

errors.

While not as highly correlated as the errors in current component prices, the

errors for future component price predictions (Figures 5.14, 5.18, and 5.22) show a

somewhat similar pattern.

In addition to making comparisons between the participants, we can also

compare the difficulty of making predictions for each of the three sets of games. For

computer prices, it appears to be easier to make predictions for Set B, especially

current predictions, while Set A tends to have higher future prediction errors. On

the other hand, predicting component prices appears to be more difficult for Set B,

especially current component prices. The reasons for these differences between sets

are not clear, unlike the error spikes in Figures 5.3 and 5.5 that could be traced
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to specific agent behaviors. Better understanding these differences would likely be

useful in designing improved predictors that can handle a wider variety of agent

behaviors.

It is interesting to note that the patterns observed above (such as correla-

tions between errors and which participant had the lowest errors) generally appear

to hold equally well for all three sets of games. Given that the prediction methods

used often require the developer to choose a training data set composed of past

game results, it would not be surprising for a participant to make particularly ac-

curate predictions on games that are most similar to the games in the chosen data

set, and for certain participants to favor certain sets of games as a result, but this

does not appear to have happened.

5.3.6 Differences Between Participants Across Days

To make comparisons at a finer level of detail, the errors of each agent can

also be plotted on a daily basis, rather than for each game. Figures 5.23-5.28

show a subset of the comparisons from Figures 5.11-5.22 at this level. Again, RMS

error is measured, and the first and last 20 days of errors are omitted. These

figures largely serve to shed further light on the observations that have been made

previously. Unlike the previous set of figures, no indication is given about the set of

games from which each point plotted came, but plotting each set separately reveals

very similarly shaped distributions for each set.

Figure 5.25 shows that the daily errors for the current computer predictions

of TacTex and Botticelli are highly correlated, as would be expected from Figure

5.19. The correlation between TacTex and DeepMaize is much weaker, as seen in

Figure 5.23 (the plot of Botticelli and DeepMaize is nearly the same). As noted

before, Figures 5.11 and 5.15 show that the performance of DeepMaize tends to

improve relative to the other participants as the predictions become more challeng-

ing. While a distribution of the same shape (high correlation but a high slope)
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Figure 5.24: Future computer prices
(each day, TT / DM, r=.55)

in Figure 5.25 would cause this outcome, instead it appears that there are some

predictions for which DeepMaize has similar errors (those along the line y = x),

along with a cluster of predictions (along the bottom-left) for which DeepMaize has

higher errors. It may be the case that there are certain relatively easy predictions

with which DeepMaize has difficulty, and that these easy predictions occur less

often in the more challenging games. Many of the points in this cluster are from

the early parts of games where DeepMaize has higher errors (see Figure 5.3), but

not all–even with the first 70 days omitted from the plot, the cluster is still visible.

Based on Figures 5.12 and 5.16, we would expect DeepMaize’s daily future

computer price prediction errors to be weakly correlated with those of TacTex and

somewhat correlated with those of Botticelli, and Figures 5.24 and 5.26 confirm this

expectation (the plot of TacTex and Botticelli is similar to Figure 5.24). Looking at

Figure 5.4, in which Botticelli and DeepMaize have nearly identical average daily

errors, it is perhaps surprising that their correlation here is not higher.

Figures 5.27 and 5.28 show the daily errors for the current and future com-

ponent price predictions of DeepMaize and TacTex (plots for Botticelli are similar).

These errors are highly correlated, as they were in Figures 5.13 and 5.14. Figure

5.27 illustrates that the pattern observed for a single game in Figure 5.9 (mostly
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(each day, TT / Bot., r=.89)
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Figure 5.27: Current component prices
(each day, TT / DM, r=.90)
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Figure 5.28: Future component prices
(each day, TT / DM, r=.85)

low errors around 0.03, with occasional spikes that affect all participants similarly)

is true in general. Similarly, the pattern seen in one game in Figure 5.10 (er-

rors more evenly distributed over a wide range but still highly correlated between

participants) appears in Figure 5.28.

One additional observation that can be made is that while a participant

may show consistently lower errors at the full-game level (for instance, TacTex in

Figures 5.12 and 5.13), there may still be a large number of days on which it has

higher errors (Figures 5.24 and 5.27). This observation may indicate that there
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(daily differences with TT, r=-.05)
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Figure 5.30: Future computer prices
(daily differences with TT, r=.71)
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Figure 5.31: Current component prices
(daily differences with DM, r=.70)

-0.1

-0.05

 0

 0.05

 0.1

-0.1 -0.05  0  0.05  0.1

B
o
tt
ic

e
lli

 -
 T

a
c
T

e
x

DeepMaize - TacTex

Future Component Price RMS Error

Figure 5.32: Future component prices
(daily differences with TT, r=.72)

is still room for the participant to improve, or it may simply be a result of the

stochastic nature of the game (that is, for each situation in which predictions are

made, there may actually be a wide distribution over possible outcomes depending

on random game factors such as demand fluctuations). Both possibilities are likely

true to some degree.

An alternative way of presenting this data is to look at the differences be-

tween the errors of participants and to plot these differences for different pairs of

participants. For example, in Figure 5.32 the x-axis shows the daily future compo-
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nent price prediction errors of DeepMaize minus those of TacTex, while the y-axis

shows the errors of Botticelli minus those of TacTex. In this case, the points show

a moderately high degree of correlation (r = .72), indicating that the situations in

which TacTex differs in accuracy from DeepMaize tend to be the same as those in

which it differs from Botticelli. In most cases, these plots are fairly uniform clusters

with low correlation, but there are some exceptions, as shown in Figures 5.29-5.32.

Figure 5.29 shows that for current computer price predictions, DeepMaize tends

to vary more widely from the accuracy of TacTex than Botticelli does. Interest-

ingly, for those situations in which DeepMaize has considerably higher errors than

TacTex (those extending to the right here, and seen on the bottom-left of Figure

5.23), TacTex and Botticelli have nearly identical errors. For current component

price predictions, Figure 5.31 shows that TacTex and Botticelli usually differ only

slightly from DeepMaize and in a weakly correlated way, but that there are certain

situations in which DeepMaize has much higher errors than them both. Figures

5.30 and 5.32 show that DeepMaize and Botticelli differ from TacTex in similar

situations for future computer and component price predictions. The degree of

correlation for these two categories drops considerably when comparing differences

with a participant other than TacTex, suggesting that Botticelli’s methods of mak-

ing predictions of future prices have more in common with those of DeepMaize than

TacTex.

5.3.7 Error Persistence

Another question that can be addressed is whether errors tend to persist.

That is, if a participant has a high prediction error on one day, will it also have

a high error on the next day? We answer this question by plotting daily errors

against the next day’s errors. In most cases, the answer is yes; for current and

future computer price predictions and future component price predictions, errors

are highly correlated across days, with correlation coefficients above 0.73 for current
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Figure 5.33: Current component prices
(errors on consecutive days, TT, r=.23)

computer price predictions and above 0.82 for both future price predictions for each

participant. The fact that correlation is highest for the future price predictions

makes sense given that game conditions can change significantly over 20 days while

the information available to make predictions about these conditions changes little

from day to day. In the case of current component price predictions, however, there

is little correlation between daily errors. Figure 5.33 shows the plot for daily errors

of TacTex on consecutive days, and the plots for other participants are similar.

There appear to be a large number of cases in which the error jumps greatly for

a single day (the vertical arm) and then decreases to a more normal level on the

following day (the horizontal arm). Even on days with more moderate errors, the

degree of correlation between days is fairly low. These observations make sense

given the error pattern seen in Figure 5.9.

As before, we can also consider the differences between the error rates of

different participants. When daily differences in errors are plotted for consecutive

days, the differences in future computer price prediction errors turn out to be highly

correlated across days (r > 0.85 for each pair of participants), and the differences in

future component price prediction errors turn out to be moderately correlated (r of

about 0.6 for each pair). For current computer price predictions, the results depend
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Figure 5.34: Current computer prices
(daily differences, Bot-TT, r=.03)
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Figure 5.35: Current component prices
(daily differences, DM-TT, r=.71)

on the pair of participants considered. While the differences between the errors of

DeepMaize and TacTex show a moderately high degree of correlation across days

(r = 0.77), the differences between Botticelli and TacTex are not only uncorrelated

across days, but as shown in Figure 5.34, there are a number of cases in which the

error of Botticelli jumps from being nearly the same as TacTex to being much higher

for a single day. For current component price predictions, a similar pattern emerges

when comparing DeepMaize to either TacTex (Figure 5.35) or Botticelli, while the

differences between the errors of TacTex and Botticelli are similarly uncorrelated

across days without showing such jumps.

5.3.8 Individual Error Distribution

Finally, it is possible to look beyond the RMS error of a set of predictions

covering a whole game or day and consider prediction errors for individual predic-

tions. As this level of detail is not available in the competition logs, I give here only

a brief look at the data we were able to generate for TacTex after the competition.

Instead of considering RMS error, I look at the actual errors to determine their

distribution. For current price predictions, errors are grouped into 40 bins of width

0.005 spanning the range [-0.1, 0.1], and for future price predictions, errors are
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grouped into 40 bins of width 0.015 spanning the range [-0.3, 0.3]. Errors falling

above or below these ranges are grouped into an additional bin. Figures 5.36-5.39

show the resulting histograms. In each category, errors appear to be nearly nor-

mally distributed with a mean near zero. This result is not necessarily unexpected,

as we would expect a normal distribution if the errors were due to a large num-

ber of uncorrelated factors. However, given the nature of the TAC SCM game,

it would also not have been surprising if a more interesting pattern had emerged.

For instance, it is fairly simple for a single agent to drive computer prices down by

offering lower prices, or to drive component prices up by requesting a large number

of components. It is less likely for these prices to suddenly move in the opposite

direction, and so the distributions could conceivably have shown a tendency to-

ward larger errors in one direction. The fact that this tendency was not observed

suggests that the prediction methods used may already account for such factors.

5.3.9 2008 Results

The results of the 2007 Prediction Challenge showed that TacTex’s perfor-

mance was very strong overall, with the glaring exception of the beginnings and

endings of games. In the full SCM game, TacTex handles these situations as special

cases and generally does not make use of its usual price predictions. In fact, when

generating training data for TacTex’s models, we exclude a few days from the start

and end of each game for this reason. To address TacTex’s flaws in the Prediction

Challenge, we could have either included these days in training or trained models

specifically for these days, but instead we simply had TacTex submit hard-coded

price predictions representing the average prices seen in the training data. This

change was enough for TacTex to win the 2008 Prediction Challenge. Results are

shown in Tables 5.13-5.17, and the groups of agents are shown in Table 5.18. Tac-

Tex extended its winning margin over 2007 in the current and future computer

price categories, and was very competitive in the current and future component
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distribution for TacTex
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Figure 5.38: Current component price
error distribution for TacTex
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Figure 5.39: Future component price er-
ror distribution for TacTex

categories.

5.4 Learning Across Markets

Sections 5.1 and 5.2 showed the importance of learning to predict future

price changes. The previous section showed that TacTex’s predictions are reason-

ably accurate when compared to the predictions of other agents (and much more

accurate in the case of future computer price predictions). As a result, it is quite

likely that there is little room for improvement through modifying the approach
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Name Error

1. TacTex 0.0478

2. DeepMaize 0.0513

3. Botticelli 0.0531

Table 5.13: Current computer prices

Name Error

1. TacTex 0.0873

2. DeepMaize 0.0975

3. Botticelli 0.0993

Table 5.14: Future computer prices

Name Error

1. DeepMaize 0.0347

2. TacTex 0.0351

3. Botticelli 0.0403

Table 5.15: Current component prices

Name Error

1. Botticelli 0.0996

2. TacTex 0.1023

3. DeepMaize 0.1028

Table 5.16: Future component prices

Place Name Avg. rank

1 TacTex 1.5

2 DeepMaize 2

3 Botticelli 2.5

Table 5.17: Overall placing and average rank of each participant, 2008

Set Agents

A PhantAgent05, GoBlueOval05, Mertacor05, Southampton05, Southampton05

B GeminiJK05, GeminiJK05, TacTex05, Mertacor05, PhantAgent07

C RationalSCM05, PhantAgent06, DeepMaize07, Foreseer05, Botticelli05

Table 5.18: Agents in each of the three sets of games, 2008

to learning, whether by trying additional learning algorithms or adding additional

data features. However, one issue that deserves further consideration is the source

of data used to train TacTex’s models.

In Section 1.1 of the introduction, I outlined general approaches to adapta-

tion that could be taken when previous market experience–in this scenario, com-

pleted games from either competition or our own simulations–is available. As de-

scribed previously, in both the Prediction Challenge and the full SCM game, TacTex

uses fixed models trained on games including a wide variety of participating agents.

This approach amounts to learning from previous experience only, and so in this
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section, I analyze how well models trained on one group of agents generalize to

a different group. Another approach would be to learn online from only the new

market (i.e., current round of competition), and so I also evaluate the effectiveness

this approach.

5.4.1 Generalization

I begin by defining a number of agent groups between which comparisons

will be made. The first four groups contain a variety of agents from the agent

repository:

• R1: TacTex-06, GeminiJK-05, Mertacor-05, MinneTAC-06, PhantAgent-06,

RationalAgent-05

• R2: TacTex-06, TacTex-05, Botticelli-05, CrocodileAgent-05, DeepMaize-05,

GoBlueOval-05

• R3: TacTex-06, DeepMaize-06, Foreseer-05, Maxon-06, MinneTAC-05,

PhantAgent-05

• R4: TacTex-06, TacTex-05, DeepMaize-06, Maxon-06, MinneTAC-06,

PhantAgent-06

Group R4 contains the five agents from the 2006 final round for which binaries

are available, along with TacTex-05, and is thus a much stronger group of agents

than groups R1-R3. In these games, TacTex-06 used the computer price model that

was used in the 2006 competition. Recall that TacTex-06 did not make use of a

component price model, and TacTex-05 did not use either model. The combined

data from these four groups was used to train the models that were used in the

2007 through 2009 versions of TacTex, and I will refer to these models as the default

models.
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The next group consists of the the actual data from the 2010 final round:

• F10: TacTex-10, DeepMaize-10, MinneTAC-10, Botticelli-10, Nanda-10,

Mertacor-10

TacTex-10 used computer and component models trained on the semifinal round

of the 2010 competition.

The next group includes five agents that were based on the TacTex Starter

Agent and developed by students for a class in 2006. As a result of the limited

development time that was available, these agents generally exhibit simple behavior

and are not as strong as most of the agents in other groups.

• C06: TacTex-10, Simplicity, Redbull, StormFront, Garfield, JAgent

The final three groups consist of two copies of TacTex-10 using the default

models (labeled TacTex-10’) against four copies of one agent: TacTex-05, TacTex10

(using the models used in competition), or DeepMaize-09 (the 2009 winner).

• TT05: TacTex-10’ * 2, TacTex-05 * 4

• TT10: TacTex-10’ * 2, TacTex-10 * 4

• DM09: TacTex-10’ * 2, DeepMaize-09 * 4

At least one version of TacTex is present in each group because we are only

interested in making predictions for games in which we are playing, and our own

actions influence the prices we are trying to predict. For each group, we ran 30

games, except for the 2010 finals which consisted of 36 games. To compare model

generalization between groups, we trained one of each model on each group, using

the learning algorithms chosen previously (additive regression for computers and

M5P trees for components). In each case, we trained the type of model used by
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Test Data

Model R1 R2 R3 R4 F10 C06 TT05 TT10 DM09

R1 .0613 .0733 .0663 .0665 .0645 .0839 .0806 .0995 .0802

R2 .0646 .0710 .0676 .0671 .0627 .0832 .0791 .1008 .0775

R3 .0662 .0758 .0611 .0644 .0649 .0869 .0846 .1032 .0778

R4 .0668 .0760 .0645 .0608 .0642 .0885 .0829 .1037 .0810

F10 .0671 .0754 .0670 .0669 .0580 .0858 .0815 .1061 .0772

C06 .0679 .0749 .0713 .0743 .0681 .0793 .0795 .1018 .0790

TT05 .0697 .0798 .0756 .0733 .0704 .0871 .0729 .0996 .0840

TT10 .0733 .0843 .0774 .0767 .0750 .0907 .0806 .0924 .0827

DM09 .0687 .0785 .0668 .0689 .0635 .0852 .0829 .1003 .0724

Table 5.19: RMS error when predictive models are learned using games from one
group and tested on games from another group - computer costs

TacTex for full SCM games (predicting 10 day price changes for computers, and

5-40 day price changes for components) rather than the Prediction Challenge (20

day price changes in each case). We then evaluated each model on all groups. For

determining the error when a model was trained and tested on the same group,

we used leave-one-game-out cross validation. The results are shown in Tables 5.19

(computers) and 5.20 (components). The lowest error on each group is shown in

bold, and was statistically significant in each case with 95% confidence according

to paired t-tests (comparing errors on individual games).

A number of observations can be made from these tables. As expected, for

each group, the model trained on that group had the lowest error of any model.

This observation confirms our assumption that there is an observable difference

in behavior between different groups. In some cases, however, models trained on

a different group had only slightly higher errors, suggesting that the differences

in behavior were small. In addition, some groups present more difficult prediction

problems than others. That is, model errors are higher on those groups than others,

even for the models trained specifically on those groups. (This difference between

groups was also apparent in the results of the Prediction Challenge.) For computer
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Test Data

Model R1 R2 R3 R4 F10 C06 TT05 TT10 DM09

R1 .0467 .0856 .0663 .0518 .0581 .1073 .0897 .0803 .0605

R2 .0646 .0758 .0789 .0661 .0706 .1076 .0982 .0875 .0735

R3 .0579 .0909 .0554 .0601 .0626 .1079 .0860 .0809 .0654

R4 .0500 .0845 .0654 .0502 .0578 .1042 .0847 .0781 .0608

F10 .0500 .0861 .0646 .0542 .0523 .1076 .0819 .0775 .0593

C06 .0939 .1000 .0999 .0882 .0970 .0813 .1102 .1052 .0969

TT05 .0586 .0928 .0710 .0610 .0667 .1093 .0719 .0817 .0672

TT10 .0597 .0908 .0705 .0609 .0629 .1073 .0853 .0711 .0634

DM09 .0523 .0859 .0660 .0547 .0558 .1061 .0823 .0753 .0581

Table 5.20: RMS error when predictive models are learned using games from one
group and tested on games from another group - component costs

prices, the most unpredictable group was TT10, which consists of six copies of

TacTex-10. This result is not particularly surprising, as TacTex is the agent that

appears to react most strongly to anticipated changes in demand by building or

liquidating its computer inventory (as discussed in Section 5.1), and six agents

behaving this way can result in erratic prices. For component prices, the most

unpredictable group was C06. These simple agents tend to exhibit little long-term

planning, and so short-term component prices can be quite erratic. Finally, it is

interesting to compare the differences in errors between models when tested on a

particular group to the differences in errors between participants in the Prediction

Challenge. Again, these errors are not directly comparable due to the fact that

predictions in the Prediction Challenge are made for different time periods, but in

many cases the differences in errors between different models are larger than the

differences in errors between participants on a particular category of future price

predictions. In particular, the errors of the 2008 participants on future component

price predictions were within 0.0032 of each other, while the difference between

model errors in Table 5.20 typically exceeds 0.01. It is thus possible that the

outcome of the Prediction Challenge had as much to do with the choice of training

data used by participants as with the agent design or any learning algorithms used.
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Figure 5.40: Dendrogram of computer cost similarity based on Table 5.19

As a way of better visualizing Tables 5.19 and 5.20, we developed a simple

distance function for groups and performed clustering. Let E(a, b) be the error of

the model trained on group a when tested on group b, and let D(a, b) = E(a, b)−

E(b, b), so that D measures how much worse the model of a is than the model of b

when tested on b. We define the distance dist(a, b) to be max(D(a, b), D(b, a)), that

is, the larger of these differences. (Taking the average produced similar clustering

results.) Applying this distance function and performing agglomerative (bottom-

up) clustering results in the dendrograms shown in Figures 5.40 and 5.41. The

interpretation of these dendrograms is that each item (agent group) is joined to

the nearest item or cluster of items (based on average distance), and the height

of the line joining clusters represents the distance between them. Again, we see

that some groups are fairly similar (DM09 and F10 are similar in both computer

and component prices), while other groups are clear outliers (TT05 and TT10 for

computer prices and C06 for component prices).
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Figure 5.41: Dendrogram of component cost similarity based on Table 5.20

The natural question to ask next is whether prediction accuracy affects

agent performance. We have already seen that predicting changes in computer

and component prices improves performance over making no such predictions, but

it is not obvious that small changes in prediction accuracy would have a similar

impact. For instance, it could be the case that it is more important to predict

the direction of price changes than the magnitude. Additionally, using different

models will cause the behavior of TacTex to change and may alter the patterns of

the prices we are trying to predict. (We ultimately view consideration of this issue

to be the responsibility of the agent, and not the learning process–an agent should

be able to account for the fact that by behaving as its models suggests it should,

it may be affecting the economy in a way that makes its predictions incorrect.)

To test the importance of model accuracy, we ran experiments using the

agents of groups TT10 and DM09, except that in each experiment one of the agents

that had previously used the default models had one of its models (computer or

component) changed to the model trained on that group. 30 games were run for
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Change computer model Change component model
from default to group-trained from default to group-trained

TT10 +0.80 +0.26

DM09 +0.99 -0.03

Table 5.21: Impact of model choice on agent performance. Differences in scores
(in millions) between an agent using default models and an agent using the model
shown.

each experiment. The differences in score between the changed agent and the agent

using the default models are shown in Table 5.21. Differences that are statistically

significant with 95% confidence according to paired t-tests are shown in bold. The

results show that the accuracy of the computer model is particularly important,

as using the model trained on a group increased the agent’s score by almost one

million over the agent using the default model. The importance of the accuracy of

the component model is less clear. For the group TT10, there was a modest but

statistically significant increase in score from using the more accurate model, while

there was essentially no change for the group DM09.

5.4.2 Learning Online

The previous results show that using a model trained on the same group of

agents against which TacTex is competing can be beneficial, especially in the case

of the computer model. However, in a TAC SCM tournament, there is generally

little opportunity to obtain training data for the group of agents competing in a

given round before that round begins. (The same six agents compete in a number of

games in each round.) While agent binaries from previous years may be available,

agents may change significantly from one year to the next. Previous rounds of

the tournament generally involve different agent groupings, and agents may change

between rounds.

An alternative to using fixed models trained before a round is to train models

online during the course of a round. There are two problems with this approach
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that should be acknowledged. First, there is only limited time between games, and

so, depending on the learning algorithm used, there may be a delay between the

time data becomes available and the time a new model trained on that data can

be used. Second, since 2007 agents have not been allowed to access the game logs

generated during the current round of competition. In all of the learning described

so far, we have used these logs to generate training data. However, it is possible to

generate this data using only the information revealed to TacTex during a game.

Recall that only the label of each training instance uses information about true

future prices, while the features all necessarily represent information known to

TacTex at the time the prediction is needed. In the case of component prices, we

know the exact prices offered by suppliers and so can still obtain true labels. For

computer prices, we need to know the average price of each computer type each day.

TacTex only observes the high and low price for each computer type as well as the

acceptance of its own offers. As shown in Figure 5.1, however, the range of prices

is often quite narrow, especially relative to the change in prices over 10 days, and

so TacTex could obtain fairly accurate estimates of the changes in average prices.

Nevertheless, for the sake of simplicity, in the experiments below I will assume that

TacTex does have access to the game logs immediately following each game and

that it can train new models before the next game begins.

The main potential concern with learning online is the fact that the limited

amount of data might not be enough to learn accurate models. To explore this

concern, we generated learning curves for the groups TT10 and DM09 and compared

these curves to the results for three fixed models: the default model, the best model

from another group, and the model trained on all 30 games from the current group.

(The error rate did not appear to decrease beyond 30 games, and so this last result

is effectively the asymptote of the learning curve.) Each curve is the average of 30

runs in which we randomly selected N games for training and used the remainder

for testing (except in the case of N = 1, in which each game was used once for
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training). Generating the curves in this way requires the assumption that game

order is insignificant (i.e., no trend of changes as agents adapt over time), which

is certainly the case with the agent binaries used and also appears to be the case

in actual competition data. Up to 16 games are used for training, as until 2010

only 16 or 18 games were played per round. The results are shown in Figures 5.42

through 5.45.

Not surprisingly, when only a few games are available for training, learning

online is much worse than using a fixed model. In three out of four cases, the error

from learning online reached the error of the best fixed model after about 8 games,

while in the fourth case (the component model for DM09), the error never sank that

low. Overall, if forced to choose between using online learning or a reasonable fixed

model, the fixed model appears to be a better choice. These results are similar to

the results we obtained when comparing our fixed models used in competition to

the results of online learning during competition (determined after the fact), which

is why we continued to use fixed models.

An alternative approach would be to switch from the fixed model to the

online model at some point, but this would require deciding when to switch. An

even more appealing possibility, as outlined in Section 1.1 of the introduction, is

the idea of somehow combining the two options, such as by combining the fixed

and online models or combining their training data. This idea is explored fully in

Chapters 8 and 9, where I describe learning algorithms that can indeed outperform

both the fixed and online models across the full learning curve.

5.5 Summary

In this chapter, I described improvements to the TacTex agent for supply

chain management based on using machine learning to predict changes in com-

puter and component prices. These improvements were shown to have significantly
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Figure 5.42: Computer price prediction error for TT10 when learned online
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Figure 5.43: Component price prediction error for TT10 when learned online

added to TacTex’s score. Next, I discussed the Prediction Challenge, which showed

TacTex’s prediction accuracy to be comparable to other top agents for component

price predictions and clearly superior for computer price predictions. Finally, I

explored the importance of the choice of training data when training models, and

found that model accuracy can vary considerably depending on the similarity of

the group of agents represented in the training data to the group represented by

the test data. I showed that differences in model accuracy can have a large impact

on agent performance, particularly for the model of computer prices. When enough

games against a particular group of agents are available, training models on these
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Figure 5.44: Computer price prediction error for DM09 when learned online
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Figure 5.45: Component price prediction error for DM09 when learned online

games is clearly the best choice, but this is often not the case during the course

of a TAC SCM tournament. In the next two chapters I will show that TAC AA

presents a similar situation, and Chapters 8 and 9 will present a solution.
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Chapter 6

The TacTex Agent for Ad Auctions

I now describe the TacTex agent for the TAC Ad Auctions scenario (TAC

AA). Like the SCM agent, the TacTex agent for AA makes estimates and predic-

tions about a variety of factors and then optimizes its actions with respect to this

information. As with the TacTex agent for TAC SCM, discussion of the agent is

divided into two chapters. In this chapter, I summarize the scenario, describe the

full TacTex agent, and present experiments exploring the importance of each agent

component. This chapter fulfills Contribution 1 for TAC AA, as outlined in Sec-

tion 1.2. The following chapter then covers the use of machine learning to improve

bid estimation.

6.1 TAC AA Description

Sponsored search [63] is one of the most important forms of Internet ad-

vertising available to businesses today. In sponsored search, an advertiser pays to

have its advertisement displayed alongside search engine results whenever a user

searches for a specific keyword or set of keywords. An advertiser can thereby target

those users who might be interested in the advertiser’s products. Each of the major

search engines (Google and Microsoft) implements sponsored search in a slightly

different way, but the overall idea is the same. For each keyword, a keyword auc-

tion [68] is run in which advertisers bid an amount that they are willing to pay each

time their ad is clicked, and the order in which the ads are displayed is determined

by the ranking of the bids (and possibly other factors).
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Running a successful keyword advertising campaign can be difficult. An

advertiser must choose the keywords of interest and its bids for each one based

on an understanding of customer behavior, competitors’ bidding patterns, and its

own advertising constraints and needs, all of which can change over time. As a

result, much effort has gone into developing automated strategies that can bid

intelligently. A number of companies offer software for such a purpose, and the

problem has also attracted a growing number of researchers. TAC AA aims to

provide a realistic, competitive ad auctions environment in which independently

created bidding agents can be tested against each other over the course of many

simulations, just as TAC SCM does for the supply chain setting.

I now provide a summary of those parts of the TAC AA game that are

most important for understanding the design of TacTex. This summary pertains

to the 2009 game specification. (A few changes were made in 2010, as described in

Section 6.9.) For full details, see the game specification [45].

6.1.1 Overview

In each TAC AA game, eight autonomous agents compete as advertisers to

see who can make the most profit from selling a limited range of home entertainment

products over 60 simulated game days, each lasting 10 seconds. Products are

classified by manufacturer (flat, pg, and lioneer) and by component (tv, dvd, and

audio) for a total of nine products. Search engine users, the potential customers,

submit queries consisting of a manufacturer and a component, although either or

both may be null, i.e. missing. There are thus 16 total query types, divided into

three focus levels : F0 (the query with both manufacturer and component null), F1

(the six queries with one null and one specified), and F2 (the nine queries with

both specified). Each day, for each of the 16 query types, a keyword auction is

run. For each auction, an advertiser submits i) a (real-valued, non-negative) bid

indicating the amount it is willing to pay per click, ii) an ad, and iii) a spending
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limit (optional). Ads can be either targeted (specifying both a manufacturer and

product) or generic (specifying neither). (The set of 16 (bid, ad, spending limit)

tuples can be said to be an advertiser’s action space, and Section 6.7 essentially

describes how TacTex maps its observations into this space each day.) The top five

bidders have their ads shown in order, but if an advertiser hits its spending limit

(as a result of having its ad clicked enough times), its ad is not shown for the rest

of the day, and all advertisers with lower bids have their ads move up one position.

Bids must exceed a small reserve price.

6.1.2 Users

There is a fixed pool of users, each of which remains interested in a specific

product throughout the game and submits only queries corresponding to this prod-

uct. However, users cycle through states corresponding to the focus levels according

to a specified transition model. Users begin in a non-searching (NS) state, and can

then transition through a searching (IS) state (which may submit a query of any

focus level but will not make a purchase) to one of three buying states (F0, F1, or

F2, each of which submits a query of the corresponding focus level and makes a

purchase with a probability that increases with the focus), and eventually back to

the non-searching state. For each product, the total number of users in any state

can vary widely and rapidly.

6.1.3 Click model

Every searching or buying user submits one query per day and then pro-

ceeds through the resulting ads in order of advertiser ranking. When an advertiser’s

ad is shown, it is said to receive an impression, but not all impressions result in

clicks. The default user behavior is as follows. If a user submitting query q reaches

the ad of advertiser a, the probability of a click is ea
q , a hidden parameter drawn

randomly at the start of each game. If the user clicks, it will then convert (make
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a purchase) with a probability dependent on the user’s focus level. For each con-

version, the advertiser receives $10. (This amount is technically the sales profit

before considering advertising costs, but I will simply refer to it as the agent’s rev-

enue). If the user does not convert, it proceeds to the next ad with probability γq,

another randomly drawn, hidden game parameter. Thus, the higher the position

of the ad, the more likely it is to be clicked. A number of factors can modify this

default behavior. First, if an advertiser’s ad is targeted, the click probability is

raised or lowered depending on whether the ad matches the product desired by the

user. Second, each advertiser has a component and manufacturer specialty. If the

product desired by the user matches the component specialty, the conversion prob-

ability is increased, and if it matches the manufacturer specialty, the advertiser’s

revenue is increased. Finally, the conversion probability decreases if the advertiser

has exceeded its capacity, as described below.

6.1.4 Auctions

Ads are ranked using a generalized second price auction. Rather than rank-

ing ads solely by bids, the search engine also considers click probability. If for

query type q an advertiser’s bid is bq and its default click probability is ea
q , then its

squashed bid is defined as (ea
q)

χbq, where χ is a random but known game parameter.

Ads are ranked by squashed bid, and each time an advertiser’s ad is clicked, it pays

the minimum amount it could have bid while still beating the squashed bid of the

advertiser ranked below it.

6.1.5 Capacity

Each advertiser is assigned a capacity c which serves as a soft constraint on

how many products it can sell (of any type) over a five day period. Whenever an

advertiser’s ad is clicked, if the number of products n sold over five days (including

those sold so far on the current day) exceeds c, then the conversion probability is
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multiplied by a capacity factor equal to 0.995n−c. Note that the capacity factor

changes during the day as the advertiser sells more products.

6.1.6 Information

Advertisers must operate in the face of limited information about customers

and competitors. For each query type, the advertiser receives a daily report stat-

ing how many impressions, clicks, and conversions the advertiser received and the

average cost per click (CPC). The only other information available is a report on

the ad used by each advertiser and the average position of that ad. An advertiser

that wishes to increase its number of clicks would therefore have little information

about how much it would cost to increase the position of its ad or how many clicks

it might expect in the new position. Advertisers are also unaware of the types

(specialties and capacities) of other advertisers.

6.1.7 Example

Table 6.1 shows the results for the query null:dvd from a sample game day.

The eight advertisers are shown in order of their squashed bids, which differs from

the order of the true bids due to differing ea
q values. The ads and spending limits

(where used) of each agent are also shown. The results of these actions are shown on

the right side of the table: the cost per click, impressions, clicks, and conversions.

In addition, the impression range column shows a graphical representation of the

period for which each advertiser’s ad was shown, with the day progressing from left

to right. On this day, 718 users submitted the query null:dvd, but due to spending

limits, only two agents, QuakTAC and munsey, received the full 718 impressions.

TacTex was the first agent to hit its spending limit (after a single click - this

was a probe, as described later). At that point, all lower advertisers increased

by one position, and since epflagent reached the fifth position, its ad began to be

shown. Hence, the impression range column shows epflagent starting where TacTex
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Agent actions Results
Advertiser Bid Sq bid Ad Sp lim CPC Imps Clks Cnvs Impression range Avg pos

MetroClick 0.315 0.109 generic 50.93 0.310 426 164 16 r r 1.000

QuakTAC 0.266 0.107 pg:dvd - 0.194 718 156 6 r r 1.593

TacTex 0.235 0.091 generic 0.236 0.201 77 1 0 r r 3.000

UMTac09 0.216 0.078 generic 7.583 0.209 700 36 6 r r 2.719

munsey 0.190 0.075 generic - 0.174 718 16 2 r r 3.675

epflagent 0.214 0.068 generic - 0.184 641 3 0 r r 4.510

AstonTAC 0.158 0.059 generic 500.0 0.133 292 1 0 r r 4.938
Schlemazl 0.062 0.020 flat:dvd 5.617 - 0 0 0 -

Table 6.1: Results for the query null:dvd from one game day of the 2009 TAC AA
finals

stopped. Although Schlemazl reaches the fifth position at the end of the day, its

ad is not shown because its bid is below the reserve. Finally, the average position

for each advertiser is shown. Note that the average positions are not in the same

order as the squashed bids, and that the average is only for the period in which the

ad was shown (thus never above 5). From this table, the only information available

to TacTex was its own row (except for the squashed bid) and the ad and average

position columns. Much of TacTex’s computational effort is devoted to estimating

the rest of this information to facilitate the decision-making process.

6.2 TacTex Overview1

TacTex was the winner of the 2009 and 2010 TAC AA competitions. As

the agent changed little between years, the the agent description that follows is

accurate for both versions of the agent.

At a high level, TacTex operates by making predictions or estimates con-

cerning various factors (such as unknown game parameters, user populations, and

competitor bids) and then by finding the optimal actions given this information.

1I would like to thank Doran Chakraborty for his contributions to TacTex. In particular, Doran
assisted in the development of the User Model (6.4) and designed the ad prediction method (6.5.2)
and first bid estimator (6.5.3.1) contained in the Advertiser Model.
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Figure 6.1: Flow of information in TacTex. T = TacTex only, A = all advertisers,
Q = all queries.

These tasks are divided among a number of modules that I describe in detail in the

following sections. Here, I give an overview of these modules. Figure 6.1 depicts

the relationship between the modules, including the inputs and outputs of each.

At the start of each new day, the game server sends TacTex a report on the

results of the previous day. The first module to be called is the Position Analyzer,

a preprocessor that converts some of this information into a more useful format.

The goal of the Position Analyzer is essentially to reconstruct the impression range

column of Table 6.1 for each query type.

TacTex then performs all necessary prediction and estimation using three

modules. The User Model uses the total number of queries for each query type

to estimate the composition of each of the nine user populations. From these

estimates, predictions about future user populations can be made. The Advertiser

Model takes information relating to the actions of other advertisers and predicts the

actions these advertisers will take in the future. The Parameter Model maintains

estimates of unknown game parameters by finding those parameters that best fit

the known auction outcomes.
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Finally, TacTex must use these predictions and estimates to choose the

optimal bids, ads, and spending limits to submit to the game server for the next

day. The Query Analyzer uses the information received to compute the expected

outcomes of actions, such as how many clicks and conversions would occur for a

given query type. If there were no capacity factor, then TacTex could optimize

for each query type independently, but instead it must choose how to allocate its

available capacity among query types and even among multiple days. The Multi-

day Optimizer is responsible for dividing capacity among the remainder of the

game days, and it calls the Single-day Optimizer to divide each day’s capacity

among query types using the information provided by the Query Analyzer.

6.3 Position Analyzer

For each query type, the Position Analyzer takes the average advertiser

positions and attempts to extract i) the ranking of the squashed bids, and ii) the

first and last impression for each advertiser. Each advertiser’s average position can

be expressed as a function of the bid rankings and first and last impressions of all

other advertisers, and while this system of equations cannot be solved directly, it is

possible to efficiently search the space of unknown values to find a correct or nearly

correct solution. The details of the search algorithm are given in the Appendix.

6.4 User Model

The User Model maintains estimates of the user population states by using a

particle filter (specifically a Sampling Importance Resampling filter [1]) for each of

the nine populations. (See Section 5.1.1 for a brief explanation of particle filtering.)

In this case, each of the 1000 particles used per filter represents a distribution of

the 10, 000 users of that type among the six individual user states (NS, IS, F0,

F1, F2, and T). At the beginning of the game, the particles are chosen to reflect
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the possible populations resulting from the initialization process performed by the

game server. Each succeeding day, a new set of particles is generated from the old.

For each new particle to be generated, an old particle is selected at random based

on weight, and the new particle’s user distribution is randomly generated from the

old particle based on the user transition dynamics. These dynamics are known with

the exception of the probability of a user transitioning to the Transacted state as

a result of a conversion. This probability depends on the ads seen by the user, and

thus on the behavior of the advertisers, but we can estimate it fairly accurately

from past games.

The new particles are then re-weighted based on TacTex’s observations. The

daily observations that depend on the user populations are the total impressions,

clicks, and conversions for each of the 16 queries. Some of these observations

are more informative and straightforward to use than others. Observations for

queries in which the manufacturer or component are not specified (F0 and F1

queries) are less informative because they represent the behavior of users from

multiple populations. Conversion rates depend on the position and capacity factor

at the time of the click, and suffer from small sample sizes. The most informative

observations are the total impressions for queries that specify both manufacturer

and component (F2 queries), and we found that we were able to estimate user

populations accurately using only these observations. Note that unless TacTex had

its ad displayed for every impression for a query type (an uncommon case), the total

impressions for that query type must be determined using the Position Analyzer.

The number of impressions for an F2 query is the number of users submitting

that query, which is the number of F2 users plus those IS users that chose the F2

query. An IS user has a 1/3 probability of choosing the F2 query, so the probability

of observing N total impressions when there are xi IS users and xf2 F2 users is

the probability that N − xf2 of the xi IS users choose the F2 query, which can

be determined from the binomial distribution B(xi, 1/3) or (in our case) estimated
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using the normal approximation to this binomial distribution, N(xi/3, 2xi/9). Each

particle has its weight set to this probability, and weights are then normalized to

sum to one.

The resulting set of particles represents our estimated probability distribu-

tion over the user population state on the previous day. To obtain the expected

user population n days in the future, we update each particle n+1 times according

to the user transition dynamics and take the weighted average of the particles.

Figures 6.2 and 6.3 show the estimated and actual number of users in the

IS, F0, F1, and F2 states for two different products in one game from the 2009

finals. The game server models users as exhibiting occasional bursts of interest

in a product (i.e., moving from the NS to IS state in large numbers), and these

bursts can be seen in the IS user plots. If these bursts can be detected, then the

estimated number of IS users will be very accurate, and the estimates of users in

other states will follow. In Figure 6.2, these bursts are detected perfectly, and

accuracy for all four user states is extremely good. For the product depicted in

Figure 6.3, TacTex’s estimates of total daily impressions were poor on some days,

and on these days the User Model could not be sure whether a burst occurred. As

a result, the IS estimate shows a number of small “blips”, where some particles

reflected a burst and others did not, and one true burst was missed. Nevertheless,

the User Model was able to recover on succeeding days, and the estimates for all

four states remain good overall.

6.5 Advertiser Model

The Advertiser Model makes three types of predictions about the actions of

the competing advertisers.
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Figure 6.2: User population estimates for one product
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Figure 6.3: User population estimates for a second product
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6.5.1 Impression Predictions

In addition to predicting the bids of other advertisers, it is also important to

predict whether and when they will hit their spending limits. If other advertisers set

low spending limits, a relatively low bid could still result in a high average position

and number of clicks. For each query type, the Advertiser Model predicts the

maximum number of impressions that each advertiser could receive before hitting

its spending limit. In general, the Advertiser Model predicts that this maximum

will be the same number of impressions as the advertiser received on the previous

day; however, in cases in which an advertiser did not hit its spending limit by the

day’s final impression, we assume that the advertiser effectively had no spending

limit and will also not hit its spending limit on the coming day. Information about

the impressions received by other advertisers is provided by the Position Analyzer.

6.5.2 Ad predictions

The Advertiser Model also predicts the ads (targeted or generic) that other

advertisers will choose. For each query type, the Advertiser Model maintains a

count for all the ads it has seen so far from each advertiser. The predicted ad for

that query is then the majority ad, i.e., the ad having the highest count amongst

all posted ads for that query type.

6.5.3 Advertiser Bid Estimation

The third task performed by the Advertiser Model is to maintain estimates

of the bids submitted by each advertiser for each query and then to predict what

future bids will be. Advertiser bid estimation is a hard problem because the bidding

dynamics of other advertisers are unknown–while bids often change only gradually,

it is not uncommon for large jumps to occur. In addition, the Advertiser Model

receives only partial information about the bids of other advertisers (the bid ranks
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and TacTex’s CPC). During the development of TacTex, we created two very dif-

ferent and independently designed bid estimators. Our preliminary testing did not

show either approach to be superior; however, we found that an ensemble approach

that averaged the output of the two estimators outperformed either one alone, and

so the Advertiser Model uses both estimators in this fashion. The primary differ-

ence between the two is that the first estimator models all advertisers’ bids jointly,

while the second models bids independently.

The estimates obtained are for the bids active on the previous game day;

however, our goal is to predict future bids for use in planning. Currently, the

Advertiser Model simply assumes that the most recently estimated bids will persist

for the rest of the game, but improving these predictions is an important area for

future development.

6.5.3.1 First bid estimator2

The first approach (Algorithm 1) uses particle filtering to estimate the bids

of other advertisers. We use one particle filter for each of the 16 query types. Each

of the 1000 particles per filter represents one set of bids for all other advertisers

for that query type. Associated with the particles is a probability distribution

that gives the likelihood of each particle representing the current state. On each

new day, each particle filter samples from the underlying distribution to obtain

the next set of particles. Then it updates each particle based on the observations

received that day, i.e., the cost per click and bid rankings. Once the particles have

been updated, the filter recomputes the probability distribution for the new set of

particles.

The sampling step is straightforward. The next step in particle filtering is

2Doran Chakraborty designed the first bid estimator and wrote the initial draft of the material
in this section.
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to update each particle using the known dynamics. In the absence of such known

dynamics, we propose a departure from the traditional vanilla particle filter and

use a part of the observation to do the update. Let cpct+1 and rt+1 be the cost per

click and ranking for that query seen on day t + 1. We use these values to reset

some of the bids made by other advertisers in some particles (where necessary) in

an attempt to improve the respective particle. On each iteration of the update,

the bid, bx
t+1, of an advertiser x is adjusted while holding the bids of the other

advertisers fixed. The bids are adjusted for only those cases where the order of a

bid is incorrect with respect to the known bid ranking. Algorithm 2 gives an outline

of how the bid adjustment is done. The two cases where the order is correct and

there is no need for bid adjustment are:

rx
t+1 > (rTacTex

t+1 + 1) ∧ bx
t+1 < cpct+1

rx
t+1 < rTacTex

t+1 ∧ bx
t+1 > bTacTex

t+1 (6.1)

The conditions when bx
t+1 needs to be updated, and how these updates are made,

are mentioned below. rand(a, b) denotes a random draw from the range (a, b). z

denotes the particle and z(r) denotes the bid of the advertiser ranked r in z.

bx
t+1 =











cpct+1 if rx
t+1 = rTacTex

t+1 +1

rand(0, least bid value in z) if rx
t+1 = undefined

rand(z(rx
t+1+1), z(rx

t+1-1)) otherwise

Note that the “otherwise” case excludes the conditions mentioned in Equation 6.1.

The whole process is repeated a fixed number of times, holding one advertiser

fixed each time, with each iteration improving upon the former (20 iterations is

sufficient). At the end of this update step, we have a better particle having closer

predictions of other advertiser bids.

Next comes the step of recomputing the probability distribution of the sam-

pled particles (Algorithm 3). Although the true likelihood of a particle whose

ranking does not match the true ranking rt is zero, there may be few particles with
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Algorithm 1: Advertiser-Bid-Estimator

begin
input : ~z, P r(·), cpc, ranks

1 for ∀z ∈ ~z do
2 z ←Adjust-Bids(z, cpc, ranks)

3 Sample n particles from the filter
4 for ∀z ∈ ~z do
5 Pr(z)← Recompute-Distribution(z, ranks)

6 normalize Pr(·)

the correct ranking, and so we instead use a likelihood function designed to give

some weight to all particles. We compute the difference of ranking for each adver-

tiser from the two available sources, i.e., rt and the rank from z. For a distance δ,

we define κ(δ) = exp(− δ2

4.9
). The likelihood of each particle is set to the product of

these κ(δ) values over all advertisers, and thus the particles whose predicted rank-

ings are closer to rt get assigned higher values. These values are normalized over all

1000 particles to give the true probability distribution captured by the particles.

6.5.3.2 Second Bid Estimator

The second bid estimator differs from the first in two main ways. First, for

each query it maintains separate bid distributions for each advertiser, rather than

a single joint distribution over all bids. Second, while both estimators approximate

continuous distributions using discrete distributions, the second filter does so using

a fixed set of bids rather than a changing set of particles. The bid space [0, 3.75]

is discretized into values v1 through v100 by setting vi = 2i/25−2 − 0.25 (thus v50 =

0.75). Discretizing the bid space in this way allows better coverage of low bids,

which are most common, while still maintaining the ability to represent very high

bids, and it also simplifies our modeling of changes in bids, described below.

On day t + 1, for each advertiser x, we wish to estimate the distribution of
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Algorithm 2: Adjust-Bids

begin
input : z, cpc, ranks
output: z

1 lo-bid ← set a low bid limit
2 size ← no of advertisers in ranks
3 rTacTex ← own rank from ranks
4 bTacTex ← own bid for q
5 count← no of iterations
6 while count times do
7 for (∀x ∈ advertiser set) do
8 rx ← rank of x from ranks
9 switch do

10 case rx = rTacTex + 1
11 bx ← cpc

12 case rx = −1 (undefined)
13 bx ← rand(lo-bid, z(size))

14 case rx > (rTacTex + 1) ∧ bx ≥ cpc
15 bx ← rand(z(rx + 1), z(rx − 1))

16 case rx < rTacTex ∧ bx ≤ bTacTex

17 bx ← rand(z(rx + 1), z(rx − 1))

Algorithm 3: Recompute-Distribution

begin
input : z, ranks
output: Pr(·)

1 Pr(z)← 1
2 for ∀a ∈ advertiser set do
3 δ ← difference of a′s rank between z and ranks

4 δf ←
diff

7

5 Pr(z)← Pr(z)× exp(−
δ2

f

C
)

6 normalize Pr(·)
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the new bid, bx
t+1, over these discrete v values, conditional on the observed ranking

rt+1, previous bids bx
1 ... bx

t , and the bids of other advertisers, B−x
t+1. We make the

simplifying assumptions that rt+1 and bx
1 ... bx

t are conditionally independent given

bx
t+1, and that B−x

t+1 and bx
1 ... bx

t+1 are independent. Applying Bayes’ rule twice and

rearranging, we derive:

Pr(bx
t+1 = vi|rt+1, B

−x
t+1, b

x
1 ...b

x
t ) ∝

Pr(rt+1|B
−x
t+1, b

x
t+1 = vi)Pr(bx

t+1 = vi|b
x
1 ...b

x
t ) (6.2)

The first term in the R.H.S. of Equation 6.2 is the probability of the observation

while the second term is the transition model of bids for x, both unknown.

We model bid transitions by assuming that bids change in one of three ways.

First, with 0.1 probability, bx
t+1 jumps uniformly randomly to one of the vi values.

This case covers sudden jumps that are difficult to model. Next, with 0.5 probabil-

ity, bx
t+1 changes only slightly from bx

t . We assume that the probability of changing

from vi to vj is proportional to φ0,6(|i − j|), where φ0,6 is the density function of

the zero-mean normal distribution with variance 6. Because we discretized the bid

space in such a way that bids increase exponentially, the use of this distribution

reflects the assumption that the logarithms of the ratios of successive bids are dis-

tributed normally with zero mean. Finally, we assume that with 0.4 probability, the

bid changes according to a similar distribution, but the change is with respect to

the bid 5 days ago, bx
t−4. This case captures the fact that bids often follow 5 day cy-

cles due to the 5 day capacity window. The probabilities for these three cases were

chosen to provide robustness to a variety of agent behaviors in pre-competition ex-

periments. Let tr(j, i) denote the the resulting probability of the bid transitioning

to vi from vj using the above normal distribution and normalizing.

Summing the three cases gives us the following:

P (bx
t+1 = vi|b

x
t = vj, b

x
t−4 = vk) = (6.3)
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0.1 · 0.01 + 0.5 tr(j, i) + 0.4 tr(k, i)

and so we can find the probability of each bid by summing over our previous

distribution estimates:

P (bx
t+1 = vi) = 0.1 · 0.01 + 0.5

100
∑

j=1

P (bx
t = vj)tr(j, i) + (6.4)

0.4

100
∑

k=1

P (bx
t−4 = vk)tr(k, i)

Our estimate for bx
1 is initialized to a distribution consistent with observed game

data, and when t < 5, we substitute bx
1 for bx

t−4.

The observation probabilities are now conditioned on a single advertiser’s

bid, rather than a set of bids as in the first bid filter. Let y be another advertiser in

the game apart from x. If advertiser y is TacTex, then we know the bid; otherwise

we have a distribution representing our estimate of the bid for y. Thus the con-

ditional probability of the set of rankings rt+1 given a fixed bx
t+1 = vi and a fixed

value of the distribution B−x
t+1 is :

P = Π∀y 6=x











Pr(by
t+1 > vi) if rx

t+1 > ry
t+1,

Pr(by
t+1 < vi) if rx

t+1 < ry
t+1,

1 otherwise

(6.5)

where P denotes Pr(rt+1|b
x
t+1 = vi, B

−x
t+1). Note that ranks will only be equal if

neither advertiser had any impressions; in this case we have no information about

the relative bids. Also, whenever y is TacTex, the R.H.S. will be 1 or 0 since we

know our own bid. In addition, in some cases it is possible to use TacTex’s cost per

click to exactly determine the bid of the advertiser below it. Finally, we have been

treating B−x
t+1 as if it were known, but in fact these are the other advertisers’ bids

that we are trying to estimate simultaneously. We address this problem by applying

Equation 6.2 for 10 iterations, using the latest estimates for each bid distribution,

as this resulted in sufficient convergence in testing. Algorithm 4 summarizes the

update procedure used each day by the second bid estimator.
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Algorithm 4: Update-Distributions

begin
input : rankings rt+1, TacTex’s bid and cpc

1 for each advertiser x do
/* let T x

i be Pr(bx
t+1 = vi|b

x
1 ...b

x
t ) */

2 for i = 1 ... 100 do
3 set T x

i according to Equation 6.4

4 for n = 1 ... 10 do
5 for each advertiser x do
6 for i = 1 ... 100 do

/* let Ox
i be Pr(rt+1|B

−x
t+1, b

x
t+1 = vi) */

7 if n = 1 then
8 Ox

i = 1
9 else

10 set Ox
i according to Equation 6.5

11 for each advertiser x do
12 for i = 1 ... 100 do
13 Pr(bx

t+1 = vi)← Ox
i T

x
i

14 normalize Pr(·)

6.6 Parameter Model

Recall that for each query type q, the parameter γq represents the probabil-

ity that a user will progress from one ad to the next, while each advertiser a has

a parameter ea
q that affects the probability of a user clicking its ad (and thus also

its squashed bid). Given the bid rankings and impression ranges computed by the

Position Analyzer and the User Model’s population estimate, we can determine the

distribution over the number of clicks that TacTex would receive for any set of these

parameter values. The Parameter Model estimates the values of γq and eTacTex
q , as

these are the parameters that have the most impact on TacTex and about which

our observations provide the most information. There is insufficient information

to effectively estimate ea
q values of other advertisers, and so we assume they equal
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the mean possible value. To perform estimation, the Parameter Model maintains

a joint distribution over (γq, eTacTex
q ) pairs by discretizing the possible space of

values uniformly and setting the likelihood of each pair to be proportional to the

probability of all observations given that pair, that is, the product of the probabil-

ities of each day’s number of clicks. When performing calculations involving these

parameters, the Parameter Model takes the weighted average for each parameter as

its estimate. While these estimates do not generally converge to the correct values

by the end of a game (and might not ever be expected to given our decision to

not estimate other advertisers’ ea
q values), they are much more accurate on average

than simply assuming the expected parameter values–typically the estimate falls

somewhere between the true parameter value and the expected value.

6.7 Optimization

To this point, we have described those modules that estimate the game state

and make predictions about the future. We now turn to the challenge of using

this information to select actions. In particular, each day TacTex must choose

bids, ads, and spending limits for each query. The key factor in the optimization

process is the capacity factor. Recall that while there is no hard cap on capacity,

exceeding a certain number of conversions results in a reduced conversion rate.

Beyond some point, net marginal returns per conversion can become negative. As

a result, TacTex performs optimization by reasoning about conversions and then

choosing actions expected to result in those conversions, rather than reasoning

directly in the space of possible actions.

The optimization process consists of three levels: a Multi-day Optimizer

(MDO), a Single-day Optimizer (SDO), and a Query Analyzer (QA). Because we

want to maximize profit for the entire game, not a single game day, the top-level

decision that must be made is how many conversions to target on each remaining
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game day, and this decision is made by the MDO. Computing the expected profit for

a given day and conversion target requires deciding how to divide the conversions

among the 16 query types, and the MDO calls the SDO to perform this task.

Finally, the SDO calls the QA to i) determine the bid, ad, and spending limit

that are expected to result in a given number of conversions, and ii) compute the

expected cost and revenue from those conversions. We describe these three levels

from the bottom up.

6.7.1 Query Analyzer

For any given bid, ad, and spending limit, it is fairly straightforward to

determine the expected cost, revenue, and conversions from a specific query type.

The QA does this by taking the expected user population, iterating through all

impressions, computing our position and CPC, and then computing the probability

that the user i) reaches our ad, ii) clicks on it, and iii) converts. (Note that at this

level we are not considering the capacity factor, which may lower the conversion

rate.) However, the problem we face is essentially the reverse: the QA is given a

conversion target and needs to determine the bid, ad, and spending limit that will

produce those conversions in the most profitable way. Up to a certain point, raising

either the bid or the spending limit will increase the number of conversions, while

the effect of ad choice depends on the user population, so there may be a number

of ways to reach a given number of conversions.

We simplify matters by using no spending limits. During the course of a

day, the expected profit per impression can only increase as other agents hit their

spending limits. If an agent above us hits its spending limit, our position improves

along with our conversion rate. (Higher positions have higher conversion rates due

to a higher ratio of F users to IS users–IS users never convert and thus are more

likely to reach ads at lower positions.) If the agent below us hits its limit, then our

CPC is reduced, as we are participating in a generalized second price auction. It is
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therefore preferable to control conversions using the bid rather than the spending

limit.3

For any given bid, we can evaluate each of the relevant ads and pick the one

that gives the highest profit per conversion. As a result, the QA’s primary task is

to determine the bid that will result in the desired number of conversions. There is

one difficulty remaining, however: because our prediction for each advertiser’s bid

is a point estimate, any bid between the nth and (n+1)st predicted bids will result

in the same position, n + 1, and the function mapping bids to conversions will be

a step function. In reality, there is uncertainty about the bids of other advertisers,

and we would expect this function to be continuous and monotonically increasing.

We create such a function by linearly interpolating between the expected results for

each position. In particular, we assume that the number of conversions expected

for the nth position will result from bidding the average of the (n − 1)st and nth

bid. For n = 1, we use a bid 10% above the predicted highest bid, and for n = 8,

we use a bid 10% below the predicted lowest bid. We generate functions for cost

and revenue in the same way.

The complete procedure followed by the QA for each query type q is there-

fore as follows. First, we find the eight bids (along with corresponding optimal

ads) that correspond to the eight possible positions, and determine the expected

conversions, cost, and revenue for each. Next, we use linear interpolation to create

functions mapping bids to conversions, cost, and revenue. Finally, for a conversion

target c, we can find the bid resulting in the target from the conversions function

and determine the resulting cost (costq(c)) and revenue (revenueq(c)) from the cor-

responding functions. The ad to use is the ad corresponding to the closest of the

3During the 2009 and 2010 TAC AA competitions, TacTex used high spending limits as a
precaution. Our experiments have shown that this was unnecessary, at least for the 2009 speci-
fication and agents, and so we omit them from the agent described here and in all experiments
described below.
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eight bids.

6.7.2 Single-day Optimizer

Using this information about each query type, the SDO can now determine

the optimal number of conversions to target for each query type given a total

daily conversion target c and the initial capacity used u. The initial capacity used

(the sum from the past four days) is important because it, along with the total

conversion target, determines the capacity factor, which can in turn have a large

impact on the profit from each conversion and the optimal solution. To illustrate,

suppose we need to choose between targeting a single conversion from query type

A with an expected revenue of 10 and expected cost of 8.5, and a single conversion

from query type B with an expected revenue of 15 and expected cost of 13.3.

With a capacity factor of 1 for this conversion, the profits would be 1.5 and 1.7,

respectively. With a capacity factor of 0.9, however, the profits would be 0.5 and

0.2, changing the optimal choice from B to A. It is also important to note that

although we are targeting one conversion, with a capacity factor of 0.9 we would

actually only expect 0.9 conversions; this issue we will be addressed further below.

Computing the precise impact of the capacity factor is difficult because

it decreases after each conversion, meaning that we would need to know when

a conversion occurred to compute its profit. We solve this problem by making

the simplifying assumption that the day’s average capacity factor applies to each

conversion. We denote this value d̄(u, c) because it can be computed from the initial

capacity used and the total conversion target; in fact, we precompute all possible

d̄(u, c) values before the game begins. The goal of the SDO is thus to find values of

cq maximizing
∑

q[d̄(u, c)revenueq(cq)− costq(cq)], where the cq values correspond

to the query types and sum to c. Again, although we are targeting c conversions,

we would actually only expect d̄(u, c)c conversions. In general we reason in terms

of conversions before adjusting for the capacity factor, and so for clarity the term
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adjusted conversions will be used when referring to the actual number of resulting

conversions. Note that u is expressed in terms of adjusted conversions, while c is

not.

We are now left with a fairly straightforward optimization problem: allo-

cating the total conversion target among the queries so as to maximize profit. This

problem can be solved optimally using dynamic programming by casting it as a

multiple choice knapsack problem, with each (query type, conversion) pair repre-

senting a single item and each query type representing a class from which only one

item can be chosen. This solution is too slow for our needs, unfortunately, and

so instead the SDO uses a nearly-optimal greedy solution in which we repeatedly

add conversions from the most profitable query type. If it were always the case for

each query type that as the number of conversions increased, the marginal profit

per query type decreased, then we could add the most profitable conversion at each

step and be guaranteed the optimal solution. In order to receive more conversions

we must increase our bid, and thus our cost per click increases. However, as our

position improves, is it possible for our conversion rate to improve enough to offset

this cost, and so the marginal profit per conversion may actually increase. As a

result, instead of adding a single conversion at each step of our greedy approach,

we consider adding multiple conversions. For each query type, we determine the

number of additional conversions (bounded above by the number of conversions re-

maining before we hit our target) that maximizes the average profit per additional

conversion, and we then add the conversions from the query type with the highest

average profit. This greedy approach is not guaranteed to be optimal, but tests

show that the resulting expected profit differs from the results of the optimal dy-

namic programming approach by less than 0.1% on average.4 The greedy optimizer

is summarized in Algorithm 5.

4An extension of this greedy approach that is optimal exists and was used by the agent
Schlemazl [14].

169



Algorithm 5: Single-Day-Optimizer

begin
input : capacity used u, capacity target c
output: profit

1 cSum← 0
2 for each query type q do
3 obtain costq() and revenueq() from the QA
4 cq ← 0

5 while cSum < c do
6 Find q and c

′

q maximizing
d̄(u,c)(revenueq(c

′

q)−revenueq(cq))−(costq(c
′

q)−costq(cq))

c′q−cq
such that c

′

q > cq

and cSum + c
′

q − cq ≤ c

7 cSum← cSum + c
′

q − cq

8 cq ← c
′

q

9 profit←
∑

q d̄(u, c)revenueq(cq)− costq(cq)

6.7.3 Multi-day Optimizer

The SDO determines bids for any given conversion target and amount of

capacity already used. Determining the bids to submit for the next day therefore

requires only that we choose the conversion target. Because the bids submitted

today affect not only tomorrow’s profit but also the capacity remaining on future

days, we cannot simply choose the conversion target myopically. To maximize ex-

pected profit over the remainder of the game, we must consider not only tomorrow’s

conversion target, but also the actions we will take on all succeeding days.

The MDO operates by finding the optimal set of conversion targets for the

remainder of the game. The expected profit from any set of conversion targets can

be determined by successively applying the SDO to each remaining game day. The

goal of the MDO on day d is is therefore to find the conversion targets ct maximizing
∑59

t=d+1 SDOt(ct, ut), where SDOt returns the expected profit from applying the

SDO on day t, and ut represents the total adjusted conversions over four days
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preceding t (which can be computed from the ct values). Note that planning for

the entire game requires calling the QA (and thus predicting the bids of other

agents) for all remaining game days, not only the next day. Currently, TacTex

simply assumes that the bids predicted for the next day persist for the rest of the

game, but improving these predictions is an important area for future work.

Once again, an optimal solution can be found using dynamic programming,

but we choose another approach due to time constraints. The dynamic program-

ming approach requires working backward from the last day and finding the optimal

conversion target given the number of (adjusted) conversions on each of the previ-

ous four days. The MDO instead uses a form of hill climbing search to solve this

optimization problem. We begin by setting each ct value to be one-fifth of TacTex’s

capacity. Then for all t, we consider increasing or decreasing ct by one and compute

the expected profit in each case. We then choose the most profitable deviation over

all t. This process repeats until no deviation is profitable. In comparing these two

optimization approaches, we found it necessary to use a somewhat coarse degree of

granularity (increments of five conversions) when implementing the dynamic pro-

gramming approach due to memory limitations, and as a result the hill-climbing

approach was actually slightly better than the dynamic programming approach.

The optimization procedure followed by the MDO is summarized in Algorithms 6

and 7.

Once the optimal set of conversion targets is found, the MDO takes tomor-

row’s conversion target and submits the bids determined by the SDO. Essentially,

we plan for the rest of the game and take the first step of this plan. On the next

day, we repeat this process using updated information.

There is one remaining special case. It will often be the case that we are not

interested in bidding on a particular query. When this happens, TacTex submits

a probe bid designed to provide information about the bids of other advertisers.
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Algorithm 6: Find-Profit

begin
input : day d, conversion targets cd ... cend, capacities used

ud−1,ud−2,ud−3,ud−4

output: profit
1 profit← 0
2 for t = d ... end do
3 u← ut−1 + ut−2 + ut−3 + ut−4

4 profit← profit + Single-Day-Optimizer(u, ct)
5 ut ← d̄(u, ct)

The bid chosen is one that we expect to be the nth ranked bid, where n is the rank

between 2 and 6 that we have hit least recently. We set a spending limit equal to

the bid so that we will likely only receive a single click.

6.7.4 First Two Days

On the first two game days, we have not yet received any information about

auction results, and so we cannot use the bidding strategy described above. Many

agents use hard-coded bids, but we choose our bids using information from past

games. For each query type, we choose an average position to target using a

simple heuristic: the target begins at 5, and if the query type matches one of our

specializations, the target decreases by an amount depending on our capacity. We

compute the bid that we expect to result in this position by performing linear

regression on data observed in previous games to learn a function mapping bids to

positions. A separate function is learned for each day and focus level.5

5In all experiments described below, fixed bids were used on the first two days.
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Algorithm 7: Multi-Day-Optimizer

begin
input : day d, capacities used ud−1,ud−2,ud−3,ud−4

output: conversion target cd

1 for t = d ... end do

2 ct ←
total capacity

5

3 while maximum profit improves do
4 for t = d ... end, change ∈ {1,−1} do
5 ct ← ct + change

6 profitchange
t ← Find-Profit(d, cd... cend, ud−1... ud−4)

7 ct ← ct − change

8 find t and change maximizing profitchange
t

9 ct ← ct + change

6.8 2009 Agent Performance

Having completed the description of TacTex, I now analyze the performance

of the 2009 agent. First, I present competition results. I then give the results of

a number of controlled experiments designed to measure the importance of the

different components of TacTex.

6.8.1 2009 Competition

The first annual TAC AA competition was held over two days at IJCAI 2009.

All 15 qualifying agents participated in a round-robin style semifinal round, and

then the top eight agents advanced to a final round where each agent participated

in all 80 games.

TacTex finished first in both rounds. The scores (i.e., average ending bal-

ances) from the final round are shown in the table in Figure 6.4. A Wilcoxon

two-sample test shows that the difference in score between TacTex and each other

agent is statistically significant (p < 0.05 in each case). The plot in Figure 6.4

shows the average daily balance of the top four agents. Here I have subtracted
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Agent Score

TacTex 79.9
AstonTAC 76.2
Schlemazl 75.4
QuakTAC 74.5
munsey 71.8
EPFLAgent 71.7
MetroClick 70.6
UMTac09 66.9
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Figure 6.4: 2009 final round scores (in thousands)

1293 per day (the average daily profit of the second place agent) from each balance

to improve visibility–otherwise the plot would appear as nearly diagonal lines, as

shown in the inset. Two things are apparent from this plot. First, scores tend to

oscillate rather than increase smoothly. This oscillation is a consequence of the

5-day capacity window–if an agent has a large number of conversions on one day

(frequently the very first day), it will have reduced capacity for four days, and then

the heavy day will slide out of the window. There is a similar end game effect,

as there is no benefit to saving capacity beyond the last day. TacTex is especially

effective at ending on an upswing due to the Multi-day Optimizer. Second, TacTex

does not pull away from the other agents until the second half of the game. One

possible explanation is that bidding behaviors converge to some degree over the

course of a game, and so TacTex’s ability to make accurate predictions improves.

Although it is difficult to identify a main reason for TacTex’s success, analy-

sis of the game results from the finals does provide a few clues. Compared to other

agents, TacTex typically had fewer conversions but had a higher profit per conver-

sion (at least 6% higher than any other agent). AstonTAC and Schlemazl focused

on selling those products that matched their manufacturer specialty, which gives a

revenue bonus. As a result, their average revenue per conversion was slightly higher
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that TacTex’s, but their clicks tended to come from higher positions and thus their

CPCs were much higher than TacTex’s. The reverse was true for all other agents:

they had lower CPCs, but much lower average revenue per conversion. It appears

that TacTex struck the right balance between targeting high revenue conversions

and taking advantage of other sales opportunities. A more detailed analysis of the

2009 finals is available in [47].

6.8.2 Experiments

Although our competition victory suggests that the overall design of TacTex

is sound, it gives us little information about the relative importance of the individ-

ual components. For instance, we cannot look at the results and determine how

much the User Model contributed to the overall performance. Fortunately, after

the competition, most teams submitted agent binaries to the TAC Agent Repos-

itory. 6 Using these binaries, we can experiment by changing certain portions of

TacTex and observing the effect on performance. I now report on a number of

these experiments.

We measure the impact of a change to TacTex by running two sets of

50 games: one with the original TacTex, and one with a modified version. The

other seven agents are the best available agents (as of September 2009) from the

repository: AstonTAC, two different versions of Schlemazl, QuakTAC, EPLFAgent,

MetroClick, and Merlion. This mixture of agents provides both relatively strong

agent performance and a wide variety of behaviors. To improve our ability to eval-

uate the statistical significance of the results, we have modified the game server so

that the main random factors (game parameters, advertiser capacities and special-

ties, and the random draws primarily responsible for determining user population

transitions) are identical between corresponding pairs of games. This allows us to

6http://www.sics.se/tac/showagents.php
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# Description Diff. p

Advertiser Model

1 bid estimator 1 -284 .150
2 bid estimator 2 -306 .113
3 bids · 0.9 -536 .077
4 bids · 1.1 -678 .010
5 bids · U[0.9,1.1] -501 .046
6 all impressions -3438 .000
7 impressions · .9 -772 .008

Other

8 no User Model -896 .001
9 no Par. Model -254 .133
10 no probing -812 .004

# Description Diff. p

Optimization

11 maintain cap. -4257 .000
12 constant conv. -7362 .000
13 conv. · 0.9 -287 .174
14 conv. · 1.1 +62 .596
15 conv. · 1.2 -1024 .000
16 bids · 0.9 -453 .039
17 bids · 1.1 -704 .000
18 bids · U[0.9,1.1] -425 .038
19 all generic ads -2351 .000
20 all targeted ads -87 .992

Table 6.2: TAC AA Experimental results

use the Wilcoxon matched-pairs signed-ranks test instead of an unpaired test. (A

similar approach to modifying the TAC SCM game server was introduced by [94].)

Table 6.2 shows the results of our experiments. For each experiment, we give a

reference number, a brief description, the difference in score (a negative difference

means the score of the modified agent was lower), and the p-value indicating the

significance. Experiments are divided into groups corresponding to different parts

of TacTex.

The first group of experiments concerns the Advertiser Model. In experi-

ments 1 and 2, we use only one of the bid estimators instead of averaging the two.

Although both estimators appear to perform reasonably well on their own, we do

see a small increase in score from combining them. In experiments 3-5, we multiply

the Advertiser Model’s predicted bids for each advertiser by 0.9, 1.1, or a random

number chosen uniformly from the range [0.9, 1.1], respectively. Again, we see a

small decrease in score from each change. We know from comparison with the true

results that our predictions are not always highly accurate, but these experiments

show that our predictions are helpful enough that small changes can impact perfor-
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mance negatively. It certainly does not appear to be the case that our predictions

are consistently too high or too low. Finally, we look at the Advertiser Model’s

predictions of the number of impressions advertisers will receive. In experiment 6,

we assume that advertisers use no spending limits (i.e., they receive all possible im-

pressions). In experiment 7, when predicting that an advertiser will use a spending

limit, we multiply the predicted impressions by 0.9. Both changes result in a large

drop in score, showing that impression predictions are very important.

The next group of experiments do not fit a specific category. In experiment 8,

we replace the predictions of the User Model with the average user populations

expected and see a fairly large drop in score. Similarly, in experiment 9 we replace

the estimates from the Parameter Model with the expected values and see a smaller

score reduction. In experiment 10, we replace all probe bids with zero bids, and

again we see that this is detrimental to performance. The information lost from

these changes appears to be important to TacTex, and the last experiment shows

that a query type that does not attract attention from TacTex on one day may still

become a source of profit in the future.

The last group of experiments concerns optimization. Experiments 11 and

12 show the importance of planning over multiple days. In experiment 11, we

choose the next day’s conversion target so that the total conversions over the last

five days will be 1.4 times our capacity (the average amount used by the unaltered

TacTex). Then in experiment 12, we simply set each day’s conversion target to

be 1/5 of 1.4 times the capacity. Both changes cause an extremely large drop in

score despite the fact that TacTex has roughly the same number of conversions. In

experiments 13-15, we multiply the next day’s conversion target by 0.9, 1.1, and

1.2, respectively. Experiments 13 and 15 result in score reductions as expected;

however, multiplying the conversion target by 1.1 actually results in an increase

in score, although not a significant one. This result would make sense if TacTex

were consistently receiving fewer conversions than expected, but that is not the
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case. Another possibility is that it may be less harmful to sell too much than too

little, and because TacTex will rarely hit its conversion target exactly, it would

be safer to target a few extra conversions. In any case, experiments 11-15 suggest

that the Multi-day Optimizer is highly effective in choosing conversion targets.

Experiments 16-18 concern the bids generated by the Query Analyzer at the end

of the optimization process. Again, we multiply these bids by 0.9, 1.1, or a random

number chosen uniformly from the range [0.9, 1.1], respectively. In each case there

is a moderately large score reduction, and so the Query Analyzer appears to be

successful at providing useful information about bid selection. Finally, experiments

19 and 20 concern ad selection. In experiment 19, we use only generic ads, and in

experiment 20 we use only targeted ads, where the manufacturer and component

match the query when present or TacTex’s specialty when null. The results clearly

show that ad selection can impact score, but it does not appear that choosing

optimal ads (which are usually targeted) is significantly better than simply always

using targeted ads.

The main message from these experiments is that nearly all components of

TacTex make at least a small contribution to the overall performance of the agent.

Some parts, such as the Multi-day Optimizer and impression prediction, appear to

be especially important. In addition, from extra experiments not described here

we have observed that changing multiple agent components tends to compound

the impact on performance. For example, while using only the first bid estima-

tor or multiplying our conversion targets by 0.9 both reduce the score by under

300, doing both at the same time reduces the score by 1238. The true value of

some components may therefore be even greater than the experiments shown here

suggest.
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6.9 2010 Results

In 2010, two significant changes were made to the TAC AA specifications [46].

The first was a drastic increase in reserve prices. The primary result of this change

was that agents could afford to focus on only a few query types, causing some query

types to receive bids from only one or two advertisers. In 2009, on the other hand,

advertisers could place low bids on several query types and get a significant number

of low-cost clicks.

The second change was more directly harmful to TacTex. Instead of being

given the true average position of each advertiser, agents were given a less pre-

cise number that was computed by sampling the positions at ten randomly chosen

times. As a result, the Position Analyzer no longer produced accurate estimates of

total impressions, bid rankings, and the number of impressions received by other

advertisers. This in turn caused the predictions of the User Model and Advertiser

Model to be less accurate. In particular, the User Model was no longer nearly as

accurate as it was shown to be in Figure 6.2, as TacTex no longer knew the total

number of impressions for any query type unless it actually received all these im-

pressions. (Our experiments still showed the User Model to be beneficial, however:

removing it resulted in an average score decrease of 435, versus the decrease of 896

seen in the previous experiments under the 2009 specifications.)

Nevertheless, TacTex won the 2010 competition by an even larger margin

than in 2009. The scores from the final round are shown in the table in Figure 6.5.

One interesting observation from the plot of daily balances is that, unlike in 2009,

TacTex began to pull away from the other agents from the start of each game.

Our hypothesis is that the increase in reserve prices, and the resulting decrease in

competition for each query type, caused agents to settle into predictable bidding

patterns earlier on in each game, and so TacTex’s advantage in prediction and

optimization also appeared earlier.
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Agent Score

TacTex 58.1
Schlemazl 52.9
Mertacor 52.4
MetroClick 52.2
Nanda AA 48.1
crocodileagent 47.8
tau 44.4
McCon 43.4
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Figure 6.5: 2010 final round scores (in thousands)

6.10 Summary

This chapter described the TacTex agent for the TAC Ad Auctions scenario.

TacTex is a complete agent for bidding in keyword auctions. At a high level, it

operates by estimating or predicting various quantities and then determining the

optimal bids given this information. These tasks are divided among a number of

modules, and experiments showed that each module made an important contri-

bution to TacTex’s winning performance. As was the case in TAC SCM, after

developing a winning agent, the focus of our research agenda became finding ways

to apply machine learning to improve the performance of the agent, and the next

chapter discusses one such improvement in the area of bid estimation.
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Chapter 7

Learning for Bid Estimation in TAC AA

Chapter 6 presented the TacTex agent for TAC AA. The results of the ex-

periments of Section 6.8.2 show that the models used by TacTex for estimation

and prediction make an important contribution to its performance. It is thus rea-

sonable to believe that improving the accuracy of these models could improve the

performance of TacTex. The User Model and Parameter Model already make use

of nearly all available information, and it is unlikely that they could be improved

significantly. The Advertiser Model, on the other hand, offers significant room for

improvement. In addition, the implementations of the User Model and Parameter

Model are in many ways specific to the specifications of the TAC AA scenario,

whereas the problem of estimating the bids of other advertisers is one that would

appear in a similar fashion in any ad auction setting. For these reasons, our research

efforts beyond the initial design of TacTex have focused on the bid estimation prob-

lem. This chapter describes an improvement to the competition agent that involves

using particle filters for bid estimation. This estimation approach requires the use

of machine learning to train bidding models, and so as in Chapter 5, I explore the

importance of the choice of training data. This chapter fulfills Contribution 2 for

TAC AA, as outlined in Section 1.2.

7.1 An Improved Bid Estimator

The two bid estimators used by TacTex (described in Section 6.5.3) have a

number of shortcomings: the first estimator (which I will now refer to as the simple
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joint estimator) relies on an ad hoc method of updating the particle filter, while the

second estimator (which I will now refer to as the simple independent estimator)

requires simplifying assumptions to enable bids to be modeled independently and

uses a simplistic model of bidder behavior. In this section I present a greatly

improved bid estimator, which I will refer to as the full estimator. Like the simple

joint estimator, this estimator uses a particle filter to maintain an estimate of the

joint distribution over all advertisers’ bids. However, the full estimator takes a

much more principled approach to updating the particle filter. Like the simple

independent estimator, the full estimator uses models of the bidding behavior of

other advertisers, but now these models are learned from game data.

As mentioned above, the bid estimation problem we are trying to solve is

not specific to TAC AA. In any type of keyword auction, knowing the bids of

other advertisers for a specific keyword would allow an advertiser to predict the ad

position and cost per click for any amount it bid and use this information to choose

the bid it expected to maximize profit. Although search engines typically release

some information concerning the position that an advertiser could expect for certain

bids, this information is generally incomplete and out of date. Alternatively, an

advertiser could experiment with different bids and observe the resulting positions,

but such experimentation would be time consuming and costly.

While the specifics of the bid estimation problem can depend on the auction

implementation used, at a high level the problem remains the same: estimating the

bids of other advertisers given only information about bid rankings. I therefore

begin this section by respecifying the bid estimation problem in general terms.

I then present the design of the particle filter used by the full estimator. As

the particle filter requires bid transition models for all other advertisers, I then

describe a machine learning approach to building these models. Finally, I present

experimental results comparing the accuracy of the full estimator to other bid

estimation methods in three different TAC AA settings.
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7.1.1 Auction Setting

We are interested in estimating the bids of N other advertisers for a single

keyword for which we are advertising. Each advertiser has a standing bid indicat-

ing the amount it is willing to pay each time its ad is clicked, and this bid may

occasionally be revised. This bid must be above a known reserve price reserve.

When a user searches for the keyword, the advertisers’ bids are ranked in descend-

ing order, and their ads are shown in this order. If more than M bids are above

the reserve, then only the top M ads are shown. When a user clicks on our ad,

our cost per click (cpc) is the minimum amount we could have bid and still had our

ad shown in its current position. In other words, our cpc is equal to the amount

of the bid ranked below ours, or to reserve. At some regular interval, we receive

a report containing the following information: i) the bid ranking at time t (for

advertisers whose ads are being shown, i.e., at most the top M), ii) our own cpc

at time t, and iii) our own bid for time t (which of course we already know). Our

goal is to estimate the bids of the other advertisers at time t. Depending on the

nature of the auction, advertisers may be able to revise their bids more frequently

than this reporting interval; however, we will attempt to estimate bids only at this

interval, and our models of advertiser behavior will model changes in bids only at

this interval (e.g., from time t− 1 to time t).

As this model is an abstraction of the keyword auctions used in the real

world, there are a number of complicating factors it does not include, but we believe

it to be a useful model for study. One issue faced in real keyword auctions is that

ad positions are often not determined by bid rank alone, but by a combination

of bid rank and other factors such as clickthrough rate. This is not a problem,

however, as in this case we could simply attempt to estimate the amount we would

need to bid to achieve a higher position than each other advertiser, instead of the

true bid of each advertiser, and use the same particle filtering approach.
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A larger concern is that search engines do not actually provide advertisers

with periodic reports of the bid rankings of other advertisers. Of course, it is

possible to simply repeatedly search for the keyword and observe the order of the

ads displayed, but for a large advertising campaign this process would need to be

automated (using a “screen scraper”), and search engines generally take measures

to prevent this type of activity. Nevertheless, a number of services offer to collect

this type of information for subscribers, so the assumption of these periodic reports

is not necessarily unrealistic.

Finally, I note that this auction setting is in fact an instance of a repeated

generalized second price auction, and that our particle filter could be applied to any

such auction given periodic ranking observations. Generalized second price auctions

are most commonly used in keyword auctions, but they have been considered in

other areas such as electricity auctions [90].

7.1.2 Particle Filtering

I now describe our particle filter for estimating the bids of other advertisers

given periodic reports. For now, I assume that we have a model of each advertiser

that gives us a probability distribution over their next bid given a history of their

bids and rankings. Developing these models is the subject of Section 7.1.4. Again, I

emphasize that we concern ourselves only with the bids at the reporting interval–by

“next bid” I mean the bid at the time of the next report, and likewise our history

reflects the auction state only at the times of past reports.

Given these advertiser models and reports, we estimate the joint distribution

over the bids of all other advertisers using a particle filter. Recall from Section 5.1.1

that a particle filter tracks the changing state of a system by maintaining a set of

weighted samples (known as particles) and updating these particles each time a

new observation is received. In this case, the reports represent our observations,

and each particle represents an estimate of the bids of all advertisers at the time
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of the last report. Additionally, each particle stores all of its past bid estimates,

so each particle can be seen as a full bidding history of all advertisers. Particle

filters are a fitting solution to this problem because they require no assumptions

about the types of distributions involved (unlike Kalman filters), they can be used

efficiently in high-dimensional spaces (unlike grid-based methods that discretize

the state space), and particles are a convenient data structure for storing bidding

histories. We estimate the joint distribution over bids instead of estimating each

advertiser’s bid independently due to the fact that our estimate for each advertiser

is completely dependent on our estimate for all other advertisers. (Recall that

the simple independent filter estimates bids independently but relies on several

unrealistic simplifying assumptions.)

For the experiments presented below, the implementation of our particle

filter makes use of a discretized set of bids {b1, ..., bB}, and so I describe our

particle filter in terms of discrete probability distributions over these bids; however,

continuous probability distributions could also be used in our particle filter if they

can be dealt with analytically.

7.1.2.1 SIS Particle Filter

The simplest particle filter, and the one from which more complicated vari-

ations are derived, is the Sequential Importance Sampling (SIS) filter [1]. A SIS

filter can be implemented for our bid estimation problem as follows. Each particle p

contains a current estimate for the bids of all N advertisers, as well as bid estimates

for each past time step. An initial set of particles P is chosen to reflect a possible

distribution over bids when no reports have yet been received–essentially our prior.

|P | should be chosen to give an acceptable tradeoff between accuracy and speed.

Each particle p receives initial weight wp = 1/|P |. Each time we receive a report,

we update P by generating and weighting a new set of particles. For each existing

particle p, we sample a new particle p′ (i.e., we copy the bidding history contained
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in p and then sample a new set of current bids). Finally, we reweight the particles.

The sampling and weighting procedures depend on our choice of proposal

distribution from which we sample new particles: π(p′|p, report). π may be any

distribution we choose. The weighting procedure then follows from the choice of π

such that the set of weighted particles approximate the true posterior distribution.

If particle p had weight wp, then particle p′ receives weight

wp′ = wp
Pr(report|p′)Pr(p′|p)

π(p′|p, report)
. (7.1)

Finally, the weights of all new particles are normalized so that they sum to one.

7.1.2.2 Choice of Proposal Distribution

The choice of proposal distribution can significantly affect the performance

of the particle filter. The distribution π(p′|p, report) = Pr(p′|p, report) is what

is known as the optimal proposal distribution and results in a weighting of wp′ =

wpPr(report|p). This proposal distribution is called optimal because it results in

the least variance between particle weights–wp′ is independent of p′, and so it will be

the same regardless of which p′ is sampled. However, the optimal proposal distribu-

tion is often not used in practice because it can be difficult to sample from this dis-

tribution and perform weight calculations. Instead, the proposal distribution that

would typically be used (which I will refer to as the standard proposal distribution)

is π(p′|p, report) = Pr(p′|p), which results in a weighting of wp′ = wpPr(report|p′).

The standard proposal distribution is indeed much easier to work with in our

bid estimation problem, but is has a serious flaw: Pr(report|p′) may frequently be

zero. If too few particles receive any weight, then the filter may eventually become

degenerate, with mostly identical particles. To see why Pr(report|p′) might be

zero, recall that the report contains a ranking and our cpc. If the current bids

represented by p′ are inconsistent with this ranking, then the likelihood of p′ will

be zero. The fraction of inconsistent particles will depend on advertiser behavior;
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in the worst case of random bids, only 1/N ! of the particles would be expected to

be consistent with the ranking, as any of the N ! possible rankings would be equally

likely. Even in less extreme cases, we would still expect there to be occasional

improbable rankings. Furthermore, even if p′ is consistent with the rankings, it

will likely not be consistent with our observed cpc. (The simple joint estimator

suffers from these same problems and addresses them in an ad-hoc way.)

We therefore use the optimal proposal distribution in our particle filter.

Particles drawn from this distribution are guaranteed to be consistent with the

report. Thus, we need methods of sampling from Pr(p′|p, report) and computing

Pr(report|p). These methods are described in the following two subsections.

7.1.2.3 Computing Pr(report | p)

For n ∈ 1...N , let an be the advertiser ranked nth, excluding ourselves (i.e.,

lower ranked advertisers have their rank increased by one). Unranked advertisers

may be assigned to the remaining a values arbitrarily. For a given set of current bid

estimates, let cn indicate that an’s bid is consistent with the bids of advertisers a1

... an−1 and with our own bid and cpc. Then Pr(report|p) = Pr(c1∩c2∩ ...∩cN |p).

That is, the probability of particle p from the previous time step leading to a

new particle consistent with report is equal to the probability that for each other

advertisers, that advertiser’s new bid estimate does not exceed the bid estimate of

a higher ranked advertiser or conflict with bid or cpc. Furthermore, Pr(c1 ∩ c2 ∩

...∩cN |p) = Pr(cN |p, c1...∩cN−1) · ... ·Pr(c2|p, c1)Pr(c1|p). Below, I show how each

of these N probabilities can be computed.

For each n ∈ 1 ... N , we would like to compute Pr(cn|p, c1 ... cn−1), that is,

the probability that particle p leads to a new bid for advertiser an that is consistent

with our bid and cpc and the new bids of advertisers a1 ... an−1, given that these

bids are already known to be consistent. This probability is computed differently

for each of five different cases. Let fn be the probability mass function for an’s
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next bid given the information in p, as determined by our advertiser model for

an. In each case, we will determine f ′
n, the probability mass function for an’s next

bid given p and c1 ... cn−1, as well as the corresponding cumulative distribution

function F ′
n giving the probability that the new bid is less than (but not equal to,

as is usual in a CDF) a given value. We begin by setting F ′
0 to be 0 everywhere.

• Case 1: an has a higher rank than us. Because the advertiser is ranked, its

bid will be consistent with the bids of a1 ... an−1 so long as its bid is no

greater than the bid of an−1. Because the advertiser is ranked above us, its

bid must be no less than bid. Therefore,

Pr(cn|p, c1...cn−1) =

bB
∑

x=bid

fn(x)[1− F ′
n−1(x)] (7.2)

Similarly, we can define

f ′
n(x) = fn(x)[1− F ′

n−1(x)]Z (7.3)

where f ′
n has support between bid and bB and Z is a normalizing constant.

• Case 2: an is ranked one below us. Our cpc is determined by the advertiser

ranked below us, so we know the bid of an.

Pr(cn|p, c1...cn−1) = fn(cpc) (7.4)

and we define F ′
n to be 0 at or below cpc and 1 elsewhere.

• Case 3: an is ranked at least two below us. As in Case 1, we need the bid

of an to be no greater than the bid of an−1. Because the advertiser is ranked

below us, its bid must be between reserve and cpc. Therefore,

Pr(cn|p, c1...cn−1) =

cpc
∑

x=reserve

fn(x)[1− F ′
n−1(x)] (7.5)
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and

f ′
n(x) = fn(x)[1− F ′

n−1(x)]Z (7.6)

where f ′
n has support between reserve and cpc.

• Case 4: an is unranked and there are M ranked advertisers. Because the

maximum of M advertisers were ranked, we do not know if an placed a bid

or not. We only know that an’s bid is no greater than the bid of ak, where

ak is the advertiser ranked M .

Pr(cn|p, c1...cn−1) =

cpc
∑

x=0

fn(x)[1− F ′
k(x)] (7.7)

and

f ′
n(x) = fn(x)[1− F ′

k(x)]Z (7.8)

where f ′
n has support between 0 and cpc .

• Case 5: an is unranked and there are fewer than M ranked advertisers. an

did not bid or else it would have been ranked. We treat any non-bid (or bid

below the reserve) as a bid of 0, so

Pr(cn|p, c1...cn−1) = Fn(0) (7.9)

and f ′
n(0) = 1.

By proceeding through the advertisers in order, we can determine Pr(cn|p, c1

... cn−1) for each n ∈ 1 ... N and take the product to get Pr(report|p). We repeat

this process for each p ∈ P and normalize the results to obtain the distribution

from which we sample when generating new particles.
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7.1.2.4 Sampling from Pr(p′ | p, report)

Now given a particle p and the report, we would like to sample a new

particle p′. This involves choosing a new bid bn for each advertiser an, and so

Pr(p′|p, report) = Pr(b1 ∩ b2∩ ... bN |p, report) = Pr(b1|p, report, b2 ... bN )· ...

·Pr(bN |p, report).

Observe that for advertiser aN , the function f ′
N generated above is in fact the

same as Pr(bN |p, report) because it represented the distribution over bN given that

the bids of all other advertisers were consistent with report. For any other adver-

tiser an, if bids bn+1...bN are known, then we can compute Pr(bn|p, report, bn+1...bN )

by taking the highest bid of any lower ranked advertiser (if any) and normalizing

the portion of f ′
n above that bid. Thus, by starting with bN and working backwards,

we can sample all bids in such a way that the bids are consistent with report and

the probability of the resulting particle p′ is Pr(p′|p, report).

7.1.2.5 Example

I now use an example to illustrate particle filters using both the standard

and optimal proposal distributions. Suppose that there are two advertisers x and y

in addition to ourselves, and that according to our advertiser models, at each time

step each either increases or decrease its bid by 1, with probability 0.5 in each case.

We receive a report for time t + 1 indicating that y had the highest bid, x had the

second bid, and we had the lowest bid of 0.25. Now consider a particle p that has

the following bid estimates for time t: bx = 2 and by = 1.5.

For the standard proposal distribution, to sample a new particle p′ reflecting

time t + 1 we would sample new bids for each bidder according to our advertiser

models. However, of the four possible outcomes, only one, bx = 1 and by = 2.5, is

consistent with the bid ranking. If we sampled a different set of bids for p′, then

the weight of p′ would be set to zero.
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For the optimal proposal distribution, we let a1 = y and a2 = x and fol-

low the procedure described above. First, we determine Pr(report|p). We have

f1(0.5) = f1(2.5) = 0.5 and f2(1) = f2(3) = 0.5, with both functions zero elsewhere.

For a1, we follow Case 1. Pr(c1|p) = 1 and f ′
1 = f1 because F ′

0 is zero and either pos-

sible bid is above our bid of 0.25. For a2, we follow Case 1 again. Pr(c2|p, c1) = 0.25

and f ′
2(1) = 1, because 1 − F ′

1(3) = 0, 1 − F ′
1(1) = 0.5, and either possible bid is

above our bid of 0.25. Thus Pr(report|p) = Pr(c2|p, c1)Pr(c1|p) = 0.25, which we

know is correct.

To sample a new particle p′, we first sample b2 from f ′
2 and get 1, the only

possibility. Then we sample b1 from the portion of f ′
1 that is above 1, and we get

2.5, again the only possibility. So we are guaranteed to sample b1 = 2.5 and b2 = 1,

the only possibility for p′ given report.

7.1.2.6 Resampling

The particle filter implementation described so far has been an SIS particle

filter using the optimal proposal distribution. A commonly used extension of an

SIS filter is the Sampling Importance Resampling (SIR) filter, which occasionally

resamples the set of particles to prevent the weights of some particles from ap-

proaching zero. Our implemented particle filter is an SIR filter, and we resample

the particles in P after each update by replacing P with |P | particles sampled (with

replacement) according to the weights, then setting all weights to 1/|P |. The full

procedure for updating the particle filter is summarized in Algorithm 8.

7.1.3 Application to TAC AA

TAC AA differs from the auction model described in Section 7.1.1 in a

number of ways. First, the daily reports provide the average positions of other

advertisers instead of a ranking of their bids. Fortunately, as described in Sec-
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Algorithm 8: Update-Full-Estimator

begin
input : report containing a ranking, our bid, and our cpc.

1 for each particle p do
2 sort advertisers by ranking
3 for each advertiser an do
4 compute fn, the probability mass function over an’s next

bid, using an’s advertiser model
5 set weightp to Pr(report|p), computed as in Section 7.1.2.3,

and store resulting functions f ′
n

6 normalize particle weights
7 resample particles, and set each weight to 1/|P |
8 for each particle p do
9 sample a new particle p′ by sampling a bid for each advertiser

as in Section 7.1.2.4

tion 6.3 it is possible to transform average positions into bid rankings with fairly

high accuracy. Second, in TAC AA the reserve price is unknown, but we can obtain

a reasonably accurate estimate and use this in our particle filter. Third, we are

only given an average cpc. If the agent ranked one spot below us hits its spending

limit before we do, the average cpc will not equal the bid of that agent, as was

assumed in Case 2 above. Once again, we can use the reported average positions

to determine if this was the case, and if so we can apply Case 3 instead for that

advertiser. Finally, in TAC AA ad positions are determined by a combination of

bid rankings and clickthrough rates. In our experiments, we address this issue by

adjusting each bid of each other advertiser to be the amount we would have needed

to bid to achieve a higher position than that advertiser.

The use of spending limits in general represents another significant differ-

ence. We avoid dealing with spending limits by using our particle filter to estimate

each advertiser’s bid at the start of the day, before spending limits cause any adver-

tiser to drop out of the bidding. Estimating the spending limits of other advertisers
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can be treated as a separate problem, as described in Section 6.5.1, although esti-

mating bids and spending limits together is a possible area for future work.

The application of our particle filter to a single query type in a TAC AA

game can therefore be summarized as follows. On each day d, we receive a report

that includes our average cpc and the average position of all advertisers on day

d− 1. We transform the average positions into the bid rankings, and we determine

whether our average cpc does in fact equal the bid of the advertiser ranked below

us. Then, using this information, we update our particle filter, and the result is an

estimated distribution over the bids of all advertisers at the start of day d− 1.

In our experiments, without loss of generality we consider only the nine F2

query types–those in which both a manufacturer and component are specified. In

any one game, a number of random factors affect the value of advertising for any

particular query type, and thus the bidding behavior of the agents. The distri-

butions from which these factors are drawn are the same for all nine query types,

however, and so this bidding behavior is the same in expectation for any query

type in any game. As our particle filter is designed for a single keyword auction,

in our experiments we treat each game as if it provides us with nine independent

and identically distributed episodes, each representing a 60-day bidding history for

a single keyword.

7.1.4 Advertiser Models

In Section 7.1.2, I assumed that we had a bidding model for each advertiser

so that we could determine the distribution over the advertiser’s next bid given

its bid history. I now describe a method of generating such models using machine

learning. While the details of this section are specific to TAC AA, the general

approach could be used in any situation in which sufficient bidding data is available

for use in learning. For a given advertiser, we assume that we have access to the logs

from a number of TAC AA games in which both that advertiser and our own agent
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participated. From these logs, we can determine the actual bids of the advertiser

as well as the reports that would have been available to our own agent at any point

in time. Such complete data would not be available in real keyword auctions, of

course, but some information is typically provided about past bids. In addition,

it might be possible to obtain sufficiently accurate models using a bootstrapping

process, i.e., alternating between training models and then using them to estimate

past bids.

The problem we are trying to solve is a conditional density estimation prob-

lem. While a number of parametric approaches to solving these problems exist, we

choose to use a nonparametric approach. The bidding behavior of advertisers can

be quite complex, and we would prefer to make as few assumptions about this be-

havior as possible. Methods of nonparametric conditional density estimation have

been used in previous TAC domains to solve problems such as predicting future

hotel prices [88] and predicting the probability of an offer to a customer resulting

in an order [55]. The approach we take is to learn a model that takes as input both

a bid amount b and a set of features representing the current state, and outputs

the probability that the advertiser’s next bid is less than or equal to b. Thus by

evaluating this model for different values of b, we can build the cumulative distri-

bution function for the advertiser’s next bid for any given state. This approach

is similar to the one used in [88] except that rather than including a price as an

input to the model, there the space of prices is discretized and the model outputs

a separate probability prediction for each price.

For each day d > 0 and any given bid b for which we wish to make a

prediction we generate a feature vector containing the following:

• b,

• d,
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• the last five bids: bd−1 ... bd−5,

• five bid differences: b− bd−1 ... b− bd−5,

• the last average position: apd−1,

• five average position differences: apd−1 − apd−2 ... apd−1 − apd−6,

• the maximum and minimum bids so far: max and min,

• the differences b−max and b−min,

• the maximum and minimum bids over the last ten days: max10 and min10,

and

• the differences b−max10 and b−min10

Any reference to a day before the first day is replaced with the corresponding

reference to the first day. Finally, each vector is labeled with a 1 or 0 to indicate

whether the advertiser’s bid on day d was less than or equal to b.

Observe that any choice of b results in a unique feature vector. To generate

a set of training data from game logs, we need to choose one or more values of b to

use for each bid observed. If on day d the advertiser’s bid was bd, we generate 14

training instances by using 14 different values of b. The first two values are bd and

bd + 0.01. The next two values are 0 and b̂, where b̂ is 1.1 times the highest bid

ever observed for the advertiser. We then generate ten random bid values between

0 and b̂, chosen to give good coverage of the range of possible bids. The number

14 was chosen to give a reasonable tradeoff between model accuracy and keeping

the size of the training set manageable.

Now that we have a training set, we need to choose a learning algorithm to

build our model. We experimented with the learning algorithms available in the

WEKA machine learning toolkit [110] and found that M5P model trees gave the
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best performance both in terms of probability prediction accuracy on the data set

and bid estimation accuracy of the particle filter. Note that our learning prob-

lem can be treated as either a regression problem (treating the probability as a

number to predict) or a binary classification problem (predicting the probability of

belonging to the class ‘1’), and so both types of algorithms were tested.

One final issue that must be dealt with is the fact that we wish to use our

model to produce a cumulative distribution function, but the output of our model

may not in fact satisfy the requirements. For a given state, as the bid b increases

from 0 to b̂, the output of our model should monotonically increase and reach a

maximum of 1, but this will sometimes not be the case. We address this problem

as follows. Let the function g(b) represent the output of our model for bid b in the

current state. In our particle filter, we work with a discretized set of bids b1 ... bB.

We define a probability mass function f over this set of bids:

f(bi) = max(g(
bi + bi+1

2
)− g(

bi + bi−1

2
), ǫ)Z (7.10)

for a normalizing constant Z and some small ǫ > 0. The corresponding cumulative

distribution function F is now strictly increasing, and F (bB) = 1.

Each time the particle filter needs to draw a new particle p′ based on an

existing particle p, we generate f and F for each advertiser and then follow the

procedure described in Section 7.1.2.1. Note that in this case, the advertiser’s bid

history used to generate the feature vector that is input to the model is based on

the bid history stored in the particle p, and not on the (unknown) true bid history.

7.1.5 Experiments

I now report on experiments that demonstrate the effectiveness of our par-

ticle filter (the full estimator) for bid estimation. I begin by presenting the exper-

imental setup and describing the alternate bid estimation methods against which

we compare the full estimator.

196



7.1.5.1 Setup

We evaluate the full bid estimator in three different settings. For each

setting, we use TacTex as the advertiser we participate as (i.e., the agent whose

observations we see and on whose behalf we are estimating bids). The other seven

advertiser agents are chosen from the TAC Agent Repository. We use agents and

the game server from 2009. Different sets of agents are used for each of the three

settings. For each setting, we run 50 games. 40 games are used to generate training

data, and the remaining 10 are used for testing. For each advertiser, we train a

model as described in Section 7.1.4.

For testing, we run our estimator independently for each of the 90 60-day

bidding episodes (nine per game, as described in Section 7.1.3) contained in the

test games. In each episode, we initialize each particle by drawing a bid for each

advertiser from a histogram of that advertiser’s initial bids. Then each day, we

update our bid estimates by giving the particle filter the bid rankings, average po-

sitions, and TacTex’s bid and cpc for that day and performing the update procedure

described in Section 7.1.2.1.

In our particle filter implementation, we use 2000 particles and did not

observe an increase in accuracy from increasing this number. We discretize the

bid space into intervals of 0.01, with a maximum bid of 1.1 times the highest bid

observed from any advertiser, and we set ǫ = 0.0001.

Our goal in estimating bids is not to track the behavior of a specific ad-

vertiser but to get an idea of how much we would need to bid to reach a certain

position. We therefore evaluate the performance of our estimator by comparing

our estimate of the nth ranked bid (based on the weighted mean of the particles)

with the actual bid for each relevant value of n.

The first setting we consider involves a set of seven different advertiser

agents: AstonTAC, QuakTAC, epflagent, MetroClick, Merlion, and two different

197



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  10  20  30  40  50  60

B
id

Day

QuakTAC
AstonTAC

Figure 7.1: Daily bids of two advertisers

versions of Schlemazl (Schlemazl1 from the semifinals and Schlemazl2 from the

finals). Bidding strategies differ considerably between agents. For example, Fig-

ure 7.1 shows the bids of AstonTAC and QuakTAC for one particular episode. Here

AstonTAC’s bids tend to drift only slightly from day to day, while QuakTAC’s bids

take larger jumps but show a clear cyclical pattern. Figure 7.2 shows how the top

five bids change each day, illustrating the difficulty of the bid estimation problem.

For our second setting we run TacTex against seven copies of QuakTAC, and for

our third setting we run TacTex against seven copies of AstonTAC.

To evaluate the effectiveness of the full estimator, we need to compare its

accuracy to other bid estimation methods. The first method we consider is a simple

baseline of always estimating the nth ranked bid to be the average nth bid over the

training set. We also compare the full estimator against the simple joint estimator

and simple independent estimator. Finally, we test the full estimator using the the

simple bidding model from the simple independent estimator for all advertisers.

Recall that this model assumes that bids either jump randomly, change slightly from

the previous bid (as with AstonTAC), or change slightly from the bid 5 days ago (as
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Figure 7.2: Top five daily bids

with QuakTAC). We also considered the opposite combination–using the bidding

models described in Section 7.1.4 with the simple independent estimator. However,

because the simple independent estimator maintains only bid distributions, and

not particles representing bid histories, we do not have the information required

to use these bidding models. We tried using the mean of each advertiser’s bid

on each previous day as the bid history, but results were poor. We also tested

a version of the simple independent estimator based on a particle filter using the

standard proposal distribution, instead of a grid-based estimator, but it suffered

from degeneracy problems similar to those of a joint-distribution particle filter when

using the standard proposal distribution (as described in Section 7.1.2.2).

7.1.6 Estimation Results

Tables 7.1, 7.2, and 7.3 show the results for all bid estimators for settings

1, 2, and 3, respectively. For each of the 90 episodes from the 10 test games, we

found the root mean squared error of the estimates, and the average RMS error is
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displayed. We ignored the first five game days in computing these errors so that

the errors would not be skewed by start-game effects. (The method of simply using

the average bid was especially inaccurate during this period.) In settings 1 and 2,

the errors of the estimates for the top five bids are shown, since there were nearly

always at least five ranked bidders in these settings. In setting 3, however, there

were often only three ranked bidders, and so three errors are shown.

For all bid estimators, errors were highest on the top ranked bid and gen-

erally decreased as the rank increased. This result is expected since the top bid

is essentially unbounded above and can fluctuate significantly (as in Figure 7.2),

while lower bids tend to be grouped more tightly. Errors on settings 2 and 3 were

much lower than on setting 1. Both QuakTAC and AstonTAC have somewhat

predictable bidding patterns and avoid particularly high bids.

The full estimator with the learned bidder models consistently gave the

lowest error of any estimator. In all but one case (setting 3 rank 3) the difference

between this error and all other errors was statistically significant (p < 0.05) ac-

cording to a Wilcoxon matched-pairs signed-ranks test. The simple joint estimator

had the highest errors overall, although it appears that occasional very high errors

(often early in games) were responsible for much of this outcome. Not surprisingly,

simply using the average bid also performed poorly. The performance of the full

estimator using the simple advertiser model and the simple independent estimator

(which uses the same model) was mixed, with neither clearly outperforming the

other. This result is somewhat surprising, since the full estimator is in theory a

more principled approach. It may be the case that the deficiencies of the simple

advertiser model affect each approach differently and that in some cases the simple

independent estimator is more robust.
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Bid Estimator Average RMS error per bid estimate for each bid rank
1 2 3 4 5

average bid 0.678 0.302 0.228 0.176 0.155
simple joint 0.798 0.336 0.279 0.264 0.272
simple independent 0.685 0.289 0.190 0.119 0.110
full, simple model 0.603 0.304 0.187 0.115 0.089
full, learned models 0.459 0.255 0.135 0.082 0.066

Table 7.1: Bid estimate errors for all estimators - setting 1. Significantly lowest
errors in bold.

Bid Estimator Average RMS error per bid estimate for each bid rank
1 2 3 4 5

average bid 0.191 0.135 0.106 0.086 0.079
simple joint 0.214 0.126 0.123 0.131 0.142
simple independent 0.203 0.110 0.096 0.085 0.095
full, simple model 0.163 0.089 0.080 0.098 0.118
full, learned models 0.112 0.060 0.055 0.049 0.052

Table 7.2: Bid estimate errors for all estimators - setting 2. Significantly lowest
errors in bold.

Bid Estimator Average RMS error per bid estimate for each bid rank
1 2 3

average bid 0.234 0.127 0.178
simple joint 0.233 0.240 0.202
simple independent 0.185 0.198 0.185
full, simple model 0.206 0.127 0.095
full, learned models 0.135 0.102 0.092

Table 7.3: Bid estimate errors for all estimators - setting 3. Significantly lowest
errors in bold.

7.1.7 Application to Bidding

Finally, while the focus of this section has been on estimating bids accu-

rately, the goal of this estimation is ultimately to allow an advertiser to set its own
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bids effectively. I now briefly explore the usefulness of our particle filter when uti-

lized by a full bidding agent. For each setting, we ran 50 games using the original

TacTex agent with the simple independent estimator, then repeated these games

using the full estimator with the learned bidder models. Surprisingly, TacTex’s

score did not improve in setting 1, apparently due to issues with the estimation

of other advertisers’ spending limits that we have been unable to resolve. (It may

be the case that bids and spending limits need to be estimated jointly.) Fortu-

nately, QuakTAC and AstonTAC do not make significant use of spending limits,

so this problem does not impact settings 2 and 3. In setting 2, using the full es-

timator improved TacTex’s score by 452 (from 78,177), and in setting 3, the score

improved by 926 (from 82,424). In both cases, the increase was statistically sig-

nificant (p < 0.05) according to a Wilcoxon matched-pairs signed-ranks test. For

reference, we ran each set of games again and fed TacTex the true bids of the other

advertisers, and the scores in settings 2 and 3 increased by 847 and 1582, respec-

tively, compared to the scores when the simple independent estimator was used.

Thus, the use of the full estimator appears to provide us with a large portion of

the gain to be had from improving bid estimation accuracy.

7.2 Learning Advertiser Models

The previous section introduced a particle-filter-based approach to estimat-

ing the bids of other advertisers in keyword auctions given a periodic ranking of

their bids. This estimator makes use of models of other advertisers that have been

trained on past bidding data. While the estimator was shown to be more accurate

than other approaches, the accuracy is clearly influenced by the accuracy of the

advertiser models. As was the case for TAC SCM in Chapter 5, it is important to

consider what sources of data would be available for an agent to use in training

these models.
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One important distinction between the problem of advertiser modeling ad-

dressed in this chapter and the price prediction problems faced in TAC SCM is that

we are modeling each agent (i.e., advertiser) individually, instead of modeling the

market as a whole. Still, we face a similar decision about how to train models. In

a real keyword auction, if a new advertiser begins bidding on a particular keyword,

we have three possible sources of training data: the limited data for that advertiser

and keyword, data for other advertisers that have been bidding on that keyword,

or, if that advertiser has been bidding on other keywords, that data. The latter

two data sources are examples of the previous market experience described in the

introduction, and as outlined in Section 1.1, there are several approaches that can

be taken to using this data. In this section I consider the two simplest approaches:

learning online from new data, or learning from previous experience only. Training

online should be sufficient if enough data is available. Before that point, it might

make sense to train on data for that advertiser for other keywords, but only if we

can be sure the advertiser’s behavior is similar between keywords. Likewise, the

accuracy of a model trained on data for other advertisers depends on the similarity

between these advertisers and the new advertiser.

In the context of a TAC AA tournament, we face similar choices, and I

explore these choices in this section. For the purposes of this section, I will assume

that game logs are available immediately after each game, although that is not the

case during competition. I again use the three settings from the previous section:

sets of 40 games in which TacTex plays against either 1) seven different agents, 2)

seven copies of QuakTAC, or 3) seven copies of AstonTAC. For a particular agent,

we could train online on data from that set as it becomes available. For setting 1,

we could train on data from another agent. (For simplicity I assume that all game

data for other agents is available at all times, even if only data from some games is

available for the agent of interest. This simulates the case in which one new agent

begins bidding on a keyword; alternately, we could pretend that the data for the
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other agents came from a previous round of competition.) Finally, for QuakTAC

and AstonTAC, we could train using data for that agent from a different setting,

since each agent participates in two settings. (In experiments involving settings 2

and 3, I use data from and model only one of the seven agents, since we would not

normally know that all agents used the same strategy; however, once a model is

learned, it can be used for all seven agents.)

7.2.1 Generalization

I begin by exploring how well models generalize from one agent to another,

including the case of the same agent in different settings. For each setting and

agent (including TacTex), models are trained on the 40 training games from Sec-

tion 7.1.5.1. Models are then evaluated on the 10 test games of all settings and

agents. The simple model described in Section 6.5.3.2 is also evaluated. Table 7.4

shows the error of each model on each test data set. Here the agents in settings 2

and 3 are labeled as QuakTAC7 and AstonTAC7, respectively. The lowest error on

each data set is shown in bold, and in each case this result is statistically significant

(p < 0.05) according to a Wilcoxon matched-pairs signed-ranks test.

Several observations can be made from the results. As expected, for each

agent, the model trained for that agent had the lowest error of any model. Errors

were often much higher when other models were used, indicating that bidding

behavior can differ significantly between agents. For instance, the model trained

for QuakTAC does poorly when tested on AstonTAC, and vice-versa, as we would

expect given the bidding patterns seen in Figure 7.1. The simple model fared

reasonably well in these tests. Looking at each data set, the simple model was

rarely among the least accurate models, and in several cases it was among the most

accurate, suggesting that the simple model indeed serves as a reasonable baseline

for comparison in our experiments. Bidding patterns are clearly more predictable

for some agents than others. MetroClick appears to be the most predictable agent
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Test Data

Model epfl Merl Metro Sch1 Sch2 TT Ast Quak Ast7 Quak7

epfl .1957 .3678 .3080 .4553 .3829 .4443 .1563 .3209 .1635 .3194

Merl .2629 .2605 .2958 .4179 .3505 .3907 .1746 .3160 .1775 .3109

Metro .4983 .5164 .0355 .6220 .5853 .5496 .5007 .5007 .5100 .5114

Sch1 .2473 .3217 .2882 .3680 .3318 .3781 .2374 .3082 .2204 .3088

Sch2 .2625 .3373 .3028 .3826 .2983 .3830 .2264 .2994 .2119 .3003

TT .2565 .3500 .2635 .3971 .3468 .3475 .2532 .2646 .2501 .2736

Ast .2352 .3464 .2887 .4559 .3807 .4486 .1117 .3382 .1209 .3379

Quak .2742 .4006 .3195 .4765 .3950 .4343 .2308 .2135 .2179 .2277

Ast7 .2271 .3543 .2903 .4545 .3720 .4486 .1163 .3459 .1158 .3472

Quak7 .2757 .4000 .3375 .4690 .4132 .4271 .2876 .2204 .2782 .2164

simple .2162 .3326 .2671 .4086 .3742 .3883 .2776 .2498 .2778 .2553

Table 7.4: RMS error when models are learned for one agent and tested on another

by far (i.e., it has the lowest self-error), and in fact it turns out that the version

of MetroClick used in these experiments changes its bid very rarely. Schlemazl1

is the most unpredictable agent, and its bids indeed appear very erratic. Finally,

looking at the errors for QuakTAC and QuakTAC7, as well as AstonTAC and

AstonTAC7, we see that for both agents, training on data obtained for that agent

under a different setting (i.e., group of opponents) produces a model that is nearly

as accurate as training on data from the same setting. This result is promising,

as it suggests that an agent’s behavior is not highly dependent on the agents it is

bidding against, and thus training on data from a different round of competition

(or on a different keyword in real auctions) might be an effective strategy.

To better visualize the data in Table 7.4, we can perform agglomerative

(bottom up) clustering using the distance function defined in Section 5.4.1. The

resulting dendrogram is shown in Figure 7.3. This dendrogram helps illustrate

which agents are most similar to each other in bidding behavior. For example, As-

tonTAC and epflagent are fairly similar, and TacTex, Schlemazl1, and Schlemazl2

are also similar to each other. MetroClick is significantly different from any other

agent.
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Figure 7.3: Dendrogram of bid model similarity based on Table 7.4

7.2.2 Learning Online

The alternative to training on data for a different agent, or for the same

agent under different circumstances, is learning online as data becomes available.

For QuakTAC, AstonTAC, and Schlemazl1 (the most unpredictable agent), we

generated learning curves by training models on 30 different random subsets of the

training games for different numbers of games and testing on the test games. The

average RMS errors are shown in Figures 7.4, 7.5, and 7.6, along with the errors

of the most accurate other models.

As was the case in TAC SCM, the decision of whether to learn online or to

use fixed models trained on a different data set is not clear cut. For AstonTAC

and QuakTAC, if we have data for the same agent in a different setting, it takes

about 12 games for the accuracy of the online model to reach that of the other

model. If data from a different setting is unavailable, however, then training online
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Figure 7.4: Bid model error for QuakTAC when learned online
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Figure 7.5: Bid model error for AstonTAC when learned online

beats the best model trained on another agent from the same setting (or the simple

model) after only one game. For Schlemazl1, it takes about eight games for the

accuracy of the online model to reach that of the best other model. Overall, if

forced to choose between learning online or using a fixed model, it appears that

learning online would be the better choice unless we know that another agent has

very similar behavior or we have data for the same agent in a different setting.

A more appealing possibility is the idea of somehow combining the two options,

as outlined in Section 1.1 of the introduction, and this is the topic of Chapters 8

and 9.
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Figure 7.6: Bid model error for Schlemazl1 when learned online

7.2.3 Estimation Accuracy

As the purpose of the advertiser models is to enable us to estimate adver-

tisers’ bids, it is reasonable to examine whether improvements in model accuracy

translate to improvements in estimation accuracy. The experiments of Section 7.1.6

showed that when used with the full estimator, models trained on 40 games resulted

in more accurate estimations than the simple model. To better gauge the impor-

tance of model accuracy, we repeated those experiments with additional models for

settings 2 (QuakTAC7) and 3 (AstonTAC7), as these settings require only a single

model to be chosen. In addition to the simple model and the model trained on 40

games, we tested a model trained on a different agent (AstonTAC or QuakTAC,

respectively), a model trained on the same agent from setting 1 (QuakTAC or As-

tonTAC, respectively), and a model trained on only eight games from the same

setting.

Tables 7.5 and 7.6 show the results on the set of 10 testing games for each

setting, including the error of each model on the corresponding data set and the

bid estimate errors of the full estimator using each model. Although the correlation

is not perfect, more accurate models typically result in lower bid estimation errors,

and the model trained on all 40 games always resulted in the lowest errors. As

208



Bid Model RMS Error Avg. RMS error per bid estimate for each rank
on data set 1 2 3 4 5

simple 0.2553 0.163 0.089 0.080 0.098 0.118
AstonTAC 0.3382 0.159 0.091 0.078 0.080 0.087
QuakTAC 0.2277 0.146 0.067 0.061 0.053 0.056
8 games 0.2274 0.128 0.062 0.058 0.054 0.056
40 games 0.2164 0.112 0.060 0.055 0.049 0.052

Table 7.5: Bid estimate errors using different models - setting 2 (QuakTAC7)

Bid Model RMS Error Avg. RMS error per bid estimate for each rank
on data set 1 2 3

simple 0.2776 0.206 0.127 0.095
QuakTAC 0.3382 0.258 0.173 0.118
AstonTAC 0.1209 0.151 0.108 0.097
8 games 0.1211 0.144 0.124 0.114
40 games 0.1158 0.135 0.102 0.092

Table 7.6: Bid estimate errors using different models - setting 3 (AstonTAC7)

a result, efforts to improve model accuracy appear likely to lead to better bid

estimates, and hopefully better agent performance.

To further examine the effect of model accuracy on agent performance, we

repeated the experiments of Section 7.1.7 in which we replayed 50 games using

various bid estimation methods. For setting 2, using the full estimator with the

model trained on AstonTAC instead of QuakTAC7 (all 40 games) resulted in a

decrease in score of 780. For setting 3, using the full estimator with the model

trained on QuakTAC instead of AstonTAC7 (all 40 games) resulted in a decrease in

score of 1687. For both settings, the decrease was statistically significant (p < 0.05)

according to a Wilcoxon matched-pairs signed-ranks test. Thus, model accuracy

can indeed affect agent performance.
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7.3 Summary

A particularly important problem, both within TAC AA and in real key-

word auctions, is estimating the bid that would be required to obtain a particular

ranking. This chapter presented a method of bid estimation based on using a par-

ticle filter to maintain a joint distribution over the bids of all other advertisers.

The implementation of this particle filter depends on a method of working with

the optimal proposal distribution, which I also described. Experiments show this

bid estimation method to produce more accurate estimates than other methods

considered, including the two methods originally used by TacTex during the TAC

AA competition.

The bid estimation method depends on models of other advertisers. Each

model predicts the probability of a given advertiser submitting a particular bid

given its bidding history. These models are trained using machine learning on past

bidding data. The experiments of this chapter show that the accuracy of the bid

estimator depends heavily on the accuracy of these models. As a result, the decision

of how to train these models is an important one. As was the case for TAC SCM

in Chapter 5, the decision of whether to train models online or use fixed models

trained on another source of data (other advertisers, in this case) depends on the

amount of training data available and the similarity of agents. In both SCM and

AA, we wish to train a model for regression given one highly relevant but small

data set and other data sets that are potentially less relevant but much larger. The

following chapter explores algorithms for solving this problem.
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Chapter 8

Transfer Learning for Regression

Chapters 4 through 7 described the TacTex agents for SCM and AA and

showed the importance of learning models of other market participants. In both

agents, supervised learning was used to solve regression problems using experience

from a specific source: either the market in which the agent is currently participat-

ing, or some other market for which a larger amount of data was available. I now

consider the general problem of performing regression when multiple sources of data

are available that represent different concepts: an instance of Transfer Learning.

In this chapter I introduce a number of algorithms for regression transfer. I then

present experimental results for these algorithms in a wide variety of test domains,

including the TAC domains from previous chapters. This chapter fulfills Contribu-

tion 3 for both TAC scenarios, as outlined in Section 1.2. A full exploration of the

use of these algorithms within TAC is left to Chapter 9. A particularly important

contribution of this chapter is Two-stage TrAdaBoost.R2, a novel regression trans-

fer algorithm that is consistently among the best-performing algorithms across the

test domains considered.

8.1 Problem Specification

The idea behind transfer learning [74] is that it is easier to learn a new

concept (such as how to play the trombone) if you are already familiar with a

similar concept (such as playing the trumpet). In the context of supervised learning,

inductive transfer learning is often framed as the problem of learning a concept of
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interest, called the target concept, given data from multiple sources: a typically

small amount of target data that reflects the target concept, and a larger amount of

source data that reflects one or more different, but possibly related, source concepts.

Formally, our goal is to learn a model of a concept ctarget mapping feature

vectors from the space X to labels in the space Y . In binary classification problems,

Y = {0, 1}, while in the regression problems studied here, Y = R. We are given a

set of training instances Ttarget = {(xi, yi)}, with xi ∈ X and yi ∈ Y for 1 ≤ i ≤ n,

that reflect ctarget. In addition, we are given data sets T 1
source, . . . , T

B
source reflecting

B different but related concepts also mapping X to Y . In order to learn the most

accurate possible model of ctarget, we must decide how to use both the target and

source data sets. If Ttarget is sufficiently large, we can likely learn a good model

using only this data. However, if Ttarget is small and one or more of the source

concepts is similar to ctarget, then we may be able to use the source data to improve

our model.

8.2 Algorithms

A number of algorithms have been developed to address inductive transfer

in classification settings, but much less attention has been paid to regression set-

tings. In this section, I describe ten algorithms that can be used for regression

transfer, including existing algorithms from the literature, modifications of existing

classification-specific algorithms for regression, and new algorithms.

These algorithms can be divided into the categories presented in Section 1.1

of the introduction. The first two algorithms correspond to the first two cate-

gories: learning from target data only, and identifying the most similar source.

The remaining algorithms belong to the final category: learning from both source

and target. These algorithms can be subdivided into two groups: algorithms that

use the source data directly, and algorithms that make use of models representing
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source concepts (which can thus be seen as ensemble methods). This second group

of algorithms could either be given the source models directly or be given source

data and train these models as an initial step, and we use the latter approach in our

experiments. In selecting the algorithms explored in this chapter, we focused on

algorithms that can be used in conjunction with any regression base learner. This

decision rules out a number of algorithms that are specific to a particular learner

(e.g., Caruana’s multitask learning for neural networks [25]). The reason for this

decision is that it allows a developer to easily apply any of these transfer algorithms

to a problem for which a non-transfer solution has already been developed (such as

the learning approaches described in Chapters 5 and 7, each of which worked best

with a particular base learner).

A third category of algorithm described in Section 1.1 was using source

data to tune parameters of a learning approach that would then be used to learn

a model from target data. This method is implicitly used on all of the TAC data

sets used in this chapter and the next, as the choices of base learning algorithms

and the features of the data sets have been chosen to give good performance (in

a non-transfer setting). More explicit methods of parameter tuning exist, such as

algorithms that use source data to form priors over model parameters, but again this

chapter does not consider such algorithms because they are specific to particular

base learners (e.g., Gaussian processes [65]).

8.2.1 Base Learner on Target Data

The simplest possible baseline is to apply the base learner to the target data

alone, ignoring all source data. Any transfer algorithm that performs worse than

this baseline is said to exhibit negative transfer.
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Algorithm 1 Best Source Model

Input a labeled data set T = {(xi, yi)} and a set of source models HB = {h1, . . . ,
hB}.

Find the mean squared error eb of each source model hb on T .

Output the model hb for which eb is smallest.

8.2.2 Best Source Model

As another simple baseline, we can simply learn a model for each source data

set using the base learner, and then choose the model that results in the lowest

error on the target training data. This approach is shown as Algorithm 1.

8.2.3 Best Source Weighting

Another simple baseline is to combine the source and target data sets into

one data set and apply the base learner to this full data set. However, if the

target data set is much smaller than the source data sets, then the model learned

may not be accurate on target data. To address this problem, we can reduce the

weight given to source instances, assuming that our base learner can work with

weighted instances. The challenge is to identify the correct weighting. We do this

by decreasing the weight of each source instance from the initial weight (equal to the

weight of each target instance) to zero in S steps and using n-fold cross validation

to determine which of these weightings results in the lowest error on the target

data. Note that all source weights are equal at each step–we are not attempting

to determine optimal weights on each individual source instance. This approach is

shown as Algorithm 2.
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Algorithm 2 Best Source Weighting

Input two labeled data sets Tsource and Ttarget, the number of steps S, the number
of folds F for cross validation, and a base learning algorithm Learner.
For t = 0, . . . , S:
1. Combine Tsource and Ttarget into a single data set T . Assign a weight of 1 to
each target instance and a weight of 1− t/s to each source instance.
2. Call Learner with weighted data set T to obtain modelt.
3. Use F -fold cross validation to obtain an estimate errort of the error of modelt.

Output modelt where t = argmini errori.

8.2.4 Transfer Stacking

The method of using the best source model is restricted to using only one

source model, meaning that the information contained in any additional source

models is ignored. As an alternative, we could seek to combine the outputs of

multiple source models. In fact, we could further extend this approach by also

combining the outputs of these source models with the output of a model trained

on the target data. I now introduce such an approach that we call transfer stacking,

due to its similarity to stacking (or stacked generalization) [111].

Stacking is an ensemble approach in which a meta-level model combines

multiple base models, all trained independently on the same set of data using

different learning algorithms. The meta-level model is learned (typically using

linear regression) from a meta-level data set created as follows. For each instance

in the original training set, a meta-level instance is created using the outputs of each

base model as features and using the original label. Cross validation is performed

for each base learner so that the output for each instance in the original training

set is obtained when it is out-of-sample. Once the meta-level model is learned, a

new instance is handled by using the model to combine the outputs of the base

models on the instance.

Here, instead of multiple base learners, we consider a single base learner and
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Algorithm 3 Transfer Stacking

Input a labeled data set T = {(xi, yi)} of size n, a set of source models HB = {h1,
. . . , hB}, the number of folds F for cross validation, and a base learning algorithm
Learner.

1. Let Oi,j = hj(xi) for 1 ≤ i ≤ n and 1 ≤ j ≤ B.
2. Perform F -fold cross validation on T using Learner. For 1 ≤ i ≤ n, let Oi,B+1

equal the output of the learned model for the fold where instance i is in the
validation set.
3. Call Learner with the full training set T and get model hB+1.
4. Perform linear least squares regression on the system of equations
(
∑B+1

j=1 ajOi,j) + aB+2 = yi for 1 ≤ i ≤ n; that is, find the linear combina-
tion of models that minimizes squared error on T .

Output the model:
hf(x) = a1h

1(x) + ... + aB+1h
B+1(x) + aB+2

(potentially) multiple source models previously trained on source data; hence when

building the meta-level data set, cross validation is required only for determining

the outputs of the base learner on the target data set, not the source models. The

full details of transfer stacking are shown in Algorithm 3. Although past work

on using stacking for regression [20] has shown that placing constraints on the

coefficients of the linear meta-level model (such as requiring them to be positive

or to sum to one) can be helpful, we did not find it to improve results in our

experiments, and so we omit this detail.

8.2.5 Feature Augmentation

The next two transfer methods depend on augmenting the feature space of

the data. The first method, which I will refer to as model feature augmentation,

simply trains a model on each source data set, and then adds the output of each

model as an additional feature of the target data. As a result, the learner should

be able to identify those situations in which the source models are relevant dur-
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Algorithm 4 Model Feature Augmentation

Input a labeled data set T = {(xi, yi)} of size n, a set of source models HB = {h1,
. . . , hB}, and a base learning algorithm Learner.
For i = 1, . . . , n:

1. Let oi be the vector 〈h1(xi), . . . , h
B(xi)〉.

2. Let x′
i = 〈xi : oi〉.

Let T ′ = {(x′
i, yi)}, and call Learner with T ′ to get model m.

Output the model m.

ing training and then make use of their outputs appropriately when labeling new

instances. This method has been tested on classification problems [33] and found

to perform reasonably well, and no changes are required to apply this method to

regression problems. Details are given in Algorithm 4.

The second feature augmentation method, which I will refer to as source fea-

ture augmentation, involves training the learner on a combination of the target data

and all source data sets. This method was introduced in [32], where it was shown

to outperform several other methods on classification tasks. Again, no changes are

required to apply this method to regression tasks. As in model feature augmenta-

tion, each instance is augmented with new features; however, this time the features

that are added depend on which data set the instance came from. 1+B new copies

of the feature space are added, corresponding to the 1+B data sets. (Recall that

B is the number of source data sets.) For each instance, each of these copies is

left blank unless it corresponds to the data set from which the instance originally

came, in which case all values are copied exactly from the original features. To

illustrate, consider the situation in which we have one source data set (B=1), one

target instance xt ∈ X, and one source instance xs ∈ X. Each augmented instance

will have the form 〈a, b, c〉, where a, b, and c are vectors in X. Instance xt will

become 〈xt, xt, 0〉, and instance xs will become 〈xs, 0, xs〉, where 0 ∈ X is the zero

vector. Full details are given in Algorithm 5.

217



Algorithm 5 Source Feature Augmentation

Input one labeled target data set T0 and B labeled source data sets T1, . . . , TB, all
of form {(xb

i , y
b
i )}, and a base learning algorithm Learner.

For b = 0, . . . , B:
1. For i = 1, . . . , |Tb|:

Let x̂b
i be the vector 〈xb

i : f0(x
b
i) : . . . : fB(xb

i)〉, where fk(x
b
i) = xb

i if k = b
and 0 otherwise.

2. Let T ′
b = {(x̂b

i , y
b
i )}.

Let T = T ′
0 ∪ . . . ∪ T ′

B, and call Learner with T to get model m.
Output the model m.

The idea behind this method is that for a feature that has the same meaning

across data sets, the learner will make use of the “original” copy of the feature that

is shared across all data sets, effectively transferring knowledge about the meaning

of that feature. For a feature that has different effects on different data sets,

the learner should only make use of the data-set-specific copies of that feature,

preventing negative transfer.

8.2.6 Boosting Approaches

One approach that has been applied successfully to classification transfer

problems is boosting. Boosting is an ensemble method in which a sequence of

models (or hypotheses) h1 . . . hN , each mapping from X to Y , are iteratively fit

to some transformation of a data set using a base learner. The outputs of these

models are then combined into a final hypothesis hf . In this section, I describe

two existing boosting-based algorithms for classification transfer, and then discuss

extensions of these algorithms that are necessary for our regression setting. Again,

each algorithm fits into one of the two categories discussed previously: algorithms

that make use of models trained on the source data, and algorithms that use the

source data directly as training data.
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In ExpBoost [78], a separate hypothesis (or expert, hence the name) hi

is learned for each of the B source data sets, and learning is performed using

only Ttarget. At each step of the boosting process, ExpBoost chooses to use either

the hypothesis ht learned from the weighted training data or one of the experts,

depending on which is most accurate.

In contrast, TrAdaBoost [31] uses the source data sets directly by combining

them with Ttarget to form a single data set. At each boosting step, TrAdaBoost in-

creases the relative weights of target instances that are misclassified. When a

source instance is misclassified, however, its weight is decreased. In this way, TrAd-

aBoost aims to identify and make use of those source instances that are most similar

to the target data while ignoring those that are dissimilar.

I provide additional details on these algorithms and their extensions below,

but first I address the issue of applying boosting algorithms to regression problems.

8.2.6.1 AdaBoost and Regression

One of the best known boosting methods for classification, and the one

upon which ExpBoost and TrAdaBoost are based, is AdaBoost (specifically, Ad-

aBoost.M1) [40]. In AdaBoost, each training instance receives a weight wi that is

used when learning each hypothesis; this weight indicates the relative importance

of each instance and is used in computing the error of a hypothesis on the data set.

After each iteration, instances are reweighted, with those instances that are not

correctly classified by the last hypothesis receiving larger weights (as in step 5 of

Algorithm 6). Thus, as the process continues, learning focuses on those instances

that are most difficult to classify.

A number of methods have been proposed for modifying AdaBoost for re-

gression, and as TrAdaBoost and ExpBoost are based on AdaBoost, these modifi-

cations can be used on them as well. In our work, we explored two of these methods
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that have been shown to be generally effective and that can be applied to TrAd-

aBoost and ExpBoost in a straightforward way: AdaBoost.R2 and AdaBoost.RT.

The key to AdaBoost is the reweighting of those instances that are mis-

classified at each iteration. In regression problems, the output given by a hypoth-

esis ht for an instance xi is not correct or incorrect, but has a real-valued error

ei = |yi − ht(xi)| that may be arbitrarily large. Thus, we need a method of map-

ping an error ei into an adjusted error e′i that can be used in the reweighting formula

used by AdaBoost.

The method used in AdaBoost.R2 [37] is to express each error in relation to

the largest error D = maxn
i=0|ei| in such a way that each adjusted error e′i is in the

range [0, 1]. In particular, one of three possible loss functions is used: e′i = ei/D

(linear), e′i = ei
2/D2 (square), or e′i = 1−exp(−ei/D) (exponential). The degree to

which instance xi is reweighted in iteration t thus depends on how large the error

of ht is on xi relative to the error on the worst instance. AdaBoost.RT [93], on the

other hand, continues to label each output as correct (e′i = 0) or incorrect (e′i = 1)

using an error threshold φ. That is, if ei > φ, then e′i = 1; otherwise, e′i = 0. This

method has the advantage that, unlike AdaBoost.R2, extreme outliers do not have

the potential to skew the reweighting and receive relatively large weights; however,

the threshold φ must be set properly.

In preliminary experiments, we found AdaBoost.R2 with the linear loss

function to work consistently well, and were unable to find values of φ that allowed

AdaBoost.RT to regularly match this performance. (All preliminary experiments

were conducted using the data sets and methodology described in Sections 8.4.1

and 8.4.2.) Henceforth, I discuss only AdaBoost.R2 with the linear loss function,

shown in Algorithm 6.

It is worth noting that AdaBoost.R2 will terminate before the specified

number of iterations if the hypothesis learned by any iteration has an adjusted
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Algorithm 6 AdaBoost.R2 [37]

Input the labeled target data set T = {(xi, yi)} of size n, the maximum number
of iterations N , and a base learning algorithm Learner. Unless otherwise specified,
set the initial weight vector w1 such that w1

i = 1/n for 1 ≤ i ≤ n.
For t = 1, . . . , N :
1. Call Learner with the training set T and the distribution wt, and get a
hypothesis ht : X → R.
2. Calculate the adjusted error et

i for each instance:

let Dt = maxn
j=1|yj − ht(xj)|

then et
i = |yi − ht(xi)|/Dt

3. Calculate the adjusted error of ht:

ǫt =
∑n

i=1 et
iw

t
i ; if ǫt ≥ 0.5, stop and set N = t− 1.

4. Let βt = ǫt/(1− ǫt).
5. Update the weight vector:

wt+1
i = wt

iβ
1−et

i

t /Zt (Zt is a normalizing constant)

Output the model:
hf(x) = the weighted median of ht(x) for 1 ≤ t ≤ N , using ln(1/βt) as the weight
for hypothesis ht.

error of 0.5 or above. This stopping condition is left unchanged from AdaBoost. In

a classification setting, an error above 0.5 means that the hypothesis is wrong more

often than it is right, and stopping if this occurs is reasonable (and also necessary

to preserve certain theoretical properties). In our regression setting using the linear

loss function of AdaBoost.R2, an error above 0.5 means that the weighted average

of errors is more than half of the largest error. Whether this is undesirable or

not likely depends on the nature of the concept being learned. In our preliminary

experiments, we found that removing this stopping condition (and setting an upper

bound of 0.99 on βt) decreased performance somewhat, so it may be that this

stopping condition guards against overfitting. Identifying a more suitable stopping

condition (or experimenting with cross validation) is an area for future work.
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8.2.6.2 ExpBoost.R2

Combining the principles of AdaBoost.R2 with those of ExpBoost results

in the new regression algorithm ExpBoost.R2. In addition to the target data, Exp-

Boost.R2 receives as input a set of source experts HB = {h1, . . . , hB}. The steps

involving computing the adjusted error and outputting the final model correspond

to the same steps from Algorithm 6. The primary difference is in step 1 of each

boosting iteration. After obtaining ht, ExpBoost.R2 computes the weighted errors

of each expert in HB on the current weighting of T , and if any expert has a lower

weighted error than ht, ht is replaced with the best expert. ExpBoost.R2 is shown

as Algorithm 7.

In step 2 of ExpBoost.R2, we use cross validation to calculate the error of

ht, the hypothesis for the current iteration. Cross validation is not used in the

original ExpBoost algorithm, but we found it to be necessary in our preliminary

experiments. We observed that ht was typically able to fit the data it was trained

on well, and thus it was usually chosen as hbest
t over any of the experts in step

3, preventing effective transfer. When cross validation was used to evaluate ht on

out-of-sample data, experts were chosen as hbest
t much more frequently, and the

performance of the algorithm improved. We found F = 5 to be sufficient in our

experiments.

8.2.6.3 TrAdaBoost.R2

Combining the principles of AdaBoost.R2 with those of TrAdaBoost results

in the new regression algorithm TrAdaBoost.R2. TrAdaBoost.R2 takes two data

sets as input, Ttarget and Tsource, of size n and m, respectively, and combines them

into a single set T used in boosting. Although the original work on TrAdaBoost

does not consider the issue of multiple sources, we are interested in cases where

any number of sources may exist. When there is more than one source, we simply
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Algorithm 7 ExpBoost.R2

Input the labeled target data set T = {(xi, yi)} of size n, a set of experts HB = {h1,
. . . , hB}, the maximum number of iterations N , the number of folds F for cross
validation, and a base learning algorithm Learner. Set the initial weight vector w1

such that w1
i = 1/n for 1 ≤ i ≤ n.

For t = 1, . . . , N :
1. Call Learner with the training set T and the distribution wt, and get a
hypothesis ht : X → R.
2. Calculate the error of each hypothesis hiǫHB as

∑n
j=1 wt

j|yj − hi(xj)|. For
ht, calculate the error similarly, except that F -fold cross validation should be
used with Learner to obtain an error estimate instead of directly computing the
error of ht.
3. Let hbest

t be the hypothesis in HB ∪ ht with the lowest error.
4. Calculate the adjusted error et

i for each instance:

let Dt = maxn
j=1|yj − hbest

t (xj)|

then et
i = |yi − hbest

t (xi)|/Dt

5. Calculate the adjusted error of hbest
t :

ǫt =
∑n

i=1 et
iw

t
i

If ǫt ≥ 0.5, stop and set N = t− 1.

6. Let βt = ǫt/(1− ǫt).
7. Update the weight vector:

wt+1
i = wt

iβ
1−et

i

t /Zt (Zt is a normalizing constant)

Output the model:
hf(x) = the weighted median of hbest

t (x) for 1 ≤ t ≤ N , using ln(1/βt) as the weight
for hypothesis hbest

t .

combine all source data sets into a single data set. As TrAdaBoost.R2 handles

the reweighting of each training instance separately, there should be no harm in

mixing data in this fashion, but care should be taken in setting the initial weight

vector. Our experiments involve source data sets of (roughly) equal sizes, and so

we simply assign all source instances (and target instances) the same initial weight.

If one source data set were larger than another, however, setting weights uniformly
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would result in more emphasis being given to that source, at least in early boosting

iterations.

As with ExpBoost.R2, the steps involving computing the adjusted error

correspond to the same steps from Algorithm 6. The primary difference between

TrAdaBoost.R2 in Algorithm 8 and AdaBoost.R2 in Algorithm 6 is in step 5 of

each iteration. Instead of treating all data equally, TrAdaBoost.R2 increases the

weights of target instances by setting wt+1
i = wt

iβ
−et

i

t /Zt and decreases the weights

of source instances by setting wt+1
i = wt

iβ
et
i/Zt, where β = 1/(1 +

√

2 ln n/N). In

addition, TrAdaBoost.R2 considers only the final ⌈N/2⌉ hypotheses when taking

the weighted median to determine output (as a result of theoretical considerations

in the original TrAdaBoost). TrAdaBoost.R2 is shown as Algorithm 8.

8.2.6.4 Two-stage TrAdaBoost.R2

In analyzing the performance of TrAdaBoost.R2, we observed it to be highly

susceptible to overfitting (that is, beyond some point, accuracy decreased as the

number of boosting iterations N increased). In contrast, AdaBoost.R2 and Exp-

Boost.R2 do not appear to suffer from this problem. After experimenting with

cross validation to select N , we still saw mixed performance from TrAdaBoost.R2.

Closer inspection of the results revealed two problems. First, when the size of

Tsource is much larger than Ttarget, it can take many iterations for the total weight

of the target instances to approach the total weight of the source instances, and

by this time the weights of the target data may be heavily skewed–those target in-

stances that are either outliers or most dissimilar to the source data may represent

most of the weight. Second, even those source instances that are representative of

the target concept tend to have their weights reduced to zero eventually. The use

of the adjusted error scheme from AdaBoost.R2 is the reason. Whereas in TrAd-

aBoost the relevant source instances will generally be classified correctly and not

have their weights reduced, in TrAdaBoost.R2 even small errors lead to weight re-
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Algorithm 8 TrAdaBoost.R2

Input two labeled data sets Tsource (of size n) and Ttarget (of size m), the maximum
number of iterations N , the initial weight vector (of total weight 1) w1 = (w1

1,. . . ,
w1

n+m), and a base learning algorithm Learner. Let T be the combination of Tsource

and Ttarget such that the first n instances in T are those from Tsource.

For t = 1, . . . , N :
1. Call Learner with the combined training set T and the distribution wt, and
get a hypothesis ht : X → R.
2. Calculate the adjusted error et

i for each instance:

let Dt = maxn+m
j=n+1|yj − ht(xj)|

then et
i = |yi − ht(xi)|/Dt

3. Calculate the adjusted error of ht on Ttarget:

ǫt =
∑n+m

i=n+1 et
iw

t
i/

∑n+m
j=n+1 wt

j

If ǫt ≥ 0.5, stop and set N = t− 1.

4. Let βt = ǫt/(1− ǫt) and β = 1/(1 +
√

2 lnn/N).
5. Update the weight vector:

wt+1
i =

{

wt
iβ

et
i/Zt, 1 ≤ i ≤ n

wt
iβ

−et
i

t /Zt, n + 1 ≤ i ≤ n + m

where Zt is a normalizing constant.

Output the model:
hf(x) = the weighted median of ht(x) for ⌈N/2⌉ ≤ t ≤ N , using ln(1/βt) as the
weight for hypothesis ht.

ductions. The fact that TrAdaBoost.R2 uses only the hypotheses generated during

the final half of boosting iterations exacerbates this problem. (We also tried using

all hypotheses, with mixed results.)

To address these problems, we designed a version of TrAdaBoost.R2 that ad-

justs instance weights in two stages. In stage one, the weights of source instances are

adjusted downwards gradually until reaching a certain point (determined through

cross validation). In stage two, the weights of all source instances are frozen while
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the weights of target instances are updated as normal in AdaBoost.R2. Only the

hypotheses generated in stage two are stored and used to determine the output of

the resulting model. We call this algorithm two-stage TrAdaBoost.R2, and it is

shown as Algorithm 9. Note that if the ideal stopping point for reducing source

weights were known in advance, stage 1 would conclude before stage 2 began.

However, because we are using cross validation to determine when to stop reducing

source weights, in Algorithm 9 stage 2 (line 1) is embedded inside stage 1 (the

remainder of the for-loop). Also, the weighting factor βt is not chosen based on

the hypothesis error, as before, but is chosen to result in a certain total weight for

the target instances. In this way, the total weight of the target instances increases

uniformly from m/(n + m) to 1 in S steps. In our implementation, we approxi-

mated the value of βt satisfying the conditions shown in Algorithm 9 using a binary

search. In addition, it is not necessary to progress through all S steps once it has

been determined that errors are increasing.

8.2.7 TrBagging

In addition to boosting methods for classification transfer, there also exists

a bagging method, TrBagg, that has been shown to outperform other classification

transfer methods (including TrAdaBoost and source feature augmentation) on a

number of collaborative tagging tasks [51]. TrBagg can be applied to regression

problems without any significant modifications, and is shown as Algorithm 10.

The original bagging method [19] (bagging stands for “bootstrap aggregat-

ing”) is as follows. Given a base learner, a number of iterations N , and a training

set T , bagging uses bootstrap sampling (sampling with replacement) on T to cre-

ate N data sets of size |T |, and then learns a model using the base learner on

each set. To classify a new instance, the label output by the majority of the N

models is used. Bagging can lead to significantly lower error than using the base

learner alone, especially when the base learner is unstable (i.e., slight changes in
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Algorithm 9 Two-stage TrAdaBoost.R2

Input two labeled data sets Tsource (of size n) and Ttarget (of size m), the number of
steps S, the maximum number of boosting iterations N , the number of folds F for
cross validation, and a base learning algorithm Learner. Let T be the combination
of Tsource and Ttarget such that the first n instances in T are those from Tsource. Set
the initial weight vector w1 such that w1

i = 1/(n + m) for 1 ≤ i ≤ n + m.
For t = 1, . . . , S:
1. Call AdaBoost.R2′ with T , distribution wt, N , and Learner to obtain modelt,
where AdaBoost.R2′ is identical to AdaBoost.R2 except that the weights of the
first n instances are never modified. Similarly, use F -fold cross validation to
obtain an estimate errort of the error of modelt.
2. Call Learner with T and distribution wt, and get a hypothesis ht : X → R.
3. Calculate the adjusted error et

i for each instance as in AdaBoost.R2.
4. Update the weight vector:

wt+1
i =

{

wt
iβ

et
i

t /Zt, 1 ≤ i ≤ n
wt

i/Zt, n + 1 ≤ i ≤ n + m

where Zt is a normalizing constant, and βt is chosen such that the resulting
weight of the target (final m) instances is m

(n+m)
+ t

(S−1)
(1− m

(n+m)
).

Output modelt where t = argmini errori.

the training data greatly change the model it learns).

TrBagg also learns models on several different sampled data sets. The target

and all source data sets are combined into one data set, and N subsets of size |Ttarget|

are sampled (with replacement) from this set. A model is trained using the base

learner on each subset, as shown in the learning phase of Algorithm 10. Unlike

bagging, however, TrBagg does not make use of all of these models. While some

subsets may contain many instances that come from the target set or are relevant

source instances, other subsets may contain many irrelevant source instances. To

choose which models to use, TrBagg performs a filtering phase, also shown in

Algorithm 10. Ideally, we would be able to find the optimal subset of models to use,
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but this is not feasible. Instead, TrBagg evaluates each model on the target set and

sorts the models in order of increasing error. TrBagg then evaluates subsets of the

M most accurate models, for 0 < M ≤ N , and chooses the subset with the lowest

error on the target data. To prevent negative transfer, however, TrBagg includes

a fallback model trained on only the target data in each subset; if no additional

models prove useful, then the lowest error will occur when M = 0, and the fallback

model will be used alone. To prevent TrBagg from always finding M = 0 to be

optimal, it is important that the fallback model be “trained so as not to over-fit to

target training data” [51]. In our implementation of TrBagg, we ensure that this is

the case by using linear regression. As this is a weaker learning algorithm than the

base learners we will consider, we would expect it to be less accurate than many

of the models trained by TrBagg on subsets, and this was nearly always the case

in our experiments. For use with regression problems, we take the median of the

model outputs instead of the majority output.

8.2.8 Discussion of Algorithms

Table 8.1 summarizes the properties of the nine regression transfer algo-

rithms described. As has been mentioned, the transfer algorithms presented can

be classified as either using source models or using the source data directly. Each

approach has its advantages. Using the source data directly provides an algorithm

with information that is lost when only models are used. If instances from a par-

ticular source data set cover only a certain region of the input space X, then it

is likely that that source will only influence the output of the resulting model for

inputs from that region. Similarly, if only a portion of a source data set is relevant

to the target concept, then it may be possible for an algorithm given the source

data to identify the relevant instances. On the other hand, if a particular source

concept is especially similar or dissimilar to the target concept, an algorithm using

source experts can easily learn to make heavy or light use of that source’s model,
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Algorithm 10 TrBagg [51]

Input two labeled data sets Tsource (which may be the combination of many source
data sets) and Ttarget, the number of iterations N , and a base learning algorithm
Learner. Let T be the combination of Tsource and Ttarget.

Learning phase:
For n = 1, . . . , N :
1. Sample (with replacement) a data set Tn of size |Ttarget| from T .
2. Train model hn on Tn using the base learner.
3. Evaluate the error of hn on Ttarget.

Sort the models in order of increasing error (so h1 is now the model with the lowest
error).

Filtering phase:
Train fallback model h0 on Ttarget using linear regression.
Let Sbest = h0.
Let ebest = the error of h0 on Ttarget.
For n = 0, . . . , N :
1. Let S = {h0, . . . , hn}.
2. Let e be the error of taking the median output of S on Ttarget.
3. If e < ebest, then ebest = e and Sbest = S.

Output the model:
hf(x) = the median output of each model in Sbest on x

while the algorithms described here that use source data have no way of knowing

which source set each source instance comes from (although it may be possible

to design an algorithm that makes use of such information). Perhaps the biggest

advantage of methods that use source models is running time. In a situation in

which source models can be trained in advance and the amount of source data

greatly exceeds the amount of target data available, learning using source models

may be many times faster than learning from source data directly. For instance,

for the largest data sets considered in this chapter (the TAC data sets described in

Section 8.4.3), running times of algorithms using source models were often under

a minute, while running times of algorithms using source data were often several
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Algorithm Uses source Uses source Modifies Ensemble Uses Uses cross
data model data method Boosting validation

best source model X X

best source weighting X

transfer stacking X X X

model feat. augment X X

source feat. augment X X

ExpBoost.R2 X X X X

TrAdaBoost.R2 X X X X

2-St. TrAdaBoost.R2 X X X X

TrBagg X X

Table 8.1: Properties of the regression transfer algorithms

minutes, even when only a handful of target data was available.

Of the algorithms using source models, ExpBoost.R2 and transfer stacking

are most similar in that both generate a weighting of source models and models

trained on the target data. One possible disadvantage of ExpBoost.R2 is that at

each boosting iteration, it must choose between either the newly learned hypoth-

esis or a single source model. As a result, ExpBoost.R2 might be expected to

consistently choose a particular source model if it is fairly accurate, or to ignore

the source models altogether if they are fairly inaccurate. In fact, we observed this

behavior in a number of experiments. Transfer stacking, on the other hand, is not

so restricted, and as a result it generally makes heavier use of various source models

and performs somewhat better in our experiments. Model feature augmentation

is different from ExpBoost.R2 and transfer stacking in that it is capable of learn-

ing to treat source models differently at different parts of the input space. As an

example, if using M5P model trees (which perform linear regression at each leaf)

as the base learner, then the output of both transfer stacking and model feature

augmentation will be a linear combination of the (non-augmented) input features

and source model outputs. However, the coefficients of the source model outputs

will be chosen at the leaf level in model feature augmentation (as they are treated

as features), while the coefficients will be chosen at the global level in transfer

stacking (after the tree is built). (In fact, we also experimented with a modified
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version of M5P model trees in which transfer stacking was performed at the leaves,

but results were mixed.) If a source concept is similar to the target concept only

in certain regions of the input space, then model feature augmentation might be

expected to outperform ExpBoost.R2 and transfer stacking.

As mentioned above, one advantage of using source data directly is that

an algorithm can identify which source instances are most relevant to the target

concept. Both (two-stage) TrAdaBoost.R2 and TrBagg attempt to do this, though

in different ways. TrAdaBoost.R2 directly evaluates the error on each source in-

stance at each iteration and reduces source weights accordingly. TrBagg identifies

irrelevant source instances in a more indirect way by ranking its models according

to their error on the target set. Presumably, if an irrelevant source instance is

sampled in a given bagging iteration, then the model learned at that iteration will

have a higher error and be less likely to be included in the final result. Source

feature augmentation is not capable of ignoring less relevant source instances; how-

ever, if these instances occur within a particular region of the input space for a

certain source set, then source feature augmentation may be able to identify these

instances (using the added features specific to that source) and learn to handle

them differently than other instances.

One final point that must be noted is that boosting alone (and to a lesser

degree, bagging) is capable of greatly reducing the errors of the models learned.

In fact, in nearly all of the experiments described below, using boosting lead to a

statistically significant decrease in error when training on target data alone. As a

result, the transfer algorithms that make use of boosting have an inherent advantage

over the algorithms that do not, even if the use of boosting does not actually aid

transfer. To allow a fair comparison between algorithms, we apply boosting (using

AdaBoost.R2) to all algorithms that do not already perform boosting. For those

ensemble methods which themselves require a base learner (transfer stacking and

TrBagg), we face the question of whether boosting should be applied at the level
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of the base learner, or at the top level (after the algorithm has built a complete

model). For instance, with transfer stacking, we could boost the base learner and

then form a single linear combination of the result with the source models, or

we could boost the entire transfer stacking process, resulting in a unique linear

combination of source models and (unboosted) learned models at each boosting

iteration. We found the second approach to result in more consistent performance

in our preliminary experiments, and so that is the approach we use. The addition

of boosting generally had a positive impact on the performance of those algorithms

that did not previously use it.

8.3 Data Transformation

In the formulation of our regression transfer problem in Section 8.1, we

assumed that both source and target concepts had labels in the same output space.

In many regression settings in which we might consider transfer, however, different

concepts might have labels with considerably different label distributions. While

we largely view this as a data preparation issue (e.g., labels can be expressed in

comparable terms, such as using relative instead of absolute prices in financial data)

and thus beyond the scope of the problem studied here, in our experiments we do

take some simple measures to ensure similar label distributions.

In algorithms making use of models trained on source data, we can directly

modify the models so that their outputs on the target data fall in an appropriate

range. We do so by evaluating the models on the target training data (thus making

use only of data available to the learner) and performing linear regression to find

the linear transformation that best fits the outputs to the true labels. This trans-

formation is then applied whenever the model is used by the learning algorithm.

In algorithms using the source data directly, for each source data set we train a

model on the set, find the linear transformation in the same manner, and then ap-
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ply this transformation to the labels in the source data set before passing it to the

learning algorithm. In general, for the data sets described in the following section,

we found that this procedure was worthwhile, as it often resulted in a significant

increase in accuracy while only occasionally producing a slight decrease in accuracy.

(Trying regression with higher degree polynomials tended to produce modest im-

provements at best and large decreases in accuracy at worst.) The TAC data sets of

Section 8.4.3 were the exception to this observation, as no significant improvement

was seen from transforming the data. This result is consistent with our assertion

that the issue here is one of data preparation–the TAC labels are already expressed

in formats (relative prices or probabilities) that have similar distributions across

different concepts. We therefore omit the data transformation step on experiments

involving TAC data sets.

8.4 Experiments

We evaluated the transfer algorithms described in Section 8.2 on nine dif-

ferent problems: four data sets from the UCI Repository, a space of artificial data

sets created from a known function, and four prediction problems from TAC. Ex-

periments were performed using the WEKA 3.4 [110] machine learning package

with default parameters for the base learners. In the first group of experiments, we

tested two base learners. For the remainder, we used the regression algorithm in

WEKA giving the lowest error when used alone as the base learner. The number

of boosting iterations for each algorithm was set to 30, as this number appeared

sufficient to reach a plateau without overfitting for each algorithm and data set.

(The one exception was TrAdaBoost.R2, for which we used cross validation to set

the number of boosting iterations to obtain the best possible result.) For two-stage

TrAdaBoost.R2 and best source ratio, we also set S (the number of steps for trying

different source weightings) to 30. Ten folds were used for cross validation where

required. For TrBagg, we used 100 bagging iterations. Source models were gener-
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ated by running AdaBoost.R2 on a complete source data set with the appropriate

base learner. We used AdaBoost.R2 as the baseline non-transfer algorithm in each

experiment as it consistently produced lower errors than using the base learner

alone and offers a fair comparison against boosting transfer algorithms. For all ex-

periments, each result represents the average RMS error over 30 runs. Results said

to be significant are statistically significant (p < .05) according to paired t-tests.

8.4.1 Four UCI Data Sets

The first set of experiments evaluates all ten algorithms described above

on four data sets taken from the UCI Machine Learning Repository:1 concrete

strength, housing, auto MPG, and automobile. (We chose the first four data sets

that represented standard regression problems and had a few hundred instances;

no other data sets were tried.) We divide these standard regression data sets into

target and source sets by using a variation on the technique used by Dai et al. [31]

in a classification setting. For each data set, we identify a continuous feature that

has a moderate degree of correlation (around 0.4) with the label. We then sort

the instances by this feature, divide the set in thirds (low, medium, and high),

and remove this feature from the resulting sets. By dividing based on a feature

moderately correlated with the label, we hope to produce three data sets that

represent slightly different concepts; if the correlation were zero, the concepts might

be identical, and if the correlation were high, the concepts might be significantly

different and have very different label ranges. In each experiment, we use one data

set as the target and the other two as sources, for a total of 12 experiments.

Table 8.2 shows the results of all ten learning algorithms on all 12 experi-

ments using both M5P model trees and neural networks as base learners. Target

data training sets contained 25 instances. (Increasing this number resulted in

1http://archive.ics.uci.edu/ml/index.html
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qualitatively similar results.) Source data sets ranged from 68 to 343 instances.

Numbers in bold represent results that are among the best–either the lowest error,

or not significantly higher. Numbers in italics represent results that are not sig-

nificantly better than AdaBoost.R2 (which uses target data alone), that is, those

where transfer failed. All other numbers represent results that were not among the

best, but where there was significant transfer. Table 8.3 summarizes these results

by listing the number of times each algorithm fell into each performance category,

and lists algorithms in increasing order of outperforming AdaBoost.R2.

The best source model is significantly better than AdaBoost.R2 exactly half

of the time, but is sometimes much worse, suggesting that the degree of similarity

between source and target data sets varies considerably across the range of exper-

iments. Not surprisingly, the cases where the best source model fares worst are

often those where other algorithms that use source models fare poorly.

ExpBoost.R2 performs poorly, beating AdaBoost.R2 significantly only six

out of 24 times. Transfer stacking does much better, beating AdaBoost.R2 signifi-

cantly 15 times, suggesting that there is a benefit to considering linear combinations

of models at each boosting step instead of only individual models.

The algorithms that perform feature augmentation had fairly mediocre per-

formance. Comparing model feature augmentation to transfer stacking, model

feature augmentation had a lower error only nine out of 24 times, despite the afore-

mentioned advantage of being able to treat source models differently for different

parts of the input space.

TrAdaBoost.R2 (with the number of boosting iterations chosen using cross

validation) gives promising but somewhat erratic results, beating AdaBoost.R2

significantly 16 times but performing much worse in a few cases. Two-stage TrAd-

aBoost.R2 produces much better results and is the clear winner in this set of ex-

periments, finishing among the top algorithms 21 out of 24 times and never failing
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to significantly beat AdaBoost.R2. TrBagg is also fairly successful, usually outper-

forming AdaBoost.R2 but failing to be among the best algorithms. Interestingly,

simply finding the best source weighting also performs well, significantly outper-

forming AdaBoost.R2 17 times.

Overall, these results suggest that making use of source data directly is

more effective than using source models. We hypothesize that the reason is that

algorithms that use source data are better able to make use of only relevant source

instances, as discussed above. It is notable that Two-stage TrAdaBoost.R2 and

TrBagg, the two algorithms that directly address the issue of instance relevance,

are the most consistently successful in realizing a gain from transfer. Remaining

experiments (particularly those of Sections 9.1 and 9.4) will confirm that Two-

stage TrAdaBoost.R2 is particularly effective at distinguishing between relevant

and irrelevant source instances. On the other hand, source feature augmentation

attempts to identify relevant features rather than relevant instances and is the least

effective of the algorithms making use of source data. Investigation of the models

output by source feature augmentation shows that it tends to make heavy use of

the source-specific features, thus limiting the potential for transfer.

While less successful overall, algorithms that use source models still had the

best performance in a few cases, and as noted previously, they are generally much

less computationally intensive, due to using smaller amounts of data (target data

only).

For the remaining experiments, I omit the results of the best source model,

best source weighting, TrAdaBoost.R2, and ExpBoost.R2, as these algorithms con-

tinue to be outperformed by other algorithms based on similar principles.
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Base Algorithm Data set (divided into 3 subsets)
Lrnr. Concrete Strength Housing Auto MPG Automobile
M5P AdaBoost.R2 (target) 10.26 11.01 13.26 3.65 3.59 6.52 2.90 2.92 4.35 1963 3576 4893

best source model 8.63 8.08 9.55 2.98 5.27 9.98 2.38 2.57 4.44 1374 3741 6059
best source weighting 10.25 6.98 8.66 2.99 3.42 6.52 2.35 2.59 4.33 1734 2678 2940

transfer stacking 8.47 7.48 10.03 3.03 3.99 7.24 2.30 2.75 4.48 1325 3480 4811
model feat. augment 8.28 7.81 10.03 3.24 3.52 6.28 2.38 2.92 4.31 1717 3483 4924
source feat. augment 8.08 7.48 9.44 3.37 3.53 6.36 2.28 2.72 4.43 2225 2702 3479
ExpBoost.R2 10.11 9.64 11.76 3.02 3.74 6.66 2.53 2.94 4.39 1791 3661 4932
TrAdaBoost.R2 10.76 7.04 9.71 3.38 3.57 7.03 2.19 2.58 4.24 1815 2851 3527
2-St. TrAdaBoost.R2 8.211 6.49 8.66 2.99 3.12 6.12 2.14 2.52 4.21 1564 2555 3202
TrBagg 9.30 9.46 11.24 3.38 3.30 7.61 2.34 2.88 4.15 1604 2955 3764

NN AdaBoost.R2 (target) 10.47 11.95 14.84 3.89 3.67 7.54 2.76 3.55 5.17 1593 3200 3836
best source model 10.12 9.67 13.87 7.00 4.99 9.22 2.66 2.77 4.43 1481 2484 6119
best source weighting 10.48 8.02 10.77 3.89 3.00 6.46 2.44 2.80 4.19 1312 2277 2858

transfer stacking 9.49 9.80 12.93 3.75 3.58 7.74 2.48 3.00 4.40 1215 2640 3761
model feat. augment 10.17 9.31 11.98 3.82 3.48 7.39 2.92 3.27 4.86 1462 3063 3638
source feat. augment 13.12 11.37 17.05 3.91 4.24 7.14 2.80 3.33 4.82 2022 2824 4000
ExpBoost.R2 10.14 11.62 13.37 3.88 3.66 7.63 2.79 3.50 5.20 1392 3174 3829
TrAdaBoost.R2 11.34 9.05 11.91 4.02 3.29 7.68 2.33 2.80 4.37 1718 2573 3268
2-St. TrAdaBoost.R2 9.69 8.09 9.92 3.27 2.99 6.45 2.14 2.60 4.18 1290 2276 2843

TrBagg 9.67 8.33 10.98 3.55 2.95 6.96 2.22 2.78 4.17 1391 2904 3651

Table 8.2: RMS error on four UCI datasets, each divided into three concepts, using
M5P model trees and neural networks as base learners. Bold: lowest error; Italic:
not significantly better than AdaBoost.R2 (95% confidence in each case).

Algorithm Better than Among
target alone best

ExpBoost.R2 6 1
best source model 12 2
source feat. augment 14 1
model feat. augment 15 1
transfer stacking 15 4
TrAdaBoost.R2 16 1
best source weighting 17 9
TrBagg 22 5
2-St. TrAdaBoost.R2 24 21

Table 8.3: Summary of results in Table 8.2
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8.4.2 Friedman #1

Friedman #1 [41] is a well known regression problem, and we use a modified

version that allows us to generate a variety of related concepts. Each instance x is

a feature vector of length ten, with each component xi drawn independently from

the uniform distribution [0, 1]. The label for each instance is dependent on only

the first five features:

y = a1 · 10 sin(π(b1x1 + c1) · (b2x2 + c2)) +

a2 · 20(b3x3 + c3 − 0.5)2 + a3 · 10(b4x4 + c4) +

a4 · 5(b5x5 + c5) + N(0, 1)

where N is the normal distribution, and each ai, bi, and ci is a fixed parameter.

In the original Friedman #1 problem, each ai and bi is 1 while each ci is 0, and

we use these values when generating the target data set Ttarget. To generate each

of the source data sets, we draw each ai and bi from N(1, 0.1d) and each ci from

N(0, 0.05d), where d is a parameter that controls how similar the source and target

data sets are. Figure 8.1 illustrates the target and three random sources. Here y

is plotted as a function of z by setting each xi = z.

We performed experiments using several values d and values of 1 and 5 for

B (the number of source data sets), expecting that transfer would be most effective

for smaller values of d and the larger value of B. For each value of d, we randomly

generated 100 of each of the following: i) target training data sets (of varying sizes),

ii) target testing sets (of size 10,000), and iii) groups of 5 source data sets (each of

size 1000). Neural networks were chosen as the best base learner.

For d = 1, Figure 8.2 shows the results for one source, and Figure 8.3 shows

the results for five sources. Results for other values of d were qualitatively similar.

As expected, using transfer increased accuracy the most for lower values of d and

higher values of B.
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Figure 8.1: Illustration of Friedman #1
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Figure 8.2: Friedman #1 with 1 source
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Figure 8.3: Friedman #1 with 5 sources

All transfer algorithms tested performed significantly better than AdaBoost.R2

for up to 200 target instances. Two-stage TrAdaBoost.R2, transfer stacking, and

model feature augmentation were the most successful algorithms overall, and when

five sources were available, all three algorithms were significantly better than Ad-

aBoost.R2 for all points plotted. While TrBagg was also better than AdaBoost.R2

at most points, it did not appear to benefit as much as other algorithms from

having five sources. TrBagg may fail to benefit when one source concept is es-

pecially similar to the target concept due to the low probability of the data set

sampled at any iteration containing mostly instances from that source. Source fea-

ture augmentation actually falls significantly behind AdaBoost.R2 when there are

sufficiently many target instances, especially with five sources, possibly due to the

fact that source feature augmentation faces a more complicated learning problem
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Figure 8.4: Friedman #1 with 1 and 5 sources

(with many more features).

To provide a clearer picture of how additional sources can improve transfer,

Figure 8.4 shows the previous results for transfer stacking and two-stage TrAd-

aBoost.R2 with both one and five sources.

8.4.3 TAC Data Sets

The final four problems are prediction problems from the Trading Agent

Competition, including three that have been discussed previously. There is one

important difference between the way these problems were handled previously and

the way they are handled here. In previous chapters concerning TAC, we considered

learning from a certain number of completed TAC games and then testing the
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resulting models on a separate set of games (those that were presumably still in the

future). Here, we approach learning using the standard machine learning setup used

in this chapter: all instances (from all games) are combined into one data set, then

learning curves are generated by randomly selecting subsets of these instances of

different sizes. This process ensures that the training and testing sets are identically

distributed. In the next chapter, I will discuss the difficulties presented by learning

from complete games and show how the transfer algorithms can be modified to

handle these difficulties.

The first problem comes from the TAC Travel scenario (not previously de-

scribed). In TAC Travel, agents complete travel packages by bidding in simulta-

neous auctions for flights, hotels, and entertainment. We consider the problem of

predicting the closing prices of hotel auctions given the current state of all auc-

tions, represented by 51 features (as described in [88]). We use data from the 2006

competition final round as the target data, and data from the 2004 and 2005 final

rounds as the source data sets. (In each year’s final round, all games consisted of

the same agents. Between years, however, the identities of some agents changed,

while other agents improved significantly from year to year)

The next two problems are the computer and component price prediction

problems from TAC SCM discussed in Chapter 5 (in Sections 5.1 and 5.2, respec-

tively). For data, we use the data sets R1, R2, and R3 (generated using agent

binaries as described in Section 5.4) as source sets, and the data from the 16 games

of the final round of the 2006 competition as the target data set.

The final problem is the one discussed in Chapter 7, that of predicting the

probability of a TAC AA advertiser placing a bid above a certain amount. Here we

use data for epflagent as the target set and data for AstonTAC and Schlemazl1 as

the source sets. This problem poses a challenge not seen in any other experiment:

boosting is ineffective. In fact, when learning from target data alone, boosting
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Figure 8.5: TAC Travel

actually results in higher errors. Recall that in this problem each instance is labeled

with 1 or 0, and thus this could be seen as a binary classification problem in

which we are interested in class membership probabilities. We treat this problem

as a regression problem because that results in better accuracy on both predicted

probabilities and the actual bid estimates we are ultimately interested in. However,

applying AdaBoost.R2 in this case may have the effect of increasing the weights

of instances representing low-probability events, which would lead to inaccurate

probability predictions. In any case, for this problem, instead of boosting each

algorithm, we perform bagging (again with 30 iterations), which is still effective.

Two-stage TrAdaBoost.R2 is especially hurt by the failure of boosting, however, as

it uses boosting in both stages. Although it is straightforward to replace boosting

with bagging in the second stage, the first stage depends on boosting to select

the most relevant source instances. Thus, for this problem, we replace two-stage

TrAdaBoost.R2 with the best source weighting algorithm.
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Figure 8.6: TAC SCM computers
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Figure 8.7: TAC SCM components
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Figure 8.8: TAC AA bid probability

For all four problems, M5P model trees were chosen as the best base learner.

Results are shown in Figures 8.5 through 8.8. For the three problems on which it

is applicable, two-stage TrAdaBoost.R2 is the clear winner, as it performs partic-

ularly well when little target data is available, has significantly lower error than

AdaBoost.R2 at all points, and never falls behind any other transfer algorithm.

Performance of other algorithms is mixed, with only transfer stacking consistently

performing as well as or better than AdaBoost.R2 on all four problems.

For the TAC AA problem, the best source weighting algorithm works sur-

prisingly well when there is little target data available, but falls behind learning

from target data alone when there is more target data. Upon closer inspection, in

these cases the algorithm is correctly determining that little or no weight should

be given to the source data, meaning that the results should be nearly identical to

learning from target data alone. It turns out that the difference is in the size of the

set of instances sampled at each bagging iteration. The size used is set to the total
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number of training instances, which is much larger when source data is mixed with

target data. However, when the source instances receive little weight, most of the

instances sampled will be target instances, each of which may be sampled several

times. Using a larger bagging set thus reduces the expected difference between

each set sampled, lessening the effect of bagging. Setting the size of the bagging

set to be equal to the number of target instances causes the best source weighting

algorithm to perform identically to learning from target data alone when many tar-

get instances are available, but harms its performance when few target instances

are available. The solution is to set the bagging set size to be the number of ef-

fective training instances. Recall that in the tth step (out of s steps) of Algorithm

2, each target instance received a weight of 1 while each source instance received

a weight of 1 − t/s. The number of effective training instances at step t is thus

|Ttarget| + (1 − t/s)|Tsource|. Thus, as the weighting of source instances decreases,

the size of the bagging set decreases. The results of using this modification are

shown in Figure 8.8 (abbreviated as ETI).

8.4.4 Additional Experiments with Two-Stage TrAdaBoost.R2

In our final set of experiments, we took a closer look into the performance

of two-stage TrAdaBoost.R2 due to the fact that this novel algorithm was con-

sistently among the best. Two-stage TrAdaBoost.R2 differs from the best source

weighting algorithm (when boosted) in two ways. In the first stage, two-stage TrAd-

aBoost.R2 reduces source weights through boosting (reducing weights the most on

those instances where error is highest) rather than uniformly. Then in the second

stage, it holds the source weights constant when building the final model through

boosting, whereas the best source weighting algorithm treats all instance weights in

the same way during boosting. To determine how much each difference contributes

to the better performance of two-stage TrAdaBoost.R2, we tested four algorithms,

one with each approach at each stage. Figures 8.9 through 8.11 show the results

246



 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

 36

 0  100  200  300  400  500

R
M

S
 E

rr
o

r

Target Instances

AdaBoost.R2
2-stage TrAdaBoost.R2

uniform/hold
best source weighting

Figure 8.9: Two-stage alternatives, TAC Travel

on the three TAC problems for which boosting is effective. Here uniform/hold

represents the algorithm that reduces source weights uniformly in the first stage

but holds them constant in the second. The opposite algorithm that boosts source

weights in the first stage but does not hold them in the second performs similarly

to best source weighting and is not shown.

The surprising result of this experiment is that the method used to reduce

source weights in the first stage has no significant effect on performance, at least for

these three problems. For the two problems where best source weighting performs

much worse than two-stage TrAdaBoost.R2, the difference is solely due to the

change in the second stage.

To get a better idea of what is happening in the first stage, we plotted

the weight given to source instances (as determined by cross validation in the

first stage) as a function of the number of target instances available. Figures 8.12

through 8.14 show these weights for both the default two-stage TrAdaBoost.R2 and

the uniform/hold version. Here, the source weight indicates how much weight the

average source instance is given relative to each target instance–1 represents all

instances being weighted equally, while 0 represents only target instances receiving
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Figure 8.10: Two-stage alternatives, TAC SCM computers
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Figure 8.11: Two-stage alternatives, TAC SCM components
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weight. Interestingly, the default version of the algorithm always gives more weight

to source instances than the uniform/hold version. In the default version, it is the

least relevant source instances (in theory) that have their weights lowered the most,

and so it may be optimal to use a higher average source weight overall to better

benefit from those source instances that are relevant. This result suggests that

using boosting in the first stage is in fact effective at identifying relevant source

instances. For the three problems studied here, it appears that the uniform/hold

version of the algorithm can compensate by using a lower overall source weighting,

but that might not always be the case. In fact, in Section 9.4 of the next chapter, I

present cases where the default version does outperform the uniform/hold version.

249



8.5 Summary

This chapter addressed the general problem of transfer learning for regres-

sion problems. A number of algorithms for regression transfer were presented, and

experiments were performed in a wide variety of domains. Most of these algo-

rithms can be broadly classified as either making use of models trained on source

data or directly using the source data itself. Algorithms from the latter category

appeared to do better overall. Two-stage TrAdaBoost.R2 was especially successful,

as it typically dominated other algorithms on problems where boosting was effec-

tive, and is thus a significant contribution of this dissertation. Where boosting was

not effective, simply finding the best source weighting appeared to be a reasonable

substitute. Algorithms using source models also had some success, with transfer

stacking appearing to be the most consistent of this group.

For the purposes of this dissertation, the most important result from this

chapter is the fact that successful transfer is quite possible in a variety of regression

problems, including several taken from TAC domains. In the next chapter, I will

take a more in-depth look at applying the algorithms of this chapter to TAC.
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Chapter 9

Using Past Game Experience in TAC

The previous chapter presented a number of algorithms for regression trans-

fer. In this chapter, I take a closer look at the application of transfer learning

within TAC and explore how the nature of the source and target data affects the

performance of transfer algorithms. Throughout most of the chapter, results are

presented in groups of three parallel experiments conducted on three data sets with

each group testing data sets of a particular nature. The data sets used are taken

from the TAC SCM computer price and component price problems of Chapter 5 (re-

ferred to as SCM-CPU and SCM-CPO) and the TAC AA bid probability data set of

Chapter 7 (referred to as AA). For data sets from TAC SCM, the algorithms tested

are AdaBoost.R2 using target data only (as a non-transfer baseline), 2-stage TrAd-

aBoost.R2 (the most successful algorithm from Chapter 8), and transfer stacking

boosted with AdaBoost.R2 (as a representative of algorithms using source mod-

els). For the TAC AA data sets, the respective algorithms are bagging using target

data, best source weight with bagging (with bag size set to the number of effec-

tive training instances), and bagged transfer stacking. For this chapter, algorithms

will be abbreviated as 2ST (for 2-Stage TrAdaBoost.R2), TS (for either bagged or

boosted transfer stacking), and BSW (for best source weight with bagging). M5P

model trees are used as the base learner in each case. For algorithms using source

data, only 2000 source instances are used to speed learning; increasing this amount

does not improve performance in most cases. The source models used in transfer

stacking are learned from the full source data set using AdaBoost.R2. Results are

averaged over 30 runs. In general, when one algorithm appears to clearly outper-
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form another, the result is statistically significant (at least up to a certain target

data set size), and so significance results are mentioned only where significance

may be unclear. Results said to be significant are statistically significant (p < .05)

according to paired t-tests.

9.1 Single Sources of Varying Similarity

The first aspect of source data to explore is the similarity of the (single)

source to the target. For the next several sections, the R1 data set will be used as

the target for experiments on both TAC SCM problems, and Schlemazl2 will be

used as the target for TAC AA experiments. (These were chosen as fairly typical

data sets, and limited experimentation using other target data sets appeared to

produce similar results. See Sections 5.4.1 and 7.2.1 for descriptions of all data sets.)

The first group of experiments involves the least similar source data sets: TT10

for SCM-CPU, C06 for SCM-CPO, and MetroClick for AA. These will be referred

to as poor sources. (See Tables 5.19, 5.20, and 7.4 for information on similarity

between data sets.) Figures 9.1 through 9.3 show the results of all algorithms and

of the source models. Even with such poor sources, 2ST is highly effective on both

SCM problems. This result is especially impressive for SCM-CPO, where a very

accurate model can be learned with only 50 target instances even though C06 is

an extremely dissimilar data set. BSW for AA is not nearly as effective. TS is only

helpful on SCM-CPU, likely due to the fact that TT10 is the least dissimilar of the

sources in this group of experiments.

The next group of experiments considers the opposite case where the source

data is very similar to the target data. The source data sets used are R2 for SCM-

CPU, R4 for SCM-CPO, and Schlemazl1 for AA. These will be referred to as good

sources. Figures 9.4 through 9.6 show the results of all algorithms and of the source

models. Not surprisingly, all transfer algorithms perform better than in the previous
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Figure 9.1: One poor source, SCM-CPU
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group of experiments. 2ST remains better than TS overall on the SCM problems,

although TS eventually catches up on SCM-CPO. TS also eventually surpasses BSW

on AA. For all three problems, however, TS initially results in a higher error than

simply using the source model, meaning that it is unable to correctly identify the

best combination of models (i.e., giving all weight to the source model) when target

data is limited.

The final group of experiments in this section considers the case where the

source data is only moderately similar to the target data. The source data sets used

are F10 for SCM-CPU, TT10 for SCM-CPO, and epfl for AA. These will be referred

to as medium sources. Figures 9.7 through 9.9 show the results of all algorithms and

of the source models. For TS, performance lies somewhere between the performance

when good and poor sources are used, as expected. For 2ST and BSW, however, the

results are not so straightforward, as seen in Figures 9.10 through 9.12. In fact,

on both SCM problems, using the poor source significantly outperforms using the

medium source for certain amounts of target data. One possible explanation for

this result is that while the poor source contains instances that are less relevant

overall to the target, it may contain some instances that are highly relevant, and

2ST is capable of identifying and using these instances.

9.2 Source and Target are Identical

Whereas the previous section considered single sources that were similar to

the target, this section explores the possibility that the source and target distribu-

tions are identical. Of course, if the source and target are known to be identical,

then the obvious solution is to combine the source and target data, or simply to

use an existing model that has been trained on the source if the source data is

sufficiently plentiful. If it is even suspected that the source and target might be

identical, then it is likely worthwhile to check if this is the case using an appropriate
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statistical test. Similarly, if there are multiple sources and it is believed that one

of the sources is identical to the target, then the simple method of finding the best

source model (described in Section 8.2.2) is probably the right approach. Neverthe-

less, it is worth exploring the performance of the algorithms under consideration

in this chapter in case this situation arises unexpectedly. In addition, the results

of this section are probably similar to the results when the source and target are

not identical, but extremely similar.

The target data sets used for this group of experiments are the same as the

targets of the previous section. Figures 9.13 through 9.15 show the results when the

source data comes from the same data set (with no overlap of instances), including

the results for the model trained only on the source data. Not surprisingly, the

accuracy of the transfer algorithms is initially significantly worse than the source

model. TS (which produces a linear combination of the source model and a model

trained on the target data) quickly learns to put most weight on the source model,

and thus catches up to the source model’s performance. 2ST and BSW remain

significantly worse than the source model, however, despite the fact that they both

correctly learn to give source instances about as much weight as target instances.

There are two reasons for this result. First, as mentioned previously, both of these

algorithms train using only 2000 source instances to reduce training time. This

number is sufficient when the source differs from the target, but additional instances

are helpful when the source and target are the same. Training with all source

instances results in BSW performing just as well as the source model on AA, which

should be expected since BSW treats target instances and source instances (once

weighted) the same. On the other hand, 2ST remains much less accurate than the

source model no matter how much source data is used for training due to the fact

that in its second stage, 2ST fixes the weights of source instances during boosting.

If boosting is helpful, as is the case for both SCM problems, then 2ST is clearly

at a disadvantage despite having access to the same training data. (Recall that
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the source model is trained using AdaBoost.R2.) For this reason, it is especially

important to check whether the source and target distributions are identical before

using 2ST.

9.3 Multiple Sources

The next aspect of source data to consider is the number of sources. If

multiple sources exist, is using more sources always better? This section will explore

this question using the same poor, medium, and good sources used for each problem

in the previous section.

The first group of experiments considers using either one good source or two

sources: one good and one poor. Figures 9.16 through 9.18 show the results of the

transfer algorithms on each problem. Similarly, the second group of experiments

considers adding a medium source to a good source. Figures 9.19 through 9.21

show the results. Results in both cases are similar.

For TS, performance when using two sources is significantly worse on most

problems when few target instances are available. This result is not surprising,

as adding more source models increases the number of parameters to tune, thus

increasing the risk of overfitting. Performance from using two sources does catch

up quickly as more target instances become available. In fact, when a few hundred

target instances are available for SCM-CPU, performance is better when using two

sources (but not quite significantly better, in most cases).

For 2ST, adding a poor source to a good source appears to result in a slight

improvement in accuracy, while adding a medium source does not. This result is

consistent with Figures 9.10 and 9.11, where a single poor source was sometimes

better than a single medium source. Note that none of the observed differences are

significant, however. For BSW on AA, adding a second source results in a significant

improvement in accuracy when the number of target instances is small, but the
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second source actually decreases accuracy (though not significantly) when there

are many target instances.

The second group of experiments considers using all three sources. Fig-

ures 9.22 through 9.24 show the results of the transfer algorithms on each problem.

For TS, the results are similar to the results of the experiments involving two sources,

only more pronounced. With only 50 target instances, the accuracy when using

all sources falls even further behind the accuracy from using just the good source

or using two sources. Again, the increase in tunable parameters appears to lead

to overfitting. When a few hundred target instances are available for SCM-CPU,

however, performance is significantly better when using all sources than when using

one or two sources.

For 2ST on both SCM problems, when up to several hundred target in-

stances are available, using all three sources results in a significant improvement in

performance over using one or two sources. For BSW, using all three sources results

in essentially the same performance as using only the good source.

Overall, deciding how to deal with multiple sources is simplest with 2ST.

It appears that adding more sources will not notably harm performance and may

significantly improve it, so the best approach is probably to just use all available

sources (although this observation may not hold if the number of sources is much

greater than the two or three considered here). When there are sufficiently many

target instances, TS also appears able to properly handle multiple source models,

but care should be taken when the number of target instances is small. In such

cases, the best approach might be to use only the model from the source that is

most similar to the target. However, it should be noted that in a real application,

we might not know which source this is. Unless some prior knowledge helps us to

identify which source is most appropriate, we could choose the source model that

has the lowest error on the target instances, but given the small number of target
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instances we might not have much confidence in this choice. A better approach

might be to use some type of regularization to encourage the use of fewer source

models in the combination of models output by TS. Results for BSW are mixed,

which is not surprising as BSW has no means of differentiating between different

sources. Again, the best approach might be to use only the source believed to be

most similar.

9.4 Source Weighting in 2ST

I now briefly return to an issue discussed in the previous chapter. Recall

that the experiments of Section 8.4.4 suggested that the method used to reduce

the weights of source instances in the first stage of 2ST might not matter. Specifi-

cally, for the problems considered, the accuracy of the model learned was the same

whether source instances had their weights individually reduced through boosting

(as is normal in 2ST) or uniformly reduced across all instances. It turns out that

in the experiments of the previous section, in which multiple sources were used,

reducing weights though boosting is preferable. Figure 9.25 shows the results when

both weighting methods are used on SCM-CPO with one good source and one

poor source. Using boosting in the first stage was significantly better than using

uniform weighting across all numbers of target instances tried. Results for other

source combinations on both SCM problems were similar–using boosting usually

performed better, and never performed worse, than using uniform weighting. This

observation makes sense, since weighting source instances individually allows in-

stances from a good source to generally receive more weight than instances from

other sources.
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source and one good source used.

9.5 Limited Source Data

The experiments so far have assumed that we have ample source data (sev-

eral thousand instances). This section looks at the success of transfer when source

data is limited.

The first group of experiments considers the case where we have one good

source (using the same data sets from the previous sections), but only 200 source

instances. Figures 9.26 through 9.28 show the results of the transfer algorithms

on each problem using both this limited source data and the full source data used

previously. As expected, limiting the amount of source data hurts the accuracy of

the models learned by all transfer algorithms. TS performs especially poorly, with

no significant improvement over the non-transfer method at most points. This

result is not surprising, as a model learned from a small amount of source data

may not even fit the source concept well, let alone the target concept. The source

models are thus given little weighting in the final combination of models output by

TS, limiting the potential for transfer. 2ST and BSW fare better, showing significant

transfer at most points. The fact that these algorithms directly combine source and

target instances appears to allow them to make effective use of even small amounts

266



of source data. In any case, the performance of all three algorithms is never worse

than the performance of the non-transfer algorithm, so when one source is available,

it is likely worthwhile to attempt transfer no matter how few source instances there

are.

The next group of experiments considers the case of two sources when only

one source is limited to 200 instances. 200 instances from the good source are used

again, and the full number of instances from the medium source are added. With

TS, little weight is given to the relatively poor model learned on the good source,

and so results are not significantly different from the results when only the medium

source is used. This outcome suggests that the quantity of source data is not an

important consideration when using TS with multiple sources, as TS can learn to

ignore a source for which too few instances are available.

For 2ST and BSW, recall that 2000 source instances are being used for training

when the full amount of source data is available, and that by default all source and

target instances receive the same initial weight. This means that the medium

source receives ten times as much weight overall as the good source (with only 200

instances). One possible modification to these algorithms would be to give each

source an equal overall weight (in this case, by multiplying the initial weight of each

instance from the good source by ten). Figures 9.29 through 9.31 show the results

for 2ST and BSW when using the good source, the medium source, both sources with

equal instance weights (the default), and both sources with ten times the weight

on each good source instance. The most striking observation from these figures is

that adding weight to the good source instances produces results that are usually

significantly worse than using the default weighting, and often worse than using

only the medium source. This observation tends to remain true even when the

weights of good source instances are multiplied by a factor less than ten. Thus, in

the case of multiple sources, it is likely best to simply weight each source instance

equally, regardless of the relative sizes of the source data sets. For 2ST, combining
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Figure 9.26: Limited good source, SCM-CPU
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both sources usually produces better results than using either source alone, and

is never significantly worse. As was the case in the experiments of Section 9.3, it

appears that the best strategy for 2ST is to simply use all available sources. Once

again, BSW appears to suffer from the inability to weight source instances separately,

as the results from using both sources are slightly (but not significantly) worse than

the results of using only the good source.

9.6 Learning from TAC Games

To this point, we have worked within a standard supervised learning setting

where training data is independent and identically distributed (IID). Results have

taken the form of learning curves over different numbers of target instances where

these instances are individually drawn from a large data set. However, if we apply

transfer learning in TAC, then the target training data comes from a number of

completed games. Instances from the same game are not independent (e.g., if the

price of one computer type rises on a given day, then the prices of other computer

types are likely to rise as well), and instances from different games are not identically

distributed (e.g., one SCM game may have higher customer demand levels than

another). Similar difficulties arise in using data from real world markets. It is

therefore important to test our transfer algorithms under TAC-like settings and

consider what adjustments need to be made.

The main concern with non-IID data is that all three of our transfer al-

gorithms rely on N-fold cross validation of the target training data for weighting

either source models or source data. If the data in each fold is not independent,

then the estimated error of a model trained on target data may be artificially low.

As a result, TS might give too much weight to the model trained on target data,

and 2ST and BSW might give too little weight to source instances. One way to

address this problem in the TAC setting is to treat data from each available game
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as a separate fold, since games are independent. Figures 9.32 through 9.34 show

the results of using both the default cross validation and one-fold-per-game cross

validation. Here one good source was used. In addition, 500 target instances per

target game were used, as increasing this number did not provide any benefit. Note

that at least two games are necessary for one-fold-per-game cross validation to be

possible.

Using one-fold-per-game cross validation provides a clear benefit over the

default cross validation in SCM-CPU, but there is usually no significant benefit on

the other problems. One possible explanation for this result is that the prices of

different components in TAC SCM and the bids on different queries in TAC AA

are fairly uncorrelated, while the prices of different computers in TAC SCM tend to

move together. Assuming that target instances from a single game are independent

of each other may therefore be more unrealistic in SCM-CPU. Another interesting

observation is that TS performs nearly as well as 2ST overall (although 2ST does

remain significantly better on SCM-CPU). In the experiments of previous sections,

it often took TS several hundred target instances to catch up to 2ST, but in this

setting, even a single game represents hundreds of target instances, so 2ST may

have less of an advantage in this situation. In any case, all three transfer algorithms

with one-fold-per-game cross validation perform significantly better than the non-

transfer algorithm, showing that successful transfer is possible in an actual TAC

setting.

9.7 SCM Agent Performance

The next logical step is to test whether using transfer learning can actually

improve agent performance. We now test this in a setting previously considered in

Section 5.4.1. (We restrict our attention to TAC SCM, as this is the TAC scenario

for which we have observed the clearest link between model accuracy and agent
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Figure 9.32: Learning from TAC games, SCM-CPU
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Target Games Change in score vs default model

AdaBoost.R2 2ST (game CV)

4 −0.29 +0.23

8 +0.14 +0.36

Table 9.1: Results of using transfer in an SCM agent to learn computer and com-
ponent models. Differences in scores (in millions) between an agent using default
models and an agent using models learned online.

performance.) The experiments of that section showed that in TAC SCM, when

one TacTex10 agent played against five other TacTex10 agents (the TT10 group),

learning computer and component models that were specific to these agents could

significantly improve the agent’s score over an agent that used the default models

(trained on the groups R1,R2,R3, and R4). When 30 games were available for

training, the agent using both computer and component models trained on TT10

outperformed the agent using the default models by 1.12 million per game.

We now test the use of transfer learning in this setting. Table 9.1 shows the

difference in score between an agent using models trained on 4 or 8 target games

(TT10) and an agent using the default models. Both AdaBoost.R2 (no transfer)

and 2ST (using the one-fold-per-game cross validation of the previous section) are

used as learning algorithms. For source data, 2ST uses the same data used to

train the default models. Results are averaged over 30 games. For both 4 and 8

games, 2ST results in a higher score than either using the default models or using

AdaBoost.R2, showing that transfer learning would have been beneficial in this

situation. It should be noted that these differences in scores are not statistically

significant, however. Establishing significance (if possible) would likely require

repeating these experiments over a large number of training sets.
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9.8 Transfer in a Non-stationary Setting

The experiments so far have assumed that we are in a stationary setting,

where competing agents never change their behavior. This section briefly considers

an application of transfer learning to a non-stationary setting. One straightforward

approach to dealing with a non-stationary setting is to use only the most recent data

for training. The amount of data that should be used depends on the rate of change

of the system and the amount of data needed for effective learning. Identifying the

optimal cutoff point is beyond the scope of this chapter, but whatever this point is,

any data before this point is effectively wasted. One possible approach to making

use of this extra data is to treat it as a separate source and apply a transfer learning

algorithm (possibly in conjunction with other sources). 2ST is especially suited to

this approach because it weights source instances individually, and can therefore

learn to place less weight on more outdated instances.

To generate non-stationary behavior for training, we ran 30 SCM games with

six TacTex10 agents. Over the 30 games, three tunable agent parameters gradually

changed. First, we introduced a multiplier on predicted computer price changes

that increased from 0 to 3, making the agent increasingly likely to either hoard

or sell off computers. Second, we introduced an adjustment to predicted future

component prices that increased from -0.5% to 0.8% per day before the requested

due date, making the agent increasingly likely to place short term orders. Third,

the size of certain long-term orders placed at the start of the game decreased

from the full amount to one third that amount, further emphasizing short-term

procurement. At the end of the 30 games, the final parameters were fixed, and 30

more games were run to generate testing data representing the final concept. We

considered using the last N games from the training set, where N ranged from 4 to

28. Figures 9.35 and 9.36 show the results for AdaBoost.R2 and 2ST (treating the

remaining data as a source, and using one-fold-per-game cross validation). Again,

500 instances per game were used, both as source and target. For any choice of
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Figure 9.35: Non-stationary setting, SCM-CPU
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Figure 9.36: Non-stationary setting, SCM-CPO

N, using the additional games as source resulted in a clear reduction in error. In

addition, choosing N correctly appears to be less critical when using the additional

games, as the learning curves for 2ST are somewhat shallower. These results suggest

that transfer learning can be an effective method of dealing with non-stationary

data. Note that testing for statistical significance is not possible as these results

involve a single run of 30 games.
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9.9 Summary

This chapter explored the use of transfer algorithms in different TAC set-

tings. The experiments presented were designed to show how the performance of

the different transfer algorithms is affected by the nature of the source and tar-

get data. As was the case in the previous chapter, when boosting is effective (in

SCM-CPU and SCM-CPO), 2ST generally performed best. In addition, the results

suggest that a straightforward application of 2ST is very robust to different situa-

tions. 2ST produced effective transfer even when the source concept was dissimilar

to the target concept or when only a small amount of source data was available.

When multiple sources were available, simply combining all source data produced

results that were as good as, and sometimes better than, using only the best source.

With one-fold-per-game cross validation, 2ST proved successful at learning models

online from completed games in a realistic TAC setting, and the results of using

the resulting models in an agent were promising. 2ST can even be used as a means

of learning from non-stationary data. The only caveat is that 2ST may not be

the most effective algorithm when the source concept is extremely similar to (or

the same as) the target concept. Results for TS and BSW were more mixed, and a

number of potential problems with these algorithms were identified. Nevertheless,

both were very effective in certain situations. In particular, TS performed very well

when learning from full games in the realistic TAC setting, and its advantage over

2ST in running time would be particularly useful in this situation.
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Chapter 10

Related Work

There is a considerable amount of existing work that is related to either the

market domains, agent designs, or learning approaches described in this disserta-

tion. The most relevant references have been discussed where appropriate in the

preceding chapters, but to improve the flow of the text, the remainder has been

left until now. This chapter places the contributions of this dissertation in the con-

text of this existing work and includes comparisons with alternative approaches to

similar problems. The organization of this chapter is parallel to the organization of

the dissertation. Work related to adaptive auction mechanisms (Chapters 2 and 3)

is discussed first, then work on the two TAC domains (supply chain management

in Chapters 4 and 5, and ad auctions in Chapters 6 and 7), and finally work on

transfer learning (Chapters 8 and 9).

10.1 Adaptive Auction Mechanisms

Auction theory (see e.g. [61] and [59] for an overview) has a long history,

beginning with the work of Vickrey [106] and continuing through recent decades

(e.g., [70, 73, 82]). The growth of electronic commerce and Internet auctions in

recent years has led to a renewed interest in auction theory by providing new sce-

narios (such as the generalized second price auctions used in keyword auctions [38])

and behaviors (such as sniping, the act of waiting until the last second to place

a bid [81]) to analyze. While much of this work has traditionally been game-

theoretic, the work most relevant to this dissertation is that which is empirical in
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nature, ranging from experiments with new auction mechanisms in simulation to

efforts to model (potentially irrational) bidder behavior from the large quantity of

real online bidding data that has become available in recent years.

When extensive historical data on past auctions of identical items is available

(as is the case with eBay), and when past patterns are likely to persist, it may be

possible for an auctioneer to estimate the optimal auction parameters by analyzing

this data. A number of tools exist for this purpose. For example, AuctionExplorer

is a tool developed by Shmueli et al. [92] that allows collection, representation, and

interactive visualization of auction databases. However, historical data on past

auctions for a given item may not always be available, such as when the seller is

introducing a new item to the market or if past data does not reflect the behavior

of current bidders accurately.

Instead of using historical auction data to directly determine auction pa-

rameters, the data can instead be used to form bidding models. Bapna et al. [5]

use inductive techniques to derive properties of bidder behaviors from auction data,

resulting in a taxonomy of behaviors containing multiple strategies. They find con-

siderable heterogeneity among auction participants and suggest that the induced

behavior patterns should replace theory-driven models of bidders so as to facilitate

the design of auction mechanisms. The resulting bidder models can be used for

different purposes. By using these models in simulation, it is possible to explore

the outcomes for different auction designs and gain intuition into setting auction

parameters. For example, Bapna et al. [4] find that the bid increment has a large

impact on bidder behavior in ascending multiunit auctions and offer a heuristic for

choosing the increment. This use of bidder models in simulation to develop insights

into the setting of auction parameters is similar to the use of simulated bidders in

the metalearning step proposed in Section 3.2.1, but it is not clear what would

happen if these bidder models are not representative of the encountered bidders.
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By combining these modeled behaviors with Bayesian inference, it is possible

to model bidders from limited experience in an online fashion, and then to use these

models to set auction parameters. Bapna et al. [6] use this approach to classify

bidder strategies and estimate their valuations in multiunit ascending auctions, and

they are able to dynamically set bid increments such that auction revenue is higher

than it would have been if a fixed, predetermined bid increment had been used.

Rogers et al. [80] apply a similar approach to setting bid increments in repeated

English auctions, using the closing prices of past auctions to estimate the number of

bidders and their valuation distribution. These approaches are essentially the same

as the Bayesian approach discussed in Section 3.2.2, and they therefore have the

same drawback: if the encountered bidders do not conform to the assumptions of

the models, then the auction parameters suggested by the models may be arbitrarily

bad.

One interesting possibility that has not been considered in this dissertation

is that of adapting parameters during a single auction. Bapna et al. [7] show

how an understanding of how prices change during an auction can help improve

prediction of auction revenue and the setting of parameters that may promote

a favorable winning bid. By using regression to model the evolution of winning

bids throughout an auction, they can predict how a change to a parameter such

as the minimum bid increment at any point in time would affect the future price

trajectory, and thus the closing price.

There has also been work exploring the adaptation of electronic auction

mechanisms in response to bidder behavior from an empirical standpoint using a

variety of learning approaches in simulated experiments. Cliff [27] explores a con-

tinuous space of auction mechanisms defined by a parameterized continuous double

auction, where the parameter represents the probability that a seller will make an

offer during any time slice. Bidders adjust their bids over time in response to ob-

servations of the market. The adaptive strategy of the bidders has 60 parameters
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that must be set. The mechanism parameter and the parameters of the simulated

bidding agents used are learned through a coevolutionary process – a genetic algo-

rithm is used to explore the parameter space, and the sets of parameters in each

generation are evaluated by having agents with these parameter sets compete for

profits in simulated auctions. For different underlying supply and demand sched-

ules, the system converges to different values of the auction parameter. Phelps

et al. [77] also address continuous double auctions, using genetic programming to

co-evolve buyer and seller strategies and auction rules from scratch.

Byde [24] takes a similar approach in studying the space of auction mecha-

nisms between the first and second-price sealed-bid auction. The winner’s payment

is determined as a weighted average of the two highest bids, with the weight-

ing determined by the auction parameter. For a given population of bidders, the

revenue-maximizing parameter is approximated by considering a number of pa-

rameter choices over the allowed range, using a genetic algorithm to learn the

parameters of the bidders’ strategies for each choice, and observing the resulting

average revenues. For different bidder populations (factors considered include vari-

able bidder counts, risk sensitivity, and correlation of signals), different auction

parameter values are found to maximize revenue.

There are two primary difference between these three evolutionary approaches

and the metalearning approach to developing adaptive auction mechanisms de-

scribed in Section 3.2.1. First, these approaches learn auction parameters and

bidder behaviors simultaneously, while the metalearning process makes use of a

predetermined space of bidder populations that reflects our prior knowledge or ex-

perience with bidders. Second, at the end of the coevolutionary process, the final

output of these approaches is a fixed mechanism. Although the auction mecha-

nisms developed by these approaches may work well under the assumed conditions,

when they are used in real-life settings the same problem may arise as with analyt-

ical mechanism design: bidders’ goals, beliefs, and strategies may be different from
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those assumed, leading to unexpected results. In contrast, the goal of the work

described here is to allow the auction mechanism to adapt in response to the en-

countered bidder population. While the means of adapting auction parameters used

by these approaches in simulation could be applied in an online setting, they would

likely be found unsuitable. For example, evolutionary methods frequently explore

highly suboptimal solutions that could be disastrous if actually tried. Essentially,

these methods do not address the exploration-exploitation tradeoff, focusing only

on exploration. The methods used to evolve bidder strategies, however, could pos-

sibly be applied to generate the bidder behavior needed during the metalearning

step described here.

One piece of related work that is not directly auction-related is that of

Brooks et al. [21], who consider the problem of competing producers of information

goods that must choose how to bundle and price these goods. The producers use a

genetic algorithm to search the space of possible actions, and it is shown that profits

are increased if knowledge of the market is used to either reduce the search space,

start the search in a promising area, or introduce a gradient. This idea of using

prior knowledge to direct the search for the optimal parameters of a sales strategy

is similar to the use of metalearning to find the optimal learning parameters of the

regression adaptive algorithm.

The lack of assumptions about bidders differentiates this work from Conitzer

and Sandholm’s automated mechanism design [29], in which mechanisms are com-

putationally developed for specific situations based on complete knowledge of the

distribution over bidders’ types.

Loss aversion (exhibited by the bidders in the reserve price setting of Sec-

tion 2.3.1) was first demonstrated by Kahneman and Tversky in their work on

prospect theory [49], and there is empirical evidence that bidders in auctions are

often loss averse [34] as well as experimental evidence that being loss averse can

indeed affect the bidding strategy adopted by a bidder [35].
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The case of bidders participating in a number of sequential auctions, ad-

dressed in the BIN price setting of Section 2.3.2, has received much recent attention,

including work that offers insights into bidders behaviors [48, 113] or examines styl-

ized sequential auctions to derive equilibrium bidding strategies analytically [44].

Interestingly, while Zeithammer [113] finds that data on eBay bidders suggests

bidders are taking future auctions into account, Juda and Parkes [48] show that

eBay bidders tend to bid inefficiently in sequential auctions. This irrationality may

manifest itself differently in different bidder populations and auction settings; how-

ever, adaptive auction mechanisms are particularly designed to accommodate such

uncertainty.

Reinforcement Learning [102] encompasses a wide variety of algorithms and

has been applied in numerous domains. The particular case of a seller responding

to customer behavior by using a k-armed bandit algorithm has been well studied

(e.g. [83]), but generally in the context of price selection. One variant of k-armed

bandits that is potentially related to our learning problem is that of contextual

bandits [64], in which the distribution of rewards at each step is conditioned on a

piece of information (representing context) that is observable by the agent before

an action must be chosen. In our auction setting, context could represent slight

differences between auctions that influence bidder behavior, such as time of day or

a variation in the item being sold.

In general, the term metalearning describes a wide variety of approaches

to improving the performance of a learning system for a particular task through

experience with related tasks [18, 107]. Methods of achieving this goal include

using meta-data (such as the characteristics of various tasks and the effectiveness

of specific learning algorithms on each) to select the best learning algorithm to use,

and making use of the knowledge gained on one previously seen task to improve

learning on a related task (sometimes called learning to learn [104]; the methods of

transfer learning described in Chapter 8 that make use of models learned on source
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data sets could be seen as fitting this category).

10.2 Supply Chain Management

I now turn to work related to the supply chain management scenario dis-

cussed in Chapters 4 and 5, beginning with general work, and then work on the

specific subproblems an agent must handle.

Outside of TAC SCM, much of the work on agent-based supply chain man-

agement has focused on the design of architectures for distributed systems in which

multiple agents throughout the supply chain must be able to communicate and coor-

dinate. Fox et al. [39] discuss issues that arise when distributing activities among

agents in a supply chain and present a software architecture and a set of agent

components that permit coordination among agents. Two realistic supply chain

applications implemented in this architecture, and experiments show how unex-

pected events that perturb the supply chain can be successfully handled. Sadeh et

al. [86] developed MASCOT, an agent-based architecture for coordinated supply

chain planning and scheduling. MASCOT allows users at different levels of the ar-

chitecture to evaluate the effects that different actions will have across the supply

chain. Aslam and Ng [2] present an agent-based environment for multi-objective

supply chain optimization. A multi-level architecture allows simulations required

for optimization to be carried out at different levels of fidelity throughout the sup-

ply chain, and intelligent optimization choices by agents can significantly reduce

the size of the overall search space, greatly reducing computation time.

These systems typically involve a static supply chain, but it is also possible

to allow for the dynamic formation of supply chains. Chen et al. [26] present a

framework in which a virtual supply chain emerges from the decisions of indepen-

dent agents to join or leave the system. A negotiation protocol is described that

allows agents to form relationships with each other, and the resulting supply chain
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can be modeled using colored petri nets.

Within the TAC SCM scenario, we are interested mainly in the decisions

of a single manufacturer operating in a fixed supply chain. A number of agent

descriptions for TAC SCM have been published presenting various solutions to the

problem.1 Ketter et al. [53] present a survey of agent designs showing the variety

of approaches that have been taken by competition entrants. At a high level, many

of these agents are similar in design to TacTex – they divide the full problem into

a number of smaller tasks and generally solve these tasks using decision theoretic

approaches based on maximizing utility given estimates of various values and prices.

The key differences are the specific methods used to solve these tasks.

10.2.1 Price Prediction

In work outside of TAC, the problem of predicting the probability of winning

an auction with a particular sealed bid is commonly approached through statistical

methods such as those surveyed by Papaioannou and Cassaigne [75]. A similar

machine learning approach is developed by Lawrence [66] that uses a naive Bayes

classifier to predict the probability of a bid winning based on the bid price, features

of the RFQ, and available information about other bidders. Such methods often

require extensive historical information about competitors’ past bids and assume

a static environment. In TAC SCM, probabilities vary considerably throughout

the game, and very little information is available about competitors’ bids while the

game is running, hence the decision to use a particle filter (Section 5.1.1) in TacTex

to model current-day bid distributions of computer prices.

As described in Section 5.3.2, DeepMaize (Kiekintveld et al.) [55] makes

predictions for current and future computer prices using a k-nearest neighbors

algorithm. To estimate current component prices, DeepMaize records the recent

1See http://tradingagents.org for a complete collection of papers on TAC SCM agents.
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prices offered by each supplier and performs linear regression to estimate prices on

each future due date. To model the changes in future component prices, DeepMaize

uses a form of regression tree to learn the difference between actual observed prices

in a data set of past games and the predictions of the linear interpolation method.

Prediction techniques that have been documented by other TAC SCM agents

generally concern computer prices. A previous version of DeepMaize used equilib-

rium analysis to make predictions about the future state of the market, from which

information such as future prices could be extracted [57]. CMieux (Benisch et

al.) [13] makes predictions about computer prices using a form of modified regres-

sion tree called a distribution tree that learns to predict a distribution over winning

prices using data from past games. For current component prices, CMieux predicts

the price that will be offered for an RFQ with a given due date by using a near-

est neighbors approach that considers recent offers with similar due dates. Ketter

et al. [54] developed a method of modeling computer prices based on “economic

regimes” representing specific underlying market conditions. The distribution of

winning bids is modeled as a Gaussian mixture model, and by clustering these dis-

tributions, economic regimes can be observed that correlate with specific market

conditions such as component scarcity. By modeling transitions between regimes,

future price distributions can be predicted. Foreseer (Burke et al.) [23] uses a form

of online learning to learn multipliers indicating the impact of various RFQ proper-

ties on current computer prices. An early version of Botticelli (Benisch et al.) [10]

used a heuristic in which linear regression is performed on recent computer prices

to predict a distribution over winning prices.

Although several agents make efforts to adapt to changing conditions during

a single game, such as MinneTAC (Ketter et al.) [54] and SouthamptonSCM (He

et al.) [42], methods of adaptation to a set of opponents over a series of games

in TAC SCM (as explored in Chapter 9) have not been documented by any other
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agent.2 Such adaptation has been used in the TAC Travel competition, however,

both during a round of competition [98], and in response to hundreds of previous

games [99].

10.2.2 Bidding on Customer RFQs

The problem of bidding on customer RFQs has been addressed with a wide

variety of solutions. Southampton (He et al.) [43] takes a fuzzy reasoning approach

in which a rule base is developed containing fuzzy rules that specify how to bid

in various situations. PSUTAC (Sun et al.) [101] takes a similar knowledge-based

approach. RedAgent (Keller et al.) [52] uses a simulated internal market to allocate

resources and determine their values, identifying bid prices in the process. The

approach used by TacTex, in which probabilities of offer acceptance are predicted

and then used in an optimization routine, is also used in various forms by several

other agents.

10.2.3 Production Scheduling

Like TacTex, many agents use some form of greedy production schedul-

ing, but other, more sophisticated approaches have been studied. These include a

stochastic programming approach used by Botticelli [12], in which expected profit

is maximized through the use of samples generated from a probabilistic model of

possible customer orders, and an approach treating the bidding and scheduling

problems as a continuous knapsack problem [9]. In the latter case, an ǫ-optimal so-

lution is presented which is shown to produce results similar to the greedy approach

of TacTex but in significantly less time for large problems.

2Per personal communication, at one point DeepMaize did include data from past games in
its k-nearest neighbors model.
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10.2.4 Component Procurement

For component procurement, most agents now employ approaches that in-

volve predictions of future component needs and prices and are somewhat similar

to the approach used by TacTex. These approaches are often heuristic in nature,

although there are some exceptions; Buffett and Scott [22] model the procurement

problem as a Markov decision process and use dynamic programming to identify

optimal actions.

Much of the attention that has been paid to the problem of component

procurement has focused on the beginning of the game. In particular, an unintended

feature of the initial game rules caused many agents to purchase the majority of

their components at the very beginning of the game [56]. Although this issue was

eliminated by rule changes in 2005, the correct approach to procurement on the

first few game days remains an open question. During this period, information

about supply and demand is limited, but prices tend to be fairly low. The current

top agents (including TacTex and DeepMaize) follow the strategy introduced by

PhantAgent (Stan et al.) [96], which is to place a particular pattern of moderately

large orders of each component spaced throughout the game to ensure a minimum

level of components at a reasonable price. Partly in response to this issue, in

2007 the TAC SCM Procurement Challenge [87] was held (alongside the Prediction

Challenge described in Section 5.3). In this challenge, a modified version of the

SCM server was used that allowed agents to negotiate long-term flexible-quantity

procurement contracts at the beginning of the game in addition to the regular RFQ

system.

10.3 Ad Auctions

I now discuss work related to ad auctions, the topic of Chapters 6 and 7.

As in the previous section, I discuss both general work and work specific to TAC.
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Keyword auctions have received a significant amount of attention in recent

years. Much of this attention has focused on analyzing the properties of the gen-

eralized second price auction that is commonly used. For example, Edelman et

al. [38] and Varian [105] show that in a full information setting where each bid-

der knows the valuations of other bidders, a continuum of Nash equilibria exists,

including one that is socially optimal, but it is not clear what bidding strategies

would allow bidders to reach an equilibrium.

Much of the work on bidding agents has focused on specific subproblems,

rather than designing complete agents that solve bidding problems of the scope

faced in TAC AA. One exception is an agent designed by Kitts and LeBlanc [58]

to bid on a family of keywords in live Overture auctions. The agent bears a strong

resemblance to TacTex at a high level and performs many of the same tasks, such

as predicting the position and resulting profit for a given bid and optimizing bids

over a time horizon. One key difference is that the agent does not have access to

the underlying model of bidder behavior present in TAC AA and so must directly

model the probabilities of events such as clicks and conversions using regression on

recent data. In an experiment in live auctions, the agent was able to generate four

times as many clicks as human managers for a reduced cost, demonstrating the

value of research into bidding agents.

Among work on specific subproblems, common topics include keyword selec-

tion, click prediction, and bidding strategies. Rusmevichientong and Williamson [84]

address the problem of choosing which subset of all possible keywords to bid on.

Choosing a subset of keywords is not an important problem in AA where the set

of keywords is small, but is very important in real auctions with thousands of key-

words to choose from. They present an adaptive algorithm for experimenting with

keywords for which clickthrough rates are unknown. In practice, this algorithm is

able to converge to a nearly-optimal set of keywords quickly, even when the set

of possible keywords is large. Richardson [79] describes a logistic regression model
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that can be used to predict click probabilities of new ads based on properties such

as the length and text of the ad, the advertiser, and the page linked to. Zhou and

Naroditskiy [114] address the problem of choosing bids across multiple auctions

when costs per click, values per click, and clickthrough rates are known for each

keyword and position and given a budget. They model the problem as a stochastic

multiple-choice knapsack problem and present an algorithm that achieves nearly

optimal performance on real bidding data sets.

Published reports of other TAC AA agents are still limited, but they nev-

ertheless encompass a wide range of agent designs. QuakTAC (Vorobeychik) [108]

simplifies the bidding problem by bidding some fraction α of its myopic value per

click on each keyword. The parameter α is determined through simulation-based

game theoretic analysis. DNAgent (Munsey et al.) [72] adjusts its daily bids ac-

cording to a lookup table indexed by capacity, position, and query information.

The table is evolved over many games using a genetic algorithm.

The agent most similar to TacTex is Schlemazl (Berg et al.) [14], one of the

top agents from 2009 and 2010. Schlemazl uses regression algorithms from WEKA

to build models of impression count, click probability, conversion probability, and

cost per click. In contrast to TacTex, only the relationship between the bid amount

and the quantity of interest is modeled (i.e., ad position is not taken into account).

In addition, these models do not consider the actions of other bidders or underlying

parameters such as user state. The optimization problem resulting from the out-

puts of these models is cast as a multiple choice knapsack problem and solved using

an extension of the method of Zhou and Naroditskiy [114]. Berg et al. compare

the effectiveness of this agent to simpler rule-based agents and find it to be more

profitable; however, an agent that simply attempts to equate return on investment

(in this case, profit per conversion, as capacity is the limiting factor) across all

queries by revising bids each day is surprisingly effective. In an experiment in

which an increasing amount of random noise is added to the models, the perfor-
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mance of Schlemazl quickly falls behind that of this simpler agent, showing that

accurate estimation of the quantities modeled is important to agent performance

and possibly a reason for the success of TacTex.

There is currently limited information about the approaches taken by the

other TAC AA agents, but we are aware that they include decision-theoretic opti-

mization similar to TacTex, rule-based systems, and genetic algorithms. Optimi-

zation-based approaches appeared to fare the best in general, and we believe that

what sets TacTex apart in this area is its ability to estimate the full game state.

This observation is consistent with past TAC scenarios (SCM and Travel). Suc-

cessful agents tend to have similar optimization routines at their core, and the top

agents are those that are best able to model their environment, with increasingly

complex modeling approaches developed as the competitions mature.

10.4 Regression Transfer

Finally, I discuss work that is related to the general transfer learning problem

addressed in Chapters 8 and 9.

The lowest common denominator of transfer learning methods is the leverag-

ing of information from a source domain to speed up or otherwise improve learning

in a different target domain. Transfer learning bears resemblance to classic case-

based reasoning [60], especially in the need to reason about the similarity between

tasks and instances.

More recently, transfer learning has been studied in a variety of different

settings in addition to the classification and regression discussed here. For instance,

Mihalkova et al. [71] show how transfer can be applied to Markov logic networks,

a combination of Markov networks with first order logic that can be useful for

modeling relational datasets. The most difficult aspect of learning a Markov logic

network is determining the structure, or set of first-order clauses, and the proposed
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method attempts to transfer structure from source to target by finding similarities.

Transfer learning has also been applied to reinforcement learning. Here, the

goal is generally to make use of policies or value functions learned on one original

task to speed learning in a new task. The primary difficulty in most cases is that the

new problem has a different state space, action space, observation format, or goal,

requiring some sort of mapping between the two tasks that may be either chosen by

hand [103] or generated automatically from task descriptions [69]. (These methods

could in theory be applied to the sequential auction scenario of Chapter 2, which

was framed as an RL problem, but this scenario presents different challenges. Here,

the structure of the problem remains the same between tasks (the auction format

and parameterization remain the same from market to market), but the behavior

of the market participants causes the dynamics of the task to differ. Another

difference is that experience from a space of possible bidder populations is used,

rather than experience from only a single task.)

The most closely related work to this research, that on boosting and clas-

sification transfer, is described in Chapter 8. A key property of the classification

and our regression setting is that the source and target domains typically have the

same input and output spaces (X and Y in our notation), which is not always the

case, for example in the reinforcement learning setting. As such, the problem stud-

ied here could be considered one of concept drift [89], in which the target concept

changes over time. A related problem is covariate shift [91], in which the concept

(Y given X) remains the same but the distribution over inputs (X) changes. In

fact, the problem of training a model on one set of TAC games and applying it

to another set of games with the same agents could be seen as one of covariate

shift: the concept (determined by agent behavior and underlying game mechanics)

remains the same, but the market conditions that arise in the particular games

could differ between the sets.
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Having identical input and output spaces between source and target also

differentiates our setting from multitask learning, in which multiple related con-

cepts sharing an input representation but with potentially unrelated outputs are

to be learned simultaneously; however, some multitask learning methods could po-

tentially be modified to address our setting. Caruana [25] showed that training

a neural network with multiple outputs representing different tasks could lead to

better performance on each task than training a separate network for each task

individually. The obstacle to applying this approach to our transfer setting is that

labels reflecting the source concept are not available for the target inputs, and vice-

versa, but one potential solution would be to train source models, evaluate these

models on the target inputs, then train a network on the target inputs with both

the source and target labels as outputs.

Another area that is related to this work is ensemble learning in general, and

expert prediction algorithms in particular. A number of online learning algorithms

exist that combine advice from different experts, such as Littlestone and Warmuth’s

weighted majority algorithm [67]. While such algorithms typically only consider a

fixed set of experts (i.e., no models trained on target data), their incremental nature

could make them useful in situations where frequent retraining is not practical.

10.5 Summary

This chapter has discussed related work in several areas, including work

on the market domains addressed in this dissertation (sequential auctions, sup-

ply chain management, and ad auctions), the specific agent tasks faced (including

parameter tuning, bidding in various types of auctions, planning and scheduling,

and modeling other agents) and the relevant learning paradigms (reinforcement

learning, metalearning, supervised learning, and transfer learning). Only partial

coverage of all related work has been possible given the wide variety of topics the
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work in this dissertation touches on, including the fields of electronic commerce,

multiagent systems, machine learning, and economics. In fact, a key feature of

this dissertation has been the integration of ideas from these areas into its central

contribution: fully functional and demonstrably successful agents for realistic mar-

ket domains that make effective use of machine learning, including the ability to

incorporate prior market experience into the learning approaches used.
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Chapter 11

Conclusion

This chapter concludes the dissertation by summarizing the work presented

and discussing possible directions for future work.

11.1 Summary of Contributions

In this dissertation, I presented successful trading agents for three different

market scenarios. In the first scenario (discussed in Chapter 2), I described an agent

that can maximize its revenue when selling a large number of some item through

sequential auctions. The agent must choose a mechanism to use in each auction

by setting certain parameters that define the mechanism, such as reserve prices or

buy-it-now prices. The agent operates by using an adaptive auction mechanism

which can learn the optimal auction parameters through repeated interaction with

a population of bidders.

The second scenario was TAC SCM, in which an agent acts as a computer

manufacturer and must manage its supply chain by purchasing components, as-

sembling computers, and selling the finished products to customers. In Chapter 4,

I presented our TAC SCM agent TacTex. TacTex operates by making predictions

about various quantities (the availability and prices of components, the nature of

customer demand, and the computer prices that will result) and then optimizing

its buying and selling decisions with respect to these predictions. TacTex has been

a regular finalist in the annual TAC SCM competition, and was the winning agent

in 2005, 2006, and 2010.
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The third scenario was TAC AA, in which an agent runs an advertising

campaign by bidding in keyword auctions. In Chapter 6, I presented the TacTex

agent for TAC AA. As in TAC SCM, TacTex operates by making several predictions

and estimates and then planning its future bids given this information. In this case,

the quantities of interest include the numbers of users in different searching states

and the bids of other advertisers. TacTex was the winner of the first two TAC AA

competitions in 2009 and 2010.

In all three cases, the agents make use of machine learning. In the se-

quential auction scenario, the agent learns about the relationship between auction

parameters and the resulting revenue using an adaptive algorithm. As the agent

can only learn about the result of a particular parameter value by trying it, this

is a reinforcement learning setting and presents an exploration-exploitation trade-

off. Experiments show that the regression adaptive algorithm of Chapter 2 is able

to produce higher expected revenue than would be obtained by any fixed auction

parameters. The TacTex agent for SCM learns models of future computer and com-

ponent prices, and the TacTex agent for AA learns models of the bidding behavior

of other advertisers. In the case of both TAC agents, the learning problem is one of

supervised regression. The experiments of Chapters 5 and 7 show that improving

the accuracy of these models can increase the profit earned by TacTex.

Although learning is important in all three scenarios, learning online from

scratch can be slow. In many cases, an agent may have prior experience in other

markets that are similar to the current market. The central question addressed in

this dissertation was how to use this information:

How can adaptive trading agents take advantage of previous ex-

perience (real or simulated) in other markets, while remaining robust in

the face of novel situations in a new market?

Chapters 3, 8, and 9 are devoted to answering this question by testing a
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number of different approaches under a variety of conditions, as outlined in Sec-

tion 1.1. For each of the two learning settings considered (reinforcement learning

and regression), one novel algorithm emerged that was effective across a wide range

of experiments, as summarized in the remainder of this section.

In the sequential auction scenario, previous experience was represented by

the ability to simulate a space of plausible bidder populations. As I showed in the

experiments of Chapter 3, when the actual encountered bidder population was iden-

tical or similar to a population from this space, a Bayesian approach to identifying

the population was able to learn effective auction parameters very quickly. How-

ever, if the encountered population exhibited unexpected behavior, the Bayesian

approach could fail to find even reasonable auction parameters. A more robust

solution to making use of simulated populations was the metalearning approach to

setting the learning parameters of the regression adaptive algorithm by searching

for the learning parameters that maximized revenue in simulation. The resulting

learning parameters biased exploration in such a way that this approach was nearly

as effective as the Bayesian approach when the encountered population resembled a

simulated population, yet it maintained the ability to adapt when bidders behaved

unexpectedly.

The supervised learning problem faced in both TAC scenarios can be framed

as an instance of transfer learning. Here, the previous experience takes the form

of data sets representing different markets (in SCM) or agents (in AA). This data

is referred to as source data, and the goal is to make use of this data to learn a

target concept for which only limited data is available. Previous work on trans-

fer learning in supervised settings has largely focused on classification, and so in

Chapter 8 I presented a comparison of algorithms for regression transfer, including

modified classification algorithms and novel algorithms. These algorithms fall into

two categories: those that use source data directly, and those that make use of

models trained on the source data. I tested these algorithms across a wide range of
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TAC and non-TAC data sets, and found that the algorithms that use source data

directly tended to perform better. In particular, 2-Stage TrAdaBoost.R2 was con-

sistently among the top algorithms on data sets for which boosting was effective.

2-Stage TrAdaBoost.R2 is a boosting algorithm that makes use of the basic prin-

ciple introduced in the classification transfer algorithm TrAdaBoost [31] (reducing

the weight of source instances that are poorly fit in each iteration), adapts this

principle to regression using the weighting scheme used in AdaBoost.R2 [37], and

adjusts the weights of source and target instances in two separate stages.

In Chapter 9, I tested some of the top regression transfer algorithms under

a wide variety of conditions within the TAC scenarios. Again, 2-Stage TrAd-

aBoost.R2 was the top performer on data sets where boosting was effective. So

long as the source and target were not identical, simply combining all source data

and using 2-Stage TrAdaBoost.R2 produced excellent results regardless of the num-

ber of sources, similarity of source to target, or amount of source data. Transfer

stacking, a method that combines source and target models, did not appear as

robust, but it also performed well in certain cases, and both transfer stacking and

2-Stage TrAdaBoost.R2 were able to produce effective transfer when learning from

completed TAC games as long as one-fold-per-game cross validation was used.

11.2 Future Work

A number of directions for future work exist for both the specific trading

agents I have presented and the learning approaches they use.

11.2.1 Sequential Auctions

In the sequential auction scenario, several direct extensions to the algorithms

presented are possible. One obvious need is to extend the regression adaptive

algorithm to handle auctions with multiple parameters (for instance, both a BIN

price and a reserve price). Locally weighted quadratic regression, the method
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used to estimate the auction outcome for a particular parameter value, can easily

be extended to multiple dimensions. In fact, experiments not presented in this

dissertation show that the regression adaptive algorithm can indeed be used to set

multiple auction parameters. However, as the number of parameters increases, the

rate of learning can decrease. One shortcoming of this direct extension to multiple

parameters is that it assumes that the impact of each parameter is independent.

It is likely the case that the relationship between parameters is more complex (for

instance, in situations in which a high BIN price is optimal, a high reserve price

might also make sense), and learning about this relationship from the simulated

populations might be possible.

In the auction settings considered, the metalearning process was able to

find effective learning parameters using SPSA, a gradient-based search method for

stochastic approximation. In other settings, especially those with multiple auction

parameters, a more sophisticated search method might be needed to avoid finding

only a local maximum or simply to speed up the search. Another limitation of

SPSA is that it requires the amount of prior experience (i.e., the number of initial

data points used for regression) to be fixed in advance. An evolutionary search

method that expanded the set of prior experience over time could possibly address

both of these issues.

The Bayesian approach to identifying the bidder population can also be

improved. This approach requires a representation of the distribution over auction

outcomes given the bidder population and auction parameter value. In Chapter

3, this representation took the form of a table computed from many simulations

using a discretized space of bidder populations, auction parameters, and outcomes.

Even for the fairly coarse degree of granularity used and a bidder population space

characterized by only four population parameters, the resulting table was quite

large and time consuming to build. It might be possible to learn a model from

a smaller amount of bidding data that is both more compact and more accurate.
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Another improvement concerns the method of action selection used. In Chapter 3,

softmax action selection was used to allow a direct comparison to the regression

adaptive algorithm, but other possibilities exist that take into account the value of

the information obtained by taking an action (e.g., [100]).

Given the success of the Bayesian approach when bidders behave as ex-

pected, and the robustness of the regression adaptive algorithm with metalearned

parameters, an appealing option would be to combine these two methods. One po-

tential solution is to start with the Bayesian approach, attempt to detect when the

encountered bidder population does not match any of the populations from simu-

lation, and then switch to the regression adaptive approach if that is the case. An

alternative would be to choose at each auction between taking the action suggested

by each algorithm by using an expert algorithm.

A more fundamental change to the algorithms presented in this dissertation

would be to view the problem as one of multi-state RL instead of single-state RL.

When bidders can remain across multiple auctions, as in the BIN setting described

in Section 2.3.2, then the auction parameter chosen will impact not only the auction

outcome, but also the set of bidders participating in the next auction. (For example,

setting a low BIN price might result in the current auction ending sooner and more

bidders remaining for the following auction.) In this situation, we would need to

model both auction outcomes and state transitions, where a state represents the

state of all bidders who will participate in an auction.

Finally, at a more general level, the work presented here on learning auction

parameters is empirical in nature and focuses on maximizing expected revenue.

Much theoretical work on sequential auctions in particular and online learning in

general focuses on placing a bound on worst-case performance or regret. It might

be worthwhile to address this problem from both directions to see if algorithms

can be designed that perform as well on average as those presented here while still

offering performance guarantees.
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11.2.2 TAC Agents

One aspect of the TacTex agent for SCM that offers room for improvement is

its long term planning, particularly in the area of component procurement. TacTex

plans its short term orders (up to 10 days) based on the projected customer demand

and its production schedule, but like many agents, it turns to more heuristic meth-

ods when placing orders further into the future, especially at the very beginning of

the game.

Another issue is the fact that when learning models, TacTex is learning to

make predictions about a market that includes itself. By updating its models,

TacTex causes changes in its own behavior that can impact the prices it is trying

to predict. To be more precise, if the training data used to learn model B covers

games in which TacTex used model A, then when making decisions based on model

B, TacTex should account for the difference between the impact on prices of the

actions it plans based on model B and the actions it would have taken based on

model A. Another interesting possibility when training data is generated from game

simulations using agent binaries (as opposed to live competition data) would be to

alternate playing games using the latest model and training on the latest batch of

games until the models converged (if at all).

The TacTex agent for AA offers even more opportunities for improvement.

One limitation of the current agent is that it performs optimization with respect to

the expected actions of other bidders. Optimizing with respect to a set of sampled

actions could produce better results, although it would be more time consuming.

There is also significant room for improvement in bid prediction. The results

of Chapter 7 show the importance of using accurate bidder models, and there

are a number of additional conditional density estimation approaches we could

try. One additional consideration is running time. The particle filter described in

Section 7.1 can be fairly time consuming, which is a problem in both TAC and real
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world auctions, and the most costly step is repeatedly calling the bidder models to

generate the distributions over the next bids. Reducing the time needed to evaluate

these models would be an important part of scaling up the proposed approach to

handle thousands of real auctions with many bidders. Another limitation is that

we currently only estimate the bids for the previous day, then assume that these

bids persist. The next step is to predict future bids, perhaps by using the bidder

models to propagate the estimates forward.

Also, as mentioned in the experiments of Chapter 7, the problem of estimat-

ing bids is closely tied to the problem of estimating spending limits. Rather than

estimating the two independently, as TacTex currently does, it might be possible

to incorporate spending limit estimation into the particle filter for bid estimation.

The key challenge to such an approach would likely come in the machine learning

component, as we would now need to generate a distribution over the next day’s

(bid, spending limit) pair, instead of just the bid.

The approach taken by both TacTex agents is essentially decision-theoretic:

the behavior of other agents in the market is assumed to be fixed, and TacTex

then optimizes with respect to this expected behavior. Because other agents have

the opportunity to respond to the actions of TacTex, game-theoretic considerations

should also be taken into account. TAC AA lends itself to such analysis particu-

larly well, as agents can directly observe and respond to the actions of others (for

example, outbidding another agent might cause that agent to return the favor on

the following day or move to a different auction altogether).

Finally, an important step in verifying the general applicability of the al-

gorithms developed for both TacTex agents is applying them to real world market

situations. Certain components of these agents are more directly transferable to

real markets than others. Many of the underlying models used by these agents are

specific to the TAC specification, such as the supplier model for TAC SCM (Sec-

tion 4.5.1) and the user model for TAC AA (Section 6.4). In real markets, models
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specifying the behavior of market participants are not provided, and so developing

these models would be an added challenge for an agent developer. On the other

hand, some of the methods of using these models for prediction and optimization

could potentially be of use to agents in real markets. In particular, the particle

filter for bid estimation in keyword auctions described in Section 7.1 is applicable

under fairly general conditions, and is thus a top candidate for real-world experi-

ments. In addition, it is hoped that the general learning methods used (including

the transfer learning algorithms developed) would be widely applicable to market

prediction problems.

One complication in applying the learning approaches used to real world

data is the fact that fully detailed historical data may not be available in many

settings. For the TAC scenarios, I have assumed that the game logs, which contain

all prices and bids of interest, are available to the agent to use as training data.

In some cases (such as SCM computer prices), this information could be estimated

with reasonable accuracy from the agent’s own observations. In other cases (such

as the bids of others in AA), this information would be very difficult to obtain.

One question that would thus need to be addressed is how accurate historical

data must be to be of use to an agent. In some cases, it might be possible to

use the agent’s own modeling abilities to improve the accuracy of the available

data. For instance, in keyword auctions, it might be possible to form initial bid

estimates using the limited information released by a search engine, then bootstrap

by alternating model building and particle filtering stages to obtain increasingly

accurate estimates.

11.2.3 Regression Transfer

Chapter 8 compared several algorithms for regression transfer, but there are

additional algorithms that could also be tried. As was mentioned, the algorithms

chosen were those that can be used in conjunction with any regression base learner.
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Algorithms that were ruled out due to this constraint should also be evaluated where

possible. Several of the algorithms presented, including 2-Stage TrAdaBoost.R2,

are based on boosting and make use of the weighting scheme of AdaBoost.R2.

Additional methods of adapting boosting for regression could be explored, and

additional techniques for improving boosting (such as regularization) could be tried.

In some cases, the algorithms of Chapter 8 were inspired by or directly

based on algorithms for classification transfer. It would also be interesting to see

if adapting algorithms in the other direction is useful. In particular, some of the

modifications made to TrAdaBoost (primarily the two stage approach) could be

directly applied in a classification setting, and it would be worthwhile to explore

whether improvement in that setting is also observed.

The experiments of Chapters 8 and 9 considered cases where a fairly small

number of source data sets were available. The effectiveness of the regression

transfer algorithms when many sources are available remains an open question,

and perhaps a means of selecting which sources should be used could be developed.

Finally, one important item that has not been discussed, as Chapters 8 and

9 were empirical in focus, is the theoretical properties of the algorithms presented.

One of the attractive features of AdaBoost is its theoretical guarantees (e.g., con-

vergence to zero error on the training set [40]). Analogues of the main properties

of AdaBoost have been proven to apply to TrAdaBoost [31], and it can be shown

that these properties hold in modified form when TrAdaBoost is modified for re-

gression using one particular weighting scheme (AdaBoost-∆ [15]). However, the

AdaBoost.R2 weighting scheme that proved most effective in the experiments of

this dissertation is more difficult to analyze, and the addition of the two-stage pro-

cedure used in 2-Stage TrAdaBoost.R2 further complicates matters. Developing

algorithms that are both effective in practice and offer theoretical guarantees is an

important area for future work.
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11.3 Conclusion

The growth of electronic commerce continues at a rapid pace, and in future

years, new markets and new opportunities for trading electronically will certainly

appear. Intelligent agents that can rapidly make a large volume of trading decisions

with little or no human supervision will play a growing role in these marketplaces,

and research into developing such agents will continue.

In the Trading Agent Competition, progress over the years within each sce-

nario (such as SCM or AA) has followed a similar trajectory. Simple agents are

sometimes successful in early years, but over time, the top agents become increas-

ingly complex, and an emphasis is often placed on applying machine learning to

making more accurate predictions or modeling other agents. A similar pattern

can occur when developing agents to participate in real markets. Once the low-

hanging fruit is gone, maintaining a competitive edge requires an increasing degree

of sophistication.

One advantage an agent can have is the ability to adapt rapidly to new

situations. Machine learning can be a useful tool for adaptation, but learning re-

quires experience. In this dissertation, I addressed the question of how an agent

can quickly learn about a new market by making use of experience in other mar-

kets. I introduced new learning algorithms that were effective under a variety of

conditions within specific market scenarios, and I believe these algorithms should

generalize well to other domains. It is my hope that this work will serve as a use-

ful resource for agent developers and provide inspiration for continued research on

adaptive trading agents.
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Appendix 1

Position Analyzer for Ad Auctions

This appendix describes the Position Analyzer from the TacTex agent for

Ad Auctions, as referenced in Section 6.3.

For each query type, the position analyzer takes as input i) the average posi-

tion of each advertiser, ii) the number of impressions for TacTex, and iii) an upper

bound on the total number of impressions. Using this information, the position

analyzer attempts to determine i) the ranking of the squashed bids, and ii) the first

and last impression for each advertiser – in other words, it attempts to reconstruct

the impression range column from Table 6.1 (reprinted here as Table 1.1).

For advertiser a, the three values that we wish to determine are i) ranka,

the ranking of the advertiser’s squashed bid (1-8); ii) starta, the first impression for

which the advertiser’s ad was displayed; and iii) enda, the impression after the last.

As part of the process we will also need to determine limitOrdera, the order in

which the advertiser hit its spending limit with respect to other advertisers (again

1-8, with ties broken by rank). If ranka < 6, starta will be 1; otherwise, it will be

endb, where b is the advertiser for which limitOrderb = ranka − 5 (the fact that

b hits its spending limit is what causes a to rise into fifth position). If advertiser

a never hits its spending limit, then enda will be the total number of impressions

plus one. Table 1.2 shows all of these values for the query shown in Table 6.1.

The game server computes the average position for advertiser a by taking

the sum of positions over all of the advertiser’s impressions (suma) and dividing
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Agent actions Results
Advertiser Bid Sq bid Ad Sp lim CPC Imps Clks Cnvs Impression range Avg pos

MetroClick 0.315 0.109 generic 50.93 0.310 426 164 16 r r 1.000

QuakTAC 0.266 0.107 lioneer:dvd - 0.194 718 156 6 r r 1.593

TacTex 0.235 0.091 generic 0.236 0.201 77 1 0 r r 3.000

UMTac09 0.216 0.078 generic 7.583 0.209 700 36 6 r r 2.719

munsey 0.190 0.075 generic - 0.174 718 16 2 r r 3.675

epflagent 0.214 0.068 generic - 0.184 641 3 0 r r 4.510

AstonTAC 0.158 0.059 generic 500.0 0.133 292 1 0 r r 4.938
Schlemazl 0.062 0.020 flat:dvd 5.617 - 0 0 0 -

Table 1.1: Results for the query null:dvd from one game day of the 2009 TAC AA
finals

by the number of impressions:

averagePositiona =
suma

enda − starta
(1.1)

Suppose that we already know each rank value. Then we can express suma as

follows:

suma =
∑

b : rankb≤ranka

max(0, min(endb, enda)− starta) (1.2)

The contribution of each advertiser b to suma is the number of impressions for

which its ad was displayed above the ad of advertiser a (advertiser a’s ads are

included because the ranking is 1-based). If we also know each limitOrder value,

then we can rewrite suma without the max and min, giving us a system of linear

equations that we could try to solve. However, we have twice as many variables

as equations (starta and enda for each advertiser a), giving us a severely under-

constrained system. In addition, we do not in fact know the rank and limitOrder

values, and would need to try solving the system corresponding to each set of

values.

An additional piece of information that we have not taken advantage of is

the fact that despite being represented by a Java double, each average position is

a fraction (as shown in Equation 1.1). We can therefore use the method of contin-

ued fractions to find the fractional representation for each average, numeratora/
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Advertiser Rank Start End Impression range LimitOrder Avg pos Fraction GCD

MetroClick 1 1 427 r r 2 1.000 1/1 426

QuakTAC 2 1 719 r r 4 1.593 572/359 2

TacTex 3 1 78 r r 1 3.000 3/1 77

UMTac09 4 1 701 r r 3 2.719 1903/700 1

munsey 5 1 719 r r 5 3.675 2639/718 1

epflagent 6 78 719 r r 6 4.510 2891/641 1

AstonTAC 7 427 719 r r 7 4.938 721/146 2
Schlemazl 8 - - - - - -

Table 1.2: Values computed by the Position Analyzer for the data from Table 1.1

denominatora. These values are shown in Table 1.2. (Note that the average po-

sitions shown are truncated.) In some cases, the numerator and denominator of

this fraction will equal the values shown in Equation 1.1, giving us exactly the

information we need. For example, using average position for UMTac09, we obtain

a fraction of 1903/700, and UMTac09 indeed had 700 impressions. However, if the

fraction in Equation 1.1 is reducible, with the numerator and denominator having

a GCD of gcda, then we need to multiply the resulting numerator and denominator

by the unknown value gcda to obtain the needed information. For example, for

QuakTAC we obtain the fraction 572/359 and must multiply by 2, and for TacTex

we obtain the fraction 3/1 and must multiply by 77. So now instead of two vari-

ables for each advertiser a, we have only one, gcda. We could again try to solve

for these variables by setting up a system of linear equations, but in this case the

system is homogeneous, again resulting in a large space of possible solutions. As

before, we also do not know the rank and limitOrder values.

Instead of solving a system of equations, we perform a depth-first search of

the space of possible values of each rank, limitOrder, and gcd by cycling through

nodes of corresponding types in the search tree. Although the search space is

large, by utilizing a number of pruning rules we can usually search the tree quickly.

Figure 1.1 shows a portion of the search tree for the data from Table 6.1. For

clarity, I will say that the level of a node is the number of ancestor nodes of the

same type plus 1 (rather than its actual depth), and the nodes of Figure 1.1 are
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labeled with these levels. Algorithms 9-12 summarize the search process. Note that

in these algorithms, all values to be determined are treated as global variables, and

any variable set at a search node must be unset when backtracking.

The root of the tree is the level 1 rank node. At a level i rank node, we choose

which advertiser ai has rank i. An advertiser with average position p cannot have

a rank less than ⌈p⌉. Thus in Figure 1.1, there is only one choice at both rank(1)

and rank(2), while at rank(3) there are two choices.

Search then proceeds from a level i rank node to a limitOrder node of the

same level. At this node we choose the order in which the advertiser ai chosen

at the preceding rank node hits its spending limit with respect to all previously

chosen advertisers, set its limitOrder accordingly, and increment any limitOrder

values that have already been set and are as large or larger. Again, our choices are

constrained by the advertiser’s average position. In order to have average position

p, an advertiser’s limitOrder cannot be less than i+1−⌊p⌋. (The agent starts in ith

place and must move up to at least position ⌊p⌋.) In Figure 1.1, at limitOrder(1)

we assign MetroClick a limitOrder value of 1 (the only possible value at level 1),

at limitOrder(2) we assign QuakTAC a limitOrder of 2 (it cannot be 1 according

to the constraint), and at limitOrder(3) we can assign UMTac09 a limitOrder of

2 or 3.

A level i limitOrder node leads to a level i gcd node. Here we must choose

the value of gcd for the advertiser ai chosen at the preceding rank node. Since

we know the rank and limitOrder values of all advertisers with higher rank, and

we know that the numerator and denominator of the fraction in Equation 1.1 are

equal to gcdai
numeratorai

and gcdai
denominatorai

, respectively, we can derive the

following from Equations 1 and 2:

gcdai
(numeratorai

− denominatorai
(i− limitOrderai

+ 1)) =
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∑

b : rankb<rankai
,

limitOrderb<limitOrderai

max(0, endb − startai
) (1.3)

If we know the end values for all advertisers with higher rank and both sides of the

above equation are nonzero, then it is straightforward to determine startai
, use the

equation to find gcdai
, and then compute endai

. Unfortunately, both sides of the

equation will be zero whenever limitOrderai
= 1.

As a result, we have three cases to consider. In the first case, limitOrderai
=

1, and we continue without determining a value for endai
or gcdai

. In the second

case, the right hand side of Equation 1.3 is nonzero and contains no unknown endb

values. In this case, we can solve for gcdai
. In the third case, the right hand

side of Equation 1.3 is nonzero but does contain unknown values. In this case, we

attempt to guess the value of gcdai
, and then we determine the values of startai

and endai
(possibly obtaining expressions including these unknown endb values).

We also plug these values into Equation 1.3 and store the resulting equation. As we

proceed down the search tree, we will usually obtain enough equations to be able

to solve for any unknowns. If at any point the system of equations is inconsistent,

we backtrack. The possible values of gcdai
are constrained by the end values of

the advertisers with the previous and next values of limitOrder, and by the upper

bound on total impressions. Still, a wide range of values may be possible. Because

we have a limited amount of time to search, and because lower values of gcdai
are

most common, we implement a form of iterative broadening search. We repeat the

search until we find a solution or hit a time limit of 300ms, and on our nth attempt,

we consider only the first 5n possible values for gcdai
at each gcd node. In some

cases, there will be no possible values for gcdai
, and we backtrack. Finally, note

that when advertiser ai is our own agent, we know our own number of impressions

and thus our gcd. Unless forced to backtrack, a level i gcd node leads to a level

i + 1 rank node.

Figure 1.1 shows examples of cases 1 (gcd(1)) and 3 (gcd(2) and gcd(3)). At
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gcd(1), we know starta1
= 1 (because MetroClick is ranked in the top five), but we

cannot determine gcda1
or enda1

. At gcd(2), we can also set starta2
= 1. Because

limitOrdera2
> limitOrdera1

, we know that enda2
≥ enda1

; however, we do not

know enda1
. As there are not yet any advertisers with a higher limitOrder, our

only upper bound on enda2
is the upper bound on the total number of impressions.

Assuming this value is sufficiently high, we will have at least five values to consider

for gcda2
. This is our first attempt at finding a solution, so we try only the first

five (1 through 5). First, we try gcda2
= 1. Plugging known values into Equation

3 gives us 1 · 213 = enda1
− 1, and so we can set enda1

= 214. Note that this

value is incorrect; it would be correct had we chosen the correct gcda2
of 2. We

can also set enda2
= starta2

+ denominatora2
gcda2

= 360. At gcd(3), we are forced

to backtrack. Having chosen limitOrdera3
to be 2 (meaning limitOrdera2

, for

QuakTAC, has been incremented to 3) UMTac09 must hit its spending limit before

QuakTAC, and so we must have enda3
< enda2

. But this implies 1+700gcda3
< 360,

an impossibility.

If we reach a rank node with all advertisers having been assigned a rank,

then we have found a valid solution. If any variables remain unsolved, we set

them to the median of their possible range. Because there may be multiple valid

solutions, we record this solution and then backtrack to search for more. At the

end of our search, if there is only one solution, we return it. In rare cases (around

1% of the time), we hit the 300ms time limit without finding any solutions. Often,

multiple solutions are found, and we choose the best one by scoring each solution

according to a number of heuristics. Solutions are favored if: i) the total number

of impressions is low, ii) there are no unsolved variables, iii) multiple advertisers

share the maximum end value, iv) no advertisers share any other end value, and

v) only the advertiser with greatest rank has an average position of 5.0. Typically

the solution chosen is correct or very nearly so.
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Figure 1.1: Part of the search tree for Table 1.1
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Algorithm 9: Position-Analyzer

begin
input : all average positions, TexTex’s impressions, upper bound

on impressions
output: ranking, impressions per advertiser, total impressions

1 n← 0
2 Equations← {}
3 Solutions← {}
4 while Solutions = {}, time ¡ 300ms do
5 n← n + 1
6 Rank-Node(1)

7 Score solutions using heuristics and select the best

Algorithm 10: Rank-Node

begin
input: level

1 if level > number of advertisers with a position then
2 valid solution found; add it to Solutions
3 else
4 determine set A of remaining advertisers that could have rank

level
5 for ∀adv ∈ A do
6 alevel ← adv
7 rankalevel

← level
8 Limit-Order-Node(level)

Algorithm 11: Limit-Order-Node

begin
input: level

1 determine possible values of limitOrderalevel

2 for each value v do
3 for 1 ≤ i ≤ level − 1 do
4 if limitOrderai

≥ v then
5 limitOrderai

← limitOrderai
+ 1

6 limitOrderalevel
← v

7 GCD-Node(level)
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Algorithm 12: GCD-Node

begin
input: level

1 if rankalevel
< 6 then

2 startalevel
← 1

3 else
4 find b such that limitOrderb = rankalevel

− 5
5 startalevel

← endb /* may include unknown */

6 if limitOrderalevel
= 1 then

7 leave gcdalevel
and endalevel

unset for now
8 RANK-Node(level + 1)

9 else if RHS of Equation 1.3 has no unknowns then
10 solve for gcdalevel

11 endalevel
← startalevel

+ denominatoralevel
gcdalevel

12 if endalevel
is feasible then

13 RANK-Node(level + 1)

14 else
15 determine feasible values of gcdalevel

16 for up to 5n values v do
17 gcdalevel

← v
18 endalevel

← startalevel
+ denominatoralevel

gcdalevel

19 add Equation 1.3 to Equations
20 try to solve for unknowns in Equations
21 if endalevel

is feasible and Equations is consistent then
22 RANK-Node(level + 1)
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