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Abstract

Laser-based powder bed fusion of metallic parts is used widely in different branches of
industry. Although there have been many investigations to improve the process stability, thermal
history is rarely taken into account. The thermal history describes the parts’ thermal situation
throughout the build process as a result of successive heating and cooling with each layer. This
could lead to different microstructures due to different thermal boundary conditions. In this paper,
a methodology based on neural networks is developed to predict and control the parts’ temperature
by adjusting the laser power. A thermal imaging system is used to monitor the thermal history and
to generate a training data set for the neural network. The trained network is then used to predict
and control the parts temperature. Finally, tensile testing is conducted to investigate the influence
of the adjusted process on the mechanical properties of the parts.

1. Introduction

Additive manufacturing (AM) is an emerging field in manufacturing technologies that has
the common principle of building up solid parts directly from three dimensional computer aided
design (3D CAD) data by adding material layer by layer. Powder bed fusion-based processes use
thermal energy to selectively fuse regions of a powder bed [1]. Powder bed fusion is a process
where powder is applied in layers and then selectively melted using a laser beam to generate three-
dimensional parts directly from CAD data. This study focuses on powder bed fusion of metal
powder using a laser beam (PBF-LB/M). PBF-LB/M typically involves layer thicknesses between
20 and 100 pm, using powders with particle sizes ranging from 10 to 45 um [2].

As AM is a rather new manufacturing process, important information and experience are
often lacking to assess quality and part reliability. Non-destructive testing in particular allows the
full benefits of AM to be utilized. Small series and single part production can be qualified and
certified for destructive testing without additional identical parts [3]. The layer-wise build-up
allows a three-dimensional evaluation of the part during the manufacturing process by evaluating
and interpreting the process phenomena [4,5]. Monitoring systems record and interpret the physical
quantities generated by process phenomena. Grasso et al. provides an overview of work already
carried out [6]. Examples of process phenomena are the luminous intensity of the melt pool [7] or
the vibrations caused through contact between the recoater and parts during coating [8]. The
luminous intensity of the molten bath changes in areas of poor heat conduction, such as overhangs
or areas disturbed by pores [9,10]. Another process phenomenon is the time-dependent part
temperature. This can be determined using a thermographic camera by correlating the infrared
emissions with the emission coefficient. Various boundary conditions have an influence on the part
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temperature during the building process. Two main boundary conditions are the layer time and the
building height [11].

In this work, the influence of thermal history on mechanical properties is investigated.
Using a thermographic camera, the influence of the part height and the layer time on the
temperature development is examined, as well as the influence of these factors on the mechanical
properties of the components. The focus is on predicting the thermal part history using a neural
network and adjusting the process parameters to reduce the influence of the thermal history on the
mechanical properties. The thermal history is determined by means of a thermographic camera and
the average layer temperature in every layer.

2. Research methodology

A commercially available PBF-LB/M system M290 from the EOS GmbH (Krailling,
Germany) is used to conduct the experiments. This system uses a 400-W single-mode fibre laser
with a wavelength of 1064 nm focused to a spot size of 83 um. The building volume has a size of
250 mm x 250 mm x 325 mm. Gas atomized stainless steel 316L powder is used for all experiments
in this study. A scanning electron microscope (SEM) analysis of the powder is used to determine
the particle distribution. Particles ranging from 11 to 54 um and a dso of 25 pm was determined.
The parameter set “316L Surface M291 1.10” with a layer thickness of 20 um qualified by the
system manufacturer is used as a reference. The PBF-LB/M system is extended by a thermographic
camera to measure the parts’ temperatures and the thermal history of the parts. A model of the type
VarioCAM HD head 800 (InfraTec GmbH, Dresden, Germany) is used. Due to the constructional
limitations of the PBF-LB/M system, the optical axis of the thermographic system is not
perpendicular to the building platform, but is at an angle of approximately 19°. The distance of the
camera to the construction level is approximately 530 mm. Using a 60-mm lens, an area of
approximately 125 x 125 mm? around the centre of the building platform can be focused with a
resolution of 0.3 mm/px. The recording rate of the camera is fixed at 30 Hz with calibration to a
temperature range of 0—500 °C.

As the surface of the PBF-LB/M parts does not represent an ideal black body during the
building process, the emissivity of the part surface and the powder has to be determined. According
to VDI/VDE 3511 4.5 [12], the emissivity can be determined at the object to be measured under
real conditions using various methods. One option is a comparison with a tactile temperature
measurement on the measured object; another is to partially apply a black matt lacquer to the
surface to achieve a high emissivity and to compare the temperature with the uncoated surface. In
the following, both methods are carried out and the results compared with each other. The test
procedure is shown in Figure 1 (top). First, a test specimen with an edge length of 30 mm and a
height of 15 mm is fabricated with the basic parameter set. Then, the building platform is removed
from the machine and half of the sample surface is painted with a black lacquer. After reinstalling
the construction platform in the system, a type K thermocouple is applied to the untreated surface
of the test specimen. In the software of the thermographic camera, a correction field with a size of
10 x 20 mm? and a definable emission coefficient is now placed on the uncoated surface of the
sample. In the next step, the building platform heating is switched on and the temperatures of the
thermocouple (7) and the average temperature of the coated surface (75) and the correction surface
(Tev) are compared. The results are shown in Figure 1 (bottom).
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Figure 1: Schematic illustration of the emissivity determination (top) and results of the experimental
determination of the emission coefficient of the powder (bottom)

Using the thermographic camera, the influence of the parameters layer time, exposure
parameters and part-dependent geometric parameters on temperature development is examined, as
well as whether these parameters have a direct effect on the mechanical characteristics of the parts.
Three steps are carried out for this purpose. First, the influence of different parameters on the
temperature development is investigated. The layer-wise averaged temperature per part during the
measurement of the surface immediately before the exposure is determined as the characteristic
value for the thermal history. Subsequently, different building jobs are built and the thermal
development of each part is measured. The temperature prediction is then realized by a neural
network that has been trained with the generated data. In the last step, the temperature is
homogenized by adjusting the process parameters. Using the neural network, the process
parameters are then adjusted layer by layer so that a critical temperature is not exceeded. The
influence of the thermal history on the mechanical properties is determined by tensile testing. For
this purpose, cylindrical specimens for tensile tests with a diameter of 10 mm and a height of 83
mm are manufactured.

The layer time, that is, the time between two successive exposure steps, is varied in three
steps. The minimum layer time (4 _min) for the combination of machine and basic parameter set used
is 16.68 s for four tensile specimens on the building platform. The second layer time (# 20)
simulates a surface utilization of about 20% of the building platform area and amounts to 25 s. The
third layer time (# «) represents the quasi-static case, in which after each exposure process, the
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system waits until no further temperature change is detected. To avoid a mutual influence of the
samples, they are placed at a distance of 50 mm from each other on the building platform. For the
layer times ¢ 20 and #s «, six samples are prepared in one building job; for the layer time £ min, two
building jobs with four samples each are built. During the building process, an exposure step is
recorded with the thermographic camera every 25 layers. For each sample, the part temperature
averaged over the complete cross-section of the sample is recorded at a rate of 30 Hz. The temporal
temperature curve of such a measurement is shown in Figure 2. The measurement can be divided
into four areas. In the first section, the part is coated with new powder. An apparent drop in
temperature can be observed here, which is caused by the recoater covering the sample. The second
section follows, in which the part surface is covered with a layer of powder. The characteristic
feature is an apparent increase in temperature compared with the cooling phase. The actual
exposure of the part takes place in the third section. A temperature measurement in this range is
not possible with the test set-up because the recording rate is too low, the temperature exceeds the
calibrated range of 0-500 °C and the emissivity of the molten bath is unknown. The fourth area
represents the cooling phase in which the remaining parts are exposed, the building platform is
moved to the next part height and the coater returns to the exit position. To determine the part
temperature over the entire construction process, the average temperature at the time shortly before
exposure is selected for each measurement (#mess). Since the part cross-section is covered with
powder at this time, the emission coefficient (&p) of the powder of 0.45 is used.
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Figure 2: Temperature curve of the part surface during one layer cycle

In addition to the layer time, the area energy input by the laser represents a geometry-
independent factor that influences the part temperature and the thermal history. To investigate this
influence, cylinders with a diameter of 10 mm and a height of 40 mm are constructed with a
constant layer time of #;_min = 16.68 s. The thermal history of the part is also influenced by the part
temperature. Up to a part height of 30 mm, the basic parameter set is used. The surface energy Er
can be adjusted via the parameters laser power, scanning speed or hatch distance. However, only
an adjustment of the laser power is carried out within the scope of this work. From a defined part
height, a sample with a power of 180, 160, 140, and 120 W is built. To create a wider data basis,
which also takes into account different geometries, further tests are carried out. These include
different cross-section shapes (triangles, cuboids, cylinders) with different cross-section sizes (20—
400 mm?), different layer times (16.68—155 s) and further variations of the laser power (120—195
W). The training data have a total scope of 1607 data sets. The temperature measurement is
analogous to the previous test. The test is repeated four times and the mean value of the temperature
curves is calculated. To investigate the influence of the reduced laser power on the part properties,
the upper part of the samples is cut off and a density measurement is carried out. The density
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measurement is carried out analogously to the procedure of Spierings et al. according to the
Archimedean measuring principle [13]. For this purpose, the weight of the samples (ms) is first
determined with a precision balance of the type ABT 220-4M (KERN & SOHN GmbH, Frommern,
Germany) with a measuring accuracy of + 0.1 mg. Subsequently, the samples are immersed with a
special sample carrier in a 5% soap solution and the weight is determined again (). Before this,
the temperature-dependent density of the liquid is determined using a potassium-plated test body.
To determine the influence of the part temperature on the mechanical properties of the parts, tensile
specimens of type A according to DIN 50125 [14] with a specimen diameter of 5 mm and a
measuring length of 25 mm are produced from the manufactured cylinders. No heat treatment and
stress relieving is done. The tensile test is carried out with a tensile compression test system of type
7100 (ZwickRoell GmbH & Co. KG, Germany, Ulm) with a maximum test load of 100 kN. The
specimen elongation is measured optically with a video extensiometer that achieves class 1
accuracy according to DIN EN ISO 9513 [15]. The tensile test is carried out path-controlled at a
speed of 0.1 mm/s.

3. Development of a module for predicting the thermal history

To be able to make the best possible prediction of the part temperature history, all
parameters that influence temperature development must be known and made available to the
neural network as input variables. There are boundary conditions that are dependent on the part
geometry, boundary conditions that are dependent on the material and on the used process
parameter set, as well as global- and layer-dependent boundary conditions. Based on the state-of-
the-art, the boundary conditions listed in Table 1, which serve as input parameters for the neural
network, are identified. Boundary conditions that do not change throughout the entire process, for
example, the physical material properties or machine-specific properties such as the size of the
installation space, are not included because they have the same influence on the result in each layer.
The energy input into the part is also reduced to the laser power, since the other energy parameters
scanning speed, hatch distance and layer thickness are fixed. The parameters f, b, As, Vs, Ve, Aps
and Apg are calculated by the known variables. The laser power is variable. The two factors for
layer time change ks n and cross-section change kas n are calculated using equations 1 and 2. These
serve to consider strong changes in the cross-sectional area and thus also in the stratum time.

ts n'5

kis n = ST (Eq. 1)
_ As_n'5
kAs_n - Z]]::g:éAsfk (Eq- 2)

The experimental data from the previous experiments are used as the basis for setting up
the neural network. The goal of the network is to predict the part temperature layer by layer before
the melting process. The data are thus also provided layer by layer. For each layer, there are ten
input parameters and one output parameter in the form of the temperature averaged over the cross-
section. The experimental test series with different layer times, geometries and laser powers serve
as a basis.
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Table 1: Input parameters for the neural network

Type Name Sy. Unit
Layer based Layer time ts s
Deviation in layer time ks -
Part height b mm
Energy input Laser power PL \\4
Geomtric Cross-sectional area As mm?
Deviation in cross-sectional area kas -
Layer volume Vs mm?
Accumulated volume Ve mm?
Area enclosed by powder Aps mm?
Accumulated area enclosed by powder Ape  mm?

The Deep Learning Toolbox from Matlab (version 2017b) is used to create the neural
network. The command fitnet creates a two-layer feedforward network with sigmoid neurons in
the hidden layer and linear neurons in the output layer. The number of neurons in the hidden layer
has a large influence on the quality of the prediction. If the number is too low or too high, the
network may be under- or over-determined. In case of under-determination, the network cannot
map all phenomena that are present in the input data. In the case of over-determination, too little
information is available to train all neurons, the training time is increased and the memory
requirement of the network increases. According to Heaton, the number of neurons should be
between the number of input parameters and the number of output parameters [16]. To find a
suitable number of hidden neurons, the neural network is trained in a series of experiments with
varying numbers of 2—10 neurons. Of the data sets, 70% are used for training, 15% for validation
and 15% for testing the quality of the network. Since the selection of data sets is random, training
is performed 15 times with each number of neurons to determine the dispersion of results. The
training algorithm used is the Levenberg-Marquardt method [17]. To assess the quality of the
network, the mean square deviation and the coefficient of determination are used. The result of the
test series is shown in Figure 3. The mean square deviation decreases and thus the coefficient of
determination also increases with an increasing number of hidden neurons. From a number of seven
neurons upwards, no significant improvement can be observed in the present training data set. For
further experiments, a network with seven neurons in the hidden layer is used.
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Figure 3: Influence of the number of neurons on the quality of the prediction
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Based on the layer-wise statistics and the process boundary conditions, an input matrix is
generated in the first step, in which the parameters shown in Table 1 are stored for each layer. The
layer time is calculated according to equation 2. If a value for the minimum layer time is stored
and the calculated layer time is less than the minimum layer time, this value is used instead. With
the help of the input matrix and the already trained neural network, a prediction of the averaged
temperature over the entire part surface can now be calculated. The curves of the measurement
results and the prediction of the neural network have a high agreement, which shows that in this
case, the network can be used to predict the temperature. The prediction module is also tested on a
demonstrator construction job. For this purpose, seven randomly generated parts with heights of
37-73 mm and varying cross-sections are built in one job (Figure 4). Three of the seven parts also
have an internal cavity.
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Figure 4: Complex Geometries (left) and relating layer times of the building process (right)

At a part height of 14 mm, the temperature in the part rises only slightly due to the long
layer times. The increase in the cross-sectional area in combination with the reduction in the layer
time (Figure 4) leads to a temperature rise to 120 °C at a height of 23.5 mm (Figure 5). The
reduction of the cross-sectional area then causes a drop in temperature at a constant layer time. The
sharp drop in the layer time at 34-mm height causes a sudden short-term rise in temperature. The
smallest cross-sectional area is at a part height of 51 mm. After this height, the largest temperature
increase to 167 °C can be observed. In addition to the short layer time, this can be explained by the
reduced thermal conductivity of the small cross-section. With a further reduction of the cross-
sectional area, the temperature drops again and then rises again to 166 °C at the very short layer
time of 16 s.
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Figure 5: Comparison of measured and predicted temperature (right) for a complex geometry (left)
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4. Controlling the thermal history

There are two options to control the part temperature. On the one hand, the temperature can
be adjusted by adjusting the layer time or the energy input into the part. As the temperature control
by adjusting the layer time leads to additional waiting time, this option is not reasonable for
industrial use. To control the thermal history via the energy input, the neural network is used. The
neural network is designed only to predict a part temperature together with the given laser powers
and the other boundary conditions. For the inverted case, a new network would have to be trained
to predict the required laser power at given temperatures. The experiments in section 5.4 have
shown, however, that the laser power cannot be adjusted arbitrarily, as this would lead to the
formation of porosity when the laser power is too low. Therefore, an approach is used that
determines the range in which the power can be adjusted and in which the existing neural network
can be used. Shortly after the reduction of the laser power, a drop of the part temperature depending
on the laser power can be detected. At the same time, however, an increase in temperature, even
with the reduced laser power, can be seen in the further course. No significant reduction in part
density can be seen with the 180- and 160-W power ratings. At a power of 140 W, a small drop in
density can be measured and at a power of 120 W, a significant drop of 0.5% can be observed
(Table 2). Therefore, a laser power of 140 W should not be undercut to prevent the part of porosity.
The layer time is constantly set to 25s, as measurement data are already available for this.

Table 2: Results of density measurement for reduced laser power

Lase[rvf]’]o wer 1[)ge/lcllsrllg S[tg/cﬁgr relative Density*
Basic parameter set 7.9911 0.0009 100.00 %
180 W 7.9921 0.0013 100.01 %
160 W 7.9908 0.0016 100.00 %
140 W 7.9876 0.0023 99.96 %
120 W 7.9508 0.0030 99.50 %

* Reference: 7,9911 g/cm? (basic parameter set)

The next step is to determine which maximum or minimum temperatures should not be
exceeded or fallen below. These values must be determined individually for each material building
and testing tensile specimen with specific layer times and therefore specific temperatures.
Furthermore, it must be determined in which case the laser power may be adjusted upwards or
downwards to influence the part temperature. Via the neural network, the layers are now identified
at which the intended temperature window is left. For each of these layers, an input matrix for the
neural network is generated, in which the laser power is varied between the minimum and
maximum permissible values. The output vector is then compared with the target temperature and
the laser power with the smallest deviation is stored for the respective layer. The output matrix in
which the laser power for all voxels is adjusted layer by layer is then generated. To validate the
module, cylindrical specimens for tensile tests with a diameter of 10 mm and a height of 75 mm
are fabricated in which the part temperature is to be specifically controlled. The mechanical
properties of the material used in this work can be reduced at elevated part temperatures. Therefore,
a process control is to be determined at which a part temperature of 110°C is not exceeded.
Measurement and prediction show that from a part height of 27 mm, the target temperature of
110°C is exceeded. With the help of the process module, a construction job is now created in which
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the laser power is adjusted from this height to prevent the temperature rise. This initially drops
sharply until it remains constant at the minimum permissible laser power of 140 W, with a part
height of 68.1 mm. The averaged temperature curve of all samples is shown in Figure 6 (right).
The curve is identical to the reference test up to a part height of 26 mm. The target temperature of
110°C is reached in the range between 27 and 47 mm. From a part height of 47 mm, a slight increase
in temperature can be seen, which is stronger than that from a part height of 68 mm. The final
temperature is 114.79°C.

— Measured temperature — Measured temperature
— Predicted temperature — - Laser power
150 150 250
140 140
/’ L
© 130 = 9 130 F==F 200 2
c
-ﬁ 120 / '@ 120 \'~-__. L 150 ';
2 110 & 110 = §
°éi1oo ;&100 - 100
[}
2 9 / 2 90 / 50 S
80 1=/ 80 1=
70 70 0
0 20 40 60 80 0 20 40 60 80
Part height in mm Part height in mm

Figure 6: Temperature curve for an unadjusted process (left) an adjusted laser power (right)

5. Mechanical Characterization

To evaluate the influence of the part history, the mechanical characteristics are taken into
account. An average increase in tensile strength of 19.84 MPa and an average increase in yield
strength of 24.16 MPa can be observed in the specimens with adapted temperature control. The
elongation at break, on the other hand, decreases on average by 5.15%. On the right side of Figure 7
the distribution of the laser power within the tensile specimen is shown. Failure occurred in the
marked fracture zone in all specimens of the test. This is in the lower area of the test zone, where
the power is higher than in the upper area.

620 r 570 60 r
& 610 © 560 *
E =
< 600 = 550 ©
= £ o
S 590 S 540 o °
GCJ = @®© c
£ 580 ® 530 5 R
o Iz ® < N
= 570 T 520 ) 2 MW
5 g 5 3
2 560 > 510 ] i

550 500

m Reference B Temperature control

Figure 7: Results of the tensile tests
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6. Discussion

In fact, there are two options to adjust the thermal history. Since the process cannot be
accelerated due to the given part geometry in order to reduce the layer times, only a reduction of
the temperature can be achieved by increasing the minimum layer time over the layer time.
However, this affects all parts on the building platform and can therefore lead to unwanted
temperature reductions in other parts. In the sense of a part-specific process control, this work
therefore carries out a temperature control by adjusting the laser power. Since the adaptation,
however, results in a change of the area energy, the mechanical properties of the part may change.
The prediction of the thermal history via the neural network with a coefficient of determination of
R?=0.89 shows a high qualitative conformity with the real temperature curve. In some areas,
however, the actual temperature of the part is underestimated. This can be caused either by a too
small amount of training data or by the factors for cross-sectional and layer time changes. The
neural network mainly uses the information of the underlying layer for temperature prediction. The
change factors also provide information about the course of the last five layers. However, the
temperature curve shown in Figure 5 indicates that the knowledge of only five layers is not
sufficient to describe the strong temperature rise at the part height of 60 mm.

By adjusting the laser power, the mechanical properties of the material change towards a
more brittle material behavior. The material behaviour in the test area is therefore graded, with
failure always occurring at the weakest point. A similar behaviour can also be observed with a
combination of different parameter sets within a tensile test [18].

7. Summary and outlook

In this work, a process analysis module is developed for predicting and controlling averaged
part layer temperatures. The basis is a neural network, which is trained with a comparatively small
data set. The reliability of the temperature prediction for simple part geometries is very good and
represents the actual temperature curve. The control of the part temperature can be done via the
input energy in the form of a reduction or increase of the laser power. Within the given boundary
conditions, the part temperature can be controlled specifically with the aid of the neural network.
The adjustment of the laser power, however, also has an influence on the mechanical properties of
the material. For the selected material, however, this is to be evaluated as positive. In practice, it
must be determined for each material at which temperatures critical effects such as precipitation or
undesired phase formation occur. If the material reacts negatively to a change in the laser power,
the layer time must be adjusted instead. This can be done either by adding specific waiting times
or by optimizing the arrangement of the parts on the construction platform. The neural network can
be used to support such an optimization. Metallographic analysis can further contribute to the
understanding of the changed mechanical properties.
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