
 

 

 

 

 

 

 

 

 

Gabriela Idania Vargas Zúñiga 

2013 

 

 



 
The Dissertation Committee for Gabriela Idania Vargas Zúñiga Certifies that this is 

the approved version of the following dissertation: 

 

 

Synthesis, Anion Binding, and Photophysical Properties in Polypyrrolic 
Systems 

 

 

 

 

 
Committee: 
 

Jonathan L. Sessler, Supervisor 

Eric V. Anslyn 

Guangbin Dong 

Jennifer Brodbelt 

Sean M. Kerwin 



Synthesis, Anion Binding, and Potphysical Properties of Polypyrrolic 
Systems 

 

 

by 

Gabriela Idania Vargas Zúñiga, B.S.; M.S.; M.A 

 

 

 

Dissertation  

Presented to the Faculty of the Graduate School of  

The University of Texas at Austin 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

 

Doctor of Philosophy 

 

 

The University of Texas at Austin 
December 2013 



 

 

 

 

 

 

 

 

¨Nature is the source of true knowledge. She has her own logic, her own laws. She has no 

effect without cause, no invention without necessity¨.  

 Leonardo Da Vinci 

 

 



 v 

Acknowledgements 

 
I would like to thank my advisor Prof. Jonathan L. Sessler, for his constant belief 

in my abilities and support, and for encourages me to learn more and always do my best 

no matter the adversities or limitations.  

Thank you very much to every single Sessler group member, for the good time I 

have had in the lab. 

I really appreciate the hard work and great help of Dr. Vincent Lynch, who has 

recorded all the X-ray crystallographic analyses presented in this dissertation. 

Dr. Sung Kuk Kim, you have been a great labmate, and have taught me 

everything I know. I appreciate a lot all the good words that you have always had for me. 

All the help that you have given to me related to chemistry has been of a great value for 

me. 

I would also like to thank to Dr. Jonathan Arambula and Derric Brothwick for 

their help with the HLPC samples. 

Christian, Christopher, Elizabeth, and Vladimir thank you very much for your 

friendship.  

Special thanks go for RT, Yerim, Murat, Dong Sub, and Min Hee. All of you have 

been very nice and respectful. It has been a lot of fun to share the office with you.  

Christina, Eric, and Aaron, you are great friends and labmates. I always find 

myself laughing all the time when I am with your company: you a sourced joy. 

I would also like to express my gratitude to my family for their constant support 

and love 

 



 vi 

Synthesis, Anion Binding, and Photophysical Properties of Polypyrrolic 
Systems 

 

Gabriela Idania Vargas Zúñiga, Ph. D. 

The University of Texas at Austin, 2013 
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Anion binding has emerged as an important field of study due to the role that 

anionic species play in nature. As a consequence, considerable effort has been focused on 

the generation of anion receptors. These receptors have been designed to recognize 

anions through interactions, such as hydrogen bonding, donor-acceptor, and hydrophofic 

effects, in order to achieve higher sensitivity and selectivity. Another approach involves 

ion pair recognition, wherein the anions and cations are bound to the same system. 

Specifically, receptors bearing both hydrogen bonding donor and cation coordination 

sites have been of great interest as systems that lead to anion recognition and enhanced 

anion selectivities. Chapter 1 of this dissertation describes efforts to develop systems on 

the basis of modified Schiff-base calixpyrroles. This modification was achieved by 

incorporating a “strap” across the macrocycle to produce the so-called strapped Schiff-

base calixpyrroles. The strap bearing amides are known to act as hydrogen bonding 

donors that can isolate the binding site from the medium. On the other hand, Schiff-base 

calixpyrroles have been widely studied as multidentate ligands for metal cation 

coordination. Therefore, the synthetic combination of these two moieties might provide a 

system wherein an ion pair complex is formed. Strapped Schiff-base calixpyrrole 

palladium complex were found to bind selectively cyanide anions.  



 vii 

The effects of direct substitution on one meso position on the optical and 

photophysical properties of porphycenes was recently found to be dependent of the 

electronic properties of the substituten (e.g., electron donor or electron withdrawing 

group). However, the effects on the electronic and optical properties properties as a result 

of substitution through a conjugated spacer are as yet unknown. This led to the synthesis 

of four meso substituted etioporphycenes, which are described in Chapter 2. Here, the 

substitution through an ethenyl group was stablished by analytical and structural means. 

This chapter provides of a description of the spectroscopic, structural and 

voltamperometric features of these compounds. Experimental procedures and 

characterization data are reported in Chapter 3.
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Chapter 1: Synthesis of Novel Strapped Schiff-Base Calixpyrrole 

Macrocycles 

 

1.1 INTODUCTION 

 

Over the past decades, considerable effort has been devoted in the preparation of 

receptors capable of selectively binding and recognizing anionic substrates. Particular 

interest has been focused on areas such as nuclear waste remediation, environmental 

chemistry, and biology.1 In recent years, Lee, Sessler, and coworkers have reported the 

use of “strapped” calix[4]pyrroles systems, wherein the binding domain derived from the 

pyrrole NH protons is effectively defined and isolated from the medium.1,2 Studies of 

these new systems revealed that strapping one face of the calix[4]pyrrole served to 

enhance anion affinities. Moreover, improved selectivities were observed compared with 

analogous compounds with lower levels of preorganization. However, the relatively small 

cavity of strapped calix[4]pyrrole macrocycles limits their capacity to bind larger anionic 

substrates. This provides a motivation to synthesize larger strapped macrocycles similar 

to calix[4]pyrrole.  

Core expanded porphyrins constitute a diverse class of ligands that have been 

used as platforms for the preparation of new metal complexes. They have been used to 

study reactivity patterns that can be compared with the natural porphyrins. An example is 

the calixpyrrole Schiff-base macrocycle 1.1 (cf. Figure 1.1), wherein the flexible 

dipyrromethane unit present in calix[4]pyrrole is linked by four Schiff-base units. This 

macrocycle has been used widely as a ligand for metal cation coordination.  

The goal of this study was to synthesize a strapped system that incorporates a 

larger cavity for anion binding, and enough structurally flexibility to undergo a change in 

conformation upon addition of substrates. With such considerations in mind, the system 
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chosen was calix[4]pyrrole Schiff-base. This Chapter includes a brief introduction to 

calix[4]pyrrole and strapped calix[4]pyrrole chemistry and their use as anion receptors 

and ion pair receptors. Also, the author provides a short summary of calixpyrrole Schiff-

base macrocycle chemistry. Finally, this chapter describes the preparation and 

spectroscopic characterization of new strapped Schiff-base calixpyrrole macrocycles 1.33 

and 1.43 (cf. Figure 1.1). Upon addition of certain metallic salts to 1.43, the 

corresponding homo binuclear complexes were obtained. Finally, studies of the anion 

binding properties of 1.43 and its metal complexes were performed. 
 

 

 

Figure 1.1: Schiff-base calixpyrrole 1.1, and strapped Schiff-base calixpyrroles 1.2 and 
1.3. 
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1.2 STRAPPED CALIX[4]PYRRLOE MACROCYCLES 

 

Calix[4]pyrrole 1.4 is a macrocycle composed for four pyrrole units linked by 

four di-substituted meso-carbons. This porphyrinogen was originally reported by Baeyer2 

in 1886 and later studied as a ligand for metal coordination (cf. Figure 1.2).3 In 1996 

Sessler and coworkers reported the use of this macrocycle as an anion binding agent in 

organic media. They found it bound Lewis basic anions and underwent a change in 

conformation (from the so-called 1,3-alternate to the “cone” conformation) in analogy to 

what is seen for calix[4]arenes.4 Since the discovery of its anion binding properties, 

efforts have been devoted to the modification of calix[4]pyrrole to improve its ability to 

recognize anions. Most of these modifications have been focused on functionalization of 

either the β-pyrrolic and meso-positions. However, such modifications are subject to 

important limitations and in many instances do not improve significantly the anion 

affinities.  

An alternative approach used to enhance the affinity and selectivity of receptors is 

to isolate the binding domain from the medium. In the particular case of calix[4]pyrrole 

this was achieved by introducing a strap across one face. This ‘locks’ the conformation of 

the macrocycle in the cone conformation. By manipulating the strap length, the size of 

the cavity can be manipulated. This led in 2002 to the preparation of a series of 

compounds called “strapped calixpyrroles”, which displayed increased anion affinities 

(cf. Figure 1.2). For instance, the strapped calix[4]pyrrole 1.5 displayed a chloride 

affinity of one order of magnitude larger than 1.4 (Ka = 1.4 × 106 M-1 vs. 1.4 × 105 M-1, 

respectively in acetonitrile).5, 6 Single crystal X-ray analyses revealed that a chloride 

anion was located within the cavity and was bound to the cavity through N-HCl 

hydrogen bonds. The macrocycle itself existed in a cone-like conformation.  
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Figure 1.2: Calix[4]pyrrole 1.4 and cis ester calix[4]pyrrole 1.5.  

  

Further investigations involving changes in the length of the strap revealed that by 

modifying the length of the strap, even greater affinity enhancements for one specific 

anion could be achieved. For instance, as detailed in Table 1.1, for receptors 1.6 and 1.7, 

the highest affinity for bromide anion was observed when the receptor contained the 

largest strap, in this case 1.7 (n = 3). Conversely, the largest affinity for chloride was seen 

with receptor 1.6 (n = 1), (cf. Figure 1.3). On this basis, it was concluded that not only is 

the size of the cavity important, but also the ability of the strap to stabilize the anionic 

guests (Cl-, Br-) via hydrogen bond interactions is crucial for achieving selective anion 

binding.7 
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Figure 1.3: Cis ether strapped calix[4]pyrroles 1.6 and 1.7.7  

 

Table 1.1: Association constants Ka (M-1) for the binding of halide anions to the 
receptors 1.4-1.7 as determined by ITC (isothermal titration calorimetry) 
measurements carried out in acetonitrile at 303 K using the corresponding 
tetrabutylammonium (TBA) salts. 6, 7   

 

 1.4 1.5 1.6 1.7 

Cl- 1.4 × 105 1.4 × 106 3.6 × 106 1.4 × 106 

Br- 3.4 × 103 7.5 × 103 3.0 × 104 1.2 × 105 
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The incorporation of additional hydrogen binding donors within the strap in an 

effort to increase the anion affinity even further led to the synthesis of receptors 1.8-1.10 

shown in Figure 1.4. In this case the presence of amide groups in the strap was thought to 

enhance the anion binding. However, binding studies revealed that the affinity of the 

anions was independent of the length of the strap. Such unexpected behavior was 

explained as the anion binding occurred outside the central pocket defined by the strap. 
1H NMR spectroscopic titrations of receptor 1.8 in the presence of TBACl led to the 

suggestion that at high concentration of the receptor, the addition of small amount of 

anion produced a 2 : 1 (receptor : anion) complex. In contrast, the formation of a 1 : 1 

complex is observed when the concentration of the chloride anion increases.7, 8  
 

 

Figure 1.4: Cis amide strapped calix[4]pyrroles 1.8-1.10.8  
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The introduction of strapped calixpyrroles containing fluorophores, such as 

coumarin 1.119 or acridine 1.12,10 in the strap permitted selective recognition and sensing 

of halide anions (cf. Figure 1.5). In the case of 1.11, the fluorescence emission properties 

of the macrocycle were dependent of the addition on appropiate cations and anions. For 

instance, the fluorescence intensity was enhanced by the addition of sodium cations. This 

was attributed to the binding of these species to the carbonyl moiety in the coumarin, 

which produced a photoinduced electron transfer (PET) process. In contrast, the addition 

of anions resulted in a reduction of the fluorescence intensity due to the binding of the 

anionic species within the calix[4]pyrrole cavity. Most of these studies focused on the 

binding of halide anions.9  
 

 
 

Figure 1.5: Coumarin-strapped calix[4]pyrrole 1.11 and acridine-strapped 
calix[4]pyrrole 1.12. 
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In 2007, Lee and coworkers reported the preparation of the strapped chiral binol-

derived calix[4]pyrroles 1.13 and 1.14 (cf. Figure 1.6). These receptors contained in an 

(R) or (S)-binol (1,1’-bi(2-naphthol)) diether strap attached to the calix[4]pyrrole core.11 

As presented in Figure 1.6, receptor 1.14 was found to bind both chiral (R) and (S)-2-

phenylbutyrate ((R) and (S)-PB) in acetonitrile with high affinities. However, the pair (S)-

guest-(S)-host had association constants ten times larger than the corresponding pair (R)-

guest-(S)-host. This behavior was attributed to favorable interactions between the phenyl 

group of the guest and one of the naphthyl groups in the host. In constrast, the smaller 

association constant were observed for (R)-PB was rationalized in terms of unfavorable 

steric interactions between the chiral receptor and the phenyl group of the guest.11 

 

Figure 1.6: Proposed binding modes between 1.14 and (R)-2-phenylbutyrate (left), and 
(S)-2-phenylbutyrate (right).11  

 

In 2009, Gale and coworkers reported receptor 1.15, Figure 1.7. This 1,2,3-
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anions through membranes made of POPC (1-palmitoyl-2-oleoylphosphatidyl choline), 

or POPC containing 30 mol% cholesterol. In this study, the strapped calix[4]pyrrole 1.15 

functioned as a chloride anion transporter. Two mechanisms were proposed to account 

for the release of chloride anion. These mechanisms involved ion-pair co-transport and 

chloride-nitrite antiport, respectively.12 In order to improve the chloride anion transport 

efficiency, another set of strapped calix[4]pyrroles, 1.16-1.18, bridged by two triazoles 

through alkyl chains, were reported by the same research group. Increasing the length of 

alkyl chain between the two triazoles (i.e. 1.18, n = 3, Figure 1.7), produced a transporter 

in which a chloride/nitrate antiport process proved predominant.13 Recently, Samanta et 

al. reported a new catechol derived diether strap 1.19. This receptor contains a binding 

domain more constrained than the macrocycles described above. The association constant 

calculated by ITC revealed that 1.19 displays relative higer affinity towards chloride and 

fluoride than bromide, or dihydrogen phosphate.14 



 10 

 

 

 

 

Figure 1.7: Triazole-strapped calix[4]pyrrole 1.15 and bis-triazole strapped 
calix[4]pyrrole 1.16-1.18, and catechol-strapped calix[4]pyrrole 1.19   
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1.3 CALIX[4]PYRROLE-BASED ION PAIR RECEPTORS 
 

Since the first strapped calix[4]pyrrole report was published in 2002, a number of 

strapped calix[4]pyrroles have been synthesized. As detailed in the previous section, the 

introduction of different groups within and modifying the length of the straps offers the 

possibility of tuning the anion recognition properties of these systems.5,7 Another 

approach involves ion pair recognition. In this case, the receptor is able to bind 

simultaneously cations and anions. This approach is particularly attractive because these 

receptors might allow enhanced ion selectivities, greater levels of control over ion 

recognition, extraction, and transportation through membranes than the corresponding 

strap-free calix[4]pyrroles. These potential benefits lead to the preparation of 

Ni(II)porphyrin-capped calix[4]pyrroles 1.20-1.22 by Lee and coworkers (cf. Figure 

1.8).15 These receptor contained a metal center (porphyrin-nickel complex) and a 

hydrogen binding donor (calix[4]pyrrole). 1H NMR spectroscopic binding studies carried 

out in deuterated dichloromethane revealed that this system displays a selective affinity 

for fluoride anions over other anions such as Cl-, Br-, and I-.15 This selectivity was 

attributed to a combination of the coordination of the anion to the metal center and 

stabilization via hydrogen bonding interaction.  
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Figure 1.8: Metalloporphyrin-capped calix[4]pyrroles 1.20-1.22. 
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N
H

H
N

N
H

H
N

O O

N
NN

N

Mes

Mes

Ni

1.20 (n = 1)
1.21 (n = 2)
1.22 (n = 3)



 13 

that receptor 1.24 as an extractant of radioactive cesium cations. In 2012, another ion pair 

receptor, 1.25, similar to 1.23 was synthesized, (cf. Figure 1.9).18 This strapped 

calix[4]pyrrole was found to function as an extractant for cesium cations in a novel-

release cycle. Specifically, upon contact of an aqueous KClO4 solution with the cesium 

salt complex of 1.25 a cation metathesis takes place. The incoming cation (K+) occupies a 

different binding site, but nevertheless serves to eject the initial recovery of Cs+ cations. 

Additional exposure of the potassium salt complex of 1.25 to a nitrobenzene-chloroform 

mixture and water resulted in the release of potassium salt from the cavity to obtain the 

ion-free receptor.18 This allowed regeneration of the original receptor system. 

 

 

Figure 1.9: Crown-calix[4]arene-capped calix[4]pyrrole 1.23, and 1.25 ion pair 
receptors (left), and calix[4]arene-capped calix[4]pyrrole 1.24 ion pair 
receptor (right). 
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Recently, Sessler and coworkers reported the synthesis of receptor 1.26 capable of 

forming a strong anion complex with fluoride and chloride anions, and also ion pair 

complexes with alkali metal ions, such as, Li+, K+, and Cs+.19 1H NMR spectroscopic 

studies in deuterated acetonitrile revealed that receptor 1.26 binds fluoride and chloride 

with high affinities. In contrast, studies of the ion pair complexes with NaClO4 or LiClO4 

salts revealed different binding tendencies. For instance, as shown in Scheme 1.1, when 

cesium perchlorate was added to 1.27 an ion pair complex was formed, in which the Cs+ 

cations were located in the “cup” of the calix[4]pyrrole moiety. Addition of NaClO4 or 

LiClO4 to 1.27 resulted in a complete decomplexation of fluoride anions from the phenyl 

moieties in the strap. Upon addition of K+ cations to receptor 1.27 produced an ion pair 

complex, in which K+ cations were situated in the oligoether moiety.19 These differences 

served to underscore the subtle nature of the binding events and how they could be tuned 

to favor the recognition of one particular ionic guest. 
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Scheme 1.1: Cation-induced changes that occur to receptor 1.27 upon addition of NaClO4 
or LiClO4 salts. 
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still limited by the size of its cavity. In an effort to create receptors capable of binding of 

larger anions, several expanded macrocycles containing dipyrromethane units have been 

synthesized. In 1996, Sessler and coworkers reported Schiff-base calixpyrrole 1.1 (cf. 

Figure 1 in Section 1.1).20 This macrocycle contains two flexible dipyrromethane units 

that are present in calix[4]pyrrole, which are linked by four imine units (Schiff-base). 

Due to these characteristics this new macrocycle was named Schiff-base calixpyrrole. 

Unlike calix[4]pyrrole that displays strong affinity for halide anions (e.g., fluoride and 

chloride),20 the free base of receptor 1.1  revealed moderate binding affinities for anions 

such as chloride and bromide (i.e., for chloride anions in acetonitrile, Ka = 1.6 × 104 M-1 

vs, Ka = 1.4 × 105 M-1 for calix[4]pyrrole). ITC studies revealed that in acetonitrile, the 

mono and diprotonated forms of 1.1 posses chloride anion affinities that are up to fifty 

times higher than that of calix[4]pyrrole (Ka = 9.8 × 105, K1 = 1.6 × 104 and K2 7.61 × 106 

M-1, for the mono, and diprotonated forms of 1.1, respectively).20 This increase in the 

affinity for chloride anions was attributed to the presence of the extra positive charges 

provided by protonation of the imine groups in the macrocycle. Unlike calix[4]pyrrole 

that diplays conformational behavior upon addition of anions, crystallographic analysis of 

Schiff-base calixpyrrole revealed that 1.1 undergoes a complete change in geometry 

when a chloride anion is bound in its cavity. 

The wide nitrogen-rich cavity of the Schiff-base calixpyrrole led to the use 

analogues of 1.1 (e.g., 1.28) as a ligand for metal complexation. This work was carried 

out independently by Sessler and Love research groups, with the vast majority of the 

contributions coming from the latter team.21 As shown in Scheme 1.2, upon addition of 

two equivalents of transition metal salts a binuclear metal complex, such as, 1.29 is 

formed. Cation complexation induces conformational change from a nonplanar chair 

conformation in the free base form of ligand 1.28 to a “Pacman-like” conformation in 

which the two aryl groups ends come together in a face-to-face fashion similar to Pacman 

porphyrins.22 Compared to the difficult multistep synthesis of Pacman porphyrins, Schiff-

base calixpyrroles offer an easier-to-access alternative in that synthesis is facile and easy 
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purification is required.22 In the case of the binuclear complexes containing Fe(II), Ru(II), 

or Co(II), the metal centers were bound to an atom of oxygen, or to a molecule of 

oxygen. In fact, the dicobalt complex 1.29c has been proposed as a catalyst for dioxygen 

reduction.21 The versatility of 1.28 and its derivatives as multidentate ligands for metal 

cations has been explored by Arnold, Love, and coworkers who reported the coordination 

of lanthanide and actinide cations, such as Ce(III) 1.30,23 Sm(III) 1.31, or Y(III) 1.32 (as 

an uranyl-lanthanide complex),24 and more recently, the coordination of two uranyl 

cations 1.33 (cf. Figure 1.10).25 

 
 
 

 
 
 

 

Scheme 1.2: Examples of binuclear transition metal complexes of 1.28 and their 
synthesis of its derivatives. Some ligands bridging the metal centers have 
been excluded for clarity. 
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Figure 1.10: Schiff-base calixpyrrole metal complexes, Ce(III) complexes 1.30 (top), 
uranyl-lanthanide complexes 1.31 and 1.32 (left), and binuclear uranyl 
complex 1.33 (right).  
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Inspired by the chemistry observed with 1.28, an effort was made to replace the 

aryl moiety attached to the imine groups in this original system by1,8-disubstituted 

anthracene. This led to the synthesis of the anthracenyl-based Schiff-base calixpyrrole 

macrocycle 1.34. In this complex, the zinc cations preorganize the two nitrogen donor 

compartments into a cofacial binuclear conformation as shown in Figure 1.11.26 X-ray 

diffraction analysis of 1.34 revealed that the Lewis acidic zinc cations accommodate a 

chloride or a hydroxide anion between the two metal centers. ITC studies in THF led to 

the conclusion that 1.34 displayed selective affinity for chloride anions in a 1:1 

stoichiometry over other halides. The association constant of the zinc complex 1.34 for 

chloride anions was Ka = 3.2 × 107 M-1 in THF.26 This provides support for the notion that 

preorganization of the binding sites, combined with the use of Lewis acidic cations, 

facilitates the binding of small anions (i.e., Cl-). 
 

 
 

 

Figure 1.11: Schematic representation showing how anion may be bound by the 
binuclear “Pacman” complex 1.34. 
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Finally, the metal cation coordination properties of Schiff-base calixpyrrole have 

used by Bejger et al. to stabilize a mixed-valence radical dimer of tetrathiafulvalene 

(TTF).27 This was achieved by introducing two tetrathiafulvanlene (TTF) annulated 

subunits in the macrocycle to form compound 1.35 as shown in Scheme 1.3.27 This TTF-

Schiff-base calixpyrrole was obtained by the condensation of TTF phenylenediamine 

with diformyldipyrromethane in the presence of p-toluenesulfonic acid. Reacting 1.35 

with palladium acetate in the presence of triethylamine afforded the binuclear palladium 

complex in moderate yields. The formation of the palladium binuclear complex 1.36, 

served to constrain the two TTF subunits to a Pacman-like conformation. Single crystal 

X-ray analysis revealed that the TTF groups in 1.36 are proximate, and 1H NMR studies 

provided evidence that this conformation was preserved in solution.27 Cyclic voltammetry 

(CV), UV-Vis, and EPR spectroscopic analyses were consistent with the suggestion that 

in the metal complex 1.36 a mixed valence radical state in the TTF subunits is stabilized 

upon oxidation. 

 
 

 

Scheme 1.3: Synthesis of bis-Pd(II) complex 1.36. 
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1.5 DESIGN AND SYNTHETIC STRATEGY 
 

The following section describes the preparation of the polypyrrolic macrocyclic 

strapped Schiff-base calixpyrroles 1.2, 1.3, and the binuclear metal complexes 1.44-1.47. 

The introduction of a strap to the Schiff-base calixpyrrole was envisioned to enhance the 

anion binding properties of the macrocycle. However, as will be discussed in the 

following sections, the stability of strapped calixpyrrole Schiff-base 1.37 is dependent of 

the acidity of the medium. It was found to be too unstable for effective use as an anion 

receptor. The hydrolysis of compound 1.37 was analyzed under three different pH values 

and the formation of the hydrolysis products were followed using UV-vis spectroscopy. 

Compound 1.43 was designed to have a more flexible strap than prior Schiff-base 

pyrrole macrocycles. This feature was expected to enhcance the stability of the 

macrocycle under acidic conditions. Once synthesized, the anion binding properties were 

tested. Similar to what was found to be for other Schiff-base calixpyrrole macrocycles, 

1.43 generally exists in a bowl-like conformation, wherein the aryl groups in the 

macrocycle are oriented to opposite sides with no association between the π-faces (cf. 

Scheme 1.4). Upon the addition of two equivalents of a transition metal salt, a folded 

form with rigid clip-like or “Pacman” conformation is obtained. In this conformation, it is 

expected that an ion pair complex would be formed, wherein anionic species would bind 

to the metal centers. Anion binding studies of the palladium(II) and copper(II) complexes 

were performed and are described in the following sections. 
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Scheme 1.4: Representation of the conformational change of 1.3 seen upon coordination 
of metal cations. 
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Scheme 1.5: Synthesis of compound 1.2. 
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from 338 nm to 300 nm upon addition of ThCl4 to the solution. However, the mass 

spectrometry analysis (ESI-MS) did not exhibit a peak corresponding to the thorium 

complex, which led to a reassessment of the initial conclusion and the suggestion that the 

change in color is due entirely to the protonation of the macrocycle when it is in contact 

with water. This protonation then leads to a subsequent hydrolysis of the macrocycle in 

the presence of the initial Lewis acid (Th(IV)).  

 
 

Figure 1.12: a) Color changes seen when the strapped Schiff-base calixpyrrole 1.2 in 
CH2Cl2 is exposed to aqueous solutions of various metallic salts. The pH is 
not buffered and is approximately 3.7 in the case of the Th(IV) salt. The 
concentration of 1.2 is 0.2 mM in CH2Cl2, and the metallic salt is 2 mM in 
water. I = 1.0 M NaCl. The pH was measured with a H+ sensor at 298 K. b) 
Spectral titrations performed between strapped Schiff-base calix[4]pyrrole 
macrocycle 1.2 (2.5×10-5 M) and TBACl, or ThCl4 in a mixture of CH3CN-
water 6:4, v/v at 298 K (TBA = tetrabutylammonium). 
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To confirm that 1.2 hydrolyzes in acidic conditions, the stability of 1.2 was tested 

at three different pH values (3, 6, and 9, using buffers of glycine-HCl, citric acid-sodium 

citrate, and TRIS-HCl, respectively). The pH values of the aqueous solutions were 

measured with a H+ sensor. The hydrolysis products were followed by UV-Vis 

spectroscopy. The test solutions were prepared by dissolving 1.37 in a mixture of 

acetonitrile-water, which was buffered to the desired pH. The absorption spectra were 

then collected every thirty minutes for five hours. The change in absorbance at two 

wavelengths (329 nm and 283 nm) was monitored. These two wavelengths were chosen 

they reflect the λmax values of 1.2, and the tetraaldehyde precursor 1.42, respectively, (cf. 

Figure 1.13). Analysis of the UV-Vis spectra revealed that at lower pH values (pH = 3 

and 6), hydrolysis of 1.2 to 1.42 is complete after four hours. At pH 9 the hydrolysis did 

not take place in the time frame of the study. This observation was supported by HPLC 

analysis performed under acidic conditions (using CH3CN-water (8.4:1.6) (1% v/v 

TFA)). The HPLC chromatogram revealed the presence of two products; one corresponds 

to compound 1.2 and a second peak corresponded to the protonated species [1.2H]+. 

Conversely, under conditions of basic hydrolysis (1% v/v TRIS buffer, pH 9) using the 

same solvent mixture, only one product was detected in the HPLC chromatogram. It 

corresponded to compound 1.2, (cf. Figure 1.14). 
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c) 

 

d) 

 

Figure 1.13: Absorption spectra of 1.2 recorded in a CH3CN-water mixture (8.4:1.6, v/v) 
at three different pH. Also shown are the spectral changes seen upon 
exposure to thorium nitrate, a) pH = 3, b) pH = 6, c) pH = 9, and d) Th(IV), 
respectively. [1.2] = 2.5 × 10-5 M, [Th(IV)] = 2.5 × 10-4 M. The buffers 
employed for these studies were glycine-HCl for pH = 3, citric acid-sodium 
citrate for pH = 6, and TRIS-HCl for pH = 9. All the experiments were 
conducted at 298 K. 
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a) 
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b)

 

Figure 1.14: HPLC chromatogram of 1.2 a) using CH3CN-water (8.4:1.6, v/v) as the 
mobile phase as determined under acidic conditions (1% v/v TFA) and b) at 
pH = 9 using (1% v/v TRIS buffer pH 9) in CH3CN-water (8.4:1.6, v/v).  

 

The hydrolysis products were also analyzed by liquid chromatography-mass 

spectrometry (LC-MS). Here, two experiments were performed: The first set of reaction 

was performed in acidic medium using TFA 1% v/v, and the second was carried out 

using TRIS buffer 1% v/v (pH = 9). The mass assignments observed (m/z = 905, 927, 
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978, and 1006), correspond to 1.2, [1.2 + Na], 1.43, and [1.43 + Na] ion peaks (cf. Figure 

1.15). A single crystal suitable for X-ray diffraction analysis was obtained. It was grown 

by slow evaporation of a solutions of 1.2 made up in CH2Cl2-methanol (1:10, v/v) over a 

course of two months. In this case, the structure obtained was that of the bis-

dipyrromethane tetraaldehyde, 1.42, (cf. Figure 1.16). The remaining solution was 

evaporated and redissolved in CDCl3 and analyzed by 1H NMR spectroscopy. The 

spectrum obtained did not show any signals that could be assigned either to the 

macrocycle or to the precursors. However, on the basis of the crystal structure obtained, it 

was assumed that hydrolysis takes place under the crystallization conditions. It is well-

known that the formation of the Schiff-base can be facilitated using acidic conditions; 

however, overly acidic conditions can lead to the protonation of the imine. A nucleophile 

such as water, is then able to attack the protonated imine inducing the hydrolysis.28 We 

speculate that the instability of macrocyle 1.2 under acidic conditions also reflects the 

strain produced by the rigid strap. However, no independent experimental support for this 

conclusion is available at present. 
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Figure 1.15: Liquid-chromatography mass spectrometric analysis of 1.2 and the 
hydrolysis products obtained under two different conditions. a) 1% TFA v/v, 
b) 1% v/v TRIS buffer. The solutions were prepared in CH3CN-water 
(8.4:1.6, v/v). 
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Figure 1.16: Two different views of the single crystal structure of 1.42. Displayment 
ellipsoids are scaled to the 50% probability level. The molecule lies on a 
crystallographic two-fold rotation axis at ¾, ½, z. Atoms with labels 
appended by “a” are related by 3/2 – x, 1 –y, z. Hydrogen atoms have been 
removed for clarity. 

 

The above provided a motivation to explore wether modification of the binding 

site (i.e., by changing the length and the flexibility of the strap) would affect stability. 

Two strategies were explored in an effort to enhance the stability of the strapped Schiff-

base calixpyrrole. The first strategy consisted of preparing an analogue of 1.42 but with 

an aryl group in the para position (compound 1.44). The second strategy involved the 

synthesis of a connecting strap containing alkyl chains instead of the aryl groups, persuit 

of this latter strategy resulted in compounds 1.45, and 1.46 (cf. Figure 1.17). 

Macrocyclization of the latter straps revealed that only strap 1.46 could give the desired 

compound 1.3. In fact, the presence of an extra carbon in the strap resulted in a more 

stable macrocycle that was obtained in a higher yield than compound 1.2.  
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Figure 1.17: Straps 1.44, 1.45, and 1.46. 

 
The strapped macrocycle 1.3 was synthesized according to the synthetic route 

shown in Scheme 1.6. The synthesis starts with 2-(5-oxohexyl)isoindoline-1,3-dione 

1.47. Reaction of this precursor with pyrrole in the presence of trifluoroacetic acid (TFA) 

afforded compound 1.48 in 84% yield. Hydrazinolysis of 1.48 gave amino derivative 1.49 

in a quantitative yield. Compound 1.49 was reacted with 2,6-pyridinecarbonyl chloride 

(28% yield) and formylated using the Vilsmeier-Haack method to form 1.46. Finally, 

macrocyclization of tetraformyl-1.46 with o-phenylinediamine and subsequent addition 

of triethylamine afforded macrocycle 1.3 in 43% yield as a pale yellow solid, the 

compound was used without further purification.  
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Scheme 1.6: Synthesis of compound  1.3. 

 

Compound 1.3 was characterized by standard spectroscopic techniques as well as 

by single crystal X-ray diffraction analysis. A single crystal of the compound 1.3 was 

obtained by slow evaporation of the reaction mixture consisting of CH2Cl2-MeOH (10:1, 

v/v). The X-ray crystallographic analysis revealed that 1.3 adopts a non-linear, bowl-like 

conformation around two hydrogen-bonded MeOH molecules in the cavity. A third 

MeOH molecule is seen in the structure. It interacts with themacrocycle via hydrogen 

bonds with the amide subunits of the strap (cf. Figure 1.18). The presence of coordinated 

methanol molecules within the macrocyclic cavity and interacting with the strap supports 

the contention that 1.3 can act as a hydrogen-bond donor through interactions between 

pyrrole NH protons and substrate. In the case of methanol the NH-O distances are N4–

O1A 2.915, N7–O1A 2.958, N8–O1B 2.917, N11–O1B 3.176 Å, for the pyrrole NH 

protons and N1–O1D 3.078, N3–O1D 3.017 Å, for the amide NH protons. Schiff-base 
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calixpyrroles crystal structures have been obtained previously and revealed the 

diprotonated forms bind either chloride or p-toluensulfonate anions in the cavity. 

Compound 1.3 crystallized as the free-base form with the methanol molecules interacting 

with the strap and the macrocycle cavity. To the best of our knowledge, this is the first 

example of a free-base Schiff-base calixpyrrole crystal. These hydrogen-bonding 

interactions with methanol provide support for the idea that similar Schiff-base 

calixpyrroles could be effective anion-binding agents.20 Also, in the solid state 1.3 was 

obtained as a single isomer wherein one methyl group in the meso position is pointing 

inside the cavity while the other methyl group is pointing out of the cavity (cis). This 

results in the twist of the strap.  
 

               
 

Figure 1.18: Front and side views of the single crystal of the cis-strapped Schiff-base 
calixpyrrole 1.3•(MeOH)4. Displacement ellipsoids are scaled to the 30% 
probability level. Hydrogen atoms have been removed from both structural 
presentations for the sake of clarity. 
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Unlike amide strapped calix[4]pyrroles that can be obtained as the cis and trans 

isomers,1 compound 1.3 was obtained as a single isomer, the cis isomer. This 

conformation also prevails in solution. 1H NMR spectroscopy of the product obtained by 

precipitation of 1.3 with trielthylamine from the crude reaction mixture, reveals a 

spectrum corresponding to only one isomer of 1.3 as shown in Figure 1.19. NMR studies 

on the remaining liquid after the precipitation did not show any characteristic signals that 

might reflect the presence of the trans isomer. 

 

 

  
 

Figure 1.19: 1H NMR spectrum of compound 1.3 recorded in CDCl3. * Denotes peaks 
ascribed to NMR solvent. 
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1.6.2 Anion Binding Studies of Compound 1.3 

 

Initial evidence that 1.3 could have an interaction with thorium nitrate (Th(NO3)4) 

in solution came from the 1H NMR spectroscopic analyses shown in Figure 1.18. The 

titration was carried out in a mixture of CDCl3/CD3CN (9.5:0.5, v/v). The NMR spectra 

revealed that upon addition of increasing quantities of Th(NO3)4, the protons belonging to 

the alkyl chain closer to the amide groups in the strap undergo a change in chemical shift 

from δ = 3.43 to 2.86 ppm (marked as h), while the peaks at 8.00 and 7.50 ppm 

corresponding to the N-H from the amide groups become broadened (marked as g), 

Figure 1.20. The peaks corresponding to the macrocycle also become broadened and the 

peaks corresponding to the β-pyrrolic protons (marked as d) are shifted from δ = 6.52 

and 6.06 ppm to 6.98 and 6.23 ppm, respectively. Also, a new broad peak at 8.43 ppm 

appears after the addition of two equivalents of thorium nitrate. This new peak is 

attributed to protonation of an imine subunit by H3O+ ions present in the solvent, which 

when the thorium salt comes in contact with water molecules. It is well-known that 

thorium(IV) is a strong Lewis acid, which in the presence of water releases protons. 

Although the hydrolytic behavior of Th(IV) in the presence of organic solvents and water 

has been widely studied, it is complex an still far from fully understood.28 The hydrolysis 

of Th(IV) cations is represented in Eq. 1, wherein a proton is transferred from one of the 

solvent molecules to a molecule of water, giving rise to the hydronium ion (H3O+).28 This 

led to the assumption that the observed changes in the NMR spectra are due to the 

protonation of macrocycle 1.3. 

 

€ 

mTh4+ + rH2O↔ Thm (OH)r
(4m−r )+ + rH3O

+ Eq. 1 
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Thus, the addition of a strong acid would produce effects similar to those seen 

upon the addition of a thorium salt. To test this hypothesis, an 1H NMR titration of 1.3 

with trifluoroacetic acid (TFA) was performed. The addition of TFA into a solution of 

CDCl3/CD3CN containing 1.3 gave rise to changes consistent with a complete 

protonation of the imine subunits after the addition of four equivalents of TFA. This was 

inferred from the appereance of two broad singlets at δ = 8.81 and 8.78 ppm. The peaks 

corresponding to the Schiff-base calixpyrrole moiety (marked with the letters c, g, b, a, 

and d, in Figure 1.21) showed similar chemical shift patterns as the titration with 

Th(NO3)4 (Figure 1.20). This led to the conclusion that in the presence of thorium(IV) 

cations protonation of the imine groups present in 1.3 takes place. However, the peaks 

corresponding to the C-H protons of the alkyl chain in the strap did not show any shift 

upon the addition of TFA. This was taken as evidence tha the trifluoroacetate anion does 

not interact with the strap. Unfortunately, the precipitation of 1.3 was found to take place 

during course of the titration. This made it difficult to follow the peaks corresponding to 

the N-H amide protons.  
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Figure 1.20: Partial 1H NMR spectra for the titration of 1.3 with Th(NO3)4 in 
CDCl3/CD3CN (9.5/0.5, v/v). The solution was prepared by mixing 1.3 (1.15 
× 10-3 M) dissolved in CDCl3 with Th(NO3)4 (0.176 M) in CD3CN. * 
Denotes peaks ascribed to the NMR solvent. 
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Figure 1.21: Partial 1H NMR spectra for the titration of 1.3 with TFA in CDCl3/CD3CN 
(9.5/0.5, v/v).  The solution was prepared by mixing (1.15 × 10-3 M) 
dissolved in CDCl3 with TFA (0.165 M) in CD3CN. * Denotes peaks 
ascribed to the NMR solvent.   
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However, none of the other peaks underwent a change in the presence of nitrate anions. 

These observations are consistent with the conclusion that the nitrate anion interacts only 

weakly with the strap but not with the cavity of the macrocycle. In fact, the interaction of 

the nitrite anion with the strap is thought to be similar to what is seen in the crystal 

structure wherein methanol is held in place via a hydrogen bond with only one of the 

amide groups of the strap. UV-vis titrations of 1.3 in the presence of TBANO3 revealed 

that there is no appreciable change in the absorbance that could indicate a strong 

interaction of the nitrate anions with the strap. This was also confirmed by isothermal 

titration calorimetry (ITC). wherein no isotherm indicative binding was observed. 
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Figure 1.22: a) Partial 1H NMR spectra for the titration of macrocycle 1.3 with TBANO3 
in CDCl3/CD3CN (9.5/0.5, v/v).  The solution was prepared by mixing 1.3 
(1.15 × 10-3 M) dissolved in CDCl3 with TBANO3 (0.165 M) in CD3CN. * 
Denotes peaks ascribed to the NMR solvent. b) Absorption spectra 
corresponding to the titration of 1.3 (2.5 × 10-3 M) with TBANO3 (0.15 M) 
in CHCl3. 

 

Contrary to what was observed in the case of 1.2, macrocycle 1.3 displays a 

relative higher stability upon protonation of the imine groups. Hence, the formation of 

positive charged species from 1.3 could enhance the affinity for anions. In previous anion 

binding studies performed by our group on the unstrapped Schiff-base calixpyrrole, high 

affinities for chloride anions were observed when the macrocycle was protonated. This 

was attributed to the presence of electrostatic interactions that favored anion binding.20 

Thus, UV-Vis and ITC studies of the mono-, di-, and the tetraprotonated forms of 1.3 

were carried out in the presence of different anions, such as Cl-, H2PO4
-, and NO3

-, in 

CH3CN. To obtain the protonated forms of 1.3, the free base form was protonated by 

adding one, two, or four equivalents of TFA. As can be seen from inspection of Figure 
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form of 1.3 is endothermic. Unfortunately, attempts to fit the heat changes curve were 

unsuccessful using a 1:1 receptor-to-anion binding model. ITC studies of the diprotonated 

form of 1.3 did not present any isotherm that could be considered reflective of binding 

chloride anions. Nor was there any evidence of nitrate anion binding as inferred from the 

ITC analysis. On the other hand, the ITC curves associated with the addition of H2PO4
- 

anions (as their TBA salts) to the tetraprotonated form of 1.3 revealed a binding profile 

corresponding to a 1:1 receptor-to-anion ratio with an association constant Ka = 2.87 × 

104 M-1 (cf. Figure 1.23).  
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b)      c) 

  
 

 

Figure 1.23: ITC traces observed upon the addition of a) TBACl to the monoprotonated 
form of 1.3 (0.32 mM), b) TBAH2PO4 to the monoprotonated form of 1.3 
(0.32 mM), and c) TBAH2PO4 to the tetraprotonated form of 1.3 (0.3 mM). 
All the titrations were performed using acetonitrile as the solvent and were 
carried out at 298 K. 
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1.6.3 Strapped Sciff-base Calixpyrrole Metal Complexes 

The synthesis of the metal complexes 1.50-1.53 is outlined in Scheme 1.7. With 

exception of 1.53, the preparative procedure starts with the reaction between 1.3 and 2.2 

equivalents of the metallic salt in the presence of NEt3 or KH; this results in the 

formation of the corresponding binuclear metal complex in 23-57% yield. Compound 

1.53 was synthesized by reacting [RuCp*(CH3CN)3][PF6] (Cp* = 

pentamethylcyclopentadienyl) and 1.3 under inert atmosphere in dry CH2Cl2 without 

base. After completion of the reaction, the metal complex was exposed to air and 1.53 

was obtained in a 4.3% yield after purification by column chromatography. The metal 

complexes were characterized by standard spectroscopic techniques unless otherwise 

indicated as well as by single crystal X-ray diffraction analysis in the case of compound 

1.53. The 1H NMR spectra of 1.50 and 1.51 revealed a lack of pyrrolic NH peaks, as well 

as resonances the hydrogens close to the imine that shifted to lower field (i.e., the imine 

chemical shift for 1.50, and 1.51 in CDCl3 moves from δ = 8.14 and 8.10 ppm to 7.32 

and 7.30 ppm, and 7.15 and 7.12 ppm, respectively). These spectral changes are taken as 

evidence of cation coordination to the macrocycle (cf. Figure 1.24).  

 

Scheme 1.7: Synthesis of compounds 150-1.53. Conditions: (a) Pd(OAc)2, NEt3, CH2Cl2; 
(b) Ni(acac)2, NEt3, C2H4Cl2, 60 ºC; (c) Cu(BF4)2•xH2O, NEt3, CH2Cl2-
MeOH; (d) [RuCp*(CNCH3)3][PF6], Ar, CH2Cl2.  
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Figure 1.24: 1H NMR spectra for a) compound 1.3, b) Pd(II) complex 1.50, and c) Ni(II) 
complex 1.51 in CDCl3. * Denotes peaks ascribed to the NMR solvent. 

 

A single crystal of 1.50 suitable for X-ray crystallographic analysis was obtained 

by slow evaporation of THF. As shown in Figure 1.25, the resulting structure revealed a 

bimetallic complex wherein the two metal centers (Pd1 and Pd2) reside in approximately 

square-planar N4-pyrrole-imine donor environments. The sum of the angles are 224.27° 
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observed in other Pd complexes of Schiff-base calix[4]pyrroles (sum of angles ≈ 359.9° 

at both Pd centers).29 This difference is attributed to the inherent conformation of the 

macrocycle, which forces the metal complex to be twisted. This results in a smaller cavity 

in which the palladium centers reside. The individual N-Pd-N bond angles in complex 

1.50 are between 79.75º-110.69º. Here the largest angles are between the palladium atom 

and two imine nitrogen atoms. These angles are comparable to what is observed for the 

* 

C-H pyridine 

C-H pyridine 

N-H amide  

C-H aromatic 

C-H !-pyrrole 
a) 1.3 

b) 1.50 

c) 1.51 
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palladium(II) complexes of the unstrapped Schiff-base calixpyrrole.29 Gross structural 

parameters including the Pd•••Pd separation (3.680 Å), Pd-N-imine, and Pd-N-pyrrole 

distances (for Pd1 and P2 Pd-Nimine = 2.029 and 2.071 Å, and 2.027 and 2.063 Å, 

respectively), and vertical bite angles, θ, between the PdN4 planes (θ = 60.36º) for 1.3 

can be compared to those of similar complexes described elsewhere for unstrapped 

Schiff-base calixpyrroles.21, 29  
 

   

 

Figure 1.25: Two different views of the single crystal of 1.50•(THF)2. Displacement 
ellipsoids are scaled to the 50% probability level. Hydrogen atoms have 
been removed from both structures (front and side views) for clarity, as have 
molecules of tetrahydrofuran (THF). All solvent molecules have been 
removed from the side view. 

 

Compound 1.52 was characterized by high-resolution mass spectrometry, infrared 

spectroscopy (IR), and magnetic measurements. A comparison of the IR spectrum of the 

free ligand 1.3 with that of the copper complex 1.52 revealed distinguishable differences 

ascribed to the coordination of the Cu(II) within the N4-cavity. The shift in the imine 
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stretching bands (νC=N) from 1666 cm-1 for 1.3 to 1599 cm-1 for the Cu(II) complex 1.52 

can be explained by a “locking” of the conformation in the cavity after the complexation 

of the metal cation occurs. Differences are also seen in the modes corresponding to the 

amide groups in the strap in 1.3, and 1.52. The νC=O stretch shifts from 1610 cm-1 to 1561 

cm-1, on goinf from 1.3 to 1.52. The corresponding amide bending mode signal shift from 

νN-H = 1539 cm-1 to 1467 cm-1, in going from 1.3 to 1.52 (cf. Figure 1.26).   
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Figure 1.26: IR spectra of 1.3 (top) and 1.52 (bottom). 

 

The magnetic moment (μeff) of 1.52 was determined at room temperature in 

deuterated chloroform using the Evans method as described in detailed in Apendix B.30-32 

The magnetic moment obtained at two different concentrations (10.3 and 20.6 mM) 

provided an average value of μeff = 2.12 μB. Compared with the value for two isolated 

Cu(II) metal center (S = ½) based on the literature (μeff = 2.45 μB),30 the μeff value of 1.52 

is lower. However, lower values of μeff similar to what was obtained for 1.52 have been 

reported for binuclear copper complexes of Schiff-base calixpyrrole (μeff = 2.45 μB).21, 33 

In this case, the relative low values of μeff (compared to two isolated Cu(II) centers) was 

ascribed to a weak antiferromagnetic coupling between the metal centers. This could be 

the reason why 1.52 displays a lower value of magnetic moment. However, studies of 
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magnetic susceptibility in the solid state need to be carried out to confirm this latter 

hypothesis.  

 

  
 

Figure 1.27: EPR spectrum of 1.52. The spectrum was recorded at room temperature 
using a solution of the binuclear complex in CH2Cl2 (0.5 mM).  

 

The EPR spectrum of 1.52 is shown in Figure 1.27. This spectrum was recorded 

in dichloromethane at room temperature on a Bruker EMX Plus spectrometer. The 

microwave frequency (~ 9.5 GHz) and magnetic fields were measured with a Gaussmeter 

Bruker ER083CS, and the magnetic fields were calibrated using a standard sample made 

of 2,2-diphenyl-1-picrylhydrzyl (DPP) that has a characteristic g value of 2.0036.  As 

shown in Figure 1.27, the EPR spectrum of 1.52 is characterized by a slightly more 

positive deviation of g value (g = 2.08504) than that expected for species with one 

unpaired electron (S = ½, g = 2.0023).36 However, the g value obtained was lower than 

that seen for typical square planar Cu(II) complexes (e.g., Cu(II)-etioporphyrin, g = 
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2.1693).36, 37 This could be attributed to a non-perfect square planar coordination 

geometry in the case of 1.52. Under the experimental conditions employed, no hyperfine 

values (A) could be measured. This lack of hyperfine features is attributed to two main 

factors: 1) the copper centers being coordinated in a distorted square geometry, and 2) the 

metal centers binding solvent molecules, such as, water molecules present as impurities 

in the solvent.  

 

1.6.4 Anion Binding Studies of Compounds 1.50 and 1.52 

Metal-containing anion receptors have been a subject of interest in recent years. 

This is due to the advantage that the metal center provides in the binding of anionic 

species. First, the metal center organizes anion binding groups in a specific geometry for 

the recognition of a specific anion. And second, the elestrostatic interactions between the 

Lewis acidic metal center and the anionic species can promote the binding event.33-35 

Considering this principle, anion binding studies of the bimetallic compounds 1.50 and 

1.52 were carried out using 1H NMR and UV-Vis spectroscopy, as well as isothermal 

titration calorimetry (ITC).  

The 1H NMR spectroscopic studies of 1.50 were performed by adding increasing 

quantities of different anions, such as, Cl-, CN-, and H2PO4
- in the form of their 

tetrabutylammonium (TBA) salts. As shown if Figure 1.28, upon the addition of the Cl-, 

CN-, and H2PO4
- anions no chemical shift was observed. This is taken as evidence that 

neither the strap nor the Pd metal centers interacts appreciably with the anions. This 

could reflect the lack of sufficient space in the twisted strap to accommodate an anion in 

the case of this metal complex. In the case of the 1H NMR spectrum, the amide N-H 

protons in 1.50 disappeared upon the addition of CN- anions (cf. Figure 1.26). This was 

attributed to either a deprotonation of the amide in the presence of this anion, or proton 

exchange in the solvent used (CDCl3).  
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Figure 1.28: Partial 1H NMR spectra of 1.51 recorded in the presence of TBACl, 
TBACN, and TBANO3 in CDCl3.  The solution was prepared by mixing 
1.51 (2.15 × 10-3 M) dissolved in CDCl3 with 5 equiv of Cl-, CN-, and NO3

- 
as their correspondingTBA salts dissolved in CDCl3. * Denotes peaks 
ascribed to the NMR solvent. 

 
1H NMR spectroscopy did not give any conclusive evidence as to whether the 

cyanide anion interacts with the Pd metal centers. To obtain further insights, 105Pd NMR 

analysis was introduced. Unfortunately, due to the low frequency of 105Pd relative to 1H 

(100 MHz),38 the NMR facilities at The University of Texas at Austin proved inadequate 

to the task. An alternative means of assessing whether there is a deprotonation of the 

amide protons in the palladium complex or a proton exchange in deuterated chloroform 

involves the use of 13C NMR spectroscopy. In this case, it was proposed that the carbon 

of the amide group would experience a chemical shift change, if deprotonation of the 

a) 1.50 only 

b) 1.50 + TBACl 5 equiv. 

c) 1.50 + TBACN 5 equiv. 

d) 1.50 +TBAH2PO4 5 equiv. 

* 

* 

* 

* 
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amide group were taking place upon the addition of the CN- anion. The 13C NMR spectra, 

the signals of 1.50 and 1.50 in the presence of CN- anions, the carbons peaks of the amide 

do not display any chemical shift change, which provides support for the proposition that 

a proton exchange took place. Furthermore, addition of H2O to the tube containing 1.50 
and CN- in deuterated chloroform restored the amide N-H protons signals at δ = 7.93 and 

7.47 ppm (cf. Figure 1.29).  

 

 

C-H pyridine 

N-H amide 

C-H imine 

C-H aromatic 
C-H pyrrole 

a) 1.50 

b) 1.50 + CN- 

* 
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Figure 1.29: Partial NMR spectra of 1.50, and 1.50 + CN- (TBA salt). 1H NMR spectra in 
CDCl3 of a) 1.50, and b) 1.50 after the addition of CN- anions in the form of 
tetrabutylammonium salt (TBA). 13C NMR spectra in CDCl3 of c) 1.50, and 
d) 1.50 after the addition of CN- anions. The solution was prepared by 
mixing 1.50 (2.21 mM) dissolved in CDCl3 with 2 equiv of TBA salt in 
CDCl3. * Denotes peaks ascribed to the NMR solvent. 

 
The idea that the cyanide anion interacts with the Pd metal centers was discarded 

on basis of the NMR spectral analysis (1H and 13C). For instance, the 1H and 13C NMR 

spectra of 1.50 and 1.50 + CN- were essentially identical. Specifically, the signals 

corresponding to the carbon adjacent to the imine –CH=N- that would be more 

susceptible to the interaction of cyanide anions resonated at δ = 7.33 and 7.31, and 7.32 

and 7.30 ppm, respectively (1H NMR spectra in CDCl3), and δ = 159.6 and 159.3, 159.7 

and 159.3 ppm, respectively (13C NMR spectra in CD2Cl2) remained unchanged (cf. 

Figure 1.29).  

IR spectroscopy performed on 1.50, shown in Figure 1.30, revealed that upon 

addition of CN- anions the signals ascribed to the imine stretching (νC=N) showed an 

appreciable shift, from 1666 cm-1 to 1661 cm-1. The carbonyl stretching signals (νC=O) of 

* c) 1.50 

d) 1.50 + CN- 

CN- 

amide imine 
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the amide groups in the strap shifted from νC=O = 1541 cm-1 to 1612 cm-1. The bands 

corresponding to the N-H bending frequencies (νN-H) shifted from 1470 cm-1 to 1556 cm-1. 

These observations lead to the conclusion that there is an interaction between the 1.50 

and CN- anions. We assume that these interactions could be between the strap and the 

metal centers.  
 
 
a) 
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b) 

 
c) 

 

 

Figure 1.30: IR spectra of a) 1.50, b) 1.50 upon addition of TBACN, and c) TBACN. 
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ITC analysis in acetonitrile revealed that upon addition of CN- ions to 1.50 the 

isotherm obtained fitted to a 1:1 receptor-to-anion binding profile, with an association 

constant Ka = 3.65 × 105 M-1. To determine if the binding takes place primarily on the 

strap or within the macrocycle, control studies using unstrapped calixpyrrole Schiff-base 

palladium(II) complex 1.50 and a strap fragment (Bis-dipyrromethane tetraaldehyde) 

1.46 were carried out. In this case, the ITC isotherm obtained for compound 1.54 

displayed a fit corresponding to a 1:1 receptor-to-anion binding profile. As shown in 

Figure 1.31, the association constant obtained for the unstrapped Schiff-base palladium 

complex, Ka = 9.36 × 103 M-1, revealed that 1.54 binds cyanide anions; however, the 

introduction of the strap to the Schiff-base calixpyrrole enhances the binding of cyanide 

anions more than two orders of magnitude. ITC studies using the calixpyrrole-free strap 

1.46 also revealed an interaction with CN-. Unfortunately, the ITC traces could not be 

fitted using the 1:1 or 1:2 receptor-to-anion profile. On the other hand, titrations of 1.52 

with TBACN in acetonitrile resulted in an isotherm that is consistent with some modest 

interaction with cyanide anions. However, the ITC profiles proved to complex to be fitted 

using either 1:1 or a 1:2 receptor-to-anion model (cf. Figure 1.31). Anion binding 

properties of compounds 1.51 and 1.53 could not be performed due to instability of the 

componds in acetonitrile.  
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a) b) 

    
c) 

 
 

Figure 1.31: ITC traces corresponding to the addition of TBACN (3 mM) to a) 1.50 (0.35 
mM), b) 1.54 (0.31 mM), and c) 1.52 (0.33 mM) in acetonitrile at 298 K. 

 

0.0 0.5 1.0 1.5

-50

-40

-30

-20

-10

0
-50
-45
-40
-35
-30
-25
-20
-15
-10
-5
0
5
10

-10 0 10 20 30 40 50 60 70 80 90100110120130140150160

Time (min)
!"

#$
%&
'"

!"#"$% &'()*+,-./0/!+
12-34$% 56378#3*
.98:;<!2=% >% ?@ABCDB
/ A@E;E FA@AA;?C
G C@EHDB FI@J?D?
!+ K?@LAAD? FCL;@C
!7 KICE

Molar Ratio

("
#$
%)

*$
'+
*,
+-.

/'
"0
#.

0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-8

-6

-4

-10

-5

0

-10 0 10 20 30 40 50 60 70 80 90 100 110

Time (min)

!"
#$
%&
'"

!"#"$% &'()*+,-./01/!,
23+45$% 67489#4:
.;9<0=!3>% ?% @A@0BCD
/ 0AEF GHAHI@E
J EAKFCK G@ADKCK
!, LMFHM G@MFA0
!8 L@HAB

Molar Ratio

("
#$
%)

*$
'+
*,
+-.

/'
"0
#.

0

0.0 0.5 1.0 1.5

-16

-14

-12

-10

-8

-10

-5

0

-10 0 10 20 30 40 50 60 70 80 90 100

Time (min)

!"
#$
%&
'"

Molar Ratio

("
#$
%)

*$
'+
*,
+-.

/'
"0
#.

0



 60 

1.7 CONCLUSIONS 

The synthesis of strapped calix[4]pyrrole Schiff base macrocyles was presented. 

Macrocycle 1.2 proved to be unstable in acidic conditions. This macrocycle undergoes 

hydrolysis at low pH values as the result of protonation of the imine groups. The 

hydrolysis of 1.2 was followed by UV-Vis spectroscopy, HPLC, and mass spectrometry. 

It was proposed that the rigid strap induces strain in the macrocycle and promotes 

hydrolysis of 1.2. Compound 1.2 showed a change in color upon contact with thorium 

salts, which was initially attributed to a possible interaction between the thorium salt and 

1.2. However, this suggestion was ultimately abbandoned due to a lack of overt evidence. 

In order to improve the stability of the macrocycle a flexible strap was introduced. The 

macrocycle 1.3 was obtained via the direct condensation of two equivalents of o-

phenylenediamine with the α-strapped dipyrromethane under acidic conditions. Anion 

binding studies of 1.3 was limited by the conformation of the complex in which the 

twisted strap cannot favorably interact with anionic species. However, anion binding 

studies with cyanide revealed that the metal complex 1.50 displayed affinities for the 

cyanide anion that were more than than two orders of magnitude higher than the 

unstrapped palladium complex 1.54. This finding could be rationalized in terms of the 

strap stabilizing a fixed conformation that serves to isolate the binding site from the 

medium. Thus increasing the anion binding affinity.  

 

 
 
 
 
 
 
 
 
 



 61 

 
1.8 References 

1. Lee, C.-H.; Miyaji, H.; Yoon, D.-W.; Sessler, J. L. Chem. Commun. 2008, 24. 

 

2. Gale, P. A.; Lee, C.-H. Anion Recognition in Supramolecular Chemistry: Topics 

in Heterocyclic Chemistry, ed. Maes, B. U. W. Vol. 24, Springer, 2010, pp. 54.  

 
3. Baeyer, A. Ber. Ctsch Chem. Ges. 1886, 19, 2184. 

 

4. Floriani, C.; Floriani-Moro, R. Porphyrin Handbook 2000, 3, 385. 

 
5. Gale, P.A.; Sessler, J. L.; Král, V.; Lynch, V. J. Am. Chem. Soc.  1996, 118, 5184. 

 
6. Lee, C.-H.; Mayaji, H.; Yoon, D.-W.; Sessler, J. L. Chem. Commun. 2008, 24. 

 
7. Yoon, D. W.; Hwang, H.; Lee, C.-H. Angew. Chem. Int. Ed. 2002, 41, 1757. 

 
8. Lee, C. H.; Lee, J. S.; Na, H. K.; Yoon, D. W.; Miyaji, H.; Cho, W. S.; Sessler, J. 

L. J. Org. Chem. 2005, 70, 2067. 

 
9. Miyaji, H.; Kim, H.-K.; Sim, E.-K.; Lee, C.-K.; Cho, W. S.; Sessler, J. L.; Lee, 

C.-H. J. Am. Chem. Soc. 2005, 127, 12510. 

 
10. Jeong, S.-D.; Yoo, J.; Na, H. K.; Chi, D. Y.; Lee, C.-H. Supramol. Chem. 2007, 

19, 271. 

11. Miyaji, H.; Hong, S. J.; Jeong, S. D.; Yoon, D. W.; Na, H. K.; Hong, S. K.; Ham, 

S.; Sessler, J. L.; Lee, C. H. Angew. Chem. Int. Ed. 2007, 47, 2508. 



 62 

 
12. Fisher, M. G.; Gale, P. A.; Hiscock, J. R.; Hursthouse, M. B.; Light, M. E.; 

Schmidtchen, F. P.; Tong, C. C. Chem. Commun. 2009, 3017. 

 
13. Yano, M.; Tong, C. C.; Light, M. E.; Schmidtchen, F. P.; Gale, P. A. Org. 

Biomol. Chem. 2010, 8, 4356. 

 
14. Samanta, R.; Mahanta, S. P.; Choudri, S.; Panda, P. K.; Narahi, A. Inorg. Chim. 

Acta 2011, 372, 281. 

 
15. Yoon, D. W.; Gross, D. E.; Lynch, V. M.; Sessler, J. L.; Hay, B.; Lee, C.-H. 

Angew. Chem. Int. Ed. 2008, 47, 5038. 

 
16. Sessler, J. L.; Kim, S. K.; Gross, D. E.; Lee, C.-H.; Kim, J. S.; Lynch, V. M. J. 

Am. Chem. Soc. 2008, 130, 13162. 

 
17. Kim, S. K.; Sessler, J. L.; Gross, D. E.; Lee, C.-H.; Kim, J. S.; Lynch, V. M.; 

Delmau, L. H.; Hay, B. P. J. Am. Chem. Soc. 2010, 132, 5827. 

 
18. Kim. S. K.; Vargas-Zuniga, G. I.; Hay, B. P.; Young, N. J.; Delmau, L. M.; 

Moyer, B. A.; Sessler, J. L. J. Am. Chem. Soc. 2012, 134, 1782. 

 
19. Park, I.-W.; Yoo, J.; Kim, B.; Adhikari, S.; Kim, S. K.; Yeon, Y.; Haynes, C. J. 

E.; Sutton, J. L.; Tong, C. C.; Lynch, V. M.; Sessler, J. L.; Gale, P. A.; Lee, C.-H. 

Chem. Eur. J. 2012, 18, 2514. 

 



 63 

20. Sessler, J. L.; Cho, W.-S.; Dudek, S. P.; Hicks, L.; Lynch, V. M.; Huggins, M. T. 

Journal of Porphyrins and Phthalocyanines 2003, 7, 97. 

 
21. Givaja, G.; Blake, A. J.; Wilson, C.; Schröder, M.; Love, J. B. Chem. Commun. 

2003, 12508. (b) Givanja, G.; Blake, A. J.; Wilson, C.; Schröder, M.; Love, J. B. 

Chem. Commun. 2005, 4423. (c) Veauthier, J. M.; Tomat, E.; Lynch, V. M.; 

Sessler, J. L.; Mirsaidov, U.; Markert, J. T. Inorg. Chem. 2005, 44, 6736. (d) 

Tomat, E.; Cuesta, L.; Lynch. V. M.; Sessler, J. L. Inorg. Chem. 2007, 46, 6224. 

(e) Givaja, G.; Volpe, M.; Leeland, J. W.; Edwards, M. A.; Young, T. K.; Darby, 

S. B.; Reid, S. D.; Blake, A. J.; Wilson, C.; Wolowska, J.; McInnes, E. J. L.; 

Schröder, M.; Love, J. B. Chem.-Eur. J. 2007, 13, 3707. (f) Cuesta, L.; Tomat, E.; 

Lynch, V. M.; Sessler, J. L. Chem Commun. 2008, 3144. (g) Love, J. B. Chem. 

Commun. 2009, 3154. (g) Veauthier, J. M.; Cho, W.-S.; Lynch, V. M.; Sessler, J. 

L. Inorg. Chem. 2004, 43, 1220. (h) Askarizadeh, E.; Yaghoob, S. B.; Boghaei, D. 

M.; Slawin, A. M. Z.; Love, J. B. Chem. Commun. 2010, 46, 710. (i) Givaja, G. 

Volpe, M.; Edwards, M. A.; Blake, A. J.; Wilson, C.; Schröder, Love, J. B. 

Angew. Chem. Int. Ed. 2007, 46, 584.  

 
22. Collman, J. P.; Wagenknecht, P. S.; Hutchison, J. E. Angew. Chem. 1994, 106, 

1620. (b) Dempsey, J. L.; Esswein, A. J.; Manke, D. R.; Rosental, J.; Soper, J. D.; 

Nocera, D. G. Inorg. Chem. 2005, 44, 6879. (c) Chang, C. J.; Loh, Z.-H.; Shi, C.; 

Anson, F. C.; Nocera, D. G. J. Am. Chem. Soc. 2004, 126, 10013. (d) Chang, C. 

J.; Deng, Y.; Shi, C.; Anson, F. C.; Nocera, D. G. Chem. Commun. 2000, 1355. 

(e) Guilard, R.; Brandes, S.; Tardieux, C.; Tabard, A.; Loher, M.; Miry, C.; 

Goerec, P.; Knop, Y.; Collman, J. P. J. Am. Chem. Soc. 1995, 117, 11721. (f) 

Proniewicz, L. M.; Odo, J.; Goral, J.; Chang, C. K.; Nakamoto, C. K. J. Am 

Chem. Soc. 1989, 111, 2105. (g) Durand, R. R.; Bencosme, Jr., C. S.; Collamn, J. 

P.; Anson, F. C. J. Am. Chem. Soc. 1983, 105, 2710. (h) Collman, J. P.; 



 64 

Denisevich, P.; Konai, Y. Marrocco, M.; Koval, C.; Anson, F. C. J. Am. Chem. 

Soc. 1980, 102, 6027. (i) Hodgkiss, J. M.; Chang, C. J.; Pistorio, B. J.; Nocera, D. 

G. Inorg. Chem. 2003, 42, 8270. (j) Pistorio, B. J.; Chang, C. J.; Nocera, D. G. J. 

Am. Chem. Soc. 2002, 124, 7884. (k) Rosenthal, J.; Luckett, T. D.; Hodgkiss, J. 

M.; Nocera, D. G. J. Am. Chem. Soc. 2006, 128, 6546. (l) Rosenthal, J.; Pistorio, 

B. J.; Chng. L. L.; Potter, N. A.; Carmichael, C. D.; Nocera D. G. J. Org. Chem. 

2005, 70, 1885. 

 
23. Ranold, P. L.; Potter, N. A.; Carmichael, C. D.; Slawin, A. M. Z., Roussel, P.; 

Love, J. B. Chem. Commun. 2010, 46, 1833. 

 
24. Arnold, P. L.; Emmalina, H.; White, F. J.; Magnani, N.; Caciuffo, R.; Love, J. B. 

Angew. Chem. Int. Ed. 2011, 50, 887. 

 
25. Arnold, P. L.; Blake, A. J.; Wilson, C.; Love, J. B. Inorg. Chem. 2004, 43, 8206. 

(b) Arnold, P. L.; Patel, D.; Pécharman, A.-F.; Wilson, C.; Love, J. B. Dalton 

Trans. 2010,39, 3501. (c) Arnold. P. L; Patel, D.; Wilson, C.; Love, J. B. Nature 

2008, 451, 315. (d) Arnold, P. L.; Pécharman, A.-F.; Hollis, E.; Yahia, A.; Maron, 

L.; Parsons, S.; Love, J. B. Nat. Chem. 2010, 2, 1056. (e) (f) Jones, G. M.; 

Arnold, P. L. Chem.-Eur J. 2013, 19, 10287. (g) Arnold. P. L.; Hollis, E.; Glichol, 

G. S.; Love, J. B.; Griveau, J.-C.; Caciuffo, R.; Magnani, N.; Maron, L.; Castro, 

L.; Yahia, A.; Odoh, S. O.; Schreckenbach, G. J. Am. Chem. Soc. 2013, 135, 

3841. 

 
26. Leeland, J. W.; White, F. J.; Love, J. B. J. Am. Chem. Soc. 2011, 133, 7320. 

 



 65 

27. Bejger, C.; Davis, C. M.; Park, J. S.; Lynch, V. M.; Love, J. B.; Sessler, J. L. Org. 

Lett. 2011, 13, 4902. 

 
28. Brown, W. H., Foote, C. S., Iverson, B. L., Anslyn, E. V., Novak, B. M. Organic 

Chemistry, 6th Edition; Brooks/Cole CENGAGE Learning: United States of 

America, pg. 606-609. 

 
29. Askarizadeh, E.; Devoille, A. M.; Bogheaei, D. M.; Slawin, A. M. Z.; Love, J. B. 

Inorg. Chem. 2009, 48, 7491. 

 
30. Evans, D. F. J. Chem. Soc. 1959,2003. 

 
31. Schubert, E. M. J. Chem. Educ. 1992, 69, 62. 

 
32. Grant, D. H. J. Chem. Educ.1995, 72, 39. 

 
33. Ballester, P. Chem. Soc. Rev. 2010, 39, 3810. 

 
34. Beer, P. D.; Cormode, D. P.; Davis, J. J. Chem. Commun. 2004, 414. 

 
35. Amendola, V.; Fabrizzi, L.; Mangano, C.; Pallavicini, P.; Poggi, A.; Tagletti, A. 

Coord. Chem. Rev. 2001, 219-221, 821. 

 
36. Lommens, P.; Feys, J.; Vrielinck, H.; De Buysser, K.; Herman, G.; Callens, F.; 

Van Driessche, I. Dalton Trans. 2012, 41, 3574. 

 



 66 

37. Roberts, E. M.; Koski, W. S. J. Am. Chem. Soc. 1960, 82, 3006. 

 
38. Harris, R. K. in Encyclopedia of Nuclear Magnetic Resonance, D. M. Granty and 

R. K. Harris, (eds.), vol. 5, John Wiley & Sons, Chichester, UK, 1996. 



	
   67	
  

Chapter 2: Meso Substituted Etioporphycenes 

 

 
2.1 INTRODUCTION 

A number of porphycenes and their metal complexes have been synthesized since 

Vogel et al. published their seminal report on the synthesis of porphycene in 1986.5 

However, most of the synthetic efforts to create porphycene derivatives have involved 

functionalization of the β-positions of the pyrrole rings (cf. Figure 2.1). Porphycene 

derivatives with substitution on the four meso positions of the macrocycle, have been less 

well studied due to the more complex synthetic methods required to access this type of 

target. Moreover, the porphyrinogen precursor to meso-tetrasubstituted porphycenes 

display a lower propensity to undergo oxidation during the McMurry coupling reaction 

typically used to prepare porphycene. On the other hand, 9-substituted porphycenes (cf. 

Figure 2.1), wherein the functionalization occurs on only one meso position, provides 

another alternative to derivatization in which the introduction of the substituents is 

introduced in the last step of synthesis. In this chapter, the synthesis 9-substituted 

etioporphycenes 2.44, 2.47, 2.48, and 2.49 is detailed. These functionalized porphycenes 

were found to display different features reflecting the macrocycle electronics. The 

synthesis of 9-substituted etioporphycenes presented in this chapter were analyzed by 1H 

and 13C NMR spectroscopy, UV-Vis spectroscopy, mass spectrometry, and 

electrochemical methods. 
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Figure 2.1: Porphycene framework showing substitution on position 9. 

 

2.2 PORPHYCENES : CONSTITUTIONAL ISOMERS OF PORPHYRINS 

Porphyrins have been recognized as distinct chemical entities for over a century.1, 

2 The basic structure and chemical features were elucidated by Hans Fischer in the early 

20th century, work for which he was awarded the Nobel Prize in 1930. Since then, these 

tetrapyrrolic aromatic macrocycles have been widely studied by chemists. Inspiration for 

this effort comes from their role in biological processes, such as photosynthesis and 

respiration. In order to study develop the chemistry of these compounds further, 

researchers have focused on in the preparation of new porphyrin analogues. In this 

context, porphycene being one of the most studied and stable porphyrin isomers (cf. 

Figure 2.2), has central role to play. 

 

 
 

Figure 2.2:  Basic structures of porphyrin and porphycene. 
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Porphycene dates to 1986. In that year, Vogel and coworkers prepared a 

[20]annulene from two 5,5’-diformyl-2,2’-bipyrrole subunits via reductive McMurry-

type coupling in ca 3% yield (cf. Scheme 2.1).2 This macrocycle was found to undergo 

spontaneous two-electron oxidation upon exposure to air. These species initially 

displayed features comparable to porphyrins and acenes. This led Vogel to propose the 

trivial name “porphycene” for this compound.3 Porphycene is a tetratpyrrolic ring which 

contains two 2,2’-bipyrrole subunits linked by two double bonds to form a tetraaza 

central core.3, 4 This macrocycle is formally known as [18]porphyrin-(2.0.2.0). It was first 

recognized constitutional isomer of porphyrin.5  

 

 

 

Scheme 2.1: Synthesis of porphycene 2.1 via the reductive coupling of 5,5’-diformyl-
2,2’-bipyrrole under McMurry conditions. 

 

Porphycenes pocess a less symmetric structure than porphyrins: Roughly, D2h 

symmetry vs. D4h symmetry of porphycene and porphyrin, respectively. Porphycene 

display different optical properties, such as strong absorption features in the red region of 

the UV-Vis spectrum and higher absortivity (ε) values (e.g., strong absorption between 

620 to 760 nm) than the corresponding porphyrin. This enhancement in the absortivity for 
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porphyrin. These unique optical features have made porphycenes of interest in various 

biomedical applications, including photodynamic therapy (PDT) and the 

photoinactivation of viruses and bacteria, particularly in the area of blood purification. 6 

 

 
 

 
 

Figure 2.3: Porphycene framework showing different sites of substitution, namely in the 
β-pyrrolic positions (left) or meso positions (right). 
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subtituents.8 One approach involves functionalizing on the β-pyrrolic positions of the 

macrocycle (2, 7, 12, and 17 positions, and/or 3, 6, 13, and 16 positions in the 

macrocycle). Those bearing alkyl substituents on the 3, 6, 13, and 16 positions are called 

etioporphycenes (cf. Figure 2.3). These modifications can influence the shape and size of 

the cavity of the macrocycle. For instance, etioporphycenesare often characterized by 

deformations of the porphycene plane. This destabilizes the pyrrole NH-N-pyrrole 

hydrogen bonds in the cavity. As a consequence, etioporphycenes are able to 

accommodate bigger metal cations in their cavity than unsubstituted porphycenes.9 Other 

types of functionalization are known. As shown in Figure 2.4, these include 1) the use of 

fused aromatic rings on the pyrroles, which produces, e.g., tetrabenzoporphycenes 2.2, 

and 2) linkages between two adjacent pyrrolic rings, which produce, e.g., 

dibenzoporphycenes 2.36 and dinaphthoporphycenes 2.4.7  

 

 
 

Figure 2.4: Examples of tetrabenzoporphycene 2.2, dibenzoporphycene 2.3, and 
dinaphthoporphycene 2.4. 
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In contrast to etioporphycenes, the insertion of substituents at the ethynyl bridges 

or so-called meso positions of the macrocycle (i.e., positions 9, 10, 19, and 20) tends to 

stabilize intramolecular hydrogen bonds. Functionalization of the meso positions can 

often be affected after the ring structure has been constructed. However, typically, only 

one substituent is added. This give rise to yielding asymmetric porphycenes, as will be 

detailed in the following section (cf. Figure 2.5).10 

 

 

2.3 MESO- SUBSTITUTED PORPHYCENES 

2.3.1 Meso-Tetrasubstituted Porphycenes 

As described in the previous section, porphycenes are obtained by the reductive 

coupling of 5,5’-diformyl-2,2’-bipyrrole using McMurry reactants that include TiCl4, Zn, 

and CuCl.3, 5, 11 Although porphycenes are more soluble in organic solvents, the solubility 

of the unsubstituted porphycene and many of its derivatives is still limited.  

Meso-tetrasubstituted porphycenes have been synthesized from 5,5’-acyl 

substituted bipyrroles using the reductive coupling conditions introduced by Vogel. For 

instance, the synthesis of porphycene 2.5 starts with the acylation of bipyrrole in analogy 

to what is done when effecting the formylation of bipyrrole. However, instead of using 

dimethylformamide (as needed for formylation), an alkyl N,N’-amide and phosphorous 

oxychloride (POCl3) was employed.9 The bipyrrole obtained was subjected to McMurry 

coupling,11 followed by oxidation with 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ), 

to give the corresponding porphycene 2.5 (cf. Figure 2.5).12, 13 Catalytic hydrogenation 

with palladium/carbon in ethylacetate gave a colorless dihydro compound, 2.5, which 

subsequently underwent oxidation by DDQ.14 In 2011, Yamada and coworkers reported 

the synthesis of the pyrrolocyclophene 2.6, which could not be oxidized to give the 

corresponding porphycene. This was attributed to steric repulsions between the alkyl 

substituents that are so severe that they preclude attaining the planar conformation 
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characteristic of porphycenes. Thus, intermediate 2.6 was isolated in the form of colorless 

crystrals (cf. Figure 2.5).15 This lack of color stands in marked contrast to what is true for 

the blue-purple porphycenes. 

 

 

 
 

Figure 2.5: Meso-tetrapropylporphycene 2.5, and pyrrolocyclophene 2.6. 
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Scheme 2.2: Synthesis of meso-tetraphenylporhycene 2.7 and meso-tetratolylporphycene 
2.8 via acid-catalyzed oxidative coupling. 

 

2.3.2 Porphycenes Bearing Substituents on Position 9 
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carboxylic acid. This yields 9-acetoxyporphycene 2.14. Further hydrolysis of 2.14 in 

basic media affords the free 9-hydroxyporphycene 2.15.20  

 

 
 

Scheme 2.3: Synthesis of 9-substituted porphycenes 2.11-2.15. Reaction conditions: (R1 
= C3H7, R2 = H) a) HNO3 or AgNO3/HOAc in CH2Cl2, b) Na2S2O4, NaOH(aq), 
(R1 = C2H5, R2 = CH3) c) POCl3, DMF, C2H4Cl2, (R1 = C3H7, R2 = H, R’ = 
(CH2)3CO2t-Bu) d) PbO2, HO2C(CH2)3CO2t-Bu, CH2Cl2, e) NaOMe, MeOH. 
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In fact, these 9-subtituted porphycenes have been used as building blocks for the 

preparation of more complex systems (cf. Figure 2.6). For instance, 9-hydroxy substituted 

porphycenes can be used to prepare ethers, such as 2.16, or esters, such as 2.17-2.9, 

whereas the amino derivatives have been used for the synthesis of amide-substituted 

porphycenes, such as 2.20-2.22.23, 24 6 Recently, Guldi and coworkers reported the 

synthesis of compound 2.23 for the subsequent functionaliztion of graphene.24  
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Figure 2.6: Porphycene derivatives generated from 9-amino and 9-hydroxy substituted 
porphycenes. 
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The goal of this project was to obtain a ferrocene-substituted porphycene. As 

detailed below, this objective was not successfully met. Nevertheless, it is appropriate to 

detail the rationale for this effort. 

2.4 MESO-LINKED FERROCENE PORPHYRINS 

The donor-acceptor properties of ferrocene and porphyrins along with their 

electrochemical features have been extensively explored in the context of understanding 

photoinduced electron transfer processes and as mimics photosynthetic active sites.25,26 

These features have been of fundamental importance for the development of molecular-

based electronic devices,27,28 as well as multielectron redox catalysis.29 Due to their 

unique structural and electronic properties, a variety of ferrocene-appended porphyrins 

can be found in literature. These systems involve ferrocne moieties attached to 

porphyrins directly or through spacers linked to the meso or β-pyrrolic positions of the 

porphyrirn.30 The following sections summarize the synthesis and properties of various 

meso-linked ferrocene-porphyrins. This overview is designed to set the stage for work 

with meso-ferrocene substituted porphycenes. However, as noted above these latter 

targets were not successfully attained. 

 

2.4.1 Direct Connection 

Meso-linked ferrocene-porphyrins have been synthesized by reacting ferrocene-

carboxaldehyde with pyrrole in the presence of a Lewis acid followed by oxidation with 

p-chloranyl (TCQ).31-33 This afforded the 5,10,15,20-tetrakis(ferrocenyl)porphyrin 2.24 in 

40% yield (cf. Figure 2.7). Nadtochenko et al. reported that the presence of ferrocene 

substituents in the meso positions resulted in quenching of the porphyrin fluorsescence 

quantum yield, by 105 fold relative to 5,10,15,20-tetrakis(phenyl)porphyrin 2.25 (cf. 

Figure 2.7).30 In addition, the absorption spectrum of 2.24 revealed a significant red shift 

in the Soret (Δλ ~ 15 nm) and Q bands. This was ascribed to the strong electronic 

coupling between the porphyrin π system and the ferrocenyl moieties. The redox 
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properties of 2.24 revealed not only positive potential shifts, due to electronic effects of 

both the ferrocene and the porphyrin-based redox couples in 2.24, but also, a 

communication between the ferrocene groups mediated by the conjugated porphyrin 

backbone, as inferred from the observation of multiple redox waves corresponding to the 

successive oxidations of interacting ferrocenes. This coupling and the presence of 

multiple redox states was confimed by Nemykin et al. who characterized mixed valence 

(MV) species using Mössbauer spectroscopy and spectroelectorchemical methods.34 

 

 

Figure 2.7: 5,10,15,20-Tetrakis(ferrocenyl)porphyrin 2.24 and 5,10,15,20-
tetrakis(phenyl)porphyrin 2.25. 
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ferrocene subunits in mono(ferrocenyl)porhyrin 2.27 and its zinc complex 2.28, makes 

the porphyrin core azamacrocycle harder to oxidize and reduce. This resultes in a 

widening of the HOMO-LUMO gap (HLG), an effect ascribed to the electron donating 

properties of the ferrocene moiety. As expected, the ferrocinium group had the opposite 

effect (cf. Figure 2.8).30 

 

 
 

Figure 2.8: 5,15-Diferrocenyl-10,20-diphenylporphyrin 2.26 and 5-ferrocenyl-10,15,20-
triphenylporphyrin 2.27, and its zinc(II) complex 2.28. 
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half wave potentials (i.e., by of 0.41 V). Absorption analyses of 2.29 and 2.30 revealed 

electrochemically driven formation of mixed valence species, as inferred from the 

appearance of absorption bands in the near infrared region between 950 and 1100 nm. 

Studies of porphyrin 2.31 revealed similar tendencies. In fact, in this case the ferrocene-

redox couples could be tuned via insertion of selected metal cations (cf. Figure 2.9).37, 38 

 

 

Figure 2.9: Ferrocenylporphyrins 2.29, 2.30, and 2.31. 
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Another strategy to introduce ferrocene fragments at the periphery of a porphyrin 

has involved the use of Sonogashira coupling. Ethynyl bridged ferrocene-porphyrin 2.33 

was developed by Lindsey, Ng and coworkers as a potentially “push-pull” nonlinear 

optically active (NLO) chomophore (cf. Figure 2.10).42, 43 However, a lack of redox 

interaction between the metallocene groups in the bisferrocenyl 2.33 was noted, as 

inferred from the observation of only a single oxidation wave corresponding to the 

oxidation of borth iron centers. This result was rationalized in terms of the large distance 

between each iron center, which was thought to hamper the electronic communication 

between the ferrocene subunits. 

 

 
 

Figure 2.10: Ferrocenylphenyl porphyrin 2.32, and ethynyl bridged ferrocene-porphyrin 
2.33. 
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2.34 and its reduced analogue 2.35 as shown in Scheme 2.4.44 In this case, steady state 

emission spectroscopy and Stern-Volmer analysis revealed that the quenching of the 

ethyl linked derivative 2.35 was half as fast as the vinyl trans-linked analogue 2.34. 

These results were explained in terms of the ferrocene center in both componds serving to 

quench the single excited state of the porphyrin core through an electron transfer 

mechanism. 

 

 
 

Scheme 2.4: Synthesis of ferrocenyvinylporphyrin 2.34 and ferrocenyethylporphyrin 
2.35. 
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163 K resulted in intermolecular photoinduced electron transfer from the singlet and 

triplet excited states of the central porphyrin trimer to the fullerene fragment. This 

afforded the charge separated species that in the limit consist of a ferrocene-porphyrin+ 

and a fullerene-. Electron transfer from the ferrocene moiety to the porphyrin radical 

cation in 2.36 led to formation of the separated charged species ferrocene+-porphyrin 

timer-fullerene-. On this basis, it was suggested that compound 2.36 could be used as a 

light harvesting system.45 

 

 
 

Figure 2.11: Ferrocene-porphyrin trimer-fullerene 2.36. 
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2.5 SYNTHESIS AND CHARACTERIZATION 

The synthesis of the etioporphycene 2.37 is outlined in Scheme 2.5. It was 

prepared by the author following Vogel’s method.50 This synthesis starts with the 

preparation of the β, β’-substituted pyrrole 2.39, a precursor obtained via the Zard-Barton 

reaction.46-48 This latter reaction involves the condensation of ethyl isocyanoacetate with a 

nitro compound 2.38 in the presence of tetrabutylammonium bromide (TBABr), afforded 

compound 2.39 in 40% yield.48 Iodination of 2.39 followed by N-protection of the 

iodopyrrole using tert-butyloxycarbonyl (BOC) affordes 2.40 in quantitative yield. 

Ullman coupling of 2.40 produced the tetra-β-substituted bipyrrole 2.41 in 25% yield. 

Reaction with DMF and POCl3 produces α,α’-diformyl bipyrrole 2.33 in near 

quantitative yield.49 Bipyrrole 2.33 was subjected to McMurry coupling conditions 

(TiCl4, Zn, and CuCl) in THF, which afforded etioporphycene 2.37 in 6% yield.49 The 

etioporphycene nickel(II) complex 2.43 was obtained in 90% yield by adding four 

equivalents of nickel(II) acetate salt in boiling acetic acid.22 Etioporphycene 2.37 and the 

corresponding etioporphycene nickel(II) complex 2.43 were characterized by standard 

spectroscopic techniques. The results from the spectroscopic analyses were in accord 

with what is reported in the literature.50, 22  
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Scheme 2.5: Synthesis of β-β’-substituted bipyrrole 2.4149 and etioporphycene 2.37.50 
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conditions, only starting material was recovered. This failure was attributed to steric 

repulsions between the ferrocene derivative and the ethyl groups present on the β-pyrrolic 

positions in porphycene 2.43. However, a successful strategy was found that involved 

reacting compound 2.43 with dimethyl forrmamide (DMF) in the presence of 

phosphorous oxychloride (POCl3) in 1,2-dicloroethane at 50 ºC.22 This afforded 9-formyl 

etioporphycene in 36% yield. As shown in Figure 2.12, the 1H NMR of 2.44 spectrum 

revealed the appearance of a sharp singlet at δ = 11.62 ppm corresponding to the 

hydrogen in the aldehyde group, as well as splitting of the porphycene peaks due to the 

loss of symmetry in the macrocycle. This spectrum was in accordance with what was 

reported by Kadish and coworkers.22 

 

 

Figure 2.12: 1H NMR spectra of a) etioporphycene-Ni(II) complex, 2.43, b) 9-
formyletioporphycene-Ni(II) complex, 2.44. * Denotes peaks ascribed to the 
NMR solvent. 
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A single crystal of 9-formyletioporphycene-Ni(II) 2.44 was obtained by slow 

evaporation of CH2Cl2. The crystals corresponding to 2.44 grew as clusters of thin, dark 

green needles. X-ray crystallographic analysis revealed that in 2.44 the Ni cation resides 

on a position with site symmetry 2/m. This characteristic imparts a loss of symmetry of 

the ligand. The aldehyde group is disordered about four equivalent positions in the crystal 

and the atoms of the aldehyde group were assigned site occupancy factors of ¼. To the 

best of our knowledge, this is the first X-ray structure for a of 9-formyletioporphycene-

Ni(II) complex (cf. Figure 2.13). 

   

Figure 2.13: Two different views of 2.44. Displacement ellipsoids are scaled to the 50% 
probability level. The Ni cation resides within the cavity on a position with 
crystallographic site symmetry of 2/m at ½, ½, ½. The crystallographic 
symmetry imposes a disorder on the aldehyde group around four equivalent 
positions on the ligand.   

 

2.6 Synthesis of 9-Substituted Etioporhycenes Through an Ethenyl Spacer 

Compound 2.44 was envisioned as a good building block for the synthesis of 

ferrocenyletioporphycenes. In this case, a ferrocene ylide could be attached to 2.44 via 

Wittig condensation using a similar synthetic route similar to that described by Wrighton 
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for the synthesis of ferrocenylvinylporphyrins 2.34 and 2.35 (cf. Scheme 2.4 in Section 

2.5.2).44 As shown in Scheme 2.6, (ferrocenylmethyl)-triphenylphosphonium iodide 2.46 

was synthesized according to the synthetic route described by Pauson and Watts.53 

Compound 2.46  was deprotonated with either n-butyl lithium (n-BuLi) or potassium t-

butoxide (KtBuO) under air and moisture free conditions in tetrahydrofuran (THF) at -78 

ºC. Once the ylide 2.46 was formed, it was added to the solution containing porphycene 

2.44 in THF to obtain dark purple solution, which changed to blue-green color after 

quenching with small quantities of methanol.  

 

 
 

Scheme 2.6: Synthesis of (ferrocenylmethyl)triphenylphosphonium iodide 2.46 and 
attempted synthesis of 9-ferrocenylvinyletioporphycene 2.45. 
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As shown in Figure 2.14, 1H NMR spectroscopic analysis of the blue-green 

product obtained after chromatography purification provided initial support for the 

assumption that compound 2.45 had been obtained. The NMR spectrum of 2.45 displayed 

two new signals at δ = 8.44 to 6.57 ppm, respectively that were assigned to the ethenyl 

group. Also, a set of multiplets at δ = 7.70 and 7.54, and 5.22, 4.93, and 4.43 ppm that 

were seen that were ascribed to the ferrocenyl group. However, no satisfactory analysis 

of this putative product could be obtained via high-resolution spectrometry (i.e., (CI+) 

m/z found 603.3).  

 

 
 

Figure 2.14: 1H NMR spectra of the product from Scheme 2.6 that was tentatively 
considered to be 9-ferrocenylvinylporphycene 2.45. The spectrum was 
recorded in CDCl3. * Denotes peak ascribed to the NMR solvent.  
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The above results provided a motivation to explore whether the methyl subtituents 

on the β-pyrrolic positions in 2.44 were preventing reaction with the ylide due to steric 

hindrance. Thus, meso substituted porphycenes 2.47 and 2.48, with ethenyl bridges were 

synthesized. As shown in Scheme 2.7, the ylide 2.49 was obtained by deprotonation of 

the benzyltriphenylphosphonium chloride with lithium bis(trimethylsilyl)amide 

(LHMDS) in dry THF at -78ºC. The resulting yellow solution was added to a solution of 

2.44 in THF to give 9-benzylethenyletioporphycene 2.47 in 31% yield. The synthesis of 

porphycene 2.48 was achieved by reacting formylporphycene 2.44 with 

carbethoxymethylene triphenyl phoshorane in xylenes at 144 ºC to afford 9-

(propenoate)etioporphcene 2.48 in 44% yield.   

 

 

Scheme 2.7: Synthesis of 9-benzyethenylletioporphycene 2.47 and 9-
(propenoate)etioporphycene 2.48. 
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1H NMR spectroscopic analysis of porphycene 2.47 carried out in CDCl3 at RT, 

revealed the appearance of two new doublets at δ = 8.76 and 7.16 ppm, which were 

assigned to the –CH= of the ethenyl group on the meso position of the macrocycle. Also, 

a set of multiples at δ = 7.74-7.33 ppm, corresponding to the benzyl group were 

identified (cf. Figure 2.15). The 1H NMR spectrum of porphycene 2.48 recorded in CDCl3 

also displayed new doublets at δ = 9.42 ppm and 6.74 ppm. These doublets were ascribed 

to the ethenyl group linking the ester group to the macrocyclic core. A new set of signals 

at δ = 4.43 and 1.43 ppm, corresponding to the ethyl group in the ester was seen (cf. 

Figure 2.15).  
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Figure 2.15: 1H NMR spectra of porphycenes a) 2.47 and b) 2.48 recorded in CDCl3. * 
Denotes peak ascribed to the NMR solvent. 
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yield after chromatographic purification. Upon the reduction of the ester group to the 

corresponding alcohol 2.49, the 1H NMR spectrum of compound 2.49 recorded in CDCl3, 

revealed the appeareance a new set of signals at δ = 9.12 and 6.56 ppm in the form of a 

doublet and a multiplet, respectively. These peaks were assigned to –CH= of the ethenyl 

group on the meso position of the porphycene. Additionally, a broad doublet at δ = 4.56 

ppm was identified and assigned to the corresponding to the –CH2- subunit bound to the 

alcohol group (marked as “h” in Figure 2.16). A broad singlet at δ = 1.55 ppm 

corresponding to the OH group (cf. Figure 2.16). 
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Figure 2.16: 1H NMR spectrum of porphycene 2.49 recorded in CDCl3. * Denotes peak 
ascribed to the NMR solvent. 

 

 
Countless efforts using various conditions were made to obtain single crystals of 

porphycene 2.48 suitable for X-ray diffraction analyses. Unfortunately, under all the 

attempted crystallization conditions (i.e., slow diffusion of hexanes, pentane, or diethyl 

ether into CH2Cl2, 1,2-dichloroethane, chloroform, THF, benzene, acetonitrile, or 

dichlorobenzene, or slow evaporation of the same solvents mentioned before), only 

amorphous solids were obtained. On the other hand, a single crystal of compound 2.49 

was obtained as dark blue squares, and these crystals were analyzed by X-ray diffraction. 

However, the crystals obtained did not refract with a good refinement. Nevertheless, for 

the sake of completeness, the crystal structure of compound 2.49 is presented in Figure 

2.17. The insertion of a propenol group induces a distortion from planarity leading to 

N N

NN

Ni

a

b

cd

d

e

OH

f

g

h

aa

e

b

h
gf 

d

c OH 

! (ppm) 

* 



	
   95	
  

ruffled porphycene core. Presumably, this is the result of steric congestion between the 

ethyl groups on the β-pyrrolic position and the propenol group.	
    

 

  
 

Figure 2.17: Two different views of the low resolution X-ray structure of 2.49. Hydrogen 
atoms have been removed from both views for clarity. 

 

2.7 Spectral Features 

The absorption spectra of 9-substituted etioporphycenes depend largely on the 

nature of the specific substituent.54 In fact, relative to the etioporphycene nickel(II) 

complex 2.43, 9-substitution with an aldehyde, a ethenylbenzene, and a propeonate 

groups, induce significant perturbations. As shown in Figure 2.18 and Table 2.1, for 

porphycenes 2.44, 2.47, and 2.48, the presence of a substituent in the meso position is 

reflected in a clear broadening of the visible spectral features (Soret and Q-like bands). In 

the case of 2.44 and 2.48   the introduction of an electron withdrawing group on the meso 

position induces a red shift, as well as a reduction in the relative intensities of both the 

Soret and Q bands. For instance, the absorption spectrum of 2.44 is characterized a red 

shift the Soret band (by 25 nm) as compared to the absorption spectrum of 2.43 (i.e., from 

389 and 414 nm, for 2.43 and 2.44, respectively). This shift is attributed to the stronger 

absorption of blue light by porphycenes 2.44 and 2.48 (cf. Table 2.1 and Figure 2.18). 

The peak at the longest wavelength in all the porphycenes absortion spectra is red-shifted. 
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In fact, a larger hypsochromic effect was observed for 9-formyletioporphycene 2.44 and 

9-benzylethenyletioporphycene 2.47. Here, the longest wavelength spectral feature is 

shifted by 53 and 35 nm, respectively, in comparison to 2.43 (i.e., from 604 to 657 nm for 

2.43 and 2.44, and 604 to 639 nm for 2.43 and 2.47, respectively). Since these absorption 

bands are attributed to the transition from the HOMO to the LUMO energy level,6, 52, 54-56 

the observed red shift in the absoption spectra provides evidence for a decreasing 

HOMO-LUMO energy gap as a consequence of the 9-susbtituent.  

Analysis of the absorption spectral features of porphycene 2.49 revealed that meso 

substitution with a propenol group induces a more modest red shift (ca. 10nm) in the 

Soret band than those observed for porphycenes 2.44, 2.47, and 2.48, in comparison to 

2.43.  In the case of porphycenes 2.47 and 2.49, the relative intensity of all the bands is 

enhanced (cf. Tale 2.1). None of the 9-substituted macrocycles displayed appreciable 

fluorescence intensity when excited at λ = 600 and 400 nm  

 

Compd Macrocycle ID λmax (nm) (ε × 10-3 M-1 cm-1)   
2.37 EtioPc 359sh 382 

(144.3) 
570 

(32.2) 
617 

(18.4) 
657 

(30.0) 
2.43 EtioPc-Ni 364sh 

(450.0) 
389 

(138.0) 
604 

(13.9) 
- - 

2.44 EtioPc-Ni-CHO - 414 
(134.0) 

615  
(4.2) 

657 
(35.0) 

 

2.47 EtioPc-Ni-Bz - 412 
(340.2) 

639 
(155.5) 

  

2.48 EtioPc-Ni-ester - 419 
(198.9) 

636 
(46.0) 

  

2.49 EtioPc-Ni-COH - 399 
(289.0) 

629 
(117.5) 

  

 

Table 2.1: UV-vis data for compounds 2.37-2.49 in CH2Cl2. 

 



	
   97	
  

a)      b) 
 
 

  
  

c)      d) 

  

 

Figure 2.18: Absorption spectra of porphycenes 2.43 (blue) and: a) 2.44 (red), b) 2.47 
(red), c) 2.48 (red), and d) 2.49 (red). All the solutions had a concentration 
of 2.5 × 10-6 M in dry CH2Cl2 at 298 K. 
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2.8 Electrochemistry 

The redox properties of the 9-susbtituted porphycenes obtained were analyzed by 

ciclyc voltametry. In agreement to earlier studies,22 the electrochemistry of porphycenes 

2.43 and 2.44, were characterized by the presence of two well-defined oxidation and two 

reduction waves (cf. Table 2.2 and Figure 2.19). Cyclic voltamograms of porphycenes 

2.37, 2.43, 2.44, 2.48, and 2.49 were recorded in anhydrous benzonitrile, using 0.1 M 

TBAPF6 as the supporting electrolyte. These analyses revealed the presence of redox 

waves similar to those of the unsubstituted nickel(II) complex 2.43, Table 2.3. However, 

the oxidation potential peaks of the 9-substituted porphycenes appeared to be broader. In 

fact, this effect is enhanced when an ethenyl spacer was introduced. The absolute 

potential separation (ΔE1/2) between these two reductions of the 9-substituted 

porphycenes varies between 200 and 340 mV. Compound 2.47 could not be studied by 

electrochemical methods due to the small amount of sample obtained. 

In addition, easier reductions and harder oxidations were observed for 9-

formylporphycene 2.44 relative to 2.43. Particularly, the direct substitution of a formyl 

group on the porphycene 2.44 produced a system that was easier to reduce than the 

unsubtituted porphycenes 2.37 and 2.43. Shifts of 14 and 27 mV, respectively in the 

corresponding waves were observed.  Compared with other 9-subtituted porphycenes 

containing an ethenyl spacer (e.g., porphycenes 2.48 and 2.49), porphycene 2.44 proved 

harder to oxidize but easier to reduce. For instance, compound 2.44 is reduced at –0.86 V 

in benzonitrile as compared to compound 2.48 and 2.49 where the electroreduction 

occurs at –1.08, and –1.15 V, respectively, under the same conditions (cf. Table 2.2 and 

Figure 2.19). The lower reduction potential values and the decrease in the 

electrochemical HUMO-LUMO gap (HLG) of 9-formyletioporphycene 2.44 with respect 

to 2.43, is evidence for a higher level of electron acceptor character arising through direct 

substitution with an electron withdrawing group (formyl group) in the meso position. 
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This effect may reflect a redistribution of the electron density present in the macrocyclic 

core.  

 

 

Table 2.2: Potentials (V vs SCE) for the oxidation and reduction of investigated 
etioporphycene, 2.37, and the 9-substituted porphycenes 2.43, 2.44, 2.48, and 
2.49 in benzonitrile containing 0.1 M TBAPF6. The absolute potential 
difference (ΔE1/2) was calculated between the two reduction peaks. HOMO-
LUMO gap (HLG) was calculated between the first reduction potential and 
the first oxidation potential. Peak potentials at 50 mV/s. 

 
 

The functionalization of etioporphycene with a propenol group on the meso 

position (compound 2.49), leads not only to a loss of symmetry but also an electron 

donating inductive effect. These factors are thought to affect the electronics of the 

porphycene. Evidence for this perturbation is seen when the electrochemistry of the 9-

propenoletioporphycene 2.49 is compared with that of the etioporphycene-Ni(II) complex 

2.43. Under the same electrochemical conditions 2.49 proved harder to reduce. For 

instance, two reductions at E1/2 = –1.15 and –1.45 V for 2.49, and – 1.13 and – 1.40 V for 

2.43. Unfortunately, the HUMO-LUMO gap of 2.49 could not be calculated due to 

irreversible nature of the oxidation processes (cf. Table 2.2).  

 

   E1/2, V vs SCE   
  Ring oxidation  Ring 

reduction 
 

Compd Macrocycle ID 2nd 1st 1st 2nd HLG (V) ΔE1/2 (mV) 
2.37 EtioPc - - -1.00 -1.20 - 200 
2.43 EtioPc-Ni - 0.76 -1.13 -1.40 1.89 270 
2.44 EtioPc-Ni-CHO - 0.95 -0.86 -1.20 1.81 340 
2.48 EtioPc-Ni-ester - - -1.10 -1.35 - 220 
2.49 EtioPc-Ni-COH - - -1.15 -1.45 - 300 
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Figure 2.19: Cyclic voltammograms recorded at 298 K for 0.25 mM solutions of 
etioporphycenes 2.37, 2.43, 2.44, 2.48, and 2.49. All voltammograms were 
recorded using anhydrous benzonitrile. The electrodes were a glassy carbon 
(Ø = 3 mm2) for the working electrode, a Pt wire as the counter electrode 
and a saturated calomel electrode, employed as the reference electrode 
(SCE). The supporting electrolyte was TBAPF6 (0.1 M). 
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2.9 Conclusions 

The synthesis of several 9-substituted porphycenes was successfully 

accomplished. 9-substituted porphycenes 2.44, 2.47, 2.48, and 2.49 were obtained either 

by direct formylation of the porphycene-Ni(II) complex or via use of a Wittig reaction 

between 2.44 and the corresponding ylide. These porphycenes were characterized by 

optical spectroscopy, 1H and 13C NMR spectroscopy, and electrochemical analysis. In the 

case of compounds 2.44 and 2.49, the characterization also included single crystal 

analysis. Porphycene 2.44 was found to be easier to reduce and harder to oxidize than the 

initial nickel complex 2.43. This finding was considered to reflect a negative inductive 

effect produced by the formyl group on the macrocyclic core. Conversely, 9-substitution 

of etioporphycenes through a conjugated spacer group (ethenyl) resulted in macrocycles 

that are harder to reduce but easier to oxidized. However, these systems did not display 

reversible electrooxidation features in the cyclic voltammogram. Wittig coupling between 

porphycene 2.44 and the ferrocenyl ylide 2.46 was explored. Unfortunately, the resulting 

product, tentatively asigned as porphycene 2.45 could not be charcatrized in a definite 

manner. For instance, no satisfactory mass spectromatogram was otained. Nor were the 

characteristic ferrocene features seen by cyclic voltametry. These results, taken in 

concert, led to the conclusion that the target sought in the context of this project, namely 

the 9-ferroceneethenyletioporphycene 2.45, was simply not obtained.  
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Chapter 3: Experimental Procedures 

 

 

Prior to use, all glassware was soaked in KOH-saturated isopropyl alcohol 

overnight, then washed with water and acetone, and dried for ca. 12 h at 120 °C. 

Tetrahydrofuran (THF) was dried by passage through two columns of activated alumina. 

Acetonitrile (MeCN), methanol (MeOH), and dimethylformamide (DMF) were dried by 

passage through two columns of molecular sieves. When used as the reaction medium, 

dichloromethane (CH2Cl2) was freshly distilled from CaH2. CH2Cl2 used for 

chromatographic purifications was used as received from Fisher Scientific. Triethyl 

amine (TEA) was distilled from BaO. Hexanes were purchased from Fisher Scientific 

and used as received. All other chemicals used were purchased from Aldrich, TCI, Acros, 

or Strem and used without further purification.  

TLC analyses were carried out using Sorbent Technologies silica gel (200 mm) 

sheets. Column chromatography was performed on Sorbent silica gel 60 O (40-60 mm) or 

neutral alumina (50-200 mm, Brockman grade II). The purification of compound 1.2 was 

carried out using a Teledyne CombiFlash Companion with a neutral alumina column. 

High Performance Liquid Chromatography (HPLC) analyses were performed on a 

Shimadzu Analytical/Preparative HPLC system equipped with PDA detector and a Nova-

Pak® silica 4 μm 3.9 × 150 mm cartridge. A TRIS buffer (pH = 9)/MeCN gradient (10-

99% TRIS over 20 minutes) was used for the analysis of 1.2. A 1% TFA/MeCN gradient 

(10-99% over 20 minutes) was used to follow the hydrolysis of this compound.  

pH values were obtained using an ORION SA pH/ISE meter model 720. The 

calibrations were performed using buffer standard solutions (pH 4, 7, and 10). These 

buffer solutions were obtained form Fischer Scientific and used as received. 

 

 Nuclear magnetic resonance (NMR). NMR spectra were recorded on a Varian 

Mercury 400 MHz, a Variant MR 400 MHz, or a Agilent MR 400 MHz instrument. The 

NMR spectra were referenced to solvent and all the solvents were purchased from 

Cambridge Isotope Laboratories. All chemical shifts (δ) are reported in ppm and 
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referenced to the solvent. Chemical ionization (CI) and electrospray ionization (ESI) 

mass spectrograms, were recorded using a VG ZAB-2E instrument and a VG AutoSpec 

apparatus, respectively.  

 

Electronic parmagnetic resonance spectra (EPR). Spectra were recorded by the 

author on a Bruker EMX Plus spectrometer at 298 K using CH2Cl2 as solvent.   

 

Absorption spectra. UV-Vis absorption spectra were recorded on a Varian Cary 

5000 spectrophotometer. All the spectra were measured in dry CH2Cl2, which was 

purchased commercially and distilled from CaH2. 

 

Electrochemistry. The electrochemical measurements were carried out by 

Netzahualcoyotl Arroyo and the author in the group of Prof. Alan J. Bard at the 

University of Texas at Austin. Tetra-n-butylammonium hexafluorophosphate (TBAPF6) 

was used as the supporting electrolyte and it was recrystallized from ethanol/water (4:1) 

twice and dried at 100 °C before use. Benzonitrile (Aldrich, anhydrous, UV grade) was 

used as received after being transported unopened into an inert atmosphere drybox 

(Bosch). Cyclic voltammetry was carried out in a three-electrode cell, which consisted of 

a glassy carbon bottom used as working electrode, a platinum-wire counter electrode, and 

a saturated calomel electrode (SCE) used as a reference electrode. A model 660 

electrochemical workstation (CH instruments, Austin, TX) was used for these 

measurements with a scan rate of 0.1 V/s. A glassy carbon electrode with area of 3 mm2 

was used for all experiments. 

 

Isothermal titration calorimetry (ITC). Microcalorimetric calculations were 

carried out using an Isothermal Titration Calorimeter (ITC) purchased from Microcal 

Inc., MA. Solutions were prepared using spectral grade acetonitrile in the concentration 

range ~ 0.3 mM. These solutions were added to the calorimetry cell and 3 mM solutions 

of the tetraalkylammonium anion salt under consideration were introduced in the form of 

50-30 (3-6 μL) injections at 30 and 25 ± 0.01 ºC. The original heat pulses were 

normalized using reference titrations carried out using the same salts solution but pure 
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solvent, as opposed to a solution containing the receptor. Binding constants were 

calculated by applying either one-site or two-site models using ORIGIN software 

provided by Microcal Inc. 

 

3.1 SYNTHETIC DETAILS AND CHARACTERIZATION DATA 

 

 β-Bromoethyl acetophenone (1.38). A mixture of 3-

hydroxyacetophenone (5g, 36 mmol), dibromoethane (68.97 g, 0.36 mol), potassium 

carbonate (10.15 g, 73 mmol) and acetonitrile (150 mL) was warmed at 60 °C for 7 days. 

After cooling, the mixture was filtered through a pad of celite and concentrated under 

reduced pressure. The oily residue was purified by column chromatography over silica 

gel (hexanes / EtOAc = 7:3, v/v), yielding the compound 1.38 (7.5 g, 84.3%). 1H NMR 

(CDCl3): δ (ppm) = 7.53 (dd, J = 8 Hz, Ar-H, 1H), 7.44 (bs, Ar-H, 1H), 7.32 (t, J =  4 Hz, 

Ar-H, 1H), 7.08 (dd, J = 11.2 Hz, Ar-H, 1H), 4.29 (t, J = 6 Hz, -O-CH2CH2-Br, 2H), 3.63 

(t, J = 6 Hz, -O-CH2CH2-Br, 2H), 3.60 (s, C(O)CH3, 3H). 13C NMR (CDCl3): δ (ppm) = 

202.0, 167.4, 140.3, 130.6, 122.7, 118.8, 66.3, 29.9, 27.4. HRMS (CI+) m/z calculated 

for (C10H11O2Br) 241.9942, found 241.9944. 

  

N-(3-Phenoxyethyl-one)phthalimide (1.39). A mixture of (1.38) (7.32 g, 0.030 

mol), potassium phthalimide (6.69 g, 36 mmol), and 100 mL of anhydrous 

dimethylformamide (100 mL) was warmed at 85°C for 12 h. After cooling, 

dichloromethane was added and the resulting mixture was washed with 0.2 M aqueous 

sodium hydroxide, dried over sodium sulfate, and concentrated under reduced pressure. 

The oily residue was purified by column chromatography over silica gel (hexanes/EtOAc 

=  6:4, v/v), yielding compound 1.39 (4.5 g, 46.8%) as a white solid. 1H NMR (CDCl3): δ 

(ppm) = 7.85 (m, phthalimide Ar-H, 2H), 7.71 (m, phthalimide Ar-H, 2H), 7.51 (dd, J = 

7.2 Hz, Ar-H, 1H), 7.49 (s, Ar-H, 1H), 7.32 (t, J = 8 Hz, Ar-H, 1H), 7.06 (dd, J = 12 Hz, 

Ar-H, 1H), 4.27 (t, J = 5.6 Hz, -OCH2CH2N-, 2H), 4.11 (t, J = 5.6 Hz, -OCH2CH2N-, 

2H), 2.55 (s, C(O)CH3, 3H). 13C NMR (CDCl3): δ (ppm) = 134.1, 132.0, 129.6, 123.4, 

121.4, 120.0, 113.3, 64.9, 37.2, 26.7. HRMS (CI+) m/z calculated for (C18H15NO4) 

309.1239, found (C18H15NO4) 309.1241. 
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2-(2-(3-(1,1-Di(1 H pyrrol-2-yl)ethyl)phenoxy)ethyl)isoindoline-1,3-dione 
(1.40).  A solution of (1.39) (4.4 g, 14 mmol) was dissolved in pyrrole (28.8 g, 0.43 mol) 

and a catalytic amount of trifluoroacetic acid (4.5 mL) was added dropwise for 15 min. 

The mixture was heated at 60°C for 12 h. The crude product was obtained by dilution 

with dichloromethane, washing with 2 M aqueous sodium hydroxide. The organic 

fractions were collected and concentrated under reduced pressure. Vacuum distillation 

was then used to remove excess of pyrrole affording a brownish solid, which was purified 

by column chromatography over silica gel (hexanes/EtOAc = 8:2, v/v), yielding the 

compound 1.40 (2.15 g, 35.5%) as a pale yellow solid. 1H NMR (CDCl3): δ (ppm) = 7.83 

(m, phthalimide Ar-H, 2H), 7.81 (bs, N-H, 2H), 7.70 (m, phthalimide Ar-H, 2H), 7.12 (t, 

J = 8 Hz, Ar-H, 1H), 6.67 (dd, J = 8 Hz, Ar-H, 1H), 6.66 (m, Ar-H and CH-pyrrole, 3H), 

6.13 (m, CH-pyrrole, 2H), 5.95 (m, CH-pyrrole, 2H), 4.15 (t, J = 5.6 Hz, -OCH2CH2N-, 

2H), 4.04 (t, J = 5.6 Hz, -OCH2CH2N-, 2H), 1.99 (s, CH3, 3H). 13C NMR (CDCl3): δ 

(ppm) = 160.9, 159.5, 145.6, 130.2, 131.2, 129.7, 125.7, 122.3, 118.1, 110.0, 108.8, 

107.9, 66.7, 50.2, 25.6. HRMS (CI+) m/z calculated for (C26H23N3O3) 425.1739, found 

(C26H23N3O3) 425.1827. 

 

meso-N-(3-Phenoxyethylamine)-3-one (1.41). A mixture of 1.40 (1 g, 2 mmol), 

hydrazine hydrate (0.19 g, 2.4 mmol) was dissolved in methanol  (15 mL). The mixture 

was heated at reflux for 2 h. The cooled mixture was filtered and the filtrate was 

concentrated under reduced pressure to obtain a white solid. The solid obtained was 

suspended in diethyl ether and treated with 40% w/w aqueous potassium hydroxide. The 

compound was extracted into diethyl ether (3 × 50 mL). The combined organics were 

dried over Na2SO4 and concentrated under reduced pressure to give a light yellow oil 1.41 
(0.62 g, 89.9%). 1H NMR (CDCl3): δ (ppm) = 7.83 (bs, N-H, 2H), 7.17 (t, J = 8 Hz, Ar-

H, 1H), 6.75-6.67 (m, Ar-H, 3H), 6.64 (m, C-H pyrrole, 2H), 6.15 (m, C-H pyrrole, 2H), 

5.96 (m, C-H pyrrole, 2H), 3.88 (t, J = 4.8 Hz, -OCH2CH2N-, 2H), 3.00 (t, J = 5.2 Hz, -

OCH2CH2N-, 2H), 2.02 (s, CH3, 3H). No 13C NMR data were obtained for this sample. 

HRMS (CI+) m/z calculated for (C18H21N3O) 295.1685, found (C18H21N3O) 295.1718. 
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Bis-dipyrromethane (1.41a). 2,6-Pyridinecarbonyl dichloride (1.24 g, 6 mmol) 

and the compound 1.41 (3.6 g, 1.2 mmol) were dissolved in THF (200 mL), TEA (1.2 g, 

1.2 mmol) was added to the mixture, which was let stir for 3 h. The solution was then 

washed with a saturated solution of NaHCO3 (100 mL), and extracted with CH2Cl2 (4 × 

50 mL). The combined organic layers were dried over Na2SO4 and concentrated under 

reduced pressure. The crude materials obtained in this way was purified by column 

chromatography over silica gel (CH2Cl2/MeOH = 98:2, v/v), yielding the compound 

1.41a (0.82, 18.7%). 1H NMR (CDCl3): δ (ppm) = 8.35 (t, J = 6 Hz, C(O)N-H, 2H), 8.23 

(dd, J = 8 Hz, C-H pyridine, 2H), 8.08 (bs, N-H, 4H), 7.92 (t, J = 8 Hz, C-H pyridine, 

1H), 7.09 (t,  J = 7.6 Hz, Ar-H, 1H), 6.71-6.64 (m, Ar-H, 6H), 6.59 (m, C-H pyrrole, 

4H), 6.11 (m, C-H pyrrole, 4H), 5.93 (m, C-H pyrrole, 4H), 3.98 (t, J = 4.8 Hz, -

OCH2CH2N-, 4H), 3.72 (q, J = 5.6 Hz, -OCH2CH2N-, 4H), 1.98 (s, CH3, 6H). No 13C 

NMR data were obtained for this sample. HRMS (ESI+) m/z calculated for (C43H43N7O4) 

721.8577, found (C43H43N7O4Na) 744.3271. 

 
Bis-dipyrromethane tetraaldehyde (1.42). To a solution of 1.41a (0.5 g 0.69 

mmol) in DMF (5 mL), phosphorous oxychloride (POCl3) (0.43 g, 2 mmol) was added 

dropwise for 15 min. The reaction mixture was stirred for 1 h. Water was added to the 

mixture and 2 M potassium hydroxide was added until the pH was strongly basic to give 

a yellow solid, which was collected by filtration and washed with plenty of water. This 

yielded the compound 1.42 (0.3 g, 52%) as a pale yellow solid. 1H NMR (DMSO-d6): δ 

(ppm) = 11.98 (bs, N-H, 4H), 9.51 (m, C(O)N-H, 2H), 8.39 (s, CHO, 4H), 8.17 (m, C-H 

pyridine, 3H), 7.22 (t, J = 8.4 Hz, Ar-H, 2H), 6.92 (s, Ar-H, 2H), 6.89 (m, C-H pyrrole, 

4H), 6. 54 (d, J = 7.2 Hz, Ar-H, 2H), 5.89 (m, C-H pyrrole, 4H), 4.07 (t, J = 6 Hz, -

OCH2CH2N-, 4H), 3.70 (q, J = 5.6 Hz, -OCH2CH2N-, 4H), 2.05 (s, CH3, 6H). 13C NMR 

(DMSO_d6): δ (ppm) = 184.7, 179.5, 163.9, 158.5, 148.3, 146.0, 133.6, 114.7, 110.7, 

88.6, 55.7, 45.7, 27.8. HMRS (ESI+) m/z calculated for (C43H43N7O8) 833.3932, found 

(C43H43N7O8Na) 856.3076. 

 

Strapped calixpyrrole Schiff-base macrocycle (1.2). To a solution of 1.42 (0.1 

g, 0.12 mmol) in a mixture CH2Cl2/MeOH (1:9, v/v, 150 mL) was added o-
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phenyldiamine  (0.025 g, 0.24 mmol), and p-toluensulfonic acid (0.091 g, 0.48 mmol). 

The reaction mixture was then stirred at room temperature for 18 h. After the reaction 

deemed was completed (as judged by TLC, neutral alumina, CH2Cl2/MeOH, 9:1, v/v) the 

CH2Cl2 was removed under reduced pressure. Triethylamine was added dropwise until an 

orange precipitate was formed. The orange powder was collected by filtration, dissolved 

in CH2Cl2 (1 mL), and purified using a Teledyne CombiFlash Companion with a neutral 

alumina column (CH2Cl2/MeOH = 9.9:0.1, v/v), yielding compound 1.2 (0.012g, 10.3%) 

as a pale yellow solid. 1H NMR (CD2Cl2): δ (ppm) = 8.34 (d, J = 7.6 Hz, C(O)N-H, 2H), 

8.14 (s, C-H imine, 4H), 7.99 (t, J = 7.2 Hz, C-H pyridine, 2H), 7.87 (t, J = 7.2 Hz, Ar-H, 

2H), 7.19-7.07 (m, Ar-H, 8H), 7.04 (s, Ar-H, 2H), 6.89 (d, J = 7.2 Hz, Ar-H, 2H) 6.83 (d, 

J = 7.2 Hz, Ar-H, 2H), 6.50 (d, J = 4 Hz, C-H pyrrole, 4H), 5.76 (d, J = 3.6 Hz, C-H 

pyrrole, 4H), 4.15 (t, J = 6 Hz, -OCH2CH2N-, 4H), 3.93 (q, J = 6.4 Hz, -OCH2CH2N-, 

4H), 2.48 (s, CH3, 6H). HMRS (ESI+) m/z calculated for (C59H51N11O4) 978.41949, 

found (C59H52N11O4) 978.41983. 

 

2-(5,5-Di(1H-pyrrol-2-yl)hexyl)isoindoline-1,3-dione (1.48). A solution of 1.47 

(10 g, 43 mmol) was dissolved in pyrrole (28.8 g, 1.297 mol) and catalytic amount of 

trifluoroacetic acid (1.5 mL) was added dropwise for 15 min in an ice bath. The mixture 

was stirred at room temperature for 2 h. The crude product was obtained by dilution with 

dichloromethane and washing with 2 M aqueous sodium hydroxide. The organic fractions 

were collected, washed with water (60 mL), saturated sodium chloride solution (60 mL), 

dried over Na2SO4, and concentrated under reduced pressure. Removal of excess of 

pyrrole via vacuum distillation afforded a brownish solid, which was purified by column 

chromatography over silica gel (hexanes/EtOAc = 8:2, v/v). This yielded compound 1.48 

(12.39 g, 84.1%) as a pale yellow solid. 1H NMR (CDCl3): δ (ppm) = 7.83 (m, 

phthalimide Ar-H, 2H), 7.71 (m, phthalimide Ar-H, 2H), 6.61 (s, C-H pyrrole, 2H), 6.10 

(m, C-H pyrrole, 2H), 6.05 (m, C-H pyrrole, 2 H), 3.65 (t, J = 6 Hz, -CH2CH2CH2CH2N-, 

2H), 2.02 (m, -CH2CH2CH2CH2N-, 2H), 1.66 (m, -CH2CH2CH2CH2N-, 2H), 1.57 (s, CH3, 

3H), 1.29 (m, -CH2CH2CH2CH2N-, 2H). 13C NMR (CD2Cl2): δ(ppm) = 168.5, 137.8, 

133.9, 133.8, 133.7, 132. 1, 123.1, 123.1, 117.7, 116.9, 108.1, 107.7, 104.5, 40.3, 38.9, 
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38.7, 37.5, 28.7, 26.4, 21.4. HMRS (CI+) m/z calculated for (C22H23N3O2) 361.4450, 

found (C22H24N3O2) 362.4490. 

 

5,5-Di(1H-pyrrol-2-yl)hexan-1-amine (1.49). A mixture of 1.48 (10 g, 29 mmol) 

and hydrazine hydrate (2.37 g, 30.2 mmol) were dissolved in ethanol  (200 mL). The 

mixture was refluxed for 2 h. The cooled mixture was filtered and the filtrate was 

concentrated under reduced pressure to obtain a white solid. The solid obtained was 

suspended in diethyl ether (10 mL) and treated with 40% w/w aqueous potassium 

hydroxide to dissolve the solid in the ethereal fraction. The compound was extracted into 

diethyl ether (3 × 50 mL). The combined organic fractions were dried over Na2SO4 and 

concentrated under reduced pressure to give a light yellow oil 1.49 (6.16 g, 98.5%). 1H 

NMR (CDCl3): δ (ppm) = 8.07 (bs, N-H, 2H), 6.59 (bs, C-H pyrrole, 2H), 6.12 (bs, C-H 

pyrrole, 2H), 6.06 (bs, C-H pyrrole, 2H), 3.68 (t, J = 7.2 Hz, -CH2CH2CH2CH2N-, 2H), 

2.63 (bs, NH2, 2H), 1.97 (m, -CH2CH2CH2CH2N-, 2H), 1.56 (s, CH3, 3H), 1.40 (m, -

CH2CH2CH2CH2N-, 2H), 1.25 (m, -CH2CH2CH2CH2N-, 2H). 13C NMR (CDCl3): δ (ppm) 

= 161.5, 142.9, 122.0, 115.4, 107.4, 60.1, 40.1, 21.9, 14.4. HRMS (CI+) m/z calculated 

for (C14H21N3) 231.3430, found (C14H22N2) 332.3335. 

 

Bis-dipyrromethane (1.49a). 2,6-Pyridinecarbonyl dichloride (3.27 g, 16 mmol) 

and compound 1.49 (6.96 g, 32 mmol) were dissolved in dry THF (200 mL). TEA (3.27 

g, 14 mmol) was added to the mixture, which was stirred for 3 h in an ice bath. The 

solution was washed with a saturated solution of NaHCO3 (100 mL) and then extracted 

into CH2Cl2 (4 × 50 mL). The combined organic layers were dried over Na2SO4 and 

concentrated under reduced pressure. The crude product obtained in this way was 

purified by column chromatography over silica gel (DCM/ MeOH = 98:2, v/v), yielding 

the compound 1.49a (5 g, 26.3%). 1H NMR (CDCl3): δ (ppm) = 8.36 (d, J = 7.6 Hz, C-H 

pyridine, 2H), 8.04 (t, J = 8 Hz, C-H pyridine, 1H), 7.92 (bs, N-H, 2H), 7.60 (t, J = 7.2 

Hz, C(O)N-H, 2H), 6.59 (m, C-H pyrrole, 4H), 6.10 (m, C-H pyrrole, 4H), 6.05 (m, C-H 

pyrrole, 4H), 3.50 (m, -CH2CH2CH2CH2N-, 4H), 2.07 (m, -CH2CH2CH2CH2N-, 4H), 1.65 

(m, -CH2CH2CH2CH2N-, 2H),  1.57 (s, CH3, 6H), 1.29 (m, -CH2CH2CH2CH2N-, H). 13C 

NMR (CDCl3): δ (ppm) = 163.6, 148.8, 139.0, 137.9, 124.9, 116.9, 107.6, 104.4, 40.5, 
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38.9, 30.0, 26.5, 21.5. HRMS (ESI+) m/z calculated for (C35H43N7O2) 593.7760, found 

(C35H43N7O2Na) 616.7668. 

 

Bis-dipyrromethane tetraaldehyde (1.46). To a solution of 1.49a (g 0.69 mmol) 

in DMF (5 mL), phosphorous oxychloride (POCl3) (0.43 g, 2 mmol) was added dropwise 

for 15 min and stirred for 1 h. Water was added to the mixture along with 2 M potassium 

hydroxide until the pH was strongly basic. This gives a yellow solid, which was collected 

by filtration and washed with plenty of water, yielding the compound 1.46 (0.3 g, 52%) 

as a pale yellow solid. 1H NMR (DMSO-d6): δ (ppm) =  11.77 (bs, N-H, 4H), 9.34 (s, 

CHO, 4H), 9.24 (t,  J = 6 Hz, C(O)N-H, 2H), 8.13 (m, -CH2CH2CH2CH2N-, 4H), 6.85 (d, 

J = 4 Hz, C-H pyrrole 4H), 6.04 (d, J = 3.6 Hz, C-H pyrrole, 4H), 2.18 (m, -

CH2CH2CH2CH2N-, 4H), 1.65 (s, CH3, 6H), 1.54 (m, -CH2CH2CH2CH2N-, 4H), 1.12 (m, 

-CH2CH2CH2CH2N-, 4H). 13C NMR (DMSO_d6): δ (ppm) = 179.1, 163.3, 149.1, 147.2, 

133.2, 124.5, 108.8, 30.2, 22.1. HMRS (ESI+) m/z calculated for (C43H43N7O8) 833.3932, 

found (C43H43N7O8Na) 856.3076. 

 

Strapped calixpyrrole Schiff-base macrocycle (1.3). To a solution of 1.46 (0.02 

g, 0.028 mmol) in a mixture of CH2Cl2/MeOH (1:9, v/v, 50 mL) was added o-

phenyldiamine (0.0061 g, 0.057 mmol) and p-toluensulfonic acid (0.02 g, 0.11 mmol). 

The mixture was stirred at room temperature for 18 h. After the reaction was deemed 

complete (TLC neutral alumina CH2Cl2/MeOH = 9:1, v/v), the CH2Cl2 was removed 

under reduced pressure. Triethylamine was added dropwise until an dark yellow 

precipitate was formed. The dark yellow powder was collected by filtration to give 1.3 

(0.0097g, 40%) as a yellow powder. 1H NMR (CD2Cl2): δ (ppm) = 8.27 (d, J = 7.6 Hz, C-

H pyridine, 2H), 8.26 (s, C-H imine, 2H), 8.05 (s, C-H imine, 2H), 7.95 (t, J = 6 Hz, C-H 

pyridine, 1H), 7.85 (t, J = 4.4 Hz, C(O)N-H, 1H), 7.44 (t, J = 4.4 Hz, C(O)N-H, 1H), 

7.08 (m, Ar-H, 4H), 7.00 (m, Ar-H, 4H), 6.95 (m, Ar-H, 4H), 6.49 (d, J = 3.6 Hz, C-H 

pyrrole, 2H), 6.45 (d, J = 3.6 Hz, C-H pyrrole, 2H), 6.06 (d, J = 3.6 Hz, C-H pyrrole, 

2H), 5.98 (d, J = 3.6 Hz, C-H, 2H), 3.60 (m, -CH2 alkyl, 2H), 2.23 (m, -CH2 alkyl, 2H), 

1.91 (s, -CH3, 3H), 1.73 (s, CH3, 3H), 1.64 (m, -CH2 alkyl, 4H), 1.52 (m, -CH2 alkyl -, 

4H),1.30 (m, -CH2 alkyl, 2H), 1.19 (m, -CH2 alkyl, 2H). 13C NMR (CDCl3): δ (ppm) = 
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215.0, 163.0, 148.3, 145.8, 144.7, 130.7, 130.5, 126.4, 126.3, 124.6, 118.1, 117.8, 117.3, 

107.8, 106.5, 39.5. HMRS (ESI+) m/z calculated for (C51H52N11O2) 854.0440, found 

(C51H52N11O2+1) 850.4300. Anal. Calc. for C55H65Cl2N11O5 [1.3·(CH3OH)3CH2Cl2]:  C, 

64.04; H, 6.35; N, 15.49. Found: C, 64.38; H, 6.37; N, 15.89. 

 

 

Strapped calixpyrrole Schiff-base macrocycle-Pd complex (1.50). To a solution 

of 1.3 (0.026 g, 0.12 mmol) in CH2Cl2 (5 mL) was added palladium(II) acetate (0.05 g, 

0.059 mmol). The mixture was stirred at room temperature for 30 min. After this time, 

triethylamine (TEA) was added (1 mL) and the compound was precipitated with pentane. 

The resulting brown solid was collected by filtration, dissolved in CH2Cl2 (1 mL), and 

purified by column chromatography, silica gel (CH2Cl2/MeOH = 98:2, v/v), yielding the 

compound 1.50 (0.017 g, 27.3%) as a dark orange solid. 1H NMR (CDCl3): δ (ppm) = 

8.36 (m, C-H pyridine, 2H), 7.99 (t, J = 7.6 Hz, C-H pyridine, 1H), 7.92 (t, J = 6.8 Hz, 

C(O)N-H 1H), 7.47 (t, J = 7.6 Hz, C(O)N-H, 1H), 7.32 (s, C-H imine, 2H), 7.30 (s, C-H 

imine, 2H), 6.85 (m, Ar-H, 4H), 6.75-6.69 (m, C-H pyrrole, 4H), 6.68 (m, Ar-H, 4H), 

6.23 (d, J = 4 Hz, C-H pyrrole, 2H), 6.17 (d, J = 4 Hz, C-H pyrrole, 2H), 3.61 (m, -CH2 

alkyl -, 2H), 3.06 (m, -CH2 alkyl -, 2H), 2.25 (m, -CH2 alkyl -, 2H), 1.72 (m, -CH2 alkyl -

, 2H), 1.67 (s, CH3, 3H), 1.32 (s, CH3, 3H), 1.23 (m, -CH2 alkyl, 2H), 1.12 (m, -CH2 

alkyl -, 2H), 0.86 (t, J = 7.6 Hz, -CH2 alkyl, 2H), 0.73 (m, -CH2 alkyl, 2H). 13C NMR 

(CD2Cl2): δ (ppm) = 163.1, 162.9, 159.7, 159.3, 151.9, 149.5, 142.7, 142.5, 138.9, 137.8, 

137.2, 126.4, 126.2, 124.8, 124.7, 123.2, 122.9, 118.1, 117.9, 108.3, 107.48, 47.7, 46.9, 

46.8, 39.7, 39.5, 38.2, 35.4, 29.7, 28.5, 24.0, 23.9, 22.9. HMRS (ESI+) m/z calculated for 

(C51H47N11O2Pd2) 1057.1984, found (C51H47N11O2NaPd2) 1082.1908. Anal. Calc. for 

C53H55Cl2N11O4Pd2 [1.50·(CH3OH)2]:  C, 56.69; H, 4.94; N, 13.72. Found: C, 56.72; H, 

4.56; N, 13.75. 

 

 

Strapped calixpyrrole Schiff-base macrocycle-Ni complex (1.51). To a solution 

of 1.3 (0.027 g, 0.032 mmol) in 1,2-dichloroethane (5 mL) was added a solution of 

nickel(II) acetylacetonate (0.016 g, 0.063 mmol). The mixture was stirred at room 
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temperature for 30 min. After this time, triethylamine (TEA) was added (1 mL) and the 

mixture was sirred at 50 ºC for 18 h. The solvent was reduced to 1 mL under reduced 

pressure. The material obtained in this way was purified by column chromatography over 

neutral alumina grade III (CH2Cl2/MeOH = 95:5, v/v), yielding the compound 1.51 
(0.007 g, 22.9%) as a dark brown solid. 1H NMR (CDCl3): δ (ppm) = 8.37 (m, C-H 

pyridine, 2H), 8.03 (t, J = 7.6 Hz, C-H pyridine, 1H), 7.96 (t, J = 4 Hz, C(O)N-H, 1H), 

7.60 (t, J = 4 Hz, C(O)N-H, 1H), 7.13 (s, C-H imine, 2H), 7.12 (s, C-H imine, 2H), 6.80-

6.70 (m, Ar-H and C-H pyrrole, 12 H), 6.17 (d, J = 4 Hz, C-H pyrrole, 2H), 6.13 (d, J = 

4 Hz, C-H pyrrole, 2 H), 3.59 (m, -CH2 alkyl, 2H), 3.14 (m, -CH2 alkyl, 2H), 2.20 (m, -

CH2 alkyl, 2H), 1.67 (m, -CH2 alkyl, 4H), 1.36 (m, -CH2 alkyl, 2H), 1.24 (s, CH3, 3H), 

1.21 (s, CH3, 3H), 0.84 (m, -CH2 alkyl, 2H), 0.65 (m, -CH2 alkyl, 2H). No 13C NMR data 

were obtained for this sample due to the lack of stability of the product. HMRS (ESI+) 

m/z clacd for (C51H48 N11Ni2O2) 962.2694, found (C51H48N11Ni2O2) 962.2665. 

 

Strapped calixpyrrole Schiff-base macrocycle-Cu complex (1.52). To a 

solution of 1.3 (0.05 g, 0.059 mmol) in CH2Cl2 (5 mL) was added a solution of copper(II) 

tetrafluoroborate in 2 mL of methanol (0.081 g, 0.23 mmol). The mixture was stirred at 

room temperature for 1 h. After this time, triethylamine (TEA) was added (0.2 mL) and 

the compound was precipitated with pentane. The brown solid was collected by filtration, 

dissolved in DCM (1 mL), and purified by column chromatography, silica gel (CH2Cl2/ 

MeOH = 95:5, v/v), yielding the compound 1.52 (0.033 g, 57.9%) as dark brown-green 

solid. HMRS (ESI+) m/z calculated for (C51H47 Cu2N11O2) 971.2506, found (C51H47 

Cu2N11O2Na) 996.2392. μeff = 2.12 μB Anal. Calc. for C52H51Cu2N11O3 [1.52·CH3OH]:  C, 

62.14; H, 5.11; N, 15.33. Found: C, 62.33; H, 5.52; N, 15.67. 

 

 

Strapped calixpyrrole Schiff-base acrocycle-Ru complex (1.53). To a solution 

of 1.3 (0.03 g, 0.035 mmol) in dry DCM (2 mL) was added a solution of 

[Ru(Cp*)(NCCH3)3]PF6 (0.071 g, 0.14 mmol). The mixture was stirred at room 

temperature for 18 h. The solvent was reduced to 1 mL under reduced pressure. The 

compound obtained was purified by column chromatography, neutral alumina grade III 
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(CH2Cl2/ MeOH = 9:1, v/v), yielding the compound 1.53 (0.002 g, 4.3%) as a dark brown 

solid. HMRS (ESI+) m/z calculated for (C71H79N11O2Ru2) 1321.4532, found 

(C71H79N11O2Ru2) 1321.4511. 

 

Etioporphycene (2.37). To solution of activated zinc dust (21 g, 0.33 mol), CuCl 

(3.2 g, 32 mmol), and dry THF (1 L) were added dropwise TiCl4 (18.4 mL, 0.160 mol) 

under an argon atmosphere. The resulting mixture was heated at reflux for 2 h, giving a 

black solution. At this time, a solution of bipyrroledialdehyde 2.42 (300 mL) in boiling 

THF was added in small aliquots. The mixture was heated at reflux for 2 min. The cooled 

mixture was transferred to an ice bath at -10 ºC and 200 mL of a saturated aqueous 

solution of Na2CO3 was added slowly. The dark green solution obtained in this way was 

filtered through a pad of celite, which was washed thoroughly with plenty of CH2Cl2. The 

filtrate was washed with water (2 × 100 mL) and the combined organic fractions were 

evaporated under reduced pressure. The black solid obtained as a result was purified by 

column chromatography over silica gel using CH2Cl2 as the eluent. The product obtained 

in this way was recrystallized from the mixture CH2Cl2 and MeOH (0.5:3.5, v/v), yielding 

compound 2.37 as violet needles (0.2 g, 5.69%). 1H NMR (CDCl3): δ (ppm) = 9.55 (s, 

meso-H, 4H), 3.86 (m, CH2CH3, 8H), 3.57 (s, CH3, 12H), 1.71 (t, J = 8 Hz, CH2CH3, 

12H). 13C NMR (CDCl3): δ (ppm) = 143.8, 142.0, 137.2, 130.5, 109.9, 19.9, 17.3, 16.2. 

UV-Vis (CH2Cl2), λmax, nm (ε × 10-3 M-1 cm-1) = 359sh, 382 (144.3), 570 (32.2), 617 

(18.4), 657 (30.0). HMRS (CI+) m/z calculated for (C32H40N4) 478.3253, found 

(C32H40N4) 480.3247. 

 

Etioporphycene-Ni(II) (2.43). Etioporphycene 2.37 (0.00031 mol, 0.15 g) and 

Ni(OAc)2•4H2O (31 g, 0.12 mmol,)  were heated at reflux in 25 mL of glacial acetic acid 

for 2 h. The resulting nickel(II) complex was obtained as a precipitate on cooling the 

reaction and adding 5 mL of water. The solid was collected by filtration and washed 

several times with water to afford 2.43 as dark blue needles (0.152 g, 90%). 1H NMR 

(CDCl3): δ (ppm) = 9.35 (s, meso-H, 4H), 3.83 (q, J = 8 Hz, -CH2CH3, 8H), 3.52 (s, -

CH3, 12H), 1.69 (t, J = 8 Hz, -CH2CH3, 12H). 13C NMR (CDCl3): δ (ppm) = 140.8, 

138.2, 134.2, 127.3, 105.8, 14.0, 15.3, 14.9. UV-Vis (CH2Cl2), λmax, nm (ε × 10-3 M-1 cm-
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1) = 364 (45.0), 389 (138.0), 604 (13.9). HMRS (CI+) m/z calculated for (C32H36N4Ni) 

534.2293, found (C32H36N4Ni) 534.2327. 

  

(Ferrocenylmethyl)triphenyl phosphonium iodide (2.46). 
(Ferrocenylmethyl)trimethylammonium iodide (1 g, 2.6 mmol,) and triphenylphosphine 

(0.13 g, 0.5 mmol) were heated at reflux in ethanol (100 mL) for 2 h. The solution was 

then cooled and poured slowly into diethylether (300 mL) with vigourous stirring. The 

yellow precipitate that resulted was collected by filtration and washed with diethyl ether 

(500 mL). The salt was recrystallized from ethanol to obtain yellow leaflets. This 

afforded compound 2.46 (1.37 g, 89.7%). 1H NMR (CDCl3): δ (ppm) = 7.81-7.69 (m, 

phosphine, 15H), 4.36 (bs, cyclopentadienyl, 5H), 4.29 (s, cyclopentadienyl, 2H), 4.06 (s, 

cyclopentadienyl, 2H), 2.84 (bs, methyl, 2H). 13C NMR (CDCl3): δ (ppm) = 1.35.0, 

134.4, 134.3, 130.2, 130.1, 118.2, 117.4, 70.5, 69.98, 68.8. HMRS (CI+) m/z calculated 

for (C29H26FeP) 461.11270, found (C29H26FeP) 461.11160. 

 

9-Formyletioporphycene (2.44). Etioporphycene nickel complex 2.43 (0.1 g, 

0.19 mmol) and dry DMF (0.26 mL, 3.4 mmol) were dissolved in 5 mL of dry 1,2-

dichloroethane at 0 ºC under nitrogen. POCl3 (0.31 mL, 3.4 mmol) was added dropwise 

to the reaction mixture, which was stirred at 50 ºC for 3 h. After this time, 15 mL of 

saturated aqueous sodium acetate was added slowly and stirred for 30 min at 50 ºC. The 

green solution was cooled and washed with water (5 × 50 mL) and the organic fractions 

were taken to dryness under reduced pressure. The black solid was purified by column 

chromatography over silica gel (CH2Cl2/Hexanes = 1:1, v/v), yielding compound 2.44 as 

green powder and recrystallized in CH2Cl2/MeOH afforded green needles (0.060g, 64%). 
1H NMR (CDCl3): δ (ppm) = 11.62 (s, -CHO, 1H), 9.80 (s, meso-H, 1H), 9.16 (d, J = 12 

Hz, meso-H, 1H), 8.99 (d, J = 16 Hz, meso-H, 1H), 3.81 (q, J = 8 Hz, -CH2CH3, 2H), 

3.73-3.66 (m, -CH2CH3, 4H), 3.53 (q, J = 8 Hz, -CH2CH3, 2H), 3.40 (s, -CH3, 3H), 3.38 

(s, -CH3, 6H), 2.28 (s, -CH3, 3H), 1.73-1.62 (m, -CH2CH3, 12H). 13C NMR (CDCl3): δ 

(ppm) = 192.9, 150.5, 150.3, 149.2, 148.7, 147.4, 146.4, 145.2, 144.9, 143.9, 143.2, 

140.8, 132.3, 130.1, 129.1, 129.0, 115.4, 109.3, 106.5, 105.1, 29.7, 23.3, 19.9, 19.8, 17.8, 

17.5, 17.3, 15.9, 15.7, 15.3, 15.3, 15.1. UV-Vis (CH2Cl2), λmax, nm (ε × 10-3 M-1 cm-1) = 
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414 (13.4), 604 (4.2). HMRS (ESI+) m/z clacd for (C33H26N4NiO + Na) 585.21348, found 

(C33H26N4NiO + Na) 585.21260. 

 

9-Benzylethenyletioporphycene (2.47). Lithium bis(trimetylsilyl)amide (0.018 

g, 0.11 mmol) was dissolved in dry THF and added dropwise through a cannula to a 

solution of benzyltriphenylphosphonium chloride (0.041g, 0.11 mmol) in THF at -78 ºC. 

The mixture was stirred for 30 min. A yellow solution formed, which was transferred 

with a cannula to a solution containing 9-formyletioporphycene 2.44 (0.01 g, 0.018 

mmol) in dry THF at -78 ºC, stirring was continued for 3 h. The reaction was quenched 

via the addition of small amounts of methanol and the organic solvent was evaporated off 

under reduced pressure. The resulting dark green solid was purified by column 

chromatography over silica gel using CH2Cl2/Hexanes = 1:1, v/v as the eluent. This 

afforded compound 2.47 (0.008 g, 30.9%) as an emerald green solid. 1H NMR (CDCl3): δ 

(ppm) = 9.25 (s, meso-H, 1H), 9.07 (s, meso-H, 2H), 9.76 (d, J = 16 Hz, ethenyl -CH, 

1H), 7.73 (d, J = 4 Hz, ar-H, 2H), 7.48 (t, J = 4 Hz, ar-H, 2H), 7.34 (t, J = 4 Hz, ar-H, 

1H), 7.16 (d, J = 16 Hz, ethenyl –CH=, 1H), 3.77-3.70 (m, -CH2CH3, 6H), 3.62 (t, J = 8 

Hz, -CH2CH3, 2H), 3.41 (s, -CH3, 3H), 3.40 (s, -CH3, 6H), 3.27 (s, -CH3, 3H), 1.71-1.62 

(m, -CH2CH3, 9H), 1.58 (t, J = 8 Hz, -CH2CH3, 3H). 13C NMR (CDCl3): δ (ppm) = 165.5, 

150.3, 150.5, 147.4, 149.5, 148.2, 147.5, 146.4, 145.2, 144.7, 144.0, 143.3, 140.3, 132.5, 

133.9, 133.5, 132.9, 130.3, 129.4, 129.0, 115.2, 109.2, 106.7, 105.7, 29.7, 23.3, 19.8, 

19.7, 17.6, 17.5, 17.3, 15.4, 15.5, 15.3, 15.2, 15.1. UV-Vis (CH2Cl2), λmax, nm (ε × 10-3 M-

1 cm-1) = 412 (340.2), 639 (155.5). HMRS (CI+) m/z calculated for (C40H42 N458Ni) 

636.2763, found (C40H42N458Ni) 636.2772. 

 

9-(Propenoate)etioporphycene (2.48). 9-Formyletioporphycene 2.44 (0.02 g, 

0.035 mmol) and (carboxymethoxymethylene)triphenyl phosphorane (0.066 mol, 0.022 

g) were dissolved in 5 mL of xylenes and heated at reflux under nitrogen for 4 h. At this 

time, the solvent was removed under reduced pressure and the green residue was purified 

by column chromatography over silica gel (CH2Cl2/Hexanes = 3.5:1.5, v/v). This yielded 

2.48 (0.01 g, 44.4%) as a dark green solid. 1H NMR (CDCl3): δ (ppm) = 9.42 (d, J = 16 

Hz, ethenyl –CH=, 1H), 9.20 (s, meso-H, 1H), 9.03 (q, J = 12 Hz, meso-H, 2H), 6.74 (d, 
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J = 16 Hz, ethenyl –CH=, 1H), 4.43 (q, J = 4 Hz, ester-CH2CH3, 2H), 3.73-3.63 (m, -

CH2CH3, 6H), 3.56 (q, J = 8 Hz, -CH2CH3, 2H), 3.36 (s, -CH3, 3H), 3.36 (s, -CH3, 6H), 

3.25 (s, -CH3, 3H), 1.72-1.60 (m, -CH2CH3, 12H), 1.46 (t, J = 4 Hz, ester –CH2CH3, 3H). 
13C NMR (CDCl3): δ (ppm) = 167.4, 151.3, 151.5, 149.5, 148.3, 147.6, 146.4, 145.2, 

144.4, 144.0, 143.3, 140.3, 135. 5, 132.5, 132.2, 130.3, 129.4, 129.0, 123.7, 115.5, 109.7, 

106.5, 105.3, 30.7, 24.3, 20.8, 19.7, 18.6, 17.9, 17.5, 15.5, 15.7, 15.3, 15.2, 15.1. UV-Vis 

(CH2Cl2), λmax, nm (ε × 10-3 M-1 cm-1) = 419 (198.9), 636 (95.6). HMRS (ESI+) m/z 

calculated for (C37H42 N4NiO2) 627.25535, found (C37H42N4NiO2 + Na)+ 655.25453. Anal. 

Calc. for C43H54N4O2 [2.48·C6H12]:  C, 71.97; H, 7.58; N, 7.81. Found: C, 71.84; H, 7.13; 

N, 7.48. 

 

 

9-(propenol)etioporphycene (2.49). Diisobutylaluminium hydride (DIBALH) 

(0.1 mL from solution 1.0 M in THF, 0.14 mmol) was added dropwise under nitrogen to 

a solution of 9-(porpenoate)etioporphycene 2.48 (0.01 g, 0.016 mmol)  in dry CH2Cl2 at -

78 ºC. The reaction mixture was stirred at this temperature for more 2 h and quenched by 

adding small amounts of methanol (0.5 mL). A 50% v/v aqueous solution of ammonium 

chloride was added to the flask and the reaction allowed to stirr for 15 min. The organic 

layer was separated from the aqueous layer, and washed with water (4 × 50 mL). The 

organic fractions were combined and evaporated under reduced pressure. The resulting 

solid was purified by column chromatography over silica gel (CH2Cl2/MeOH = 3.5:1.5, 

v/v), yielding compound 2.49 (0.008 g, 85.7 5%). 1H NMR (CDCl3): δ (ppm) = 9.12 (s, 

meso-H, 1H), 9.08 (s, meso-H, 2H), 8.29 (d, J = 16 Hz, ethenyl –CH=, 1H), 6.56 (dt, J = 

16 Hz, J = 8 Hz, ethenyl –CH=, 1H), 4.66 (d, J = 8 Hz, -CH2-OH, 2H), 3.75-3.68 (m, -

CH2CH3, 6H), 3.62 (q, J = 8 Hz, -CH2CH3, 2H), 3.41 (s, -CH3, 3H), 3.39 (s, -CH3, 6H), 

3.27 (s. –CH3, 3H), 1.68-1.58 (m, -CH2CH3, 12H), 1.56 (bs, -OH, 1H). 13C NMR 

(CDCl3): δ (ppm) = 165.7, 150.9, 150.5, 149.7, 148.2, 147.3, 146.3, 145.3, 144.4, 144.0, 

143.3, 140.3, 132.7, 134.0, 133.7, 132.9, 130.3, 129.4, 129.0, 115.2, 109.2, 106.7, 105.7, 

29.7, 23.3, 19.5, 19.2, 18.0, 17.7, 17.3, 15.5, 15.0, 14.9, 14.7, 14.6.. UV-Vis (CH2Cl2), 

λmax, nm (ε × 10-3 M-1 cm-1) = 399 (288.6), 623 (117.5). HMRS (CI+) m/z calculated for 

(C35H40N4NiO) 590.2556, found (C35H40N4NiO) 590.2565. 
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Appendix A 

X-ray Experimental and Crystallographic Data 

 

A.1 GENERALPROCEDURES 

All crystals for X-ray crystallographic analyses described in this appendix were 

grown by the author. All X-ray diffraction stuctures were solved by Dr. Vincent M. 

Lynch of this department. A general method as provided by Dr. Lynch used in obtaining 

these structures, along with relevant data tables for each structure now follows. 

 

X-ray Experimental for compound 1.42•(CH2Cl2):  Crystals grew as pale, 

yellow prisms by slow evaporation from dichloromethane and methanol.  The data crystal 

had approximate dimensions; 0.28 x 0.20 x 0.08 mm.  The data were collected on a 

Nonius Kappa CCD diffractometer using a graphite monochromator with MoKα 

radiation (λ = 0.71073Å).  A total of 380 frames of data were collected using ω-scans 

with a scan range of 0.9° and a counting time of 149 seconds per frame.  The data were 

collected at 153 K using an Oxford Cryostream low temperature device.  Details of 

crystal data, data collection and structure refinement are listed in Table A.1.  Data 

reduction were performed using DENZO-SMN.1 The structure was solved by direct 

methods using SIR972 and refined by full-matrix least-squares on F with anisotropic 

displacement parameters for the non-H atoms using SHELXL-97. Structure analysis was 

aided by use of the programs PLATON984 and WinGX. The hydrogen atoms were 

calculated in idealized positions with Uiso set to 1.2xUeq of the attached atom (1.5xUeq 

for methyl hydrogen atoms).    
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   A molecule of dichloromethane was disordered along a cylindrical region of the 

unit cell near 1/4, y, 1/4. Attempts to model the disorder were unsatisfactory. The 

contributions to the scattering factors due to this solvent molecule were removed by use 

of the utility SQUEEZE in PLATON98. PLATON98 was used as incorporated in 

WinGX. 

The function, Σw(|Fo|2 - |Fc|2)2, was minimized, where w = 1/[(σ(Fo))2 + 

(0.0724*P)2 + (0.3847*P)] and P = (|Fo|2 + 2|Fc|2)/3.  Rw(F2) refined to 0.192, with R(F) 

equal to 0.0964 and a goodness of fit, S, = 1.12. Definitions used for calculating 

R(F),Rw(F2) and the goodness of fit, S, are given below. Neutral atom scattering factors 

and values used to calculate the linear absorption coefficient are from the International 

Tables for X-ray Crystallography (1992). All figures were generated using 

SHELXTL/PC.  Tables of positional and thermal parameters, bond lengths and angles, 

torsion angles and figures are found elsewhere. 

Figure A.1: View of compound 1.42 showing the atom labeling scheme. Displacement 
ellipsoids are scaled to the 50% probability level. The molecule lies on a 
crystallographic two-fold rotation axis at ¾, ½, z. Atoms with labels 
appended by “a” are related by 3/2 – x, 1 –y, z. 
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Table A.1:  Crystal data and structure refinement for compound 1.42. 
 
Empirical formula  C48 H45 Cl2 N7 O8 
Formula weight  918.81 
Temperature  153(2) K 
Wavelength  0.71075 Å 
Crystal system  Orthorhombic 
Space group  Pnna 
Unit cell dimensions a = 12.4901(15) Å a= 90°. 
 b = 15.769(2) Å b= 90°. 
 c = 22.940(3) Å g = 90°. 
Volume 4518.2(10) Å3 
Z 4 
Density (calculated) 1.351 Mg/m3 
Absorption coefficient 0.207 mm-1 
F(000) 1920 
Crystal size 0.28 x 0.20 x 0.08 mm 
Theta range for data collection 2.96 to 25.00°. 
Index ranges 0<=h<=14, 0<=k<=18, 0<=l<=27 
Reflections collected 3980 
Independent reflections 3980  
Completeness to theta = 25.00° 99.7 %  
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 1.06 and 0.951 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 3980 / 0 / 282 
Goodness-of-fit on F2 1.123 
Final R indices [I>2sigma(I)] R1 = 0.0964, wR2 = 0.1654 
R indices (all data) R1 = 0.2230, wR2 = 0.1920 
Largest diff. peak and hole 0.234 and -0.236 e.Å-3 
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X-ray Experimental for cis-strapped Schiff-base calixpyrrole1.3•(4 CH3OH): 

Crystals grew as long, yellow needles by slow evaporation from methanol. The data 

crystal was cut from a larger crystal and had approximate dimensions; 0.46 x 0.11 x 0.08 

mm. The data were collected on a Rigaku SCX-Mini diffractometer with a Mercury 2 

CCD using a graphite monochromator with MoKα radiation (λ = 0.71075Å). A total of 

360 frames of data were collected using ω-scans with a scan range of 1° and a counting 

time of 75 seconds per frame. The data were collected at 163 K using a Rigaku XStream 

low temperature device. Details of crystal data, data collection and structure refinement 

are listed in Table A.2. Data reduction were performed using the Rigaku Americas 

Corporation’s Crystal Clear version 1.40. The structure was solved by direct methods 

using SIR97 and refined by full-matrix least-squares on F2 with anisotropic displacement 

parameters for the non-H atoms using SHELXL-97. Structure analysis was aided by use 

of the programs PLATON984 and WinGX. The hydrogen atoms were calculated in ideal 

positions with isotropic displacement parameters set to 1.2xUeq of the attached atom 

(1.5xUeq for methyl hydrogen atoms).   

 The crystal was twinned. The twin law was determined using TwinRotMat in 

PLATON98.  The twin was by a 180° rotation about the 100 direct lattice direction.  The 

twin law was (1,0,0; 0,-1,0; -0.851,0,-1). The twin fraction refined to 0.230(7). 

The function, Σw(|Fo|2 - |Fc|2)2, was minimized, where w = 1/[(σ(Fo))2 + 

(0.1055*P)2 + (24.5339*P)] and P = (|Fo|2 + 2|Fc|2)/3.  Rw(F2) refined to 0.378, with R(F) 

equal to 0.123 and a goodness of fit, S, = 1.04. Definitions used for calculating R(F), 

Rw(F2) and the goodness of fit, S, are given below. The data were checked for secondary 

extinction but no correction was necessary. Neutral atom scattering factors and values 

used to calculate the linear absorption coefficient are from the International Tables for X-
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ray Crystallography (1992). All figures were generated using SHELXTL/PC. Tables of 

positional and thermal parameters, bond lengths and angles, torsion angles and figures are 

found elsewhere.  

 
Figure A.2: View of the cis-strapped Schiff-base calixpyrrole 1.3 showing the heteroatom 
labeling scheme. Displacement ellipsoids are scaled to the 30% probability level.  
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Table A.2:  Crystal data and structure refinement for compound 1.3. 
Empirical formula  C55 H67 N11 O6 
Formula weight  978.19 
Temperature  153(2) K 
Wavelength  0.71073 Å 
Crystal system  monoclinic 
Space group  P 21/c 
  Unit cell dimensions a = 13.144(5) Å a= 90°. 
 b = 24.758(11) Å b= 109.558(8)°. 
 c = 16.705(6) Å g = 90°. 
Volume 5122(4) Å3 
Z 4 
Density (calculated) 1.268 Mg/m3 
Absorption coefficient 0.085 mm-1 
F(000) 2088 
Crystal size 0.460 x 0.110 x 0.080 mm 
Theta range for data collection 3.043 to 24.998°. 
Index ranges -15<=h<=14, -29<=k<=29, -11<=l<=19 
Reflections collected 9008 
Independent reflections 9008  
Completeness to theta = 25.242° 97.3 %  
Absorption correction Mulit-scan 
Max. and min. transmission 1.00 and 0.590 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 9008 / 354 / 660 
Goodness-of-fit on F2 1.038 
Final R indices [I>2sigma(I)] R1 = 0.1230, wR2 = 0.3129 
R indices (all data) R1 = 0.2576, wR2 = 0.3775 
Extinction coefficient n/a 
Largest diff. peak and hole 0.603 and -0.485 e.Å-3 
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X-ray Experimental for Palladium(II) complex 1.50•(THF)2:  Crystals grew as 

thin yellow laths by slow evaporation from THF. The data crystal had approximate 

dimensions; 0.21 x 0.05 x 0.03 mm.  The data were collected on a Rigaku AFC12 

diffractometer with a Saturn 724+ CCD using a graphite monochromator with MoKa 

radiation (l = 0.71073Å).  A total of 2136 frames of data were collected using w-scans 

with a scan range of 0.5° and a counting time of 24 seconds per frame. The data were 

collected at 100 K using a Rigaku XStream low temperature device. Details of crystal 

data, data collection and structure refinement are listed in Table A.3. Data reduction were 

performed using the Rigaku Americas Corporation’s Crystal Clear version 1.40. The 

structure was solved by direct methods using SIR97 and refined by full-matrix least-

squares on F2 with anisotropic displacement parameters for the non-H atoms using 

SHELXL-97. Structure analysis was aided by use of the programs PLATON98 and 

WinGX. The hydrogen atoms were calculated in ideal positions with isotropic 

displacement parameters set to 1.2xUeq of the attached atom (1.5xUeq for methyl 

hydrogen atoms). The function, Σw(|Fo|2 - |Fc|2)2, was minimized, where w = 1/[(s(Fo))2 + 

(0.0985*P)2] and P = (|Fo|2 + 2|Fc|2)/3. Rw(F2) refined to 0.246, with R(F) equal to 0.118 

and a goodness of fit, S, = 1.16. Definitions used for calculating R(F), Rw(F2) and the 

goodness of fit, S, are given below. The data were checked for secondary extinction 

effects but no correction was necessary. Neutral atom scattering factors and values used 

to calculate the linear absorption coefficient are from the International Tables for X-ray 

Crystallography (1992). All figures were generated using SHELXTL/PC. Tables of 

positional and thermal parameters, bond lengths and angles, torsion angles and figures are 

found elsewhere. 
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Figure A.3:  View of palladium(II) complex 1.50 showing the atom labeling scheme.  
Displacement ellipsoids are scaled to the 50% probability level.
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Table A.3.  Crystal data and structure refinement for compound 1.50. 
Empirical formula  C59 H63 N11 O4 Pd2 
Formula weight  1203.00 
Temperature  100(2) K 
Wavelength  0.71075 Å 
Crystal system  Monoclinic 
Space group  P21/c 
Unit cell dimensions a = 14.050(4) Å a= 90°. 
 b = 42.061(12) Å b= 93.720(7)°. 
 c = 8.976(3) Å g = 90°. 
Volume 5293(3) Å3 
Z 4 
Density (calculated) 1.510 Mg/m3 
Absorption coefficient 0.739 mm-1 
F(000) 2472 
Crystal size 0.21 x 0.05 x 0.03 mm 
Theta range for data collection 2.99 to 25.00°. 
Index ranges -14<=h<=16, -49<=k<=49, -10<=l<=10 
Reflections collected 59499 
Independent reflections 8912 [R(int) = 0.2255] 
Completeness to theta = 25.00° 95.5 %  
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 1.00 and 0.343 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 8912 / 0 / 687 
Goodness-of-fit on F2 1.160 
Final R indices [I>2sigma(I)] R1 = 0.1180, wR2 = 0.2148 
R indices (all data) R1 = 0.1939, wR2 = 0.2462 
Largest diff. peak and hole 1.832 and -0.955 e.Å-3 
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X-ray Experimental for 9-Formyletioporphycene 2.44: Crystals grew as 

clusters of thin, dark green needles by slow evaporation from dichloromethane. The data 

crystal was cut from a cluster and had approximate dimensions; 0.41 x 0.05 x 0.03 mm. 

The data were collected on a Rigaku AFC12 diffractometer with a Saturn 724+ CCD 

using a graphite monochromator with MoKa radiation (l = 0.71075Å).  A total of 270 

frames of data were collected using w-scans with a scan range of 1° and a counting time 

of 45 seconds per frame. The data were collected at 153 K using an Oxford Cryostream 

low temperature device.  Details of crystal data, data collection and structure refinement 

are listed in Table A.3. Data reduction were performed using the Rigaku Americas 

Corporation’s Crystal Clear version 1.40. The structure was solved by direct methods 

using SIR972 and refined by full-matrix least-squares on F2 with anisotropic displacement 

parameters for the non-H atoms using SHELXL-97. Structure analysis was aided by use 

of the programs PLATON984 and WinGX. The hydrogen atoms were calculated in ideal 

positions with isotropic displacement parameters set to 1.2xUeq of the attached atom 

(1.5xUeq for methyl hydrogen atoms).    

The Ni ion resides on a position with site symmetry 2/m. This imparts a symmetry 

on the ligand that it does not possess. The aldehyde group is disordered about four 

equivalent positions in the crystal. The atoms of the aldehyde group, C9, H9a and O1, 

were assigned site occupancy factors of ¼. The hydrogen atom attached to C5 was 

assigned a site occupancy factor of ¾ to comprise the formula for the complex of  

(C33H36N4O)Ni.  

The function, Σw(|Fo|2 - |Fc|2)2, was minimized, where w = 1/[(s(Fo))2 + 

(0.011*P)2 + (13.8896*P)] and P = (|Fo|2 + 2|Fc|2)/3.  Rw(F2) refined to 0.118, with R(F) 

equal to 0.0613 and a goodness of fit, S, = 1.13.  Definitions used for calculating R(F), 

Rw(F2) and the goodness of fit, S, are given below. The data were checked for secondary 

extinction effects but no correction was necessary. Neutral atom scattering factors and 

values used to calculate the linear absorption coefficient are from the International Tables 

for X-ray Crystallography (1992). All figures were generated using SHELXTL/PC.8  
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Tables of positional and thermal parameters, bond lengths and angles, torsion angles and 

figures are found elsewhere. 

 

Figure A.3: View of 9-formyletioporphycene 2.44 showing the atom labeling scheme. 
Displacement ellipsoids are scaled to the 50% probability level. The Ni ion 
sits on a position with crystallographic site symmetry of 2/m at ½, ½, ½. 
The crystallographic symmetry imposes a disorder on the aldehyde group 
around four equivalent positions on the ligand. Atoms C9 and O1 had site 
occupancies fixed at 1/4. 
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Table A.4:  Crystal data and structure refinement for compound 2.44. 
Empirical formula  C33 H36 N4 Ni O 
Formula weight  563.37 
Temperature  100(2) K 
Wavelength  0.71075 Å 
Crystal system  Orthorhombic 
Space group  Cmca 
Unit cell dimensions a = 25.575(6) Å a= 90°. 
 b = 4.9442(10) Å b= 90°. 
 c = 20.137(4) Å g = 90°. 
Volume 2546.3(9) Å3 
Z 4 
Density (calculated) 1.470 Mg/m3 
Absorption coefficient 0.798 mm-1 
F(000) 1192 
Crystal size 0.41 x 0.05 x 0.03 mm 
Theta range for data collection 3.19 to 27.48°. 
Index ranges -18<=h<=32, -6<=k<=6, -26<=l<=24 
Reflections collected 7175 
Independent reflections 1494 [R(int) = 0.0775] 
Completeness to theta = 27.48° 99.7 %  
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 1.00 and 0.555 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 1494 / 12 / 106 
Goodness-of-fit on F2 1.131 
Final R indices [I>2sigma(I)] R1 = 0.0613, wR2 = 0.1083 
R indices (all data) R1 = 0.0856, wR2 = 0.1175 
Largest diff. peak and hole 0.763 and -0.708 e.Å-3 
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Appendix B 

Magnetic Measurements 

 

Solution magnetic measurements were carried out using the Evans method.1 

Millimolar solutions of the metal complexes were prepared in CDCl3 and placed in a 5 

mm diameter NMR tube, while pure CDCl3 was placed in a concentric capillary tube 

within the NMR tube containing the sample solution. NMR spectra were recorded using a 

Varian Mercury 400 MHz spectrometer. As shown in Eqs. 1 and 2, calculations of the 

magnetic moments (μeff) were based on the difference in chemical shift (Δδ), in Hz) 

observed for the residual CHCl3 signal in neat solvent and in the solution containing the 

paramagnetic species. This chemical shifts (δ) obtained in parts per million were 

converted to Hertz (Hz) for the calculations. The magnetic moments were derived using 

the formula reported by Grant,2 as corrected for high-field superconducting NMR 

spectrometers according to the formula of Schubert.3 

 

€ 

χm = 477( Δf
f 2C

)    Eq. 1 

 

€ 

µeff = 2.84 χmm *T    Eq. 2 

 

 

Where,  

Δf = difference in chemical shift between the sample and the reference (given in Hertz), f 

= the frequency of the NMR machine in Hertz, C = concentration (M), χm = molar 

succeptibility (cgi), T = temperature in Kelvin (K). 
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