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Quantum Contextuality as a Measurement Disturbance
Effect’

Brian R. La Cour
Applied Research Laboratories, The University of Texas at Austin, P.O. Box 8029, Austin, TX 78713-8029, US4

Abstract. The question of quantum contextuality in the Mermin-Peres square is considered. It is shown that a deterministic,
noncontextual hidden variable model of this problem is not inconsistent with quantum mechanics, contrary to the Kochen-
Specker theorem. The key idea is that measurement outcomes may be viewed as deterministic functions of hidden variable
states which are disturbed through the process of measurement. This, in turn, implies that the outcome of measuring the
product of two commensurate observables need not be equal to the product of the outcomes that would have been obtained
had they been measured individually. A critical analysis of some recent and proposed experimental tests of contextuality is
also provided.
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INTRODUCTION

Contextuality is a property ascribed to quantum systems which appears to be at odds with a deterministic, “hidden
variable” description. However, due to its implicit counter-factual nature, the notion of contextuality can only be
defined in terms of a hypothetical hidden variable description. In the broadest sense, a measurement of an observable is
said to be noncontextual if the outcome of the measurement does not depend upon which other compatible observables
are measured subsequently, simultaneously, or previously. The Kochen-Specker theorem purports to prove that no
noncontextual hidden variable model exists which is consistent with quantum mechanics (for a Hilbert space of
dimension three or greater). Therefore, quantum mechanics is said to be contextual.

Spekkens [1] has recently argued that such a definition of noncontextuality is overly restrictive since, as Bell
observed much earlier, the particular outcome of a measurement may very well depend implicitly upon which
other compatible observables are measured previously or simultaneously [2]. A better definition of a noncontextual
measurement would require only that the joint statistics of commuting observables be unchanged by the details of
how they are measured. A noncontextual hidden variable model may then be defined as one which associates a single
measurable function with each observable yet reproduces the correct joint statistics.

The Kochen-Specker theorem was first introduced by Bell [2], following his refutation of von Neumann’s impossi-
bility proof, and was itself based on the mathematical work of Gleason [3]. It was independently proven by Kochen and
Specker shortly afterwards [4] and became popular in philosophical circles. The original theorem applied to Hilbert
spaces of three dimensions, which may be viewed as describing the angular momentum of a spin-1 particle. Simpler
but more restrictive versions of the theorem in higher dimensions have since been published [5, 6, 7].

Unlike Bell’s inequality [8], the Kochen-Specker theorem is entirely nonstatistical — in theory a single measurement
suffices for empirical confirmation. Thus, it is an example of an “all-versus-nothing” proof of the impossibility of
hidden variables. It was not until recently, however, that a empirical test was proposed [9]. Subsequently, experiments
using single and correlated photons [10, 11, 12] as well as neutron interferometry [13] have all shown results which
are consistent with quantum theoretic predictions. These experimental results appear to corroborate the theoretical
prediction that quantum mechanics is inescapably contextual.

The aim of this paper is to demonstrate that such a conclusion is unwarranted and that, in fact, quantum theory
is perfectly consistent with a deterministic, noncontextual theory. To this end, it will be argued that the standard
proofs of the Kochen-Specker theorem are invalid due to the possible dependence of the post-measurement hidden
variable probability distribution on the particular set of mutually commensurate observables chosen for measurement.

1 An expanded version of this work will appear in Physical Review A.
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Furthermore, it will be shown how this dependence may arise naturally through the process of measurement and
attendant interactions with the measuring devices. Although the discussion is restricted to a four-dimensional Hilbert
space, the approach and conclusions are expected to generalize to any Hilbert space.

The organization of the paper is as follows. First, a particular representation of the four-dimensional Hilbert space
is introduced. The Kochen-Specker theorem is considered in the context of nine composite Pauli spin operators
on this space, and the proof for this case is shown to be invalid. The reasons for this conclusion are then further
elaborated upon, whereupon a hidden variable interpretation is offered. A critical analysis of some recent and proposed
experimental tests follows, where the concept of operator decomposability is introduced.

PROBLEM STATEMENT

A general, four-dimensional Hilbert space may be mapped to a notional composite system of two spin-1/2 particles. For
the single-particle component subspace, any self-adjoint operator may be written as a linear combination of the Pauli
spin operators, Gy, 6y, 6;, and the identity, 1. The discussion that follows will be cast in terms of this representation.

Let us begin by considering the example of the Mermin-Peres “magic square” [6, 7], which consists of nine operators
arranged as follows: . .

Gy ®1 1 ® 6 Gy ® Gy
1® 6, 6 ® 1 6,® 6,
6y ® G, 0y ® Oy 0;® 6,

Let V; ; denote the operator in row #, column ;. From the properties of the Pauli spin operators it is readily verified
that the three operators in each row are mutually commuting, as are those in each column. Furthermore, it can be
shown that each operator anticommutes with the four operators not in its row or column. Finally, we observe that the
product of the three operators in each row, as well as those in the first two columns, is +1 & 1. The product of the
operators in Column 3, by contrast, is —1® 1.

For a noncontextual model of the Mermin-Peres magic square, we seek a set of hidden variables, €2, and a collection
of nine functions V;; : Q — R (for i, j = 1,2,3) such that the outcome of measuring operator I7ij is Vij(w), where
® € L. Suppose £2 and all nine V;; are given. The aforementioned operator relations for the product of each row and

column suggest a similar relation in the hidden variable model.
Fori=1,2,3, let us define R; to be the set of all @ € Q such that V3 (@), V2 (o), Vis(@) € {—1,+1} and

Vi(o)Vp(w)Via(w) = +1. (0
Similarly, for j = 1,2, let C; be the set of all ® € Q such that Vy;(®),V2;(®),V3;(w) € {—1,+1} and

Vij(@)Va;(0)V3(w) = +1. @)
Finally, let C5 C Q be such that, for all @ € Cs, V13(®),V23(0),V33(w) € {—1,+1} but, by contrast,

Vis(o)Va(o)Vs(e) = —1. 3)

Now, let us suppose that there exists at least one point, o, that is common to all six row/column sets. From Eqn. (1)
it follows that

HVzl ©Wa(o) = (+1)(+1)(+1) = +1. )

Furthermore, from Eqns. (2) and (3) it follows that

HVu Wai(@)V35(0) = (+1)(+1)(=1) = —1. 5)
But X

[1Va(0)Va(w) HVU Wi (@)V;(), (6)

i=1
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SO we arrive at a contradiction and conclude that
(R10R20R3)0(C10C20C3):@. (7)

Thus far, we have not incorporated quantum theory other than to suggest the form for R ; and C;. The standard proof
of the Kochen-Specker theorem assumes that the functional relations held by the operators imply that

Ri=R)y=R3=C1=Cr=C3=Q. (8)

In other words, that Eqns. (1)-(3) hold for all @ € Q. If this is so, then Eqn. (7) implies that Q = @ and no (non-
vacuous) noncontextual model is possible.

The proofis almost trivial, but it relies on one key assumption: the validity of Eqn. (8). This assumption may,in turn,
be seen as a consequence of the so-called Functional Composition Principle [14]. Greenberger ef al. [5] have noted
that such equalities are overly restrictive, as the statistical nature of quantum mechanics requires only that each set
have unit probability measure. This is true, but a more subtle observation, which has largely gone unnoticed, is that the
relevant probability measure may in fact be different for each of the six sets. How this is possible, and what it implies,
are the subject of the following sections.

UNDERSTANDING CONTEXTUALITY

Given an @y € Q, we know that it will not be contained in at least one of the six row/column sets R,...,Cs. If it
happens to be the case that 0o € Ry, then 711 (o) V12(on) Vi3(@o) = +1, as one might expect. If, however, it happens
to be the case that wy & C), then we find, perhaps surprisingly, that 711(@o) V21(e0) V31(wg) # +1. Since @y was
arbitrary, the question arises why this is never observed.

One possible answer lies in a taking a closer look at the measurement process itself. Measuring an observable such
as Vi1 = 6, ® 1 requires a particular apparatus designed to interact with the system under interrogation. This process
need not be benign. Suppose g € Q describes the initial microstate of the system. (Here the term “system” may refer
not only to the specific object of inquiry but also to the measuring device, surrounding environment, etc.) Interaction
with the measuring apparatus may cause it to change its microstate from @g to some @1 (@) € Q. Let us call this
function the measurement interaction map (MIM). An observation then maps this microstate to some macrostate
211(¢11 () € R. If we consider an ensemble of initial microstates described by the probability measure Py, then the
ensemble after interaction becomes Py o (pfll. The distribution for the macrostate is then Py o ‘Pﬂl o gfll.

The situation is quite different in classical statistical mechanics, where the process of extracting a macrostate from
the system is often ignored or irrelevant. Thus, 211 (@) may be the true macrostate of the system prior to measurement,
but we cannot observe it directly. Though we may hypothesize its existence, we may only access it via measurement.
The process of measurement, however, results in our measuring g 11(¢11 (o)) which, depending upon the nature of
@11, may not be the same as g11(@p). (In the positivist philosophical tradition, one may go further and assert that
g11(@p), having no operational definition, is simply meaningless.)

If a subsequent measurement of, say, /i» = 1 ® & is made, a similar process unfolds. The microstate @11(@g) is
now transformed into @1,(¢11(@y)), and the observed macrostate is g12(@12(@11(@o))). The ensemble is transformed
in a like manner from Py o @p;' to Pyo @7 o @p;', and the joint distribution of the two measurements is therefore
Pyo(gr10¢11, 2120 Q120 Q11 )*1. Had we chosen to measure V51 = 1 ® 0, instead of 1 ® 6y, the observed macrostate
would have been g21(@21(911(o))), and the final ensemble would have been Pgo @' o @5,

Of course, simultaneous measurements may also be possible, in which case the MIMs @11, @12, and @13, say, will
be replaced by a single MIM, ®greow1. Similarly, @11, @21, and @31, will be replaced by a single @cqy;. In this case,
the ensemble following a measurement of Row 1 will be Pqy ocbi(}wl, while that of Column 1 will be Py OCDE(}H.
Letting Gy; denote the macroscopic map corresponding to the operator Vi j, ameasurement of, say, Row 1 results in the
values G1;(@row1 (@)) for j = 1,2,3, while a measurement of, say, Column 1 results in the values G ;1 (Pcon (@0))
for i =1,2,3. It is an academic matter whether one considers the random variable V11 = G1; as noncontextual, with
the contextual probability measures Prowi = Py o @pl; and Pogy = Py o @¢ ), or whether one considers G 11 0 @pow1
and G11 o @cop1 as contextual, with P = Py now noncontextual.

If such interactions do indeed exist, their effect must be consistent with the statistical predictions of quantum
mechanics. It is desirable that they also satisfy our various intuitive notions of physical realism. For example, if a
measurement of V77 is followed by a time-like separated measurement of either V15 ot Va1, we expect the outcome of
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the first measurement to be independent of which observable is chosen for the second measurement. Furthermore, the
outcome of measuring f/n should not depend upon whether f/lz is measured before 1713 or 1713 is measured before 1712.
Indeed, this should be true even if a measurement of f/n is followed by a measurement of an incompatible observable,
such as ;. Since, according to the above description, the outcome of the first measurement is always g 11 (@11 (o)),
all these conditions are clearly satisfied.

Now suppose 77 is measured first, followed by a time-like measurement of ;1. Should we demand that the outcome
of the latter, namely g11(¢11(@12(@p))), be identical to the outcome that would have resulted if 7;; were measured
first, namely g1; (@11 (@ ))? This is certainly possible, but it is unreasonable and unwarranted to demand it. Although
the joint distributions must be the same, i.c.,

Pyo(giiogi, g2o@nogn) ' =PRo(gioogn, gnogn) )

it is not necessary that 211 0 @11 = 211 © Q11 © Q12, 0T €13 © P13 = €12 © P12 © P11, in order for this to be true [1]. Thus,
as long as the correct quantum statistics are reproduced, this constraint is also satisfied.

Finally, if a measurement of ¥;; is repeated, even after measurements of other compatible observables have been
made, then quantum theory predicts (and observation dictates) that the same outcome must be obtained. Thus, for
example, we require that g11 0 @11 = g11 0 @11 © @12 © @11 Fo-almost everywhere. This, and similar relations, do place
important constraints on a noncontextual hidden variable model and reflect, in part, the von Neumann postulate
regarding wavefunction collapse.

Of course, if the measurements are simultaneous and not colocated (or merely space-like separated), then local
realism imposes more severe constraints. If &, ® 1 and 1 ® 6, say, represent spin measurements on two distant spin-
1/2 particles, then we certainly would expect that relations such as g 11 0 @11 0 @12 = g11 © @11 hold exactly and not just in
their distributions. This, and similar relations, place severe constraints on the choice of MIMs consistent with a local
hidden variable theory. A nonlocal, noncontextual theory of space-like separated measurements may, however, still
possible. It remains to be shown whether a suitable set of MIMs, for time-like or space-like separated measurements,
does in fact exist.

OPERATOR DECOMPOSABILITY AND SOME RECENT EXPERIMENTS

A frequent assumption made in discussions of contextuality is that, in a noncontextual theory, the outcome of a
measurement on the product of two commuting operators, commonly written v[ AB], is equal to the product, v[A4]v[B],
of the outcomes that would have been obtained had either of the two operators been measured individually [15]. This
section critically examines the basis for this assumptions.

Consider the operators 6, ® 1 and 1 ® 6, from the magic square. For a given @ € © we may make the following
associations:

V[C}x®i] :VH((D) (10a)
vi® 6] =V () (10b)
V[6:® 6] = V31 (@) . (10¢)

Now, the aforementioned assumption is that V31 (@) = V11 (@)¥21(@). By definition, this equality holds if and only if
o € Cy, and this, in turn, will almost always hold whenever a measurement of Column 1 is performed. (Recall that,
as per the discussion of the previous section, ® is interpreted as the post-measurement microstate.) If, however, a
measurement of, say, Row 1 is performed, it may well be that @ & C, in which case the assumption of equality may
be false.

_ What can explain this dependency? Suppose 6y ® 1 measures the spin of a neutron in the x-direction, while
1 ® 6, measures whether it has passed through a certain path in an interferometer. The product 6, ® 6, represents
a measurement of the two quantities in a single experimental run. If the neutron passes through the beamsplitter first
and later has its spin measured, then it is quite conceivable that the particular outcome of the spin measurement may
have been different had the beamsplitter not been present (and hence the path measurement not been made). In other
words, 11 (®) might be different from V3 (®)/V21(®). In this section we will consider conditions under which one
may legitimately decompose the noncontextual random variables into a product of constituent random variables. We
will then turn to consider the implications of this decomposability property for some recent experimental tests of
quantum contextuality.
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Decomposability

Each of the nine operators in the magic square may be written in terms of the four basic operators 6y ® i, 16,
6, ® 1, and 1 ® 6. This raises the question of whether it is possible to write each of the nine noncontextual random
variables in terms of the four basic random variables V11, V12, V22, V21, which we shall denote here by X1, Xz, Y1, Y2,
respectively.

From the definitions of the six row/column sets, we note the following:

®E€R = V3(0) =X (0)X () (11a)
®ER = V3(0)=T(0)h (o) (11b)
O ER; = V3(0) =131 (0)Vn(o) (11¢)
o el = (o) =X(0)h (o) (11d)
weC = V(o) =X(0)h (o) (1le)
0 €C; = V3(0)=-V3(0)V 3 (). (110

Since o is not contained in at least one of these six sets, we have at most five equations to define the five remaining
unknowns. If ® is contained in only four or fewer sets, then a full decomposition may not be possible. If, however,
@ is contained in exactly five sets, then we have six possible, and distinct, decompositions, each corresponding to the
single set which does not contain @. These are given as follows.

First, suppose @ & Rj (i.e., @ € RiNRyNC; NCyNC3). We cannot assume that Va3(@) = V31 (@) V32 (@), but, since
o € C3, we know that V33(@) = —V13(@)Va3(@). Furthermore, since @ is contained in both R; and Ry, we may
decompose V13(w) = X1 (0)X2(0) and Vo3(@) = ¥1(@)Y2(®). From this we conclude that

0 &Ry = V3(0) = —X1(0)Xs(0)1 (0)Y2(0). (12)

This provides a full decomposition of all nine random variables in terms of the four basic ones. Note that the above
decomposition of ¥33(@) will be valid whenever @ € C3NR; NR,.
Next, suppose that © ¢ Cs (but, again, is contained in the other five). Now V33 (w) is decomposed as follows.

0 €0 = Vi(0) =X (0)h(0)X(0)1 (). (13)

Of course, the order of the four factors in unimportant. The above decomposition of ¥ 33() will be valid whenever
0weRNCNCy.
If @ is supposed to be in all sets but R1, then we can no longer decompose V13 (®) as X1 (@)X, (w). Since @ € R3NCs,
however, we may deduce that
Va1(@0)V3(0) = —Vi3(0)Vs (), (14)
and from this we conclude that
O ¢R = V3(0) = —X1(0)X(0). (15)

Note that ¥33(®) is decomposed according to Eqn. (13).
Proceeding in a similar manner, find

0 ER, = V(w)=-Y(0)h(0) (16)
0 &0 = 131(0) = —Xi1(0)) () (17)
0 = Vplo)=-X(0)hh(o). (18)

We conclude that it may be possible to decompose any ¥;;(®) in terms of one or more of X1 (@), ¥1(®), X2(®),
Y>(o), provided that @ is contained in all but one of the six row/column sets. The decomposition is not unique,
however, as it depends upon which of the six row/column sets @ is not contained in. As discussed previously, this, in
turn, will be determined by which operators one chooses to measure.

Huang Single-Photon Experiment

An early experiment to test noncontextuality was performed by Huang ef al. [10] using photon path and polarization
measurements. The concept of this experiment was based on the theoretical work of Simon er al. [9], who suggested
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a possible test of noncontextual hidden variable theories using two degrees of freedom (path and spin) for a single
spin-1/2 particle. By measuring polarization in place of spin, the experimenters were able to perform an equivalent test
using a single photon.

In the experiment, the photon is initially prepared in the entangled state

1
=—l|lyR|z+) + |d)®|z—)|, 19
lv) \/5[|>|>|>|>] (19)
where the first component corresponds to the path (u = up, d = down) and the second component corresponds to
the polarization (z+ = vertical, z— = horizontal). The former correspond to eigenstates of &; ® 1, while the latter
correspond to eigenstates of 1 ® 6;. Specifically,

5,01 = (| ) (] — |d) <d|) ®1 (20a)

P06 =1 (It - ) 1) (20b)

Following [10], these two operators will be denoted 71 and Z,, respectively. In addition, the authors consider
the operators X = 6, ® 1 and X = i® Gx For the partlcular quantum state, |y), chosen by the experimenters, a
measurement of either 712, = 6, ® 6, or X1.X3 = 6; ® 6; always results in the value +1.

Based on the theoretical work of Simon et al., the authors assert that, for systems prepared in this way, a noncontex-
tual hidden variable theory would predict that any joint measurement of the commuting observables Z;.X; = 6, ® 6,
and X,Z, = 6, ® 6, must result in the same outcome for both observables. Quantum mechanics predicts that the
outcomes are always different. The experimental task was to make such a measurement and ascertain whether the
outcomes are indeed equal. The result was that only about 19% of the measurements showed identical outcomes for
the two observables, in agreement with quantum mechanics and at variance with their prediction for a noncontextual
theory.

The theoretical argument of Simon ef al. is straightforward but logically flawed. As is common in discussions of
noncontextuality, they associate with each operator 4 a predetermined value v[A4]. Thus, for example, v[X;] = X;(®)
for some particular @ € Q. The interpretation of v[.X1] is, however, subtly different from that of X1 (), as the former
is taken to be a preexisting value which remains unchanged by the process of measurement. By contrast, and in
accordance with the present measurement disturbance interpretation, X1 () is viewed here as the post-measurement
outcome. The difference in the two interpretations lies in whether @ is viewed as the pre- or post-measurement hidden
variable state. It is only in the former interpretation that a contradiction with quantum mechanics arises.

With this notation in mind, Simon et al. observe that, for the particular choice of |y) in Eqn. (19), the outcomes
v[Z1Z,] = +1 and v[X, X3] = +1 always occur. They then make the following decomposability assumptions:

>

vX1Xo] = v v (21a)
V[Z125] = v[Z1|v[ 23] (21b)
v[Xi122] = v[Xi v 22 (21¢)
V[Z1X0] = v[Z1 Vo], (21d)

from which one readily deduces that v Z.X;] = v[X;Z,].

The problem may be mapped to the Mermin-Peres magic square by interchanging 6, and 6;. We may then
define six analogous row/column sets, R, ...,C;, and nine noncontextual random variables V/;. We then see that
the decomposition is valid only if @ € Ry N R, NC; NC,. Since the actual experiment measures Row 3 (i.e., X2,
and Z,X,), we are guaranteed only that @ € R/, Therefore, if the measurement outcomes for the two observables are
not equal, we merely conclude that @ ¢ R} N R, NC} NC} and the decomposition was invalid. Thus, the experimental
results of Huang et al. do not rule out a noncontextual hidden variable interpretation.

Hasegawa Neutron Interferometry Experiment

In a recent experiment using neutron interferometry, Hasegawa et al. [13] claim to have obtained empirical confir-
mation of the Kochen-Specker result by showing violations of a certain Bell-like inequality. The authors consider a
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single-particle system for which two observables are measured: the spin (in a particular direction) and the path taken
in the interferometer. In the experiment, the system is prepared in the Bell state

1
=— | = )|, 22
lw) \/E[IU 1) — D ® D) (22)
where the first component corresponds to the spin (in the z direction) and the second represents the interferometer
path.
In each run of the experiment, exactly one of three observables is measured, represented here by the operators
0y ® Gy, 6, ® 6, 6, ® G, Where

sol= (1= el (23a)
ive =1 (|1> (1) — i) <11|) . (23b)

Note that, for this particular choice of |y), each such measurement will, theoretically, always result in an outcome
of —1. For the experiment, multiple independent runs were performed to get statistical averages of each of these
observables.

The resulting measured averages, denoted £, £, and E;, are compared against the corresponding quantum predic-
tions. The empirical test consists of comparing the empirical quantity

C=1-Ex—E,—E, (24)
against the quantum prediction
Com =1 = (y][6; ® 6c + 6, ® 6, + 6. ® G| |y) = 4, (25)

and a value, Cnc, predicted for a noncontextual hidden variable theory. In Eqn. (6) of reference [13], the authors predict
that [Cnc| < 2 based on a set of assumptions in Eqn. (2) of the same reference. The experiment yielded a measured
value of C" = 3.138 +0.015, which clearly violates their noncontextual prediction.

In fact, the noncontextual prediction is based on an invalid assumption regarding the decomposability of the
measured observables. To see this, first note that the noncontextual prediction is

3
Cne = 1=, [ Val@)dProni() = [ Cxcl@)dPeas(@), (26)
i=1
where

Cne(0) =1=73(0) —V3(0) —Vas(o) (27)

and, since the marginal distributions are noncontextual, for i = 1,2,3
[Val@)dProsit@) = [Vial@)dreas(@) (28)

Now, in [13] the authors assume the following decomposition.

Cre(0) = 1 = X1 (0)Xo(0) — Y (0) Y2 (0) — X1 (0) X (0)Y1 (0) V(o). (29)

Such a decomposition holds if and only if @ € RiNRyNR3NC1NCy; —ie., ® &€ Cz and is contained in the other
five sets. One readily verifies that Cnxc(®) € {—2,42} for every such . If only such values of @ are possible, the
prediction [Cnc| < 2 is obtained. (In fact, for the particular choice of |y) used, only Cnc(®) = 2 will be realized;
hence, this decomposition implies Cnc = 2.)

This assumption regarding ® is, however, unwarranted. Following the previous discussion, a measurement of ¥
would entail only that @ € R;UCs. It is certainly possible that every such o is not contained in C3, and contained in
the other five sets, but this need not be so. It may be, for example, that ® € R | N Ry N C3, in which case we have the
following, alternative decomposition.

Gre(@) = 1 =X (0)X2(0) - Yi(0)V2(0) + X1 (0)X2(0)Y1 (0)Y2(0). (30)

Inthis case, we find that Cne (@) = {0,4}, with 4 the only possible value given the choice of |y) used in the experiment.
If the measurement process results only in such values of @, then the noncontextual prediction agrees precisely with
that of quantum mechanics. Thus, the experimental results of Hasegawa et al. do not rule out a noncontextual hidden
variable interpretation.
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Proposed Experiment of Cabello et al.

In a related and more recent article, Cabello ef al. [16] suggest an alternative method of testing quantum contextu-
ality, again, using single-neutron interferometry. Using an experimental setup similar to that described in [13] and the
same initial entangled state as Eqn. (22), they propose to perform a series five separate measurements of the following
sets of observables: (1) X1, X3, (2) 11, ¥, (3) Va1, X1, Ya, (4) V3, Y1, Xo, and, finally, (5) 31, Fa2. In each of the
five experiments, the product of the observations is taken, and the results are averaged over multiple runs. Quantum
mechanics predicts the following:

(WX Xy = (yisly) = -1 (31a)
(wlT1 T w) = (wlsy) = 1 (31b)
(WP X hly) =1 (31c)
(WPl Xly) =1 (31d)
(Wihaaly) = (wPsly) = -1 (3le)
In fact, quantum mechanics predicts that these results hold, not only on average, but for each individual (and ideal)

measurement. Based on this observation, the authors assert that a noncontextual hidden variable theory should satisfy
the following relations:

Xi(0)X%(0) = -1 (32a)
N(o)h(w)= -1 (32b)
V(o)X (0)Y(0) =1 (32¢)
Va(o)h(e)X(e) =1 (32d)
Va(@)Vs(w) = -1, (32¢)

where the authors assume (implicitly) that these relations hold for all @ € Q. (See Egns. (3a)-(3¢) in [16].) They then
note (correctly) that no single @ can possibly satisfy all five relations, since the product of the left-hand side is +1,
while the product of the right-hand side is —1.

To understand this better, let us define the sets B; .= {® € Q : Vi (0)Vn(w) = —1} for i = 1,2,3. By definition,
Eqn. (32a) is satisfied iff @ € B, Eqn. (32b) is satisfied iff @ € By, and Eqn. (32e) is satisfied iff @ € B3. Furthermore,
Eqns. (32¢) and (32d) are satisfied iff w € C; and @ € C», respectively. The impossibility of satisfying all five equations
simultaneously implies that

BiNB,NB3NCING =9. (33)

This result is simular to that for the six row/column sets, which were found to have no common intersection point. It
is the probabilities, however, that make this situation appear paradoxical.

For any quantum state, Pcop1[C1] = Peoi2[C2] = 1. Furthermore, for the particular form of |y) chosen, Prowi[Bi] = 1
for i =1,2,3. As has been argued previously, this does not, however, imply that any of these sets is identical to
Q. It is for this reason that the inequalities expressed in Eqns. (4) and (5) of Ref. [16] are invalid. Now, it is
also the case that, quite generally, Pcoi3[Cs] = 1 and Prow;[Ri] = 1 for i = 1,2,3. Thus, Prewi[Ri N B;] = 1 and
Peo3[C3 N Bj] = 1. In other words, a measurement of, say, Row 1 will result in a post-measurement microstate, ©,
such that X; (@) X2 (@) = V13(®) = —1, while a measurement of Column 3 will result in a (possibily different) post-
measurement microstate, @', such that ¥13(@’) = —1, V23(0") = —1, and V33(@’) = —1. The mere fact that, say,
Vi3(0) = V13(®") does not imply, for example, that X1 (@) = X1 (') or Xa(0) = Xa2(0').

Since a noncontextual hidden variable theory does not predict that all five equations are ever satisfied, a violation of
the proposed inequalities will not rule out the possibility of a noncontextual hidden variable interpretation. Indeed, the
Sequential Measurements model presented here will exactly reproduce the predicted quantum results.

SUMMARY AND CONCLUSIONS

In this paper, the question of quantum contextuality in the Mermin-Peres square has been considered. It was shown
that a deterministic, noncontextual hidden variable model of this problem is not inconsistent with quantum mechanics,
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contrary to the Kochen-Specker theorem. The key idea proposed is that measurement outcomes are deterministic func-
tions of hidden variable states which may be modified through the process of measurement. Thus, the (inaccessible)
pre-measurement value of an observable may be different from its post-measurement outcome.

The flaw in the Kochen-Specker theorem was found to lie in the assumption of the Functional Composition Principle.
Contrary to this assumption, quantum mechanics demands only that the set of hidden variable states over which a
given functional relation among commuting operators holds must have a probability of 1 with respect to a distribution
corresponding to the particular set of commuting operators. This alone merely shifts the question of contextuality from
the random variables to the probability measures. One way to understand how such an apparent contextual dependency
may arise is to suppose that the hidden variable states are modified through interaction between the measuring device
and the system under interrogation.

Finally, empirical tests of quantum contextuality in two recent experiments, Huang et a/. [10] and Hasegawa er al.
[13], and one proposed experiment by Cabello ef al. [16] were considered. In all cases, it was found that the authors’
predictions for a noncontextual theory, based implicitly on the Functional Composition Principle, were invalid due to
an improper decomposition of the random variables corresponding to each operator. Neither experiment was found
capable of ruling out a noncontextual hidden variable interpretation. As both experiments used measurements of path
and polarization/spin on a single photon/neutron, neither was capable of ruling out a local hidden variable interpretation
either.
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