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Polymer flooding is economically successful in reservoirs where the water flood 

mobility ratio is high, and/or the reservoir heterogeneity is adverse, because of the 

improved sweep resulting from the mobility-controlled oil displacement. The 

performance of a polymer flood can be further improved if the process is dynamically 

controlled using updated reservoir models and a closed-loop production optimization 

scheme is implemented. However, the formulation of an optimal production strategy is 

based on uncertain production forecasts resulting from uncertainty in spatial 

representation of reservoir heterogeneity, geologic scenarios, inaccurate modeling, 

scaling, just to cite a few factors. Assessing the uncertainty in reservoir modeling and 

transferring it to uncertainty in production forecasts is crucial for efficiently controlling 

the process. This dissertation presents a feedback control framework that (1) assesses 

uncertainty in reservoir modeling and production forecasts, (2) updates the prior 

uncertainty in reservoir models by integrating continuously monitored production data, 

and (3) formulates optimal injection/production rates for the updated reservoir models. 



 viii

This approach focuses on assessing uncertainty in reservoir modeling and production 

forecasts originated mainly by uncertain geologic scenarios and spatial variations of 

reservoir properties (heterogeneity). This uncertainty is mapped in a metric space created 

by comparing multiple reservoir models and measuring differences in effective 

heterogeneity related to well connectivity and well responses characteristic of polymer 

flooding. 

Continuously monitored production data is used to refine the uncertainty map 

using a Bayesian inversion algorithm. In contrast to classical approach of history 

matching by model perturbation, a model selection problem is implemented where highly 

probable reservoir models are selected to represent the posterior uncertainty in production 

forecasts. The model selection procedure yields the posterior uncertainty associated with 

the reservoir model. The production optimization problem is solved using the posterior 

models and a proxy model of polymer flooding to rapidly evaluate the objective function 

and response surfaces to represent the relationship between well controls and an 

economic objective function. The value of the feedback control framework is 

demonstrated with two examples of polymer flooding where the economic performance 

was maximized. 
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Chapter 1: Introduction 

1.1 PROBLEM DESCRIPTION 

Closed-loop reservoir management is a decision making process in which the 

operation of the reservoir is controlled to optimize an economic objective function. The 

formulation of the control strategy is highly dependent on production forecasts, which are 

uncertain due to the uncertainty in the reservoir model. The main sources of uncertainty 

in reservoir modeling are heterogeneity, spatial resolution, the mathematical model itself, 

and numerical inaccuracies. Among these sources, reservoir heterogeneity is the major 

contributor, which is highly dependent on the geological environment of the reservoir. 

The main problem is how to characterize the uncertainty in production forecasting by 

integrating uncertainty in reservoir heterogeneity and all information available to us 

(including production history). Once this problem is solved, the production optimization 

process can be undertaken so as to yield better decisions for reservoir development. 

Solving this problem for polymer flooding is important because heterogeneity has an 

important influence on the displacement of the polymer front and also because polymers 

are important for ensuring increased efficiency of chemical enhanced oil recovery 

techniques.  

The main problem can be divided into three sub-problems: (1) how to represent 

the uncertainty in reservoir heterogeneity while considering ambiguity in geologic 

interpretations and data scarcity; (2) how to update the uncertainty in geologic models 

such that well measurements are integrated and production forecasts are more accurate, 

and, (3) how to optimize well operations so as to maximize a particular economic 

performance indicator given the updated information about the reservoir?  
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1.2 RESEARCH OBJECTIVES 

The primary objective of this research is to formulate a framework to maximize 

the performance of polymer flooding that utilizes dynamic data from wells to update 

prior reservoir models, and subsequently uses an optimization algorithm to find the 

optimum well control strategy that maximizes the project economics. To accomplish this 

objective, the following steps are formulated: 

• To characterize uncertainty in reservoir modeling and forecasting 

considering multiple geologic scenarios. 

• To update the prior uncertainty using past production data such that the 

uncertainty in production forecasts is refined. 

• To optimize well operating conditions based on the updated production 

forecasts in order to maximize the economic profit. 

1.3 METHODS OF SOLUTION 

Within the scope of this research, the two major focal points are reservoir model 

updating and the optimization of well controls. The method for model updating addresses 

the first two objectives because production data is integrated into a prior set of reservoir 

models, such that the uncertainty in production forecasting is represented by the updated 

set of models. Subsequently, the third objective is achieved by the production 

optimization method, so that the closed-loop framework is completed. . Polymer flooding 

was selected to demonstrate the closed-loop optimization framework because reservoir 

heterogeneity has a subtle and important influence on the displacement of the polymer 

front and also because polymers are important for ensuring increased efficiency of 

chemical enhanced oil recovery techniques. 
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1.3.1 Method for Updating/Selection of Reservoir Models 

Geological models of reservoirs constructed using static data (well logs, seismic, 

etc.) can vary greatly due to the subjectivity of the data interpretation, resulting in 

different reservoir architectures, depositional environments, etc. Conceptual models of 

reservoir geology are expressed through geostatistical parameters such as a variogram 

model for two-point statistics or a training image for multiple point statistics. However, 

the geological interpretation of the reservoir depositional model itself is a major source of 

uncertainty. A key research objective is to develop a method that considers a large 

ensemble of initial reservoir models, which are representative of the prior uncertainty. 

From this suite of prior models, a subset of posterior models are selected that best 

reproduce the production history. The final set of models, selected from the initial 

ensemble, may come from different interpretations of the geological environment, but 

share the same connectivity characteristics that influence flow performance and are 

anchored to the same well log and core data as well as any available seismic information.   

There are two important aspects of the presented method that distinguish it from 

methods traditionally used for history matching. First, there is shift in paradigm from a 

model perturbation problem (conventional methods) to a model selection problem (this 

approach). Conventional methods for reservoir history matching perturb an initial 

reservoir model until a match with the observed production data is obtained. In contrast, 

the method developed in this dissertation works with the model taken as a whole, and 

evaluates whether the connectivity characteristics exhibited by it are similar to other 

models within a cluster. The observed production history is then used to select the cluster 

that exhibits production performance closest to the observation. The second aspect is that 

in the traditional algorithms, the history matching scheme is too entwined with the 

process of generation of reservoir models. In other words, the scheme for integrating 
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production data in the reservoir model is specific to the algorithm used for generating the 

spatial variations in reservoir attributes. In the method presented, the process of 

generation of reservoir models is completely dissociated from the task of selecting an 

optimum cluster of models that exhibit the production characteristics observed. 

The following is a brief outline of the presented method. The first step is to group 

realizations according to their similarities in terms of some connectivity measure(s) such 

as well communication. It is presumed that reservoir models with similar characteristics 

in connectivity/well communication share similar production data. Conversely, it is 

expected that reservoir models with dissimilar characteristics in well communication 

exhibit dissimilar production data. Based on the above assumption, the production data 

evaluated through reservoir simulation of one of the models is a good representation of 

the production data from all the members of that group. The deviation of the production 

response of a representative member of a cluster from the observed production history is 

used to compute the posterior probability for selecting that cluster. A Bayesian scheme is 

presented for accomplishing this. A cluster is sampled on the basis of the posterior 

probability and the process of cluster refinement is continued until the calculated 

posterior probabilities make it impossible to distinguish between clusters. 

1.3.2. Optimization of Well Conditions  

The third research objective is to develop a procedure that determines optimal 

well controls which maximize the economic net present value of a polymer flooding 

process. A naïve approach would be to define an objective function that reflects the 

objective of the polymer flooding project, and to identify the controllable well conditions 

that have the greatest impact on the objective function. The problem is highly complex 

and difficult to manage because the number of control variables can be large and repeated 
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execution of a reservoir simulator for polymer flooding, can quickly make the task 

infeasible. 

 For the above reasons, the application of more rigorous methods based on 

optimal control theory or adjoint models is difficult. This difficulty underlines the 

necessity of adopting tools like proxy models and response surfaces in order to explore 

the combinatorials of control parameters. Thus, a proxy model for polymer flooding that 

estimates the objective function as a function of available well controls was developed 

for rapid evaluation. The developed workflow is as follows: first, the proxy model of 

polymer flooding is used for function evaluation, then a response surface is constructed 

from the responses of the proxy model, and finally the optimization problem is solved 

over the response surface. The developed methodology results in a more efficient 

implementation of optimum control schemes.  

1.3 DISSERTATION OUTLINE 

Chapter 2 discusses relevant works on reservoir history matching, model updating 

and production optimization, and provides a background on polymer flooding. Chapter 3 

presents the algorithm developed for rapid polymer flooding simulation, which is 

extensively used throughout the rest of the dissertation. Chapter 4 covers the method for 

uncertainty characterization using a distance-metric approach. Chapter 5 presents the 

method for selection and updating of reservoir models using production data, which is 

illustrated by an example based on synthetic reservoir cases. Chapter 6 presents the 

production optimization algorithm, which is applied on the example in Chapter 5. In 

Chapter 7, the model selection and production optimization algorithms are coupled, 

closing the feedback control loop. Finally, this dissertation is concluded in Chapter 8 with 

the main findings of this study and the proposed future work. 
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Chapter 2: Background and Literature Review 

2.1. OVERVIEW 

This chapter starts with a review of the main components of a feedback control 

system and its the applicability to enhanced oil recovery. This is followed by a critical 

review of traditional and modern methods for reservoir history matching that also 

summarizes some of the main issues addressed in this dissertation. After that, a revision 

of recent works on closed-loop reservoir management demonstrates the need for efficient 

methods for production optimization of enhanced oil recovery processes. The final 

section of this chapter provides background on polymer flooding, including the 

application of fractional flow theory for polymer flooding and simulation with 

UTCHEM. 

2.2. FEEDBACK CONTROL OF ENHANCED OIL RECOVERY 

Control engineering is applicable in many industrial settings like in chemical 

plants, aircraft navigation or financial systems to name the most common fields of 

application. The objective of a control system is to manipulate the input of a system such 

that the corresponding output matches a desired value. In 1961, Kalman (1961) 

introduced the dual concept of controllability and observability. Kalman demonstrated 

that when the system dynamic equations are linear and the objective function is quadratic, 

then the mathematical problem has an explicit solution, making possible the concept of 

feedback control or closed-loop systems. Burns (2001) presents the main components of 

a closed-loop control system from a control engineering viewpoint as illustrated in Figure 

2-1. A system is a process that produces an output as a response to a controllable input. In 

this dissertation, the system to be controlled is the reservoir and the controllable input is 

the operation of wells. A controller is the set of control instruments that takes the desired 



value and modifies the dynamic state of the system through controllable inputs. With the 

advent of intelligent completion tools, a controller in an enhanced oil recovery process 

can be down-hole chokes for flow rate regulation. Permanent down-hole gauges or 

reservoir surveillance tools are sensors that take the response of the reservoir and provide 

the operator with actual measurements. Knowledge of the system input together with the 

mathematical model allows the outputs to be calculated and compared against the actual 

measurements. 

Σ Controller System

Sensor

Desired Value
Output
Value

Forward path

Feedback path

Measured
Value

Figure 2-1 Generic components of a feedback control system. Adapted from Burns 
(2001)  

According to Franklin et al. (2010) the basic requirements for a feedback control 

system are: (1) stability, (2) controllability and (3) observability. Feedback control cannot 

be applied to a system that becomes unstable after a control has been implemented or if 

the control is turned off. In most cases, a reservoir is a naturally stable system where the 
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effect of well interventions takes place slowly. Controllability refers to the possibility of 

forcing changes in the dynamic state of the system using a control signal. A reservoir is a 

controllable system because its dynamic state is directly affected by well operations 

which provide the control signals. Observability refers to the ability to monitor the 

response of the system to a given control input. A reservoir is observable through 

pressure sensors, fluid samples, etc. Hence, it is possible to conceive of a feedback 

control scheme to oil recovery processes. 

However, the following complications arise when a feedback control scheme is 

implemented for enhanced oil recovery: (1) the mathematical model is a computationally 

expensive reservoir simulator, (2) the physical process does not occur at the same scale as 

the resolution of a reservoir simulator, (3) the uncertainty in the reservoir simulation 

model due to reservoir heterogeneity can turn the calculated outputs highly uncertain, and 

(4) the time elapsed from the implementation of a control input to the observation of a 

response can be long, thereby rendering the process of calibration of mathematical model 

difficult. 

Closed-loop systems for reservoir management have to deal with these 

complications. Brouwer et al. (2004), Sarma et al. (2005) and Sarma et at. (2006) have 

implemented feedback control procedures for water flooding management by coupling 

model updating and optimization methods. Despite these applications in reservoir 

engineering, a practical feedback control workflow for chemical flooding is still lacking. 

2.3. RESERVOIR MODEL UPDATING AND HISTORY MATCHING 

In order to implement feedback control it is crucial to have a mathematical model 

that delivers reliable predictions of reservoir response as a function of the control 

variables. In a feedback control process, the output measured by the sensors reflects the 
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dynamic state of the system. The measurement from sensors is fed back into the 

mathematical model to improve the quality of the predictions. For this reason it is 

important to have a procedure to update the mathematical model using the observed 

responses, and this is termed as production history matching in reservoir engineering. 

 History matching methods aim to condition prior reservoir model to dynamic 

data (also called production data) observed in the field. The variables in reservoir flow 

simulation can be broadly classified in static variables, i.e. porosity, permeability, relative 

permeability curves, etc., and dynamic variables, i.e. pressure, saturation, water cut, well 

pressure, etc. Initial reservoir models are constructed based on scarce direct 

measurements of static variables such as well logs and indirect data such as seismic 

interpretation. Nevertheless, dynamic well variables such as well water cuts, flowing 

pressures obtained from flow simulation often differ from observations at wells.  

Traditional methods for history matching generally have a model perturbation 

step. That is, they perturb prior reservoir models until the mismatch between the 

simulated production data and the actual production data is minimized below certain 

tolerance. The intricate relation between static and dynamic variables, and the large 

number of equations involved make this task difficult and the resultant solution non-

unique. History matching methods can be broadly classified into gradient based methods, 

ensemble-based methods and stochastic algorithms. 

2.3.1 Gradient-based Methods 

Gradient-based methods present the history matching problem as an optimization 

problem. The objective function to be minimized is the squared error between the 

simulated data and the observed data. History matching is achieved by perturbing the 

initial model using the gradient of the objective function with respect to each uncertain 
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variable. The following shortcomings make gradient-based methods unsuitable for rapid 

updating of reservoir models: 

• There is no guarantee that the posterior model preserves the prior geologic 

information unless some measurement of geologic consistency is introduced in the 

objective function. 

• Only one reservoir model is obtained at the end, and that model depends entirely on 

the prior model. It is desirable to obtain multiple models for uncertainty assessment. 

• The calculation of gradients or sensitivity coefficients is generally based on a 

linearized form of the flow equations. This poses problems in reservoirs exhibiting 

complex geologic features that causes the response to be highly non-linearly related 

to the reservoir heterogeneity. 

2.3.2 Ensemble-Kalman filter 

Ensemble Kalman filter (Evensen, 1994) is an evolution from the classical 

Kalman filter (Kalman, 1960), one of the pioneering works in closed-loop control 

systems. Kalman filter considers the system as a random process that can be modeled as a 

Markov Chain process. The state variables are all the variables that define the state of the 

system at any given time and these may include dynamic and static variables. Kalman 

filter utilizes the Kalman gain that captures the relationship between the state variables 

and the observations to update the prior state variables. The state variables are updated so 

as to reflect better the observations and the Kalman gain is updated by assimilating the 

observations. However, the Kalman gain in the traditional form of the filter is formulated 

for a forward model that is approximately linear. In order to generalize the filter to non-

linear transfer functions, the Ensemble Kalman Filter (EnKF) was devised by Evensen 

(1994) in which the traditional Kalman gain is replaced by an experimental covariance 



matrix obtained from an ensemble of realizations of the state space. The term 

“realization” is used throughout this dissertation to refer to a reservoir model, which is an 

observation from a random variable. The complete derivation of Ensemble Kalman filter 

equations can be found in Evensen (2007). The updating equation (Equation 2.1) has 

been derived to guarantee that the posterior density function is maximized if the prior 

density function is Gaussian. 
( ) ( )1T T

k k kx ,k x ,k k

+ − −−− −= + + −x x C H HC H R z Hx
     (2.1)

 

In the above equation x is the state vector that contains all variables that define a 

realization of the ensemble. The superscripts + and – indicates posterior (or updated) and 

prior estimates for the state variables respectively. C is the covariance matrix linking the 

state variable x to the observed data zk, H is a matrix that when it is multiplied by the 
state vector ˆ

kx returns the simulated observations . R is the noise covariance matrix, 

which is assumed to be unbiased and Gaussian. z is a vector that contains the 

observations from the actual system (reservoir and wells). The subscript k denotes the kth 

realization from the ensemble.  

ˆ kz

EnKF is attractive for reservoir model updating because the implementation is 

easy: it uses the reservoir simulator as a black-box that outputs production data 

(simulated observations) as a function of the state of the system (static and dynamic 

variables). In that way, the complexity of flow equations is by-passed. Another attractive 

property is the simplicity of the linear equation used to update the state of the system. 

Advocates of EnKF also claim that it allows refining the uncertainty in reservoir 

performance using responses from multiple realizations calibrated against measured data. 

Another advantage of EnKF is that unlike traditional history matching methods, EnKF 

integrates new data incrementally rather than cumulatively from the start of production. 
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In reservoir simulation this is a great advantage because the update can be done through 

restart files.  

Despite the above attractive properties of EnKF, many authors have pointed out 

some pitfalls that limit its application to reservoir model updating. First, the prior 

probability density function is assumed to be Gaussian in the derivation of the updating 

equation. Although the distribution of many reservoir properties can be assumed to be 

Gaussian, some rock properties like permeability do not follow a Gaussian distribution; 

for instance, the facies distribution is multimodal. The consequence of evolving a non-

Gaussian distribution through a linear update equation is that the distribution of the 

updated ensemble progressively tends to be Gaussian as shown by Zhou et al. (2010).  

A second drawback of EnKF is that the state variables are updated with data 

forward in time without validating prior matches. This means that it looks to minimize 

the error for the next time step regardless of the results from previous time steps. Thus, 

geologic consistency of the final models can be compromised. Mantilla et al. (2007) 

showed a particular application of EnKF for water coning where the experimental 

variogram of the final model is inconsistent with the prior geologic model. This might 

also lead to inconsistency between the updated state variables and static variables because 

the update proceeds without explicitly account for the interdependencies between the 

static and dynamic state variables. 

2.3.3 Probability Perturbation Method 

Since multiple reservoir models can match the observed production history, it is 

worthwhile to consider a stochastic approach to history matching that can explicitly 

calibrate the information in dynamic data and use that information to update the prior 

uncertainty in reservoir model to the posterior uncertainty conditioned to the available 
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data. This method considers X(u) as a random variable where X is the reservoir property 

and u the location vector. In probability perturbation methods, the objective is to 

integrate two conditional probabilities: (1) the conditional probability to the geology 

P{X(u)|Geology}, and (2) the conditional probability to the observed dynamic data 

P{X(u)|Dynamic data}. The integrated conditional probability P{X(u)|Geology,Dynamic 

data} is the updated posterior distribution. Sequential simulation methods like sgsim, 

sisim or snesim can generate multiple realizations of reservoir models conditioned to the 

geological data and assess the conditional probability P{X(u)|Geology}.  

For obtaining the probability conditioned to dynamic data, the probability density 

function at each location is expressed as a function of a deformation parameter. Therefore 

transitions from one realization to other are obtained upon perturbation of that probability 

using the deformation parameter. Subsequently, a 1D minimization procedure such as 

Dekker-Brent algorithm is implemented to perturb the deformation parameter so as to 

minimize the mismatch between the observed and simulated dynamic data. Upon 

convergence, the conditional probability P{X(u)|Dynamic data} can be assessed. The two 

conditional probabilities are merged using the permanence of ratio hypothesis formulated 

by Journel (2002). As a result, the joint conditional probability distribution 

P{X(u)|Geology, Dynamic data} is obtained and realizations sampled from that joint 

probability distribution honor both the prior geology and the dynamic data.  

This probabilistic approach estimate the probability distribution of a variable node 

by node, and identify regions where it is highly probable to find high permeability 

streaks, low-permeability barriers, etc. Hofman and Caers (2004), Yadav et al. (2005), 

Mantilla et al. (2010) are applications of this methodology that have been successfully 

implemented.  



 14

Although the final models obtained by probability perturbation are geologically 

consistent, they are constrained only to one geologic scenario (the prior geologic model). 

In reality, the scarce hard data available is not enough to identify a unique prior model. 

Multiple geologic interpretations can emerge, introducing additional uncertainty in the 

final history matched model. Probability perturbation methods neglect this source of 

uncertainty. 

2.4 OPTIMIZATION OF WELL CONTROLS FOR ENHANCED OIL RECOVERY 

The efficiency of a polymer flooding process can be improved by implementing 

optimum operating conditions at the wells. Economic performance indices like net 

present value (NPV) are usually chosen as cost function in enhanced oil recovery 

processes (Ramirez et. al. (1986), Sarma et. al. (2005) and Kraijevanger et. al. (2007)). 

Vaskas (1996) developed a comprehensive chemical flooding economic model (CFEM) 

to evaluate the economics of chemical flooding processes. CFEM include chemical oil 

recovery, capital costs, operating costs, taxation rates, oil price, etc. Vaskas (1996) 

recommended investment efficiency for evaluating and optimizing chemical flooding 

projects. Regardless of the explicit formula, any objective function with fixed final time 

related to the cumulative recovery is convex because the original oil in place is finite. 

Thus, gradient-based methods for optimization are suitable for this problem. 

The search for optimal control settings starts from an initial guess of the well 

control settings, and continues guided by the gradient of the objective function towards 

the optimal control settings where the gradient is zero or the feasibility bounds are 

encountered. The question is how to obtain that gradient from a complex mathematical 

model like a flow simulator, where several variables influence the solution. The 

following section reviews applications of optimization algorithms to enhanced oil 



recovery processes, classified according to the method employed to obtain the required 

gradient. 

2.4.1 Optimal Control Theory and Adjoint Models 

In optimal control theory a performance index needs to be minimized as a 

function of a set of control variables implemented at discrete time intervals subject to 

equality and inequality constraints. In polymer flooding optimization, the performance 

index (J) can be an economic index such as the net present value (2.2); the control 

variables (u) are the production and injection controls at the wells such as injection and 

production rate and/or pressure, polymer concentration and slug size. The constraints are 

the equations such as the continuity and pressure equations (such as in Eq. 2.3) that the 

mathematical model should satisfy, and the operational limits of the wells or production 

facilities (such as in Eq. 2.4). Usually the problem is formally presented as: 

Minimize  
( ) ( ) ( )( )
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Subject to 

( )1n n n n, ,− =f x x u 0         (2.3) 

n n≤ ≤LB u UB          (2.4) 

ωw, ωo and ωw
inj are weights assigned to water production (qw), oil production (qo) 

and injection (qw,inj) rates respectively. These weights are function of the revenue and 

costs associated with the production, injection and processing of a particular fluid phase. 

N is the total number of time steps in which the process has been discretized, while n is 

the time step index. f is the set of flow equations that the reservoir simulator solves. xn is 

the vector that contains the state variables that describe the system in the simulation, for 
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example the pressure and saturation at all grid-blocks. The control vector (u) has lower 

(LB) and upper (UB) bounds to ensure that the solution is physically feasible. 

Implementation of the method of Lagrange multipliers and Karush–Kuhn–Tucker 

(Hull, 2003) necessary conditions for optimality leads to a set of co-state or adjoint 

equations (2.5) and (2.6).  
11 1N N
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The superscript T denotes transpose. First, the Lagrange multipliers 

corresponding to the final time step (λTN) are solved using Equation 2.5 with the gradient 

of the objective function and the flow equations at the final state. Then, Equation 2.6 is 

used sequentially to calculate the Lagrange multipliers corresponding to the previous 

time steps (λTn) using the gradient of the objective function and the flow equations along 

with the previously calculated Lagrange multiplier (λT(n+1)). A major drawback of this 

backward solution scheme is that it is required to store all the state variables for each time 

step calculated during the forward simulation. In addition, the calculation of the partial 

derivatives (∑f/∑x) requires the explicit knowledge of the flow equation and its 

derivatives.  

In enhanced oil recovery, optimal control theory was first applied for optimization 

of surfactant (Porzucek, 1990), micellar/polymer (Fathi and Ramirez, 1984), and CO2 

flooding (Mehos, 1989), in relatively simple homogeneous porous media. For a 

micellar/polymer one-dimensional displacement, Fathi and Ramirez (1984) computed the 

gradient numerically, although it was a complex and time consuming process. Ramirez 

(1987) and Porzucek (1987) extended the optimization of micellar/polymer flooding to a 

2D homogeneous reservoir using streamline simulation. The computational procedure for 
 16
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the Jacobians was the same as in Fathi and Ramirez (1984). Since the permeability of the 

porous medium is assumed to be known, no model updating was necessary in the above 

studies. Sudaryanto and Yorstos (2001) combined optimal control theory with a “bang-

bang” injection policy for dynamic optimization of water flooding at laboratory scale.   

More recently, Brouwer et al. (2004) and Sarma et al. (2005) pioneered the 

application of optimal control theory for water flooding optimization in the context of 

closed-loop control. Peters et al. (2009) set an SPE comparative test case to benchmark 

techniques on water flooding optimization using optimal control theory or ensemble-

based methods. The general procedure in all these works is common: first the simulator is 

run forward to the final time; during the run, the state variables (pressure and saturation) 

along with the two Jacobians of the simulation equation for each time step are stored; and 

finally the adjoint equations are solved backwards in time for the solution of the 

Lagrange multipliers; then, the Lagrange multipliers are used to calculate the gradient of 

the objective function with respect to the control variables (∑J/∑u); and used within a 

gradient-based method to iteratively reach the optimal control settings. 

The purpose of the adjoint equations is to find the partial derivative of the 

objective function with respect to the control vector. To solve the adjoint equation it 

requires the calculation of the gradients ∑f/∑x and ∑f/∑u where x are the spatial reservoir 

variables, u are the control parameters and f is the set of flow equations that the reservoir 

simulator solves. This is the main difficulty of the method because ∑f/∑x and ∑f/∑u 

should be extracted from the reservoir simulator at each time step and it requires the 

explicit knowledge of the flow equations (Lorentzen et. al., 2006). Nevertheless, the 

advantage of optimal control theory with adjoint models is that only one forward 

simulation is required to find the gradient (∑J/∑u) for each iteration, thus the number of 

runs of the forward model is equal to the number of iterations. 
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This method does not account for uncertainty in the description of the reservoir 

model. The optimal solution is sought for a given reservoir model, so the solution is 

guaranteed to be optimal only for that specific reservoir model. Van Essen et. al. (2009) 

raises the problem that the optimal solution found for a single reservoir model might not 

be realistically optimal if more than one reservoir model matches the production history. 

In order to account for uncertainty and to have a more robust solution, Van Essen et. al. 

(2009) proposed to reformulate the objective function such that the control vector 

optimizes the net present value of all the plausible reservoir models simultaneously. If 

multiple reservoir models can match the production history, the optimal control is not 

simply the expected value of each optimal control vector because the transfer function is 

highly non-linear. The optimization of well control when the reservoir description is 

uncertain is still very much a research issue. 

2.4.2 Ensemble Based Optimization 

Chen et. al. (2008), Chen and Oliver (2009), and Chaudhri et. al. (2009) have 

implemented closed-loop systems for optimizing waterflooding using an ensemble-based 

optimization approach frequently called En-Opt. Ensemble Kalman Filter can be seen as 

a minimization method where the objective function is the mismatch of the response of 

realizations from the reference production data. This perspective of EnKF originated the 

so called ensemble based optimization methods. In these works, the objective function is 

the actual cost function such as the net present value or recovery efficiency, and the 

control vector is cast as an uncertain variable. This approach correlates each element of 

the control vector to the objective function using the experimental covariance computed 

over an ensemble of equi-probable realizations. The advantage of this method over 

adjoint models is that the flow equations are not required to be explicitly known nor is 
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there any need to extract the Jacobian matrix from the simulator to calculate the gradient 

of the objective function. Instead, the numerical simulator is considered as a black-box 

that relates the control variables to the performance index. The method is then combined 

with an iterative gradient based algorithm such as steepest ascent (or descent) to search 

for the optimum control vector. The main disadvantage of this approach is its 

computational inefficiency: each time step after updating the model, the simulator is run 

to the final time to evaluate the objective function for each realization of the ensemble, 

and the process is repeated at each iteration of the gradient-based algorithm. Additionally, 

the assumption of a Markov Chain implies that the covariance between a control variable 

at time t and the objective function is independent of the control setting taken before t. In 

reality, it is the entire combination of control variables (u) at all times prior to the current 

time that impacts the resultant objective function. 

2.4.3 Response Surface Methods 

Response surface methods could be also considered as ensemble-based methods 

because both perturb the control variables to evaluate the variation on the objective 

function, and use the ensemble to compute the correlation between the objective function 

and the control variables. In the case of response surfaces the relationship between the 

control variables and the objective function is calibrated in the form of a regression where 

the independent variable is the set of well controls. Once calibrated, response surfaces are 

a useful proxy for reservoir simulators (Friedmann et. al. (2001) and Sangvaree (2008)). 

The response surface is created by running full simulations and evaluating the objective 

function corresponding to different realizations of the control vector. Experimental 

Design is a common technique used to sample the control vector (Ramirez (2009), 

Prasanphanich (2009)). Experimental Design investigates the sensitivity of the response 
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to the independent variables by taking combinations of two extreme (2k technique) values 

of the independent variables, or two extremes and one middle point (3k technique) in 

order to account for non-linearity. The number of function evaluations is 2k or 3k 

respectively, where k is the number of independent variables. It is obvious that for large 

number of independent variables the methodology is impractical; hence, Experimental 

Design is useful when the independent variable is static, it does not change over time. 

In general, a relatively simple polynomial equation (J*=f(u)) is fitted to the 

response surface and used as a proxy model to correlate the design variables to the 

objective function. In this method, the gradient (∂J/∂u) is replaced by the gradient of the 

proxy model (∂J*/∂u), so that the search of the optimal settings is driven by the surrogate 

gradient. Although the search for the optimum is fast, the construction of the surface 

response is expensive; the number of simulation runs increases exponentially as the 

number of control variables increases. 

Anderson et. al. (2006) performed a sensitivity analysis of the design of chemical 

flooding in a mixed-wet dolomite reservoir. The sensitivity of the net present value with 

respect to a set of design variables such as surfactant concentration, slug size, salinity, 

mass of polymer, and a set of uncertain variables such as surfactant adsorption, polymer 

adsorption, and average permeability was examined. A set of curves of net present value 

versus each design variable was presented to show the impact of each variable. These 

curves could be used to find the optimal design variables. 

Yamali, et. al. (2007) developed a proxy model using Experimental Design and 

response surfaces to control unwanted water production in gas reservoirs. The optimal 

control scheme was sought in the response surface using a hybrid optimization technique 

involving genetic algorithm to search for global optimum, and steepest ascent or descent 
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method to search for local optimum. This combination of optimization methods saved 

computational time by using less simulation runs. 

 Sangvaree (2008) used experimental design and response surface methodology to 

optimize the design of polymer and surfactant/polymer flooding. In Sangvaree’s work the 

control variables were not time dependent. Rather, the control variables were 5 design 

parameters related to the chemical formulation of the slug and a geologic variable that is 

the ratio of vertical to horizontal permeability. The objective function was the net present 

value. Although the reservoir model used was heterogeneous, sensitivity to heterogeneity 

was not studied. 

Application of response surface methodology to time-dependent control variables 

in enhanced oil recovery has not been reported yet. Perhaps because the number of 

control variables directly depends on the number of discrete-time control steps and the 

number of wells, which is a large number of variables. As consequence, the task can be 

computationally unfeasible. 

2.5 POLYMER FLOODING FOR ENHANCED OIL RECOVERY 

Polymer flooding is a mobility-controlled enhanced oil recovery process. Polymer 

flooding is opted when the water-oil mobility ratio is high for water-flooding and/or the 

reservoir geology is highly heterogeneous. Reservoirs with evidence of geological 

heterogeneity or extensive stratification and high permeability contrast between channels 

and the rest of the formation (khi/kav>4) are potential candidates for polymer flooding by 

delaying water breakthrough and providing more uniform sweep of the reservoir (Sorbie, 

1991).  

High-viscosity solutions of large polymeric molecules dissolved in water at a 

small concentration are injected into the reservoir for oil displacement. The water-oil 
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mobility ratio is lowered by the high-viscosity of the aqueous solution, resulting in lower 

oil saturation behind the polymer front and promoting cross-flow between swept and 

upswept areas. As a result, the overall oil recovery is improved with greater areal 

coverage.  

Partially hydrolyzed polyacrylamide (HPAM) is most commonly used for 

enhanced oil recovery. HPAM is produced in large quantities with different molecular 

weights and degree of hydrolysis (Kim, et al. 2010). Two decades ago, good reservoirs 

for polymer flooding with HPAM were limited to temperature less than 80 °C (max 95 

°C), low salinity/hardness due to possible chemical or thermal degradation of the polymer 

molecules (Sorbie, 1991). However, Levitt and Pope (2008) and Lee et al. (2010) 

reported new polymers with higher resistance to thermal degradation (>100°C) and harsh 

salinity/hardness conditions, expanding the application of polymer flooding to more 

reservoirs. 

2.5.1 Modeling Polymer Flooding through Fractional Flow Theory 

The fractional flow theory for enhanced oil recovery generalized by Pope (1981) 

explains the fundamentals of polymer flooding, and it is employed in the development of 

the proxy model for polymer flooding presented in Chapter 3. Although the theory was 

originally developed for one-dimensional displacement, it has been extended to 2D and 

3D through application of streamlines (Patton (1971)). The effect of inaccessible pore 

volume, polymer adsorption, and the formation of two shock fronts are important 

considerations in the application of fractional flow theory to polymer flooding. A portion 

of the total pore volume is inaccessible to polymer molecules because the size of the 

polymer molecules is comparable to the size of the entrance to small pores and throats.  
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Consider a one-dimensional pore volume with initial connate water saturation 

equal to the irreducible water saturation. Polymer solution is injected on one end and 

fluids (oil and water) are produced on the other end. As the polymer solution is injected, 

the connate water that is contacted is pushed downstream. Higher water saturation 

corresponds to faster velocity, resulting in the formation of a shock water front. Behind 

the water front, polymer solution moves slower but also with velocity that is higher 

corresponding to higher saturations, thereby forming a polymer front. The velocity of the 

polymer front is, on one hand, retarded by adsorption onto the rock, but on the other hand 

it is speeded up due to the inaccessible pore volume. The saturation levels at the fronts 

can determined graphically as in Figure 2.2. The water saturation at the polymer front 

corresponds to the point of departure of the tangent line (red straight in Figure 2-2) from 

the polymer-oil fractional flow curve (red curve in Figure 2-2) that intercepts the x-axis at 

–Dp. Dp is called the retardation factor (Lake, 1989) and it accounts for the effect of 

adsorption and inaccessible pore volume. The water saturation at the water front 

corresponds to the intersection of the same tangent line and the fractional flow curve of 

water (blue curve in Figure 2-2). The water cuts at the polymer and water fronts are read 

from their corresponding fractional flow curves at the front saturation.   
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Figure 2-2 Fractional flow curves used for determination of saturation and water cut at 
water and polymer fronts  

Before water breakthrough, the recovery factor is equal to the injected pore 

volume. From water breakthrough to polymer breakthrough, the produced water cut is the 

fractional flow for the water front. After the arrival of the polymer front, the produced 

water cut is practically the fractional flow for the polymer front. The arrival of the 

polymer front denotes the economical end of the process because after that, oil 

production is negligible. 

2.5.2 Modeling Polymer Flooding with UTCHEM 

The numerical simulator used throughout this study is UTCHEM, a compositional 

chemical flood simulator developed at the University of Texas at Austin (Pope and 

Nelson, 1978). UTCHEM is a state-of-the-art numerical simulator for polymer flooding, 
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which takes into consideration polymer adsorption, polymer rheology, permeability 

reduction and inaccessible pore volume. 

2.5.2.1 Polymer Retention in UTCHEM 

Polymer flow in porous media is affected by adsorption of polymer molecules 

onto the rock surface in small pores and throats, resulting in a reduction of the polymer 

concentration at the leading front. Polymer retention depends on many factors such as 

polymer type, molecular weight, rock composition, brine salinity, flow rate, etc. (Lake 

(1989)). Polymer retention is termed as adsorption in UTCHEM, and it is modeled as a 

Langmuir-type isotherm with adsorption coefficient dependent on permeability, salinity 

and some empirical coefficients (UTCHEM Technical Documentation, 2000). According 

to Huh, et al. (1990a) polymer retention depends on effective permeability to the aqueous 

phase as reproduced in Figure 2-3. Equation 2.7 was proposed by Mantilla (2010) to 

include dependence on relative permeability for the calculation of the retention 

coefficient in order to match experimental observations by Green and Willhite (1998) and 

Huh, et al. (1990b).  
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Figure 2-3 Polymer retention as a function of aqueous phase effective permeability. 
Adapted from Huh, et al. (1990b). 

2.5.2.2 Polymer Viscosity in UTCHEM 

The rheology of polymer solutions used in enhanced oil recovery depends on the 

effective concentration of polymer molecules, salinity and effective shear rate. UTCHEM 

models the aqueous phase viscosity as a function of effective salinity (CSEP) and 

polymer concentration increases as illustrated in Figure 2-4, which shows the curve 

(CSEP=0.08) with the actual parameters used in the simulations carried out in this 

dissertation. 
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Figure 2-4 Polymer viscosity as a function of polymer concentration and brine salinity. 
Data used was taken from Dakhlia (1995) 

Polymer solutions used in enhanced oil recovery are shear-thinning fluids 

(Canella et al., 1988). that exhibit low viscosity at high shear rate (near the wellbore area) 

and high viscosity at low shear rate (away from the wells) Figure 2-5 shows the polymer 

viscosity as a function of effective shear rate as used in the simulations throughout this 

dissertation. 
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Figure 2-5 Polymer viscosity-shear rate relationship inputted in UTCHEM for the 
polymer flooding simulations in this dissertation. Data used was taken from 
Dakhlia (1995) 

2.5.2.3 Permeability Reduction and Inaccessible Pore Volume 

Polymer solutions reduce the absolute permeability of the rock permanently as the 

molecules plug the small pore throats (Smith, 1970). UTCHEM uses a permeability 

reduction factor to model this phenomenon (UTCHEM Technical Documentation, 2000).  

Additionally, the inaccessible pore volume effect is modeled in UTCHEM through an 

inaccessible pore volume (IPV) factor that reduces the pore volume occupied by the 

polymeric phase. 

2.6 CONCLUSION 

In conclusion, a feedback control system is feasible for polymer flooding 

processes by combining a method for model updating that considers uncertainty in 

geology and integrates observations from the system, with a production optimization 

algorithm able to solve a complex mathematical problem efficiently. UTCHEM is a state-
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of-the-art simulator polymer flooding with capability to model the physics of polymer 

flooding accurately, but the high computational cost involved motivates the development 

of a proxy model that can be rapidly evaluated. Chapter 3 presents the development of a 

proxy model for polymer flooding that it is employed in the model updating and 

optimization parts of the framework. 
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Chapter 3: A Fast Proxy Model for Polymer Flooding 

In order to implement model selection and update the prior uncertainty in 

reservoir model, it is required to rapidly assess characteristics of the heterogeneity of a 

large number of reservoir models. Later, during the process of optimizing well controls to 

maximize project economics, a large number of evaluations of the objective function for 

different reservoir models under different well constraints will be required. These two 

needs motivated the development of a fast analog of flow simulation sensitive to 

reservoir heterogeneity and well controls. Thus, the role of the proxy model for polymer 

flooding is crucial in the feedback control framework because: (1) it captures flow 

characteristics related to heterogeneity in a given reservoir model, and (2) it provides a 

rapid estimate of recovery-based functions given a geologic model and operating 

conditions at the wells. The proxy model developed here employs a random walk 

algorithm to quickly propagate random particles from injectors to producers mimicking 

the displacement of polymer solution from the injector to the producer. It is important to 

emphasize that the same calibrated proxy model is employed both for the classification of 

reservoir models and optimization of well controls. 

3.1. PURPOSE AND ASSUMPTIONS IN THE PROXY MODEL 

The purpose of the proxy model is to obtain differences in heterogeneous 

characteristics that affect the performance of a polymer flood between any two reservoir 

models. The proxy model developed in this work does not aim to replace a full-physics 

simulator; it can only provide estimates of recovery or more importantly the impact of 

reservoir heterogeneity on recovery. This proxy model does not provide physical 

variables like pressure, polymer concentration, retention, shear rate effects, etc. A more 

accurate model for polymer flooding is the work of Naiki (1979), who developed a finite-
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difference numerical model using “moving points” to trace the concentration of polymer 

in 2D heterogeneous reservoirs. However, the proxy model developed in this dissertation 

is sufficient to accomplish the purpose of distinguishing the production characteristics 

between any two heterogeneous reservoir models. 

3.1.1 Assumptions 

The proxy model is a simplified model of polymer flow with the following 

assumptions: 

• The pressure gradient corresponding to a steady state does not evolve over 

time. Therefore, the velocity vectors are static as well. 

• Shear rate and visco-elastic effects in polymer rheology are neglected.     

• Polymer viscosity is constant and equal to the viscosity corresponding to 

the concentration at the injection point. 

• The above assumption implies that polymer concentration at the polymer 

front and behind it is equal to the injected polymer concentration. 

• Polymer retention and inaccessible pore volume are modeled through 

fractional flow theory. Local variations in retention and inaccessible pore 

volume due to heterogeneity are neglected. 

3.2. RANDOM WALKS 

The term random walk was first introduced by Pearson (1905). Random walk is a 

stochastic method for transitioning the state of random entities from an initial state to a 

final state through successive random steps. Random walk analysis has been applied in 

computer science, physics, ecology, economics, psychology and other fields (Lawler and 

Limic, 2010). Random walk algorithm assumes a Markov chain process, in which the 

probability of transitioning to the next state depends only on the current state. In transport 
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problems, random walks are useful for assessing the ability of the medium to transport 

concentrations taking into consideration the heterogeneous properties of the medium. The 

word “particles” is employed in this dissertation in the context of random walk algorithm. 

It should not be confused with a physical particle of water or polymer. The position of 

physical water or polymer particles differs from the position of the random “particles” 

used in the proxy model which track the location of the fronts.  

In the present application the paths of random particles placed in the reservoir are 

traced from their initial state (injection points) to their final state (production points). The 

probability rules for particles to transition from the current position to the next position 

are governed by the velocity field obtained as a solution of the pressure equation 

corresponding to prescribed injection and production rates, and considering reservoir 

heterogeneity. In this way, particles follow the pressure diffusion path while accounting 

for heterogeneity on the reservoir. The objective of tracing the position of random 

particles is merely to estimate the position of the two shock fronts formed in polymer 

flooding. 

The main advantage of the algorithm is the computational speed; the pressure 

equation is solved only once, and the propagation of particles in time is simulated as a 

random process that only requires successive sampling of the transitioning probability. 

As a result, random walk simulation of a polymer flooding process takes few seconds on 

a desktop computer, while a full simulation run would take several minutes. In general, 

this proxy model can be compared to streamline simulation, where the pressure equation 

is solved few times and the saturation profile is propagated using an analytical solution. 



3.3. PARTICLE PROPAGATION GUIDED BY VELOCITY VECTORS 

The pressure equation is solved for single phase flow, which is equivalent to a 

two-phase unit-mobility-ratio system. In a two-well system, this operation is performed 

only once because the velocity vector corresponding to any other rate status is 

proportional to the initial one. In other words, the flow direction does not change, only 

the magnitude changes. In a multi-well system, the pressure equation needs to be solved 

every time the rate allocation is redefined. Subsequently, the velocity vector exiting each 

grid-block is calculated from the pressure solution using Darcy’s law at each location 

(considering the distance between centers of grid-blocks. Then, a large number of random 

particles are initially placed in the reservoir at the grid-block center of the injection 

locations. Particles are propagated throughout the reservoir in a sequence of time steps.  

The probability that a particle located at the center of the grid-block will move to 

each of the exiting faces is calculated proportional to the magnitude of the velocity vector 

crossing that face. Only exiting faces are taken into account. Thus, the transitioning 

probability densities are discrete probability values assigned to each exiting face 

proportional to the magnitude of the velocity vector in this direction as expressed in 

Equation 3.1:  
{ } ( )1Pr | ,l l l

p p v+= =u u u u u u1 l+
G

∼       (3.1) 

Where up is a vector with the particle p, ul+1 and ul are grid-block coordinates, and 

( )1,l lv +u u
G

 is the velocity vector between grid-blocks located at ul+1 and ul.  

The next movement of the random walker is determined by randomly sampling an 

exit face based on the transitioning probabilities. The movement of the particles from 

block to block is illustrated in Figure 3-1. Once the direction of movement of a particle 

has been determined, the step length is calculated from the velocity and the time step size 

using Equation 3.1. If the distance calculated in Equation 3.2 exceeds the distance 
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between two cell centers, the particle is stopped at the arriving block center, and a new 

move is calculated. The time spent by the particle for that new movement is calculated 

using Equation 3.2. In the event that the distance calculated in Equation 3.1 is less that 

the distance between grid-block centers, the particle only travels that distance and stays in 

that position until next time step. The particle movement is resumed at the next time step.  

 
( )min ,dx v t x= Δ Δ         (3.2) 

2min , p c

x

x x
dt t

v

⎛ ⎞−
⎜ ⎟= Δ
⎜ ⎟
⎝ ⎠       (3.3)

 

vx

vy

∆x

dx1<∆x

dt=∆t

dx2=∆x-dx1

dt=dx2/vx

xc2
xc1

Figure 3-1 Illustration of the movement of a particle between grid-block centers in two 
steps. a) the movement initiates in x-direction; b) in the first time step, the 
particle travels a distance less than the separation between centers; and c) 
during the second time step the particles arrives to the center of the adjacent 
cell and the new transitioning probability is sampled for the next movement. 
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The probability of particle movements depend on velocity vectors, which are 

function of well constraints. For example if a well has been shut in, the velocity 

calculated for the particles around the well location is zero so the particles stay stagnant. 

Particle movement is also sensitive to the duration of the injection or production 

conditions because the length of each movement is conditioned to the current time step 
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size. Hence, the results from the proxy model are sensitive to well controls and can be 

used for production optimization. 

3.4. CALIBRATION OF PROXY MODEL 

In order to demonstrate the proxy model, the movement of water and polymer 

particles was simulated first on a 2D reservoir model with two wells shown in Figure 3-2. 

Then, in order to account for well interactions the proxy model was demonstrated on a 

larger 2D reservoir model with an inverted 5-spot injection well pattern (shown in Figure 

3-3). For both models, the mean of the high permeability rock type is 1100 mD whereas 

for the low permeability rock is 100 mD. The porosity is constant and equal to 0.1. The 

oil, polymer and water properties used for these test cases were taken from Dakhlia 

(1995), who used data from an actual polymer flooding project implemented on 

Chatenaraud field and presented by Putz, et al. (1988). Oil viscosity is 40 cP and water 

viscosity is 0.73 cP at reservoir conditions. The end-point mobility ratio is 10.96, which 

is unfavorable for immiscible displacement. The relative permeability curves are plotted 

in Figure 3-4. Polymer viscosity at the injected concentration is 20 cP. The fractional 

flow curves plotted in Figure 3-5 define the water and polymer saturation at the fronts, 

and the frontal velocities. The water saturation at the front is 0.28 and the polymer 

saturation at the front is 0.76. The fractional flow value at water front is 0.48 and at the 

polymer front is 0.97. 



Figure 3-2 Reservoir model used for comparison of production profiles from proxy model 
and UTCHEM. Polymer is injected at the well located at the bottom 

PRD‐1 P ‐2

PRD‐3 P ‐4

RD

RD

Figure 3-3 Reservoir model with an inverted 5-spot pattern injection used to calibrate the 
proxy model. 
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Figure 3-4 Relative permeability curves for the calibration cases. 
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Figure 3-5 The velocity of the shock front in a unit mobility ratio, water-oil and polymer-
oil systems is proportional to the slope of the tangent lines drawn from the 
initial saturation to the respective fractional flow curve. 
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3.1.2 Movement of Water Particles  

In a one-dimensional displacement, initial connate water is pushed by the injected 

polymer solution, creating a shock front as explained by Pope (1981). In the proxy 

model, water particles that exist as part of the initial water saturation are pushed by 

polymer particles along streamlines from injection to production points. The velocity of 

water particles is proportional to the slope of the tangent line to the fractional flow curve 

of a water-oil system drawn from the initial water saturation (See Figure 3-5).  

Since the pressure equation (and the corresponding velocity vector) was solved 

for a single phase system (unit mobility ratio), the velocity of water particles needs to be 

updated to reflect the unequal velocities of the water and polymer fluid phases. Equation 

3.4 assumes that the ratio of velocities (of the single phase and the polymer/water/oil 

system) is equal to the ratio of slope of the tangent lines to the single phase and the water-

oil systems. Since the slope in a unit-mobility-ratio displacement (single phase system) is 

equal to 1, the velocity of water particles is the product of the velocity of the single phase 

system and the slope of the tangent line in the water-oil system. Consequently, water 

breaks into producers earlier than polymer or for a unit-mobility-ratio system. 

w um
ow

dfV V
dS

⎛ ⎞= ⎜ ⎟
⎝ ⎠         (3.4) 

Vw is the velocity of water particles, Vum is the velocity calculated from the single 

phase system (unit mobility ratio), (df/dS) is the derivative of water cut with respect to 

water saturation, and the subscripts ow means oil-water system and the subscript um 

means unit mobility ratio. 

Estimation of Water Cut from Particle Count at Producers.  

The position of water particles represents the position of the water saturation front 

along a streamline. In 1D, when the water front arrives to a producer, water saturation 
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goes from the initial water saturation to the water saturation at the front, and the 

corresponding water cut is read from the fractional flow curve. By analogy, in our proxy 

model when all the displaced water particles arrive to a producer, the water saturation is 

equal to the saturation at the water front. In contrast to 1D, in 2D and 3D water particles 

arrive progressively according to the flow path followed. Some particles follow a short 

path and arrive quickly while others follow tortuous paths. Therefore, in the proxy model 

each water particle that arrives at a producer increases the water saturation by an amount 

proportional to the total number of water particles expected to arrive over all paths. 

Hence, water production increases gradually from the breakthrough of the first particle 

until it reaches a plateau (corresponding to the total number of particles arriving at the 

well). The equivalent water saturation is calculated as in Equation 3.5. 

( ) w
w wi wf wi

wT

NS S S S
N

= + −
      (3.5)

 

Nw is the number of water particles that have arrived to the producer and NwT is 

the total number of water particles expected to arrive at that producer. If all water 

particles have arrived, the water saturation is equal to the water saturation at the front. 

The random walk simulation is carried out in time to ascertain the total number of 

particles arriving at a producer and that is used to compute the water cut at all previous 

times using Equation 3.5 above. 

Figure 3-6 shows the gradual increase in water cut from the proxy model as well 

as from the simulation with UTCHEM for the two-well reservoir model. No sharp water 

front was formed. In fact, not all water is mobilized; some amount remains stagnant for 

long time in areas disconnected from producers. Also, some water was contacted and 

mobilized but it did not make its way to the producer. The simulation with UTCHEM 

indicates that an oil bank was formed as can be inferred from the slight reduction of water 
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cut about 1600 days (See Figure 3-6). A limitation of the proxy model is the inability to 

predict the oil bank, since a separate species of random walkers reflecting the oil phase is 

not considered. 

Figure 3-6 Water cut profiles obtained from proxy model and UTCHEM for the reservoir 
model shown in Figure 3-2 

In a multi-well injection pattern such as the well configuration shown in Figure 3-

3, if all producers are open at equal flow rates, all producers are expected to receive equal 

number of particles. When a well has produced the total number of water particles 

assigned to it, the water saturation is the saturation at the water front. However, if the 

production rates are uneven among the producers and the individual flow rates changes 

over time, the calculation of water production is more elaborated as explained in the next 

paragraph.   

 40
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To illustrate this case, the reservoir model shown in Figure 3-3 was subjected to 

production and injection rates schedule shown in Table 3-1. Note that for the first 100 

days the two producers on the bottom produce fluids at high rates while the wells at the 

top are practically shut-in. Subsequently, the producers at the bottom are shut-in and the 

production is diverted to the wells at the top of the reservoir. Water and polymer particles 

are injected at the center of the reservoir and start moving towards the corners. As 

particles move towards the corners, the particles are distributed among the producers 

according to the distance from the particle position to the producer location as shown in 

Figure 3-7. Even though in the first production period 99% of the production comes from 

the producers at the top of the reservoir, it is not expected that all the injected water and 

polymer particles reach the producers at the top, only the particles within the drainage 

area of the respective wells will be produced. If all the water particles assigned to a 

producer arrive there, the corresponding water saturation at that producer is equal to the 

saturation at the water front. Figure 3-8 compares the water cut obtained from UTCHEM 

and from the proxy model for a reservoir with four producers and one injector. 

Table 3-1 Rate schedule for multi-well test case 

Well Name Rate (0-1000 days) Rate (1000-2000 days) 

PRD-1 99 ft3/day 1 ft3/day 

PRD-2 99 ft3/day 1 ft3/day 

PRD-3 1 ft3/day 99 ft3/day 

PRD-4 1 ft3/day 99 ft3/day 

Total Production 200 ft3/day 200 ft3/day 

 



Figure 3-7 Random walkers representing the water phase are assigned to producers 
according to their proximity to the wells. Position of water particles at 500 
days. 

Figure 3-8 Field water cut profiles obtained from proxy model and UTCHEM for the 
reservoir model shown in Figure 3-3 (5-spot inverted injection pattern) 
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3.1.3 Polymer Particles 

The position of polymer particles represents the position of the polymer front 

within a streamline. The velocity of water particles is different from the polymer 

particles. Fractional flow theory predicts that polymer particles should move significantly 

slower than water particles. The same rule for transition probability controlling the 

movement of water particles governs the movement of polymer particles also. Polymer 

particles velocity is calculated as in Equation 3.6. 

p um
op

dfV V
dS

⎛ ⎞= ⎜ ⎟
⎝ ⎠         (3.6) 

Vp is the velocity of polymer particles and the subscript op means oil-polymer 

system. Similar to the water front, when polymer front breaks into a producer, the water 

saturation increases instantly from the saturation at the water front to the saturation at the 

polymer front. Hence, water saturation is re-calculated when polymer particles arrive at 

the producer using Equation 3.7. 

( ) ( ) pw
wi wf wi wp wf

wT pT

NNSw S S S S S
N

= + − + −
N      (3.7)

 

Np is the number of polymer particles that have arrived to the producer and NpT is 

the total number of polymer particles assigned to that producer. At the end of the 

simulation that particular producer receives NpT particles. Figure 3-9 compares the 

polymer concentration maps obtained from UTCHEM to the position of polymer 

particles simulated with the proxy model. The fact that the pressure gradient used for 

particle propagation is obtained by scaling the single phase velocity makes the particle 

migration (proxy) more spread than the more compact polymer bank (UTCHEM). 
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Figure 3-9 Polymer saturation fronts from the proxy model and UTCHEM. Position of 
polymer particles represents the spread of the polymer front in the proxy 
model. 

3.2 INPUTS AND OUTPUTS FROM THE PROXY MODEL 

3.2.1 Inputs 

The proxy model requires the permeability field and the rate schedule for all wells 

as input. The combination of heterogeneity and local velocity determines the transition 

probabilities at that location. At any time, the particle position for the next time step 

depends on the current position and the velocity vectors. Additional inputs such as fluid 

viscosities and relative permeability curve parameters are necessary to calculate water 

and polymer velocities. Additionally, economic parameters such as oil price, oil 

production costs, water production costs, polymer price, discount rate, taxation rates and 

fixed costs are required for the calculation of the net present value using Vaskas’ (1997) 

economic model that is used later in the control optimization calculations. 

3.2.2 Outputs 

The main outputs are the recovery curves and the economic objective function for 

a given rate schedule. Recovery curves are obtained from material balance using 
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production rates and initial oil-in-place. Water production profiles are also an important 

output used for the calibration of the proxy. Additionally, the net present value curve is 

also given as an output by the proxy model. The outputs are stochastic because they are 

the outcome of a random function. Every time the proxy model is run, the output varies 

as a result of the random sampling that takes place at every step of the displacement. As 

more particles are introduced in the simulation i.e. more samples from the transitioning 

probability distributions are taken, the variance of the recovery factor and final net 

present value decreases as shown in Figure 3-10. About 5000 particles are sufficient to 

stabilize the variability in recovery statistics and yield reliable estimates. 

Figure 3-10 Variance of proxy responses as a function of the number of particles used in 
the proxy model. The ensemble size over which the variance stabilizes is a 
function of the transition probability used to regulate the movement of 
particles and that in turn is controlled by the nature of heterogeneity 
exhibited by the geology. 

The distribution of the net present value estimated by this means is approximately 

Gaussian as shown in Figure 3-11. In order to obtain a reliable estimate of the mean of 
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the net present value, multiple samples should be drawn by executing the proxy model 

multiple times. A significance test for Gaussian distributions, known as p-test, is used to 

calculate the minimum number of samples needed to have a reliable estimate of the net 

present value. As a result, five runs of the proxy model are necessary to obtain a reliable 

estimate of the mean with 95% confidence and a 5000 dollars margin of error. This 

assessment of the adequacy of the size of the particle ensemble for reliably representing 

the arrival statistics should be performed for each specific reservoir setting and is 

important for ensuring that the subsequent well control optimization scheme is robust. 

Figure 3-11 Histogram of the net present value obtained from the proxy model using 
10000 particles. 

3.3 CORRELATION TO FULL SIMULATION RESPONSES  

Polymer flooding was simulated for 100 randomly selected injection/production 

schedules within the operational limits using the proxy model and UTCHEM for the two-

well reservoir model shown in Figure 3-2. The approximated recovery factor (from proxy 

model) is estimated as the mean of five runs and compared to the recovery factor from 

UTCHEM in Figure 3-12.  
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Another useful performance indicator is the net present value. We have calculated 

the net present value of each injection/production schedule in this reservoir model using 

the chemical flooding economic model (Vaskas, 1996) and the parameters listed in Table 

6.2. The final net present value obtained from both methods is compared in Figure 3-13. 

The correlation coefficient for both the recovery factor (ρ=0.997) and the final net present 

value (ρ=0.996) is high indicating that the proxy model is an effective surrogate for 

evaluation of these responses as a function of injection/production rates. 

Figure 3-12 Correlation between recovery factor estimated by the proxy model and 
UTCHEM for 100 different injection/production rate schedules. 
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Figure 3-13 Correlation between the net present value at 2000 days estimated by the 
proxy model and UTCHEM for 100 different rate schedules 

The responses from the proxy model were also compared to the results of 

UTCHEM for 100 different geologic models generated using various variogram models 

and training images (Figure 3-14). Figure 3-15 shows good correlation (ρ=0.87) between 

the recovery factor with the proxy and UTHCEM. The correlation for the net present 

value is also good (ρ=0.891), as shown in Figure 3-16. These high correlation coefficients 

indicate that the proxy model will be effective in capturing the essential differences 

between the flow characteristic of different geologic models. 

Low Permeability High Permeability
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Figure 3-14 Samples of geologic models used to test the correlation of the proxy model 
and UTCHEM 

Figure 3-15 Correlation between recovery factor estimated by the proxy model and 
UTCHEM for 100 geologic models 
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Figure 3-16 Correlation between the net present value at 2000 days estimated by the 
proxy model and UTCHEM for 100 geologic models 

3.4 CONCLUSION 

A proxy model simulates the flow of particles in a polymer flooding process has 

been put forward. The physics of polymer flooding have been incorporated in the model 

by applying concepts of fractional flow theory, and using the solution of the pressure 

equation for guiding the path of particles. This proxy model is a fast analog that is used in 

the feed control framework to assess heterogeneity in reservoir models and to estimate 

recovery based responses useful for optimization. 
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Chapter 4: Organizing Multiple Reservoir Models using Measures of 
Dissimilarity 

4.1. OVERVIEW 

The ultimate objective of this research work is to develop an optimum strategy for 

injecting polymer into the reservoir in order to maximize economic recovery while 

accounting for the uncertainty in predicting the flow performance of the reservoir. The 

starting premise is that there is significant prior geologic uncertainty that has to be 

resolved using the observed production data and subsequently the optimum control 

strategy is developed based on the reduced set of models. This chapter presents a novel 

approach for grouping reservoir models using measures of dissimilarity based on 

heterogeneity. The impact of heterogeneity on polymer flooding is assessed through the 

proxy model described in Chapter 3. At the end, the construction of a metric space for 

mapping reservoir models is illustrated through an example. 

4.2. MOTIVATION 

A major objective is to develop a general method for assessing the uncertainty in 

reservoir modeling, regardless of the source. Although the main focus of the following 

discussion is uncertainty due to reservoir heterogeneity and geology, the application of 

the method is not limited to that source of uncertainty. 

Geostatistics is used to model uncertainty associated with spatial variations of 

reservoir properties. In fact, several measures of reservoir heterogeneity have been 

postulated and these include statistics of reservoir properties constrained to specific 

spatial templates. For example, sequential simulation algorithms based on variogram 

models describe the variations of reservoir properties between two points in space. This 

has been extended to multiple point templates and multiple realizations of reservoir 
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models based on the variations of reservoir properties at multiple locations 

simultaneously are developed. In reality when a reservoir model is being constructed, 

there is no sufficient evidence to tie the geology of a reservoir to a specific spatial 

template and the residual uncertainty in the spatial description has to be discerned after 

additional data is integrated. Developing a method to update prior models of reservoir 

heterogeneity to a posterior set constrained to the observed production data is the primary 

motivation for the work presented in this chapter. 

4.3. CHARACTERIZATION OF HETEROGENEOUS RESERVOIR MODELS 

We want to characterize the heterogeneity of multiple reservoir models in order to 

establish differences between them. The obvious definition of a reservoir model is the 

collection of all its variables, but the large number of variables involved, usually 

thousands (or millions) according to the spatial resolution, make this definition too 

unwieldy to work with. Rather, we look for a more integrated measure for heterogeneity 

of reservoir models that reflects the role of heterogeneity on the performance of polymer 

flooding.  

Some basic measures of heterogeneity are the mean, variance, Dykstra-Parsons 

coefficient, Lorenz coefficient and heterogeneity factor (Koval, 1963), which are by some 

means related to displacement efficiency. In general, sweep efficiency decreases as the 

heterogeneity factor increases (Lake, 1989). However, these basic measurements do not 

account for spatial variations of reservoir properties, especially for geologic models 

generated constrained to multiple-points statistics. It is likely that heterogeneity 

represented by these higher order statistics has an impact on the performance of polymer 

flooding. 



Variogram is a common measurement of heterogeneity that accounts for 

variations of rock properties over a spatial lag. However, variogram only capture 

variability over two locations separated by a linear template. Moreover, the residual 

uncertainty of variogram-constrained models can result in wide variation in production 

response as can be observed in Figure 4-1. This figure depicts the variation in recovery 

factor corresponding to a polymer flood observed over a suite of models constrained to 

reproduce the semi-variogram. In fact, probabilistic history matching methods 

(Srinivasan and Bryant, 2004) work on reducing that residual uncertainty through 

dynamic data integration. 

 
 

Figure 4-1 Recovery curves for polymer flooding simulated with UTCHEM for 50 
reservoir models that reflect the same variogram model 

Multiple-points statistics are higher order spatial statistics that capture more 

complex heterogeneity exhibited by reservoir properties. Multiple-point statistics 
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algorithms such as snesim (Strebelle, 2001) have been developed over the last decade to 

generate multiple realizations of reservoir models while honoring statistics extracted from 

training images that depict complex sinusoidal or curvilinear shapes of geologic features. 

Although major geologic structures are important for delineating flow paths, the 

particular location of geologic bodies plays an important role on the well responses as 

well. Figure 4-2 shows that realizations constrained to statistics borrowed from training 

images yield a tighter spread in recovery factor compared to realizations from variogram 

models. But issues still remain such as the selection of training image most representative 

of the underlying geology and the choice of spatial template to retrieve the relevant 

statistics. 

Figure 4-2 Recovery curves for polymer flooding simulated using UTCHEM for 50 
reservoir models generated constrained to the statistics retrieved from the 
same training image. 
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Stochastic simulation algorithms such as sequential simulation reproducing a 

variogram model (two-point statistics) or multiple-point statistics inferred from a training 

image, are capable of representing spatial variations in reservoir properties. However, 

significant uncertainty still persists at the end of the modeling process and these models 

each impart subtle differences in production data. Our objective is to differentiate 

reservoir models based on the production response to polymer injection. It is our 

conjecture that the grouping based on dynamic characteristics may lump together models 

constrained to two and multiple point statistics based on the similarity of response over a 

local scale (even though the models may exhibit differences over a more global scale) 

Shook and Mitchel (2009) used the term dynamic heterogeneity to describe spatial 

variations in reservoir attributes that influence the flow between wells in a reservoir. 

Characterization of dynamic heterogeneity focus on capturing the main flow paths and 

areal spread of displacement fronts. This is useful to identify reservoir models that yield 

similar characteristics of breakthrough and recovery. Polymer flooding, as displacement 

process, is sensitive to flow path lengths and connected structures within the reservoir 

from injectors to producers. For example, short flow paths manifest in early breakthrough 

of fluids and therefore reduced recovery. An appropriate measure of heterogeneity should 

be sensitive to these phenomena and allow differentiating one reservoir model from 

another even if they share two-point or multiple-point statistics. 

4.4. GENERATION OF THE INITIAL ENSEMBLE OF RESERVOIR MODELS 

The initial ensemble of reservoir models represents the uncertainty in geology and 

heterogeneity that is to be analyzed. Therefore, that ensemble should be wide enough to 

accommodate different geologic scenarios, usually expressed through variogram models 

and training images, and variations in heterogeneity within each geologic scenario. In 



 56

addition, all reservoir models in the initial ensemble should honor the conditional data 

available, i.e. reservoir properties at sampled locations (well logs) and indirect 

information (seismic). Geostatistical algorithms like sisim and snesim are used to 

generate multiple reservoir models as stochastic realizations of a sequential simulation 

process. The initial ensemble should be large enough to include variations in well 

connectivity regardless of the spatial template used to generate the models because the 

uncertainty space is constructed based on differences in well connectivity assessed with 

the proxy model as explained in the next section. 

An ensemble of 600 reservoir models was generated to demonstrate the method. 

The 600 reservoir models are realizations of stochastic algorithms for sequential 

simulation. 400 realizations were generated using sequential indicator simulation (sisim – 

Deutsch, 1998), which used 8 different variogram models to generate 50 realizations of 

each type. The other 200 realizations were generated using single normal equation 

simulation (snesim), which used 4 different training images (ellipsoids and sinusoids) to 

create 50 realizations of each type. The examples of reservoir models shown in Figure 4-

3 give an idea about the variety of geologic scenarios used. 

4.5. USE OF PROXY MODEL TO MEASURE WELL CONNECTIVITY CHARACTERISTICS 

The proxy model for polymer flooding described in Chapter 3 is employed to 

extract characteristics of each reservoir model that are related to well connectivity. Since 

the responses from the proxy model are tailored to polymer flooding and its computations 

are fast, a large number of reservoir models can be processed within a reasonable 

timeframe. In this application, each reservoir model is characterized by the following four 

parameters: mean and variance of the flow path length, recovery factor and breakthrough 

time. Other suitable parameters are also proposed according to the response of interest. 



 

 

 

 

 

Figure 4-3 Examples of realizations generated using sisim and snesim. A total of 600 
reservoir models were generated. The injector is located at the bottom center 
and the producer at the top center. 
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4.5.1 Particles Path Length Distribution 

The successive steps taken by a random particle throughout its travel are traced 

internally within the proxy model. The distance traveled by a particle is an indicator of 

how tortuous its path is. Short flow paths are sign of early breakthrough, while long paths 

mean late breakthrough. The path length of all particles is recorded in order to analyze its 

distribution. The units of the path length are arbitrary, but it measures the deviation from 

the shortest path. 

The distribution of path lengths varies from a uniform distribution for a 

homogeneous medium to a peaked distribution for a medium with a permeability streak 

as shown in Figure 4-4 and Figure 4-5 respectively. The mean of the distribution is an 

indicator of how fast the particles traveled. The variance is an indicator of the areal 

coverage of the displacement; better areal coverage is reached if the variance of the 

distribution is high. Each reservoir model has its characteristic distribution according to 

the level of heterogeneity and in most cases exhibits positive skewness. 

 

Mean 6.6
Std. dev 4.11

Maximum 14.89
Upper quartile 10.13
Lower quartile 3.02

Minimum 0.1

Producer

Injector

Figure 4-4 a) Histogram of path length for a homogeneous medium. b) Probable particle 
paths. 1000 particles were sent from the injector. Color scale indicates the 
number of particles that passed through each location on their way to the 
producer.   
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Figure 4-5 a) Histogram of path length for a medium with a high permeability streak. b) 
Probable particle path is preferentially through the high permeability streak. 

 

Mean 6.6
Std. dev 4.11

Maximum 14.89
Upper quartile 10.13
Lower quartile 3.02

Minimum 0.1

Injector

Producer

4.5.2 Breakthrough Time and Recovery Factor 

In order to test the correlation between the responses obtained with the proxy 

model and actual responses from flow simulation (UTCHEM), the 600 reservoir models 

in the initial ensemble were processed with the proxy model. The breakthrough time from 

the proxy model (arrival time of first particle) is well correlated to the production data 

relevant in polymer flooding. For example, the onset of water production in UTCHEM is 

well correlated to the particle breakthrough from the proxy model as shown in Figure 4-6.  

The highest variability in recovery is exhibited after breakthrough because before 

breakthrough there is no variation regardless of the heterogeneity, while at late time most 

of recovery factor curves flatten. In this particular study the recovery factor at 0.27 pore 

volumes showed the highest variability among all the realizations. 

Despite the good correlation between particle first arrival and breakthrough from 

UTCHEM, the correlation between the pressure drawdown and the breakthrough time 

from the proxy is weak as indicated in Figure 4-7. This is because well pressure is 

affected more by local permeability variations than well communication or large-scale 

heterogeneities.  
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Figure 4-6 Correlation between water breakthrough time from UTCHEM and the 
breakthrough of particles from the proxy model. 

The proxy model also yields an approximate recovery factor for a given 

dimensionless time (for example after 0.5 pore volumes injected). The recovery factor in 

the proxy model is calculated by performing a material balance considering the particles 

injected, the particles initially in the systems and the particles recovered. Figure 4-8 

shows high variability on the recovery factor from the proxy for reservoir models with 

poor sweep efficiency, while the variability on the proxy response is much less for 

models with better sweep efficiency. 
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Figure 4-7 Correlation between initial pressure drawdown and the breakthrough time of 
particles from the proxy model 

Figure 4-8 Correlation between recovery factors at 0.27 pore volume injected from 
UTCHEM and recovery factor after injecting 0.5 pore volume from the 
proxy model. 
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4.5.3 Proxy Response for Well Pressure 

It is important to have a proxy response related to well pressure because before 

water breakthrough, only well pressure is available for model updating. As stated before, 

well pressure is mainly affected by well injectivity or productivity, which is function of 

the permeability surrounding the well. Pressure is dissipated along the least resistant flow 

path from the wells. We can infer the probable paths for pressure dissipation around wells 

by following the preferred particle paths. We retain the average permeability of the first 

10 locations visited by particles departing from injectors and the last 10 locations visited 

by particles in their way to producers as expressed in Equation 4.1. The calculation is 

repeated for all particles in order to get the most probable effective permeability around 

the wells (injector and producer).  

(
10

,
1 1

1
10

NP

i np
np i

k k
NP = =

= ∑∑ u )         (4.1) 

k is the permeability at location ui,np. The sequence u1,np to u10,np denotes the first 10 (for 

injectors) or the last 10 locations (for producers) visited by particle np. 

Figure 4-9 and Figure 4-10 indicate good correlation between well pressures and 

the effective permeability of the near well region calculated using the particle path 

information. For the producer pressure, it was observed that the proxy response is better 

correlated to the pressure close to the time of water breakthrough. This might be because 

the simultaneous flow of two fluids at breakthrough is more sensitive to reservoir 

heterogeneity and this strong dependence on geology of both the proxy and simulator 

response manifests itself in the form of higher correlation. 
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Figure 4-9 Correlation between injection pressure at early time and effective permeability 
around well calculated using the proxy. 

Figure 4-10 Correlation between production pressure close to breakthrough and the 
effective permeability around the well calculated using the proxy. 
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4.5.4 Summary of Proxy Responses 

In summary, a few responses from the proxy model for polymer flooding that 

capture the impact of heterogeneity will be retained for facilitating the model selection 

process. These responses can be calculated for any given reservoir model with any given 

well configuration. Particle path distribution, breakthrough time, recovery factor and 

average permeability around wells are characteristic of each reservoir model and will be 

the basis for defining differences between any two of them as explained in the next 

sections. 

4.6 MEASURE OF DISSIMILARITY BETWEEN RESERVOIR MODELS 

Once we have an ensemble of reservoir models representative of the prior 

geologic uncertainty, the next step is to group them according to their similarity. The 

word similarity implies that we need a protocol for putting multiple reservoir models side 

by side and establish a metric for similarity or dissimilarity.  

In mathematics, metric is a function that defines a distance (d) between the 

elements of two sets and satisfies conditions posed in Equations 4.2 through 4.5. In these 

equations, x, y, z etcetera denote points in an n-dimensional space. Although Euclidean 

distance is the most commonly used definition of distance, other definitions of distances 

such as Haussdorf distance and Mahalanobis distance also satisfy these minimum 

conditions.   

d(x,y)>=0 (non-negativity)      (4.2) 

d(x,y)=0 if and only if x = y (identity of indiscernibles)  (4.3) 

d(x,y)=d(y,x) (symmetry)      (4.4) 

d(x,z) ≤ d(x,y) + d(y,z)       (4.5) 

Arpat (2005) introduced the term distance between reservoir models, referring to 

a measure of dissimilarity between any two different reservoir models. Consider a vector 



x comprising all reservoir properties within a reservoir model as in Equation 4.6, e.g. 

permeability and porosity at all locations. Equation 4.7 defines a measure of dissimilarity 

d between two reservoir models x and y, as the Euclidean norm the difference vector.   
[ ]1 ... Nx x=x        (4.6) 
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    (4.7) 

If a reservoir model is defined as in Equation 4.6, differences in variables that do 

not affect the flow contribute to exaggerate the measure of dissimilarity. For instance, 

differences in permeability in areas of the reservoir disconnected from the main flow 

paths are added without significance on well responses. 

Scheit and Caers (2009) defined distance between reservoir models on the basis of 

well connectivity using streamline simulation. This approach made the differences 

between reservoir models more sensitive to actual well responses in water flooding. 

Similarly, the presented method works with the measures of dynamic heterogeneity 

obtained from the proxy model and described in Section 4.3. We compare reservoir 

models by looking at differences in the distribution of the flow paths, breakthrough time, 

recovery factor and the proxy average permeability around wells. In this way, we can 

discriminate between reservoir models that will exhibit different production profiles 

without running a full flow simulation. 

4.6.1 Construction of a Metric Space using Multi-Dimensional Scale (MDS) 
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A metric space is a mathematical set where the distance between elements is 

defined. The most intuitive metric space is the Euclidean 3D space, where the distance 

between points is the length of straight line that connects them. The objective is to create 

a space where multiple reservoir models can be mapped according to the metric of 

dissimilarity. An ample set of reservoir models that cover the uncertainty is the basis for 

http://en.wikipedia.org/wiki/Set_(mathematics)
http://en.wikipedia.org/wiki/Distance


the construction of the metric space. This metric space is sometimes referred to as the 

uncertainty space throughout this dissertation.  

An illustrative analogy of a space constructed from distances is a topographic 

map. Suppose we know the distances between three cities. Then, based on those 

distances, it is possible to find a unique 2D map of the region between these cities, which 

constitutes the metric space. In that map the absolute coordinates are not important, in 

fact the latitude and longitude are relative to some reference point in the earth. A new 

point can be located in that map by referring it to its distance to the already located cities. 

Also note that although the metric space is two-dimensional, the distance function itself is 

one-dimensional. 

Caers et al. (2009) used multi-dimensional scaling (MDS) to construct maps of 

reservoir models in a two-dimensional space. MDS is a traditional statistical technique 

used to translate the dissimilarity matrix D (Equation 4.8) in an nD Euclidean space. 

Mode details about MDS are provided in Cox and Cox (1994). 
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xi is a vector that represents one reservoir model as expressed in Equation 4.6. 

After applying MDS, Caers and Scheidt (2009) used eigen decomposition is to reduce the 

effect of linearly correlated variables, and retain the effect of independent variables. For 

example, if a correlation between porosity and permeability exist, the addition of 

differences in porosity plus differences in permeability would result in unwanted 

redundancy. Since we are dealing with variables spatially distributed, the reservoir 

properties separated by a short physical distance should be correlated. For instance, if a 
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geologic model is constrained to the permeability at the well location, then the 

permeability in regions close to the well should be correlated. Eigen decomposition aims 

to retain variables that are statistically independent, making one reservoir model distinct 

from another. 

As a result, Caers and Scheidt (2009) visualized a large number of reservoir 

models by projecting them to a 2D space, where a distance-based association of similar 

reservoir models is possible. 
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4.6.2 Principal Component Analysis for Constructing a Metric Space 

We opted for using Principal Component Analysis (PCA) approach to construct 

the metric space because it retains only the measures of heterogeneity that exhibit more 

variability directly during the construction of the space. If we choose not to reduce the 

dimensions, the result is mathematically equivalent to the results with MDS. Principal 

component analysis (PCA) is a mathematical procedure that transforms a number of 

correlated variables into a smaller number of uncorrelated variables. The variability of 

the data is maximized on the first component, and the remaining variability is accounted 

for in the subsequent components. The variables retained from processing each reservoir 

model through the proxy model are correlated. The objective of PCA is to eliminate this 

redundancy by analyzing the covariance between variables. Let xi be an n x 1 vector that 

contains the characteristic variables of the ith reservoir model (Equation 4.9). The 

elements of the covariance matrix C (n x n matrix) are the covariance between the 

random variables.  

[2
1 2 3 4

T T n
i bt i i i it R x x x xμ σ⎡ ⎤≡ ≡⎣ ⎦x     (4.9) 

[ ]( ) [ ]( T
E E E⎡= − −
⎣

C x x x x        (4.10) 



E[x] denotes the expected value vector, which contains the expected value of the 

random variables over all reservoir models. The covariance matrix is decomposed into its 

eigenvector and eigenvalues as in Equation 4.11. 
T=C UΣU          (4.11) 

U is an n x n matrix that contains the eigenvectors of C, and Σ is a diagonal 

matrix that contains the eigenvalues of C. Finally, each vector xi is multiplied by the 

eigenvectors of the covariance matrix (U) (See Equation 4.12). The result of this 

multiplication is called principal component (PC). Each reservoir model has its own n 

principal components. The top k principal components corresponding to the k highest 

eigenvalues are chosen such that these components retain most of the original variance. 

Finally, a plot of the top k principal components of each reservoir model defines the 

metric or uncertainty space. 
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i =PC U x          (4.12) 

To illustrate this procedure, the 600 reservoir models described in Figure 4-3 were 

processed through the proxy model and the four responses were stored. Subsequently, the 

covariance between those responses was computed. The covariance matrix was 

decomposed into its eigenvector and eigenvalues. Finally, the top 2 principal components 

were plotted in Figure 4-11. It can be observed that the data has maximum variability 

over the first eigenvector. Furthermore, there is no systematic trend observable in the 

data, which implies independence between axes. This map helps visualize all realizations 

on a single plane. Also, it is useful for uncertainty analysis because this space can be 

easily sampled (to yield entire realizations). This map is at the core of the method for 

model selection presented subsequently. 



Figure 4-11 Projection of 600 reservoir models on top 2 eigenvectors. Each dot represents 
one reservoir model. 

4.6.3 Correlation between Well Connectivity and Principal Components 

The position of each reservoir model in the metric space is correlated with well 

connectivity characteristics. Reservoir models can be associated within clusters or groups 

using the k-means clustering algorithm - a data mining procedure for cluster analysis that 

partitions an entire set of points into m clusters. Points are associated to the cluster whose 

centroid is nearest to that point. k-means is not the only option used for clustering 

reservoir models: Scheidt and Caers (2009) used kernel-k-means (KKM) for clustering in 

which a non-linear transformation of the points is performed such that the cluster after the 

transformation exhibits linearity in the metric space. However, the choice of the kernel is 

arbitrary (e.g. radial basis functions). In contrast, the objective of eigen transformation is 

to project reservoir models into orthogonal vectors using the eigenvectors as the 

transformation basis. 
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Eight clusters of reservoir models were formed using simple k-means as indicated 

in Figure 4-12. The weighted average properties of models in a cluster such as the 

average permeability of each cluster are calculated using Equation 4.13. 
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⎥⎦
      (4.14) 

Equation 4.16 implies that the weights for each realization (nr) within a cluster 

(nc) is inversely proportional to the distance to the center of the cluster. Reservoir models 

closer to the center of their cluster are more representative of the group than models at the 

boundaries. The ensemble of reservoir models was divided into eight clusters in order to 

form small groups at distant positions in the space, and to show transitions from regions 

in that space. Reservoir models at the right of Figure 4-12 (clusters 3 and 7) show a 

pronounced high permeability streak that imparts high well connectivity. In contrast, 

reservoir models at the left of Figure 4-12 (cluster 4) show poor well connectivity 

because communication between wells passes through low permeability zones. Reservoir 

models smoothly transition from high to low connectivity through this map. 
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Figure 4-12 Clustering of reservoir models based on Euclidean distance in the top 2 
eigenvectors.  Average permeability maps from each cluster are displayed. 
The eight clusters obtained using k-means are color coded. 

Intuitively, the organization in well connectivity should be reflected in production 

data since polymer flooding is a displacement process where fluids migrate according to 

well connectivity. It is hypothesized that the production data (water breakthrough, 

recovery factor) is correlated to the position of reservoir models in this map and 

consequently can be used to refine the selection of models in the prior set so as to render 

uncertainty quantification and production optimization using optimal control feasible. 

These issues and the practical implementation of the model selection process are 

discussed in the next and subsequent chapters. 
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Chapter 5: Selection of Reservoir Models using Production Data 

5.1 OVERVIEW 

This chapter describes a novel approach for selection of reservoir models based 

on the observed production data using a measure of dissimilarity and Bayesian inversion. 

Production data is used to guide the process of selection of clusters of reservoir models 

formed in the metric space described in Chapter 4. First, the relationship between 

distance in the metric space and production data is validated by analyzing production data 

from two clusters distant in the metric space. Then the method for reservoir model 

selection is described and demonstrated through two examples of polymer flooding. The 

selection of a small group of reservoir models with high probability of representing the 

actual reservoir production prepares the stage for production optimization discussed in 

Chapter 6. 

5.2 RELATIONSHIP BETWEEN PRODUCTION DATA AND DISTANCE IN METRIC SPACE 

The idea of selecting reservoir models based on their position in metric space 

relies on the hypothesis that distances in that space and difference in terms of production 

data are correlated. In a polymer flooding operation, wells are monitored with pressure 

sensors either at well head or down hole; samples of water production and polymer 

concentration are also routinely acquired to follow the progress of the flooding. Injection 

and production pressure depend mainly on rock properties in the near wellbore area and 

the viscosity of the injected polymer. On the other hand, the breakthrough of water and 

polymer depend on the length of the flow path along which the displacement takes place. 

Hence, these production data should be informative of effective heterogeneity and well 

connectivity. 
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Prior to fluid breakthrough the only production data available is injection and 

production pressure. Therefore, it is important for this application to establish differences 

among reservoir models based on a variable correlated with well pressure. It was shown 

in Section 4.3.3 that permeability at the locations most visited by random particles near 

the wells exhibit a good correlation with well pressure. The distribution of path lengths is 

used as secondary information. 

Polymer injection was simulated with UTCHEM on the same 600 reservoir 

models described on Section 4.3.2. Water production, injection pressure and production 

pressure were monitored during the initial 250 days of simulation. The maximum 

injection pressure allowed is 9250 psi and the minimum production pressure is 200 psi. 

Figure 5-1, Figure 5-2 and Figure 5-3 show high variability of water production and well 

pressure observed over the prior geologic models. 

Figure 5-1 Simulated water cut for 600 reservoir models after polymer injection for 250 
days. 



 74

Figure 5-2 Simulated injection pressure for 600 reservoir models after polymer injection 
for 250 days. 

Figure 5-3 Simulated producer pressure for 600 reservoir models after polymer injection 
for 250 days. 
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The ensemble of realizations was processed through the proxy model to obtain (1) 

the mean and variance of the path length and (2) the averaged permeability around each 

well. The vector xi in Equation 5.1 includes these four random variables for the ith 

reservoir model. The correlation coefficient between the average permeability around 

injector ( ) and the average permeability around producer ( ) is 0.1135 as can be 

seen on the correlation coefficient matrix (ρ) expressed in Equation 5.2. This poor 

correlation between  and  is because those variables depend on the permeability 

near well locations that are far apart. It can be noticed also that  and  are weakly 

correlated to the breakthrough and recovery factor from the proxy model, which implies 

that local permeability does not have a great impact on the length of the main flow paths. 

       (5.1) 

    (5.2) 

The eigen decomposition of the covariance matrix is: 

( )( )T T= − − =C X X X X UΣU       (5.3a) 

where 
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The sum of the first 3 eigenvalues is 95% of the total sum of the eigenvalues. 

Therefore, three eigenvectors are necessary to explain the variability of the data. This is a 

consequence of the low correlation coefficients between the average permeabilities and 

the other variables such as breakthrough time or recovery factor. Figure 5-4 shows the 

projection of the 600 models in a 3D space with axes defined by the three principal 

components. 

Figure 5-4 Projection of 600 reservoir models on top 3 eigen vectors 

To verify if the position of a reservoir model in this eigenspace is reflective of the 

actual well pressure differences, the cloud of points was divided into eight clusters, and 

the reservoir models belonging to the two more distant clusters (illustrated in Figure 5-5) 

were submitted to flow simulation using UTCHEM.  



 77

Figure 5-5 Reservoir models labeled in red and blue were selected for flow simulation 
using UTCHEM because they belong to the two farthest clusters. 

Figure 5-6 demonstrates that the distance-based association of reservoir models 

results in a separation of models based on the similarity of production characteristics. 

Reservoir models from the red cluster have in common higher producer pressure, low 

injection pressure and early water breakthrough, as a sign of high well connectivity. On 

the other hand, reservoir models from the blue cluster exhibit lower well connectivity that 

results in high injection pressure, low producer pressure and late breakthrough, which 

implies that fluids are forced to pass through low permeability regions. It is expected that 

reservoir models from the blue cluster exhibit better areal sweep efficiency during the 

displacement. Consequently, a small number of realizations can be taken as 

representative of a group of reservoir models belonging to a cluster. 
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Figure 5-6 Production data for reservoir models belonging to the two distant clusters 
indicated in Figure 5-5. 

5.3 RESERVOIR MODEL SELECTION GUIDED BY PRODUCTION DATA 

The method for selection of reservoir models is illustrated through an example 

with a synthetic reservoir that has one polymer injector and one producer. The geology of 

the reference reservoir consists of high permeability channels embedded in a low 

permeability background as shown in Figure 5-7. The permeability contrast between 

channel and non-channel facies is 1000:10 approximately. Injector and producer are 

completed in the high permeability regions and communicate through a high permeability 

streak that causes flow channeling. The reservoir is horizontal and flat at a depth of 3500 
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ft. The reservoir has a width of 800 ft, a length of 800 ft long and a thickness of 8 ft. The 

porosity is uniform and equal to 0.1. The initial water saturation is equal to the 

irreducible water saturation (0.2). The reservoir was discretized into 160x160 grid-blocks 

of 5x5x8 ft3 each one. Note that the resolution of the reference reservoir is not necessarily 

the same as the resolution of the reservoir models used to represent it (40x40 grid-

blocks). The initial reservoir pressure is 2500 psi.  

The water-oil mobility ratio at the end points (=10.9) and channel heterogeneity 

are unfavorable for oil recovery, making this reservoir a good candidate for polymer 

flooding. As a preliminary evaluation, polymer and water flooding were simulated with 

UTCHEM for a period of 2000 days. The water injection rate is 300 ft3/day, whereas the 

polymer injection rate is limited to 50 ft3/day due to the low injectivity of polymer. 

Therefore at the final time the injected volume of water is 6 times higher than the injected 

volume of polymer.  

Partially hydrolyzed polyacrylamide (HPAM) polymer is injected at a 

concentration of 750 ppm. The polymer viscosity at the injected concentration is 20 cP at 

zero shear rate. The polymer solution injected is a shear thinning fluid whose viscosity is 

reduced to 10 cP at a shear rate of 280 sec-1 as shown in Figure 2-5. The polymer 

retention is 60 μgr/gr of pore volume at the injected concentration. The salinity of the 

aqueous phase is 0.006096 meq/ml. The modeling parameters of this polymer solution 

were taken from Dakhlia (1995). Specific parameters input of the rheologic model and 

adsorption can be found in Appendix-1, in the UTCHEM deck file. 
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Figure 5-7 Facies map of reference reservoir with two wells 

 

Figure 5-8  Comparison of water saturation corresponding to water (left) and polymer 
(right) flooding after 0.3 pore volumes of injection simulated using 
UTCHEM 

Figure 5-8 shows that water flooding results in poor sweep due to the presence of 

flow channels, whereas the effect of heterogeneity is reduced in polymer flooding 

resulting in better areal sweep. For the water flooding case, the water cut at 0.3 pore 

Producer Injector 
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volumes injection is already high (0.78); most of the injected water is channeled directly 

to the producer without mobilizing any additional oil. On the other hand, in the polymer 

flooding case although water has already broken through (water cut = 0.6) the polymer 

plume has swept a considerably larger area. Consequently, the economics of polymer 

flooding is better than that of water flooding as shown in Figure 5-9. Even though at the 

beginning of the injection process the revenue from water flooding is higher due to higher 

initial oil production, this effect is offset significantly by the incremental oil recovered 

later during polymer flooding. 

 

Figure 5-9 Comparison of net present value for water and polymer flooding 

The production data that used as reference to guide the model selection process 

are the water cut, the injection pressure and the producer pressure observed during 

polymer flooding. This data was monitored every 10 days during the first 250 days as 

plotted in Figure 5-10. Injection pressure increases as the low-mobility polymer bank 

grows. The producer pressure also increases as water bank (high mobility) approaches to 
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the well location. Water production initiates after about 50 days of production, and 

continues increasing as the water channels through the high permeability channel 

between the wells. 

Figure 5-10 Production data from reference reservoir after the initial 250 days of polymer 
injection. 

5.4 COMPUTING AND UPDATING PROBABILITY OF CLUSTERS OF RESERVOIR 
MODELS 

Once the production data history is available, it is used to guide the selection of 

reservoir models that have similar production characteristics. The ensemble of reservoir 

models mapped in the metric space is the starting point of the selection process.  
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Before production data is presented, all reservoir models are equally probable 

because they all honor the static conditioning data and the prior geologic interpretations 

presented in the form of variogram models, training image or any other geological 

description. Therefore, the prior probability of sampling a realization from cluster i is 

equal to the fraction of realizations contained in cluster i over the total number of 

realizations in the ensemble (NR) as expressed in Equation 5.4.  

{ } Number of realizations in cluster Pr cluster 
Total number of realizations

ii∈ =x     (5.4) 

The objective of this step is to assess the conditional probability for a reservoir 

model given the measured production history. The posterior probability is obtained by 

application of Bayes’ rule (Equation 5.5) and comparing representative production data 

of each cluster to the reference production data. 

{ } { } { }
{ }

Pr | cluster Pr cluster 
Pr cluster |

Pr | cluster 
ref

ref
ref

j

i i
i

j

∈ ∈
∈ =

∈∑
D x x

x D
D x

   (5.5)

 

Dref refers to the production data of the reference reservoir. Now, the question is 
how to obtain { }Pr | cluster ref i∈D x ? The scheme is illustrated with an example. 

Suppose, the well pressure has been acquired for a time period as in Figure 5-11, an 

uncertainty envelope can be delineated assuming a Gaussian distribution with the 

measured pressure history as mean.  The assumption of Gaussianity is reasonable since a 

Gaussian measurement error model is commonly assumed. The choice of the variance for 

that distribution can be based on the statistics of the measurement error.  

Knowing the mean and the variance, various confidence intervals can be retrieved 

around the measured data. A few representative samples of each cluster are selected for 

flow simulation with UTCHEM. 
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Figure 5-11Uncertainty envelopes around reference data. The production data of one 
reservoir model falls within the 66% probability envelope. 

If the production data of a realization selected from cluster i fall within the 84% 

envelope, then that probability is assigned to cluster i. This yields the likelihood Pr{Dref|x 

∈ cluster i}. The denominator in Equation 5.6 (Pr{Dref}) can be computed by applying 

the law of total probability. After that, Bayes’ rule is used to calculate the posterior 

probability of the cluster. 

{ } { } { }
{ }

Pr | cluster 
Pr cluster | Pr cluster 

Pr

t
reft

ref t
ref

nc
nc nc=

D
D

D
   (5.6) 

At any stage in the selection process, if the variance of the production data after 

selection does not decrease, it means that either (1) the measure of dissimilarity is not 

capable of discriminate among reservoir models appropriately, (2) the reservoir models in 

the group are truly similar such that the differences are intangible, or (3) the number of 

reservoir models is so limited that assessing the uncertainty is practically impossible. 

Reference data

Uncertainty envelope
Reservoir model
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5.5 HIERARCHICAL SELECTION OF RESERVOIR MODELS 

The demonstration continues with the two-well reservoir example. The initial 

ensemble of reservoir models is partitioned into three clusters as illustrated in Figure 5-

12. The prior probability of cluster 1 (blue) is 0.3583, 0.5033 for cluster 2 (green) and 

0.1383 for cluster (gray) according to the number of reservoir models contained by each 

cluster. One out of thirty realizations was selected from each cluster for flow simulation 

using UTCHEM in order to simulate injection and production pressure during 250 days. 

A few reservoir models were selected from each cluster and processed using UTCHEM 

to obtain the injection pressure, producer pressure and water cut as shown in Figure 5-13. 

Then, the probability of each cluster is updated with the likelihood of the reference 

production data. 

Figure 5-12 Projection of 600 reservoir models on space defined by the two top eigen 
vectors. Initial ensemble of reservoir models is partitioned in three large 
clusters: cluster 1 (blue), cluster 2 (green) and cluster 3 (gray)  
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Figure 5-13 Production data from samples of cluster 1 (blue), cluster 2 (green) and cluster 
3 (gray) are compared to the reference production data (red). 

The posterior probabilities of the clusters after incorporating the reference 

production data are 0.13, 0.20 and 0.67 respectively. The cluster with the highest 

probability (gray cluster) is selected for a second level of selection as illustrated in Figure 

5-14. Production data starts converging towards the reference at the second level of 

selection as shown in Figure 5-15. At the third level, few reservoir models remain as 

illustrated in Figure 5-16. There are two natural stopping criteria: either (1) the minimum 

number of reservoir models remaining is reached, or (2) the posterior probability 

distribution does not show preference for any cluster. In this case the process is stopped 

when the minimum number of reservoir models in the final cluster is fifteen. 



 87

 

Figure 5-14 First and second level of selection of reservoir models 

Figure 5-15 Variation in injection and producer pressure over the models after the second 
level of selection.  

Selected cluster Second level
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Figure 5-16 Cluster of reservoir models retained at the second and third levels of 
selection 

Figure 5-17 Production data of reservoir models retained at the third level of model 
selection. 

 

Second level Third level
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Finally, each member of the final set was subject to flow simulation with 

UTCHEM. The injection and producer pressure from the final set is close to the reference 

as seen in Figure 5-18. Comparison of the initial sets of production data (Figure 5-1, 

Figure 5-2, and Figure 5-3) to the final set (Figure 5-18) demonstrates that the selection 

method was able to narrow the uncertainty in production data significantly using a 

minimum number of simulation runs. In this case 26 flow simulations with UTCHEM 

were carried out to calculate the posterior probability and for calibrating the random walk 

procedure. 

Figure 5-18 Production data computed on the final suite of reservoir models. The 
reference response is shown in red. 
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The permeability maps of the final set have in common a high permeability streak 

connecting the injector to the producer as shown in Figure 5-19. This is also a prominent 

characteristic of the reference model (Figure 5-7). In addition, the realizations in the final 

set share the same variogram model with a long range of continuity in y-direction. 

Therefore, in this case reservoir models conditioned to that variogram model are certainly 

preferred.  

 

 

 

Figure 5-19 Facies map of four reservoir models from the final set.  
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5.6 RESERVOIR MODEL SELECTION IN A 5-SPOT INVERTED INJECTION PATTERN 

Pilot tests of polymer flooding are commonly implemented either in inverted or 

regular 5-spot injection patterns. In a multi-well case, interactions of pressure gradients 

between producers dominate the expansion of polymer front around the injectors. 

Therefore, it is important to identify the preferential paths that polymer follows in order 

render the areal coverage uniform by rate control. 

This has been studied through a synthetic example of a reservoir with sinusoidal 

streaks of high permeability that resemble fluvial channels as pictured in Figure 5-20. 

Polymer is injected at a rate of 400 ft3/day and water and oil are produced at a total fluid 

rate of 100 ft3/day per producer. 

 

Figure 5-20 Facies map of reference reservoir with four producers at the corners and one 
injector at the center 

The well pressure for the initial 250 days was recorded every 10 days and plotted 

in Figure 5-21. Water was not produced during this interval, therefore the production data 

available for model selection is just well pressure profiles. A careful examination of 

Prod#1 Prod#2 

Prod#3 Prod#4 

Inj-1 
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Figure 5-20 and Figure 5-21 shows that producer pressure is correlated to the size of the 

high permeability area that the well is connected to. For instance, wells Prod#1 and 

Prod#3 show low production pressure because the high permeability zone around them is 

small. On the other hand, Prod#2 produce at a higher pressure because it is connected to a 

long channel.  

Figure 5-21 Well pressure at 4 producers and 1 injector in the reference reservoir (Figure 
5-20) for the first 250 days  

As production data from more wells are integrated within the model selection 

procedure, the selection of reservoir models becomes difficult because it is unlikely to 

find a group of reservoir models with production data similar to the observations at all 

wells simultaneously. The strategy for model selection takes four steps as illustrated in 

Figure 5-22: (1) the initial ensemble of reservoir models is used to make the model 
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selection by well pairs independently, (2) the selected reservoir models for each well pair 

are used to infer the local probability of facies indicators around the well locations, (3) a 

new ensemble of reservoir models that reflect the local probabilities are generated, and 

(4) the selection process is repeated using all sets of pressure profiles for a final 

refinement. Step (3) is necessary for ensuring that there are sufficient models in the final 

cluster. 

Figure 5-22 Illustration of the process for updating the model selection using data from 
multiple wells. 

5.5.1 Model Selection for a Well Pair 

In this step, only the outputs from the proxy models regarding the well pair that is 

being analyzed are considered. Even though particles are propagated throughout the 

entire reservoir, only the distribution of the path lengths that connect the well pair of 

interest is analyzed. Also, all wells are included in the flow simulation but we only look 

at the pressure profile of the well pair under consideration. This section illustrates the 

Initial Ensemble of 
Reservoir Models

Prior uncertainty

Well Pair -2

Model Selection Process

Well Pair -1 Well Pair -3 Well Pair -4

Local probability map

New Ensemble of 
Reservoir Models
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selection procedure for the first well pair. That procedure is repeated for the other three 

well pairs. 

The initial ensemble of reservoir models has 6 types of reservoir models using 5 

different variogram models and 1 sinusoidal training image as shown in Figure 5-23. The 

initial ensemble consists of 300 realizations generated constrained to the variogram 

models or training image information. All realizations are processed with the proxy 

model. The proxy responses analyzed are the average permeability around the analyzed 

wells, distribution of arrival times of the well pair analyzed and breakthrough time on the 

producer analyzed.  

 

 

Figure 5-23 Examples of reservoir models included in the initial ensemble. 

The proxy responses are projected on the space defined by the top 3 eigen-vectors 

as plotted in Figure 5-24. In the first clustering step, the initial cloud of reservoir models 

is initially divided into two clusters (left of Figure 5-24), from which the blue cluster was 
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selected as its posterior probability is the highest. Subsequently, six more levels of 

selection took place until obtaining the final set of 9 reservoir models contained in the 

blue cluster (right of Figure 5-25). 

Figure 5-24. First two levels of selection in example of inverted 5-spot injection pattern 

Figure 5-25 Final two levels of selection in example of inverted 5-spot injection pattern 

The injection pressure of several reservoir models in the final set is close to the 

reference, but there are some outliers as observed in Figure 5-26. The distribution of 

pressure at Producer #1 is wider, but centered on the reference. 
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Figure 5-26 Well pressure at Inj#1 and Prod#1 (First well pair) for initial ensemble 
compared to the final suite.  

The distribution of the production data for the prior ensemble (gray pressure 

profiles in Figure 5-26) and the final selection (blue pressure profiles in Figure 5-26) 

were analyzed. At 250 days the mean of the injection pressure in the prior ensemble is 

6266 psi, the mean in the selected set is 5278 psi and the reference injection pressure is 

5295 psi. In addition, the standard deviation of the injection pressure at 250 days for the 

prior ensemble is 1187 psi and the standard deviation in the selected set is 305 psi.  

Hence, the posterior set of reservoir models results in a refinement of uncertainty in 

production data for the well pair under study. 

Figure 5-27 shows that although the reservoir models in the final set correspond 

to different variogram models/sinusoidal training image, there is a common small high-

permeability area connected to the producer (bottom-left corner). The other common 

feature is that the high permeability area connected to the injector (center) extends over a 

wide region of the reservoir. At this early time after the start of injection, the main 

direction of growth of the polymer bank is not discernible. Therefore, at an early stage of 

injection it is difficult to identify the main pathways between wells.  

 

Initial Ensemble

Final Set

Reference
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Figure 5-27 Maps of 6 reservoir models in the final set obtained by using production data 
from Inj#1 and Prod#1 (labeled in the maps) for model selection. 

5.5.2 New Reservoir Models Conditioned to Prior Selection 

After repeating the model selection process using the data for the other 3 well 

pairs, the realizations in the final cluster are used to infer both the local probability 

around the wells and the probability that each geologic description will jointly satisfy the 

requirements by injector-producer well pattern. A new ensemble of 100 reservoir models 

is generated using the local probability as soft data in sisim and snesim, so that the 

resulting realization share the features exhibited by the models in Figure 5-28. 
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Figure 5-28 Four reservoir models of the new ensemble generated with the combined 
local probabilities for each well pairs. The new ensemble is composed of 
100 reservoir models. This is the starting data set for the refinement of the 
selection. 

The entire new ensemble was processed with UTCHEM to verify if the well pressures of 

the new models are consistent with the response of the original realizations used to 

originate them. The distributions shown in Figure 5-29 are fairly well centered on the 

reference, but there is still uncertainty that is refined in the next level of selection. 

Particularly, Prod#1 and Prod#3 show the largest variability in production data  
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Figure 5-29 Well pressures for the reference, and reservoir models of the initial and new 
ensembles. 

 

 

Initial Ensemble
Final Set
Reference
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Figure 5-30 Well pressures for the reference and final selection of reservoir models after 
the refinement step. 

  

  

Final set

Reference
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The model selection process is then repeated with the new ensemble, but now 

using the proxy responses and production data of all wells jointly. The vector of 

responses has a dimension of 17 (= average permeability per well (5) + mean and 

variance of path lengths per well pair (8) + breakthrough time per well pair (4)). The 

dimension of the metric space is now 5, meaning that 5 eigen-vectors are necessary to 

account for the variability of the proxy responses. At the end of the selection process, the 

distribution of well pressure is narrower and centered to the reference as seen in Figure 5-

30. 

Despite the reduction in variability of production data in the final cluster, the 

uncertainty in the geology remains wide as different geologic descriptions are present in 

the final set as shown in Figure 5-31. Hence, it can be inferred that early-time pressure 

does not bring sufficient information to depict large scale heterogeneity features related 

to the inter-well communication. This supports the argument that the uncertainty in the 

geologic scenarios should be carried forward even if there is a good match in production 

history. Therefore, limiting the characterization of the reservoir to a single geologic 

scenario can lead to incomplete uncertainty assessment. 

Figure 5-31 Selected realizations from the final set after model selection using the data 
from the entire well pattern. 
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5.6 CONCLUSION 

In the examples shown in this chapter it was difficult to identify a single geologic 

depiction of a reservoir based only on integration of static data and production data. Even 

if a reservoir model conforms to the available static data and production history, there is 

no guarantee that the underlying geologic scenario has been certainly identified. In the 5-

spot injection pattern example, the well pressure was correlated only to the size of the 

high permeability area connected to the well, regardless of the features that dominate the 

heterogeneity at larger scale. Hence, it is recognized that early production data is not 

sufficient to identify predominant well connectivity characteristics, which inflicts a 

limitation to the selection of reservoir models. Nevertheless, as shown in Chapter 7, 

fractional flow data such as water cut is more informative about well connectivity turning 

the feedback-control process more useful. 

 



Chapter 6: Polymer Flooding Optimization using a Proxy Model and 
Response Surface 

6.1 OVERVIEW 

The research approach adopted to optimize well control for maximum economic 

NPV from a polymer flooding process is detailed in this chapter. The application of 

response surfaces and gradient-based optimization is initially illustrated through a simple 

example. Finally, the method is demonstrated for optimizing the injection and production 

rates for the two-well and the five-well pattern injection cases presented in previous 

chapters. Conclusions about the feasibility of implementing optimal control strategies for 

polymer injection are discussed at the end. 

6.2 PRODUCTION OPTIMIZATION  

Once a set of reservoir models have been identified that produce similar responses 

as observed in history, the next step is to find the optimal production strategy for 

maximizing the economics of the project. The production optimization problem is 

formalized as follows: find the optimal control vector u, composed by injection and 

production rates for NT time control periods, such that the net present value at final time 

(J) is maximized (Equation 6.1), subject to the following constraints: (1) flow equations 

for polymer flooding (Equation 6.2), (2) operational constraints (Equation 6.3) and (3) 

material balance between cumulative injection and cumulative production (Equation 6.4). 
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The number of control periods refers to the frequency of adjustments of well 

constraints during the operation of the wells. The number of control variables in this 

particular problem can be quite large: for example, the control vector u would have 40 

elements in a 5-spot injection pattern with 10 control periods where only the rate is 

controlled, because Equation 6.4 is used to solve for the rate of the fifth well. The number 

of control variables (n) for this problem is expressed in Equation 6.5. 

( )1n NW NT= −         (6.5) 

where, NW is the number of wells and NT is the number of control periods. A 

procedure that employs an adaptive response surface was developed to solve the 

optimization problem efficiently. 

6.3 ADAPTIVE RESPONSE SURFACE FOR PRODUCTION OPTIMIZATION 

Experimental design and response surfaces have been commonly used in 

optimization and uncertainty assessment when the relationship between control variables 

and objective function is difficult to express mathematically, particularly when the 

transfer function is numerical. A response surface is an empirical model that relates the 

model parameters (such as geologic variables and/or well controls) to corresponding 

responses. The generated empirical model is often represented as a linear regression 

model as shown in Equation 6.6, where J is the response, βi’s is a set of regression 

coefficients, ui’s are the independent variables and ε is an error term. (Myers and 

Montgomery, 2002) 

0 1 1 ... n nJ u uβ β β ε= + + + +        (6.6) 

The n independent variables (ui) are organized into an n x 1 vector (u) that 

contains the control variables to be optimized. Multiple evaluations of J are performed 
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with independent realizations of u in order to obtain sufficient data to find the regression 

coefficients βi that best fit the responses. At least n+1 function evaluations are required to 

solve the linear regression problem of Equation 6.6. Fitting the regression coefficients is 

a simple linear regression whose solution is expressed in Equation 6.7. 
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T( ) 1T −
=β U U U J         (6.7) 

Where β is a vector that contains all regression coefficients, U is a matrix with all 

the u vectors evaluated and J is a vector that contains all the responses. 

In order to capture better the non-linearity of the relationship between control 

variables and responses, Equation 6.6 is expanded to include second order and interaction 

terms as in Equation 6.7. 
2

0 1 1
2 1

...
n n

n n ij i j ii i
i j j i

J u u u u uβ β β β β
< = =

= + + + + + +∑∑ ∑ ε     (6.8) 

Denoting nruns as the minimum number of function evaluations required to solve 

for the regression coefficients in Equation 6.7, nruns is equal to (n2+3n)/2+1. Although 

adding more terms to the equation of the response surface yields a better fit of the true 

responses, it is not necessarily convenient because overfitting problems may arise. To 

avoid that, a test of significance (Jablonowski and Strachan, 2008) can be performed to 

identify the statistically significant regression parameters, i.e. regression coefficients 

statistically correlated to the response. Fewer terms in Equation 6.7 remain after the test 

of significance and the effect of the variables eliminated is absorbed in the error term. 

The nruns number of is reduced to about 40% in this case. For example a significance 

test of the regression parameters for the example shown in Table 6-1 using four rate 

controls indicates that 6 out of the 15 regression coefficients at significant at 0.1 level.  
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Table 6-1 Results of a significance test on regression coefficients for a response surface 
with 4 rate controls. Rows in gray are significant at 0.1 level. 

  βi t Stat P-value
Intercept 98732.18156 26.87433 0.023678 
u(1) 324.1191909 13.25313 0.047945 
u(2) 95.23858161 2.317147 0.259371 
u(3) -12.36779119 -0.6824 0.61878 
u(4) 114.1411162 3.504443 0.176958 
u(1)2 -0.220022502 -3.00847 0.204295 
u(2)2 -0.555307378 -12.9249 0.049157 
u(3)2 -0.551752287 -6.46356 0.097719 
u(4)2 -0.502352461 -5.88385 0.107174 
u(1)*u(2) -0.12175673 -1.0286 0.491027 
u(1)*u(3) -0.252022526 -4.32498 0.144654 
u(1)*u(4) 0.2128789 2.336046 0.257494 
u(2)*u(3) 0.325023825 3.248814 0.190096 
u(2)*u(4) -0.339633572 -5.31376 0.118421 
u(3)*u(4) -0.477039874 -2.56397 0.236742 

 Experimental Design is a technique often employed to choose combinations of 

independent variables u that will yield a response surface that is most representative of 

the phenomenon being modeled. In Experimental Design, two-level factorial designs are 

commonly used to investigate the effect of a single parameter and its interactions with 

other parameters. Two-level factorial design considers only two levels of the variables u: 

- a minimum and a maximum. For example, if we want to investigate the effect of the 

injection rate during the first 100 days, the function is evaluated corresponding to the 

maximum and minimum injection rates allowable. The number of response function 

evaluations required is 2k corresponding to k variables, and that might be too large within 

a dynamic optimization framework. Even if the proxy model is used for a rapid function 

evaluation, the time taken to process 2k runs would render it unsuitable within a feedback 

control framework.  



An adaptive response surface procedure is formulated that yields a representative 

response surface using a limited number of function evaluations. The construction of the 

response surface starts by using the proxy model to evaluate the net present value for at 

least nruns control vectors u. The vectors u for which the function is evaluated are 

samples drawn from a symmetric distribution like multi-Gaussian or uniform in order to 

avoid bias. If we have a prior knowledge about the optimal region, that bias can be 

introduced by using multi-Gaussian pdf. In the absence of prior preference, we have 

chosen the distribution centered between the feasible bounds and truncated at the lower 

and upper bounds of the control variables as shown in Equation 6.9.  
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The covariance matrix is diagonal because the control variables are assumed 

independent. For each vector u, the proxy is run 5 times in order to get the expected value 

of the net present value for that combination of injection and production rates. The 

minimum number of runs required depends on the variability of the response of the proxy 

model. As stated in Chapter 3, the outcome of the proxy model is stochastic and 5 

samples are sufficient to have an estimate of the mean with 95% confidence. 

Then, the regression coefficients are fitted and the approximated response surface 

is obtained. The equation of the surface is subject to a gradient-based optimization 

function that takes the negative of the net present value as objective function along with 

its gradient function, the linear constraints specified by the operational bounds and the 

condition that the cumulative injection and production be balanced at all times. This 



gradient based optimization is implemented in the MATLAB® function fmincon that 

returns the control vector u* that minimizes the objective function.  

Then, the NPV is evaluated with the returned control values to check for 

optimality. The new estimation of NPV is incorporated to fit a new response surface and 

the process is repeated until convergence of the optimal control vector. At the end, the 

final response surface fits well the region where the optimal NPV is because it contains 

several regression points in that region. 
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This procedure is illustrated with the two-well reservoir model presented in 

Chapter 3. For simplicity, this example uses only 2 control periods of 1000 days each 

one, for a total of 2000 days with wells under rate control. Therefore, the control vector u 

(Equation 6.10) has 2 independent variables (n=2).  

[1 2
1 2

T T
inj injq q u u⎡ ⎤= =⎣ ⎦u        (6.10) 

u is initially sampled 6 times in order to obtain sufficient data to fit a response 

surface equation as shown in Figure 6-1. The surface regression equation is submitted to 

fmincon in order to obtain the optimal u. Then, the proxy evaluates the function at the 

“optimal” u, but the objective function turned out to be sub-optimal when the response is 

reevaluated at this point. This is due to the lack of regression points in the optimal region. 

Then, the new point is incorporated into the data set for fitting the response surface at the 

next iteration and new regression coefficients (β) are computed. The process is repeated 

until the change in optimal u over successive iterations is less than a tolerance. In this 

way the surface is progressively better fitted in the area of optimal control settings.  



Figure 6-1 Response surface fitted for optimization using initial points (left) and adapted 
after further function evaluations around the optimal (right). The blue dots 
are the initial function evaluations and the red dots are the new function 
evaluations after each iteration. 

The above procedure has been tested extensively, showing convergence to the 

same optimal region. If the concavity of the response surface is outside of the bounds of 

feasible control variables, the optimal solution is close to the bounds as indicated by the 

red dots in Figure 6-1, where the optimal solution requires u2 to be a minimum, which 

means that the well is shut-in.  

Note that the optimal solution found through this procedure is stochastic, first 

because the proxy model is stochastic and second because the surface fitting depends on 

the initial values used for regression, that are randomly sampled. Even if UTCHEM were 

used for the evaluation of the objective function, the optimal control rates are stochastic 

due to the random sampling of control variables. Therefore, the process is repeated a few 

times to obtain the expected value of the optimal control vector. This procedure is 

extensible to control vectors with more control periods and more wells. 
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6.4 PRODUCTION OPTIMIZATION OF THE TWO-WELL EXAMPLE 

The injection and production rates for the reference reservoir shown in Figure 6-2 

were optimized using the adaptive response surface method explained above. The total 

injection time is 2000 days divided into 10 control periods of 200 days. The objective 

function is the net present value using the economic parameters shown in Table 6-2. 

These economic parameters were chosen only for demonstration purposes and are not 

reflective of current economic conditions; the aim was to obtain a net present value curve 

that makes the trivial solution (maximum production rates) sub-optimal. For that reason, 

the assumed cost of water treatment penalizes excessive water production. The physical 

constraints are: the injection/production rates are bounded between 0 and 200 ft3/day, and 

injection rate is equal to production rate at all times. 

Producer 

Injector 

Figure 6-2 Reference reservoir model with 1 injector and 4 producers reproduced from 
Figure 5-7 

The balance between the injection and production rates implies that only the 

injection rate needs to be optimized. The high permeability channel that causes 

communication between the wells causes early water breakthrough. Maintaining the 
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t late time. In summary, there is no trivial solution to maximize the net 

Table 6-2 Input Parameters for Economic Analysis 

 Parameter  

production at maximum is an inefficient strategy because the high water production 

reduces the revenue severely and increases the production costs. A constant rate control is 

also inefficient because the early production is clean oil while water production needs to 

be controlled a

present value.  

Economic Value

Oil Price $ 35 

Discount Rate 10 % /year 

Production Facility Cost 0 /month $ 10,00

Water Injection Cost $1/bbl 

Water Production Cost  $10/bbl

Oil Production Cost $4/bbl 

Polymer Injection Cost $1/lb 

Royalty Tax 38.5% 

Ad Valorem Tax $0.046/bbl 

Figure 6-3 shows that the optimal control sequence starts at high injection rates 

and it decreases as water production evolves. This strategy is consistent with the discount 

rate scheme in which early production has higher net present value than late production. 

The optimal control rate sequence indicates that for many control periods the well is 

operated as on or off, i.e. the optimal rate falls on either the upper or lower bound. This 

solution is common in convex optimization problems with upper and lower bounding 

constraints.  



Figure 6-3 Expected value of the optimal rate sequence for the two-well case 

Is the NPV of the optimal control vector better than the NPV of any control vector 

obtained from multiple runs? Since the objective function is a non-linear function of the 

control vector, the NPV corresponding to the expected optimal control vector (E{u*}) is 

different than the expected value of the net present value as expressed in Equation 6.11. 
( ){ } { }(*E J J E≠u )*u        (6.11) 

To explore this issue, the response surface optimization procedure was repeated 

10 times resulting in 10 different optimal control vectors. Polymer flooding was 

simulated using UTCHEM corresponding to these 10 control vectors and their 

corresponding net present value curves were computed. Figure 6-4 compares the net 

present value curves for each control vector found as optimal from individual runs to the 

net present value curve obtained for the expected control vector. The net present value 

curve of the expected control vector is superior to any individual run. Note that the net 

present value curve reaches a maximum at about 1200 days, and after that the injection 

and production rates are adjusted (post breakthrough) to maintain the production without 

economic loss.  
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Figure 6-4 Net present value for optimal rate solutions from multiple runs and for the 
expected optimal rate sequence. 

Figure 6-4 also indicates that J(E{u}) is greater or equal than E{J(u)}. This result 

is consistent in many other cases evaluated. To explain this, consider that a minimum-rate 

operation yields a negative NPV, whereas a maximum-rate operation is not optimal 

because water breaks through early. Thus, J(u) can be modeled as a quadratic function 

that is convex-up as in Equation 6.12, where the maximum of J occurs between the two 

boundaries.  
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Where β1≤0.  Then, the inequality stated above can be easily proved as follows. 

J(E{u}) and E{J(u)} can be computed by Equations 6.13 and 6.14. 
( ){ } { } { }2

1 2E J u E u E uβ β= +        (6.13) 

( ){ } { } { }2
1 2J E u E u E uβ β= +        (6.14) 

Subtracting Equations 6.13 and 6.14, an using Cauchy-Schwarz inequality 

(Bishop, 2007), it can be easily shown that J(E{u})≥E{J(u)}. Consequently, the 



optimization algorithm is set to first compute optimal control settings for multiple 

responses surfaces, and then to compute the expected value of the control vector. 

6.5 PRODUCTION OPTIMIZATION OF THE FIVE-WELL EXAMPLE 

To continue the demonstration, the optimization algorithm was used to find 

optimal injection and production rates for the reservoir models with a 5-spot injection 

pattern shown in Figure 6-5. The total production time (2000 days) was divided into 4 

injection periods of 500 days. The maximum injection or production rates are 400 ft3/day 

(71.2 STB/day). The injector and 3 producers are operated independently, Prod#4 is 

operated such that the total injection and production rates are in equilibrium at all times. 

Thus, the number of control variables is 16: 4 control periods for 4 wells.  

Prod#1 Prod#2 

Prod#3 Prod#4 

Inj-1 

Figure 6-5 Reference reservoir model with 1 injector and 4 producers reproduced from 
Figure 5-20 

The optimization algorithm returned the control settings presented in Table 6-3. 

The optimal control settings start with a high injection rate (395 ft3/day), followed by a 

reduction in injection rate to control water production. Then, the injection rate is 
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increased at the final period to maintain the production at Prod#1, which still had a low 

water cut. 

Table 6-3. Optimal control settings for the five wells corresponding to the reservoir 
model shown in Figure 6-4. Well rates in ft3/day 

Time (days) Inj#1 Prod#1 Prod#2 Prod#3 Prod#4 

0-500 395 0 269 36 90 

500-1000 365 60 24 140 141 

1000-1500 201 114 5 53 29 

1500-2000 300 132 67 24 77 

In the first period, the main producer is Prod#2, in the second period Prod#3 and 

Prod#4 produce more than 75% of the fluids, and in the third and fourth periods the main 

producer is Prod#1. The alternation of production rates among producers controls the 

shape of the polymer bank by redirecting the flow when a flow channel is being 

developed.  

The distribution of the cumulative oil production is: 17.8% from Prod#1, 36.75% 

from Prod#2, 19.8% from Prod#3 and 25.5% from Prod#4. Thus, 62.25% of the oil came 

from the wells at the right of the injector (Prod#2 and Prod#4), while 37.75% came from 

the wells at the left (Prod#1 and Prod#3). This production scheme is logical because the 

polymer and water banks move toward the left edge of the reservoir as shown in Figure 

6-7 conforming to the high permeability channel next to Inj#1. The optimal control 

setting preferentially distributes fluids away from that flow channel.  

Figure 6-6 confirms the result that the final net present value of the expected 

value of the control vector is higher than the mean of the other runs (J(E{u})>E{J(u)}). 

Hence, the mean of the control vectors from multiple runs is considered as the optimal 



control vector. The optimized control strategy is compared to the strategy where the 

production is distributed evenly among the 4 producers and the injection rate is 

maintained at maximum. The optimized production strategy results in a slightly higher 

net present value after 2000 days of operation. It is important to note that the optimal 

control settings yielded higher NPV with less oil produced (Figure 6-6b), implying that 

the water-oil ratio was maintained low thereby reducing the produced water handling 

cost.  
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Figure 6-6 a) Net present value curves and b) recovery curves for 10 optimization runs 
(gray). Curves in black correspond to the expected value of the 10 
optimization runs. Curves in blue are for an equal production rates schedule. 
Curves in red correspond to a simulation operated at the expected value of 
the optimal rates.  

The total injected volume for the optimal control setting is less than that of the 

maximum injection setting, resulting in a smaller and more compact polymer bank as 

seen in Figure 6-7. Although the permeability contrast makes the reservoir highly 

heterogeneous, the position and extension of high permeability channels favors good 

sweep efficiency because there is no direct connection between the injector and any 

producer. Rather, the high permeability channels provide pathways for polymer to reach 



edges of the reservoir that otherwise would not have been contacted. Nevertheless, it is 

important to consider that the optimal control strategy depends on the geology of the 

reservoir. This issue is probed further in the next chapter and leads to the development of 

a feedback control scheme for maximizing oil recovery. 

  Prod#1 Prod#2

Prod#3 Prod#4

Inj#1

Prod#1 Prod#2

Prod#3 Prod#4

Figure 6-7 Water saturation map at 2000 days for a) optimal control rates and b) evenly 
distributed production rates. Regions with major difference in polymer 
saturations are indicated in the maps.  

6.6 CONCLUSION 

Two examples of production optimization demonstrated that a combination of the 

proxy model, response surface and a gradient based optimization is a feasible alternative 

for finding optimal control strategies. It is clear from the first example that the optimal 

control setting is a strong function of the effective permeability heterogeneity that results 

in communication between the injection and production well pairs. In the five-spot 

injection pattern example, alternation of peak production rates between producers allows 

controlling the growth of polymer bank, resulting in improved economics for the project. 

That example also showed that maximizing recovery does not imply maximizing NPV; 
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higher NPV can be achieved with less oil and water production. The optimization method 

presented in this chapter is essential to implement a feedback control scheme for polymer 

flooding as demonstrated in Chapter 7. 
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Chapter 7: Feedback Control of Polymer Flooding 

7.1 FEEDBACK CONTROL OF POLYMER FLOODING 

The feedback control framework integrates the model selection method presented 

in Chapter 5 and the production optimization algorithm presented in Chapter 6 as 

illustrated in Figure 7-1. The process starts with a large ensemble of reservoir models that 

reflects the prior uncertainty in reservoir description, including all plausible geologic 

scenarios conditioned to the available static data. In the absence of production data all 

prior reservoir models are equally probable, thus the model selection algorithm is applied 

to select a few reservoir models. The optimal control settings are computed over the 

retained subset of reservoir models by the optimization algorithm and then implemented 

in the field through flow control devices that regulate injection and production rates. The 

well responses are monitored with pressure sensors at injectors and producers, and fluid 

samples are analyzed to determine the water cut and polymer concentration at the 

producers. At the same time, a reservoir simulation model (UTCHEM) is constrained to 

the current well controls for simulating the production data during that control period. 

Then, the field production data is compared to the production data simulated with 

UTCHEM. If the mismatch between simulated and actual production data is tolerable, the 

operation continues with the already formulated control settings. On the contrary, if the 

mismatch is more than a tolerance threshold, the observed production data is utilized to 

refine the selected reservoir models, and the control settings are revised with the 

optimization algorithm. In this way the control system is a closed-loop operation that 

continuously updates the reservoir information and revises the production strategy. 
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Figure 7-1 Flowchart of the feedback control system for polymer flooding 

7.2 IMPLEMENTATION OF THE FEEDBACK CONTROL SYSTEM TO THE TWO-WELL 
RESERVOIR EXAMPLE 

7.2.1 Formulation of Optimal Control without Previous Production Data  

The two-well reservoir model described in previous chapters was used to 

demonstrate the feedback control system. The injection and production rates are to be 

optimized during 2000 days of operation such that the final net present value is 

maximized. The total operation time is divided into 8 control periods of 250 days. The 

control vector consists only of the injection rates because the production rates are equal to 

the injection rates at any time. The prior geologic uncertainty is represented by the 

ensemble of 600 reservoir models described back in Chapter 4, Figure 4-3. The four 

reservoir models shown in Figure 7-2 were randomly selected from that ensemble, and 

processed with the optimization algorithm to formulate the optimal injection and 

production rates for the first period. The control schedule for all 4 realizations coincides 

in the first control period when the injection rate is the maximum (200 ft3/day=35.61 
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BTB/day). Therefore, the reservoir was operated at 200 ft3/day during the first 250 days. 

After that, the optimal injection rates vary as shown in Figure 7-3. 

Figure 7-2 Reservoir models randomly selected to be submitted to the optimization 
algorithm 

Figure 7-3 Optimal control rates calculated for the reservoir models randomly selected 
before data integration 

The injection pressure, production pressure and water cut are monitored during 

250 days in the reference reservoir and compared to the production data simulated for the 

4 selected reservoir models. The huge uncertainty in the prior ensemble is reflected in the 

wide variance of well pressure profiles observed in Figure 7-4. Figure 7-4 also shows that 
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the randomly selected models predicted the onset of water production to occur at a much 

later time than the actual measurements.  
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Figure 7-4 Production data for reference reservoir and 4 randomly selected realizations 
during the initial control period 

7.2.2 First Updating and Optimization of the Second Period 

Subsequently, the production response observed in the “true” reservoir over the 

first 250 days of injection, was used to select the posterior set using the distance-based 

model selection algorithm described in Section 5.4. Only four reservoir models from the 

reduced suite shown in Figure 5-19 are used to determine in the optimization in order to 

save time. These for reservoir models have in common a high connectivity streak 



between injector and producer and the same spatial correlation.  These reservoir models 

exhibit similar injector pressure, producer pressure and water production profiles as the 

observations as shown in Figure 7-5. The selected reservoir models captured the onset of 

water production but the evolution of water cut is slightly overestimated. 
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Figure 7-5 Production data for the “true” reservoir and 4 reservoir models from the 
reduced set at the end of the model selection process 



Polymer zone

Transition

Water

Figure 7-6. Assessment of water saturation profile in the selected reservoir models. The 
figure on the left shows the average water saturation over the 4 posterior 
reservoir models retained. The figure on the right shows the variances over 
the same set of reservoir models. 

The dynamic state of the reservoir at the end of the first period is assessed through 

the simulation results of the four selected reservoir models. As evidenced from the early 

water production, the water bank already has reached the producer at that time. The 

pathway between the wells restricts the areal extension of the plume as seen in Figure 7-6 

(left). The area with more uncertainty (higher variance) is the transition zone between 

polymer and water banks as can be seen in Figure 7-6 (right).  

The production/injection strategy is then revised with the new set of reservoir 

models. The optimization algorithm looks to optimize rates only after 250 days. Thus, the 

number of control variables is 7 for the second step. Figure 7-7 shows that the optimal 

injection rate reduces gradually as the reservoir models predict high water production due 

to the high connectivity between wells. The optimization results are consistent with the 

objective of delaying water production as much as possible while producing oil to 

generate revenue. Comparison of Figure 7-3 and Figure 7-7 indicates that the variability 

in the optimal control settings has also been reduced. 
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Figure 7-7 Optimal control settings for the reduced set of reservoir models after using 
production data for 250 days. The optimization starts from 250 days to 2000 
days 

If we have four realizations with similar production data but different control 

settings, what optimum control rate should be used for the next period? Figure 7-8 

compares the NPV profile corresponding to the optimum control setting for each of the 4 

reservoir posterior models against the profile obtained corresponding to the effective 

optimum control expressed as the average of the control strategy for the 4 realizations. 

Judging by the closeness of those two NPV profiles, it can be concluded that the expected 

value of the optimal control yields final NPV that is comparable to the optimal control for 

each of the four realizations as shown in Figure 7-8. Hence, the feedback control for the 

second period is calculated as in Equation 7.1. 
4

*

1

1
4 i

i=

= ∑u u          (7.1) 

The effective or average control can also be calculated as a weighted sum of the control 

for each realization with the weight identified proportional to the economic gain or loss 

corresponding to over or under production of fluids. 
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Figure 7-8  Net present value profile corresponding to the optimal control vector of each 
of the four selected realizations (blue) compared to the NPV profile 
corresponding to the expected value of the control vector (red) calculated 
using Equation 7.1. 

Then, the injection and production rates for the second control period are 

implemented to control the reference reservoir from 250 to 500 days, and the well 

responses are further monitored. The production data for the four selected realizations is 

further simulated using UTCHEM corresponding to the updated control strategy and the 

simulated response is compared to the monitored reservoir response during the second 

period. Figure 7-9 shows that the well pressures continued along the same trend without 

diverging significantly from the reference, especially at the producer. But the 
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overstimation of the water cut persists and consequently the mismatch in cumulative oil 

production gets progressively worse. Thus, the selection of models needs to be revised to 

incorporate the new production data. 
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Figure 7-9  Production response of the reference reservoir compared to the simulated 
response for the 4 reservoir models over the first two control periods (500 
days) 

7.2.3 Second Updating of Model Selection 

Before refining the suite of posterior models further, the production data is 

analyzed to explain the behavior of water production as the result of a physical process in 

the reservoir. Note that the permeability channel in the selected realizations is straight. 



Once water breaks into the producer through a high permeability channel in the selected 

reservoir models, water production continues increasing because the flow continues 

mainly through the swept channel. In contrast in the reference reservoir, even though 

water breaks through approximately at the same time, the water production is less than 

the water production in the selected realizations. This indicates that water has found an 

alternate flow path such that not all water injected goes through the main path.  

This particular behavior is explained by observing Figure 7-10, which shows the 

saturation front in the reference reservoir at the end of 500 days. The displacement front 

branches out along the path of the channel diverting the flow to a secondary channel. 

Hence, part of the injected fluids displaces oil in that region without being produced until 

late time. 

Figure 7-10 Water saturation in the reference model after 500 days of operation 

However, in reality the saturation picture in the reference (or “true”) reservoir is 

not available to us. A geologic description with high permeability channels branching out 

is not present in the initial ensemble. Note that the lateral spread of the injected water 

occurs at a location away from the wells. Consequently, there is no possibility of 

 128



depicting the branching characteristic of the channel based only on the well data. It is 

necessary that the analog reservoir models from which statistics to develop the prior suite 

of models be rich enough to provide a finite probability for such branching to occur. 

Therefore, the ensemble of reservoir models needs to be augmented to incorporate a 

wider geological description. To incorporate more plausible geologic scenarios, 

realizations that replicate the spatial template of the training image shown in Figure 7-11 

were added to the augmented ensemble for a new model selection process. The model 

selection method allows expanding the representation of prior uncertainty at any time 

during the selection process if other geologic models need to be tested. 

Figure 7-11 Fifty reservoir models in the augmented ensemble honor the spatial statistics 
of the above training image. 

The augmented ensemble should also preserve the main characteristics of the 

reduced set from the previous step. The challenge now is how to generate a new suite of 

realizations with similar characteristics in well connectivity as the already reduced set. 

We approach this problem in two ways. First, the reduced set is analyzed to compute the 

proportion of each geologic description of the geology, and this proportion is maintained 
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in the augmented ensemble. Second, the probability of rock type at each grid node is 

quantified by aggregating the models in the selected set thus far. These location 

dependent probabilities are introduced as a secondary piece of information for the 

generation of new realizations using sequential indicator simulation sisim and single 

normal equation simulation snesim. As a result, the new ensemble of realizations 

accounts for the correction in local probability of the rock type indicator. Figure 7-12 

shows that in the final suite there is high probability of encountering high permeability 

channels between wells, but that probability reduces away from the wells. 

Figure 7-12  Map of probability of having a high permeability rock type from the 
selection of models at 250 days 

Figure 7-13 shows that the introduction of the updated probability of the geologic 

scenarios and the correction in local probability yields a reduction in the posterior 

uncertainty in production data visualized over the models in the final selected set. These 

results are after doing the model selection using the response over the first 250 day 

production period. The distribution of the injection pressure profile of the posterior 

ensemble is not centered on the reference response, while the producer pressure and 
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water cut responses are. The uncertainty in water cut predictions is still large, but most of 

the reservoir models with late breakthrough are not present in the posterior set. 
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Figure 7-13 Comparison of production data of prior and posterior ensembles of reservoir 
models compared to the reference. These results were obtained after the 
prior ensemble was augmented so as to include additional models with 
channels exhibiting complex connectivity. 

The model selection process is repeated using production data up to 500 days. The 

posterior uncertainty in the production data yielded by the reservoir models from the final 

set is tighter and more centered on the reference data set as shown in Figure 7-14. A few 



outliers with regard to the producer pressure remain in the final suite. Also, it is noticed 

that it is difficult to reduce the wide spread in the water cut profiles.  
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Figure 7-14 Production data for the final set of reservoir models 

The four reservoir models with the best match in production data (Figure 7-15) 

among the final set were selected to reevaluate the control scheme for the remaining 1500 

days. Note that the selected realizations have high well connectivity as introduced 

through the probability map shown in Figure 7-12, but the connection between wells is 

through channels with a sinusoidal and branched shape as reproduced from the training 



image shown in Figure 7-11. The selected realizations resemble better the underlying 

geology of the reference reservoir (Figure 5-20).  

 

Figure 7-15 Four reservoir models selected from the final set after incorporating 
production data of 500 days 

7.2.4 Feedback Control with Updated Selection of Models 

The next step is to reevaluate the optimal control rates using the new selection of 

reservoir models. Again, the expected value of the control vector for the third period is 

used to control the injection and production rates in the reference reservoir, and 

production is monitored for the subsequent 250 days.  
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Next production period

Figure 7-16 Optimal control settings for the selected four realizations after model 
selection using data gathered over 500 days. 

Figure 7-17 shows that the production data from the four selected reservoir 

models continue being consistent with the observations from the reference. Although the 

residual uncertainty in water production remains, those predictions do not deviate 

significantly from the reference. As a result, no additional revisions to the control 

strategy are required after the two updates. 
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Figure 7-17 Production data after 8 control periods (2000 days) for the selected reservoir 
models and the reference. 

The NPV obtained after feedback control and the NPV obtained in Chapter 6 

using the reference reservoir model (called optimal NPV) are close as shown in Table 7-

1. In order to quantify the value of the information, the NPV for the feedback control case 

is compared to the NPV obtained with the optimal control settings of a reservoir model 

chosen without updating the prior uncertainty (initial ensemble). Using the optimal NPV 

as a reference, the feedback control system results in a loss of 0.78 %, whereas the 

optimal control settings for a random reservoir model results in a loss of 7.9% as 

presented in Table 7-1. 



 136

Table 7-1 Results of control strategies for a random model, feedback control system and 
the reference reservoir   

Control Settings Net present value ($) Recovery Factor 

Random model 132660 0.2981 

Feedback control 142510 0.2466 

Reference Reservoir 143690 0.2431 

It is interesting to note that the prior models are more optimistic about the 

reservoir recovery factor than the posterior suite. In addition, the feedback control system 

returns a higher NPV with less oil and water produced as can be inferred from Table 7-1, 

leaving more oil for future production. This example demonstrates the value of 

implementing a system for continuous monitoring and control of the operation. 

7.3 IMPLEMENTATION OF THE FEEDBACK CONTROL SYSTEM TO THE FIVE-WELL 
RESERVOIR EXAMPLE  

The feedback control framework is now demonstrated in the five-well reservoir. 

At this point the reservoir has been in operation for 250 days and the production data of 

that period have been used for the model selection as shown in Chapter 5, Section 5.5. 

7.3.1 Optimizing the Second Period 

Now, the selected reservoir models in Section 5.5 are used to reevaluate the 

production strategy for the next control period using the production optimization 

algorithm. The number of control variables reduces to 7x4: 7 control periods of 250 days 

are remaining until the final time (2000 days), and 4 for wells controlled independently, 

the fifth well (Prod#4) is constrained by the material balance. Figure 7-18 shows the 

optimal control settings computed for the current selection of reservoir models.  
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Figure 7-18 Optimal control settings for 4 realizations selected after updating the model 
selection with production data of 250 days. Control settings of Prod#4 are 
deduced from equilibrium between injection and production rates. 

Table 7-2 shows the expected value of the control rates for the rest of the 

operation. Then, the reservoir is operated during the next production period (250-500 

days) at the rates indicated in Table 7-2. The optimal injection rate is reduced over time 

to control the excessive water production. The variability of the optimal control rates is 

high because still there is high uncertainty in the reservoir models as the selection 

includes models exhibiting wide variability in connectivity characteristics. 
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Table 7-2 Expected value of optimal control settings for the five-well reservoir, starting 
at 250 days 

Time (days) Inj#1 

(ft3/day) 

Prod#1 

(ft3/day) 

Prod#2 

(ft3/day) 

Prod#3 

(ft3/day) 

Prod#4 

(ft3/day) 

250-500 400 76 78 120 126 

500-750 267 75 94 32 66 

750-1000 305 77 46 94 89 

1000-1250 191 28 67 33 64 

1250-1500 148 38 53 37 20 

1500-1750 202 50 34 44 75 

1750-2000 174 31 82 19 42 

After adjusting the injection and production rates corresponding to the expected 

value of the optimal control rates, and monitoring well pressure and water cut for the next 

control period (250-500 days), it is observed that water production has initiated at all 

wells (Figure 7-19). Water breaks first into Prod#2 (270 days=0.0938 PV), then into 

Prod#1 and Prod#4 (290 days=0.1 PV), finally into Prod#3 (330 days=0.108 PV). The 

selected models continue showing the same trend in pressure as the reference, but they 

fail to reproduce the water breakthrough in general. This implies that the model selection 

needs to be updated again to correct this mismatch. It is important to have a reliable water 

production forecast for the optimization of well controls. Furthermore, water 

breakthrough brings key information about well connectivity. The approximately equal 

water breakthrough suggests that there is no a preferential communication between the 

injector and the producers. 
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Reference Selected Reservoir Models

Figure 7-19 Production data for reference and set of reservoir models selected after the 
first control period (250 days) 

7.3.2 Updating the Model Selection after Water Breakthrough 

After observing the production data for 500 days, the objective becomes to refine 

the selection of models such that the water production is better reproduced. It was shown 

in Chapter 4 that the correlation between the actual breakthrough time and the 

breakthrough from the proxy model is high (ρ=0.89). Then, the strategy is to include in 

the new ensemble only reservoir models whose breakthrough from the proxy model 



corresponds to the breakthrough expected for the reference according to the observation. 

A linear regression is performed with the available data shown in Figure 4-6 (Eq 7.2.) 
50.25 10 0.059BT UTCHEM BT PROXYT T−

− −= × × +      (7.2) 

Table 7-3 – Criteria used to screen reservoir models for the new ensemble 

 Prod#1 Prod#2 Prod#3 Prod#4 

Actual breakthrough 0.1007 0.0938 0.1146 0.1007 

Min TBT-proxy 3250 2977 3801 3250 

TBT-proxy (Eq. 7.2) 3750 3477 4301 3750 

Max TBT-proxy 4250 3977 4801 4250 

A tolerance range is defined (Table 7-3) around the estimated proxy response in 

order to define a threshold for accepting or rejecting a reservoir model into the new 

ensemble. Subsequently, a large number of realizations are generated using sisim and 

snesim using the probability of permeability around the wells as secondary data. This 

large number of realization is processed with the proxy model in order to screen them out 

criteria set in Table 7-3. As a result, the new ensemble is conditioned to the statistics of 

the breakthrough in the proxy model, and the probability of permeability around wells. 

The model selection process is repeated on the new ensemble using the water cut 

and pressure profiles as production data simultaneously. Figure 7-19 shows the sequence 

of the selection process along with the water cut production evaluated for one of the well 

on each cluster. The figure shows the projection on the space of the top 3 eigenvectors 

(for visualization purposes), but the cluster analysis actually proceeded in the 5-

dimensional space. For that reason, some of the clusters do not show a planar separation 

and look intermixed. The water production profiles can be discriminated according to 

each cluster.  
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Figure 7-20 Illustration of the model selection process. Projection of reservoir models on 
top-3 eigenvectors (right) and water cut evaluated for reservoir models 
selected from the clusters in the right. Production data and clusters are color 
coded. 
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At the end of the selection process at this time, the field water production and 

thereby the oil recovered is well covered by the posterior uncertainty as shown in Figure 

7-21. In addition, the production data for the final set was evaluated and compared to the 

reference as shown in Figure 7-22. A compromise in accuracy is made to conciliate 

production data in all wells simultaneously. Some reservoir models seem to overlap with 

members of another cluster, but overall the separation between the groups of models is 

acceptable  

  

Figure 7-21 Field production data from selected models after 500 days of production is 
compared to the monitored water cut and cumulative oil production in the 
true reservoir 
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Figure 7-22 Production data simulated by the selected reservoir models selected (blue) is 
compared to the pressure and water cut observed from the reference (red) 
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The six reservoir models shown in Figure 7-23 are the closest to the center of the 

cluster and are presented as representative samples from the final set. It can be observed 

that there is no a direct connection between the injector and any of the producers. There 

is still uncertainty in the geologic scenario, but the sinusoidal training image appears 

more frequently than any other.  

   

 

Figure 7-23 Six reservoir models from the selected set after updating with 500 days of 
production data 

The first four reservoir models shown in Figure 7-23 were used to determine the 

new optimal control settings to continue the polymer flooding operation. Table 7-4 shows 

the expected value of the injection and production rates used in the next control periods. 
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Table 7-4 Expected value of optimal control settings for the five-well reservoir, starting 
at 500 days 

Time (days) Inj#1 

(ft3/day) 

Prod#1 

(ft3/day) 

Prod#2 

(ft3/day) 

Prod#3 

(ft3/day) 

Prod#4 

(ft3/day) 

500-750 322 75 35 111 101 

750-1000 303 76 71 53 103 

1000-1250 179 16 47 65 51 

1250-1500 140 28 58 15 39 

1500-1750 104 23 26 28 27 

1750-2000 160 13 62 25 60 

The production responses continue being monitored for the rest of the operation 

until completing 2000 days. The selected reservoir models exhibited production 

responses consistent with the observations as can be seen in Figure 7-24; thus, no further 

updates are performed. Finally, the net present value curve obtained with the feedback 

control scheme is compared to the NPV that would have been obtained if the all producer 

were operated at constant rate equal to 100 ft3/day (17.8 STB/day) in Figure 7-26. The 

difference in final NPV between these schemes is 9%. Therefore, the value of 

implementing this closed-loop control framework is quantifiable by the economic benefit. 

 

 



 

 

 

Figure 7-24 Production data simulated by the selected reservoir models selected (blue) is 
compared to the pressure and water cut observed from the reference (red) 
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Figure 7-25 Field water cut and cumulative oil produced for selected reservoir models 
(blue) and reference (red)    

Figure 7-26 Comparison of net present value curves obtained producing 100 ft3/day at all 
producers and the optimal control settings  

7.4 CONCLUSION 

The integration of the methods for reservoir model selection and optimization 

presented in Chapter 5 and 6 completes the feedback control framework for polymer 

flooding. The control system is demonstrated with the two-well example introduced in 

Chapter 5. This example indicates that well pressures and water cut profiles at the early 
 147
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stage of the flooding process carry valuable information to refine the prior uncertainty in 

geologic heterogeneity. The reservoir models in the final selection exhibit similar 

heterogeneity between injector and producer, allowing a better assessment of the 

reservoir geology. As a result, the production forecasts from the selected reservoir models 

are less uncertain and in closer agreement with the field data. Consequently, the optimal 

control settings are also less uncertain. The value of the feedback control system is 

readily quantifiable by looking at the improvement in the economics of the project. 
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Chapter 8: Conclusions and Future Work 

8.1 SUMMARY AND GENERAL CONCLUSIONS 

A feedback control system for polymer flooding has been developed to optimize 

well operations under uncertainty in reservoir modeling. The general conclusions of this 

research work are organized according to the three main objectives laid down at the 

beginning of this research project. 

• To characterize uncertainty in reservoir modeling and forecasting considering 

multiple geologic scenarios. 

To achieve the first objective, the uncertainty in reservoir geology is represented 

by an ensemble of reservoir models. This uncertainty representation is mapped into a 

metric space equipped with a measure of dissimilarity between reservoir models that 

accounts for inter-well connectivity. The uncertainty map facilitates the assessment of 

uncertainty in past and future production data using a small number of flow simulations. 

An analysis of the uncertainty map concluded that multiple geologic scenarios can result 

in similar characteristics of well connectivity, and thereby similar sets of production data. 

Hence, limiting a history matching or production forecasting process to a single geologic 

description is a naïve mistake. 

• To update the prior uncertainty using past production data such that the 

uncertainty in production forecasts is refined. 

The second objective was achieved based on the hypothesis that similar well 

connectivity characteristics result in similar production data in polymer flooding. This 

hypothesis is specific to the reservoir process under study. Since the distance in the 

uncertainty map measures the dissimilarity in well connectivity, groups of reservoir 

models distinguished on the basis of distance to each other can be employed to assess the 
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uncertainty in production forecasts. Furthermore, a comparison of simulated production 

data to the actual reservoir production history allows selecting a set of reservoir models 

with more accurate production forecasts. As a result, the posterior uncertainty in 

production forecasting is quantified. The entire methodology leads to a shift in the 

paradigm of history matching from perturbing a single reservoir model to selecting a set 

of reservoir models that represent the posterior uncertainty in geology and future 

production.   

• To optimize well operating conditions based on the updated production forecasts 

in order to maximize the economic profit. 

This challenging optimization problem was approached by considering the 

reservoir as a system that responds according to the input of some control variables. A 

response surface can be constructed upon evaluating the responses of the reservoir to 

different control inputs. A random-walk-based proxy model for polymer flooding is a 

major contribution of this research work because it yields a good estimation of recovery 

and captures the impact of reservoir heterogeneity on flow performance. This proxy 

model is utilized to construct the response surface, and a gradient-based procedure is 

implemented to solve the now simple optimization problem. The entire solution of the 

optimization problem is effective provided that the uncertainty in geology has been taken 

into consideration. It is impractical to attempt solving this optimization problem with a 

deterministic approach by using the classical method of optimal control theory. The 

added value of this feedback control framework is readily quantifiable by looking at the 

improved economic profit. 
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8.2 SPECIFIC CONCLUSIONS BASED ON THE RESEARCH 

• Well pressure is well related to the permeability of the grid-blocks near the wells 

where most of the flow of water and polymer particles occurs. However, this 

indirect information is only local and it is difficult to extrapolate it to infer large 

scale heterogeneity features. On the other hand, the water breakthrough is very 

important to identify inter-well connectivity characteristics that have a great 

impact on the evolution of water production, which directly affects the economic 

performance of the project. For that reason, the water production must be 

carefully monitored and it is recommended to update the models of the reservoir 

immediately after breakthrough. 

• After water breakthrough, even though water production has commenced, there is 

a chance to control its production by regulating the production rates. In fact, after 

water breakthrough the operation can be continued at profitable rates before the 

polymer bank arrives to the producers. 

• After updating the reservoir models with production data that includes the water 

breakthrough and early water production, the production predictions are less 

uncertain and more consistent with the observations. In addition, the uncertainty 

in reservoir heterogeneity is reduced to a level where the main characteristics of 

the reservoir can be detected. 

• The optimization scheme of dividing the total operational time into control 

periods results in improved net present value. This optimization scheme is 

proactive in the sense that the control settings are based on production forecasts; a 

reactive control scheme would adjust the rates as a reaction to high water 

production. Reliable production forecasts for updated reservoir models permit 

delaying water and polymer production while generating revenue from oil 
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production. A constant rate scheme is uneconomic after water production 

commences.  

• Response surfaces are able to capture the sensitivity of the net present value with 

respect to the injection and production rates provided a good transfer function like 

the proxy model for polymer flooding developed in this research. Therefore, 

response surface equations are a surrogate to the full flow equations used by 

reservoir simulators. Hence, production optimization problems in enhanced oil 

recovery can be solved using response surface equations and well-established 

optimization algorithms either gradient-based or stochastic with considerably less 

effort than the rigorous optimal control theory.  

8.3 RECOMMENDATIONS FOR FUTURE WORK 

The recommendations for future work focus on foreseeable applications of the 

model selection method developed in this research work. 

• The representation of uncertainty in a metric space is valid to any source 

of uncertainty and any physical model, provided that the measure of 

dissimilarity chosen (or developed) is correlated to the variable of interest. 

For example, a geomechanical model with uncertainty in the distribution 

of natural fractures can be assessed by taking multiple realizations of 

fracture networks and establishing a measure of dissimilarity related to the 

observable data.  

• Additional control variables for polymer flooding that deserve to be 

investigated are: polymer viscosity, polymer concentration, slug size, 

placement of new wells. It is worthwhile to investigate the effect of 

uncertainty in remaining oil saturation after a secondary recovery to 
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decide the placement of new wells. However, it is to be noted that addition 

of new wells or perforation intervals can cause the resultant response 

surface to be non-smooth, rendering the optimization procedure 

challenging. 

• In reservoir management and decision theory, the probability distribution 

of production forecasts is often required to make decisions about well 

placement, production facility sizing or project sanctioning. The 

uncertainty map constructed by the distance-based method, can be readily 

adapted to any decision making process. 

• The proxy model developed for polymer flooding can be easily 

generalized to waterflooding or other common displacement processes. In 

fact, it would be interesting to study the evolution from water flooding to 

tertiary recovery processes, where the effective permeabilities at the 

tertiary recovery process have been altered by water flooding.  

• In general, the random-walk algorithm is a fast transfer function analog 

that can be used as an alternative to expensive and time-consuming fine-

scale computations, provided that the physics of the process are introduced 

into the probability rules for particle propagation.  

• The optimization algorithm can be improved for accuracy by evaluating 

the objective function for the initial construction of the response surface, 

and once the region of optimal conditions has been identified, perform the 

functions evaluations using the reservoir simulator. In that way, the proxy 

model is used to guide the search for optimal conditions, the accurate 

solution is calculated using a full-physics model. 
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• With regards to optimization, it is worthwhile to introduce the uncertainty 

in reservoir heterogeneity within the optimization procedure itself. A 

possible avenue is to compute the distribution of the velocity vectors using 

the reduced set of models, and guide the random particles by sampling that 

distribution. Since the velocity vectors are a direct function of local 

reservoir heterogeneity, the uncertainty in reservoir heterogeneity would 

be introduced inside the random walk algorithm. 

• Sensitivity studies about the quality of model selection with respect to the 

production data used to update the selection process would contribute to 

make the selection process more robust and less sensitive to possibly non-

meaningful data. Furthermore, it may be necessary to investigate other 

control variables in polymer flooding like polymer concentration grading 

or slug size, which can potentially impact the economics of the process.  

• The frequency of updating and controlling the reservoir is another topic 

that deserves further investigation. The ability to respond on time and 

maintain the controllability of the system depends on the frequency of the 

control periods. This frequency can be adapted to capture key episodes 

like water breakthrough while moved at fast pace when no changes in 

production data occur. 
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Appendix 1 – UTCHEM Deck Files for Cases Studied 

A1-1. TWO-WELL RESERVOIR MODEL 
CC************************************************************** 
CC*                                                            * 
CC*     BRIEF DESCRIPTION OF DATA SE : UTCHEM (VERSION 9.9)    * 
CC*                                                            * 
CC************************************************************** 
CC*                                                            * 
CC*                                                            * 
CC*                                                            * 
CC*   LENGTH (FT):              PROCESS :                      * 
CC*   THICKNESS (FT):           INJ RATE (FT3/DAY) :           * 
CC*   WIDTH (FT):               COORDINATES : CARTESIAN        * 
CC*   POROSITY :                                               * 
CC*   GRID BLOCKS :                                            * 
CC*   DATE :                                                   * 
CC*                                                            * 
CC************************************************************** 
CC*                                                            * 
CC************************************************************** 
CC*                                                            * 
CC*   RESERVOIR DESCRIPTION                                    * 
CC*                                                            * 
CC************************************************************** 
CC 
CC Run Number 
*----RUNNO 
REF_40 
CC 
CC Title and run description 
*----title(i) 
POLYMER FLOODING 
HETEROGENEOUS CASE 
HORIZONTAL DISPLACEMENT 
C 
CC SIMULATION FLAGS 
*---- IMODE     IMES    IDISCP  ICWM    ICAP    IREACT  IBIO    ICOORD  ITREAC  ITC     
IGAS    IENG 
 1 2 3 0 0 0 0 1 0 0 0
 0 0 0 
CC 
CC no. of gridblocks,flag specifies constant or variable grid size,unit 
*---- NX    NY    NZ  IDXYZ  IUNIT 
 40 40 1 0 0 
CC 
CC constant grid block size in x,y,and z 
*---- dx1           dy1           dz1 
 20.00 20.00 8.00 
CC 
CC total no. of components,no. of tracers,no. of gel components 
*----n    no    ntw    nta    ngc    ng    noth 
 6 0 0 0 0 0 0 
CC 
CC Name of the components 
*----spname(i) for i=1 to n 
Water 
Oil 
Surf 
Polymer 
Chloride 
Sodium 
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CC 
CC flag indicating if the component is included in calculations or not 
*----icf(kc) for kc=1,n 
1 1 0 1 1 1  
CC 
CC************************************************************** 
CC*                                                            * 
CC*   OUTPUT OPTIONS                                           * 
CC*                                                            * 
CC************************************************************** 
CC 
CC 
CC FLAG TO WRITE TO UNIT 3,FLAG FOR PV OR DAYS TO PRINT OR TO STOP THE RUN 
*---- ICUMTM  ISTOP  IOUTGMS 
 0 0 0 
CC 
CC FLAG INDICATING IF THE PROFILE OF KCTH COMPONENT SHOULD BE WRITTEN 
*---- IPRFLG(KC),KC=1,N 
1 1 0 1 1 1  
CC 
CC FLAG FOR PRES.,SAT.,TOTAL CONC.,TRACER CONC.,CAP.,GEL, ALKALINE PROFILES 
*---- IPPRES IPSAT IPCTOT IPBIO IPCAP IPGEL IPALK IPTEMP IPOBS 
 1 1 1 0 0 0 0 0 0 
CC 
CC FLAG FOR WRITING SEVERAL PROPERTIES TO UNIT 4 (Prof) 
*---- ICKL IVIS IPER ICNM ICSE IHYSTP IFOAMP INONEQ 
 1 1 1 0 1 0 0 0 
CC 
CC FLAG  for variables to PROF output file 
*---- IADS IVEL IRKF IPHSE 
 1 1 1 0 
CC 
CC************************************************************** 
CC*                                                            * 
CC*   RESERVOIR PROPERTIES                                     * 
CC*                                                            * 
CC************************************************************** 
CC 
CC 
CC MAX. SIMULATION TIME ( DAYS) 
*---- TMAX  
6000.00 
CC 
CC ROCK COMPRESSIBILITY (1/PSI), STAND. PRESSURE(PSIA) 
*---- COMPR                PSTAND 
0.000000E+00 1000.000000 
CC 
CC FLAGS INDICATING CONSTANT OR VARIABLE POROSITY, X,Y,AND Z PERMEABILITY 
*---- IPOR1  IPERMX IPERMY IPERMZ IMOD ITRANZ INTG 
 0 2 3 3 0 0 0 
CC 
CC CONSTANT POROSITY 
*---- PORC 
0.10 
CC 
CC VARIABLE PERMX 
*---- PERMX(nx*ny*nz) 
1148.22 
… 
30.57 
CC 
CC Y DIRECTION PERMEABILITY IS DEPENDENT ON X DIRECTION PERMEABILITY 
*---- CONSTANT PERMEABILITY MULTIPLIER FOR Y DIRECTION PERMEABILITY 
1.00 
CC 
Z DIRECTION PERMEABILITY IS DEPENDENT ON X DIRECTION PERMEABILITY 
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*---- CONSTANT PERMEABILITY MULTIPLIER FOR Z DIRECTION PERMEABILITY 
0.10 
CC 
CC FLAG FOR CONSTANT OR VARIABLE DEPTH, PRESSURE, WATER SATURATION,INITIAL AQUEOUS PHASE 
COMPOSITIONS 
*----IDEPTH  IPRESS  ISWI  ICWI 
 0 0 0 0 
CC 
CC CONSTANT DEPTH (FT) 
*---- D111 
3500.00 
CC 
CC CONSTANT PRESSURE (PSIA)  
*---- PRESS1 
2500.00 
CC 
CC CONSTANT INITIAL WATER SATURATION 
*---- SWIC 
0.20 
CC 
CC INITIAL CONCENTRATION OF SPECIES IN THE AQUEOUS PHASE 
*---- CWI(KW) FOR KW=1,N(8+NO) 
1.00 
CC 
CC INITIAL CONCENTRATION OF SPECIES IN THE AQUEOUS PHASE 
*---- CWI(KW) FOR KW=1,N(8+NO) 
0.00 
CC 
CC INITIAL CONCENTRATION OF SPECIES IN THE AQUEOUS PHASE 
*---- CWI(KW) FOR KW=1,N(8+NO) 
0.00 
CC 
CC INITIAL CONCENTRATION OF SPECIES IN THE AQUEOUS PHASE 
*---- CWI(KW) FOR KW=1,N(8+NO) 
0.00 
CC 
CC INITIAL CONCENTRATION OF SPECIES IN THE AQUEOUS PHASE 
*---- CWI(KW) FOR KW=1,N(8+NO) 
0.00 
CC 
CC************************************************************** 
CC*                                                            * 
CC*   PHYSICAL PROPERTY DATA                                   * 
CC*                                                            * 
CC************************************************************** 
CC 
CC 
CC OIL CONC. AT PLAIT POINT FOR TYPE II(+)AND TYPE II(-), CMC 
*---- c2plc  c2prc   epsme   ihand  
0.000000 1.000000 0.000600 0 
CC 
CC flag indicating type of phase behavior parameters 
*---- ifghbn   
 0 
CC SLOPE AND INTERCEPT OF BINODAL CURVE AT ZERO, OPT., AND 2XOPT SALINITY 
CC FOR ALCOHOL 1 
*---- hbns70   hbnc70   hbns71   hbnc71   hbns72   hbnc72  
0.000000 0.010000 0.000000 0.016000 0.000000 0.100000 
CC SLOPE AND INTERCEPT OF BINODAL CURVE AT ZERO, OPT., AND 2XOPT SALINITY 
CC FOR ALCOHOL 2 
*---- hbns80   hbnc80   hbns81   hbnc81   hbns82   hbnc82  
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
CC 
CC LOWER AND UPPER EFFECTIVE SALINITY FOR ALCOHOL 1 AND ALCOHOL 2 
*---- csel7   cseu7   csel8   cseu8 
0.550000 0.916000 0.000000 0.000000 
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CC 
CC THE CSE SLOPE PARAMETER FOR CALCIUM AND ALCOHOL 1 AND ALCOHOL 2 
*---- beta6    beta7    beta8  
0.800000 -2.000000 0.000000 
CC 
CC FLAG FOR ALCOHOL PART. MODEL AND PARTITION COEFFICIENTS 
*---- ialc   opsk7o   opsk7s   opsk8o   opsk8s  
0 0.000000 0.000000 0.000000 0.000000 
CC 
CC NO. OF ITERATIONS, AND TOLERANCE 
*---- nalmax     epsalc  
20.000000 0.000100 
CC 
CC ALCOHOL 1 PARTITIONING PARAMETERS IF IALC=1 
*---- akwc7     akws7    akm7     ak7      pt7  
4.671000 1.790000 48.000000 35.310000 0.222000 
CC 
CC ALCOHOL 1 PARTITIONING PARAMETERS IF IALC=2 
*---- akwc8     akws8    akm8     ak8      pt8  
0.000000 0.000000 0.000000 0.000000 0.000000 
CC 
CC ift model flag 
*----  ift  
 0 
CC 
CC INTERFACIAL TENSION PARAMETERS 
*----  g11     g12     g13     g21     g22      g23  
 13.000000 -14.800000 0.007000 13.000000 -14.500000
 0.010000 
CC 
CC LOG10 OF OIL/WATER INTERFACIAL TENSION  
*---- xiftw 
 1.300000 
CC 
CC ORGANIC MASS TRANSFER FLAG 
*---- imass icor 
 0 0 
CC 
CC CAPILLARY DESATURATION PARAMETERS FOR PHASE 1, 2, AND 3 
*---- itrap      t11      t22      t33 
 1 0.000000 0.000000 364.200000 
CC 
CC  FLAG FOR RELATIVE PERMEABILITY AND CAPILLARY PRESSURE MODEL 
*---- iperm irtype 
 0 0 
CC 
CC FLAG FOR CONSTANT OR VARIABLE REL. PERM. PARAMETERS 
*---- isrw    iprw    iew  
 0 0 0 
CC 
CC CONSTANT RES. SATURATION OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 
*---- s1rwc    s2rwc     s3rwc  
 0.200000 0.200000 0.370000 
CC 
CC ENDPOINT REL. PERM. OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 
*---- p1rwc   p2rwc   p3rwc 
 0.200000 1.000000 0.200000 
CC 
CONSTANT REL. PERM. EXPONENT OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 
*---- e1wc     e2wc     e3wc  
 1.500000 2.000000 1.500000 
CC 
CC RES. SATURATION OF PHASES 1,2,AND 3 AT HIGH CAPILLARY NO. 
*---- s1rc   s2rc   s3rc 
 0.000000 0.000000 0.000000 
CC 
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CC ENDPOINT REL. PERM. OF PHASES 1,2,AND 3 AT HIGH CAPILLARY NO. 
*---- p1rc   p2rc   p3rc 
 1.000000 1.000000 0.000000 
CC 
CC REL. PERM. EXPONENT OF PHASES 1,2,AND 3 AT HIGH CAPILLARY NO. 
*---- e13c   e23c   e31c 
 1.500000 2.000000 0.000000 
CC 
CC WATER AND OIL VISCOSITY , RESERVOIR TEMPERATURE 
*---- VIS1    VIS2   TSTAND 
 0.730000 40.000000 0.000000 
CC 
CC COMPOSITIONAL PHASE VISCOSITY PARAMETERS 
*----   ALPHAV1   ALPHAV2   ALPHAV3   ALPHAV4  ALPHAV5 
 2.000000 2.000000 0.000000 0.900000 0.700000 
CC 
CC PARAMETERS TO CALCULATE POLYMER VISCOSITY AT ZERO SHEAR RATE 
*---- AP1      AP2      AP3 
 35.140000 1899.000000 0.000000 
CC 
CC PARAMETER TO COMPUTE CSEP,MIN. CSEP, AND SLOPE OF LOG VIS. VS. LOG CSEP  
*---- BETAP    CSE1     SSLOPE 
 20.000000 0.010000 -0.300000 
CC 
CC PARAMETER FOR SHEAR RATE DEPENDENCE OF POLYMER VISCOSITY 
*---- GAMMAC   GAMHF   POWN IPMOD 
 130.000000 280.000000 2.200000 1 
CC 
CC FLAG FOR POLYMER PARTITIONING, PERM. REDUCTION PARAMETERS 
*---- IPOLYM    EPHI3    EPHI4    BRK     CRK RKCUT 
 0 1.000000 0.850000 4.000000 0.150000 10.000000 
CC 
CC SPECIFIC WEIGHT FOR COMPONENTS 1,2,3,7,8 ,Coeffient of oil and GRAVITY FLAG 
*---- DEN1     DEN2    DEN23     DEN3    DEN7    DEN8    IDEN  
 0.433530 0.385840 0.368000 0.420000 0.346000
 0.000000 2 
CC 
CC FLAG FOR CHOICE OF UNITS ( 0:BOTTOMHOLE CONDITION , 1: STOCK TANK) 
*----- ISTB 
 0 
CC 
CC COMPRESSIBILITY FOR VOL. OCCUPYING COMPONENTS 1,2,3,7,AND 8  
*---- COMPC(1)  COMPC(2)  COMPC(3)  COMPC(7)  COMPC(8) 
 0.00000010 0.00000010 0.00000000 0.00000000 0.00000000 
CC 
CC CONSTANT OR VARIABLE PC PARAM., WATER-WET OR OIL-WET PC CURVE FLAG  
*---- ICPC    IEPC   IOW  
 0 0 0 
CC 
CC CAPILLARY PRESSURE PARAMETER, CPC0  
*---- CPC0 
 9.000000 
CC 
CC CAPILLARY PRESSURE PARAMETER, EPC0  
*---- EPC0 
 2.000000 
CC 
CC MOLECULAR DIFFUSION COEF. KCTH COMPONENT IN PHASE 1  
*---- D(KC,1),KC=1,N 
 0.000000 0.000000 0.000000 0.000000 0.000000
 0.000000 
CC 
CC MOLECULAR DIFFUSION COEF. KCTH COMPONENT IN PHASE 2  
*---- D(KC,2),KC=1,N 
 0.000000 0.000000 0.000000 0.000000 0.000000
 0.000000 
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CC 
CC MOLECULAR DIFFUSION COEF. KCTH COMPONENT IN PHASE 3  
*---- D(KC,3),KC=1,N 
 0.000000 0.000000 0.000000 0.000000 0.000000
 0.000000 
CC 
LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 1 
*---- ALPHAL(1)     ALPHAT(1) 
 0.160000 0.040000 
CC 
LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 2 
*---- ALPHAL(2)     ALPHAT(2) 
 0.160000 0.040000 
CC 
LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 3 
*---- ALPHAL(3)     ALPHAT(3) 
 0.160000 0.040000 
CC 
CC flag to specify organic adsorption calculation 
*---- iadso 
 0 
CC 
CC SURFACTANT AND POLYMER ADSORPTION PARAMETERS 
*---- AD31    AD32   B3D    AD41   AD42   B4D   IADK  IADS1   FADS   REFK 
 1.500000 0.500000 1000.000000 0.800000 0.000000
 300.000000 1 0 0 100.000000 
CC 
CC PARAMETERS FOR CATION EXCHANGE OF CLAY AND SURFACTANT 
*---- QV      XKC     XKS     EQW 
 0.000000 0.000000 0.000000 804.000000 
CC 
CC************************************************************** 
CC*                                                            * 
CC*   WELL DATA                                                * 
CC*                                                            * 
CC************************************************************** 
CC 
CC 
CC FLAG FOR SPECIFIED BOUNDARY AND ZONE IS MODELED 
*---- IBOUND     IZONE 
 0 0 
CC 
CC TOTAL NUMBER OF WELLS, WELL RADIUS FLAG, FLAG FOR TIME OR COURANT NO. 
*---- NWELL   IRO    ITIME    NWREL 
 2 2 1 2 
CC 
CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 
*---- IDW    IW    JW    IFLAG    RW     SWELL   IDIR   IFIRST   ILAST   IPRF  
 1 20 1 1 0.250000 -1.000000 3 1 1
 0 
CC 
CC WELL NAME 
*----  WELNAM 
 INJ-1 
CC 
CC ICHEK , MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 
*---- ICHEK     PWFMIN     PWFMAX    QTMIN    QTMAX 
 1 200.000000 9251.000000 0.000000 4000.000000 
CC 
CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 
*---- IDW    IW    JW    IFLAG    RW     SWELL   IDIR   IFIRST   ILAST   IPRF  
 2 20 40 4 0.250000 0.000000 3 1 1
 0 
CC 
CC WELL NAME 
*----  WELNAM 
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 PROD-1 
CC 
CC ICHEK , MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 
*---- ICHEK     PWFMIN     PWFMAX    QTMIN    QTMAX 
 1 200.000000 9251.000000 0.000000 2807.000000 
CC 
CC  ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 
*----  ID     QI(M,L)     C(M,KC,L) 
 1 50.000000 1.000000 0.000000 0.000000 0.075000
 0.006096 0.004075 
 1 0.000000 0.000000 0.000000 0.000000 0.000000
 0.000000 0.000000 
 1 0.000000 0.000000 0.000000 0.000000 0.000000
 0.000000 0.000000 
CC 
CC  ID, TOTAL PRODUCTION RATE 
*----  ID    QI(M,1) 
 2 -50.000000 
CC 
CC CUM. INJ. TIME , AND INTERVALS (PV OR DAY) FOR WRITING TO OUTPUT FILES 
*---- TINJ     CUMPR1     CUMHI1     WRHPV     WRPRF      RSTC 
 6000.000000 30.000000 30.000000 10.000000 30.000000
 60.000000 
CC 
CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. courant numbers 
*----  DT      DCLIM     CNMAX      CNMIN 
 0.100000 0.003000 0.200000 0.010000

 

A1-2. FIVE-WELL RESERVOIR MODEL 
CC************************************************************** 
CC*                                                            * 
CC*     BRIEF DESCRIPTION OF DATA SE : UTCHEM (VERSION 9.9)    * 
CC*                                                            * 
CC************************************************************** 
CC*                                                            * 
CC*                                                            * 
CC*                                                            * 
CC*   LENGTH (FT):              PROCESS :                      * 
CC*   THICKNESS (FT):           INJ RATE (FT3/DAY) :           * 
CC*   WIDTH (FT):               COORDINATES : CARTESIAN        * 
CC*   POROSITY :                                               * 
CC*   GRID BLOCKS :                                            * 
CC*   DATE :                                                   * 
CC*                                                            * 
CC************************************************************** 
CC*                                                            * 
CC************************************************************** 
CC*                                                            * 
CC*   RESERVOIR DESCRIPTION                                    * 
CC*                                                            * 
CC************************************************************** 
CC 
CC Run Number 
*----RUNNO 
REF_60 
CC 
CC Title and run description 
*----title(i) 
POLYMER FLOODING 
HETEROGENEOUS CASE 
HORIZONTAL DISPLACEMENT 
C 
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CC SIMULATION FLAGS 
*---- IMODE     IMES    IDISCP  ICWM    ICAP    IREACT  IBIO    ICOORD  ITREAC  ITC     
IGAS    IENG 
 1 2 3 0 0 0 0 1 0 0 0
 0 0 0 
CC 
CC no. of gridblocks,flag specifies constant or variable grid size,unit 
*---- NX    NY    NZ  IDXYZ  IUNIT 
 60 60 1 0 0 
CC 
CC constant grid block size in x,y,and z 
*---- dx1           dy1           dz1 
 20.00 20.00 8.00 
CC 
CC total no. of components,no. of tracers,no. of gel components 
*----n    no    ntw    nta    ngc    ng    noth 
 6 0 0 0 0 0 0 
CC 
CC Name of the components 
*----spname(i) for i=1 to n 
Water 
Oil 
Surf 
Polymer 
Chloride 
Sodium 
CC 
CC flag indicating if the component is included in calculations or not 
*----icf(kc) for kc=1,n 
1 1 0 1 1 1  
CC 
CC************************************************************** 
CC*                                                            * 
CC*   OUTPUT OPTIONS                                           * 
CC*                                                            * 
CC************************************************************** 
CC 
CC 
CC FLAG TO WRITE TO UNIT 3,FLAG FOR PV OR DAYS TO PRINT OR TO STOP THE RUN 
*---- ICUMTM  ISTOP  IOUTGMS 
 0 0 0 
CC 
CC FLAG INDICATING IF THE PROFILE OF KCTH COMPONENT SHOULD BE WRITTEN 
*---- IPRFLG(KC),KC=1,N 
1 1 0 1 1 1  
CC 
CC FLAG FOR PRES.,SAT.,TOTAL CONC.,TRACER CONC.,CAP.,GEL, ALKALINE PROFILES 
*---- IPPRES IPSAT IPCTOT IPBIO IPCAP IPGEL IPALK IPTEMP IPOBS 
 1 1 1 0 0 0 0 0 0 
CC 
CC FLAG FOR WRITING SEVERAL PROPERTIES TO UNIT 4 (Prof) 
*---- ICKL IVIS IPER ICNM ICSE IHYSTP IFOAMP INONEQ 
 1 1 1 0 1 0 0 0 
CC 
CC FLAG  for variables to PROF output file 
*---- IADS IVEL IRKF IPHSE 
 1 1 1 0 
CC 
CC************************************************************** 
CC*                                                            * 
CC*   RESERVOIR PROPERTIES                                     * 
CC*                                                            * 
CC************************************************************** 
CC 
CC 
CC MAX. SIMULATION TIME ( DAYS) 
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*---- TMAX  
2000.00 
CC 
CC ROCK COMPRESSIBILITY (1/PSI), STAND. PRESSURE(PSIA) 
*---- COMPR                PSTAND 
0.000000E+00 1000.000000 
CC 
CC FLAGS INDICATING CONSTANT OR VARIABLE POROSITY, X,Y,AND Z PERMEABILITY 
*---- IPOR1  IPERMX IPERMY IPERMZ IMOD ITRANZ INTG 
 0 2 3 3 0 0 0 
CC 
CC CONSTANT POROSITY 
*---- PORC 
0.10 
CC 
CC VARIABLE PERMX 
*---- PERMX(nx*ny*nz) 
885.00 
… 
CC 
CC Y DIRECTION PERMEABILITY IS DEPENDENT ON X DIRECTION PERMEABILITY 
*---- CONSTANT PERMEABILITY MULTIPLIER FOR Y DIRECTION PERMEABILITY 
1.00 
CC 
Z DIRECTION PERMEABILITY IS DEPENDENT ON X DIRECTION PERMEABILITY 
*---- CONSTANT PERMEABILITY MULTIPLIER FOR Z DIRECTION PERMEABILITY 
0.10 
CC 
CC FLAG FOR CONSTANT OR VARIABLE DEPTH, PRESSURE, WATER SATURATION,INITIAL AQUEOUS PHASE 
COMPOSITIONS 
*----IDEPTH  IPRESS  ISWI  ICWI 
 0 0 0 0 
CC 
CC CONSTANT DEPTH (FT) 
*---- D111 
3500.00 
CC 
CC CONSTANT PRESSURE (PSIA)  
*---- PRESS1 
2500.00 
CC 
CC CONSTANT INITIAL WATER SATURATION 
*---- SWIC 
0.20 
CC 
CC INITIAL CONCENTRATION OF SPECIES IN THE AQUEOUS PHASE 
*---- CWI(KW) FOR KW=1,N(8+NO) 
1.00 
CC 
CC INITIAL CONCENTRATION OF SPECIES IN THE AQUEOUS PHASE 
*---- CWI(KW) FOR KW=1,N(8+NO) 
0.00 
CC 
CC INITIAL CONCENTRATION OF SPECIES IN THE AQUEOUS PHASE 
*---- CWI(KW) FOR KW=1,N(8+NO) 
0.00 
CC 
CC INITIAL CONCENTRATION OF SPECIES IN THE AQUEOUS PHASE 
*---- CWI(KW) FOR KW=1,N(8+NO) 
0.00 
CC 
CC INITIAL CONCENTRATION OF SPECIES IN THE AQUEOUS PHASE 
*---- CWI(KW) FOR KW=1,N(8+NO) 
0.00 
CC 
CC************************************************************** 
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CC*                                                            * 
CC*   PHYSICAL PROPERTY DATA                                   * 
CC*                                                            * 
CC************************************************************** 
CC 
CC 
CC OIL CONC. AT PLAIT POINT FOR TYPE II(+)AND TYPE II(-), CMC 
*---- c2plc  c2prc   epsme   ihand  
0.000000 1.000000 0.000600 0 
CC 
CC flag indicating type of phase behavior parameters 
*---- ifghbn   
 0 
CC SLOPE AND INTERCEPT OF BINODAL CURVE AT ZERO, OPT., AND 2XOPT SALINITY 
CC FOR ALCOHOL 1 
*---- hbns70   hbnc70   hbns71   hbnc71   hbns72   hbnc72  
0.000000 0.010000 0.000000 0.016000 0.000000 0.100000 
CC SLOPE AND INTERCEPT OF BINODAL CURVE AT ZERO, OPT., AND 2XOPT SALINITY 
CC FOR ALCOHOL 2 
*---- hbns80   hbnc80   hbns81   hbnc81   hbns82   hbnc82  
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
CC 
CC LOWER AND UPPER EFFECTIVE SALINITY FOR ALCOHOL 1 AND ALCOHOL 2 
*---- csel7   cseu7   csel8   cseu8 
0.550000 0.916000 0.000000 0.000000 
CC 
CC THE CSE SLOPE PARAMETER FOR CALCIUM AND ALCOHOL 1 AND ALCOHOL 2 
*---- beta6    beta7    beta8  
0.800000 -2.000000 0.000000 
CC 
CC FLAG FOR ALCOHOL PART. MODEL AND PARTITION COEFFICIENTS 
*---- ialc   opsk7o   opsk7s   opsk8o   opsk8s  
0 0.000000 0.000000 0.000000 0.000000 
CC 
CC NO. OF ITERATIONS, AND TOLERANCE 
*---- nalmax     epsalc  
20.000000 0.000100 
CC 
CC ALCOHOL 1 PARTITIONING PARAMETERS IF IALC=1 
*---- akwc7     akws7    akm7     ak7      pt7  
4.671000 1.790000 48.000000 35.310000 0.222000 
CC 
CC ALCOHOL 1 PARTITIONING PARAMETERS IF IALC=2 
*---- akwc8     akws8    akm8     ak8      pt8  
0.000000 0.000000 0.000000 0.000000 0.000000 
CC 
CC ift model flag 
*----  ift  
 0 
CC 
CC INTERFACIAL TENSION PARAMETERS 
*----  g11     g12     g13     g21     g22      g23  
 13.000000 -14.800000 0.007000 13.000000 -14.500000
 0.010000 
CC 
CC LOG10 OF OIL/WATER INTERFACIAL TENSION  
*---- xiftw 
 1.300000 
CC 
CC ORGANIC MASS TRANSFER FLAG 
*---- imass icor 
 0 0 
CC 
CC CAPILLARY DESATURATION PARAMETERS FOR PHASE 1, 2, AND 3 
*---- itrap      t11      t22      t33 
 1 0.000000 0.000000 364.200000 
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CC 
CC  FLAG FOR RELATIVE PERMEABILITY AND CAPILLARY PRESSURE MODEL 
*---- iperm irtype 
 0 0 
CC 
CC FLAG FOR CONSTANT OR VARIABLE REL. PERM. PARAMETERS 
*---- isrw    iprw    iew  
 0 0 0 
CC 
CC CONSTANT RES. SATURATION OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 
*---- s1rwc    s2rwc     s3rwc  
 0.200000 0.200000 0.370000 
CC 
CC ENDPOINT REL. PERM. OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 
*---- p1rwc   p2rwc   p3rwc 
 0.200000 1.000000 0.200000 
CC 
CONSTANT REL. PERM. EXPONENT OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 
*---- e1wc     e2wc     e3wc  
 1.500000 2.000000 1.500000 
CC 
CC RES. SATURATION OF PHASES 1,2,AND 3 AT HIGH CAPILLARY NO. 
*---- s1rc   s2rc   s3rc 
 0.000000 0.000000 0.000000 
CC 
CC ENDPOINT REL. PERM. OF PHASES 1,2,AND 3 AT HIGH CAPILLARY NO. 
*---- p1rc   p2rc   p3rc 
 1.000000 1.000000 0.000000 
CC 
CC REL. PERM. EXPONENT OF PHASES 1,2,AND 3 AT HIGH CAPILLARY NO. 
*---- e13c   e23c   e31c 
 1.500000 2.000000 0.000000 
CC 
CC WATER AND OIL VISCOSITY , RESERVOIR TEMPERATURE 
*---- VIS1    VIS2   TSTAND 
 0.730000 40.000000 0.000000 
CC 
CC COMPOSITIONAL PHASE VISCOSITY PARAMETERS 
*----   ALPHAV1   ALPHAV2   ALPHAV3   ALPHAV4  ALPHAV5 
 2.000000 2.000000 0.000000 0.900000 0.700000 
CC 
CC PARAMETERS TO CALCULATE POLYMER VISCOSITY AT ZERO SHEAR RATE 
*---- AP1      AP2      AP3 
 35.140000 1899.000000 0.000000 
CC 
CC PARAMETER TO COMPUTE CSEP,MIN. CSEP, AND SLOPE OF LOG VIS. VS. LOG CSEP  
*---- BETAP    CSE1     SSLOPE 
 20.000000 0.010000 -0.300000 
CC 
CC PARAMETER FOR SHEAR RATE DEPENDENCE OF POLYMER VISCOSITY 
*---- GAMMAC   GAMHF   POWN IPMOD 
 130.000000 280.000000 2.200000 1 
CC 
CC FLAG FOR POLYMER PARTITIONING, PERM. REDUCTION PARAMETERS 
*---- IpOLYM    EPHI3    EPHI4    BRK     CRK RKCUT 
 0 1.000000 0.850000 4.000000 0.150000 10.000000 
CC 
CC SPECIFIC WEIGHT FOR COMPONENTS 1,2,3,7,8 ,Coeffient of oil and GRAVITY FLAG 
*---- DEN1     DEN2    DEN23     DEN3    DEN7    DEN8    IDEN  
 0.433530 0.385840 0.368000 0.420000 0.346000
 0.000000 2 
CC 
CC FLAG FOR CHOICE OF UNITS ( 0:BOTTOMHOLE CONDITION , 1: STOCK TANK) 
*----- ISTB 
 0 
CC 
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CC COMPRESSIBILITY FOR VOL. OCCUPYING COMPONENTS 1,2,3,7,AND 8  
*---- COMPC(1)  COMPC(2)  COMPC(3)  COMPC(7)  COMPC(8) 
 0.00000010 0.00000010 0.00000000 0.00000000 0.00000000 
CC 
CC CONSTANT OR VARIABLE PC PARAM., WATER-WET OR OIL-WET PC CURVE FLAG  
*---- ICPC    IEPC   IOW  
 0 0 0 
CC 
CC CAPILLARY PRESSURE PARAMETER, CPC0  
*---- CPC0 
 9.000000 
CC 
CC CAPILLARY PRESSURE PARAMETER, EPC0  
*---- EPC0 
 2.000000 
CC 
CC MOLECULAR DIFFUSION COEF. KCTH COMPONENT IN PHASE 1  
*---- D(KC,1),KC=1,N 
 0.000000 0.000000 0.000000 0.000000 0.000000
 0.000000 
CC 
CC MOLECULAR DIFFUSION COEF. KCTH COMPONENT IN PHASE 2  
*---- D(KC,2),KC=1,N 
 0.000000 0.000000 0.000000 0.000000 0.000000
 0.000000 
CC 
CC MOLECULAR DIFFUSION COEF. KCTH COMPONENT IN PHASE 3  
*---- D(KC,3),KC=1,N 
 0.000000 0.000000 0.000000 0.000000 0.000000
 0.000000 
CC 
LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 1 
*---- ALPHAL(1)     ALPHAT(1) 
 0.160000 0.040000 
CC 
LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 2 
*---- ALPHAL(2)     ALPHAT(2) 
 0.160000 0.040000 
CC 
LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 3 
*---- ALPHAL(3)     ALPHAT(3) 
 0.160000 0.040000 
CC 
CC flag to specify organic adsorption calculation 
*---- iadso 
 0 
CC 
CC SURFACTANT AND POLYMER ADSORPTION PARAMETERS 
*---- AD31    AD32   B3D    AD41   AD42   B4D   IADK  IADS1   FADS   REFK 
 1.500000 0.500000 1000.000000 0.800000 0.000000
 300.000000 1 0 0 100.000000 
CC 
CC PARAMETERS FOR CATION EXCHANGE OF CLAY AND SURFACTANT 
*---- QV      XKC     XKS     EQW 
 0.000000 0.000000 0.000000 804.000000 
CC 
CC************************************************************** 
CC*                                                            * 
CC*   WELL DATA                                                * 
CC*                                                            * 
CC************************************************************** 
CC 
CC 
CC FLAG FOR SPECIFIED BOUNDARY AND ZONE IS MODELED 
*---- IBOUND     IZONE 
 0 0 
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CC 
CC TOTAL NUMBER OF WELLS, WELL RADIUS FLAG, FLAG FOR TIME OR COURANT NO. 
*---- NWELL   IRO    ITIME    NWREL 
 5 2 1 5 
CC 
CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 
*---- IDW    IW    JW    IFLAG    RW     SWELL   IDIR   IFIRST   ILAST   IPRF  
 1 30 30 1 0.250000 -1.000000 3 1 1
 0 
CC 
CC WELL NAME 
*----  WELNAM 
 INJ-1 
CC 
CC ICHEK , MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 
*---- ICHEK     PWFMIN     PWFMAX    QTMIN    QTMAX 
 1 200.000000 9251.000000 0.000000 4000.000000 
CC 
CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 
*---- IDW    IW    JW    IFLAG    RW     SWELL   IDIR   IFIRST   ILAST   IPRF  
 2 1 1 4 0.250000 0.000000 3 1 1
 0 
CC 
CC WELL NAME 
*----  WELNAM 
 PROD-1 
CC 
CC ICHEK , MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 
*---- ICHEK     PWFMIN     PWFMAX    QTMIN    QTMAX 
 1 200.000000 9251.000000 0.000000 2807.000000 
CC 
CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 
*---- IDW    IW    JW    IFLAG    RW     SWELL   IDIR   IFIRST   ILAST   IPRF  
 3 60 1 4 0.250000 0.000000 3 1 1
 0 
CC 
CC WELL NAME 
*----  WELNAM 
 PROD-2 
CC 
CC ICHEK , MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 
*---- ICHEK     PWFMIN     PWFMAX    QTMIN    QTMAX 
 1 200.000000 9251.000000 0.000000 2807.000000 
CC 
CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 
*---- IDW    IW    JW    IFLAG    RW     SWELL   IDIR   IFIRST   ILAST   IPRF  
 4 1 60 4 0.250000 0.000000 3 1 1
 0 
CC 
CC WELL NAME 
*----  WELNAM 
 PROD-3 
CC 
CC ICHEK , MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 
*---- ICHEK     PWFMIN     PWFMAX    QTMIN    QTMAX 
 1 200.000000 9251.000000 0.000000 2807.000000 
CC 
CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, SKIN 
*---- IDW    IW    JW    IFLAG    RW     SWELL   IDIR   IFIRST   ILAST   IPRF  
 5 60 60 4 0.250000 0.000000 3 1 1
 0 
CC 
CC WELL NAME 
*----  WELNAM 
 PROD-4 
CC 
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CC ICHEK , MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 
*---- ICHEK     PWFMIN     PWFMAX    QTMIN    QTMAX 
 1 200.000000 9251.000000 0.000000 2807.000000 
CC 
CC  ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE (L=1,3) 
*----  ID     QI(M,L)     C(M,KC,L) 
 1 400.000000 1.000000 0.000000 0.000000 0.060000
 0.006096 0.004075 
 1 0.000000 0.000000 0.000000 0.000000 0.000000
 0.000000 0.000000 
 1 0.000000 0.000000 0.000000 0.000000 0.000000
 0.000000 0.000000 
CC 
CC  ID, TOTAL PRODUCTION RATE 
*----  ID    QI(M,1) 
 2 -100.000000 
CC 
CC  ID, TOTAL PRODUCTION RATE 
*----  ID    QI(M,1) 
 3 -100.000000 
CC 
CC  ID, TOTAL PRODUCTION RATE 
*----  ID    QI(M,1) 
 4 -100.000000 
CC 
CC  ID, TOTAL PRODUCTION RATE 
*----  ID    QI(M,1) 
 5 -100.000000 
CC 
CC CUM. INJ. TIME , AND INTERVALS (PV OR DAY) FOR WRITING TO OUTPUT FILES 
*---- TINJ     CUMPR1     CUMHI1     WRHPV     WRPRF      RSTC 
 250.000000 30.000000 30.000000 10.000000 30.000000
 60.000000 
CC 
CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. courant numbers 
*----  DT      DCLIM     CNMAX      CNMIN 
 0.100000 0.003000 0.200000 0.010000
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Appendix 2 – Library of MATLAB® Functions to Interact with 
UTCHEM 

A2-1. READING WELL AND PRODUCTION REPORTS FROM UTCHEM 
%% This function reads the history file of the well No. 2 and returns an 
%% array HIST02 with the variables 
function [OVERAL]=read_overal(RUNNO); 
if size(RUNNO,2)>6 
    strfile=RUNNO(1:6); 
else 
    strfile=RUNNO; 
end 
str='xxxxxx.OVERAL'; 
filename=[strfile str(size(strfile,2)+1:end)]; 
fid1=fopen(filename,'r'); 
M=textscan(fid1,'%f','headerlines',16,'delimiter',','); 
field={'x'}; 
Y=cell2struct(M,field,1); 
X=Y.x; 
NT=size(X,1)/(23); 
OVERAL=reshape(X,23,NT)'; 
fclose(fid1); 
 
 
function [HIST]=read_hist(RUNNO,ID,TYPE,NPERF,NWELLS) 
% This function reads the production history of a well in UTCHEM 
% input parameters: -RUNNO: identifier of UT-CHEM run 
%                   -ID: well id number 
%                   -TYPE: 'INJ' for injector or 'PRO' for producer 
%                   -NPERF: number of perforations 
%                   -NWELLS: total number of wells in UTCHEM file 
% output: Array with the production history 
if size(RUNNO,2)>6 
    strfile=RUNNO(1:6); 
else 
    strfile=RUNNO; 
end 
IDstr=num2str(ID); 
if ID<10 
    str='xxxxxx.HIST0'; 
else 
    str='xxxxxx.HIST'; 
end 
filename=[strfile str(size(strfile,2)+1:end) IDstr]; 
fid=fopen(filename,'r'); 
i=0; 
flg=0; 
while feof(fid) ==0 
    s=fgetl(fid); 
    matches = findstr(s,'TOTAL NO. OF '); 
    if matches == 4 
        position=ftell(fid); 
        fseek(fid,position-3,'bof'); 
        s=fgets(fid,2); 
        NCOL=str2num(s); 
    end 
end 
fclose(fid); 
fid=fopen(filename,'r'); 
if TYPE=='INJ' 
    M=textscan(fid,'%f','headerlines',15,'delimiter',','); 
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else 
    M=textscan(fid,'%f','headerlines',21,'delimiter',','); 
end 
field={'x'}; 
Y=cell2struct(M,field,1); 
X=Y.x; 
if NWELLS==2 
    nv=2; 
else 
    nv=1; 
end 
if TYPE=='INJ' 
    %NT=size(X,1)/(4+NPERF*nv); 
    NT=size(X,1)/NCOL; 
    HIST=reshape(X,NCOL,NT)'; 
    %HIST=reshape(X,4+NPERF*nv,NT)'; 
else 
    NCOL=30; 
    %NT=size(X,1)/(29+NPERF); 
    NT=size(X,1)/NCOL; 
    %HIST=reshape(X,(29+NPERF),NT)'; 
    HIST=reshape(X,NCOL,NT)'; 
end 
fclose(fid); 

A2-2. WRITING UTCHEM INPUT FILE 
function UTCHEM_FILE(filename); 
%% This function writes a UTCHEM input file given a Matlab structure of data written in 
file = ‘filename’; 
load(filename); 
fid=fopen('INPUT','wt'); 
fprintf(fid,'%s\n','CC***********************************'); 
fprintf(fid,'%s\n','CC*                                                            *'); 
fprintf(fid,'%s\n','CC*     BRIEF DESCRIPTION OF DATA SE : UTCHEM (VERSION 9.9)    *'); 
fprintf(fid,'%s\n','CC*                                                            *'); 
fprintf(fid,'%s\n','CC********************************************'); 
fprintf(fid,'%s\n','CC*                                                            *'); 
fprintf(fid,'%s\n','CC*                                                            *'); 
fprintf(fid,'%s\n','CC*                                                            *'); 
fprintf(fid,'%s\n','CC*   LENGTH (FT):              PROCESS :                      *'); 
fprintf(fid,'%s\n','CC*   THICKNESS (FT):       INJ RATE (FT3/DAY) :          *'); 
fprintf(fid,'%s\n','CC*   WIDTH (FT):   COORDINATES : CARTESIAN        *'); 
fprintf(fid,'%s\n','CC*   POROSITY :                                               *'); 
fprintf(fid,'%s\n','CC*   GRID BLOCKS :                                            *'); 
fprintf(fid,'%s\n','CC*   DATE :                                                   *'); 
fprintf(fid,'%s\n','CC*                                                            *'); 
fprintf(fid,'%s\n','CC***********************************************'); 
fprintf(fid,'%s\n','CC*                                                            *'); 
fprintf(fid,'%s\n','CC**********************************************'); 
fprintf(fid,'%s\n','CC*                                                            *'); 
fprintf(fid,'%s\n','CC*   RESERVOIR DESCRIPTION                                    *'); 
fprintf(fid,'%s\n','CC*                                                            *'); 
fprintf(fid,'%s\n','CC***********************************************'); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC Run Number'); 
fprintf(fid,'%s\n','*----RUNNO'); 
fprintf(fid,'%s\n',S.RUNNO); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC Title and run description'); 
fprintf(fid,'%s\n','*----title(i)'); 
fprintf(fid,'%s\n',S.TITLE1); 
fprintf(fid,'%s\n',S.TITLE2); 
fprintf(fid,'%s\n',S.TITLE3); 
fprintf(fid,'%s\n','C'); 
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fprintf(fid,'%s\n','CC SIMULATION FLAGS'); 
fprintf(fid,'%s\n','*---- IMODE     IMES    IDISCP  ICWM    ICAP    IREACT  IBIO    
ICOORD  ITREAC  ITC     IGAS    IENG'); 
fprintf(fid,'\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\n',S.IMODE,S.IMES,S
.IDISCP,S.ICWM,S.ICAP,S.IREACT,S.IBIO,S.ICOORD,S.ITREAC,S.ITC,S.IGAS,S.IENG,0,0); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC no. of gridblocks,flag specifies constant or variable grid 
size,unit'); 
fprintf(fid,'%s\n','*---- NX    NY    NZ  IDXYZ  IUNIT'); 
fprintf(fid,'\t%d\t%d\t%d\t%d\t%d\n',S.NX,S.NY,S.NZ,S.IDXYZ,S.IUNIT); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC constant grid block size in x,y,and z'); 
fprintf(fid,'%s\n','*---- dx1           dy1           dz1'); 
fprintf(fid,'\t%3.2f\t%3.2f\t%3.2f\n',S.DX,S.DY,S.DZ); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC total no. of components,no. of tracers,no. of gel components'); 
fprintf(fid,'%s\n','*----n    no    ntw    nta    ngc    ng    noth'); 
fprintf(fid,'\t%d\t%d\t%d\t%d\t%d\t%d\t%d\n',S.n,S.no,S.ntw,S.nta,S.ngc,S.ng,S.noth); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC Name of the components'); 
fprintf(fid,'%s\n','*----spname(i) for i=1 to n'); 
for kc=1:S.n 
    fprintf(fid,'%s\n',S.components(kc).names); 
end 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC flag indicating if the component is included in calculations or 
not'); 
fprintf(fid,'%s\n','*----icf(kc) for kc=1,n'); 
for kc=1:S.n 
    fprintf(fid,'%d\t',S.icf(kc)); 
end 
fprintf(fid,'\n'); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC***********************************************'); 
fprintf(fid,'%s\n','CC*                                                            *'); 
fprintf(fid,'%s\n','CC*   OUTPUT OPTIONS                                           *'); 
fprintf(fid,'%s\n','CC*                                                            *'); 
fprintf(fid,'%s\n','CC**********************************************'); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC FLAG TO WRITE TO UNIT 3,FLAG FOR PV OR DAYS TO PRINT OR TO STOP 
THE RUN'); 
fprintf(fid,'%s\n','*---- ICUMTM  ISTOP  IOUTGMS'); 
fprintf(fid,'\t%d\t%d\t%d\n',S.ICUMTM,S.ISTOP,S.IOUTGMS); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC FLAG INDICATING IF THE PROFILE OF KCTH COMPONENT SHOULD BE 
WRITTEN'); 
fprintf(fid,'%s\n','*---- IPRFLG(KC),KC=1,N'); 
for kc=1:S.n 
    fprintf(fid,'%d\t',S.IPRFLG(kc)); 
end 
fprintf(fid,'\n'); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC FLAG FOR PRES.,SAT.,TOTAL CONC.,TRACER CONC.,CAP.,GEL, ALKALINE 
PROFILES'); 
fprintf(fid,'%s\n','*---- IPPRES IPSAT IPCTOT IPBIO IPCAP IPGEL IPALK IPTEMP IPOBS'); 
fprintf(fid,'\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\n',S.IPPRES,S.IPSAT,S.IPCTOT,S.IPBIO,S.
IPCAP,S.IPGEL,S.IPALK,S.IPTEMP,S.IPOBS); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC FLAG FOR WRITING SEVERAL PROPERTIES TO UNIT 4 (Prof)'); 
fprintf(fid,'%s\n','*---- ICKL IVIS IPER ICNM ICSE IHYSTP IFOAMP INONEQ'); 
fprintf(fid,'\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\n',S.ICKL,S.IVIS,S.IPER,S.ICNM,S.ICSE,S.IHY
STP,S.IFOAMP,S.INONEQ); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC FLAG  for variables to PROF output file'); 
fprintf(fid,'%s\n','*---- IADS IVEL IRKF IPHSE'); 
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fprintf(fid,'\t%d\t%d\t%d\t%d\n',S.IADS,S.IVEL,S.IRKF,S.IPHSE); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC***********************************************'); 
fprintf(fid,'%s\n','CC*                                                            *'); 
fprintf(fid,'%s\n','CC*   RESERVOIR PROPERTIES                                     *'); 
fprintf(fid,'%s\n','CC*                                                            *'); 
fprintf(fid,'%s\n','CC***********************************************'); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC MAX. SIMULATION TIME ( DAYS)'); 
fprintf(fid,'%s\n','*---- TMAX '); 
fprintf(fid,'%5.2f\n',S.TMAX); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC ROCK COMPRESSIBILITY (1/PSI), STAND. PRESSURE(PSIA)'); 
fprintf(fid,'%s\n','*---- COMPR                PSTAND'); 
fprintf(fid,'%E\t%4f\n',S.COMPR,S.PSTAND); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC FLAGS INDICATING CONSTANT OR VARIABLE POROSITY, X,Y,AND Z 
PERMEABILITY'); 
fprintf(fid,'%s\n','*---- IPOR1  IPERMX IPERMY IPERMZ IMOD ITRANZ INTG'); 
fprintf(fid,'\t%d\t%d\t%d\t%d\t%d\t%d\t%d\n',S.IPOR1,S.IPERMX,S.IPERMY,S.IPERMZ,S.IMOD,S.
ITRANZ,S.INTG); 
fprintf(fid,'%s\n','CC'); 
if S.IPOR1==0 
    fprintf(fid,'%s\n','CC CONSTANT POROSITY'); 
    fprintf(fid,'%s\n','*---- PORC'); 
    fprintf(fid,'%1.2f\n',S.PORC); 
end 
if S.IPOR1==1 
    fprintf(fid,'%s\n','CC LAYER POROSITY'); 
    fprintf(fid,'%s\n','*---- POR'); 
    for z=1:S.NZ 
        fprintf(fid,'%1.2f\t',S.PORL(z)); 
    end 
    fprintf(fid,'\n'); 
end 
if S.IPOR1==2 
    fprintf(fid,'%s\n','CC VARIABLE POROSITY'); 
    fprintf(fid,'%s\n','*---- POR'); 
    for i=1:S.NX*S.NY*S.NZ 
        fprintf(fid,'%1.2f\n',S.POR(i)); 
    end 
end 
if S.IPERMX==0 
    fprintf(fid,'%s\n','CC'); 
    fprintf(fid,'%s\n','CC CONSTANT PERMX'); 
    fprintf(fid,'%s\n','*---- PERMXC'); 
    fprintf(fid,'%1.2f\n',S.PERMXC); 
end 
if S.IPERMX==1 
    fprintf(fid,'%s\n','CC'); 
    fprintf(fid,'%s\n','CC LAYER PERMX'); 
    fprintf(fid,'%s\n','*---- PERMX(nz)'); 
    for z=1:S.NZ 
        fprintf(fid,'%1.2f\t',S.PERMXL(z)); 
    end 
    fprintf(fid,'\n'); 
end 
if S.IPERMX==2 
    fprintf(fid,'%s\n','CC'); 
    fprintf(fid,'%s\n','CC VARIABLE PERMX'); 
    fprintf(fid,'%s\n','*---- PERMX(nx*ny*nz)'); 
    for i=1:S.NX*S.NY*S.NZ 
        fprintf(fid,'%1.2f\n',S.PERMX(i)); 
    end 
end 
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if S.IPERMY==0 
    fprintf(fid,'%s\n','CC'); 
    fprintf(fid,'%s\n','CC CONSTANT PERMY'); 
    fprintf(fid,'%s\n','*---- PERMYC'); 
    fprintf(fid,'%1.2f\n',S.PERMYC); 
end 
if S.IPERMY==1 
    fprintf(fid,'%s\n','CC'); 
    fprintf(fid,'%s\n','CC LAYER PERMY'); 
    fprintf(fid,'%s\n','*---- PERMY(nz)'); 
    for z=1:S.NZ 
        fprintf(fid,'%1.2f\t',S.PERMYL(z)); 
    end 
    fprintf(fid,'\n'); 
end 
if S.IPERMY==2 
    fprintf(fid,'%s\n','CC'); 
    fprintf(fid,'%s\n','CC VARIABLE PERMY'); 
    fprintf(fid,'%s\n','*---- PERMY(nx*ny*nz)'); 
    for i=1:S.NX*S.NY*S.NZ 
        fprintf(fid,'%1.2f\n',S.PERMY(i)); 
    end 
end 
if S.IPERMY==3 
    fprintf(fid,'%s\n','CC'); 
    fprintf(fid,'%s\n','CC Y DIRECTION PERMEABILITY IS DEPENDENT ON X DIRECTION 
PERMEABILITY'); 
    fprintf(fid,'%s\n','*---- CONSTANT PERMEABILITY MULTIPLIER FOR Y DIRECTION 
PERMEABILITY'); 
    fprintf(fid,'%1.2f\n',S.PERMYMULT); 
end 
if S.IPERMZ==0 
    fprintf(fid,'%s\n','CC'); 
    fprintf(fid,'%s\n','CC CONSTANT PERMZ'); 
    fprintf(fid,'%s\n','*---- PERMZC'); 
    fprintf(fid,'%1.2f\n',S.PERMZC); 
end 
if S.IPERMZ==1 
    fprintf(fid,'%s\n','CC'); 
    fprintf(fid,'%s\n','CC LAYER PERMZ'); 
    fprintf(fid,'%s\n','*---- PERMZ(nz)'); 
    for z=1:S.NZ 
        fprintf(fid,'%1.2f\t',S.PERMZL(z)); 
    end 
    fprintf(fid,'\n'); 
end 
if S.IPERMZ==2 
    fprintf(fid,'%s\n','CC'); 
    fprintf(fid,'%s\n','CC VARIABLE PERMZ'); 
    fprintf(fid,'%s\n','*---- PERMZ(nx*ny*nz)'); 
    for i=1:S.NX*S.NY*S.NZ 
        fprintf(fid,'%1.2f\n',S.PERMZ(i)); 
    end 
end 
if S.IPERMZ==3 
    fprintf(fid,'%s\n','CC'); 
    fprintf(fid,'%s\n','Z DIRECTION PERMEABILITY IS DEPENDENT ON X DIRECTION 
PERMEABILITY'); 
    fprintf(fid,'%s\n','*---- CONSTANT PERMEABILITY MULTIPLIER FOR Z DIRECTION 
PERMEABILITY'); 
    fprintf(fid,'%1.2f\n',S.PERMZMULT); 
end 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC FLAG FOR CONSTANT OR VARIABLE DEPTH, PRESSURE, WATER 
SATURATION,INITIAL AQUEOUS PHASE COMPOSITIONS'); 
fprintf(fid,'%s\n','*----IDEPTH  IPRESS  ISWI  ICWI'); 
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fprintf(fid,'\t%d\t%d\t%d\t%d\n',S.IDEPTH,S.IPRESS,S.ISWI,S.ICWI); 
if S.IDEPTH==0 
    fprintf(fid,'%s\n','CC'); 
    fprintf(fid,'%s\n','CC CONSTANT DEPTH (FT)'); 
    fprintf(fid,'%s\n','*---- D111'); 
    fprintf(fid,'%1.2f\n',S.D111); 
end 
if S.IDEPTH==1 
    fprintf(fid,'%s\n','CC'); 
    fprintf(fid,'%s\n','CC LAYER DEPHT'); 
    fprintf(fid,'%s\n','*---- DEPHT'); 
    for z=1:S.NX*S.NY 
        fprintf(fid,'%1.2f\n',S.DEPHT(z)); 
    end 
end 
if S.IPRESS==0 
    fprintf(fid,'%s\n','CC'); 
    fprintf(fid,'%s\n','CC CONSTANT PRESSURE (PSIA) '); 
    fprintf(fid,'%s\n','*---- PRESS1'); 
    fprintf(fid,'%1.2f\n',S.PRESS1); 
end 
if S.IPRESS==1 
    fprintf(fid,'%s\n','CC'); 
    fprintf(fid,'%s\n','CC PRESSURE (PSIA)'); 
    fprintf(fid,'%s\n','*---- PRES'); 
    fprintf(fid,'%1.2f%1.2f\n',S.PINIT,S.HINIT); 
    fprintf(fid,'\n'); 
end 
if S.IPRESS==2 
    fprintf(fid,'%s\n','CC'); 
    fprintf(fid,'%s\n','CC VARIABLE PRESSURE'); 
    fprintf(fid,'%s\n','*---- PRESSURE'); 
    for i=1:S.NX*S.NY*S.NZ 
        fprintf(fid,'%1.2f\n',S.PRESS(i)); 
    end 
end 
if S.ISWI==0 
    fprintf(fid,'%s\n','CC'); 
    fprintf(fid,'%s\n','CC CONSTANT INITIAL WATER SATURATION'); 
    fprintf(fid,'%s\n','*---- SWIC'); 
    fprintf(fid,'%1.2f\n',S.SWIC); 
end 
if S.ISWI==1 
    fprintf(fid,'%s\n','CC'); 
    fprintf(fid,'%s\n','CC INITIAL WATER SATURATION'); 
    fprintf(fid,'%s\n','*---- SWI'); 
    for z=1:S.NZ 
        fprintf(fid,'%1.2f\t',S.SWI(z)); 
    end 
    fprintf(fid,'\n'); 
end 
if S.ISWI==2 
    fprintf(fid,'%s\n','CC'); 
    fprintf(fid,'%s\n','CC VARIABLE INITIAL WATER SATURATION'); 
    fprintf(fid,'%s\n','*---- SWI'); 
    for i=1:S.NX*S.NY*S.NZ 
        fprintf(fid,'%1.2f\n',S.SWI(i)); 
    end 
end 
for kw=1:S.n-S.nta-S.ntw 
    if S.icf(kw)==1 
        fprintf(fid,'%s\n','CC'); 
        fprintf(fid,'%s\n','CC INITIAL CONCENTRATION OF SPECIES IN THE AQUEOUS PHASE'); 
        fprintf(fid,'%s\n','*---- CWI(KW) FOR KW=1,N(8+NO)'); 
        fprintf(fid,'%1.2f\n',S.CWI(kw)); 
    end 
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end 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC***********************************************'); 
fprintf(fid,'%s\n','CC*                                                            *'); 
fprintf(fid,'%s\n','CC*   PHYSICAL PROPERTY DATA                                   *'); 
fprintf(fid,'%s\n','CC*                                                            *'); 
fprintf(fid,'%s\n','CC***********************************************'); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC OIL CONC. AT PLAIT POINT FOR TYPE II(+)AND TYPE II(-), CMC'); 
fprintf(fid,'%s\n','*---- c2plc  c2prc   epsme   ihand '); 
fprintf(fid,'%f\t%f\t%f\t%d\n',S.c2plc,S.c2prc,S.epsme,S.ihand); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC flag indicating type of phase behavior parameters'); 
fprintf(fid,'%s\n','*---- ifghbn  '); 
fprintf(fid,'\t%d\n',S.ifghbn); 
fprintf(fid,'%s\n','CC SLOPE AND INTERCEPT OF BINODAL CURVE AT ZERO, OPT., AND 2XOPT 
SALINITY'); 
fprintf(fid,'%s\n','CC FOR ALCOHOL 1'); 
fprintf(fid,'%s\n','*---- hbns70   hbnc70   hbns71   hbnc71   hbns72   hbnc72 '); 
fprintf(fid,'%f\t%f\t%f\t%f\t%f\t%f\n',S.hbns70,S.hbnc70,S.hbns71,S.hbnc71,S.hbns72,S.hbn
c72); 
fprintf(fid,'%s\n','CC SLOPE AND INTERCEPT OF BINODAL CURVE AT ZERO, OPT., AND 2XOPT 
SALINITY'); 
fprintf(fid,'%s\n','CC FOR ALCOHOL 2'); 
fprintf(fid,'%s\n','*---- hbns80   hbnc80   hbns81   hbnc81   hbns82   hbnc82 '); 
fprintf(fid,'%f\t%f\t%f\t%f\t%f\t%f\n',S.hbns80,S.hbnc80,S.hbns81,S.hbnc81,S.hbns82,S.hbn
c82); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC LOWER AND UPPER EFFECTIVE SALINITY FOR ALCOHOL 1 AND ALCOHOL 2'); 
fprintf(fid,'%s\n','*---- csel7   cseu7   csel8   cseu8'); 
fprintf(fid,'%f\t%f\t%f\t%f\n',S.csel7,S.cseu7,S.csel8,S.cseu8); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC THE CSE SLOPE PARAMETER FOR CALCIUM AND ALCOHOL 1 AND ALCOHOL 2'); 
fprintf(fid,'%s\n','*---- beta6    beta7    beta8 '); 
fprintf(fid,'%f\t%f\t%f\n',S.beta6,S.beta7,S.beta8); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC FLAG FOR ALCOHOL PART. MODEL AND PARTITION COEFFICIENTS'); 
fprintf(fid,'%s\n','*---- ialc   opsk7o   opsk7s   opsk8o   opsk8s '); 
fprintf(fid,'%d\t%f\t%f\t%f\t%f\n',S.ialc,S.opsk7o,S.opsk7s,S.opsk8o,S.opsk8s); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC NO. OF ITERATIONS, AND TOLERANCE'); 
fprintf(fid,'%s\n','*---- nalmax     epsalc '); 
fprintf(fid,'%f\t%f\n',S.nalmax,S.epsalc); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC ALCOHOL 1 PARTITIONING PARAMETERS IF IALC=1'); 
fprintf(fid,'%s\n','*---- akwc7     akws7    akm7     ak7      pt7 '); 
fprintf(fid,'%f\t%f\t%f\t%f\t%f\n',S.akwc7,S.akws7,S.akm7,S.ak7,S.pt7); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC ALCOHOL 1 PARTITIONING PARAMETERS IF IALC=2'); 
fprintf(fid,'%s\n','*---- akwc8     akws8    akm8     ak8      pt8 '); 
fprintf(fid,'%f\t%f\t%f\t%f\t%f\n',S.akwc8,S.akws8,S.akm8,S.ak8,S.pt8); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC ift model flag'); 
fprintf(fid,'%s\n','*----  ift '); 
fprintf(fid,'\t%d\n',S.ift); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC INTERFACIAL TENSION PARAMETERS'); 
fprintf(fid,'%s\n','*----  g11     g12     g13     g21     g22      g23 '); 
fprintf(fid,'\t%f\t%f\t%f\t%f\t%f\t%f\n',S.g11,S.g12,S.g13,S.g21,S.g22,S.g23); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC LOG10 OF OIL/WATER INTERFACIAL TENSION '); 
fprintf(fid,'%s\n','*---- xiftw'); 
fprintf(fid,'\t%f\n',S.xiftw); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC ORGANIC MASS TRANSFER FLAG'); 
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fprintf(fid,'%s\n','*---- imass icor'); 
fprintf(fid,'\t%d\t%d\n',S.imass,S.icor); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC CAPILLARY DESATURATION PARAMETERS FOR PHASE 1, 2, AND 3'); 
fprintf(fid,'%s\n','*---- itrap      t11      t22      t33'); 
fprintf(fid,'\t%d\t%f\t%f\t%f\n',S.itrap,S.t11,S.t22,S.t33); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC  FLAG FOR RELATIVE PERMEABILITY AND CAPILLARY PRESSURE MODEL'); 
fprintf(fid,'%s\n','*---- iperm irtype'); 
fprintf(fid,'\t%d\t%d\n',S.iperm,S.irtype); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC FLAG FOR CONSTANT OR VARIABLE REL. PERM. PARAMETERS'); 
fprintf(fid,'%s\n','*---- isrw    iprw    iew '); 
fprintf(fid,'\t%d\t%d\t%d\n',S.isrw,S.iprw,S.iew); 
switch S.isrw 
    case 0 
        fprintf(fid,'%s\n','CC'); 
        fprintf(fid,'%s\n','CC CONSTANT RES. SATURATION OF PHASES 1,2,AND 3 AT LOW 
CAPILLARY NO.'); 
        fprintf(fid,'%s\n','*---- s1rwc    s2rwc     s3rwc '); 
        fprintf(fid,'\t%f\t%f\t%f\n',S.s1rwc,S.s2rwc,S.s3rwc); 
    case 1 
        for ph=1:3 
            fprintf(fid,'%s\n','CC'); 
            fprintf(fid,'%s%d%s\n','CC RES. SATURATION OF PHASE',ph,'AT LOW CAPILLARY NO. 
BY LAYER'); 
            fprintf(fid,'%s\n','*---- s1rw(nz)'); 
            for z=1:S.NZ 
                fprintf(fid,'%1.2f\n',S.srwc(ph,z)); 
            end 
        end 
    case 2 
        for ph=1:3 
            fprintf(fid,'%s\n','CC'); 
            fprintf(fid,'%s%d%s\n','CC RES. SATURATION OF PHASE',ph,'AT LOW CAPILLARY NO. 
BY LAYER'); 
            fprintf(fid,'%s\n','*---- srw(nx*ny*nz)'); 
            for i=1:S.NX*S.NY*S.NZ 
                fprintf(fid,'%1.2f\n',S.srwc(ph,i)); 
            end 
        end 
end 
switch S.iprw 
    case 0 
        fprintf(fid,'%s\n','CC'); 
        fprintf(fid,'%s\n','CC ENDPOINT REL. PERM. OF PHASES 1,2,AND 3 AT LOW CAPILLARY 
NO.'); 
        fprintf(fid,'%s\n','*---- p1rwc   p2rwc   p3rwc'); 
        fprintf(fid,'\t%f\t%f\t%f\n',S.p1rwc,S.p2rwc,S.p3rwc); 
    case 1 
        for ph=1:3 
            fprintf(fid,'%s\n','CC'); 
            fprintf(fid,'%s%d%s\n','CC RES. SATURATION OF PHASE ',ph,' AT LOW CAPILLARY 
NO. BY LAYER'); 
            fprintf(fid,'%s\n','*---- s1rw(nz)'); 
            for z=1:S.NZ 
                fprintf(fid,'%1.2f\n',S.prwc(ph,z)); 
            end 
        end 
    case 2 
        for ph=1:3 
            fprintf(fid,'%s\n','CC'); 
            fprintf(fid,'%s%d%s\n','CC RES. SATURATION OF PHASE ',ph,' AT LOW CAPILLARY 
NO. BY LAYER'); 
            fprintf(fid,'%s\n','*---- srw(nx*ny*nz)'); 
            for i=1:S.NX*S.NY*S.NZ 
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                fprintf(fid,'%1.2f\n',S.prwc(ph,i)); 
            end 
        end 
end 
switch S.iew 
    case 0 
        fprintf(fid,'%s\n','CC'); 
        fprintf(fid,'%s\n','CONSTANT REL. PERM. EXPONENT OF PHASES 1,2,AND 3 AT LOW 
CAPILLARY NO.'); 
        fprintf(fid,'%s\n','*---- e1wc     e2wc     e3wc '); 
        fprintf(fid,'\t%f\t%f\t%f\n',S.e1wc,S.e2wc,S.e3wc); 
    case 1 
        for ph=1:3 
            fprintf(fid,'%s\n','CC'); 
            fprintf(fid,'%s%d%s\n','REL. PERM. EXPONENT OF PHASE ',ph,' AT LOW CAPILLARY 
NO. BY LAYER'); 
            fprintf(fid,'%s\n','*---- s1rw(nz)'); 
            for z=1:S.NZ 
                fprintf(fid,'%1.2f\n',S.ewc(ph,z)); 
            end 
        end 
    case 2 
        for ph=1:3 
            fprintf(fid,'%s\n','CC'); 
            fprintf(fid,'%s%d%s\n','CC RES. SATURATION OF PHASE ',ph,' AT LOW CAPILLARY 
NO. BY LAYER'); 
            fprintf(fid,'%s\n','*---- srw(nx*ny*nz)'); 
            for i=1:S.NX*S.NY*S.NZ 
                fprintf(fid,'%1.2f\n',S.ewc(ph,i)); 
            end 
        end 
end 
fprintf(fid,'%s\n','CC'); 
if S.itrap==1 
    fprintf(fid,'%s\n','CC RES. SATURATION OF PHASES 1,2,AND 3 AT HIGH CAPILLARY NO.'); 
    fprintf(fid,'%s\n','*---- s1rc   s2rc   s3rc'); 
    fprintf(fid,'\t%f\t%f\t%f\n',S.s1rc,S.s2rc,S.s3rc); 
    fprintf(fid,'%s\n','CC'); 
    fprintf(fid,'%s\n','CC ENDPOINT REL. PERM. OF PHASES 1,2,AND 3 AT HIGH CAPILLARY 
NO.'); 
    fprintf(fid,'%s\n','*---- p1rc   p2rc   p3rc'); 
    fprintf(fid,'\t%f\t%f\t%f\n',S.p1rc,S.p2rc,S.p3rc); 
    fprintf(fid,'%s\n','CC'); 
    fprintf(fid,'%s\n','CC REL. PERM. EXPONENT OF PHASES 1,2,AND 3 AT HIGH CAPILLARY 
NO.'); 
    fprintf(fid,'%s\n','*---- e13c   e23c   e31c'); 
    fprintf(fid,'\t%f\t%f\t%f\n',S.e13c,S.e23c,S.e31c); 
    fprintf(fid,'%s\n','CC'); 
end 
fprintf(fid,'%s\n','CC WATER AND OIL VISCOSITY , RESERVOIR TEMPERATURE'); 
fprintf(fid,'%s\n','*---- VIS1    VIS2   TSTAND'); 
fprintf(fid,'\t%f\t%f\t%f\n',S.VIS1,S.VIS2,S.TSTAND); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC COMPOSITIONAL PHASE VISCOSITY PARAMETERS'); 
fprintf(fid,'%s\n','*----   ALPHAV1   ALPHAV2   ALPHAV3   ALPHAV4  ALPHAV5'); 
fprintf(fid,'\t%f\t%f\t%f\t%f\t%f\n',S.ALPHAV1,S.ALPHAV2,S.ALPHAV3,S.ALPHAV4,S.ALPHAV5); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC PARAMETERS TO CALCULATE POLYMER VISCOSITY AT ZERO SHEAR RATE'); 
fprintf(fid,'%s\n','*---- AP1      AP2      AP3'); 
fprintf(fid,'\t%f\t%f\t%f\n',S.AP1,S.AP2,S.AP3); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC PARAMETER TO COMPUTE CSEP,MIN. CSEP, AND SLOPE OF LOG VIS. VS. LOG 
CSEP '); 
fprintf(fid,'%s\n','*---- BETAP    CSE1     SSLOPE'); 
fprintf(fid,'\t%f\t%f\t%f\n',S.BETAP,S.CSE1,S.SSLOPE); 
fprintf(fid,'%s\n','CC'); 
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fprintf(fid,'%s\n','CC PARAMETER FOR SHEAR RATE DEPENDENCE OF POLYMER VISCOSITY'); 
fprintf(fid,'%s\n','*---- GAMMAC   GAMHF   POWN IPMOD'); 
fprintf(fid,'\t%f\t%f\t%f\t%d\n',S.GAMMAC,S.GAMHF,S.POWN,S.IPMOD); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC FLAG FOR POLYMER PARTITIONING, PERM. REDUCTION PARAMETERS'); 
fprintf(fid,'%s\n','*---- IpOLYM    EPHI3    EPHI4    BRK     CRK   RKCUT'); 
fprintf(fid,'\t%d\t%f\t%f\t%f\t%f\t%f\n',S.IpOLYM,S.EPHI3,S.EPHI4,S.BRK,S.CRK,S.RKCUT); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC SPECIFIC WEIGHT FOR COMPONENTS 1,2,3,7,8 ,Coeffient of oil and 
GRAVITY FLAG'); 
fprintf(fid,'%s\n','*---- DEN1     DEN2    DEN23     DEN3    DEN7    DEN8    IDEN '); 
fprintf(fid,'\t%f\t%f\t%f\t%f\t%f\t%f\t%d\n',S.DEN1,S.DEN2,S.DEN23,S.DEN3,S.DEN7,S.DEN8,S
.IDEN); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC FLAG FOR CHOICE OF UNITS ( 0:BOTTOMHOLE CONDITION , 1: STOCK 
TANK)'); 
fprintf(fid,'%s\n','*----- ISTB'); 
fprintf(fid,'\t%d\n',S.ISTB); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC COMPRESSIBILITY FOR VOL. OCCUPYING COMPONENTS 1,2,3,7,AND 8 '); 
fprintf(fid,'%s\n','*---- COMPC(1)  COMPC(2)  COMPC(3)  COMPC(7)  COMPC(8)'); 
fprintf(fid,'\t%1.8f\t%1.8f\t%1.8f\t%1.8f\t%1.8f\n',S.COMPC(1),S.COMPC(2),S.COMPC(3),S.CO
MPC(7),S.COMPC(8)); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC CONSTANT OR VARIABLE PC PARAM., WATER-WET OR OIL-WET PC CURVE FLAG 
'); 
fprintf(fid,'%s\n','*---- ICPC    IEPC   IOW '); 
fprintf(fid,'\t%d\t%d\t%d\n',S.ICPC,S.IEPC,S.IOW); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC CAPILLARY PRESSURE PARAMETER, CPC0 '); 
fprintf(fid,'%s\n','*---- CPC0'); 
fprintf(fid,'\t%f\n',S.CPC0); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC CAPILLARY PRESSURE PARAMETER, EPC0 '); 
fprintf(fid,'%s\n','*---- EPC0'); 
fprintf(fid,'\t%f\n',S.EPC0); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC MOLECULAR DIFFUSION COEF. KCTH COMPONENT IN PHASE 1 '); 
fprintf(fid,'%s\n','*---- D(KC,1),KC=1,N'); 
for i=1:S.n 
    fprintf(fid,'\t%f',S.D1(i)); 
end 
fprintf(fid,'\n'); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC MOLECULAR DIFFUSION COEF. KCTH COMPONENT IN PHASE 2 '); 
fprintf(fid,'%s\n','*---- D(KC,2),KC=1,N'); 
for i=1:S.n 
    fprintf(fid,'\t%f',S.D2(i)); 
end 
fprintf(fid,'\n'); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC MOLECULAR DIFFUSION COEF. KCTH COMPONENT IN PHASE 3 '); 
fprintf(fid,'%s\n','*---- D(KC,3),KC=1,N'); 
for i=1:S.n 
    fprintf(fid,'\t%f',S.D3(i)); 
end 
fprintf(fid,'\n'); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 1'); 
fprintf(fid,'%s\n','*---- ALPHAL(1)     ALPHAT(1)'); 
fprintf(fid,'\t%f\t%f\n',S.ALPHAL(1),S.ALPHAT(1)); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 2'); 
fprintf(fid,'%s\n','*---- ALPHAL(2)     ALPHAT(2)'); 
fprintf(fid,'\t%f\t%f\n',S.ALPHAL(2),S.ALPHAT(2)); 
fprintf(fid,'%s\n','CC'); 
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fprintf(fid,'%s\n','LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 3'); 
fprintf(fid,'%s\n','*---- ALPHAL(3)     ALPHAT(3)'); 
fprintf(fid,'\t%f\t%f\n',S.ALPHAL(3),S.ALPHAT(3)); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC flag to specify organic adsorption calculation'); 
fprintf(fid,'%s\n','*---- iadso'); 
fprintf(fid,'\t%d\n',S.iadso); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC SURFACTANT AND POLYMER ADSORPTION PARAMETERS'); 
fprintf(fid,'%s\n','*---- AD31    AD32   B3D    AD41   AD42   B4D   IADK  IADS1   FADS   
REFK'); 
fprintf(fid,'\t%f\t%f\t%f\t%f\t%f\t%f\t%d\t%d\t%d\t%f\n',S.AD31,S.AD32,S.B3D,S.AD41,S.AD4
2,S.B4D,S.IADK,S.IADS1,S.FADS,S.REFK); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC PARAMETERS FOR CATION EXCHANGE OF CLAY AND SURFACTANT'); 
fprintf(fid,'%s\n','*---- QV      XKC     XKS     EQW'); 
fprintf(fid,'\t%f\t%f\t%f\t%f\n',S.QV,S.XKC,S.XKS,S.EQW); 
fprintf(fid,'%s\n','CC'); 
if S.nta+S.ntw>0 
    fprintf(fid,'%s\n','CC TRACER PARTITIONING COEFFICIENT'); 
    fprintf(fid,'%s\n','*---- TK(I),I=1,NTW + NTA'); 
    for nt=1:S.ntw+S.nta 
        fprintf(fid,'%f\t',S.TK(nt)); 
    end 
    fprintf(fid,'\n'); 
    fprintf(fid,'%s\n','CC'); 
    fprintf(fid,'%s\n','CC TRACER PARTITION COEFFICIENT SALINITY PARAMETER (1/MEQ/ML)'); 
    fprintf(fid,'%s\n','*---- TKS(I),I=1,NTW'); 
    for nt=1:S.ntw 
        fprintf(fid,'%f\t',S.TKS(nt)); 
    end 
    fprintf(fid,'%f\t',S.C5INI); 
    fprintf(fid,'\n'); 
    fprintf(fid,'%s\n','CC'); 
    fprintf(fid,'%s\n','CC RADIOACTIVE DECAY COEFFICIENT'); 
    fprintf(fid,'%s\n','*---- RDC(I),I=1,NTW + NTA'); 
    for nt=1:S.ntw+S.nta 
        fprintf(fid,'%f\t',S.RDC(nt)); 
    end 
    fprintf(fid,'\n'); 
    fprintf(fid,'%s\n','CC'); 
    fprintf(fid,'%s\n','CC TRACER ADSORPTION PARAMETER'); 
    fprintf(fid,'%s\n','*---- RET(I),I=1,NTW + NTA'); 
    for nt=1:S.ntw+S.nta 
        fprintf(fid,'%f\t',S.RET(nt)); 
    end 
    fprintf(fid,'\n'); 
    fprintf(fid,'%s\n','CC'); 
end 
fprintf(fid,'%s\n','CC***********************************************'); 
fprintf(fid,'%s\n','CC*                                                            *'); 
fprintf(fid,'%s\n','CC*   WELL DATA                                                *'); 
fprintf(fid,'%s\n','CC*                                                            *'); 
fprintf(fid,'%s\n','CC****************************************'); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC FLAG FOR SPECIFIED BOUNDARY AND ZONE IS MODELED'); 
fprintf(fid,'%s\n','*---- IBOUND     IZONE'); 
fprintf(fid,'\t%d\t%d\n',S.IBOUND,S.IZONE); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC TOTAL NUMBER OF WELLS, WELL RADIUS FLAG, FLAG FOR TIME OR COURANT 
NO.'); 
fprintf(fid,'%s\n','*---- NWELL   IRO    ITIME    NWREL'); 
fprintf(fid,'\t%d\t%d\t%d\t%d\n',S.NWELL,S.IRO(1),S.ITIME(1),S.NWREL); 
for nw=1:S.NWELL 
    fprintf(fid,'%s\n','CC'); 
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    fprintf(fid,'%s\n','CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL 
RADIUS, SKIN'); 
    fprintf(fid,'%s\n','*---- IDW    IW    JW    IFLAG    RW     SWELL   IDIR   IFIRST   
ILAST   IPRF '); 
    
fprintf(fid,'\t%d\t%d\t%d\t%d\t%f\t%f\t%d\t%d\t%d\t%d\n',S.WELL(nw).IDW,S.WELL(nw).IW,S.W
ELL(nw).JW,S.WELL(nw).IFLAG,  ... 
        
S.WELL(nw).RW,S.WELL(nw).SWELL,S.WELL(nw).IDIR,S.WELL(nw).IFIRST,S.WELL(nw).ILAST,S.WELL(
nw).IPRF); 
    fprintf(fid,'%s\n','CC'); 
    fprintf(fid,'%s\n','CC WELL NAME'); 
    fprintf(fid,'%s\n','*----  WELNAM'); 
    fprintf(fid,'\t%s\n',S.WELL(nw).NAM); 
    fprintf(fid,'%s\n','CC'); 
    fprintf(fid,'%s\n','CC ICHEK , MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND 
RATE'); 
    fprintf(fid,'%s\n','*---- ICHEK     PWFMIN     PWFMAX    QTMIN    QTMAX'); 
    
fprintf(fid,'\t%d\t%f\t%f\t%f\t%f\n',S.WELL(nw).ICHEK,S.WELL(nw).PWFMIN,S.WELL(nw).PWFMAX
,S.WELL(nw).QTMIN,S.WELL(nw).QTMAX); 
end 
t=1; 
for nw=1:S.NWELL 
    if S.WELL(nw).IFLAG ==1 || S.WELL(nw).IFLAG ==3 
        fprintf(fid,'%s\n','CC'); 
        fprintf(fid,'%s\n','CC  ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH 
PHASE (L=1,3)'); 
        fprintf(fid,'%s\n','*----  ID     QI(M,L)     C(M,KC,L)'); 
        for l=1:3 
            fprintf(fid,'\t%d\t%f',S.WELL(nw).IDW,S.QI(nw,l,t)); 
            for kc=1:S.n 
                fprintf(fid,'\t%f',S.C(nw,kc,l,t)); 
            end 
            fprintf(fid,'\n'); 
        end 
    end 
    if  S.WELL(nw).IFLAG ==2 || S.WELL(nw).IFLAG ==3 
        fprintf(fid,'%s\n','CC'); 
        fprintf(fid,'%s\n','CC ID, BOTTOM HOLE PRESSURE FOR PRESSURE CONSTRAINT WELL 
(IFLAG=2 OR 3)'); 
        fprintf(fid,'%s\n','*----  ID    PWF'); 
        fprintf(fid,'\t%d\t%f\n',S.WELL(nw).IDW,S.WELL(nw).T(t).PWF); 
    end 
    if  S.WELL(nw).IFLAG ==4 
        fprintf(fid,'%s\n','CC'); 
        fprintf(fid,'%s\n','CC  ID, TOTAL PRODUCTION RATE'); 
        fprintf(fid,'%s\n','*----  ID    QI(M,1)'); 
        fprintf(fid,'\t%d\t%f\n',S.WELL(nw).IDW,S.WELL(nw).T(t).PWF); 
    end 
end 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC CUM. INJ. TIME , AND INTERVALS (PV OR DAY) FOR WRITING TO OUTPUT 
FILES'); 
fprintf(fid,'%s\n','*---- TINJ     CUMPR1     CUMHI1     WRHPV     WRPRF      RSTC'); 
fprintf(fid,'\t%f\t%f\t%f\t%f\t%f\t%f\n',S.TINJ(t),S.CUMPR1(t),S.CUMHI1(t),S.WRHPV(t),S.W
RPRF(t),S.RSTC(t)); 
fprintf(fid,'%s\n','CC'); 
fprintf(fid,'%s\n','CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. courant 
numbers'); 
fprintf(fid,'%s\n','*----  DT      DCLIM     CNMAX      CNMIN'); 
fprintf(fid,'\t%f\t%f\t%f\t%f\n',S.DT(t),S.DCLIM(t),S.CNMAX(t),S.CNMIN(t)); 
t=2;  
while S.TINJ(t-1)<S.TMAX 
    fprintf(fid,'%s\n','CC'); 
    fprintf(fid,'%s\n','CC FLAG FOR INDICATING BOUNDARY CHANGE'); 
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    fprintf(fid,'%s\n','*---- IBMOD'); 
    fprintf(fid,'\t%d\n',S.IBMOD(t)); 
    fprintf(fid,'%s\n','CC'); 
    fprintf(fid,'%s\n','CC IRO, ITIME, NEW FLAGS FOR ALL THE WELLS'); 
    fprintf(fid,'%s\n','*----  IRO    ITIME     IFLAG '); 
    fprintf(fid,'\t%d\t%d',S.IRO(t),S.ITIME(t)); 
    for nw=1:S.NWELL 
        fprintf(fid,'\t%d',S.WELL(nw).T(t).IFLAG); 
    end 
    fprintf(fid,'\n'); 
    fprintf(fid,'%s\n','CC'); 
    fprintf(fid,'%s\n','CC NUMBER OF WELLS CHANGES IN LOCATION OR SKIN OR PWF'); 
    fprintf(fid,'%s\n','*----  NWEL1'); 
    fprintf(fid,'\t%d\n',S.NWEL1(t)); 
    for nw=1:S.NWEL1(t) 
        fprintf(fid,'%s\n','CC'); 
        fprintf(fid,'%s\n','CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL 
RADIUS, SKIN'); 
        fprintf(fid,'%s\n','*---- IDW    IW    JW    RW     SWELL   IDIR   IFIRST   ILAST   
IPRF '); 
        
fprintf(fid,'\t%d\t%d\t%d\t%f\t%f\t%d\t%d\t%d\t%d\n',S.NWELL1(nw,t).IDW,S.NWELL1(nw,t).IW
,S.NWELL1(nw,t).JW,  ... 
            
S.NWELL1(nw,t).RW,S.NWELL1(nw,t).SWELL,S.NWELL1(nw,t).IDIR,S.NWELL1(nw,t).IFIRST,S.NWELL1
(nw,t).ILAST,S.NWELL1(nw,t).IPRF); 
        fprintf(fid,'%s\n','CC'); 
        fprintf(fid,'%s\n','CC WELL NAME'); 
        fprintf(fid,'%s\n','*----  WELNAM'); 
        fprintf(fid,'\t%s\n',S.NWELL1(nw,t).NAM); 
        fprintf(fid,'%s\n','CC'); 
        fprintf(fid,'%s\n','CC ICHEK , MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND 
RATE'); 
        fprintf(fid,'%s\n','*---- ICHEK     PWFMIN     PWFMAX    QTMIN    QTMAX'); 
        
fprintf(fid,'\t%d\t%f\t%f\t%f\t%f\n',S.NWELL1(nw,t).ICHEK,S.NWELL1(nw,t).PWFMIN,S.NWELL1(
nw,t).PWFMAX,S.NWELL1(nw,t).QTMIN,S.NWELL1(nw,t).QTMAX); 
    end 
    fprintf(fid,'%s\n','CC'); 
    fprintf(fid,'%s\n','CC NUMBER OF WELLS WITH RATE CHANGES, ID'); 
    fprintf(fid,'%s\n','*----  NWEL2'); 
    fprintf(fid,'\t%d',S.NWEL2(t)); 
    for i=1:S.NWEL2(t) 
        fprintf(fid,'\t%d',S.NWEL2ID(t,i)); 
    end 
    fprintf(fid,'\n'); 
    for nw=1:S.NWELL 
        if  (S.WELL(nw).IFLAG ==1 || S.WELL(nw).IFLAG ==3) && 
S.NWEL2ID(t,nw)==S.WELL(nw).IDW 
            fprintf(fid,'%s\n','CC'); 
            fprintf(fid,'%s\n','CC  ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR 
EACH PHASE (L=1,3)'); 
            fprintf(fid,'%s\n','*----  ID     QI(M,L)     C(M,KC,L)'); 
            for l=1:3 
                fprintf(fid,'\t%d\t%f',S.WELL(nw).IDW,S.QI(nw,l,t)); 
                for kc=1:S.n 
                    fprintf(fid,'\t%f',S.C(nw,kc,l,t)); 
                end 
                fprintf(fid,'\n'); 
            end 
        end 
        if (S.WELL(nw).IFLAG ==2 || S.WELL(nw).IFLAG ==4) && 
S.NWEL2ID(t,nw)==S.WELL(nw).IDW 
            fprintf(fid,'%s\n','CC'); 
            fprintf(fid,'%s\n','CC ID, BOTTOM HOLE PRESSURE FOR PRESSURE CONSTRAINT WELL 
(IFLAG=2 OR 3)'); 
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            fprintf(fid,'%s\n','*----  ID    PWF'); 
            fprintf(fid,'\t%d\t%f\n',S.WELL(nw).IDW,S.WELL(nw).T(t).PWF); 
        end 
    end 
    fprintf(fid,'%s\n','CC'); 
    fprintf(fid,'%s\n','CC CUM. INJ. TIME , AND INTERVALS (PV OR DAY) FOR WRITING TO 
OUTPUT FILES'); 
    fprintf(fid,'%s\n','*---- TINJ     CUMPR1     CUMHI1     WRHPV     WRPRF      RSTC'); 
    
fprintf(fid,'\t%f\t%f\t%f\t%f\t%f\t%f\n',S.TINJ(t),S.CUMPR1(t),S.CUMHI1(t),S.WRHPV(t),S.W
RPRF(t),S.RSTC(t)); 
    fprintf(fid,'%s\n','CC'); 
    fprintf(fid,'%s\n','CC FOR IMES=2 ,THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. 
courant numbers'); 
    fprintf(fid,'%s\n','*----  DT      DCLIM     CNMAX      CNMIN'); 
    fprintf(fid,'\t%f\t%f\t%f\t%f\n',S.DT(t),S.DCLIM(t),S.CNMAX(t),S.CNMIN(t)); 
    t=t+1; 
end 
fclose(fid); 

 
 

A2-3. READING A GRID PROPERTY 
function [P1,P2,P3]=read_pres(rootname,T,NX,NY,NZ); 
% read_pres reads the pressure field for a series of times 
% returns three arrays of pressure, one for each phase  
% [P1,P2,P3]=read_pres(rootname,T,NX,NY,NZ); 
filename=[rootname '.PRESP']; 
fid=fopen(filename); 
for i=1:5 
    S=fgetl(fid); 
end 
for t=1:T 
    S=fgetl(fid); 
    for k=1:NZ 
        for phase=1:3 
            S=fgetl(fid); 
            for j=1:NY 
                for i=1:NX 
                    if phase==1 
                        P1(i,j,k,t) = fscanf(fid, '%f', [1 1]); 
                    end 
                    if phase==2 
                        P2(i,j,k,t) = fscanf(fid, '%f', [1 1]); 
                    end 
                    if phase==3 
                        P3(i,j,k,t) = fscanf(fid, '%f', [1 1]); 
                    end 
                end 
            end 
            fseek(fid,ftell(fid)+1,'bof'); 
        end 
    end 
end 
fclose(fid); 
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Appendix 3- Model Selection Algorithm 

A3-1. MATLAB CODE FOR MODEL SELECTION ALGORITHM 
addpath '/home/cmantilla/Research/polymer/matlab_scripts/'; 
clc 
clear all; 
close all; 
set(0,'defaultaxesfontsize',14) 
%%***************INPUT FILES*************************************** 
Base_dir='/home/cmantilla/DB/Real-2/'; 
ref_input_file=[Base_dir,'REF_40ELLIP.mat'];    % 
ref_prod_file=[Base_dir,'REFDATA_40b.mat'];  % 
prod_data_real=[Base_dir,'PRODDATA_40b.mat'];  % 
proxy_resp_file1=[Base_dir,'proxy_perm_wells.dat'];   % 
proxy_resp_file2=[Base_dir,'Arrival.dat'];  % 
Permfile=[Base_dir,'All_Real_Perm.dat'];   % 
Faciefile=[Base_dir,'All_Facies.dat']; 
%%**************END INPUT FILES************************************ 
%%********************PREPROCESING DATA**************************** 
load(ref_input_file); 
load(ref_prod_file); 
load(prod_data_real); 
well_num=[1,2]; 
NX=S.NX;  % Number of blocks in Y 
NY=S.NY;  % Number of blocks in Y 
NZ=S.NZ;   % Number of blocks in Z 
NCELLS=NX*NY*NZ; % Total number of cells 
NW=S.NWELL; % Number of wells 
NWI=0; % Number of injectors 
NWP=0; % Number of producers 
NT=25; 
for nw=1:NW 
  if S.WELL(nw).IFLAG==1 || S.WELL(nw).IFLAG==3 
  NWI=NWI+1; 
  else 
  NWP=NWP+1; 
  end 
end 
ND=2; 
Dref2=Dref; 
clear Dref; 
for nd=1:ND 
  if well_num(nd)<=NWI 
  Dref.Data(:,nd)=Dref2.WELL(well_num(nd)).DATA(1:NT,6); 
  else 
  Dref.Data(:,nd)=Dref2.WELL(well_num(nd)).DATA(1:NT,10); 
  end 
end 
NReal=size(REAL,2); 
REAL2=REAL; 
clear REAL 
for nr=1:NReal 
  for nd=1:ND 
  if well_num(nd)<=NWI 
    REAL(nr).DATA(:,nd)=REAL2(nr).WELL(well_num(nd)).DATA(1:NT,6); 
  else 
    REAL(nr).DATA(:,nd)=REAL2(nr).WELL(well_num(nd)).DATA(1:NT,10); 
  end 
  end 
end 
NM=12;   % Number of reservoir model types 
NR=50;  % Number of realizations of each model type 
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%%***************************END OF DATA PREPROCESSING********************* 
%% Phase 1 : Scan Reservoir Models through Proxy Models 
delete *.ps 
NRmin=10; 
DT=10; % Time step size. 
for nt=1:NT 
  Time(nt)=DT*nt; 
end 
%% Phase 2 : Compute Covariance Matrix and PCA 
% Normalizes the outputs from proxies 
system('~/Research/polymer/Random_cpp/Cluster_Normal/cluster_normal.exe');   % Executes 
the proxy model 
system('~/Research/polymer/Random_cpp/Cluster_Polymer/cluster_polymer.exe');  % Executes 
the proxy model 
ncols=[1,2];  % Number of columns from the proxy output file 
[PR1]=read_proxy_response(proxy_resp_file1,ncols); 
ncols=[1,2];  % Number of columns from the proxy output file 
[PR2]=read_proxy_response(proxy_resp_file2,ncols); 
PR=[PR1]; % Number of columns from the proxy output file 
%stores minimum and maximum values from the proxy responses 
minPR=min(PR); 
maxPR=max(PR); 
PR=(PR-ones(NM*NR,1)*minPR)./(ones(NM*NR,1)*(maxPR-minPR)); 
% Normalizes the outputs from proxies 
CovarMat=cov(PR); % Covariance Matrix 
[U,Sval,V]=svd(CovarMat); % Singular Value Decomposition  
PCscores=PR*U; % Gets the principal component scores (PC scores) 
thres=0.8; % number of eigen values selected 
eval=diag(Sval); % Eigen Values 
for i=1:size(PR,2) 
  if sum(eval(1:i))/sum(eval)>thres 
  break; 
  end 
end 
nval=i; 
nval=2; 
PC1=PR*U(:,1);  % Dot product with first eigenvector 
PC2=PR*U(:,2);  % Dot product with second eigenvector 
PC=PCscores(:,1:nval); % PC matrix has the first n PC scores  
nf=1; 
figure(nf) 
for nm=1:NM 
  switch nm 
  case 1 
    color='ob'; 
    face='b'; 
  case 2 
    color='or'; 
    face='r'; 
  case 3 
    color='og'; 
    face='r'; 
  end 
  i1=(nm-1)*50+1; 
  i2=nm*50; 
  plot(PC1(i1:i2),PC2(i1:i2),color,'markersize',3,'markerface',face); 
  hold on; 
end 
C={}; 
for nm=1:NM 
  str=['Model ',int2str(nm)]; 
  C=[C,str]; 
end 
title('Projection on top 2 Eigenvectors','fontsize',16); 
legend(C); 
xlabel('Projection on 1st Eigenvector','fontsize',16); 
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ylabel('Projection on 2nd Eigenvector','fontsize',16); 
print -dpsc PCScores_Models.ps 
hold off; 
xlim_orig=xlim; 
ylim_orig=ylim; 
%% PHASE 3: CLUSTER ANALYSIS 
NC=best_clusters(PC); 
it=0; 
nsmin=3; 
fid_perm_cent=fopen('Perm_centers.dat','wt'); 
fprintf(fid_perm_cent,'%s\n%s\n%s\n%s\n','Permeability of cluster centers','3','Average', 
'Variance','Indicator'); 
fid_res=fopen('Cluster_Probability.txt','wt'); 
for nc=1:NC 
  fprintf(fid_res,'%s %d\t','NR',nc); 
end 
for nc=1:NC 
  fprintf(fid_res,'%s %d\t','PrCD',nc); 
end 
for nr=1:NReal 
  Real_Indx(nr)=nr; 
end 
while NReal>NRmin 
  it=it+1; 
  obj_fun=zeros(NC,1); 
  flag=0; 
  while flag==0 
  flag=1; 
  %[clus,centers]=k_means(PC,NC); 
  y=kMeansCluster(PC,NC,0); 
  clus=y(:,3); 
  centers=zeros(NC,2); 
  for nc=1:NC 
    cluster(nc).NRClus=length(find(clus==nc)); 
  end 
  for nr=1:NReal 
    nc=clus(nr); 
    centers(nc,:)=centers(nc,:)+PC(nr,:)/cluster(nc).NRClus; 
  end 
  for nc=1:NC 
    x=find(clus==nc); 
    if size(x,1)==0 
    flag=0; 
    break; 
    end 
  end 
  end 
  nf=nf+1; 
  for nc=1:NC 
  cluster(nc).ns=0; 
  cluster(nc).NRClus=length(find(clus==nc)); % Number of realizations on each cluster 
  cluster(nc).PrC=cluster(nc).NRClus/NReal; 
  cluster(nc).center=centers(nc,:); 
  count=0; 
  for nr=1:NReal 
    if clus(nr)==nc 
    count=count+1; 
    cluster(nc).Real_Indx(count)=Real_Indx(nr); 
    end 
  end 
  for nm=1:NM 
    count=0; 
    m1=(nm-1)*NR+1; 
    m2=nm*NR; 
    for nr=1:cluster(nc).NRClus 
    if cluster(nc).Real_Indx(nr)>=m1 && cluster(nc).Real_Indx(nr)<=m2 
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      cluster(nc).ModelType(nr)=nm; 
      count=count+1; 
    end 
    end 
    cluster(nc).PrCM(nm)=count/NR; 
    cluster(nc).PrMC(nm)=cluster(nc).PrCM(nm)*(1/NM)/cluster(nc).PrC; % 
Pr{Model=nm|Cluster=nc} 
  end 
  count=0; 
  figure(nf); 
  for nr=1:NReal 
    if nc==clus(nr) 
    count=count+1; 
    cluster(nc).PC(count,:)=PC(nr,:); 
    col=[nc/NC,1-nc/NC,nc/NC]; 
    switch nc 
      case 1 
      col=[0,0,1]; 
      case 2 
      col=[0,1,0]; 
      case 3 
      col=[0.5,0.5,0.5]; 
    end 
    plot(PC(nr,1),PC(nr,2),'MarkerFaceColor',col,... 
      'MarkerSize',4,'Marker','o','LineStyle','none','Color',col); 
    hold on; 
    end 
  end 
  dc_weight=[]; 
  for nr=1:cluster(nc).NRClus 
    dc_weight(nr)=1/norm(cluster(nc).PC(nr,:)-centers(nc,:)); 
  end 
  cluster(nc).dc_weight=dc_weight/sum(dc_weight); 
  for ns=1:nsmin 
    cluster(nc).ns=cluster(nc).ns+1; 
    cdf=0; 
    x=rand; 
    for n=1:cluster(nc).NRClus 
    cdf=cdf+cluster(nc).dc_weight(n); 
    % the probability of selecting a realization within a cluster is proportional to the 
distance to its center 
    if x<cdf 
      break; 
    end 
    end 
    [a,ix]=sort(cluster(nc).dc_weight); 
    cluster(nc).samples(ns).nrs=cluster(nc).Real_Indx(n); 
    x=cluster(nc).samples(ns).nrs; 
    %% RUNS UTCHEM TO EXTRACT PRODUCTION DATA 
    S.PERMX=textread(Permfile,'%f','headerlines',3+(x-1)*NCELLS); 
    save temp.mat S 
    UTCHEM_FILE('temp.mat'); 
    UTCHEM_HEAD('temp.mat'); 
    system('time ~/Research/polymer/UTCHEM10/utchem10.exe'); 
    H1=read_hist(S.RUNNO,1,'INJ',S.WELL(1).NPERF,S.NWELLS); 
    %% 
    for nd=1:ND   
    cluster(nc).samples(ns).DataType(nd).Data=REAL(x).DATA(1:NT,nd);  
    obj_fun(nc)=obj_fun(nc)+norm(cluster(nc).samples(ns).DataType(nd).Data-... 
      Dref.Data(1:NT,nd)); % mismatch between the sampled and the reference production 
data 
    end 
  end 
  end 
  for nc=1:NC 
  x2=0.8/6+(cluster(nc).center(1)-xlim_orig(1))/(xlim_orig(2)-xlim_orig(1))*4.625/6; 
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  y2=0.5/4.5+(cluster(nc).center(2)-ylim_orig(1))/(ylim_orig(2)-ylim_orig(1))*3.7/4.5; 
  annotation('textbox',[x2,y2,0.03,0.01],'string',num2str(nc),'LineStyle','none'); 
  end 
  xlim(xlim_orig); 
  ylim(ylim_orig); 
  title('K-means sub-clustering in principal component space','fontsize',14); 
  xlabel('Projection on 1st Eigenvector','fontsize',16); 
  ylabel('Projection on 2nd Eigenvector','fontsize',16); 
  str=['PCScores_Clusters_it_',num2str(it),'.ps']; 
  print('-dpsc',str); 
  hold off; 
  fprintf(fid_res,'\n'); 
  NS=min(100,max(10,ceil(NReal/30))); % total number of samples 
  for ns1=nsmin*NC+1:NS 
  x=rand; % samples from pixelplt_para uniform distribution 
  cdf=0; 
  for nc=1:NC 
    cdf=cdf+cluster(nc).PrC;  % Probability of selecting each cluster 
    if x<cdf 
    break; % nc is the number of cluster selected for this reservoir 
    end 
  end 
  cluster(nc).ns=cluster(nc).ns+1; % counter for the number of samples drawn from the 
selected cluster 
  ns=cluster(nc).ns; 
  % selects a sample according to the distance to the center 
  cdf=0; 
  x=rand; 
  for n=1:cluster(nc).NRClus 
    cdf=cdf+cluster(nc).dc_weight(n);   
    % the probability of selecting a realization within a cluster is proportional to the 
distance to its center 
    if x<cdf 
    break; 
    end 
  end 
  [a,ix]=sort(cluster(nc).dc_weight); 
  %n=ix(ns); 
  cluster(nc).samples(ns).nrs=cluster(nc).Real_Indx(n);  
  % realization index refered to the initial set of realizations 
  x=cluster(nc).samples(ns).nrs; 
  S.PERMX=textread(Permfile,'%f','headerlines',3+(x-1)*NCELLS); 
  save temp.mat S 
  UTCHEM_FILE('temp.mat'); 
  UTCHEM_HEAD('temp.mat'); 
  system('time ~/Research/polymer/UTCHEM10/utchem10.exe'); 
  H1=read_hist(S.RUNNO,1,'INJ',1,2); 
  for nd=1:ND 
    cluster(nc).samples(ns).DataType(nd).Data=REAL(x).DATA(1:NT,nd); 
    obj_fun(nc)=obj_fun(nc)+norm(cluster(nc).samples(ns).DataType(nd).Data-... 
    Dref.Data(1:NT,nd)); % mismatch between the sampled and the reference production data 
  end 
  end 
  for nd=1:ND % plots the sampled production data 
  figure(nf+nd); 
  for nc=1:NC 
    col=[nc/NC,1-nc/NC,nc/NC]; 
    switch nc 
    case 1 
      col=[0,0,1]; 
    case 2 
      col=[0,1,0]; 
    case 3 
      col=[0.5,0.5,0.5]; 
    end 
    for ns=1:cluster(nc).ns 
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    plot(Time,cluster(nc).samples(ns).DataType(nd).Data,'Color',col); 
    hold on; % retrives the production data from the pre-run 
    end 
  end 
  plot(Time,Dref.Data(1:NT,nd),'r','LineWidth',3); 
  xlim([0,(NT+1)*DT]); 
  if it==1 
    ylim_prod(nd,:)=ylim; 
  else 
    ylim([0,ylim_prod(nd,2)]); 
  end 
  ylim([0,10000]); 
  % labeling of production data figure 
  str=['Production data ',num2str(nd)]; 
  title(str,'fontsize',16); 
  xlabel('Time (days)','fontsize',16); 
  ylabel('Pressure drop (psi)','fontsize',16); 
  str=['Prod_Data_it_',num2str(it),'.ps'];   
  print('-dpsc',str); 
  hold off; 
  end 
  nf=nf+ND; 
  for nc=1:NC 
  obj_fun(nc)=obj_fun(nc)/cluster(nc).ns; % normalizes the objective function 
  cluster(nc).upfactor=0; 
  end 
  NS=NS+NC; 
  % In this loop it is calculated the probability of each cluster 
  for nt=1:NT 
  PC1Plot=[]; 
  PC2Plot=[]; 
  for nd=1:ND 
    % calculates the average production data 
    ave=0; 
    for nc=1:NC 
    NSC=cluster(nc).ns; 
    for nsc=1:NSC 
      ave=ave+cluster(nc).samples(nsc).DataType(nd).Data(nt); 
    end 
    end 
    % average of production data in all samples 
    ave=ave/NS; 
    var=0; 
    for nc=1:NC 
    NSC=cluster(nc).ns; 
    for nsc=1:NSC 
      var=var+(cluster(nc).samples(nsc).DataType(nd).Data(nt)-ave)^2; 
    end 
    end 
    % variance of production data in all samples 
    var=var/NS; 
    % Probability of Dref within all realizations 
    PrD(nd)=exp(-(ave-Dref.Data(nt,nd))^2/(2*var))/(sqrt(2*pi*var)); 
    PrD(nd)=1/(sqrt(2*pi*var)); 
    for nc=1:NC 
    % number of samples in cluster 
    NSC=cluster(nc).ns; 
    avec=0; 
    varc=0; 
    for nsc=1:NSC 
      avec=avec+cluster(nc).samples(nsc).DataType(nd).Data(nt); 
    end 
    avec=avec/NSC; 
    % average production data within cluster 
    for nsc=1:NSC 
      varc=varc+(cluster(nc).samples(nsc).DataType(nd).Data(nt)-avec)^2; 
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    end 
    % variance of prodution data within cluster 
    varc=varc/NSC; 
    % Probability of Dref within cluster nc 
    PrDC(nd)=exp(-(avec-Dref.Data(nt,nd))^2/(2*varc))/(sqrt(2*pi*varc)); 
    PrDC(nd)=exp(-(avec-Dref.Data(nt,nd))^2/(2*var))/(sqrt(2*pi*var)); 
    upfactor=PrDC(nd)/PrD(nd); 
    cluster(nc).upfactor=cluster(nc).upfactor+upfactor/NT; 
    end 
  end 
  end 
  sum1=0; 
  % Updates the probability of each cluster 
  for nc=1:NC 
  fprintf(fid_res,'%d\t',cluster(nc).NRClus); 
  cluster(nc).PrC=cluster(nc).PrC*cluster(nc).upfactor; 
  sum1=sum1+cluster(nc).PrC; 
  end 
  % Standarizes the probability of each cluster 
  for nc=1:NC 
  cluster(nc).PrC=cluster(nc).PrC/sum1; 
  fprintf(fid_res,'%1.2f\t',cluster(nc).PrC); 
  end 
  % Selection of cluster according to their probability  
  cdf=0; 
  x=rand; 
  for nc_sel=1:NC 
  cdf=cdf+cluster(nc_sel).PrC; 
  if x<cdf 
    break; 
  end 
  end   
  for nc=1:NC 
  PrC(nc)=cluster(nc).PrC; 
  end 
  [x,nc_sel]=max(PrC); 
  if it==1 
  nc_sel1=nc_sel; 
  centers1=centers; 
  end 
  fprintf(fid_res,'%d\n',nc_sel); 
  NReal=cluster(nc_sel).NRClus; 
  Real_Indx=cluster(nc_sel).Real_Indx; 
  PC=cluster(nc_sel).PC; 
  NC=best_clusters(PC); 
  nrc=zeros(NC,1); 
  PrM=cluster(nc_sel).PrMC; 
  dc=cluster(nc_sel).dc_weight; 
  clear cluster;   % clears all data refering to the previous level   
end 
sum1=0; 
for nm=1:NM 
  sum1=sum1+PrM(nm); 
end 
PrM=PrM/sum1; 
% Find the common characteristics in the restricted cluster 
FAC=zeros(NX*NY*NZ,1); 
for nr=1:NReal 
  x=Real_Indx(nr);   
  for nd=1:ND 
  Data=REAL(x).DATA(1:NT,nd); 
  figure(nf+nd); 
  plot(Time,Data); 
  hold on; 
  end 
end 
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for nd=1:ND 
  figure(nf+nd); 
  plot(Time,Dref.Data(1:NT,nd),'r','LineWidth',3); 
  xlim([0,(NT+1)*DT]); 
  ylim([0,ylim_prod(nd,2)]); 
  str=['Production data ',num2str(nd)]; 
  title(str,'fontsize',16); 
  xlabel('Time Step','fontsize',16); 
  ylabel('Production data','fontsize',16); 
  str=['Prod_Data_final',num2str(nd),'.ps'];  
  print('-dpsc',str); 
  hold off; 
end 
nf=nf+ND; 

A3-2. MATLAB CODE FOR OPTIMIZATION USING RESPONSE SURFACE 
function Uopt_all=Optimize(Real_Indx,Permfile,Proxyfile,Uhist,nt,NT,S,UB,LB,DT,Tol) 
% Looks for the optimal control settings that maximizes the NPV 
% Sintax:  Uopt_all=Optimize(Real_Indx,Permfile,Proxyfile,Uhist,nt,NT,S,UB,LB,DT,Tol) 
% - Input : Real_Indx = Vector witth indexes of the realizations contained 
% in the permeability file 
%       Permfile = File with the permeability values, gslib format 
%       Proxyfile = Parameter file for proxy model. Matlab type. 
%       Uhist = NC x NT control matrix with the history of the control 
%       variables, columns are rates at wells and rows is time 
%       nt = Time step at which the control starts 
%       NT = Total number of time steps incluiding the history 
%       S = Matlab structure with the parameters of the reservoir  
%       UB = Upper bound for control. Maximum injection/production 
%       rates 
%       LB = Lower bound for control. 
%       DT = Control time step size. 
%       Tol = Tolerance for convergence on control variables 
% - Output : Vector with the optimal control settings 
load(Proxyfile); 
PROXY.Permfile='perm_temp.dat'; 
Tf=DT*NT; 
dt=(DT)/(floor(100/NT)); 
NT2=Tf/dt; 
PROXY.NT=NT2; 
for t=1:NT2 
  PROXY.T(t)=t*dt; 
end 
NReal=size(Real_Indx,2); 
NX=S.NX; 
NY=S.NY; 
NZ=S.NZ; 
NW=S.NWELL; 
NWI=0; 
NWP=0; 
for nw=1:NW 
  if S.WELL(nw).IFLAG==1 
    NWI=NWI+1; 
  else 
    NWP=NWP+1; 
  end 
end 
for t1=1:nt-1 
  for t2=DT/dt*(t1-1)+1:NT2 
    time=dt*t2; 
    if time<=(t1)*DT 
      Inj=0; 
      for nw=1:NWI 
        PROXY.SOUR(nw).Q(t2)=Uhist(t1,nw); 
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        Inj=Inj+Uhist(t1,nw); 
      end 
      Prd=0; 
      for nw=1:NWP-1 
        PROXY.SINK(nw).Q(t2)=Uhist(t1,nw+NWI); 
        Prd=Prd+Uhist(t1,nw+NWI); 
      end 
      PROXY.SINK(NW-NWI).Q(t2)=(Inj-Prd); 
    end 
  end 
end 
NC=(NW-1)*(NT-nt+1); 
NRUmin=(NC-1)*NC/2+2*NC+1; % NRU realizations of the control vector 
NRUmax=NRUmin+100; 
lb=LB*ones(NC,1); 
ub=UB*ones(NC,1); 
for nr=1:NRUmin 
  for t=nt:NT 
    Prodlast=LB-1; 
    while ((Prodlast<LB) || (Prodlast>UB)) 
      U1=round((LB+(UB-LB).*rand(1,NW-1))*10)/10; 
      Inj=sum(U1(1:NWI)); 
      if NWP==1 
        Prodlast=Inj; 
      else 
        Prodlast=Inj-sum(U1(NWI+1:NWI+NWP-1)); 
      end 
    end 
    t2=t-nt; 
    U(nr,t2*(NW-1)+1:(t2+1)*(NW-1))=U1; 
  end 
end 
Uopt_all=zeros(NC,1); 
NT3=DT/dt; 
for nr=1:NReal 
  ind1=(Real_Indx(nr)-1)*NX*NY*NZ+3; 
  [K]=textread(Permfile,'%f',NX*NY*NZ,'headerlines',ind1); 
  write_gslib(K,NX,NY,NZ,PROXY.Permfile); 
  NPV_PR=0; 
  for nru=1:NRUmin 
    for t=nt:NT 
      for nw=1:NWI 
        PROXY.SOUR(nw).Q(NT3*(t-1)+1:NT3*t)=ones(NT3,1)*U(nru,(t-nt)*(NW-1)+nw); 
      end 
      for nw=NWI+1:NW-1 
        PROXY.SINK(nw-NWI).Q(NT3*(t-1)+1:NT3*t)=ones(NT3,1)*U(nru,(t-nt)*(NW-1)+nw); 
      end 
      PROXY.SINK(NW-NWI).Q(NT3*(t-1)+1:NT3*t)=ones(NT3,1)*(sum(U(nru,(t-nt)*(NW-1)+1:(t-
nt)*(NW-1)+NWI))-sum(U(nru,(t-nt)*(NW-1)+NWI+1:(t-nt)*(NW-1)+NW-1))); 
    end 
    write_proxy(PROXY); 
    system('/home/cmantilla/Research/polymer/Optimization/Proxy-Opt/Proxy-Polymer.exe 
proxy-40.par echo=off'); 
    X=read_gslib('Production.dat'); 
    N=X(:,5); 
    NPV_PR(nru,1)=N(end); 
    p=ceil(nru/NRUmin*100); 
    display(['Phase 1, ',int2str(p),' % completed']); 
  end   
  U1=U(1,:); 
  Ainj=ones(1,NWI); 
  Aprod=ones(1,NWP-1); 
  A=zeros(2*(NT-nt+1),(NW-1)*(NT-nt+1)); 
  A2=[Ainj,-Aprod;-Ainj,Aprod]; 
  b=[]; 
  for t=1:NT-nt+1 
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    A(2*(t-1)+1:2*t,(t-1)*(NW-1)+1:t*(NW-1))=A2; 
    b=[b;[UB;-LB]]; 
  end 
  for nru=NRUmin+1:NRUmax 
    [w,NPV_poly]=polyreg(U,NPV_PR); 
     
    
[Uopt,Jopt]=fmincon(@(U3)proxy_polynomial(U3,w),U1',A,b,[],[],ones(NC,1)*LB,ones(NC,1)*UB
); 
    U=[U;Uopt']; 
    for t=nt:NT 
      for nw=1:NWI 
        PROXY.SOUR(nw).Q(NT3*(t-1)+1:NT3*t)=ones(NT3,1)*round(U(nru,(t-nt)*(NW-
1)+nw)*10)/10; 
      end 
      for nw=NWI+1:NW-1 
        PROXY.SINK(nw-NWI).Q(NT3*(t-1)+1:NT3*t)=ones(NT3,1)*round(U(nru,(t-nt)*(NW-
1)+nw)*10)/10; 
      end 
      PROXY.SINK(NW-NWI).Q(NT3*(t-1)+1:NT3*t)=ones(NT3,1)*round((sum(U(nru,(t-nt)*(NW-
1)+1:(t-nt)*(NW-1)+NWI))-sum(U(nru,(t-nt)*(NW-1)+NWI+1:(t-nt)*(NW-1)+NW-1)))*10)/10; 
    end 
    write_proxy(PROXY); 
    system('/home/cmantilla/Research/polymer/Optimization/Proxy-Opt/Proxy-Polymer.exe 
proxy-40.par echo=off'); 
    X=read_gslib('Production.dat'); 
    N=X(:,5); 
    NPV_PR(nru,1)=N(end); 
    if max(abs(U(nru,:)-U(nru-1,:)))<Tol; 
      break; 
    end 
  end 
  Uopt_all=Uopt_all+Uopt/NReal; 
  U=U(1:NRUmin,:); 
end 
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Appendix -4 Computer Code of Proxy Model 

A4-1. PROGRAM FOR OBTAINING THE PARTICLE LENGTH DISTRIBUTION  

A4-1.1. Parameter File 
**Random Walker Clustering Parameter File 
40  40  1    -NX, NY, NZ 
5        -Number of realizations 
All_Real.dat  2    -Permeability file, column number 
1        -Number of injectors 
20  1  1    -Location of injectos 
1        -Number of producers 
20  40  1    -Location of producers 

A4-1.2. Computer Code 
#include <iostream> 
#include <iomanip> 
#include <fstream> 
using namespace std; 
#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include <time.h> 
#include "matrix.h" 
#include "cg.h" 
#include "functions.h" 
#include "single_phase.h" 
//global parameters   
const int NP_max=1000; 
const int nx_max=80, ny_max=110, nz_max=1;                         // Maximum number of cells allowed in each direction 
const int nsour_max=5, nsink_max=5;                  // Maximum number of wells 
int NX,NY,NZ,NSOUR,NSINK,NM,NF,NC,ND,NR;        //number of blocks in x, y  and z direction 
int i,j,k,nw,nr,ns; 
double VX[nx_max+1][ny_max+1][nz_max+1], VY[nx_max+1][ny_max+1][nz_max+1], VZ[nx_max+1][ny_max+1][nz_max+1]; 
double K1[nx_max+1][ny_max+1][nz_max+1], Kbar_sour[nsour_max+1], Kbar_sink[nsink_max+1], K_temp[11], Temp[11]; 
int Sources[nsour_max+1][4], Sinks[nsink_max+1][4], flag; 
char tempch[150]; 
double x, T[NP_max+1][nsour_max+1][nsink_max+1],tvar,perm_ave; 
int NP[nsour_max+1][nsink_max+1]; 
char Pfile[20], permfile[50]; 
// global variables for K-means 
int nchg, nc, ncol, NCOL; 
//const int nn=1000, mm=2, kk=10; 
//double data[nn+1][mm+1], means[kk+1][mm+1], maxdata[mm+1], mindata[mm+1]; 
//int assign[nn+1], count_kmeans[kk+1]; 
// sub functions 
void random_walker(); 
void Kmeans(); 
int estep(); 
void mstep(); 
void read_parameters(char Pfile[20]); 
double DistanceFromLine(double cx, double cy, double ax, double ay ,double bx, double by); 
void write_wellfile(); 
double *kx = new double[(nx_max+2)*(ny_max+2)*(nz_max+2)];  //permeability in x-direction 
double *ky = new double[(nx_max+2)*(ny_max+2)*(nz_max+2)];  //permeability in x-direction 
double *vx = new double[nx_max*ny_max*nz_max]; 
double *vy = new double[nx_max*ny_max*nz_max]; 
double *vz = new double[nx_max*ny_max*nz_max]; 
double Tmean[nsour_max+1][nsink_max+1]; 



 194

double Tvar[nsour_max+1][nsink_max+1]; 
int main(int argc, char *argv[]) 
{ 
  int nsink, nsour; 
  int NPT=NP_max; 
  for (i=1;i<=(nx_max+2)*(ny_max+2);i++) 
  { 
    kx[i]=0; 
    ky[i]=0; 
  } 
  cout<<"Clustering based on random Walkers"<<endl; 
  if (argc<2) 
  { 
    cout<<"Enter parameter file"<<endl; 
    cin>>Pfile; 
    read_parameters(Pfile); 
  } 
  else 
  { 
    read_parameters(argv[1]); 
  }  
  write_wellfile(); 
  ofstream Arrival("Arrival.dat", ios::trunc); 
  Arrival<<"Random walker arrival times"<<endl<<NSOUR*NSINK*3<<endl; 
  for (nsink=1;nsink<=NSINK;nsink++) 
    for (nsour=1;nsour<=NSOUR;nsour++) 
    { 
      Arrival<<"Tmean_"<<nsour<<"_"<<nsink<<endl; 
      Arrival<<"Tvar_"<<nsour<<"_"<<nsink<<endl; 
      Arrival<<"No_Part_"<<nsour<<"_"<<nsink<<endl; 
    } 
  ifstream perm_file(permfile); 
  perm_file.getline(tempch,150); 
  perm_file>>NCOL; 
  perm_file.getline(tempch,150); 
  for (i=1;i<=NCOL;i++) 
    perm_file.getline(tempch,150); 
  for (nr=1;nr<=NR;nr++) 
  { 
    for (k=1;k<=NZ;k++) 
      for (j=1;j<=NY;j++) 
        for (i=1;i<=NX;i++)   
        { 
          for (nc=1;nc<=NCOL;nc++) 
          { 
            perm_file>>x; 
            if (nc==ncol) 
              K1[i][j][k]=x;  //permeability in y-direction 
          } 
          kx[j*(NX+2)+i]=K1[i][j][k]; 
          kx[j*(NX+2)+i]=kx[j*(NX+2)+i]*0.9869E-15;  // Conversion to SI units 
          ky[j*(NX+2)+i]=kx[j*(NX+2)+i];           
          vx[(k-1)*NX*NY+(j-1)*NX+i] = 0; 
          vy[(k-1)*NX*NY+(j-1)*NX+i] = 0; 
          vz[(k-1)*NX*NY+(j-1)*NX+i] = -1; 
        } 
    single_phase(NX,NY,20*0.3048,20*0.3048,8*0.3048,kx,ky,0.1,vx,vy,vz); 
    for (k=1;k<=NZ;k++) 
      for (j=1;j<=NY;j++) 
        for (i=1;i<=NX;i++)   
        { 
          VX[i][j][k]=vx[(k-1)*NX*NY+(j-1)*NX+i]; 
          VY[i][j][k]=vy[(k-1)*NX*NY+(j-1)*NX+i]; 
          VZ[i][j][k]=vz[(k-1)*NX*NY+(j-1)*NX+i]; 
        } 
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    cout<<"Working on Realization # "<<nr<<endl; 
    random_walker(); 
    for (nsink=1;nsink<=NSINK;nsink++) 
      for (nsour=1;nsour<=NSOUR;nsour++) 
      { 
        Arrival<<Tmean[nsour][nsink]<<"  "<<Tvar[nsour][nsink]<<"  "; 
        Arrival<<double(NP[nsour][nsink])/double(NP_max)<<"  "; 
      } 
    Arrival<<endl; 
  } 
  Arrival.close(); 
  return 0; 
} 
void random_walker() 
{ 
  srand ( time(NULL) ); 
  int i,j,k, dist; 
  double cdf, pdf,sum, d;  
  double Pr[7],x,t1; 
  double T[NP_max+1][nsour_max+1][nsink_max+1]; 
  int pos1[NP_max+1][4], IALL[nx_max+1][ny_max+1][nz_max+1]; 
  int ns,p,np, arrive, I[nx_max+1][nx_max+1][nz_max+1],nsink,nsour,cnt; 
  t1=time(NULL); 
  for (nsink=1;nsink<=NSINK;nsink++) 
    for (nsour=1;nsour<=NSOUR;nsour++) 
    { 
      Tmean[nsour][nsink]=0; 
      Tvar[nsour][nsink]=0; 
      NP[nsour][nsink]=0; 
      for (np=1;np<=NP_max;np++) 
        T[np][nsour][nsink]=0; 
    } 
 
  for (k=1; k<=NZ; k++) 
    for (j=1; j<=NY; j++) 
      for (i=1; i<=NX; i++) 
        {IALL[i][j][k]=0;} 
  for (np=1; np<=NP_max; np++) 
  { 
    ns=fmod(np,NSOUR)+1; 
    pos1[np][1]=Sources[ns][1]; 
    pos1[np][2]=Sources[ns][2]; 
    pos1[np][3]=Sources[ns][3]; 
    arrive=0; 
    for (k=1; k<=NZ; k++) 
      for (j=1; j<=NY; j++) 
        for (i=1; i<=NX; i++) 
          {I[i][j][k]=0;} 
    cnt=0; 
    do 
    { 
      cnt++; 
      for (p=1; p<=6; p++) 
        Pr[p]=0; 
      i=pos1[np][1]; 
      j=pos1[np][2]; 
      k=pos1[np][3]; 
      I[i][j][k]=1; 
      if (i>1) {  if (VX[i-1][j][k]<0) Pr[1]=-VX[i-1][j][k];} 
      if (i<NX) {  if (VX[i][j][k]>0) Pr[2]=VX[i][j][k];} 
      if (j>1) {  if (VY[i][j-1][k]<0) Pr[3]=-VY[i][j-1][k];} 
      if (j<NY) {  if (VY[i][j][k]>0) Pr[4]=VY[i][j][k];} 
      if (k>1) {  if (VZ[i][j][k-1]<0) Pr[5]=-VZ[i][j][k-1];} 
      if (k<NZ) {  if (VZ[i][j][k+1]>0) Pr[6]=VZ[i][j][k];} 
      sum=0; 
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      for (p=1; p<=6; p++) 
        {sum+=Pr[p];} 
      if (sum>0) 
      { 
        x=rand()%100; 
        cdf=0; 
        for (p=1; p<=6; p++) 
        { 
          pdf=Pr[p]/sum; 
          cdf=cdf+pdf; 
          if (x<cdf*100) {break;} 
        } 
        switch (p) 
        { 
          case 1:  
            pos1[np][1]=i-1; 
            break; 
          case 2:  
            pos1[np][1]=i+1; 
            break; 
          case 3:  
            pos1[np][2]=j-1; 
            break; 
          case 4:  
            pos1[np][2]=j+1; 
            break; 
          case 5:  
            pos1[np][3]=k-1; 
            break; 
          case 6:  
            pos1[np][3]=k+1; 
            break; 
        } 
      } 
      for (nsink=1; nsink<=NSINK; nsink++) 
      { 
        if ((pos1[np][1]==Sinks[nsink][1]) && (pos1[np][2]==Sinks[nsink][2]) && (pos1[np][3]==Sinks[nsink][3])) 
        { 
          d=sqrt((double)(pow((double)(Sinks[nsink][1]-Sources[ns][1]),2)+pow((double)(Sinks[nsink][2]-Sources[ns][2]),2) 
            +pow((double)(Sinks[nsink][3]-Sources[ns][3]),2))); 
          arrive=1; 
          sum=0; 
          dist=0; 
          for (k=1; k<=NZ; k++) 
            for (j=1; j<=NY; j++) 
              for (i=1; i<=NX; i++) 
              { 
                  sum+=I[i][j][k]; 
                  IALL[i][j][k]=IALL[i][j][k]+I[i][j][k]; 
                  if (I[i][j][k]==1) 
                  { 
                    dist+=DistanceFromLine(double(i),double(j),double(Sources[ns][1]), double(Sources[ns][2]), 
                      double(Sinks[nsink][1]), double(Sinks[nsink][2])); 
                  } 
              } 
          dist/=sum; 
          NP[ns][nsink]++; 
          T[NP[ns][nsink]][ns][nsink]=dist; 
        } 
      } 
      if (cnt>3000) 
      { 
        cout<<"Particle lost"<<endl; 
        ofstream track("Trajectory.dat", ios::trunc); 
        track<<"Trajectory"<<endl<<"1"<<endl<<"Path"<<endl; 
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        for (k=1;k<=NZ;k++) 
          for (j=1;j<=NY;j++) 
            for (i=1;i<=NX;i++) 
              track<<I[i][j][k]<<endl; 
        track.close(); 
        exit(1); 
      } 
    } 
    while (arrive==0); 
  } 
  for (nsink=1;nsink<=NSINK;nsink++) 
    for (nsour=1;nsour<=NSOUR;nsour++) 
    { 
      Tmean[nsour][nsink]=0; 
      for (np=1;np<=NP[nsour][nsink];np++) 
        Tmean[nsour][nsink]+=T[np][nsour][nsink]/NP[nsour][nsink]; 
    } 
  for (nsink=1;nsink<=NSINK;nsink++) 
    for (nsour=1;nsour<=NSOUR;nsour++) 
    { 
      Tvar[nsour][nsink]=0; 
      for (np=1;np<=NP[nsour][nsink];np++) 
        Tvar[nsour][nsink]+=(T[np][nsour][nsink]-Tmean[nsour][nsink])*(T[np][nsour][nsink]-Tmean[nsour][nsink])/NP[nsour][nsink]; 
    } 
  t1=time(NULL)-t1; 
  ofstream track("Trajectory.dat", ios::trunc); 
  track<<"Trajectory"<<endl<<"1"<<endl<<"Path"<<endl; 
  sum=0; 
  perm_ave=0; 
  for (k=1;k<=NZ;k++) 
    for (j=1;j<=NY;j++) 
      for (i=1;i<=NX;i++) 
      { 
        track<<IALL[i][j][k]<<endl; 
        sum+=IALL[i][j][k]; 
        perm_ave+=K1[i][j][k]*IALL[i][j][k]; 
      } 
  perm_ave=perm_ave/sum; 
  track.close(); 
  return; 
} 
/*void Kmeans() 
{ 
  int k,m; 
  for (k=1;k<=kk;k++)  
    for (m=1;m<=mm;m++)  
      means[k][m]=mindata[m]+(maxdata[m]-mindata[m])*(k-1)/kk; 
  do 
  { 
    estep(); 
    mstep(); 
  } 
  while (nchg>0); 
} 
 
int estep()  
{ 
  int k,m,n,kmin; 
  double dmin,d; 
  nchg = 0; 
  for (k=1;k<=NC;k++) count_kmeans[k] = 0; 
  for (n=1;n<=ND;n++) { 
    dmin = 9.99e99; 
    for (k=1;k<=NC;k++) { 
      for (d=0.,m=1; m<=mm; m++) d += pow((double)data[n][m]-means[k][m],2); 
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      if (d < dmin) {dmin = d; kmin = k;} 
    } 
    if (kmin != assign[n]) nchg++; 
    assign[n] = kmin; 
    count_kmeans[kmin]++; 
  } 
  return nchg; 
} 
void mstep() { 
  int n,k,m; 
  for (k=1;k<=NC;k++) for (m=1;m<=mm;m++) means[k][m] = 0.; 
  for (n=1;n<=ND;n++) for (m=1;m<=mm;m++) means[assign[n]][m] += data[n][m]; 
  for (k=1;k<=NC;k++) { 
    if (count_kmeans[k] > 0) for (m=1;m<=mm;m++) means[k][m] /= count_kmeans[k]; 
  } 
}*/ 
void read_parameters(char Pfile[20]) 
{ 
  int ns; 
  ifstream param_file(Pfile); 
  if (!param_file) 
  { 
    cout<<"There is no Data File"<<endl; 
    exit(1); 
  } 
  param_file.getline(tempch,150); 
  param_file>>NX>>NY>>NZ; 
  param_file.getline(tempch,150,'\n'); 
  param_file>>NR; 
  param_file.getline(tempch,150,'\n'); 
  param_file>>permfile; 
  ifstream perm_file(permfile); 
  if (!perm_file) 
  { 
    cout<<"File "<<permfile<<" does not exist"<<endl; 
    exit(1); 
  } 
  param_file>>ncol; 
  param_file.getline(tempch,150,'\n'); 
  param_file>>NSOUR; 
  param_file.getline(tempch,150,'\n'); 
  for (ns=1;ns<=NSOUR;ns++) 
  { 
    param_file>>Sources[ns][1]>>Sources[ns][2]>>Sources[ns][3]; 
    param_file.getline(tempch,150,'\n'); 
  } 
  param_file>>NSINK; 
  param_file.getline(tempch,150,'\n'); 
  for (ns=1;ns<=NSINK;ns++) 
  { 
    param_file>>Sinks[ns][1]>>Sinks[ns][2]>>Sinks[ns][3]; 
    param_file.getline(tempch,150,'\n'); 
  } 
  param_file.close(); 
} 
 
void write_wellfile()   // write well data file for simulator 
{ 
  ofstream wellfl("well.dat", ios::trunc); 
  wellfl<<"0"<<endl;   // start time 
  wellfl<<"1"<<endl;  // number of time step entries 
  wellfl<<"1  5"<<endl;  // entry # 1 - 2 steps of 1 day 
  wellfl<<NSOUR+NSINK<<endl;    // total number of wells 
  for (ns=1;ns<=NSOUR;ns++) 
    wellfl<<Sources[ns][1]<<"  "<<Sources[ns][2]<<endl;      // Location of sources (injetors) 
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  for (ns=1;ns<=NSINK;ns++) 
    wellfl<<Sinks[ns][1]<<"  "<<Sinks[ns][2]<<endl;      // Location of sinks (producers) 
  for (ns=1;ns<=NSOUR;ns++) 
    wellfl<<"0  "<<ns<<"  6.048e-5  Q  "<<20/35.314666<<endl; 
  for (ns=1;ns<=NSINK;ns++) 
    wellfl<<"0  "<<ns+NSOUR<<"  6.048e-5  Q  "<<-20/35.314666<<endl; 
  wellfl.close(); 
} 
           
double DistanceFromLine(double cx, double cy, double ax, double ay , 
            double bx, double by) 
{ 
  double distanceLine, distanceSegment; 
  // 
  // find the distance from the point (cx,cy) to the line 
  // determined by the points (ax,ay) and (bx,by) 
  // 
  // distanceSegment = distance from the point to the line segment 
  // distanceLine = distance from the point to the line (assuming 
  //          infinite extent in both directions 
  // 
  double r_numerator = (cx-ax)*(bx-ax) + (cy-ay)*(by-ay); 
  double r_denomenator = (bx-ax)*(bx-ax) + (by-ay)*(by-ay); 
  double r = r_numerator / r_denomenator; 
// 
    double px = ax + r*(bx-ax); 
    double py = ay + r*(by-ay); 
//      
    double s =  ((ay-cy)*(bx-ax)-(ax-cx)*(by-ay) ) / r_denomenator; 
  distanceLine = fabs(s)*sqrt(r_denomenator); 
// (xx,yy) is the point on the lineSegment closest to (cx,cy) 
// 
  double xx = px; 
  double yy = py; 
 
  if ( (r >= 0) && (r <= 1) ) 
  { 
    distanceSegment = distanceLine; 
  } 
  else 
  { 
    double dist1 = (cx-ax)*(cx-ax) + (cy-ay)*(cy-ay); 
    double dist2 = (cx-bx)*(cx-bx) + (cy-by)*(cy-by); 
    if (dist1 < dist2) 
    { 
      xx = ax; 
      yy = ay; 
      distanceSegment = sqrt(dist1); 
    } 
    else 
    { 
      xx = bx; 
      yy = by; 
      distanceSegment = sqrt(dist2); 
    } 
  } 
  return distanceLine; 
} 
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A4-2. COMPUTER CODE FOR ESTIMATION OF RECOVERY FACTOR AND 
BREAKTHROUGH TIME 
#include <iostream> 
#include <iomanip> 
#include <fstream> 
using namespace std; 
#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include <time.h> 
//global parameters   
int NX,NY,NZ,NSOUR,NSINK,NR;        //number of blocks in x, y  and z direction 
int i,j,k,nw,nr,count1,n,ns; 
int ip,jp,kp,iw,jw,kw; 
const int nx_max=100, ny_max=100, nz_max=1, nsour_max=10, nsink_max=10; 
const int nreal_max=1000, np_max=50000; 
double VX[nx_max+1][ny_max+1][nz_max+1], 
VY[nx_max+1][ny_max+1][nz_max+1],VZ[nx_max+1][ny_max+1][nz_max+1]; 
int Sources[nsour_max+1][4], Sinks[nsink_max+1][4], NCOL, ncol,nc; 
char tempch[150]; 
double x, RF[nreal_max+1],TBT[nsour_max*nsink_max+1],TD; 
char Pfile[20], permfile[60]; 
// Variables for Random Walker 
double dmax, d, cdf, pdf,sum;  
int p,np,IP[nx_max+1][ny_max+1][nz_max+1],IPW[nx_max+1][ny_max+1][nz_max+1],nsink,t,tt,flag; 
int NPTotal, pos1[np_max+1][4]; 
double Pr[7]; 
double *kx = new double[(nx_max+2)*(ny_max+2)*(nz_max+2)]; 
double *ky = new double[(nx_max+2)*(ny_max+2)*(nz_max+2)]; 
double *vx = new double[nx_max*ny_max*nz_max]; 
double *vy = new double[nx_max*ny_max*nz_max]; 
double *vz = new double[nx_max*ny_max*nz_max]; 
int NPmax=7,NPmaxW=2; 
// sub functions 
void random_walker(double& rf); 
void read_parameters(char Pfile[20]); 
void move_water_particle(); 
void move_polymer_particle(); 
void write_wellfile(); 
void single_phase(int nx, int ny, double DX, double DY, double DZ, double *kx, double *ky, double Poro,  
          double *vx, double *vy, double *vz); 
int main(int argc, char *argv[]) 
{ 
  double rf; 
  for (i=1;i<=(nx_max+2)*(ny_max+2);i++) 
  { 
    kx[i]=0; 
    ky[i]=0; 
  } 
  cout<<"Clustering based on random Walkers"<<endl<<"Name of parameter file "<<endl; 
  if (argc<2) 
  { 
    cout<<"Enter parameter file"<<endl; 
    cin>>Pfile; 
    read_parameters(Pfile); 
  } 
  else 
  { 
    read_parameters(argv[1]); 
  } 
  write_wellfile(); 
  dmax=sqrt((double)(pow((double)NX,2)+pow((double)NY,2)+pow((double)NZ,2))); 
  ofstream Recovery("Recovery.dat", ios::trunc); 
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  Recovery<<"Random Walker Recovery Factor"<<endl<<NSOUR*NSINK+1<<endl<<"RF"<<endl; 
  for (ns=1;ns<=NSOUR*NSINK;ns++) 
    Recovery<<"TBT_"<<ns<<endl; 
  ifstream k_file(permfile); 
  k_file.getline(tempch,150); 
  k_file>>NCOL; 
  k_file.getline(tempch,150); 
  ofstream VelfileX("VelX.dat",ios::trunc); 
  ofstream VelfileY("VelY.dat",ios::trunc); 
  ofstream VelfileZ("VelZ.dat",ios::trunc); 
  VelfileX<<"VelX"<<endl<<"1"<<endl<<"Values"<<endl; 
  VelfileY<<"VelY"<<endl<<"1"<<endl<<"Values"<<endl; 
  VelfileZ<<"VelZ"<<endl<<"1"<<endl<<"Values"<<endl; 
  for (i=1;i<=NCOL;i++) 
    k_file.getline(tempch,150); 
  for (nr=1;nr<=NR;nr++) 
  { 
    cout<<"Working on Realization # "<<nr<<endl; 
    for (k=1;k<=NZ;k++) 
      for (j=1;j<=NY;j++) 
        for (i=1;i<=NX;i++)   
        { 
          for (nc=1;nc<=NCOL;nc++) 
          { 
            k_file>>x; 
            if (nc==ncol) 
              kx[j*(NX+2)+i]=x;  //permeability in y-direction 
          } 
          kx[j*(NX+2)+i]=kx[j*(NX+2)+i]*0.9869E-15;  // Conversion to SI units 
          ky[j*(NX+2)+i]=kx[j*(NX+2)+i]; 
          vx[(k-1)*NX*NY+(j-1)*NX+i] = 0; 
          vy[(k-1)*NX*NY+(j-1)*NX+i] = 0; 
          vz[(k-1)*NX*NY+(j-1)*NX+i] = -1; 
        } 
    single_phase(NX,NY,20*0.3048,20*0.3048,20*0.3048,kx,ky,0.1,vx,vy,vz); 
    for (k=1;k<=NZ;k++) 
      for (j=1;j<=NY;j++) 
        for (i=1;i<=NX;i++)   
        { 
          VX[i][j][k]=vx[(k-1)*NX*NY+(j-1)*NX+i]; 
          VY[i][j][k]=vy[(k-1)*NX*NY+(j-1)*NX+i]; 
          VZ[i][j][k]=vz[(k-1)*NX*NY+(j-1)*NX+i]; 
          VelfileX<<VX[i][j][k]<<endl; 
          VelfileY<<VY[i][j][k]<<endl; 
          VelfileZ<<VY[i][j][k]<<endl; 
        } 
    random_walker(rf); 
    RF[nr]=rf; 
    Recovery<<RF[nr]<<"  "; 
    for (ns=1;ns<=NSOUR;ns++) 
      for (nsink=1;nsink<=NSINK;nsink++) 
        Recovery<<TBT[NSOUR*(ns-1)+nsink]<<"  "; 
    Recovery<<endl; 
  } 
  Recovery.close(); 
  VelfileX.close(); 
  VelfileY.close(); 
  VelfileZ.close(); 
  return 0; 
} 
 
void random_walker(double& rf) 
{ 
  const int nsour_max=10, nsink_max=10; 
  int SW_INI=1, arrive_w=0, flag_particle, flag_tbt[nsour_max*nsink_max+1]; 
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  srand ( time(NULL) ); 
  dmax=sqrt(pow((double)NX,2)+pow((double)NY,2)+pow((double)NZ,2)); 
  for (k=1;k<=NZ;k++) 
    for (j=1;j<=NY;j++) 
      for (i=1;i<=NX;i++) 
      { 
        IP[i][j][k]=0; 
        IPW[i][j][k]=SW_INI; 
      } 
  NPTotal=ceil(NX*NY*NZ*NPmax*TD);  //Total number of particles to be launched, 5 is the maximum capacity of each 
node 
  for (ns=1;ns<=NSOUR;ns++) 
    for (nsink=1;nsink<=NSINK;nsink++) 
    { 
      flag_tbt[NSOUR*(ns-1)+nsink]=0; 
      TBT[NSOUR*(ns-1)+nsink]=15000+rand()%300; 
    } 
  for (n=1;n<=NPTotal;n++) 
  { 
    ns=fmod(n,NSOUR)+1; 
    pos1[n][1]=Sources[ns][1]; 
    pos1[n][2]=Sources[ns][2]; 
    pos1[n][3]=Sources[ns][3]; 
    IP[pos1[n][1]][pos1[n][2]][pos1[n][3]]++; 
    flag_particle=0; 
    while (flag_particle==0) 
    { 
      if ((IPW[pos1[n][1]][pos1[n][2]][pos1[n][3]]+IP[pos1[n][1]][pos1[n][2]][pos1[n][3]]>NPmax)  
        || (IPW[pos1[n][1]][pos1[n][2]][pos1[n][3]]>NPmaxW)) 
      { 
        if (IPW[pos1[n][1]][pos1[n][2]][pos1[n][3]]==0) 
        { 
        //Move polymer particle 
          move_polymer_particle(); 
          IP[pos1[n][1]][pos1[n][2]][pos1[n][3]]--; 
          IP[ip][jp][kp]++; 
          if (IP[ip][jp][kp]+IPW[ip][jp][kp]<=NPmax)  
          { 
            flag_particle=1; 
          } 
          for (nsink=1; nsink<=NSINK; nsink++) 
          { 
            if ((ip==Sinks[nsink][1]) && (jp==Sinks[nsink][2]) && (kp==Sinks[nsink][3])) 
            { 
              IP[ip][jp][kp]--; 
            } 
          } 
          pos1[n][1]=ip; 
          pos1[n][2]=jp; 
          pos1[n][3]=kp; 
           
        } 
        else 
        { 
          //Move water particle 
          move_water_particle(); 
          IPW[pos1[n][1]][pos1[n][2]][pos1[n][3]]--; 
          IPW[iw][jw][kw]++; 
          if ((IPW[iw][jw][kw]<=NPmaxW) &&  
            (IP[iw][jw][kw]+IPW[iw][jw][kw]<=NPmax)) 
          { 
            flag_particle=1; 
          } 
          for (nsink=1; nsink<=NSINK; nsink++) 
          { 
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            if ((iw==Sinks[nsink][1]) && (jw==Sinks[nsink][2]) && (kw==Sinks[nsink][3])) 
            { 
              IPW[iw][jw][kw]--; 
              if (flag_tbt[NSOUR*(ns-1)+nsink]==0) 
              { 
                TBT[NSOUR*(ns-1)+nsink]=n; 
                flag_tbt[NSOUR*(ns-1)+nsink]=1; 
              } 
            } 
          } 
          pos1[n][1]=iw; 
          pos1[n][2]=jw; 
          pos1[n][3]=kw; 
          } 
      } 
      else 
      { 
        flag_particle=1; 
      } 
    } 
  } 
  sum=0; 
  for (k=1;k<=NZ;k++) 
    for (j=1;j<=NY;j++) 
      for (i=1;i<=NX;i++) 
        sum+=IP[i][j][k]+IPW[i][j][k]; 
  sum-=SW_INI*NX*NY*NZ; 
  rf=sum/(NX*NY*NZ*NPmax); 
} 
 
void read_parameters(char Pfile[20]) 
{ 
  int ns; 
  ifstream param_file(Pfile); 
  if (!param_file) 
  { 
    cout<<"There is no Data File"<<endl; 
    exit(1); 
  } 
  param_file.getline(tempch,150); 
  param_file>>NX>>NY>>NZ; 
  param_file.getline(tempch,150,'\n'); 
  param_file>>NR; 
  param_file.getline(tempch,150,'\n'); 
  param_file>>permfile; 
  ifstream k_file(permfile); 
  if (!k_file) 
  { 
    cout<<"Permeability file "<<permfile<<" does not exist"<<endl; 
    exit(1); 
  } 
  k_file.close(); 
  param_file>>ncol; 
  param_file.getline(tempch,150,'\n'); 
  param_file>>NSOUR; 
  param_file.getline(tempch,150,'\n'); 
  for (ns=1;ns<=NSOUR;ns++) 
  { 
    param_file>>Sources[ns][1]>>Sources[ns][2]>>Sources[ns][3]; 
    param_file.getline(tempch,150,'\n'); 
  } 
  param_file>>NSINK; 
  param_file.getline(tempch,150,'\n'); 
  for (ns=1;ns<=NSINK;ns++) 
  { 
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    param_file>>Sinks[ns][1]>>Sinks[ns][2]>>Sinks[ns][3]; 
    param_file.getline(tempch,150,'\n'); 
  } 
  param_file>>TD; 
  param_file.getline(tempch,150,'\n'); 
  param_file.close(); 
}           
 
void move_polymer_particle() 
{ 
  ip=pos1[n][1]; 
  jp=pos1[n][2]; 
  kp=pos1[n][3]; 
  for (p=1; p<=6; p++) 
    Pr[p]=0; 
  if (ip>1) {  if (VX[ip-1][jp][kp]<0) Pr[1]=-VX[ip-1][jp][kp];} 
  if (ip<NX) {  if (VX[ip][jp][kp]>0) Pr[2]=VX[ip][jp][kp];} 
  if (jp>1) {  if (VY[ip][jp-1][kp]<0) Pr[3]=-VY[ip][jp-1][kp];} 
  if (jp<NY) {  if (VY[ip][jp][kp]>0) Pr[4]=VY[ip][jp][kp];} 
  if (kp>1) {  if (VZ[ip][jp][kp-1]<0) Pr[5]=-VZ[ip][jp][kp-1];} 
  if (kp<NZ) {  if (VZ[ip][jp][kp+1]>0) Pr[6]=VZ[ip][jp][kp];} 
  sum=0; 
  for (p=1; p<=6; p++) 
    {sum+=Pr[p];} 
  if (sum>0) 
  { 
    x=rand()%100; 
    cdf=0; 
    for (p=1; p<=6; p++) 
    { 
      pdf=Pr[p]/sum; 
      cdf=cdf+pdf; 
      if (x<cdf*100) {break;} 
    } 
    switch (p) 
    { 
      case 1:  
        ip=ip-1; 
        break; 
      case 2:  
        ip=ip+1; 
        break; 
      case 3:  
        jp=jp-1; 
        break; 
      case 4:  
        jp=jp+1; 
        break; 
      case 5:  
        kp=kp-1; 
        break; 
      case 6: 
        kp=kp+1; 
        break; 
    } 
  } 
} 
void move_water_particle() 
{ 
  iw=pos1[n][1]; 
  jw=pos1[n][2]; 
  kw=pos1[n][3]; 
  for (p=1; p<=6; p++) 
    Pr[p]=0; 
  if (iw>1) {  if (VX[iw-1][jw][kw]<0) Pr[1]=-VX[iw-1][jw][kw];} 
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  if (iw<NX) {  if (VX[iw][jw][kw]>0) Pr[2]=VX[iw][jw][kw];} 
  if (jw>1) {  if (VY[iw][jw-1][kw]<0) Pr[3]=-VY[iw][jw-1][kw];} 
  if (jw<NY) {  if (VY[iw][jw][kw]>0) Pr[4]=VY[iw][jw][kw];} 
  if (kw>1) {  if (VZ[iw][jw][kw-1]<0) Pr[5]=-VZ[iw][jw][kw-1];} 
  if (kw<NZ) {  if (VZ[iw][jw][kw+1]>0) Pr[6]=VZ[iw][jw][kw];} 
  sum=0; 
  for (p=1; p<=6; p++) 
    {sum+=Pr[p];} 
  if (sum>0) 
  { 
    x=rand()%100; 
    cdf=0; 
    for (p=1; p<=6; p++) 
    { 
      pdf=Pr[p]/sum; 
      cdf=cdf+pdf; 
      if (x<cdf*100) {break;} 
    } 
    switch (p) 
    { 
      case 1:  
        iw=iw-1; 
        break; 
      case 2:  
        iw=iw+1; 
        break; 
      case 3:  
        jw=jw-1; 
        break; 
      case 4:  
        jw=jw+1; 
        break; 
      case 5:  
        kw=kw-1; 
        break; 
      case 6: 
        kw=kw+1; 
        break; 
    } 
  } 
} 
void write_wellfile()   // write well data file for simulator 
{ 
  ofstream wellfl("well.dat", ios::trunc); 
  wellfl<<"0"<<endl;   // start time 
  wellfl<<"1"<<endl;  // number of time step entries 
  wellfl<<"1  5"<<endl;  // entry # 1 - 2 steps of 1 day 
  wellfl<<NSOUR+NSINK<<endl;    // total number of wells 
  for (ns=1;ns<=NSOUR;ns++) 
    wellfl<<Sources[ns][1]<<"  "<<Sources[ns][2]<<endl;      // Location of sources (injetors) 
  for (ns=1;ns<=NSINK;ns++) 
    wellfl<<Sinks[ns][1]<<"  "<<Sinks[ns][2]<<endl;      // Location of sinks (producers) 
  for (ns=1;ns<=NSOUR;ns++) 
    wellfl<<"0  "<<ns<<"  6.048e-5  Q  "<<2.83168/NSOUR<<endl; 
  for (ns=1;ns<=NSINK;ns++) 
    wellfl<<"0  "<<ns+NSOUR<<"  6.048e-5  Q  "<<-2.83168/NSINK<<endl; 
  wellfl.close(); 
} 
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A4-3. PROGRAM FOR ECONOMIC PARAMETERS 

A4-3.1. Parameter File 
40  40  1       - Grid size 
20  20  8      - DX, DY, DZ 
2          - No. Sources 
40  1  1      - Location of sources 
1  1  1 
1          - No. sinks 
20  40  1      - Location of sinks 
0.1          - Porosity 
100          - No. Time steps 
30  100  0  100    - Rate Schedule 
… 
3000  100  0  100 
3.9          - Water Velocity factor 
0.65          - Polymer Velocity factor 
0.3  0.78        - Swf, Spf 
0.2  0.2        - Swr, Sor 
0.2  1.5  0.73      - Krw_max, exp_w, Vw 
1.0  2.0  40      - Kro_max, exp_o, Vo 
0.2  1.5  20      - Krp_max, exp_p, Vp 
 Perm_3W.dat        - Permeability File 

A4-3.2. Computer Code 
#include <iostream> 
#include <iomanip> 
#include <fstream> 
#include <algorithm> 
using namespace std; 
#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include <time.h> 
#include "matrix.h" 
#include "cg.h" 
#include "functions.h" 
#include "single_phase.h" 
 
const int nx_max=100, ny_max=110, nz_max=1;                         // Maximum number of cells allowed in each direction 
const int nsour_max=10, nsink_max=10;                  // Maximum number of wells 
const int NP=10000, nt_max=100;    // Number of particles 
double Vx[nx_max+1][ny_max+1][nz_max+1], Vy[nx_max+1][ny_max+1][nz_max+1], Vz[nx_max+1][ny_max+1][nz_max+1]; 
double VxT[nx_max+1][ny_max+1][nz_max+1], VyT[nx_max+1][ny_max+1][nz_max+1], 
VzT[nx_max+1][ny_max+1][nz_max+1]; 
double DX, DY, DZ, xP[NP+1], yP[NP+1], zP[NP+1], TimeP[NP+1]; 
double xW[NP+1], yW[NP+1], zW[NP+1], TimeW[NP+1], I[nx_max+1][ny_max+1][nz_max+1]; 
double t1, Poro, T[nt_max+1],Qi[nsour_max+1][nt_max+1], Qp[nsink_max+1][nt_max+1], Qw,Qo, Vwfac, Vpfac; 
double Qi_tot,Sw_ini,RF,Qinj[nsour_max+1]; 
double Sw[nsink_max+1], So, Sp, Krw_max, Kro_max, Krp_max, Krw, Kro, Krp, Vw, Vo, Vp, Swf, Spf, Sor; 
double exp_w, exp_o, exp_p, Sowf, Sopf, Krofw, Krofp, Krwf, Krpf, Fw, Fp; 
int NX, NY, NZ, NSOUR, NSINK, NT; 
int nt, np, read_flag; 
int Sources[nsour_max+1][4], Sinks[nsink_max+1][4]; 
int ns, narg; 
double conc=750E-6, tax=0.385, royal=0.125, apr=0.1, wfcost=1000, watinjcost=1, watprodcost=10; 
double oilprodcost=4, polymasscost=1, oilprice=35,tslug[3]={0,3000}; 
// SUBROUTINES 
 
void read_parameters(char *Pfile); 
void frac_flow(); 
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double NetPresent(double& NPV, double wc); 
void write_wellfile(); 
double min(double a, double b) 
{ 
  if (a<b) {return a;} 
  else {return b;} 
} 
 
double *kx = new double[(nx_max+2)*(ny_max+2)*(nz_max+2)];  //permeability in x-direction 
double *ky = new double[(nx_max+2)*(ny_max+2)*(nz_max+2)];  //permeability in x-direction 
double *vx = new double[nx_max*ny_max*nz_max]; 
double *vy = new double[nx_max*ny_max*nz_max]; 
double *vz = new double[nx_max*ny_max*nz_max]; 
 
int main(int argc, char *argv[]) 
{ 
  int i, j, k, ip, jp, kp, p,nsink, nsour, Npw, Npp, NPWleft, NPPleft; 
  double Pr[7], sum, cdf, pdf, dt, r, wc, NPV, dx1, dx2, dx, dy, dz, dmin, d; 
  double rate_factor, x,y, frac[nsour_max+1], Qinj_all,wc_sink[nsink_max+1]; 
  double Sw_sink[nsink_max+1], FracW_sink[nsink_max+1], FracP_sink[nsink_max+1]; 
  bool flag, get_velocity; 
  int arriveW[NP+1], arriveP[NP+1],part_countW[nsink_max+1][nsour_max+1],part_countP[nsink_max+1][nsour_max+1]; 
  int NPartW_sink[nsink_max+1], NPartP_sink[nsink_max+1]; 
  char Pfile[20]; 
  narg=argc; 
   for (i=1;i<=(nx_max+2)*(ny_max+2);i++) 
  { 
    kx[i]=0; 
    ky[i]=0; 
  } 
  if (argc<2) 
  { 
    cout<<"Enter parameter file"<<endl; 
    cin>>Pfile; 
    read_parameters(Pfile); 
  } 
  else 
  { 
    read_parameters(argv[1]); 
  } 
  srand ( time(NULL) ); 
  t1=time(NULL); 
  T[0]=0; 
  frac_flow(); 
  for (np=1; np<=NP; np++) 
  { 
    ns=fmod(np,NSOUR)+1; 
    xP[np]=(Sources[ns][1]-0.5)*DX; 
    yP[np]=(Sources[ns][2]-0.5)*DY; 
    zP[np]=(Sources[ns][3]-0.5)*DZ; 
    xW[np]=(Sources[ns][1]-0.5)*DX; 
    yW[np]=(Sources[ns][2]-0.5)*DY; 
    zW[np]=(Sources[ns][3]-0.5)*DZ; 
    arriveW[np]=0; 
    arriveP[np]=0; 
  } 
  wc=0; 
  ofstream positionfl("Positions.dat",ios::trunc); 
  positionfl<<"Particle Positions"<<endl; 
  positionfl<<"4"<<endl<<"X"<<endl<<"Y"<<endl<<"Z"<<endl<<"Particle Indicator"<<endl; 
  ofstream trajfile("Trajectory.dat",ios::trunc); 
  trajfile<<"Trajectory"<<endl; 
  trajfile<<"1"<<endl<<"Number of Particles"<<endl; 
  ofstream prodfl("Production.dat",ios::trunc); 
  prodfl<<"Production File"<<endl<<5+NSINK<<endl<<"Time (days)"<<endl<<"Qw (cu.ft/day)"<<endl<<"Qo (cu.ft/day)"<<endl;   



 208

  prodfl<<"Water Cut"<<endl<<"Net Present Value"<<endl; 
  for (nsink=1;nsink<=NSINK;nsink++) 
    prodfl<<"Water Cut Well # "<<nsink<<endl; 
  for (i=1; i<=NX; i++) 
    for (j=1; j<=NY; j++) 
      for (k=1; k<=NZ; k++) 
          I[i][j][k]=Sw_ini; 
  for (np=1; np<=NP; np++) 
  { 
    TimeP[np]=0; 
    TimeW[np]=0; 
  } 
  NPV=0; 
  get_velocity=true; 
  Qinj_all=0; 
  Qi_tot=0; 
  for (nsour=1;nsour<=NSOUR;nsour++) 
  { 
    Qi_tot+=Qi[ns][1]; 
  } 
 
  for (nsink=1;nsink<=NSINK;nsink++) 
  { 
    Sw[nsink]=Sw_ini; 
    FracW_sink[nsink]=Qp[nsink][1]/Qi_tot; 
    FracP_sink[nsink]=Qp[nsink][1]/Qi_tot; 
    for (nsour=1;nsour<=NSOUR;nsour++) 
    { 
      part_countW[nsink][nsour]=0; 
      part_countP[nsink][nsour]=0; 
    } 
  } 
  NPWleft=NP*NSOUR; 
  NPPleft=NP*NSOUR; 
  for (nt=1; nt<=NT; nt++) 
  { 
    rate_factor=1; 
    Qi_tot=0; 
    for (ns=1;ns<=NSOUR;ns++) 
    { 
      Qi_tot+=Qi[ns][nt]; 
      Qinj[ns]+=Qi[ns][nt]*(T[nt]-T[nt-1]); 
      Qinj_all+=Qi[ns][nt]*(T[nt]-T[nt-1]); 
      frac[ns]=0; 
    } 
    if (nt>1) 
    { 
      rate_factor=Qi[1][nt]/Qi[1][nt-1]; 
      if (Qi[1][nt-1]==0) 
      { 
        if (Qi[1][nt]==0) 
        {  rate_factor=1;} 
        else  
        { 
          rate_factor=1; 
          get_velocity=true;} 
      } 
      for (ns=1;ns<=NSOUR;ns++) 
        if (Qi[ns][nt]!=rate_factor*Qi[ns][nt-1]) 
        { 
          rate_factor=1; 
          get_velocity=true; 
        } 
      for (ns=1;ns<=NSINK;ns++) 
        if (Qp[ns][nt]!=rate_factor*Qp[ns][nt-1]) 
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        { 
          rate_factor=1; 
          get_velocity=true; 
        } 
    } 
    if (get_velocity) 
    { 
      for (nsink=1;nsink<=NSINK;nsink++) 
      { 
        Sw_sink[nsink]=min(Sw[nsink],Swf); 
        for (nsour=1;nsour<=NSOUR;nsour++) 
        { 
          NPWleft-=part_countW[nsink][nsour]; 
          NPPleft-=part_countP[nsink][nsour]; 
          part_countW[nsink][nsour]=0; 
          part_countP[nsink][nsour]=0; 
          NPartW_sink[nsink]=0; 
          NPartP_sink[nsink]=0; 
        } 
      } 
      write_wellfile(); 
      single_phase(NX,NY,DX*0.3048,DY*0.3048,DZ*0.3048,kx,ky,Poro,vx,vy,vz); 
      if (nt>1) 
      { 
        for (np=1;np<=NP;np++) 
        { 
          if (arriveW[np]==0) 
          { 
            ip=(int)floor((xW[np]+0.5*DX)/DX); 
            jp=(int)floor((yW[np]+0.5*DY)/DY); 
            kp=(int)floor((zW[np]+0.5*DZ)/DZ); 
            dmin=99999; 
            for (nsink=1;nsink<=NSINK;nsink++) 
            { 
              d=pow((ip-Sinks[nsink][1])*(ip-Sinks[nsink][1])+(jp-Sinks[nsink][2])*(jp-Sinks[nsink][2]) 
                +(kp-Sinks[nsink][2])*(kp-Sinks[nsink][3]),0.5); 
              if (dmin>d) 
              { 
                dmin=d; 
                ns=nsink; 
              } 
            } 
            NPartW_sink[ns]++; 
          } 
          if (arriveP[np]==0) 
          { 
            ip=(int)floor((xP[np]+0.5*DX)/DX); 
            jp=(int)floor((yP[np]+0.5*DY)/DY); 
            kp=(int)floor((zP[np]+0.5*DZ)/DZ); 
            dmin=99999; 
            for (nsink=1;nsink<=NSINK;nsink++) 
            { 
              d=pow((ip-Sinks[nsink][1])*(ip-Sinks[nsink][1])+(jp-Sinks[nsink][2])*(jp-Sinks[nsink][2]) 
                +(kp-Sinks[nsink][2])*(kp-Sinks[nsink][3]),0.5); 
              if (dmin>d) 
              { 
                dmin=d; 
                ns=nsink; 
              } 
            } 
            NPartP_sink[ns]++; 
          } 
        } 
        for (nsink=1;nsink<=NSINK;nsink++) 
        { 
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          FracW_sink[nsink]=double(NPartW_sink[nsink])/NPWleft; 
          FracP_sink[nsink]=double(NPartP_sink[nsink])/NPPleft; 
        } 
      } 
    } 
    get_velocity=false; 
    for (i=1; i<=NX; i++) 
      for (j=1; j<=NY; j++) 
        for (k=1; k<=NZ; k++) 
        { 
          VxT[i][j][k]=vx[(k-1)*NX*NY+(j-1)*NX+i]*rate_factor*Vwfac/Poro;  // conversion from vector to matrix 
          VyT[i][j][k]=vy[(k-1)*NX*NY+(j-1)*NX+i]*rate_factor*Vwfac/Poro;  // conversion from vector to matrix 
          VzT[i][j][k]=vz[(k-1)*NX*NY+(j-1)*NX+i]*rate_factor*Vwfac/Poro;  // conversion from vector to matrix 
        } 
    for (np=1; np<=NP; np++) 
    { 
      flag = false; 
      if (arriveW[np]==0) 
      { 
        while (TimeW[np]<T[nt]) 
        { 
          ip=(int)floor((xW[np]+0.5*DX)/DX); 
          jp=(int)floor((yW[np]+0.5*DY)/DY); 
          kp=(int)floor((zW[np]+0.5*DZ)/DZ); 
          I[ip][jp][kp]=Swf; 
          for (ns=1; ns<=NSINK; ns++) 
            if ((ip==Sinks[ns][1]) && (jp==Sinks[ns][2]) && (kp==Sinks[ns][3])) 
            {  nsink=ns; 
              flag = true;} 
          if (flag)  
          {  
            nsour=fmod(np,NSOUR)+1; 
            arriveW[np]=nsour; 
            arriveW[np]=1; 
            part_countW[nsink][nsour]++; 
            break;} 
          for (p=1; p<=6; p++) 
            Pr[p]=0; 
          x=floor((xW[np]+0.5*DX)/DX); 
          y=(xW[np]+0.5*DX)/DX; 
          if (x!=y) 
          { 
            if (VxT[ip][jp][kp]>0) 
            { 
              dx1=(ip+0.5)*DX-xW[np]; 
              dt=T[nt]-TimeW[np]; 
              dx2=VxT[ip][jp][kp]*dt; 
              xW[np]=xW[np]+min(dx1,dx2); 
              if (dx1<dx2) {TimeW[np]=TimeW[np]+dx1/VxT[ip][jp][kp];} 
              else {TimeW[np]=TimeW[np]+dt;} 
            } 
            else 
            { 
              dx1=xW[np]-(ip-0.5)*DX; 
              dt=T[nt]-TimeW[np]; 
              dx2=-VxT[ip][jp][kp]*dt; 
              xW[np]=xW[np]-min(dx1,dx2); 
              if (dx1<dx2) {TimeW[np]=TimeW[np]+dx1/VxT[ip][jp][kp];} 
              else {TimeW[np]=TimeW[np]+dt;} 
            } 
            break; 
          } 
          x=floor((yW[np]+0.5*DY)/DY); 
          y=(yW[np]+0.5*DY)/DY; 
          if (x!=y) 
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          { 
            if (VyT[ip][jp][kp]>0) 
            { 
              dx1=(jp+0.5)*DY-yW[np]; 
              dt=T[nt]-TimeW[np]; 
              dx2=VyT[ip][jp][kp]*dt; 
              yW[np]=yW[np]+min(dx1,dx2); 
              if (dx1<dx2) {TimeW[np]=TimeW[np]+dx1/VyT[ip][jp][kp];} 
              else {TimeW[np]=TimeW[np]+dt;} 
            } 
            else 
            { 
              dx1=yW[np]-(jp-0.5)*DY; 
              dt=T[nt]-TimeW[np]; 
              dx2=-VyT[ip][jp][kp]*dt; 
              yW[np]=yW[np]-min(dx1,dx2); 
              if (dx1<dx2) {TimeW[np]=TimeW[np]+dx1/VyT[ip][jp][kp];} 
              else {TimeW[np]=TimeW[np]+dt;} 
            } 
            break; 
          } 
          x=floor((zW[np]+0.5*DZ)/DZ); 
          y=(zW[np]+0.5*DZ)/DZ; 
          if (x!=y) 
          { 
            if (VzT[ip][jp][kp]>0) 
            { 
              dx1=(kp+0.5)*DZ-zW[np]; 
              dt=T[nt]-TimeW[np]; 
              dx2=VzT[ip][jp][kp]*dt; 
              zW[np]=zW[np]+min(dx1,dx2); 
              if (dx1<dx2) {TimeW[np]=TimeW[np]+dx1/VzT[ip][jp][kp];} 
              else {TimeW[np]=TimeW[np]+dt;} 
            } 
            else 
            { 
              dx1=zW[np]-(kp-0.5)*DZ; 
              dt=T[nt]-TimeW[np]; 
              dx2=-VyT[ip][jp][kp]*dt; 
              zW[np]=zW[np]-min(dx1,dx2); 
              if (dx1<dx2) {TimeW[np]=TimeW[np]+dx1/VzT[ip][jp][kp];} 
              else {TimeW[np]=TimeW[np]+dt;} 
            } 
            break; 
          } 
          if (ip>1) {  if ((VxT[ip-1][jp][kp]<0)) Pr[1]=-VxT[ip-1][jp][kp];} 
          if (ip<NX) {  if ((VxT[ip][jp][kp]>0)) Pr[2]=VxT[ip][jp][kp];} 
          if (jp>1) {  if ((VyT[ip][jp-1][kp]<0)) Pr[3]=-VyT[ip][jp-1][kp];} 
          if (jp<NY) {  if ((VyT[ip][jp][kp]>0)) Pr[4]=VyT[ip][jp][kp];} 
          if (kp>1) {  if ((VzT[ip][jp][kp-1]<0)) Pr[5]=-VzT[ip][jp][kp-1];} 
          if (kp<NZ) {  if ((VzT[ip][jp][kp+1]>0)) Pr[6]=VzT[ip][jp][kp];} 
          sum=0; 
          for (p=1; p<=6; p++) 
            {sum+=Pr[p];} 
          if (sum>0) 
          { 
            r=rand()%100; 
            cdf=0; 
            for (p=1; p<=6; p++) 
            { 
              pdf=Pr[p]/sum; 
              cdf=cdf+pdf; 
              if (r<cdf*100) {break;} 
            } 
            switch (p) 
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            { 
              case 1:  
                dt=-DX/VxT[ip-1][jp][kp]; 
                if ((TimeW[np]+dt)<=T[nt]) 
                { 
                  xW[np]=xW[np]-DX; 
                  TimeW[np]=TimeW[np]+dt; 
                } 
                else 
                { 
                  dt=T[nt]-TimeW[np]; 
                  TimeW[np]=T[nt]; 
                  dx=-dt*VxT[ip-1][jp][kp]; 
                  xW[np]=xW[np]-dx; 
                } 
                break; 
              case 2:  
                dt=DX/VxT[ip][jp][kp]; 
                if ((TimeW[np]+dt)<=T[nt]) 
                { 
                  xW[np]=xW[np]+DX; 
                  TimeW[np]=TimeW[np]+dt; 
                } 
                else 
                { 
                  dt=T[nt]-TimeW[np]; 
                  TimeW[np]=T[nt]; 
                  dx=dt*VxT[ip][jp][kp]; 
                  xW[np]=xW[np]+dx; 
                } 
                break; 
              case 3:  
                dt=-DY/VyT[ip][jp-1][kp]; 
                if ((TimeW[np]+dt)<=T[nt]) 
                { 
                  yW[np]=yW[np]-DY; 
                  TimeW[np]=TimeW[np]+dt; 
                } 
                else 
                { 
                  dt=T[nt]-TimeW[np]; 
                  TimeW[np]=T[nt]; 
                  dy=-dt*VyT[ip][jp-1][kp]; 
                  yW[np]=yW[np]-dy; 
                } 
                break; 
              case 4:  
                dt=DY/VyT[ip][jp][kp]; 
                if ((TimeW[np]+dt)<=T[nt]) 
                { 
                  yW[np]=yW[np]+DY; 
                  TimeW[np]=TimeW[np]+dt; 
                } 
                else 
                { 
                  dt=T[nt]-TimeW[np]; 
                  TimeW[np]=T[nt]; 
                  dy=dt*VyT[ip][jp][kp]; 
                  yW[np]=yW[np]+dy; 
                } 
                break; 
              case 5:  
                dt=-DZ/VzT[ip][jp][kp-1]; 
                if ((TimeW[np]+dt)<=T[nt]) 
                { 
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                  zW[np]=zW[np]-DZ; 
                  TimeW[np]=TimeW[np]+dt; 
                } 
                else 
                { 
                  dt=T[nt]-TimeW[np]; 
                  TimeW[np]=T[nt]; 
                  dz=-dt*VzT[ip][jp][kp-1]; 
                  zW[np]=zW[np]-dz; 
                } 
                break; 
              case 6: 
                dt=DZ/VzT[ip][jp][kp]; 
                if ((TimeW[np]+dt)<=T[nt]) 
                { 
                  zW[np]=zW[np]+DZ; 
                  TimeW[np]=TimeW[np]+dt; 
                } 
                else 
                { 
                  dt=T[nt]-TimeW[np]; 
                  TimeW[np]=T[nt]; 
                  dz=-dt*VzT[ip][jp][kp]; 
                  zW[np]=zW[np]+dz; 
                } 
                break; 
            } 
          } 
        } 
      } 
    } 
    for (i=1; i<=NX; i++) 
      for (j=1; j<=NY; j++) 
        for (k=1; k<=NZ; k++) 
        { 
          VxT[i][j][k]=vx[(k-1)*NX*NY+(j-1)*NX+i]*rate_factor*Vpfac/Poro;  // conversion from vector to matrix 
          VyT[i][j][k]=vy[(k-1)*NX*NY+(j-1)*NX+i]*rate_factor*Vpfac/Poro;  // conversion from vector to matrix 
          VzT[i][j][k]=vz[(k-1)*NX*NY+(j-1)*NX+i]*rate_factor*Vpfac/Poro;  // conversion from vector to matrix 
        } 
    for (np=1; np<=NP; np++) 
    { 
      flag = false; 
      if (arriveP[np]==0) 
      { 
        while (TimeP[np]<T[nt]) 
        { 
          ip=(int)floor((xP[np]+0.5*DX)/DX); 
          jp=(int)floor((yP[np]+0.5*DY)/DY); 
          kp=(int)floor((zP[np]+0.5*DZ)/DZ); 
          I[ip][jp][kp]=Spf; 
          for (ns=1; ns<=NSINK; ns++) 
          if ((ip==Sinks[ns][1]) && (jp==Sinks[ns][2]) && (kp==Sinks[ns][3])) 
          {flag = true;} 
          if (flag)  
          {  
            nsour=fmod(np,NSOUR)+1; 
            arriveP[np]=nsour; 
            arriveP[np]=1; 
            part_countP[nsink][nsour]++; 
            break;} 
          for (p=1; p<=6; p++) 
            Pr[p]=0; 
          x=floor((xP[np]+0.5*DX)/DX); 
          y=(xP[np]+0.5*DX)/DX; 
          if (x!=y) 
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          { 
            if (VxT[ip][jp][kp]>0) 
            { 
              dx1=(ip+0.5)*DX-xP[np]; 
              dt=T[nt]-TimeP[np]; 
              dx2=VxT[ip][jp][kp]*dt; 
              xP[np]=xP[np]+min(dx1,dx2); 
              if (dx1<dx2) {TimeP[np]=TimeP[np]+dx1/VxT[ip][jp][kp];} 
              else {TimeP[np]=TimeP[np]+dt;} 
            } 
            else 
            { 
              dx1=xP[np]-(ip-0.5)*DX; 
              dt=T[nt]-TimeP[np]; 
              dx2=-VxT[ip][jp][kp]*dt; 
              xP[np]=xP[np]-min(dx1,dx2); 
              if (dx1<dx2) {TimeP[np]=TimeP[np]+dx1/VxT[ip][jp][kp];} 
              else {TimeP[np]=TimeP[np]+dt;} 
            } 
            break; 
          } 
          x=floor((yP[np]+0.5*DY)/DY); 
          y=(yP[np]+0.5*DY)/DY; 
          if (x!=y) 
          { 
            if (VyT[ip][jp][kp]>0) 
            { 
              dx1=(jp+0.5)*DY-yP[np]; 
              dt=T[nt]-TimeP[np]; 
              dx2=VyT[ip][jp][kp]*dt; 
              yP[np]=yP[np]+min(dx1,dx2); 
              if (dx1<dx2) {TimeP[np]=TimeP[np]+dx1/VyT[ip][jp][kp];} 
              else {TimeP[np]=TimeP[np]+dt;} 
            } 
            else 
            { 
              dx1=yP[np]-(jp-0.5)*DY; 
              dt=T[nt]-TimeP[np]; 
              dx2=-VyT[ip][jp][kp]*dt; 
              yP[np]=yP[np]-min(dx1,dx2); 
              if (dx1<dx2) {TimeP[np]=TimeP[np]+dx1/VyT[ip][jp][kp];} 
              else {TimeP[np]=TimeP[np]+dt;} 
            } 
            break; 
          } 
          x=floor((zP[np]+0.5*DZ)/DZ); 
          y=(zP[np]+0.5*DZ)/DZ; 
          if (x!=y) 
          { 
            if (VzT[ip][jp][kp]>0) 
            { 
              dx1=(kp+0.5)*DZ-zP[np]; 
              dt=T[nt]-TimeP[np]; 
              dx2=VzT[ip][jp][kp]*dt; 
              zP[np]=zP[np]+min(dx1,dx2); 
              if (dx1<dx2) {TimeP[np]=TimeP[np]+dx1/VzT[ip][jp][kp];} 
              else {TimeP[np]=TimeP[np]+dt;} 
            } 
            else 
            { 
              dx1=zP[np]-(kp-0.5)*DZ; 
              dt=T[nt]-TimeP[np]; 
              dx2=-VyT[ip][jp][kp]*dt; 
              zP[np]=zP[np]-min(dx1,dx2); 
              if (dx1<dx2) {TimeP[np]=TimeP[np]+dx1/VzT[ip][jp][kp];} 
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              else {TimeP[np]=TimeP[np]+dt;} 
            } 
            break; 
          } 
          if (ip>1) {  if ((VxT[ip-1][jp][kp]<0)) Pr[1]=-VxT[ip-1][jp][kp];} 
          if (ip<NX) {  if ((VxT[ip][jp][kp]>0)) Pr[2]=VxT[ip][jp][kp];} 
          if (jp>1) {  if ((VyT[ip][jp-1][kp]<0)) Pr[3]=-VyT[ip][jp-1][kp];} 
          if (jp<NY) {  if ((VyT[ip][jp][kp]>0)) Pr[4]=VyT[ip][jp][kp];} 
          if (kp>1) {  if ((VzT[ip][jp][kp-1]<0)) Pr[5]=-VzT[ip][jp][kp-1];} 
          if (kp<NZ) {  if ((VzT[ip][jp][kp+1]>0)) Pr[6]=VzT[ip][jp][kp];} 
          sum=0; 
          for (p=1; p<=6; p++) 
            {sum+=Pr[p];} 
          if (sum>0) 
          { 
            r=rand()%100; 
            cdf=0; 
            for (p=1; p<=6; p++) 
            { 
              pdf=Pr[p]/sum; 
              cdf=cdf+pdf; 
              if (r<cdf*100) {break;} 
            } 
            switch (p) 
            { 
              case 1:  
                dt=-DX/VxT[ip-1][jp][kp]; 
                if ((TimeP[np]+dt)<=T[nt]) 
                { 
                  xP[np]=xP[np]-DX; 
                  TimeP[np]=TimeP[np]+dt; 
                } 
                else 
                { 
                  dt=T[nt]-TimeP[np]; 
                  TimeP[np]=T[nt]; 
                  dx=-dt*VxT[ip-1][jp][kp]; 
                  xP[np]=xP[np]-dx; 
                } 
                break; 
              case 2:  
                dt=DX/VxT[ip][jp][kp]; 
                if ((TimeP[np]+dt)<=T[nt]) 
                { 
                  xP[np]=xP[np]+DX; 
                  TimeP[np]=TimeP[np]+dt; 
                } 
                else 
                { 
                  dt=T[nt]-TimeP[np]; 
                  TimeP[np]=T[nt]; 
                  dx=dt*VxT[ip][jp][kp]; 
                  xP[np]=xP[np]+dx; 
                } 
                break; 
              case 3:  
                dt=-DY/VyT[ip][jp-1][kp]; 
                if ((TimeP[np]+dt)<=T[nt]) 
                { 
                  yP[np]=yP[np]-DY; 
                  TimeP[np]=TimeP[np]+dt; 
                } 
                else 
                { 
                  dt=T[nt]-TimeP[np]; 
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                  TimeP[np]=T[nt]; 
                  dy=-dt*VyT[ip][jp-1][kp]; 
                  yP[np]=yP[np]-dy; 
                } 
                break; 
              case 4:  
                dt=DY/VyT[ip][jp][kp]; 
                if ((TimeP[np]+dt)<=T[nt]) 
                { 
                  yP[np]=yP[np]+DY; 
                  TimeP[np]=TimeP[np]+dt; 
                } 
                else 
                { 
                  dt=T[nt]-TimeP[np]; 
                  TimeP[np]=T[nt]; 
                  dy=dt*VyT[ip][jp][kp]; 
                  yP[np]=yP[np]+dy; 
                } 
                break; 
              case 5:  
                dt=-DZ/VzT[ip][jp][kp-1]; 
                if ((TimeP[np]+dt)<=T[nt]) 
                { 
                  zP[np]=zP[np]-DZ; 
                  TimeP[np]=TimeP[np]+dt; 
                } 
                else 
                { 
                  dt=T[nt]-TimeP[np]; 
                  TimeP[np]=T[nt]; 
                  dz=-dt*VzT[ip][jp][kp-1]; 
                  zP[np]=zP[np]-dz; 
                } 
                break; 
              case 6: 
                dt=DZ/VzT[ip][jp][kp]; 
                if ((TimeP[np]+dt)<=T[nt]) 
                { 
                  zP[np]=zP[np]+DZ; 
                  TimeP[np]=TimeP[np]+dt; 
                } 
                else 
                { 
                  dt=T[nt]-TimeP[np]; 
                  TimeP[np]=T[nt]; 
                  dz=-dt*VzT[ip][jp][kp]; 
                  zP[np]=zP[np]+dz; 
                } 
                break; 
            } 
          } 
        } 
      } 
    } 
    Qw=0; 
    for (nsink=1;nsink<=NSINK;nsink++) 
    { 
      Npw=0; 
      Npp=0;     
      for (nsour=1;nsour<=NSOUR;nsour++) 
      { 
        wc+=(part_countW[nsink][nsour]-
part_countP[nsink][nsour])*Fw*Qi[nsour][nt]/Qp[nsink][nt]/(double)(NP/NSOUR)*Qinj[nsour]/Qinj_all 
          +part_countP[nsink][nsour]/(double)(NP/NSOUR)*Qinj[nsour]/Qinj_all*Fp*Qi[nsour][nt]/Qp[nsink][nt]; 



 217

        Npw+=part_countW[nsink][nsour]; 
        Npp+=part_countP[nsink][nsour]; 
 
      } 
      Sw[nsink]=Sw_sink[nsink]+(Swf-Sw_sink[nsink])*(Npw-Npp)/(FracW_sink[nsink]*NPWleft); 
      Sw[nsink]+=(Spf-Swf)*Npp/(FracP_sink[nsink]*NPPleft); 
      So=1-Sw[nsink]; 
      Krw=Krw_max*pow((Sw[nsink]-Sw_ini)/(1-Sw_ini-Sor),exp_w); 
      Kro=Kro_max*pow((So-Sor)/(1-Sw_ini-Sor),exp_o); 
      if (Sw[nsink]>Swf) 
        wc=(Fp-Fw)*(Sw[nsink]-Swf)/(Spf-Swf)+Fw; 
      else 
      {  if (Krw>0) 
          wc=1/(1+Kro*Vw/(Krw*Vo)); 
        else 
          wc=0;} 
      wc_sink[nsink]=wc; 
      Qw+=Qp[nsink][nt]*wc; 
    } 
    wc=Qw/Qi_tot; 
    Qo=(1-wc)*Qi_tot; 
    NetPresent(NPV,wc); 
    prodfl<<T[nt]<<"  "<<Qw*35.314666<<"  "<<Qo*35.314666<<"  "<<wc<<"  "<<NPV<<"  "; 
    for (nsink=1;nsink<=NSINK;nsink++) 
      prodfl<<wc_sink[nsink]<<"  "; 
    prodfl<<endl; 
  } 
  for (np=1; np<=NP; np++) 
  { 
    nsour=fmod(np,NSOUR)+1; 
    if (nsour==1) 
    {  positionfl<<xP[np]<<"  "<<yP[np]<<"  "<<zP[np]<<"  "<<"2"<<endl;} 
    else 
    {  positionfl<<xP[np]<<"  "<<yP[np]<<"  "<<zP[np]<<"  "<<"3"<<endl;} 
  } 
  for (np=1; np<=NP; np++) 
  { 
    nsour=fmod(np,NSOUR)+1; 
    if (nsour==1) 
    {  positionfl<<xW[np]<<"  "<<yW[np]<<"  "<<zW[np]<<"  "<<"0"<<endl;} 
    else 
    {  positionfl<<xW[np]<<"  "<<yW[np]<<"  "<<zW[np]<<"  "<<"1"<<endl;} 
  } 
  positionfl.close(); 
  for (k=1; k<=NZ; k++) 
    for (j=1; j<=NY; j++) 
      for (i=1; i<=NX; i++) 
        trajfile<<I[i][j][k]<<endl; 
  trajfile.close(); 
  prodfl.close(); 
  if (argc<3) 
  { 
    cout<<"Read production data in 'Production.dat'"<<endl; 
    cout<<"Computer Time "<<time (NULL)-t1<<" seconds"<<endl; 
  } 
 
  return 0; 
} 
         
 
void read_parameters(char Pfile[20])   
{ 
  char chartemp[120]; 
  char Kfile[80]; 
  int i, j, k; 
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  read_flag=1; 
  ifstream Param(Pfile); 
  //ifstream Param("proxy-40.par"); 
  if (!Param) 
  { 
    cout<<"Parameter file does not exist"<<endl; 
    exit(1); 
  } 
  Param>>NX; 
  if (NX>nx_max) { cout<<"Number of blocks in X-direction exceeded, max"<<nx_max<<endl; exit(1);} 
  Param>>NY; 
  if (NY>ny_max) { cout<<"Number of blocks in Y-direction exceeded, max"<<ny_max<<endl; exit(1);} 
  Param>>NZ; 
  if (NZ>nz_max) { cout<<"Number of blocks in Z-direction exceeded, max"<<nz_max<<endl; exit(1);} 
  Param.getline(chartemp,120,'\n'); 
  Param>>DX; 
  Param>>DY; 
  Param>>DZ; 
  Param.getline(chartemp,120,'\n'); 
  Param>>NSOUR; 
  Param.getline(chartemp,120,'\n'); 
  if (NSOUR>nsour_max) { cout<<"Number of sources exceeded, max "<<nsour_max<<endl; exit(1);} 
  for (ns=1; ns<=NSOUR; ns++) 
  { 
    Param>>Sources[ns][1]; 
    Param>>Sources[ns][2]; 
    Param>>Sources[ns][3]; 
    Param.getline(chartemp,120,'\n'); 
  } 
  Param>>NSINK; 
  Param.getline(chartemp,120,'\n'); 
  if (NSINK>nsink_max) { cout<<"Number of sinks exceeded, max "<<nsink_max<<endl; exit(1);} 
  for (ns=1; ns<=NSINK; ns++) 
  { 
    Param>>Sinks[ns][1]; 
    Param>>Sinks[ns][2]; 
    Param>>Sinks[ns][3]; 
    Param.getline(chartemp,120,'\n'); 
  } 
  Param>>Poro; 
  Param.getline(chartemp,120,'\n'); 
  Param>>NT; 
  Param.getline(chartemp,120,'\n'); 
  if (NT>100) { cout<<"Number of time steps exceeded, max 100"<<endl; exit(1);} 
  for (i=1; i<=NT; i++) 
  { 
    Param>>T[i]; 
    for (ns=1;ns<=NSOUR;ns++) 
    { 
      Param>>Qi[ns][i]; 
      Qi[ns][i]=Qi[ns][i]/35.314666; // Conversion to SI units 
    } 
    for (ns=1;ns<=NSINK;ns++) 
    { 
      Param>>Qp[ns][i];   
      Qp[ns][i]=Qp[ns][i]/35.314666; // Conversion to SI units 
    } 
  } 
  Param>>Vwfac; 
  Param.getline(chartemp,120,'\n'); 
  Param>>Vpfac; 
  Param.getline(chartemp,120,'\n'); 
  Param>>Swf>>Spf; 
  Param.getline(chartemp,120,'\n'); 
  Param>>Sw_ini>>Sor; 
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  Param.getline(chartemp,120,'\n'); 
  Param>>Krw_max>>exp_w>>Vw; 
  Param.getline(chartemp,120,'\n'); 
  Param>>Kro_max>>exp_o>>Vo; 
  Param.getline(chartemp,120,'\n'); 
  Param>>Krp_max>>exp_p>>Vp; 
  Param.getline(chartemp,120,'\n'); 
  Param>>Kfile; 
  Param.getline(chartemp,120,'\n'); 
  Param.close(); 
  ifstream Kfl(Kfile); 
  if (!Kfl) 
  { 
    cout<<"Permeability file does not exist"<<endl; 
    exit(1); 
  } 
  for (i=1; i<=3; i++) 
    Kfl.getline(chartemp,120); 
  for (k=1; k<=NZ; k++) 
    for (j=1; j<=NY; j++) 
      for (i=1; i<=NX; i++) 
      { 
        Kfl>>kx[j*(NX+2)+i];  //permeability in y-direction 
        kx[j*(NX+2)+i]=kx[j*(NX+2)+i]*0.9869E-15;  // Conversion to SI units 
        ky[j*(NX+2)+i]=kx[j*(NX+2)+i]; 
        vx[(k-1)*NX*NY+(j-1)*NX+i] = 0; 
        vy[(k-1)*NX*NY+(j-1)*NX+i] = 0; 
        vz[(k-1)*NX*NY+(j-1)*NX+i] = -1; 
      } 
  Kfl.close(); 
  ifstream Econ("Econ.par"); 
  if (!Econ) 
  { 
      if (narg<3)  {cout<<"No economic parameter file found ... using default parameters"<<endl;} 
  } 
  else 
  { 
    if (narg<3) {cout<<"Reading economic parameter file"<<endl;} 
    Econ.getline(chartemp,120); 
    Econ>>conc; 
    conc=conc*1E-6; 
    Econ>>tslug[1]>>tslug[2]; 
    Econ>>tax; 
    Econ>>royal; 
    Econ>>apr; 
    Econ>>wfcost; 
    Econ>>watinjcost; 
    Econ>>watprodcost; 
    Econ>>oilprodcost; 
    Econ>>polymasscost; 
    Econ>>oilprice; 
    Econ.close(); 
  } 
} 
 
double NetPresent(double& NPV, double wc) 
{ 
  double watden; 
  double oilprod, watprod, injcost; 
  double dt, winjec, oilcost, watcost, oilrevenue, royalty, netrevenue; 
  double wf, cost, advalorem, tax_income, tax_paid, netincome; 
  double polycost; 
  watden=350; 
  dt=T[nt]-T[nt-1]; 
  winjec=Qi_tot*dt*6.28981077; 
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  oilprod=Qi_tot*(1-wc)*dt*6.28981077; 
  watprod=Qi_tot*wc*dt*6.28981077; 
  injcost=watinjcost*winjec; 
  oilcost=oilprod*oilprodcost; 
  watcost=watprod*watprodcost; 
  oilrevenue=oilprod*oilprice; 
  royalty=oilrevenue*royal; 
  netrevenue=oilrevenue-royalty; 
  if ((T[nt]>=tslug[1]) && (T[nt]<=tslug[2])) 
  {  polycost=polymasscost*winjec*watden*conc;} 
  else 
  {  polycost=0;} 
  wf=wfcost*dt/30; 
  cost=injcost+oilcost+watcost+polycost+wf; 
  advalorem=oilprod*0.0046; 
  tax_income=netrevenue-cost-advalorem; 
  tax_paid=tax_income*tax; 
  netincome=tax_income-tax_paid; 
  NPV=NPV+netincome/pow((1+apr),T[nt]/365); 
  return 0; 
} 
void write_wellfile()   // write well data file for simulator 
{ 
  ofstream wellfl("well.dat", ios::trunc); 
  wellfl<<"0"<<endl;   // start time 
  wellfl<<"1"<<endl;  // number of time step entries 
  wellfl<<"1  5"<<endl;  // entry # 1 - 2 steps of 1 day 
  wellfl<<NSOUR+NSINK<<endl;    // total number of wells 
  for (ns=1;ns<=NSOUR;ns++) 
    wellfl<<Sources[ns][1]<<"  "<<Sources[ns][2]<<endl;      // Location of sources (injetors) 
  for (ns=1;ns<=NSINK;ns++) 
    wellfl<<Sinks[ns][1]<<"  "<<Sinks[ns][2]<<endl;      // Location of sinks (producers) 
  for (ns=1;ns<=NSOUR;ns++) 
    wellfl<<"0  "<<ns<<"  6.048e-5  Q  "<<Qi[ns][nt]<<endl; 
  for (ns=1;ns<=NSINK;ns++) 
    wellfl<<"0  "<<ns+NSOUR<<"  6.048e-5  Q  "<<-Qp[ns][nt]<<endl; 
  wellfl.close(); 
} 
 
void frac_flow() 
{ 
  Sowf=1-Swf; 
  Sopf=1-Spf; 
  Krofw=Kro_max*pow((Sowf-Sor)/(1-Sor-Sw_ini),exp_o); 
  Krofp=Kro_max*pow((Sopf-Sor)/(1-Sor-Sw_ini),exp_o); 
  Krwf=Krw_max*pow((Swf-Sw_ini)/(1-Sor-Sw_ini),exp_w); 
  Krpf=Krp_max*pow((Spf-Sw_ini)/(1-Sor-Sw_ini),exp_w); 
  Fw=1/(1+Krofw*Vw/(Krwf*Vo)); 
  Fp=1/(1+Krofp*Vp/(Krpf*Vo)); 
} 
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