
The Thesis Committee for Rajaganesh Ganesh

Certifies that this is the approved version of the following thesis:

SQ-CSMA: Universally Lowering the Delay of

Queue-based CSMA/CA

APPROVED BY

SUPERVISING COMMITTEE:

Sujay Sanghavi, Supervisor

Constantine Caramanis

SQ-CSMA: Universally Lowering the Delay of

Queue-based CSMA/CA

by

Rajaganesh Ganesh, B.E.

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2010

Dedicated to my parents.

Acknowledgments

I wish to thank my advisor, Dr. Sujay Sanghavi without whom, I would

not have been able to complete this work in a timely and efficient manner.

I would also like to take this opportunity to thank my parents, for standing

by me all the time and my friends for their constant encouragement.

iv

SQ-CSMA: Universally Lowering the Delay of

Queue-based CSMA/CA

Rajaganesh Ganesh, M.S.E.

The University of Texas at Austin, 2010

Supervisor: Sujay Sanghavi

Recent works show that, by incorporating queue length information,

CSMA/CA multiple access protocols can achieve maximum throughput in

general ad-hoc wireless networks. In all of these protocols, the aggressiveness

with which a link attempts to grab the channel is governed solely by its own

queue, and is independent of the queues of other interfering links. While this

independence allows for minimal control signaling, it results in schedules that

change very slowly. This causes starvation and delays - especially at moderate

to high loads.

In this work we add a very small amount of signaling - an occasional few bits

between interfering links. These bits allow us a new functionality: switching

- a link can now turn off its interfering links with a certain probability. The

challenge is ensuring maximum throughput and lower delay via the use of this

new functionality. We develop a new protocol - Switch-enabled Queue-based

CSMA (SQ-CSMA) - that uses switching to achieve both of these objectives.

v

This simple additional functionality, and our protocol to leverage it, can be

“added on” to every existing CSMA/CA protocol that uses queue lengths.

Interestingly, we see that in every case it has a significant positive impact on

delay, universally furthering the performance of existing protocols.

vi

Table of Contents

Acknowledgments iv

Abstract v

List of Figures ix

Chapter 1. Introduction 1

1.1 Previous Work . 1

1.2 Key Results . 4

Chapter 2. Network Model 6

2.1 System Parameters . 6

2.2 Throughput Optimality . 7

Chapter 3. The Algorithm 9

3.1 Preliminaries . 9

3.2 SQ-CSMA Algorithm . 12

Chapter 4. SQCSMA - Analysis 14

4.1 A Discrete Time Markov Chain 14

4.2 State Transition Probability 16

4.3 Achieving the Product-form Distribution 18

4.4 Throughput Optimality . 20

Chapter 5. Distributed Implementation 22

5.1 Protocol for SQ-CSMA . 22

5.2 Other distributed scheduling protocols 27

vii

Chapter 6. Simulations 29

6.1 SQ-CSMA vs. Q-CSMA . 29

6.2 A 9-link ring network . 33

Chapter 7. Conclusions 36

Bibliography 38

Vita 40

viii

List of Figures

2.1 Link Contention Graph - Dark nodes represent active links . . 7

3.1 Example of starvation due to slower schedule changes in Q-
CSMA. D cannot become active until all its interferers are se-
lected in the decision schedule and are made inactive. 11

3.2 Links E and F switch off their interferers A and B respectively,
leaving C as the only interferer for D, thus enabling D to switch
OFF C and become active in a subsequent time slot. 12

5.1 Time Slot structure in SQ-CSMA 23

6.1 Link Contention Graph for a 6-link network 29

6.2 Long term average queue length per link for the network in 6.1 31

6.3 Evolution of average queue length per link 33

6.4 A 9-Link Ring Topology . 34

6.5 Evolution of average queue length per link for 9-link topology 35

ix

Chapter 1

Introduction

Distributed link scheduling is a central problem in ad-hoc wireless net-

works. Several popular approaches, and implemented protocols, are based

on CSMA/CA, which combines channel sensing with collision avoidance via

handshaking. Broadly speaking, links in these protocols continuously sense

the channel, and contend for access when they have data to send. Until re-

cently, the throughput of these systems for general interference networks was

not known to be optimal. A recent set of results ([1],[2],[3]) shows that if queue

lengths are used to modulate the aggressiveness of channel access by the links,

then it is possible to make the protocols – which we will broadly call Q-CSMA

- throughput-optimal. While these protocols are appealing due to their very

low control overheads, they suffer from very high delays. Our main focus in

this work is to reduce the long term average delay experienced by each node,

while still maintaining the throughput optimality.

1.1 Previous Work

There are several existing centralized scheduling schemes which achieve

throughput optimality and a lower delay. These protocols require a central

1

governing node to monitor the queue lengths of all the nodes in the network

and perform scheduling. For example, in the Maximal Weighted Scheduling

(MWS) scheme, from the set of all non-interfering links, the set with maxi-

mum total queue length is chosen as the schedule in current time slot. MWS is

known to be throughput optimal [4]. However, finding the maximal-weighted

independent set in each time slot is NP-complete in general, and is hard even

for centralized algorithms. The Greedy Maximal Scheduling, or, the Longest

Queue First scheduling is a lower complexity alternative to maximal weight

scheduling. This algorithm proceeds in a recursive manner by sequentially

scheduling the link with the longest queue length while switching off all its in-

terfering links. Though the GMS algorithm has a lower delay and is through-

put optimal under certain constraints [5], for a general network topology, it

achieves only a fraction of the capacity region [6],[7]. The signalling overhead

also scales with the network size.

The CSMA (Carrier Sense Multiple Access) algorithms are a class of

algorithms which are distributed random access algorithms. Under CSMA,

a node (sender) will sense whether the channel is busy before it transmits

a packet. When the node detects that the channel is busy, it will wait for

a random amount of backoff time. Else, the node will transmit the packet.

Since CSMA-type algorithms can be easily implemented in a distributed man-

ner, they are widely used in practice in wireless networks. Under an idealized

CSMA model (which assumes zero propagation/sensing delay and no hidden

terminals) where collisions can never occur, it was shown that the Markov

2

chain describing the evolution of schedules has a product-form stationary dis-

tribution [8].

Based on these results, Jiang and Warland [1] proposed a distributed

algorithm to adaptively choose the CSMA parameters to meet the traffic de-

mand, without explicitly knowing the arrival rates. The authors make a time-

scale separation assumption, whereby the CSMA Markov chain converges to

its steady-state product form distribution instantaneously when compared to

the time-scale of adaptation of the CSMA parameters. They proved that this

algorithm is throughput-optimal.

In [9], the authors study distributed algorithms for optical networks. In

[2], a slightly modified version of the algorithm proposed in [9] was shown to

be throughput-optimal. The key idea in [2] is to choose the link weights to be

a specific function of the queue lengths to essentially separate the time scales

of the link weights and the CSMA dynamics. The authors also assume that

the maximum queue length in the network is known, through a distributed

message-passing procedure.

Srikant and Ni [3] proposed a discrete-time version of the CSMA-type

random access algorithm called the Q-CSMA which achieves the product-form

distribution. In their work, given that the channel is free, the probability that

a link grabs the channel in a given time slot depends solely on its own queue

length.

3

1.2 Key Results

While the protocols discussed above are appealing due to their very

low control overheads, they suffer from very high delays. As we will see, this

is due to the fact that, at moderate loads, schedules change over very slow

time scales. This causes starvation, which results in high delay. It would be

preferable to have much lower delays at the cost of some additional control

overhead. In this thesis, we take the very first step in this direction; we develop

a protocol that adds a few bits of messaging between neighboring links. These

additional bits can be used to enable links that have been starved (and hence

have high queues) to pre-emptively switch off their interferers. This simple

additional functionality, and our protocol to leverage it, can be “added on” to

every existing CSMA/CA protocol that uses queue lengths. Interestingly, this

makes Q-CSMA vary schedules much faster and we see that in every case it has

a significant positive impact on delay, universally furthering the performance of

existing protocols. The smartness in our design is finding a way to do this that

still retains the throughput-optimality property. The signalling information is

exchanged in a control slot and the schedule is transmitted in the transmission

slot. Our protocol allows for collisions in the control slot and generates collision

free transmission schedules in the data slot, thus relaxing the idealized CSMA

condition.

Intellectually, our protocol borrows from the theory of faster-mixing

Markov chains; in particular the mixing time of our scheduling algorithm cap-

tures how quickly the schedule changes with time. By performing switching

4

in a way that leads to faster mixing, we retain throughput optimality while

obtaining noticeable gains in delays. We introduce the network model and

some nomenclature in the next chapter and the actual algorithm and results

in the following chapters.

5

Chapter 2

Network Model

In this chapter, we present the network model and nomenclature that

has been used throughout our work.

2.1 System Parameters

We model a single channel wireless network by an interference graph

or a link contention graph, G = (V,E) where V denotes the set of links and

E denotes the edge set (Fig. 2.1). Each link consists of a transmitter-receiver

pair. The edges model the radio interference between the links. Two links

which are connected by an edge interfere with each other and hence cannot

transmit simultaneously. For any link i ∈ V we use N(i) to denote the set

of all neighbors (conflicting links) of i. If at least one link in the set N(i) is

active, the link i cannot be active. We assume symmetry in the conflict set so

that if j ∈ N(i), then i ∈ N(j).

We assume a time slotted system. A feasible schedule is any schedule

in which no two interfering links are active. Thus, a feasible schedule is always

an independent set in the graph G. A feasible schedule is transmitted in every

time slot t. Let M be the set of all feasible schedules in a network. A schedule

6

Figure 2.1: Link Contention Graph - Dark nodes represent active links

is represented by a vector x ∈ {0, 1}|V |, where the ith element of x = 1 if link i

is active in the current schedule; else xi = 0. With a slight abuse of notation,

we also treat x as a set and write i ∈ x if xi = 1. Note that, for a feasible

schedule,

xi +
∑

j∈N(i)

xj ≤ 1 ∀i ∈ V

2.2 Throughput Optimality

A scheduling algorithm is an algorithm in which a feasible schedule is

determined for transmission in each time slot. In this work, we propose a

distributed scheduling algorithm. The capacity region of the network is the

set of all arrival rates λ for which there exists a scheduling algorithm that

can stabilize the queues, i.e., the queues are bounded in some appropriate

stochastic sense depending on the arrival model used. For the purposes of this

thesis, we will assume that if the arrival process is stochastic, then the resulting

queue length process represents a Markov chain, in which case, stability refers

7

to the positive recurrence of this chain. It is known (e.g., [4],) that the capacity

region is given by

Λ = {λ | ∃µ ∈ Co(M), µ > λ}

where Co(M) is the convex hull of the set of feasible schedules in M. When

dealing with vectors, inequalities are interpreted component-wise.

We say that a scheduling algorithm is throughput-optimal, or achieves

the maximum throughput, if it can keep the network stable for all arrival rates

in Λ.

8

Chapter 3

The Algorithm

We propose the actual algorithm in this chapter and some motivation

behind it. The analysis of the algorithm and implementation issues will be

address in subsequent chapters.

3.1 Preliminaries

As stated before, we assume a discrete-time slotted system. We divide

each time slot into a control slot and a transmission slot. The purpose of the

control slot is to determine a collision-free schedule x(t) to be transmitted in

the transmission slot. In order to achieve this, we first select a set of non-

interefering links in the control slot, m(t) in a distributed manner. This set

of links m(t) is called the decision schedule in the time slot t. Though the set

m(t) is a feasible schedule, it is not the actual transmission schedule. It is the

set of links that are chosen as candidates for update.

Let M0 ⊆ M denote the set of all decision schedules from which m(t) is

chosen and let α(m(t)) be the probability distribution associated withM0 such

that the sum
∑

m(t)∈M0
α(m(t)) = 1. In [3] the authors propose a distributed

algorithm for choosing the transmission schedule in each time slot, using the

9

decision schedule chosen in the control slot. For each link i ∈ m(t), if none

of the neighbors of i are active in the previous time-slot, then link i becomes

active in the current time-slot with probability pi. With probability 1 − pi,

the link is made inactive. If at least one of the neighbors of the link i is active

in the previous time-slot, then, link i remains inactive with probability 1, in

order to avoid interference. Intuitively, we can see that the link-activation

probability has to be a function of queue lengths for the queues to be stable.

In other words, larger the queue-length of a particular link, higher must be its

probability to become active in that time slot. The exact expressions of how

the link-activation probability depends on queue-length are specified later.

Though the proposed algorithm in [3] is throughput-optimal, the delays

encountered are quite high. Whenever a link becomes active, it remains active

for long periods of time and thus results in slower schedule changes and con-

sequently, longer delays. For example, consider the scenario shown in Fig. 3.1.

Here, the queue length of link D keeps on increasing until it can become active

and once it becomes active, it remains active for a long period of time due to

its large queue length.

The algorithm proposed in [3] is an MCMC sampler where the random

independent updates converge to the desired product form distribution [8].

The intuition behind the larger delays is the slower schedule changes and hence

the slower mixing time of the Markov chain. Thus, a faster mixing MCMC

sampler must lead to lower delays.

Fig. 3.2 shows how the introduction of switching between links can

10

Figure 3.1: Example of starvation due to slower schedule changes in Q-CSMA.
D cannot become active until all its interferers are selected in the decision
schedule and are made inactive.

lead to a faster schedule change for the same scenario seen in Fig. 3.1. This

gives the idea behind the motivation for our algorithm. In our algorithm,

we add an extra switching step to the algorithm proposed in [3] in order to

obtain a faster mixing. In the original algorithm, whenever at least one of the

neighbors of the selected link i ∈ m(t) is active in the previous time slot, the

link i remains inactive with probability 1. In our algorithm, whenever there

is a unique interferer to i, say j ∈ N(i), we associate a switching probability

with which i can switch off j and become active. Unique interferer of a link i

is the single unique neighbor of i who is currently active. This probability of

switching must be chosen such that the Markov chain converges to the steady

state distribution proposed in [8]. We select the switching probability to be

pip̄j where i ∈ m(t) switches off its unique interferer j ∈ N(i) and turns itself

11

Figure 3.2: Links E and F switch off their interferers A and B respectively,
leaving C as the only interferer for D, thus enabling D to switch OFF C and
become active in a subsequent time slot.

ON.

3.2 SQ-CSMA Algorithm

We provide the basic algorithm here. The actual distributed implemen-

tation of the SQ-CSMA protocol is postponed until Chapter 5.

Basic Scheduling Algorithm (in Time Slot t)

1. In the control slot, randomly select a decision schedule

m(t) ∈ M0 with probability α(m(t)).

12

∀i 6∈ m(t):

(a) xi(t) = xi(t− 1).

∀i ∈ m(t):

If no links in N(i) were active in the previous data

slot, i.e.,
∑

j∈N(i) xj(t− 1) = 0, then

(b) xi(t) = 1 with probability pi, 0 < pi < 1;

(c) xi(t) = 0 with probability p̄i = 1− pi.

If only one link in N(i) was active in the previous data

slot, say j ∈ N(i) and also, j is not a unique interferer

for any other link in m(t), then

(d) xi(t) = 1 and xj(t) = 0 with probability

pip̄j, 0 < pi, pj < 1.

(e) xi(t) = xi(t− 1) and xj(t) = xj(t− 1) with

probability 1− pip̄j, 0 < pi, pj < 1.

Else

(f) xi(t) = 0.

2. In the transmission slot, use x(t) as the transmission schedule.

13

Chapter 4

SQCSMA - Analysis

In this chapter, we prove some important lemmas and propositions to

show that the proposed algorithm is indeed throughput optimal.

4.1 A Discrete Time Markov Chain

One important condition to be satisfied in order to avoid collisions

would be to ensure that the transmission schedule selected in each time slot

is a feasible transmission scedule. In this section, we show that if previous

transmission schedule and current decision schedule are both feasible, then,

current transmission schedule is also feasible.

Lemma 4.1.1. If x(t− 1) ∈ M and m(t) ∈ M0 ⊆ M, then, x(t) ∈ M.

Proof. We know that, x(t) ∈ M iff ∀i ∈ V such that xi(t) = 1, we have

xj(t) = 0 ∀j ∈ N(i).

Now consider any i ∈ V such that xi(t) = 1.

case(i): If i /∈ m(t), then we know

(a) xi(t − 1) = xi(t) = 1 based on Step (a). Since x(t − 1) ∈ M, we have

∀j ∈ N(i), xj(t− 1) = 0.

14

• If j /∈ m(t), then xj(t) = xj(t − 1) = 0 based on Step (a) of the

scheduling algorithm above;

• If j ∈ m(t), then since i ∈ N(j) and xi(t− 1) = 1, xj(t) = 0 based

on Step (f). Or,

(b) j ∈ N(i) ∩ m(t) and
∑

k∈N(j) xk(t− 1) = 1 based on step (d) of the

scheduling algorithm. i.e., k = i is the only active neighbor of a link j

selected in m(t), and by step (e) of the scheduling algorithm, xi(t) =

1; xj(t) = 0 and hence, ∀j ∈ N(i), xj(t) = 0.

case(ii): If i ∈ m(t), from the scheduling algorithm we have xi(t) = 1

if

(a) xj(t − 1) = 0 ∀j ∈ N(i) based on step (b) of the scheduling algorithm.

Since i ∈ m(t) and m(t) is feasible, we know N(i)∩m = ∅. i.e., j /∈ m(t).

Therefore, for any j ∈ N(i), xj(t) = xj(t−1) = 0 based on Step (a). Or,

(b)
∑

j∈N(i) xj(t− 1) = 1 based on step (d) of the scheduling algorithm. In

this case, only one of the neighbors of link i is active in the previous time

slot, say {j ∈ N(i) | xj(t − 1) = 1} and by step (d) of the scheduling

algorithm, xj(t) = 0 and hence, ∀j ∈ N(i), xj(t) = 0.

Thus, we see that x(t) depends only on the previous state x(t− 1) and

some randomly selected decision schedule m(t). Hence, we can say that x(t)

evolves as a discrete-time Markov chain (DTMC) on state space M.

15

4.2 State Transition Probability

In this section, we will derive the transition probabilities between the

states (transmission schedules) in the Markov chain desxribed in the previous

section.

Proposition 4.2.1. For a randomly selected decision schedule m(t) ∈ M0

such that ∪m∈M0
m = V , the transition probability from x to x′ is given by:

P (x,x′) =
∑

m∈M0

α(m)





∏

l∈x\x′

p̄l









∏

k∈x′\x

pk









∏

i∈m∩(x∩x′)

pi









∏

j∈m\(x∪x′)\N(x∪x′)

p̄j









∏

(a,b)∈(A,B)

(1− pap̄b)



 (4.1)

where, the set (A,B) is defined by the following equations:

(A,B) = {(a, b) |a ∈ m \ (x ∪ x′);

b = N(a) ∩ (x ∩ x′); |b| = 1} (2)

| A | =| B | (3)

Proof. Given that m ∈ M0 is the selected decision schedule in the current time

slot, we can calculate the probability that the schedule makes a transition from

x to x′ by dividing into the following cases:

16

1. k ∈ x′ \ x ⊆ m: link k is seleceted in the decision schedule and it decides

to change its state from 0 to 1. This occurs with probability pk as given

in Step (b) of the scheduling algorithm;

2. l ∈ x \ x′ ⊆ m: link l is selected in the decision schedule and it decides to

change its state from 1 to 0. This occurs with probability p̄l as given in

Step (c) of the scheduling algorithm;

3. i ∈ m ∩ (x ∩ x′): link i is selected in the decision schedule and it decides

to keep its state 1, this occurs with probability pi as given in Step (b) of

the scheduling algorithm;

4. j ∈ m \ (x ∪ x′) \N(x): link j decides to keep its state 0, this occurs with

probability p̄j as given in Step (c) of the scheduling algorithm;

5. e ∈ m ∩ N(x) where N(x) = ∪l∈xN(l): link e has one or more interfering

neighbors. If it has a unique interferer, it either switches states with

the neighbor based on case(6) or retains its state based on case(7) given

below. If it has more than one interfering neighbors, it has to keep

its state 0, this occurs with probability 1 as given in Step (f) of the

scheduling algorithm;

6. k ∈ x′ \ x ⊆ m; l ∈ N(k) ∩ (x \ x′ \m): link k is seleceted in the decision

schedule and it has a single interfering neighbor l. Link k switches off

link l and turns itself ON. This happens with probability pkp̄l as given

in Step (d) of the scheduling algorithm.

17

7. (a, b) ∈ (A,B), where (A,B) is defined by (2), (3): link a is seleceted in

the decision schedule and it has a single interfering neighbor b. Link a

and link b retain their state. This happens with probability (1 − pap̄b)

as given in Step (d) of the scheduling algorithm.

Note that m∩N(x\x′) = ∅ because x′ \x ⊆ m, we have m\ (x∪x′)\N(x) =

m\ (x∪x′)\N(x∪x′). Since each link in m makes its decision independently

of each other, we can multiply these probabilities together. Summing over all

possible decision schedules, we get the total transition probability from x to

x′ given in (4.1).

Remark 4.2.1. In (2), a ∈ m \ (x∪ x′) ensures that link a which is inactive in

previous slot is selected for switching. b ∈ N(a) ∩ (x ∩ x′) ensures that link b

is an active neighbor of a. b \ N(a) ∩ (x ∩ x′) = ∅ ensures that b is the only

active neighbor of link a. Putting these two conditions together, we write it as

b ∈ N(a)∩ (x∩ x′) and |b| = 1. (3) ensures that link b is the unique interferer

of a alone and not a unique interferer for any of its other neighbors. Note that

the definition of the set (A,B) is symmetric in x and x′. This will be useful

in the analysis later.

4.3 Achieving the Product-form Distribution

As we explained earlier, the intuition behind the proposed protocol is

to obtain a faster mixing MCMC but we must also make sure that we attain

the product-form distribution stated in [8]. We have the following proposition.

18

Proposition 4.3.1. The DTMC is irreversible and aperiodic if and only if

∪m∈M0
m = V and in this case, the DTMC is reversible and has the following

product-form stationary distribution:

π(x) =
1

Z

∏

i∈x

pi
p̄i

(3)

Z =
∑

x∈M

∏

i∈x

pi
p̄i

Proof. The proof for the necessary and sufficient condition for the DTMC to

be irreducible and aperiodic is similar to that of Proposition 1 from [3]. We

will prove that for our protocol, the DTMC is also reversible. When x makes a

transition to x′, we want to show that distribution in (3) satisfies the following

detailed balance equation:

π(x)P (x,x′) = π(x′)P (x′,x) (5)

From (3),

π(x)

π(x′)
=

∏

i∈x
pi
p̄i

∏

j∈x′

pj
p̄j

=

(

∏

i∈x\x′ pi

)(

∏

j∈x′\x p̄j

)

(

∏

j∈x′\x pj

)(

∏

i∈x\x′ p̄i

) (6)

Referring back to the transition probability defined in (4.1), we can see that

the first two product terms are independent of m and can be pulled out of the

summation. Also, all the other terms except the first two product terms are

symmetric in (x,x′) and hence cancel with each other in P (x′,x)
P (x,x′)

. Thus,

19

P (x′,x)

P (x,x′)
=

(

∏

k∈x′\x p̄k

)(

∏

l∈x\x′ pl

)

(

∏

l∈x\x′ p̄l

)(

∏

k∈x′\x pk

) (7)

From (6), (7), the DTMC is reversible and (3) is indeed its stationary distri-

bution.

4.4 Throughput Optimality

Using the results obtained above, we finally are in a position to prove

that the proposed algorithm is indeed throughput optimal. We impose some

constraints on the link weight function and end this chapter with two impor-

tant propositions.

Each link i has a non-negative link weight wi(t) associated with it, and

the link activation probability pi is a function of these link weights. These

link weights, in turn, depend upon the queue length of the link. This was

generalized in [10] as follows. For all i ∈ V , let link weight wi(t) = fi(qi(t)),

where fi : [0,∞] → [0,∞] are functions that satisfy the following conditions:

1. fi(qi) is a nondecreasing and continuous function with limqi→∞ fi(qi) =

∞.

2. Given any M1 > 0,M2 > 0 and 0 < ǫ < 1, there exists a Q < ∞, such

that for all qi > Q and ∀ i, we have

(1− ǫ)fi(qi) ≤ fi(qi −M1) ≤ fi(qi +M2) ≤ (1 + ǫ)fi(qi).

20

The very idea behind striving to achieve the product form distribution

in (3) is, for the choice of pi =
expwi

expwi+1
, it was proved in [3] that the system

is throughput optimal under the time scale separation assumption. We quote

the following 2 propositions from [10] and [3] respectively, to assert that our

scheduling algorithm is throughput optimal.

Proposition 4.4.1. For a scheduling algorithm, given any ǫ and δ, 0 < ǫ, δ <

1, there exists a B > 0 such that: in any time slot t, with probability greater

than 1− δ, the scheduling algorithm chooses a schedule x(t) ∈ M that satisfies

∑

i∈x(t)

wi(t) ≥ (1− ǫ)max
x∈M

∑

i∈x(t)

wi(t)

whenever ||q(t)|| > B, where q(t) = (qi(t) : i ∈ V). Then the scheduling

algorithm is throughput-optimal.

Proposition 4.4.2. Suppose the basic scheduling algorithm satisfies ∪m∈M0
m =

V and hence has the product-form stationary distribution. Let pi =
expwi(t)

expwi(t)+1
∀ i ∈

V . Then the scheduling algorithm is throughput-optimal.

21

Chapter 5

Distributed Implementation

In this chapter, we present a distributed implementation of the basic

scheduling algorithm proposed in chapter 3. The important thing to keep in

mind is that we need to come up with a distributed algorithm to select a

feasible schedule m(t) and also to perform switching with as little signalling

as possible. To achieve this, each time slot is divided into a control slot and

a transmission slot. The control slot in turn is divided into a reserve slot

and a switching slot (Fig. 5.1). The decision schedule m(t) is determined in

the reserve slot and switches between neighbors, if any, are handled in the

switching slot. Interference information (i.e., whether or not a neighbor was

active in the previous time slot) is available at each link via carrier sensing.

We also avoid collisions in the transmission schedule by exchanging control

messages. We call this algorithm SQ-CSMA (Switch-enabled Queue-

based CSMA).

5.1 Protocol for SQ-CSMA

We now describe the actual implementation of the SQ-CSMA protocol.

The time slot structure in a SQ-CSMA protocol is shown in Fig. 5.1. At this

22

Figure 5.1: Time Slot structure in SQ-CSMA

point of time, we would advice the reader to refer back to the basic scheduling

algorithm that was proposed in chapter 3 to correlate it with Fig. 5.1 and the

SQ-CSMA protocol described below.

At the beginning of each control slot, every link i starts a clock with a

random back-off time, Ti.

SQ-CSMA Algorithm (in Time Slot t at link i)

Reserve-Phase:

1. Link i selects a random (integer) back-off time Ti uniformly from the

interval [0,W − 1] and waits for Ti reserve mini-slots. W is the number

of reserve mini-slots.

23

2. If link i hears a RESERVE message from any of its neighbors N(i) before

the (Ti + 1)th mini-slot, it deactivates its back-off timer and waits until

the end of the reserve-phase (W mini-slots). It is not included in m(t).

3. If link i does not hear a RESERVE message from any of its neighbors

N(i) before the T th
i mini-slot, it sends out a RESERVE message to all

its neighbors at the beginning of the (Ti + 1)th mini-slot.

(a) If there is a collision (i.e., if there are one or more links in the

neighbor set N(i) with the same back-off time as Ti which transmit

a RESERVE message in the same reserve mini-slot as i), set xi(t) =

xi(t− 1).

(b) If there is no collision, link i is selected in the decision schedule and

it becomes a candidate for update and it waits till the end of the

reserve phase.

Switching-Phase:

At the end of the reserve phase, link i enters the switching phase. From

Fig. 5.1,

Slot A: Links active in previous transmission slot broadcast their id to all the

neighbors from which RESERVE message was received.

Slot B: Links selected in decision schedule which receive a single ID during

time slot A, transmit a SWITCH REQUEST message to the sender.

24

Slot C: Links which receive a single switch request transmit back an ACK.

Links which see a collision due to multiple switch requests transmit back a

NACK to all their neighbors.

(a) i ∈ m(t)

In mini-slot A (Fig. 5.1), link i will receive the ID’s of all its neighbors who

were active in the previous transmission slot.

1. If no links in N(i) were active in the previous transmission slot,(i.e, if no

ID is received in mini-slot A) the following scheduling update is made:

• xi(t) = 1 with probability pi;

• xi(t) = 0 with probability p̄i = 1− pi.

2. If only one ID is received, say from j ∈ N(i), in mini-slot B (Fig. 5.1),

link i sends a switch request to link j with probability pip̄j, 0 < pi, pj < 1.

• If link i gets back an ACK message from link j in mini-slot C

(Fig. 5.1), it becomes active with probability 1. i.e., xi(t) = 1.

• If link i gets back a NACK message from link j in mini-slot C, it

remains inactive with probability 1. i.e., xi(t) = 0 = xi(t− 1).

3. If more than one link in N(i) was active in the previous data slot (i.e, if

link i sees a collision in mini-slot A), xi(t) = 0.

(b) i /∈ m(t)

25

1. If link i was inactive in the previous transmission slot, it just retains its

state. i.e., xi(t) = xi(t− 1) = 0.

2. If link i was active in the previous time slot, it broadcasts its ID to all

its neighbors who had sent a RESERVE message during the reserve slot.

The ID is broadcasted in the mini-slot A (Fig. 5.1).

3. If link i a unique interferer for one of its neighbors N(i), it might hear a

switch request from this neighbor during the slot B (Fig. 5.1).

4. If a single switch request is received in mini slot B, link i sends back an

ACK message in the mini slot C (Fig. 5.1) to the neighbor who had sent

a switch request and becomes inactive with probability 1. i.e., xi(t) = 0.

5. If link i sees a collision due to multiple switch requests, it sends a NACK

message to all its neighbors in the mini slot C and retains its previous

state. i.e, xi(t) = xi(t− 1) = 1.

6. If link i does not receive a switch request from any of its neighbors

during the switching phase, it just retains its previous state. i.e., xi(t) =

xi(t− 1).

At the end of the control slot, if xi(t) = 1, link i will transmit a packet in the

transmission slot.

26

Proposition 4.3.1 states that the DTMC is reversible and aperiodic if

and only if ∪m∈M0
m = V . From [3], in order to ensure this condition, reserve-

window length has to be at least 2, i.e., W ≥ 2. Thus, from proposition 4.4.2,

the SQ-CSMA protocol is throughput optimal for W ≥ 2.

Remark 5.1.1. When describing the SQ-CSMA algorithm, we treat every link

as an entity, while in reality each link consists of a sender node and a re-

ceiver node. Both carrier sensing and transmission of data/control packets are

actually conducted by those nodes.

5.2 Other distributed scheduling protocols

Comparing our SQ-CSMA protocol with the Q-CSMA protocol pro-

posed in [3], we can see that the only extra overhead involved in the im-

plementation of SQ-CSMA is the signalling information sent during the 3

switching mini-slots. But, as we will be seeing from the simulations in chapter

6, this small extra signalling gives a considerable improvement in the delay

performance of SQ-CSMA over Q-CSMA.

D-GMS[3] is a distributed implementation of the GMS protocol. Here,

the control slot is divided into B frames and each frame, in turn, is divided

into W mini-slots. The back-off time Ti is a random integer in the range

[0, BW − 1], where, the frame at which the timer expires is deterministically

chosen, depending upon the link’s queue length and the mini-slot within this

frame, at which the timer expires is chosen uniformly at random. The links

whose clock expire first are included in the schedule and all their neighbors

27

are switched off. GMS, as we explained earlier, achieves lower delay in the low

traffic region but performs badly in the moderate to high traffic region, for a

general network topology.

We have also implemented a distributed algorithm to approximate max-

imal scheduling (called D-MS [3]), which can be viewed as a synchronized slot-

ted version of the IEEE 802.11 DCF with the RTS/CTS mechanism. DMS is

a special case of D-GMS where the number of frames B = 1. In other words,

the transmission schedule in D-MS is just the decision schedule that we choose

in the SQ-CSMA protocol.

28

Chapter 6

Simulations

In this chapter, we compare the performance of SQ-CSMA algorithm

with the other distributed scheduling schemes mentioned in the previous chap-

ter.

6.1 SQ-CSMA vs. Q-CSMA

Consider the link contention graph shown in Fig. 6.1.

Figure 6.1: Link Contention Graph for a 6-link network

Each link is represented by a square and interference between links are rep-

29

resented by edges. Each link maintains its own queue and it only needs to

know the set of links that conflict with itself. Consider the following set of

non-interfering links:

L1 = {1, 6};L2 = {3, 5};L3 = {2, 4}

Each set represents a maximal independent set of the network, Mi = eLi
,

where eLi
is a vector in which the components with indices in Li are 1 and

others are 0. We define 0 < ρ < 1 as the traffic load factor. Let the arrival

rate vector be a convex combination of the maximal schedules scaled by ρ :

λ = ρ × [0.2M1 + 0.3M2 + 0.2M3 + 0.3M4]. ρ < 1 ensures that the arrival

rate vector is inside the capacity region with ρ → 1 representing arrival rates

approaching the boundary of the capacity region.

The packets arrive at each link i according to a Bernoulli process with

parameter λi independent of arrival at the other links. The queue lengths

are all initialized to zero at the beginning of each simulation. For each of the

scheduling algorithm and for a fixed rho < 1, the simulation is run for 105 time

slots. The system parameters for the different algorithms are given below:

• SQ-CSMA: W = 48; link weights wi(t) = log(1 + βqi(t)); β = 1; link

activation probability pi(t) =
exp(wi(t))

1+exp(wi(t))
; probability of link i switching

off link j = pi(1− pj)

• D-GMS: B = 3; W = 16; D-MS: W = 48

30

• Q-CSMA: W = 48; link weights wi(t) = log(1 + αqi(t)); α = 0.1; link

activation probability pi(t) =
exp(wi(t))

1+exp(wi(t))

0.7 0.75 0.8 0.85 0.9 0.95 1
0

100

200

300

400

500

600

A
ve

ra
ge

 Q
ue

ue
 L

en
gt

h

ρ

D−GMS
DMS
Q−CSMA
SQ−CSMA

Figure 6.2: Long term average queue length per link for the network in 6.1

The rationality to choose wi(t) = log(1 + βqi(t)) as the link weight

function is to make the link weights change much slower than the dynamics

of the CSMA Markov chain (to satisfy the time-scale separation assumption)

[3]. A couple of other link weight functions such as wi(t) = βqi(t) [1] and

wi(t) = log(log(βqi(t))) [2] have been suggested in the literature but wi(t) =

log(1+βqi(t)) with β = 1 seems to give the best performance for the SQ-CSMA

protocol.

The simulation results for the link contention graph in Fig. 6.1 are

shown in Fig. 6.2. By Little’s law, the long-term average queueing delay

31

experienced by the packets is proportional to the long-term average queue

length in the network. Using this notion, we can conclude that:

• The long term average queue length of SQ-CSMA is better than that of

Q-CSMA by almost a factor of 2, for all values of ρ. This fact is also

emphasized from Fig. 6.3 which shows the evolution of average queue

length per link as the time increases.

• Under low traffic intensity, D-GMS and D-MS have a lower long-term av-

erage delay when compared to both Q-CSMA and SQ-CSMA. But when

the traffic intensity increases (which is the region of interest in many real

world applications), there is a steep rise in the long term average queue

lengths of both D-GMS and D-MS schemes delay performance become

worse than Q-CSMA and SQ-CSMA.

• Though D-GMS and D-MS have good delay performance in the low-

traffic region, they are not generally throughput optimal, as discussed in

the next example.

Remark 6.1.1. Srikant and Ni came up with a modified version of Q-CSMA

called the Hybrid Q-CSMA([3])which makes use of the fact that D-GMS has

a very good delay performance in the low-traffic region. In Hybrid Q-CSMA,

each link has a predefined threshold value for the queue length, below which

D-GMS is employed. Once the queue length crosses this threshold, Q-CSMA

is implemented. Thus, Hybrid Q-CSMA has a delay performance similar to

D-GMS in the low-traffic region and Q-CSMA in the heavy-traffic region [3].

32

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

50

100

150

Time slot

A
ve

ra
ge

 Q
ue

ue
 le

ng
th

s

Q−CSMA
SQ−CSMA

Figure 6.3: Evolution of average queue length per link

6.2 A 9-link ring network

We consider a 9-link ring network ([3]) under 2-hop interference model,

as shown in Fig. 6.4. This graph is different from a link contention graph.

Edges of this graph actually form the nodes of a link contention graph.

In [7], [3] the authors show that GMS for this network achieves only

2/3 of the capacity region for the traffic pattern defined as follows. Define

Li = {i, (i + 4) mod 9}, 1 ≤ i ≤ 9. Starting with empty queues, in time

slot 9k + i(k ∈ Z), one packet arrives at each of the 2 links in Li, and, with

probability ǫ, an additional packet arrives at each of the 9 links. The average

33

Figure 6.4: A 9-Link Ring Topology

arrival rate is then λ = (2
9
+ ǫ), for each link. When 0 < ǫ < 1/9 , λ lies in the

interior of the capacity region, but GMS cannot keep the network stable. This

is emphasized in Fig. 6.5 where we evaluate the performance of GMS,D-MS,

QCSMA and SQ-CSMA for the 9-link ring network with the traffic pattern

defined as above. For ǫ = 0.09, the long term average queue length increases

linearly with time for both GMS and D-MS but it stabilizes for Q-CSMA and

SQ-CSMA at a much lower value. Another fact to note is that the SQ-CSMA

again has a better delay performance than Q-CSMA by a factor of 2.

34

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

200

400

600

800

1000

1200

1400

1600

1800

Timeslot

A
ve

ra
ge

 Q
ue

ue
 L

en
gt

h

D−GMS
DMS
Q−CSMA
SQ−CSMA

Figure 6.5: Evolution of average queue length per link for 9-link topology

35

Chapter 7

Conclusions

In this work, we presented a distributed scheduling algorithm which

is both throughput optimal and has a lower delay when compared to the

other existing distributed protocols. We achieved this by introducing a small

amount of signaling between neighboring nodes and we saw that this simple

functionality just be included in any distributed scheduling protocol that uses

queue lengths to determine the schedules. The reduction in delay can be

attributed to the fact that the queue-lengths converge faster in the SQ-CSMA

due to the inclusion of switching. The simulations presented in Chapter 7

also emphasize this claim. The motivation behind this protocol was from

the work on Markov chain on independent sets by Vigoda, Dyer, Greenhill

et al. ([11],[12]). In [11], the authors show that a Markov chain defined on

unweighted independent sets mixes faster when switching is allowed between

neighboring nodes. Our model is an extension of this system with weights

being associated with each independent set in terms of the queue lengths of

the links. An interesting extension to our problem would be to reiterate the

claim made using simulations by performing a similar mixing time analysis for

our system.

36

Adding (even the most basic) messaging and coordination lowers the

delay of queue based CSMA. This thesis just takes a first step at lowering

the delay. In principle, we can have a sequence of protocols that trade-off

complexity and delay while remaining throughput optimal. A more interesting

question to address would be to include non-reversible steps, for e.g., a link

with large queue switching off all its active neighbors while turning itself ON.

However, non-reversible throughput optimal algorithms are not known.

37

Bibliography

[1] L. Jiang and J. Walrand. A distributed CSMA algorithm for Throughput

and Utility Maximization in Wireless Networks. In Proceedings 46th

Annual Allerton Conference on Communication, Control and Computing,

2008.

[2] S. Rajagopalan, D. Shah, and J. Shin. Aloha that works. November

2008.

[3] J. Ni, B. Tan, and R. Srikant. Q-CSMA: Queue length-based CSMA/CA

algorithms for achieving maximum throughput and low delay in wireless

networks. In Proc. IEEE INFOCOM Mini-Conference, 2010.

[4] L. Tassiulas and A. Ephremides. Stability Properties of Constrained

Queueing Systems and Scheduling Policies for Maximal Throughput in

Multihop Radio Networks. IEEE Transactions on Automatic Control,

37(12):1936–1948, December 1992.

[5] A. Dimakis and J. Walrand. Sufficient conditions for stability of longest-

queue-first scheduling: Second-order properties using fluid limits. Ad-

vances in Applied Probabilities, 38(2):505–521, 2006.

[6] C. Joo, X. Lin, and N. B. Shroff. Understanding the capacity region of

the greedy maximal scheduling algorithm in multihop wireless networks.

38

In In Proceedings of IEEE INFOCOM, April 2008.

[7] M. Leconte, J. Ni, and R. Srikant. Improved bounds on the through-

put efficiency of greedy maximal scheduling in wireless networks. In In

Proceedings of ACM MOBIHOC, May 2009.

[8] R. R. Boorstyn, A. Kershenbaum, B. Maglaris, , and V. Sahin. Through-

put Analysis in Multihop CSMA Packet Radio Networks. IEEE Trans-

actions on Communications, 35(3):267–274, March 1987.

[9] S. Rajagopalan and D. Shah. Distributed algorithm and reversible net-

work. In In Proceedings of CISS, March 2008.

[10] A. Eryilmaz, R. Srikant, and J. R. Perkins. Stable scheduling policies

for fading wireless channels. IEEE/ACM Transactions on Networking,

13(2):411–424, April 2005.

[11] M. Dyer and C. Greenhill. On Markov Chains for Independent Sets.

Journal of Algorithms, pages 17–49, 2000.

[12] E. Vigoda. A Note on the Glauber Dynamics for Sampling Independent

Sets. January 2001.

[13] L. Jiang and J. Walrand. Approaching Throughput-Optimality in a

Distributed CSMA Algorithm: Collisions and Stability. (invited), ACM

Mobihoc’09 S3 Workshop, May 2009.

39

Vita

Rajaganesh Ganesh was born in Tanjore, Tamilnadu, India on 11 July

1987, the son of Ganesh Krishnamoorthy and Susila Ganesh. He received the

Bachelor of Engineering degree from the College of Engineering, Guindy in

Electronics and Communications Engineering. He applied to the Electrical

Engineering department at the University of Texas at Austin for enrollment

in their Masters program. He was accepted and started graduate studies in

August, 2009.

Permanent address: 3703 Harmon Avenue Apt 202
Austin, Texas 78705

This thesis was typeset with LATEX
† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special

version of Donald Knuth’s TEX Program.

40

	Blank Page
	Blank Page

