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While computing power has grown monumentally during the space age,

the demands of astrodynamics applications have more than kept pace. Re-

sources are taxed by the ever-growing number of Earth-orbiting space objects

(SOs) that must be tracked to maintain space situational awareness (SSA) and

by increasingly popular but computationally expensive tools like Monte Carlo

techniques and stochastic optimization algorithms.

In this dissertation, methods are presented to improve the accuracy, effi-

ciency, and utility of SO state prediction and sensitivity calculation algorithms.

The dynamical model of the low Earth orbit regime is addressed through the

introduction of an upgraded Harris-Priester atmospheric density model, which

introduces a smooth polynomial dependency on solar flux. Additional modi-

fications eliminate singularities and provide smooth partial derivatives of the

density with respect to SO state, time, and solar conditions.

The numerical solution of the equations of motion derived from dynam-

ics models is also addressed, with particular emphasis placed on six-degree-of-
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freedom (6DOF) state prediction. Implicit Runge-Kutta (IRK) methods are

applied to the 6DOF problem, and customizations, including variable-fidelity

dynamics models and parallelization, are introduced to maximize efficiency

and take advantage of modern computing architectures.

Sensitivity calculation – a necessity for SSA and other applications –

via RK methods is also examined. Linear algebraic systems for first- and

second-order state transition matrix calculation are derived by directly differ-

entiating either the first- or second-order form of the RK update equations.

This approach significantly reduces the required number of Jacobian and Hes-

sian evaluations compared to the ubiquitous augmented state vector approach

for IRK methods, which can result in more efficient calculations. Paralleliza-

tion is once again leveraged to reduce the runtime of IRK methods.

Finally, a hybrid special perturbation/general perturbation (SP/GP)

technique is introduced to address the notoriously slow speed of fully coupled

6DOF state prediction. The hybrid method uses a GP rotational state predic-

tion to provide low-fidelity attitude information for a high-fidelity 3DOF SP

routine. This strategy allows for the calculation of body forces using arbitrary

shape models without adding attitude to the propagated state or taking the

small step sizes often required by full 6DOF propagation. The attitude approx-

imation is obtained from a Lie-Deprit perturbation result previously applied to

SOs in circular orbits subject to gravity-gradient torque and extended here to

SOs in elliptical orbits. The hybrid method is shown to produce a meaningful

middle ground between 3DOF SP and 6DOF SP methods in the accuracy vs.

efficiency space.
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Chapter 1

Introduction

1.1 Motivation

Space object (SO) state prediction is one of the fundamental prob-

lems of astrodynamics. State prediction is essential for tasks ranging from

orbit determination (OD) of heavenly bodies [20] to interplanetary satellite

mission design [47] to the maintenance of space situational awareness (SSA)

for Earth-orbiting assets [8]. It is well-known that, in practical scenarios,

all state prediction algorithms, analytical or numerical, are approximations.

The nonexistence of a single “correct” solution makes it unsurprising that a

prodigious wealth of methods has been produced, with development beginning

hundreds of years ago and accelerating rapidly with the advent of artificial

satellites in the mid-twentieth century. Even orders-of-magnitude increases

in computational capabilities have not slaked the demand for and production

of new techniques. On the contrary, driven both by necessity and computer

hardware advances, astrodynamics software has become ever more ambitious.

For example, the proliferation of artificial SOs placed in Earth orbit – and,

even more importantly, the resulting debris field – makes necessary the accu-

rate state prediction of tens of thousands of SOs to safeguard active satellites

[196]. Additionally, population-based approaches to uncertainty propagation
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(e.g., Monte-Carlo methods [147, 91]) and trajectory optimization (e.g., genetic

algorithms [84]) allow for relaxations of some of the restrictive assumptions of

less computationally intensive alternatives (e.g., extended Kalman filters [17]

and gradient-based optimizers [81], respectively). The cost is a large number

of individual SO state predictions for the uncertainty propagation of a single

SO or the optimization of a single trajectory.

Outside of population-based methods, the need for innovative algo-

rithms persists, in part due to the commonplace requirement of sensitiv-

ity calculation. In particular, the calculation of state transition matrices

(STMs) – a vital element of sensitivity calculation for a dynamical system –

can significantly increase computation time vs. the prediction of the state

alone. Further, computational resource expansion has encouraged the de-

velopment of more expensive techniques that improve performance by using

second- and higher-order STMs as opposed to traditional first-order methods

[160, 67, 159, 130, 197].1

As a result, the creation of new state prediction and sensitivity cal-

culation methods continues in the present day. Novel special perturbation

(SP), general perturbation (GP), and semianalytical prediction methods are

continually developed for SO orbital (i.e., three-degree-of-freedom or 3DOF)

motion, rotational motion, and coupled orbital/rotational (i.e., 6DOF) motion

1For notational convenience, the acronym STM is used to refer to both the first-order
state transition matrix and higher-order state transition tensors. When appropriate, the
modifiers “first-order,” “second-order,” etc. are applied to differentiate between STMs.
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[64, 152].2 Each new advancement seeks to improve on its forebears by accom-

plishing at least one of the following three objectives: (1) improve the fidelity

of a prediction; (2) improve the utility of a prediction; (3) decrease the time

required to make a prediction.

In this dissertation, four interrelated contributions to the astrodynam-

ics field are presented, each of which addresses at least one of these objectives.

The areas of contribution are:

1. The accuracy and efficiency of the dynamics model used by SP meth-

ods to produce the forces and torques acting on an SO; specifically, the

approximation of thermospheric density, a critical component of aerody-

namic force and torque calculations.

2. The efficiency of solving the initial value problem (IVP) generated by

the EOMs produced by the dynamics model of an SP or semianalytical

method. In particular, the work in this dissertation focuses on solving

the ordinary differential equations (ODEs) of the coupled orbit/attitude

prediction problem.

3. The efficiency of calculating first- and second-order STMs of a numeri-

cally propagated SO state.

2SP methods use numerical techniques to approximately solve differential equations of
motion (EOMs) that have no analytical solution, while GP methods create closed-form state
predictions by simplifying the EOMs. Semianalytical methods simplify EOMs to achieve
more efficient numerical propagations rather than a fully closed-form solution [64]. Each
method is introduced in further detail in Sections 1.2.1 and 1.2.2 (SP methods) and 1.2.4
(GP and semianalytical methods).
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4. The accuracy and efficiency of 6DOF state prediction. SP orbital meth-

ods and GP rotational methods are combined to create a semianalytical

method that provides improved accuracy over a 3DOF SP propagation

and improved efficiency over a fully SP 6DOF propagation.

The remainder of Chapter 1 introduces background on each of these

subjects, followed by an overview of the organization and contributions of the

dissertation.

1.2 Literature Review

An introduction to the four areas of study listed in Section 1.1 is given

here, with an emphasis on the material most directly related to the contribu-

tions of the dissertation.

1.2.1 Space Object Dynamics Models

SO state prediction using SP methods relies on the numerical approx-

imation of the solution of a system of (usually nonlinear) ODEs. These nu-

merical techniques generally require evaluating the dynamics model (i.e., the

EOMs) at intervals along the propagated solution trajectory [89]. In SP,

the computational cost of the necessary dynamics model evaluations tends

to greatly overshadow the costs associated with constructing the approximate

trajectory once the dynamics evaluations are performed – to the extent that

the number of dynamics model evaluations is often used as a proxy for CPU
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runtime [6]. Thus, reducing the cost of each evaluation while maintaining

desired fidelity is a primary goal when constructing an efficient propagator.

In this dissertation, dynamics model efficiency is addressed by intro-

ducing an upgraded modified Harris-Priester (HP) atmospheric density model

that uses interpolation techniques to improve accuracy and provide desirable

numerical properties. Section 1.2.1.1 presents an overview of thermospheric

modeling, and Section 1.2.1.2 provides background on the use of interpolation

in space environment modeling.

1.2.1.1 Thermospheric Modeling

For SOs in low Earth orbit (LEO), aerodynamic forces create an im-

portant orbital perturbation that generally causes secular decreases in both

semimajor axis and eccentricity [183]. Aerodynamic forces can also create

torques on SOs. The aerodynamic force experienced by an SO is directly pro-

portional to the density of the atmosphere. Thus, a method for approximating

the density as a function of the SO state and time is vital to state propagation.

At the crudest level, density decreases approximately exponentially

with altitude, and the most basic algorithms neglect all other variations:

ρ(h) = ρ (href ) exp

(
−h− href

H

)
, (1.1)

where ρ is the density, h is the geodetic altitude, H is a parameter called the

scale height, and the subscript ref indicates a reference value [149]. While the

simplicity of the exponential atmosphere results in a very fast computation, the
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approximation is also very rough: The density also depends on local apparent

solar time, geodetic latitude and longitude, time of year, solar radiation flux,

and geomagnetic conditions. However, the understanding of these dependen-

cies is far from complete, a situation that has resulted in the development of

competing models based on both theoretical and empirical functional relation-

ships. Even among the high-fidelity models, significant discrepancies between

output values can exist, and algorithm development continues [191, 55]. This

uncertainty motivates the use of fast, approximate methods for many analyses.

Examples of such algorithms include the HP model and TD-88. Like

the exponential atmosphere, HP is fundamentally based on an assumed an-

alytical relationship between density and altitude, but adds dependencies on

local apparent solar time, latitude, and, in some implementations, solar flux

conditions [90, 57, 184, 75, 76]. The HP model is discussed in more detail

in Chapter 2. On the other hand, TD-88 and its successor, TD-88Up, offer

a simple, analytical model based on a relatively small number of coefficients

that are determined through a nonlinear least-squares fit of data generated by

a higher-fidelity model [178, 182].

Among the most well-known of the higher-fidelity models are the Jac-

chia, Mass Spectrometer – Incoherent Scatter Radar (MSIS), Drag Tempera-

ture Model (DTM), and High Accuracy Satellite Drag Model (HASDM) vari-

ants, each of which is described briefly below.

Jacchia Atmosphere Models The earliest Jacchia models were published

in the 1960s [107], and updates have been produced in the years since, among
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them Jacchia-71 [108], Jacchia-Roberts [173], Jacchia-77 [109], Jacchia-Bowman

2006 [31], and Jacchia-Bowman 2008 [30]. The basic Jacchia model calculates

density via an explicit numerical integration of the diffusion equation, based

on an assumed, empirically determined temperature profile. Correction fac-

tors are used both prior to and subsequent to the integration to account for

environmental factors. The parameters used to drive the model are based

on analysis of the accelerations experienced by satellites due to aerodynamic

forces.

MSIS Atmosphere Models The MSIS model has also seen several signifi-

cant updates since its original publication in late 1970s [97], including MSIS-83

[95], MSIS-86 [96], and NRLMSISE-00 [164]. In contrast to the Jacchia models,

the parameter values used by the MSIS model are derived from mass spectrom-

eter and incoherent scatter radar observations [55]. In addition, MSIS relies

on a large number of empirically determined coefficients to calculate density

rather than direct integration of the diffusion equation.

DTM Atmosphere Models As with Jacchia and MSIS, several variations

of the DTM exist [18], including DTM-94 [22], DTM-2000 [37], DTM-2009

[38], and DTM-2013 [36]. The DTM variants are based on the observed effects

of aerodynamic forces on satellites (like the Jacchia models), but densities

are calculated as explicit functions of tabulated coefficients (like the MSIS

models). It is noted that DTM models are generally defined by significantly

fewer coefficients than MSIS models [55].
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HASDM Atmosphere Models The HASDM was developed by the U.S.

Air Force Space Command [181, 41]. Though based on the Jacchia-70 model,

HASDM adds a capability known as the Dynamic Calibration Atmosphere

(DCA). The DCA updates up to 20 parameters of the Jacchia model in near

real-time through analysis of the tracked motion of approximately 75 so-called

calibration satellites. Thus, HASDM is able to respond dynamically to tem-

poral atmospheric variations, such as those caused by geomagnetic storms.

This capability sets HASDM apart from the other methods introduced in this

section, which, though functions of time-varying environmental variables, rely

on fixed internal parameters. For SO state prediction purposes, HASDM also

produces three-day DCA coefficient projections. HASDM has been shown to

more closely match density values derived from the accelerometer data of the

CHAMP and GRACE satellites than Jacchia-Bowman 2008, NRLMSISE-00,

or DTM-94 [55]. Unlike the other models discussed in this section, HASDM

is not publicly available.

1.2.1.2 Interpolated Space Environment Models

Spurred by the ever-growing amount of runtime memory available in

modern computers, several authors have turned to interpolation techniques to

improve the efficiency of SO dynamics models. In these methods, a computa-

tionally intensive function is replaced by a less expensive approximation that

relies on a precalculated data set that may be loaded in runtime memory prior

to execution of the state propagation. For example, a high-fidelity geopoten-

tial model is traditionally calculated using a spherical harmonics formulation.
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However, the computational cost grows quadratically with the degree/order

of the model [12]. As an alternative, the spherical harmonics model may be

sampled a priori to generate interpolation coefficients [111, 117, 12, 115]. For

high-degree/order models, speedups of multiple orders of magnitude have been

demonstrated, with differences between the interpolated and calculated models

in the noise of the estimated precision of the spherical harmonics coefficients

[12, 115].

Interpolation techniques have also been shown to effectively improve

efficiency in ephemeris generation and thermospheric density calculations. For

the former, the use of cubic splines produces propagation time speedups of

multiple orders of magnitude compared to the commonly used Jet Propulsion

Laboratory (JPL) Spacecraft Planet Instrument C-matrix Events (SPICE)

ephemeris retrieval system [10, 2]. For the latter, the Jacchia-Gill model uses

a fourth/fifth-order bi-polynomial representation of the standard density to

replace the expensive Newton-Cotes five-point quadrature standard density

calculator of the Jacchia 1971 model [80, 149, 108]. In this case, a one-order-

of-magnitude speedup has been reported [149].

Aside from providing efficiency improvements, the interpolation scheme

may be selected to endow the approximated function with attractive proper-

ties. In the context of SO state propagation, commonly desirable traits are

higher-order continuity and precise numerical derivatives. A smooth dynam-

ics function improves the performance of numerical ODE solvers [89], and

gradient-based trajectory optimization routines require first-order (and some-

times second-order) derivatives [81, 82, 197, 130]. Similarly, the many esti-
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mation and uncertainty propagation algorithms that use gradient information

benefit from continuous and precise derivatives [183, 13]. Interpolation-based

dynamics models can provide these important properties [111].

1.2.2 Numerical Solution of Ordinary Differential Equations

The SP method core is an algorithm for numerically approximating the

solution of a system of ODEs, which may be described by

dx

dt
, ẋ = f (t,x) , x (t0) , x0, (1.2)

where x is the state and t is the independent variable of integration. The choice

of algorithm used to approximate the solution of Eq. (1.2) can have a significant

effect on the efficiency of an SP routine. The primary computational burden

is the repeated evaluation of the dynamics model f . Therefore, traditionally,

the algorithm that requires the fewest dynamics model evaluations to achieve

a given accuracy is generally preferable. However, owing to relatively recent

improvements in algorithm design and the availability of parallel processing,

strict dynamics model evaluation counts are no longer the only relevant factor

in measuring propagator efficiency.

Implicit ODE solvers make up one class of methods that can take ad-

vantage of these new advancements, and have been applied in several forms

to 3DOF SO propagation. In this dissertation, implicit methods are shown to

produce efficiency improvements for certain classes of 6DOF propagation, as
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well. Section 1.2.2.1 introduces some of the most popular ODE solution algo-

rithms for 3DOF applications, while Sections 1.2.2.2–1.2.2.5 go into more detail

regarding the implicit solvers that are the primary focus of the dissertation.

Finally, literature specific to 6DOF propagation is discussed in Section 1.2.2.6.

1.2.2.1 ODE Solution Algorithms for 3DOF Applications

For 3DOF SO propagation, linear multistep methods have been consid-

ered state-of-the-practice (as well as state-of-the-art) for many years. These

algorithms approximate the solution of Eq. (1.2) at a given time step (xm+1 =

x (tm+1)) using saved state information from previous time steps: xm,xm−1,

... [24].3 Variable-order, variable-step-size linear multistep methods are the

default propagators for mission analysis tools like Copernicus [155, 126] and

DIVA [129], while the fixed-step4, eighth-order Gauss-Jackson method [110, 23]

is used by Air Force Space Command (AFSPC) to maintain the catalog of

Earth-orbiting SOs [152].

Single-step algorithms, which produce xm+1 using only evaluations of

f in the interval t ∈ [tm, tm+1], are also popular, primarily due to their ease

of use. Notably, high-order, variable-step-size, explicit Runge-Kutta (ERK)

methods like those of Prince and Dormand [166] and Fehlberg [60] are used

3The dependence on “backpoints” necessitates a startup procedure to initialize the solver.
Popular methods include the use of (1) lower-order multistep solvers (increasing the number
of backpoints results in a higher-order method), (2) a single-step solver, or (3) an analytical
approximation coupled with an iterative correction procedure [23].

4Precision is maintained for high-eccentricity orbits by performing a Sundman transfor-
mation on the independent variable to concentrate steps near periapsis, where the state
changes most rapidly [23, 152].
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frequently. ERK-Nyström methods, which formulate Eq. (1.2) as ẍ = g (t,x),

may provide enhanced efficiency when the dynamics model has no velocity

dependence [148].

In recent years, focus in the astrodynamics community has turned to-

ward implicit single-step propagation methods. From an operational stand-

point, the distinguishing feature of an implicit method is the existence of a

system of algebraic equations that must be solved at each propagation step.

For example, an explicit or implicit Runge-Kutta (IRK) method advances the

state one step in the independent variable t from tm to tm+1 using the expres-

sions [89]

xm+1 = xm + h
s∑
j=1

bjf j (1.3)

f i , f (ti,xi) , i = 1, . . . , s (1.4)

ti , tm + hci (1.5)

xi , xm + h
s∑
j=1

aijf j. (1.6)

The arraysAs×s, bs×1, and cs×1 – whose elements are the aij, bi, and ci, respec-

tively – define a Runge-Kutta (RK) method with s internal stages. In ERK

methods, the aij are zero for j ≥ i, which allows for the explicit, sequential

calculation of the f i. On the other hand, IRK methods violate this restric-

tion, and the f i that satisfy Eq. (1.4) must be determined by simultaneously

solving the system of algebraic equations. For nonlinear systems of ODEs,
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solving Eq. (1.4) requires an iterative method such as fixed-point iteration,

the Newton-Raphson method, or the Gauss-Seidel method [88].

The iterative solves at each step often lead to inefficient propagation

compared to ERK or linear multistep methods. As a result, traditionally, im-

plicit methods have been primarily valued for the theoretical properties some

possess (e.g., A-stability, symmetry, symplecticity, etc. [88]). Unfortunately,

many of these properties are not always of the utmost importance for short-

or medium-time-span SO propagation. However, advances in both algorithm

development and computer architecture have resulted in implicit methods that

have been shown to compete with or even outperform explicit alternatives in

many scenarios. Three elements, in particular, must be mentioned: intelligent

initial guesses, the use of variable-fidelity dynamics models, and parallelization.

It is noted that the first two of these elements require propagator customiza-

tions specific to the problem under consideration. For SO state prediction, the

derivation and implementation of such customizations may be justified by the

frequency with which propagation is required for SSA and other applications.

1.2.2.2 Intelligent Initial Guesses for Implicit ODE Solvers

As an iterative solution procedure is required to solve Eq. (1.4), an

initial guess for the xi is needed. For example, for 3DOF SO propagation,

the existence of an analytical solution of the two-body IVP (i.e., the Kepler

problem) provides an efficient, relatively accurate means of “warm-starting”

the iterative solver [20]. Additional accuracy may be obtained via a higher-

fidelity GP theory (see Section 1.2.4.2).
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1.2.2.3 Implicit ODE Solvers and Variable-fidelity Dynamics Mod-
els

For Earth-orbiting SO propagation applications, the primary source of

inefficiency for implicit solvers is the need to repeatedly evaluate a computa-

tionally expensive dynamics model within the iterative scheme used to solve

Eq. (1.4). This cost may be substantially reduced if the full-fidelity dynamics

model may be well approximated by a less computationally expensive low-

fidelity model. For example, for many relevant Earth orbit regimes, the sum of

the point-mass and J2 terms of the gravitational attraction of the Earth dom-

inates all other forces acting on an SO [183]. In this case, at early iterations

of the solution process, while the xi are relatively far from the eventual con-

verged values, evaluation of the low-fidelity model only is enough to steer the

algorithm toward the solution. Even at later iterations, the full-fidelity model

need not be evaluated at every iteration. Instead, the high-fidelity contribu-

tion from one iteration may be saved and used in subsequent iterations with an

updated low-fidelity contribution. In such a manner, moderate precision has

been obtained for 3DOF SO state prediction using a single full-fidelity iteration

per step [33], and two or three full-fidelity iterations per step have produced

results indistinguishable from the use of full-fidelity-only evaluations [141, 6].

Significant computational savings are achieved using variable-fidelity dynam-

ics because, for Earth-orbiting SO propagation applications, the low-fidelity

model requires significantly less CPU time to evaluate than the full-fidelity

model.
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If (1) the low-fidelity dynamics model does not adequately approximate

the full-fidelity model or (2) the low-fidelity model is not significantly less

expensive to evaluate than the full-fidelity model, the benefit of the variable-

fidelity paradigm diminishes. Examples of such scenarios are discussed in

Chapter 3 in the context of coupled orbit/attitude SO state prediction.

1.2.2.4 Parallelization of Implicit ODE Solvers

Implicit solvers can take advantage of parallel computing architectures

within a single propagation because, at each iteration of the nonlinear algebraic

solution procedure, all of the dynamics model evaluations are independent. In

an idealized scenario5, the computation time of a propagation step is propor-

tional only to the number of iterations required to achieve convergence of the

nonlinear system; the number of stages is irrelevant. ERK methods, on the

other hand, cannot take advantage of parallelization in this manner. Refer-

encing Eqs. (1.3)–(1.6), the calculation of each f i requires precalculation of

all f j, j < i.

Though this advantage of implicit ODE solvers is well-known [113, 5,

15, 33], the precise benefits are not as well-documented because practical im-

plementations do not achieve ideal parallelization. In other words, the use of m

cores does not generally result in an m-fold speedup in execution. In the con-

text of the Modified Chebyshev-Picard Iteration (MCPI)6 solver, the impacts

5In this context, “ideal” means that the number of parallel threads is the same as the
number of stages per step, and parallelization overhead is negligible.

6MCPI is discussed further in Section 1.2.2.5.

15



of parallelization for 3DOF SO propagation have been examined using graph-

ics processing units (GPUs) and the NVIDIA CUDA architecture [15, 154].

While the GPU-accelerated MCPI produced significant performance gains in

certain scenarios, this study was limited in scope.7 MCPI has also been paral-

lelized across multiple CPU cores using the MATLAB parfor construct, with

far-from-ideal observed performance gains [126]. Such limited data and con-

flicting results motivates more systematic study of the potential benefits of

parallelization.

A caveat of this parallelization strategy is that, for some applications,

more efficient uses of parallel computing resources may be possible. For exam-

ple, if state prediction is required for a large number of SOs, then parallelizing

at the trajectory-propagation level is likely to result in less overhead than par-

allelizing the dynamics function evaluations at each step of an implicit ODE

solver [8]. (Parallelization overhead is discussed in more depth in Chapters 3

and 4.) Similarly, trajectory-level parallelization is possible when using uncer-

tainty propagation techniques like sigma-point methods [194] or Monte Carlo

methods [147, 91]. For these applications, nested parallelization is a possibility

for taking advantage of both trajectory-level and IRK stage-level paralleliza-

tion opportunities [154].

7(1) Single-precision arithmetic was used for the GPU implementation, providing superior
computational speed at the expense of precision [154]. (2) The comparisons were limited
to cases of 128 or more internal stages per propagation step. While this is not necessarily
an unreasonable value for MCPI, not all applications require such a large number of stages,
and other classes of implicit solvers typically use significantly fewer stages per step. This
limitation is relevant because the speed gains available using GPUs generally increase as
the number of necessary threads increases. (3) MATLAB, rather than a compiled language,
was used to implement the serial comparison solver.
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1.2.2.5 Classes of Implicit ODE Solvers

Though the implicit methods may be categorized in several different

ways, for the purposes of this description, the algorithms are classified into

two groups based on the qualitative step-size length generally used by the

methods.

Long-Step-Size Implicit ODE Solvers “Long”-step-size methods are so-

called because the propagation time steps of members of this group tend to be

very significantly larger than those of ERK or linear multistep methods. De-

pending on precision requirements and dynamics model fidelity, 3DOF ERK

and linear multistep propagators may take dozens, if not more than 100, time

steps per orbit revolution for Earth-orbiting SO propagation. On the other

hand, typical step sizes for long-step-size implicit methods range from one to

five steps per orbit – even for high-fidelity LEO propagations, in which the dy-

namics vary rapidly [141, 33]. This difference is made possible by significantly

increasing the number of points per step at which the dynamics model is eval-

uated. For example, the eighth-order Runge-Kutta-Dormand-Prince method

with seventh-order error control (RKDP8(7)) uses 13 evaluation points per

step (i.e., s = 13 in Eqs. (1.3)–(1.6)) [166], and linear multistep methods fre-

quently require only a single evaluation point per step [23]. These values are in

stark contrast with those typical of long-step-size implicit methods, for which

30 stages per step is a low number and multiple hundreds of stages per step

is not an uncommon amount [170, 16, 15, 126, 141, 33]. Such large numbers

17



of stages per step make long-step-size implicit methods ideal candidates for

parallelization, provided sufficient threads are available.

The two long-step-size methods that have received the greatest amount

of attention for astrodynamics applications are MCPI [15] and bandlimited col-

location implicit Runge-Kutta (BLC-IRK) [33]. MCPI uses Chebyshev poly-

nomials to approximate both the dynamics and the solution of an ODE. Picard

(i.e., fixed-point) iteration is then used to refine an initial guess of the solu-

tion at the internal stages of a step until some convergence criterion is met.

Alternatively, BLC-IRK approximates the ODE using quadrature based on

bandlimited exponential functions rather than polynomials. The method may

then be formulated and executed using the standard RK equations (Eqs. (1.3)–

(1.6)) [89]. As with MCPI, fixed-point iteration is typically used to solve the

nonlinear system of algebraic equations that arises at each propagation step

[33].

Both MCPI and BLC-IRK are fixed-step methods, though pseudo-

adaptive techniques have been designed. For example, one implementation of

MCPI uses a priori information of the initial SO orbit to divide each orbital

period into several propagation steps, with greatest concentration at periap-

sis, where the state changes most rapidly [124, 141]. Such a strategy mimics

the effect of regularizing the independent variable using, for example, a Sund-

man transformation [150]. The latter option, classically used with fixed-step

methods of all types to efficiently propagate eccentric orbits, is also an option

for implicit methods. However, neither predetermined step concentrations nor

regularizations provide adaptive step size control in the sense of actively se-
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lecting a step size to meet a user-prescribed truncation error tolerance. In

fact, the use of a typical variable-step algorithm with a long-time-step implicit

propagator is likely to be highly inefficient because the large number of stages

(and, therefore, high computational expense) in each step makes recomputing

a rejected step excessively expensive. This limitation reduces the applicability

of long-step-size implicit methods to 6DOF SO propagation because of the

multiple time scales inherent in the 6DOF problem. Nevertheless, both MCPI

and BLC-IRK have been shown to perform efficiently for 3DOF propagation

scenarios [15, 141, 33, 32, 98].

Short-Step-Size Implicit ODE Solvers The second class of implicit prop-

agators encompasses the “short”-time-step methods, though it is noted that

this designation is only intended to convey relation to the long-time-step im-

plicit methods, not ERK or linear multistep methods. Of these, the most com-

monly used for 3DOF SO propagation is the Gauss-Legendre implicit Runge-

Kutta (GLIRK) scheme [88], typically with 5 − 20 stages per step. GLIRK

has been studied as a fixed-step method [98, 114], and, unlike the long-step-

size solvers, as a variable-step method. The lower number of stages per step,

coupled with the theoretical properties of GLIRK, make step size adaptation

feasible. Two primary variable-step alternatives have been introduced: VGL-s

[113] and VGL-IRK [5].

VGL-s uses the theoretical convergence rate of fixed-point iteration to

generate propagations of varying order from different iterations of the solution

process. The order of the solution at iteration i may be mathematically related
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to the order of the solution at iteration i + 1, and, thus, the local truncation

error (LTE) may be estimated from the differences between the two solutions

[193]. The LTE may then be used to predict an appropriate step size in the

same manner ubiquitously used by adaptive-step ERK algorithms. On the

other hand, VGL-IRK estimates the LTE using a second propagation that

is performed alongside the GLIRK propagation [4]. Knowledge of the order

of the two propagations and the difference between the solutions allows for

estimation of the LTE and selection of a new step size. This scheme is similar

to the concept of generating a variable-step ERK algorithm through the use

of embedded methods.

VGL-IRK has been further customized to improve performance when

applied to uncertainty propagation [8]. Sigma-point filters such as the un-

scented Kalman filter require the propagation of a population of neighboring

state vectors [194]. For relatively small initial uncertainties, the differences

between the neighboring state vectors are also small. In this situation, one

state vector (e.g., the mean) may be propagated using an unmodified implicit

method, and the converged times and states of each internal stage of each step

may be saved. Then, when propagating the remaining state vectors, the vari-

able time steps produced by the initial propagation may be reused, eliminating

costly rejected steps. This modification is not unique to VGL-IRK; however,

each individual step of VGL-IRK is more computationally expensive than pop-

ular ERK and linear multistep methods because VGL-IRK is single-step and

high-order (and therefore performs more dynamics function evaluations per

step than explicit methods). Thus, the elimination of a rejected – and there-
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fore recalculated – step is more meaningful for VGL-IRK than for competing

methods. In addition, the saved states at each internal stage of each step

may be used as accurate initial guesses for the internal stages of the neighbor-

ing propagations, potentially reducing the number of iterations required for

convergence, depending on the proximity of the neighboring state vectors.

In a serial computing environment, both options, and, in particular,

VGL-IRK, have been shown to compete with or outperform typical ERK meth-

ods for several typical Earth-orbit state propagation scenarios, though linear

multistep methods still provide greatest efficiency in some cases [113, 5, 6]. The

effects of parallelization have not been fully examined in published literature,

which provides significant motivation for a subset of the material presented in

Chapters 3 and 4.

1.2.2.6 Six-Degree-of-Freedom State Propagation

For some applications, propagation of an SO’s translational state alone

is not sufficient, and prediction of the SO’s attitude is also required. Perhaps

the most obvious example is the determination of the orientation evolution of

a controllable SO with pointing requirements. Attitude knowledge of a non-

controllable SO involved in proximity operations with another SO may also be

important. In addition, body forces like aerodynamic drag and solar radiation

pressure (SRP) are dependent on SO orientation. In a pure 3DOF propagation,

these dependencies are suppressed by modeling the SO as a uniform sphere or

“cannonball.” Under the cannonball assumption, body forces are independent

of orientation and do not produce a net torque. However, a higher-fidelity
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SO physical model – which frequently consists of some number of flat panels

– allows for dynamic changes in time of, for example, the SO surface area

exposed to the Sun. Each panel may have unique reflectance properties and

aerodynamic coefficients, further improving the approximation of the true SO.

As a result, even setting aside the desirability of attitude information for its

own sake, the orbital state prediction produced by a 6DOF simulation may

differ substantially from a 3DOF prediction if the assumptions of the cannon-

ball model are violated [65]. In the context of SSA, 3DOF propagation may be

insufficient to maintain custody of and perform conjunction analysis on such

SOs.

Unfortunately, numerical propagation of a coupled orbit/attitude state

is particularly challenging, and often requires significantly more compute time

than a 3DOF-only propagation. The primary reasons include (1) the increased

size of the state vector, (2) the use of potentially complicated SO shape models,

and (3) differences between the characteristic time scales of the translational

and rotational dynamics, which can result in increased stiffness compared to

3DOF propagation. As a result, 6DOF numerical propagation generally uses

much smaller time steps than 3DOF propagation, and the advancement of

the state at a single time step is more computationally intensive for 6DOF

propagation than for 3DOF propagation.

Several methods have been shown to ease the computational burden

of 6DOF propagation. For example, multiple variations of an Encke-type

22



algorithm have been proposed.8 In one such approach, forces independent and

dependent on SO attitude are separated from one another in the translational

equations of motion [202, 138]. The Encke reference trajectory is taken to be

the numerically propagated solution obtained using only attitude-independent

forces, which is assumed to take larger step sizes than a coupled orbit/attitude

state due to the assumed high frequencies of the rotational motion. Once a

step is taken in the reference propagation, the rotational state and corrections

to the translational state are propagated using the necessary smaller step sizes,

with the reference translational state obtained as needed via interpolation. In

this way, unnecessary evaluations of attitude-independent forces are avoided.

Naturally, efficiency improvements depend heavily on the relative expenses

of the attitude-dependent and attitude-independent dynamics. For example,

the combination of a high-degree/order geopotential and a simple SO physical

model is likely to lead to strong efficiency gains, while the opposite situation

may result in minimal speed gains.

A related method performs the “long-step” propagation using an as-

sumption of constant angular velocity, while the attitude propagation is per-

formed assuming a Keplerian orbit [65]. The two systems are recoupled each

time a threshold value of a measure of separation between the two propaga-

tions is exceeded, and the split propagations are begun anew. Simulations of a

slowly rotating, high-area-to-mass-ratio (HAMR) SO in a near-geosynchronous

8In the traditional Encke method for 3DOF propagation, a known reference solution is
calculated analytically, and a numerical ODE solver is applied only to deviations from the
reference trajectory [21].
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orbit (GEO) have demonstrated CPU time savings of approximately 10 per-

cent relative to a fully coupled propagation. As with the previously described

IRK customizations, the potential gains of these custom 6DOF propagators

must be weighted against the difficulty and expense of implementation. At the

same time, the numerical solution of a system of ODEs remains fundamental

to the Encke-type methods, and the use of more efficient ODE solvers benefits

both fully coupled and semi-coupled propagation approaches.

1.2.3 Sensitivity and State Transition Matrix Calculation

While the importance of numerical algorithms for solving ODEs (Sec-

tion 1.2.2) cannot be overstated, SO state prediction is often not a practi-

tioner’s only goal. Sensitivities (i.e., partial derivatives) of output variables

with respect to input parameters are frequently needed, as well. Two impor-

tant fields of astrodynamics frequently rely on sensitivity information: trajec-

tory optimization and OD.

Gradient-based root-solving and optimization algorithms use partial

derivatives of constraint equations and a performance index with respect to

free variables to iteratively drive an initial guess toward a solution [81, 82].

Examples including the Newton-Raphson method and sequential quadratic

programming are commonly used to design SO trajectories. All such methods

require first-order derivatives, and some benefit from knowledge of second-

order derivatives, as well [130, 197].

Meanwhile, the OD process is based on dynamics models and mea-

surements that are both imperfect, which means that nonlinear estimation
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techniques are needed to develop a “best guess” of a true SO trajectory.

Many of these techniques, such as the minimum-variance solution, rely on

first-order sensitivity information [183]. Additionally, as with optimization

routines, second-order methods can improve performance [13]. Uncertainty

propagation also benefits from the use of higher-order derivatives. Due to

the nonlinearity of the orbit problem, the traditional linear propagation of

Gaussian uncertainty causes a breakdown in uncertainty realism over suffi-

ciently long time spans [116]. One approach to mitigate this result is to use

higher-order derivatives to capture nonlinearity in the uncertainty propagation

[160, 67, 159].

When output variables are related to input parameters via a dynamical

system, sensitivities are described in part by STMs [183, 156]. Particularly for

nonlinear systems – like that of the SO state prediction problem – STM cal-

culation is demanding, and the difficulty only increases if STMs beyond first

order are desired. In this dissertation, the implementation of IRK methods for

state propagation is augmented by the derivation and analysis of the decou-

pled direct method (DDM) of STM calculation for RK solvers. In particular,

the method is newly derived for second-order STM calculation, as well as for

both first- and second-order STM calculation using the double-integrator form

of the RK update equations.9 Background for the decoupled and coupled di-

rect methods of STM calculation is given in Section 1.2.3.1, while alternative

methods of STM calculation are described in Section 1.2.3.2.

9The second-order RK update equations are given in Section 4.2.
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1.2.3.1 Direct Methods of STM Calculation

The dynamics of the STMs are described using the partial derivatives

of the state equations f with respect to the state x – i.e., the Jacobian and

Hessian for first- and second-order derivatives, respectively. The direct method

of STM calculation uses these derivatives to calculate the STMs. In particular,

the coupled direct method (CDM) appends the physical state with the

elements of the STMs. The entire augmented state vector is then propagated

simultaneously using the state equations and ODEs for the time evolutions

of the STMs [149].10 The CDM is most commonly used in practice due to

ease of implementation, and generally performs well when applied to nonstiff

problems using explicit ODE solvers.

An alternative to the CDM is the decoupled direct method (DDM)

[58]. In the DDM, the state is propagated first, and relevant values (e.g.,

the time and state) are saved at each evaluation point. The STMs are then

calculated after-the-fact in one of two ways:

1. The ODEs for the STMs are propagated using a numerical integration

method. In an IRK method, this approach amounts to performing one

iterative solve of the RK update equations to obtain the state at each

step, then a second iteration procedure to obtain the STMs [171]. This

strategy is therefore referenced as the “multi-iteration” approach in this

dissertation.

10The ODEs for first- and second-order STMs are given in Appendix B.
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2. The STMs are calculated rather than “propagated” at each step by di-

rectly differentiating the ODE solver update equations with respect to

the state to obtain expressions for ∂xm+1/∂xm, etc. In an RK method,

the differentiation leads to a set of linear equations for the STMs, which

are derived in Chapter 4. This method is referenced as the “linear-

algebra” approach.

Use of the DDM has been shown to improve calculation stability for stiff prob-

lems [58], and opens the door for several efficiency-enhancing modifications,

which are discussed more fully in Chapter 4.

A primary disadvantage of either the coupled or decoupled direct method

is the requirement of analytical expressions for the Jacobian and Hessian. Even

the first-order derivatives of the state equations may be analytically intractable

for complicated systems, and the problem only worsens when higher-order

derivatives are needed. Further, the Jacobian and Hessian must be rederived

if the system dynamics change. However, use of a symbolic manipulator like

Mathematica or Maple can significantly reduce these burdens, while simul-

taneously improving computational efficiency through code generation and

optimization. Additionally, for the SO trajectory problem, the same dynamics

models are used with such frequency that the a priori derivation of a small

number of expressions is justifiable.
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1.2.3.2 Indirect Methods of STM Calculation

Indirect methods of STM calculation do not rely on analytical imple-

mentations of the derivatives of the function of interest with respect to the in-

put parameters. The two main classes of indirect methods are finite-difference

(FD) algorithms and algorithmic (also called automatic or computational) dif-

ferentiation (AD).

Finite-Difference Methods Perhaps the conceptually simplest approach

to the computation of sensitivities is the FD method, in which a problem

parameter is numerically varied, and the resulting effect on the quantity of

interest is observed [104]. The process is performed one or more times for

each variable, and the results are substituted into a derivative approximation

formula, from which first- and higher-order derivatives of model outputs with

respect to inputs may be approximated. For example, the first-order forward-

difference formula for a scalar function f of a scalar variable x is

df (x0)

dx
≈ f (x0 + δ)− f (x0)

δ
, (1.7)

where x0 is the point of interest and δ is the user-selected perturbation size.

FD methods are primarily attractive for their ease of implementation:

Analytical derivatives are not required, and the function of interest need not

be modified in any way. These features are particularly important when the

source code of the function of interest is not entirely available and editable.
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However, there are drawbacks to the simplicity of the FD method. The

approximation is subject to two sources of error: truncation error and roundoff

error. Truncation error arises from the fact that any derivative approximation

formula is only accurate to some finite order in the perturbation size [145].

Increasing the order of the method reduces truncation error at the cost of

increasing the number of points at which the function of interest is evaluated

– which increases compute time.

Roundoff error is caused by the subtraction of similar numbers (e.g., in

the numerator of Eq. (1.7)), which results in precision loss due to the finite-

length representation of numbers in computer memory [145]. As truncation

error increases as the perturbation size increases, and roundoff error increases

as the perturbation size decreases, the accuracy of an FD method is strongly

dependent on the selection of a proper perturbation size for each independent

variable. Methods that attempt to automatically select an optimal step size

exist, though the appropriateness of a step size is local, and such an algorithm

must be rerun if the independent variables change significantly [145, 172].

These methods also rely on repeated function evaluations to determine appro-

priate step sizes, increasing computational effort.

If complex arithmetic is available, complex-step differentiation (CX)

may be used instead of traditional FD. In CX, the perturbation δ in Eq. (1.7)

is multiplied by the imaginary unit i ≡
√
−1 [144]. Then, it may be shown

that
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df (x0)

dx
≈ Im [f (x0 + iδ)]

δ
. (1.8)

The lack of a subtractive term in Eq. (1.8) means that the perturba-

tion δ may be chosen arbitrarily small without introducing roundoff errors.

This feature both improves accuracy and eliminates the need for tuning δ.

In turn, the selection of a very small perturbation (e.g., δ = 10−50), can

practically eradicate truncation errors. Thus, CX offers significant benefits

over traditional FD at the cost of requiring that all operations performed in

the evaluation of f accept complex arguments and return appropriate out-

put. Additionally, for higher-order derivatives, multicomplex arithmetic may

be introduced [131].

CX may also be formulated as an example of AD, which is described

in the following section [144, 143].

Algorithmic Differentiation Methods Algorithmic differentiation com-

putes the derivative of a function by exploiting the fact that the computer

implementation of any function may be broken down into a sequence of ele-

mentary operations. Each operation may be differentiated individually, and

the chain rule is used to obtain the full derivative [85]. Higher-order derivatives

may also be calculated [131]. Unlike the FD method, AD is not subject to

roundoff error beyond that present in the calculation of the relevant function

itself, and the accuracy of AD may be comparable to that of the direct method
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[162]. AD can also be faster than FD methods, especially if higher-order finite-

differencing is used to reduce truncation error [162, 39]. As implied previously,

the primary argument in favor of FD as the indirect method of choice is prac-

tical rather than theoretical: AD requires that the function of interest be

specially written and compiled to accommodate the desired implementation.

On the other hand, AD may not be as fast as a direct method, even

before taking into account the potential savings available from using the DDM

[162, 42]. Depending on the implementation11, AD may incur overhead penal-

ties from “carrying” derivatives alongside computations. Additionally, a well-

written direct algorithm may be more capable than an AD algorithm of elim-

inating unnecessary calculations through the use of intermediate variables.

1.2.4 Analytical and Semianalytical Space Object State Prediction
Techniques

Sections 1.2.1–1.2.3 focus on the use of numerical ODE solvers for SO

state propagation and STM calculation (i.e., SP techniques), which form the

basis for Chapters 2–4 of this dissertation. On the other hand, the material

of Chapters 5 and 6 combines SP with GP techniques, and a brief overview of

the latter topic is presented here.

Unlike SP, a GP method does not “propagate” the SO state by stepping

sequentially from tm to tm+1 to tm+2 ... . Instead, the state at any time is

calculated as an explicit function of the initial state. As a result, a GP method

11When source code is editable, AD may be implemented in several ways (such as operator
overloading), and a multitude of software packages are freely available.
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can generate a state prediction much more rapidly than an SP method. The

cost is that any analytical solution is necessarily a more coarse approximation

of the true dynamics than a high-fidelity SP model.

In Section 1.2.4.1, an introduction to a selection of the methodologies

commonly used in GP is presented. Subsequently, a background of GP for

3DOF SO state prediction is given in Section 1.2.4.2. Despite the fact that the

focus of this dissertation is GP for rotational states, the translational motion

application is worth discussing due to its considerable historical interest and

the fact that it is still in common use today. Many of the concepts used by

translational GP methods are applicable to the SO rotation problem, as well.

The concept of 3DOF semianalytical methods is introduced in Section 1.2.4.3.

Finally, GP methods for rotational motion are discussed in Section 1.2.4.4.

1.2.4.1 Perturbation Methods

Perturbation methods encompass a wide variety of techniques, but all

are based on the idea that some difficult-to-solve problems are quantitatively

similar to other, easier-to-solve problems [26, 153]. A difficult problem may

then be treated as a perturbed version of its less-challenging counterpart.

Serendipitously for astrodynamics applications, SO translational and rota-

tional motion are both amenable to this type of analysis due to the existence of

analytical solutions to the Kepler problem [20] and the Euler-Poinsot problem
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[195], respectively.12 What follows are brief descriptions of two of the most

common approaches used for these applications.

Method of Successive Approximations The method of successive ap-

proximations [26] assumes the system given by Eq. (1.2) may be written as

ẋ = h (t,x) + εh̃ (t,x) , (1.9)

where ε is a small parameter. It is further assumed that the state may be

approximated as

x = x(0) + ∆x (1.10)

∆x =
k∑

n=1

εn

n!
x(n), (1.11)

for some k. Eq. (1.10) is substituted into Eq. (1.9), and the resulting h and h̃

are expanded in Taylor series about x(0) with perturbation ∆x. Equating the

coefficients of like powers of ε on either side of the expanded Eq. (1.9) results

in a sequence of linear ODEs for the x(n). If the ODEs are solved successively,

each reduces to a quadrature, assuming x(0) is known.

12The Kepler problem describes the translational motion of a particle subject to the
gravitational attraction of a point mass. The Euler-Poinsot problem describes the rotational
motion of a triaxial rigid body in the absence of external torques.
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The method of successive approximations is frequently applied to a

system of ODEs expressed using variation of parameters because this form is

naturally likely to contain small perturbations to a known solution [26].

Hamiltonian (Canonical) Perturbation Methods If the dynamical sys-

tem of interest is Hamiltonian, a wealth of specialized perturbation methods

are applicable [26]. A Hamiltonian system is one whose dynamics may be

characterized by Hamilton’s equations, given by

ṗT = −∂H
∂q

(1.12)

q̇T =
∂H

∂p
, (1.13)

where H = H (q,p; t) is the Hamiltonian, and q and p are the generalized

coordinates and momenta, respectively. In general, the goal of such methods

is the elimination of some or all of the elements of q from the Hamiltonian,

achievement of which simplifies the equations of motion.13 If H is completely

independent of q, all p are constant in t, and all q vary linearly in t.

The simplest method of eliminating some or all dependency on a coor-

dinate is the direct averaging of terms in H that are periodic in that coordinate

[128]. More sophisticated methods explicitly construct a canonical transfor-

mation from {H, q,p} to {K,Q,P } such that the new system has desirable

13A coordinate that is not present in H is said to be cyclic or ignorable.

34



properties (such as K simpler than H). In von Zeipel’s method [26], the orig-

inal Hamiltonian is organized such that

H (q,p; t; ε) =
∞∑
n=0

εnHn,0 (q,p; t) . (1.14)

The canonical transformation is then derived via a generating function that

depends on both old and new variables. Like H, the generating function is

organized in powers of ε, and is calculated term-by-term using the Hamilton-

Jacobi partial differential equation (PDE). At each step, the corresponding

term of the new Hamiltonian K is selected (e.g., as an average value of periodic

terms in H), and the PDE is solved for the generating function contribution.

Once K and the generating function are determined to the desired orders in

ε (not necessarily equal), the equations of motion of the transformed system

are (ideally) solved, and the partial derivatives of the generating function are

used to transform the solution into the original variables (q and p).

Another popular means of constructing the necessary canonical trans-

formation(s) is the Lie-Deprit method [26], which uses a generating function

that does not depend on mixed old and new variables (unlike von Zeipel’s

method). As the Lie-Deprit method is the basis for the perturbation pro-

cedures used in this dissertation, the precise procedure is discussed in more

detail in Appendix C. It is noted here, however, that this procedure has been

extended to apply to non-Hamiltonian systems by Kamel [119].
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1.2.4.2 General Perturbation Methods for Space Object Transla-
tional Dynamics

When 3DOF GP models were first introduced in the 1950s and ’60s,

the derivations of analytical methods were significantly motivated by the lack

of available computational resources. More than 50 years later, despite expo-

nential increases in computing power, GP methods remain valuable for several

reasons. First, the speed of GP methods is still unmatched by SP alternatives.

Thus, for applications in which many trajectory predictions are required – and

extreme accuracy is not – GP is strongly preferable to SP. Perhaps the most

obvious and important example of such an application is conjunction assess-

ment for Earth-orbiting SOs [190]. Performing an initial analysis using GP to

determine which pairs of SOs clearly pose no threat to one another over a given

time frame – then performing SP propagations for only those SOs deemed at

risk – requires significantly less computational time than using SP only for all

calculations [123]. Similarly, GP may be applied to initial orbit-design trade

studies or rapid orbit determination [189]. Finally, the analytical expressions

produced by GP can often provide more insight into the general behavior of a

class of SO than the coupled ODEs used by SP methods.

The seminal works of 3DOF GP are the papers of Brouwer [34] and

Kozai [128], published in the same issue of The Astronomical Journal in 1959.

Each author approximates the SO trajectory prediction problem as a Hamilto-

nian system, taking into account only accelerations due to low-order terms of

the spherical harmonics representation of the gravitational field of the central

body [121]. Perturbation techniques are then used to obtain an approximate,
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analytical solution for the evolution of the trajectory. Specifically, Brouwer’s

solution uses von Zeipel’s method [79] to produce two consecutive canonical

transformations that result in an integrable transformed Hamiltonian. The

central-body oblateness coefficient (J2) is used as the small parameter that fa-

cilitates the perturbation-based solution, and the zonal coefficients J3 through

J5 are considered to be of order J2
2 .14 Periodic perturbations to elliptic motion

are retained to order J2, and secular perturbations are retained to order J2
2 .

Alternatively, Kozai directly averages the Hamiltonian to eliminate un-

desirable terms, then uses the Lagrange planetary equations [183] to obtain

the time rates of change of the orbital elements. As in Brouwer’s method, J2

is used as the small parameter, and periodic and secular terms are retained to

first and second order, respectively.

Extensions and improvements of these two works have resulted in nu-

merous GP methods. For example, drag effects, assuming a simple exponen-

tial atmosphere, were added to Brouwer’s theory in 1961 [35]. The Lie-Deprit

method [52, 119] has been used as an effective alternative to the averaging

techniques employed by Brouwer and Kozai [53, 19, 136]. The most well-

known method in modern times is Simplified General Perturbations-4 (SGP4)

[102, 190], which is based on Brouwer’s work but also takes into consideration

the effects of aerodynamic drag and lunar and solar gravity [103]. SGP4 is still

employed in the present day to calculate the two-line element sets produced

14For an Earth-orbiting SO, the J2 contribution to the Hamiltonian is ≈ 10−3 relative to
the point-mass term.
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and made available to the public by the North American Aerospace Defense

Command (NORAD) [1].

1.2.4.3 Semianalytical Methods for Space Object Translational Dy-
namics

Semianalytical methods make up another important class of prediction

models. These methods attempt to provide greater accuracy than fully ana-

lytical GP methods without the high computational cost of SP methods. For

instance, Draper Semianalytic Satellite Theory (DSST) uses both analytical

and numerical averaging procedures to derive a system of ODEs for a set of

mean orbital elements [44]. The method of multiple scales [153] has also been

used to produce semianalytical models [14]. Unlike in a GP method, the ODEs

are not solvable analytically; however, the states vary slowly enough that the

step sizes used by a numerical propagator may be much larger than those of an

SP method for comparable truncation errors [179]. In this regard, the goals of

the semianalytical approach are similar to those of the combined application

of GP and SP presented in this dissertation. In the latter case, the analytical

prediction of the fast-changing rotational state allows for larger propagation

step sizes than would be achievable if numerically propagating the full 6DOF

state.

1.2.4.4 General Perturbation Methods for Space Object Rotational
Dynamics

The rotation of an SO subject to gravity-gradient torque has been stud-

ied frequently due to the importance of this disturbance in LEO [83]. Holland
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and Sperling [101] directly average Euler’s equation for the time derivative

of the rotational angular momentum of a rigid body [94] to obtain a first-

order solution for the evolution of the angular momentum vector of an SO

subject to gravity-gradient and geomagnetic torques (under certain assump-

tions). Unfortunately, the theory does not predict the actual orientation of

the SO. Crenshaw and Fitzpatrick [48] use the Hamilton-Jacobi equation to

obtain a transformation from Euler angles and momenta to a set of variables

that are constant for a symmetric rigid body in torque-free rotation. In these

variables, the authors use the method of successive approximations to obtain

the same first-order solution for an SO subject to gravity-gradient torque as

Holland and Sperling [101], but add expressions for the SO orientation. Hitzl

and Breakwell [99] use a canonical transformation to write the Hamiltonian

for a triaxial rigid body in torque-free rotation independent of coordinates.

The gravity-gradient perturbation (assuming an elliptical orbit) is added to

the Hamiltonian, and short-period terms are removed through direct averag-

ing, which allows for the determination of the secular rates of the transformed

variables. Cochran [46] extends the work of Hitzl and Breakwell [99] to the

case of a secularly precessing elliptical orbit. Each of the preceding theories

assumes that the rotation rate of the SO is fast compared to the orbital rate,

and a value related to the ratio of the mean motion to the rotational speed of

the SO is used as the small parameter of the perturbation theories.

More recently, Lara and Ferrer [134], explicitly referring to this prob-

lem as that of a fast-rotating satellite, derived a form of the coordinate-free

Hamiltonian in terms of action-angle variables, under the assumption of a tri-

39



axial SO in a circular orbit. The Lie-Deprit transformation procedure [52] is

then used to compute a first-order solution that, unlike the previous works,

retains the short-period terms. Additionally, the use of action-angle variables

eliminates the appearance of mixed secular-periodic terms in the transforma-

tion equations. Lara, Ferrer, and coauthors have also applied perturbation

theory to other, similar cases, including the rotation of a symmetric SO in a

circular orbit subject to gravity-gradient torque [135]. A first-order solution is

derived equivalently using both the method of successive approximations and

the Lie-Deprit method. Additionally, Lara et al. [137] investigate the rotation

of the dwarf planet Ceres due to the gravity-gradient torque of the Sun. The

Lie-Deprit method is used to derive an analytical solution in which the non-

sphericity of Ceres is treated as a perturbation and the eccentricity of Ceres’s

orbit is taken into account.

Meanwhile, San-Juan et al. [174] use the Lie-Deprit method to obtain a

higher-order solution for a symmetric SO in a circular orbit. Despite the fact

that two is the maximum order present in the original perturbed Hamiltonian,

improved accuracy in the perturbation solution is achieved by retaining terms

up to fourth-order in the transformed Hamiltonian.

GP solutions for other scenarios have also been put forth. For exam-

ple, Van der Ha [192] uses the method of successive approximations to derive

a second-order solution for an SO subject to a torque that is constant in the

body-fixed reference frame. Zanardi and coauthors have presented several an-

alytical theories including a first-order solution assuming gravity-gradient and

SRP torques (with no Earth shadow) [205]; an orbit-averaged solution for a
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spin-stabilized SO subject to magnetic residual torque [206]; and a first-order

solution for a gravity-gradient-perturbed, spin-stabilized SO in nonsingular

variables [204]. In each case, the perturbation solution is obtained using vari-

ation of parameters and the method of successive approximations. Bois and

Kovalevsky [29] also utilize the method of successive approximations, pro-

ducing first-order [27] and second-order [28] solutions for the rotation of a

triaxial satellite subject to arbitrary torques. The solution represents torques

as Fourier series in the Euler angles describing the orientation of the body and

additional angles (such as the SO-Sun angle) that are assumed to vary linearly

in time; the coefficients of the series must be determined by the practitioner for

each application. Though the theory does not assume fast rotation, deviations

from rotation about a single spin axis are assumed to remain small.

In addition to the work previously described for predicting translational

and rotational motion individually, the perturbation framework has been ap-

plied to the roto-translational problem to obtain a GP solution for full 6DOF

motion. These theories are not specifically the subject of this dissertation

due to a desire for higher-fidelity prediction of translational motion. How-

ever, as with the translation-only GP methods, it is appropriate to mention

several examples because of similarities between the 6DOF theories and the

rotation-only theories developed in this dissertation.

Ferrandiz and Sansaturio [61] use the Lie-Deprit method to obtain a

first-order, average 6DOF solution for a quasi-spherical SO in a Keplerian or-

bit. This solution is subsequently extended to the case of an oblate central

body [62]. Ferrer and Lara [63] use both the Lie-Deprit method and trans-
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formations based on the Hamilton-Jacobi equation to address the case of an

axisymmetric SO in a Keplerian orbit. Finally, the Lie-Deprit method is also

used by Hohmmed et al. [100] to develop a theory for a cylindrical SO that

takes into account central-body oblateness and geomagnetic torque. The non-

conservative geomagnetic torque is introduced to the Hamiltonian through a

“potential-like” function.

As may be expected, the increased dimensionality of the 6DOF prob-

lem compared to the independent translational or rotational problems gener-

ally leads to the appearance of significantly more terms in the perturbation

solutions.

1.3 Organization of Dissertation

Following the introductory Chapter 1, the methods of improving the

accuracy, efficiency, and utility of SO state prediction and STM calculation

are described in Chapters 2–6. A publication history of the material is given

in Appendix F.

Chapter 2 addresses the efficiency and smoothness of the dynamics

model by upgrading the modified HP atmospheric density model. Chapter 3

focuses on the numerical ODE solver used by SP and semianalytical methods

to propagate the state. Specifically, a parallelized, variable-step-size GLIRK

method is applied to 6DOF state prediction. The use of RK ODE solvers

for STM calculation using the direct method is then addressed in Chapter 4.

Chapters 5 and 6 further concentrate on 6DOF state prediction by presenting
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a methodology for using GP-based SO attitude prediction to improve upon

the accuracy of cannonball-type 3DOF state prediction without resorting to

inefficient fully coupled 6DOF propagation. Finally, Chapter 7 presents a

summary of the dissertation and discusses avenues for further study.

1.4 Summary of Contributions

The primary contributions of the dissertation are summarized below.

• A smooth, singularity-free version of the modified HP atmospheric den-

sity model is presented. Associated partial derivatives are derived to

facilitate sensitivity calculations (Chapter 2).

• The accuracy and smoothness of the upgraded HP model are further

improved through the addition of a cubic polynomial dependency on the

81-day average solar flux index F̄10.7 (Chapter 2).

• A parallelized, custom, variable-step-size GLIRK solver is presented and

applied to coupled orbit/attitude state propagation (Chapter 3).

• Variable-fidelity dynamics models for IRK methods are derived for 6DOF

SO state prediction (Chapter 3) and first- and second-order STM calcu-

lation (Chapter 4).

• The linear-algebra- and multi-iteration-based DDMs are derived for second-

order STM calculation using an RK ODE solver. The two DDM methods

are also derived for both first- and second-order STM calculation for the
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double-integrator form of the RK update equations. Both methods are

implemented in serial and parallel (Chapter 4).

• A closed-form perturbation solution for the rotational motion of a fast-

rotating SO in a circular orbit subject to gravity-gradient torque is ex-

tended to the case of an elliptical orbit (Chapter 5).

• A semianalytical hybrid SP/GP algorithm, in which the SO translational

state is propagated numerically, but body attitude is predicted analyti-

cally, is described (Chapter 6).

• Using the perturbation solution presented in Chapter 5 for attitude pre-

diction, the hybrid method is shown to be capable of improving the

accuracy of cannonball-based translational state predictions by an order

of magnitude or more, while requiring several times less computational

effort than a fully numerical 6DOF propagation for certain precision

ranges (Chapter 6).
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Chapter 2

A Smooth and Robust Harris-Priester

Atmospheric Density Model for Low Earth

Orbit Applications1

2.1 Introduction

As introduced in Section 1.2.1, accurate and efficient modeling of ther-

mospheric density is an important component of the prediction of LEO SO

trajectories due to the effects of aerodynamic drag. Unfortunately, among the

models introduced, accuracy, robustness, and computational efficiency are of-

ten competing goals [149]; high-fidelity implementations like Jacchia-Bowman

2008 may take an order of magnitude or more longer to run than the simple

1976 U. S. Standard Atmosphere or TD-88 models.

The modified HP model may be considered as a middle ground between

the two extremes [90, 140]. Like the Standard Atmosphere, HP relies on expo-

1Work from this chapter was presented as:

• Noble Hatten and Ryan P. Russell. A smooth and robust Harris-Priester atmo-
spheric density model. Paper AAS 16-406. In 26th AAS/AIAA Space Flight Me-
chanics Meeting, Napa, CA, February 2016.

A manuscript has been accepted for publication in a peer-reviewed journal:

• Noble Hatten and Ryan P. Russell. A smooth and robust Harris-Priester at-
mospheric density model for low Earth orbit applications. Adv Space Res. doi:
10.1016/j.asr.2016.10.015. (online first November 2016)

In each instance, Ryan P. Russell supervised the work.
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nential interpolation of density between values tabulated at discrete altitudes.

However, HP also uses functional dependencies to model latitudinal and diur-

nal effects. Further, HP may be revised to take into account varying levels of

solar activity. This effect has been achieved by including a set of 10 tables,

each of which corresponds to a different value of the 81-day centered average

10.7 cm solar flux index F̄10.7. Given a value of F̄10.7, an interpolation scheme,

such as nearest-neighbor [57] or linear [184], is used to calculate density values.

For example, a linear interpolation scheme is used in the HP implementation

available in the Java Astrodynamics Toolkit (JAT) [75, 76, 77].

Thus, HP may produce significantly more accurate density values than

a simple exponential atmospheric model while executing in a fraction of the

time of more complex models [149]. Such balance makes HP a suitable can-

didate for use in preliminary studies in which a combination of high speed

and reasonable accuracy is paramount. However, even in this context, the

HP model is not without its deficiencies. The work in this chapter addresses

several of the most important shortcomings – most importantly, the lack of

continuity in the first derivatives of the density with respect to the SO state.

Additionally, several singularities present in common implementations of HP

are identified and addressed. A mechanism for adding smooth, fully functional

dependencies on environmental conditions is also introduced to improve the

performance of the HP model across environmental conditions. The densities

produced by the upgraded HP model are compared to two other HP models:

one whose F̄10.7 dependence is based on nearest-neighbor interpolation and the

JAT linear-interpolation-based model. The performance of each of the three
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HP models is also compared to several other commonly used atmospheric den-

sity models.

2.2 Traditional Modified Harris-Priester Model

In the traditional modified HP model [140, 149], the complete expres-

sion for density ρ as a function of altitude h is given by

ρ(h) = ρm(h) + [ρM(h)− ρm(h)] cosn
(
ψ

2

)
. (2.1)

The minimum and maximum densities are obtained from

ρm(h) = ρm(hi)exp

(
hi − h
Hmi

)
, hi ≤ h ≤ hi+1 (2.2)

ρM(h) = ρM(hi)exp

(
hi − h
HMi

)
, hi ≤ h ≤ hi+1, (2.3)

where hi, ρm(hi), and ρM(hi) are pre-tabulated values. The exponent n varies

between 2 for equatorial orbits and 6 for polar orbits, and is intended to roughly

take into account latitudinal variations in density. The scale heights Hmi
and

HMi
are calculated by exponential interpolation to maintain continuity in ρ(h)

when passing between altitude layers:

Hmi
=

hi − hi+1

ln
(
ρm(hi+1)
ρm(hi)

) (2.4)

HMi
=

hi − hi+1

ln
(
ρM (hi+1)
ρM (hi)

) . (2.5)
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The sinusoidal term takes into account diurnal density variations, and depends

on the position of the Sun through

cosn
(
ψ

2

)
=

(
1

2
+
rTub

2r

)n
2

, (2.6)

where ub is a unit vector toward the apex of the diurnal bulge in inertial

geocentric (ECI) coordinates; r is the SO’s ECI position vector; and r is the

Euclidian norm of r. The vector ub is given by

ub =

 cos(δs) cos(αs + λlag)
cos(δs) sin(αs + λlag)

sin(δs)

 , (2.7)

where αs is the right ascension of the Sun, δs is the declination of the Sun, and

λlag is the lag angle between the Sun line and the apex of the diurnal bulge,

usually taken to be a constant 30 deg.

2.3 Continuity of Derivatives

The exponential interpolation used by HP ensures continuity of den-

sity when passing between discrete altitude layers. However, the discontinuous

changes in reference density values create discontinuities in the first derivatives

of the density with respect to the state. Discontinuous derivatives can create

difficulties for applications ranging from variable-step-size orbit propagation

to trajectory estimation and optimization. Expressions for the first derivatives

for HP – assuming a specific, approximate expression for geodetic altitude as
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a function of SO state – have been given previously [140]. Here, the HP model

is revised to ensure continuity of derivatives for all possible states. Two ap-

proaches are implemented; the first provides arbitrarily high-order continuity

at the expense of computation time, while the second provides more efficient,

lower-order continuity.

2.3.1 Approach 1: Analytical Approximation of Heaviside Step
Function

The first approach makes the scale heights Hmi
and HMi

continuous

in altitude by introducing factors based on analytical approximations of the

Heaviside step function. (Note that, in the following descriptions, only the

revisions made to Hmi
are given explicitly; corresponding revisions for HMi

are exactly analogous.)

As a first step, Eq. (2.2) is modified to be a scaled ρm (hi+1) if h is near

hi+1:

ρm(h) = ρm(hi+1)exp

(
hi+1 − h
H ′mi

)
, hi +

hi+1 − hi
2

≤ h ≤ hi+1. (2.8)

Regardless of the position of h within an altitude layer, H ′mi
replaces Hmi

in

Eq. (2.2), and is given by

H ′mi
=


Hmi−1

+
(
Hmi
−Hmi−1

)
·[

Hs

(
h−hi

hi+1−hi

)
−Hs

(
h−hi+1

hi+1−hi

)]
, hi ≤ h ≤ hi + hi+1−hi

2

Hmi+1
+
(
Hmi
−Hmi+1

)
·[

Hs

(
h−hi

hi+1−hi

)
−Hs

(
h−hi+1

hi+1−hi

)]
, hi + hi+1−hi

2
≤ h ≤ hi+1

. (2.9)
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Hs indicates the Heaviside step function, which may be approximated by

Hs(x) ≈ 1

1 + exp(−2kx)
, (2.10)

where k is a parameter that controls the steepness of the transition from

Hs(0
−) = 0 to Hs(0

+) = 1; k = 100 is determined empirically to give suit-

able results for typical applications. Arguments to the Heaviside functions in

Eq. (2.9) are scaled to prevent numerical underflow/overflow.

When using the approximation of Eq. (2.10), the H ′mi
and their deriva-

tives with respect to altitude are mathematically only continuous in the limit

as k →∞ due to the subtraction of shifted Heavisides in Eq. (2.9). However,

for implementation purposes, k = 100 provides continuity to well below double

precision machine epsilon. (This situation is depicted graphically in Fig. 2.3.)

As shown in Fig. 2.1, k = 100 preserves the original values of the scale heights

over nearly the entirety of each atmospheric layer.2 The relative difference

between the original scale height and the Heaviside-modified scale height is

less than 1 percent over more than 95 percent of the altitude layer. Given

the relatively low fidelity of the HP model and the uncertainty inherent in

atmospheric modeling in general, this approximation is more than adequate.

For hi ≤ h ≤ hi+1, Eq. (2.9) makes use of reference values at either

index (i− 1) or index (i + 2), depending on whether h is greater than or less

2Note that the lack of smoothness in Fig. 2.1b is caused by the traditional HP model,
not the smoothed version.
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Figure 2.1: Effect of new Heaviside-smoothed HP model on density and its
derivatives near altitude layer boundary.

than hi + 1
2

(hi+1 − hi). This “knowledge” of scale heights from an adjacent

altitude layer allows for the scale heights in the layer of interest to vary to

maintain continuity near layer boundaries. However, special measures must

be taken when h ≤ h2 or h ≥ hp−1, where p is the total number of indices. If

h ≤ h2, set

hi−1 = h1 − (h2 − h1) (2.11)

ρm (hi−1) = ρm (hi) exp

(
hi − hi−1
Hmi

)
. (2.12)

Analogously, if h ≥ hp−1, set

51



hi+2 = hp + (hp − hp−1) (2.13)

ρm (hi+2) = ρm (hi+1) exp

(
hi+1 − hi+2

Hmi

)
. (2.14)

The dummy indices simply add a “fake” altitude layer for the model to use

and have a negligible impact on the output density values. This method is

applicable if the altitude is outside the nominal altitude bounds – that is, if

h < h1 or h > hp. In either case, the density and its derivatives are calculated

as if the scale heights of the lowermost (or uppermost) altitude layer continue

to zero (or infinite) altitude. This strategy smoothly varies the density as

altitude changes while avoiding the discontinuous derivatives that would arise

if the density were set to a uniform value for an out-of-bounds altitude.

2.3.1.1 Derivatives with Respect to Space Object State

The derivatives of the Heaviside-smoothed HP model with respect to

altitude are calculated using

∂ρm(h)

∂h
=

−
ρm
H′mi

[
1 + (hi−h)

H′mi

∂H′mi

∂h

]
hi ≤ h ≤ hi + hi+1−hi

2

− ρm
H′mi

[
1 + (hi+1−h)

H′mi

∂H′mi

∂h

]
hi + hi+1−hi

2
≤ h ≤ hi+1

(2.15)

∂H ′mi

∂h
=



(
Hmi
−Hmi−1

)
·[

dHs

(
h−hi

hi+1−hi

)
dh

−
dHs

(
h−hi+1
hi+1−hi

)
dh

]
, hi ≤ h ≤ hi + hi+1−hi

2(
Hmi
−Hmi+1

)
·[

dHs

(
h−hi

hi+1−hi

)
dh

−
dHs

(
h−hi+1
hi+1−hi

)
dh

]
, hi + hi+1−hi

2
≤ h ≤ hi+1

,

(2.16)
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where, generally,

dHs(x)

dx
=

2k exp(−2kx)

[1 + exp(−2kx)]2
. (2.17)

Explicit expressions for the derivatives of traditional HP that are reused in the

revised HP have been given previously [140].

2.3.2 Approach 2: Polynomial Weighting Function

The computational efficiency of the Heaviside-based approach suffers

relative to the nonsmooth modified HP model because of the additional re-

quired evaluations of the exponential function. Alternatively, low-order con-

tinuity may be obtained using less expensive polynomial weighting functions

[111]. In this approach, near an altitude layer boundary hi, the scale height

is a polynomial-weighted combination of the scale height valid over [hi−1, hi]

and the scale height valid over [hi, hi+1] (i.e., Hmi−1
and Hmi

, respectively).

Far from any hi, the weighting is unnecessary, and the CPU time required to

calculate the scale heights decreases accordingly.

As in the Heaviside-based approach, Eq. (2.2) is modified to be a scaled

ρm (hi+1) if h is near hi+1, and the calculation of the scale heights proceeds

slightly differently depending on the relative location of h within the region

[hi, hi+1]:
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ρm(h) = ρm(hi+1)exp

(
hi+1 − h
H ′mi

)
, hi+1 − α ≤ h ≤ hi+1 (2.18)

H ′mi
=


Hmi−1

+ wH
(
Hmi
−Hmi−1

)
, hi ≤ h ≤ hi + α

Hmi
+ wH

(
Hmi+1

−Hmi

)
, hi+1 − α ≤ h ≤ hi+1

Hmi
, hi + α ≤ h ≤ hi+1 − α

. (2.19)

The parameter α controls the size of the region in which weighting is

applied, and is set to 0.5 km for all regions. (Altitude regions vary in size

from 10 km to 40 km in the current implementation.) The precise expression

for the weighting function wH depends on the desired order of continuity. For

example, for third-order continuity,

wH = ξ4H
(
−20ξ3H + 70ξ2H − 84ξH + 35

)
(2.20)

ξH =

{
h−(hi−α)

2α
, hi ≤ h ≤ hi + α

h−(hi+1−α)
2α

, hi+1 − α ≤ h ≤ hi+1

. (2.21)

Unlike the Heaviside-smoothed HP, proximity to the bottommost or

topmost altitude index does not present a special case; the unweighted HP is

used in these instances. If the altitude is greater than the highest reference

altitude or less than the lowest reference altitude, the extrapolation technique

used in the Heaviside-smoothed model is again employed, though no additional

“fake” altitude layers are required.

Fig. 2.2 displays the results of enforcing third-order continuity in the

scale heights using the polynomial weighting function approach. The weighting

function is applied only when h ∈ [hi−0.5 km, hi + 0.5 km]. The effect closely
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Figure 2.2: Effect of new polynomial-smoothed HP model on density and its
derivatives near altitude layer boundary.

mimics that of the Heaviside-based smoothing approach (Fig. 2.1), with only

a marginally larger overshoot in the partial derivatives on either side of the

altitude layer boundary.

Fig. 2.3 shows the effect of the two smoothing methods on the scale

height H ′mi
as a function of altitude. For the nominal parameter values k = 100

and α = 0.5 km (Fig. 2.3a), the transition between altitude layers is nearly

identical for the two smoothing methods, and both closely mimic the behav-

ior of the traditional HP model. Fig. 2.3b depicts the previously-discussed

discontinuities that develop if an unsuitably small value of k is used with the

Heaviside-smoothing technique. On the other hand, Fig. 2.3b also shows that

increasing α when using the polynomial-smoothing method does not create
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Figure 2.3: Comparison of scale height H ′mi
as function of altitude. Plot titles

give k parameter value for Heaviside-smoothed HP and α parameter value for
polynomial-smoothed HP.

discontinuities, and instead introduces a more gradual transition between the

scale heights of adjacent altitude layers.

2.3.2.1 Derivatives with Respect to Space Object State

The derivatives of the polynomial-smoothed HP model with respect to

altitude are calculated using

∂ρm(h)

∂h
=

−
ρm
H′mi

[
1 + (hi−h)

H′mi

∂H′mi

∂h

]
, hi ≤ h ≤ hi + α

− ρm
H′mi

[
1 + (hi+1−h)

H′mi

∂H′mi

∂h

]
, hi+1 − α ≤ h ≤ hi+1

(2.22)

∂H ′mi

∂h
=


(
Hmi−Hmi−1

2α

)
dwH

dξH
, hi ≤ h ≤ hi + α(

Hmi+1−Hmi

2α

)
dwH

dξH
, hi+1 − α ≤ h ≤ hi+1

. (2.23)

If the altitude is not near an altitude layer boundary, weighting is not

required, and derivatives are calculated using nonsmoothed expressions.
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2.3.3 Derivatives with Respect to Time

Under the assumptions that (1) the Earth may be modeled as an el-

lipse of revolution and (2) the ECI and Earth-centered, Earth-fixed (ECEF)

reference frames differ only by a rotation about a common polar axis, the

position of the Sun represents the only explicit time dependence of the HP

density model. The position of the Sun with respect to the Earth may be

approximated as an explicit function of time whose time derivative is easily

derived analytically; thus, dub/dt (with ub defined in Eq. (2.7)) and, there-

fore, ∂ρ/∂t are readily calculable [187]. On the other hand, if a higher-fidelity

relationship between the ECI and ECEF frames is modeled and assumption

(2) is violated, then ∂h/∂t is generally nonzero. Further, as is described in

Section 2.5, the Harris-Priester model may be modified to include dependen-

cies on environmental parameters such as F̄10.7, which may be approximated

as explicit functions of time. Therefore, ∂ρ/∂t may be written as

∂ρ

∂t
=

∂ρ

∂ub

dub
dt

+
∂ρ

∂h

∂h

∂t
+

∂ρ

∂F̄10.7

dF̄10.7

dt
. (2.24)

The first subexpression of Eq. (2.24) is given by

∂ρ

∂ub
=
n

4

(
1

2
+
uTr uB

2

)(n
2
−1)
uTr . (2.25)

The expression for ∂ρ/∂h is obtained by combining Eq. (2.1) with ei-

ther Eq. (2.15) (for the Heaviside weighting approach) or Eq. (2.22) (for the
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polynomial weighting approach) and applying the chain rule. The expression

for ∂h/∂t depends on the specific method used to calculate h but generally

requires the time derivative of the transformation matrix relating the ECI and

ECEF reference frames – another quantity that is implementation-specific.

Similarly, dF̄10.7/dt depends on the model used to approximate the time evo-

lution of solar activity.

2.4 Elimination of Singularities

Common implementations of the HP model derivatives contain singu-

larities if one or more of several conditions occur [140]. In the interest of a

fully robust implementation of the model, these singularities are identified and

nonsingular alternative expressions are presented.

2.4.1 Collinearity of Space Object and Diurnal Bulge Position Vec-
tors

The partial derivative of density with respect to altitude [140] may be

singular when ur and ub are collinear, depending on the implementation of the

chain rule for differentiation. The singularity may be avoided, if, rather than

differentiating with respect to the angle ψ directly, the relevant expression is

differentiated as

∂ρ(h)

∂
[
cosn

(
ψ
2

)] = ρM(h)− ρm(h) (2.26)

∂
[
cosn

(
ψ
2

)]
∂r

=
n

4

(
1

2
+
uTr uB

2

)(n
2
−1)(uTB

r
− u

T
r uB
r

uTr

)
, 2 < n ≤ 6. (2.27)
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The strict inequality on the lower bound for n ensures that the exponent

(n/2− 1) is never exactly zero. Because 00 is undefined, (n/2− 1) = 0 would

lead to discontinuities if cos (ψ/2) = 0. This limitation on n prevents similar

computational difficulties in Eq. (2.25).

2.4.2 Space Object at Pole

Many methods exist for converting geocentric coordinates to geodetic

coordinates. Given the desirability of high speed with moderate accuracy when

using the HP model, it is natural that a previous HP implementation relies

on a simple, explicit, approximate equation for obtaining the SO’s altitude

above the reference Earth ellipsoid [140]. However, the expressions for the

derivatives of h with respect to the SO state are singular for ECEF position

vectors directly above a geographic pole. Fortunately, the singularity may

be avoided by switching from the general expressions to alternative, correct

expressions for derivatives at the poles if rE1 = rE2 = 0. (The superscript E

represents that the position vector is expressed in the ECEF frame.) If at a

pole, then the correct expression is

∂h

∂rE
=

 0
0

sign(1, rE3 )

T

. (2.28)

In a manner directly analogous to that implemented in the polynomial-

smoothing scheme for the scale heights, a polynomial weighting function [111]

is used near the poles to (1) maintain continuity and smoothness in ∂h/∂rE
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and (2) ensure that ∂h/∂rE is the true derivative of h. If the cosine of the

geocentric latitude δ is less than a preset tolerance τp (e.g., τp = 10−4), then

h = wp,1 [h]g + wp,2 [h]p (2.29)

∂h

∂rE
=
∂wp,1
∂rE

[h]g + wp,1

[
∂h

∂rE

]
g

+
∂wp,2
∂rE

[h]p + wp,2

[
∂h

∂rE

]
p

(2.30)

∂wp,i
∂rE

=
∂wp,i
∂ξp

∂ξp
∂rE

, i = 1, 2 (2.31)

wp,1 = ξ3p
(
6ξ2p − 15ξp + 10

)
(2.32)

wp,2 = 1− wp,1 (2.33)

ξp =
cos δ

τp
, (2.34)

where the subscript g refers to the altitude calculated using the general altitude

expression, and the subscript p refers to the altitude calculated assuming the

SO is exactly above a pole. The specific expressions for wp,1 and wp,2 ensure

second-order continuity of the altitude. Fig. 2.4 shows the effect of using

the weighting-function scheme on h (Fig. 2.4a) and ∂h/∂rE (Fig. 2.4b). The

results are generated by setting rE2 = 0, rE3 = 6478 km, and varying rE1 between

−1 km and 1 km. Errors in altitude are on the order of millimeters, and the

weighted ∂h/∂rE varies smoothly near the pole. Additionally, by applying

the weighting functions to the altitude function itself rather than ∂h/∂rE, the

partial derivatives are analytically correct.
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Figure 2.4: Effect of weighting function on altitude and ∂h/∂rE near pole.
Vertical dashed lines indicate τp.

2.4.3 Functional form of Latitude Dependence

In order to vary the latitudinal dependence parameter n continuously

from 2 for equatorial orbits to 6 for polar orbits while retaining continuity

and continuous partial derivatives, n is set using the square of the sine of the

orbital inclination. Calculating n using the inclination itself [75, 184] or the

sine of the inclination introduces a singularity in the derivative of the density

with respect to the SO state for equatorial orbits. The new formulation, given

by Eq. (2.35), only produces a singularity if the magnitude of the angular

momentum vector is zero (degenerate case). The derivatives of n are given

in Eqs. (2.36)–(2.37); Eq. (2.38) provides the derivative of the density with

respect to n.

n = 2 + εn + 4 sin2 i (2.35)
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∂n

∂r
= 4

∂ sin2 i

∂r
=

8h3
h4

 −h2h3v3 − (h21 + h22)v2
h1h3v3 + (h21 + h22)v1
−h1h3v2 − h2h3v1

T

(2.36)

∂n

∂v
= 4

∂ sin2 i

∂v
=

8h3
h4

 h2h3r3 − (h21 + h22)r2
−h1h3r3 − (h21 + h22)r1

h1h3r2 − h2h3r1

T

(2.37)

∂ρ

∂n
= (ρM(h)− ρm(h)) cosn

(
ψ

2

)
ln

[
cos

(
ψ

2

)]
, (2.38)

where v = [v1 v2 v3]
T is the SO’s ECI velocity vector and h = r × v =

[h1 h2 h3]
T is the SO’s ECI angular momentum vector (h is the Euclidean

norm of h). As implied previously, εn is a small, positive quantity used to

prevent n = 2 (e.g., εn = 10−3).

A problem arises in Eq. (2.38) if ψ = π because ln(0) = −∞. (There

is no risk of ψ > π.) As in the polar position case, an alternative expression

combined with a weighting function to ensure continuity and smoothness is

used to produce correct results for ∂ρ/∂n for ψ near π. Here,

cosn
(
ψ

2

)
=


0, cos

(
ψ
2

)
= 0[

cosn
(
ψ
2

)]
g
, cos

(
ψ
2

)
> τn

wn,1
[
cosn

(
ψ
2

)]
g
, 0 < cos

(
ψ
2

)
< τn

(2.39)

∂
[
cosn

(
ψ
2

)]
∂n

=


0, cos

(
ψ
2

)
= 0[

cosn
(
ψ
2

)]
g

ln
[
cos
(
ψ
2

)]
, cos

(
ψ
2

)
> τn

wn,1
[
cosn

(
ψ
2

)]
g

ln
[
cos
(
ψ
2

)]
, 0 < cos

(
ψ
2

)
< τn

(2.40)

wn,1 = ξ3n
(
6ξ2n − 15ξn + 10

)
(2.41)

ξn =
cos
(
ψ
2

)
τn

, (2.42)
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Figure 2.5: Effect of weighting function on cosn (ψ/2) and ∂ [cosn (ψ/2)] /∂n
near ψ = π. Vertical dashed lines indicate τn.

where τn is a preset tolerance (e.g., τn = 10−3), and
[
cosn

(
ψ
2

)]
g

is obtained

from Eq. (2.6). The derivative of wn,1 with respect to n is zero, and the

corresponding term is omitted from Eq. (2.40). Additionally, the specific ex-

pression for wn,1 ensures second-order continuity of cosn
(
ψ
2

)
. Fig. 2.5 shows

the effect of using the weighting-function scheme on cosn (ψ/2) (Fig. 2.5a) and

∂ [cosn (ψ/2)] /∂n (Fig. 2.5b). For comparison, the alternative unweighted so-

lution switches instantaneously between
[
cosn

(
ψ
2

)]
g

and
[
cosn

(
ψ
2

)]
= 0 at

cos (ψ/2) = τn.

2.5 Introduction of Environmental Parameter Depen-
dencies

As an alternative to the traditional multi-table, interpolation-based ap-

proach to modeling effects caused by variations in F̄10.7, this chapter introduces

a strictly functional dependence of ρm(hi) and ρM(hi) on any combination
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of environmental parameters. An example that closely mimics the effect of

the previously described linear-interpolation strategy (hereafter referenced as

LIHP) is to use a cubic dependency on F̄10.7:

ρm(hi) =
3∑
j=0

cmi,j
F̄ j
10.7, (2.43)

where the cmi,j
are preset constants. (Calculation of ρM(hi) proceeds exactly

analogously with different coefficient values: cMi,j
.) This approach (referenced

as cubic Harris-Priester or CHP) yields several advantages over LIHP and the

nearest-neighbor interpolation strategy (NNHP). First, derivatives of the den-

sity with respect to F̄10.7 are now continuous throughout the F̄10.7 domain.

Second, a cubic interpolation scheme leads to a more efficient memory man-

agement requirement, given the same accuracy level. Third, and perhaps most

importantly, the functional approach is easily upgradable: The dependence on

F̄10.7 may be changed and/or further dependencies on other parameters may be

added in a straightforward manner. The inclusion of additional environmen-

tal parameters in the model, of course, increases the dimensionality of the fit

and may require nonlinear fitting techniques. However, the great majority of

additional computational effort created by this complication lies in coefficient

generation rather than model execution.

An alternative to the implementation presented in this chapter is to

combine the fitting of any environmental parameters with a global fit in alti-

tude. Such a methodology moves further away from the traditional HP model

by eliminating the piecewise exponential interpolation in altitude (Eqs. (2.2)
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and (2.3)) and the use of altitude layers. Depending on the functional depen-

dencies used, a global fit would likely reduce the resolution of the model while

potentially improving computational speed. A global altitude fit is avoided

in the current work, which endeavors to improve the quality of the HP model

while maintaining its general structure.

2.5.1 Calculation of Coefficients

The cmi,j
in Eq. (2.43) are calculated via a linear least-squares proce-

dure, using “measurements” produced by a higher-fidelity density model. (In

the current implementation, NRLMSISE-2000 [164] is used for this purpose

due to its direct dependence on F̄10.7 and lack of dependence on the year.) For

each of ρm and ρM , and for each reference altitude hi, the higher-fidelity model

is evaluated within a series of nested loops to obtain density values at repre-

sentative combinations of input parameters: F̄10.7 (varied between 60 sfu and

240 sfu), longitude, day-of-year, latitude, and local apparent solar time.3 To

mimic the original HP model, the densities are averaged over longitude, day-

of-year, and latitude, and extremized over the set of local apparent solar times

(minimized for ρm, maximized for ρM). This process leads to a single density

value for each of ρm and ρM at each F̄10.7 input value at each reference altitude

hi. Once the process has been completed at all input parameter combinations

for a given hi, a set of measurements is available, and a linear least-squares fit

is used to obtain the coefficients necessary to evaluate Eq. (2.43).

3For all evaluations, the daily value of the solar flux index F10.7 is set equal to F̄10.7, and
the geomagnetic index is set such that Ap = 11 (a moderate value).
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(a) log10 (ρm). (b) log10 (ρM ).

Figure 2.6: Contour plots of the logarithms of ρm and ρM as functions of
altitude and solar flux.

Fig. 2.6 shows ρm and ρM as functions of both altitude and F̄10.7 in

the current implementation. The dependence of density on the solar flux is

clearly visible, particularly at higher altitudes, demonstrating the importance

of including this relationship in the model.

2.5.2 Derivatives with Respect to F̄10.7

To facilitate the calculation of sensitivities with respect to solar activ-

ity – and, possibly, time (see Section 2.3.3) – expressions for ∂ρ/∂F̄10.7 are

developed for the CHP model. Differentiation of Eq. (2.1) gives

∂ρ(h)

∂F̄10.7

=
∂ρm(h)

∂F̄10.7

+

(
∂ρM(h)

∂F̄10.7

− ∂ρm(h)

∂F̄10.7

)
cosn

(
ψ

2

)
. (2.44)

66



At this point, the derivation diverges depending on which continuity-preserving

method is used and on the location of h within an altitude layer. However, for

all cases, three useful expressions hold:

Lmi+1,i
, log

(
ρm (hi)

ρm (hi−1)

)
(2.45)

∂Hmi

∂F̄10.7

=

(
hi − hi+1

L2
mi+1,i

)(
∂ρm (hi) /∂F̄10.7

ρm (hi)
− ∂ρm (hi+1) /∂F̄10.7

ρm (hi+1)

)
(2.46)

∂ρm (hi)

∂F̄10.7

= cmi,1
+ 2cmi,2

F̄10.7 + 3cmi,3
F̄ 2
10.7. (2.47)

These relations and the following derivations are given for the minimum density

case only, with the understanding that the substitution m←M may be used

to obtain the expressions for the maximum density case.

2.5.2.1 Heaviside-Based Continuity

For both the lower and upper portions of an altitude region, the differ-

ence between the Heaviside functions referenced to hi and hi+1 is abbreviated

as

∆Hs , Hs

(
h− hi
hi+1 − hi

)
−Hs

(
h− hi+1

hi+1 − hi

)
. (2.48)

hi ≤ h ≤ hi+
hi+1−hi

2
In the lower portion of an altitude region, differentiating

Eq. (2.2) gives
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∂ρm(h)

∂F̄10.7

=
∂ρm (hi)

∂F̄10.7

Em + ρm (hi)
∂Em
∂F̄10.7

(2.49)

Em , exp

(
hi − h
H ′mi

)
. (2.50)

Continuing to differentiate gives

∂Em
∂F̄10.7

=

(
h− hi
H ′2mi

)
Em

∂H ′mi

∂F̄10.7

. (2.51)

The derivative of H ′mi
is given by

∂H ′mi

∂F̄10.7

=
∂Hmi−1

∂F̄10.7

+ ∆Hs

(
∂Hmi

∂F̄10.7

− ∂Hmi−1

∂F̄10.7

)
. (2.52)

hi + hi+1−hi
2
≤ h ≤ hi+1 In the upper portion of an altitude region, differen-

tiating Eq. (2.2) gives

∂ρm(h)

∂F̄10.7

=
∂ρm (hi+1)

∂F̄10.7

Em + ρm (hi+1)
∂Em
∂F̄10.7

(2.53)

Em , exp

(
hi+1 − h
H ′mi

)
. (2.54)

Continuing to differentiate gives

∂Em
∂F̄10.7

=

(
h− hi+1

H ′2mi

)
Em

∂H ′mi

∂F̄10.7

. (2.55)
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The derivative of H ′mi
is given by

∂H ′mi

∂F̄10.7

=
∂Hmi+1

∂F̄10.7

+ ∆Hs

(
∂Hmi

∂F̄10.7

− ∂Hmi+1

∂F̄10.7

)
. (2.56)

2.5.2.2 Polynomial-Based Continuity

hi ≤ h ≤ hi+α In the lower portion of an altitude region, Eqs. (2.49)–(2.51)

hold if H ′mi
is calculated using Eq. (2.19). Continuing to differentiate gives

∂H ′mi

∂F̄10.7

=
∂Hmi−1

∂F̄10.7

+ wH

(
∂Hmi

∂F̄10.7

− ∂Hmi−1

∂F̄10.7

)
. (2.57)

hi+1 − α ≤ h ≤ hi+1 In the upper portion of an altitude region, Eqs. (2.53)–

(2.55) hold if H ′mi
is calculated using Eq. (2.19). Continuing to differentiate

gives

∂H ′mi

∂F̄10.7

=
∂Hmi

∂F̄10.7

+ wH

(
∂Hmi+1

∂F̄10.7

− ∂Hmi

∂F̄10.7

)
. (2.58)

hi +α ≤ h ≤ hi+1−α In an unweighted region, the differentiation procedure

used in the lower region of an altitude layer may be reused with wH = 1. That

is,

∂H ′mi

∂F̄10.7

=
∂Hmi

∂F̄10.7

. (2.59)
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2.6 Summary of Harris-Priester Models

Table 2.1 summarizes the properties of the three HP model implemen-

tations described in this chapter.

Table 2.1: Summary of Harris-Priester model variants.

CHP LIHP NNHP

F̄10.7

dependence
Cubic Linear

interpolation
Nearest-neighbor
interpolation

Constants per
altitude layer

8 20 20

Continuous
derivatives

Yes No No

Reference This dissertation JAT code [75] Dowd & Tapley
[57]

2.7 Comparisons with Other Atmospheric Models

The density values and execution time of the new CHP are compared

against NNHP and LIHP, as well as several popular high-fidelity models:

NRLMSISE-2000, DTM 2013 [36], Jacchia-Bowman 2008 (JB08) [30], and,

for some data sets, HASDM [181].

2.7.1 GRACE Accelerometer-Derived Density Estimates

Comparing the densities produced by various atmospheric models is

complicated by the absence of a universally recognized “truth” model. One

method is to use, as reference values, densities estimated based on the tra-
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jectory of a specific SO rather than calculated using an atmospheric model.

Accelerometer-derived density estimates have been computed for the CHAMP

mission SO and both GRACE mission SOs [55, 54]. While these reference

values are subject to errors of their own (albeit generally smaller than generic

atmosphere models), they provide an outside data set to which results of the

models may be compared. Fig. 2.7 shows the level of agreement between each

of the atmospheric models and accelerometer-derived densities for the GRACE

A SO for more than 6,000 samples taken hourly during the year 2003. (Den-

sities are in kg/m3.) Following Doornbos [55], Fig. 2.7 also summarizes the

geometric mean (µ∗) and standard deviation (σ∗) of the ratios of the GRACE

A accelerometer-derived densities to the model densities. (For the geometric

standard deviation, a value of unity represents perfect agreement between data

sets. Note this definition is contrasted with the common additive standard de-

viation, for which a value of zero represents perfect agreement between data

sets.)

As expected, the variance in model agreement is clearly larger for all

three HP variants4 than for the higher-fidelity models. However, for the in-

tended application of CHP – preliminary studies that value speed and smooth-

ness more highly than accuracy – the results are nonetheless promising. CHP’s

cubic functional dependency on F̄10.7 is shown to be at least as capable as LIHP

and NNHP at responding to variations in F̄10.7 over the values at which the

models are evaluated. Additionally, many of the most anomalous density val-

4Table values for NNHP and LIHP were taken from the Java Astrodynamics Toolkit
implementation [75].
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ues produced by the HP models are caused by extreme fluctuations in either

geomagnetic or solar activity. As previously mentioned, modifying Eq. (2.43)

to take into account, for example, the daily F10.7 solar flux or the geomagnetic

index Ap is straightforward and could involve the addition of a small number of

additional coefficients at each reference altitude. On the other hand, upgrad-

ing NNHP or LIHP in a similar manner requires the generation, storage, and

runtime indexing of an ever-growing array of tables so that successive inter-

polations may be performed. Finally, the Heaviside-smoothed and third-order

polynomial-smoothed versions of CHP produce very nearly identical results.

This finding supports the use of the more efficient polynomial-smoothed CHP

unless arbitrarily high-order continuity is desired.

2.7.2 Parametric Sweep

The GRACE density data provide a representative sampling of param-

eters like latitude, longitude, local apparent solar time, day of year, and geo-

magnetic activity. However, the SO’s orbit limits the data to a near-constant

altitude and orbital inclination – two input parameters for the HP model. Ad-

ditionally, the year 2003 is characterized by low-to-moderate F̄10.7 values. In

order to gain a broader perspective of the capabilities of CHP, further eval-

uations are performed using a parametric sweep of input conditions over the

time span 1 Jan 2000 to 3 Jan 2011. At each day within the time span,

latitude, longitude, and local apparent solar time are varied over their respec-

tive domains of possible values at each of a range of altitudes (10,800 density

evaluations per altitude). The SO’s orbital inclination is set equal to the geo-
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Figure 2.7: Bivariate histograms showing level of agreement between model
densities and accelerometer-derived densities for GRACE A SO. Values on
heavy line are in perfect agreement.

centric latitude. An altitude increment of 96.1 km is used to sample different

regions within altitude layers (e.g., near hi and near hi+1). The results for

CHP, LIHP, and NNHP are compared to the results for the high-fidelity JB08

model in Figs. 2.8, 2.9, and 2.10, respectively. (Densities are in kg/m3.) The

geometric statistics of the ratios of the JB08 densities to the HP densities are
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Table 2.2: Geometric statistics of ratios of JB08 densities to HP densities.
(Closeness to unity is a measure of accuracy for all columns.)

CHP LIHP NNHP
Altitude (km) µ∗ σ∗ µ∗ σ∗ µ∗ σ∗

204.0 0.996 1.176 1.031 1.191 1.041 1.191
300.1 0.900 1.321 0.981 1.379 1.007 1.380
396.2 0.860 1.493 0.838 1.616 0.872 1.615
492.3 0.810 1.667 0.686 1.849 0.724 1.847
588.4 0.798 1.704 0.603 1.917 0.642 1.915
684.5 0.859 1.618 0.618 1.821 0.659 1.821

given in Table 2.2. Only the results for the Heaviside-smoothed version of

CHP are shown because results of polynomial-smoothed CHP are identical to

the precision of Fig. 2.8 and Table 2.2.

It is observed that the relative agreement between all three HP models

and JB08 increases as altitude decreases – an important trend given the inverse

exponential relationship between altitude and the drag perturbation accelera-

tion. Additionally, when comparing CHP, LIHP, and NNHP, the three models

are seen to produce densities of similar fidelity relative to JB08 at low altitudes.

Meanwhile, at higher altitudes, CHP shows significantly better agreement with

JB08 than LIHP or NNHP. This outcome lends further credence to the use

of the proposed method of calculating the HP scale heights as continuously

differentiable functions of environmental parameters.
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Figure 2.8: Bivariate histograms showing level of agreement between CHP
densities and Jacchia-Bowman 2008 densities for parametric scan of input
values. Values on heavy line are in perfect agreement.

2.7.3 Trajectory Propagation

An example of the effect of density model choice on the propagation of

a specific trajectory is shown in Figs. 2.11 and 2.12. The trajectory is a 300-km

altitude (a0 = 6678 km), near-circular (e0 = 0.001), near-polar (i0 = 86◦) orbit

propagated for four days using an 8th-order Runge-Kutta-Dormand-Prince

integration scheme with a fixed 30-second step size. The SO is modeled with

CD = 2.52 and area-to-mass ratio 0.0054842 m2/kg. The force model consists

only of the two-body gravitational force and the drag perturbation. The low

altitude and simple force model are chosen to isolate the effects of atmospheric

density on the SO’s trajectory. As in the parametric sweep, only the results

for Heaviside-smoothed CHP are shown.
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Figure 2.9: Bivariate histograms showing level of agreement between LIHP
densities and Jacchia-Bowman 2008 densities for parametric scan of input
values. Values on heavy line are in perfect agreement.

It is emphasized that the differences presented in Figs. 2.11 and 2.12

should not be taken at face value.5 These results are merely intended to

convey three observations: First, CHP, LIHP, and NNHP produce results of

comparable accuracy; second, all three HP alternatives produce qualitatively

reasonable results relative to higher-fidelity models over relatively short propa-

gation spans; and, finally, the potentially large variability created by switching

between higher-fidelity models supports the use of fast, low-fidelity models like

HP in preliminary studies.

5See Vallado and Finkleman [191] for a survey of the outcomes of propagating with
various density models – and with a single model varying methods used to calculate input
parameters.
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Figure 2.10: Bivariate histograms showing level of agreement between NNHP
densities and Jacchia-Bowman 2008 densities for parametric scan of input
values. Values on heavy line are in perfect agreement.
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Figure 2.11: Magnitude of position difference between trajectory propagated
using each of several density models and trajectory propagated using Jacchia-
Bowman 2008 model.

77



0 1440 2880 4320 5760
6672

6673

6674

6675

6676

6677

6678

Time (min)

S
e
m

im
a
jo

r 
a
x
is

 (
k
m

)

0 1440 2880 4320 5760
8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

10
x 10

−4

Time (min)

E
c
c
e
n
tr

ic
it
y

 

 

JB08

NRLMSISE−2000

DTM 2013

CHP

LIHP

NNHP

Figure 2.12: Orbit shape evolution due to atmospheric drag perturbation.

2.7.4 Computational Efficiency

The greatest value of the HP model lies in its ability to efficiently pro-

duce moderately accurate – and, in the case of the new CHP model, smooth

and robust – densities. Relative CPU timing results for each of the density

models tested in this dissertation are given in Table 2.3. All models are im-

plemented in Fortran and compiled using the Intel Visual Fortran Compiler

XE 14.0.0.103 for the 32-bit Windows platform with optimization flag -O3.

An exception is the DTM 2013 model, which is available only as a static

library and was therefore not compiled by the authors. Additionally, it is

noted that Jacchia-Bowman 2008, NNHP, LIHP, and CHP are written using

double-precision arithmetic, while NRLMSISE-2000 and DTM 2013 use single-

precision arithmetic.6 Timing results are obtained by repeatedly evaluating

each model at a fixed set of input conditions (493 km altitude, moderate values

6The use of single-precision arithmetic can reduce the solution precision obtainable from
an optimization routine [82].
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for environmental parameters) and averaging over the number of trials.7 The

polynomial-weighted CHP provides third-order continuity of the scale heights

in altitude. In order to test the efficiency of the polynomial-smoothed CHP

both when the altitude is near and far from an altitude layer boundary, the

tests are also run at 499.9 km altitude, which triggers the calculation of the

polynomial weighting functions.

For CHP, derivatives of density with respect to the SO ECI position

and velocity vectors, time, and F̄10.7 are computed analytically. For all other

models, derivatives of density with respect to the ECI state vector, time, and

F̄10.7 are computed using a first-order finite-difference approximation. Thus,

five additional density evaluations are required to obtain approximate deriva-

tive information for NRLMSISE-2000, DTM 2013, and Jacchia-Bowman 2008,

while eight additional evaluations are required for LIHP and NNHP. (The HP

model is dependent on SO velocity, while the other models are not.)

The overall simplicity of all the HP models leads to execution speeds

more than three times faster than any of the higher-fidelity models tested.

Further, unlike NNHP and LIHP, CHP facilitates efficient, analytical com-

putation of continuous partial derivatives of density with respect to the SO

state, time, and input environmental parameters – a useful feature for many

estimation and optimization algorithms. If arbitrarily high-order continuity is

desired, then Heaviside-weighted CHP may be used to calculate density and its

partial derivatives. On the other hand, if third-order continuity is acceptable,

710,000,000 for CHP, LIHP, and NNHP; 2,000,000 for NRLMSISE-2000 and DTM 2013;
1,000,000 for Jacchia-Bowman 2008.
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Table 2.3: Normalized execution times for density models; one normalized
time unit is 8.05× 10−4 ms.

Normalized CPU time
Model Density Density and derivatives

Nearest-neighbor Harris-Priester
(NNHP)

0.80 6.40

Linear-interpolation Harris-
Priester (LIHP)

0.81 6.48

Cubic Harris-Priester (CHP):
Heaviside continuity

1.00 1.27

CHP: polynomial continuity, h ∈
[hi−0.5 km, hi+0.5 km]

0.94 1.22

CHP: polynomial continuity, h /∈
[hi−0.5 km, hi+0.5 km]

0.81 1.02

DTM 2013 3.99 19.95
NRLMSISE-2000 7.92 39.60
Jacchia-Bowman 2008 15.90 79.50

polynomial-weighted CHP provides very similar density and derivative values

at a reduced computational cost. The efficiency gain is particularly large when

the altitude is more than 0.5 km from a reference altitude. As altitude layers

are at least 10 km thick in the present implementation, a vast majority of

cases benefit from the larger speedup. Additionally, it is reemphasized that

the functional dependencies of the new CHP model may be easily upgraded

to take into account first-order effects due to other environmental parameters

with only marginal speed sacrifices in the calculation of density and its first

derivatives.

More efficient methods of calculating the derivatives of NNHP, LIHP,

and the high-fidelity models may exist. For example, the derivatives of the
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NNHP and LIHP models are similar to those of the CHP model – through,

as described, basic implementations of HP derivatives may encounter discon-

tinuities and singularities. Additionally, automatic differentiation has been

used to calculate the sensitivities of the MSIS-86 model, which is similar to

NRLMSISE-2000 [39]. When calculating derivatives with respect to four input

parameters, the execution time was reported to increase by a factor of 4.3, as

opposed to the factor of 5 increase necessitated by a first-order finite difference

approximation. Nevertheless, efficiency gains of this magnitude significantly

lag the capability of the CHP model to calculate derivatives with a compute

time increase of less than 30 percent.

2.8 Conclusions

The modified HP atmospheric density model is upgraded to remove

singularities and to ensure continuous derivatives with respect to the SO state

and time. These modifications lead to improved robustness and utility, par-

ticularly when the model is used in conjunction with a trajectory estimation

or optimization routine. Additionally, a functional dependence of the scale

heights on environmental parameters is introduced. When used to model the

effect of the 81-day centered solar flux index F̄10.7, similar accuracy and ef-

ficiency is obtained relative to a linear-interpolation-based HP model using

fewer than half as many stored coefficients. Further, the new model may be

upgraded in a straightforward manner to take into account first-order effects

due to other parameters with only marginal speed decreases by adding a small

number of coefficients at each altitude. Conversely, adapting an interpolation-
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based strategy in this manner would require successive interpolations and the

addition of arrays of tables of stored values.

The accuracy of the HP model is not intended to directly compete with

more computationally expensive modern high-fidelity density models. Never-

theless, fast, approximate models are attractive over short time spans due to

the relatively large uncertainties inherent in atmospheric modeling – particu-

larly when projecting environmental conditions into the future for predictive

trajectory propagation. The efficiency of the HP model combined with the im-

proved robustness and accuracy of the newly upgraded version make the model

suitable for preliminary mission design, trajectory estimation, optimization,

and other SSA applications.
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Chapter 3

Parallel Implicit Runge-Kutta Methods

Applied to Coupled Orbit/Attitude

Propagation1

3.1 Introduction

The need for efficient algorithms for numerically solving the ODEs gen-

erated by SP and semianalytical methods is introduced in Section 1.2.2, while

the formulation and potential benefits of IRK methods are discussed in Sec-

tions 1.2.2.1–1.2.2.5. In this chapter, concepts for propagating 3DOF SO

trajectories using IRK methods are modified and extended to the propaga-

tion of coupled SO trajectory and attitude, the importance and challenge of

which is described in Section 1.2.2.6. A variable-step-size Gauss-Legendre IRK

(GLIRK) ODE solver is applied to 6DOF state prediction. Customizations are

introduced that greatly improve the efficiency of the GLIRK solver without

1Work from this chapter was presented as:

• Noble Hatten and Ryan P. Russell. Parallel implicit Runge-Kutta methods applied
to coupled orbit/attitude propagation. Paper AAS 16-395. In 26th AAS/AIAA Space
Flight Mechanics Meeting, Napa, CA, February 2016.

A manuscript has been accepted for publication in a peer-reviewed journal:

• Noble Hatten and Ryan P. Russell. Parallel implicit Runge-Kutta methods applied
to coupled orbit/attitude propagation. J Astronaut Sci. doi: 10.1007/s40295-016-
0103-3. (accepted October 2016)

In each instance, Ryan P. Russell supervised the work.
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sacrificing accuracy for certain classes of SOs and dynamic environments. Two

example scenarios are given, and the applicability of the customizations – and

the corresponding effects on propagator efficiency – are discussed. In addi-

tion, the effects of parallelizing the dynamics model evaluations of the GLIRK

solver using a multicore CPU are examined, and accuracy and efficiency are

compared to linear multistep and ERK solvers.

3.2 Fully Coupled Orbit and Attitude Propagation

The 6DOF state of an SO in Earth orbit may be written as

x =


r
v
q̄
ω


13×1

, (3.1)

where r and v are the SO’s ECI position and velocity vectors, respectively,

q̄ is a quaternion representing the orientation of a reference frame fixed to

the SO body with respect to the ECI frame, and ω is the angular velocity

vector of the body-fixed frame with respect to the ECI frame, expressed in the

body-fixed frame.2 While the attitude may be expressed in several ways, the

quaternion and angular velocity combination is chosen due to the robustness

and precision of this formulation [74]. The state equations are [142]

2The quaternion is defined here such that q̄4×1 =
[
eT sin (φ/2) , cos (φ/2)

]T
, where

e3×1 is the rotation axis and φ is the rotation angle.
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ẋ = f(t,x) =


v
r̈
˙̄q
ω̇

 , (3.2)

where

r̈ = −µ∗
r3
r + ap (3.3)

˙̄q =
1

2
Ωq̄ (3.4)

ω̇ = J−10 [T − ω × (J0ω)] . (3.5)

In Eqs. (3.3)–(3.5), µ∗ is the point-mass gravitational parameter of the Earth,

r is the magnitude of r, ap is the sum of all non-two-body accelerations acting

on the SO in the ECI frame, J0 is the inertia tensor of the SO in the body-

fixed frame (assumed constant), and T is the sum of external torques acting

on the SO in the body-fixed frame. (Note that the time derivative of ω, ω̇, is

expressed in the body-fixed frame.) Ω is a matrix given by

Ω =


0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

 , (3.6)

where ω = [ω1, ω2, ω3]
T .

The vectors ap and T are sums of individual perturbing accelerations

and torques, respectively. The elements of the sums are problem-specific and
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depend primarily upon the dynamical regime (e.g., LEO vs. GEO) and the

desired model fidelity. For the purposes of the test cases presented in this

chapter, the perturbing accelerations considered are the non-two-body com-

ponent of the geopotential, two-body gravitational accelerations caused by the

Sun and Moon, aerodynamic acceleration (i.e., drag), and SRP acceleration.

Meanwhile, T consists of the two-body approximation of the gravity-gradient

torque, aerodynamic torque, and SRP torque. In the current model, the grav-

itational accelerations depend only on the 3DOF state of the SO, and the

gravity-gradient torque depends on the 6DOF state and J0. On the other

hand, the aerodynamic and SRP accelerations and torques act on the SO ex-

ternal body surfaces, and are functions of the SO geometry in addition to the

6DOF state. The external SO surfaces are modeled as a set of single-sided flat

panels, each of which may be given unique physical properties. The position,

orientation, and surface area of each panel is fixed in the body-fixed reference

frame. In this model, the SRP acceleration (in km/s2) on a single panel i is

given by [199, 65]

aSRP,i = −FsunAU
2

mcD2
H1H2,iAi cosφi· (3.7){

(1− Cs,i)usun + 2

[
1

3
Cd,i + Cs,i cosφi

]
ni

}
,

where Fsun is the total solar flux over all wavelengths (W/m2), AU is one

astronomical unit (km), m is the mass of the SO (kg), c is the speed of light

(km/s), D is the distance from the SO to the Sun (km), H1 is an Earth
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shadowing function3, H2,i is the fraction of panel i facing the Sun, Ai is the

area of panel i (km2), Cs,i is the specular reflectivity coefficient for panel i, Cd,i

is the diffusive reflectivity coefficient for panel i, usun is a unit vector pointing

from the SO to the Sun, ni is a unit vector in the outward normal direction

of panel i, and cosφi = usun · ni. The total SRP acceleration experienced by

the SO is the sum of the aSRP,i. The torque due to SRP on panel i is then

calculated in the body-fixed frame by

T SRP,i = m
[
dcm,i ×

(
RI→BaSRP,i

)]
, (3.8)

where dcm,i is the vector from the center of mass of the SO to the center

of pressure of panel i and RI→B is the transformation matrix from the ECI

frame to the body-fixed frame. As with the acceleration, the total SRP torque

experienced by the SO is the sum of the T SRP,i.

The aerodynamic acceleration and torque are also calculated for each

panel individually following the method of Doornbos [55]. In the interest of

brevity, the full details of the method are not presented here; at the most basic

level, the method calculates the vector aerodynamic coefficient Ca,i for each

panel i based on atmospheric properties. Then, the aerodynamic acceleration

on panel i is given by

3A cylindrical Earth shadowing function is assumed in the examples presented in this
chapter.
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aaero,i =
1

2

Arefρv
2
r

m
Ca,i, (3.9)

where Aref is a constant reference area4, ρ is the atmospheric density, and vr

is the magnitude of the relative velocity between the SO and the atmosphere.

Aerodynamic torque is then found following Eq. (3.8).

3.3 Implicit Runge-Kutta ODE Solver

A GLIRK ODE solver is written to propagate the 6DOF equations of

motion. A brief overview of IRK methods is given in Section 1.2.2.1. A more

detailed description of the mathematics behind the GLIRK method in partic-

ular and IRK methods in general is given by Hairer et al. [88], while further

descriptions within the context of 3DOF SO propagation are found in Jones

[113], Aristoff et al. [6], and Aristoff and Poore [5].5 The referenced works also

discuss the motivations for selecting GLIRK amongst the range of available

short-time-step IRK methods for astrodynamics applications. For example,

the GLIRK method is superconvergent: An implementation using s internal

stages per step produces a solution accuracy of order 2s, the highest possible

for an RK method. Additionally, the GLIRK method is both symmetric and

symplectic, and exhibits both A and B stability. The symplectic property is

4The area and orientation of each individual panel i is taken into account in the calcu-
lation of Ca,i.

5The defining arrays of the GLIRK method are calculable for arbitrary s, and
may be obtained to high precision using, for example, the Mathematica function
NDSolve‘ImplicitRungeKuttaGaussCoefficients [201].
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particularly advantageous for long-time-span propagations of Hamiltonian sys-

tems. Errors in the Hamiltonian remain bounded over time, which generally

leads to slower state error growth and better preservation of qualitative system

behavior compared to non-symplectic integration schemes [114, 89, 40]. Sym-

plecticity is implied by the fact that the GLIRK method preserves quadratic

first integrals of the state [25], which is a useful property in its own right when,

for example, representing the attitude state using a quaternion and/or when

propagating a system in which kinetic energy is conserved.

The difficulties associated with using a long-time-step implicit method

like MCPI or BLC-IRK for 6DOF state prediction are enumerated in Sec-

tion 1.2.2.5. In particular, long-time-step methods are generally implemented

with a fixed step size, which may be problematic because of the multiple driv-

ing frequencies of the combined rotational and translational dynamics. On the

other hand, a propagator with a mechanism for adapting the step size to meet

a user-defined LTE tolerance avoids the difficulty of determining an appropri-

ate fixed step size. Variable-step-size mechanisms exist for GLIRK, and such

methods are the focus of this study [6, 113, 127].

In the current work, fixed-point iteration is used to solve the algebraic

system of equations that arises at each propagation step (Eqs. (1.3)–(1.6)) be-

cause the method is parallelizable (unlike the Gauss-Seidel method) and avoids

the computation of the Jacobian (unlike the Newton-Raphson method). It is

noted that a Newton or quasi-Newton method (as opposed to a fixed-point

method) must be used to retain the A stability property of a GLIRK solver

and guarantee convergence of the the Runge-Kutta stage equations for large
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step sizes [5]. In practice, however, convergence of the fixed-point iterations

may be monitored numerically at each step, and the step size may be reduced

if divergence is predicted. For reasonably high-precision 3DOF or 6DOF astro-

dynamics applications, step size reductions of this type are rare enough that

any associated cost is significantly less than that of the Jacobian calculations

required by Newton-based methods [8].

3.3.1 Variable-Fidelity Dynamics Models

Though the necessity of iterative methods to solve Eq. (1.4) is gen-

erally a disadvantage in terms of computational efficiency for IRK methods,

problem-specific customizations of the iterative solver may greatly reduce the

computational burden of the solution process. If applicable, variable-fidelity

dynamics models (Section 1.2.2.3) allow for inexpensive, approximate compu-

tations at some iterations without compromising the accuracy of the converged

solution of Eq. (1.4). This approach has been used successfully for 3DOF SO

state propagation [33, 141, 113, 6, 5]. Here, a similar approach is taken for

fully coupled 6DOF propagation, as described in Algorithm 1. The forces and

torques considered in the low-fidelity model are specified in the discussion of

each example simulation.

When using Algorithm 1, the high-fidelity dynamics model is evalu-

ated at only two iterations per propagation step, regardless of the number of

total iterations required for convergence. The three iteration convergence tol-

erances ε1, ε2, and ε3 are user-defined parameters that may be used to control

the precision of the solution. Though similar in spirit, this approach dif-
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Algorithm 1 Iterative solution of IRK step (Eq. (1.4)) using variable-fidelity
dynamics model.

Set convergence tolerances: ε1 > ε2 > ε3 > 0
xi ← xi,guess, i = 1, ..., s . Set initial guess for xi
j ← 1 . Start with first iteration tolerance
evaluation fidelity ← low . Start with low-fidelity dynamics model
∆f i ← 0, i = 1, ..., s
while j ≤ 3 do . Loop through iteration tolerances

if evaluation fidelity == low then
f i ← f low(ti,xi), i = 1, ..., s . Low-fidelity function evaluation
f i ← f i + ∆f i, i = 1, ..., s . Update full function approximation

else
f i ← fhigh(ti,xi), i = 1, ..., s . High-fidelity function evaluation
∆f i ← f low(ti,xi), i = 1, ..., s . Low-fidelity function evaluation
∆f i ← f i −∆f i, i = 1, ..., s . High-fidelity contribution to model

end if
Update xi, i = 1, ..., s, using fixed-point iteration update equations
δx ← norm of change over all xi, i = 1, ..., s
if δx < εj then . Converged to within current iteration tolerance

j ← j + 1 . Proceed to next iteration tolerance
evaluation fidelity ← high . Perform high-fidelity function

evaluation at next iteration
else

evaluation fidelity ← low . Perform low-fidelity function evaluation
at next iteration

end if
end while
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fers from previously published GLIRK variable-fidelity models used for 3DOF

propagation. For example, both Jones [113] and Aristoff and Poore [5] utilize

one or more low-fidelity dynamics model iterations before switching to the

high-fidelity model at all subsequent iterations. Alternatively, as is done in

Algorithm 1, Bradley et al. [33] use two high-fidelity iterations per step. How-

ever, in the Bradley algorithm, the two high-fidelity iterations are separated by

a fixed number of low-fidelity iterations, and no subsequent low-fidelity itera-

tions are performed following the second high-fidelity iteration. In the context

of MCPI, Macomber [141] implements an approach similar to Algorithm 1, but

the validity of the approach is only investigated for a 3DOF dynamics model

consisting of the geopotential alone. Numerical examples presented in this

chapter show that this variable-fidelity dynamics model approach is valid for

the 6DOF propagation of an SO in the presence of realistic forces and torques

– provided that the low-fidelity dynamics model is selected appropriately.

All tests presented in this chapter use ε1 = 10−5, ε2 = 10−12, and

ε3 = 10−15. Divergence of the iterative solver is handled by placing a maximum

value on the number of iterations: If the solver does not converge to within ε3

in 50 iterations, the step size is halved, and the step is rerun.

Initial guesses for the xi are provided using approximate analytical

propagation methods: An elliptical orbit is assumed for the translational

propagation[20], and constant-angular-velocity rotation is assumed for the ro-

tational propagation [195]. Analytical solutions to more physically represen-

tative models, such as torque-free rotation [195], exist, but are more compu-

tationally demanding and are not found to improve overall efficiency when
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combined with the variable-fidelity dynamics model strategy for the scenarios

presented in this chapter. At early iterations, the fixed-point solver converges

toward an approximate solution because only the inexpensive, low-fidelity dy-

namics model is evaluated. Therefore, the improvement in the initial guess

between the constant-angular-velocity solution and the torque-free-rotation

solution is unnecessary. If the full, high-fidelity dynamics model is evaluated

at every iteration, a more accurate initial guess becomes more valuable.

3.3.2 Variable-Step-Size Propagation

Variable-step-size ODE solvers adaptively vary the step size of the in-

dependent variable by comparing the estimated LTE of the method to a user-

prescribed tolerance. In this way, variable-step-size methods attempt to maxi-

mize efficiency by taking the minimum number of propagation steps needed to

meet the user’s accuracy requirements. ERK methods commonly use embed-

ded methods to estimate the LTE; that is, each propagation step is performed

by two methods, each of unique order, that share the same A and c arrays but

are defined by different b arrays. This strategy allows for the efficient calcula-

tion of state estimates of different order. The LTE is then estimated based on

the difference between the state estimates produced by the two methods and

knowledge of the order of the LTE of each method [166].

For the GLIRK ODE solver, an embedded method of nearly the same

order as the propagation method is difficult to achieve because an s-stage

GLIRK method gives a solution of order 2s, the highest order achievable by

an RK method [6]. For this reason, previous authors have utilized alternative
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methods for creating a variable-step-size GLIRK ODE solver for 3DOF SO

propagation. For example, Jones [113] employs a method of van der Houwen

and Sommeijer [193] that uses the differences between the solutions produced

at consecutive iterations of the iterative solution process to approximate the

LTE. Aristoff [4], on the other hand, uses a second, non-embedded IRK prop-

agation of order near 2s (such as a Radau method) to produce a high-order

LTE estimate. However, to the author’s knowledge, the precise methodology

has not been specified in a published work [4, 5, 6, 7, 8]. The computational

cost of the second IRK propagation is reduced by using the collocation poly-

nomial produced by the original GLIRK propagation to obtain an initial guess

(of order s) to Eq. (1.4) [88].

In the current work, a lower-order (order s), nearly embedded6 solution

is used to estimate the LTE [127, 87]. A solution x̂ of order s is given by

x̂m+1 = xm + h

(
γ0f(tm,xm) +

s∑
j=1

b̂jkj

)
. (3.10)

The elements b̂j make up the array b̂s×1 = V −1s×sus×1, where

6The embedded solution requires a single additional high-fidelity dynamics model evalu-
ation at the initial time and state of the step.
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V =


1 1 · · · 1
c1 c2 · · · cs
...

...
. . .

...
cs−11 cs−12 · · · cs−1s

 , u =



1− γ0
1
2
...
1
j
...
1
s


. (3.11)

The scalar γ0 is a user-selected parameter. Following Kouya [127], the method

implemented here uses γ0 = 1/8. Once xm+1 and x̂m+1 are known, the proce-

dure for adapting the step size proceeds identically to an ERK method:7

hnew = hold ·min

[
∆hmax, c

(
1

δ

)p]
(3.12)

δ =

√√√√ 1

n

n∑
i=1

(
xi,m+1 − x̂i,m+1

τi

)2

(3.13)

τi = atol + rtol ·max (|xi,m|, 1) (3.14)

p =
1

s+ 1
(3.15)

c = 0.8 (3.16)

∆hmax = 2, (3.17)

where subscript i indicates element i of the n-dimensional state vector, atol and

rtol are user-defined absolute and relative tolerance parameters, respectively,

and 0 < c < 1 is set to increase the likelihood that the subsequent step is

7If both an adaptive step size and long-term, qualitatively correct system behavior are
desirable, a more sophisticated step-size selection algorithm is required to rigorously ensure
the symplectic property of the GLIRK method [89, 40].

95



accepted. In the event δ = 0 to double precision, the step size is increased by

a factor of 10. Note that if hnew > hold, then the current step is accepted and

hnew is used as the step size for the next time step, while, if hnew < hold, the

current step is rejected and retried with hnew as the step size.

The low computational cost of the LTE estimation procedure is offset

by the low order of the nearly embedded solution (order s) relative to the

GLIRK solution (order 2s). In other words, for step size adaptation purposes,

the GLIRK method is treated as an order-(s + 1) method. The result is that

the LTE estimate δ is likely to be larger than the actual LTE of the GLIRK

method. Thus, hnew is likely to be underestimated, and some steps that should

be acceptable may be rejected. One method for addressing large differences

between the orders of the propagated and embedded methods is Jay’s “internal

tolerance” scheme [112]. However, use of the internal tolerance is not found to

reliably improve performance in the current application; an illustration of this

finding is given in Appendix A. The test cases presented in this chapter use

the more conservative step size selection scheme given by Eqs. (3.10)–(3.17).

A disadvantage of variable-step-size methods is the costly re-propagation

of a step if the estimate of the LTE is found to be larger than the user-specified

tolerance. In order to proactively seek out steps that are likely to fail, the cur-

rent GLIRK implementation estimates the LTE following the first evaluation

of the high-fidelity dynamics model (following convergence of the fixed-point

iteration to within ε1). If the estimate of the LTE is greater than the tolerance

(i.e., δ > τ), the fixed-point iteration is aborted, and the step is rerun using

the step size computed using Eq. (3.12). Thus, the second evaluation of the
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high-fidelity dynamics model at each stage – which would have been wasted

due to the rejection of the step – is avoided. While it is possible for false detec-

tions to cause unnecessary recomputations, empirical evidence suggests that

false detections are rare relative to true detections because of the proximity of

the partially converged solution to the fully converged solution.

An estimate for the step size to be used at the first propagation step

is calculated using the initial value of the state and its time derivative, as

described in Algorithm 2 [180].

Algorithm 2 Calculation of estimate for initial step size h0.

Set minimum and maximum step sizes hmin and hmax
h0 ← hmax
α← atol

max(rtol,εm)
. εm is machine epsilon

β ← maxval(|f(t0,x0)|)
max(maxval(|x0|),α,εm)

hg ← β
c·rtolp . p is defined in Eq. (3.15); c is defined in Eq. (3.16)

if hg == 0 then
h0 ← hmin

else if hg · h0 > 1 then
h0 ← 1/hg

end if
h0 ← max(h0, hmin) . Ensure h0 ≥ hmin

3.3.3 Parallelization

Parallel computation within a single propagation is a trait of IRK meth-

ods not shared by ERK methods or linear multistep methods (Section 1.2.2.4).8

Such parallelization has the potential to yield strong benefits for both 3DOF

8Using any ODE solver, the propagation of STMs may be parallelized within a single
propagation step over the dimension of the state.
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and 6DOF SO propagation because the high-fidelity dynamics model evalua-

tions required to compute the f j of RK methods generally dominate propaga-

tion runtime. While the possibility of parallelization of 3DOF GLIRK methods

has been suggested previously [113, 6, 5, 33], analysis has been limited to the

assumption of linear speedups – i.e., the use of s parallel threads reduces total

runtime by a factor of s. However, this assumption provides only a best-case

approximation of efficiency gains. Linear speedups are not typical for realistic

implementations because the CPU time required to evaluate a typical dynam-

ics model may not be large enough to hide the overhead of parallelization.

In the present work, the effect of parallelization on the efficiency of

the GLIRK method applied to 6DOF SO propagation is studied using the

OpenMP library with up to 23 threads [158]. Dynamics models of varying

complexity are implemented to examine the consequences of parallelization

overhead. At each iteration of the solution process of Eq. (1.4) at which

high-fidelity dynamics model evaluations are required, the s f j are evaluated

in parallel using an !$omp parallel do loop. Static scheduling is used due

to the very similar workload of each loop iteration. Parallelization of the

evaluations of the low-fidelity dynamics model and the initial guesses for the

xi is also possible. However, because of the short runtime of these routines,

serial evaluation is sometimes preferred because of the overhead associated

with parallelization. Further discussion is given for the two example scenarios

described in the Section 3.4.
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3.4 Results

The accuracy and efficiency of the GLIRK propagator are compared

to a standard implementation of the explicit Runge-Kutta-Dormand-Prince

(RKDP) 8(7) propagator and to the public-domain linear multistep (Adams-

Moulton) propagator LSODE [166, 169].9 Results are presented for two sce-

narios: a rectangular prism SO in LEO and a HAMR SO in GEO. The 6DOF

equations of motion are propagated with each ODE solver for three orbital peri-

ods unless otherwise specified. The quaternion unit norm constraint is enforced

by renormalizing q̄ after each propagation step for all propagators. Accuracy

is assessed via a “truth” model calculated using a quadruple-precision imple-

mentation of RKDP8(7) with a relative LTE tolerance of 10−25. For GLIRK

parallelization, the number of available threads is set to (s + 1) so that each

of the dynamics model evaluations – including the extra evaluation used in

the estimation of the LTE – is provided a single thread. All code is written in

Fortran and compiled using the Intel Visual Fortran Compiler XE 14.0.0.103

(64-bit) using the -O2 optimization flag. All computations are performed on a

64-bit Windows 7 Enterprise workstation with two 12-core Intel Xeon E5-2680

v3 processors (clock speed 2.50 GHz) and 64 GB of RAM. Hyperthreading is

disabled.

In the presentation of results, discrete data points (indicated by shapes

in figures) are connected by lines. This convention is not intended to convey

9All input options for LSODE are set to default values except for the relative and absolute
tolerance parameters: The absolute tolerance is set uniformly to machine epsilon, and the
relative tolerance is varied.
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Table 3.1: Initial state for SO in LEO.

(a) Translational state in classical or-
bital elements.

a 6,745.592 km
e 0.01
i 7.81 deg
Ω 100.21 deg
ω 152.83 deg
θ 0 deg

(b) Rotational state.

q1 0
q2 0
q3 0
q4 1
ω1 0.573 deg/s
ω2 0.573 deg/s
ω3 0.573 deg/s

information regarding trends between data points, but merely to aid the reader

in differentiating between data sets.

3.4.1 Tumbling Object in Low Earth Orbit

The first test scenario is a tumbling rectangular prism SO in LEO.

The initial state is given in Table 3.1, and the SO’s physical characteristics

are described in Tables 3.2 and 3.3. The SO’s panels are given non-uniform

reflectance properties to induce an SRP torque. Tables 3.4 and 3.5 give the

high-fidelity and low-fidelity dynamics models, respectively. In all results given

for this scenario, parallelization is limited to the high-fidelity dynamics model;

parallelization of the low-fidelity model and initial guess generation is found

not to improve efficiency for this scenario.

The differing frequencies of the translational and rotational motions are

demonstrated in the state evolutions shown in Figure 3.1; for this scenario, the

rotational dynamics evolve much more rapidly than the translational dynam-
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Table 3.2: SO basic physical characteristics.

Property Value
Shape Rectangular prism
Dimensions 1.5 m × 2 m × 3 m
Mass 175 kg
Number of panels 6

Table 3.3: SO panel reflectance properties.

Panel dimensions (m)
Property 2 × 3 2 × 3 1.5 × 3 1.5 × 3 1.5 × 2 1.5 × 2
Cd 0.3 0.35 0.25 0.25 0.15 0.2
Cs 0.2 0.15 0.25 0.25 0.35 0.3

Table 3.4: High-fidelity dynamics model for SO in LEO.

Source Force Model Torque Model
Gravity 70×70 geopotential (spheri-

cal harmonics or interpolated
[12]); Sun and Moon point
mass (cubic spline ephemerides
[10])

Earth gravity gradient

SRP Direct (panel model) Direct (panel model)
Drag Doornbos model (panel-based)

[55]; modified Harris-Priester
atmospheric density [140]

Doornbos model (panel-based)

Table 3.5: Low-fidelity dynamics model for SO in LEO.

Source Force Model Torque Model
Gravity Earth point-mass and J2 terms Earth gravity gradient
SRP None None
Drag None None

ics. The performance of the GLIRK propagator as a function of the number of
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stages s is shown in Figure 3.2 for a three-orbit propagation.10 Figure 3.2a con-

firms that the use of the variable-fidelity models does not degrade propagation

accuracy.11 Figure 3.2b depicts the performance gains that may be realized

by using variable-fidelity dynamics models in the fixed-point iteration. The

optimal number of stages for a serial implementation for this scenario is seen

to be in the range of 8–12, which is found to be typical for this application.12

For a parallel implementation, the optimal number of stages depends on the

dynamics model: As the CPU time required by the dynamics model increases,

larger relative efficiency gains are available from parallelization using a high

number of stages and threads. For this scenario, Figure 3.2b shows that ef-

ficiency gains using more than eight stages and nine threads are minimal for

either the high-fidelity-only or variable-fidelity implementations.

Figure 3.2c shows the efficiency gains achieved by parallelizing the dy-

namics model evaluations at each propagation step. When the high-fidelity

dynamics model is evaluated at every iteration, these evaluations consume

a greater percentage of propagator runtime than when the variable-fidelity

model is used. Thus, greater relative efficiency gains are observed for the high-

fidelity-only propagator. As expected, the efficiency gains from parallelization

lag the number of parallel threads employed. For the variable-fidelity propa-

10Each subfigure displays results corresponding to a single identical value of relative LTE
tolerance, rtol = 10−15. Unless otherwise specified, the number of threads made available
for parallelization is equal to (s+ 1).

11Note logarithmic scale of vertical axis.
12A similar number of stages per step has been found to perform well for 3DOF SO state

propagation [8, 5]. However, other applications benefit from using a different number of
stages per step [168].
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Figure 3.1: Rotational state evolution for three-orbit LEO scenario.

gator, speedups between 3× and 4× compared to the serial performance are

achieved for s ≥ 8, while, for the high-fidelity-only propagator, s ≥ 16 delivers

relative speedups between 7× and 8×. However, despite the superior relative

efficiency gains of the high-fidelity-only propagator, greater absolute perfor-

mance is still achieved via the variable-fidelity propagator for this scenario

(Figure 3.2b).

Figure 3.2d displays the relative efficiency improvements for the eight-

stage GLIRK propagator as a function of the number of parallel threads avail-

able. Efficiency jumps correspond to threadcount increases that decrease the

number of loop iterations required. For example, the high-fidelity-only prop-

agator sees a large efficiency gain between seven and eight threads because

s = 8. As expected, the availability of more than (s + 1) threads provides no

further efficiency gains.
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The impact of the variable-fidelity dynamics model strategy is further

underscored in Figure 3.3, which displays the relative CPU time requirements

of each of the constituents of the high-fidelity dynamics model.13 The low-

fidelity dynamics model evaluation time is also shown for comparison. (The

low-fidelity model time is not included in the summation used to compute

the total time.) The benefits of eliminating evaluations of the high-fidelity

geopotential are clear – even though the runtime of the interpolated 70×70

field is approximately equivalent to that of a 15×15 field if the more common

spherical harmonics formulation is used.

Figure 3.4 compares root-mean-square (RMS) accuracy and efficiency

of the eight-stage GLIRK propagator to RKDP8(7) and LSODE for relative

LTE tolerances ranging from 10−5 to 10−15.14 Numeric subscripts in the leg-

end represent the number of parallel threads used in computation. Meanwhile,

“var.-fi.” indicates use of the variable-fidelity dynamics model, while “hi.-fi.”

indicates use of the high-fidelity dynamics model only. Among serial imple-

mentations, the linear multistep solver LSODE is more efficient than either

the IRK or ERK solvers, particularly for stringent LTE tolerances. This result

supports the substantial heritage of linear multistep solvers for serial astrody-

namics applications [148]. For example, the Gauss-Jackson method is used by

United States Air Force Space Command to propagate the SO catalog using

special perturbation techniques [23, 110, 152, 114]. In addition, the DIVA

propagator used by the Jet Propulsion Laboratory is a linear multistep inte-

13Note logarithmic scale of vertical axis.
14Note logarithmic scale of vertical axes.
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Figure 3.2: Performance of GLIRK propagator as a function of number of
stages s using both variable-fidelity and high-fidelity-only dynamics models.

grator [129], and LSODE is the default propagator in the Copernicus mission

design software [155].

The poor performance of the serially implemented, high-fidelity-only

GLIRK propagator demonstrates why the method has not been traditionally

popular for astrodynamics applications. On the other hand, the variable-

fidelity GLIRK propagator gives comparable or superior performance com-
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pared to the RKDP8(7) propagator, even when implemented serially. When

parallelized, variable-fidelity GLIRK outperforms LSODE, showing improved

efficiency for a given accuracy. For a 30-orbit propagation, the parallelized

variable-fidelity GLIRK propagator achieves sub-centimeter-level accuracy in

31 percent less CPU time than LSODE and 61 percent less CPU time than

RKDP8(7) (Figure 3.4c).

As the effects of parallelization and the variable-fidelity dynamics model

increase with increasing dynamics model complexity, even further relative

speed gains are possible. For example, higher-fidelity atmospheric density

models can be an order of magnitude more computationally expensive than

the modified Harris-Priester model implemented in this example (Chapter 2).

Many more than six panels may be required to adequately represent an SO

body. Additionally, as discussed in Section 1.2.3 and Chapter 4, the prop-

agation of STMs via the variational equations is often important – and sig-

nificantly increases the computational burden of the dynamics model. This
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Figure 3.4: Accuracy vs. CPU time for propagation of tumbling SO in LEO;
relative LTE tolerance of propagators is varied from 10−5 − 10−15.

phenomenon is demonstrated in Figure 3.5, in which the 70×70 geopotential

is calculated using spherical harmonics instead of the significantly faster inter-

polated gravity model.15 The peak relative effect of parallelization increases

significantly for both the high-fidelity-only and variable-fidelity GLIRK prop-

agators (Figure 3.2c vs. Figure 3.5a), and the parallelized variable-fidelity

GLIRK is now four times faster than LSODE for sub-centimeter-level posi-

15Note logarithmic scale of vertical axes in Figures 3.5c and 3.5d.
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Figure 3.5: Effect of more computationally expensive dynamics function.
Geopotential is calculated using spherical harmonics.

tion error after three orbital periods (Figure 3.5c). Comparing Figure 3.5b

to Figure 3.2b, larger relative efficiency increases from parallelization allow

for runtime improvements at larger s. However, gains achieved beyond 8–12

stages are minimal due to the inefficient serial performance of the high-order

methods.
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Figure 3.6: Accuracy vs. CPU time for propagation of non-tumbling SO in
LEO; relative LTE tolerance of propagators is varied from 10−5 − 10−15.

The spherical-harmonics-based LEO scenario is re-simulated assum-

ing that the previously described SO is non-tumbling (ω0 = [0, 0, 0]T ).

Figures 3.5c and 3.5d are duplicated for this case in Figures 3.6a and 3.6b,

respectively.16 For the non-tumbling case, the absolute CPU time required by

all ODE solvers decreases because the attitude state changes more slowly, al-

lowing for larger propagation step sizes. The performances of the ODE solvers

relative to one another are similar to the tumbling case (Figure 3.5). In a se-

rial environment, LSODE and the variable-fidelity GLIRK propagator display

generally similar efficiency profiles, while the RKDP8(7) propagator requires

more CPU time to achieve a given accuracy. When parallelization is used, the

variable-fidelity GLIRK propagator once again provides the greatest efficiency

among the options considered, here achieving an approximately 6× speedup

over LSODE for approximately sub-centimeter-level position error.

16Note logarithmic scale of vertical axes.
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3.4.2 High-Area-to-Mass-Ratio Object in Geosynchronous Orbit

A second test scenario consists of a HAMR two-sided flat plate in GEO.

An offset between the center of mass and center of pressure of the plate is as-

sumed in order to induce an SRP torque. For the primary analysis of this

example, the SO is not tumbling, and instead begins with zero angular ve-

locity. The complete initial state and SO physical characteristics are given in

Tables 3.6 and 3.7, respectively. In all results given for this scenario, both the

low-fidelity and high-fidelity dynamics models are parallelized because of the

relative expense of the low-fidelity model, as discussed below.

The dynamics models differ from the LEO example, as shown in Ta-

bles 3.8 and 3.9.17 Importantly, the low-fidelity torque model is identical to

its high-fidelity counterpart. The reason is that the low-fidelity model is only

useful if the approximation of the high-fidelity model is adequate: Referenc-

ing Eq. (3.5), for a HAMR SO with little or no angular velocity, the torque

contribution to ω̇ dwarfs the inertia contribution. Further, in the current

example scenario, SRP is the dominant source of torque, and therefore the

largest driver of ω̇. Thus, failure to take into account SRP in the evaluation of

the low-fidelity model results in inaccurate propagation. This contrasts with

the 3DOF problem, in which the two-body gravitational acceleration term

is orders of magnitude greater than all disturbing accelerations18, even for a

HAMR SO in GEO.

17The spherical harmonics formulation of the geopotential is used because it is more
efficient than the interpolation model for the low degree and order used for GEO propagation.

18Excepting possibly the effect of aerodynamic acceleration on an SO in an extremely low
orbit.
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Table 3.6: Initial state for HAMR SO in GEO.

(a) Translational state in classical or-
bital elements.

a 42,164 km
e 0.001
i 1 deg
Ω 145.92 deg
ω 266.13 deg
θ 0 deg

(b) Rotational state.

q1 0
q2 0
q3 0
q4 1
ω1 0 deg/s
ω2 0 deg/s
ω3 0 deg/s

Table 3.7: SO physical characteristics.

Property Value
Shape Two-sided flat plate
Dimensions 1 m × 1 m
Mass 0.038 kg
Number of panels 2
Cd (uniform) 0.26
Cs (uniform) 0.6
Center-of-mass-center-of-
pressure offset

1.414 ×10−3 m

Table 3.8: High-fidelity dynamics model for SO in GEO.

Source Force Model Torque Model
Gravity 8×8 geopotential (spherical harmon-

ics); Sun and Moon point mass (cubic
spline ephemerides)

Earth gravity gradient

SRP Direct (panel model) Direct (panel model)
Drag None None
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Table 3.9: Low-fidelity dynamics model for SO in GEO.

Source Force Model Torque Model
Gravity Earth point-mass term Earth gravity gradient
SRP None Direct (panel model)
Drag None None

The evolution of the rotational states is shown in Figure 3.7. Despite

the small center-of-mass-center-of-pressure offset, the HAMR nature of the SO

results in an SRP torque that significantly affects the attitude. Additionally,

the small rotational angular momentum of the SO results in slower, less regular

rotational motion than was observed in the tumbling LEO scenario, exempli-

fied by the decreased number of complete rotations of the spin and precession

angles.

The computational expense of the low-fidelity dynamics model rela-

tive to the high-fidelity model degrades the efficiency of the variable-fidelity

GLIRK propagator, as shown in Figure 3.8 for a three-orbit propagation.19

This result is confirmed by Figure 3.9, as well.20 The effect of parallelization

is also diminished in this scenario because the high-fidelity dynamics model is

significantly less expensive to evaluate than that of the LEO scenario due to

the truncated geopotential and absence of aerodynamic forces. Thus, for the

GEO scenario, a smaller fraction of the runtime is spent evaluating the dy-

19Unless otherwise specified, the number of threads made available for parallelization is
equal to (s+ 1). Note logarithmic scale of vertical axis in Figure 3.8a.

20Note logarithmic scale of vertical axis. As in Figure 3.3, the low-fidelity model time is
not included in the summation used to compute the total time
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Figure 3.7: Rotational state evolution for three-orbit GEO scenario.

namics model, and the detrimental impact of parallelization overhead is more

pronounced.

The consequences of the SO physical characteristics and dynamics model

on the performance of the eight-stage GLIRK propagator relative to RKDP8(7)

and LSODE are shown in Figure 3.10. Numeric subscripts in the legend repre-

sent the number of parallel threads used in computation. Meanwhile, “var.-fi.”

indicates use of the variable-fidelity dynamics model, while “hi.-fi.” indicates

use of the high-fidelity dynamics model only.21 Unlike in the LEO scenario, the

variable-fidelity GLIRK propagator is only competitive with the other propa-

gators for very high-accuracy applications, even when implemented in parallel.

Also unlike the LEO scenario, RKDP8(7) is nearly as efficient as LSODE, due

to two factors: (1) the ratio of the number of steps taken by RKDP8(7) to

the number of steps taken by LSODE decreases from the LEO scenario to the

21Note logarithmic scale of vertical axes.
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Figure 3.8: Performance of GLIRK propagator as a function of number of
stages s using both variable-fidelity and high-fidelity-only dynamics models.

GEO scenario; and (2) a lower percentage of propagation steps are rejected

for the GEO scenario, especially for RKDP8(7) at tight tolerances. Rejected

steps are more costly for RK methods than for linear multistep methods when

dynamics function evaluations dominate overall runtime because RK methods

generally require significantly more dynamical function evaluations per step

(in this case, 13 for RKDP8(7) vs. 1–2 for LSODE). The smaller percentage
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evaluating each model constituent for three-orbit GEO scenario; alternative
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of rejected steps is likely due to the more uniformly changing dynamic envi-

ronment of the slowly rotating GEO scenario. For example, there is no torque

due to aerodynamic drag, and the torques caused by the gravity gradient and

SRP change more slowly than in the LEO environment due to the slower ro-

tation rate and increased orbital period of the SO. Thus, a step size hi+1 is

more likely to differ significantly from the step size for the previous step hi in

the LEO propagation than in the GEO propagation. When a large difference

between consecutive step sizes occurs, the predicted value for hi+1 may be in-

accurate, resulting in either (1) a failed step (if the predicted hi+1 is too large)

or (2) an inefficient step (if the predicted hi+1 is too small).

The scenario is also simulated assuming an initially tumbling plate, with

ω0 = [0.573, 0.573, 0.573]T deg/s; results are shown in Figure 3.11.22 As in

the LEO scenario, propagation of a tumbling body requires more absolute CPU

22Note logarithmic scale of vertical axes.
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Figure 3.10: Accuracy vs. CPU time for propagation of HAMR SO in GEO;
relative LTE tolerance of propagators is varied from 10−5 − 10−15.

time than an initially non-rotating body due to the higher frequencies of the

rotational motion. The performance of the GLIRK propagator is improved

in the tumbling scenario (compared to the non-tumbling GEO scenario) at

loose LTE tolerances, though the efficiency still does not significantly exceed

that of either LSODE or RKDP8(7) for a given RMS error. At more stringent

tolerances, the relative performances of the propagators are similar to those

observed in the non-tumbling case.

For any propagator, increasing the LTE tolerance beyond a limiting

value23 results in erratic behavior in an accuracy vs. CPU time plot.24 This

behavior can produce ranges of tolerance values in which the change in tol-

erance (and the resulting change in dynamics function evaluations) does not

23This value is problem- and integrator-dependent.
24Erratic behavior for an implicit method can also be caused by frequent divergence of the

iterative procedure used to solve the RK update equations, but divergence does not occur
over the range of tolerances displayed in the figures in this paper.
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Figure 3.11: Accuracy vs. CPU time for propagation of tumbling HAMR SO
in GEO; relative LTE tolerance of propagators is varied from 10−5 − 10−15.

reliably correlate with a change in the accuracy of the propagation [188]. For

this particular scenario, such a region exists for the GLIRK propagator for rel-

ative tolerances greater than approximately 10−6.2. As a result, the RMS state

errors do not vary predictably at loose tolerances for GLIRK in Figure 3.11,

and errors observed for a tolerance of 10−5 are similar to those observed for a

tolerance of 10−7 – even though the former case requires fewer dynamics func-

tion evaluations. Figure 3.12 details this result by directly displaying RMS

errors as functions of relative LTE tolerance for serial GLIRK propagations

only, with the relative tolerance varied from 10−4.8 − 10−6.4.25

Just as for the LEO scenario, the relative performance of the GLIRK

propagator would improve if the dynamics were more strenuous: For example,

SRP may be calculated using bidirectional reflectance distribution functions

(BRDFs), SO self-shadowing effects may be relevant, and Earth-albedo and

25Note logarithmic scale of horizontal and vertical axes.
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Figure 3.12: Accuracy vs. relative LTE tolerance for propagation of tum-
bling HAMR SO in GEO; relative LTE tolerance of propagators is varied from
10−4.8 − 10−6.4.

Earth-infrared radiation pressure and thermal radiation pressure may also be

taken into account. The addition of any of these factors increases the perfor-

mance gains available from parallelization. Also, because of the dominance

of SRP torque on HAMR SOs in GEO, Earth and thermal radiation pressure

torque may likely be ignored in the low-fidelity dynamics model26, further

improving efficiency.

3.5 Conclusions

A variable-step-size GLIRK ODE solver is applied to the fully coupled

6DOF propagation of an SO in Earth orbit. LTE is estimated using an in-

expensive, nearly embedded lower-order method. The majority of dynamics

model evaluations are replaced with fast, low-fidelity alternatives, decreasing

26Unless the SO is in the Earth’s shadow.
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CPU runtime without compromising propagation accuracy. Additional un-

necessary high-fidelity evaluations are eliminated by estimating the LTE prior

to full convergence of the iterative solver at each propagation step. As these

customizations suggest, GLIRK propagators – for both 3DOF and 6DOF as-

trodynamics applications – require careful tuning and problem-specific insight

to maximize efficiency. However, the benefits of the GLIRK method are shown

to be strong for certain common dynamical regimes, particularly given the

growing ubiquity of parallel computing resources.

The performance of the GLIRK propagator is examined using 4–22 in-

ternal stages, evaluated either serially or in parallel using a multicore CPU with

up to 23 threads and OpenMP. (One thread is reserved for an extra dynamics

function evaluation used in the estimation of the LTE.) Eight-to-twelve-stage

methods are found to produce greatest efficiency for a serial implementation.

Speed improvements realizable from a parallel implementation depend on par-

allelization overhead and dynamics model complexity; for typical dynamics

models, the efficiency gains from using more than 8–12 stages and threads are

observed to be marginal.

The use of variable-fidelity dynamics combined with the parallelizabil-

ity of IRK methods means that the propagator is most efficient when the

high-fidelity dynamics model is computationally intensive and a much less ex-

pensive, yet moderately accurate, low-fidelity model is available. For example,

for a tumbling SO in LEO, the serially implemented, variable-fidelity, eight-

stage GLIRK propagator is competitive with standard linear multistep and

ERK propagators, though the linear multistep method is likely to be the most
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efficient of the three tested options. However, when parallelized, the GLIRK

method is shown to significantly outperform the serial alternatives.

The efficiency of the GLIRK method is degraded if the high-fidelity

dynamics model is inexpensive to evaluate, and/or the cost of the low-fidelity

model relative to the high-fidelity model is high. These conditions lessen the

impact of variable-fidelity dynamics models and increase the visibility of par-

allelization overhead: For the propagation of a high-area-to-mass-ratio space

object in geosynchronous orbit, the parallelized GLIRK method is only com-

petitive with the linear multistep propagator at tight integration tolerances.

In such scenarios – in which the effectiveness of GLIRK customizations is

limited – a variable-step linear multistep method is likely to outperform the

GLIRK method, particularly in a serial computing environment. The exam-

ple simulations presented in this chapter are representative of the two ends of

the performance spectrum for GLIRK methods applied to 6DOF propagation.

When approaching a specific propagation scenario, a practitioner should care-

fully evaluate the factors discussed to determine the best choice of integration

method.
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Chapter 4

Decoupled Direct State Transition Matrix

Calculation with Runge-Kutta Methods1

4.1 Introduction

As discussed in Section 1.2.3, determining the evolution of a state gov-

erned by a system of ODEs is not sufficient for many applications; first-order,

and sometimes higher-order, sensitivities of the state with respect to input

parameters are often highly desirable or even essential. A vital element of

sensitivity calculation is the computation of STMs, which makes the accurate

and efficient calculation of STMs a necessity. In this chapter, the realization

of this goal is examined using the DDM [58, 167] for the particular scenario in

which the state is propagated using an RK ODE solver.

1Work from this chapter has been accepted for presentation as:

• Noble Hatten and Ryan P. Russell. Decoupled direct state transition matrix calcu-
lation with Runge-Kutta methods. Paper 17-398. In 27th AAS/AIAA Space Flight
Mechanics Meeting, San Antonio, TX, February 2017. (accepted for presentation)

A manuscript based on the work in this chapter has been submitted for publication in a
peer-reviewed journal:

• Noble Hatten and Ryan P. Russell. Decoupled direct state transition matrix calcu-
lation with Runge-Kutta methods. SIAM J Sci Comput. (under review; submitted
November 2016)

In each instance, Ryan P. Russell supervised the work.
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The DDM was originally introduced to calculate the first-order STM of

a system propagated using the variable-order, variable-step Gear ODE solver

[78]. As the name implies, the DDM decouples the solution of the STMs

from the solution of the state at each propagation step: The state update is

performed first, which results in an independent system of equations for the

STM. More recently, in the context of IRK methods, a conceptually identical

procedure was presented as the implicit function theorem (IFT) method [168].

Two implementations of the DDM are presented in the current work.

One relies on the solution of a linear system to obtain the STM, while the other

uses a necessarily iterative procedure. The linear-algebra-based alternative

[168, 58, 207, 175, 176, 122] is derived for the computation of first- and second-

order STMs and for use with either the single- or double-integrator form of

the RK update equations. (The double-integrator form of the RK equations

has been shown to improve efficiency vs. the single-integrator form, when

applicable [6].) This method is valid for all RK solvers, and the implications

for both the explicit and implicit classes are discussed. The iterative approach,

previously described for first-order STM calculation in the context of MCPI

[171], is also extended to the computation of second-order STMs for IRK

methods.

In this chapter, both the linear-algebra and iterative versions of the

DDM are shown to reduce the number of required Jacobian and Hessian eval-

uations compared to the CDM, which propagates the state and STMs together

in an augmented state vector using the variational equations. Additionally, the

linear-algebra-based DDM is shown to eliminate the need for initial guesses of
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the STMs when using an IRK method (unlike the CDM and iterative DDM).

The three direct STM calculation methods – the CDM and the two implemen-

tations of the DDM – are compared qualitatively and in a series of numerical

examples of varying complexity for both ERK and IRK solvers. For the com-

putationally intensive scenario of SO trajectory propagation, the impacts of

variable-fidelity dynamics models and parallelization on IRK performance are

analyzed. However, a detailed analysis of the relative merits of the indirect

options (e.g., finite-difference methods) is beyond the scope of the current

work.

4.2 Second-Order Runge-Kutta Methods

The RK equations for first-order systems of ODEs are presented in

Eqs. (1.2)–(1.6). These equations may also be rewritten in a form specially

applicable to a system of second-order ODEs, which is relevant to, for example,

equations of motion based on Newton’s second law [6]. In this case, let x ,[
yT ẏT

]T
, where the dimensions of the vectors are x ∈ Rn and y, ẏ ∈ Rn′

(i.e., n = 2n′). Then,

d2y

dt2
, ÿ = g (t,y, ẏ) , y (t0) , y0, ẏ (t0) , ẏ0 (4.1)

ym+1 = ym + hẏm + h2
s∑
j=1

b̄jgj (4.2)

ẏm+1 = ẏm + h
s∑
j=1

bjgj (4.3)

gi , g (ti,yi, ẏi) , i = 1, . . . , s (4.4)
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ti , tm + hci (4.5)

yi , ym + c̄ihẏm + h2
s∑
j=1

āijgj (4.6)

ẏi , ẏm + h
s∑
j=1

aijgj. (4.7)

The āij, b̄i, and c̄i are derived from the method-defining arrays:

āij =
s∑

k=1

aikakj, b̄i =
s∑
j=1

bjaji, c̄i =
s∑
j=1

aij. (4.8)

When applicable, this formulation has been found to decrease the number

of iterations required to obtain convergence at each step of an IRK method

[6, 141].

4.3 STM Calculation with Runge-Kutta Methods

Both the CDM and DDM are applicable to all RK methods. However,

the requirement of an iterative method to solve for the state update at each step

of an IRK propagation allows for some variety of implementation of the DDM.

In this section, the CDM is briefly described, and the two DDM alternatives

are presented in more detail.

4.3.1 Coupled Direct Method

The evolution of STMs is governed by a set of ODEs known as the

variational equations, which depend on the state. (The relevant equations are

given in Appendix B.) As such, it is natural to combine the state and the
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columns of the STMs into an augmented state vector, which may be prop-

agated using any ODE solver. This approach is commonly used with both

explicit and implicit solvers.

4.3.2 Decoupled Direct Method, Option A (DDMa): Multi-Iteration
Approach

When using an IRK, the calculation of the STMs may be decoupled

from the state update by using multiple iterative solution procedures at each

step. In the first loop, the update equations are only used to solve for the true

state (not including any STMs). Subsequently, a second loop is used to solve

for the STMs. The advantage of this approach when used with an IRK is that

the Jacobian J (Eq. (B.8)) and Hessian H (Eq. (B.9)) at each internal stage

need only be evaluated once, after convergence of the state. This situation

contrasts with that of the CDM, in which f , J , and H are all evaluated

at every iteration of the nonlinear solution process. Thus, the cost of each

iteration used to solve for the STMs is significantly reduced. Additionally,

convergence may be obtained in fewer total iterations when solving for STMs

using pre-converged Jacobians and Hessians [171].

4.3.3 Decoupled Direct Method, Option B (DDMb): Linear-Algebra
Approach

Another approach that uses a single evaluation of J and H per stage

per step takes advantage of the linearity of the STM update equations. Like

the multi-iteration method, the so-called linear-algebra method first iterates

to solve for the state at each internal stage. However, instead of using the

125



variational equations to iteratively solve for the STMs, the fundamental RK

equation is differentiated with respect to xm, which results in a system of

linear algebraic equations for the first-order STM Φ1. Additionally, because

the STM is the result of analytical differentiation of the RK update equation,

over each step, the calculated STMs are the exact sensitivities of the approxi-

mated solution (subject to roundoff error). For a first-order system of ODEs,

this method has been independently derived previously to calculate first-order

sensitivities [168, 58, 175, 176, 122]. Here, the derivation of those equations is

summarized, and the method is extended to include calculation of the second-

order STM Φ2 and modified to allow for use with the double-integrator form

of the RK equations. A diagram that shows the relevant quantities for a single

step of a two-stage RK method is given in Figure 4.1. The dashed box encloses

step inputs, while the solid box encloses step outputs.

tm
xm
Φ1 (tm, t0)

Φ2 (tm, t0)

t1
x1

t2 tm+1

x2 xm+1

Φ1 (t1, tm) Φ1 (t2, tm)

Φ2 (t1, tm) Φ2 (t2, tm)

f1,
∂f1

∂x1
,
∂2f1

∂x2
1

f2,
∂f2

∂x2
,
∂2f2

∂x2
2

Φ1 (tm+1, tm) → Φ1 (tm+1, t0)

Φ2 (tm+1, tm) → Φ2 (tm+1, t0)

Figure 4.1: Conceptual diagram of one step of a two-stage RK method.
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4.3.3.1 First-Order ODEs

For a system of first-order ODEs, the linear system is derived by dif-

ferentiating Eq. (1.3) with respect to xm once or more and manipulating the

resulting equations.

First-Order STM Differentiating Eq. (1.3) with respect to xm gives

∂xm+1

∂xm
= In + h

s∑
j=1

bj
∂f j
∂xm

(4.9)

= In + h
s∑
j=1

bjJ j
∂xj
∂xm

(4.10)

J i , J (ti,xi) , i = 1, . . . , s (4.11)

∂f i
∂xm

= J i
∂xi
∂xm

, i = 1, . . . , s, (4.12)

where In is the n × n identity matrix. The ∂xj/∂xm are eliminated from

Eq. (4.10) using a relation obtained from differentiating Eq. (1.6) with respect

to xm:

∂xi
∂xm

= In + h

s∑
j=1

aij
∂f j
∂xm

, i = 1, . . . , s. (4.13)

Substituting Eq. (4.13) into Eq. (4.12) yields

∂f i
∂xm

= J i

(
In + h

s∑
j=1

aij
∂f j
∂xm

)
, i = 1, . . . , s. (4.14)
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Rewriting Eq. (4.14) to isolate the unknown ∂f j/∂xm results in the linear

system Dns×nsξns×n = ηns×n, where

ξ =


∂f1

∂xm
...

∂fs

∂xm

 , η =

 J1
...
J s

 (4.15)

Dij =

{
−J ihaij if i 6= j

I − J ihaij if i = j
. (4.16)

Dij refers to the ij submatrix ofD, which is n×n. D is also the matrix whose

factored form would be used to perform a full Newton-Raphson update if that

scheme were used to solve for the elements of the state itself at the internal

stages of an IRK.2 The partial derivatives present in D and η are simply the

system Jacobians evaluated at the internal stages following the convergence of

the state in the initial iterative procedure.

Second-Order STM The second-order STM is found by differentiating

Eq. (4.9) with respect to xm:

∂2xm+1

∂x2
m

= h
s∑
j=1

bj
∂2f j
∂x2

m

. (4.17)

The ∂2f j/∂x
2
m are the n3s elements to be determined through the solution of

the linear system of equations. Eq. (4.13) is also differentiated with respect to

xm to obtain

2Due to the expense of evaluating J at every internal stage at every iteration, a full
Newton-Raphson scheme is generally avoided in favor of an approximate Newton method,
fixed-point method, or Gauss-Seidel method.
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∂2xi
∂x2

m

= h
s∑
j=1

aij
∂2f j
∂x2

m

, i = 1, . . . , s. (4.18)

Through the chain rule, J and H relate Φ2 to the ∂2f j/∂x
2
m. After manip-

ulation, the linear system matrix D for Φ2 is found to be the same as that

for the first-order case – meaning that only a single factorization is required

to obtain both Φ1 and Φ2. However, due to the increased dimensionality of

Φ2, the system must be solved for a larger η. The system arrays are given

element-wise by

ξk =


∂

∂xm(k)

(
∂f1

∂xm

)
...

∂
∂xm(k)

(
∂fs

∂xm

)

ns×n

, ηk =

 η1(1 : n, 1 : n, k)
...

ηs(1 : n, 1 : n, k)


ns×n

, k = 1, . . . , n

(4.19)

ηl(i, j, k) =
n∑
q=1

{
∂

∂xl(q)

(
∂f l(i)

∂xl(j)

)
∂xl(q)

∂xm(k)

}
+ (4.20)

h
s∑

α=1

a(l, α)
n∑
p=1

∂fα(p)

∂xm(j)

n∑
q=1

{
∂

∂xl(q)

(
∂f l(i)

∂xl(p)

)
∂xl(q)

∂xm(k)

}
.

In addition to the Jacobians and Hessians at the internal stages, Eq. (4.20)

relies on (1) the solutions of the linear system for the first-order STM (the

∂f i/∂xm) and (2) the first-order STMs at the internal stages (the ∂xi/∂xm).

Calculation of the latter is not required to obtain the first-order STM at tm+1,

but may be found directly through evaluation of Eq. (4.13).

129



4.3.3.2 Double Integrator

For a system of second-order ODEs, Eqs. (4.2) and (4.3) are each dif-

ferentiated with respect to both ym and ẏm.

First-Order STM For Φ1, four expressions result from the differentiation:

∂ym+1

∂ym
= In′ + h2

s∑
i=1

b̄i
∂gi
∂ym

(4.21)

∂ym+1

∂ẏm
= hIn′ + h2

s∑
i=1

b̄i
∂gi
∂ẏm

(4.22)

∂ẏm+1

∂ym
= h

s∑
i=1

bi
∂gi
∂ym

(4.23)

∂ẏm+1

∂ẏm
= In′ + h

s∑
i=1

bi
∂gi
∂ẏm

. (4.24)

Rearranging the expressions as before, it is found that the solutions of two

linear systems are now required: one for the ∂gi/∂ym and another for the

∂gi/∂ẏm. However, the two systems share the same D matrix. Thus, D

need only be factored once and the result reused to efficiently solve the second

system.3 Further, the dimensions of D are smaller if the double-integrator

form is used instead of applying the single-order form to a second-order system:

In the double-integrator case, D ∈ Rn′s×n′s, while, in the single-integrator

case, D ∈ Rns×ns. Thus, using the double-integrator form when appropriate

3In fact, the two systems may be solved as a single combined system with n righthand-side
columns formed by ηi =

[
η1
i η2

i

]
.
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improves computational efficiency. Mimicking the notation of Eqs. (4.15) and

(4.16), the relevant arrays are

ξj =

 ξ
j
1
...
ξjs


n′s×n′

, ηj =

 η
j
1
...
ηjs


n′s×n′

, j = 1, 2 (4.25)

ξ1i =
∂gi
∂ym

, η1
i =

∂gi
∂yi

(4.26)

ξ2i =
∂gi
∂ẏm

, η2
i = c̄ih

∂gi
∂yi

+
∂gi
∂ẏi

(4.27)

Dij =

{
− ∂gi
∂yi
h2āij − ∂gi

∂ẏi
haij if i 6= j

In′ − ∂gi
∂yi
h2āij − ∂gi

∂ẏi
haij if i = j

. (4.28)

Dij is a submatrix of dimension n′ × n′. The complete STM may be recon-

structed as

Φ1 =
∂xm+1

∂xm
=

[
∂ym+1

∂ym

∂ym+1

∂ẏm
∂ẏm+1

∂ym

∂ẏm+1

∂ẏm

]
. (4.29)

Second-Order STM The second-order STM is found by differentiating

Eqs. (4.21)–(4.24) with respect to ym and ẏm, which results in eight equa-

tions. This number may be reduced if the nomenclature from the first-order

RK equations is recalled. The expressions may be written as

∂

∂xm

(
∂ym+1

∂xm

)
= h2

s∑
i=1

b̄i
∂

∂xm

(
∂gi
∂xm

)
(4.30)

∂

∂xm

(
∂ẏm+1

∂xm

)
= h

s∑
i=1

bi
∂

∂xm

(
∂gi
∂xm

)
, (4.31)
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where each of the two arrays is dimensioned n′ × n× n. Thus,

Φ2 =
∂2xm+1

∂x2
m

=

 ∂
∂xm

(
∂ym+1

∂xm

)
∂

∂xm

(
∂ẏm+1

∂xm

)  . (4.32)

The task, then, is to solve for the ∂/∂xm [∂gi/∂xm]. The procedure fol-

lows that described for systems of first-order ODEs. The linear system matrix

D is, once again, the same as was required for calculation of Φ1 (Eq. (4.28)).

The factorization is therefore reused with new η arrays. The system may be

written as

ξjk =

 ξ
j
k,1
...

ξjk,s


n′s×n

, ηjk =

 η
j
1 (1 : n′, 1 : n, k)

...
ηjs (1 : n′, 1 : n, k)


n′s×n

, (4.33)

k = 1, . . . , n′, j = 1, . . . , 4

ξ1k,i =
∂

∂ym(k)

(
∂gi
∂ym

)
, ξ2k,i =

∂

∂ym(k)

(
∂gi
∂ẏm

)
(4.34)

ξ3k,i =
∂

∂ẏm(k)

(
∂gi
∂ym

)
, ξ4k,i =

∂

∂ẏm(k)

(
∂gi
∂ẏm

)
(4.35)

η1
l (i, j, k) =

n∑
q=1

{
∂

∂xl(q)

(
∂gl(i)

∂yl(j)

)
∂xl(q)

∂ym(k)

}
+ (4.36)

h2
s∑

α=1

ālα

n′∑
p=1

∂gα(p)

∂ym(j)

n∑
q=1

{
∂

∂xl(q)

(
∂gl(i)

∂yl(p)

)
∂xl(q)

∂ym(k)

}
+

h
s∑

α=1

alα

n′∑
p=1

∂gα(p)

∂ym(j)

n∑
q=1

{
∂

∂xl(q)

(
∂gl(i)

∂ẏl(p)

)
∂xl(q)

∂ym(k)

}

132



η2
l (i, j, k) =c̄lh

n∑
q=1

{
∂

∂xl(q)

(
∂gl(i)

∂yl(j)

)
∂xl(q)

∂ym(k)

}
+ (4.37)

h2
s∑

α=1

ālα

n′∑
p=1

∂gα(p)

∂ẏm(j)

n∑
q=1

{
∂

∂xl(q)

(
∂gl(i)

∂yl(p)

)
∂xl(q)

∂ym(k)

}
+

h

s∑
α=1

alα

n′∑
p=1

∂gα(p)

∂ẏm(j)

n∑
q=1

{
∂

∂xl(q)

(
∂gl(i)

∂ẏl(p)

)
∂xl(q)

∂ym(k)

}
+

n∑
q=1

{
∂

∂xl(q)

(
∂gl(i)

∂ẏl(j)

)
∂xl(q)

∂ym(k)

}
.

The expressions for η3(i, j, k) and η4(i, j, k) are obtained from Eqs. (4.36)

and (4.37), respectively, by performing the expression replacement

∂xl(q)

∂ym(k)
→ ∂xl(q)

∂ẏm(k)
(4.38)

As with the first-order STM case, taking advantage of the double-

integrator form improves computational efficiency by decreasing the size of

the D matrix that must be factored and by decreasing the total number of

unknowns in the linear system.

4.3.3.3 Variable-Step-Size Propagation

The linear-algebra-based methods developed in this section assume that

the step size h is independent of the initial state of the step, xm. However, for

a propagation scheme that adapts h at each step based on some function of the

state, this assumption does not hold. Such is the case for a propagator that

varies h in an attempt to meet a user-specified accuracy requirement based
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on an estimate of the local truncation error at each step [56].4 In fact, this

limitation also applies to methods based on propagating the variational equa-

tions, whether by an implicit or explicit ODE solver. Alternative sensitivity

calculation methods, such as those based on a complex-step or finite-difference

derivative approximation of an entire propagation, handle variable-step ODE

solvers appropriately. At the same time, neither of these alternatives is it-

self perfect. Pellegrini and Russell [163] give a detailed analysis of sensitivity

calculations using variable-step propagators; in the present work, all example

scenarios use a fixed step size.

4.3.4 Variable-Fidelity Dynamics with IRK Methods

As introduced in Section 1.2.2, an IRK method requires the solution

of a (generally nonlinear) system of algebraic equations at each propagation

step, while an ERK method does not. Consequently, customizations of the

nonlinear solver may be used to improve the efficiency of IRK methods. In

particular, if the computational expense of the system dynamics dominates

propagation runtime, then the variable-fidelity dynamics concepts described

in Sections 1.2.2.3 and 3.3.1 may be applied to the calculation of STMs using

either the CDM or the DDM.

It is cautioned that this strategy is not applicable for all systems; a

suitably accurate and inexpensive low-fidelity approximation must exist for

the variable-fidelity technique to be worthwhile (see Chapter 3). Additionally,

4The effects of the dependence of h on the state is most evident when loose tolerances
are prescribed.
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logic must be built into the nonlinear solver to determine whether to use the

high-fidelity or low-fidelity model whenever a dynamics function evaluation

is required. In this chapter, the impact of variable-fidelity dynamics models

for both the CDM and DDM is examined using the algorithm presented in

Chapter 3, which uses exactly two high-fidelity dynamics evaluations per stage

per step. Other iterations of the nonlinear solver require evaluations of the

low-fidelity model only. Implementation details for the CDM and the DDM

are described below.

4.3.4.1 Coupled Direct Method

When using the CDM, the state and any STMs are collected in a single

augmented state vector. Therefore, the variable-fidelity strategy requires low-

fidelity versions of f , J , and H to fully describe the low-fidelity dynamics

of the augmented state. The variable-fidelity strategy is then applied to the

entire augmented state vector.

4.3.4.2 Decoupled Direct Method

There are two options for implementing the variable-fidelity dynamics

strategy using the DDM:

1. State-only propagation is performed using the variable-fidelity strategy,

and the converged states at all internal stages are saved. Thus, two high-

fidelity evaluations of f per stage per step are performed. Subsequently,

the high-fidelity J and H are evaluated once at each stage using the

converged state values; no iteration is used in the calculation of J and
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H . This method does not require low-fidelity versions of J and H

because the variable-fidelity strategy is only used for propagation of the

state x, and not for the calculation of any STMs.

2. At the final (i.e., second in the current implementation) high-fidelity

iteration of the nonlinear solution process for the state, the high-fidelity

J and H are evaluated alongside the high-fidelity f for each stage. At

any subsequent iterations – all of which are low-fidelity – the low-fidelity

f , J , and H are all calculated, and the iterative process is terminated

when the state x at each stage has converged. As J and H are functions

of t and x only, convergence of x implies convergence of J andH , as well.

J and H are therefore not recalculated after the state-only nonlinear

solver converges; the converged values of J and H are simply used in

the construction of the STMs. Thus, like Option 1, Option 2 uses a

single high-fidelity evaluation of J and H per stage per step. Unlike

Option 1, Option 2 requires low-fidelity versions of J and H .

The motivation behind Option 2 is that evaluation of J and H often

essentially requires evaluating f , as well. Using Option 2 avoids the extra

pseudo-evaluation of f used by Option 1. The cost is that Option 2 requires

some (usually small) number of low-fidelity J and H evaluations. Therefore,

which option is more efficient depends on the relative computational costs of

the low-fidelity and high-fidelity f , J , and H for a specific system.
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4.3.5 Comparison of the Three Direct Methods: CDM, DDM Lin-
ear Algebra, and DDM Multi-Iteration

Two primary criteria exist for comparing the three alternatives: ease

of use and computational efficiency. From an implementation standpoint, the

CDM method is the simplest option because the same ODE solution routine

used to propagate the state alone is capable of propagating the augmented

state vector. On the other hand, the DDMs require either (1) a customized

ODE solver (which computes the STMs in conjunction with the state prop-

agation) or (2) a post-processing routine (which computes the STMs after

the state has been propagated). Either option (1) or (2) leads to increased

bookkeeping relative to the CDM.

When comparing the computational efficiencies of the three methods,

an immediate advantage of the linear-algebra method over both the CDM

and multi-iteration method is that the linear system formulation eliminates

the need for an initial guess for the elements of the STMs at each stage. In

addition to removing a computational requirement, this feature makes the

performance of the linear-algebra method more predictable than that of its

competitors because there is no possibility for variations in the number of

iterations necessary to achieve convergence of the STMs. Further efficiency

comparisons of the linear-algebra method with the multi-iteration method are

implementation-specific, as each of these two methods uses the same number

of evaluations of the f , J , and H equations. The most fundamental question

is whether the construction and solution of the system of linear equations

takes more or less time than the iterative solution approach used by the multi-
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iteration method. The answer is dependent primarily on three factors: (1) the

computational expense of the dynamics, (2) the size of the state vector (n)5,

and (3) the number of internal stages per step (s).

First, as the cost of evaluating the dynamics increases, the CPU time

spent doing so increasingly dominates the time spent solving for the STMs

using any of the three methods. Therefore, computationally demanding dy-

namics are likely to result in nearly identical computation times for the multi-

iteration and linear-algebra methods and comparatively poor performance

from the CDM.

The second and third factors come into play because the matrix factored

in the linear-algebra method is of size ns× ns (for the first-order form of the

RK equations). Further, the operations required to create the “righthand-

side” arrays are summations over either n or s. As the size of the state vector

and/or the number of internal stages of the IRK method increase, the efficiency

of the linear-algebra method is likely to decrease relative to that of the multi-

iteration method. IRK methods that are intended to be used with a very large

number of stages (e.g., 100), like BLC-IRK [33] or MCPI [16], may therefore

obtain more efficient results using the multi-iteration method.

An additional factor that can affect the efficiencies of all three methods

is the use of parallel processing. The independence of the dynamics function

evaluations at each internal stage of an IRK method allows the evaluations

5Using the double-integrator form for a second-order system reduces the size of the linear
system matrix.
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to be performed in parallel at each iteration. This feature has the potential

to provide greatest benefits for the CDM. First, the CDM evaluates the ex-

pensive Jacobians and Hessians more frequently than the other methods, and

may therefore experience larger relative efficiency gains. Further, the CDM

places the calculations related to solving for the state and all STMs within

one iterative structure, while the other two methods “spread out” the com-

putations. This organization works against the CDM in a serial computing

environment. However, the less-demanding loops of the multi-iteration and

linear-algebra methods cause parallelization overhead to become more appar-

ent than the expensive loops of the CDM. For example, if using fixed-point

iteration to solve for the first-order STM using the multi-iteration method,

the parallelizable dynamics evaluations at each iteration of the first loop in-

volve the calculation of f at each internal stage. The impact of parallelization

overhead on this loop is therefore directly related to the expense of calculating

f . Similarly, the cost of the dynamics also drives the parallelization efficiency

of the post-convergence calculation of J at each stage. On the other hand,

the second loop (i.e., using the converged J to calculate Φ1 at each stage via

Eq. (1.4)–(1.6)) consists only of a matrix multiplication, and parallelization

may produce little or no benefit for a system of moderate size. No such issues

exist for the CDM because the evaluations of J and the construction of Φ1

are performed in the same loop.

Each of the n linear solves required by the linear-algebra method to

calculate the second-order STM are independent. Referencing Eq. (4.19),

ξ1 = Dη1 is independent of ξ2 = Dη2, etc.. Thus, each of the ηk may be
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assembled, and the corresponding systems solved, in parallel, which improves

the parallelization properties of the method.

If a large number of threads is available, massive parallelization is realiz-

able for the multi-iteration and linear-algebra methods. A trajectory segment

spanning multiple steps may be propagated using the state-only dynamics. If

the converged states at the internal stages for all steps in the segment are

saved, the Jacobians and Hessians may be evaluated subsequently, completely

separately from the original propagation of the state. Subsequently, either an

iterative method or the linear-algebra method produces the STMs for each

step, and Eqs. (B.12) and (B.13) are used to create the full trajectory STMs

from the STMs for each individual step. In the limiting case, this strategy per-

mits the simultaneous performance of every J andH evaluation, as well as the

STM calculations at every step, for an entire trajectory. This concept has pre-

viously been implemented using an ERK ODE solver and graphics processing

units (GPUs) [9]. However, while an explicit method’s J and H evaluations

are parallelizable across multiple steps, parallelization within a single step is

not possible. Thus, use of an IRK allows for the number of parallel processes

to be increased by a factor of s.

4.4 Results

To illustrate the relative merits of the three direct STM calculation

methods, two scenarios of varying complexity are presented, and the CPU

times required by the three methods are compared. All code is written in

Fortran and compiled using the Intel Visual Fortran Compiler XE 14.0.0.103
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(64-bit) using the -O2 optimization flag. All computations are performed on a

64-bit Windows 7 Enterprise workstation with two 12-core Intel Xeon E5-2680

v3 processors (clock speed 2.50 GHz) and 64 GB of RAM. Hyperthreading

is disabled. Algebraic linear systems are solved using the Intel Math Kernel

Library (MKL) [105] implementation of the LAPACK [3] routine dgesv, which

accepts a matrix righthand side and returns both the solution and the LU -

factored system matrix. When performing subsequent solves that use the same

system matrix – e.g., when solving for Φ2 after Φ1 has been obtained – the

factorization may be reused. In these cases, the LAPACK routine dgetrs is

used.

The example systems under consideration are nonstiff; therefore, at

each step of the propagation, the system of nonlinear equations is solved using

fixed-point iteration [88, 86]. The iterations are stopped when the root-mean-

square of the relative changes in the states at the internal stages falls below a

given threshold (10−15 is used for the presented results).

The DDM facilitates efficient use of an approximate Newton method as

an alternative to fixed-point iteration. As the nonlinear solver for the DDM

iterates only on the state x, an approximate Newton method requires only

an approximation of the Jacobian J = ∂f/∂x at each internal stage of each

propagation step. Such an approximation may be obtained from, for example,

converged J of the previous step, so that additional J evaluations beyond

those needed to calculate the STMs are not required [207]. On the other hand,

the CDM iterates on the augmented state that includes x and any calculated

STMs. For the CDM, the Jacobian used by an approximate Newton method
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requires the partial derivatives of any calculated STMs. For example, if x

and Φ1 (and not Φ2) are calculated using the CDM, an approximate Newton

method would require not only f and J , but H = ∂J/∂x, as well. Thus,

while use of an approximate Newton method is feasible for the CDM, the

implementation is less efficient than for the DDM.

For consistency between the CDM and DDM implementations, fixed-

point iteration is used for all examples presented in this chapter.

4.4.1 Simple Dynamics Example: Damped Oscillator

As a first example, the three methods are applied to a damped oscilla-

tor. The equations of motion for the system are

ẍ+ νẋ2 + ω2
0x = sin (xẋ) . (4.39)

A nonlinearity is introduced in the forcing term so that the Hessian is nonzero.

This system may be written in either first- or second-order form, with n′ = 1

and n = 2. The system is propagated from t0 = 0 to tf = 10 for ν = 0.5

and ω0 = 2π. The initial conditions are given by x = 1, ẋ = 0. A three-stage

(sixth-order) GLIRK with a fixed step size of 0.05 is used to propagate the state

and STMs using each permutation of (1) single-integrator or double-integrator

ODE formulation, (2) CDM, multi-iteration, or linear-algebra STM calcula-

tion, and (3) Φ1 calculation only or Φ1 and Φ2 calculation. The initial guesses

for the states at the internal stages, needed by the fixed-point iteration scheme,

are set to the initial value of the state at the current step. Variable-fidelity
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dynamics and parallelization are not used due to the inexpensive dynamics

and small size of the linear system.

The time evolutions of the state, Φ1, and Φ2 are shown in Figure 4.2.

The maximum relative difference between any two elements of Φ1 (tf , t0) or

Φ2 (tf , t0) between any of the propagation methods is 1.58× 10−13. Figure 4.3

displays the averaged CPU times required by the propagations.6 For the prop-

agation of Φ1 only (Figure 4.3a), the CDM is the most efficient of the three

approaches, followed by the linear-algebra method. The poor performances

of the multi-iteration and linear-algebra methods result from the extremely

inexpensive dynamics. The goal of both approaches is to decrease the number

of f , J , and H evaluations, which is achieved, as shown in Figure 4.4. If these

evaluations are not a significant driver of CPU time, the additional overhead of

the multi-iteration and linear-algebra methods causes inefficient propagation.

For similar reasons, use of the double-integrator provides negligible benefit

to the CDM and actually hurts the performance of the multi-iteration and

linear-algebra methods despite a reduction in function evaluations.7

When calculating both Φ1 and Φ2, the linear-algebra method is most

efficient (Figure 4.3b). The relative improvement of the linear-algebra method

compared to the Φ1-only case is due to the fact that the LU factorization

performed to obtain Φ1 is reused to calculate Φ2. The linear-algebra method

also benefits from calculating H less frequently than the CDM (Figure 4.4b).

6Note differing vertical axis scales.
7The number of J evaluations is constant for the multi-iteration and linear-algebra ap-

proaches for the single- and double-integrators: one per stage per step.
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Figure 4.2: Time evolution of damped oscillator system.

This small increase in the expense of the dynamics accounts for the improved

relative performance of the double-integrator compared to the first-order in-

tegrator. However, as seen in Figure 4.3b, the dynamics are still not nearly

expensive enough to justify the use of the multi-iteration method.

4.4.2 Expensive Dynamics Examples: Space Object Trajectories

Examples are presented for problems with larger dimensions and more

complicated dynamics. The techniques for STM calculation are applied to the

trajectory of an SO in LEO, whose dynamics are governed by

r̈ = −µ∗
r3
r + ap. (4.40)
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(a) First-order STM. (b) First- and second-order
STMs.

Figure 4.3: CPU time required to propagate state and calculate STMs for
damped oscillator.

(a) First-order STM. (b) First- and second-order
STMs.

Figure 4.4: Number of function, Jacobian, and Hessian evaluations required
to propagate state and calculate STMs for damped oscillator.

The Cowell formulation of the system is considered, in which x =
[
rT ṙT

]T
[20]. For the double-integrator formulation, y = r. Two cases are considered:

a low-fidelity case, in which ap consists only of the oblateness (i.e., J2) term

of the Earth’s geopotential, and a high-fidelity case, in which acceleration is

calculated using the spherical harmonics implementation of a degree-and-order

70 geopotential model [183]. While a true “high-fidelity” model would include
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other disturbing accelerations, the intent of this example is to demonstrate the

performance difference between the various methods when applied to dynamics

models of varying computational expense. For an SO in LEO, calculation of

the acceleration caused by a high-fidelity geopotential represents a significantly

time-consuming operation [11]. In addition, this scenario is used to highlight

the capabilities of the variable-fidelity dynamics approach because the high-

fidelity model is very well approximated by the much less computationally

expensive low-fidelity model.

For each example, an eight-stage GLIRK is used to propagate the tra-

jectory whose initial conditions are given in classical orbital elements [20] in

Table 4.2.8 The trajectory is depicted in Figure 4.5, and the time evolutions of

representative elements of the first- and second-order STMs are shown in Fig-

ure 4.6.9 The propagation duration is three orbital periods, and the fixed step

size is two minutes. The undisturbed (i.e., two-body or Keplerian) dynamics

are used to generate an initial guess for the states and, if necessary, first- and

second-order STMs at the internal stages. (The solutions for position, velocity,

and first- and second-order STMs are available analytically in the undisturbed

case [165].) For the CDM and multi-iteration method, guesses are required

8Previous implementations of GLIRK for space object trajectory propagation have used
5–20 stages [113, 8, 5, 92, 93]. While increasing the number of stages increases the order of
the ODE solver, stages are oversampled near the endpoints of a time step, and arbitrarily
increasing s does not necessarily result in a more efficient propagation. (See Chapter 3.)

9In the notation of the legends in Figure 4.6, Φ1
1:3,1 (t, t0) = ∂r(t)

∂r1(t0)
, Φ2

1:3,1,1 (t, t0) =
∂2r(t)

∂r1(t0)
2 .
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for all STMs, while the linear-algebra method requires guesses for only the

position and velocity states.

Separate propagations are performed using (1) low-fidelity, (2) high-

fidelity, and (3) variable-fidelity dynamics models. For the multi-iteration and

linear-algebra methods, the variable-fidelity implementation is that which per-

forms the high-fidelity evaluation of J and H within the fixed-point iteration

loop rather than after full convergence of the state (i.e., option 2 for the DDM

from Section 4.3.4). This strategy is found to be the more efficient of the two

alternatives for this particular problem.

The propagations are performed both in serial and using OpenMP-

based parallelization [158]. When parallelization is used, eight threads are

employed, one for each stage of the GLIRK method. At each iteration of

the nonlinear solver, the f , J and H evaluations at each internal stage are

evaluated in parallel. An exception to this rule is the case in which only the

low-fidelity derivatives function and/or Jacobian – and not the low-fidelity

Hessian – are evaluated (see Table 4.1). In this scenario, the overhead of

parallelization outweighs the benefits of parallelizing the computations. For

the linear-algebra-based calculation of Φ2, the construction and solution of the

n (or n′ for the double-integrator formulation) independent linear systems is

performed in parallel. For the multi-iteration method, the fixed-point iteration

updates for Φ2 benefit from parallelization due to the expense of constructing

Φ2 even though J and H are not re-evaluated. Analysis of the previously-

described massive parallelization technique is not performed.
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Table 4.1: Parallelization of dynamics model evaluations.

Low-fidelity High-fidelity
f J H f J H

Φ1 N/A X X N/A
Φ1, Φ2 X X X X

Table 4.2: Initial state for space object in LEO.

Orbital element Value
a 6745.592 km
e 0.01
i 7.81 deg
Ω 100.21 deg
ω 152.83 deg
θ 0 deg

Further details specific to calculation using each dynamics model are

given in the following subsections. The high-fidelity and variable-fidelity cases

are discussed together because the two methods are different strategies for

propagating and calculating the STMs of the same dynamical system.

Low-Fidelity Dynamics The maximum relative difference between any

two elements of Φ1 (tf , t0) or Φ2 (tf , t0) between any of the calculation methods

is 1.19× 10−11. The averaged CPU times required by the different methods of

calculating the STMs are shown in the topmost plots of Figures 4.7a and 4.7b.10

10Note differing vertical axis scales.
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Figure 4.6: Time evolutions of representative elements of high-fidelity space
object STMs.

For every subcase tested, the linear-algebra method is more efficient than ei-

ther the CDM or multi-iteration method. The efficiency of the linear-algebra

method is most pronounced when calculating both the first- and second-order

STMs (Figure 4.7b). The reuse of the factored linear system matrix from the

calculation of the first-order STM allows for speedups of two times or more
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vs the other methods. This advantage holds regardless of whether the single-

or double-integrator RK equations are used. None of the three methods bene-

fits appreciably from parallelization due to the inexpensive dynamics. On the

other hand, for both the first- and second-order STM calculation cases, the

advantage of using the double-integrator form of the RK equations is clear.

High-Fidelity and Variable-Fidelity Dynamics The maximum relative

difference between any two elements of Φ1 (tf , t0) or Φ2 (tf , t0) between any of

the calculation methods is 4.12 × 10−11. The similarity of this value to that

of the low-fidelity dynamics case demonstrates that use of the variable-fidelity

strategy does not adversely impact the precision of the state propagation or the

STM calculation. The averaged CPU times required by the different methods

of calculating the STMs are shown in the middle (high-fidelity) and lowermost

(variable-fidelity) plots of Figures 4.7a and 4.7b. For this scenario, evaluations

of the computationally expensive high-fidelity geopotential and its derivatives

dominate propagation runtime. For all subcases, the linear-algebra and multi-

iteration methods use the same number of f , J , and H evaluations – which

is fewer than the number used by the CDM. When calculating the first-order

STM only (Figure 4.7a), the result is that the efficiencies of the linear-algebra

method and multi-iteration method are nearly identical, and both significantly

outperform the CDM. Use of variable-fidelity dynamics shrinks the efficiency

gap because expensive dynamics are evaluated less frequently. When calcu-

lating both the first- and second-order STMs (Figure 4.7b), the linear-algebra

method outperforms the multi-iteration method; the difference in CPU time is
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more significant when variable-fidelity dynamics are used and/or when paral-

lelization is used. The CDM takes greater advantage of parallelization than the

multi-iteration method, to the extent that the runtimes of the two are similar

for first- and second-order STM calculation with variable-fidelity dynamics.

The linear-algebra method remains the most efficient option.

As parallelization has a significant impact on this test case, a more

detailed look at the impact of the number of available threads is shown in

Figure 4.8. As expected, the relative efficiency gains for all methods stagnate

between four and seven threads for the eight-stage method because two loop

iterations are still required to complete the function evaluations at all stages.

For the same reason, the efficiency improves dramatically when the number

of available threads is increased from seven to eight. When comparing the

first-order STM calculation methods (Figure 4.8a), similar relative speedups

are achieved by all methods when using a given number of threads. When

the second-order STM is also calculated (Figure 4.8b), the efficiency gains

exhibited by the multi-iteration method tend to lag those of the CDM and

linear-algebra method. Two factors contribute to this result. First, the multi-

ple iterative solves necessitate the creation of more individual parallel regions

compared to the CDM, which results in more overhead. Second, even though

the multi-iteration method uses the same number of parallel regions as the

linear-algebra method, the multi-iteration method performs less work in par-

allel. Specifically, both methods identically use parallelization to calculate f ,

J , andH ; however, the linear-algebra method parallelizes the entire operation
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of calculating the second-order STM, while the multi-iteration method only

parallelizes the STM update equations in the second fixed-point iteration loop.

4.4.3 Explicit Runge-Kutta Methods

While the primary emphasis of this chapter is IRK methods, the CDM

and DDM are both applicable to ERK solvers, as well. Among the two DDM

alternatives discussed in this study, only the linear-algebra method is relevant

because the RK update equations are not solved iteratively for an explicit

method. For the same reason, the primary benefit of the DDM for IRK solvers

– the reduction of J and H evaluations – does not exist when using an ERK

method. Thus, the CDM is generally more efficient than the DDM when

calculating STMs with an ERK method.

The preferability of an ERK or IRK method is strongly problem-dependent.

For nonstiff systems in which dynamics evaluations do not dominate runtime,

a well-chosen ERK method is usually more efficient than an IRK method be-

cause of the iterative nature of the IRK solver [50]. However, an appropriate

IRK method may be desirable due to attractive theoretical properties, such

as A stability or symplecticity [88].11 For more computationally intensive dy-

namical systems, IRK-specific customizations, such as variable-fidelity dynam-

ics routines and parallelization, may also come into play. With these caveats

noted, Figure 4.9 displays the results of applying an ERK method to the exam-

11A Newton or approximate Newton scheme may be needed instead of fixed-point iteration
to retain these properties (as well as computational efficiency) if the system is sufficiently
stiff [88, 86].
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Table 4.3: ERK implementation details.

Oscillator Orbit: J2 Orbit: 70× 70 sph. harm.

Method Gill [50] Dormand-Prince [166] Dormand-Prince [166]
Stages 4 13 13
Order 4 8 8
Step size 0.015 time units 90 sec 40 sec

ple systems previously introduced for the serial calculation, single-integrator

case. CPU times are normalized for each example system to produce a com-

mon scale. For the IRK orbit propagation results, the variable-fidelity CPU

times are reported. ERK implementation details are given in Table 4.3. For

all cases, the constant step size is selected such that the root-sum-square error

between the test solution and a reference “truth” solution12 is approximately

equal for the ERK and IRK methods.

For the reasons discussed, the DDM performs less efficiently than the

CDM for ERK methods, except for similar performance in the first-order STM

calculation for the high-fidelity orbit propagation. Predictably, the efficiency of

the IRK method improves relative to the ERK method when variable-fidelity

dynamics models are used because the ERK method does not exploit this

customization.

12The truth solution is generated by propagating the system using the IRK CDM with a
step size 1/10th that of the test solution. Compensated summation is used in all cases to
reduce roundoff error.
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4.5 Conclusions

In this chapter, the decoupled direct method of calculating first- and

second-order state transition matrices is derived for Runge-Kutta methods.

Emphasis is placed on implicit Runge-Kutta methods because the decoupling

of the state propagation and STM calculation reduces the number of Jacobian

and Hessian evaluations compared to the common practice of propagating the

variational equations using an augmented sate vector (i.e., the coupled direct

method). Two decoupling techniques are presented. The first, referenced as

the “multi-iteration method,” solves for the state first, then uses an itera-

tive technique to solve a separate system of equations for the STMs. The

second, referenced as the “linear-algebra method,” directly differentiates the

RK update equations to obtain a linear system for the STMs once the state

is propagated. Previously introduced for calculation of the first-order STM,

the linear-algebra method is extended here to accommodate calculation of the

second-order STM. The system matrix whose factorization is required to solve

for the second-order STM is shown to be identical to that used to calculate

the first-order STM, which allows for reuse of the factored form. For both

the first- and second-order STMs, the method is further extended for use with

the double-integrator version of the RK equations, which, when applicable,

produces a smaller linear system matrix for calculating STMs. Alone among

the three methods discussed, the linear-algebra version of the DDM eliminates

the need for an initial guess of the STMs at each internal stage of an IRK step

because the resulting linear systems may be solved without iteration.
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Owing to the reduction in Jacobian and Hessian evaluations, the per-

formances of both decoupled methods improve relative to the CDM as the

computational cost of the dynamics increases. For moderately expensive, non-

stiff dynamics, and for a low-to-moderate number of internal stages per step

(up to eight were used in this study), the linear-algebra method is likely to out-

perform both the CDM and multi-iteration method when fixed-point iteration

is used to solve the RK update equations. Further, the comparative efficiency

of the linear-algebra method improves if both the first- and second-order STMs

are calculated. The DDM also facilitates a more efficient implementation of an

approximate Newton method as an alternative to fixed-point iteration com-

pared with the CDM.

The numerical examples presented in this chapter confirm the utility

of variable-fidelity dynamics models in the context of STM calculation using

IRK methods for the artificial satellite problem: Significant increases in effi-

ciency are achieved without sacrificing precision. This strategy is not strictly

limited to SO propagation; however, it is cautioned that careful testing should

accompany application to other systems.

The impact of parallelization at the internal-stage-evaluation level is

examined for all three direct STM calculation methods using OpenMP. Over-

all, in a LEO trajectory propagation example – either using an inexpensive J2

geopotential or an expensive degree/order-70 spherical harmonics geopotential

– the linear-algebra method is found to provide the most efficient performance

for nearly all permutations of the computational options tested (i.e., serial vs.

parallel, single-integrator vs. double-integrator, and low-fidelity vs. variable-
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fidelity vs. high-fidelity dynamics). On the other hand, it is shown that

the linear-algebra method does not outperform the CDM when used with an

ERK method because the number of Jacobian and Hessian evaluations is not

reduced. Numerical results confirm the superiority of ERK methods for in-

expensive, nonstiff problems, while the utility of IRK methods is shown for

computationally expensive systems for which variable-fidelity dynamics and/or

parallelization may be used effectively.
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(a) First-order STM.

(b) First- and second-order STMs.

Figure 4.7: CPU time required to propagate state and calculate STMs for
space object in LEO.
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(a) First-order STM.

(b) First- and second-order STMs.

Figure 4.8: Multiplicative speed increase vs. serial calculation as function of
number of available parallel threads.
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(a) First-order STM.

(b) First- and second-order STMs.

Figure 4.9: Normalized CPU time required to propagate state and calculate
STMs for example scenarios using the single-integrator formulation of the RK
equations and serial computation. Normalization is performed individually for
each scenario.
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Chapter 5

The Eccentric Case of a Fast-Rotating,

Gravity-Gradient-Perturbed Space Object

Attitude Solution1

5.1 Introduction

In this chapter, a closed-form perturbation solution for the attitude

evolution of an SO under certain assumptions is developed. In part, this work

serves as a prelude to Chapter 6, in which the attitude solution is used in

conjunction with a hybrid SP/GP algorithm for 6DOF SO state prediction

(Section 1.4). At the same time, the closed-form rotational solution may be

used even outside the hybrid framework. For example, as the number of SOs –

particularly in LEO – continues to grow, active debris removal is increasingly

viewed as an important component of any long-term strategy for avoiding the

unchecked proliferation of undesirable SOs [43, 139]. Architectures for removal

missions typically focus on de-orbiting large SOs, such as derelict rocket bodies,

because a collision involving a large SO would result in the creation of more

1Work from this chapter has been accepted for presentation as:

• Noble Hatten and Ryan P. Russell. The eccentric case of a fast-rotating, gravity-
gradient-perturbed satellite attitude solution. Paper 17-373. In 27th AAS/AIAA
Space Flight Mechanics Meeting, San Antonio, TX, February 2017. (accepted for
presentation)

Ryan P. Russell supervised the work.
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new debris than a collision involving only smaller SOs. While specific removal

tactics vary, any generic methodology would likely benefit from knowledge of

a target SO’s attitude [177, 157, 203]. However, the computational expense of

6DOF state prediction complicates both the estimation and prediction of SO

attitude [65, 202, 138]. Perturbation techniques offer an alternative that can

improve efficiency at the cost of (ideally) small losses in fidelity [26]. While

a number of such methods have been produced (Section 1.2.4.4), the work in

this chapter focuses on extending and analyzing a specific solution procedure

that produces promising results for large tumbling bodies in LEO.

In a series of works, Lara and Ferrer used the Lie-Deprit method [52]

to produce an approximate, closed-form solution for the attitude evolution

of a fast-rotating, triaxial SO subject to gravity-gradient torque [134, 133,

132]. The Lara-Ferrer solution procedure is simplified by restricting the SO

to a circular orbit; here, the solution is rederived for an elliptical orbit. The

resulting explicit time dependence of the Hamiltonian is eliminated through

use of the extended phase space [59], and no expansions in powers of the

eccentricity are required. The numerical example originally presented by Lara

and Ferrer [134] is also modified for the case of eccentric orbits to verify the new

equations and analyze the behavior of the solution. Further, several additional

numerical studies are performed to provide practitioners with a more realistic

idea of the types of scenarios in which the solution may be most fruitfully

applied:
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• The small parameter of the perturbation procedure is varied to determine

solution degradation as the parameter grows (and thus begins to violate

the assumptions of the solution). As the parameter is a function of

(1) the SO orbit, (2) the SO’s rotational angular momentum, and (3)

the SO’s physical properties, the analysis establishes guidelines for the

physical and dynamic regimes in which the solution is appropriate.

• The closed-form solution is compared to a more realistic gravity-gradient-

based reference solution than was used in the original Lara-Ferrer pub-

lications. This new comparison reveals additional secular error sources

not addressed in the published numerical example that may, in fact,

dominate the errors introduced by the Lie-Deprit transform procedure.

• The elliptical orbit solution is applied to a scenario based on the physical

and dynamic properties of a specific tumbling rocket body in LEO. This

example is representative of a class of SOs whose attitude evolution is

of interest and, as is demonstrated in the example, whose characteristics

meet the assumptions of the closed-form solution. As part of the pre-

sentation, the explicit transformation equations required to apply the

closed-form solution to an SO spinning about its axis of minimum iner-

tia are presented. (The original presentation for circular orbits considers

only spin about the axis of maximum inertia [134].)

To maintain consistency, the nomenclature of Lara and Ferrer [134] is

adopted when possible. Equations that are repetitions of those presented in

Lara and Ferrer [134] are given in Appendix D in the interest of brevity in
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the main text. It is acknowledged that gravity-gradient torque is generally

not the only relevant torque acting on an SO. However, depending on or-

bit and physical properties, the gravity-gradient torque may be the dominant

perturbation to torque-free motion [134]. In the Earth-orbit regime, solar ra-

diation pressure, aerodynamic drag, geomagnetic, and other torques may also

be important. Investigation of the effect of these torques on the accuracy of

the gravity-gradient-based, closed-form solution or the inclusion of additional

torques in the perturbation solution is beyond the scope of the current study.

5.2 Solution Procedure

The original perturbation method uses the torque-free motion of a tri-

axial rigid body (i.e., the Euler-Poinsot problem) as the reference solution. The

unperturbed Hamiltonian, though conveniently written in Andoyer variables

[94, 45], is canonically transformed to action-angle variables (the so-called

Lara-Ferrer solution variables), in which the unperturbed Hamiltonian is a

function of momenta only. The disturbing potential of the gravity-gradient

torque is added to the Hamiltonian, and it is assumed that the torque is ad-

equately described by the point-mass gravity term of the primary body. For

the purposes of translational motion, both the primary body and the SO are

assumed to act as point masses, which allows for the elimination of the transla-

tional term from the Hamiltonian. The SO is assumed to be in a circular orbit

about the primary. The Hamiltonian is simplified via the “fast-rotating” SO

assumption, which requires the rate of variation of the Andoyer angle µ to be

suitably faster than the frequencies of both the Andoyer angle ν and the orbital
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motion of the SO. (The Andoyer angles are depicted in Figure 5.1.2) The per-

turbed Hamiltonian is reduced to a function of momenta only, and the secular

rates of the angles are obtained. The reduction is accomplished through two

successive canonical transformations, each obtained via the Lie-Deprit proce-

dure [52], which eliminate angles from the Hamiltonian through averaging [26].

The equations of the Lie-Deprit method are given in Appendix C.

Figure 5.1: Andoyer variables; adapted from Celletti [45].

5.2.1 Extension to Elliptical Orbits

The Hamiltonian is a function of r, which, in the circular orbit case, is

constant. To handle the elliptic case, the problem is moved to the extended

phase space [59]. A timelike variable τ and its conjugate momentum T are

added to the variable set, and the Hamiltonian is augmented such that

2The angle µ defines the orientation of the i1i2 plane. The angle ν defines the orientation
of the ij plane. Note that i3 is parallel to the rotational angular momentum.
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H = Φ + U + T (5.1)

dτ

dt
=
∂H

∂T
= 1. (5.2)

When necessary, r is expressed as a function of τ rather than t. Additionally,

the variable φ = h− θ is replaced by h itself3, and the problem is not moved

to a rotating frame, as is done in the original formulation. The potential U is

the potential for the circular case (Eq. (D.9)) scaled by (a/r)3.

The Lie-Deprit procedure commences by assuming that T is of first

order and U is of second order relative to Φ. As is demonstrated most clearly

using Andoyer variables (Eq. (D.7)), this assumption is based on U = 1
2
ε2Û ,

where ε = n/(M/C) and Û is O(1) relative to Φ for the circular orbit case.

(Here, n is the orbital mean motion.) The impact of scaling the circular

gravity-gradient potential by (a/r)3 for the elliptical case is discussed after

the transformation equations are presented.

The first canonical transformation, which averages over the solution

angle l, is nearly identical to that of the circular case because l is related

to the orientation fo the body and is not affected by the eccentricity of the

orbit. The (a/r)3 scaling is applied to the averaged term H0,2, the generating

function term W2, and the transformation expressions (Eqs. (D.12), (D.14),

and (D.17)–(D.22), respectively). The timelike variable τ is unaffected by the

3The conjugate momenta of φ and h are identical.
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transformation because the generating function is independent of T . The first

averaging results in the variable transformation ξ → ξ′.

The second transformation (ξ′ → ξ′′), which averages over one period

in τ , is described in more detail. When appropriate, references are made to

corresponding equations in Appendices C and D. The singly averaged Hamil-

tonian K is given by (Eq. (C.1))

K = K0,0 + εK1,0 +
ε2

2
K2,0, (5.3)

where

K0,0 =
G2

2A

(
1− C − A

C

f

f +m

)
(5.4)

K1,0 = T (5.5)

K2,0 = 2
(a
r

)3 n2

8
κ
[
1− 3s2I sin2 (h− θ)

]
. (5.6)

K0,0 and K2,0 are based on Eqs. (D.4) and (D.12), respectively, while K1,0

arises due to the use of the extended phase space. The procedure outlined in

Appendix C is followed to derive the transformation. The first homological

equation is (Eq. (C.16))

K0,1 = K1,0 −
DV1
Dt

, (5.7)

where (Eqs. (C.5)–(C.8))
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DV1
Dt

=
∂V1
∂t
− L′1K0,0. (5.8)

The use of the extended phase space removes any explicit dependency of the

system on t, so ∂V1
∂t

= 0. In addition, K0,0 is in a fully reduced form and

is independent of all coordinates. Further, because h and τ are the only

coordinates in K, it may be assumed that the only coordinates on which V

depends are h and τ , as well. Combining these observations with the fact

that K0,0 is independent of the momenta conjugate to h and τ , it is seen that

L′1K0,0 reduces to zero. Thus, K0,1 = K1,0.

The second homological equation is (Eq. (C.17))

K0,2 = K2,0 + L′1K1,0 + L′1K0,1 −
DV2
Dt

. (5.9)

Taking into account K0,1 = K1,0, which is only a function of T , and setting

V2 = 0, Eq. (5.9) reduces to4

K0,2 = K2,0 − 2
∂V1
∂τ

. (5.10)

K0,2 is chosen as the average of K2,0 over one period in τ , which is equivalent

to averaging over one period in the mean anomaly M0:

4In the development of the equations of the second averaging, all solution variables are
doubly transformed. Following the convention of Lara and Ferrer [134], the double-prime
notation is not used explicitly to improve readability.
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K0,2 =< K2,0 >τ=
1

Tp

∫ Tp

0

K2,0dτ =
1

2πn

∫ 2π

0

K2,0dM0 (5.11)

=
n2κ (3c2I − 1)

4 (1− e2)3/2
, (5.12)

where κ is defined in Eq. (D.13) and is a function of momenta and body prop-

erties only. The closed-form integration for K2,0 is facilitated by the relation

a2
√

1− e2dM0 = r2dθ, where θ is the true anomaly. Solving Eq. (5.9) then

gives the generating function

V1 =
nκ

16 (1− e2)3/2
{(

4− 6s2I
)

(θ −M0 + e sin θ) + (5.13)

s2I [3 sin (2θ − 2h) + 3e sin (θ − 2h) + e sin (3θ − 2h)]
}
,

where, once again, the differential relation between M0 and θ is used to perform

the quadrature. Eq. (5.13) is similar in form to the generating function term

for the third canonical transformation of Lara et al. [137]. It is also emphasized

that M0 and θ are functions of τ . The transformation equations of the second

averaging are obtained via Eqs. (C.9)–(C.21), and result in ξ′ = ξ′′+ δξ, with

the individual transformations given by5

5In addition to accounting for orbit eccentricity, Eq. (5.14) corrects a typo in Eq. (86) of
Lara and Ferrer [134].
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δl =− 1

(1− e2)3/2
3

16

n

G
· (5.14){

(C −B)2A

BC

π

2K(m)

√
f (1 + f)

m
√
f +m

·
[
f +m

1−m
E2(m)

K2(m)
− 2f

E(m)

K(m)
+ f +

C +B

C −Bm
]}
·{(

4− 6s2I
)

(θ −M0 + e sin θ) +

s2I [3 sin (2θ − 2h) + 3e sin (θ − 2h) + e sin (3θ − 2h)]
}

δh =
1

(1− e2)3/2
3

8

n

G

H

G
κ· (5.15)[

2 (θ −M0 + e sin θ)− sin (2θ − 2h)− e sin (θ − 2h)− 1

3
e sin (3θ − 2h)

]
δg =− H

G
δh− L

G
δl (5.16)

δτ =0 (5.17)

δL =0 (5.18)

δG =0 (5.19)

δH =
1

(1− e2)3/2
n

8
κs2I [3 cos (2θ − 2h) + 3e cos (θ − 2h) + e cos (3θ − 2h)] .

(5.20)

The variable f is defined in Eq. (D.1), while m is defined in Eqs. (D.2)

and (D.6); both are functions of momenta and body properties only. The

inverse transformations are obtained by applying Eqs. (C.22)–(C.27). The

doubly averaged Hamiltonian is (Eq. (C.2))
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S = Φ + T − n2κ

8 (1− e2)3/2
(

1− H2

G2

)
. (5.21)

The second averaging eliminates both τ and h from S, so S is a function

of momenta only, and no additional transformations are required to obtain

a fully reduced Hamiltonian. The secular rates of the coordinates in doubly

transformed variables are

dl

dt
=
G2

2A

(
C − A
C

)
f

(f +m)2
∂m

∂L
−

3n2

8 (1− e2)3/2
(B − A)

(
1− 3

H2

G2

)
1 + f

(f +m)2
·{

1 +
C −B
B

[
f +m

2m
− f

m

E(m)

K(m)
+

1

2m

f +m

1−m
E2(m)

K2(m)

]}
∂m

∂L
(5.22)

dh

dt
=

H

(1− e2)3/2
3n2

4G2
κ (5.23)

dg

dt
=

2Φ

G
− H

G

dh

dt
− L

G

dl

dt
, (5.24)

where ∂m/∂L is given by Eq. (D.5). All the elliptic equations reduce to the

circular versions if e = 0. The expressions are valid for all e < 1, though

numerical instability is possible for e ≈ 1 due to small divisors of the form

(1− e2)3/2. At large eccentricities, the growth of this divisor can also cause a

violation of the assumption that the gravity-gradient torque term in Eq. (5.21)

is second-order small compared to Φ. However, the likelihood of this occur-

rence is diminished by the presence of n2 = µ∗/a
3 in the numerator of the

gravity-gradient torque term. For an SO in Earth orbit, eccentricity cannot
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be arbitrarily large without a suitably large semimajor axis (and a suitably

small mean motion) if the SO is to avoid intercepting the Earth.

Due to the scaling of the gravity-gradient potential, the second-order

small parameter for the elliptical case is effectively

ε2ell = ε2
(a
r

)3
(5.25)

=

(
n

M/C

)2 (a
r

)3
(5.26)

=

(
1

M/C

)2
µ∗
r3
. (5.27)

Thus, ε2ell is largest when the SO is near periapsis, and errors related to the

averaging of the orbital motion are largest near periapsis, as well. The largest

value taken by ε2ell is the same as ε2 for a circular orbit whose semimajor axis

is equal to the periapsis distance of the elliptical orbit. Intuitively, this result

corresponds to the fact that any gravitational effect dissipates as the distance

between the SO and the central body increases.

5.3 Numerical Studies

A set of scenarios is simulated numerically to assess the closed-form

solution. In all scenarios, the SO is subject to the central-body gravitational

force of the Earth and gravity-gradient torque only. The impact of the exten-

sion to elliptic orbits is explored by performing a simulation over a range of

eccentricities. Next, the small parameter ε is varied to determine the range

of values over which the closed-form solution is effective. For each of these
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first two scenarios, the parameter values and comparison “truth” solution are

intentionally made as close as possible to those presented in Lara and Ferrer

[134] to directly compare with previously presented results. In a third sce-

nario, the closed-form solution is compared to a truth solution that is freed

from the fast-rotating SO assumptions used by Lara and Ferrer [134]. Fi-

nally, the closed-form solution is applied to a tumbling rocket body in LEO,

demonstrating the relevance to active space debris removal architectures.

5.3.1 Parameter Sweep: Eccentricity

To demonstrate the effects of eccentricity on the evolution of the ana-

lytical solution, the numerical example of Lara and Ferrer [134] is run several

times. The periapsis distance is held constant (rp ≈ 6995 km), while e is varied

from 0 to 0.8. All simulations begin at periapsis and encompass seven orbital

periods. The initial rotational state and SO physical properties are the same

for all simulations.

Figure 5.2 demonstrates how ε2ell varies as an SO progresses in its orbit

for a moderately eccentric orbit (Figure 5.2a) and a highly eccentric orbit

(Figure 5.2b). Figure 5.3 displays the maximum and minimum values of ε2ell

for a range of eccentricities.6 These plots confirm the discussion surrounding

Eq. (5.27).

The rotational state evolutions are compared with a reference state

generated by numerically integrating the equations of motion that arise from

6Note logarithmic scale of vertical axis of Figure 5.3.
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Figure 5.2: Square of small parameter of perturbation procedure for elliptical
orbit as function of mean anomaly.
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Figure 5.3: Square of small parameter of perturbation procedure for elliptical
orbit evaluated at r = rp, r = a, and r = ra as function of eccentricity.

the Hamiltonian specific to a fast-rotating SO (Eq. (D.11)) in Lara and Ferrer

[134], modified to handle elliptic orbits). This truth state reflects perfect ap-

plicability of the fast-rotating SO assumptions, and therefore is not equivalent

to a high-fidelity propagation of the rotational motion (even if torques other

than gravity-gradient are ignored) [161]. Nevertheless, this truth state is used

to preserve compatibility with the original results presented by Lara and Fer-

173



0 2.26 4.52 6.78 9.04 11.30 13.56 15.82
−2

0

2
g

T
 −

 g
" 

(d
e

g
)

0 2.26 4.52 6.78 9.04 11.30 13.56 15.82
−2

0

2

l T
 −

 l
" 

(d
e

g
)

0 2.26 4.52 6.78 9.04 11.30 13.56 15.82
−1

0

1

h
T
 −

 h
" 

(d
e

g
)

0 2.26 4.52 6.78 9.04 11.30 13.56 15.82
−2

0

2
x 10

−4

1
 −

 L
"/

L
T

0 2.26 4.52 6.78 9.04 11.30 13.56 15.82
−0.05

0

0.05

1
 −

 H
"/

H
T

Time (hours)

(a) Double-prime variables.

0 2.26 4.52 6.78 9.04 11.30 13.56 15.82
−1

0

1

g
T
 −

 g
 (

d
e

g
)

0 2.26 4.52 6.78 9.04 11.30 13.56 15.82
−0.5

0

0.5

l T
 −

 l
 (

d
e

g
)

0 2.26 4.52 6.78 9.04 11.30 13.56 15.82
−0.2

0

0.2

h
T
 −

 h
 (

d
e

g
)

0 2.26 4.52 6.78 9.04 11.30 13.56 15.82
−5

0

5
x 10

−6

1
 −

 L
/L

T
0 2.26 4.52 6.78 9.04 11.30 13.56 15.82

−2

−1

0
x 10

−3

1
 −

 H
/H

T

Time (hours)

(b) Solution variables.

Figure 5.4: Differences between analytically obtained perturbation solution
and numerically integrated fast-rotating truth solution (subscript T denotes
truth); e = 0.2.

rer [134, 133, 132]. Similarly, in Figures 5.4 and 5.5, differences between the

averaged solutions and the truth solution are presented in terms of Lara-Ferrer

solution variables, which facilitates direct comparison with Figures 3 and 4 in

Lara and Ferrer [134].7 It is noted that each horizontal axis tick in the time

evolution plots in this chapter corresponds to one orbital period.

7The results presented in the current work are obtained using explicit perturbation trans-
formations for both forward and backward transformations. For example, ξ′ = ξ′′+δξ, with
δξ expressed in terms of double-prime variables, and ξ′′ = ξ′−δξ, with δξ expressed in terms
of single-prime variables. (See Appendix C for more details on Lie-Deprit transformation
equations.) The results presented by Lara and Ferrer [134] were obtained using only the
ξ′′ → ξ′ and ξ′ → ξ transformation equations. In those works, the inverse transformations
were performed by solving the forward transformation equations implicitly. The differences
between the explicit and implicit solutions are insignificant at the scale of Figures 5.4 and 5.5.
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Figure 5.5: Differences between analytically obtained perturbation solution
and numerically integrated fast-rotating truth solution (subscript T denotes
truth); e = 0.8.

Unlike the circular case, in which the frequencies of periodic errors

related to the averaging of the orbital motion are constant throughout the

orbit, eccentric orbits are characterized by rapid changes in the elements of ξ′′

near periapsis (Figures 5.4a and 5.5a). This trend is especially visible for the

highly eccentric orbit presented in Figure 5.5. As in the circular-orbit case,

transforming from ξ′′ to ξ eliminates much of the periodicity in the errors,

and improves the accuracy of the momenta L and G by one or more orders

of magnitude (Figures 5.4b and 5.5b). Despite the changes in frequencies, the

secular growth rates of the errors are similar to those of the circular case, as are

the amplitudes of periodic errors. This result is quantified in Figure 5.6, which
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Figure 5.6: Root-mean-square of differences between analytically obtained per-
turbation solutions and numerically integrated fast-rotating solutions.

gives the RMS errors of the elements of ξ and ξ′′ over seven orbital periods.8

The modest decreases in the RMS errors as e increases are attributable to the

decrease in ε2ell near apoapsis for increasingly eccentric orbits.

5.3.2 Parameter Sweep: Nominal ε

Regardless of the eccentricity of the orbit, the parameter ε must be

suitably small for the perturbation method to produce a reasonable solution.

As ε is directly proportional to n, the effects of varying ε are explored by

executing the example scenario of Lara and Ferrer [134] over a range of n,

8Note logarithmic scale of vertical axes for L and H plots.
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which is equivalent to varying semimajor axis (n =
√
µ∗/a3).

9 Figure 5.7

shows the variation of a as ε2 progresses from 10−5 to 10−1.10 (The nominal

value used in the original example is ε2 = 1.917× 10−3, and is represented by

a star in Figure 5.7.) Of course, values of a less than the radius of the Earth

are not feasible; in practice, such values of ε2 would occur due to different SO

rotational and/or physical properties.

Figure 5.8 displays the RMS differences between the closed-form solu-

tions and the numerically integrated fast-rotating solutions over a seven-orbit

time span.11 The improvement in agreement between the closed-form and

reference solutions as ε decreases is clear. For ε2 = 10−1, for example, RMS

differences over seven orbits approach 100 deg in the angles g and l, while, for

ε2 ≤ 10−3, RMS differences are less than 1 deg. The differences in the RMS val-

ues achieved by the double-prime variables and the fully transformed variables

increase (in a logarithmic scale) as ε decreases because, for large values of ε, the

differences between both versions of the closed-form solution and the reference

solution overshadow the differences between the two versions of the closed-form

solution. Overall, the RMS error of the closed-form solution in each variable

increases approximately exponentially with ε2 (i.e, RMS(ξi) ≈ ci(ε
2)ki). The

fully transformed solution exhibits a lower RMS floor (smaller ci) and faster

RMS growth rate (larger ki) than the double-prime solution, until the fully

transformed and double-prime values nearly converge at large ε.

9Eccentricity is zero in these scenarios.
10Note logarithmic scale of horizontal axis.
11Note logarithmic scales of horizontal and vertical axes.
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5.3.3 Comparison with Unaveraged Gravity-Gradient Torque

To maintain consistency with the results presented in Lara and Fer-

rer [134], the comparisons presented in Sections 5.3.1 and 5.3.2 use, as truth,

Hamilton’s equations of motion derived from Eq. (D.7). While this method-

ology is appropriate for assessing the impact of the two Lie transformations,

the applicability of the fast-rotating SO assumption to a given problem is not

addressed. To give an indication of the effect of the assumptions of the fast-

rotating model, the system is propagated again using the Eulerian equations

of motion with unaveraged gravity-gradient torque [49]. Using a standard lin-

earization based on the assumption that the dimensions of the SO are much

smaller than the distance between the centers of mass of the SO and the central

body, the torque may be written as [49]

TGG =
3µ∗
r5
rB × (J0rB) . (5.28)

The equations of motion are formulated by expressing the attitude of the SO

relative to the inertial orbital frame with a quaternion and the angular velocity

vector, expressed in a body-fixed frame [74]. (See Section 3.2.)

Figures 5.9a and 5.9b duplicate Figures 3 and 4 of Lara and Ferrer

[134], respectively, except for the difference in the reference solution. Fig-

ure 5.10 does likewise for Figure 5.4 of the present work. The consequences

of the initial averaging over the Andoyer angle µ – performed prior to the

Lie transformations – are shown clearly. Errors in the angle h and its con-

jugate momentum H are similar in magnitude to those observed when the
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fast-rotating Hamiltonian is used to generate the reference model. However,

the angles g and l experience much faster secular error growth rates, and the

amplitude of errors in the momentum L is larger by multiple orders of magni-

tude (though still accurate to better than 1 percent over seven orbital periods).

Through comparison of Figures 5.9 and 5.10, it may be observed that the sec-

ular error growth rate is not dependent only on the orbital period, as was the

case when the fast-rotating Hamiltonian was used to generate the reference

model. Instead, the rotational frequencies of the SO body are important, as

well. Consequently, the errors in g and l for the eccentric orbit are greater

than the corresponding errors in the circular orbit after each has completed

seven orbital periods because the orbital period of the eccentric orbit is more

than 30 minutes longer than that of the circular orbit. Thus, more SO body

revolutions occur for the eccentric case than for the circular case over the time

frames considered. This trend is displayed in Figure 5.11, which duplicates

Figure 5.6 using the truth model based on Eq. (5.28). The differences between

the double-prime and solution variables may be difficult to distinguish in the

scale of the plot. The more important result is that the differences created by

the use of the fast-rotating Hamiltonian dwarf those created by the Lie trans-

formations. Thus, for the closed-form solution to reasonably approximate the

motion, care must be taken to ensure that the assumptions of the fast-rotating

starting model are adequately met: The frequency of the Andoyer variable µ

must be much greater than both the orbital frequency and the frequency of

the Andoyer variable ν.
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Figure 5.9: Differences between analytically obtained perturbation solution
and numerically integrated truth solution (subscript T denotes truth); e = 0.

To quote Celletti [45], “the angle [µ] provides the motion of the equa-

torial axis [of the body frame (i.e., the ij axis in Figure 5.1)] with respect

to the inertial frame ... [and] the angle [ν] gives the motion of the angular

momentum with respect to the body frame.” Thus, the body must be spin-

ning at a significantly faster rate about its 3 axis than the angular momentum

vector is precessing relative to the body. In the example of Lara and Ferrer

[134], the initial conditions correspond to ω = [0.7909, 0.1570, 1.3909]T

deg/s. While ω3 is the largest component of ω, it is not particularly domi-

nant: |ω3| < 2|ω1|.

In Figure 5.12, RMS error results are presented for the circular-orbit

case in which the initial ω3 is varied from a minimum, equal to the nominal
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Figure 5.10: Differences between analytically obtained perturbation solution
and numerically integrated truth solution (subscript T denotes truth); e = 0.2.

value, to a maximum, equal to 10 times the nominal value. The RMS val-

ues decrease in an approximately inverse exponential manner as ω3 increases.

While it is difficult to prescribe a precise rule of thumb, significantly better

performance is obtained when the rate of rotation about the primary spin axis

is an order of magnitude larger than the rotation rates about the other axes

when compared to the case |ω3| ≈ 1.76|ω1|. However, the body inertia prop-

erties must be taken into account when determining whether the assumption

of fast rotation is valid due to the nature of ν.

182



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

100

200

rm
s
(g

T
 −

 g
) 

(d
e
g

)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

100

200

rm
s
(l

T
 −

 l
) 

(d
e

g
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4
rm

s
(h

T
 −

 h
) 

(d
e
g

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
10

−4

10
−3

10
−2

rm
s
(1

 −
 L

/L
T
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
10

−3

10
−2

10
−1

Eccentricity

rm
s
(1

 −
 H

/H
T
)

 

 

ξ"

ξ

Figure 5.11: Root-mean-square of differences between analytically obtained
perturbation solutions and numerically integrated solutions.

5.3.4 Application to Tumbling Rocket Body

One important scenario that may meet the assumptions of fast rota-

tion well is a tumbling rocket body in LEO. As an example, the solution is

used to predict the attitude evolution of an SO based on the third-stage en-

gine of the Dnepr-1 launch vehicle that achieved orbit on 29 July 2009 [151].

The rocket body is modeled as resembling a hollow cylinder 1 m in height

and 3 m in diameter, with a mass of 2356 kg [106]. Slight perturbations to

the principal moments of inertia are introduced to demonstrate the method’s

ability to handle triaxial SOs. Full physical and dynamic initial conditions

for the simulation are given in Tables 5.1 and 5.2, respectively. The tumbling
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Figure 5.12: Root-mean-square of differences between analytically obtained
perturbation solutions and numerically integrated solutions; e = 0.

rate about the minor axis (“flat spin” [177]) is based on a flash period12 of

11.6 seconds, which was estimated on 23 August 2009 [51, 146]. The top and

bottom of the rocket body are assumed to have similar reflectance properties,

and the flash period is taken to be half of the rotation period of the body

of its minor axis. While the flash period is by no means a perfect indicator

of angular rate [157], and angular rates of the rocket body are likely to be

significantly different in the present day, the value used is representative of

12The brightness of an SO, as measured by an observer on Earth, may change over time,
in large part due to the presentation of different surfaces with unique reflectance properties
to the observer and to the Sun. A flash period is the time between consecutive maxima in
the observed brightness of an SO [51].

184



Table 5.1: Rocket body inertia tensor elements along principal axes in body-
fixed frame.

A 2083.01 kg · m2

B 2318.70 kg · m2

C 3537.93 kg · m2

a relatively recently launched rocket body [177, 146, 198]. The body is also

given small angular rates about its other axes to model imprecise tumbling.

The initial attitude corresponds to a state in which the sides, top, and bottom

of the cylinder become visible to the Earth as the body rotates, allowing for

the measurement of the flash period.

The SO is assumed to be tumbling about its axis of minimum inertia

due to the oblate nature of the body. The derivations of Lara and Ferrer [134]

are limited to the case of rotation about the axis of maximum inertia, but the

transformations required to handle rotation about the axis of minimum inertia

are presented in Appendix E.

Figure 5.13 displays the differences in attitude between the perturba-

tion solution and the numerically integrated equations of motion over seven

orbital periods. The truth solution is generated using Eq. (5.28) (i.e., not the

solution generated by the Hamiltonian of fast rotation). As this example is not

intended to directly align with the example presented in Lara and Ferrer [134],

the results are presented in Andoyer variables, which permit a more intuitive

interpretation than the Lara-Ferrer solution variables. The Andoyer variable
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Table 5.2: Initial rocket body state.

(a) Orbital state.a

a 7370 km
e 0.043
θ 0 deg

aOrbit orientation elements (e.g., inclina-
tion) are unimportant because only point-
mass gravity is considered.

(b) Rotational state.

q1 0.0257
q2 0.0236
q3 0.7128
q4 0.7005
ω1 15.5172 deg/s
ω2 0.1146 deg/s
ω3 1.1459 deg/s

values are obtained from the perturbation solution in two ways: First, by a

direct transformation from the double-prime variables (Figure 5.13a), and, sec-

ond, by successively transforming from double-prime to prime variables, from

prime variables to solution variables, and from solution variables to Andoyer

variables (Figure 5.13b).

Figure 5.14 displays a similar representation for the Andoyer momenta.

In this case, Figure 5.14a shows the time evolution of the truth momenta values

to give a sense of scale, while Figures 5.14b and 5.14c mimic Figures 5.13a and

5.13b, respectively.13 In both Figures 5.13 and 5.14, solid dark areas exist due

to the very high rotational frequencies of the SO.

Both the angles and the momenta of the perturbation solution agree

well with the truth solution over the plotted time span, though, as expected,

secular errors do exist that will inevitably degrade the perturbation solution

13Absolute differences are used rather than relative differences because such a plot would
be distorted by large relative differences when N passes through zero.
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Figure 5.13: Differences between analytically obtained perturbation solution
and numerically integrated truth solution (subscript T denotes truth) for tum-
bling rocket body.

over time. The improved performance compared to the example application

presented in Figures 3 and 4 of Lara and Ferrer [134] is caused primarily by

the greatly increased rotation rate of the SO. (The initial primary spin rate

of the rocket body is approximately 15.5 deg/s, while the initial primary spin

rate of the example of Lara and Ferrer [134] is approximately 1.4 deg/s.) The

fast rotation rate results in a small value of ε, which reduces errors in the

perturbation solution relative to the fast-rotating model.14 Crucially, the fast

rotation rate also decreases errors caused by the fast-rotating SO assumption

14The nominal value of the small parameter of the perturbation procedure for the rocket
body example is ε2 = 3.855× 10−5.
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Figure 5.14: Differences between analytically obtained perturbation solution
and numerically integrated truth solution (subscript T denotes truth) for tum-
bling rocket body.

(Figures 5.13 and 5.14 vs. Figure 5.9). Finally, even though the comparisons

are not given in the Lara-Ferrer solution variables, the effects of transforming

from double-prime to solution variables prior to moving to Andoyer variables
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are still apparent. In particular, the periodicity of errors is significantly re-

duced for the angle λ and its conjugate momentum Λ. This result is examined

further in the context of the hybrid SP/GP state prediction method in Chap-

ter 6.

5.4 Conclusions

Lara and Ferrer’s closed-form perturbation solution for a fast-rotating

triaxial SO subject to gravity-gradient torque is extended from circular to

elliptical orbits. The Hamiltonian is rewritten to accommodate nonzero ec-

centricity, and the resulting explicit time dependence is eliminated by moving

to the extended phase space. The new transformation equations depend on

orbital true anomaly, meaning that a Kepler solve is required to evaluate the

transformations as functions of time. However, both the transformation and

secular-rate equations remain fully analytical.

The numerical example presented by Lara and Ferrer [134] is applied

to orbits over a wide range of eccentricities. The frequencies of the periodic

errors are not constant, as in the circular case, but are instead highest near

periapsis, where the gravity-gradient torque is largest and the SO moves most

rapidly. Nevertheless, it is demonstrated that the amplitudes of the periodic

errors and their secular growth rates as functions of orbital revolutions are

comparable to the corresponding values for the circular case.

Additional numerical studies are performed that provide a more com-

plete picture of the applicability of the closed-form solution. The small pa-
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rameter of the perturbation procedure is varied to capture changes in the ac-

curacy of the solution as the viability of the Hamiltonian ordering assumption

changes. Root-mean-square errors relative to the reference solution generated

by the Hamiltonian of a fast-rotating SO, measured in Lara-Ferrer solution

variables, increase approximately exponentially as functions of the square of

the small parameter, ε2. For a representative body, RMS errors in all angles

are less than 1 deg over seven orbital periods for ε2 ≤ 10−3.

The impact of the assumption of fast rotation is examined by vary-

ing the SO’s angular velocity and comparing against a reference solution that

does not assume fast rotation. The errors introduced by using the fast-rotating

Hamiltonian to derive the perturbation solution may be significantly greater

than those of the Lie transforms procedure if the assumptions of fast rotation

are not adequately met. However, there exists a significant number of relevant

SOs for which the assumption of fast rotation holds very well, including, im-

portantly, some used rocket bodies. This claim is supported by a numerical

example based on a Dnepr third-stage rocket body: Over seven orbital periods,

the maximum difference (in Andoyer angles) between the closed-form solution

and a reference solution that does not assume fast rotation is less than 5 deg.

This capability represents a promising result for reducing the computational

burden of estimating and predicting the attitude of potential target bodies for

active debris removal missions. In addition, use of this closed-form attitude

solution in combination with an analytical, semianalytical, or numerical solu-

tion for a SO’s translational state has the potential to improve the efficiency

of full 6DOF state prediction. This possibility is explored in Chapter 6.
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Chapter 6

A Semianalytical Technique for

Six-Degree-of-Freedom Space Object

Propagation1

6.1 Introduction

Chapter 1 introduces the concepts of SP, GP, and semianalytical meth-

ods for translational, rotational, and 6DOF SO state prediction. In this chap-

ter, the 6DOF problem is addressed through the development of what may be

called a hybrid SP/GP technique. Specifically, SO attitude is calculated using

a GP method, and this approximation is used to inform an SP propagation

of the 3DOF state. The development of this approach is motivated chiefly by

two factors:

1. 6DOF SP propagation is notoriously slow due to factors including (1) the

increased size of the state vector, (2) the use of potentially complicated

SO shape models for the calculation of body forces and torques, and (3)

differences between the characteristic time scales of the translational and

1Work from this chapter has been accepted for presentation as:

• Noble Hatten and Ryan P. Russell. A semianalytical technique for six-degree-of-
freedom space object propagation. Paper 17-376. In 27th AAS/AIAA Space Flight
Mechanics Meeting, San Antonio, TX, February 2017. (accepted for presentation)

Ryan P. Russell supervised the work.
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rotational dynamics [65]. Using GP to approximate SO attitude allows

for the removal of the rotational state from the numerically propagated

state vector. This change significantly increases the efficiency of the over-

all state prediction because the numerical propagator is less influenced

by the fast time scales of the rotational dynamics. The hybrid method

may thus also be considered a semianalytical technique [44].

2. In many cases, greater accuracy is desired in the prediction of the 3DOF

state than in the rotational state (e.g., catalog maintenance, conjunction

analysis, etc.). However, body forces like those caused by aerodynamic

drag and SRP depend on SO attitude. Thus, even though the GP at-

titude prediction is not high-fidelity, the 3DOF state prediction may be

improved by using a better approximation of the attitude than would

be available from the common “cannonball” assumption. Approximate

knowledge of SO attitude can be valuable for applications such as active

debris removal (Chapter 5) [177, 157, 203]. The hybrid method therefore

serves as a middle ground between 3DOF and 6DOF SP methods.

The overall hybrid method is independent of the closed-form attitude

solution, which allows a practitioner to select from available solutions a method

that meets their needs. Here, the solution procedure presented in Chapter 5

is used to numerically demonstrate the capabilities of the hybrid method. Al-

gorithmic elements unique to this attitude solution are discussed. The hybrid

method is compared against SP 3DOF-only and fully coupled 6DOF propa-

gations for (1) a tumbling rocket body in LEO and (2) a HAMR plate in a
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geostationary transfer orbit (GTO). These two scenarios are chosen because of

their practical importance, sensitivity to attitude variations, and the assump-

tions of the specific closed-form attitude solution. First, the prevalence and

large size of disposed rocket bodies in Earth orbit make them primary targets

for active debris removal. Any generic active debris removal strategy would

benefit from the approximate knowledge of a target SO’s attitude that the hy-

brid propagation method provides, as discussed in Chapter 5 [177, 157, 203].

Second, HAMR objects are significantly disturbed by body forces and torques.

If the SO surface area changes over time, the invalidity of the cannonball as-

sumption of a 3DOF propagation is therefore more detrimental to the accuracy

of state prediction for a HAMR SO than for other types of SOs [65].

6.2 Hybrid SP/GP Method for 6DOF SO State Predic-
tion

A step-by-step description of the hybrid algorithm is given below; the

process is summarized in Figure 6.1.2

1. Given an initial time, 6DOF state, and constants (e.g., SO inertia ten-

sor), values are calculated for the expressions needed by the closed-form

rotational state prediction procedure.

2. A numerical ODE solution routine is initialized. The state vector of

propagation contains only the 3DOF SO state.

2The subscript “tr” indicates translational state, while the subscript “rot” indicates
rotational state.
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3. Criteria (if any) for reinitializing the closed-form rotational state pre-

diction are defined. Reinitialization of the closed-form attitude solution

algorithm may be desirable if the SO state evolves such that the values

calculated in the most recent execution of Step 1 no longer adequately

represent the scenario.

4. At each propagation step, the ODE solver calls a routine to evaluate

the translational state equations f tr one or more times. Each evaluation

requires the calculation of the external forces acting on the SO at the

current time and state. While the 3DOF state is obtained from the

propagation of the solution of the system of ODEs, the rotational state

is obtained by evaluating the analytical attitude solution at the given

time. This strategy requires that the values calculated in Step 1 be

available to the f tr evaluation routine in some form.

5. If necessary, Step 1 is repeated (see Step 3).

6. If desired, the values of the rotational state at each propagation step

may be output and saved.

The specific method used to predict the rotational state is irrelevant to

the algorithm, as long as the prediction is a closed-form function of time and

initial conditions only. The method may therefore be selected by the practi-

tioner based on considerations such as (1) applicability to physical/dynamical

conditions, (2) ease of implementation, and (3) computational efficiency. As

an illustration of the hybrid method, SO attitude is calculated in the examples

of this chapter using the solution presented in Chapter 5.
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Figure 6.1: Flow chart of hybrid method.

Once a rotational GP solution is selected, any points specific to that

theory must be addressed. For the present theory, such considerations include:

• The Hamiltonian is initially formulated using Andoyer variables [94, 45],

so transformations between the Andoyer set and any other desired at-

titude representations (e.g., a transformation matrix) must be imple-

mented. Additionally, the Andoyer variables are singular for certain

SO configurations, so a transformation to an alternative set of variables

must be performed if it is expected that a singularity condition may be

encountered [73].

195



• Averaging over an angle implicitly assumes that the angle circulates; this

criterion must be met by all angles over which averaging is performed.

• The perturbation solution is found by performing the Lie-Deprit trans-

formation procedure twice in succession, each time to eliminate the terms

in the Hamiltonian that are periodic in a different variable. As a result,

there are actually three possibilities for calculating a solution in the un-

transformed variables once the solution is obtained in the transformed,

“doubly averaged” variables:

1. transform directly from the doubly averaged variables to Andoyer

variables;

2. transform from doubly averaged to singly averaged variables prior

to transforming to Andoyer variables;

3. transform from doubly averaged to singly averaged variables, and

from singly averaged to unaveraged variables prior to transforming

to Andoyer variables.

As the number of transformations increases, the amount of periodicity

recovered in the solution increases, as well. However, computational

effort also increases. The impact of which transformation strategy is

chosen is investigated in the numerical examples in Section 6.3.

• The transformation equations of the perturbation theory rely on elliptic

integrals and Jacobi elliptic functions; a satisfactory implementation of

these functions is therefore required [72, 68, 69, 70, 71].
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Regardless of which GP method is selected, the accuracy of the hybrid

method is strongly dependent on how well the assumptions of the analytical

attitude solution are met. In the present case, the most important assumptions

are:

1. The SO is rotating quickly, in the sense that the assumptions of the

averaging procedure are valid [134].

2. The parameter of the perturbation procedure, ε, is small.3

3. Gravity-gradient torque is the only torque acting on the SO.

4. The SO is in a Keplerian, elliptical orbit.

Assumptions (1), (2), and (4) are functions of the initial conditions and

mass properties of the SO. For an Earth-orbiting SO, assumption (3) is never

completely valid due to the presence of torques caused by aerodynamic drag,

SRP, the Earth’s magnetic field, etc. Thus, the validity of the assumption

must be assessed on a case-by-case basis, taking into account such factors as

SO mass properties, reflectance properties, and electromagnetic properties, as

well as the orbit regime.

Assumption (4) is not strictly valid for any force model other than a

simple two-body model. However, this issue may be circumvented to some

extent because orbital perturbations generally cause slow changes to an initial

osculating Keplerian orbit. Closed-form solution values calculated using an

3Assumptions (1) and (2) are related, but not identical.
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initial reference orbit may therefore be used to predict rotational states without

significantly compromising accuracy as long as the osculating orbit at the

time of prediction does not deviate overmuch from the reference orbit. If the

deviation becomes too large, the reference orbit may be reselected based on the

current state, and the expressions used to calculate the rotational state as a

function of time may be reinitialized. (The initial time used by the closed-form

solution must be updated, as well.)

While it is feasible to reinitialize the reference orbit at every time step,

frequent updates can lead to undesirable side effects. First, the efficiency of the

overall propagation is worsened due to the increased number of computations.

Second, if a new reference orbit is selected too frequently, the quality of the

attitude solution actually degrades, even though the validity of assumption (4)

improves. The reason is that the Lie-Deprit transformation procedure used to

obtain the perturbation solution is truncated at first order. Therefore, when

the transformed variables generated by the solution procedure (the ξ′′) are

converted back to untransformed variables (the ξ), some information is lost.

The problem is exacerbated if these new untransformed variables are then, in

turn, used to perform Step 1 of the hybrid algorithm. It is thus advisable to

change the reference orbit prudently.

In the examples presented in this chapter, the decision to reinitial-

ize the reference orbit is based on the time duration since the most recent

initialization, measured in units of the orbital period. The time between reini-

tializations is set prior to propagation and held constant. More sophisticated

criteria are possible, such as a metric that measures a “distance” between the
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current osculating orbit and the most recent reference orbit. It is important

that the selected criterion may be computed quickly to preserve the efficiency

of the hybrid method.

Another factor that may be important for estimation applications is the

handling of unknown events, such as maneuvers, collisions, or space weather

changes that can cause unpredicted state changes. Event detection and post-

event state estimation are challenging tasks when tracking only the transla-

tional state of an SO, and numerous methods have been put forth to address

this problem [125]. The difficulty increases when the full 6DOF state is under

consideration, particularly if attitude measurement data is not provided di-

rectly by the SO under consideration (e.g., via an inertial measurement unit),

as would be the case for a debris SO. If attitude state uncertainties are esti-

mated to be large following an event detection, it may be prudent to revert

to 3DOF-based translational state prediction until additional measurements

that reduce attitude uncertainty are accumulated. Otherwise, the benefit of

6DOF state prediction for the translational state – improved calculation of

body forces via instantaneous attitude information – may become a detriment

because of possibly inaccurate attitude estimates. While this issue is rele-

vant to both full 6DOF and hybrid prediction techniques, the hybrid method

presents an additional complication: The validity of the assumptions of the

closed-form attitude solution may be unknown for some time following event

detection. For example, referencing the theory presented in Chapter 5, if ro-

tational state uncertainty is high, it may be unknown whether the angular
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rates of the SO justify the assumption of fast rotation used in the averaging

procedure.

Even in the absence of an unknown event, significant attitude uncer-

tainty may produce a poor hybrid-based state prediction due to inaccurate

body force estimates and invalid solution assumptions. Use of the hybrid

method is therefore most appropriate in scenarios in which at least a moder-

ately accurate initial 6DOF state estimate and SO physical model is available.

In such situations, the hybrid method may provide a more accurate transla-

tional state prediction than a 3DOF-only propagation, while also providing a

reasonably accurate rotational state estimate. At the same time, the hybrid

prediction may require significantly less computation time than a full 6DOF

propagation. These claims are examined quantitatively in Section 6.3.

6.3 Results

Numerical results are presented to demonstrate the utility of the hy-

brid method. First, the GP solution for rotation is isolated to assess its com-

putational cost. Then, two case studies are presented to show that (1) the

assumptions of this hybrid method implementation are met for realistic and

important scenarios and (2) the hybrid method provides a meaningful bridge

between 3DOF and 6DOF SP methods for these scenarios.

All code is written in Fortran and compiled using the Intel Visual For-

tran Compiler XE 14.0.0.103 (64-bit) using the -O2 optimization flag. All com-

putations are performed on a 64-bit Windows 7 Enterprise workstation with
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two 12-core Intel Xeon E5-2680 v3 processors (clock speed 2.50 GHz) and 64

GB of RAM. Hyperthreading is disabled. The numerical solution of systems

of ODEs is calculated using the LSODE package, which provides an open-

source, variable-step-size, variable-order, linear-multistep (Adams method)

ODE solver [169]. The IRK methods discussed in Chapters 3 and 4 are

avoided here in an effort to isolate the effects of the hybrid method when

using a generic ODE solver. A reference “truth” solution is generated using a

quadruple-precision implementation of the full 6DOF system. For the hybrid

method, a new reference orbit is generated once per orbit period; in testing for

both case studies, this frequency was found to be a reasonable implementation

that balances the accuracy of the assumptions of the closed-form solution and

computational effort and inaccuracies caused by overly frequent coordinate

transformations.

6.3.1 Computational Speed of Closed-Form Attitude Solution

The computation times required to perform the various transformations

of the closed-form attitude theory are depicted in Figure 6.2 to help practi-

tioners calibrate the CPU effort.4 Times are normalized by the compute time

of the 8 × 8 gravitational acceleration (1.29 µsec using a spherical harmonics

implementation), and the meanings of the abbreviations used in the legend

of Figure 6.2 are given in Table 6.1. Note that q̄ and ω are the quaternion

and angular velocity vector representations of the attitude and attitude rates,

4All CPU times are averaged over a number of trials such that the total compute time
for each case is greater than 1 sec.
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respectively, needed for evaluation of attitude-dependent 3DOF acceleration

terms. Additionally, ξ, ξ′, and ξ′′ are the solution variables, the singly trans-

formed variables, and the doubly transformed variables of the closed-form the-

ory, respectively; a dot represents a time derivative. The data points shown

in Figure 6.2 represent the various transformation levels of the closed-form

theory described in the Section 6.2.

Predictably, as the number of transformations increases, so does the

compute time: The three transformation levels (0, 1, and 2) are approximately

equivalent to spherical harmonics acceleration calculations of degree and or-

der 11, 13, and 16, respectively, while the initialization procedure is roughly

equivalent to a degree and order 14 calculation. It is therefore important to

perform only those transformations that result in significant improvements in

solution accuracy. Additionally, the overall computational cost of the dynam-

ics model must be taken into account when deciding whether or not to use the

hybrid method. A very inexpensive dynamics model may see little or no speed

increase from the hybrid method compared to a full 6DOF propagation.

However, faster analytical solutions may be feasible depending on the

specific scenario. For the current closed-form theory, a significant driver of

compute time is the calculation of elliptic functions and integrals, which appear

due to the triaxiality of the body. If the body is axisymmetric, alternative

theories that rely only on trigonometric functions are available [135]. For a

nearly axisymmetric body, a small triaxiality may be treated as a perturbation,

and again a closed-form theory in terms of trigonometric functions may be

202



Figure 6.2: Relative CPU times for closed-form attitude theory operations.

derived [137]. Such simplifications, when applicable, improve the efficiency of

the closed-form solution [70].

6.3.2 Tumbling Rocket Body in LEO

The first example application simulates 15 orbits of a rocket body SO

in LEO. The physical properties of the SO are based on a Centaur upper stage,

approximately modeled as a cylinder with length 12.68 m, diameter 3.05 m,

and inert mass 2243 kg [186]. In order to induce a larger aerodynamic drag

torque than would otherwise be generated, the center of mass of the SO is

moved away from the geometrical center by 0.634 m along the long axis. This

modification is made so that the simulation yields a more conservative demon-

stration of the hybrid method’s capabilities: The closed-form attitude solution

takes into account only gravity-gradient torque, so aerodynamic torque creates

attitude modeling inaccuracies for the hybrid method. A small asymmetry in

the radial plane of the SO is introduced, as shown in Table 6.2, in order to the

triaxiality assumption of the closed-form attitude theory.
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Table 6.1: Summary of coordinate transformations.

Figure 6.2 label Transformation Description

Closed-form init. q̄,ω → ξ̇
′′

Initialization transfor-
mation: 3DOF attitude
acceleration variables
→ closed-form attitude
solution variables

Closed-form 0 ξ̇
′′ → ξ′′ → q̄,ω Solution variables→ 3DOF

acceleration variables (di-
rect)

Closed-form 1 ξ̇
′′ → ξ′′ → ξ′ → q̄,ω Solution variables →

3DOF acceleration vari-
ables (one intermediate
transformation)

Closed-form 2 ξ̇
′′ → ξ′′ → ξ′ → ξ → q̄,ω Solution variables →

3DOF acceleration vari-
ables (two intermediate
transformations)

The SO orbit is based on that of a Centaur SO launched in 1972 and

still in LEO today (NORAD ID 6155); Table 6.3a gives the initial orbital state

used in this example [151]. The initial rotational state assumes a primary

tumbling motion about the axis of greatest inertia, with a rotational period of

approximately 32 sec. This rotation rate is not necessarily that of the modeled

SO, but rotation rates of similar magnitudes have been estimated for disposed

rocket bodies using light curves [177, 51, 146]. The initial rotational state of

the body-fixed frame with respect to the ECI frame is given in Table 6.3b.

204



The 3DOF force model consists of a 70 × 70 spherical harmonics im-

plementation of the geopotential, aerodynamic drag, and point-mass lunisolar

gravitational forces. Atmospheric density is calculated using the cubic Harris-

Priester model discussed in Chapter 2 with F̄10.7 = 150 sfu (moderate solar

activity). For 6DOF and hybrid propagations, torques caused by the gravity

gradient and aerodynamic drag are considered. For the purposes of calculating

body forces and torques, the SO is modeled using six flat, rigid panels arranged

as a rectangular prism, with side lengths 12.68 m, 3.0 m, and 3.1 m. For 6DOF

and hybrid propagations, the algorithm of Doornbos is used to calculate in-

dividual lift and drag coefficients for each panel; for 3DOF propagations, the

Doornbos method is integrated in closed form assuming a uniform, spheri-

cal SO to obtain a single drag coefficient [55] (i.e., cannonball-based drag).

This method produces a calculated drag coefficient rather than relying on a

user-specified value. While the use of more panels could better approximate

a cylinder (or a shape closer to a true rocket body, including nozzles, etc.),

this simple model is sufficient for a demonstration of the hybrid methodology.

This physical model is also representative of the level of modeling that might

be used if limited SO body information is known.

If a significantly higher-fidelity physical model (i.e., one made up of

many more individual panels) is available, the practitioner has multiple options

when using the hybrid method. First, the hybrid may employ the high-fidelity

shape model. In this case, while the efficiency advantage of the hybrid method

over fully numerical 6DOF propagation remains, the computational expense of

either relative to 3DOF propagation increases due to the calculation of body
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forces on a large number of surfaces. An alternative is to use a lower-fidelity,

approximate shape model with the hybrid method. This strategy is also an

option for obtaining faster, less-accurate state predictions using full 6DOF

propagation, but is particularly synergistic with the hybrid method because

the latter is based on efficiency-improving approximations.

A key consideration in comparing a 3DOF propagation of the system

to either a 6DOF or hybrid propagation is the surface area value used to

calculate aerodynamic drag. For the 6DOF or hybrid model, the area of each

panel exposed to the atmosphere is calculated dynamically as a function of

the attitude, but the 3DOF model has no such information. Therefore, a

constant area is assumed. In the results presented in this study, two constant

area values are used. First, a quick, rough value is obtained by averaging the

areas of the sides of the rectangular prism model (28.88 m2). Second, the area

value that produces the smallest RMS error relative to the 6DOF reference

solution over the course of the propagation is determined numerically using

a grid search; this value is found to be 41.85 m2. This second method is not

feasible in a practical scenario, but is included to account for the possibility

of a more intelligently determined area value than a simple average.

Simulation results are summarized in Figure 6.3, which shows position

state error relative to the 6DOF reference propagation as a function of CPU

time for a range of relative tolerances for the ODE solver. The 0, 1, and 2

subscripts of “Hybrid” in the legend have the same meanings as the 0, 1, and

2 labels for “Closed-form” given in Table 6.1 for the closed-form attitude so-

lution. The 3DOF legend entry with no subscript indicates the averaged area
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Table 6.2: Rocket body inertia tensor elements along principal axes in body-
fixed frame.

A 6593.76 kg · m2

B 40492.81 kg · m2

C 40658.00 kg · m2

Table 6.3: Initial rocket body state.

(a) Orbital state.

a 7042.35 km
e 0.00374
i 35.0 deg
Ω 122.0 deg
ω 237.0 deg
θ 0.0 deg

(b) Rotational state.

q1 0.0596
q2 0.0132
q3 0.2667
q4 0.9618
ω1 0.1146 deg/s
ω2 1.1459 deg/s
ω3 11.2511 deg/s

is used, while the “Best A” subscript indicates the numerically determined

lowest-error area is used. Finally, results for two full 6DOF propagations are

presented. The subscript “All” indicates that the same relative tolerance is

used for all states in the ODE solver. Meanwhile, the subscript “Low” means

that the relative tolerance on the rotational states is held fixed at 10−3 while

the tolerance on the translational states is varied. The latter option is included

for comparison because it mimics the ideology of the hybrid method by pro-

ducing a lower-fidelity attitude solution alongside a more precise translational
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solution. Different data points for a single prediction type are obtained by

varying the relative local truncation error tolerance of the ODE solver.

The two styles of 3DOF propagation behave similarly except for an

improvement in accuracy when the optimized drag area is used. Each is in-

expensive relative to the 6DOF and, to a lesser extent, hybrid propagations.

However, the 3DOF solutions reach a relatively high “accuracy floor”, at which

point reducing the tolerance of the ODE solver no longer produces a more ac-

curate solution. For the averaged-area propagation, the minimum RMS error

is approximately 66 m, while, for the best-area propagation, the minimum

RMS error is approximately 20 m.

For the fully numerical 6DOF propagation, the accuracy of the “Low”

version increases without a corresponding increase in CPU time over the ma-

jority of the translational state integration tolerance range. The reason is that

the tolerance on the rotational state, though held at a loose value, nevertheless

drives the step size of the propagation until the translational relative tolerance

is less than or equal to 10−13. Alternatively, the CPU time for the “All” ver-

sion increases with each decrease in tolerance. As a result, the accuracy floor

of the “All” propagation is more than two orders of magnitude smaller than

that of the “Low” propagation, but a CPU time of about 14 sec is required to

reach the smaller floor.

The utility of the hybrid method is visible in the lower left portion of

Figure 6.3, in which the hybrid method offers a solution that is more accu-

rate than the best-area 3DOF propagation and faster than the “Low” 6DOF
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propagation. The hybrid method (regardless of transformation level) achieves

approximately meter-level accuracy – more than an order of magnitude below

the accuracy floor of the best-area 3DOF solution – using about three and six

times less CPU time than the “Low” and “All” 6DOF methods, respectively.

At the same time, notes of caution regarding use of the hybrid method

must be mentioned. First, appropriate integration tolerance (or step size) se-

lection for the ODE solver used to propagate the translational equations of

motion is important. Excessively loose tolerances (or large step sizes) produce

results no more accurate than a 3DOF propagation, while excessively tight tol-

erances (or small step sizes) result in less accuracy for a given CPU time than a

full 6DOF propagation. This outcome is related to the validity of the assump-

tions of the closed-form attitude solution: the better the analytical solution

matches the true rotational dynamics, the more accurate the computation of

body forces, and the lower the accuracy floor of the numerically propagated

translational state. Improvements in the validity of the assumptions are there-

fore likely to decrease the integrator tolerance values at which use of the hybrid

method is advantageous. For this example, the relative tolerance “sweet spot”

is approximately 10−10 − 10−12.

Secondly, the choice of transformation type used by the attitude solu-

tion (0, 1, or 2) impacts the accuracy and efficiency of the propagation, though

the speed variation is not large for the current example due to the expense

of the translational dynamics model. Over the range of tolerances in which

the hybrid method is beneficial for this example, there is little difference in

accuracy between the transformation types, as well. However, as shown in Fig-
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Figure 6.3: RMS position error as a function of CPU time for 15-orbit propa-
gation of a rocket body in LEO.
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Figure 6.4: Simplification of Figure 6.3, featuring only the hybrid solutions
and extending the CPU time axis to show all data points.

ure 6.4, differences do exist: Primarily, transformation types 1 and 2 tend to

provide similar accuracies, while less accuracy is obtained from transformation

type 0. This result is examined in further detail in Section 6.3.3.

6.3.2.1 Impact of SO Rotation Rate

The rocket body scenario is re-simulated for integer multiples of the

initial primary spin rate (ω3) ranging from 1–10 (see the leftmost column of
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Table 6.4). Each propagation scheme is run for a range of ODE solver rel-

ative tolerance values: tol = 10x, with x varied in increments of 0.2 (i.e.,

. . . , 10−9, 10−9.2, 10−9.4, . . . ). For the hybrid and 6DOF variations, the loos-

est ODE solver tolerance that results in an RMS position error smaller than

7 m is identified. This cutoff value is chosen because it corresponds to an

improvement of approximately one order of magnitude over the best-case ac-

curacy obtained by the 3DOF propagation using an average area value (see

Figure 6.3). The selected tolerances for each case are given in Table 6.4. For

these specific runs, the speedups of the 6DOF “Low,” Hybrid0, Hybrid1, and

Hybrid2 propagations relative to the 6DOF “All” propagation are shown in

Figure 6.5.

This parameter sweep demonstrates how the hybrid method becomes

more effective as the rotation rate of the SO increases: The relative speedups

of the hybrid method increase from approximately 10× to greater than 80×

over the range of initial spin rates plotted in Figure 6.5. Meanwhile, the rela-

tive speedups achieved by the “Low” 6DOF option remain relatively constant

between 1.5× and 1.8× as the initial spin rate increases.

A faster rotation rate means that a fully numerical 6DOF propagation

must take smaller time steps to capture the high-frequency changes in the ro-

tational state. The hybrid method is less affected by such changes because the

rotational state is calculated analytically. The increased spin rate is therefore

only important to the step sizes taken by the hybrid method inasmuch as the

time evolution of body forces acting on the SO changes.
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Table 6.4: Common logarithm (i.e., log10) of ODE solver relative tolerances
corresponding to data points in Figure 6.5.

ODE solver tolerance
Initial ω3 (deg/s) Hybrid0 Hybrid1 Hybrid2 6DOFAll 6DOFLow

11.2511 -10.2 -10.2 -10.2 -4.8 -11.6
22.5021 -10 -10 -10 -5 -12.6
33.7532 -10 -10.2 -10 -4.2 -10
45.0042 -10.2 -10 -10.2 -4.2 -10.2
56.2553 -10 -10.2 -10 -4.2 -9.2
67.5063 -10 -10.2 -10 -4.2 -8.8
78.7574 -10.2 -10.4 -10 -4.2 -9
90.0084 -10 -10.4 -10 -4 -9
101.2595 -10 -10 -10 -4 -9
112.5105 -10.2 -10 -10.2 -4 -9.2

The accuracy of the rotational state predictions of the hybrid method

improves as the spin rate increases because the closed-form attitude solution

assumes fast rotation. However, even the slowest spin rate considered in this

case study is fast enough that the effect on the overall accuracy of the predicted

position state is minimal over the 15-orbit prediction time span.

6.3.3 HAMR Plate in GTO

The second example application is a three-orbit propagation of a nearly

flat, HAMR plate in GTO. Like the rocket body SO, the HAMR SO is modeled

as a rectangular prism, but with side lengths 0.5 m, 0.25 m, and 0.001 m. The

mass of the SO is 0.00475 kg, which gives the SO an area-to-mass ratio similar

to that of Kapton, a substance commonly used to thermally insulate satellites

212



11.25 22.50 33.75 45.00 56.26 67.51 78.76 90.01 101.26 112.51
0

10

20

30

40

50

60

70

80

90

100

Initial ω
3
 (deg/s)

M
u
lt
ip

lic
a
ti
v
e
 s

p
e
e
d
u
p
 v

s
. 
6
D

O
F

A
ll

 

 

6DOF
Low

Hybrid
0

Hybrid
1

Hybrid
2

Figure 6.5: Multiplicative speedups of hybrid and “Low” 6DOF propagations
compared to “All” 6DOF propagation.

[66]; the inertia parameters of the SO are given in Table 6.5. No center-of-

mass offset is assumed in the SO, and the coefficients of specular and diffuse

reflection are taken to be 0.60 and 0.26, respectively, for all surfaces; these

values are consistent with Kapton [66].

The force model consists of a 33×33 interpolated implementation of the

geopotential, aerodynamic drag, SRP, and point-mass lunisolar gravitational

forces [12]. For the 6DOF and hybrid models, the SRP force is calculated for

each panel of the SO as described by Früh et al. [66]. As with aerodynamic

drag, the SRP force for the 3DOF-only model is calculated using a single,

constant area value based on an assumption of a spherical body [66].

The highly eccentric GTO necessitates a high-degree/order geopotential

near periapsis, but a lower-degree/order field is acceptable near apoapsis. The

interpolated gravity model runs significantly more quickly than the spherical
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Table 6.5: HAMR SO inertia tensor elements along principal axes in body-
fixed frame.

A 2.47× 10−5 kg · m2

B 9.90× 10−5 kg · m2

C 1.23× 10−4 kg · m2

harmonics formulation, eliminating the need for a variable-degree/order model

to obtain an efficient propagation. For 6DOF and hybrid propagations, torques

caused by the gravity gradient and aerodynamic drag are considered. Torques

due to SRP are neglected because, for a rectangular prism body with uniform

reflectance properties, the net SRP torque is always zero under the current

SRP model [199]. In the case of an asymmetrical SO, SRP torque is likely to

be a significant driver of rotational motion due to the HAMR nature of the

SO (see Section 3.4.2) [66]. Selection of an alternative closed-form attitude

solution that approximates the effects of SRP torques may be appropriate

(e.g., Zanardi and Vilhena de Moraes [205]).

The SO initial conditions are given in Table 6.6. The rotational state

corresponds to a 1 revolution-per-minute rotation rate about the minimum

inertia axis.

Simulation results are summarized in Figure 6.6; the caption meanings

are the same as for Figure 6.3. Expectedly, the 3DOF propagations are again

the most efficient, but the RMS error floors for the averaged area and the best-
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Table 6.6: Initial HAMR SO state.

(a) Orbital state.

a 24009.05 km
e 0.713
i 20.6 deg
Ω 198.0 deg
ω 109.0 deg
θ 0.0 deg

(b) Rotational state.

q1 0.0727
q2 0.0481
q3 0.5926
q4 0.8008
ω1 6.0000 deg/s
ω2 0.1146 deg/s
ω3 0.2865 deg/s

case area solutions are both greater than 20 km.5 The “Low” 6DOF propaga-

tion achieves an RMS error of approximately 1.45 km before the required CPU

time begins to increase due to decreases in integration tolerance for the trans-

lational states. As in the rocket body example, a region is found in which the

hybrid method provides improved accuracy compared to the 3DOF propaga-

tion and improved efficiency compared to the “Low” 6DOF propagation. The

Hybrid1 solution achieves an RMS error less than 10 km approximately three

times faster than the “Low” 6DOF propagator and reaches sub-kilometer-level

RMS position errors approximately 2.5 times faster than the “All” 6DOF so-

lution. (The “All” solution is faster than the “Low” solution at this – and all

tighter – accuracy levels.)

This simulation starkly shows the differences that can arise in the

Hybrid1 and Hybrid2 solutions vs. the Hybrid0 solution. The additional vari-

able transformations that differentiate Hybrid1 from Hybrid0 recover periodic

5The averaged area value is 0.04192 m2, and the best-case area is 0.07258 m2.
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solution terms related to averaging over the orbital period. Meanwhile, mov-

ing from Hybrid1 to Hybrid2 recovers periodic terms related to averaging over

a body orientation angle. The amplitudes of the averaged variations related to

the orbital period are generally the larger of the two by a significant margin,

resulting in the observed trends (Chapter 5) [134]. It is therefore advisable to

retain at least the Hybrid1 solution, though, for the cases tested, any addi-

tional accuracy gained by using the Hybrid2 solution is likely to be offset by

the corresponding increase in CPU time.

For this example, the relative integration tolerance sweet spot for the

hybrid method is approximately 10−6 − 10−9, which is not as tight as that for

the rocket body example. This result is due to (1) the increased importance

of accurate attitude information for the accurate translational state prediction

of the HAMR SO and (2) the decreased validity of the closed-form solution’s

assumption that gravity-gradient torque is the only torque acting on the SO.

The approximations of the hybrid method are more detrimental for the HAMR

plate than for the rocket body due to the rocket body’s higher density and its

spin axis. (Rotation about the maximum-inertia axis is likely to be more stable

than rotation about the minimum-inertia axis because of energy dissipation

effects [120].)

More generally, from the two numerical examples, it is seen that the

most favorable tolerance level for the hybrid method corresponds to the “knee”

in the error vs. CPU time curve: the point at which the magnitude of the slope

of the curve created by successively decreasing the integration tolerance begins
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to decrease.6 Unfortunately, the tolerance value for this point is dependent on

not only the physical and dynamic properties of the simulation, but the ODE

solver and the step size selection algorithm, as well. Further, in practice, the

speed advantages of the hybrid method may be lost if a high-fidelity 6DOF

reference solution must be generated repeatedly to determine the optimal tol-

erance for the hybrid method. It is therefore likely infeasible to pronounce a

specific integration tolerance value range applicable to all scenarios.

This type of deficiency is not unique to the hybrid method. The loosest

integration tolerance that reaches the accuracy floor of the 3DOF propagation

is unlikely to be known a priori, potentially leading to significant compu-

tational waste if an overly tight tolerance is selected. Additionally, while the

“Low” 6DOF method can provide improved efficiency compared to a full 6DOF

propagation over a range of integration tolerances for the translational state,

this range is also problem-dependent. Even if full 6DOF propagation is used,

there is no single integration tolerance that is optimal across all applications

[188].

6.4 Conclusions

The limiting assumptions – and, thus, limited accuracy – of 3DOF

SO state prediction and the high computational burden of full 6DOF prop-

agation leave room for intermediate techniques. In this chapter, one such

option is developed by exploiting the rich history of analytical and semiana-

6This discussion assumes a variable-step ODE solver. In the case of a fixed-step method,
the role of the integration tolerance is played by the step size.
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Figure 6.6: RMS position error as a function of CPU time for three-orbit
propagation of a HAMR plate in GTO.

lytical approximate solutions for SO translational and rotational motion. The

result is a semianalytical, hybrid special/general perturbation algorithm in

which the translational state is propagated numerically, informed by closed-

form approximations of the rotational state. The hybrid method calculates

body translational forces like aerodynamic drag and solar radiation pressure

using a dynamically updated attitude and a user-definedSO physical model.

This force model contrasts with the typical assumption of a spherical body

used by 3DOF propagations. At the same time, the hybrid method may take

larger step sizes than a full 6DOF propagation because the attitude is not part

of the numerically integrated state.

The hybrid method is agnostic to the choice of closed-form attitude

solution, allowing a practitioner to select the algorithm that best fits their

needs (e.g., SO physical and dynamical properties, computational resources).

The method is illustrated using a perturbation solution, derived using the Lie-

Deprit method, that is applicable to a fast-rotating, triaxial, rigid body in an
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elliptical orbit subject to gravity-gradient torque (Chapter 5). The capabilities

of this hybrid method implementation are demonstrated in two example sim-

ulations of practical importance: a rocket body in LEO and a HAMR plate in

GTO. The translational equations of motion for both simulations use dynam-

ics models outside the assumptions of the attitude perturbation theory (e.g.,

a high-fidelity geopotential, aerodynamic drag, SRP, etc.). The deviations

from Keplerian motion are addressed by reinitializing the attitude solution

procedure once per orbit revolution. The hybrid method is shown to produce

position predictions more than an order of magnitude more accurate than a

best-case 3DOF propagation at approximately one-third of the computational

cost of a customized fully numerical 6DOF propagation. It is also demon-

strated that efficiency gains realizable via the hybrid method increase as the

rotation rate of the object increases because the numerical ODE solver does

not have to directly propagate the fast-changing attitude states. However, as

with any technique involving numerical integration, care must be taken in the

selection of the integration tolerance (for a variable-step method) or step size

(for a fixed-step method): If the tolerance is too loose, minimal improvement

over a 3DOF propagation may be seen, while, if the tolerance is too tight, a full

6DOF propagation may produce more accurate results with greater efficiency.

Improved applicability of the assumptions of the closed-form attitude solution

decreases the optimal integration tolerance values of the hybrid method be-

cause greater accuracy in the rotational state makes possible greater accuracy

for the numerically propagated translational state.
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At near-optimal integration tolerances, the hybrid method offers a

bridge between 3DOF and fully numerical 6DOF propagations. The improved

accuracy attained for SO position state prediction vs. 3DOF cannonball prop-

agation has the potential to, for example, decrease uncertainties in conjunction

assessments. The approximate knowledge of SO attitude produced by the hy-

brid method may be important for applications such as active debris removal.

At the same time, the speed increase vs. full 6DOF propagation makes the

hybrid method more amenable to large-catalog applications. Due to these

qualities, the hybrid method may also be an attractive choice for SOs whose

physical characteristics are only approximately known or whose attitude state

is moderately uncertain. In these situations, the expense of a fully numerical

6DOF propagation may not be justified because of the uncertainties caused

by the lack of available information. The hybrid method, combined with a

rough SO physical model, can achieve a reasonable facsimile of the full 6DOF

propagation while using significantly less computational resources.
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Chapter 7

Conclusions

The tongue-in-cheek Wirth’s Law and its less-famous sibling state “Soft-

ware is getting slower more rapidly than hardware becomes faster” and “Soft-

ware expands to fill the available memory,” respectively [200]. These adages

were originally intended to lament the bloat of word processors, operating sys-

tems, and the like as computer hardware grows more powerful. However, a

similar claim may be made that is specifically applicable to scientific compu-

tational modeling: The demands of technical software grow to meet or exceed

every hardware advancement.

This statement is not intended to be as harshly critical as Wirth’s Law.

On the contrary, the exploitation of each new hardware innovation by the scien-

tific community has led to the continuous development of heretofore infeasible

techniques. In astrodynamics, rapid improvements in hardware capabilities

have resulted in Monte Carlo uncertainty propagation, large-dimension pa-

rameter optimization, and stochastic optimization methods, to name but a

few examples. Yet, as software takes on more and more challenging tasks, it

is worth remembering that computational power is still finite, and the capa-

bilities of lower-level routines – which may be called millions of times in the

execution of a single high-level application – remain as important as ever.
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With these ideas in mind, this dissertation presents a set of new tech-

niques, each designed to improve one or more of the fidelity, efficiency, and

utility of SO state prediction and sensitivity calculation. The necessity and

ubiquity of these tools for vital and demanding applications like space situ-

ational awareness and space mission design strongly motivate the continued

development of analytical and numerical methods tailored to the SO problem.

In this final chapter, the major conclusions of the work are summarized and

directions for future work are discussed. A publication history of the material

is given in Appendix F.

7.1 Dissertation Summary and Primary Contributions

The first area addressed is thermospheric modeling, a key element of

state prediction for SOs in LEO due to the importance of aerodynamic forces.

In Chapter 2, the so-called cubic Harris-Priester atmospheric density model

is presented. CHP improves upon the classic modified HP model by using

interpolation techniques to ensure smooth changes in density, in particular as

a function of geodetic altitude. CHP adds a polynomial functional depen-

dence on the F̄10.7 solar flux proxy by performing a least-squares fit of “mea-

surements” produced by a higher-fidelity density model. Continuous partial

derivatives of the density with respect to SO state, time, and F̄10.7 are de-

rived. These contributions improve the accuracy of the HP model, especially

in extreme solar conditions, while also increasing robustness and utility for

sensitivity calculation. At the same time, CHP retains strong efficiency char-
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acteristics in the calculation of density and associated sensitivities relative to

other models.

In Chapter 3, a methodology is proposed to improve the efficiency of

the historically slow SP propagation of the coupled SO orbit/attitude (i.e.,

6DOF) state. A variable-step-size GLIRK ODE solver is described, and cus-

tomizations including variable-fidelity dynamics models and pre-convergence

LTE estimation are shown to improve propagator efficiency. In a serial envi-

ronment, performance is found to peak when using 8–12 stages. The GLIRK

solver is parallelized using OpenMP. Significant efficiency gains when using

more than 8–12 stages (and a corresponding number of threads) are only ob-

served for very expensive dynamics models due to parallelization overhead.

This result suggests that the approximation of linear speedups used in some

previous works may not always be appropriate. Nevertheless, for scenarios in

which an appropriate low-fidelity dynamics model may be created, the paral-

lelized GLIRK propagator is found to outperform high-order, variable-step-size

linear-multistep and ERK ODE solvers.

The necessity of calculating STMs in addition to state predictions for

many common applications is addressed in Chapter 4. The DDM of STM cal-

culation takes advantage of the speed and accuracy attainable through use of

analytical Jacobians and Hessians. Unlike the CDM, the calculation of STMs

is separated from the propagation of the state. In one form, STMs are obtained

through direct differentiation of the ODE solver update equations (rather than

via propagation of the variational equations). STMs obtained in this manner

are therefore precise sensitivities of the specific equations used to propagate
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the state. In Chapter 4, the DDM equations for second-order STM calcula-

tion are derived for RK ODE solvers, and both first- and second-order DDM

equations are derived for the double-integrator form of the RK update equa-

tions. While applicable to ERK, as well, the DDM for IRK is shown to greatly

reduce the number of required Jacobian and Hessian evaluations relative to

the CDM, thereby reducing computation time. Efficiency for IRK methods is

further improved by effectively applying variable-fidelity dynamics modeling

and parallelization techniques (discussed in Chapter 3) to STM calculation.

In Chapters 5 and 6, a semianalytical hybrid SP/GP method for the

state prediction of nonspherical SOs is introduced. The method combines a

closed-form perturbation solution for the SO rotational state with the numer-

ical propagation of the translational state to produce a prediction that is both

more accurate than a 3DOF cannonball-based SP propagation and more effi-

cient than a fully coupled 6DOF SP propagation. Groundwork for the hybrid

method is laid in Chapter 5, in which a perturbation solution for a fast-rotating

triaxial SO subject to gravity-gradient torque is extended to the elliptical or-

bit case. The fidelity of the closed-form solution is demonstrated for scenarios

of varying eccentricity and values of the small parameter of the perturbation

method. In addition, the use of the closed-form solution in applications other

than the hybrid propagator is discussed. Fast attitude prediction for rocket

bodies targeted for active debris removal is identified as an important case

that may meet the assumptions of the perturbation solution.

In Chapter 6, the hybrid method itself is presented in detail. Two

scenarios of a nonspherical SO subject to body forces are simulated: a rocket
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body in LEO and a HAMR plate in GTO. In each case, the attitude prediction

capabilities of the hybrid model, using the closed-form solution described in

Chapter 5, facilitate position state predictions one or more orders of magnitude

more accurate than a 3DOF cannonball propagation. At the same time, the

hybrid predictions require significantly less runtime than a fully coupled 6DOF

propagation.

The material presented in the dissertation spans a significant portion

of the ever-important accuracy vs. efficiency spectrum for SO state predic-

tion and is therefore applicable to a variety of applications. Beginning at

the lowest fidelity level, the analytical GP methods discussed for translational

(Section 1.2.4.2) and rotational (Section 1.2.4.4, Chapter 5) motion are most

appropriate when moderate accuracy is sufficient. Applications for the trans-

lational routines include routine SO catalog maintenance and preliminary con-

junction analysis, as well as preliminary mission design work, such as trade

studies in which a large number of possible trajectories must be evaluated

quickly. The rotational theories may be applied to, for example, the predic-

tion and estimation of the attitude of a derelict rocket body targeted for active

debris removal.

Semianalytic 3DOF techniques (Section 1.2.4.3) produce predictions

that, if properly customized, may provide sufficient accuracy to reliably predict

SO conjunction events more rapidly than a 3DOF SP propagation [179, 64].

Nevertheless, 3DOF SP (Section 1.2.2.1) is necessary for precision orbit de-

termination of near-spherical SOs (e.g., for science missions with tight orbit
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accuracy requirements) and SOs for which attitude measurements are unavail-

able (e.g., for decreasing the uncertainty in conjunction analyses).

6DOF prediction (Section 1.2.2.6) provides the greatest accuracy of the

methods presented, but is the most computationally intensive. Observability

of the rotational state is also required. The hybrid method (Chapter 6), which

sacrifices rotational state accuracy for speed, may be appropriate for catalog

maintenance of HAMR SOs whose translational states are not well predicted

by 3DOF-only propagation. Fully numerical 6DOF propagation (Chapter 3),

though slower, may be used as an alternative in situations in which no suitable

closed-form attitude theory is available, and may be necessary for an SO with

precise pointing requirements.

7.2 Future Work

The cubic Harris-Priester atmospheric density model presented in Chap-

ter 2 uses a global functional relationship to include dependencies on the 81-

day centered F̄10.7 solar flux proxy. The initial calibration of the CHP model

via repeated higher-fidelity density model evaluations requires on the order of

minutes of computation time, with exact needs dependent on the particular

high-fidelity model used. It is therefore feasible to recalculate the CHP coef-

ficients often to take into account the most recent measurement data. Future

work could evaluate the benefits of frequent recalibrations.

Additional environmental dependencies – like daily F10.7 values and

geomagnetic indices – could be included in the CHP model. Determination of
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an appropriate functional form would be required, and the likely appearance of

coupling among the independent variables would necessitate use of a nonlinear

least-squares procedure to calculate the modeling coefficients. Further work

could also focus on improving the accuracy of the latitudinal dependency of the

Harris-Priester model, which is currently based on orbital inclination rather

than geodetic latitude.

The GLIRK ODE solver for 6DOF propagation (Chapter 3) could be

improved by use of a better step size selection mechanism. The current im-

plementation produces overly conservative step sizes due to the low order of

the nearly embedded comparison method relative to the propagated method.

Development of a more accurate method of estimating the local truncation

error while retaining efficiency is challenging due to the superconvergence of

the GLIRK solver. Along these lines, creation of an efficient step size adapta-

tion algorithm for long-time-step implicit ODE solvers like MCPI or BLC-IRK

could improve the viability of such methods for 6DOF applications. Accom-

plishment of this goal could further increase speed gains due to parallelization

because of the increased number of stages per step of long-time-step methods.1

Implicit 6DOF propagation, particularly for HAMR SOs, would benefit

from development of improved low-fidelity dynamics models. The current

ODE solver underperforms for HAMR SOs relative to other classes of SOs

because of the relatively small difference between the computational burdens

of the low-fidelity and high-fidelity dynamics models. A less expensive low-

1Efficient variable-step implementations of MCPI and BLC-IRK would benefit 3DOF
propagation, as well.
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fidelity model that provides an adequate representation of the true dynamics

would significantly improve efficiency. At the same time, the development

of automated algorithms for selecting an appropriate low-fidelity dynamics

model without user input would expand the possible user base for implicit

propagation methods.

Further testing of the DDM of STM calculation for RK methods pre-

sented in Chapter 4 would provide a more complete picture of the potential

benefits of the technique. An efficiency comparison against STMs produced

by algorithmic differentiation algorithms would quantify the speed differences

between the DDM and indirect methods of comparable accuracy. Also, mod-

ern computing architectures could be more fully exploited by parallelizing not

only the evaluations of Jacobians/Hessians at each time step but the STM

calculations at all time steps, as well. Nested parallelization of this kind is

an ideal arena for massive parallelization, e.g., using GPUs. The NVIDIA

CUDA standard for GPU computing supports nested parallelization, and de-

velopment of a GPU-based version of the STM calculation methods discussed

in Chapter 4 could provide further speed enhancements [154].

The results of Chapters 3 and 4 show that parallelization overhead when

using multicore CPUs with implicit ODE solvers is nontrivial, even when the

dynamics model is relatively expensive. Additional speed increases may be

possible with further investigation and implementation of overhead mitigation

techniques.
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The hybrid SP/GP 6DOF propagation method discussed in Chapters 5

and 6 can be matured in several ways. First, an automated procedure for de-

termining an appropriate time to calculate a new reference orbit for rotational

GP methods that rely on low-fidelity orbit models (e.g., an elliptical orbit)

would improve the robustness of the hybrid method. The selection of a proper

integration tolerance (or fixed step size) is another important part of maximiz-

ing the benefits of the hybrid method. The development of an algorithm for

efficiently optimizing the integration tolerance with minimal user input would

reduce the guesswork currently associated with the hybrid method.

Additionally, the chosen closed-form attitude solution is one of many

possibilities. If, for example, gravity-gradient torque is not dominant or the

SO of interest does not rotate rapidly, an alternative theory may be substi-

tuted to improve results. If the SO is axisymmetric, spherical, or nearly so,

computation-saving simplifications are possible. In the long run, a compre-

hensive algorithm that automatically and intelligently selects an appropriate

closed-form attitude solution for a given scenario would greatly expand the

utility of the hybrid method. Even further, automating the entire procedure

of propagator class selection from the wealth of possibilities – 3DOF GP, 3DOF

semianalytic, 3DOF SP, 6DOF SP, or 6DOF hybrid – for a given application

could have a profound effect on ensuring that a near-optimal amount of com-

putational resources is assigned to achieve a desired state prediction fidelity.
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Appendix A

GLIRK Local Truncation Error Estimation

As mentioned in Chapter 3, multiple methods exist for calculating the

“comparison solution” used to estimate the LTE of a GLIRK ODE solver.

Position accuracy as a function of high-fidelity dynamics function evaluations

(a proxy for CPU time) for three such methods is shown in Figure A.1. The

figure displays results for three-orbit propagations of the tumbling LEO sce-

nario (Figure A.1a) and non-tumbling GEO scenario (Figure A.1b) presented

in Chapter 3. The variable-fidelity dynamics strategy is used, and the GLIRK

solution uses eight stages. The “Kouya” method, which is based on a nearly

embedded solution of order s, is the strategy used to produce the results given

in Chapter 3 [127]. The “Jay” method uses an internal tolerance parameter

to generate a less conservative estimate of the LTE based on the order-s com-

parison solution [112]. The “Radau” method produces a comparison solution

using a non-embedded s-stage Radau-IA propagation, which produces a so-

lution of order (2s − 1) [88]. For the results presented in Figure A.1, it is

assumed that the initial guess for the Radau-IA solution is accurate enough

that only one high-fidelity dynamics function evaluation per stage is required

to achieve convergence.
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Figure A.1: Position accuracy as a function of high-fidelity dynamics func-
tion evaluations for three LTE calculation methods; relative LTE tolerance of
propagators is varied from 10−5 − 10−15.

The inexpensiveness of the nearly embedded Kouya method generally

produces a more efficient propagation than the Radau method for a given

accuracy when using variable-fidelity dynamics models, even though the Radau

method generally uses larger step sizes. On the other hand, the Jay method

uses very few function evaluations, but the internal tolerance tends to produce

such large step sizes that global error control is poor compared to the other

two methods.
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Appendix B

State Transition Matrix Calculation Via the

Direct Method

For the system described by Eq. (1.2), the STMs describe the evolution

of deviations in the initial state [185]:

δx(t) = Φ1 (t, t0) δx (t0) +
1

2
δx (t0)

T •2 Φ2 (t, t0) δx (t0) + O
(
δx (t0)

3) ,
(B.1)

where, for any vn×1 and T n×n×n [162],

[T •2 v] (i, j) =
[
vT •2 T

]
(i, j) ,

n∑
p=1

T (i, p, j)v(p). (B.2)

The first- and second-order STMs satisfy

Φ1 (t, t0) =
∂x(t)

∂x (t0)
(B.3)

Φ2 (t, t0) =
∂2x(t)

∂x (t0)
2 . (B.4)

In these equations, Φ2 is organized such that
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Φ2 (t, t0) (i, j, k) =
∂2x(t)(i)

∂x (t0) (j)∂x (t0) (k)
. (B.5)

Φ2 contains symmetries due to the commutativity of mixed partial derivatives;

that is, Φ2(i, j, k) = Φ2(i, k, j).

The STMs for the system under consideration evolve subject to ODEs

known as the variational equations:

Φ̇
1

(t, t0) = J (t,x) Φ1 (t, t0) (B.6)

Φ̇
2

(t, t0) = J (t,x) •1 Φ2 (t, t0) + Φ1T (t, t0) •H (t,x) •Φ1 (t, t0) (B.7)

J ,
∂f (t,x)

∂x(t)
(B.8)

H ,
∂2f (t,x)

∂x(t)2
, (B.9)

where, for any Mn×n and T n×n×n,

[T •1M ] (i, j, k) = [M •1 T ] (i, j, k) =
n∑
p=1

T (p, j, k)M (i, p) (B.10)

[
MT • T •M

]
(i, j, k) =

n∑
p=1

n∑
q=1

T (i, p, q)M(p, j)M(q, k). (B.11)

The array J is known as the Jacobian, while H is called the Hessian. Initial

conditions for STM propagation are Φ1 (t0, t0) = In and Φ2 (t0, t0) = 0n×n×n,

where In is the n × n identity matrix and 0n×n×n is an n × n × n array of

zeros.
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Two STMs may be “linked” in the independent variable to calculate

the STM over a different span:

Φ1 (t2, t0) = Φ1 (t2, t1) Φ1 (t1, t0) (B.12)

Φ2(t2, t0) = Φ1(t2, t1) •1 Φ2(t1, t0) + Φ1T (t1, t0) •Φ2(t2, t1) •Φ1(t1, t0).
(B.13)

B.1 Second-Order ODEs

For a system of second-order ODEs (Eq. (4.1)), the second-order RK

form given by Eqs. (4.2)–(4.4) may be used to propagate the variational equa-

tions [183]. For the first-order STM, Φ1 is rewritten as

Φ1
n×n =

[
Φ1

1n′×n

Φ1
2n′×n

]
, (B.14)

where Φ1
1 and Φ1

2 satisfy

Φ1
1 (t, t0) =

∂y(t)

∂x (t0)
(B.15)

Φ1
2 (t, t0) =

∂ẏ(t)

∂x (t0)
= Φ̇

1

1 (t, t0) (B.16)

Φ̈
1

1 (t, t0) =
∂g (t,y, ẏ)

∂y(t)
Φ1

1 (t, t0) +
∂g (t,y, ẏ)

∂ẏ(t)
Φ̇

1

1 (t, t0) . (B.17)

Thus, Eq. (B.17) is the second-order ODE to be propagated. The initial

conditions are given by
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Φ1
1 (t0, t0) = [In′ 0n′×n′ ] (B.18)

Φ̇
1

1 (t0, t0) = [0n′×n′ In′ ] . (B.19)

Similarly, for the second-order STM, Φ2 is rewritten as

Φ2
n×n×n =

[
Φ2

1n′×n×n

Φ2
2n′×n×n

]
, (B.20)

where Φ2
1 and Φ2

2 satisfy

Φ2
1 (t, t0) =

∂Φ1
1 (t, t0)

∂x (t0)
(B.21)

Φ2
2 (t, t0) =

∂Φ̇
1

1 (t, t0)

∂x (t0)
= Φ̇

2

1 (B.22)

Φ̈
2

1 (t, t0) = Φ̇
2

(t, t0) (n′ + 1 : n, 1 : n, 1 : n) . (B.23)

Due to the increased complexity of Eq. (B.7) compared to Eq. (B.6), Eq. (B.23)

is not simplified in the same manner as Eq. (B.17). The required subarray of

Eq. (B.7), when substituted into Eq. (B.23), must be written in terms of y

and ẏ rather than in terms of x. The initial conditions for both Φ2
1 and Φ̇

2

1

are simply appropriately sized arrays of zeros.
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Appendix C

The Lie-Deprit Method

The Lie-Deprit method is a perturbation-based algorithm for removing

short-period terms from a Hamiltonian system to obtain a simpler system –

one that depends only on long-period and/or secular terms. Here, the method

is described with emphasis on the computational procedure; further theoretical

details are available in, e.g., Boccaletti and Pucacco [26], Deprit [52], Kamel

[118, 119].

The Hamiltonian of the original system is assumed to be dependent on

a small parameter ε such that

H (q,p; t; ε) =
∞∑
n=0

1

n!
εnHn,0 (q,p; t) , (C.1)

where q and p are vectors of the coordinates and generalized momenta, re-

spectively, of the system and t is the independent variable. The Lie-Deprit

method seeks a transformed Hamiltonian K such that

K (Q,P ; t; ε) =
∞∑
n=0

1

n!
εnH0,n (Q,P ; t) =

∞∑
n=0

1

n!
εnKn,0 (Q,P ; t) , (C.2)
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where Q and P are vectors of the coordinates and generalized momenta, re-

spectively, of the new system.1 The transformation is achieved via a generating

function, defined by

W (Q,P ; t; ε) =
∞∑
n=0

1

n!
εnWn+1 (Q,P ; t) . (C.3)

The generating function is obtained by solving a partial differential equation

known as the homological equation. This equation is solved repeatedly, once

for each nonzero coefficient of εn in Eq. (C.1), and is given by

Kn,0 = Hn,0 (Q,P ; t) + (C.4)
n−1∑
j=1

[(
n− 1
j − 1

)
L′jHn−j,0 +

(
n− 1
j

)
Kj,n−j

]
− DWn

Dt
,

where

L′jf =
∂f

∂Q
· ∂Wj

∂P
− ∂f

∂P
· ∂Wj

∂Q
(C.5)

DWn

Dt
=
∂Wn

∂t
− L′nH0,0 (C.6)

Kj,i = L′jKi −
j−1∑
m=1

(
j − 1
m− 1

)
L′jKj−m,i (C.7)(

n
k

)
=

n!

k! (n− k)!
. (C.8)

1The Hn,0 are the terms of the original Hamiltonian, while the H0,n are the terms of the
transformed Hamiltonian.
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Eq. (C.5) is the Lie operator and may be written as the Poisson bracket

{f ;Wj}.

The variable transformations are obtained from

q = Q+
∞∑
n=1

1

n!
εnQ(n) (Q,P ; t) (C.9)

p = P +
∞∑
n=1

1

n!
εnP (n) (Q,P ; t) , (C.10)

where

Q(n) =
∂Wn

∂P
+

n−1∑
j=1

(
n− 1
j

)
Qj,n−j (C.11)

P (n) = −∂Wn

∂Q
+

n−1∑
j=1

(
n− 1
j

)
P j,n−j (C.12)

Qj,i = L′jQ
(i) −

j−1∑
m=1

(
j − 1
m− 1

)
L′mQj−m,i (C.13)

P j,i = L′jP
(i) −

j−1∑
m=1

(
j − 1
m− 1

)
L′mP j−m,i. (C.14)

To second order (the maximum order used in the present work), the

relevant equations are:
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K0,0 = H0,0 (C.15)

K1,0 = H1,0 −
DW1

Dt
(C.16)

K2,0 = H2,0 + L′1H1,0 + L′1K1,0 −
DW2

Dt
(C.17)

Q(1) =
∂W1

∂P
(C.18)

Q(2) =
∂W2

∂P
+ L′1Q

(1) (C.19)

P (1) = −∂W1

∂Q
(C.20)

P (2) = −∂W2

∂Q
+ L′1P

(1). (C.21)

The inverse coordinate transformations – useful for transforming initial

conditions from physical variables to solution variables – are given by

Q = q +
∞∑
n=1

1

n!
εnq(n) (q,p; t) (C.22)

P = p+
∞∑
n=1

1

n!
εnp(n) (q,p; t) , (C.23)

where, to second order [52],

q(1) = −∂W1

∂p
(C.24)

q(2) = −∂W2

∂p
+

{
∂W1

∂p
;W1

}
(C.25)

p(1) =
∂W1

∂q
(C.26)
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p(2) =
∂W2

∂q
+

{
−∂W1

∂q
;W1

}
. (C.27)

Unlike in the previous equations, the generating function terms Wj are as-

sumed to be expressed in the original variables q and p in Eqs. (C.24)–(C.27).

With the machinery in place, the task becomes the selection of the

H0,n (= Kn,0) so that Eq. (C.4) may be solved for the Wn. Frequently, H0,n

is selected to be the average value of the short-periodic terms in Eq. (C.4) to

produce a Wn that is free of secular terms, and, simultaneously, eliminate one

or more coordinates from Kn,0. The system described by the Hamiltonian K

is thus, hopefully, easier to solve than the original system described by H.

C.1 Example

As an example of the application of the Lie-Deprit method, a single-

degree-of-freedom system with a first-order perturbation is considered.2 The

system is described by the Hamiltonian

H = ω0p−
ε

6
p2 sin4 q, (C.28)

where q and p are the scalar generalized coordinate and momentum, respec-

tively, ω0 is a constant, and ε is the small perturbation parameter. Following

Eq. (C.1), the terms of H are organized as

2This example is adapted from Boccaletti and Pucacco [26], Section 8.3.2.
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H0,0 = ω0p (C.29)

H1,0 = −1

6
p2 sin4 q = −p

2

48
[3− 4 cos (2q) + cos (4q)] . (C.30)

From Eq. (C.15), it is immediately seen that

K0,0 = ω0P, (C.31)

where Q and P are the transformed scalar generalized coordinate and mo-

mentum, respectively. The generating function W1 is obtained by solving

Eq. (C.16), which, for this scenario, is

K1,0 = −P
2

48
[3− 4 cos (2Q) + cos (4Q)]︸ ︷︷ ︸

H1,0

−ω0
∂W1

∂Q︸ ︷︷ ︸
DW1

Dt

. (C.32)

K1,0 may be selected as the average value of H1,0 over one period of Q

(2π):

K1,0 =
1

2π

∫ 2π

0

−P
2

48
[3− 4 cos (2Q) + cos (4Q)] dQ (C.33)

= −P
2

16
. (C.34)

Substituting Eq. (C.34) into Eq. (C.32) yields
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−P
2

16︸ ︷︷ ︸
K1,0

= −P
2

48
[3− 4 cos (2Q) + cos (4Q)]︸ ︷︷ ︸

H1,0

−ω0
∂W1

∂Q︸ ︷︷ ︸
DW1

Dt

, (C.35)

which may be integrated in Q to solve for W1:

W1 = − P 2

192ω0

[sin (4Q)− 8 sin (2Q)] . (C.36)

With the generating function available, Eqs. (C.18) and (C.20) give the

forward transformations (q → Q and p→ P ) to first order, while Eqs. (C.24)

and (C.26) give the inverse transformations (Q→ q and P → p) to first order:

q = Q− εP

96ω0

[sin (4Q)− 8 sin (2Q)] (C.37)

p = P − εP 2

48ω0

[cos (4Q)− 4 cos (2Q)] (C.38)

Q = q +
εp

96ω0

[sin (4q)− 8 sin (2q)] (C.39)

P = p+
εp2

48ω0

[cos (4q)− 4 cos (2q)] . (C.40)

The dynamics of the transformed system are obtained via Hamilton’s

equations of motion:
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K = ω0P︸︷︷︸
K0,0

− ε

16
P 2︸ ︷︷ ︸

εK1,0

(C.41)

dQ

dt
=
∂K

∂P
= ω0 −

ε

8
P (C.42)

dP

dt
= −∂K

∂Q
= 0. (C.43)

Integrating in time gives closed-form solutions for P and Q as functions of

time.

Q (t) = Q (t0) +
[
ω0 −

ε

8
P (t0)

]
(t− t0) (C.44)

P (t) = P (t0) . (C.45)

Thus, the average solution may be calculated in closed-form and ana-

lytically transformed from {Q,P} to {q, p} to recover periodic terms in the

solution.

Hamilton’s equations may also be used to obtain differential equations

for the original system, Eq. (C.28):

dq

dt
= ω0 −

ε

3
p sin4 q (C.46)

dp

dt
= −2

3
εp2 sin3 q cos q. (C.47)

With the expressions presented, three solution possibilities exist. The

first is to use a numerical ODE solution algorithm to approximate the solutions
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of Eqs. (C.46) and (C.47). The second is to use Eqs. (C.44) and (C.45) to

analytically obtain solutions of the averaged system in transformed variables

(Q and P ). Finally, periodic terms of the averaged solution may be recovered

by performing the inverse transformation (Eqs. (C.39) and (C.40)) to obtain

q and p from the closed-form solutions for Q and P . Figure C.1 compares

the time evolutions of the three solutions for t ∈ [0, 20], q (t0) = 0, p (t0) = 1,

ω0 = 1, ε = 0.1. For both q and p, the impact of performing the inverse

transformation after obtaining the closed-form solution in Q and P is clear.

The “Avg. transformed” solution tracks the numerically integrated solution

very well over the time span plotted, though secular errors due to the truncated

perturbation theory are visible, especially for q.
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Figure C.1: Time evolutions of states for system (C.28), cal-
culated in three different manners. “Numerical” indicates nu-
merical solution of unaveraged ODEs; “Avg.” indicates closed-
form solution of averaged dynamics without recovery of peri-
odic terms; “Avg. transformed” indicates closed-form solution
of averaged dynamics with recovery of periodic terms.
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Appendix D

Lara-Ferrer Circular Orbit Equations

In Chapter 5, the equations of the perturbation solution for the elliptical

orbit case that are the same or only slightly modified from the original circular

case are omitted in the interest of space. The relevant equations are given here,

and the corresponding equations in the original text [134] are referenced when

appropriate. It is emphasized that these equations are the original equations,

applicable to circular orbits only. The revisions described in Section 5.2.1 must

be performed in order to achieve validity for eccentric orbits.

The auxiliary variables f (Eq. (11)), m (Eq. (12)), and ∆ (Eq. (5))

are given by

f =
C (B − A)

(C −B)A
(D.1)

m =
(C −∆) (B − A)

(C −B) (∆− A)
(D.2)

∆ =
G2

2Φ
. (D.3)

Eq. (18) gives the torque-free Hamiltonian in solution variables:

Φ =
G2

2A

(
1− C − A

C

f

f +m

)
. (D.4)
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Eqs. (27) and (30) give variable relationships necessary for performing

calculations:

L
∂m

∂L
= −L

G

π

K(m)

(f +m)3/2√
f (1 + f)

(D.5)

L

G
=

2

π

√
1 + f

√
f

f +m

[
Π (−f |m)− m

f +m
K(m)

]
. (D.6)

Eq. (49) gives the Hamiltonian for gravity-gradient-perturbed rotation,

simplified by the assumption of fast rotation, in Andoyer variables:

H =
M2

2C

{(
sin2 ν

A/C
+

cos2 ν

B/C

)
s2J + c2J +

1

4

(
n

M/C

)2

· (D.7)

(
1− 3s2I sin2 φ

) [(
2− B

C
− A

C

)(
1− 3c2J

)
−(

B

C
− A

C

)(
3− 3c2J

)
cos (2ν)

]}
φ , h− θ. (D.8)

Meanwhile, the disturbing potential in solution variables is given by

Eq. (59), with u defined in Eq. (76):

U =
n2

8

(
1− 3s2I sin2 φ

){
(2C −B − A) · (D.9)[

1− 3
f

f +m
dn2 (u|m)

]
+ 3 (B − A) ·[

1− f

f +m
dn2 (u|m)

] [
1− 2

(1 + f) sn2 (u|m)

1 + fsn2 (u|m)

]}
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u =
2K(m)

π
l. (D.10)

The full fast-rotating Hamiltonian in solution variables is (Eq. 60):

H = Φ− nH + U, (D.11)

where Φ is given by Eq. (D.4), n is the orbital mean motion, H is the conjugate

momentum of h, and U is given by Eq. (D.9).

The H0,2 contribution to the averaged Hamiltonian of the first Lie-

Deprit transformation is given by Eq. (65), with the auxiliary variable κ defined

in Eq. (66):

H0,2 =
n2

4
κ
(
1− 3s2I sin2 φ

)
(D.12)

κ = (B − A)

{
C − A
B − A + 1− 3

1 + f

m+ f

[
1 +

C −B
B

E(m)

K(m)

]}
. (D.13)

The W2 term of the generating function of the first Lie-Deprit trans-

formation is given by Eq. (67). Calculations are facilitated by Eqs. (68) and

(35), which give Z (Ψ|m) and Ψ, respectively.

W2 = −3

2

n2

G
(C −B)A

√
f

1 + f

f +m
Z (Ψ|m)

(
1− 3s2I sin2 φ

)
(D.14)

Z (Ψ|m) = E (Ψ|m)− E(m)

K(m)
F (Ψ|m) (D.15)

Ψ = am

(
−2K(m)

π
l|m
)
. (D.16)
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Eqs. (77)–(82) give the variable transformations for the first Lie-Deprit

transformation, which averages over the angle l:

∆l =
3

4

n2

G2
(C −B)A

π

2K(m)
· (D.17)[

Z (Ψ|m)− 2 (f +m)
dZ (Ψ|m)

dm

] (
1− 3s2I sin2 φ

)
∆h =

3

4

n2

G2
(C −B)A

√
f

1 + f

m+ f
Z (Ψ|m) 6cI sin2 φ (D.18)

∆g = −3

4

n2

G2
(C −B)A

√
f

1 + f

m+ f
Z (Ψ|m) · (D.19)

(
1− 3s2I sin2 φ

)
− L

G
∆l − H

G
∆h

∆L =
3

4

n2

G2
(C −B) · (D.20)

A

√
f

1 + f

m+ f

2K(m)

π

[
E(m)

K(m)
− dn2 (u|m)

] (
1− 3s2I sin2 φ

)
∆G = 0 (D.21)

∆H =
3

4

n2

G2
(C −B)A

√
f

1 + f

m+ f
Z (Ψ|m) 3s2I sin (2φ) , (D.22)

where (Eq. (75))

dZ (Ψ|m)

dm
=

cn (u|m)

2 (1−m)
. (D.23)
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Appendix E

Lara-Ferrer Fast-Rotating Satellite Solution:

Spin about Axis of Minimum Inertia

As presented in Lara and Ferrer [134], the transformation from An-

doyer variables to fully reduced action-angle variables (“solution variables”)

is only applicable to an object spinning about its axis of maximum inertia.

Rotation about the axis of minimum inertia may be considered by revising the

transformation procedure as follows. (Transformed variables are denoted by a

subscript T .)

The problem is reorganized such that the axis of minimum inertia is

aligned most closely with the body 3 axis. Under the assumption A ≤ B ≤ C,

AT = C, BT = B, CT = A (E.1)

ω1,T = ω3, ω2,T = −ω2, ω3,T = ω1 (E.2)

RT (1, 1 : 3) = R(3, 1 : 3) (E.3)

RT (2, 1 : 3) = −R(2, 1 : 3) (E.4)

RT (3, 1 : 3) = R(1, 1 : 3). (E.5)

The transformed values are converted to Andoyer variables [45], and transfor-

mation to action-angle variables proceeds identically to the case of spin about
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the maximum-inertia axis. When evaluating the analytical solution, the trans-

formed moments of inertia must be used. Further, it must be remembered that

the resulting attitude solutions do not describe the orientation of the original

body-fixed frame with respect to the inertial frame. Once the result is calcu-

lated in (transformed) action-angle variables and converted to a (transformed)

angular velocity vector and rotation matrix, Eqs. (E.1)–(E.3) must be applied

to obtain the ω and R of the original body-fixed frame with respect to the

original inertial frame.
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Appendix F

Publications

Publications that contain material presented in this dissertation are

listed below. In each instance, Ryan P. Russell supervised the work. Addi-

tionally, publications completed while the author was in the graduate program

at the University of Texas at Austin, but which are not presented in the dis-

sertation, are listed as “other” work.

Submitted to Refereed Journals

Chapter 2

• Noble Hatten and Ryan P. Russell. A smooth and robust Harris-

Priester atmospheric density model for low Earth orbit applications. Adv

Space Res. doi: 10.1016/j.asr.2016.10.015. (online first November 2016)

Chapter 3

• Noble Hatten and Ryan P. Russell. Parallel implicit Runge-Kutta

methods applied to coupled orbit/attitude propagation. J Astronaut

Sci. doi: 10.1007/s40295-016-0103-3. (accepted October 2016)
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Chapter 4

• Noble Hatten and Ryan P. Russell. Decoupled direct state transition

matrix calculation with Runge-Kutta methods. SIAM J Sci Comput.

(under review; submitted November 2016)

Other Refereed Journal Publications

• Noble Hatten and Ryan P. Russell. Comparison of three Stark problem

solution techniques for the bounded case. Celest Mech Dyn Astr, 121:39–

60, 2015. doi 10.1007/s10569-014-9586-z.

Conference Proceedings

Chapter 2

• Noble Hatten and Ryan P. Russell. A smooth and robust Harris-

Priester atmospheric density model. Paper AAS 16-406. In 26th AAS/AIAA

Space Flight Mechanics Meeting, Napa, CA, February 2016.

Chapter 3

• Noble Hatten and Ryan P. Russell. Parallel implicit Runge-Kutta

methods applied to coupled orbit/attitude propagation. Paper AAS 16-

395. In 26th AAS/AIAA Space Flight Mechanics Meeting, Napa, CA,

February 2016.
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Chapter 4

• Noble Hatten and Ryan P. Russell. Decoupled direct state transition

matrix calculation with Runge-Kutta methods. Paper 17-398. In 27th

AAS/AIAA Space Flight Mechanics Meeting, San Antonio, TX, Febru-

ary 2017. (accepted for presentation)

Chapter 5

• Noble Hatten and Ryan P. Russell. The eccentric case of a fast-

rotating, gravity-gradient-perturbed satellite attitude solution. Paper

17-373. In 27th AAS/AIAA Space Flight Mechanics Meeting, San Anto-

nio, TX, February 2017. (accepted for presentation)

Chapter 6

• Noble Hatten and Ryan P. Russell. A semianalytical technique for

six-degree-of-freedom space object propagation. Paper 17-376. In 27th

AAS/AIAA Space Flight Mechanics Meeting, San Antonio, TX, Febru-

ary 2017. (accepted for presentation)

Other Conference Proceedings

• Brandon A. Jones, Noble Hatten, Nicholas Ravago, and Ryan P. Rus-

sell. Ground-based tracking of geosynchronous space objects with a GM-

CPHD filter. In Advanced Maui Optical and Space Surveillance Tech-

nologies (AMOS) Conference, Maui, HI, September 2016.
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• Raymond G. Merrill, Nathan Strange, Min Qu, and Noble Hatten.

Mars conjunction crewed missions with a reusable hybrid architecture.

Paper 8.0104. In IEEE Aerospace Conference, Big Sky, MT, March 2015.

(peer reviewed)

• Noble Hatten and Ryan P. Russell. Application of the Stark problem

to space trajectories with time-varying perturbations. Paper AAS 14-

230. In 24th AAS/AIAA Space Flight Mechanics Meeting, Santa Fe,

NM, January 2014.
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[86] Kjell Gustafsson and Gustaf Söderlind. Control strategies for the itera-

tive solution of nonlinear equations in ODE solvers. SIAM J Sci Comput,

18(1):23–40, 1997. doi: 10.1137/S1064827595287109.

[87] Ernst Hairer and Gerhard Wanner. Stiff differential equations solved by

Radau methods. J Comput Appl Math, 111:93–111, 1999.

[88] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric Nu-

merical Integration: Structure-Preserving Algorithms for Ordinary Dif-

ferential Equations. Number 31 in Springer Series in Computational

Mathematics. Springer-Verlag, Berlin, second edition, 2006. pp. 30–35,

101, 147, 330–332.

[89] Ernst Hairer, S. P. Norsett, and Gerhard Wanner. Solving Ordinary

Differential Equations 1: Nonstiff Problems. Number 8 in Springer Series

268



in Computational Mathematics. Springer-Verlag, Berlin, third edition,

2008. pp. 196–200, 319–325.

[90] I. Harris and W. Priester. Time-dependent structure of the upper at-

mosphere. Technical Report TN D-1443, NASA, Goddard Space Flight

Center, MD, 1962.

[91] W. K. Hastings. Monte Carlo sampling methods using Markov chains

and their applicaitons. Biometrika, 57(1):97–109, 1970.

[92] Noble Hatten and Ryan P. Russell. Parallel implicit Runge-Kutta meth-

ods applied to coupled orbit/attitude propagation. In 26th AAS/AIAA

Space Flight Mechanics Meeting, Napa, CA, February 2016.

[93] Noble Hatten and Ryan P. Russell. Parallel implicit Runge-Kutta meth-

ods applied to coupled orbit/attitude propagation. J Astronaut Sci,

2016. doi: 10.1007/s40295-016-0103-3.

[94] William Bailey Heard. Rigid Body Mechanics: Mathematics, Physics

and Applications. Wiley-VCH, 2006. pp. 88–145.

[95] A. E. Hedin. A revised thermospheric model based on mass spectrometer

and incoherent scatter data – MSIS-83. J Geophys Res, 88:10170–10188,

1983.

[96] A. E. Hedin. MSIS-86 thermospheric model. J Geophys Res, 92(A5):

4649–4662, 1987.

269



[97] A. E. Hedin, J. E. Salah, J. V. Evans, C. A. Reber, G. P. Newton, N. W.

Spencer, D. C. Kayser, D. Alcayde, P. Bauer, L. Cogger, and J. P.

McLure. A global thermospheric model based on mass spectrometer

and incoherent scatter data, MSIS 1, N2 density and temperature. J

Geophys Res, 82:2139–2147, 1977.

[98] Jonathan F. C. Herman, Brandon A. Jones, George H. Born, and Jef-

frey S. Parker. A comparison of implicit integration methods for as-

trodynamics. In 2013 AAS/AIAA Astrodynamics Specialist Conference,

Hilton Head, SC, August 2013.

[99] Donald L. Hitzl and John V. Breakwell. Resonant and non-resonant

gravity-gradient perturbations of a tumbling tri-axial satellite. Celestial

Mech, 3:346–383, 1971.

[100] Hani M. Hohmmed, Mostafa K. Ahmed, Ashraf Owis, and Hany Dwidar.

Analytical solution of the perturbed orbit-attitude motion of a charged

spacecraft in the geomagnetic field. International Journal of Advanced

Computer Science and Applications, 4(3):272–286, 2013.

[101] Robert L. Holland and Hans J. Sperling. A first-order theory for the

rotational motion of a triaxial rigid body orbiting an oblate primary.

Astron J, 74(3):490–496, 1969.

[102] Felix R. Hoots and Ronald L. Roehrich. Spacetrack Report No. 3: Mod-

els for propagation of NORAD element sets. Technical report, U. S. Air

Force Aerospace Defense Command, Colorado Springs, CO, 1980.

270



[103] Felix R. Hoots, Paul W. Schumacher Jr., and Robert A. Glover. History

of analytical orbit modeling in the u. s. space surveillance system. J

Guid Control Dynam, 27(2):174–185, 2004.

[104] David G. Hull and Walton E. Williamson. Numerical derivatives for

parameter optimization. J Guid Control Dynam, 2(2):158–160, 1979.

[105] Intel Math Kernel Library for Windows OS Developer Guide. Intel Cor-

poration, 2016. Revision: 049.

[106] ISC Kosmotras. Dnepr User’s Guide. ISC Kosmotras, Moscow, issue 2

edition, Nov. 2001.

[107] L. G. Jacchia. Static diffusion models of the upper atmosphere with em-

pirical temperature profiles. Smithsonian Contributions to Astrophysics,

8:215–257, 1965.

[108] L. G. Jacchia. Revised static models of the thermosphere and exosphere

with empirical temperature profiles. Technical Report Special Report

332, SAO, Cambridge, 1971.

[109] L. G. Jacchia. Thermospheric temperature, density and composition:

New models. Smithsonian Astrophysical Observatory Special Report, 375,

1977.

[110] J. Jackson. Note on the numerical integration of d2x/dt2 = f(x, t). Mon

Not R Astron Soc, 84:602–606, 1924.

271



[111] James R. Jancaitis and John L. Junkins. Modeling in n dimensions using

a weighting function approach. J Geophys Res, 79(23):3361–3366, 1974.

[112] Laurent O Jay. Structure preservation for constrained dynamics with

super partitioned additive Runge-Kutta methods. SIAM J Sci Comput,

20(2):416–446, 1998.

[113] Brandon A. Jones. Orbit propagation using Gauss-Legendre collocation.

In AAS/AIAA Astrodynamics Specialist Conference, Minneapolis, MN,

August 2012.

[114] Brandon A. Jones and Rodney L. Anderson. A survey of symplectic and

collocation integration methods for orbit propagation. In 22nd Annual

AIAA/AAS Space Flight Mechanics Meeting, Charleston, SC, January–

February 2012.

[115] Brandon A. Jones, George H. Born, and Gregory Beylkin. Comparisons

of the cubed-sphere gravity model with the spherical harmonics. J Guid

Control Dynam, 33(2):415–425, 2010.

[116] J. L. Junkins, M. R. Akella, and K. T. Alfriend. Non-Gaussian error

propagation in orbital mechanics. J Astronaut Sci, 44(4):541–563, 1996.

[117] John L. Junkins. Investigation of finite-element representations of the

geopotential. AIAA J, 14(6):803–808, 1976.

[118] Ahmed Aly Kamel. Expansion formulae in canonical transformations

depending on a small parameter. Celestial Mech, 1:190–199, 1969.

272



[119] Ahmed Aly Kamel. Lie transforms and the Hamiltonization of non-

Hamiltonian systems. Celestial Mech, 4:397–405, 1971.

[120] Marshall H. Kaplan. Modern Spacecraft Dynamics and Control. John

Wiley and Sons, Inc., New York, 1976. pp. 61–64.

[121] William M. Kaula. Theory of Satellite Geodesy. Dover Publications,

Inc., Mineola, NY, 2000 dover edition, 1966. pp. 1–11.

[122] Michael Octavis Keeve. Study and Implementation of Gauss Runge-

Kutta Schemes and Application to Riccati Equations. Ph.D. Dissertation,

Georgia Institute of Technology, September 1997.

[123] T. S. Kelso and S. Alfano. Satellite orbital conjunction reports assessing

threatening encounters in space. In AAS/AIAA Space Flight Mechanics

Conference, Copper Mountain, CO, 2005.

[124] D. Kim, John L. Junkins, James D. Turner, and A. Bani-Younes. Multi-

segment adaptive modified Chebyshev Picard iteration method. In

AAS/AIAA Space Flight Mechanics Meeting, Santa Fe, NM, January

2014.

[125] Hyun Chul Ko and Daniel J. Scheeres. Maneuver detection with event

representation using thrust Fourier coefficients. J Guid Control Dynam,

39(5):1080–1091, 2016.

[126] Darin C. Koblick. Parallel high-precision orbit propagation using the

modified Picard-Chebyshev method. Master’s Thesis, California State

University, Long Beach, 2012.

273



[127] Tomonori Kouya. Practical implementation of high-order multiple pre-

cision fully implicit Runge-Kutta methods with step size control using

embedded formula. Int J Numer Meth Applic, 9(2):85–108, 2013.

[128] Yoshihide Kozai. The motion of a close Earth satellite. Astron J, 64

(1274):367–377, 1959.

[129] Fred T. Krogh. On testing a subroutine for the numerical integration of

ordinary differential equations. J ACM, 20(4):545–562, 1973.

[130] Gregory Lantoine and Ryan P. Russell. A fast second-order algorithm

for preliminary design of low-thrust trajectories. In 59th International

Astronautical Congress, Glasgow, UK, September-October 2008.

[131] Gregory Lantoine, Ryan P. Russell, and Thierry Dargent. Using multi-

complex variables for automatic computation of high-order derivatives.

ACM T Math Software, 38(3):16:1–16:21, 2012.

[132] Martin Lara and S. Ferrer. Closed form integration of the Hitzl-Breakwell

problem in action-angle variables. Adv Astronaut Sci, 145:27–39, 2012.

[133] Martin Lara and S. Ferrer. Complete closed form solution of a tumbling

triaxial satellite under gravity-gradient torque. Adv Astronaut Sci, 143:

255–274, 2012.

[134] Martin Lara and S. Ferrer. Closed form perturbation solution of a fast

rotating triaxial satellite under gravity-gradient torque. Cosm Res, 51

(4):289–303, 2013.

274



[135] Martin Lara, Toshio Fukushima, and Sebastin Ferrer. First-order rota-

tion solution of an oblate rigid body under the torque of a perturber in

circular orbit. Astron Astrophys, 519:1–10, 2010.

[136] Martin Lara, Juan F. San-Juan, and Luis M. Lopez-Ochoa. Delaunay

variables approach to the elimination of the perigee in artificial satellite

theory. Celest Mech Dyn Astron, 120:39–56, 2014.

[137] Martn Lara, Toshio Fukushima, and Sebastin Ferrer. Ceres’ rotation

solution under the gravitational torque of the Sun. Mon Not R Astron

Soc, 415:461–469, 2011.

[138] Clemence Le Fevre, Vincent Morand, Michel Delpech, Clement Gazz-

ino, and Yannick Henriquel. Integration of coupled orbit and attitude

dynamics and impact on orbital evolution of space debris. In AAS/AIAA

Space Flight Mechanics Meeting, Williamsburg, VA, January 2015.

[139] Eugene Levin, Jerome Pearson, and Joseph Carroll. Wholesale debris

removal from LEO. Acta Astron, 73:100–108, 2012.

[140] A. C. Long, J. O. Cappellari, Jr., C. E. Velez, and A. J. Fuchs. Goddard

Trajectory Determination System (GTDS) mathematical theory revision

1. Technical Report FDD/552-89/0001, NASA, Goddard Space Flight

Center, MD, 1989.

[141] Brent David Macomber. Enhancements to the Chebyshev-Picard Itera-

tion Efficiency for Generally Perturbed Orbits and Constrained Dynam-

ical Systems. Ph.D. Dissertation, Texas A&M University, August 2015.

275



[142] F. L. Markley. Spacecraft Attitude Determination and Control. Kluwer

Academic Publishers, Dordrecht, The Netherlands, 1978. pp. 510–522.

[143] Joaquim R. R. A. Martins, Peter Sturdza, and Juan J. Alonso. The con-

nection between the complex-step derivative approximation and algo-

rithmic differentiation. In 39th Aerospace Sciences Meeting and Exhibit,

Reno, NV, January 2001.

[144] Joaquim R. R. A. Martins, Peter Sturdza, and Juan J. Alonso. The

complex-step derivative approximation. ACM T Math Software, 29(3):

245–262, 2003.

[145] Ravishankar Mathur. An Analytical Approach to Computing Step Sizes

for Finite-Difference Derivatives. Ph.D. Dissertation, The University of

Texas at Austin, 2012.

[146] Mike McCants. Mike McCants’ BWGS PPAS page. Web site.

https://www.prismnet.com/ mmccants/bwgs/index.html. 29 June 2016.

[147] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth,

Augusta H. Teller, and Edward Teller. Equation of state calculations by

fast computing machines. J Chem Phys, 21(6):1087–1092, 1953.

[148] Oliver Montenbruck. Numerical integration methods for orbital motion.

Celest Mech Dyn Astron, 53:59–69, 1992.

[149] Oliver Montenbruck and Eberhard Gill. Satellite Orbits: Models, Meth-

ods, and Applications. Springer-Verlag, Berlin, corrected 2nd printing

edition, 2001.

276



[150] Paul Nacozy. The intermediate anomaly. Celest Mech Dyn Astron, 16:

309–313, 1977.

[151] NASA. NASA space science data coordinated archive. Web

site. URL http://nssdc.gsfc.nasa.gov/nmc/masterCatalog.do?sc=

2009-041B. Last accessed June 2016.

[152] National Research Council. Continuing Kepler’s Quest: Assessing

Air Force Space Command’s Astrodynamics Standards. The National

Academies Press, Washington, D. C., 2012. pp. 19–43.

[153] Ali H. Nayfeh. Perturbation Methods. Wiley-VCH, Weinheim, Germany,

2000. pp. 1–2, 228–307.

[154] NVIDIA Corporation. CUDA C programming guide. Technical Report

PG-02829-001 v7.5, NVIDIA Corporation, Santa Clara, CA, 2015.

[155] Cesar A. Ocampo. An architecture for a generalized spacecraft trajec-

tory design and optimization system. In International Conference on

Libration Point Missions and Applications, Girona, Spain, 2002.

[156] Cesar A. Ocampo and Jean-Philippe Munoz. Variational equations for a

generalized spacecraft trajectory model. J Guid Control Dynam, 33(5):

1615–1622, 2010.

[157] Gregory W. Ojakangas, P. Anz-Meador, and H. Cowardin. Probable

rotation states of rocket bodies in low Earth orbit. In 13th Annual

Advanced Maui Optical and Space Conference, Maui, HI, 2012.

277

http://nssdc.gsfc.nasa.gov/nmc/masterCatalog.do?sc=2009-041B
http://nssdc.gsfc.nasa.gov/nmc/masterCatalog.do?sc=2009-041B


[158] OpenMP Architecture Review Board. OpenMP Application Program

Interface, Version 4.0. OpenMP Architecture Review Board, July 2013.

[159] Ryan S. Park and Daniel J. Scheeres. Nonlinear mapping of Gaussian

statistics: Theory and applications to spacecraft trajectory design. J

Guid Control Dynam, 29(6):1367–1375, 2006.

[160] Ryan S. Park and Daniel J. Scheeres. Nonlinear semi-analytic methods

for trajectory estimation. J Guid Control Dynam, 30(6):1668–1676, 2007.

[161] I. Pelivan and S. Theil. Higher accuracy modelling of gravity-gradient

induced forces and torques. In AIAA/AAS Astrodynamics Specialist

Conference and Exhibit, Keystone, CO, August 2006.

[162] Etienne Pellegrini and Ryan P. Russell. On the accuracy of trajectory

state-transition matrices. In AAS/AIAA Astrodynamic Specialist Con-

ference, Vail, CO, August 2015.

[163] Etienne Pellegrini and Ryan P. Russell. On the accuracy of trajectory

state-transition matrices. J Guid Control Dynam, to appear.

[164] J. M. Picone, A. E. Hedin, D. P. Drob, and A. C. Aikin. NRLMSISE-00

empirical model of the atmosphere: Statistical comparisons and scientific

issues. J Geophys Res, 107(A12):1–16, 2002.

[165] Edward T. Pitkin. Second transition partial derivatives via universal

variables. J Astronaut Sci, 13:204–207, 1966.

278



[166] P J Prince and J. R. Dormand. High order embedded Runge-Kutta

formulae. J Comput Appl Math, 7(1):67–75, 1981.

[167] George J Prokopakis. A decoupled direct method for the solution of

ordinary boundary value problems. Appl Math Model, 17:499–503, 1993.

[168] Rien Quirynen. Automatic code generation of implicit Runge-Kutta inte-

grators with continuous output for fast embedded optimization. Master’s

Thesis, Katholieke Universiteit Leuven, 2012.

[169] Krishnan Radhakrishnan and A.C. Hindmarsh. Description and use

of LSODE, the Livermore Solver for Ordinary Differential Equations.

Technical Report UCRL-ID-113855, Lawrence Livermore National Lab-

oratory, Livermore, CA, 1993.

[170] J. L. Read, A. Bani Younes, and J. L. Junkins. Efficient orbit prop-

agation of orbital elements using modified Chebyshev Picard iteration

method. In International Conference on Computational & Experimental

Engineering and Sciences, Reno, NV, August 2015.

[171] Julie L. Read, Ahmad Bani Younes, Brent Macomber, James Turner,

and John L. Junkins. State transition matrix for perturbed orbital mo-

tion using modified Chebyshev Picard iteration. J Astronaut Sci, 2015.

doi: 10.1007/s40295-015-0051-3.

[172] Ricardo Leon Restrepo Gomez. Automatic algorithm for accurate nu-

merical gradient calculation in general and complex spacecraft trajecto-

ries. Master’s Report, University of Texas at Austin, 2010.

279



[173] Charles E. Roberts. An analytical model for upper atmosphere densities

based upon Jacchia’s 1970 models. Celestial Mech, 4:368–377, 1971.

[174] Juan F. San-Juan, Luis M. Lopez, and Rosario Lopez. Higher-order

analytical attitude propagation of an oblate rigid body under gravity-

gradient torque. Math Probl Eng, 2012:1–15, 2012.

[175] Adrian Sandu and Philipp Miehe. Forward, tangent linear, and adjoint

Runge-Kutta methods for stiff chemical kinetic simulations. Int J Com-

put Math, 87(11):2458–2479, 2010.

[176] Adrian Sandu, D. Daescu, and G. R. Carmichael. Direct and adjoint

sensitivity analysis of chemical kinetic systems with KPP: 1 – theory

and software tools. Technical report, Michigan Technological University,

April 2002.

[177] Fabio Santoni, Emiliano Cordelli, and Fabrizio Piergentili. Determina-

tion of disposed-upper-stage attitude motion by ground-based optical

observations. J Spacecr Rockets, 50(3):701–708, 2013.

[178] L. Sehnal. Model of the upper total density distribution TD88. Technical

Report 16, Department of Astronomy – Beograd, 1988.

[179] Srinivas J. Setty, Paul J. Cefola, Oliver Montenbruck, Hauke Fiedler,

and Martin Lara. Investigating the suitability of analytical and semi-

analytical satellite theories for space object catalogue maintenance in

geosynchronous regime. In AAS/AIAA Astrodynamics Specialist Con-

ference, Hilton Head, SC, 2013.

280



[180] L. F. Shampine and M. W. Reichelt. The MATLAB ODE suite. SIAM

J Sci Comput, 18(1):1–22, 1997.

[181] Mark F. Storz, Bruce R. Bowman, and James I. Branson. High accuracy

satellite drag model (HASDM). In AIAA/AAS Astrodynamics Specialist

Conference and Exhibit, Monterey, CA, August 2002.

[182] B. Surlan and S. Segan. TD-88Up: Upgraded neutral Earth’s thermo-

sphere total density TD-88 model. Serbian Astronomical Journal, 178:

57–63, 2009.

[183] Byron D. Tapley, Bob E. Schutz, and George H. Born. Statistical Orbit

Determination. Elsevier Academic Press, Amsterdam, 2004. pp. 485–

486, 511–515.

[184] Brian Tolman, R. Benjamin Harris, Tom Gaussiran, David Munton, Jon

Little, Richard Mach, Scot Nelsen, and Brent Renfro. The GPS Toolkit:

Open Source GPS Software. In Proceedings of the 16th International

Technical Meeting of the Satellite Division of the Institute of Navigation,

Long Beach, California, September 2004.

[185] James D. Turner, Manoranjan Majji, and John L. Junkins. High-order

state and parameter transition tensor calculations. In AIAA/AAS As-

trodynamics Specialist Conference, Honolulu, HI, August 2008.

[186] United Launch Alliance. Atlas V Launch Services User’s Guide. United

Launch Alliance, Centennial, CO, March 2010.

281



[187] United States Naval Observatory. Approximate solar coordinates. Web

site, 2012. URL http://aa.usno.navy.mil/faq/docs/SunApprox.

php. Last accessed July 2015.

[188] Hodei Urrutxua, Claudio Bombardelli, Javier Roa, and Juan Luis Gon-

zalo. Quantification of the performance of numerical orbit propagators.

In AAS/AIAA Space Flight Mechanics Conference, Napa, CA, February

2016.

[189] David Vallado and Paul Crawford. SGP4 orbit determination. In

AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu,

HI, August 2008.

[190] David Vallado, Paul Crawford, Richard Hujsak, and T. S. Kelso. Re-

visiting Spacetrack Report #3: Rev 2. In AIAA/AAS Astrodynamics

Specialist Conference, Keystone, CO, August 2006.

[191] David A. Vallado and David Finkleman. A critical assessment of satellite

drag and atmospheric density modeling. Acta Astronaut, 95:141–165,

2014.

[192] Jozef C. Van der Ha. Perturbation solution of attitude motion under

body-fixed torques. Acta Astron, 12(10):861–869, 1985.

[193] P. J. van der Houwen and D. P. Sommeijer. Parallel iteration of high-

order Runge-Kutta methods with stepsize control. J Comput Appl Math,

29(1):111–127, 1990.

282

http://aa.usno.navy.mil/faq/docs/SunApprox.php
http://aa.usno.navy.mil/faq/docs/SunApprox.php


[194] Rudolph van der Merwe. Sigma-point Kalman Filters for Probabilistic

Inference in Dynamic State-space Models. Ph.D. Dissertation, Oregon

Heath & Science University, 2004.

[195] Ramses van Zon and Jeremy Schofield. Numerical implementation of the

exact dynamics of free rigid bodies. J Comput Phys, 225:145–164, 2007.

[196] Vivek Vittaldev. Uncertainty Propagation and Conjunction Assessment

for Resident Space Objects. Ph.D. Dissertation, The University of Texas

at Austin, 2015.
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